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Abstract

Paul Günther (1966), proved the following result: Given a continuous function f

on a compact surface M of constant curvature −1 and its periodic lift f̃ to the uni-

versal covering, the hyperbolic plane, then the averages of the lift f̃ over increasing

spheres converge to the average of the function f over the surface M .

Heinz Huber (1956) considered the following problem on the hyperbolic plane

H: Consider a strictly hyperbolic subgroup of automorphisms on H with compact

quotient, and choose a conjugacy class in this group. Count the number of vertices

inside an increasing ball, which are images of a fixed point x ∈ H under automor-

phisms in the chosen conjugacy class, and describe the asymptotic behaviour of this

number as the size of the ball goes to infinity.

In this thesis, we use a well-known analogy between the hyperbolic plane and the

regular tree to solve the above problems, and some related ones, on a tree. We deal

mainly with regular trees, however some results incorporate more general graphs.
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Introduction

One of the things that makes mathematics such a beautiful and interesting subject

is the fact that all its different areas seem to be linked in some way. In this thesis

I will exploit one of these links to produce new results in the field of graphs from

older results on Riemann surfaces.

This thesis contains results I have proved while studying for my PhD. Chapters

2 and 3 contain results on radial averages of functions on regular and semi-regular

graphs, whereas chapter 6 deals with a similar problem on non-regular graphs, al-

though the result is far less detailed here. I summarised the main results in an

article [21]. In chapter 4 we will discuss a lattice point problem on the regular tree,

where we count the vertices linked by some conjugacy class in a group of automor-

phisms of the tree (see also [22]).

Both the radial average and the lattice point problem were motivated by results

on Riemann surfaces, in particular, the radial average result for vertices on a regular

graph is a discrete analogue of a result by Paul Günther [28], whereas the lattice

point problem was inspired by an article by Heinz Huber [34]. The generalisations of

theorem 2.4 in chapters 2 and 3 are natural extensions of the discrete radial average

result.

Before stating these results, however, we will cover some basic graph theory,

definitions and notation in chapter 1. After discussing my own results in chapters

2, 3 and 4, we will deal with the Selberg and Ahumada trace formulas in chapter 5.

In chapter 6 we then discuss a generalisation of part of the radial average results in

chapters 2 and 3, and suggest where this research may lead in the future.

1



Chapter 1

Preliminary Material

1.1 Basic Definitions

Let us start with some basic definitions and notation. See also for example [8], [19],

[6] or any basic book on graph theory.

Definition 1.1 A graph G is made up of a non-empty set V = V (G) of vertices,

and a set E = E(G) of unordered pairs of elements in V called edges. We write

e = {v, w} for the edge e defined by the vertices v and w, and we say this edge

connects the two vertices, and the vertices are adjacent. The vertices v and w are

said to be incident with the edge e. Two edges are said to be adjacent if they are

both incident to a vertex v.

When we draw a graph, we represent vertices by points and edges by lines, in such

a way that the edge connecting two vertices is represented by a line joining the

corresponding points. Note that both the vertex and edge set may be infinitely

large in the definition above. If both sets have finite size we say that the graph is

finite. An edge can connect a vertex to itself, in which case it is called a loop, and

there may be multiple edges connecting the same two vertices. If both loops and

multiple edges are not allowed, then the graph is called simple.

Definition 1.2 The degree d(v) of a vertex v ∈ V is defined as the number of edges

incident with v.

2
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A loop contributes twice to the degree of the vertex, as this edge is incident with

the vertex at both its endpoints. A graph in which every vertex has the same degree

is called a regular graph. If all vertices have finite degree, then the graph is called

locally finite. Note that a graph can be infinite, but locally finite. A nice example

of a regular finite graph is the Petersen graph in figure 1.1. Note that it is regular

of degree 3. Vertex u is adjacent to v but not to w, and edges a and e are adjacent

as they are both incident to vertex v.

u

v

w

ea

Figure 1.1: The Petersen graph

Any edge e = {v, w} can be given a direction, say, from v to w, to give a directed

edge denoted
−−−−→{v, w}. In this case, v is the origin of e and w the terminus. In the case

of a loop, the notation
−−−→{v, v} is not sufficient, and we have to specify the direction

separately.

We define a path on a graph as a sequence of adjacent edges, each usually with

a given direction, and we write down a path in terms of the vertices defining each

edge. In figure 1.1, for example, if we let −→a =
−−−→{u, v} and −→e =

−−−−→{v, w}, then we write

the path consisting of −→a and −→e as
−−−−−→{u, v, w}. A path has backtracking if it has two

consecutive edges which are the same except that they have opposite directions. A

path is closed if it ends at the same vertex as it started. A non-empty closed path

in which no vertex or edge is visited more than once is a cycle.

Definition 1.3 A graph G is connected if we can find a path in G from any vertex

v ∈ V to any other vertex w ∈ V .
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Even if a graph is not connected, we can still find non-empty subsets Ci of V where

we can find a path from any vertex in Ci to every other. If we choose these Ci to

be maximal, then the sets Ci are called the connected components of G, and each

vertex of G belongs to exactly one connected component.

Definition 1.4 A connected graph G which contains no cycles is called a tree. A

graph in which every connected component is a tree is called a forest.

u

v

Figure 1.2: A finite tree with the path from u to v in bold.

Note that a regular tree has to be infinite, and that the regular tree of a given

degree is unique.

Besides determining whether or not a graph is connected, we have another use

for paths on graphs. We can use them to define a distance function on the set of

vertices of G.

Definition 1.5 The distance d(v, w) between two vertices v, w ∈ V is defined as

the number of edges in a shortest path connecting them.

We will use the combinatorial distance, where each edge is defined to have length

one. It is possible to define other distance functions by assigning a length to each

edge, but we will not consider this here. See also figure 1.2, where the length of the

shortest path connecting u and v in the tree is 4, so d(u, v) = 4. Note that in the
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Petersen graph (see figure 1.1) the distance between any pair of non-adjacent edges

is 2.

We now give a definition of a special type of graph, which we will need in the

next chapter.

Definition 1.6 A graph G is called bipartite if we can assign one of two colours

to each vertex in such a way that no edge connects two vertices of the same colour.

Proposition 1.7 A graph G is bipartite iff every non-backtracking closed path in

G has even length.

Proof Clearly a graph is bipartite iff each of its connected components is bipartite,

so we assume G is connected. Let γ be a non-backtracking closed path on G defined

by
−−−−−−−−−−−−→{v0, v1, . . . , vn, v0}. Suppose v0 is coloured black, then v1 must be coloured white

as these two vertices are joined by an edge. Continuing in this manner, we find the

vertices along the path must have alternating colours. Looking at the end of the

path, we find that as v0 is black, vn must be white, hence n must be odd and the

path must have even length.

Conversely, assume every non-backtracking closed path in G has even length.

Let T be a spanning tree of G, that is, a sub-graph of G which is a tree and has

the same vertex set as G. This tree, and in fact any tree, is clearly bipartite, as we

can easily colour the vertices alternating black and white without having an edge

connecting two vertices of the same colour. We are left to check that the edges

in G − T do not connect two vertices of the same colour. Suppose e = {x, y} is

such an edge, and suppose it does connect two vertices of the same colour, then the

non-backtracking closed path made up of the path from x to y in the tree and the

edge e will have odd length, which contradicts our assumption. Hence there can be

no such edge in G, and thus G is bipartite. �

An example of a bipartite graph is given in figure 1.3, where we have coloured

the vertices black and white as by the definition. It is the complete bipartite graph

K3,3 with a set of white vertices of size 3 and a set of black vertices of size 3, where

each white vertex is adjacent to all black vertices and vice versa.
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Figure 1.3: The complete bipartite graph K3,3.

There are a number of matrices that can be associated to a graph, however for

the time being we shall only need one of them, namely the adjacency matrix, which

we first use in section 1.3.

Definition 1.8 The adjacency matrix AG of a graph G with n vertices is an n× n

matrix with rows and columns labelled by the vertices of G. When i 6= j, the i, jth

entry ai,j is the number of edges connecting vertex i and vertex j. The entry ai,i on

the diagonal is twice the number of loops at vertex i.

1

2 3

4 5

Figure 1.4: A finite graph G.
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As an example, we give the adjacency matrix of the graph G given in figure 1.4:

AG =




2 1 1 0 0

1 0 1 1 0

1 1 0 3 1

0 1 3 0 2

0 0 1 2 0




Note that the matrix is symmetric, and that the sum of the entries on row (or

column) i equals the degree of vertex i. Incidentally, this is why loops are counted

twice.

1.2 Covers

Let G be a finite graph with vertex set V and edge set E. We define an n-fold

covering space G′ of G in the topological sense as a covering of the graph viewed

as a cell complex. Geometrically this means the following. Let V ′ be the vertex

set of G′, which consists of n copies of each vertex in V . Define a surjective map

π : G′ → G which takes each v′ ∈ V ′ back to the original vertex in G that it is a

copy of. Let E ′ be the edge set of G′, which consists of n copies of each edge in E

with the following conditions.

1. Let e′ = {v′, w′} ∈ E ′, with π(v′) = v and π(w′) = w. Then {v, w} must be

an edge in E.

2. The degree of each vertex must be preserved, that is, if π(v′) = v then d(v′) =

d(v) for all v′ ∈ V ′.

Note that generally there are many possible covering spaces, as for most e′ = {v′, w′}
we have a choice of which set {v′, w′} of pre-images of the vertices v and w we use.

The map π : G′ → G is called the covering map defining the covering space G′ of

G. However, rather than referring to a covering map defining a covering space, we

will refer to the two simultaneously as a covering of G.

We can generalise the concept of covering spaces to an infinite covering of a

graph called the universal cover. There are (at least) two ways to consider this.
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In topology, the universal cover is defined as a simply connected cover. In graph

theoretical terms, this means the cover is connected and has no cycles, hence this is

a tree. The universal cover is said to cover all connected covers of the graph G.

Unfortunately this is difficult to visualise, but there is a second, more obvious

way to construct the universal cover G̃ of a graph G. Let the vertex set of G̃ be

the set of all non-backtracking paths in G starting at a fixed base point v0 ∈ V .

Two vertices in G̃ are adjacent if the paths differ by one edge at the end, in such

a way that one path can be obtained from the other by removing the last edge of

the path (see e.g. [3]). All trees obtained in this way by choosing a different base

point are the same up to isomorphism. The universal cover of any finite connected

graph is a locally finite tree and, in particular, the universal cover of any regular

finite connected graph of degree d is the regular tree of the same degree.

For the universal cover, we have the covering map π : G̃ → G in the same way

as for the n-fold covering. We can use this map and its inverse to compare the

graph and its universal cover. For example, by the definition of π(v), if we take the

pre-image π−1(v) of a vertex v ∈ G we obtain the set of all vertices in G̃ that are

copies of v in the sense of the n-fold covering. This is called the fibre of v, and will

be useful later on.

There is another way of comparing a regular tree and a finite regular graph of the

same degree, which we will first use in chapter 4. Let X be a regular tree of degree

q + 1 ≥ 3. Automorphisms of the tree are maps A : X → X that preserve edge

relations (see also [24]). There are three types of non-trivial automorphisms of a

regular tree, namely rotations, inversions and translations. Rotations fix one vertex

and rotate all others around it, inversions fix one edge but reverse its orientation,

and translations fix no vertices and no edges. We can take a subset Γ of the set of

translations on X such that Γ is a group, and define the quotient X/Γ, which will

be a graph. If we then further restrict our choice of Γ, we can find a group Γ of

translations on X so that the quotient X/Γ is a finite, simple graph G. This graph

will also be regular of degree q+1, and clearly the universal cover of G as described

above is the tree X.
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Let ṽ0 ∈ π−1(v) be some vertex in the fibre of v. Note that

π−1(v) = {ṽ ∈ V (X) : π(ṽ) = v} = Γṽ0

that is, the fibre of v is the orbit of ṽ0 by Γ. This holds for any choice of ṽ0 ∈ π−1(v).

Look for example at the graph G in figure 1.5 and its universal cover in figure 1.6,

1 2

34

5 6

Figure 1.5: A regular graph G with labelled vertices

and choose v = 1 and ṽ0 to be the vertex at the centre of the picture. Then the set

of all vertices labelled 1̃ is mapped to 1 by the projection map π, so this set is the

fibre of 1, and it is also the orbit of ṽ0 by Γ.

v0

v1

g

1̃

1̃

1̃

1̃

1̃

1̃

1̃

2̃
2̃

2̃

2̃

2̃2̃

2̃

2̃

2̃

2̃
2̃

3̃

3̃

3̃

3̃

3̃

3̃

3̃

4̃
4̃

4̃

4̃

4̃

4̃

4̃

5̃

5̃

5̃

5̃

5̃

5̃

5̃

6̃

6̃

6̃

6̃

6̃

6̃

6̃

Figure 1.6: Part of the universal cover of G, with labelled vertices.

Recall we defined translations on X to be automorphisms that fix no vertices

and no edges. Define a geodesic on X to be a bi-infinite, non-backtracking path. By
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bi-infinite we mean infinite in both directions. We find (see for example [24]) that

translations fix a geodesic g in X, in the sense that the vertices of g are mapped

by the automorphism to other vertices on g. Now let the geodesic g be defined by

a translation γ ∈ Γ, where Γ is chosen so that G = X/Γ is a simple finite graph,

and let d(v0, γ(v0)) = m for some v0 ∈ g. As γ is an automorphism, this distance

m will be the same for any choice of v0 ∈ g. Then the path π(g) obtained on G by

applying the projection map will be a finite closed path of length m. This length m

will be called the displacement length (see also chapter 4, definition 4.5).

The fundamental group π1(G, v) of a finite graph G is defined in terms of closed

paths starting and ending at a given vertex v. Given a fixed vertex v ∈ G and a

fixed vertex ṽ0 in the fibre of v, there is a one-to-one correspondence between closed

paths starting (and hence terminating) at v and geodesics through ṽ0. It is obtained

by applying π−1 to the closed path, taking π−1(v) = ṽ0, and pre-images of the other

vertices of g so that we obtain a non-backtracking path in X. Now extend this

path infinitely in both directions in the natural way to obtain a geodesic. Letting

the length of the closed path equal the displacement length of the translation, this

gives an isomorphism between π1(G, v) and Γ. For example, the closed path p1 in G

through vertices 1, 2, 6, 5, 1 corresponds to a translation γ1 along the infinite geodesic

g in figure 1.6 which takes v0 to v1, so the element in π1(G, v) corresponding to this

closed loop corresponds to γ1 ∈ Γ. See also section 4.2 for more definitions regarding

translations on X.

1.3 Functions and Operators on Graphs

1.3.1 Finite Graphs

It is easy to define a real or complex valued function on the vertices of a finite

graph G by assigning a value to each vertex. Later (in chapter 3) we will also define

functions on the edges of G, but for now we concentrate on functions defined on the

vertices. A nice way to describe these functions is by listing the values as entries in

a vector. This will be useful when we apply linear operators to the given functions.

Operators are maps which we can apply to one or more functions to produce other
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functions, and linear operators must also satisfy two conditions, namely additivity

and homogeneity of degree 1. For a general linear operator T acting on functions

f(x) and g(x), this means that

T (f(x) + g(x)) = T (f(x)) + T (g(x)), and

T (af(x)) = aT (f(x))

for any scalar a. Now as a linear operator on a finite graph is finite dimensional, we

can represent it by a matrix. To apply the operator to a function, all we have to do

is multiply the vector representing the relevant function by this matrix.

The operator we will use is called the Laplace operator or Laplacian, which is

defined by the following equation

LGf(v) =
1

d(v)

∑

v∼w

f(w) (1.1)

where by w ∼ v we mean w is adjacent to v, and we sum over all vertices w adjacent

to v. In fact, this is one of several different definitions of the Laplace operator, which

we will discuss in section 1.5. For a (q + 1)-regular finite graph, we can represent

our Laplacian as a matrix in terms of the adjacency matrix AG of G, namely

LG =
1

q + 1
AG. (1.2)

Associated to the Laplacian on any graph G is a special type of function which

will be very important to us in later chapters.

Definition 1.9 An eigenfunction of the Laplacian LG is a function ϕ such that

LGϕ = λϕ.

The scalar λ is called the eigenvalue associated to ϕ.

We will discuss these functions in some more detail in section 1.4, but for the time

being note that when we write LG for a finite graph G in terms of a matrix, we can

find its eigenvectors and eigenvalues in the usual way. Writing the eigenfunctions of

G in vector form then gives us exactly the eigenvectors associated to the matrix of

LG.
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1.3.2 Infinite Graphs

We can also define functions and operators on infinite graphs, although we are now

no longer able to represent them by finite vectors and matrices. We can still apply

the Laplacian to functions on infinite graphs, for example the universal cover G̃ of

G, via equation (1.1). We can also use the covering map π as defined in section 1.2

to define a function f̃ on G̃ from a function f on the finite graph G as follows:

f̃ = f ◦ π (1.3)

This is called the lift of f from G to G̃. Take for example the eigenfunctions on G

as defined in definition 1.9.

Lemma 1.10 Lifting an eigenfunction ϕ(x) on G to G̃ gives an eigenfunction ϕ̃(x)

of the Laplacian L eG. The eigenfunction ϕ̃(x) has the same eigenvalue λ as ϕ(x).

Proof Due to the construction of the lift, the set of vertices adjacent to any

v ∈ V (G) is in one-to-one correspondence with the set of vertices adjacent to any

ṽ ∈ V (G̃) such that π(ṽ) = v, so the sum in the Laplacian is taken over the same

function values in each case:

LGϕ(v) =
1

d(v)

∑

v∼w

ϕ(w) =
1

d(ṽ)

∑

ṽ∼w

ϕ̃(w) = L eGϕ̃(ṽ) (1.4)

This equation also shows that the eigenvalue is preserved, that is, if we denote the

eigenvalue of L eG by λ̃, then λ̃ = λ. �

We finish this section with one final remark, which will be important in chapter

4. Let f be a function on the finite graph G defined as the quotient G = X/Γ for

a regular tree X and a group of translations Γ on X. Lift the function to X = G̃

by equation (1.3). Then, by its construction, the function f̃ is Γ-periodic (or Γ-

invariant) on X, that is, the function takes the same value on all vertices in the

orbit Γx of any vertex x ∈ X.

1.4 The Graph Spectrum

A useful tool often used to describe the characteristics of a graph is that of the graph

spectrum. The spectrum of a graph is defined to be the spectrum of its adjacency
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matrix, that is, the set of eigenvalues associated to this matrix. Now recall that we

defined the Laplacian operator LG in such a way that, for a regular graph, it can

be represented by a constant ( 1
q+1

) multiple of the adjacency matrix. This means

that for each property of the spectrum of the graph, we can easily find an equivalent

property of the spectrum of the Laplacian. We state some of these properties here

for future reference.

The adjacency matrix is, by construction, real and symmetric, hence the Lapla-

cian is a real and symmetric operator. We know from elementary matrix theory

that a real symmetric matrix has only real eigenvalues.

Proposition 1.11 Let G be a regular graph. Then all the eigenvalues λ of the

Laplacian on G satisfy |λ| ≤ 1, and in particular we know λ0 = 1 is an eigenvalue.

Proof We follow the proof as given in [18, proposition 1.1.2] for the eigenvalues

of the adjacency operator.

Let ϕ0 ≡ 1 be the constant function on G. Then clearly ϕ0 is an eigenfunction

of the Laplacian on G with eigenvalue λ0 = 1. Now let ϕ be any eigenfunction of

LG with eigenvalue λ, and suppose the vertex v satisfies |ϕ(v)| = maxw∈V |ϕ(w)|.
Assume that ϕ(v) > 0 (if it is not then work with −ϕ to obtain this condition).

Then

|λ|ϕ(v) = |λϕ(v)| = |LGϕ(v)| =

∣∣∣∣
1

q + 1

∑

v∼w

ϕ(w)

∣∣∣∣ ≤
1

q + 1
(q + 1)ϕ(v) = ϕ(v).

Dividing the resulting equation |λ|ϕ(v) ≤ ϕ(v) by ϕ(v) we obtain |λ| ≤ 1 as re-

quired. �

Proposition 1.12 Let G be a connected regular graph. Then the eigenvalue λ0 = 1

is a simple eigenvalue, i.e. an eigenvalue with multiplicity one.

Proof Again, we use ideas from [18].

Suppose G is connected, and let ϕ be an eigenfunction associated to λ0 = 1.

Let v ∈ V satisfy |ϕ(v)| = maxw∈V |ϕ(w)|, and suppose ϕ(v) > 0 as in the proof of

proposition 1.11. Now

ϕ(v) = LGϕ(v) =
1

q + 1

∑

v∼w

ϕ(w) ≤ 1

q + 1
(q + 1)ϕ(v) = ϕ(v).
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For this to hold, we need ϕ(w) = ϕ(v) for all w adjacent to v. Applying the same

principle to all such w and continuing in the same manner, we find that ϕ(w) = ϕ(v)

for all w ∈ V . As G is connected, this implies that the constant function obtained

is the only possible eigenfunction associated to λ0 = 1 up to multiplication by a

constant, so λ0 is a simple eigenvalue. �

Proposition 1.13 The Laplacian on a connected regular graph has eigenvalue −1

iff the graph is bipartite. In fact, the graph is bipartite iff the spectrum of the Lapla-

cian is symmetric around 0.

Proof Again we follow a proof in [18, proposition 1.1.4].

Suppose G is bipartite, with associated bipartition of the vertex set V into two

disjoint sets A, B so that V = A∪B and every edge in G connects one vertex in A

to one in B. Suppose ϕ is an eigenfunction on G with eigenvalue λ. Define a new

function

ψ(x) =





ϕ(x) if x ∈ A

−ϕ(x) if x ∈ B.

Then it is easy to see that ψ(x) is also an eigenfunction of G, with associated

eigenvalue −λ. Hence the spectrum of LG is symmetrical, and by proposition 1.11

we find that the Laplacian has an eigenvalue equal to −1.

