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Lithography in Three Dimensions using
Computer-Generated Holograms

Andrew Maiden

Abstract

As electronic systems become ever more complicated, so the requirement for com-
plex interconnection between systems increases. This is true at all levels from the
chip metallisation itself, through the first die-level packaging to the Printed Circuit
Board (PCB). As the pitch of interconnects reduces and the width of the individual
tracks falls to the sub-micron level, current lithographic processes continue to con-
fine these tracks to a 2-dimensional surface on which space is becoming more and

more of a premium.

Some progress has been made to address this limitation by using three-dimensionally
structured photolithographic masks, which are manufactured to mate as closely as
possible with the surface on to which the image is to be projected. However, such
an approach is intrinsically complex and limited to simple enclosure shapes that
make the method practicable. In addition, it is difficult to achieve accurate align-
ment and the narrow linewidths that will be required in future systems. Alternative
approaches have used lasers to write directly on to a photolithographic material de-
posited on the surface of the structure. This method is very successful, but suffers

from low throughput due to the need to scan the whole surface to be exposed.

This thesis concerns the development of a novel lithographic method for the



creation of electronic circuitry over non-planar surfaces and within volumes using
Computer-Generated Holograms (CGH). The technique is developed in such a way
as to allow the imaging onto a suitably prepared substrate of features whose size
is of the same order as that used in the writing of the holographic mask, thus
providing a comparative replacement to a standard photolithographic mask used in

the production of PCBs and Integrated Circuits (ICs).
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Chapter 1

Introduction

HE AIM OF this thesis is to investigate the possibility of using Computer-
TGenemted Holograms, or CGH, for the lithographic patterning of features
onto non-planar or 3-dimensional substrates. A CGH is produced using models of
the propagation of light to simulate the complex-valued interference pattern result-
ing in a specified plane from a 2- or 3-dimensional object illuminated with a coherent
light source. This array of complex numbers is then processed into a format suitable
for writing on a conventional plotting device, or into a format which is physically
realisable using a relatively simple production process, and plotted out. Upon il-
lumination of the resulting mask, the original 3-dimensional object from which the
CGH was calculated is recreated as a light intensity distribution, in much the same
way as popular artistic holograms generated using a photographic process reproduce

apparently 3-dimensional scenes.

The idea under consideration in this document is that the diffraction pattern
that is necessary to successfully recreate an image of circuitry on a 3-dimensional
substrate can be calculated using a suitable model of light propagation. Further,

that this diffraction pattern can subsequently be used to produce a CGH using
3



1. Introduction

a simple production process that is able upon illumination using a coherent light
source to recreate an image of the required circuitry. Finally, that this image can be
of a quality high enough to carry out the conventional steps of photo-lithography in

order to reproduce the required pattern on the substrate.

Three further suppositions have resulted during the 3-dimensional Interconnect
(3DI) project. Firstly, that the resolution necessary in the CGH is of the same order
as that of the features being imaged; tracks on a PCB of 20um width are therefore to
be imaged using a CGH sampled at =~ 20um. The ramifications of this assumption
will become clear during the course of this thesis. Secondly, that the substrate to be
imaged is quite large and involve variations in depth up to several centimetres, such
as a 3-dimensional PCB, as opposed to very small with equally small depth varia-
tions such as a silicon wafer. The methods presented here may be applicable at these
smaller scales, but other effective methods already exist at this level whereas no real
alternatives are available for lithography on grossly non-planar surfaces. Finally, at
the outset of the 3DI project, lithography within volumes was stated as one of the
initial aims. With the understanding that one must walk before being able to run,
this aim has been left to the ‘future work’ section of the thesis and lithography on

non-planar surfaces has been the primary concern of the research carried out to date.

The 3DI project has been funded by the EPSRC through the EPPIC (Electronic
and Photonics Packaging and InterConnect) Faraday partnership. The research has
been undertaken jointly with the Department of Electronic Engineering at the Uni-
versity of Sheffield. The work was split between the holographic mask design and
testing carried out in Durham and the substrate preparation, imaging and process-

ing carried out in Sheffield.
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In addition to the academic partners, several industrial sponsors have collabo-
rated in the project. GSPK Circuits [2], a Knaresborough-based electronic design
and manufacture company, have assisted in the practical side of the project through-
out and have part-funded the research through a CASE (Cooperative Awards in
Science and Engineering) studentship. Xaar Ltd [3], Holtronic Technologies SA [4]
and Rohm and Haas Materials [5] have provided some industrial steering to the

project as well as assisting with the supply of materials and general know-how.

The remainder of this chapter introduces the various aspects of the project and
provides further motivation for the use of CGH as a lithographic tool. I hope
you enjoy the ideas presented here and that I have included enough diagrams and
references and have written in such a style that these ideas come across clearly and

their development is not too dry. So here goes..!

1.1 Thesis Structure

The thesis is split into three main parts. The first part covers the relevant back-
ground, the necessary theoretical framework and results from conventional Com-
puter Generated Holograms. This chapter introduces conventional holography and
provides an historical overview of CGH. Chapter 2 provides the necessary mathe-
matical framework for future chapters and chapter 3 gives a comprehensive look at
conventional CGH and assesses their suitability for use in lithography. Finally, chap-
ter 4 gives an introduction to conventional methods for the creation of 3-dimensional

images using CGH.

The second, and most important part of the thesis (chapters 5-8) covers the

framework that has been developed which has made it possible to create circuitry

5
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over non-planar surfaces by deconstructing the necessary image into single line com-
ponents. Chapter 5 examines how a single line can be imaged in space. Chapter 6
looks at the various forms that a CGH that images a single line can take. Chapter 7
investigates how the results for a single line can be expanded to include multiple line
segments. Finally, chapter 8 expands the results from the previous three chapters

to include 3-dimensional line-segments.

The final part of the thesis details possible applications of CGH lithography and
what further work is needed to move the developed methodology from the research
lab into reality. Chapter 9 looks in detail at the use of CGH lithography to create
a conical spiral antenna. Chapter 10 covers two other possible applications of the
technology, required future work and concludes the thesis with an assessment of

what has been achieved.

The appendices provide lists of mathematical results derived throughout this
thesis (Appendix A), a list of published material resulting from the 3DI project
(Appendix B) and a list of the Matlab routines used to compute CGH patterns and

to generate many of the figures (Appendix C).

1.2 CCD Camera Setup

In order to capture physical results from holographic masks, a CCD camera setup
has been used extensively. Figure 1.1 shows the arrangement. A custom Matlab
graphical user interface has been developed to interface with the camera and the
motorised stages, enabling precise positioning of the camera and accurate tiles im-

ages to be obtained; the interface is shown in figure 1.2.
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This system allows precision placement of the CCD within a volume of dimen-
sions ,y, 2 = 25cm X 25cm x 50cm. Two CCD have been used in this setup, the
first has a pixel spacing of 8.3um in both directions and a 5.3 x 4mm area, the
second covers the same area and has a 4.65um pixel spacing. The software allows
tiled images to be created at a given mask-image plane separation such that data
can be generated for an area larger than that of the CCD. In addition it is possible
using the software interface to produce realtime cross-section plots through the CCD

image, enabling the exposure conditions to be calibrated etc...
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1.3 Lithography, Holography and Computer Gen-

erated Holography

The aim of this section is to provide a brief background to the techniques that form
the title of this thesis. The history of lithography and its use in circuit manufacture
are outlined in Section 1.3.1, Section 1.3.2 details the development of conventional
Holography and some of its current uses and Section 1.3.3 covers Computer Gener-

ated Holography.

1.3.1 Lithography

Lithography n. The process of printing from a flat metal, formerly stone, surface
treated so as to repel the ink except where it is required for printing.

- ORIGIN from Greek lithos ‘stone’.

1.3.1.1 A Brief History of Lithography

The term Lithography originally applied to a form of printing conceived in 1798
by a playwright named Alois Senefelder as a way of producing copies of his plays.
Initially, Senefelder drew images in wax on a limestone block (hence litho meaning
stone). Upon applying a layer of acid to the block, he found that directly beneath
the wax, the stone was protected from the etching effect of the acid, a relief of the

original image was therefore created and could be used for printing.

In 1925, Ellis Bassist [6] patented a photolithographic process for the etching of
copper plates used by the printing industry. The photolithographic method involved

the coating of the copper plates with a photosensitive substance. The coated plates
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were illuminated through a mask consisting of clear and opaque regions, selectively
exposing the photosensitive layer. The unexposed areas of coating were then re-
moved from the plate by spraying it with water and the remaining areas of coating
left to dry and harden. The plate could then be etched, leaving a positive image of

the original mask in relief.

Bassist’s method was used among other things to print large advertisment posters
for the fledgling cinema industry- but not to produce electronics. In the early part
of the 20th century, several attempts had been made to produce circuitry cheaply
and reliably, but it was not until the 1930’s that Paul Eisler [7] adapted printing
techniques he had first used as a technical editor in Vienna to develop the first
Printed Circuit Board (PCB). His process used conventional screen printing pro-
cesses to selectively deposit acid-resistant ink onto a substrate consisting of a sheet
of vinyl covered paper on which had been glued a thin layer of copper foil. The
copper not covered by the ink was then etched away in an acid bath, leaving the
required circuit pattern. Unfortunately, Eisler’s early attempts to gain support for
his idea were turned down. The dubious reason given was that the existing method
of manufacturing circuitry employed teams of women to connect electronic com-
ponents together with lengths of wire and these women were “cheaper and more
flexible”. During the Second World War, Eisler’s PCBs began to be employed ex-
tensively to produce cheap, robust radio sets for American troops, but it was not
until the 1950s that printed circuit technology was fully comercialised. By this time,
the photolithographic process pioneered by Bassist had been adapted for use in PCB
manufacture, allowing the deposition of much finer features and consequently higher

density circuit boards.

Today, this manufacturing process remains essentially unaltered; figure 1.3 shows
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on the substrate with those on the mask. The mask is placed in the aligner emulsion
side down to ensure no diffraction takes place over the depth of the film (giving an
idea of the problems faced in imaging 3-dimensional substrates). The mask is then

vacuum-fixed to the board and exposed using a UV arc-lamp.

The exposed substrate is next fed into a developer which removes those regions
of the laminate film that were illuminated by the arc-lamp. Next, acid is used to
etch away the regions of the panel not still covered with film, leaving the required
pattern in the remaining copper. Finally, a further chemical process removes the

film layer.

It is worth making a distinction here between two scales of photolithography.
On the sub-micron scale, photolithographic methods are used in the fabrication of
semiconductors. At this level, the realisable minimum feature size is constrained by
the effects of diffraction and there is a constant drive to relax this limitation. On
the 10’s of micron scale, lithographic methods are used in the fabrication of PCBs.
Less stringent requirements on resolution and feature size means that inevitably,
innovation at the PCB level lags behind that at the semiconductor scale- indeed, the
essential PCB process has changed little in the seventy years since Eisler produced
his first prototype. It is this larger scale that is primarily covered in this thesis; the
smallest feature sized realised on any of the masks used during the course of this
research has been 5um. Consideration of the application to 3D sub-micron scale
substrates of the methods detailed in the following chapters is dealt with in chapter

10.
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imaging onto grossly non-planar surfaces using a method as versatile, as cheap and

as quick as a conventional photolithographic mask.

The key aim of this thesis is then: to investigate whether Computer-Generated
Holograms can be used in place of standard photomasks to image features onto
these grossly non-planar surfaces where the substrate may range in depth up to
several centimetres. It is not currently an aim of the 3DI research to replace the
existing techniques detailed above in the imaging of nano-scale features onto almost-
flat substrates. Indeed, in some ways, the methods detailed over the course of this
thesis can be seen as an extension of the ‘assist-features’ RET technique illustrated

in figure 1.4D. In what way this is the case will become clear during chapter 5.

1.3.1.3 Electro-Depositable Photoresists

In order to carry out a photo-lithographic process on a non-planar surface, it is
necessary to first uniformly coat the surface with a photo-sensitive layer. This is
a straightforward procedure when using conventional substrates; the film layer can
simply be laminated or spun onto the PCB panel or semiconductor wafer. However,
neither of these methods is suitable for depositing a uniform coating onto non-planar
surfaces- the laminate film will not conform correctly with the substrate and spin-
ning photoresist onto such a substrate leaves some areas with thick coatings and
some areas with no coating at all. It is possible to spray-coat a non-planar surface,
but this method is somewhat coarse and has good results only over a small range of
substrate depths. One solution to these problems is to use an Electro-depositable

photoresist, or EDPR, to coat non-planar surfaces.

EDPRs were initially developed for use with PCBs [15], but are also finding uses

14
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1.3.2 Holography

Holography n. A method of producing a three-dimensional image of an object
by recording on a photographic plate or film the pattern of interference formed by
a split laser beam and then illuminating the pattern either with a laser or with
ordinary light.

- ORIGIN from Greek holo ‘whole’ and graph ‘image’.

1.3.2.1 A Brief History of Holography

The field of Holography has its genesis in 1948 with the publication by Dennis Ga-
bor of work on an ‘electron interference microscope’ [17]- a device attempting to
overcome the limited resolving power of electron microscopes caused by the spher-
ical aberration present in their electron lenses. His method involved capturing on
photographic film the interference pattern between a reference wave and the wave-
front transmitted by an object placed in its path. Although bearing no resemblance
to the original object, this photograph captured in its fringe pattern information
about both the amplitude and phase of the object wavefront, such that when cor-
rectly illuminated an image of the object in space could be produced. His idea was
to capture the interference pattern caused by an object using an electron source
and to then recreate an image of this object using an optical source, thus replacing
electron lenses with their more precise optical equivalents. In his original paper,
Gabor notes the fact that the photographs he was producing ‘constituted records of
three-dimensional as well as of plane objects’- the first mention of the 3-dimensional

property for which the field of holography is best known.

The usefulness of Gabor’s method was limited by a requirement for a highly

transmissive object and the unavailability of a high-quality coherent light source at

16



1. Introduction

the time. With the invention of the laser in the 1960’s, interest in Gabor’s Holograms
(as they became known) was rekindled, especially in the work of E. Leith and J.
Upatnieks at the University of Michigan. It was this team that eventually adapted
the techniques of holography to 3-dimensional photography [18]. Leith and Upat-
nieks refined the method of Gabor to eliminate the need for a transmissive object
and to spatially separate the real and virtual images formed on reconstruction of a
Hologram. By passing the wavefront illuminating an object through a diffuser, their
technique distributed light from each point on the object more or less equally onto
every region of the holographic recording. Any fragment of a hologram recorded in
this way is therefore capable of reproducing the original scene, albeit at a reduced

resolution.

Figure 1.6 shows three possible geometries for the recording of Holograms. Fig-
ure 1.6a is the original concept of Gabor in which a transmissive object is placed
in the path of a coherent plane wave. The object is assumed to have a high av-
erage level of transmittance, resulting in a high level of the illuminating wavefront
propagating through to the recording medium. In addition, the variations about the
average of the object transmittance create a diffracted wavefront that also reaches
the photographic film. These two waves interfere. If it is assumed that these two
wavefronts can be represented by the complex scalar fields A and a for the plane
and diffracted waves respectively, then the intensity incident on the film is given by

I=|A+al
(1.1)
= |A]®? + A*a + Aa* + |a|?
If this intensity is faithfully recorded, such that the transmittance of the film is
proportional to equation 1.1, and the developed transparency is then illuminated
from behind by a coherent plane wave, the wavefront transmitted by the Hologram

contains a component proportional to the diffracted wave and a component pro-
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portional to its conjugate. When viewed facing the source of the plane wave, this
corresponds to a virtual image of the original object appearing behind the plane
of the Hologram and a real image appearing in front. The on-axis nature of the
recording process means that these two images overlap. The hologram of figure
1.6b overcomes the problem of overlapping images by using an alternate recording
geometry [19]. Here, the reference wave is passed through a prism such that it forms
an angle with the photographic plate and with the wavefront from the transmissive
object. The hologram is then replayed using an on-axis reference beam, causing
the image of the object to shift from the optical axis by an angle equal to that
formed between the reference beam and the photographic plate during the exposure
process. If this angle is chosen judiciously, the reconstructed image will be spatially
distinct from the ‘straight-through’ light and the twin image present in equation
1.1. In a similar way, the recording geometry of figure 1.6¢ can be used to record a
hologram of a 3-dimensional object [18]. The object is now assumed to be reflective
and a mirror is now used to create a reference beam from the source illuminating
the object. Again, by choosing the angle formed between the reference beam and
the photographic plate carefully, the reconstructed object can be made spatially

separate from the reconstructed reference beam.

As an aside, it is worth mentioning the Rainbow Hologram [20]. Since they are
used for the creation of artistic display pieces, it is this variety of Hologram for
which the field of holography is best known. The advantage of the Rainbow Holo-
gram that suits it to display purposes is its capability of forming a viewable image
under white lighting, rather than through the use of a coherent, monochromatic
source such as a laser. This is achieved by first creating a conventional Hologram of
the type shown in figure 1.6¢c. This Hologram is then replayed through a narrow slit
and the resulting wavefront combined with a spherically diverging reference beam

on a second photographic film to create a second Hologram. When this Hologram is
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illuminated from behind by a white light source, the various wavelengths present in
the illumination form a number of images of the original scene as if it were viewed
through the slit used during the recording phase. If the white light source is also
spherically diverging, these images are spatially separated and the viewer sees an
image of the original object whose size and colour depend on which imaged slit he
looks through. In the next section several less well known, but perhaps more useful

applications of Holography are outlined.

1.3.2.2 'The Uses of Conventional Holography

An overview of the modern uses of holography can be found in [21], a brief summary

is given here:-

o Microscopy The original work of Gabor continues through the use of hologra-

phy to realise high resolution images with a large depth of field.

e Holographic Interferometry Exposing a holographic plate to a dynamic scene
at several different times leads to a reconstructed image that contains the sum
of the wavefronts from each exposure. These wavefronts interfere in the usual
way, leading to an image that captures the dynamic behavior of the original

scene.

o Imaging through Distortions A hologram can be used in order to create a
clear image of an object when the wavefront resulting from that object passes

through a distorting medium.

e Data Storage There are several features of holograms that suggest them as
candidates for a new data-storage device. Information stored in a hologram is

diffuse in the sense that a single image point is recorded on a relatively large
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area of the hologram, this makes a holographic memory robust to dust etc...
In addition, the 3-dimensional nature of a holographic reconstruction means

that high volume storage densities can be achieved. See for example [22].

e Neural Networks A hologram can be used to encode the weights in a neural
network. An input to the network is provided by a Spatial Light Modulator
(SLM), such as a micro-mirror array. This input is passed through the holo-
gram containing the network weights and the resulting distribution captured
on a detector. The advantage of this technique is that a large number of

weights can be recorded within the hologram.

o Holographic Lithography [23] Using a hologram as a lithographic mask offers
several benefits over a conventional system: the hologram is able to realise a
Numerical Aperture (NA) close to unity, the requirement for complex optics
is reduced, the size of the image field is not constrained by optical abberations
and the distributed nature of the holographic mask means it is tolerant to dust

and imaging errors.

The use of holography as a lithographic tool has been pioneered by the Swiss
company Holtronics SA [4]; their system is primarily used for the imaging of large
substrates such as Thin Film Transistor screens [24]. The process is as follows [25]:
First, a master substrate is created using a direct laser-write process. A Total Inter-
nal Reflection (TIR) hologram is then made using this master; details of this variety
of hologram make interesting reading and can be found in [26]. The hologram is
written using the same machine as is later used for the purpose of exposure. This
device contains a scanned laser configuration that scans the hologram in a raster
pattern ensuring an equal mean light intensity results at every on the mask- such
a scanned system may well prove useful in the exposure of the computer-generated
masks considered in this thesis. A further point of interest here is that features

on the master substrate contribute only to a small area of the hologram, since the
21
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distance between the photographic plate and the substrate is kept small- this point
will be explained in greater detail in chapter 2. The result is that it is possible to
use a scanned laser system to re-image the pattern on the master substrate without

any loss in resolution.

Having exposed and developed the holographic mask, the process is repeated in
reverse to recreate an image of the original master substrate on a photo-resist-coated

blank substrate and a conventional lithographic process ensues.

It may be possible to extend the Holtronics SA method to image 3-dimensional
substrates using conventional Holograms in place of their CGH equivalent. The two
major drawbacks to this approach are that it requires the creation of an accurate
3-dimensional master substrate from which the TIR hologram can be exposed and
that the alignment and exposure of the subsequent blank substrates must recreate
exactly those conditions present when the holographic mask was created. Using
CGH eliminates the need for a 3-dimensional master substrate and the alignment
task is eased significantly because the precise geometry of the light distribution

created by the CGH mask is known a priori.

1.3.3 Computer Generated Holography

1.3.3.1 A Brief History of Computer Generated Holography

In 1967, A. Lohmann and D. Paris [27] described a method for recreating the holo-
graphic effect using a computer-generated diffraction pattern reproduced on a plot-
ter. This enabled them to create a Computer-Generated Hologram, or CGH, of any

2-dimensional object representable by a computer and to recreate this image in the
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focal plane of a lens. Their setup required two steps:

1. Calculation of the diffraction pattern of the required image

2. Conversion of this generally complex-valued transform into a format suitable

for printing

it is these steps of calculation and representation that will also catagorise the prob-

lems to be solved in this thesis.

The first step in the process can be relatively straightforward if the geometry of
the imaging system is judiciously chosen (see section 2.4 and fig 2.10). Problems
arise when 3-dimensional images are required, when there are restrictive constraints
placed on the proximity of the image to the CGH (see section 2.3.2) and when the
image required is large and of a high resolution, in which case the computational task
involved can be extremely time consuming. The effect of computing the diffraction
pattern over a finite grid of sample points and at a limited number of quantisation
levels must also be considered, as opposed to the conventional Hologram where the
diffraction pattern is to all intent and purposes continuous. Issues with sampling

arise throughout this thesis, especially see section 2.3.2 and chapters 5 and 6.

The second step in the process addresses the problem of representing a generally
complex array of numbers (i.e containing both phase and amplitude) on a trans-

parency or photographic film. This issue is primarily covered in chapter 3.

The original CGH of Lohmann and Paris is detailed in section 3.2.1. Other sig-
nificant milestones in the field include the invention of the Kinoform by Lesem and

Hirsch in 1969 [28] and the ROACH by Chu et al in 1973 [29], details of which can
23
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be found in sections 3.3.1 and 3.2.2 respectively.

In 1972, d’Auria et al [30] used photolithographic techniques to create thin film
lenses. Their method generated phase shifts across the CGH plane by varying the
thickness of a transparent material with a high refractive index. This involved suc-
cessive exposures and etchings of a silicon wafer to create a surface of the correct
profile, and subsequently using this wafer as a mould to create plastic equivalents
with the correct optical properties. A variant on this procedure has been used here
to create a phase mask with two possible phase levels (section 3.3.4).An EBeam

machine was first used to create a CGH in 1985 [31].

An EBeam machine at Sheffield University has been available for use during this
project and a test EBeam mask has been written (see section 3.5.2). Although the
submicron feature sizes of which such machines are capable have not been necessary
up to this point, chapter 10 suggests that future work could be carried out at this
scale. Masks used in this thesis have also been plotted on a laser printer (a convenient
rapid-prototyping tool), and using a laser plotter. The results of both of these

methods have also been photo-reduced to realise higher resolution masks.

1.3.3.2 The uses of Computer Generated Holography

Computer Generated Holograms have found a number of applications in the real

world; an overview is given here.

o Spatial Filtering[32] A Spatial Filter alters the Spatial Frequency content of
an image (see section 2.3.1 for details on Spatial Frequency). This is akin
to filters designed to modify the frequency content of time-domain signals- a

computer generated spatial filter is equivalent to a digital time-domain filter.
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An overview of the uses of such filters can be found in [32].

e 3D Displays The first suggestion of CGH as a means of 3-dimensional display
can be found in [33] and dates as far back as 1968. Application of CGH to

displays remains a key area of research, see for example [34], [35].

