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Abstract

The calculation of observables in gauge theories with massless particles -
such as QCD - by traditional methods is significantly complicated by the
presence of soft and collinear singularities, collectively termed infrared diver-
gences, in the scattering amplitudes. The aim of this thesis is to investigate
calculational methods which produce finite results at the amplitude level.
We discuss the origin of the infrared divergences and outline some previous
approaches to constructing finite amplitudes. After reviewing the traditional
method for performing calculations we see how incorrect assumptions result
in the presence of infrared divergences and what steps must be taken in order
to produce infrared finite results.

We then investigate how these ideas could be applied to the calculation of
specific amplitudes. We see that there are problems involved in applying
this exact approach, but that it suggests the adoption of a workable, more
pragmatic alternative. We use this method in an explicit example calculation
of the contributing cross sections for the process ete™ — 2 jets at O(a;). We
demonstrate that we recover the same result as that obtained with standard
field theory techniques. We then briefly discuss how this approach might
be adapted to suit more complex calculations and, eventually, a completely
numerical approach.
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Chapter 1

Introduction

1.1 Physical Observables

While physical theories contain many elements which are interesting in them-
selves, the ultimate goal of any theoretical calculation must be to provide
predictions for the results of physical processes. The processes with which
we will be concerned in this thesis are investigated in collider experiments.
These produce huge amounts of data which must be analysed in order to
produce useful observations. The relevant quantities which can be calcu-
lated from the data are known as physical observables. The goal for our
theoretical calculations must therefore be to provide predictions for these

physical observables.

To achieve this we conventionally start with a field theory - QED or QCD for
example - which describes the physics relevant to the particular observable
w_hi_ch we are interested in calculating. This field theory will be described
through the relevant Lagrangian, and it is to this which we must turn in order

to perform our calculations. Unfortunately we are currently unable to solve
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the equations of motion derived from any of the Lagrangians representing
realistic theories such as QED or QCD, and can only solve the free field
theories (where there are no interactions between the different fields) in these
cases. The traditional method for dealing with such situations is to treat
the full theory as a small perturbation of the soluble part of the theory
(the free theory in this case), and calculate results to the required order
in perturbation theory. This approach is not perfectly applicable in the
case of QCD however due to the running of the coupling constant. At high
momenta (or small distances) the coupling constant of QCD becomes small
and perturbation theory can be used. However, at small momenta (or large
distances) the coupling constant becomes large and perturbation theory is

no longer a valid approach.

One approach to resolving this situation (and this is the approach which we
shall use in this thesis) is to simply go ahead and use perturbation theory
anyway. This places several limits on the calculations we are able to perform:
firstly, we are unable to carry out calculations for low energy processes. This
is not really a problem in our situation as all the collider experiments pro-
ducing values for the physical observables which we wish to predict will be
operating at energies well above the threshold where perturbation theory
becomes a viable option; however, if we were interested in calculating the
results of low energy processes we would need to find another way of do-
ing it. Secondly, we conventionally formulate our perturbation theories such
that our asymptotic states are “free” quarks and gluons. In fact, the physi-
cal asymptotic states which are observed in detectors are hadrons, and these
will usually appear as a jet - a shower of particles all travelling quickly in

approximately the same direction. When we perform our calculations in per-
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turbation theory neither hadrons or jets appear as our final products since it
cannot reproduce low energy effects. The full process could be considered to
consist of three stages: the underlying interaction takes place at high energy
and can be calculated perturbatively. The probability for this interaction to
take place is represented by the amplitude, .A which will be the focus for
most of this thesis. This underlying interaction results in the production of
“free” quarks and gluons; these will then form jets through interactions at
lower energies. Finally, at lower energies still, hadronisation will occur as the
particles which make up the jets form bound states. We shall concern our-
selves with the perturbative regime of QCD. More detailed discussions of the
parton showers which make up jets and of hadronisation can be found in [1,2]
and the references therein. In order to produce predictions for complete pro-
cesses we must calculate amplitudes for incoming and outgoing quarks and
gluons and then marry these up with some algorithm, a Monte-Carlo simu-
lation for example, which will take account of the low energy processes and

turn them into jets and hadrons.