Now suppose the Laplacian has an eigenvalue equal to −1 with associated eigen-

function ϕ. Let v ∈ V satisfying |ϕ(v)| = maxw∈V |ϕ(w)|, and as in the proof of

proposition 1.11 we assume that ϕ(v) > 0. We find that

ϕ(v) = −1 · LGϕ(v) =
1

q + 1

∑

v∼w

(−ϕ(w)).

We know that |ϕ(w)| ≤ ϕ(v) for all w ∈ V , so for the above equation to hold we

must have ϕ(w) = −ϕ(v) for all w in the sum. Similarly, for a vertex u adjacent

to any such w we find that ϕ(u) = −ϕ(w) = ϕ(v). We can use this to define two

sets in V . Let A be the set of vertices w for which ϕ(w) = ϕ(v) > 0, and let B

be the set of vertices w for which ϕ(w) = −ϕ(v) < 0. By the way we constructed

these sets, and as G is connected, V = A∪B and A∩B = ∅. Every edge in G now

connects a vertex in A to a vertex in B, hence G is bipartite. �
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Note that for any finite regular graph G, AG is a real symmetric matrix, hence

so is the matrix for LG. This means the Laplacian is a self-adjoint operator, and

its eigenfunctions ϕi form a basis for all functions on V . Now take the lift to G̃

of this set of |V (G)| = N eigenfunctions, and call the resulting functions ϕ̃i, where

i = 0, . . . , N − 1. Recall that the lift of a function from G = G̃/Γ to G̃ is Γ-periodic

on G̃. Clearly the set of functions {ϕ̃i}N−1
i=0 forms a basis for all such Γ-periodic

functions on G̃.

Definition 1.14 Let G be a finite connected regular graph, and let

1 = λ0 > λ1 ≥ . . . ≥ λN−1

be the eigenvalues of LG in non-increasing order. Then the spectral gap is defined

to be

min{|1 − λ1|, | − 1 − λN−1|}.

We will see in later chapters that some convergence properties are better for graphs

with a larger spectral gap. Graphs with a large spectral gap at least equal to a

certain value are defined as follows.

Definition 1.15 A finite (q+ 1)-regular connected graph G is called Ramanujan if

all eigenvalues λ other than 1 and −1 satisfy

|λ| ≤ 2
√
q

q + 1
,

so a Ramanujan graph has a spectral gap of at least

1 − 2
√
q

q + 1
=

(
√
q − 1)2

q + 1
.

1.5 Analogy Between Regular Trees and the Hy-

perbolic Plane

The starting point of this thesis is the remarkable analogy between the hyperbolic

disc and the regular tree. Many authors have already taken advantage of this anal-

ogy, see for example Cartier [13], Figà-Talamanca and Nebbia [24], or Sunada [55],

where we find the illustration in figure 1.7.
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Figure 1.7: Analogy between the tree and the hyperbolic disc, from [55, p 73].

The analogy arises when we carry out harmonic analysis on either space. For

example, when we consider Fuchsian groups (discrete subgroups of the group of

isometries, see for example [37]) on the hyperbolic disc, we can compare these to

discrete subgroups of isometries on the tree. In particular, we find similar types of

isometries on both the hyperbolic plane H and the tree X. A hyperbolic isometry on

H, for example, fixes two points on the boundary, and fixes the geodesic connecting

these two points as a set. The points on the geodesic are translated along the

geodesic by a fixed hyperbolic distance, which is called the displacement length.

Similarly, we have a type of isometry on X which fixes a geodesic γ as a set but

translates the vertices on γ along it by a fixed distance, again called the displacement

length. We defined these isometries in section 1.2 to be translations.

Now take a strictly hyperbolic discrete subgroup Γ of isometries on H, and note

that there is a fundamental domain F associated to Γ on H. The fundamental domain

of a group Γ acting on a topological space is a domain which contains exactly one

point from the orbit of the group action of each point in the space, except perhaps
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on the boundary of the domain, where we may have more than one point from an

orbit. So F contains exactly one representative of the orbit Γx of each point x ∈ H

(with exception of the boundary). Exactly the same holds for a group of translations

on T . In both settings we can take the quotient of the space by the group to obtain,

in certain cases, a finite surface or graph, as pictured in figure 1.7. The arrow in the

pictures denotes the projection map π.

The Laplace operator as defined on hyperbolic surfaces has several analogues on

the tree, one of which we defined in section 1.3.1. Two other, more common ways

of defining the Laplacian on a graph are

• the combinatorial Laplacian Lcomb f(x) =
∑

x∼y

(
f(x) − f(y)

)

• the canonical Laplacian Lcan f(x) = 1
d(x)

∑
x∼y

(
f(x) − f(y)

)
.

Note however that for a regular graph the two operators defined above are just

constant multiples of each other, and in the case of a finite graph both can be

represented by matrices. Letting AG be the adjacency matrix of the graph G, and

DG the matrix with the degree of vertex i on the ith diagonal entry and zeros

everywhere else, the combinatorial Laplacian is represented by DG − AG and the

canonical Laplacian by I −D−1
G AG, where I is the identity matrix. Our Laplacian

defined in equation (1.1) can be obtained from the canonical Laplacian via

LGf(x) = f(x) −Lcanf(x)

and is hence represented in matrix form for finite graphs by D−1
G AG, which for a

(q + 1)-regular graph is just 1
q+1

AG, as noted in equation (1.2).

Many other objects can be defined both on the hyperbolic plane and the tree, or

on a surface and a finite graph, for example horocycles (see section 2.6.2), the ideal

boundary (see for example [24] for the case of trees), the Radon transform (see for

example [14] for the tree case), and as we will see in chapter 5 there is a discrete

analogue of the Selberg Trace Formula as defined by Selberg [50]. Hence it is only

natural to look for more results for graphs and trees that are analogues of results

on surfaces and hyperbolic space.



Chapter 2

Radial Averages for Vertices

2.1 Motivation

The motivation for the research problem described in this chapter was work by Paul

Günther on spherical averages in hyperbolic space. Using the well-known analogy

between hyperbolic space and regular graphs described in section 1.5, we want to

look at the equivalent problem in the discrete case. The results in the continuous

case can be found in [28], and we shall outline the basic ideas from his work in this

section.

Günther works in n dimensions, but we just state the two-dimensional case as

it is the one most like our case. Consider the hyperbolic plane modelled by the

Poincaré disc D, and consider a polygon F in D with 4g sides. The interior angles

and side-lengths of F have to satisfy certain conditions, which we state after the

following observation. Identifying the sides of F in an appropriate way results in a

surface M of genus g with constant curvature K = −1. Hence the lengths of the

sides which are identified must be equal, and the interior angles at the corner points

which are identified must add up to 2π.

Let Γ be the group generated by the side-identifications on D used to produce

the surface from the polygon. This group Γ is a subgroup of PSU(1, 1), and images

γF of F under γ ∈ Γ form a tessellation of D. Let π : D → M be the projection

map, which is one-to-one from our polygon onto the surface, except for points on

the boundary of F . The pre-image of a point in M under this map consists of one

18
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point in each γF , again with the exception of points on the boundary of F . We find

that M = D/Γ, and note that D is the universal covering of the surface M in the

topological sense.

Now let f : M → R be a continuous function on the surface, and let f̃ be its lift

to the Poincaré disc, that is f̃ = f ◦π : D → R. Note that f̃ is Γ-periodic on D, i.e. it

is the same on each copy of F . Choose a point p0 ∈ F . Take a (two-dimensional)

sphere Sr(p0) in D centred at p0, and of hyperbolic radius r large enough so that the

sphere incorporates several distinct copies γF of F . We then define the spherical

mean by the following formula:

Mr(f) =
1

ℓ(Sr(p0))

∫

Sr(p0)

f̃dσ

Here ℓ(Sr(p0)) is the length of the circle, and σ is a length element along it (the

arc-length).

Günther studied the behaviour of the spherical mean as r → ∞. His theorem

states that as r → ∞ we get

Mr(f) −→ 1

vol(M)

∫

M

fdvol.

The problem outlined above is referred to as the equidistribution of increasing

spheres. In this chapter, we prove similar results for functions on the vertices of

regular graphs with, in addition, a convergence rate. However, rather than just

looking at spheres, we also consider averages over more general sets, namely spherical

arcs, which in turn imply results for spheres, tubes, horocycles, balls and sectors.

2.2 Result for Regular Graphs

Let G be a finite regular graph as defined in section 1.1, with degree d(v) ≥ 3,

universal cover G̃ (which is a regular tree of the same degree), and projection map

π : G̃→ G as defined in section 1.2. Take any function f : V → R and lift it to the

universal cover via f̃ = f ◦ π. We define sets of vertices on the tree G̃ called spheres

and arcs as follows.
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Definition 2.1 A sphere of radius n on the tree G̃ centred at the vertex v0 is defined

as

Sn(v0) = {v ∈ V (X) : d(v, v0) = n}. (2.1)

Note that d(v, w) ∈ N for all v, w ∈ X, so this definition only makes sense for integer

radius.

Definition 2.2 Let a =
−−−−→{w′, w} be the directed edge in the tree G̃. We define the

(spherical) arc of radius n+ 1 on G̃ based at the vertex w′ in the direction of w as

An+1(a) = Sn+1(w
′) ∩ Sn(w) (2.2)

for n + 1 ≥ 1. We set A0(a) = {w′}.

w

w′

v0

S1(v0)

S2(v0)

A2(a)

A3(a)

A4(a)

Figure 2.1: Spheres and arcs on the regular tree of degree 4.

Note that the arc is a section of the sphere, and we can make up a sphere of

radius n centred at w′ by taking for example the union of the set of arcs

{An(ai) : i = 1, . . . , d(w′)}

for ai =
−−−−−→{w′, wi} where {wi} runs through all vertices adjacent to w′. We can now

define our more general discrete version of Günther’s spherical mean.

Definition 2.3 The arc average of the function f : V → R is defined as

Mn,a(f) =
1

|An(a)|
∑

x∈An(a)

f̃(x).
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The main purpose of this chapter is to study the asymptotic behaviour of this

average as n → ∞ for regular graphs. We then use the result for arcs to prove

similar results on other level sets in G̃. To this end, we use the analogy between

hyperbolic surfaces and regular graphs described in section 1.5. The problem studied

by Günther [28] for spheres in the hyperbolic plane as described in section 2.1 is

analogous to the case of spheres on the universal cover of the regular graph. We

shall discuss spheres later in section 2.6, as we derive it from a more general result

for spherical arcs, which we now state.

Theorem 2.4 Let G be a finite, non-bipartite, regular connected graph of degree

d(v) = q + 1 ≥ 3 and f : V → R a function on its vertices. Then we have for any

directed edge a in G

∣∣∣Mn,a(f) − 1

|V |
∑

v∈V

f(v)
∣∣∣ ≤ CG||f ||2βn

max
.

Here CG is a constant depending on G but independent of a, and βmax ∈ [q−1/2, 1).

Obviously, this implies that

lim
n→∞

Mn,a(f) =
1

|V |
∑

v∈V

f(v) (2.3)

for any directed edge a. We call the right hand side of equation (2.3) the graph

average of the function. The norm ||f ||2 comes from the inner product 〈f, g〉 =
∑

v∈V f(v)g(v), so ||f ||2 =
√

〈f, f〉. We exclude bipartite graphs in this theorem

because spheres of even and odd radii have to be treated separately in this case -

see section 2.5 for details.

We shall see in the proof that the convergence rate βmax depends on the Fourier

coefficients of f , and the spectral gap. Recall from section 1.4 that Ramanujan

graphs have a large spectral gap (see e.g. [18] or [40]). These graphs have either

βmax = q−1/2 or βmax = q−1/2+ε for arbitrarily small ε > 0, giving the best conver-

gence rate for a general function. For more details see the proof in section 2.4.2.
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2.3 Background

Before we turn to the proof of the above theorem, let us briefly explain how radial

averages are related to non-backtracking random walks (NBRW), a subject of active

current research.

2.3.1 Random Walks

A random walk is a path (sometimes also called a walk) on a graph where each edge

is independent of all previous edges, or more precisely, if the ith edge is ei =
−−−−→{v, w},

then the (i + 1)th edge can be any edge originating from w with equal probability.

Random walks are a special case of Markov chains, which are random processes

where every next state depends only on the present and not on other past states,

i.e. they satisfy the Markov property. A non-backtracking random walk on a graph

is almost a random walk, except that the walk is not allowed to backtrack, so if the

ith edge is ei =
−−−−→{v, w}, then the (i + 1)th edge may with equal probability be any

edge incident with w except
−−−−→{w, v}.

We can use our spherical average result (corollary 2.7 in section 2.6) to find out

with what probability a NBRW on G starting at v0 will end up at a vertex v ∈ V

after r steps. To do this, we use the characteristic function δv on V , defined by

δv(w) =





1 if w = v

0 if w 6= v.

We lift δv to G̃, and take the average of this lifted function δ̃v over the sphere of radius

r to get the required probability. The probabilities we obtain here coincide with

those found by other authors, for example Alon et al. [2] or Ortner and Woess [45],

and the convergence rate we obtain coincides with the mixing rate obtained in [2],

which measures how fast the probability distribution of NBRW converges to the

stationary distribution, our graph average. Our spherical average result, however,

is a corollary of the main theorem of this chapter, which concerns arc averages. The

random walk equivalent of our main result would be a NBRW with prescribed first

step, which to the best of our knowledge has not been studied.
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Another difference between our result and that of NBRW is that we allow any real

function on G rather than just δv. We will show in section 2.4.2 that we can improve

the general convergence rate if we know the Fourier coefficients of the function we

are dealing with. Finally, we will also discuss results for tubes, horocycles, balls and

sectors in section 2.6. None of these results have an obvious NBRW equivalent.

2.3.2 Cogrowth

NBRW have been studied in the context of cogrowth on graphs, hence we briefly

discuss this. Cogrowth was first introduced in the context of groups and their Cayley

graphs, and was studied in the early 1980s by, amongst others, Grigorchuk [27],

Cohen [16] and Woess [61]. In the 1990s the application of cogrowth was extended

to arbitrary graphs, see for example Northshield [44] or Bartholdi [4].

We define the growth of the tree G̃ by

gr(G̃) = lim sup
r→∞

∣∣Sr(ṽ)
∣∣1/r

,

and the cogrowth of the graph G by

cogr(G) = lim sup
r→∞

∣∣Sr(ṽ) ∩ π−1(v)
∣∣1/r

,

both of which are independent of ṽ ∈ Ṽ , where π(ṽ) = v ∈ V . Then the cogrowth

constant is η = ln cogr(G)

ln gr( eG)
.

More recently, Ortner and Woess [45] generalised the definition of cogrowth and

used it to study NBRW. They set

cogν
r(v, w) = νṽ,r(π

−1(v))

where ν = (νṽ,r)ṽ∈eV ,r≥0 is a sequence of probability measures concentrated on the

sphere Sr(ṽ), subject to some regularity conditions. Choosing particular measures

one obtains cogrowth or NBRW probabilities, and both notions coincide in the case

of a regular graph.
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2.4 Proof of the Theorem

We now discuss the proof of theorem 2.4, which concerns functions on the vertices

of a finite connected non-bipartite regular graph G of degree d(v) = q + 1 ≥ 3.

Let f : V → R be such a function, and recall that in section 1.3.1 we defined the

Laplacian of f at v ∈ V as

LGf(v) =
1

d(v)

∑

v∼w

f(w)

and showed that it is a real symmetric operator with eigenvalues λ satisfying −1 ≤
λ ≤ 1. The eigenvalue −1 occurs iff G is bipartite (see proposition 1.13), and we

have excluded this case from the theorem precisely due to this eigenvalue. The sim-

ple eigenvalue 1 is associated to the constant eigenfunction, so for all non-constant

eigenfunctions we now have |λ| < 1. First we will show that the arc average con-

verges to the graph average, and in the next section we will use the proof to calculate

the convergence rate.

2.4.1 Convergence of Eigenfunctions

First we prove the convergence result for a basis of functions on G. As any function

can be written as a linear combination of basis functions, this is sufficient to prove

that any function converges to the graph average. We choose the orthonormal basis

of eigenfunctions ϕi of the Laplacian with corresponding eigenvalues λi. Let ϕ0

be the constant eigenfunction, and note that here the arc average Mn,a(ϕ0) clearly

equals the graph average for all n. The ϕi are orthogonal, so 〈ϕi, ϕ0〉 = 0 and hence

the graph average
∑

v∈V ϕi(v) = 0 for i 6= 0. To prove convergence, we aim to show

that Mn,a(ϕi) → 0 for i = 1, 2, . . . , |V | − 1.

For each eigenfunction ϕi 6= ϕ0 on G let ϕ̃i = ϕi ◦ π be its lift onto the universal

cover G̃, where it is an eigenfunction of L eG with the same eigenvalue λi by lemma

1.10. Recall we defined the arc average of a function in definition 2.3. For the

eigenfunctions ϕ̃i, let

Fi(v) = Md(v,w′),a(ϕi) =
1

|Ad(v,w′)(a)|
∑

y∈Ad(v,w′)(a)

ϕ̃i(y) (2.4)
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where a =
−−−−→{w′, w}. The function Fi(v) depends only on d(w′, v) = n, hence we shall

denote it Fi(n) for all v ∈ An(a).

Lemma 2.5 We can interchange the order of the Laplacian and the radial average

as operators acting on functions on the tree, and obtain the same result.

Proof Applying the Laplacian first and then the radial average, we obtain

Mn,a(L eG(ϕ̃i(v))) =
1

|An(a)|
∑

z∈An(a)

(
1

q + 1

∑

v∼y

f(z)

)

=
1

(q + 1)|An(a)|
( ∑

y∈An+1(a)

f(y) + q ·
∑

y∈An−1(a)

f(y)
)

(2.5)

where a =
−−−−→{w′, w}, and n is chosen such that v ∈ An(a). Applying the radial average

first and then the Laplacian gives

L eGMn,a(ϕ̃i(v)) =
1

q + 1

∑

z∼y

(
1

|An(a)|
∑

y∈An(a)

f(z)

)

=
1

q + 1

(
q · 1

|An+1(a)|
∑

y∈An+1(a)

f(y) +
1

|An−1(a)|
∑

y∈An−1(a)

f(y)
)

=
1

q + 1

(
q · 1

q|An(a)|
∑

y∈An+1(a)

f(y) +
1

1
q
|An(a)|

∑

y∈An−1(a)

f(y)
)

=
1

(q + 1)|An(a)|
( ∑

y∈An+1(a)

f(y) + q ·
∑

y∈An−1(a)

f(y)
)

(2.6)

where again v ∈ An(a) and we note that |An+1(a)| = q|An(a)| ∀ n ≥ 1. Now note

that equations (2.5) and (2.6) are equal to complete the proof. �

Using the lemma above and lemma 1.10 we obtain a recursion relation for Fi(n)

namely

Fi(n + 1) − q + 1

q
λiFi(n) +

1

q
Fi(n− 1) = 0 ∀ n ≥ 1. (2.7)

Note Fi(0) = ϕi(w
′) and Fi(1) = ϕi(w) give the initial conditions. We assume

Fi(n) = αn
i to solve the recursion relation, and obtain two solutions α±

i which

depend on Di = (q + 1)2λ2
i − 4q, and are distinct iff Di 6= 0. The α±

i are given by

α±
i =

q + 1

2q
λi ±

1

2q

√
Di. (2.8)

The general solution for Di 6= 0 is then Fi(n) = u+
i (α+

i )n + u−i (α−
i )n where

u±i = ϕ̃i(w
′)

√
D ±

(
(q + 1)λ − 2

√
D
)

2
√
D

∓ ϕ̃i(w)
q√
D
. (2.9)
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For Di = 0, α±
i = αi = ± 1√

q
and the general solution is Fi(n) = ui(αi)

n + vin(αi)
n

for constants ui = ϕ̃i(w
′) and

vi = ±√
qϕ̃i(w) − ϕ̃i(w

′). (2.10)

It now just remains to check that |α±
i | < 1 for |λ| < 1, and |n(αi)

n| = |nqn/2| → 0

to obtain limn→∞ Fi(n) = 0 for i 6= 0 as required.

2.4.2 The Convergence Rate

For the calculation of the convergence rate we distinguish three cases:

Case 1 Di < 0 (|λi| < 2
√

q

q+1
): We find |α±

i | = 1√
q

and

|Fi(n)| ≤ (|u+
i | + |u−i |)

( 1√
q

)n ≤ Ciq
−n/2

for some constant Ci > 0 which depends on u+
i and u−i , i.e. the initial condi-

tions given by ϕ̃i(w) and ϕ̃i(w
′). Now there are only finitely many values of

u±i , as there are only finitely many choices of a. Therefore we can choose Ci

large enough so that it is independent of a.

Case 2 Di = 0 (|λi| =
2
√

q

q+1
): Here we have

|Fi(n)| ≤
(
|ui| + |vi|n

)( 1√
q

)n ≤ C ′
i · (n+ 1) · q−n/2

for some C ′
i > 0. Choosing βi = q−1/2+ε for arbitrary ε > 0 and adjusting the

constant Ci(ε) appropriately, we obtain

|Fi(n)| ≤ Ci(ε)β
n
i

for Ci(ε) > 0 independent of a.

Case 3 Di > 0 (
2
√

q

q+1
< |λi| < 1): We find α±

i are both real and |α±
i | < 1. Let

βi = max {|α+
i |, |α−

i |}, which we can find explicitly as follows. Suppose
2
√

q

q+1
<

λi < 1, then

|α±
i | =

q + 1

2q
|λi| ±

√
Di

2q
.
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Now suppose −1 < λi <
−2

√
q

q+1
, then

|α±
i | =

q + 1

2q
|λi| ∓

√
Di

2q
.

In either case the maximum of the two is q+1
2q

|λi|+
√

Di

2q
, so βi = q+1

2q
|λi|+

√
Di

2q
.

Then using
2
√

q

q+1
< |λi| < 1 and 0 < |Di| ≤ (q− 1)2 we find 1√

q
< βi < 1, hence

we have

|Fi(n)| ≤ Ciβ
n
i

for some Ci > 0 independent of a.