Currently, the high-resolution and consequent high data throughput required
for a true real-time 3-dimensional display using CGH means that a viable
system has not yet been developed. In addition, the need for coherent illumi-
nation implies that such a display would not operate in colour or under white
light conditions. Nevertheless, as computing power, together with the resolu-
tion of conventional output devices, continue to increase, so the possibility of

holographic displays comes closer to reality.

o Optical Testing[36] Computer-Generated Holograms can be used to test the
accuracy of aspherical surfaces in optical systems. Conventionally, testing of
aspherical optical components can be expensive, since the procedure involves
the use of so-called null optics that transform the aspherical wavefront pro-
duced by the element into a spherical or plane wave for comparison with a
spherical or plane reference. These null-optics are difficult and expensive to
produce. Using a CGH, the wavefront from an aspherical element can be com-
pared directly with a spherical or plane reference wave. This is accomplished
by computing the interference pattern of the reference wave and the ideal as-
pherical wave at some plane within a defined optical system. This pattern is
then plotted and placed in the optical system at the location for which it was
computed; the wavefront incident on the CGH plane should then match the
CGH pattern itself. The moiré pattern that results from inaccuracies in the
aspherical surface under test can be used to determine the type of abberation

present.
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Chapter 2

CGH Fundamentals

HIS CHAPTER DEVELOPS the theory of diffractive light propagation required
Tfor the subsequent chapters. A suitable model for light propagation is devel-
oped in sections 2.1 and 2.2. In section 2.3 the developed theory is used to introduce
the concept of spatial frequency and examine the sampling criteria for CGH. Finally,
section 2.4 describes four possible geometries for the calculation of CGH patterns

from the diffraction model.

2.1 Modelling Diffraction

In order to compute a representation of the interference pattern in the CGH plane
resulting from an arbitrary object in space, the assumption is made that each point
on the surface of the object acts as an infinitely small point source of monochromatic
light of wavelength A. The medium through which the light propagates is assumed

to be:

1. isotropic
2. space-invariant

26



2. CGH Fundamentals

3. linear
4. non-magnetic

5. time-invariant

Assumptions 1-4 lead to the conclusion that each component of the electric and
magnetic fields obey the same scalar wave equation. This implies that the elec-
tromagnetic disturbance at a point in space can be modelled as a single complex
function of time and position:

U(P,t) = A(P)e/*mxt+e(P)

(2.1)
= A(P)e/?Plei?rst

where v is the wave velocity, A(P) is the amplitude of the disturbance at P and ¢
represents the phase of the disturbance at a point in space P at time zero. For a
monochromatic disturbance in a medium obeying the assumptions above, the second
exponential in equation 2.1 is constant for a given position P at any time ¢. The
time dependence of the disturbance can then be ignored and the expression can be

simplified to leave:

U(P) = A(P)el*P) (2.2)

Therefore at any point in space, the disturbance resulting from a monochromatic

wavefront can be modelled by a single complex field.

Since a linear propagating medium has been assumed, the propagation of light
from a single point source is now considered, with the view to superimposing the
distributions resulting from each point of a more complex object later. An isotropic
propagation medium restricts the form of the wavefront generated by a point source
to spherical symmetry, the complex field modelling this disturbance is therefore a

function only of the distance between the source and the point P being considered.
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The phase at P a distance rp from the source is given by:

2nrp

#rp) = —

+e€

giving

U(P) = A(P)e?(75+)

where ¢ is the initial phase of the source. It remains now to express A(P) in terms
of rp. In [37], it is shown that rearranging the scalar wave equation into polar coor-
dinates implies that for a diverging spherical wave, the amplitude of the wavefront
at a point in space is inversely proportional to the distance rp of that point from
the source. The disturbance at this distance can then be modelled by:

Ulrp) = el (52+9)

Urpy = L9 252 (2.3)

rp

where U(0) = Ae’® represents the initial state of the source.

Figure 2.1: Light prop-
\ agation from a point
source source to a plane

Using this model the complex distribution in a plane whose origin is a distance
z from a point source and whose normal is in the direction of the vector connecting

the origin to the source can be found by determining the distance of each point (x,y)
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2. CGH Fundamentals

in the plane from the source, as shown in figure 2.1. This distance is given by:

r(z,y) = vat+y?+ 22 (2.4)

Inserting 2.4 into 2.3 defines the complex distribution H(x,y) caused by the point

source: ) T
H(z,y) = 29 (2.5)

Va2 +y? 4 22

The interference pattern in the plane (x,y) resulting from a general object in
space is then found by calculating equation 2.5 for each point of the object and,

using the assumptions of a space-invariant medium, summing the results:
2my/(@—€)2+(y=m)2+2?
U ,2)e’
H(z,y) = / / €. z)e ’ dz.dn.de (2.6)
¢t (@ —E2+(y—n)?+ 2

Where the convention has been used that the coordinates of the object space are

(€,m, 2).

It should be noted here that the reasoning followed in this section is appropriate
for the calculation of a diffraction pattern from an imaginary object in space con-
sisting of ideal point sources. However, this straightforward approach is not directly
applicable to the problem of calculating the image resulting from a CGH. This is
because in reality a CGH consists of an array of finite-sized apertures in an opaque
screen, and it is not true that these apertures act as point sources identical to equa-
tion 2.3. For example, such a model would predict that spherical waves would be
emitted from each point within the apertures of the hologram, forming a diffraction
pattern both in front of and behind a CGH illuminated from one side. To deal with
this discrepancy, Green’s Theorem [38] is used to produce a solution to the scalar
wave equation for an aperture illuminated by a plane wave. The result is that the

diffraction effect caused by a CGH at a point in space P can be found by populating
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2. CGH Fundamentals

each of its apertures with point sources that emit slightly modified spherical waves,
namely:

U(p):ﬂ@

N o el 7xE (2.7)

where ¢ is the angle formed between the normal to the aperture and the point P.

The inverse of equation 2.6 for the case of an image plane a distance z from the

CGH is then:

2 H(:c y)e_-zn\/(z~s)2;r(u—n)2+z2
U = — ! dy.d 2.8
&m) j/\/z/y (@—2f(y—mi+22 0¥ (28)

where the fact that cosf = 2 has been used to simplify the expression and the sign

of the phase of the exponent has changed to reflect the change in direction of prop-
agation of the wavefront. Note that only multiplicative constants now distinguish
this formulation from that obtained with the more simplistic reasoning used above.
The implication is that using the simple diffraction model, the image formed by a
CGH can be simulated with the expectation that if the sample spacing used is suffi-
ciently small (see section 2.3), the simulated result differs only up to a multiplicative
constant from the actual image produced by the ideal physical CGH (i.e: a fully

complex, non-quantised, point orientated CGH!).
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2.2 The Fresnel Approximation

For a general object, equation 2.6 cannot be solved analytically and must be solved
numerically, which can be extremely time-consuming. The question then arises as
to whether the problematic square-root terms can be simplified, and if so, under

what conditions does this simplification produce accurate results?
The binomial expansion of the expression v/1 + b can be derived easily as [39]:-

b b2

Using the binomial expansion to approximate the square root term gives:-

()02 0] -

rle=§y-n) =z |1+
(2.10)

Approximating the square-root term appearing in the denominator of equation
2.5 by only the first term (z) in equation 2.10 is acceptable provided 22 > z? + 3.
However, the term appearing in the exponent of equation 2.5 is more sensitive to
variations in 7, since it is multiplied by the factor 27”, which in general is very large!.
To significantly simplify handling of the propagation equation whilst maintaining a
good degree of accuracy, the first two terms in the binomial expansion are retained
for the occurrence of r in the exponent (for more details on the effect of this ap-
proximation, see section 2.2.1). Using these approximations, the expression for the
diffraction pattern formed by an object U(£,n) in the plane (£,7) onto a parallel

plane a distance z away is:

e’
H(z,y) =

//U(§, n)eii—’;((z—ﬁ)%(y—n)"‘).dn'dg (2.11)
Evn

or the UV illumination used for experimental work in this thesis,%" =1.72 x 107
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This is a form of the Fresnel Diffraction Formula or FDF. This result can be applied
to an object not confined to a single parallel plane by breaking the object into a

number of planes forming a volume and summing the results from each plane, i.e:

H(z,y) = /

z

The term iej % can usually be dropped in equation 2.11 since it is constant. It can

27rz

/ / (€, 7, 2)el = (@O w=%) g ge 4, (2.12)

also be dropped in equation 2.12 if the object is pre-multiplied appropriately, (i.e the
amplitude of each slice of the image volume is multiplied by a factor proportional

to 2).

Using the FDF to calculate the distribution resulting from a point source is

straightforward:

H(z,y) = / 5(€, m)e = (== ge gy
o0 (2.13)

= I %= (=49?)
where §(&, n) is the Dirac delta function defined by
[ [ st an-0)st€n)de.dn=riaty

The delta function is therefore an infinitely narrow, infinitely intense pulse of unit

area.

32



2. CGH Fundamentals

The inverse relationship calculating U (&, n) from H(z,y) is also simple:

UE,n) = / / B @)1 (M=) gy g

:/ / eI = €+ )e‘j%(mﬁﬂn).dmdy
~o0 /o0 (2.14)

e G /oo /OO 35 @t do dy

Where again the multiplicative constants of equations 2.8 and 2.11 have been dropped.

For calculation of the diffraction pattern resulting from a general object, the

FDF can be rearranged into a more suitable form:

H(z,y) = /%4 / / U(€, n)el =@+ g=ixi(=ttvm) ge dn (2.15)

In most cases, it is the amplitude of the object distribution that is of interest (this is
certainly true of holographic lithography) and so the quadratic phase factor appear-
ing inside the integral of equation 2.15 can be ignored. The distribution H(x,y) is
then seen to be the 2-dimensional Fourier Transform of the amplitude distribution in
the object plane, multiplied by an additional phase factor. In cases where the object
phase is important, the object distribution can be pre-multiplied by the appropriate
phase function, the Fourier Transform carried out, and the result post-multiplied
by the second phase factor. For Computer-Generated Holography, this result is cru-
cial, as it allows the Fast Fourier Transform (FFT) algorithm to be used to evaluate
diffraction patterns, making relatively large, high resolution images computationally
feasible. For calculation of the object in the plane (£, n) resulting from a CGH the

result is:

Ug,n) = e_jﬁ(€2+"2)/ / H(z,y)e 3@ )l X @Etm) go gy (2.16)
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in this case, the CGH must be pre-multiplied by the quadratic phase factor within

the integral and it is the post-multiplication that can usually be ignored.

2.2.1 Validity of the Fresnel Approximation

In conventional lithography, diffraction effects are minimised by placing the pho-
tographic mask as close as possible to the surface to be patterned. In the case of
3-dimensional lithography, the constraints on the minimum separation caused by
the topology of the substrate can be alleviated by the use of holographic masks;
however, practical issues such as alignment (see chapter 9) and compactness mean
that it is still desirable to position the mask close to the substrate. It is there-
fore necessary to ensure that the mask-substrate distances used comply with the
assumptions used in deriving the FDF. For a general object, a sufficient condition
for this is that the higher order terms of the Binomial expansion used to arrive at
the Fresnel formula are small enough such that their inclusion has a negligible effect

on the phase function. This will be the case provided

T [(z=8%+ @y —n?]"

n 2 <7 (2.17)
, [(z — €)%+ (y — )
B> o

For an object illuminated by plane monochromatic light at 633nm bounded by a
0.5cm rectangular support and CGH of dimensions 0.5¢cm?, this gives z > 10cm.
Distances of this magnitude are simply not feasible for use in a lithographic process-
to properly align and maintain a mask-substrate separation of the order of 1m would
be very difficult, not to mention cumbersome! Fortunately, the analysis above is
overly stringent because the phase exponential appears as part of an integral expres-
sion. If the contribution to the integral of the third term in the Binomial expansion

of equation 2.10 is small when the lefthand side of the first part of equation 2.17
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is large, the fact that this term introduces large phase variations is of no conse-
quence. To see this without having to resort to a Stationary Phase approximation,
examine figures 2.2 and 2.3. Here, the FDF has been taken in yet another format-
that of a convolution of an object distribution with a quadratic phase exponential
(to see that this is valid, refer to equation 2.11). In figure 2.2 the object is taken
as a l-dimensional top-hat function. It can be seen that the rapid oscillations at
the extremities of the quadratic phase function add little to the magnitude of the
resulting convolution. It is only as the top-hat profile intercepts the main lobe
of the quadratic phase exponential that a significant change in the FDF occurs.
Therefore, it is possible to say with some accuracy that the FDF is space-limited,
even when the object from which the diffraction pattern arises is also space-limited.
The extent of this main lobe is given by 2v/Az, thus the diffraction pattern in the
CGH x-direction resulting from a top-hat object in the £-direction extends only to
+ (% + 2\/5) It is therefore a sufficient condition on the accuracy of the FDF
that equation 2.17 holds only for those x and y that fall within this limited region of
space. This is in agreement with the analysis in [40] apart from the fact that several
of the higher-frequency oscillations are included in the window from which the main
part of the convolution is deemed to have resulted, giving in this case an extension
of the top-hat object of + (% + 8\/5) However, baring in mind that the eventual
aim here is to determine the effects of diffraction on a lithographic imaging system,
the tighter limit is more applicable since the response of the photoresist is such that

only relatively intense light results in features on the substrate.

In figure 2.4, the FDF has been calculated for a range of distances from a 1.2 x
1.2mm square aperture and compared with the results recorded using a ccd camera.
The ccd used had a length of 8mm along the axis plotted in the figure; this gives
z > 5.6cm according to equation 2.17. However, the plots are seen to be in good

agreement at distances well below this distance. In figure 2.5, the diffraction pattern
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from an aperture in an opaque screen, bounded by a 0.5cm support, was recorded
using a ccd and 633nm laser illumination at an object-ccd separation of 2cm- well
within the limit imposed upon the FDF by equation 2.17. The result is seen to be
in good agreement with that predicted by the FDF within the region of significant

intensity defined above.

The conclusion from this analysis is that the FDF is accurate even at very small
distances. In later chapters, the minimum mask-substrate distance for a Holographic
Lithography system will be shown to be limited to a greater extent by the effects
of sampling the CGH on the image it creates; for now, it is suffice to say that every
CGH pattern produced during this research has operated well inside the Fresnel

region.

2.3 Spatial Frequency and Sampling

2.3.1 Spatial Frequency

In section 2.2 it was shown that the diffraction phenomenon between two parallel
planes can be modelled by a modified Fourier Transform and in chapter 1.3 the use
of CGH as spatial filters was introduced. These discussions suggest that there is an
analog in the spatial dimensions to frequency in the time domain and also that, in
the same way that a square wave in the time domain can be built up from a number
of sinusoids, an object in space can be thought of as consisting of several members
of this frequency-analog family. In the spatial domain, the analog to the sinusoid is

characterised by the exponential term appearing in equation 2.15:-
e I3zt tyn) _ -g2n(frbtfyn)
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A spatial frequency of (f;, f,) = (0,0) represents a constant amplitude across the
(§,m) plane- a ‘DC’ term. A spatial frequency of (f, f,) = (a,b) corresponds to
a distribution in the (£,7n) plane where points of equal phase satisfy the identity

aE+bp=corn= —%f! + 7 which is evidently a straight line. This formulation

c/b

c/a 4

Figure 2.6: The form taken in the (&, 7)
plane by the spatial frequency (a,b)

suggests a change of variables, with the rotation of the (£,7) axes through an angle
¢ as defined in figure 2.6. This then gives the form of the spatial frequency (a,b) in
the (§,7) plane as:-

e—j27r(a{+b7)) — e—j27r(a7]’ cos 0—a¢’ sin 0+bn’ sin §-+a¢’ sin )

(2.18)

— e—jQTrn’(a cos §+bsin §)

The spatial frequency (a,b) is therefore a sinusoidal phase variation in the 7'-
direction, where from figure 2.6, the n’ axis points in the direction defined as
6 = tan~! ( %) The frequency of the sinusoidal variation can be derived from equa-

tion 2.18 and figure 2.6 as

2, 12
f=a +b cos = Va2 + b2
a
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the CGH is required in order that it be represented by a computer and printed on
some form of output device. It is therefore important to consider the effect that this

sampling has on the image formed by a CGH.

To introduce the sampling phenomena, it is instructive first to review a further
limiting factor in the creation of a CGH- the limit on its dimensions. To see the
effect of this limit, begin with the binary, 1-dimensional object U(£); the spatial
frequency spectrum of this object is of infinite extent due to the discontinuities
present at its edges. If the phase of the object is ignored, then the resulting CGH
is the product of this infinite spectrum and a quadratic phase term: it is therefore
not possible to perfectly recreate the object using a CGH. The reconstructed image
produced by a CGH of finite extent exhibits behaviour similar to that of figure 2.8.
Denoting the band-limited version of the object U(€) as Ur(§) and for a CGH size

in the x-direction of L, this reconstruction is found as:-

x

Uu(e) = [ Heaprect (-
—F [H(z)eﬂ%zz] < F [rect (Li)] (2.19)

= U(&) x sinc (%{)

. 2 .2
) X e I% "

Where * denotes the convolution operation. To quantify this result somewhat, take
U(€) to be a top-hat function centred on the origin and of width L¢. The edges
in Ur(€) are then created when the sinc function in the convolution of equation
2.19 passes over the steps in U(£). The extent of these edges is therefore primarily
governed by the extent of the main lobe of this sinc function. This is illustrated in

figure 2.9. The width of the main lobe is found by equating its argument to 27:-

7 Lgw 2Mz
=2m, w=

Az L,

(2.20)
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function has been used to represent the sampling operation [42]. Sampling of the
CGH has resulted in multiple replicas of the original bandlimited image being pro-
duced. These replicas are uniformly spaced at an interval of % and are of equal
intensity. The implication is that for a spatially distinct reconstruction of the orig-

inal object distribution:-
Le+2w Az
—_— < — 2.22
2 dx ( )
Using exactly the same argument, the same result can be derived for the sample

spacing in a sampled image distribution to ensure that the multiple copies of the

diffraction pattern that occur in the CGH plane are spatially distinct.

The condition in equation 2.22 is sufficient to ensure separation of the multiple
images resulting from a sampled CGH. However, aliasing effects may also occur in
the CGH itself- effectively limiting the size of the hologram for a given pixel spacing.
Since, as outlined above, the size of the CGH governs the accuracy of the resulting
object reconstruction, a further limit must be imposed on the sample spacing in the

CGH such that its dimensions can be large enough to ensure an accurate image.

The single-dimensional FDF of the object distribution U(£) is:-

H(z) = 7 / ” U(€)e 557 dg (2.23)

oo

where the quadratic phase factor multiplying the object has been ignored (more on
this later). The maximum spatial frequency of the quadratic phase factor in equation
2.23 can be approximated using the concept of local spatial frequency introduced in

the previous section:-

7 (55), = (224

Where L, is the extent of the object in the x-direction. The maximum spatial
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frequency present in the distribution H(z) is then the sum of this value and the

maximum spatial frequency present in the Fourier Transform:-

nde)  _ Le

Az ) Y
) L, + L,
. fmaz ~ 2/\2

(2.25)

The Whittaker-Shannon Sampling Theorem [43] implies that, similarly to the time-
domain case, the information contained in the CGH can only be completely recovered
from its samples provided the sample spacing is at least twice the maximum spatial
frequency present in the hologram, thus:-

1
>
2d$ _fma:c

dr < Az
. _Lm+L§

(2.26)

Equation 2.26 provides a suitable sampling theorem for the next chapter, where a
random object phase is included in the object distribution to flatten out its spatial
frequency spectrum. However, sampling of the Fresnel Transform is considerably
more involved when the quadratic phase factor pre-multiplying the initial object
distribution is factored in. In [44], the Wigner Distribution is used to show that the
Fresnel Transform may be sampled at a rate lower than that derived in equation
2.26 and a perfect object reconstruction can still be achieved. In [45], non-uniform
sampling is used to show that the number of samples of the Fresnel Transform that
are required for the perfect reconstruction of an object distribution is identical to
that of the Fourier case. A full analysis of the intricacies of sampling the Fresnel
Transform is not given here, since the sampling criteria offered by equation 2.26
is sufficient for the CGH developed in subsequent chapters. In chapter 5, further
details of the sampling of the Fresnel Transform of a top-hat feature are needed and

are developed in context in that chapter.
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2.4 Optical Geometries for the Computation and

Imaging of CGH

The simplest category of CGH generates a 2-dimensional image in the focal plane of
a lens as shown in figure 2.10a. The lens in the figure has a transmittance function
given by e™ ALf@z“L"Z), therefore immediately after the lens, the object distribution
U(€) becomes L(§) = U({)e_j%@z”ﬁ) and plugging this into the FDF to find the

distribution at the hologram plane gives:-

H(z,y) = %@+ / / L(€, n)el =@+ =335 wetvm) ge g

(2.27)
— IRy )/ / U(E, n)e—jﬁ(ms+yn)_d§_dn

Therefore using this geometry, the CGH and image planes are related by the Fourier
Transform and the Inverse Fourier Transform modified by a quadratic phase factor,

where the spatial frequencies are defined as

fo=-5 0y =

f )\f

-‘ignoring’ the quadratic phase that appears in the FDF across the object distribu-
tion, as has been the case several times in this chapter, is therefore akin to placing
an imaginary lens immediately in front of the object with a focal length equal to

the object-CGH separation.

In figure 2.10b, the image volume and CGH plane are related by the formula
[33]:
H(z,y) / / / (6, n, )X (FEFEE) g ge 4. (2.08)

where f is the focal length of the lens. This relationship is similar to the FDF and

was used in [33] to produce 3-dimensional images. Its use in the context of CGH
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lithography is limited by the requirement for a lens in the optical setup, making the

exposure of large substrates impractical.

In figure 2.10c, the relationship is again a Fourier Transform modified by a
quadratic phase. This is because for large z, /%4 ~ 1. ‘Large’ z is defined as
[46]

2 2
2>> (& +7)

In this instance the spatial frequencies of the Fourier Transform are given as
_r Y
fe Az’ fy Az

Figure 2.10d shows the Fresnel type CGH configuration in which the relationship
between the image and CGH is as defined in equations 2.15 and 2.16. This geometry

predominates throughout this thesis since it is most suited to use in 3D lithography.

Finally in this chapter, figure 2.11 gives an example of a simple Fresnel-type
CGH of the type illustrated in figure 2.10d and a simulated representation of the
image it produces. The letter ‘A’ object was chosen as a test pattern because it
contains a good mix of edges and filled regions and is simple enough to fit on a
small sample grid. This object will be used in the next chapter to compare several

varieties of CGH and to assess their suitability for use in lithography.

The parameters used for this example were:
A =632.8 x 107°m, 2z = 0.5m, dx = 10pm, n, = 512, L = 7.5mm

with equal values also used for the y- and #n-directions. These values put the CGH

47



2. CGH Fundamentals
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Figure 2.10: Optical arrangements for four types of CGH

nicely inside the sampling limits described by equation 2.26. The CGH was gener-

ated using the ‘Himage’ program detailed in the appendix and the simulated image

was generated using the ‘imageH’ program. A random phase was introduced into

the initial image distribution- the reasoning for which is provided in section 3.3.1.

In the following chapter it will be demonstrated that it is difficult to achieve an

image as undistorted as the ideal case shown in this figure. Note that the image has

been placed in the top-left quadrant of the image plane and the other 3 quadrants

padded with zeros. This is not necessary if a perfect complex-valued CGH can be

produced; however in the next chapter several more realistic CGH representations
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Chapter 3

Producing a CGH

N THE PREVIOUS chapter, it was shown how the diffraction phenomenon between
I two parallel planes a distance z apart can be modelled using the FFT algorithm.
This allows the diffraction pattern in the CGH plane from a general object con-
tained in the image plane to be computed, and also the image formed by a given
pattern in the CGH plane to be simulated. The extension of CGH to three dimen-
sions will be considered in the following chapters, in this chapter the discussions
assume that the diffraction pattern in the CGH plane from a 2-dimensional object
has been computed and ask the question: How can this complex distribution be

realised physically given the limitations of the available printing processes?