A second possible approach is that of lattice QCD which allows us to calculate
quantities numerically by discretising Euclidean space-time into hypercubes
and evaluating the QCD Lagrangian on each resulting lattice point. The
QCD Lagrangian does not make sense without an ultraviolet cut-off because
of divergences which occur at high momenta or short distances (we shall see
more about this later) and the lattice spacing provides a natural cut off. As
long as the lattice spacing is small when compared with the physical extent of
the hadrons which are being studied then this discrete version of the theory
should be an adequate approximation at that scale. Lattice QCD has heen

used extensively to study quantities which are unsuitable for perturbative
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calculations such as hadronic masses. We shall not consider it any further in

this thesis however, but will return to perturbative calculations.

In order to calculate amplitudes which correspond to the processes involved
in our chosen observable we will use perturbation theory in conjunction with
the relevant field theory. We take the modulus squared of these amplitudes
and integrate this over the required region of the parameter space. This is
called integrating over the phase space. The desired result is usually achieved
by performing the integral over the entire region of phase space and weighting
it with a particular function which describes the required observable. The
weighting function, J, can be as simple as one, which would give the total
cross section, or can take more complicated forms for observables such as

specific jet definitions. The whole calculation can be represented by
0= /sz'ps(k,.,...)|A|2 < I(ks,..) (1.1)

where dLips is the Lorentz invariant phase space, A is the relevant amplitude

and J(k;,...) is the weighting function for the required observable, O.

As our observable will be measured in a physical detector which will in-
evitably have limits on the accuracy of its measurements, we must also take
into account the fact that certain processes, while perfectly distinct at a the-
oretical level, may actually be physically indistinguishable. Therefore, our
definition of the observable may well have to include amplitudes with differ-
ent numbers of incoming and outgoing states, and therefore with different
phase space integrals. Consequently, our final calculation of the observable

will-in-general be an incoherent sum of terms of the form of Eq.(1.1).

The amplitude, .A, contains all the details of the specific field theory involved
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in the process while the phase space integral deals essentially with kinematic
issues. The main area of interest for this thesis will be the investigation of

alternate methods for calculating the amplitude.

1.2 Amplitude calculations and divergences

The next step is now to calculate the amplitudes themselves. Each amplitude
corresponding to a particular process at a particular order in perturbation
theory can be naturally divided into a sum of Feynman diagrams. These are
pictorial representations of the amplitude which contain all the information
necessary to perform the relevent calculation. A Feynman diagram without
any internal loops is referred to as a tree level diagram, a diagram with one
internal loop is a one-loop diagram and so on. When we calculate Feynman
diagrams beyond tree level we find that the majority of them are divergent.
These divergences fall into two categories: ultraviolet (UV) divergences and
infrared (IR) divergences. UV divergences appear as a result of high momen-
tum modes running through internal loops in the diagram. For example, the

momentum integration for a one-loop Feynman diagram might be!

[ @k G+ EN B E)w
Ipn,p) = @r) k(o + F)(ps — k) (1.2)

We can immediately see that we will have a problem since in the limit X — oo

® d4k k? * dk
I(Pl,Pz)N/ T’”/ ? (1~3)

!The-example here is from the vertex correction shown in Figure 2.5 for massless QCD
in Feynman gauge.

we obtain
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where [ * indicates that we are interested in the integral near its upper limit

of infinity. This will clearly give an infinite result.

These infinities can be systematically dealt with by regularising the integral
in some way; the most common method, which we shall use throughout this
thesis, is dimensional regularisation. This requires us to perform the neces-
sary momentum integrals in D = 4 — 2 ¢ dimensions, where D is unspecified
but is taken to be such that the integral is finite. Our example loop integral
would now become

[o] de k2 00
I(Pl,lb)’\“/ 16 N/ k™12 dk (1.4)

which is now finite for D < 4.

Once the integrals have been performed, we let ¢ tend to zero in order to
recover the result in four dimensions. The UV singularities will then reveal
themselves as poles in 1/e. These UV singularities can be removed by the
procedure of renormalisation. We relate the quantities in the Lagrangian,
such as those labelled as the mass and the coupling, to the renormalised
mass and coupling of the theory in some chosen renormalisation scheme.
The difference between the renormalised quantities of the theory and the
quantities in the Lagrangian (the bare quantities) will be found to be infinite
and this process will result in the removal of the UV divergences. This is a
standard procedure and we will not concern ourselves with it any further in

this thesis; instead we shall concentrate on infrared divergences.
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1.2.1 Infrared divergences

IR divergences appear as a result of low momentum modes running through
internal loops and also in the phase space integrals of Eq.(1.1). If we take

the limit & — 0 of Eq.(1.2) we can again see the problem since we obtain

'k dk
Ipup)~ | —2% [ &2 15
(P, P2) /Ok2 pkpak  Jo & (15)

which will again give an infinite result.