A general function f : V → R can be written as f =
∑|V |−1

i=0 aiϕi and we obtain

∣∣Mr,a(f) − 1

|V |
∑

v∈V

f(v)
∣∣ ≤

∣∣∣
|V |−1∑

i=1

aiFi(r)
∣∣∣ ≤

( |V |−1∑

i=1

|ai|Ci

)
βr

max. (2.11)

Here βmax = maxi=1,...|V |−1{βi} is the convergence rate obtained from the eigenvalue

λi 6= 1 of largest modulus, so the larger the spectral gap of G, the smaller βmax. If

we know the Fourier coefficients ai of f then we can improve βmax by taking the

maximum βi over i = 1, . . . , |V | − 1 such that ai 6= 0. When ai = 0 for the largest

eigenvalue λi not equal to 1, this gives us a smaller βmax.

Applying Cauchy-Schwarz to equation (2.11), we obtain

∣∣Mr,a(f) − 1

|V |
∑

v∈V

f(v)
∣∣ ≤ CG

√√√√
|V |−1∑

i=1

|ai|2 βr
max ≤ CG ||f ||2 βr

max

where CG =
√

|V | − 1 · maxi Ci. Note that this convergence is independent of a,

and that for Ramanujan graphs we obtain βmax = q−1/2 (or q−1/2+ε if |λmax| =
2
√

q

q+1
)

as all their eigenvalues give D ≤ 0.

It turns out that the general βmax (for unknown Fourier coefficients ai) is exactly

the mixing rate for NBRW found in [2]. Recall from section 2.3.1 that their result

corresponds to taking an average over a vertex sphere Sr rather than an arc. If we

know that one or more Fourier coefficients of f vanish, we can get a value of βmax

smaller than this mixing rate.
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2.5 Bipartite Graphs

In this section we shall briefly revisit bipartite graphs, before extending theorem 2.4

in the next section to increasing subsets of G̃ other than arcs.

Recall in definition 1.6 we defined a bipartite graph as one whose vertices can

be coloured, using just two distinct colours, so that no two adjacent vertices have

the same colour. Let G be a (q + 1)-regular bipartite graph with N vertices, where

V = P ∪ Q is the corresponding partition into two sets of non-adjacent vertices of

the same colour. Suppose v0 ∈ P . Let f : V → C be a function on the vertices of G.

We can still write f in terms of eigenfunctions of the Laplacian, but to investigate

the convergence of its arc average we have to deal with the eigenvalue −1. The other

eigenvalues are dealt with as in theorem 2.4.

In proposition 1.13 we showed that the spectrum of a bipartite graph is sym-

metric, so if we label the eigenvalues such that λ0 > λ1 ≥ . . . ≥ λN , we have

λi = −λN−i for all i = 0, . . . , N . Let ϕi(x) be an eigenfunction of the Laplacian on

G with eigenvalue λi, then

ϕN−i(x) =





ϕi(x) if x ∈ P

−ϕi(x) if x ∈ Q
(2.12)

is an eigenfunction with eigenvalue λN−i = −λi. Now use this and the fact that
∑

v∈V ϕi(v) = 0 for i 6= 0 to find, for all i 6= 0, N ,

∑

v∈V

ϕi(v) =
∑

v∈V

ϕN−i(v) (2.13)

∑

v∈P

ϕi(v) =
∑

v∈P

ϕN−i(v). (2.14)

Subtracting equation (2.14) from equation (2.13) we obtain

∑

v∈Q

ϕi(v) =
∑

v∈Q

ϕN−i(v) (2.15)

but using equation (2.12) we find

∑

v∈Q

ϕi(v) = −
∑

v∈Q

ϕN−i(v). (2.16)

Equations (2.15) and (2.16) imply

∑

x∈Q

ϕi(x) = 0 (2.17)
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for all i 6= 0, N , and similarly
∑

x∈P ϕi(x) = 0. We also find

∑

x∈P

ϕ0(x) =
∑

x∈P

ϕN(x) and
∑

x∈P

ϕ0(x) = −
∑

x∈Q

ϕN(x). (2.18)

We will now show that the average of a function over arcs of increasing even

radius approaches the average over P , and the average over arcs of odd radius

approaches the average over Q.

Proposition 2.6 Let G be a (q + 1)-regular bipartite graph as above. Then for an

arc Ar(a) on G̃ based at v0 with even r

∣∣∣Mr,a(f) − 1

|P |
∑

v∈P

f(v)
∣∣∣ ≤ CG||f ||2βr

max

and with odd r ∣∣∣Mr,a(f) − 1

|Q|
∑

v∈Q

f(v)
∣∣∣ ≤ CG||f ||2βr

max
.

Proof The result clearly holds for ϕ0(x). Equation (2.12) shows that ϕN(x) is

equal to a constant K on arcs of even radius and equal to −K on arcs of odd

radius, and equation (2.18) guarantees that in either case the constant is equal to

the required average. The method of proof from the non-bipartite case and equation

(2.17) above imply the result for ϕi(x) with i 6= 0, N . Writing a general function f

in terms of {ϕi(x)} as before then gives the result. �

2.6 Applications

We finish this chapter by giving applications of theorem 2.4 to different radial aver-

ages of functions on regular graphs.

2.6.1 Spheres and Tubes

Corollary 2.7 Let G, f , CG and βmax be as in theorem 2.4. Then for a sphere

Sr(v0) on G̃ we have

∣∣∣ 1

|Sr(v0)|
∑

v∈Sr(v0)

f̃(v) − 1

|V |
∑

v∈V

f(v)
∣∣∣ ≤ CG||f ||2βr

max
.
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It is easy to see that a sphere of radius r > 0 is the disjoint union of q + 1 arcs

of the same radius, all with w′ = v0. Hence the result follows from theorem 2.4.

Definition 2.8 Let Z be a subset of the vertices and edges of G̃ so that Z is a finite

connected graph. We then define the tube Tr(Z) of radius r around Z in G̃ by

Tr(Z) = {v ∈ Ṽ : min
x∈V (Z)

d(v, x) = r}. (2.19)

Z

Figure 2.2: Tubes on the regular tree G̃ of degree 4.

See figure 2.2 for an example of tubes. We can construct the tube from arcs

using the edges in G̃ that connect a vertex in Z to a vertex not in Z. These edges

make up the boundary ∂Z of Z. Give each of these edges a direction away from Z,

so that their origin is in Z and their terminus is not. The collection of arcs given by

{Ar(ai) : ai ∈ ∂Z directed away from Z} is then the same as the tube Tr(Z). From

this fact, the following result immediately follows.

Corollary 2.9 Let G, f , CG and βmax be as in theorem 2.4. Then for tubes on G̃

we have ∣∣∣ 1

|Tr(Z)|
∑

v∈Tr(Z)

f̃(v) − 1

|V |
∑

v∈V

f(v)
∣∣∣ ≤ C||f ||2βr

max
.

2.6.2 Horocycles

Next, we consider increasing subsets of horocycles on G̃ to find a discrete analogue

of a result by Furstenberg [25] on the “unique ergodicity of the horocycle flow” (see
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also [7, chapter IV]). Horocycles are sometimes also called horospheres, and have

the following intuitive definition. One way of defining increasing circles on a plane

is by taking a fixed centre and increasing the radius. Alternatively, we can define

increasing circles by fixing a point on the circle, and letting the centre move along

a geodesic on the surface in such a way that the distance between the fixed point

and the centre increases. This is illustrated in figure 2.3 below. The limit of these

circles as the radius goes to infinity is then defined to be the horocycle defined by

the geodesic and the fixed point, which in figure 2.3 are the dashed line and the

black dot.

Figure 2.3: Horocycles on the Euclidean plane.

Horocycles on trees were first introduced by Cartier in [12]. As in the case of

surfaces, we use a geometrically motivated definition of horocycles, in fact we define

them as level sets of Busemann functions, which we will explain below.

We defined a geodesic γ on the tree G̃ as a bi-infinite non-backtracking path,

denoted by its vertices . . . , v−1, v0, v1, . . . ∈ Ṽ , where vi is adjacent to vi+1 and

vi 6= vi+2 ∀ i ∈ Z. Recall d(v, w) is the combinatorial distance between vertices v

and w, and define the Busemann function

bγ,vk
(w) = lim

n→∞
d(w, vk+n) − n.

For k ∈ Z we then define the horocycle Hk = b−1
γ,v0

(k) (see also figure 2.4). For

explanation and another illustration of horocycles, see also [24, Chapter I, Section

9].
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γ

v0

v1

v2

H0

H1

H2

Figure 2.4: Horocycles on the regular tree of degree 4.

Rather than full horocycles, we will consider subsets of the horocycle H0 defined

by

Hγ,r(v0) = H0 ∩ Sr(vr)

for which we obtain the following theorem.

Theorem 2.10 Let G, f , CG and βmax be as in theorem 2.4. Then

∣∣∣ 1

|Hγ,r(v0)|
∑

v∈Hγ,r(v0)

f̃(v) − 1

|V |
∑

v∈V

f(v)
∣∣∣ ≤ CG||f ||2βr

max
.

Proof Note that we can view the subset of the horocycle as an arc

Hγ,r(v0) = Ar+1

(−−−−−−→{vr+1, vr}
)

where vi are vertices on the geodesic defining Hk, and
−−−−−−→{vr+1, vr} is the directed edge

from vr+1 to vr. As r → ∞ we have a set of increasing circular arcs, where the

origin of the arc changes at each step. But the convergence for arcs in theorem 2.4

is independent of the origin of the arc, so the subsets can be viewed just as increasing

circular arcs, and the theorem follows. �

2.6.3 Balls and Sectors

We finish this chapter by considering averages of functions over two more types of

increasing subsets of G̃, namely balls and sectors. These are defined as follows.
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Definition 2.11 A closed ball BR(x0) of radius R based at x0 ∈ V (X) is defined

as

BR(x0) =

R⋃

r=0

Sr(x0). (2.20)

Definition 2.12 A sector KR(a) in the direction of a =
−−−−→{w′, w} of radius R is

defined as

KR(a) =
R⋃

r=0

Ar(a). (2.21)

Theorem 2.13 Let G, f , CG and β = βmax be as in theorem 2.4. Define

C ′
G = 2

qβ − β

qβ − 1
CG.

Then for a sector KR(a) of radius R ≥ 2 on G̃ we have

∣∣∣ 1

|KR(a)|
∑

x∈KR(a)

f̃(x) − 1

|V |
∑

v∈V

f(v)
∣∣∣ ≤ C ′

G||f ||2βR.

Proof We proved in theorem 2.4 that

∣∣∣ 1

|Ar(a)|
∑

x∈Ar(a)

f̃(x) − 1

|V |
∑

v∈V

f(v)
∣∣∣ ≤ CG||f ||2βr. (2.22)

We rearrange this equation and write it as

∑

x∈Ar(a)

f̃(x) =
|Ar(a)|
|V |

∑

v∈V

f(v) + |Ar(a)|εrCG||f ||2βr (2.23)

for some |εr| ≤ 1. Using equation (2.21) and the fact that
∑R

r=0 |Ar(a)| = |KR(a)|,
we can take the sum of both sides of this equation from r = 0 to R to obtain

∑

x∈KR(a)

f̃(x) =
|KR(a)|
|V |

∑

v∈V

f(v) +
R∑

r=0

|Ar(a)|εrCG||f ||2βr (2.24)

which implies

1

|KR(a)|
∑

x∈KR(a)

f̃(x) =
1

|V |
∑

v∈V

f(v) + CG||f ||2
∑R

r=0 |Ar(a)|εrβ
r

∑R
r=0 |Ar(a)|

. (2.25)

To finish the proof, we just need to show that

∑R
r=0 |Ar(a)|εrβ

r

∑R
r=0 |Ar(a)|

≤ 2
qβ − β

qβ − 1
βR (2.26)
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which goes to zero as R → ∞ since |β| < 1. Let ER denote the left hand side of

equation (2.26). Note |Ar(a)| = qr−1 for r ≥ 1, and |A0(a)| = 1. Using the fact that

|εr| ≤ 1, we now obtain

|ER| ≤
1 +

∑R
r=1 q

r−1βr

1 +
∑R

r=1 q
r−1

=

q−1
q

+
∑R

r=0 q
r−1βr

q−1
q

+
∑R

r=0 q
r−1

(2.27)

≤q − 1 +
∑R

r=0 q
rβr

∑R
r=0 q

r
=
q − 1 + 1−(qβ)R+1

1−qβ

1−qR+1

1−q

(2.28)

where the last equality is due to the geometric series formula
∑R

r=0 x
r = 1−xR+1

1−x
for

|x| 6= 1. We rearrange to get

|ER| ≤
q − 1

qβ − 1
· (q − 1)(qβ − 1) + (qβ)R+1 − 1

qR+1 − 1
(2.29)

where for R ≥ 2 we find

|ER| ≤ 2
q − 1

qβ − 1
· (qβ)R+1 − 1

qR+1 − 1
. (2.30)

To simplify this last expression, consider the following inequalities for three positive

numbers a, b, c, where b > c. It is easy to show that

a− c

b− c
>
a

b
⇐⇒ a > b (2.31)

a− c

b− c
≤ a

b
⇐⇒ a ≤ b. (2.32)

In our case, let a = (qβ)R+1, b = qR+1 and c = 1. Clearly a
b

= βR+1 < 1 so a < b

and a−c
b−c

< βR+1, i.e.

|ER| ≤ 2
q − 1

qβ − 1
· (qβ)R+1 − 1

qR+1 − 1
< 2

q − 1

qβ − 1
βR+1 = 2

qβ − β

qβ − 1
βR. (2.33)

Since |β| < 1 this goes to zero as R goes to infinity, and also gives us the required

error estimate for finite R. �

Corollary 2.14 Let G, f , CG and β = βmax be as in theorem 2.4. Then for a ball

BR(x0) of radius R ≥ 2 on G̃ we have

∣∣∣ 1

|BR(x0)|
∑

x∈BR(x0)

f̃(x) − 1

|V |
∑

v∈V

f(v)
∣∣∣ ≤ qβ − β

qβ − 1
CG||f ||2βR.
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Proof Following the method of proof in theorem 2.13 above we get

1

|BR(x0)|
∑

x∈BR(x0)

f̃(x) =
1

|V |
∑

v∈V

f(v) + CG||f ||2
∑R

r=0 |Sr(x0)|εrβ
r

∑R
r=0 |Sr(x0)|

. (2.34)

We just need to show that

ER =

∑R
r=0 |Sr(x0)|εrβ

r

∑R
r=0 |Sr(x0)|

(2.35)

with |εr| ≤ 1 satisfies |ER| ≤ qβ−β
qβ−1

βR. Note that |S0(x0)| = 1 and |Sr(x0)| = q+1
q
qr

for r ≥ 1 to obtain

|ER| ≤
−1
q+1

+
∑R

r=0(qβ)r

−1
q+1

+
∑R

r=0 q
r

<

∑R
r=0(qβ)r

∑R
r=0 q

r
(2.36)

using the inequalities for a, b, c > 0 in equations (2.31) and (2.32), where a =
∑R

r=0(qβ)r, b =
∑R

r=0 q
r and c = 1

q+1
. Now use the geometric series used in the

proof of theorem 2.13 to obtain

|ER| ≤
(qβ)R+1−1

qβ−1

qR+1−1
q−1

=
q − 1

qβ − 1
· (qβ)R+1 − 1

qR+1 − 1
. (2.37)

We simplify the second fraction using the inequalities in equations (2.32) and (2.31)

again, this time for a = (qβ)R+1, b = qR+1 and c = 1 to obtain

|ER| ≤
q − 1

qβ − 1

(qβ)R+1

qR+1
=

q − 1

qβ − 1
βR+1 =

qβ − β

qβ − 1
βR (2.38)

as required. �



Chapter 3

Radial Averages for Edges

3.1 Motivation

In chapter 2 we dealt with functions that were defined on the vertices of a graph

G. In this chapter we discuss similar results for functions defined on the edges of a

simple connected graph G. An edge function f : E → R on the graph G is defined

by assigning a value to each edge of the graph. We are motivated to do this by the

fact that all definitions used in the vertex case can easily be modified to deal with

edges, due to the existence of a line graph.

Definition 3.1 The vertex set of the line graph L(G) of G is defined to be the edge

set of G. Two vertices are adjacent in L(G) if the corresponding edges in G are

adjacent.

Hence an edge function on G is just a function on the vertices of L(G). We will

find, however, that the edge spheres we define in the next section do not coincide

with vertex spheres on the line graph due to the following. Recall that an edge e

on a simple graph G is uniquely defined by two vertices v, w, its endpoints, and an

edge a is adjacent to e if it meets e in either of its endpoints (see also figure 3.1).

This means that all edges incident to the vertex v are mutually adjacent, but they

are not necessarily adjacent to edges incident to w. In fact, as G is simple, e is

the only edge adjacent to both v and w. We obtain two sets E1, E2 of mutually

adjacent edges with common endpoints v and w respectively, with E1 ∩ E2 = {e}.

36
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If we now look at the vertices on L(G) corresponding to E1 and E2, we find they

v w

E1 E2

Figure 3.1: Two sets E1, E2 of mutually adjacent edges.

are all mutually adjacent. The discrepancy between the spheres is caused by this

fact, and it means that the results we obtain in this chapter can not be obtained by

applying theorem 2.4 to the line graph of G.

3.2 Definitions for Edge Functions

To work with functions on the edges rather than on the vertices of a graph, we need

to redefine some notions introduced for vertices in section 1.1 in terms of edges.

When possible, we use the line graph of G to obtain these definitions. As mentioned

in section 3.1, we shall only deal with simple graphs in this chapter, i.e. a graph is

not allowed to have loops or multiple edges.

Definition 3.2 The edge degree d′(e) of an edge e ∈ E(G) is defined as the number

of edges adjacent to it.

The degree of an edge is clearly just the degree of the corresponding vertex in the line

graph. A regular graph of (vertex) degree q+1 has constant edge degree d′(e) = 2q,

and hence is also regular in the sense of edges. There is however another type of

graph with constant edge degree, but not constant vertex degree, which we now

define.

Definition 3.3 A semi-regular graph is a bipartite graph in which all the vertices

of one colour have the same degree, say q+1, and all the vertices of the other colour

have the same degree, say p+ 1, which may be different from q + 1.
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Definition 3.4 The length of a path defined in terms of the directed edges −→e0 ,
−→e1 , . . . ,−→en is equal to n, which is the length of the equivalent path in the line graph

defined by the vertices corresponding to e0, . . . , en.

Definition 3.5 The edge distance d′(a, e) between two edges a, e ∈ E(G) is defined

as the length of a shortest path connecting them, where we define the length of a path

as in definition 3.4.

This is the same as the distance between the vertices a and e in the line graph L(G)

as defined in definition 1.5.

S ′
0(v0)

S ′
1(v0)

S ′
2(v0)

v0

Figure 3.2: Edge spheres on the regular tree of degree 4.

Next we need to define level sets for edges. We work analogously to the vertex

case. See also figure 3.2.

Definition 3.6 An edge sphere S ′
r(v0) of radius r centred on a vertex v0 in a tree

G̃ is defined by

S ′
r(v0) =

{
e = {x, y} ∈ E(X) : min{d(x, v0), d(y, v0)} = r

}
. (3.1)

We centre the sphere on a vertex rather than an edge as this makes our definition

of arcs easier. We will see in section 3.6.1 that a sphere centred on an edge is just a

tube around that edge, and the same results will apply, so our choice is irrelevant.

Now we use the definition of edge spheres above to define a spherical edge arc

(see also figure 3.3).
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A′
1(e0)

A′
2(e0)

A′
3(e0)

e0
v

w

Figure 3.3: Edge arcs on the regular tree of degree 4.

Definition 3.7 Let e0 =
−−−−→{v, w} be a directed edge in G̃. We define the edge arc of

radius r + 1 ≥ 1 emanating from e0 by

A′
r+1(e0) = S ′

r+1(v) ∩ S ′
r(w) (3.2)

and we set A′
0(e0) = {e0}.

Again, this is a section of a sphere, and we can make up a sphere centred on the

vertex v by taking the union of the arcs A′
r(
−−−−→{v, wi}) for all vertices wi adjacent to v.

Definition 3.8 The edge adjacency matrix A′
G of a graph G with |E| = m edges is

an m×m matrix with rows and columns labelled by the edges of G. The i, jth entry

ai,j is one if edges i and j are adjacent, and zero if they are not.

Note that an edge cannot be adjacent to itself as this gives a loop, and we have

excluded such non-simple graphs from our consideration in this chapter. This means

the entries on the diagonal of A′
G are all zero.

Recall that in section 1.2 we defined the universal cover G̃ of a graph G, and the

covering map π : G̃ → G in terms of vertices of G. Observe that both notions are

easily extended to edges, as edges are defined in terms of adjacent vertices. Therefore

we can also lift edge functions f to functions f̃ on the edges of the universal cover

of G.
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The arc average of the function f : E → R on the edges is now defined as

Mr,a(f) =
1

|A′
r(a)|

∑

e∈A′
r(a)

f̃(e).

The main purpose of this chapter is to find analogous results to theorem 2.4 in

chapter 2 for functions on the edges of regular and semi-regular graphs. Again

we apply these results for arcs to find results for spheres and tubes. Horocycles,

however, are only defined on the vertices of G̃, so we cannot find an edge equivalent

of theorem 2.10.

3.3 Results for Regular and Semi-regular Graphs

Using the definitions in the previous section, we can now define an analogue of

theorem 2.4 for functions on the edges of a regular graph G of degree q + 1.

Theorem 3.9 Let G be a finite regular connected simple graph with d′(e) = 2q ≥ 4

and let f : E → R be a function on its edges. Then we have for any directed edge a

in G ∣∣∣Mr,a(f) − 1

|E|
∑

e∈E

f(e)
∣∣∣ ≤ CG||f ||2βr

max
.

Here CG is a constant depending on G but independent of a, and βmax ∈ {1
q
} ∪

[q−1/2, 1).