Printers and photo-plotters are generally restricted to a binary output where ei-
ther opaque or transparent regions are recorded on a transparency or photographic
film. Ideally a method of recording both the phase and amplitude of the CGH dis-
tribution is required, but this is always going to be difficult to achieve using only
a conventional output device. As an alternative, the complex field can be approx-
imated by a simplified distribution, more readily plotted out, which introduces a

minimum amount of noise to the resulting image.
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This chapter covers the various existing techniques and a new method for the
reproduction of Computer Generated Holograms and assesses the suitability of each
for use in producing lithographic masks. Methods for creating a complex-valued
CGH are detailed in section 3.2 and methods for creating a simplified version are
covered in section 3.3. A comparison between the encoding schemes is given in

section 3.4 and section 3.5 provides a brief look at the available output devices.

3.1 Error Metrics

In order to compare the various encoding schemes detailed in the following sections,
it is necessary to define a set of metrics against which the suitability of each scheme
as a means of lithography can be measured. Here, three error measures have been
used to assess the effectiveness of each of the encoding schemes detailed in this chap-

ter.

3.1.1 The Sum of Squared Error Measure

The sum-of-squared-errors (SSE) measure is defined as the sum of the squared dif-

ferences between the ideal and actual amplitudes of each image sample point [47]:
. 2
J =Y (06.) - el G, ) (3.1)
Y

Where U is the image formed by the candidate CGH, U is the ideal image amplitude
and i and j index each pixel in the horizontal and vertical directions respectively.

The scaling factor ¢ is chosen to normalise the error measure, since it the relative
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amplitudes of the ideal and actual images that is of importance. c is then found by

setting its derivative with respect to J to zero:-

27 =23 W06 -2 UG )0 ,) =0
Y (3.2)
X UG, G.)

UG

This metric gives an indication of how closely the image resulting from a CGH
matches the ideal image- the error is zero if the ratio of intensities in the ideal and
candidate images are equal throughout. By taking the square-root of the SSE mea-
sure and dividing by the total number of image pixels, the result gives the average
deviation of each pixel from its ideal value. This result does not therefore account
for the efficiency of the CGH and for the maximum deviation from the ideal within

the image.

3.1.2 Diffraction Efficiency

As a measure of efficiency, the Diffraction Efficiency (DE) measure is defined in [47]

as:-

1 Zj,k |U(]a k)l2

F=—
PE= GRS, HGm)E

(3.3)

where J and K are the total number of pixels in the CGH z- and y-directions re-
spectively. If all of the light incident on a CGH is directed into the reconstructed
image, then that CGH is 100% efficient. A CGH that introduces noise into the im-
age will be less than 100% efficient, since some of the light incident upon the mask
is directed into the noise. The DE measure is important for the purposes of lithog-
raphy as it determines the length of exposure, or alternatively the power density of
the illuminating laser beam that is required to successfully image the photoresist. If

the 3DI process is to be quick, robust and reasonably inexpensive, these two factors
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need to be kept at a minimum- making a high DE a desirable feature of CGH if

they are to be used for lithography.

3.1.3 Signal to Noise Ratio

Finally, the Signal-to-noise ratio measure (SNR) is defined as:-

(VGBI + (0GR = 0) x UG W)
(10G, B2 x (T, k)2 = 0))

(3.4)
maz

For a binary-valued ideal object, the SNR therefore measures the ratio between the
minimum intensity of the pixels that form the object and the maximum intensity
of the pixels that form the background. This number determines the robustness of
the representational method under test. A high SNR indicates that for a wide range
of exposure times the imaged object will match exactly the ideal case. An SNR
value < 1 means that however carefully the exposure of the substrate is controlled,
either areas of the object will remain underexposed or areas of the background will
be exposed- a CGH with an SNR this low is therefore unsuitable for masking a
circuit or wafer, since any errant features appearing on the substrate could ruin the

operation of the device.

These three error measures will be used in section 3.4 to compare the performance

of the various representational methods introduced in the rest of this chapter.
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3.2 Creating a Complex-Valued CGH

In order to write a complex-valued CGH, both the amplitude and phase of the
computed matrix must be captured. Control over the amplitude of a mask is gener-
ally straightforward, it could be encoded as transmitance variations on a black and
white photographic film for example. Capturing the phase of a complex distribution
is more problematic, but can be achieved- for example by using a material with a
high refractive index deposited on the CGH in varying thicknesses [48]. Encoding
both amplitude and phase is evidently the most difficult result to achieve. This
section addresses the representational problem directly, whilst section 3.3 exam-
ines methods of eliminating either the phase or amplitude component of the CGH

without overly distorting the resulting image.

3.2.1 The Detour Phase Hologram

The field of Computer-Generated Holography began with the Detour Phase CGH,
developed in the late 60’s by Lohmann, Paris and Brown [49] [27]. The Detour Phase
CGH is a fully complex CGH that is able to be reproduced using a binary-output

plotter. Figure 3.1 shows how a complex number is represented within the Detour

Phase CGH.
<A
YLX :p’T/(Zn) Figure 3.1: Encoding of the complex number Ae’® using

the Detour Phase method
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An off-axis light source is used to illuminate the hologram, thus the phase of the
incident plane wave varies across the CGH. If the light source is placed central to

the y-axis and is displaced relative to the origin along the x-axis, then the period

A

prey where 6 is the angle that the

of the beam in the x-direction is given by T =
beam propagation vector makes with the normal to the CGH. The CGH is then
divided into cells, each with a width equal to T and an arbitrary height (usually for
convenience also chosen to be T)- each cell represents a single sample point of the
computed CGH distribution. Within each cell an aperture is placed whose centre in
the x-direction is located at the point where the phase of the incident beam is equal
to the phase of the associated sample point in the CGH. The height of the aperture

in the y-direction is then set proportional to the required amplitude of that sample

point.

A full analysis of the image formed by such a hologram can be found in [27]. How-
ever, there are several reasons why the Detour Phase representation is not suitable
for a lithographic process. First, for accurate control of the phase of each sample
point, the width of the apertures must be small compared to the width of the cell;
a Detour Phase CGH is therefore very inefficient, in that only a small proportion of
the incident light is used to form an image. For a lithographic process, this leads to
undesirably large exposure times. Second, the Detour Phase method does not make
good use of the bandwidth available in the CGH plane, in other words, a very high
mask resolution is required to produce a reasonable image resolution. No Detour

Phase CGH have been constructed during the course of the 3DI research.

3.2.2 The Roach

The Referenceless On-Axis Complex Hologram, or ROACH, is an ingenious way of

using a conventional photographic colour film to record a fully-complex CGH dis-
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tribution. The technique was developed in 1973 and so is historically slightly out of
place in this section, it being a natural continuation to the Kinoform idea developed
in 1969, but covered here in section 3.3.1. The acronym ROACH derives from the
fact that this variety of CGH does not require a reference beam to interfere with the
object wavefront to encode the required phase information. Instead, the amplitude
and phase of the object wavefront are captured directly in amplitude and phase

variations in the CGH. Further details of the ROACH method can be found in [29].

A colour photographic film consists of three layers, sensitive to the red, green and
blue parts of the visible spectrum respectively. If a transparency developed from
such a film is exposed using a red monochromatic light source, it is predominantly
the red layer of the transparency that attenuates the light, the other two layers being
transmissive at this wavelength. An amplitude-only CGH can therefore be manu-
factured by exposing the colour film through a red filter to an image of the required
intensity distribution, and after development illuminating the hologram with a red

light source. This is the first step in the creation of a ROACH.

Although the green and blue layers of the film do not significantly attenuate this
illuminating red light source, they do cause a phase shift, which is approximately
proportional to the density of the green and blue dyes present in the film. Having en-
coded the amplitude distribution as above, the next step in constructing a ROACH
is to expose the film through a blue or green filter to an image of the required CGH
phase distribution. If the exposure time is properly controlled, and the change in
density of the dye in the film varies approximately linearly with exposure time, the
phase information can be encoded in the green or blue layer. Development then
leaves a CGH which presents a good approximation to the required complex field

upon illumination by red light.
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Disadvantages of the ROACH technique are the difficulty of controlling the ex-
posure times for the amplitude and phase steps, unwanted phase-shifts introduced
by the red amplitude layer of the film and unwanted amplitude variations intro-
duced by the green and blue layers. The ROACH does however have the significant
advantage of requiring no awkward alignment of the phase and amplitude layers. If
each exposure is taken as a photograph of a computer screen display, alignment is
assured if the camera and screen are kept stationary between exposures, a relatively

straightforward task.

No ROACH CGH have been produced in the course of this research.

3.3 Creating a Simplified CGH

This section reviews several methods for creating simplified CGH patterns more

suitable for printing or photo-plotting.

3.3.1 The Kinoform

The idea of simplifying a CGH pattern first arose with the development of the Ki-
noform in 1969 [28]. The Kinoform has several advantages over the detour phase
CGH detailed in section 3.2.1. It produces no twin image, its diffraction efficiency
is extremely high and it is relatively straightforward to reconstruct an image using
the Kinoform. The Kinoform also illustrates nicely how a CGH can be reduced to

a function of a single variable- in this case the phase of the object wavefront.
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To record a Kinoform, first the wavefront emanating from the object is calculated;
the method was originally applied to the Fourier-type CGH but is equally valid for
the case of a Fresnel-type hologram. Next the amplitude of each pixel in the com-
puted CGH distribution is set to unity, leaving the phase of the wavefront as a single
variable approximation to the ideal hologram. Finally the phase pattern is recorded
onto photographic film and an exposure and development process identical to that
for the ROACH (section 3.2.2) produces the required phase-shifts across the plate.
By ignoring the amplitude information in the diffracted wavefront, the recording
process is eased considerably, since black and white film can then be used and errors

due to undesirable phase shifts that occur in the ROACH process can be eliminated.

Evidently, capturing the phase of an object wavefront is an approximation only
if that wavefront has a varying amplitude. For a constant amplitude distribution
in the CGH plane, the kinoform will provide an exact object reconstruction- the
nearer the amplitude distribution is to this ideal case, the less severe the error in
the kinoform becomes (this is assuming that any quantisation of the phase pattern
is ignored). As has already been stated, it is generally the case that the feature of
interest in the reconstructed image formed by a CGH is its intensity- the phase of
the object can be thought of as a free variable that can be manipulated to tailor
the pattern recorded at the CGH plane. In the case of the kinoform, this would
involve choosing an object phase function such that the resulting CGH amplitude

distribution is approximately constant.

In their original paper, Lesem and Hirsch used a random object phase distribution
to simulate the effect of placing a diffuser between object and hologram- the diffuser
distorts the wavefront from the object by redirecting the incident light in random

directions. Figure 3.2 shows this effect for the single-dimensional case of a tophat
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Figure 3.2: The
amplitude of the
Fourier = Transform
of a tophat function
with (a) uniform and
. (b) random phases

[Fltophat]]

function, it can be seen that the amplitude has been levelled out, resulting in a CGH

distribution well suited to the Kinoform process.

Figure 3.3 shows a Kinoform generated using the object distribution from figure
2.11 multiplied by a random phase distribution. Figure 3.3a shows the approxi-
mately constant amplitude distribution of the calculated CGH, part b of the figure
shows the phase of the diffraction pattern that must be recorded to realise the ki-
noform and figure 3.3c shows the simulated image resulting from this phase-only

distribution after the amplitude content has been set to unity.

The flattening out of the amplitude spectrum is evident when figure 3.3a is com-
pared with figure 2.11 in the previous chapter. The off-setting of the letter ‘A’ that
1s necessary to avoid interference of the reconstructed image with any twin image
or DC term present in the Detour Phase CGH (and other CGH representations, see
below) is not required for the Kinoform and images centred on the optical axis can
be formed. The high diffraction efficiency and absence of a twin image suggest that
phase-only CGH are a good candidate for use in lithography; however, the Kinoform
has disadvantages. It is difficult using the photographic process detailed above to
accurately capture the phase profile of a computer-generated diffraction pattern;
errors in the encoding of the phase pattern lead to the introduction of a DC term

that manifests itself as a bright area centred on the optical axis- less than ideal if
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The operation of the algorithm for a Fourier-type CGH (see figure 2.10) is shown
in figure 3.5. The initial object in the image plane is first combined with a random
phase distribution. This object is then passed through a Fourier Transform to reach
the CGH plane. The phase of the resulting complex field is next combined with
the predefined ideal CGH amplitude distribution and this trial CGH is passed back
through an Inverse Fourier Transform to the image plane where the phase of the re-
sulting image is a candidate solution to the phase determination problem. To assess
its validity, a measure of the error between the resulting trial amplitude distribution
and the ideal object amplitude distribution is taken; typically this is the SSE as
defined in equation 3.1. Having calculated the error, the resulting trial amplitude
is now dropped in favour of the predefined ideal object amplitude distribution and
the process repeats. In this way the hope is that the phases in the image and CGH
planes will converge to a result in which the error between the ideal and trial am-

plitude distributions is small.

The ideal amplitude distributions can be chosen at will- Gerchberg and Sax-
ton chose these distributions to match the intensity recordings of an object and its
diffracted wavefront in order to find the phase profile across the object. The authors
demonstrated that when the object and diffraction planes are linked by a Fourier
Transform, each iteration of the algorithm must either reduce the error (as defined in
equation 3.1) between the ideal and estimated intensity distributions or leave it un-
changed, therefore the relative phases determined by the algorithm must converge to

the actual relationship between the phases when the intensity recordings were made.

An example of the application of the process is in X-Ray crystallography. The

crystal essentially represents a phase grating to the X-Ray source, meaning the ideal
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object intensity distribution is approximately constant. A recording is made of the
diffraction pattern caused by the X-Rays in the far field such that a Fourier Trans-
form relationship exists between the object and diffraction planes. The Gerchberg-
Saxton algorithm can then be implemented with the amplitude distribution A in
figure 3.5 constant and the amplitude distribution a equal to the square-root of the
intensity pattern recorded in the diffraction plane. In this way the phase distribu-

tion of the crystaline object can be determined.

Application of the Gerchberg-Saxton algorithm to the Fourier-type CGH is de-
tailed in [51]. Here, the amplitude A is chosen as the square-root of the required
object plane intensity and the amplitude a is chosen as a constant. Iteration of
the algorithm eliminates variations in the amplitude of the CGH distribution, the

Kinoform can then be used as an effective representational method.

The argument set out in [50] showing that the SSE measure must reduce or stay
the same with each iteration of the GS algorithm applies equally to the Fresnel-type
CGH, since the FDF only introduces phase-shifts to the Fourier transform of the
object distribution. Figure 3.6 shows the evolution of the least-squared error sum
of the Gerchberg-Saxton algorithm applied to the object used previously in figure
2.11. Figure 3.7 shows the resulting phase grating and the simulated image that it
produces; that this image offers a significant improvement is demonstrated in section

3.4.

3.3.3 Taking the Real Part

The Gerchberg-Saxton algorithm of the previous section can produce excellent re-

sults, however it is limited by the difficulty of writing multi-level phase CGH. The
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simplest way of transforming a complex distribution into an amplitude only form
is to take its real part. This is essentially the process that is undertaken when a
conventional hologram is recorded (see chapter 1.3). The effect on the resulting
image when the real part of the CGH of figure 2.11 is taken is shown in figure 3.8.
The effect on the reconstructed image of taking the real part can be calculated as
follows, where again only the single dimensional case is considered, the extension
to 2 dimensions being trivial. First, a random phase is incorporated into the im-
age, so that the amplitude profile of the resulting CGH is approximately flat. The

distribution in the CGH plane is then:-
H(z) ~ /*@)ei 3% (3.5)

where ¢ is the phase profile resulting from the Fourier transform of the object with
its random phase and the quadratic phase term arises from the definition of the

FDF'. The real part of equation 3.5 is:-

| 1 . ‘x
Re(H(z)) = Hge(z) = 56”56’312 + §€_J¢6—]Ez2 (3.6)
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can be found as:- -
U'(g) = &5 / U(g)e 2wt ¢
B Lg + L
Y

(3.7)

where U’(§) is the distribution resulting at +2z from the real image formed at —z,
L’ﬁ is the length in the &-direction of the rectangle formed in the image plane and
(22) has replaced z in the denominators of the exponents. Since the real image has
been formed by the CGH, the bandwidth of the diffraction pattern it forms in the
image plane must equal that of the CGH itself, therefore:-
Li+Le L+ L,
Xz 2)\z (3.8)
Ly =2L, + L¢

Again, the same result can be applied to the 7-direction with a suitable change
of variables. Therefore in taking the real part of the ideal CGH distribution, the
resulting image contains an approximately constant-amplitude rectangle centred on
the origin of the real image and of a size governed by equation 3.8. The mean
amplitude of this rectangle, normalised to the amplitude of the image formed by the
ideal CGH, is given by:

LeLy

where c is the proportion of the original object that is 1, i.e the number of pixels
that are ‘on’. If, as is the case in figure 2.11, the initial object plane distribution
is padded with zeros to ensure that the noisy patch in the reconstruction caused
by the Hermetian twin image is spatially separated from the true image, the object

resulting is essentially ideal, apart from a halving of its amplitude.

Since a real distribution has both negative and positive values, it is still a some-
what complicated task to recreate the CGH physically. Section 3.3.4 details a

method of achieving this, capturing the full range of real numbers, but in a simple
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In general, the result of adding a bias to Hg, in one dimension is:-

H,=Hp, +B
Lg (3.10)
o
LUHE) = U+ [ | Beeo
-4

for the first item in the list, B is a constant and can be removed from the integral.
This then gives:-

UNE) = Ue) + B [ | ke
e (3.11)

~ U'(§) + Brect (i)

L,
with the equivalent result applying in the n-direction. For items 2 and 3 in the list,
the bias B can be broken down into the sum of a constant and spatially varying
component- B = Bpe + Bac. Therefore a square appearing in the centre of the

image plane is a common characteristic of positive-only CGH.

Figure 3.9 is a CCD capture of the image formed by a greyscale CGH calculated
by taking the real part of the ideal distribution and adding a constant bias, whilst
figures 3.10-3.12 show the ‘Letter A’ image resulting from each of the first three
bias terms in the list above. The effectiveness of each of these methods is detailed
in section 3.4, for now, it is sufficient to say that the addition of a bias to the real-
valued CGH introduces further restrictions both on the extent and the accuracy of

the reconstructed image.
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3.3.4 The Greyscale, Binary-Phase CGH

The positive real-valued CGH can be found by taking the real part of the complex
distribution as in section 3.3.3 and adding a bias term to make it positive. Unfortu-
nately, the addition of this bias term introduces a DC offset in the resulting image
as described in the previous section, thus for on-axis imaging the method is less than
ideal. In the context of holographic lithography this additional noise is especially

problematic, especially for the variety of CGH introduced in chapter 7.

The addition of a phase-altering layer to the variable aperture CGH representa-
tion eliminates the need for the addition of a bias term to the real distribution of
section 3.3.3, allowing the entire real axis to be represented using a relatively simple

and accurate construction method.

Figure 3.13 shows how this Greyscale, Binary Phase CGH is constructed. First
the 25x amplitude and phase designs are photo-reduced onto emulsion-coated glass
plates. The photo-reduced amplitude mask is then reproduced on a chrome-coated
glass slide. This slide is then coated with a layer of PMMA (perspex) and photo-
resist. The thickness ¢ of the PMMA layer is governed by its refractive index,
n = 1.5:-

A

t= ——
2n(n — 1)7r

(3.12)
=

so for UV radiation, the perspex layer is between 325nm — 405nm thick.

The photo-reduced phase design is next aligned with the PMMA-covered slide,
the slide exposed and the phase pattern transferred to the photoresist. The devel-

oped photo-resist acts as an etch mask for dry etching of the PMMA using oxygen
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Figure 3.15: The effect of the number of grey levels on the error metrics calculated
using the letter ‘A’ object

do not exhibit a consistent increase as the number of levels in the CGH rises. Why
this should be the case is unclear, it may be that the quantisation of the diffraction
pattern to specific values causes ‘spikes’ on different pixels in the resulting image.
Because the SSE and DE are dependent on every image pixel, these spikes will not
have a significant effect on their value, whilst contrast, the SNR is dependent upon
only two pixels, namely those corresponding to the maximum-valued background
and minimum-valued foreground values, any spikes are therefore likely to have a

noticeable effect on this metric.

3.3.4.1 Using the GS Algorithm to improve the Greyscale, Binary Phase
CGH

The Gershberg-Saxton Algorithm can be used to improve the Greyscale, Binary
Phase CGH by calculating an object phase profile that leads to a CGH distribu-
tion that is approximately real-valued. This is achieved by replacing the nth CGH
distribution a,e’®" with WL_"COS(@")) where n is the required number of greyscale
levels. Figure 3.17 shows the evolution of the SSE measure as the GS Algorithm

proceeds. The three traces correspond to three different random phases applied to
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Figure 3.16: The effect of the number of phase levels on the error metrics calculated
using the letter ‘A’ object
the initial image distribution, showing that the success of the algorithm depends to

some extent on the initial conditions applied.

Evidently, the improvement offered by the algorithm is relatively small, of the
order of a few %. Further modification of the GS procedure may lead to an im-
provement over this result, but the real-valued CGH is already good enough that

this isn’t really necessary.
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Figure 3.17: The GS algorithm used to improve a real-valued CGH
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3.3.5 Thresholding

A real-valued CGH can be produced with greater ease than a multi-level phase or
complex-valued hologram, but it is possible to reduce the mask complexity still fur-
ther. The question that remains is how far this simplification process can be taken

before the degradation of the resulting image becomes too great?

The simplest method of reducing a CGH from a complex-valued to a binary

amplitude distribution is as follows:

1. Take the Real part of the complex field as outlined in section 3.3.3 to produce
HRe7

2. Add a bias term to Hg. to leave a positive-valued distribution H,,
3. Normalise H, to leave the distribution H with values in the range (0-1).

4. Threshold this distribution to leave a binary valued CGH, Hy;,according to-

1 H>t
Hyin = (3.13)
0 ow

where t is some value between 0-1.

There are two decisions that must be made in carrying out this procedure- namely
what bias to add to Hg, to give H; and what value to assign t. Various bias func-
tions were considered in the previous section- the results after the final thresholding
operation are detailed below. For a CGH with an approximately flat amplitude
distribution, such as those that result from objects multiplied by a random phase
profile, a value for t of 0.5 is sensible; however if the values of H are concentrated

near 0 or 1, which may be the case if a random phase profile is not included in the
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Figure 3.18: a, The Fourier Transform of a real-valued signal; b, its thresholded
equivalent
object, it may be that a lower or higher threshold would produce a better result, this

is taken into account in the adaptive thresholding technique detailed in section 3.3.6.

It is difficult to express the image formed by thresholded CGH analytically, as was
done with the real-valued CGH previously. However, the general features that the
reconstruction will take can be described qualitatively. If the CGH has been correctly
sampled, then its thresholded equivalent can be expressed as a Fourier Series in which
there will be a DC term due to the positive-only nature of the pattern (this term
would disappear if a binary phase distribution were employed), a fundamental term
equal to the real distribution from which the thresholded representation was derived,
and higher order terms introduced by the sharp edges of the binary distribution.

Figure 3.18 illustrates this point.
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3.3.5.2 Thresholded Binary Phase CGH

Thresholding can also be applied to produce a binary phase CGH, in which each
pixel adjusts the phase of the incident beam by either O or 7 radians. This variety of
CGH is relatively straightforward to produce (see section 3.3.4) and has two distinct
advantages. First, since no DC level is introduced into the mask, the resulting im-
age does not exhibit the central square feature seen in the binary amplitude images.
Second, none of the incident light is blocked by the mask, making the diffraction

efficiency of phase CGH much higher than their binary amplitude equivalents.

Figure 3.26 shows the image resulting from a binary phase CGH calculated by
taking the real part of the fully-complex CGH calculated from the letter A image
and setting those pixels > 0 to 0 and those pixels < 0 to -1. Note the disappearance
of the central ‘DC’ rectangle from the image, the DE of the phase CGH is also much

greater than the binary amplitude mask, as will be shown in section 3.4.