Specifically, infrared divergences relate to two different circumstances. Firstly,
when a massless particle emitted from an initial or final state particle goes
soft (i.e. its energy goes to zero). Secondly, when a massless particle goes
collinear to an external massless particle from which it has been emitted?.
Renormalisation does nothing to remove these singularities since their under-
lying cause is completely different from that of the UV singularities. We shall

investigate the origin of the infrared divergences further in Section 1.4.1.

One result of these infrared divergences is to limit the types of quantities
which we can calculate in perturbation theory. We can only calculate physical
observables if they can be defined in an infrared safe manner 3]. Closer
investigation shows that these infrared safe observables are distinguished by
the fact that they do not depend on the long range behaviour of the theory.
To highlight the connection with the two cases mentioned in the previous
paragraph, we could equally state that IR safe quantities do not depend on
whether or not a parton emits a soft gluon and similarly do not depend on
whether a parton splits into two collinear partons or not. These conditions

are essentially those required for the physically indistinguishable processes

2We shall use the terms “infrared divergences” and “infrared singularities” to refer to
both soft and collinear singularities throughout this thesis.

7
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described in Section 1.1.

To handle these IR divergences we need to regulate the momentum integrals
in some way as mentioned earlier in the case of the UV divergences. The
simplest method is to introduce a mass for any massless fields in the La-
grangian. In this case (adding a mass for the gluon but leaving the quarks

massless) our example loop integral in Eq.(1.2) would become

d'k B+ k)@ — k)
I1(py, ps, = 1.6
(pl ) m’y) / (27!')4 (k2 . m?y)(pl + k)2(p2 . k)2 ( )
and consequently in the limit & — 0 we now find
d*k
I(py,ps, m N/—N/kdk 1.7
(P1.p2, 1) oP1kpek  Jo (1)

which will no longer give an infinite result. Amplitudes which have been
regulated in this manner will now contain logarithms of the mass which

diverge as our regulator is taken to zero.

A more common method is that of dimensional regularisation, which we

previously mentioned in the case of UV divergences. Considering our example
loop integral again, in the limit £ — 0 we now find

dPk

I(p1,po2, € N/—— N/k_l_zfdk 1.8

(P ) o k% pr.k py.k 0 (18)

which is finite for D > 4. The infrared singularities will again reveal them-

selves as poles in 1/e. Despite the seeming contradiction that we appear to

simultaneously pick D > 4 for the infrared divergences and D < 4 for the

ultraviolet divergences, this does not cause any problems with the calcula-

tions and we arrive at correct results when we finally take the ¢ — 0 limit at
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the end. This is due to the fact that, more formally, we start by calculating
an off-shell Green’s function which will contain no infrared divergences. We
can therefore regulate this by choosing D < 4 and remove the ultraviolet
divergences through renormalisation. Our Green’s function is now ultravi-
olet finite and so we can choose D > 4 in order to regulate the infrared
divergences which appear as we now allow the external legs to go on-shell.
The popularity of dimensional regularisation is in part due to this fact that
it allows us to use only one regulator to deal with all the divergences in an
amplitude. Since both sets of divergences appear as poles in 1/e, the poles
from the two types of singularities will mix together. This will not, however,

cause any problems with UV renormalisation.

Once we have our IR regulated amplitudes we can use them to calculate
our infrared safe observables. Since these observables do not depend (among
other things) on whether or not a parton emits a soft gluon, it is clear that our
observable will be a sum of amplitudes with differing numbers of particles
in the final state. For processes with certain specific numbers of particles
in the final state, the phase space integrations will also produce infrared
divergences. We can deal with these divergences through dimensional regu-
larisation as well. Once we have considered both sets of divergences the final

result will be finite.