The norm here comes from the inner product 〈f, g〉 =
∑

e∈E f(e)g(e), so ||f ||2 =
√
〈f, f〉. The precise value of βmax is related to the spectrum of the edge Lapla-

cian (see section 3.4) and the Fourier coefficients of f . Again, we see that Mr,a(f)

converges to the graph average, which is defined for edge functions as 1
|E|
∑

e∈E f(e).

We reiterate that it is important to note that it is not possible to use theorem 2.4

to prove theorem 3.9 (and 3.10 below) by looking at the corresponding line graph

L(G). This is due to the fact that vertex arcs on L̃(G) and edge arcs on G̃ do not

coincide, because L̃(G) 6= L(G̃) due to the discrepancy in the adjacency relation

described in section 3.1.

Now we state the theorem for semi-regular graphs analogous to theorem 2.4.

Let G be semi-regular with vertex degrees p+ 1 and q+ 1, and hence constant edge
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degree p+ q.

Theorem 3.10 Let G be a finite connected semi-regular simple graph with edge

degree p+ q, where p, q ≥ 2, and let f : E → R be a function on its edges. Then we

have for any directed edge a in G

∣∣∣Mr,a(f) − 1

|E|
∑

e∈E

f(e)
∣∣∣ ≤ CG||f ||2βr

max
.

Here CG is a constant depending on G but independent of a, and βmax ∈ {(pq)−1/2}∪
[(pq)−1/4, 1).

Note that theorem 3.10 only deals with bipartite graphs, whereas in theorem 3.9

the graph may be either bipartite or not, so it is not a special case of theorem 3.10.

We need p, q ≥ 2 in this theorem, as p = 1 can give a non-converging function on

the graph. Take for example K2,3, call the two vertices of degree three x and y, and

define a function g : E → {−1, 1} such that g(e) = 1 if x is an endpoint of e, and

−1 otherwise (see figure 3.4). Clearly the arc average of g takes the values ±1 in a

recurring pattern and never converges.

x

y

1
1

1

−1

−1

−1

Figure 3.4: The graph K2,3 with values annotated for the function g.

3.4 Proof of the Regular Case

Theorem 3.9 concerns functions on the edges of a regular graph G, and the method

of proof follows that of the vertex case in section 2.4 apart from a small deviation

towards the end. Recall that we no longer allow the graph to have loops or multiple

edges, and require d′(e) = 2q ≥ 4 ∀ e ∈ E. Let f : E → R be a function on the
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edges of a graph G. Then the (edge) Laplacian of f at e ∈ E is defined as

L′
Gf(e) =

1

d′(e)

∑

d′(e,a)=1

f(a).

Note that this is equivalent to the vertex Laplacian on the line graph L(G) of G.

We find that here the range of eigenvalues of the edge Laplacian is smaller, namely

−1/q ≤ λi ≤ 1, as the eigenvalues of the adjacency matrix of a line graph satisfy

µ ≥ −2, see [20] or [33].

The recursion relation, which we obtain using the same methods as in the pre-

vious chapter, in this case looks as follows

Fi(n+ 1) +
q − 1 − 2λiq

q
Fi(n) +

1

q
Fi(n− 1) = 0 for n ≥ 1. (3.3)

Here the initial conditions are Fi(0) = ϕi(a), where a =
−−−−→{v, w} is the directed edge

from which the arc emanates, and

qFi(1) + Fi(0) =
∑

w∼vj

ϕi({w, vj}) (3.4)

where the sum runs through all vertices vj adjacent to w. Using this we want to

show that limn→∞ Fi(n) = 0 for −1
q
≤ λi < 1 with the appropriate convergence rate.

For Di = (q − 1 − 2λiq)
2 − 4q 6= 0 we find again that Fi(n) = u+

i (α+
i )n + u−i (α−

i )n,

where this time

α±
i = λi −

q − 1

2q
± 1

2q

√
Di, (3.5)

u±i = ± q√
Di

Fi(1) +

√
Di ± (q − 1 − 2λiq)

2
√
Di

Fi(0). (3.6)

For Di = 0 we have λi = q−1
2q

± 1√
q

so Fi(n) = uiα
n
i + vinα

n
i where αi = ± 1√

q
,

ui = Fi(0), (3.7)

vi = −Fi(0) ±√
qFi(1). (3.8)

When Di ≤ 0 the proof now follows that of the vertex case, and we obtain |α+
i | =

|α−
i | = βi = 1√

q
for the convergence rate.

Note that Di > 0 for λi ∈ [−1/q,m1)∪ (m2, 1] = I, where m1 = q−1
2q

− q−1/2 and

m2 = q−1
2q

+ q−1/2. Define two functions

α±(λ) = λ − q − 1

2q
± 1

2q

√
D(λ) (3.9)
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where D(λ) = (q − 1 − 2λq)2 − 4q. We calculate that

∂

∂λ
α±(λ) =1 ± 1

2q
· 1

2
·
(
(q − 1 − 2λq)2 − 4q

)−1/2 · 2 · (q − 1 − 2λq) · (−2q)

=1 ± 2λq − q + 1√
(q − 1 − 2λq)2 − 4q

(3.10)

where the fraction in equation 3.10 clearly has absolute value greater than one.

This means that the functions α±(λ) are both monotone on [−1/q,m1) and (m2, 1],

because ∂
∂λ
α±(λ) does not change sign anywhere. Calculating |α±(λ)| for boundary

values of I gives |α±(λ)| < 1 ∀ λ ∈ I with two exceptions. These are α+(1) = 1,

which corresponds to the constant function, where the arc average always equals

the graph average, and |α−(−1/q)| = 1, which we will investigate below. For λi ∈
(−1/q,m1)∪(m2, 1), the convergence rate is again easily calculated from 1√

q
< |αi| <

1.

To check what happens if λ = −1
q

, we use the following lemma from [20, Theorem

3], which we restate in our notation:

Lemma 3.11 Let f be any eigenfunction of the (edge) Laplacian with eigenvalue

−1
q

. Then
∑

v0∼wj

f({v0, wj}) = 0 (3.11)

for all v0 ∈ V .

This means that Fi(0) + qFi(1) = 0 in equation (3.4) when λi = −1
q

. Use this

and the recursion relation in equation (3.3) to obtain Fi(n) = (−1/q)nFi(0) which

clearly converges to zero as n → ∞ with βi = 1/q. Using the expression of a

function f in terms of its Fourier coefficients as before, this completes the proof of

the fact that the arc average of functions on the edges of G converges to the graph

average. To find the convergence rates for a function with given Fourier coefficients,

we work completely analogously to the vertex case in theorem 2.4. Note that the

only functions which can have βmax = 1
q

are eigenfunctions of the Laplacian with

eigenvalue −1/q.
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3.5 Proof of the Semi-regular Case

We now prove theorem 3.10. Here we deal with functions on the edges of a simple

semi-regular graph with edge degree p + q, where we require that p, q ≥ 2. As for

theorem 3.9, we reduce the problem to the radialisation of non-constant eigenfunc-

tions of the edge Laplacian, which now has eigenvalues −2
p+q

≤ λ ≤ 1. Recall that

the arc is defined as emanating from an edge a =
−−−−→{v, w}. We assume the vertex v

has degree p+ 1 (see also figure 3.5).

v

w
A′

0

A′
1

A′
2

A′
3

Figure 3.5: Arcs on the semi-regular tree with p+ 1 = 3 and q + 1 = 4.

3.5.1 Recursion

Because G is semi-regular, there is a more complicated recursion formula for the

radialised eigenfunction Fi(n) with eigenvalue λi on the edges of the universal cover

G̃. Using the Laplacian on G̃, given by L eGf(e) = 1
p+q

∑
d′(e,a)=1 f(a), we find for

positive integers k

λiFi(2k) =
1

p+ q

(
qFi(2k + 1) + (p− 1)Fi(2k) + Fi(2k − 1)

)

and

λiFi(2k − 1) =
1

p+ q

(
pFi(2k) + (q − 1)Fi(2k − 1) + Fi(2k − 2)

)
.
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Rearranging the expressions and then combining the two equations, we obtain

(
Fi(2k + 1)

Fi(2k)

)
= Ai ·

(
Fi(2k − 1)

Fi(2k − 2)

)
for k ≥ 1, k ∈ N, where

Ai =




(
p−1−λi(p+q)

)(
q−1−λi(p+q)

)
−p

pq
p−1−λi(p+q)

pq

− q−1−λi(p+q)
p

−1
p


 .

Hence
(

Fi(2k+1)
Fi(2k)

)
= Ak

i ·
(

Fi(1)
Fi(0)

)
. The convergence properties of the arc average are

now determined by the eigenvalues of the matrix Ai. Define

t±(λ) =

(
p− 1 − λ(p+ q)

)(
q − 1 − λ(p+ q)

)
− p− q ±

√
D(λ)

2pq

where D(λ) =
((
p− 1 − λ(p+ q)

)(
q − 1 − λ(p + q)

)
− p− q

)2

− 4pq.

Then the eigenvalues of Ai are t±(λi) for all λi that occur. Convergence of the arc

average can only fail if we have λi such that |t+(λi)| ≥ 1 or |t−(λi)| ≥ 1 (by formulas

(3.13) and (3.14) below). Therefore we investigate |t±(λi)| for all possible λi.

3.5.2 Convergence

We distinguish the cases D(λ) ≤ 0 and D(λ) > 0. For D(λ) ≤ 0 we have |t±(λi)| =

1√
pq

which means the arc average converges for the corresponding eigenfunctions.

We look at the various regions of λ for which D(λ) > 0 separately.

Note D(λ) = 0 for

λ = m±± =
p+ q − 2 ±

√
(p− q)2 + 4(

√
p±√

q)2

2(p+ q)
. (3.12)

Deduce that D(λ) > 0 in the intervals I1 = [ −2
p+q

, m−+), I2 = (m−−, m+−) and

I3 = (m++, 1], where the subscripts + and − refer to the choices of ± in m±± in

order of appearance. Solving ∂
∂λ
t±(λ) = 0 gives λ = m′ = p+q−2

2(p+q)
as the only solution

for λ ∈ I1 ∪ I2 ∪ I3. Therefore t±(λ) is monotone on I1 and I3, so t±(λ) has possible

maxima and minima only at the endpoints of the intervals. On I2, maxima and

minima can only occur at m′ and at the endpoints.

There exist values of p and q so that |t±(m′)| > 1, so in theory we could have

|t±(λi)| > 1, and we need to investigate whether such λi can occur. There is a
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−2
p+q

m−+ m−−
p−1
p+q

m′ q−1
p+q

m+− m++ 1

I1

I2

I3I4I5 I6

Figure 3.6: Values and intervals of λ which are used in the proof.

useful lemma (lemma 3.12) which we shall prove in section 3.5.4, which states that

for p < q the edge Laplacian has no eigenvalues λ in the interval I4 = (p−1
p+q

, q−1
p+q

)

(if p > q just switch the roles of p and q here). This means that we do not need

|t±(λ)| < 1 for all λ ∈ I2, just for I2 − I4 = I5 ∪ I6 where I5 = (m−−,
p−1
p+q

] and

I6 = [ q−1
p+q

, m+−). As m′ ∈ I4, the functions t±(λ) are monotone on I5 and I6, so

maxima and minima can only occur at the endpoints of the intervals. Hence to

check |t±(λ)| for D(λ) > 0 for all values λi which may occur, we now just have to

check t±(λ) at the boundary values of each of the intervals I1, I5, I6 and I3. See

also figure 3.6. Note that if p = q, we have p−1
p+q

= q−1
p+q

so I4 = ∅. Using D(m±±) = 0

we find

∣∣∣t±(m±±)
∣∣∣ =

1√
pq

< 1,

∣∣∣t+
(p− 1

p+ q

)∣∣∣ =
∣∣∣t+
(q − 1

p+ q

)∣∣∣ =
1

p
< 1,

∣∣∣t−
(p− 1

p+ q

)∣∣∣ =
∣∣∣t−
(q − 1

p+ q

)∣∣∣ =
1

q
< 1,

∣∣∣t−(1)
∣∣∣ =

∣∣∣t−
( −2

p+ q

)∣∣∣ =
1

pq
< 1,

so |t−(λi)| < 1 for all eigenvalues λi that occur. Finally, t+(1) = t+( −2
p+q

) = 1, and

|t+(λi)| < 1 for all λi except these two values. The eigenvalue λi = 1 corresponds

to the constant eigenfunction which, as before, is equal to the radial average. When

λi = −2
p+q

, we use theorem 3 in [20] again to find Fi(1) = −1
q
Fi(0), Fi(2) = −1

p
Fi(1),

Fi(n + 1) = −1
q
Fi(n) for n > 0 even, and Fi(n + 1) = −1

p
Fi(n) for n > 1 odd.

This means |Fi(n)| ≤ Ci(
1√
pq

)n for some constant Ci, and Fi(n) converges to zero as

n→ ∞ as required. Hence we have shown that the arc average of a function on the

edges of a semi-regular graph converges to the graph average. In the next section

we will investigate the convergence rate.
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3.5.3 Convergence rate

First we assume that D(λ) 6= 0, and let u+
i , u−i be a basis of unit eigenvectors of

Ai corresponding to the eigenvalues t+(λi), t−(λi) respectively. Writing the initial

vector
(

Fi(1)
Fi(0)

)
= a+

i u
+
i + a−i u

−
i we find

(
Fi(2k + 1)

Fi(2k)

)
= Ak

i

(
Fi(1)

Fi(0)

)
= a+

i

(
t+(λi)

)k
u+

i + a−i
(
t−(λi)

)k
u−i for k ∈ N. (3.13)

For D(λ) < 0 we now use the fact that |t+(λi)| = |t−(λi)| = 1√
pq

to find

|Fi(2k + j)| ≤ Bj

( 1√
pq

)k
for j = 0, 1

with suitable constants B0, B1 both depending only on Fi(0) and Fi(1), hence

|Fi(n)| ≤ Ci(pq)
−n

4

for some Ci > 0 depending on Fi(0) and Fi(1).

When D(λ) > 0 the convergence will depend on the eigenvalue of Ai with largest

absolute value. Letting βi = max{|t+(λi)|, |t−(λi)|} and using the same methods as

before we find

|Fi(n)| ≤ Ciβ
n
2
i

for some Ci > 0 depending on Fi(0) and Fi(1), and 1√
pq
< βi < 1.

Now in the case that D(λ) = 0, Ai has an eigenvalue t = 1√
pq

(or −1√
pq

) of algebraic

multiplicity two. Note that in this case we can find a Jordan base of unit length

vectors ui, vi such that Aiui = tui and aivi = ui + tvi. Then we can find constants

ai, bi such that
(

Fi(1)
Fi(0)

)
= aiui + bivi, and derive

(
Fi(2k + 1)

Fi(2k)

)
= Ak

i

(
Fi(1)

Fi(0)

)
= (ait

k + bikt
k−1)ui + bit

kvi. (3.14)

We obtain

|F (2k + j)| ≤ B′
j(k + 1)|t|k for j = 0, 1

with constants B′
0, B

′
1 depending only on Fi(0) and Fi(1). This implies that

|Fi(n)| ≤ C ′
i · (1 + n) · (pq)−n

4 ≤ Ciβ
n
2
i

for C ′
i > 0 depending on Fi(0) and Fi(1), βi = (pq)−

1
2
+ε for arbitrarily chosen ε > 0,

and appropriately adjusted Ci.
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As with the previous two theorems, we write f =
∑|V |−1

i=0 ciϕi and use the largest

value of βi to find

∣∣∣Mr,a(f) − 1

|E|
∑

e∈E

f(e)
∣∣∣ ≤ CG||f ||2βr

max

where as before CG > 0 large enough to provide independence of the directed edge

a in G.

3.5.4 Proof of the Lemma

To complete the proof of theorem 3.10, it remains to prove the following lemma.

Lemma 3.12 Let G be a semi-regular graph as in theorem 3.10, and p < q. Then

the edge Laplacian has no eigenvalues λ such that

p− 1

p+ q
< λ <

q − 1

p+ q
.

Proof Let G be a semi-regular graph with n1 vertices of degree p + 1 and n2

vertices of degree q + 1, where n1 ≥ n2 and all vertices of the same degree are mu-

tually non-adjacent. Then [17, Theorem 1.3.18] gives the following relation between

the characteristic polynomials PG(x) and PL(G)(x) of G and its line graph L(G)

respectively:

PL(G)(x) = (x+ 2)m

√√√√
(
−α1(x)

α2(x)

)n1−n2

PG

(√
α1(x)α2(x)

)
PG

(
−
√
α1(x)α2(x)

)

where m = |E| − |V |, α1 = x − p + 1 and α2 = x − q + 1. Recall PL(G)(µ) = 0 for

eigenvalues µ of the edge adjacency matrix AL(G), and as L′
L(G) = 1

p+q
AL(G) we have

λ =
µ

p + q

so µ ∈ [−2, p + q] by [20]. Using the above formula for PL(G), we find its roots can

only be µ = −2, µ = p − 1, or µ such that ±
√
α1(µ)α2(µ) is an eigenvalue of the

original graph. Note that G has only real eigenvalues. However since
√
α1(µ)α2(µ)

is purely imaginary for p − 1 < µ < q − 1, L(G) cannot have eigenvalues in this

region. �
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3.6 Applications

To finish this chapter, we give applications of theorems 3.9 and 3.10 to different

radial averages of functions on regular and semi-regular graphs.

3.6.1 Spheres and Tubes

Corollary 3.13 Let G, f , CG and βmax be as in theorem 3.9. Then for an edge

sphere S ′
r(v0) on G̃ we have

∣∣∣ 1

|S ′
r(v0)|

∑

e∈S′
r(v0)

f̃(e) − 1

|E|
∑

e∈E

f(e)
∣∣∣ ≤ CG||f ||2βr

max
.

As noted in section 3.2, it is easy to see that an edge sphere is made up of q + 1

edge arcs emanating from its centre v. Hence theorem 3.9 immediately implies this

result. In the same way, we obtain the following theorem for semi-regular graphs.

Corollary 3.14 Let G, f , CG and βmax be as in theorem 3.10. Then for an edge

sphere S ′
r(v0) on G̃ we have

∣∣∣ 1

|S ′
r(v0)|

∑

e∈S′
r(v0)

f̃(e) − 1

|E|
∑

e∈E

f(e)
∣∣∣ ≤ CG||f ||2βr

max
.

Recall that in section 2.6 we defined (vertex) tubes around a connected graph in

G̃. We now do the same for edges.

Definition 3.15 Let Z be a subset of the vertices and edges of G̃ so that Z is a

connected graph. We then define the edge tube of radius r around Z in G̃ by

T ′
r (Z) = {e ∈ Ẽ : min

a∈E(Z)
d′(e, a) = r}. (3.15)

We note, as in the vertex case, that edge tubes can be made up of several edge

arcs, and we use this fact to deduce the following corollaries from theorems 3.9 and

3.10.

Corollary 3.16 Let G, f , CG and βmax be as in theorem 3.9. Then for edge tubes

∣∣∣ 1

|T ′
r (X)|

∑

e∈T ′
r (X)

f̃(e) − 1

|E|
∑

e∈E

f(e)
∣∣∣ ≤ CG||f ||2βr

max
.
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Corollary 3.17 Let G, f , CG and βmax be as in theorem 3.10. Then for edge tubes

∣∣∣ 1

|T ′
r (X)|

∑

e∈T ′
r (X)

f̃(e) − 1

|E|
∑

e∈E

f(e)
∣∣∣ ≤ CG||f ||2βr

max
.

3.6.2 Balls and Sectors

We finish this chapter by giving, as in the vertex case, an application of theorems

3.9 and 3.10 to edge balls and sectors.

Definition 3.18 A closed edge ball B′
R(v) of radius R based at v ∈ V (G̃) is defined

as

B′
R(v) =

R⋃

r=0

S ′
r(v). (3.16)

Definition 3.19 An edge sector K ′
R(e) in the direction of e =

−−−−→{v, w} of radius R

is defined as

K ′
R(e) =

R⋃

r=0

A′
r(e). (3.17)

Again, we can construct the ball by taking the union of the appropriate sectors.

Denote ai =
−−−−→{v, wi} for every wi adjacent to v, numbered from 1 to d(v). Then

B′
R(v) =

d(v)⋃

i=1

K ′
R(ai). (3.18)

Note that this is a disjoint union, so we will be able to deduce results for balls

directly from results for sectors.

Theorem 3.20 Let G, f , CG and βmax be as in theorem 3.9. Define

C ′
G =

qβ − β

qβ − 1
CG. (3.19)

Then for an edge sector K ′
R(a) of radius R on G̃ we have

∣∣∣ 1

|K ′
R(a)|

∑

e∈K ′

R(a)

f̃(e) − 1

|E|
∑

e∈E

f(e)
∣∣∣ ≤ C ′

G||f ||2βR. (3.20)

Proof We proceed in a similar way to the proof of the vertex case in 2.13. In

theorem 3.9 we proved that

∣∣∣ 1

|A′
r(a)|

∑

e∈A′
r(a)

f̃(e) − 1

|E|
∑

e∈E

f(e)
∣∣∣ ≤ CG||f ||2βr (3.21)
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which we can rearrange to

∑

e∈A′
r(a)

f̃(e) ≤ |A′
r(a)|
|E|

∑

e∈E

f(e) + |A′
r(a)|εrCG||f ||2βr (3.22)

for some |εr| ≤ 1. Using equation (3.17) and
∑R

r=0 |A′
r(a)| = |K ′

R(a)| we take the

sum of both sides from r = 0 to R and rearrange to obtain

1

|K ′
R(a)|

∑

e∈K ′

R(a)

f̃(e) ≤ 1

|E|
∑

e∈E

f(e) + CG||f ||2
∑R

r=0 |A′
r(a)|εrβ

r

∑R
r=0 |A′

r(a)|
. (3.23)

We are left to show that

ER =

∑R
r=0 |A′

r(a)|εrβ
r

∑R
r=0 |A′

r(a)|
(3.24)

goes to zero as R → ∞. Use |A′
r(a)| = qr, |εr| ≤ 1 and the geometric series formula

∑R
r=0 x

r = 1−xR+1

1−x
to obtain

|ER| ≤
∑R

r=0 q
rβr

∑R
r=0 q

r
=

1−(qβ)R+1

1−qβ

1−qR+1

1−q

=
1 − q

1 − qβ
· 1 − (qβ)R+1

1 − qR+1
. (3.25)

Now use the same trick from equations 2.31 and 2.32 to obtain

|ER| <
1 − q

1 − qβ
βR+1 =

qβ − β

qβ − 1
βR (3.26)

which goes to zero as R goes to infinity, and gives us the required convergence rate.