82


















3. Producing a CGH

in the hologram in a raster-like scan (left-right, top-bottom) and inverting its value
(0-1, 1-0). The image formed by the new mask is then computed, the value of J,
calculated and this new error compared to J,_i;. An increase in the value of J is
assumed to indicate that the n'* pixel should not have been inverted, and so it is
returned to its previous state. A decrease in J is assumed to indicate that the nt”
pixel should remain in its inverted state. These rules are assumptions because the
decision whether or not to retain the n** pixel inversion rests on the decisions made
for the previous n — 1 pixels. It is possible that a different binary pattern in these
earlier pixels could result in the opposite decision being taken for the current pixel
and a lower value of J may result- therefore the DBS algorithm converges only to
a local minima of J. However in [47] scanning through the CGH in large hops was
found to make little difference to the resulting minimum value of the cost function
and experiments with a random walk through the set of CGH points suggest that

the order in which pixel inversions are carried out is unimportant.

The Direct Binary Search Algorithm has the advantage of producing a near-
optimal binary representation of the required diffraction pattern in the CGH plane.
It can be applied equally well to binary phaée CGH (simply by inverting pixels from
£1, F1 rather than 1,0), and in section 4.1.1 it will be shown how the DBS method
can be expanded to 3D images; however the Binary Search algorithm is obviously
extremely expensive in terms of its required computation time. The following sec-

tion outlines one method of reducing this computational burden.

3.3.7.2 Increasing the Computational Efficiency of the DBS Algorithm

For the simplest case of a 2D image related to the CGH plane by a Fourier Trans-

form, each pass through the DBS algorithm involves the calculation of N FFTs
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requiring N2log, N operations, where N is the number of pixels in the CGH; for large
CGH, and for 3-dimensional images, this figure is excessive. Fortunately, the DBS
algorithm can be speeded up significantly by utilising its recursive nature to elimi-

nate inefficient calculations.

When the CGH and image planes are related by the FDF, the amplitude of the
image sample points can be computed by multiplying the CGH by a quadratic phase

and carrying out an FFT. This relationship is then expressed as:-

Uk(i, j) = ; ;Hk(m,-n)exf <‘J£ (((m - %) dI)Q i <<" - % dy)Z))
x ezp (j27r (% - %))

Where the variables are as defined previously, with the subscript k inserted to in-

(3.18)

dicate the recursive nature of the algorithm. Notice that in the case of the DBS,
the values of Hj, are restricted to either 0 or 1. Each step in the algorithm inverts a
single member of Hj, to give Hy.1, therefore the sum in equation 3.18 changes either
by the addition (when a 0 becomes a 1) or the subtraction (when a 1 becomes a 0)
of a single term. This fact allows a recursive relationship between U and Ui, to

be formed as:-

i =i enem (55 (((o- )+ (- 3) o))
Xerp <j27r (% + bﬁj))

where the current values of m and n are a and b respectively and s is either -1 or 1

(3.19)

depending on the previous state of H(a,b). This is the FDF equivalent of the Fourier

Transform result presented in [47].
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Figure 3.32: The improvement gained in the SSE using the DBS Algorithm and the
number of pixel changes accepted by the algorithm over 4 iterations

3.4 A Comparison of the Various Encoding Schemes

The table below gives the calculated value of each of the three error measures for
each of the representational methods detailed in this chapter. The familiar ‘A’ object
was used as a reference. The object was taken as the 160 x 160 square matrix sur-
rounding the letter, in this way, multiple objects and any DC, or ‘straight-through’

light that do not interfere with the actual image area are ignored.

From this table, it is immediately apparent that only a small selection of the rep-
resentational methods described in this chapter are suitable for use in a lithographic
system; namely those with a SNR > 1. Inevitably, these methods are exactly those
whose production is problematic and prone to error. Figure 3.33 shows schemati-

cally the situation. The greyscale, binary phase representation inhabits a relatively
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Encoding Method | SSE  DE (%) SNR
Real | 0.0036 50 2.65 x 10°

Neg. to 0| 180 26 3.1
Magnitude 80 17 1.3

Constant | 0.44 2 610

Kinoform | 501 90 0.79

Neg. to 0 threshold | 2800 18 2.2 x107°
Magnitude threshold | 2650 19 8 x 1075

Constant threshold | 676 21 0.55
Binary phase threshold | 690 39 0.49
GS Binary | 1235 20 2.1
GS Kinoform | 194 96 4.7
GS, G/BP (4 levels) 79 46 24
DBS | 110 8 11

ED Neg. to 0| 1690 17 0.037

ED Mag. | 2370 6 0.0001

ED Constant | 2130 8 0.0023

Table 3.1: Quantification of the performance of the various representational methods

broad swathe of the figure, since its complexity can be adjusted by altering the
number of grey levels and the number of phase levels. The ROACH and kinoform
both produce relatively good images, however a perfect mask of this variety of CGH
is very difficult to achieve and the nature of the errors introduced during the pro-
duction process are such that even slight imperfections in the mask preclude its use

for lithography.

Of the binary CGH, the masks computed using the GS and DBS algorithms
are the only ones with an SNR> 1. The DBS mask is clearly the best in terms of
the three error metrics, whilst the SNR of the GS algorithm is still low enough to
require accurate control over the exposure and development processes to produce
good results. However, the computation time required for DBS masks, even with
the efficiency measures detailed above, is prohibitive- especially as the move is made

from 2- to 3-dimensional images.
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Figure 3.33: The suitability of some representational methods for lithography

The suggestion from the figure is that the greyscale, binary phase CGH is the

best suited for use as a lithographic mask.

3.5 Production Methods

Having calculated a sampled diffraction pattern and reduced it to a form suitable
for production, a suitable process must be chosen to write the CGH. A number of
alternative methods are detailed here, each having advantages and disadvantages
depending on the use to which the CGH is to be put and the required mask resolu-

tion.

3.5.1 Laser Printing

A laser printer can be used as a quick and simple way of writing a binary-valued
CGH design. A 600dpi laser printer can reliably write features of approximately
80pm, which is perfectly acceptable for design verification and experimental pur-

poses. There are several relationships that can help in the use of coarse masks as
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prototypes for masks at a finer scale:-

1. the focal distance of a mask varies in proportion to the wavelength
2. the size of the resulting image varies in inverse proportion to the sample spacing

3. the focal distance of a mask varies in proportion to the inverse square of the

sample spacing

Therefore, the image produced from a mask printed using a coarse sample spac-
ing and/or illuminated using a different wavelength (for example, a visible laser used
to verify a design for eventual UV exposure) is related to the image generated by
the final lithographic mask by a simple scaling of the focal distance and the image

size.

Figure 3.34 shows a mask printed using a laser printer. The opacity of the mask
is around 75%. The size of the features in the mask is reasonably accurate, but
their shape is variable and the printer tends to spatter ink at the edges of each
pixel. Laser-printed masks are therefore less than ideal, however the advantage here
is that a mask that produces a reasonable image when written by a printer should

produce an excellent image when written using a more sophisticated plotter.

3.5.2 EBeam Writing

EBeam machines are capable of imaging sub-micron features with extreme accuracy.
During the course of the 3DI project, a trial EBeam mask has been produced, but
due to the high cost of these masks and no real requirement for extremely high
resolutions, no further use has been made of the EBeam facility available at Sheffield
University. Details on the use of an EBeam writer to produce CGH can be found in

[31]
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3.6 Summary

3.6.1 Issues with conventional CGH Masks

It has been established in this chapter that their are a number of methods of rep-
resenting the complex distribution calculated from the FDF that result in an image
that is suitable for use in a lithographic process. Unfortunately, beyond the for-
mation of a clean image, there are other issues if such a system is to be practical;
principally, the distance between the mask and the substrate should be reasonably
small- at most a few centimetres. Consider the situation when a 5cm? substrate is
to be imaged using a CGH. The mask is illuminated by UV light at 325nm and the
minimum feature size on the mask is 5um. The design requires features spaced a
minimum of 20um apart, implying that the size of the CGH must be such that the

edges of features extend no more than 10um due to diffraction. From equation 2.20,

this will be the case if L, > 120>‘_Z5. Plugging this value into equation 2.26 gives:-

5£EL€
2> e =1.92m
A (1 - 1206—5)

This distance is completely impractical for use in a machine- what’s more, to accom-
modate the Hermitian twin image that is produced, the mask-substrate separation
must be increased by at least a factor of 2 if a real-valued CGH is used. The root
of the problem is that the distribution resulting from each location in the original
object must be calculated at every point within the hologram, therefore for small
values of z, the required bandwidth in the CGH is extremely large, meaning that
an extremely small sample grid must be used. This is a major disadvantage to
the techniques presented in this chapter and provides an impetus for chapters 5-8.
Having said this, there is scope here for further investigation, perhaps utilising the
localised nature of the FDF to reduce the necessary CGH bandwidth. However, if

resolution requirements in the CGH mask are to be of the same order as those on the
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3-dimensional target substrate, it is clear that conventional methods of calculating
the CGH lead to a requirement for mask-substrate separations that are extremely
impractical. It is therefore highly desirable that a method be found of localising the
diffraction pattern generated by a 3-dimensional light distribution such that the re-
quired resolution in the resulting CGH is reasonable even when the mask-substrate
separation is small. It is the concern of the remainder of this thesis to investigate

the possibility and practicality of this kind of localised CGH.
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Chapter 4

A Review of Methods for the
Formation of 3-Dimensional

Images using CGH

This chapter covers several methods for the calculation of CGH whose image is not
restricted to a single parallel plane at a distance along the optical axis. The chapter
concludes with an investigation into the resolution limits in the z direction of these

methods (section 4.4).

This chapter is intended only as an overview of the existing methods for creating
3-dimensional images using CGH. The techniques introduced here all fall victim to
the same shortcomings as their 2-dimensional counterparts when considered for use
in lithography; the following chapters introduce a more practical method fof creating

3-dimensional images suitable for lithographic use.
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4.1 Slices

The simplest method of creating CGH capable of producing 3-dimensional images is
to split the volume of the 3-dimensional object into planar slices, each parallel to the
plane of the CGH. As was described in chapter 2, the CGH can then be formed as the
sum of the diffraction patterns formed by each of these planar segments. Splitting
a 3-dimensional image into slices in this way was first introduced by Waters [33] as

a possible method for the creation of a 3-dimensional display.

4.1.1 Using the DBS Algorithm to Compute a CGH from a

Volumetric Image using Slices

A scheme for the computation of a binary mask for a full 3D volume image can be

envisaged in which the cost function J in equation 3.1 is replaced by:
o= D00 DT (UG5, k) — elUni, 5, K)))? (4.1)
ki

Here the images formed in each of k slices through the target volume are compared
to the ideal case and their differences summed. Obviously the computation time
has now increased by a factor of k and the computational requirements become even
more severe. This approach should not immediately be discounted however, since
the consideration given by the DBS algorithm to the effect of each slice through the
image volume on its neighbours is a distinct advantage; the direct calculation of a
CGH by summing the fields from each of a number of parallel slices does not take

into account the interaction between the slices in this way.

Several binary masks have been generated that attempt to form 3D images using

the DBS algorithm. Figure 4.1 shows a very early attempt to image a cross and a
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2-dimensional case applied to each segment of the surface. ‘Piecewise planar’ in this
context is used to refer to a surface consisting of planar patches ‘glued’ together at

various angles to the optical axis.

CGH

Image plane

Figure 4.3: The ge-
ometry of an image

plane forming an an-
gle with the CGH

'To see how the CGH for each of these segments is calculated, consider the case,
illustrated in figure 4.3, of a single image plane at an angle « to the CGH plane. The
propagation relationship existing between these two planes is then found as follows

[56]:

First, the variable rq is defined as 7o = /2% + 22 + y2. The square-root term
in the propagation relationship of equation 2.6 is then expanded in terms of this

variable as:-

r = /(2 — Esina)? + (z — £cosa)? + (y — 1)?

= \/rg + &2+ n? - 2z€sina — 26z cosa — 2yn (4.2)
£+ 1° — 2z€sina — 26z cosa — 2yn
X ro+ ;
0

with this approximation to r, the propagation between the tilted plane and the CGH
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can be written as:-
H(.’E y = ¢l )\ro//U § 77 £2+n) —J)‘ro(yn+x£cosa+zo£sma) d§ dT] (43)

2 2
If in the first exponent inside the integral of equation 4.3 (ﬁr;on) is approximated
(&24%)
as [ S

pral then the propagation relationship can be split into three parts: first

the object distribution is multiplied by a quadratic exponential, second a Fourier
Transform is carried out and third a mapping from the spatial frequency domain

onto the CGH coordinates is required. This can be summerised as follows:-

. §2+n2
U'€,n)=U(En)e =
m— COS & ZL‘ + SlIlOz
D % \ro
- Y (4.4)
n /\To
H'(m,n) = F[U']

H(z,y) = &3 H' (m, n)

In this form, it is possible to employ the FFT algorithm to rapidly compute
the CGH. Care must be taken in the sampling of the hologram, since some form of
interpolation is required between the samples in the (m,n)-space and the physical

coordinates of the CGH in (z,y).

Breaking a surface into planar sections and summing the CGH resulting from
each represents an efficient way of computing CGH for 3-dimensional substrates.
However, the aliasing constraints derived in section 2.3.2 must still be applied to the
calculated distribution leading again to restrictive requirements on mask resolution
and/or the mask-substrate separation. Of the methods covered in this chapter, the

‘tilted-plane’ approach is the most suitable for use in 3-dimensional lithography.
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In [57], a spatial frequency approach is adopted to calculate the diffraction pat-
tern between a tilted plane and the CGH, whilst in [58] diffraction between two

arbitrarily orientated planes is considered.

4.3 CGH Imaging onto Curved Surfaces

In [59] the author describes a means of calculating the diffraction pattern formed
by an arbitrary pattern on a curved surface. Here it is shown that for a general
curved surface, it does not seem to be possible to formulate the diffraction formula
in such a way as to allow the FFT algorithm to be employed in the calculating task
in a similar way to that described in the previous section. However, one exception
is the cylindrical surface, for which the FFT can be employed along the linear axis,

significantly speeding up the calculating process.

4.4 Resolution Limits for fully 3D CGH Images

When a CGH is generated to image a planar or piecewise planar surface, there is no
need to consider the intensity distribution that results at any point that is not part
of the target surface. However, if a 3-dimensional object distribution is required to
be imaged in which features may appear behind each other, the resolution of each
feature in the z-direction (along the optical axis) must be taken into account. This
is especially true for the case of fully 3-dimensional lithography, in which the inten-
sity between features sharing an (z, y) location but at different z distances from the

CGH must drop below the threshold level of the photo-fixable target material.
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Figure 4.4: The intensity along the z-axis resulting from point-source CGH with a
range of dimensions. (a); L, = 3cm, (b); L, = 2cm, (c); Ly = lem

To derive an expression for the resolution of a CGH in the z-direction, begin
with a single point source located at the origin of the (£,7) plane and at a distance

zp from the CGH. The distribution in the CGH plane is then given by:-
H(z,y) = % (€47)

This result is separable in  and y and so each dimension can be considered sepa-

rately. The distribution in the z-direction at = 0 resulting from the point source
Ly

v = [T
Lz
2

Ly
] .
— e—]ﬁ(l—zo)
_Lg
2

The intensity along the z-axis predicted from equation 4.5 for a range of values of

CGH is found as

(4.5)

L, is plotted in figure 4.4 for zp = 10cm, A = 594nm.

In [60], the allowable variation in focal depth of a lithographic system is defined
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A

Of =knzz

(4.6)

where k is a constant and N A is the numerical aperture of the system, defined as

sin @ where @ is the angle between the z-axis and the edge of the exit pupil of the

L

= -
2, Lz
vV 25+

Using the result of figure 4.4, a value of k = 2 gives a good indication of the extent

optical system. In the case of the point source CGH considered here, NA =

along the z-axis of the intense region generated by the point-source CGH. For the

three plots shown in figure 4.4, this gives:-

L, | extent of intense region

lem 1.9mm
2cm 0.48mm
Jcm 0.21mm

To realise a 3cm CGH imaging at 10cm requires a mask resolution of ’\TZIQ = 4um,
which is sensible. However, as the size of the image grows, so the aliasing constraint
of equation 2.26 imposes greater limitations on the minimum value of z, and it
becomes harder and harder to image features with a small depth of field using a

reasonable mask resolution.

Clearly 3-dimensional lithography using CGH is difficult to achieve using con-
ventional methods unless the resolution of the mask far exceeds that of the features
to be imaged. It is the subject of the remainder of this thesis to attempt to improve
on the limitations detailed in this and the previous chapter to enable the imaging
of features close to the CGH whose resolution is of the same order as the resolution

of the mask itself. To accomplish this the following basis will be used:
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4.5 CGH of Line Segments

In [61], the authors describe the generation of 3-dimensional images composed of
line segments. Their method employs the linear nature of the diffraction phenomena
to allow the superposition of analytical expressions that describe the diffraction due
to single lines, each of which can be at an arbitrary orientation to the plane of the
CGH. It is not clear yet how this technique improves over the situation detailed in
the previous chapters apart from an increase in computation speed, since aliasing
constraints must still be applied (the point of the paper was to allow the use of CGH
in display applications by significantly decreasing the computation time required for
each holographic ‘frame’). However over the course of the next 4 chapters it will
be demonstrated that the use of line segment representations in the CGH allows
images to be formed much closer to the mask than might be expected, and since
it is almost exclusively lines that are required to be imaged for the production of
circuitry, this method may overcome the limitations set out so far in this thesis on

the use of CGH for lithography.
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Chapter 5

Single Line CGH

HE METHODS DESCRIBED in the previous chapter for computing the diffrac-
Ttion pattern resulting from an object intensity distribution over a non-planar
surface have all relied on the FFT algorithm in one way or another. Breaking up
a surface into planar sections can significantly reduce the computational intensity
of the mask calculation, but for large high-resolution masks the time and memory
requirements are still prohibitive. In addition, the aliasing limits imposed on these
piecewise planar-type masks means that large substrates must be separated from

the mask by a relatively large distance if the mask resolution is to remain feasible.

To overcome these limitations, a further assumption about the nature of the ob-
ject distribution will be made- namely that it consists entirely of line segments. As
will be seen, this assumption eases the restrictions imposed by aliasing and compu-

tational limitations to a level suitable for the large, high-resolution images required.

In this chapter, CGH that produce single line segments are considered with a

view to extending the resulting concepts to more complex images. There are three
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key motivations for this:

Firstly, the linear nature of the FDF ensures that more complex CGH can be cal-
culated by the superposition of single line segments. Second, it is necessary to look
in some detail at the form of the image created by a single line segment CGH,
to examine its limitations and to identify possible improvements and thirdly, in
the subsequent chapters, it will be demonstrated that it is possible to localise the
diffraction pattern resulting from each line segment in a composite image such that
they do not fill the entire area of the CGH- implying that the image formed by these
localised segments is to a good approximation the same as that formed by summing

the images formed by each line considered individually.

The current investigation is also limited to the case of a simple parallel geometry
in which the imaged line segment does not form an angle with the plane of the
CGH. Two reasons prompt this decision:- firstly, it mirrors more closely the order in
which experiments were carried out during the course of the research and secondly,
chapter 8 will show that it is relatively straight forward to generalise the results in

this chapter to sloped line segments.

In section 5.1, the fundamental building block diffraction pattern is derived. In
section 5.2, the image formed by this pattern is analysed in some detail, leading
to a range of results that clarify its limitations for use as part of a lithographic
mask. In section 5.3, improvements on the basic pattern of section 5.1 are detailed.
Section 5.4 introduces the possibility of curved line segments and finally section 5.5
provides a summary of the results found in the chapter. Results in this chapter
are all simulated; practical results and a discussion of the possible representational

methods for line CGH are found in chapter 6.
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5.1 The Diffraction Pattern

A line in the plane (£,n) is defined as

U(¢,n) =4d(n) (51)
Where (7)) is the Kronecker delta function, defined as

1 =0
6(n) =
0 ow
This line is of infinite extent in the £-direction and infinitely thin in the n-direction.
Initially, the plane (§,7) is assumed to lie parallel to the CGH plane (z,y) and at

a distance z; away. The diffraction pattern resulting in the (z,y) plane from this

object is then derived from the FDF:

H(z,y) = )\ / / 8(n ',\L (z—€)+(y— ")2)dfd77
o (5.2)

As has previously been the case, the constant amplitude term ]%z and the constant
phase term e7*3* will have no effect on the final mask pattern and will be ignored from
this point; the % term will crop up later when lines in 3-dimensions are considered.

Equation 5.2 now becomes:-

(z,y) / / 'Al (z—&)2+(y—n)? )dédn

— I +a?) / et e IR gg
—00

L
. 2 im(y24g?) _j2n
= lim b vit Je JAzz5d§ (53)
Lo L
-2
N b
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where phase terms multiplying the object distribution are ignored, as it the object

intensity that is of interest.

Because equation 5.2 can be evaluated directly, there is no need to resort to the
FFT algorithm. Instead the result 5.3 must be evaluated at each of a set of discrete
points in the (z,y) plane. In [61], the mask for an object consisting of a number of
these line segments located in a single plane a distance 2 from the mask is computed
by adding the distributions resulting from each segment. The location of each line
is controlled by a linear phase term and their orientation is controlled by a suitable

rotation of the coordinates in equation 5.3. The expression for a single line is then:-

H(X, Y) = ej /\ﬂ'_zyz ej%(zoz—}—yoy)
y=Xcosy—Ysiny (5.4)

z =Xsiny+ Y cosy

Where X and Y are the axes of the CGH, ~ is the angle of the line and zy and y,

are its offsets in the x- and y-directions respectively (see figure 5.1).

The length of the line is controlled by limiting the extent of its diffraction pattern
in the z-direction to the required segment length; it is shown in section 5.2.1.1 that
this approach can be implemented successfully if certain conditions are met. The

distribution 5.4 then becomes:-

H(z,y) = rect (l‘ Z IO) eI 5V oI 33 (zoz+yoy) (5.5)

T

where L, is the required length of the line segment.

Figure 5.2 gives an example of the phase profile of the diffraction pattern resulting
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Y
LX

Figure 5.1: The Geometry of a Single Line CGH

from a single line segment as defined in equation 5.3. The variation in the y-direction
is seen to be a ‘chirp’ function, whose spatial frequency increases linearly with the
y-displacement from the line’s centre. The distribution does not contain any z-
dependent variation, a fact that will be used in the following chapter to further

modify the line diffraction pattern.

y-displacement (mm)
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Figure 5.2: A typical phase angle profile for equation 5.3

Several factors must be considered before the type of distribution shown in figure

5.2 can be considered as a candidate for lithography, namely:-

e The effect of limiting the line diffraction pattern in the z- and y-directions,
o The effect of sampling the line diffraction pattern,

e The reconstruction resulting from a mask consisting of several line segments.
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The following section deals with the first two of these points, whilst the third is

addressed in chapter 7.

5.2 Characterising the Line CGH

In order to evaluate the suitability of the expression in equation 5.3 for lithography,
the form of the image it produces requires characterisation. The width of the line,
its gradient, the extent of any sidebands or fringes and its behaviour at the end

points must all be examined and quantified.

Whilst the points given above are addressed in this section, the effect of each line
upon its neighbours and the extension of the line segment distribution to lines that

are not parallel to the optical axis will be addressed in chapters 7 and 8 respectively.

5.2.1 Limiting the Diffraction Pattern

The line properties detailed above are all governed by the portion of the distribution
in equation 5.3 that is captured in the CGH. If the CGH could extend to infinity in
both directions, then a perfect reconstruction of the original line defined in equation
5.1 would result. In reality, the CGH must be finite in size and so the effect of
limiting equation 5.3 on the resulting image must be considered. The effect of
this limiting process is stated in [61] and can be calculated using the definition
of H(z,y) from equation 5.3 as follows, where the assumption has been made that

a =177 =1z9 =1y = 0, the case of o # 0 being covered in chapter 8 and the extension
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to non-zero values of the other variables being trivial:-

' _ ect [ 2 Y
H'(z,y) = H(z,y)rect (Lx‘, Ly)

U(¢,n) :/ / H'(z,y)e —i 5% [(@-&)2+(y-m)?] dr.dy

= / / 6‘7 )\z ],\z [(:l: +(y 77)2] d,L, dy
Ly
2

(5.6)
Ly
— eI /2 eji_ndy/ eJAz(z £)? dx
Ly Lo
2
= L, sinc (M) FDFg(¢€)
Az
Where it can be seen that the function FDFg(£) is defined as:
5
FDFg(¢) = / e% (@8’ dg (5.7)
_Lg

This function is a complex Fresnel Integral and is seen to be the FDF for a rectan-

gular aperture.