1.3 Current calculational methods

As we saw in Section 1.1, the different phase space integrals which we have

to perform to calculate a specific observable will generally contain different

numbers of particles. This means that unless we are calculating fully in-
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clusive quantities we must integrate the contributing terms separately over
different phase space regions. In this case we are unable to take advantage
of the cancellation of soft and collinear divergences at the integrand level.
Consequently this does not allow us to use a completely numerical approach
for the calculation of these phase space integrals. This is not a problem for
simple leading order calculations, but as we calculate at higher and higher
orders in perturbation theory the increasing complexity of the amplitudes
makes analytic calculations progressively more difficult. In an attempt to
overcome this problem much work has been done on methods of splitting up
the integration so that the singular regions are removed [4]. These are then
integrated analytically, while the remaining finite regions are calculated nu-
merically. Two of these methods are the phase space slicing method [5], and
the subtraction method [6,7]. A general version of the algorithm for both
methods is available for processes at NLO involving any number of lepton

and hadron jets.

The general approach of the subtraction method proceeds as follows [8-10].
The total NLO contribution to an observable consists of a real piece do®
(with m + 1 partons in the final state) and a virtual piece do¥ (with m

partons in the final state). The integrals can then be rewritten as follows

ONLO =/ d0R+/ doV (1.9)
m+1 m
=/ (do® — do?) +/ do? +/ do¥ (1.10)
m+1 m+1 m
= (do® — do?) +/ (dav + /daA) (1.11)
m+41 m 1

where the subscript on the integrals denotes the number of external particles

present in the final state phase space. Here do“ is chosen to be an approxi-

10
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mation of do® such that it has the same pointwise singular behaviour, acting
as a local counterterm and allowing the first integral to be performed numer-
ically. The first integral is finite by definition, so providing we are calculating
an infrared safe observable the final result of the second integral (over m ex-
ternal particles) must also be finite. This means that if we can calculate the
single integral over do analytically, we can once again remove the regulator

from the second integral and calculate it numerically.

The crucial part of this process is that we are free to choose the form of do4
so that we are able to perform the single integral analytically. It is possible
to define a method of generating do® for NLO processes which is process
independent. It is also possible, for a suitable choice of do*, to numerically
integrate the virtual piece over the internal one-loop integral [11]. Following
these methods, it should be possible to use a completely numerical approach

for any NLO observable.

Once we move on to NNLO calculations however, we are faced once again
with yet more complicated amplitudes and phase space integrals. A lot of
effort has been focused on these two separate areas of the calculations. In
the case of the amplitudes themselves progress has been made both on the
development of methods for evaluating specific two-loop integrals which ap-
pear in the calculations [12-14] and on their application in explicit amplitude

calculations [15-17].

In the area of phase space calculations there have been efforts to produce a
general subtraction procedure for NNLO processes. The first step in devel-
opix}g_sqch a procedure is to understand the soft and collinear singularities of
the various amplitudes, and hence to be able to generate them. Despite all

the work in this area, the difficulties associated with performing the diver-

11
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gent phase space integrals remains a significant stumbling block to further

calculation of NNLO observables.

1.4 Infrared Finite Amplitudes

As we have already seen, it is possible to make progress in calculations despite
the presence of infrared divergences, and much work is continuing in that
area. The increasing difliculties which are encountered with each attempt
to produce more accurate calculations, however, suggest that an attempt to
avoid the singularities at the amplitude level would provide great rewards
if successful. Consequently it seems useful to investigate the origin of these

singularities in the hope of eventually avoiding them altogether.

There are several benefits which would arise as a result of defining infrared
finite amplitudes. Most obviously there is the conceptional advantage of
constructing a well-defined S-matrix without singularities. More practically,
in the light of the presently available calculational methods detailed in the
previous section, the development of infrared finite amplitudes would have
clear advantages. Given that the final integrals over the phase space will be
calculated numerically, there is very little real benefit in performing com-
plicated amplitude calculations analytically since the analyticity will be lost
in the final result. Consequently, the ability to calculate amplitudes nu-
merically would be of great benefit. The construction of infrared finite am-
plitudes would allow such a calculation. Another possible benefit of this
approach would be to facilitate the combination of fixed order results with

parton shower Monte-Carlo programs. We shall see later on in Section 5.2

that elements of our approach suggest a natural connection with a parton

12
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shower approach, and may present the possibility of performing calculations
at higher orders in the strong coupling at soft energies rather than at hard

energies.