�

Again, we use the fact that a ball is made up of several sectors to obtain:

Corollary 3.21 Let G, f , CG and βmax be as in theorem 3.9. Define

C ′
G =

qβ − β

qβ − 1
CG (3.27)

as in theorem 3.20. Then for an edge ball B′
R(v) of radius R on G̃ we have

∣∣∣ 1

|B′
R(v)|

∑

x∈B′

R(v)

f̃(e) − 1

|E|
∑

e∈E

f(e)
∣∣∣ ≤ C ′

G||f ||2βR. (3.28)

We do the same for semi-regular graphs.

Theorem 3.22 Let G, f , CG and βmax be as in theorem 3.10. Define

C ′
G =

pqβ2 − β2

pqβ2 − 1

(
p
√
pq + pq

)
CG. (3.29)



3.6. Applications 52

Then for an edge sector K ′
R(e) of radius R ≥ 1 on G̃ we have

∣∣∣ 1

|K ′
R(a)|

∑

x∈K ′

R(a)

f̃(e) − 1

|E|
∑

e∈E

f(e)
∣∣∣ ≤ C ′

G||f ||2βR. (3.30)

Proof The proof is identical to that of theorem 3.20 up to the calculation of ER.

In this case we have |A′
r(a)| = (pq)r/2 for even r and |A′

r(a)| = q(pq)r/2 for odd r.

This means that
R∑

r=0

|A′
r(a)| =

[R/2]∑

r=0

(pq)r +

[(R−1)/2]∑

r=0

q(pq)r (3.31)

where [x] is the Gauss bracket, which means that we take the integer part of this

rational number, so for example [2] = 2 and [5/2] = 2. Using this we now have

|ER| ≤
∑R

r=0 |A′
r(a)|βr

∑R
r=0 |A′

r(a)|
=

∑[R/2]
r=0 (pq)rβ2r +

∑[(R−1)/2]
r=0 q(pq)rβ2r+1

∑[R/2]
r=0 (pq)r +

∑[(R−1)/2]
r=0 q(pq)r

. (3.32)

Apply the geometric series formula quoted in the proof of theorem 3.20 to each of

the finite sums in this equation to get

|ER| ≤
(pqβ2)[R/2]+1−1

pqβ2−1
+ qβ (pqβ2)[(R−1)/2]+1−1

pqβ2−1

(pq)[R/2]+1−1
pq−1

+ q (pq)[(R−1)/2]+1−1
pq−1

(3.33)

which we rearrange and write as

|ER| ≤
pq − 1

pqβ2 − 1
· (pqβ2)[R/2]+1 − 1 + qβ(pqβ2)[(R−1)/2]+1 − qβ

(pq)[R/2]+1 − 1 + q(pq)[(R−1)/2]+1 − q
(3.34)

≤ pq − 1

pqβ2 − 1
· (pqβ2)R/2+1 − 1 + qβ(pqβ2)(R−1)/2+1 − qβ

(pq)(R−1)/2 − 1 + q(pq)R/2−1 − q
(3.35)

=
pq − 1

pqβ2 − 1
·
(
pqβ2 + qβ

√
pqβ2

)
(pqβ2)R/2 − 1 − qβ

(
√
pq + q)(pq)(R−1)/2 − 1 − q

. (3.36)

Note that for R ≥ 1 we have q + 1 <
√
pq(pq)(R−1)/2 which implies from equation

(3.36) that

|ER| ≤
pq − 1

pqβ2 − 1
·
(
pqβ2 + qβ

√
pqβ2

)
(pqβ2)R/2 − 1 − qβ

(
√
pq + q)(pq)(R−1)/2 −√

pq(pq)(R−1)/2
(3.37)

≤ pq − 1

pqβ2 − 1
·
(
pqβ2 + qβ

√
pqβ2

)
(pqβ2)R/2

q(pq)(R−1)/2
(3.38)

=
pq − 1

pqβ2 − 1
·
(
pβ2 + β

√
pqβ2

)√
pqβ2

(pqβ2)(R−1)/2

(pq)(R−1)/2
(3.39)

=
pq − 1

pqβ2 − 1
·
(
pβ2 + β

√
pqβ2

)
· √pq · βR (3.40)

=
pq − 1

pqβ2 − 1
·
(
p
√
pq + pq

)
· βR+2 (3.41)

which gives the result. �
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Corollary 3.23 Let G, f , C ′
G and βmax be as in theorem 3.22. Then for an edge

ball B′
R(v) of radius R on G̃ we have

∣∣∣ 1

|B′
R(v)|

∑

e∈B′

R(v)

f̃(e) − 1

|E|
∑

e∈E

f(e)
∣∣∣ ≤ C ′

G||f ||2βR. (3.42)

This follows from theorem 3.22 in the same way as corollary 3.21 follows from the-

orem 3.20, using equation (3.18).



Chapter 4

Lattice Point Problems

4.1 Motivation

In 1956 Heinz Huber [34] considered the following problem on the hyperbolic plane

H. Consider a strictly hyperbolic subgroup Γ of automorphisms on H. We can then

identify points of H which are equivalent with respect to Γ to obtain an orientable

Riemannian manifold of constant curvature −1, which we call H/Γ = M . Further-

more, if we choose Γ such that M is compact, we can define the genus p of the group

Γ to be the topological genus of the closed manifold M . Now take a non-trivial class

K of conjugate elements in Γ. Let ρ(z1, z2) be the usual hyperbolic distance between

two points z1, z2 ∈ H. Now count

NK(z, t) = #{T ∈ K : ρ(z, T z) ≤ t},

which is the number of points inside a ball of radius t, that are the image of z under

an element T ∈ K. Huber describes the asymptotic behaviour of this number in the

following theorem.

Theorem 4.1 Let Γ be a hyperbolic group of automorphisms on H so that the man-

ifold M = H/Γ is compact with genus p. Define NK(z, t) as above. Then

NK(z, t) ∼ 1

4π(p− 1)
· 1

ν(K)
· µ(K)

sinh(µ(K/2))
· et/2,

where ν(K) and µ(K) are constants defined by K. By the notation NK(z, t) ∼ Cet/2

we mean that NK(z, t)e−t/2 → C as n goes to infinity.

54
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The term µ(T ) is defined as the displacement length of a translation T , and as

µ(V −1TV ) = µ(T ) for all T, V ∈ Γ this is constant for all T ∈ K. Hence we can

use µ(T ) = µ(K) as a constant in the theorem. The term ν(T ) is defined as the

multiplicity of a translation T . We can write any element T ∈ Γ as a power T = P k

of some unique primitive element P of Γ, where k > 0. This number k is defined to

be the multiplicity ν(T ) of T . Again, this number is constant for all T ∈ K so we

can use ν(K) as a constant in the theorem. We will explain both constants in more

detail in the next section.

In this chapter, we will use the analogy between the hyperbolic plane and the

regular tree described in section 1.5 to prove a similar result on the regular tree.

We will see that this result (theorem 4.10) can be proved using similar methods to

those used by Huber. In particular, Huber uses a Dirichlet series

GK(z, s) =
∑

T∈K
(cosh(ρ(z, T z)) − 1)−s

to which we find a discrete analogue. He uses a Tauberian theorem in the final

stages of his proof, and although we cannot use the exact same theorem, we can use

a different Tauberian theorem to finish our proof (see section 4.3.5).

4.2 Main Theorem

4.2.1 Definitions

Let X be a regular tree of degree q + 1 ≥ 3 with vertex set V (X). Let T : X → X

be a non-trivial hyperbolic automorphism or translation on X, which we defined

in section 1.2 as an element in Aut(X) with no fixed vertices or edges (see for

example [24, Chapter 1]). Let Γ be a group of translations in Aut(X) such that

G = X/Γ is a finite, simple, non-bipartite, (q + 1)-regular graph. We will treat the

bipartite case separately in section 4.4. Let K be the conjugacy class of a non-trivial

element T0 ∈ Γ.

Definition 4.2 For t ∈ R, x ∈ V (X), we define

NK(x, t) = #
{
T ∈ K : d(x, Tx) ≤ t

}
. (4.1)
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This is the number of elements in the conjugacy class that map a given vertex x to

a vertex at distance at most t away from x.

If we think of the set {Tx : T ∈ K} as a set of points making up an infinite lattice

on X, then NK(x, t) counts the number of lattice points in a ball of radius t centred

at x. In this chapter we study the limiting behaviour of the counting function in

equation (4.1) for increasing t. To do this we define a function GK : V (X)×C → C

for fixed K as follows:

GK(x, s) =
∑

T∈K
q−d(x,Tx)s (4.2)

Lemma 4.3 The function GK(x, s) as defined above (4.2) is absolutely convergent

for Re(s) > 1.

Proof Note
∑

T∈K
q−d(x,Tx)s <

∑

y∈V (X)

q−d(x,y)s

as {Tx : T ∈ K} ⊂ V (X). We can rewrite the sum on the right hand side in terms

of spheres Sn(x) = {y ∈ V (X) : d(x, y) = n} as
∑∞

n=0 |Sn(x)|q−ns. Observe that

|Sn(x)| = (q + 1)qn−1 for n ≥ 1 and use this to find

∞∑

n=0

|Sn(x)|q−ns ≤
∞∑

n=0

2qnq−ns = 2
∞∑

n=0

qn(1−s).

This sum converges for Re(s) > 1 by the geometric series formula. �

In fact even more is true. In due course (see equation (4.40)) we will see that GK

has a meromorphic extension to C, which is holomorphic for Re(s) > 1
2
. For the

time being, however, we shall use the above lemma to allow us to manipulate the

function GK(x, s) into something we can explicitly calculate. This will be a crucial

part of the proof of the main theorem below.

Definition 4.4 The axis a(T ) of a non-trivial translation T on V (X) is the unique

geodesic which is mapped to itself by T .

Definition 4.5 The displacement length µ(T ) of T is given by

µ(T ) = min
x∈V (X)

d(x, Tx).
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Note that µ(T ) ∈ N and µ(T ) ≥ 1 for non-trivial T . It is easy to see that the

minimum is attained exactly for those vertices that lie in a(T ), as the vertices in

a(T ) are shifted along the axis by µ(T ) vertices under the action of T . Let δ(x, T )

be the distance from a point x to the axis of a translation T , that is

δ(x, T ) = min
y∈a(T )

d(x, y). (4.3)

We then observe

d(x, Tx) = µ(T ) + 2δ(x, T ). (4.4)

Definition 4.6 An element P ∈ Γ is called primitive if ∄ Q ∈ Γ and n > 1

such that P = Qn. For every non-trivial T ∈ Γ, we can find a unique primitive

P ∈ Γ so that we can write T = P k for some k ≥ 1, and we call this the standard

representation of T . Now write k = ν(T ) and call it the multiplicity of T .

Clearly a(T ) = a(P ), and µ(T ) = µ(P ) · ν(T ).

Lemma 4.7 For any P, V ∈ Γ, P is primitive iff V −1PV is primitive.

Proof Let P be primitive in Γ, and let P ∗ = V −1PV . Suppose P ∗ is not primi-

tive, so we can write P ∗ = Qk for some k > 1. Then P = V P ∗V −1 = V QkV −1 =

(V QV −1)k, which contradicts the assumption that P is primitive. Hence P is prim-

itive iff P ∗ is primitive. �

Lemma 4.8 µ(T ) is invariant under conjugation in Γ.

Proof Use the fact that V ∈ Γ is an isometry, a distance preserving map, to obtain

µ(V −1TV ) = min
x∈V (X)

d(x, V −1TV x) = min
x∈V (X)

d(V x, V V −1TV x) (4.5)

= min
y=V x∈V (X)

d(y, Ty) = min
y∈V (X)

d(y, Ty) = µ(T ). (4.6)

This means that for any T ∈ K we can write µ(T ) = µ(K). �

Lemma 4.9 ν(T ) is invariant under conjugation in Γ.

Proof Let T = P ν(T ). Then

V −1TV = V −1P ν(T )V =
(
V −1PV

)ν(T )
= (P ∗)ν(T ), (4.7)
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where we know P ∗ is primitive by lemma 4.7. This holds for all V ∈ Γ, hence the

multiplicity of an element is preserved under conjugation, which means we can write

ν(T ) = ν(K) for all T ∈ K. �

4.2.2 Statement of the Theorem

We can now state our main theorem of this chapter.

Theorem 4.10 Let NK(x, n) be defined as in equation (4.1) for positive integers n.

Then as n→ ∞, where n− µ(K) is even,

NK(x, n) ∼ q
n−µ(K)

2
µ(K)

ν(K)|G|
with µ(K) and ν(K) as defined above.

We need n−µ(K) to be an even integer in the theorem for the following reason.

Equation (4.4) implies that we can rewrite the counting function as

NK(x, n) = #
{
T ∈ K : δ(x, T ) ≤ n− µ(K)

2

}
. (4.8)

Note that δ(x, T ) ∈ N, so the counting function can only change at integer values

of n−µ(K)
2

, that is, when n− µ(K) is even.

4.3 Proof of Main Theorem

4.3.1 Background

We noted before that we are dealing here with a type of problem that counts the

number of lattice points on a graph inside an increasing ball. This type of problem

is often solved using a discrete version of Selberg’s Trace Formula on a regular tree

(see [50] and for the discrete version [1], [10], [57] or [59]). We will discuss the trace

formula and its applications in chapter 5. In this particular case, however, we are

unable to use the trace formula for reasons outlined below.

The trace formula is obtained using a Γ-invariant function G(x, y) (a so-called

point-pair invariant) such that

G(γx, y) = G(x, γy) = G(x, y) ∀ γ ∈ Γ (4.9)
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(see [50] or [57]). A natural choice for us to use would be

GK(x, y, s) =
∑

T∈K
q−d(x,Ty)s (4.10)

but one easily checks that this function does not satisfy equation (4.9) for arbitrary

x, y. Instead, we follow in our proof the method of Huber [34] using the function

defined in equation (4.2), which satisfies GK(x, s) = GK(γx, s) for all γ ∈ Γ.

4.3.2 Manipulation of GK(x, s)

Recall from equation (1.1) in section 1.3.1 that we defined the Laplacian on a (q+1)-

regular graph G by

LGf(v) =
1

q + 1

∑

v∼w

f(w).

We also saw that if |V (G)| = N + 1 we have an orthonormal basis {ϕi}N
i=0 of

eigenfunctions of the Laplacian on G with eigenvalues 1 = λ0 > λ1 ≥ . . . ≥ λN ≥
−1. As before, lift the eigenfunctions to the universal cover X to obtain a basis

{ϕ̃i = ϕi ◦ π}N
i=0 of eigenfunctions of the Laplacian for functions on X which are

Γ-invariant.

We defined in equation (4.2) a function GK(x, s) on X which satisfies GK(x, s) =

GK(γx, s) for all γ ∈ Γ, so it is Γ-invariant. Therefore we can view it as a function

on V (G)×C, where G is the quotient X/Γ. We call this function gK(x, s), and write

gK(x, s) =
∑N

i=0 Fi(s)ϕi(x), with Fourier coefficients Fi(s) given by

Fi(s) =
∑

x∈V (G)

gK(x, s)ϕi(x).

Now ‘lift’ gK(x, s) back up to X and obtain

GK(x, s) =
N∑

i=0

Fi(s)ϕ̃i(x) (4.11)

where

Fi(s) =
∑

x∈F

GK(x, s)ϕ̃i(x) (4.12)

for a fundamental domain F ⊂ V (X) of Γ on V (X). Note that there is a canonical

one-to-one correspondence between F and V (G).
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Choose and fix a translation T ∗ ∈ K with the standard representation T ∗ = P ν(K)

for some primitive P . Let H = 〈P 〉 be the subgroup of Γ generated by P . Then we

can write Γ as a disjoint union of right cosets of H , i.e.

Γ =

∞⋃

n=1

HAn (4.13)

with a fixed set {An}∞n=1 ⊂ Γ. The elements A−1
n T ∗An = Tn are pairwise disjoint

and run through all of K as n = 1, 2, . . . ,∞, and we define

F∗ =
∞⋃

n=1

An(F) (4.14)

where An(F) = {Anx : x ∈ F}.
Recall our definition of a fundamental domain in section 1.5. We now make this

definition more specific. For a group Γ acting on a tree X, a fundamental domain

F must satisfy the following two conditions:

• F ∩ gF = ∅ for any g ∈ Γ which is not the identity element

•
⋃

g∈Γ

gF = X

Lemma 4.11 F∗ is a fundamental domain of the cyclic group H.

Proof F is a fundamental domain for the group Γ, which means it satisfies the

two conditions above. We need to show the same conditions hold for the domain

F∗ =
⋃∞

n=1AnF and the group H = 〈P 〉.
To show F∗ ∩ hF∗ = ∅, that is,

( ∞⋃

n=1

AnF

)
∩
( ∞⋃

n=1

hAnF

)
= ∅ (4.15)

for all h ∈ H not equal to the identity, it is sufficient to prove AnF ∩ hAmF = ∅,
which is equivalent to F ∩ A−1

n hAmF = ∅. F is a fundamental domain for Γ, so

for this to hold we need A−1
n hAm 6= e where e is the identity element in Γ. Now

A−1
n hAm = e iff h = AnA

−1
m ∈ H , but this implies An ∈ HAm so by definition we

must have m = n and hence h = e, which we excluded. This means equation 4.15,

and hence the first condition, is satisfied.
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For the second condition, we need to show ∪h∈HhF
∗ = X. Note that

⋃

h∈H

hF∗ =
⋃

h∈H

∞⋃

n=1

hAnF =
⋃

g∈Γ

gF = X

using equation (4.13) and the fact that F is a fundamental domain for Γ. This shows

the second condition is also satisfied, hence F∗ is a fundamental domain of H . �

Lemma 4.12 The Fourier coefficients Fi(s) are given by

Fi(s) = q−sµ(K)
∑

x∈F∗

q−2sδ(x,P )ϕ̃i(x).

Proof Let k = ν(K). Use equations (4.2) and (4.12), and the definition of Tn

above to get

Fi(s) =
∑

x∈F

GK(x, s)ϕ̃i(x) =
∑

x∈F

∑

T∈K
q−d(x,Tx)sϕ̃i(x)

=
∑

x∈F

∞∑

n=1

q−d(x,Tnx)sϕ̃i(x)

=
∑

x∈F

∞∑

n=1

q−d(x,A−1
n P kAnx)sϕ̃i(x). (4.16)

Now use the fact that the distance function d(x, y) is an isometry, and change the

order of summation to obtain

Fi(s) =
∑

x∈F

∞∑

n=1

q−d(Anx,P kAnx)sϕ̃i(x) =

∞∑

n=1

∑

x∈An(F)

q−d(x,P kx)sϕ̃i(x). (4.17)

From equation (4.14) we then obtain

Fi(s) =
∑

x∈F∗

q−d(x,P kx)sϕ̃i(x) = q−skµ(P )
∑

x∈F∗

q−2sδ(x,P )ϕ̃i(x), (4.18)

where the last equality is due to equation (4.4). Use kµ(P ) = µ(K) to obtain the

final result. �

4.3.3 Transfer the Functions onto the Quotient Graph

Note that δ(x, P ) = δ(P nx, P ) for any integer n, as the axes of P and P n coincide,

and ϕ̃i(x) = ϕ̃i(P
nx) as P n ∈ Γ and ϕ̃i(x) is Γ-invariant. This means the terms in
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the sum in equation (4.18) are invariant under H = 〈P 〉. Hence we can replace F∗

in the sum of (4.18) by any fundamental domain of H .

Take a segment of a(P ) of length µ(P ) and all branches emanating from the

vertices in this segment away from the axis. This means we exclude the two branches

that emanate from the vertices at the ends of the segment in the direction of the

axis. The vertices in the set we have just defined clearly form a fundamental domain

of H , which we call FP . Using the fact we can interchange fundamental domains

of H shown above, we now sum over the vertices in FP instead of F∗ in equation

(4.18).

a(P )

a(P )

X

X

v1

v1v1

v1 v2

v2v2

v2v3

v3

v3

v3

Figure 4.1: A segment of a(P ), and the resulting fundamental domain FP .

a(P ) X/H
v1 v1

v2

v2

v3

v3

Figure 4.2: How to deduce the structure of X/H from FP .

The structure of the quotient graph X/H can easily be deduced from FP . Look

for example at figure 4.1 and 4.2, where µ(P ) = 3. The vertices in FP are bold in
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figure 4.1, and in figure 4.2 we show how to ‘glue’ the edges together to obtain X/H.

We now transfer the functions ϕ̃i from FP to functions on the vertices of X/H,

and to do this we use the obvious one-to-one correspondence between the vertex

sets FP and V (X/H). Note that the edge relations are preserved, and call the new

function ϕi : V (X/H) → R for i = 0, . . . , N .

Lemma 4.13 The functions ϕi are eigenfunctions of the Laplacian on X/H.

Proof For each v ∈ V (X/H), the set of vertices at distance 1 from v is preserved

when we glue together FP to obtain X/H. Hence we can use the same argument as

in the proof of lemma 1.10 to say

LFf(v) =
1

d(v)

∑

d(v,w)=1

v,w∈F

f(w) =
1

d(v)

∑

d(v,w)=1

v,w∈X/H

f(w) = LX/Hf(v) (4.19)

Again, we see that the eigenvalue λi is preserved. �

Using lemma 4.13 and equation (4.18) we now obtain

Fi(s) = q−sµ(K)
∑

x∈V (X/H)

q−2sδ′(x,P )ϕi(x) (4.20)

where δ′(x, P ) is the distance from the vertex x to the central circuit in X/H, which

is exactly equal to δ(x, P ) on X. For example, the triangle in figure 4.2 is the central

circuit.