The intensity of the line profile therefore varies as the square of the absolute value
of equation 5.6. Figure 5.3 shows the profiles along and across the reconstructed
image of a truncated line CGH, whilst figure 5.4 provides a 3D representation of
the line profile. The parameters used for these figures were: A = 325 x 107%m, z =

10cm,éz = 0y = 10pym and L, = L, = 2.6mm.

If the response of the photoresist is taken as ideal, where an intensity threshold
can be determined above which the resist is exposed and below which it remains
unexposed, the distributions shown in figure 5.3 may qualitatively appear suitable

for lithography, although the presence of sidebands and the gradient of the main
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Figure 5.3: The profile that results along (left) and across (right) the image plane
from a truncated line diffraction pattern

lobe of the sinc® profile must be carefully accounted for. However, a more thorough

assessment of this profile must be carried out before such conclusions are drawn.

5.2.1.1 The Length of a Line Segment

In section 2.2.1, the diffraction from a rectangular aperture was shown using a
convolution argument to be approximately space-limited. Since in the x-direction
equation 5.6 is this same rectangular aperture, an identical argument can be used

here to show that the line resulting from equation 5.5 extends in length by ~ 2v/Az.

Generally, if the Fresnel Number [62], 4—/\L—} >4 or

Ly > VAz (5.8)
then
Fres(§) = rect <L£> (5.9)

This implies that, in order to image short line segments, z must be kept as small as
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Figure 5.5: The change in length of a line segment due to diffraction.

5.2.1.2 The Width of a Line Segment

The width of a line segment defined as in equation 5.6 is governed by the width of

the main lobe of the sinc function. The width of this lobe, w, can be found as:-

nLyw

20z
o 2z (5.10)
. I Ly

where L, is the extent of the CGH pattern in the y-direction. If an ideal photoresist
response is assumed and the exposure time is controlled such that the substrate
under the photoresist is revealed (after developing) at all points where the normalised

sinc? intensity profile is greater than 0.5, then the width of the line segment is given
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by:-

Az
~ 0.9— a1
w 09Ly (5.11)

this expression gives the Full Width, Half Magnitude (FWHM) value for the sinc?
profile. For L, = 1cm, a 355nm illuminating source and a mask-substrate separation
of 1m, the FWHM resulting from a line segment mask is w =~ 32um, hence it is
possible using a relatively small CGH to image fine features at large mask-substrate

distances.

5.2.1.3 Signal to Noise Ratio of the sinc? Profile

The Signal to Noise Ratio in this instance is defined as the ratio of the intensity of
the sinc? profile at £ = 0 to the intensity of the maxima of the first sideband of the
profile. This ratio is constant and is found by equating the angle of the sin part of

the function to 2F. If the argument of the sinc? function is ¢£ then:-

me€ = 3;
3
— 2_6 (5.12)
s 2
sinc(c€) = % - 5;,5 ~ 0.045

therefore the main lobe of the profile is approximately 22x as intense as the first
maxima. This result is encouraging, since it suggests that exposing photoresist to
a line segment such that the main lobe is the only feature remaining after etching

should be straightforward.

5.2.1.4 The Gradient of the Sinc Profile

Unfortunately there is more to the story than the previous sections suggest, since

the response of a photoresist is not binary as has been implied. Therefore, as a
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measure of the robustness of the sinc? profile as a lithographic track, the gradient of
its side-walls must be examined. A steep gradient indicates that a reasonably equal
line width should result from a large range of exposure times- reducing the gradient
reduces the range of possible exposure times that result in an approximately con-

stant line width.

A reasonable linear approximation to the gradient of the main lobe of the sinc?

profile can be found as:-

d . L Az
VO~ 3 lel < - (5.13)

Y

this approximation is quite crude, but by using a linear approximation a good rule-
of-thumb indication of the timing accuracy required during the exposure process
can be derived. Assuming that the photoresist coating the target substrate is doum
thick and that it is etched at a rate proportional to the intensity of the incident light
with a constant of proportionality of n, then the etch rate r at position & along the

sinc? profile can be approximated by:-

L3
r~n (Lz - )\—z ) wm/sec (5.14)

then the depth d after ¢ secs is given by 7t and the time to etch away the doum
resist coating at a distance & from the centre of the sinc profile (so that w = 2&)

is:-
d
t= 0 7 secs (5.15)

As an example, consider again the case of the lcm mask imaging a line segment 1m
away using a 355nm source and take n = 3000 and dy = 3um- these are reasonable

figures for the photoresist and laser used at Sheffield University to carry out the
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etching step!. To etch the resist and reveal the substrate such that the width of the
exposed section is 40um would take 22.9s. In 25s the width of the exposed section

would have increased to 42.6um.

The accuracy of the results in this section have yet to be verified in practice.

5.2.1.5 Width Variations due to the Fresnel Function

Although the Fresnel function that forms the profile along line segments as defined
in equation 5.7 is often approximated by a rect function, the effect on the line
profile of this not actually being the case must be considered if the image formed
is to be fully understood. Because of its integral form, it is difficult to analyse
the detailed structure of the Fresnel function; however, it can be observed that the
maximum of the absolute value of the integral is ~ 1.2x its average value. This
corresponds to a variation in intensity of the sinc?-function along the line profile
of &~ 1.4. Again using a linear approximation to the sinc? function and assuming
a linear photoresist response, this intensity variation also corresponds to a FWHM
variation in the exposed line feature of =~ 1.4. The situation is illustrated for a
typical line profile in figure 5.6 which shows the profile of a line from above, as it
would appear on a target substrate. The width variation is clearly evident, as is the

intensity variation along the line due to the Fresnel term.

5.2.2 Sampling the Diffraction Pattern

Although an analytical expression for the required diffraction pattern in the CGH
plane can be derived for objects composed of line segments, as in chapter 2 this

distribution must still be sampled in order that it can be computed and written to

1A Coherent 1304 Ar ion laser, producing 100mW TEMO00 at 355nm
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local spatial frequency argument:-

< — (5.16)

Substituting equation 5.16 into equation 5.11 gives the following width limit for the
FWHM of the sinc? profile:-
w > 0.90y (5.17)

The implication is that the width of a line segment is independent of the mask-
substrate separation provided the CGH is large enough to capture the line diffrac-

tion pattern up to the aliasing limit of equation 5.16.

The maximum mask-substrate separation is thus practically governed by the
condition in equation 5.8 and the resolution of the mask. More of an issue perhaps
is the minimum mask-substrate separation that can be achieved using this technique.
This distance can be found by setting the number of pixels in equation 5.16 to 1,
so that the resulting CGH is essentially a single slit and holographic lithography
becomes conventional photolithography. The minimum mask-substrate separation

is then:-
Az _1

b2
. (5.18)

A

but in [63], and as a general rule of thumb, equation 5.18 is given as the mazimum
separation for conventional photolithography- does the CGH method then take over

seamlessly from conventional lithography when this limit is reached? Unfortunately,
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equation 5.11 with L, = ndy where dy is the size of a pixel:-

ﬁ—n+1

sy

Az = dy*(n + 1) (5.19)
z n+1

w=09— =090

LW Ognéy Y -

For planar images, this width variation is not really an issue, since a value of
z can be chosen for which equation 5.18 is an integer. However, for 3-dimensional
images where a reasonably consistent line width is needed, equation 5.19 can cause
problems. If a 1% width variation is considered acceptable, then equation 5.19 gives

n > 100, equating to a z 100x greater than the minimum given by equation 5.18.

In contrast, if a continuous writing process is used the range of possible mask-
substrate separations begins at 0 and extends to the limit imposed by equation 5.18
at which point conventional photolithography reaches the limit of its extent and
the CGH method takes over. The range then extends indefinitely, but is practically
limited by equation 5.8 and by the physical size of the mask. In addition, the CGH
detailed in this chapter create cross-sectional line profiles that are approximately
the same as that found at the theoretical limit of conventional photolithography.
Figure 5.8 shows how as the mask-substrate separation increases, so the holographic

lithography method enables a reasonable line profile to be maintained.

Having covered the sampling of equation 5.3 in the y-direction, the effect of
sampling along a line segment must also be considered, and since lines are longer than
they are thick there is the potential for interference from higher order images along
their length if the sample spacing is governed solely by equation 5.16. Fortunately,

the fact that the distribution of equation 5.3 is continuous in the x-direction ensures
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These problems are not necessarily terminal. Although the line produced by
a CGH in the form of equation 5.3 is quite ragged, the signal-to-noise ratio of an
individual line is good and continuity along its length can be assured provided the
exposure process is carefully monitored. Further advantages of line CGH are that
they can be produced very easily (as will be demonstrated in chapter 6), they can
easily be extended to 3-dimensional substrates (see chapter 8), they are robust to
errors in the mask and they can be combined in a way that relaxes the limitations

placed on CGH by aliasing constraints (as will be discussed in chapter 6).

Nevertheless, any improvements that can be made to the basic line CGH are

worth investigating and this will be the subject of the following sections.

5.3 Rectangle CGH

It has already been inferred that proper control over the width of a line segment
defined by equation 5.3 is problematic due to variations in the profile of the line
along its length; this problem is further exacerbated when lines in 3-dimensions are
considered. As a solution to this problem, the basic element from which the CGH
mask is calculated can be changed from an infinitely thin line of finite length to a

rectangle of finite width and length.

One solution to the FDF for a rectangle of width w and height h is found as

126



5. Single Line CGH

follows:-
Ule.m) = 1 €] <2n<¥
0 ow
h w
H(J; y) — ejﬁ(zzﬂﬂ)/z /2 eji—’;(ga:wy)dgdn
4J-3

h
2

g hx w
_ i@yt o hhind ; wy
el hsmc(A )wsznc(/\ )

z z

(5.20)

As only a single rectangle is currently being considered, the constant wh mul-
tiplying equation 5.20 will be dropped for now. For small values of w and h, this
expression works well. However, as w(h) increases, so the spatial frequency associ-

ated with the sinc profile along (across) the CGH segment increases:-
w h
= — = — 21
fu 20z (fh 2/\2) (5:21)

The implication is that as a method of controlling the width of the line segment,
modulating the quadratic phase distribution with a sinc amplitude profile may be
effective. As a means of terminating the end points of the line however, the sinc
~ distribution is impracticable for longer rectangle lengths, since its spatial frequency
becomes extremely large and requires an equally large mask resolution in order to
avoid aliasing. The next section therefore considers the use of a sinc profile for the
control of the width of a line segment, whilst an alternative method of controlling

the length of a line is introduced in section 5.3.2.

5.3.1 Controlling Track Width with a sinc Amplitude Dis-

tribution

To assess the effectiveness of the sinc method as a means of controlling the width

of tracks in a holographic lithographic system, several questions must be answered-
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1. What are the aliasing limitations on the maximum extent of the sinc distribu-

tion in the mask?
2. What profile in the image plane results from the properly sampled CGH mask?
3. What are the resolution limits for several parallel tracks?

4. Can sloped lines be incorporated into the proposed new type of CGH distri-

bution?

The first two of these points are investigated below, the second two are covered

in chapters 7 and 8 respectively.

5.3.1.1 Aliasing

Again using the concept of local spatial frequency, the aliasing condition govern-
ing the sampling requirements for the width-controlled rectangle can be derived as

follows:-
1 dmn

fily) = ﬂd_yﬁ(wy + %)

= o (Wt 2y)

0 (5.22)
fily) < 26y

Az Az w

nte S dy? by

oy <

where n is the number of pixels in the y-direction of the CGH and ¢ = % Then for

n>1, 5)‘722 >1+ 6%, which in turn implies that z > 6—/\9(53,/ + w). This is an absolute
limit on the minimum z for this variety of CGH. In the next section, the effect of
sampling the rectangle distribution at the aliasing limit imposed by equation 5.22 on
the resulting image will be considered. Note that as w — 0, equation 5.22 reduces

to equation 5.16.
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5.3.1.2 The Resulting Image-Plane Distribution

For a single line CGH calculated with a sinc term used to control the line width,

the resulting distribution in the n-direction of the image plane is:-

— eV g wy Y
H(y) =¢€s smc()\z)rect(Ly)

U(n) / H(y e IR gy

= / sinc (?g) rect (i) eI X dy (5.23)

y

e (2 (2]
= rect (%) x sinc ( /\yzy)

As has been described in section 2.3.2, the convolution in this equation causes a
broadening at the edges of the rectangle image, such that the extent of the rectangle
cross-section is given by w + 42—;. If the value of L, = ndy is taken to correspond
to the alias limit of equation 5.22, then the extent of the rectangle is given by:

oy

_ Syw
1 Az

w+4 (5.24)

Hence in contrast to the case of the impulse-based line segments, the width of
line segments of rectangular cross-section is dependent upon z. However, provided
5y“’ < 1, the extent of the line does not vary significantly with z. As an example,
using a mask feature size of 10um, a track width of 4 x 10um and UV illumination,
z> c_&)\yﬁ (where w = cdy) giving z > 1.2mm, the width of the distribution on the
mask assuming from this that = = 10mm would then be 28 pixels and the extent of
the line segment would be 86um, whereas at z = 20mm, the extent of the line would
be 83um. Figure 5.9 shows this line segment as it would appear on the lithographic

mask, a simulation of the image that this mask would produce for z = 10mm is given

in figure 5.10 where the width of the line segment is seen to agree with equation
129









5. Single Line CGH

length is to be accurately controlled. Before developing this alternative, it is worth
reiterating the situation when no control over line segment length is included in the
CGH. In this case, as was illustrated in figure 5.5, the extent of the transition zone
of one edge of the line segment can be approximated by v/Az. Since \ is very small,
this is generally a small number; for = = lem, A\ = 325nm, the transition zone
is .06mm wide. Although this figure is small, any improvement in the end-point

termination of line segments is obviously still welcome.

To control the length of a line segment more accurately than the limits set out

above, the following distribution can be employed:-

U(€m) = dtnprect (£
H(z,y) = /_ ) /_ " U(e, merE (et ey (5.26)

h
S Tl Rl C -

[N

this is the familiar Fresnel Integral (or FDFg). In most mathematical software
packages this integral is tabulated and easily calculated- but what improvement is
offered by the inclusion of this term in the expression for a line segment? If the
extent of the single line CGH in the x-direction is L,, the convolution argument can

be used to determine the form of the resulting image (where the £-direction only is
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considered, the distribution being the usual sinc profile in the 7-direction):-

o 3
U(e) :/ rect (Li) /2 IR @0 gee 755 @8 g

— 00

=/ rect (Li) / e IXH JeI X% dg

= /°° rect x sinc @ IS5 d (5.27)
—00 La: )\Z )

— P rect (2] « F |sine (™

=F |rec I sin v

ey L€ £

= sinc ( s > * rect (h)

In this case then, the transition zone at one end of the line is given by 2%5, therefore

RIS |-

[Nl

an improvement in the control over the length of a line segment can be realised if
L; > 2v/Xz. Since typically the factor Az is of the order of 100 x 0.01 x 1072 = 1079,
L, must be extremely small for this inequality not to hold. To see how large L, can

be without aliasing occuring, the sampling of equation 5.26 must be considered.

5.3.2.1 Sampling of the Fresnel Integral

As has already been suggested, the sampling of Fresnel Integrals is an involved sub-
ject. References [64], [44], [45], indicate that an image can be recovered from the
Fresnel Integral sampled well below the Nyquist rate; application of this result to
CGH is a topic for further study. A slightly more ‘rough and ready’ approach to the
sampling problem has been employed here, however the result does seem to work

well in practice.

It is possible to approximate the Fresnel Integral by analytical expressions for
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large values of its argument. First, the integral
F(z) = / eI gt (5.28)
0

which is the standard form of the Fresnel integral that is tabulated in most mathe-

matical software packages, can be split into real and imaginary components:-

F(z) = /Oz cos (gtz) dt+j /0I sin (gtz) dt (5.29)

each of these components can then be approximated by [65]:-

Real(F(z)) = C(z) = %
11 - (5.30)
Imag(F(z)) = S(z) = 5~ ocos (—3: )

Since it is at the extremities of the diffraction pattern where aliasing will occur
(see section 2.3.2), these approximations are suitable for use in deriving a sampling
theorem for the FDF. Assuming that the greyscale, binary-phase representation is
to be employed, attention will be restricted to the real part of equation 5.30. The
single-dimensional FDF for a top-hat feature (FDFg) can be arranged into a form

suitable for this approximation by an appropriate substitution:-

Real(FDFg(z)) = /% cos (]/\1(1: - §)2) .d¢

A z
az aj
= / cos (jgtz) dt — / cos (jgtz) .dt
0 0
(5.31)
B 2 (h +
= e \2 "7
TV Az \2
this expression can then be approximated as:-
Real(FDFg(z)) ~ C(az) — C(ay) (5.32)
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ture can now be found by using the concept of local spatial frequency introduced
in section 2.3.1 to determine the Nyquist rate for the expression C(ap). This is

straightforward:-

o=t (VE(3-))

_h
_*T—3

T Az (5.33)
L.—h 1
ol S
20z T 26z

Lm§£+h
ox

fl(x) |maa: =

where fi(z) is the local spatial frequency of C(a3) and L, is the size of the CGH in
the x-direction. The same result can be derived for negative = using the expression

for C(a,).

Finally, 6x must be chosen to ensure that aliasing has no effect on the CGH
distribution. This will be the case provided the variation in the amplitude of FDFg
is smaller than the difference between quantisation levels at the value of z where

aliasing begins to occur. If the difference between two levels in a quantised CGH

representation is gs., then this will be the case provided |—

{2 éx
/\_27 < gstep (534)

As an example, the rectangle CGH used in the next chapter consisted of 8 grey-

11,2| < Gstep- This leads

to the result that

levels sampled at 40pum with A = 325 x 1079, z = 30cm. The amplitude of the FDF
for this rectangle ranged from 0 — 1.2, giving gs., = 0.15, which is greater than
+/£% = .058 meaning that aliasing in the mask should not occur. The rectangu-

Az

lar mask presented in the next chapter was truncated to a size of L, = 6mm, the

extent of the transition zone at one end of this feature is then 2 o./(\)f)s = 33um which
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is considerably smaller than v Az = 310um.

Combining the results of this section with the width-controlled line of section
5.3.1 leads to the definition of the ideal distribution in the CGH for the imaging of

a single rectangular feature in space as:-

A
H(z,y) = sinc (%y) g [ 7 el 3= (8% g¢ (5.35)

_h
2

The production of a CGH that realises the distribution of equation 5.35 is the

subject of section 6.3.

5.4 Curved Line Segments

To conclude this chapter, diffraction from curved line segments is now considered.

5.4.1 Diffraction from a Circle

Consider an object consisting of a ring of radius p that is defined in polar coordinates
as:-

Ulr,0) =6(r — p) (5.36)

With the coordinate system as illustrated in figure 5.13, a possible form of the

diffraction pattern resulting in the CGH plane from this object is postulated as:-
H(R,¢) = eIz (R (5.37)
The image formed by this CGH can be found from the FDF expressed in polar
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Figure 5.13: The geom-
etry for calculation of
CGH the diffraction pattern
from a circle

coordinates:-

U(r,0) = / " WH(R,(j))e‘jo"d.dqu.dR (5.38)

where
d = [2* + (Rcos ¢ — rcos§)® + (Rsin ¢ — rsin6)?]?

= [2* + R* + r* — 2Rr(cos ¢ cos f + sin ¢sin 9)]%

. (5.39)
= [#* + R+ r® — 2Rrcos(¢ — 0)]?
~ 74 R% +r? — 2Rr cos(¢ — 6)
2z
plugging equation 5.37 into equation 5.38 results in
U(r,) = / eI Rp / iz Rreos(6-9) 4o RAR (5.40)
the second integral in equation 5.40 is a Bessel function of the first kind:-
T _am 2m Rr
i3 cos(¢=0)Rr _ 7 5.41
[ (55) -4
leaving
o0 27R 2m
Ulr,0) = / Jo ( 7;;) Re %R gR (5.42)
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setting R' = £ gives

U(r,0) = /\z/ Jo (2mR'r) R'e™2iRr R (5.43)

this is then the Hankel Transform [66] of the function e~2™## which from tables is:-

pam?

(472r2 — An2p?)3

U(r,6) = jAz (5.44)

which evidently tends to oo as r — *£p, giving the required ring pattern in the image

plane.

The effects of limiting the extent of the diffraction pattern of equation 5.44 have
not been fully investigated, but from an argument based on convolution in polar
coordinates it is expected that the limiting in the r-direction of equation 5.37 will

result in a similar sinc profile to that of a straight line.

In [67], it is shown that, provided the change is slowly varying, it is possible to

make p in equation 5.37 a function of ¢ such that
H(R, §) = & B (R0 (5.45)

The image formed by this CGH is then shown to follow the deformation of p such
that
U(r,0) = 6(r — p(6)) (5.46)

One possible form of this deformation is a linear change in radius with ¢, resulting

in a single turn of a spiral. This result will be used in chapter 9 to create a CGH

able to image a spiralled track onto a 3-dimensional substrate for use as an antenna.
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Chapter 6

Producing Line CGH

r I \HIS CHAPTER BUILDS on the development in the previous chapter to examine
the image formed when several different representational methods are used to
produce line CGH (section 6.1 and 6.2) and the more complex rectangular masks

(section 6.3).

6.1 Representational Methods and their Effect on

the Line-Segment Image

This section examines the effects that the various representational methods detailed
in chapter 3 have on the image that results from the distribution for a single line
segment derived in chapter 5. Thresholded line representations are first covered,
followed by a quantised phase representation similar to the Kinoform of section

3.3.1.
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6.1.1 Thresholded Line Segment CGH

Two binary line representations are detailed in this section. Binary amplitude line
CGH are detailed first, binary phase lines are then considered and the two repre-

sentations compared.

6.1.1.1 Binary Amplitude Line CGH

The most straightforward representational method for line-segment CGH is to thresh-
old the distribution in equation 5.3 as detailed in section 3.3.5. Such a distribution
is particularly amenable to the Gerber format outlined in section 3.5.3 since the
dark bands resulting from the thresholding operation can be represented as lines in
vector format in the file- an advantage for large masks where file sizes can become
unmanageable. This section examines the degradation of the image resulting when

line CGH are thresholded.

The thresholded version of equation 5.3 is

1 cos (ﬁyQ) >0

Hbin(w>y) = (61)

0 ow

To calculate the image formed using this representation, Hy;, can be expanded as a
Fourier series, giving:

(6.2)

To approximate the effect of the thresholding operation, only the first two cosine
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Integral of equation 5.7 and as in section 5.2.1.1 can be approximated by appro-
priate rect functions. Care must be taken at this point to consider the phase of
the integrals- it is not generally the case that the amplitude of an image plane dis-
tribution can be found by summing the magnitudes of individual components of
that image. However, this is the case when the phasors resulting from each of the
individual components at each location in the image point in the same direction,
and it is approximately the case if the phasors point in almost the same direction.

Figure 6.2 shows the complex representation of each of the integral expressions in

— Complex Representation of Fresnel integrals
— rect Approximation Vector

Im(Fr2)

20
x107°

-10 0 10
Re(Fr3) 6 Re(Frd)

Figure 6.2: Complex representation of the integrals in equation 6.4 for an arbitrary
set of parameters

equation 6.4 for an arbitrary set of parameters governed only by the condition of
equation 5.8. F'rl— Fr4 represent the integrals in the same order as they appear in
equation 6.4. The rect function approximation to each of these expressions is seen
to be represented by the vectors connecting the origin of the plots to the centre of

the displaced spiral arm in the figure. Evidently, three of the plots in figure 6.2 do
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indeed line up approximately, such that the amplitude of their sum can be taken
as the sum of their amplitudes- the third term in equation 6.1 forms a right-angle
with the other terms and therefore does not contribute significantly to the amplitude
profile. The sinc profile that forms the required line segment is taken as being of
negligible amplitude outside of a narrow region around zero- this assumption is valid
if the line profile is to be steep enough for use in lithography. It is also assumed
that in the region around zero the amplitude of the sinc profile is large enough that
it is possible to simply add the noise amplitude without the introduction of a large

error caused by the non-zero phase of the noise terms.