1.4.1 Previous work on infrared finite amplitudes

The traditional method for dealing with infrared divergences was first de-
veloped by Bloch and Nordsieck in response to the soft-photon divergence
or so-called “infrared catastrophe” [3]. This method, along with the various
developments which have followed, is often referred to as the cross section
method. Although this method swiftly became the standard approach for
performing calculations, much work has been done since then in investigat-

ing a different approach to the singularities.

The requirement of the cross section method to sum over incoherent but
physically indistinguishable cross sections led to the argument that the true
asymptotic in and out states cannot be approximated as noninteracting par-
ticles. In quantum mechanics it is well known that the asymptotic states in
a Coulomb potential are not simply plane waves, but must be modified by
non-vanishing Coulomb phase factors. This is due to the long-range nature
of the interaction [18]. In field theory, the addition of particle creation to

this scenario will further alter the character of the asymptotic states.

This means that our assumption in setting our in and out states to be eigen-
states of the free Hamiltonian is incorrect, and it is this choice of n and
out states which is the origin of the infrared divergences which appear in the
traditional calculations as this incorrect formulation results in a singular,

ill-defined scattering operator. In order to avoid infrared divergences in our

13
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calculations altogether we must define a method which correctly maps the

full states of the theory to the proper asymptotic states.

Previous work in this area can be divided into two approaches. The first
approach defines states called dressed states in such a way that infrared
finite transition amplitudes could be calculated using the normal S-matrix
between these modified states. This approach has been used initially in
QED with massive fermions [18] with several attempts to extend it to cover
soft singularities in non-abelian theories [19-25]. Dressed states including
multiple soft gluon emission can be constructed to all orders in the coupling
[26]; it can then be shown that the S-matrix between such states is completely
free of singularities [27]. The second approach uses the true asymptotic states
of the full theory. This will result in a different S-matrix which is then used

to calculate transition amplitudes between these asymptotic states [28-31].

Non-abelian gauge theories present several problems not present in QED.
Alongside the more complicated structure of the soft singularities due to
the self-interaction of the gauge bosons we find the additional problem of
collinear singularities. The presence of these singularities means that the
asymptotic Hamiltonian is more complicated [31] and the prospect of includ-
ing these effects to all orders in perturbation theory does not appear to be
very promising. However, the idea of constructing an asymptotic Hamil-
tonian which includes the necessary long range interactions along with the
usual free Hamiltonian and then using this either to construct asymptotic

states or to dress the usual states [32,33] is still applicable.

A general method for constructing a soft Moller operator and using this
to construct asymptotic states in the style of the second approach above

has been presented and applied to a simple example [34]. It allowed the
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Chapter 1: Introduction 1.5 Overview of the rest of the thesis

are not eigenstates of the free Hamiltonian. We identify the difficulties in-
volved in such a method and outline a related method which will be more

straightforward to implement.

In Chapter 4 we deal with a specific choice of the split of the Lagrangian into
an asymptotic part and a hard interaction part. We show how amplitudes
calculated with the hard interactions will be infrared finite, and consider the

effect of such a split on the propagators of the theory.

In Chapter 5 we perform an explicit calculation to show how the new ap-
proach will work for a simple example and demonstrate that we obtain the
same jet cross sections to O(a;) as the conventional method. We then exam-
ine the limitations of our chosen split of the Lagrangian and discuss how a
more appropriate choice can be made when we perform calculations numer-
ically. We consider how this new choice makes the connection between the
full method using an altered LSZ formula and the related method which we

have used in the previous example clearer.

16



Chapter 2: Conventional Methods 2.1 Free fields

considering processes which involve transitions between states with different
particle number we must therefore deal with field theories. For all our field
theory calculations we will start with a Lagrangian which describes the de-
tails of the particular theory in which the calculation is to be performed.
The Lagrangian will usually be made up of a kinetic (or free) part, which
describes the evolution of the fields in the absence of any interactions, and an
interaction part, which describes the interactions between the various fields

present in the theory. For example, the Lagrangian for QED is given by [35],

LQED = Lo+ L;

— TP —m)w— i (0uAy — 0,A,)° — ehy' A, (2.1)

Here the 1) are the fermionic electron fields and A, is the vector photon field.
The interaction term is —e@’y“wA,,, the electron kinetic term is ¢ (i — m)
and the photon kinetic term is —; (9,4, — d,A,)°. We want to work with
a quantum field theory and so we will need to quantise the theory which
is described by our given Lagrangian. Throughout this thesis we will use
canonical quantisation. This involves promoting all the fields and their con-
jugate momenta to operators and imposing suitable commutation relations
in the case of integer spin fields and anti-commutation relations in the case
of half integer spin fields [35,36]. We shall begin by developing this process

for the kinetic part of the Lagrangian alone - that is for free fields.