4.3.4 Explicit Calculation of GK(x, s)

Definition 4.14 We define levels in X/H as follows:

Ln = Ln(X/H) = {x ∈ V (X/H) : δ′(x, P ) = n} for n ≥ 0 (4.21)

The radial average of a function f : V (X/H) → R with respect to these levels is

1

|Ln|
∑

x∈Ln

f(x) (4.22)

Lemma 4.15 The radial average of ϕi(x) gives an eigenfunction of the Laplacian

on X/H with eigenvalue λi, which we call Φi(x).
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Proof Use

Φi(x) =
1

|Lδ′(x,P )|
∑

y∈Lδ′(x,P )

ϕi(y)

and the definition of the Laplacian in equation (1.1), observing d(x) = q + 1, to

obtain

LX/HΦi(x) =
1

q + 1

∑

x∼y

Φi(y)

=
1

q + 1

∑

x∼y

( 1

|Lδ′(x,P )|
∑

w∈Lδ′(x,P )

ϕi(w)
)

=
1

q + 1

1

|Lδ′(x,P )|
( ∑

w∈Lδ′(x,P )−1

ϕi(x) +
∑

z∈Lδ′(x,P )+1

ϕi(z)
)

=
1

|Lδ′(x,P )|
∑

w∈Lδ′(x,P )

( 1

q + 1

∑

y∼w

ϕi(y)
)

=
1

|Lδ′(x,P )|
∑

w∈Lδ′(x,P )

λiϕi(x) = λiΦi(x).

�

Clearly Φi(x) = Φi(y) whenever δ′(x, P ) = δ′(y, P ) = n, so we shall write Φi(n)

from now on, where n ∈ Z≥0.

Note that

V (X/H) =

∞⋃

n=0

Ln, and (4.23)

∑

x∈Ln

ϕi(x) = |Ln|Φi(n). (4.24)

Use these facts and equation (4.20) to obtain

Fi(s) = q−sµ(K)
∞∑

n=0

|Ln|q−2snΦi(n). (4.25)

Lemma 4.16 If λi 6= ±2
√

q

q+1
, there are constants α±

i , u±i (see equations (4.30) and

(4.32) below) depending only on ϕi, λi and q such that

Fi(s) = q−sµ(K)µ(K)

ν(K)

q − 1

q

(u+
i + u−i
q − 1

+
u+

i

1 − α+
i q

1−2s
+

u−i
1 − α−

i q
1−2s

)
. (4.26)

In the case that λi = ±2
√

q

q+1
, we obtain

Fi(s) =
1

q
q−sµ(K)µ(K)

ν(K)
Φi(0) + q−sµ(K)µ(K)

ν(K)

q − 1

q

Φi(0)

1 ∓ q1/2−2s
(4.27)

+ q−sµ(K)µ(K)

ν(K)

q − 1

q
Φi(0)

(√q − 1
√
q + 1

)±1 ±q1/2−2s

(1 ∓ q1/2−2s)2
.
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Proof Assume first that λi 6= ±2
√

q

q+1
. By lemma 4.15 we can use LX/HΦi(n) =

λiΦi(n) to find the recursion relation

Φi(n+ 1) − q + 1

q
λiΦi(n) +

1

q
Φi(n− 1) = 0 for n ≥ 1 (4.28)

and initial conditions Φi(0) and Φi(1) determined by

(q + 1)λiΦi(0) = (q − 1)Φi(1) + 2Φi(0). (4.29)

Assume Φi(n) = αn
i and use equation (4.28) to find two possibilities for αi, namely

α±
i =

q + 1

2q
λi ±

√
(q + 1)2λi

2 − 4q

2q
. (4.30)

This means we have a general solution

Φi(n) = u+
i (α+

i )n + u−i (α−
i )n (4.31)

for constants u±i , which we can determine from equation (4.29) and the general

solution for n = 0, 1 to be

u±i =

(
1

2
± (q + 1)2λi − 4q

2(q − 1)
√

(q + 1)2λi
2 − 4q

)
· Φi(0). (4.32)

Observe that α+
i 6= α−

i as the square root is non-zero due to the exclusion of λi =

±2
√

q

q+1
. Use equation (4.31) in equation (4.25) to get

Fi(s) = q−sµ(K)

∞∑

n=0

|Ln|q−2sn
(
u+

i (α+
i )n + u−i (α−

i )n
)
. (4.33)

Note that |L0| = µ(P ) = µ(K)
ν(K)

, and |Ln| = qn−1(q− 1)µ(K)
ν(K)

for n ≥ 1, and use this to

obtain

Fi(s) = q−sµ(K)µ(K)

ν(K)

(
u+

i + u−i
)

+ q−sµ(K)µ(K)

ν(K)

q − 1

q

∞∑

n=1

qnq−2sn
(
u+

i (α+
i )n + u−i (α−

i )n
)

(4.34)

=
1

q
q−sµ(K)µ(K)

ν(K)

(
u+

i + u−i
)

+ q−sµ(K)µ(K)

ν(K)

q − 1

q

∞∑

n=0

q(1−2s)n
(
u+

i (α+
i )n + u−i (α−

i )n
)
. (4.35)



4.3. Proof of Main Theorem 66

We now split the infinite sum into two parts, to each of which we apply the geometric

series formula
∑∞

r=0 x
r = 1

1−x
(|x| < 1) which results in

Fi(s) =
1

q
q−sµ(K)µ(K)

ν(K)

(
u+

i + u−i
)

+ q−sµ(K)µ(K)

ν(K)

q − 1

q

∞∑

n=0

u+
i (q(1−2s)α+

i )n

+ q−sµ(K)µ(K)

ν(K)

q − 1

q

∞∑

n=0

u−i (q(1−2s)α−
i )n (4.36)

=
1

q
q−sµ(K)µ(K)

ν(K)

(
u+

i + u−i
)

+ q−sµ(K)µ(K)

ν(K)

q − 1

q

u+
i

1 − α+
i q

1−2s

+ q−sµ(K)µ(K)

ν(K)

q − 1

q

u−i
1 − α−

i q
1−2s

. (4.37)

Observe that for the infinite sums to converge, we need |α±
i q

1−2s| < 1. For

|λi| < 1 it is easy to check that |α±
i | < 1. Hence there is a real number σ0 <

1
2

so

that the sums obtained from equation (4.25) converge for Re(s) > σ0. As G is non-

bipartite, the eigenvalue λ = −1 does not occur, however for the eigenvalue λ0 = 1

we have α+
0 = 1 and the infinite sum for F0(s) will only converge for Re(s) > 1

2
.

Now let λi = ±2
√

q

q+1
. The square root in equation (4.30) is zero iff we have

λi = ±2
√

q

q+1
, which implies α+

i = α−
i = αi = ± 1√

q
. In this case

Φi(n) = uiα
n
i + vinα

n
i

for some constants ui and vi. We calculate the constants using the initial conditions

and obtain

Φi(n) =

(
1 + n

(√
q − 1

√
q + 1

)±1
)

Φi(0)αn
i for λi = ± 2

√
q

q + 1
. (4.38)

Using this in equation (4.25) we obtain

Fi(s) =q−sµ(K)

∞∑

n=0

|Ln|q−2sn

(
1 + n

(√
q − 1

√
q + 1

)±1
)

Φi(0)αn
i

=
1

q
q−sµ(K)µ(K)

ν(K)
Φi(0) + q−sµ(K)µ(K)

ν(K)

q − 1

q

∞∑

n=0

qnq−2snΦi(0)
(
± 1√

q

)n

+ q−sµ(K)µ(K)

ν(K)

q − 1

q

∞∑

n=0

qnq−2snn

(√
q − 1

√
q + 1

)±1

Φi(0)
(
± 1√

q

)n

. (4.39)

Grouping together the terms in each sum with a power n, and using the geometric

series formula we used above and the series
∑∞

i=1 ix
i = x

(1−x)2
, we obtain the required



4.3. Proof of Main Theorem 67

expression from (4.25). For the convergence of the two infinite sums obtained here

we require |q1/2−2s| < 1 which implies Re(s) > 1
4
, which is consistent with the general

case above. �

Calculating α−
0 and u±0 using ϕ̃0(x) = 1√

|G|
∀ x ∈ V (G) we obtain the explicit

formula

GK(x, s) =
µ(K)

ν(K)|G|qsµ(K)+1

(
1 +

q − 1

1 − q1−2s

)
+

N∑

i=1

Fi(s)ϕ̃i(x). (4.40)

This is a meromorphic extension (which is holomorphic for Re(s) > 1
2
) to the com-

plex plane of GK(x, s), which was defined in equation (4.2) by

GK(x, s) =
∑

T∈K
q−d(x,Tx)s.

4.3.5 Tauberian Theorem

To finish the proof of theorem 4.10, we use a refined version of the Tauberian theorem

by Wiener-Ikehara from [26] (see also [39, chapter III theorem 5.4]), which is a

refinement of the Tauberian theorem in [60]. This theorem requires a function

f(s) which converges for Re(s) > 1 and has a simple pole at s = 1. We choose

f(s) = GK(x, s
2
), which from equation (4.40) has a pole at s = 1. The residue of

f(s) at s = 1 is

Res(f(s), 1) = lim
s→1

(s− 1)GK(x,
s

2
) =

µ(K)(q − 1)

ν(K)|G|q(µ(K)/2)+1

1

ln q
:= A. (4.41)

That means f(s) = A
s−1

+g(s) for some function g(s) which is analytic for Re(s) > 1.

Check that g(s) is analytic for Re(s) ց 1 when |Im(s)| < 2π
ln q

. Indeed, g(s) has poles

wherever f(s) does, except we have removed the pole at s = 1. As f(s) has poles

on the line l = {s : Re(s) = 1} at s = 1 + ki2πm
ln q

for any m ∈ Z, g(s) has no poles

on l for |Im(s)| < 2π
ln q

. Note also A > 0.

Recall NK(x, t) = #{T ∈ K : d(x, Tx) ≤ t} from definition 4.2. For fixed

x ∈ V (X), let

S(t) = NK(x, 2t) = #{T ∈ K : d(x, Tx) ≤ 2t}.

This is a non-decreasing step-function, which vanishes for t < 0.

We now have all the ingredients we need to apply the Tauberian theorem, which

in our notation reads as follows.
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Theorem 4.17 Let S(t) vanish for t < 0, be non-decreasing, continuous from the

right and such that

f(s) =

∫ ∞

0

q−stdS(t), s = σ1 + iσ2

exists for Re(s) = σ1 > 1. Suppose that for some number ρ > 0, there is a constant

A ≥ 0 such that the analytic function

g(s) = f(s) − A

s− 1
, s = σ1 + iσ2, σ1 > 1

converges to a boundary function g(1 + iσ2) in L1(−ρ < σ2 < ρ) as σ1 ց 1. Let τ

be the supremum of all possible numbers ρ. Then

2π/τ

e2π/τ − 1
A ≤ lim inf

t→∞
q−tS(t) ≤ lim sup

t→∞
q−tS(t) ≤ 2π/τ

1 − e−2π/τ
A.

In our case τ = 2π/ ln q. Using this and equation (4.41) we obtain

1

q

µ(K)

ν(K)|G|qµ(K)/2
≤ lim inf

t→∞
q−tS(t) ≤ lim sup

t→∞
q−tS(t) ≤ µ(K)

ν(K)|G|qµ(K)/2
. (4.42)

These estimates no longer depend on the choice of x.

We noticed that as a consequence of (4.4) when µ(K) is even, S(t) will jump only

at integer values of t (the case where µ(K) is odd works similarly, except jumps occur

only when t+ 1
2

is an integer). In this (even) case, writing m = [t] or equivalently

t = m+ ε with m ∈ Z and ε ∈ [0, 1) (4.43)

we have

S(t) = S(m) ∀ ε ∈ [0, 1) (4.44)

Letting

a =
µ(K)

ν(K)|G|qµ(K)/2
(4.45)

we obtain the following estimates for the lim inf and lim sup respectively:

a

q
≤ lim inf

m→∞,m∈N

q−(m+ε)S(m) = q−ε lim inf
m→∞,m∈N

q−mS(m) ≤ a (4.46)

a

q
≤ lim sup

m→∞,m∈N

q−(m+ε)S(m) = q−ε lim sup
m→∞,m∈N

q−mS(m) ≤ a (4.47)
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As this must hold for all ε ∈ [0, 1), we obtain

a

q
≤ q−1 lim inf

m→∞,m∈N

S(m) ≤ lim inf
m→∞,m∈N

S(m) ≤ a

which implies

lim inf
m→∞,m∈N

S(m) = a

Similarly we obtain

lim sup
m→∞,m∈N

S(m) = a

and hence

lim
m→∞,m∈N

S(m) = a

This means that for large integers n = 2m we have an approximation of S(m) and

hence NK(x, n) as follows

S(m) ∼ qm−µ(K)
2

µ(K)

ν(K)|G| NK(x, n) = S(
n

2
) ∼ q

n−µ(K)
2

µ(K)

ν(K)|G|

where from the definition of m we require n−µ(K) to be even (because when µ(K)

is odd, we take m ∈ 1
2
+ Z in equation (4.43)). Using equation (4.44) it is clear that

for any real t such that µ(K) + 2r ≤ t < µ(K) + 2r+ 2 for a non-negative integer r,

we have NK(x, t) = NK(x, µ(K)+2r). This completes the proof of the main theorem

4.10 of this chapter.

4.4 Bipartite Graphs

We finish this chapter by discussing why we required that G was non-bipartite. Most

of the proof above can be used to show a weaker result, but theorem 4.10 will not

hold for bipartite G.

The method of proof works for the bipartite case up to lemma 4.16, where we

have to consider the effects on GK(x, s) of λN = −1, the eigenvalue of the Laplacian
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which occurs exactly when G is bipartite. We can easily calculate that

α+
N =

−1

q
,

α−
N = − 1,

u+
N =

−4q

(q − 1)2
ΦN(0),

u−N =
(q + 1)2

(q − 1)2
ΦN(0),

and obtain

FN(s) =
1

q
q−sµ(K) µ(K)

ν(K)

(
u+

i + u−i

)

+ q−sµ(K) µ(K)

ν(K)

q − 1

q

−4q

(q − 1)2

1

1 + q−2s

+ q−sµ(K) µ(K)

ν(K)

q − 1

q

(q + 1)2

(q − 1)2

1

1 + q1−2s
.

Due to α−
N = −1 (the last line of the equation above), the series for FN(s) requires

Re(s) > 1
2

to converge, and we obtain

GK(x, s) =
µ(K)

ν(K)|G|qsµ(K)+1

(
1 +

q − 1

1 − q1−2s

)

+
µ(K)

ν(K)|G|qsµ(K)+1

(
1 +

q − 1

1 + q1−2s

)
+ F(x, s)

for some function F(x, s) which is analytic for Re(s) ≥ 1
2
.

As before, the residue of f(s) = GK(x, s
2
) at s = 1 equals A (from equation

(4.41)), but now the function g(s) = f(s) − A
s−1

only converges to a boundary

function for |Im(s)| < π
ln q

= τ . The Tauberian theorem can still be applied, but

only shows

1

q2

2q

q + 1

µ(K)

ν(K)|G|qµ(K)/2
≤ lim inf

t→∞
q−tS(t)

≤ lim sup
t→∞

q−tS(t) ≤ 2q

q + 1

µ(K)

ν(K)|G|qµ(K)/2
.

The difference between this estimate and that in equation (4.42) is that the left

and right estimates differ by a factor q2 instead of the factor q obtained in the non-

bipartite case. This means it is no longer possible to deduce a precise limit from the
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estimates. All we can say here is

1

q2

2q

q + 1

µ(K)

ν(K)|G|qµ(K)/2
≤ lim inf

t→∞
q−t/2 NK(x, t)

≤ lim sup
t→∞

q−t/2 NK(x, t) ≤ 2q

q + 1

µ(K)

ν(K)|G|qµ(K)/2
.

Note that S(t) can jump at any integer value t as µ(K) is always even for a

bipartite graph. This does not, however, help us find a better estimate for NK(x, t).

To solve this we would have to investigate the possibility of proving this theorem in

a different way, but this is beyond the scope of this thesis.



Chapter 5

Trace Formulas and Applications

We start this chapter with a short survey of counting problems we have come across

in the literature which are relevant to our research. Some of the proofs involve

zeta functions, namely the Riemann zeta function and its geometric analogue the

Selberg zeta function. Later proofs involve the Selberg Trace Formula, which is

connected to the Selberg zeta function, and the discrete analogue of the Selberg

Trace Formula, namely Ahumada’s Trace Formula. Both these trace formulas will

be discussed in later sections (sections 5.3 and 5.2 respectively). In the final two

sections of this chapter we will discuss an application of the trace formulas and other

related problems.

5.1 Counting Problems

Historically, the Prime Number Theorem is the first counting problem relevant to

our research. The setting may be far removed from that of counting paths on a

graph, but it turns out there are striking similarities. The Prime Number Theorem

states that the number of primes Π(N) less than or equal to the positive integer N

can be approximated by N/ logN , with relative error approaching zero as N goes

to infinity. It was first conjectured by A.–M. Legendre in 1796, and also studied

by C. F. Gauss, although he did not publish his results. Hadamard [29] and de la

Vallée–Poussin [58] subsequently proved the Prime Number Theorem independently,

both in 1896. In 1949 Selberg [49] and Erdös [23] both gave proofs for the result using

72
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only elementary methods. Improvements were also made on the original method of

proof, for example by Newman [43] in 1980. What all but the elementary proofs have

in common is that they rely on the Riemann zeta function [48] or, more specifically,

they rely on the distribution of its zeros.

A geometric analogue to the Riemann zeta function is the Selberg zeta function,

which is connected to the Selberg Trace Formula [50]. It can be used to calculate

the number of primitive oriented closed geodesics on a hyperbolic surface. This is

sometimes referred to as the Prime Number Theorem for compact Riemann surfaces,

taking primitive geodesics to be the ‘primes’ here. Simply stated, a geodesic is

primitive if it is not a power of another. The theorem, which we discuss in section

5.5.2, states that if Π(x) is the number of primitive oriented closed geodesics of

length at most ln x, then Π(x) approaches x/ ln x as x → ∞. It was originally

proved by Huber [35], and later by Hejhal [32] using Selberg’s work [50]. Hejhal

notes that Selberg wrote in [51, p179], without proof, that the zeta function could

be used to obtain information about the relevant counting function. Both this Prime

Number Theorem and the original Prime Number Theorem are explained very well

in a book by Buser [11, Chapter 9], to which we also refer the interested reader.

Finally, the trace formula most relevant to our work is Ahumada’s Trace Formula

for the regular tree [1], which is the discrete analogue of Selberg’s Trace Formula.

We shall derive it ourselves in section 5.2 following a method of proof similar to that

in chapter 4. See also for example [10], [57] or [59]. Our method is most similar to

that of Terras and Wallace [57], the only real difference being the notation. In the

same article, the authors use this discrete trace formula to prove a discrete version

of the Prime Number Theorem on the regular tree, which we will state in section

5.5.2.

5.2 Derivation of the Ahumada Trace Formula

5.2.1 Geometric Derivation

Let K : [0,∞) → C be a function which is ‘sufficiently decreasing’ (we will define

this condition shortly). We define a function k : G × G → C on the vertices of a
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finite, simple, regular, connected graph G with universal cover G̃ as follows

k(x, y) =
∑

γ∈Γ

K(d(x̃, γỹ)) (5.1)

where x̃, ỹ are some chosen fixed preimages of x, y under the projection map π. The

condition ‘sufficiently decreasing’ is then defined as the condition that the infinite

sum in equation (5.1) must converge.

Proposition 5.1 The definition of k(x, y) is independent of the choice of preimages

x̃, ỹ of x, y.

Proof Note that k(x, y) = k(ηx, y) for all η ∈ Γ, as we sum over all γ ∈ Γ in

equation (5.1), and the distance function d(x, y) is invariant under Γ. Similarly,

k(x, y) = k(x, ηy) for all η ∈ Γ, and we see that in fact k(x, y) = k(η1x, η2y) for all

η1, η2 ∈ Γ. Now as we choose x̃ ∈ π−1(x) = {γx̃ : γ ∈ Γ} and ỹ ∈ π−1(y) = {γỹ :

γ ∈ Γ}, the result follows. �

Let F = F(Γ) be a fundamental domain of Γ on G̃. Look at
∑

x∈G k(x, x), which

we can write as

∑

x∈G

k(x, x) =
∑

γ∈Γ

∑

x̃∈F

K(d(x̃, γx̃)) (5.2)

=|F| ·K(0) +
∑

γ∈Γ′

∑

x̃∈F

K(d(x̃, γx̃)) (5.3)

where Γ′ is Γ minus the identity element e. We want to simplify equation (5.3)

by writing it as a sum over conjugacy classes in Γ. Note that {e} is the trivial

conjugacy class, so the sum over elements in Γ′ is the sum over all elements in non-

trivial conjugacy classes. Every element in Γ′ belongs to exactly one equivalence

class [τ ] in the set Π of all non-trivial conjugacy classes in Γ, so we can rewrite the

sum in equation (5.3) as

∑

x∈G

k(x, x) = |F| ·K(0) +
∑

[τ ]∈Π

∑

γ∈[τ ]

∑

x̃∈F

K(d(x̃, γx̃)). (5.4)

In the next section we will simplify the sum in equation (5.4) from an algebraic

to a geometric form. To do this we will need the following lemma.
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Lemma 5.2 There is a one-to-one correspondence between elements [γ] ∈ Π and

oriented closed paths on G without backtracking, which arises from the projection

map π.

Proof Recall from lemma 4.8 that µ(γ) is invariant under conjugation, so µ(γ′) =

µ(γ) for all γ′ ∈ [γ] for any [γ] ∈ Π. It is easy to show, however, that the axis a(γ)

does vary under conjugation, namely by a(η−1γη) = η−1a(γ). The set of axes of all

translations in [γ] is thus given by Γa(γ). When this set is projected onto G = G̃/Γ

using the projection map π : G̃ → G defined in section 1.2, each axis is clearly

mapped to the same oriented closed path γ, where the orientation comes from the

direction of the translation γ along the axis.