The conclusion from these figures is that a reasonable approximation to the
actual image formed by the thresholded line segment can be obtained by summing
the amplitudes of the sinc profile and the rect approximations to the integrals of
equation 6.3 and that the third integral in equation 6.3 can be dropped, giving:-

U(n) ~ 2 sine (M) 2SN <i) RS (1> LTI ( 1 )

™ Az ™ 2L, 2 L, 3 4L,
(6.5)

(in practice, the final term in equation 6.5 is also very small and can be dropped).
Figure 6.3 shows the approximation of equation 6.5 together with the simulated
line profile generated using the ‘imageH’ program. The parameters ﬁsed were A =
325 x 107%m, 2z = 0.05m, 6z = dy = 2 x 107% and n = 1024. The approximation
is valid for any parameters provided that the Fresnel Integrals of equation 6.4 are
well approximated by rect functions; from the previous chapter this is the case if
LZ > Az. The maximum size of L, before aliasing occurs is given by equation
5.16, thus z > é/\ﬁ. For all of the results appearing in this thesis, the inequality
above is easily satisfied- for example the cone antenna setup detailed in chapter
9 has a minimum z of 22mm and 5um pixels, giving 22 x 1073 > 7.7 x 107°

for UV illumination.It is evident from the figure that although the fine detail of the
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An alternative form of equation 5.3 can now be postulated based on the reasoning

above (and see [68]):-

H(X,Y) = =01 rect T rect [ L (6.6)
L, L,

this result is subtly different from that stated in [61] in that a limit is now placed
on the line segment in the Y-direction such that the extent of the line is less than
the extent of the mask. For binary-valued CGH, L, can be set at the aliasing limit
governed by the resolution of the mask without limitation on the range of z and the
extent of the CGH. This distinction will become more clear when the superposition

of several line segments is considered in chapter 7.

The SNR of the line segment defined by equation 6.6 is found as follows:-

Ly | Vi, V&
ERR i

SWR="'
Fis 2

22+
i i (6.7)

24m
2Ly

2

+247

. ==
..S’NR-( Gy )

for the binary-amplitude line. However, the effect on the image when the fringes
of several line segments overlap, which occurs when the line segments are parallel
and close together or when they intersect, has not been taken into account in this
reasoning. The resolution limits on parallel line segments is dealt with in chapter 7,

whilst the effect of lines crossing is covered in section 7.3.

Figure 6.4 demonstrates the accuracy of the approximation of equation 6.5 for
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6.2 Sampling using Rectangular Apertures

An alternative representational form of equation 5.3 is the quantised phase repre-
sentation similar to that of the Kinoform detailed in section 3.3.1. In a multi-level
quantised phase CGH, each pixel is a square layer of transparent material of dimen-

sions @ X b x t where t is found for a given phase shift ¢ as

A

b= 27(n — 1)¢

and depends on the refractive index of the material, n. Phase masks constructed
during the course of the 3DI project have used perspex as the phase shifting mate-

rial, with a refractive index of n = 1.5, giving ¢ = X for a phase shift of = radians.

A general approach to calculating the image formed by this type of CGH is taken
here as it will prove useful later on when representational methods for rectangle
holograms are considered; this image is found by the following analysis. First,
consider the image, Uy, formed in the n-direction by the CGH Hy(y) which consists
of a single pixel of the full hologram H(y) in an opaque background and centred at
Yo in the y-direction. Yet again, only a single dimension will be considered for the

moment...

Ho(y) = rect (y _by"> H(yo)

Us(n) = H(yo)/ rect (y%byo) e"jT"z(y‘"F,dy

oo
!
Y=Y—%

Uo(n) = Hw)e %7 |

—00

(6.11)

o0

/
rect (%) e—j%(y’+yo)zej§—’§(y’+yo)n‘dy/

oo /
= H(yo)e_jr_z(n—y())z/ rect (2) eIl gyt
oo b

= H(yo)bsinc (Xb;(n — y0)> o= (n—vo0)?
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Invoking the linear nature of the FDF, the complete image U(n) formed by the CGH

can be found by summing the contributions from each pixel:-
=N Hkssine [ Lo (n — ksu) | =i % o—ken?
=) H(kdy)sinc 1o (1~ kdy) ) €773 (6.12)
k

where dy is the spacing between pixels in the CGH, the constant factor b has been

dropped and k indexes each pixel in the y-direction.

If this result is applied directly to the simple line-segment CGH where each
pixel is represented by an aperture over which is deposited a layer of perspex whose
thickness correctly controls the phase of the incident illumination, equation 6.12

becomes:-
H (kby) = &l 5= o)’

Z sinc ( (n— k()y)) el 3koun

(6.13)

To analyse this result further, consider the exponential factor multiplying equa-
tion 6.13. When 7 = 22m (m integer), this term reduces to e?"*m) = 1 for all k
and m, meaning that at these values of 1 the sinc terms add directly. Next, if limits
are placed on k such that the number of pixels being considered is equal to the alias

limit (see equation 5.16) then:-

int(;‘?")
um= Y sinc(%(n—kdy)) (6.14)

k=—int ( —72;‘; )

where ¢nt(z) is the integer part of x. Now for m = 0 and h = dy, the sum in equa-
tion 6.14 becomes a sum of N = int ( f 2) equally spaced terms spanning the sinc
function between :t%, whilst for m = 1, the sum consists of N equally spaced terms,
where this time the sinc function varies between 1 5 — 5. The ratio of these two sums

varies with N, but levels out at ~ 11.5 for N > 50. The intensity of the required
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line profile is therefore 11.5% =~ 130x that of the image at n = ;\—Z Figure 6.9 plots
equation 6.13 with the parameters A = 325 x 1072, 6z = dy = 40 x 107% z = 0.5m.

Note from this figure that although the intensity of the line profile at n = 5’\—; =

o8 -

o8- 4

o7 4

normaksed inensiy
o
by
T
L

;L , _ A . A

o
displacement (mum)

Figure 6.9: The line segment cross-section that results from the equal-sized rectan-
gular apertures representation

4.1mm is = 130x less than the main peak as expected, for 7 slightly greater and
slightly less than this value the intensity of the first-order image increases, such that
the SNR for this feature is actually ~ 20. However this figure is constant for the

equal-rectangular-apertures CGH of basic line segments provided again that N > 50.

In the region around n = 0 the mask should produce a sinc profile similar to the

ideal distribution of equation 5.6. To see that this is the case for small 7:-

. oy o oy
sinc <E(n - kdy)) R sinc (Ek) ~ 1
S U(n) =) &%k
k
B , L, JAZ
= ;sznc ()\z(n —k 5y)>

= sinc ﬁ <K &
- )\Zn a77 6y
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Figure 6.10 compares the ideal sinc? distribution with the distribution realised using

equal-sized rectangular apertures.

1 T T T T T
—equal apertures
09r g P

— ideal distribution |
0.8F :

2071 :
£
806 ]
c

BO5F .
(7]

S0.3| 1

0.1¢ ‘ \ -
0 1 - + - 1 B -

04 -03 <02 =01 0 01 02 03 04
displacement (mm)

Figure 6.10: A comparison between the ideal sinc® distribution and the image
formed by the equal-sized rectangular apertures representation

The formulation of equation 6.12 proves extremely useful in simulating the im-
age formed by a variety of CGH. A central tenant of this thesis is that the use of
CGH based on rectangular apertures is feasible at mask-substrate separations much
smaller than the alias limit set out in equation 2.26. Unfortunately, the programs
‘imageh’ and ‘himage’ do not take into account the finite aperture size used in the
final CGH representation and so the simulated image they produce is incorrect at
small z values where the amplitude resulting in the image plane from each individual
aperture within the CGH is not flat but varies as a sinc. In chapter 3 this discrep-
ancy was unimportant, since the sinc roll-off due to the finite-sized CGH apertures
could be approximated by unity over the extent of the imaged object within the
image plane. However, for line and rectangle CGH this is not the case and in or-
der to simulate the images such holograms produce, it is necessary to factor in the

sinc-rolloff term.
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In two dimensions, equation 6.12 is seen to be

b - -
U(&,n) = H(z,y) x *sinc (—y) sinc (ix) e IRV e IR

v v (6.16)

where ** indicates 2-dimensional convolution and each pixel within the CGH is of
size a x b. Equation 6.16 is seen to be of the same form as the FDF, with the convo-
lution kernel modified by the sinc functions that result from the use of rectangular

apertures in the CGH.

Equation 6.16 can be expressed in a modified form that allows the FFT algorithm

to be used to rapidly simulate the image produced by rectangular-aperture masks:-

b a s T .,2 P T a2

= F-! inc | —y | sinc (—z) e 3V e i%"
Ugn)=F {F[H(I,y)]F [sznc ()\Zy) sinc (/\Z:r) eIV eI H (6.17)
the image distribution is then found as the inverse Fourier Transform of the multi-

plied Fourier Transforms of H(z,y) and the convolution kernel of equation 6.12.

Of the methods outlined in the previous two sections, binary phase and amplitude
CGH have been constructed whilst multi-level phase CGH have not. Because of their
ease of manufacture and the quality of the image produced, binary-phase CGH are
perhaps the best choice for CGH consisting of simple line segments. Whilst a greater
number of phase levels may become necessary as the number of line segments is

increased.
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CCD caphure across the reciangle image
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Figure 6.14: Plot across the rectangle image

Figure 6.16 shows the resulting feature after a photoresist-covered PCB substrate
was exposed using the rectangular CGH and subsequently developed. The photore-
sist used for this experiment was positive-acting, thus the developed feature is a

positive copy of the light intensity distribution incident on the substrate.
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Figure 6.19: Comparison between the profiles across the rectangle image formed
using square and rectangular apertures in the CGH
indicating that even with these improved line images, care must still be taken during

the exposure process.

To further illustrate the use of slits in place of square apertures in the writing of
a greyscale, binary-phase CGH, figure 6.24 shows how the SNR of a rectangle image
varies as z is increased from .1 — .6m. All other parameters used in generating
this result were the same as used for the rectangle of figure 6.13. Although the
improvement is quite small, the slit-based mask is generally better than the mask
based on square apertures. Furthermore, the noise content of the slit-based mask is
localised to a far greater extent than is the case with the aperture mask, since the
first-order images resulting at the top and bottom of the main feature are effectively
eliminated. The slit mask therefore provides a noticeable improvement over the

original mask design.

To conclude this section, it is worth looking at the image formed by a rectangle

CGH manufactured in such a way that both phase and amplitude are encoded
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Figure 6.24: The variation in SNR of a rectangular feature as the mask-substrate
separation is increased

continuously and each pixel entirely fills its allotted area. Such an ideal CGH was
simulated to produce figure 6.25 and the plots of figure 6.26. The SNR of this
feature is &~ 16 and the transition region at the end points of the rectangle are now
in close agreement with the prediction of section 5.3.2.1. Although the creation of
a mask of this kind would be extremely difficult in practice (perhaps the ROACH
representation of section 3.2.2 is the most appropriate technique), the point remains
that aliasing problems can almost be eliminated for line and rectangle features if an

appropriate representation of the sampled diffraction pattern is chosen.
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6.3.2 Rectangle Masks resulting from the Error-Diffusion

Algorithm

An alternative method of creating a rectangle CGH is to use the error diffusion
process to reduce the complex distribution of equation 5.35 to a binary amplitude

format. The results of experiments with this process are shown in figures 6.27-6.29.

When the error-diffusion algorithm is used to reduce the length-controlled line
segment of equation 5.26 to a binary distribution, the result (figure 6.27) is promis-

ing. Here the end-points are well defined and the SNR of the feature is ~ 2.1.

When the algorithm is applied to the width-controlled line segment of equation
5.20 however, the result is less encouraging, here the cross-section through the line
is poorly defined and the SNR is =~ 0.97. The results in figure 6.28 represent the

best profile achieved over a range of weight matrices.

Applying the ED algorithm to the full rectangle pattern of equation 5.35 pro-
duces figure 6.29; evidently the image resulting from the mask is entirely swamped
in the noise. Why this should be the case is not yet clear- it may be that the phase
layer in the greyscale, binary phase CGH plays a vital role in the image formation

and that without this, equation 5.35 is impractical.

Further work may lead to an improved binary version of the rectangle distribution

of equation 5.35.
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6.4 Illuminating a line CGH with an incoherent

source

The effect on an image of the coherence of the illuminating source is an interesting
topic worthy of further study. An initial trial has been conducted using an arc-lamp
in place of a laser to illuminate a simple line CGH. The beam from the arc-lamp
was passed through a spatial filter and collimated before illumination of the mask in
order to realise an approximately coherent source. The resulting line cross-section
is shown in figure 6.30. The indication is that the image stands up reasonably well
when the arc-lamp is used. If this result can be extended to more complex CGH
composed of multiple line segments and an arc-lamp can be used in place of a laser,
advantages are a much higher power density over large areas and a significantly
lower cost. Further work is needed to fully understand the effect of different sources

on CGH images, especially of the localised variety such as the line segments of this

chapter.
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6.5 A Summary

This chapter has demonstrated the production of CGH of single line and rectangle

features imaged at mask-substrate distances well within the conventional aliasing
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limits set out in chapter 2. It has been shown that even when a complex mask rep-
resentation such as the greyscale, binary phase mask is employed, the higher-order
copies of the desired image are attenuated to a sufficient extent that the mask can
be used to successfully carry out each step in the lithographic process, from expo-
sure through to etching, albeit with the requirement for accurate control over each
stage of the process. It has further been demonstrated that almost perfect image
reconstruction can be achieved well within the alias limit if a fully-complex CGH

can be realised.

In the next chapter, the work carried out here and in chapter 5 is expanded
to include CGH composed of multiple copies of the single line diffraction patterns

superimposed to create more complex images.
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Chapter 7

CGH consisting of Multiple Line

Segments

IGURE 7.1 SHOWS the intensity of the diffraction pattern, captured using the
FCCD setup of figure 1.1, at 2cm from a simple transparency consisting of lines
in the horizontal and vertical directions. The figure is intended to illustrate the form
of the CGH that must be produced in order that such a pattern can be recreated on
a target substrate. Plotting a cross-section through part of this image produces fig-
ure 7.2. Hopefully it is apparent that although the original pattern includes several
line segments, all of which interfere to some extent with each other in the diffraction
plane, the distributions corresponding to each segment closely resemble the intensity

of the rectangle mask detailed in the previous two chapters.

The aim of this chapter is to examine the effect on the image of adding up line
segment patterns. Section 7.1 looks at the resolution limits on parallel line segments,
whilst section 7.2 hypothesises a limit on the resolution of parallel rectangle images.
Sections 7.3 and 7.4 examine lines forming right angles with each other. Section 7.5

summarises.
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7.1 The Resolution Limits on Parallel Line Seg-

ments

This section examines the resolution limits of the parallel line segments that result

from several types of mask and looks at ways of improving on this limit.

7.1.1 Resolution Limits on Lines Resulting from Quantised

Phase Masks

The Rayleigh Criterion states that the minimum distance between two slits of width
w such that their images are resolvable a distance z away is % when the Fraunhofer
approximation is valid and the illumination of the slits is incoherent [69). When
this criteria is met exactly, the zero of one sinc profile coincides with the centre
of the main lobe of the second, as illustrated in figure 7.3, and the ratio of the
intensities of the two maxima to the principle minima is %3. However, when the slits
are illuminated by a coherent source, the Rayleigh Criterion results in an unresolved
image as shown again in figure 7.3. For the purposes of CGH lithography, where a
coherent source must be employed to enable correct imaging, a suggested alternative
criteria is that the maxima of the two sinc profiles correspond to each other’s second
zero crossing, as illustrated in figure 7.4. Here the intensity at the central point
between the two peaks is given by sinc(l) = 0 and the SNR appears favourable.
This would seem a sensible limit on the resolution of two slits where the illumination
is coherent, however, notice that the two peaks of the resulting amplitude plot have
shifted slightly from the corresponding locations of the original apertures. If this

limit is to apply to lithography, this shift must certainly be taken into account and

could prove problematic.
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Figure 7.3: The intensity across two line segment images separated by the Rayleigh
Criterion using incoherent (a) and coherent (b) illumination; the cross-sections of
the lines considered individually (c,d)
For line CGH, since the resulting amplitude across each imaged line is also a sinc,
a similar resolution criteria can be stated. Namely, the minimum spacing between
line segments, R, is given by
Az

> 2— .
R_2Ly (7.1)

where L, is again the extent of each line segment pattern in the y-direction of the
CGH. If L, is taken at its maximum allowable value for a CGH resolution of &y,

this expression becomes R > 2§y.

The shift in the location of two line images as the spacing between their repre-
sentations on the CGH is increased from 2x — 8x the Rayleigh Criterion is shown
in figure 7.10, together with the same data for the improved CGH discussed in the
following section. Notice that the shift is only a small percentage of the distance
between the two lines, even when they are separated by only 2x the Rayleigh res-
olution limit. Since the shift is small relative to R, the limit of equation 7.1 can

be applied to the ‘rectangular apertures’ line profile of section 6.2 without causing
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major distortion to the imaged pattern.

04f-

oz

Figure 7.4: (a); the intensity across two line segment images separated by 2x the
Rayleigh Criterion. (b,c); the cross-sections of the lines considered individually

Now the bad news. As the number of parallel line segments grows, so the shift in
the peak locations of the sinc profiles relative to each CGH line pattern is increased.
The situation is shown in figure 7.5 for an array of 13 line segments whose repre-
sentations in the CGH are separated by 2x the Rayleigh limit. Here also notice
that the intensities of the main peaks are no longer constant and that a number of

reasonably intense sidebands have been introduced at the edges of the profile.

Figure 7.6 shows how the SNR of the image formed by multiple line-segment
patterns is effected by the spacing and number of line segments. From this figure, it
is clear that the SNR remains relatively unchanged by the number of line segments
after this figure exceeds ~ 10. Also, as the spacing between the lines is increased,
the SNR winds its way toward 22- the SNR figure for a single line segment (see
equation 5.12). From this figure it is clear that when a large number of parallel line

segments are required to be imaged, the spacing between these lines must be at least
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4x and preferably > 6x the Rayleigh limit for a robust profile that is easily taken
through the exposure and development steps. Figure 7.11b shows how the location
of the line images varies as their spacing is adjusted. At 4 x R, this shift is only a
few % of the separation between the lines and therefore distorts the imaged features

by an acceptably small amount.

04l N

T

Figure 7.5: (a); the intensity across 13 parallel line segment images separated by 2x
the Rayleigh criterion. (b); the locations of the centres of each line segment CGH
pattern
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7.1.2 Improving on the Resolution Limit

In [70], the authors introduce a 180° phase shift to alternate parallel tracks on a
conventional photolithographic mask in order to improve on the Rayleigh resolution
criterion. Perhaps the same idea can be applied to line segment CGH to improve the
situation demonstrated in figure 7.57 The result of shifting alternate line segments
by 180° is shown in figure 7.7, where again 13 lines are considered, separated by
2xR. Obviously this is a big improvement; the sidebands at the edge of the profile
have all but disappeared, since the contributions from adjacent sincs almost cancel
out at the extremeties and the peaks are closer to their intended location. However,
care must be taken in the generalisation of this result, since the coincidence of the
peaks with the zeros of the sinc profiles, as with a 2R line separation, is a distinctly
special case. Figure 7.8 shows how the SNR of the parallel lines image varies as
the separation and number of line segments is increased. Although it begins at a
high value, the curve rapidly falls before climbing again toward the 22x level. How-
ever, the SNR never drops below 5 and clearly the introduction of the phase-shifting
approach is of significant benefit to the imaging of parallel tracks at separations

approaching the Rayleigh limit.

A second possible improvement is the introduction of a 90° shift between ad-
jacent line segments, i.e: the phase associated with each line follows the pattern
0—37—>7m— 37" — 0 — .... Figure 7.9 shows how the SNR varies with the number
and spacing of the line segments . The curve again begins with a favourable SNR,
which rapidly falls only to climb once again toward the 22x level; however, in this

case any improvement over the original result is negligible.

Examining figure 7.10, one benefit of the 90° phase-shift between adjacent line

segments is the relatively small shift from the desired location of two closely spaced
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line segment images. This is due to the fact that the amplitudes of the two sinc
profiles resulting from the CGH are orthogonal at the image plane, making it im-
possible for their side-lobes to add up constructively. In contrast, when a 180° shift
is intro‘duced, a minima from one line profile can interfere constructively with the
main lobe of the second; when these two features are slightly out of phase, a shift
in the location of the sinc maxima occurs. Figure 7.11 repeats the experiment of
figure 7.10 with 13 line segments now being imaged, here the 90° phase-shift does

not provide any benefit over the two alternatives.

From these results, the introduction of a 180° phase-shift between adjacent line
segment representations in the CGH provides an effective method of decreasing the
minimum separation between line segments toward the Rayleigh limit. It has already
been shown that if the width of the line segment representations in the CGH are kept
at the alias limit, R = 20y and is independent of z, it is therefore possible to image
parallel tracks at a range of mask-substrate separations and maintain a constant line
separation without degradation in the line quality. In realistic situations, such as the
patterning of a bus onto a non-planar PCB, the phase-shifting method should allow
track densities that are of the same order as the equivalent conventional lithographic

mask- albeit with much stricter control of the exposure process being necessary.
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Figure 7.10: The shift in the main lobes of the intensity profile resulting from two
line CGH. (a); no phase-shift, (b); 90deg phase-shift, (c); 180deg phase-shift

peak shift (% of line separation)
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Figure 7.11: The approximate shift in the main lobes of the intensity profile resulting
from 13 line CGH. a; 180deg phase-shift, b; no phase-shift, c; 90deg phase-shift
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7.1.3 Resolution Limits on Line Segments Resulting from

Binary Masks

When a binary phase pattern is employed rather than a quantised phase represen-
tation, it is evident from the line profile (figure 6.3) that the additional noise will

cause further problems with the imaging of parallel segments.

Figure 7.12 presents the result of simulated experiments with two line segments.
The CGH was calculated by simple thresholding of equation 5.3; the parameters
used to obtain these results were dz = dy = 80um, L, = 400y, 2 = 0.4. Notice that
the m phase-shift introduced in an attempt to improve the resolution limit does not
provide any benefit for well spaced line segments, but begins to help the situation
as the lines get closer together. Notice also that the SNR for spacings of 1x and
2x the extent of the CGH line segment patterns are similar; this is as predicted by

equation 6.7, where no large change in the SNR is expected between these limits.

1 L 1 ! 1 L 1 L i !
14 18 18 2

08 1 12
line separation / CGH line segment wicth

Figure 7.12: The SNR of two parallel line segments as they are moved closer together.
(a); binary amplitude mask. (b); binary phase mask. (c); binary phase mask
incorporating a m phase-shift to one of the line patterns
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Figure 7.13 presents the results of an experiment carried out with binary ampli-
tude CGH using the same parameters used to generate figure 7.12. When the lines
are spaced such that the two line patterns just touch, the peaks are distinct. Be-
cause the patterns do not overlap at this point, it is possible to use the approximate

pattern derived in section 6.1.1.1 to determine the SNR in this case. The SNR is

given by:-
onE - 2Lyt VAz(2+ )
V/\Z(4+ 7T) (7‘2)
— SNR=~6.3

This value is in good agreement with both figure 7.13 and figure 7.12. Note that
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just touching coincident with the edge of the second
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Figure 7.13: The resolution limits on two parallel line segments resulting from a
binary amplitude mask.

the form of the approximation in figure 6.3 leads to the conclusion that the SNR

as calculated in equation 7.2 is an average value over the range of line separations
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between L, — 2L,. When a 180° phase-shift is introduced to alternate line segments,

the SNR predicted by equation 7.2 is:-

14 2—121
41/ 7

This figure is somewhat higher than figure 7.12 suggests, but again only represents

an average value over a range of line separations.

As the line patterns move closer together, so the definition of the two peaks in
the image declines, as does the intensity of the line segments. Because the patterns
for the two lines are now overlapping in the CGH, equation 6.7 is no longer appro-
priate for approximating the SNR; here it is the work of simulation and practical
experimentation to determine the resolution limits. From figure 7.12, the indication
is that the SNR of two parallel line segments, imaged using binary-valued masks, is
good down to line separations of ~ % the width of the individual line representations
in the CGH. The introduction of a 180° phase-shift between the two line segments

reduces this figure considerably.