2.1 Free fields

To demonstrate the basic form of a free quantum field theory we consider

the Klein-Gordon field, governed by the Lagrangian £ = £(9,¢)? — 3m*¢>.

18



Chapter 2

Conventional Calculational

Methods

In this chapter we shall look at the methods traditionally used in amplitude
calculations. We present a quick summary, following a similar approach to
the more detailed treatments which can be found in books such as [35-37)
and focusing on the areas which we shall need to modify in order to produce
infrared finite amplitudes. Once we have an understanding of the conven-
tional approach we shall use this to investigate the necessary modifications
in Chapter 3. In our calculations we will consider the specific case of scalar
fields, but the same general ideas can be extended to fermions and vector

fields relatively easily.

Our aim is to calculate the amplitudes, .4, described in Section 1.1. In or-
der to go about this task we shall use quantum field theory. Where basic
quantum mechanics is concerned mainly with the quantisation of dynami-
cal systems of particles, quantum field theory deals with dynamical systems

of fields. Since we will be dealing with relativistic situations and therefore

17



Chapter 2: Conventional Methods 2.1 Free fields

We follow the usual procedure of starting with a classical field theory and
“quantising” it by promoting the fields, ¢, and their conjugate momenta, ,

to operators. These will then obey the usual commutation relations

[¢(t, f)’ ﬂ'(ta ?7)] = 7'5("1_:. - ?j)
[¢(t’ f)a (ﬁ(t,ﬁ)] =0, [W(t’ "E)’ 7T(t, g)] =0 (2'2)

We can expand the fields in terms of annihilation and creation operators in

the Schrodinger picture as follows [35]

H(Z) = / (;iaTk)a\/% (a(E)eiE"? + aT(l_c')e_iE'f) (2.3)

r(#) = / (g:r';\/%(a(k’)eiﬁ-f-a*(k‘)e-“?f) (2.4)

The commutation relation from Eq.(2.2) then gives us the following commu-

tation relations for our annihilation and creation operators

[a(t, %), alt, E')] =0, [af(t, k), a'(t, E')] =0 (2.5)

We can then express the Hamiltonian in terms of these operators [35], arriving

at the form
H = / (‘21—;';—3 Wi (af(ié)a(ié) + % [a(E), af(ic')]) (2.6)

In the Heisenberg picture, we can make the operators time-dependent in the
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Chapter 1: Introduction 1.5 Overview of the rest of the thesis

calculation of e*e~ — hadrons at NLO, but since it used a Hamiltonian
approach it resulted in infrared-finite amplitudes which were not covariant.
Consequently, the construction and computation of these amplitudes and the

resulting cross sections was rather cumbersome.

1.5 Overview of the rest of the thesis

In this thesis we investigate the possibility of constructing scattering am-
plitudes which are free of infrared divergences. While most previous work
has focused on general theoretical considerations of the various possible ap-
proaches, our aim is to work towards establishing a method for performing
explicit calculations order-by-order in perturbation theory. The ultimate
goal (which is beyond the scope of this thesis) will be a completely numerical
approach to the calculation of amplitudes. We wish to modify the approach
of [34] and make it manifestly covariant. In order to achieve this we shall

exchange the Hamiltonian approach for a Lagrangian based formalism.

The structure of the thesis is as follows: in Chapter 2 we provide a basic
overview of the basic theoretical method used in performing calculations of
observables. The reason we do this is in order to establish the form of the rel-
evant features of the traditional approach; consequently, when we outline our
new approach in the following chapters it will be clear where the differences

and similarities lie.