Conversely, suppose we have an oriented closed path γ in G. We can choose any

point x ∈ V (G) on this path to be its base-point. Once we have chosen x̃ ∈ π−1(x),

there is a unique lift of γ to G̃. Extending this lift by letting γ be repeated infinitely

many times in each direction gives us a geodesic in G̃, which is the axis a(γ) of some

translation γ in G̃ in the direction given by the orientation of γ, and with translation

length µ(γ) equal to the length of the closed path γ. The set of translations obtained

by choosing all possible x̃ ∈ π−1(x) is Γa(γ), which is exactly the set of axes of the

conjugacy class [γ]. Note that the choices of the base-point x of γ and its lift x̃

along the axis a(γ) do not influence the set of geodesics obtained, so we truly have

a one-to-one correspondence between [γ] and γ. �

This lemma will allow us to replace the sum over all conjugacy classes in Π with

a sum over all oriented closed paths on G without backtracking.

5.2.2 Simplifying the Sum

To simplify the sum in equation (5.4) further, we now find a different way to write

[τ ]. Let Γτ = {η ∈ Γ : η−1τη = τ} be the centraliser of τ . Note that we can write Γ

as a disjoint union of cosets of Γτ , that is,

Γ =
∞⋃

i=0

Γτηi, (5.5)

where H = {ηi : i = 0, . . . ,∞} is a set consisting of one fixed representative for each

coset Γτηi. Clearly the choice of representatives is irrelevant. We use this to prove
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the following lemma.

Lemma 5.3 The conjugacy class [τ ] = {η−1τη : η ∈ Γ} can be written as {η−1
i τηi :

ηi ∈ H} with H defined as above. This gives a one-to-one correspondence between

elements in [τ ] and elements in Γτ\Γ, in fact the map M : H → [τ ] defined by

ηi 7→ η−1
i τηi is a bijection.

Proof Suppose we have ηi, ηj ∈ H such that η−1
i τηi = η−1

j τηj . This equation is

equivalent to ηjη
−1
i τηiη

−1
j = τ , which is true iff ηiη

−1
j ∈ Γτ . Now ηiη

−1
j ∈ Γτ iff

Γτηiη
−1
j = Γτ , which is equivalent to Γτηi = Γτηj , so ηi and ηj are in the same

coset. Hence η−1τη = η−1
i τηi for all η ∈ Γτηi, and as we know from equation (5.5)

that Γ =
⋃∞

i=0 Γτηi, this means [τ ] = {η−1τη : η ∈ Γ} = {η−1
i τηi : ηi ∈ H}. The

one-to-one correspondence between elements η−1
i τηi of [τ ] and elements Γτηi of Γτ\Γ

thus occurs via the ηi. The map M is clearly a bijection, as we have shown above

that η−1
i τηi = η−1

j τηj iff i = j. �

Lemma 5.4 We can rewrite the centraliser of τ as Γτ = {τn
0 : n ∈ Z}, where τ0 is

the primitive element in Γ such that τ = τp
0 for some integer p.

Proof Clearly τn
0 ∈ Γτ for n ∈ Z, as τ = τ p

0 and powers of τ0 commute. Conversely,

suppose η ∈ Γτ is not of the form τn
0 . By the definition of Γτ , we know η−1τη = τ .

Let the axis of τ be a(τ), then we know that a(η−1τη) = η−1a(τ). As η−1τη = τ

we find η−1a(τ) = a(τ), so η−1 fixes a(τ) as a set and hence a(η−1) = a(η) = a(τ).

The only way we could now have η 6= τn
0 is if the displacement lengths µ(η) and

µ(τ0) were incompatible, that is, µ(η) 6= mµ(τ0) for any integer m. If this were the

case, however, we could produce a word in τ0 and η with displacement length less

than µ(τ0), which contradicts the fact that τ0 is primitive. Hence we must have

µ(η) = mµ(τ0) for some integer m = ν(η), so η = τm
0 as required. �

This means we can rewrite the sum in equation (5.4) as

∑

x∈G

k(x, x) =|F| ·K(0) +
∑

[τ ]∈Π

∑

η∈H

∑

x̃∈F

K(d(x̃, η−1τηx̃)) (5.6)

=|F| ·K(0) +
∑

[τ ]∈Π

∑

η∈H

∑

x̃∈F

K(d(ηx̃, τηx̃)) (5.7)
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since d(x, y) is invariant under Γ. To simplify this further, we need the following

lemma.

Lemma 5.5 The disjoint union

F(Γτ ) =
⋃

η∈H

ηF(Γ) (5.8)

is a fundamental domain of Γτ .

Proof Recall from lemma 5.3 that [τ ] = {η−1
i τηi : ηi ∈ H} where η−1

i τηi = η−1
j τηj

iff i = j. Recall also from chapter 4 the two conditions for a fundamental domain,

which we restate here. F is a fundamental domain for the group Γ, so

• F ∩ gF = ∅ ∀g ∈ Γ not equal to the identity

• ⋃g∈Γ gF = G̃

We need to show that F(Γτ ) ∩ γF(Γτ ) = ∅ ∀ γ ∈ Γτ not equal to the identity, that

is,

F(Γτ ) ∩ γF(Γτ ) =
( ⋃

η∈H

ηF(Γ)
)
∩
( ⋃

η∈H

γηF(Γ)
)

= ∅.

It is sufficient to prove ηiF(Γ) ∩ γηjF(Γ) = ∅ for i 6= j, which is equivalent to

F(Γ) ∩ η−1
i γηjF(Γ) = ∅.

Now as F(Γ) is a fundamental domain, this would require η−1
i γηj to be equal to the

identity element, that is, γηj = ηi for some γ ∈ Γτ . This implies Γτγηj = Γτηi, and

as γ ∈ Γτ we find Γτγ = Γτ , so we now have Γτηj = Γτηi which implies i = j by

lemma 5.3. This gives a contradiction, hence F(Γτ ) ∩ γF(Γτ ) = ∅ as required.

For the second condition, we find that

⋃

γ∈Γτ

γF(Γτ ) =
⋃

γ∈Γτ

γ
⋃

η∈H

ηF(Γ) =
⋃

γ∈Γτ

⋃

η∈H

γηF(Γ) = G̃.

The double union over Γτ and H gives us γη ∈ Γ by equation (5.5), so the second

condition also holds, which completes the proof. �
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This means we can rewrite equation (5.7) as follows

∑

x∈G

k(x, x) = |F| ·K(0) +
∑

[τ ]∈Π

∑

η∈H

∑

ỹ∈ηF(Γ)

K(d(ỹ, τ ỹ)) (5.9)

= |F| ·K(0) +
∑

[τ ]∈Π

∑

x̃∈F(Γτ )

K(d(x̃, τ x̃)) (5.10)

where the last sum is over the fundamental domain F(Γτ ) of Γτ as defined in equation

(5.8). We would now like to be able to take the sum over a fundamental domain of

Γτ of our choice, but we need to check whether this is possible, that is, we need to

check that K(d(x̃, τ x̃)) is invariant under Γτ . Recall that d(x, y) is invariant under

Γ, that is

d(x, y) = d(γx, γy) for all γ ∈ Γ. (5.11)

Now Γτ is a subset of Γ, so (5.11) also holds for all γ ∈ Γτ , so K(d(x̃, τ x̃)) is invariant

under Γτ as required. Hence we can use any fundamental domain of Γτ in the sum

in equation (5.10).

Recall from lemma 5.4 that we can write Γτ = {τn
0 : n ∈ Z}, so Γτ is generated

by the element τ0. This means there is a fundamental domain of Γτ which consists

of a segment of a(τ0) of length µ(τ0), together with all branches emanating from it

except those which contain vertices which belong to the axis. Note the similarity to

the fundamental domain chosen in section 4.3.3, figure 4.1. We call this fundamental

domain F(τ0), and use this in equation (5.10) to obtain

∑

x∈G

k(x, x) = |F| ·K(0) +
∑

[τ ]∈Π

∑

x∈F(τ0)

K(d(x, τx)). (5.12)

Just like in chapter 4, we can view the fundamental domain F(τ0) as a union of

levels in the quotient graph G̃/Γτ , defined by

Ln = {x ∈ G̃/Γτ : δ′(x, τ) = n} (5.13)

where δ′(x, τ) is the distance from a vertex x to the central circuit in G̃/Γτ . Using

this in equation (5.12) we obtain

∑

x∈G

k(x, x) = |F| ·K(0) +
∑

[τ ]∈Π

∞∑

j=0

∑

x∈Lj

K(d(x, τx)) (5.14)

= |F| ·K(0) +
∑

[τ ]∈Π

∞∑

j=0

|Lj | K(µ(τ) + 2j) (5.15)



5.2. Derivation of the Ahumada Trace Formula 79

where the last equality is due to d(x, τx) = µ(τ)+2δ(x, τ) = µ(τ)+2δ′(x, τ), which

is similar to equation (4.4) in chapter 4.

Recall from lemma 5.2 that we have a one-to-one correspondence between non-

trivial conjugacy classes [τ ] ∈ Π and oriented closed paths on G without backtrack-

ing. In fact, in the proof of the lemma, we showed how to determine the conjugacy

class from the path and vice versa. Recall that the displacement length µ(τ) of

the translation in [τ ] is equal to the length of the geodesic γ obtained on G, which

we can denote µ(γ). This means we can write the sum over conjugacy classes in

equation (5.15) as a sum over the set C of all oriented closed non-backtracking paths

on G
∑

x∈G

k(x, x) = |F| ·K(0) +
∑

γ∈C

∞∑

j=0

|Lj | K(µ(γ) + 2j). (5.16)

Note that every oriented closed non-backtracking path γ can be written as a positive

power of a primitive oriented closed non-backtracking path γ0, so γ = γn
0 for some

positive integer n. Recall that a primitive path γ0 in G is one that can be written

as γn
0 only when n = 1. We use the observation above for the final simplification of

equation (5.16). Let P be the set of all primitive oriented closed non-backtracking

paths on G, then

∑

x∈G

k(x, x) = |F| ·K(0) +
∑

γ∈P

∞∑

n=1

∞∑

j=0

|Lj | K(nµ(γ) + 2j). (5.17)

At the end of section 5.2.3 we will use the equation above to define the dis-

crete version of Selberg’s trace formula, first discovered by Ahumada [1]. It can be

calculated as the trace of an operator, which we explain in the following section.

5.2.3 The Trace of an Operator

The formula in equation (5.17) can be calculated as the trace of an integral operator

Ik : C(G,C) → C(G,C) defined by

(Ikf)(x) =
∑

y∈G

k(x, y)f(y) (5.18)

where k(x, y) is as defined in equation (5.1). Ik is a linear operator on the space

C(G,C) of complex valued functions f(x) on the vertices of the graph G. This space
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is a vector space with an inner product, defined for f, g ∈ C(G,C) by

(f, g) =
∑

x∈G

f(x)g(x). (5.19)

Definition 5.6 For a linear operator A : V → V on a vector space V , the trace of

A is defined by

tr(A) =

n∑

i=1

(Avi, vi) (5.20)

for some orthonormal basis {vi} of V .

Note that the operator A is represented by a matrix. It is a well-known fact from

linear algebra that the trace of a matrix is independent of the basis chosen for the

vector space. This means that we can choose any (orthonormal) basis of C(G,C)

to calculate the trace of Ik.

Proposition 5.7 Let δx be the characteristic function of a vertex x ∈ G. The set

{δx : x ∈ V (G)} forms the standard basis of functions on V (G). Using this basis to

calculate the trace of Ik gives

tr(Ik) =
∑

x∈G

k(x, x). (5.21)

Proof Using the definitions of the inner product on C(G,C) in equation (5.19)

and of the operator Ik in equation (5.18), and the fact that δx(y) = 0 when x 6= y,

and δx(x) = 1 we find

tr(Ik) =
∑

x∈G

(Ikδx, δx) =
∑

x∈G

∑

y∈G

(Ikδx)(y)δx(y)

=
∑

x∈G

(Ikδx)(x) =
∑

x∈G

∑

y∈G

k(x, y)δx(y) =
∑

x∈G

k(x, x) (5.22)

as required. �

Definition 5.8 Let ϕi be an eigenfunction of the Laplacian on G with eigenvalue

λi, and let the functions K(z) and k(x, y) be defined as in equation (5.1). We then

define the spectral function associated to k(x, y) as

h(λj) =

∞∑

n=0

|Sn(x̃)|K(n)wj(n) (5.23)
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where Sn(x̃) is the vertex sphere of radius n based at x̃, and wj(n) = wj(d(x̃, ỹ)) is

the spherical eigenfunction on G̃ based at x̃, with eigenvalue λj. This means that wj

is invariant under rotation, and wj(0) = 1 (see for example [57, p505] or [24, p41]).

Proposition 5.9 Let {ϕi} be the orthonormal basis of (normalised) eigenfunctions

of the Laplacian on G, with corresponding eigenvalues λi. Calculating the trace of

Ik using this basis gives

tr(Ik) =
N∑

j=1

h(λj) (5.24)

where h(λj) is the spectral function associated to k(x, y) defined above in equation

(5.23).

Proof For any function f : V (G) → C on the vertices of G, let f̃ be its Γ-periodic

lift to the tree G̃ as defined in 1.3.2. Let x be a vertex in G, and x̃ a lift of x on G̃.

Applying the operator Ik to the function f using the definitions of Ik in equation

(5.18) and of k(x, y) in (5.1) gives

(Ikf)(x) =
∑

y∈G

k(x, y)f(y) =
∑

ỹ∈F

∑

γ∈Γ

K(d(x̃, γỹ))f̃(ỹ)

=
∑

ỹ∈ eG

K(d(x̃, ỹ))f̃(ỹ) (5.25)

where F is a fundamental domain of Γ in G̃ as usual.

Define the radialisation of f̃(x) with respect to x̃ as

f̃#
x (ỹ) =

1

|Sd(x̃,ỹ)(x̃)|
∑

d(x̃,y)=d(x̃,ỹ)

f̃(y). (5.26)

We can use this to rewrite equation (5.25) as follows

(Ikf)(x) =
∞∑

n=0

∑

ỹ∈Sn(x̃)

K(d(x̃, ỹ))f̃(ỹ) =
∞∑

n=0

K(n)
∑

ỹ∈Sn(x̃)

f̃(ỹ)

=
∞∑

n=0

K(n)
∑

y∈Sn(x̃)

f̃#
x (y) =

∞∑

n=0

K(n)|Sn(x̃)|f̃#
x (yn) (5.27)

where yn ∈ Sn(x̃). Now we use this equation to apply Ik to an eigenfunction ϕi(x)

of the Laplacian on G. Note that ϕ̃i
#
x (y) = ϕi(x) ·wi(y), where wi(y) is the spherical
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eigenfunction defined in definition 5.8. We obtain

(Ikϕi)(x) =

∞∑

n=0

K(n)|Sn(x̃)|ϕ̃i
#
x (yn)

=ϕi(x)

∞∑

n=0

|Sn(x̃)|K(n)wi(n)

=h(λi) · ϕi(x) (5.28)

for the spectral function h(λi) as defined in equation (5.23). Note that h(λi) does

not depend on x, so ϕi(x) is an eigenfunction of the operator Ik with eigenvalue

h(λi). This means it is easy to calculate

tr(Ik) =

N∑

j=1

(Ikϕj, ϕj) =

N∑

j=1

h(λj)(ϕj , ϕj) =

N∑

j=1

h(λj) (5.29)

as the eigenfunctions {ϕj} are orthonormal. �

Combining propositions 5.7 and 5.9 we obtain the following identity

∑

x∈G

k(x, x) =
N∑

j=1

h(λj). (5.30)

This equation is sometimes called the pre-trace formula. Combining it with equation

(5.17) gives

N∑

j=1

h(λj) = |F| ·K(0) +
∑

γ∈P

∞∑

n=1

∞∑

j=0

|Lj | K(nµ(γ) + 2j) (5.31)

which is the discrete equivalent of Selberg’s trace formula, also called Ahumada’s

trace formula. Equations (5.30) and (5.31) can be found for example in an article

by Terras and Wallace [57], where they are derived using spherical and horocycle

transforms.

Before we discuss an application of this trace formula, we discuss its analogue in

the setting of a Riemannian space, which is the Selberg Trace Formula. Chronolog-

ically speaking, the Selberg Trace Formula was the earlier of the two trace formulas

discussed in this chapter, in fact it was the inspiration for Ahumada’s discrete ana-

logue in [1].
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5.3 The Selberg Trace Formula

We now briefly discuss the trace formula defined by Selberg [50] in 1956, and compare

it to the discrete analogue defined by Ahumada [1] and derived in the previous

section. In the most general case, Selberg works with a Riemannian space S and a

locally compact group Γ0 of isometries on S. An element in Γ0 is called m, and Γ0

must act transitively, i.e.

∀ x, y ∈ S there exists m ∈ Γ0 such that x = my. (5.32)

He looks at linear operators on functions on S, such that the operator is invariant

under Γ0, so that it commutes with isometries m ∈ Γ0. One such operator is the

integral operator of the form
∫

S

K(x, y)f(y)dy (5.33)

which is invariant under Γ0 iff the relation

K(mx,my) = K(x, y) (5.34)

holds for all x, y ∈ S and m ∈ Γ0. This is referred to as point-pair invariance. Note

that this corresponds to our function K(d(x̃, ỹ)) in section 5.2.1, which is invariant

under all automorphisms of the tree as they preserve the distance function d(x, y).

Now let Γ be a discrete subgroup of Γ0 which acts properly discontinuously on S.

In the special case where S is the hyperbolic plane, this gives a manifold M = H/Γ,

which corresponds to the graph given in our case by the quotient G = G̃/Γ. The

isometries we call translations are called hyperbolic isometries here, and we note

that Selberg does not rule out non-hyperbolic isometries in the general case like we

did. In the special case of S = H, however, certain restrictions on the fundamental

domain F of Γ in S rule out the possibility of parabolic isometries, and only allow

a finite number of elliptic isometries.

We then define

k(x, y) =
∑

γ∈Γ

K(x, γy) (5.35)

under some assumptions that ensure this function k(x, y) converges and is uniformly

bounded. The equivalent equation in the discrete case is given in equation (5.1).
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Selberg proceeds to give two ways to calculate the trace of the operator in equation

(5.33).

Let S = H, and expand k(x, y) in terms of eigenfunctions Fi(x)

k(x, y) =
∑

γ∈Γ

K(x, γy) =
∑

i

h(λi)Fi(x)F
′
i (y) (5.36)

where F ′
i is the conjugate transpose of Fi. We then find the trace is equal to the

following two expressions

∫

F

tr(k(x, x))dx =
∑

i

h(λi) (5.37)

=
∑

γ∈Γ

∫

F

K(x, γx)dx (5.38)

which, when calculated, gives the Selberg Trace Formula

∑

i

h(λi) =
A(F)ν

2π

∫ ∞

−∞
r tanh(πr)h(r)dr

+ 2
∑

{P}Γ

∞∑

k=1

logN{P}
N{P}k/2 − (N{P})−k/2

g(k logN{P}) (5.39)

with the following definitions for constants and functions used. A(F) is the area

of the fundamental domain F, and ν is the dimension of S. {P}Γ is the set of

conjugacy classes of primitive hyperbolic elements in Γ, and N{P} is the norm of

the element P , that is, N{P} = eµ(P ) where µ(P ) is the displacement length. Define

the function

K(t) = K
(
d(z, z′)

)
= K

( |z − z′|2
yy′

)
where z = x+ iy for real x, y

and use this to define an integral

Q(w) =

∫ ∞

w

K(t)√
t− w

dt.

This in turn helps us define the function

g(u) = Q
(
2(cosh u− 1)

)
=

∫ ∞

2(cosh u−1)

K(t)√
t− 2(cosh u− 1)

dt

which is used in equation (5.39). Finally, we define a function

h(r) =

∫ ∞

−∞
eirug(u)du =

∫ ∞

−∞
eiru

∫ ∞

2(cosh u−1)

K(t)√
t− 2(cosh u− 1)

dtdu.
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This completes our short description of the Selberg Trace Formula. For details of

its derivation and application we refer the interested reader to Selberg’s article [50],

or alternatively [32] or [42]. There are many more references available on this subject,

but these are too many to mention.

5.4 An Application

We now show how the trace formula we derived in equation (5.31) can be applied to

a counting problem on a regular graph G. We follow methods similar to Brooks [10]

to obtain a result also stated in Terras and Wallace [57].

Define N(ℓ) to be the number of closed paths of length ℓ on G without back-

tracking but possibly having ‘tails’. Here, two paths consisting of the same sequence

of vertices are counted as ‘different’ if they have a different starting point. A path

has a tail if, when its vertices are given by v0, v1, . . . , vn−1, vn = v0, we have vi = vn−i

for i = 1, . . . , k for some 0 < k < n/2. Recall that non-backtracking means that

vi 6= vi+2 for all i = 0, . . . , n− 2. Define

Kℓ(n) =





1 if n = ℓ

0 otherwise
(5.40)

for ℓ ≥ 0. Using equation (5.1), this gives us a function

kℓ(x, y) =
∑

γ∈Γ

Kℓ

(
d(x̃, γỹ)

)
. (5.41)

Observe then that N(ℓ) =
∑

x∈G kℓ(x, x).