The results in this section are limited in their generality, having been generated
using a single optical geometry and using only two line segments. However, the con-
clusion can be drawn that as the line segment patterns in the CGH begin to overlap,
the SNR of the resulting image falls quickly- with a less pronounced decline when a
phase-shift is introduced between the two lines. Work is required to investigate this
result for a greater number of line segments- however one general result that can be
stated is that when a large number of line segments are spaced at intervals equal
to 2x the extent of each line segment pattern in the CGH and this extent is equal

to the alias limt, the SNR can be found from the approximation derived in section
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6.1.1 and is given to a reasonable approximation by:-

(7.3)

Vaz 2
2—6y—z~|-2+7r
4+

SNRz(
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Figure 7.14: Cross-sections through the image formed when two rectangle CGH are
superimposed

7.2 Resolution Limits on Rectangle CGH

This is a topic which requires further investigation. However, an ideal limit can be
derived by assuming that a perfect CGH can be produced and using the result of
equation 5.24 where it was demonstrated that the width-controlled rectangle image
extends by 21765@ on either side. A suitable resolution limit is then that the spacing
between adjacent parallel rectangles resulting from rectangle CGH should be no less
than 41—_‘2{@. Figure 7.14 provides an initial look at the effect on the image cross-
section of super-imposing rectangle CGH. Parameters used were A = 325nm, z =
S5c¢m,dx = dy = 10um,w = 8 x dz, the figure shows how the line cross-section
varies as the separation between the rectangle features is increased for 1x — 4x

the minimum separation set out in this section.
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7.3 Imaging a Cross Consisting of two Line Seg-

ments

It is straightforward using the analytical representations of lines and rectangles dis-
cussed previously to compute the diffraction pattern for a cross. However, the effect
of superimposing two perpendicular line patterns on the accuracy of the imaged
cross close to the point of intersection is less clear; in other words, the effect that

the fringes of one line pattern has on the other must be uncovered.

In chapter 6, lines imaged very close to the CGH were shown to be realisable if
their representation in the CGH did not vary along the axis of the line. When this is
the case, it is possible using a conventional plotter to recreate an ‘infinite’ sampling
rate along the axis of the line, such that aliasing constraints need not apply and
multiple copies of the line segment are not imaged. It was also shown that when
a sampled representation of a line segment is chosen, such as the greyscale, binary
phase CGH, higher order copies of the required image are strongly attenuated. If
an ideal representation is available, in which each sample of the cross pattern is
represented by a phase altering layer of dimensions §z x dy as in section 6.2, there

is no reason why this conquest of the aliasing limit should not apply equally well here.

Figure 7.15 shows the CGH and the image formed when two line segment diffrac-
tion patterns at right-angles to each other are superimposed and figure 7.16 provides
a cross-section through one of the arms of the simulated cross image. Parame-
ters chosen for this example were éz = dy = 10um, A = 325nm,z = 10cm and
L, = L, = 256 x dz = 2.6mm, putting the image well within the aliasing limit of
equation 2.26. Note from both figures that no aliasing is apparent apart from the

highly attenuated sidebands just visible to the sides of figure 7.16. Although this is
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Figure 7.16: Plot along one arm of the ideal cross image

this CGH, whilst figure 7.20 shows a plot along one arm of the cross. Two points are
worth noticing from these results. First, there is no bright point at the intersection
of the two lines and second there is no sign of aliasing occuring in the form of
encroaching higher order images. The photograph of the CGH suggests why this
should be the case. Along the two axes of the cross, the CGH is represented by
constant rectangular apertures; provided the CGH focuses the majority of the light
onto these two axes, aliasing should not then be a problem. The ‘blob’ would seem
to disappear thanks to the binarisation process, whereby those regions of the mask
containing large amplitude components are thresholded down to the same level as
the less intense regions- this in effect halves the amplitude of the central portion of

the cross where its two arms intersect.
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7. CGH consisting of Multiple Line Segments

7.5 Summary

This chapter has looked in some detail at the theoretical limits placed on the min-
imum separation between a number of parallel line segments when several CGH
representations are chosen. It has been shown that in the ideal case, a separation of
2R and that flipping the phase of adjacent line segments can result in improvements

in the accuracy of the resulting image.

An introduction to lines forming right angles has been given together with some
idea of the problems and possible solutions that may arise in this case. The inter-

action of lines forming right angles remains a significant topic of further study.

To show how effective the method of superimposing localised line-segment rep-
resentations in the CGH can be, a program has been written to mimic the action
of the classic ‘logo’ program from the days of the BBC micro. The original logo
program allowed lines to be traced across the screen by a ‘turtle’ whose movement
was controlled using commands such as ‘fd 50’ to move forward 50 pixels, or ’rt
90’ to make a turn to the right of 90°. The logo program could also be used to
control a wheeled robot with an attached pen to draw patterns onto paper. Similar
commands have been incorporated into the CGH version of this program, but in
this instance, the line drawn by the turtle is replaced with a CGH line segment
representation. The program also allows changes in the angle of the line in the
z-direction, enabling sloped lines to be imaged- but this is a topic for the next chap-
ter. For now, figures 7.24-7.27 show how line CGH can be used to produce an image
of circuit tracks similar to that used to generate figure 7.1. Parameters used here
were: A = 326nm, z = 2cm, éx = dy = 10um. To demonstrate the way in which

the aliasing limit has been avoided, figure 7.28 shows the image resulting from the
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Chapter 8

3-Dimensional Line CGH

N THE PREVIOUS few chapters a great deal of effort, was expended in the analysis
Iof the images formed by single line and rectangle CGH. However, if this work is
to be put to good use it must first be expanded from lines parallel to the CGH to
lines and rectangles at any orientation within the image volume. Luckily, such an
expansion is possible and indeed is such that the results derived previously can be

modified in a straightforward manner to apply in 3-dimensions.

The development here follows in the footsteps of chapter 5 by first examining
basic line CGH and subsequently looking at the addition of width and length control
to this feature. Section 8.1 derives an expression for a line forming an angle with
the CGH and section 8.2 looks at the image formed when this CGH is limited in
its extent. Section 8.3 examines the effect of adding sloped and flat lines end to
end. Section 8.4 extends the basic sloped-line result to lines of controlled width and
length, whilst section 8.5 introduces the possibility of lines imaged onto a curved

surface.
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8. 3-Dimensional Line CGH

8.1 Lines at an angle to the CGH Plane

This section derives an expression for a CGH whose image is a line segment forming
an angle with the (z,y) plane. Figure 8.1 shows the geometry for the following cal-
culations. Here, o is the angle that the line forms with the £ axis, 2y is the distance

/

/ X
/
13 |
y
r
[4)
Zy
/ i
Figure 8.1: Geometry
// for the calculation of a
4 sloped line CGH

between the centre of the line segment and the origin of the (z,y) plane, z, is the
distance between the location (z,0) in the (z,y) plane and the point on the line
where £ = z and r(z,y,£) is the distance between a given point on the line and a

given point in the CGH plane.

Referring to the geometry of figure 8.1, the following argument can be used to

derive the diffraction pattern formed in the CGH plane:-

First, the definition of the line in the (&, 7n) plane is taken as:-
U(Em) = &5¢(n) (8.1)

The reasons behind this definition will become apparent shortly.
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8. 3-Dimensional Line CGH

Recalling the formulation of the diffraction phenomena derived in chapter 2, the

distribution resulting in the CGH plane from the object defined in equation 8.1 is:-

H(z,y) / / U(E,mer 5 de.dn

(8.2)
- [ v ot
where 7 is seen to be given by:-
r= /(20 — €sin@)? + (Ecosa — z)2 + 2
= /(2 — ztana — (Esina — x))2 + (Ecosa — )2 + y2
(8.3)

= /(2 — (Ecosa — z) tana)? + (Ecosa — z)2 + y2

_Z\/1+(§cosa—x)2(1+tan2a)—22,,.(§cosa—:v)tana+y2
- 222

The occurrence of r multiplying the exponent in equation 8.2 will, in a similar style

to that employed in the derivation of the FDF, be approximated by z,, leaving:-

H(z,y) = i/w U(€, 0075 .de (8.4)

2z J—0o

H(z,y) is much more sensitive to variations in the value of r appearing in the
exponent of equation 8.2 and more care must therefore be taken in arriving at an
approximation to the square-root term in this instance. To ease notation slightly, the

substitution £ = £ cos & — x will now be introduced. The expression for r becomes:-

” t 2 _ 1t 2
fr:zz\/1+§ (14 tan®a) — 22,&tana +y (8.5)

2
222

In this form, 7 can be approximated using the binomial expansion of equation

2.9. However, care must be taken in neglecting the quadratic term in this expansion
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(% in equation 2.9):-

£2(1+ tan’a) — 22,8 tana + y?  422¢?tan’a

TR 2,
22, 823
(1+tan® a)?€ + y* — 42,£% tan (1 + tan? @) + 26%9%(1 + tan® ) — 42,y tan o
B 823

(8.6)
the last of the three terms in equation 8.6 can be dropped, as was the case in the
derivation of the FDF. However, since it is a function only of £, the second term
in this equation must be retained. This additional term is due to the introduction

of a slope to the line and can be seen to equal zero when a = 0°. Tidying up now

leaves:- 5 ) ) ) er e 2
s +§ (14 tan® o) — 22,8 tana + y _ 48" tan’
’ 22 823
z (8.7)
£? — 22,6 tana + y2
= Z:v +
2z,
giving:-
1 0 ! 2z §’2 I§ tan a+y
H(x,y)z—/ U(£+x,0>e ( v )‘dﬁ (8.8)
2 oo COS

plugging equation 8.1 into this expression then results in:-
H(z,y) = i /oo ei%’-’(ﬁ'tana+ztana)ej2T”(z”gi_%i;aﬂﬁ)_dg
_ L / zo+ 2” ) de
T = \/;(Scosa—a:)

A 1 on, . x © .
H(.I‘, y) — i “z e]%-zoeJAzIyz/ 6]5T2 dr

2z 2 cosa

= zi %coi eI X i Tz v </ el 5 dr +/ &5 dr + 1)
n «
— i 1 ejz)‘EZOGj)\:z y2 (— 6‘7 /\21: ,dT / ej’\z-r .d7‘ + 1)
\/ 22, cOS o+ ot
_J At el w0 I 5oV
2z, cos a

(8.9)
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8. 3-Dimensional Line CGH

Ignoring the constant phase shift, multiplying constants (including the cosa
factor) and the term 2., which is assumed to only vary by a small amount (zp >

Z tan &|mqy ), the expression becomes:-
H(z,y) = &x=¥ (8.10)

the effect of these assumptions on the resulting image will become apparent in the

next section.

Equation 8.10 shows that sloped line segments differ from the non-sloped case
only in a linear adjustment of the chirp frequency as the distance between the line
and the CGH plane increases. From the derivation of equation 8.10, it is clear that
the phase profile introduced along the line in equation 8.1 is such that the net con-

tribution to the CGH of all points on the line for which £ # z is zero.

Examples of the diffraction patterns generated by equation 8.10 for a range of
angles are given in figure 8.2. The aliasing limit derived in equation 5.16 must
now be applied for each value of z, as the distance between the line and the CGH
varies; in the figure, blank areas correspond to regions of the CGH that exceed this

sampling limit.

An example of the image formed by a sloped line segment is given in figure 8.3.
This line was calculated for zy = 5.5¢m using 325nm illumination and 10um pixels.

The details of this image will be investigated in the following section.
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8.2 The Image Formed by a Sloped Line

Having derived an expression for the diffraction pattern resulting in the plane of
the CGH from an infinitely long line, a similar discussion to that of section 5.2.1
now follows to determine the effect of limiting the extent of the pattern in the CGH
on the resulting line-segment image. Here, yet another approximation to r will be

used:-

r=/(z— Esma)? ¥ (cosa — 2 + (y — )2

= \/zé + (fcosa — )% + 2 (8.11)

(Ecosa —z)? + 12
221,5

%z§+

the condition on this approximation being similar to that for the standard FDF

formulation.

The distribution in the image plane resulting from the space-limited CGH can
be found as follows, where this time the approximation % R i has been used to

replace the occurrence of r multiplying the exponent.

H'(z,y) = H(z,y)rect <Liz) rect (L%,)
U@mzi//ﬂwma@wwm

Ly
2

1 —jsn? jn T\ —jx=(fcosa—z)? T iy ey
= —e "M e I3% [ rect e R xz AT et 2 dy.dx
13 L %l

) I S %1 32— (& cos a—z)? JE L—L)lﬁ Vvl

= —¢ T3z e—]—;q/ J/\zﬁ / e *\= = & *z y.dy.d.’L‘
2¢ _%az _JL

(8.12)

To proceed further, it is now necessary to examine the integral over y in equation

8.12.
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8. 3-Dimensional Line CGH

The antenna designers formula [71] states that in the integral

5,
/ eIV eI dy
-3

the quadratic exponential can be ignored provided % > 2a?. This corresponds to the

condition in equation 8.12 that

e 212

2 — 23 A

The satisfying of this constraint is extremely difficult over the full range of £ and
z; the depth variation in the substrate must be minute or z; must be enormous to
even come close. However, in the derivation of equation 8.10 it was shown that for an
infinitely long line, the contribution from a point on the line was limited exclusively
to that part of the CGH for which z = £ and this applies equally well in the inverse
case thanks to the linear nature of the diffraction phenomena. If it is then assumed
that this relationship holds approximately when the CGH is limited in extent, then
the majority of the contribution to the image in the (£, 7) plane results from the
portion of the CGH for which & ~ £. Under this assumption, it is possible to satisfy
the antenna designers constraint and the quadratic term in the central integral of

equation 8.12 can be ignored, giving:-

bl

Y

L
1 _sm_ 2 x > _ix _ )2 2 Gm
U,n)=—e Xz e“]izﬁf Ixsg & cosaz) / e]*zfny‘dy.da:

€
zZ, L
8 &+

_ —IES?:'I’LC (ﬁn> e—jﬁ(f cos a—x)zldm
23 )\Z&

ol

(8.13)

if L, does not vary with z, the sinc term can be taken outside the integral of equation
8.13. If the width of the CGH in the y-direction is maintained at the alias limit
then L, = ’\TZ’— and if it is again assumed that the majority of the contribution to

the line segment comes from the portion of the CGH where z ~ £, equation 8.13
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8. 3-Dimensional Line CGH

can be reduced to:-

e j = (z—€ cos a)?
U(¢,n) = sinc (%)/ e IRlEeema gy (8.14)
v) )

The integral remaining in equation 8.14 can be rearranged into the same form

as that of equation 5.28:-

2
T = —/\zg(a:—ﬁcosa)
2 (L,
a = — _/\z5 <7+§cosa)

(8.15)

= _2_ ﬁ —&cos
2= Azg \ 2 cosa
az
U(¢,n) = —/\;fsinc (—(;L) /a1 e~I37 dr

hence it is expected that the image formed in the (£, ) by the CGH of equation 8.10
limited to a finite size is extremely similar to that formed by the equivalent CGH
for a non-sloped line. The changes are a new scaling of the Fresnel Integral and a

variation in intensity o z; along the length of the line.

Figure 8.4 shows how the intensity along a sloped line varies as its angle is
increased. Here, the diffraction pattern of a line of length 512 x .004 = 2.05cm and
for which zg = 5cm was calculated for angles in the range 0 — 70° and the image
resulting from the size-limited CGH simulated. The figure shows how increasing the
angle produces a drop in intensity along the line segment; note that the intensity
drops as 2 decreases, so that the left side of the figure corresponds to the maximum
mask-substrate separation. From this figure it is clear that lines can be successfully
imaged when the depth of the substrate is a large proportion of 2z, provided the

variation in the intensity of the line segment is acceptable.
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Figure 8.4: The intensity along sloped line segments

Figure 8.5 illustrates the effect the change in intensity along the line segment
has on its cross-section in the case of the 63° line of figure 8.4. Notice that since the
CGH was limited in the y-direction according to the appropriate aliasing constraint,
the zero-crossing points of the cross-sections are coincident at every point along the

line.

The conclusion from the above analysis is that if the depth of the substrate
is much smaller than zp, all of the results for basic lines detailed in the previous
chapters are equally applicable to basic sloped lines. This includes resolution limits,
line-width and line-length calculations, aliasing limits and variations in the line pro-
file due to the Fresnel function. In addition, the effect of the various representational
techniques on the resulting image can be applied equally to lines on sloped surfaces,
so that noise and any higher-order features that are apparent for ‘flat’ lines should
be equally present in the sloped line case and the approximations of chapter 6 are

appropriate for the calculation of SNR and so on.
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Figure 8.5: Cross-sections through a 63° sloped line image at a range of locations
along the £-axis

As the depth of the substrate increases, the results of the previous chapters
remain valid, but now the noise present at the intense end of the imaged feature
must be used together with the signal level at the dimmer end to calculate the SNR.
The inference is that the SNR of a sloped-line feature, SN R,, is related to the SNR

of the non-sloped equivalent by:-

_hg
SNR, = SNRx 2~ 2702 (8.16)
2+ 3sina

As an example, suppose that an ideal quantised-phase CGH of the kind detailed
in section 6.2 can be produced for a line forming a 60° angle with the plane of the
CGH, of length 5cm and with zy = 5¢m, then the SNR of the imaged feature is
given by

2.8

SNR,=22x - =86

from which it is still relatively easy to control the exposure and development of a

suitable substrate to produce an excellent track.
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8. 3-Dimensional Line CGH

over a non-planar surface, a 3-line-segment, binary-amplitude CGH was produced
in order to image a track over a substrate consisting of two co-planar sections joined
by a 60° slope. The substrate was 4cm deep and the CGH designed to image at
a distance of 10cm from the top flat section (see figure 8.8). Figure 8.9 shows the
result of exposing a photoresist-coated substrate constructed from a brass block
to the ‘line-slope-line’ CGH. Despite the fact that a binary amplitude rather than
phase mask was used, meaning a relatively high noise level, and despite the dip in
intensity that appears along the line due to the relatively large substrate depth,
a clear track of ~ 100um width was produced in the photoresist. The track was
continuous along its length and the deviation in its width was small. The SNR for
the line-slope-line feature was found using equation 6.7 together with equation 8.16
tobe SNR, =~ 7 X ig—gn” = 5. In practice, the size of the mask meant that a scanning
process had to be used to image the full substrate, whereby the illuminating beam
was slowly tracked along the principle axis of the CGH. That this procedure could
be carried out successfully is in itself interesting. It implies that large substrates can
be exposed using a large CGH over which a laser beam is scanned in a raster fashion
similar to that used in the Holtronics system outlined in section 1.3.2.2. This further
suggests that one method of combatting the variation in image intensity that results
on a substrate containing large depth variations is to either adjust the power of the
scanning beam such that low intensity parts of the image are exposed using more
powerful illumination or to adjust the speed of the scanned beam in accordance with

the intensity variations such that an equal energy is delivered to every part of the

image.

In the next section however, a return will be made to single sloped line features
in an attempt to improve their definition with the introduction of width- and length-

control terms.
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8.4 Sloped Rectangles

This section extends the results of section 8.1 to rectangles formed on a sloped image

plane.

8.4.1 Sloped, Width-Controlled Lines

Following the analysis of equation 8.9 with U(£,n) = e’ X¢5%rect -

H(z,y) / / —UﬁneJTrd§dn

U,n) = ejT"ESi““rectg

r=1/22+ (Ecosa — z)2 + (n — y)?

= \/[(zo —ztana) — (Ecosa — z) tanal’ + (Ecosa — )2 + (17 — y)?
N (Ecosa — z)? — 22,(Ecosa — z) tana + (n — y)?
22

~
~ <z

§ =Ecosa—=x

c2m z Qn—gzz 12
~ Hay) == [ SFEr ) gy [7 ot

2z

wIe

3 —00
w
)\ ]. s T2 2 ST a2 ; 27 © . 2
=1/5— e >z ¥ 732 eI Y d i dr
22, cos w —
w
1 .2 .2 2 w2 _s2m
S T
w
2

Zx

(8.17)
Again the multiplying constants will be dropped, whilst the integral in equation 8.17
can be approximated by a sinc provided the quadratic exponential is approximately
unity within the limits +%. This will be the case if [71] z, > “’Tz, which is a slightly
stronger assumption than previously found for a non-sloped line. Nevertheless, this
assumption still gives reasonably small z values provided w is of the order of a few

pixels wide and the sample spacing in the mask is a few microns. For example, using
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Figure 8.13: Plots across the line image of figure 8.11
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8.4.2 Sloped, Length Controlled Line Segments

The derivation of an expression for a length-controlled line segment follows that of
equation 8.10 up to a point and uses the same approximation to r, the reasoning

that follows therefore begins with the second expression in equation 8.9:

e = U irect ()

L H(x7 y) - 2_/ eJ A (ZO 2zg )dg
X —_

[

(ST

) (8.19)
— lejﬁﬁ /5 ejt({cosa—z)zldg

the integral appearing in equation 8.19 can be rewritten in terms of the standard

Fresnel Integral as has been demonstrated previously, giving:-

2
T—,//\—Zm(fcosa—m)
_ o) ﬁ oS +
a; = )\zx 2C (6% T

gy = [ (ﬁ coscr — :c) (8.20)
Az

2

/\ 'Ly'l a2 T2
H(ilf,y) = 5’2—6‘7“2 27 dr

as should perhaps be expected, the CGH in this case represents the image formed

by the basic sloped-line hologram in the z-direction.

An example of a CGH resulting from equation 8.20 is shown in figure 8.14, where
the parameters used were as in figure 8.10 apart from an increase in z to 30cm and

a change in dy to 15um in order to better demonstrate the technique. The length
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Figure 8.16: The intensity along the centre of the width-controlled line image of
figure 8.15

8.4.3 Combining Width and Length Control to Realise Rect-

angles on Sloped Surfaces

The two equations for width- and length-control derived in the previous two subsec-
tions can be combined to produce an expression for a CGH able to image a sloped

rectangular feature, this expression is:-

i A [ aa
H = &%=V sine | — ,/_/ 927 d 8.21
(z,y)=¢ sinc ()\zx ) 22 )., 2" dr (8.21)

An example of a CGH calculated according to equation 8.21 is given in figure
8.17, where h = 1.3cm,w = 60pum,z = S5cm,\ = 325nm,a = 60°. The image
formed by this CGH is shown in figure 8.18. Where as is expected the result is
a combination of the distributions resulting from the length- and width-controlled

features.

8.5 Curves in 2z

In section 8.1, straight line segments forming an angle with the plane of the CGH

were considered and it was shown that a suitable phase distribution along the length
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8.6 A Summary

This chapter has provided the essential link between the experiments carried out
over the course of the previous three chapters and the imaging of line-based features
onto sloped surfaces. It has been demonstrated that a straightforward link exists
between the sloped and non-sloped cases and that the majority of the results demon-
strated in 2-dimensions apply equally well when the image plane is given a tilt. It
has further been shown that it is possible to link together lines of differing slopes
end-to-end such that tracks can be imaged successfully over surfaces consisting of

several planar sections.

Following the course of chapter 5, the basic sloped line feature has been ex-
tended to include width and length control where it has again been shown that
this extension provides a straightforward link between the sloped and non-sloped
cases. Although providing an obvious improvement, it is questionable whether the
inclusion of a length-control term to the width-controlled line CGH is necessary in
practice, given the additional complexity that it introduces to the mask production

process.

In the next chapter, all of the work detailed for line segments will be put to use
in the creation of a conical spiral antenna using a lithographic system together with

a computer-generated holographic mask.
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Chapter 9

The Conical Spiral Antenna

THE WORK IN this thesis has been sponsored by GPSK Design Ltd under an
EPPIC Faraday CASE award. GSPK Design expressed an interest in using
the 3DI technology to produce 3-dimensional antenna structures and to this end a

conical spiral antenna geometry has been investigated.