In Chapter 3 we explore the asymptotic interaction picture as a means of
adapting the conventional method in order to ensure infrared finite ampli-
tudes. We follow the general route outlined in Chapter 2, while adapting

the argument in order to take account of the fact that the in and out states

15



Chapter 2: Conventional Methods 2.1 Free fields

usual manner through the relation
¢(z) = ¢(t, T) = M P(F)e " (2.7)

The Heisenberg equation of motion for an operator O,

0

i=0 = [0, H] (2.8)

will then allow us to calculate their time dependence. We find that i%d)(t, T) =

im(t, T) as required and can also check that

2
7 (v -m) s (2.9

so that ¢ does indeed satisfy the Klein-Gordon equation.

Finally, we can use the form of H given in Eq.(2.6) to derive the commutation

relations

[H’ at(E)] = Wk aT(E) ) [Hv a(E)] = —Wg a(];;) (2.10)

This then gives us the results
etha(E)e—th - G(E)e_iwkt , ethat(E)e—th - G(E)eiwkt (2'11)

which allow us to write our expression for the Heisenberg field in its most

useful form

o(z) :/ d3k3 1 (a(k')e._ik_g;_*_af(lg)eik.m)

(2.12)

kozwk
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Chapter 2: Conventional Methods 2.2 The Feynman propagator

2.2 The Feynman propagator

We now consider the vacuum expectation value of the time-ordered product of
two fields, (0| T {¢(z)¢(y)} |0). This object, called the Feynman propagator,
will prove to be useful later on. A simple calculation will show [35]

dp i
2m)4 p? — m? + de

01T {$(2)$(4)} 0) = Dr(z — y) = / : P (2.13)

It is easy to verify that Dp(z — y) is a Green’s function of the Klein-Gordon

operator since we have

(0% +m*)Dp(z — y) = (8° + m?)(8(° — 4°)(0l(2) () 0)

+0(y" — 2°)(0l¢(y)p(2)]0)) (2.14)

Considering only the 6(z° — ¢°) term we get

Dyo = (9°0(a" — ¢°)) (0l6()(1)I0) + 2 (9,6(z° — ) (8"(0l¢(2)¢()[0))
+0(z" — y°)(0” + m*){0]¢(z)$(y)|0)
= — 8(a” — 1) {0lm (z)$(y)10) + 26(z° ~ 4°)(0lm (z)$(y)|0) + 0

= 0(z° — ") (0lm(2)¢(y)[0) (2.15)

We can do a similar calculation for the #(y° — z°) term, and adding them

together we get

(0% +m?)Dp(z — y) =6(z° ~ y°){0ln(2)$(y)[0) — 6(x° — 3°)(0|()m(x)|0)
=6(z" — y°)(0l[r(2), (»)]10)

=—i6*(z — y) (2.16)
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Chapter 2: Conventional Methods 2.3 The LSZ reduction formula

as required.

2.3 The LSZ reduction formula

We now want to use our quantised theory to calculate .4A. We represent the
amplitude as the overlap of the in states (which describe the initial configu-
ration for the process we're investigating) with the out states (which describe
the final configuration) [37]. The amplitude for a quark and an antiquark
(with momenta k; and k3) to scatter into n quark jets (with momenta p; to

Prn) would then be given by

-A = out(q(pl) s q(pn/2)(7(pn/2+1) e q_(pn)'q(kl)(j(k2)>m (217)

where all the quarks are fields of the full Lagrangian.

Clearly, if we are to make use of the formalism which we have developed in the
previous sections we need some way of relating the “full” fields to the “free”
fields with which we have been dealing until now. We find this relation in the
asymptotic condition, which uses the observation that at asymptotic times
the particles in a scattering process behave as free particles and propagate
under the influence of their self-interactions only! to state [36]

Jim (a]¢(@)]8) = Z7*(aly(z)|6) (2.18)
where 9 is the field obeying the equations of motion of the full Lagrangian,

and ¢ obeys the equations of motion of the free Lagrangian as before; the

1We have already seen that this observation is incorrect and is the cause of infrared
divergences. We shall address this in our approach to calculating infrared finite amplitudes,
beginning in the next chapter.
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Chapter 2: Conventional Methods 2.3 The LSZ reduction formula

factor of proportionality, Z, will turn out to be one of the elements which is
required to cancel the UV divergences in the amplitude and is known as the

field-strength renormalisation.