We now use the pre-trace formula (5.30). For the functions Kℓ(n) and kℓ(x, y)

defined above, recalling equation (5.23), we find for ℓ > 0

∑

x∈G

kℓ(x, x) =

N∑

j=1

h(λj) =

N∑

j=1

∞∑

n=1

|Sn(x̃)|Kℓ(n)wj(n)

=
N∑

j=1

|Sℓ(x̃)|wj(ℓ) (5.42)

= (q + 1)qℓ−1
N∑

j=1

wj(ℓ) (5.43)
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using |Sℓ(x̃)| = (q + 1)qℓ−1 for ℓ > 0. For ℓ = 0, we use |S0(x̃)| = 1 in equation

(5.42) to find
∑

x∈G

k0(x, x) =
N∑

j=1

wj(0) = N. (5.44)

For ℓ > 0 we can now use a nice property of the wj(n) to obtain an approximation

for N(ℓ) as ℓ→ ∞. Using an argument identical to that used in the proof of theorem

2.4 on page 25, we obtain a solution for wj(n) in terms of

α±
j =

q + 1

2q
λi ±

1

2q

√
(q + 1)2λi

2 − 4q

namely wj(n) = u+
j (α+

j )n + u−j (α−
j )n. Here wj(0) = 1 and wj(1) = LGwj(0) =

λjwj(0) = λj give us the constants u±j . Hence |α±
j | < 1 gives us wj(n) → 0 as

n → ∞ for wj not equal to the constant function w0 = 1 (with eigenvalue λ0 = 1)

or, for bipartite G, wN = ±1. This means for non-bipartite G that, as ℓ → ∞,
∑N

j=1wj(ℓ) → w0(ℓ) = 1, and combining this with equation (5.43) we obtain

N(ℓ) =
∑

x∈G

kℓ(x, x) →
q + 1

q
qℓ as ℓ→ ∞. (5.45)

For bipartite G, we use

wN(ℓ) =





1 when ℓ is even

−1 when ℓ is odd

to obtain

N(ℓ) → 2(q + 1)

q
qℓ for even ℓ, as ℓ→ ∞,

noticing that as all closed non-backtracking paths have even length, N(ℓ) = 0 for

all odd ℓ.

Recall that in N(ℓ) we defined paths as different if they had different starting

points. Notice, however, that two paths (without tails) can be identical apart from

their starting points, and that we count such paths ℓ times in N(ℓ). To avoid this,

we will solve a similar counting problem in the next section, where we count the

number of paths with a fixed starting point. This follows from something we call

the full lattice point problem.
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5.5 Related Problems

5.5.1 The Full Lattice Point Problem

In this section, we discuss some problems related to the counting problem in section

5.4, for graphs as well as surfaces. We start with the full lattice point problem, and

note that its proof does not require the trace formula in either setting. In the case

of surfaces, Patterson [46] proved the following result (see also [11, Chapter 9]). Let

Γ be a discrete group of orientation preserving isometries on H so that the quotient

H/Γ = M is a compact Riemann surface. For any two points z, w ∈ H, define a

counting function

NΓ(t; z, w) = #{T ∈ Γ : dist(z, Tw) ≤ t}, (5.46)

where dist(x, y) is the hyperbolic distance defined in the usual way. Then as t→ ∞,

NΓ(t; z, w) ∼ π

Area(M)
et =

1

4(g − 1)
et, (5.47)

where g is the genus of the surface M .

The analogous result for graphs is easily obtained from corollary 2.14. Let Γ be

a group of translations on the regular tree G̃ so that the graph G = G̃/Γ is finite,

and define a counting function

NΓ(t; z, w) = #{T ∈ Γ : d(z, Tw) ≤ t}. (5.48)

Note that we can interpret this as

#{T ∈ Γ : d(z, Tw) ≤ t} =
∑

y∈Bt(z)

δ̃w(y) (5.49)

where δ̃w(y) is the following function. Let δx(y) be the characteristic function of

the vertex x in G, and choose x to be the image of w under the projection map π.

Then δ̃w(y) is the lift to the tree of the function δπ(w)(y). Using this function in the

corollary gives ∣∣∣ 1

|Bt(z)|
NΓ(t; z, w) − 1

|V |
∣∣∣ ≤ C ′

Gβ
t (5.50)

which we rewrite in a similar fashion to that in the proof of corollary 2.14 as

NΓ(t; z, w) =
|Bt(z)|
|V | + |Bt(z)|C ′

Gβ
tεt (5.51)
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for some |εt| ≤ 1. Recall

|Bt(z)| =

t∑

r=0

|Sr(z)| = 1 +

t∑

r=1

(q + 1)qr−1 = 1 +
q + 1

q − 1
(qt − 1) (5.52)

using the geometric series formula in the last step. We obtain

NΓ(t; z, w) =
q + 1

q − 1

1

|V |q
t +

q + 1

q − 1
C ′

Gεt(qβ)t + constant. (5.53)

Now |β| < 1 so as t→ ∞ we can approximate NΓ(t; z, w) by the leading term, that

is

NΓ(t; z, w) ∼ q + 1

q − 1

1

|V |q
t. (5.54)

Note that in theorem 4.10 we counted a subset of the points counted in the

problem above, as we only counted vertices that are images of the base-point under

elements in a chosen conjugacy class in Γ. Recall that this problem was also not

solved using the trace formula, nor is its counterpart on a surface (see [34]).

Going back to the full lattice point problem on a graph, we see that NΓ(t; z, z)

gives us some information about the number of closed paths on G of length t based

at z. More precisely, it is the number of closed non-backtracking paths on G of

length t based at z possibly having tails. This is still not the most natural thing to

count, as we would prefer not to specify a base point. In the next section we will

discuss the Prime Number Theorem, which counts the number of primitive oriented

closed geodesics on a surface or, in the discrete case, on a tree. Here we do not

specify a base-point, and we do not allow backtracking or tails in the discrete case.

5.5.2 Prime Number Theorem

As we already stated in section 5.1, the Prime Number Theorem for compact Rie-

mann surfaces counts the number of primitive oriented closed geodesics on a surface.

Following the notation used by Buser [11, Chapter 9], let C (M) be the set of all

oriented closed geodesics on a compact Riemann surface M (defined by M = H/Γ),

and let P(M) be the set of all primitive oriented closed geodesics. Recall that a

geodesic is primitive if it is not the m-fold iterate, with m ≥ 2, of another closed

geodesic on M . Let ℓ(γ) be the length of the geodesic γ on M . Define counting
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functions as follows

Φ(t) = #{γ ∈ C (M) : ℓ(γ) ≤ t} (5.55)

Π(t) = #{γ ∈ P(M) : ℓ(γ) ≤ t}. (5.56)

Now define the norm N(γ) of the geodesic by ℓ(γ) = lnN(γ) and define counting

functions

φ(x) = #{γ ∈ C (M) : N(γ) ≤ x} (5.57)

π(x) = #{γ ∈ P(M) : N(γ) ≤ x}. (5.58)

The theorem then reads as follows.

Theorem 5.10 (PNT for Surfaces) Defining π(x) and φ(x) as above, we have

for any compact Riemann surface of genus g ≥ 2

π(x) ∼ x/ log x

φ(x) ∼ x/ log x

as x→ ∞.

For a proof, see for example [11, chapter 9] or [32].

The corresponding result for graphs can be obtained using the Ihara zeta func-

tion. This function, and its application to an analogue of the Prime Number

Theorem on graphs, has been discussed in various papers, and we should men-

tion [1], [5], [30], [36], [53], [54], [56] and [59] in this context. We found the account

by Terras and Wallace [57] useful, as it fits in with earlier work in this chapter. The

graph analogue of the Prime Number Theorem is the statement that for a finite

non-bipartite regular graph, defining

πG(n) = #{primitive closed non-backtracking paths without tails of length = n}

we have

πG(n) ∼ qn

n
as n→ ∞. (5.59)

For bipartite graphs, we find for even n (see for example [55, p 71])

πG(n) ∼ 2
qn

n
as n→ ∞.

Note that in a bipartite graph there are no closed paths of odd length, by propo-

sition 1.7.
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5.5.3 Homological Constraints

One final problem we should mention related to that of counting paths on graphs

or surfaces deals with homological constraints. That is to say, rather than counting

all paths, we just count those in a certain homology class. For a formal definition

of homology, see for example Hatcher [31]. Before we state the relevant results, let

us briefly review the concept of homology classes on graphs. This is best done in

terms of an example.

Figure 5.1: The graph G.

Let G be the graph in figure 5.1, and suppose we have some closed, non-

backtracking path γ on G for which we want to determine the homology class.

Find a spanning tree of G (see figure 5.2), and give arbitrary directions to each

of the edges not in this spanning tree. Now collapse the spanning tree to a single

vertex using a deformation retract (also called a ‘contraction’ in graph theory. See

for example [8, p24] or [19, p18]). We are left with a set of loops at a single vertex,

which is called a bouquet. The original path γ now has a corresponding path γ′ on

the bouquet. This path γ′ will traverse the various loops in a certain direction and

in a certain order. Now count the number of times each loop is traversed, counting

+1 if the direction is the same and −1 if the direction is opposite to the given direc-

tion of the edge. We obtain four integers corresponding to the four loops c1, . . . , c4.

Now suppose we have some other closed non-backtracking path γ1 on G, and we do

the same for this path using the same spanning tree and directions chosen earlier.

Then γ and γ1 are in the same homology class if we obtain the same four integers

corresponding to c1, . . . , c4 for both graphs.



5.5. Related Problems 91

c1

c2

c3

c4

Figure 5.2: Construction of the bouquet from G.

It turns out that the homology classes obtained are independent of the spanning

tree chosen, however the reasons for this are beyond the scope of this thesis. We

refer the interested reader to Hatcher’s book [31] for more details on this subject.

For graphs we then define the following counting function

π(n, [g]) = {p : |p| = n, [p] = [g]},

where |p| is the length of the path p, and [g] denotes the homology class of the

path g on the (q + 1)-regular graph G. Sunada (see [55]) found that as n → ∞ for

non-bipartite graphs

π(n, [g]) ∼ κ(G)1/2
( |V |(q − 1)

4π

)b1/2 qn

nb1/2+1
,

where b1 is the first Betti number of G (see [31, p 130]) and κ(G) is the tree number,

which is defined as the number of spanning trees of G. For non-bipartite graphs, he

finds for even n that as n→ ∞

π(n, [g]) ∼ 2κ(G)1/2
( |V |(q − 1)

4π

)b1/2 qn

nb1/2+1
.

Some earlier results can also be found in [47, p411]

In the case of a compact Riemann surfaceM of genus G, Katsuda and Sunada [38]

defined π(x, α) to be the number of prime closed geodesics in a homology class

α ∈ H1(M,Z) with length less than x, and found that when x→ ∞,

π(x, α) ∼ (g − 1)g ex

xg+1
.

For more general results and further references, see also chapter 11 in Sharp’s con-

tribution to [41].



Chapter 6

Radial Averages for Non-Regular

Graphs

6.1 Setting

In this final chapter we return to the problem discussed in chapters 2 and 3 regarding

radial averages of functions on graphs. The graphs considered in these chapters were

either regular or semi-regular, so we will discuss here what we know about the more

general case.

Let G be a simple, connecte, finite, non-bipartite graph, and G̃ its universal

cover, which is an infinite tree. Recall the definitions for vertex and edge spheres

(equation (2.1) and definition 3.6) and vertex and edge arcs (equation (2.2) and

definition 3.7) from chapters 2 and 3. Note that all these definitions still hold if the

tree is non-regular.

1 2

34

Figure 6.1: The graph H .

92
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Throughout this chapter we will use a simple example to illustrate our definitions

and claims. For ease of computation, we choose a (non-regular and non-semi-regular)

graphH with a small number of edges, illustrated in figure 6.1. We will see in section

6.3 why it is the number of edges that determines the complexity of our calculations.

See also figure 6.2 for an illustration of spheres on the universal cover of H .
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Figure 6.2: Vertex spheres on the universal cover of H .

6.2 Comparison with NBRW

Before we go into more detail, let us compare the radial average setting to that

of non-backtracking random walks (NBRW) as introduced in section 2.3. Recall

that authors working with NBRW are concerned with the probability distribution

of the possible endpoints of a non-backtracking path of length n starting at some

given vertex. We used the characteristic function δx to find out how many times
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a particular vertex showed up in a sphere of radius n as a proportion of the total

number of vertices in the sphere. In the regular case this gave the same answer as

for NBRW (see for example [2] and [45]).

Now in the non-regular case, we find that NBRW probabilities and the distribu-

tion of possible endpoints in the sphere are different. Take for example our graph

H and compare the distribution of vertices in the sphere of radius 5 with the corre-

sponding NBRW probabilities (see figure 6.3).

1
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1
14

1
14

1
14

1
14

1
14

1
14

1
81

16
1
16

1
16

1
16

1
16

1
16

Figure 6.3: NBRW probabilities and weights for the spherical average on H .

In the NBRW case, the probability given by each vertex v depends on how many

times we have had to make a choice of direction along the path from 1 to v. For

spherical averages, however, each endpoint is given the same weight when taking the

average. This leads to different answers for the two problems, so we see in the case

of a non-regular graph that radial averages and NBRW are truly different concepts.

6.3 The Oriented Edge Adjacency Matrix

To investigate the arc average of functions defined on the vertices or edges of non-

regular graphs, we have to define a new matrix AO associated to the graph G, which

we call the oriented edge adjacency matrix. Let E be the set of oriented edges of

G, where for each unoriented edge e ∈ E we have two oriented edges −→e ,−→e ′ ∈ E
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with opposite directions. Labelling these edges −→e1 , . . .−→em, AO is defined as an E×E
matrix with entries ai,j given by the following rule:

• ai,j = 1 if −→ej followed by −→ei forms a non-backtracking path

• ai,j = 0 otherwise.

Note that two oriented edges may form a backtracking path, but we do not count

these. As an example we give AO for our graph H ,

AO =




0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0

1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0




where the rows and columns are both labelled by the oriented edges in the following

order:

−−−→{1, 2},−−−→{2, 1},−−−→{1, 4},−−−→{4, 1},−−−→{2, 3},−−−→{3, 2},−−−→{2, 4},−−−→{4, 2},−−−→{3, 4},−−−→{4, 3}.

Note that AO is not symmetric, unlike the vertex and edge adjacency matrices

in definitions 1.8 and 3.8 respectively. This means its eigenvalues and eigenvectors

do not always have the nice properties we exploited in the proofs of theorems 2.4

and 3.9. We do know, however, that AO is non-negative, as it has only two possible

entries (0 and 1). If the graph G is non-bipartite, we also know that AO is primitive,

as G is connected. A matrix M is primitive if there is some integer N such that MN

has all entries greater than zero. This means we can apply the Perron-Frobenius

Theorem to AO, which reads as follows (see for example [9, p 197-198] and [52, p

3-4]):
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Theorem 6.1 (Perron-Frobenius) Let A be a non-negative primitive r × r ma-

trix. Then there exists a real eigenvalue λ1 with algebraic and geometric multiplicity

1 such that λ1 > 0, and λ1 > |λj| for all other eigenvalues λj of A. Also, the left

eigenvector u1 and the right eigenvector v1 can be chosen such that uT
1 v1 = 1. We

can choose u1 and v1 to be strictly positive.

Let λ2, . . . , λr be the other eigenvalues of A ordered such that

λ1 > |λ2| ≥ . . . ≥ |λr|

and if |λ2| = |λj| for some j ≥ 3, then m2 ≥ mj for all λj with |λj| = |λ2|, where

mj is the algebraic multiplicity of λj. Then

An = λn
1v1u

T
1 + Θ(nm2−1|λ2|n)

where Θ(f(n)) represents a function of n such that there exist α, β ∈ R, 0 < α ≤
β <∞, such that αf(n) ≤ Θ(f(n)) ≤ βf(n) for sufficiently large n.

Recall that a right eigenvector v of the matrix A with eigenvalue λ satisfies Av = λv,

whereas a left eigenvector u with eigenvalue λ satisfies uA = λu. We will see in

the next section how this theorem helps us deduce the proportion of each vertex (or

indeed edge) in a radial average.

6.4 Results for Non-Regular Graphs

We can deduce the number of paths of length n + 1 starting with oriented edge ej

and ending with ei from the entries of An
O: it is just the ij entry of this matrix.

Now rather than the actual number of paths appearing, we would like to know the

proportion of paths in a certain arc ending at a specific directed edge in comparison

to the total number of paths in this arc, so that we can find the radial average over

this arc of a given function on the edges of G. To do this we have to normalise the

entries of An
O, but without a simple way to calculate the total number of vertices or

edges in a radial set this is not as easy as in the regular case.

Recall the definition of an edge arc A′
n(−→e ) in 3.7.
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Definition 6.2 Let ei be an undirected edge in G̃. The proportion with which the

lifts of this edge occur in the edge arc A′
n(e) is denoted pn(ei). Hence the arc average

at radius n of a function f on the edges of G is given by

Mn,e(f) =
1

|A′
n(e)|

∑

ei∈A′
n(e)

f̃(ei) =
∑

ei∈G

pn(ei)f(ei). (6.1)

Similarly, we can define the proportion with which a directed edge occurs in G̃.

Note that given an undirected edge ei, and the same edge with each of the two given

orientations −→ei ,
−→ei

′, we have

pn(ei) = pn(−→ei ) + pn(−→ei
′). (6.2)

To find the proportion with which a vertex occurs in a vertex arc of radius n we

note that |A′
n(e)| = |An+1(e)| and

pn+1(v) =
∑

ej∈E : t(ej)=v

pn(ej), (6.3)

where t(ej) = v means v is the terminus of ej , that is, ej =
−−−−→{w, v} for some vertex

w.

Theorem 6.3 Label the directed edges of a graph G as E = {e1, e2, . . . , em}, and

define the vector v1 as in theorem 6.1. Then as n→ ∞ we find that the proportions

pn with which the lifts of each edge occur in A′
n(e) satisfy




pn(e1)

pn(e2)
...

pn(em)




→ 1∑m
i=1 v1,i

· v1 (6.4)

where v1,i is the ith entry of the vector v1. This result is independent of the directed

edge e determining the arc defining pn.

Proof We noted that AO is primitive and non-negative for any simple, finite,

non-bipartite graph, so we can apply theorem 6.1 to it. Dividing by λn
1 , we find that

An
O

λn
1

→ v1u
T
1 (6.5)
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when n → ∞. To see in what proportion the endpoints of paths starting with the

directed edge ei occur, we now need to calculate the following. Let wi be the ith

standard basis vector of an E × E matrix, which has a 1 in the ith entry and zeros

everywhere else. Then pn(ei) is proportional to the vector An
Owi. When n is large,

we can use equation (6.5) to approximate the distribution, as it implies

An
O

λn
1

wi → v1u
T
1wi = u1,iv1

where u1,i is the ith entry of u1 obtained from uT
1 ·wi. Note that u1 is strictly positive,

so u1,i is never zero, hence this is true for any choice of edge e determining the arc.

To obtain {pn(ei)}m
i=1 we now divide u1,iv1 by the sum of its entries, and obtain

equation (6.4) above. Note that this is now independent of the choice of ei, as we

divide by u1,i in the last step. �

In the example H given earlier, we have largest eigenvalue

λ =
1

3
(27 + 3

√
78)1/3 +

1

(27 + 3
√

78)1/3

and corresponding left eigenvector

u =
1

8λ + 2(λ2 − 1)2
[λ, 1, λ, 1, 1, λ, λ2 − 1, λ2 − 1, λ, 1]T

and right eigenvector

v = [1, λ, 1, λ, λ, 1, λ2 − 1, λ2 − 1, 1, λ]T (6.6)

where we have normalised the first vector to ensure uTv = 1. The proportions pn

of directed edges then approximate 1
2(λ+1)2

· v as n → ∞. Notice that only three

different terms show up, namely 1, λ and λ2 − 1. Comparing the weights with

the edges of the graph, we find that the weight 1 holds for edges from a vertex of

degree 3 to one of degree 2, weight λ holds for the inverses of such edges, and weight

λ2 − 1 holds for edges joining two vertices of degree 3. This is most likely due to

the symmetry in H , and does not necessarily indicate that the proportions of edges

in an arc depend only on the degrees of the two vertices determining the edge.

Now to obtain arc averages for functions on the vertices or edges of a graph G,

we use equation (6.1). In the case of vertex functions, we find

Mn,e(f) →
∑

v∈V (G)

pn(v)f(v) (6.7)
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as n→ ∞, using equation (6.3) to find pn(v). In the case of edge functions, we use

equation (6.2) to obtain

Mn,e(f) →
∑

e∈E(G)

pn(e)f(e) (6.8)

as n→ ∞.

6.4.1 Corollaries

As in the regular case, we now also state results for averages over spheres and tubes.

Recall that the sphere is just a special case of a tube, so we just state the latter

here.

Corollary 6.4 With the same assumptions as in theorem 6.3, we find the propor-

tions Pn(ei) with which the lifts of the directed edges ei occur in any tube Tn of radius

n satisfy 


Pn(e1)

Pn(e2)
...

Pn(em)




→ 1∑m
i=1 v1,i

· v1 (6.9)

as n→ ∞.

Proof The proof follows that of theorem 6.3, except that we use more than one

wi. Recall that a tube is made up of several arcs. Let z be the vector whose ith

entry zi equals the number of times An(ẽi) appears in the tube, so z is the entry

wise sum of the relevant wi, possibly with some repetitions. We find

An
O

λn
1

z → v1u
T
1 z =

( m∑

i=1

ziu1,i

)
v1

where the sum is a positive constant depending only on the choice of tube. Now to

find the proportions Pn(ei), we normalise the right hand side of this equation, which

means we divide by the constant, so the choice of tube is irrelevant. �

Using Pn+1(v) =
∑

ej∈E : t(ej)=v Pn(ej) we find

1

|Tn|
∑

v∈Tn

f̃(v) →
∑

v∈V (G)

Pn(v)f(v) (6.10)
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as n→ ∞, and using Pn(e) = Pn(−→e ) + Pn(−→e ′) we find

1

|T ′
n|
∑

e∈T ′
n

f̃(e) →
∑

e∈V (G)

Pn(e)f(e) (6.11)

as n→ ∞.

6.5 Conclusion

We finish this chapter with some short comments on theorem 6.3, in particular

regarding its relation to the results in chapters 2 and 3. Clearly theorem 6.3 also

holds for regular graphs, where in addition we know that all entries in v1 are the

same. This means that in the limit all directed edges appear the same number of

times in A′
n, which is in line with our findings in earlier chapters. Theorem 6.3 does

not give us such a nice convergence rate, nor does it say anything about bipartite

graphs. It does, however, rely on external theory, namely the Perron-Frobenius

Theorem, which our proof of the regular cases in chapters 2 and 3 did not. The non-

regular equivalent of these results would require further research, and is a problem

worth investigating in the future. It is, however, outside the scope of this thesis.
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