This chapter details the conical antenna concept (section 9.1), the design and
evaluation of a CGH mask capable of imaging a conical spiral light distribution
(section 9.2), the alignment of the CGH mask with a conical substrate (section 9.3)

and issues with the illumination of the CGH (section 9.4)

9.1 The Conical Spiral Antenna

Conical spiral antennas are wide-band, highly directional antenna structures that
are of particular use in Global Positioning System (GPS) technology [73]. Their
wide frequency of operation results from the fact that the antenna shape can be

described solely by angles, which means that (in the idealised case) the fundamen-
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tal resonating geometry is repeated over and over at ever smaller scales. This is
called a self-similar geometry. For a given frequency of operation, an active region,
whose location is governed by the wavelength, can be identified at some point along
the antenna that resonates and receives most of the energy. Real conical antennas
cannot possess an infinitely diminishing structure and so in practice are limited to

a finite bandwidth.

Analytical equations can be used to describe the position of the arms of the con-
ical antenna in space (section 9.1.1). The position of the arms can in turn be related
to the specified performance requirements using design rules published in the liter-
ature (section 9.1.2). This information can then be used to produce a holographic
mask that is used to distribute light over a conical surface which has been coated
with a photoresist (section 9.2). The conical antenna can then be formed with a

developing and etching process.

Basic information on conical antennas can be found in most antenna design

books, for example [74], [71].

9.1.1 Antenna Properties and Design

Figure 9.1 illustrates how a conical spiral pattern can be specified in terms of the

nine parameters defined in the table below:

The two boundries of one arm of the spiral track are defined by the equations:

= rgexp (d)smﬁo)

tana

ris = raexp ((¢ _gysin 9")

tan o

(9.1)
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and the two boundries of the second arm are defined by the same equations, with

¢’ = ¢ — 7 replacing ¢, i.e: the second arm is rotated 180° from the first.

Note that §, the angular arm width, is constant and determines the track width
of each spiral arm as the spiral travels down the cone (see figure 9.1). Antennas
that do not satisfy this condition are not true frequency-independent designs [1]
and can have undesirable beam patterns unless the winding angle, «, is large [75].
The winding angle is assumed to be constant here, but it may be varied as a means

of controlling beam width [75].

The number of turns of the spiral present on the antenna can be found by equat-
ing the parameters r; and 7, when ¢ = 27t and t is the number of turns. This

gives:-

sin 6,
To = Ty €Xp (27rt 0>
tan o

Cp e In(ry/r1) tana
U 27 sin 6,

9.1.2 Antenna Design Rules

In [76], the author relates the key parameters of the conical spiral pattern to its
properties as an antenna. The minimum operating frequency of the antenna is ap-
proximated by Ap;, = wD, whilst the maximum operating frequency is given as

Amaz = ®d. The fractional bandwidth of the structure is then found simply as %.

These rules are only approximate in practice and in [77], charts are provided that

relate the bandwidth to the wrapping angle a and the cone half-angle, 6.
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9. The Conical Spiral Antenna

Cone angles in the range 7° — 45° have been considered during this research,
with a 26° angle being used for most of the practical trials (see the sections be-
low). This angle has come about more from convenience than specification, since
it produces a cone geometry that suits the size of the available laser beam whilst
maintaining a substrate deep enough to demonstrate the practicalities of the 3DI
method. However, there is no reason why the full range of cone parameters cannot

be factored into the design of the CGH.

9.1.3 Constructing a Conical Spiral Antenna

One method of constructing conical antennas is by etching the arms on a flexible
substrate, which is then fixed around a truncated conical former [14]. A more rudi-
mentary method is described in [78] whereby wire wrapped around an inner cone is
pulled through an outer cone and subsequently fixed by pouring an adhesive over
the wire, creating a precise conical shape. Dyson noted that for o > 60°, the an-
tenna can be approximated by arms having constant width [75]. In this case the
beam pattern is similar to that of the tapered arm version. Therefore it may not
be necessary to include tapered arms in the design provided that the winding angle
is sufficiently high. Some antennas described in the research literature have been
constructed using this simpler method [73] and such a design is advantageous when
CGH lithography techniques are considered, since it allows the use of simple binary-

valued mask designs similar to those of section 6.1.1 to be used.

Another possible construction technique would involve direct laser writing onto
the conical substrate. Laser trimming has been described in the context of heli-
cal antennas [79] (which are similar to conical antennas in construction); here the
pattern is printed by a lithographic process and the antenna then tuned by laser

trimming of the arms. These antennas have been designed for GPS and mobile

230



9. The Conical Spiral Antenna

communications sectors and geometrical accuracy is stated as ~ lum.

Using CGH to produce conical antennas has several advantages over the methods
described here. First, because the masks are 2-dimensional and can be written using
conventional photo-lithographic techniques, it is possible to create extremely accu-
rate antenna masks, which subject to accurate alignment should result in extremely
accurate antennas. Second, the 3DI method is well suited to a mass-manufacture
process, unlike direct laser write where throughput is extremely low and finally,
the production method does not involve any mechanical processes and therefore

eliminates any inaccuracies such processes may cause.

9.2 Mask Design and Evaluation

From section 5.4, it is clear that a spiral pattern can be produced as an extension
of the basic circle CGH, whilst section 8.5 suggests that the focal distance of this
spiral can be altered along its length. The expression for a single turn of a conical

spiral pattern is then postulated as:-
H(R,0) = ¢'%r(Rro)” (9.3)

where the radius of the spiral is given by py and the distance between a point on the
mask and that part of the surface of the cone directly below this point is zg. The
developments of the previous chapters is sufficient to suggest that this distribution
should produce the desired pattern- although no formal calculation of the image

formed by equation 9.3 has been carried out.

The Matlab program ‘conical function’ has been written to produce from the
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machined into substrate marks on the mask

9.3.1 Alignment using Fresnel Lenslets

This is a concept still in its infancy. The idea is to create additional CGH patterns
on the mask that can be used to perform alignment by lining their images up with
marks on the 3-dimensional substrate and by adjusting the separation and tilt of

the substrate such that the alignment-mark images are in focus.

Holographic alignment marks can be seen in the four corners of the spiral mask
of figure 9.3; a close—uﬁ image of one of these patterns is shown in figure 9.7. These
lenslets were designed to focus to a spot on the base of a substrate consisting of a
conical section at the centre of a flat disc (see figure 9.8 for an illustration). z,y
alignment is then achieved by ensuring these spots line up with a ring of a given
radius on the disc section of the substrate. z and § alignment can then be carried

out by ensuring that each spot image focusses on the base of the substrate. Figure
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9. The Conical Spiral Antenna

9.9 shows one of the spots imaged by the holographic alignment marks on the conical

antenna mask.

One of the problems found with this method were that the large depth-of-field of
the holographic alignment marks meant that it was difficult to identify when they
were in focus. The lenslets on the mask of figure 9.3 were of 1.3mm diameter and
designed to focus at a distance of zy = 49.5mm, from equation 4.6, the range of

z-values for which the spot from the lenslet is intense is then found to be

2\22
12

T

= 1.1mm

Although this figure seems reasonable, the unstable nature of the cone geometry
means that a tilt of its axis by this amount causes severe misalignment of the spiral
pattern. Unfortunately, increasing the diameter of the alignment marks on the mask
by anything other than a small amount means that they take up a disproportionate
area of its surface, leaving less room for the spiral pattern itself. In the next sub-
section, a method of alignment specific to the cone geometry is detailed that avoids

the problems associated with holographic alignment.

9.3.2 Alignment using a Substrate-Holder

Although it provides an interesting general method of substrate alignment when the
mask and substrate are not in contact, the use of CGH alignment features proved
difficult in practice- at least for the spiral masks of the previous sections. An alter-
native alignment method particular to the masks of figures 9.3 and 9.4 has therefore

been developed.
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from a TEMOO laser beam is not an ideal candidate for use in the illumination of a
CGH, where the design of the CGH masks has assumed a uniform intensity profile
across its entire area. This problem is evident in figure 9.6, where the outer tracks
of the spiral pattern are seen to be lower in intensity than those toward the centre,
despite theory predicting the opposite. Exposure of the conical substrate using such
a beam is therefore difficult, since the correct exposure time for the central part of

the spiral is different from that at its tail.

One solution to this problem is to over-expand the beam such that only its cen-
tre is used to illuminate the mask. Evidently, though, this is a solution that would
become problematic for larger substrates. Scanning the laser provides another al-
ternative, although for a substrate as small as the cone under consideration here
that should not really be necessary. Currently, the best solution remains the use of
a refractive beam-shaping element to flatten out the expanded beam [80]. Unfortu-
nately, such a device has yet to be tried in practice and a successful exposure of the
cone has yet to be accomplished, although trials are being carried out at the time

of writing to remedy this.

9.5 A Summary

This chapter has detailed the use of CGH as lithographic masks for one applica-
tion from design through to exposure. It has been shown that practical issues such
as alignment and correct illumination are further obstacles to the success of three-
dimensional lithography, but that there is no reason why these obstacles cannot be
overcome. The conical antenna is an extremely useful device and current methods

of production are less than ideal in terms of throughput and cost. 3DI offers a vi-
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able alternative that is readily expanded to large-scale, accurate antenna production.

In the next chapter, two further possible future applications of CGH lithography

are introduced and areas of further work are detailed.
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Chapter 10

Future Work and Conclusions

THIS CHAPTER COVERS areas in which work is currently being undertaken
or in which future work should be concentrated (section 10.1) together with
two possible future applications of 3DI (section 10.1.1). The Thesis is concluded in

section 10.2.

10.1 Future Work

The work detailed in this thesis very much represents a foundation for future de-
velopment. Although excellent results have been achieved, the scope for improving
both the material and optical processes, the CGH algorithms and the suitability of
the method for mass manufacture is large. Funding has recently been granted that
will enable this research to be carried out- specifically with the aim of replacing the
static mask with a scanning micromirror device (see section 10.1.2). In addition,
expanding the research to include fully 3-dimensional lithography using Holograms
is a major topic (section 10.1.3). This section details areas for further study and

inttroduces two further applications of the 3DI method.
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10.1.1 Two Possible Applications for 3DI

Application driven mask design is an area in which future efforts should be concen-
trated. Up to this point, the conical spiral antenna detailed in chapter 9 has been
the main focus of attention in terms of applications for the 3DI research. However,
as the theoretical understanding fits into place, the scope is large for more complex
applications and the adaptation of CGH lithography to real-world problems. This
section outlines two further applications that have been considered as candidates

for 3DI.

10.1.1.1 The Xaar Printhead

One possible application of the 3DI method is in the patterning of inkjet printheads
[81], [9]. A schematic of a printhead developed by the company Xaar [3], who have
collaborated in the 3DI project, is shown in figure 10.1a. The printhead contains
an array of hundreds of 500um-tall piezo-ceramic actuators glued onto an alumina
substrate. These actuators are poled such that they flex in the manner shown in
figure 10.1b when a voltage is applied- on removal of this voltage the actuator relaxes,
pushing the ink contained between the actuator walls out through a nozzle located on
top of the substrate. Xaar have developed a direct-write system to electrically isolate
the side-walls of the piezo actuators in the manner shown in figure 10.1b. Whilst
at Sheffield University RET techniques have been used together with an electro-
depositable photoresist (EDPR) to realise the same routing pattern. A section of a
printhead created using this photolithographic method is shown in figure 10.2.

The separation between the actuators on the Xaar printhead currently stands at

around 100pm whilst the mask employs features down to 30um in order to maintain
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of the silicon wafer and a continuous extension of the sloped line CGH pattern (as
mentioned in section 5.2.2) would be used to image the tracks down the via holes.
At this point research has got as far as producing an etched silicon wafer on which

tests can be carried out on the effectiveness of the CGH method.

10.1.2 CGH using Micro-mirrors

Funding has recently been granted through EPSRC for research into the use of a
micro-mirror array as a lithographic mask. The idea is to replace the CGH pho-
tomasks that have been the subject of this thesis with an addressable array of small
mirrors [82]. Exposure of the target substrate to the desired pattern is then accom-
plished by scanning this mirror array and varying the pattern it displays to match

the appropriate part of the equivalent CGH mask.

One significant benefit of this technique is that the scanning process eliminates
to a large extent the problem of side-band interference between different imaged
features. By combining a scanned system with the localised diffraction patterns
detailed in chapters 5-8, lines or rectangles can be imaged separately without concern
over the noise levels generated by interference between nearby features. Having said
this, it is difficult to predict the further effects and problems that may result when
such a system is tried in practice; the micro-mirror idea should prove an interesting

topic of research.

10.1.3 Fully 3D Lithography

One of the initial ideas that sparked off the 3DI project involved the creation of

3-dimensional circuitry within some form of ‘gloop’, enabling extremely high wiring
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densities to be achieved. The work undertaken so far has concentrated on the pro-
duction of features on non-planar surfaces- a task that is considerably easier to

achieve using relatively low resolution masks.

There is no reason why the processes developed for these ‘2.5-dimensional’ sub-
strates can not be applied to the more demanding case of imaging tracks within
some sort of transparent, photo-fixable material. An extremely high mask resolu-
tion would be required in order to reduce the depth-of-field of the individual track
images to anything approaching usable (see section 4.4), and it is not clear as yet
whether a photo-fixable material with all the required properties actually exists.
Nevertheless, fully 3-dimensional electronic circuitry would be an extremely pow-
erful tool and the possibilities it would open up justify the further work that is

required to make it a reality.

10.1.4 Apodising a Gaussian beam using the GS algorithm

One of the practical problems with the use of a laser as an illumination source for
a lithographic process is the non-uniform intensity profile of the beam; typically, a
TEMOO laser produces a Gaussian intensity profile across the beam width. Figure
10.3 shows the intensity profile of the 355nm HeCd laser used for exposure trials
at Sheffield University. In a conventional exposure system, utilising a mercury arc
lamp, the variation in intensity across the beam is of the order of 1%, therefore
either the intensity profile of the laser beam must be modified or the variation in
intensity of the beam must be accounted for in the CGH if the exposure conditions
of the 3-dimensional substrate are to be as robust as in the 2-dimensional case. The

problem is further complicated by the requirement for a uniform phase profile across

the CGH.
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70+

- Measured Profile

Gaussian Approximation

Counts
8

201

10+

Position (mm)
Figure 10.3: Beam profile from the 355nm UV laser, 0 = 8.41mm

One solution to this problem is to use a neutral density filter with a gradated
opacity in inverse correlation to the profile of figure 10.3. To avoid phase shifts,
this filter can be encased in clear glass of an equal refractive index, such that the
beam passes through an equal width of glass at all locations. Unfortunately, use
of an absorptive filter in this way significantly reduces the power incident on the
CGH and on the substrate itself and the larger the required beam, the more sig-
nificant the power loss. An alternative is presented in [80] where a flat, coherent
beam was required for use in a holographic data storage system. Here, a matched
pair of plano-aspherical lenses is used to transform a Gaussian intensity profile into
a Fermi-Dirac distribution, whilst maintaining a flat phase profile. This method
is ideal for the needs of holographic lithography, however a bespoke pair of lenses
suitable for use with the Sheffield laser is expensive. With this in mind, experiments
have been conducted to investigate the use of a diffractive optical element computed

using the Gerchberg-Saxton algorithm as a beam shaping device.
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If a phase-only CGH can be designed such that the image it produces has a
top-hat intensity profile, then there will be no power loss in the system due to beam
attenuation. In addition, such a mask would be relatively straightforward and inex-
pensive to produce. The problem with this technique is that whilst controlling the
intensity or phase profile resulting from the beam-shaping CGH is straightforward,

simultaneous control of both intensity and phase is difficult.

Using the binary GS algorithm as described above, a mask has been designed to
produce a top-hat intensity profile from a Gaussian input beam. No attempt was
made to control the phase of the output distribution, in the hope that the 3DI masks
may prove robust enough to withstand incoherent illumination. The beam-shaping
mask design has yet to be photo-reduced and processed, meaning its performance is

yet to be gauged.

Investigation into the required characteristics of the illuminating source used for
CGH lithography is another topic needing further attention, especially the effects
of partially coherent illumination on the image resulting from the localised CGH
detailed in this thesis since it is possible that the use of this property may actually

lead to improvements in the performance of the holograms.

10.1.5 Photoresist Response

The ideal image resulting from a CGH mask would have only two intensity levels, one
of which would be zero. This is approximately the case in conventional photolitho-
graphic exposure systems where diffraction effects can be ignored. Unfortunately,
in reality it is not possible to completely eliminate all noise in the image formed by

a CGH mask. Simplifications of the generally complex field carried out to enable
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straightforward mask production lead to noise, but even if these simplifications can
be removed, a noisy image still results due to the finite size of the mask and its
limited resolution. To produce clean tracks then, whose continuity and separation
can be guaranteed, the response of the photoresist must be used to eliminate the
noise in the image. The ideal response of the photoresist is a step function in the
depth/intensity profile. In this case, only those parts of the image whose intensity
exceeds that of the start of the step expose the photoresist, regardless of the ex-
posure and development times. A linear approximation is somewhat closer to the
truth, in which the exposure rate of the photoresist is proportional to the intensity at
any point. In reality, the response of a photoresist is characterised by its Dill Curve
[83]. Figure 10.4 shows the Dill Curve of the PEPR photoresist used at Sheffield

University during the CGH tests.

Depth of Photoresist Remaining (um)
o
T

0 S = o %, Figure 10.4: The Dill
Dose mJjom” curve for PEPR

Ideally, the response shown in figure 10.4 would be factored in to the simula-
tion software used to produce many of the results appearing in this thesis. If this
additional accuracy is included in the simulations, it becomes possible to quantita-
tively assess the robustness of mask designs and in particular the effect on the final

circuitry of interactions between imaged features.
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10.1.6 A General Solution to the 3DI Problem

The successful patterning of line segments has been demonstrated many times
throughout this thesis and it has been shown that such patterning is possible in
defiance of conventional limits due to aliasing. However, one possible enhancement
on this procedure is to produce a general solution to the mask design for a given
light intensity in the image plane using the concepts that have come to light in the
consideration of the superposition of single line segments. This may be possible in
the following way:

First, the diffraction pattern in the CGH plane from a 2-dimensional light intensity
distribution is generated according to equation 6.17. An example of such a pattern
generated from the track pattern of figure 10.5 is shown in figure 10.5a. Next, this
pattern is localised according to the limits imposed by equation 5.16 to produce fig-
ure 10.5b- note how similar this figure is to that of figure 7.24 where the CGH was
generated by adding up line segments. Because the original track pattern consists
solely of line segments, it is assumed that this limit applies and that the diffraction
pattern in the CGH can be treated in the same way as would be the case for su-
perimposed single line CGH patterns as in chapter 7- to illustrate this, figure 10.6
simulates the image formed by figure 10.5b. The difficult final step is to somehow
introduce depth variations into this pattern such that the replayed hologram images
onto a non-planar substrate. This could possibly be achieved by a warping of figure
10.5b in such a way that the fringe pattern at a given location is ‘tuned’ to the

depth of the substrate immediately below that point.

The possibility of generating a general solution to the diffraction pattern pro-
duced by a non-planar image intensity distribution is attractive because it means
that line intersections are dealt with automatically, without recourse to the ideas

presented in chapter 7 which perhaps represent the weakest area of the current
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10.2 Conclusions

The realisation of a lithographic method able to image features over grossly non-
planar substrates opens up a wealth of possibilities which have only just begun to
be explored. The 3DI project has shown that such a method is possible and that
it is possible without too great an adjustment in the processes used to generate

conventional photo-lithographic masks.

It has been shown that the classic CGH, based on the summation of point-source
wavefronts incident on a plane are limited in their application to lithography due to
the extremely high mask resolutions required to successfully image features close to
the mask and the difficulty of incorporating 3-dimensional information into the holo-
gram without resorting to the reduction of the image volume into slices. To alleviate
these problems, the use of CGH based on localised line segment diffraction patterns
has been introduced and it has been shown that such patterns can be imaged suc-
cessfully at very small mask-substrate separations. The basic line segment pattern
has been modified to allow greater control over the width and length of the imaged
feature and a new variety of CGH has been used successfully to image a 140um wide
line at a mask-substrate distance of 30cm. Further, it has been demonstrated that
the extension of these line segment images into the third dimension produces only
minor adjustments to the resulting CGH and that it is possible to add together line

segment diffraction patterns to produce complex images and circuitry.

Using localised masks, 100um-wide tracks have been etched into a substrate with
a depth of 4cm using a mask resolution of 40um and a mask-substrate separation
of 10cm, realising the aim cited in the introduction of a one-to-one correspondence

between mask and substrate resolution. A spiral mask has been developed to image
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onto a conical substrate and produce a conical spiral antenna, a useful real-world

device with a range of applications.

This thesis provides a large scope of further work in the area and the research
carried out here represents a solid basis for these future developments. The 3DI
project is ongoing and it is hoped that the ideas presented here will continue to

produce interesting results and be of practical value.

Andrew Maiden, September, 2005.
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Appendix A

A Summary of Results

A summary of the important equations derived throughout this thesis is provided
below together with a brief description of the result and its location within the
thesis.

2 oz

condition for spatially distinct object reconstruction, eq. 2.22

Az
o iz < Li+I;

condition for no aliasing in a point-orientated CGH, eq. 2.26

=0.97%

FWHM of a basic line segment, eq. 5.11

w > 0.90y

FWHM of a basic line segment sampled at the aliasing limit, eq. 5.17

265



A. A Summary of Results

8z?
oz>)\

theoretical minimum mask-substrate separation, eq. 5.18

o ~ 2vV2\z

extension in length of the line resulting from the basic single line CGH, eq.

5.2.1.1

dy
o w +41—%"z—”

extent of the rectangle CGH in the 7-direction, eq. 5.24

2 dz
. T < Ystep

sampling requirement for the rectangle CGH in the z-direction, eq. 5.34

« SNR = (ﬂ)z

2+7

SNR for the binary-amplitude line segment, eq. 6.7

o SNR— (5—1%+1>2

SNR for the binary-phase line segment, eq. 6.10

Az
w

the Rayleigh resolution limit, sec. 7.1

o H(z,y) = 5=

basic line segment equation, eq. 8.10

266



A. A Summary of Results

L Caw )
. U(Ean) = sinc (l) f__Ql e J,\ZE(-’E £ cosa) dx

L
oy =

the image formed by a line CGH, eq. 8.14

o H(z,y) =% sinc (,\%Iy)

width-controlled line-segment, eq. 8.18

H _Lej)\Ly2 4 ej%(ﬁcosa—z)zd
[ (.’L‘,y) = zZr f_% zz . £

length-controlled line-segment, eq. 8.19
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G. Williams et al, “Non-planar interconnect,” Circuit World, vol. 31, no. 2,pp.

10-14, 2005.

R. Mcwilliam et al, “Optical Inspection of Holograms for 3D Photolithography,”
submitted to OSA Frontiers in Optics, Tucson US, 2005.

G. Williams et al, “Photolithography on Grossly Non-Planar Substrates,” pre-
sented at The 7th IEEE CPMT International Conference on High Density Microsys-
tem Design and Packaging and Component Failure Analysis (HDP05), Shanghai
China, 2005.
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A. Purvis et al, “Holographic Lithography,” GB patent no. 0418815.7, 2004.
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Appendix C

Matlab Routines

The table below lists the major Matlab Routines used during the course of this

thesis.

function name

description

binar

CGH_RA

circles
conical_function
DBS
e_measures
find_snr
frescalc

GS
gui_control
Himage

imageH

carries out the error diffusion procedure to generate

a binary-valued CGH

aperture-based image reconstruction from a CGH
calculates the CGH of a circle

generates spiral data from inputted parameters
implements the DBS algorithm (no speed-up included)
calculates 3 error measures for an arbitrary CGH
finds the SNR of line-based images

calculates the fresnel integral required

for a (sloped) rectangle

implements the Gershberg-Saxton algorithm

software for the control of the CCD scanning equipment
point-based CGH calculation from a sampled object

point-based image reconstruction from a CGH
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C. Matlab Routines

function name :

description

lines

logo

rec_eff

rectangles

Tings

slopebysum

generates a basic (sloped) line diffraction pattern

a version of the classic ‘logo’ program with line
diffraction patterns replacing the turtle!
single-dimensional aperture-based

reconstruction from a CGH

calculates the CGH for the imaging of

a 2-dimensional rectangle

generates a spiral CGH from the data resulting from
‘conical _function’

simulates the image formed by a CGH

on a sloped surface
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