As before we will examine the case of scalar fields, but this method can easily
be extended to encompass other fields as well [36]. We represent a general
case where we have m particles with momenta g, to g, in the initial state,

and n particles with momenta p; to p, in the final state as follows

A= out(pr,- -, Pnla1, -, Gm)in (2.19)

Our aim is now to manipulate this expression until we arrive at something
which will give us a clear picture of how to perform the calculation. Since the
in and out states are defined at asymptotic times where (for the purposes of
this chapter at least) we assume that the fields obey the equations of motion
given by the free Lagrangian, we can proceed by extracting an asymptotic
creation operator from the initial state and then add and subtract terms with

an asymptotic final state creation operator with the same momentum

A= uilpry - palal (@)lg2s - - - Gmdin (2.20)

= out(pl, < vy Dn, —(11|Q2, - M]m)z‘n + o'ut(ph cee ,pn|a:~'n(q1) - a:rmt(%)|Q2, . ,Qm>m

where o, ({p}, —¢1| represents an out state with a particle of momentum
q1, if present, removed from the set {p}; if there is no such particle present
then this term will be absent. This represents the case where one of the
incident particles does not play any part in the scattering since all of its

quantum numbers are conserved We shall not concern ourselves with such

“dlsconnected” pieces and so will d_rop them from now on.
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Chapter 2: Conventional Methods 2.3 The LSZ reduction formula

Inverting the expressions in equations (2.3) and (2.4), we find the result

al . (k)= lim i / dBre=*e 8y o) (2.21)

in/out t—Foo

where A § B is defined as A(B) — (9A)B, and 6 is the field obeying the
equations of motion of the free Lagrangian. A similar expression can be

derived for a;n/ou:(k). We can use this together with the identity

tf a
SN P 3 - _ . v 3 -
<tliglo tl}r_noo) /d z F(Z,1) t,—»ol;l,gla—oo/ti dtat /d zF(Z,t) (2.22)

and the asymptotic condition defined in Eq.(2.18) to rewrite our expression

as follows:

A= ’I:Z_l/2 / d4.’II 80 (e—i‘h'm 80 (pl, e ,pn|'(/)(:1:)|q2, ce ,qm>)

_ iz / Fo(pr,. .., pale™ % (B29(2)) — (BB (@) |ds, .. . G

(2.23)
Now since e~%'? satisfies the Klein-Gordon equation
(O + m?)e ™% = (G2 — V2 + m?)e ™02 = K, e701" = () (2.24)

we can substitute for §2e~1 in Eq.(2.23) and integrate V2 by parts? onto

Y(z) to arrive at

iZ_l/z/d‘lxe_iql'x(pl, . ,pn|Kz¢(5E)|Q2, v ’Q'm) (225)

We can extract all the in and out states through the same procedure to find

2We discard surface terms as usual.
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Chapter 2: Conventional Methods 2.4 Perturbative expansion

2.4 Perturbative expansion of the correlation

functions

Now that we have derived the LSZ reduction formula we have a recipe for
calculating S-matrix elements. In order to proceed with the calculation we
must now develop methods of working with the full field correlation functions.

In order to do this we shall use perturbation theory.

The idea behind perturbation theory is that we apply it to a calculation
which we are unable to perform, but which we are able to model in terms of
a simpler theory which we can solve, and a small “correction” to that theory.
The solution we are looking for will then take the form of the solution to the
simple theory plus a series in powers of the small correction. In our case, we
take the simpler theory to be the free theory (i.e. £; = 0) and we require
the interaction part of the theory to be a small correction (i.e. the coupling
constant present in £; must be small). In order to exploit this division in the
most convenient way we shall transform the full fields into what is known
as the interaction picture. We will then be able to relate the correlation
function of the full fields, ¥, to the free fields, ¢, which come from our free

theory. We will see later that this relation will take the form

(0| T{d(z1) . .. () exp (—z' et d4x£1> }0)

O T{w(z1) .. (za) }0) =
(01 T{ (=i /2, d*sLr) o)

(2.27)
This expression now consists of correlation functions containing only fields
which evolve in time in the same way as free fields. To perform the perturba-
tive calculation we can expand exp (—z’ [ dzL 1) as a series. The problem

of calculating the overlap of states is then reduced to that of calculating
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Chapter 2: Conventional Methods 2.4 Perturbative expansion

various correlation functions of time ordered products of free fields. Higher
terms in the expansion of exp (—z’ ffooo d*zL 1) will correspond to higher or-
ders in perturbation theory and will be suppressed due to the small size of
the coupling constant®. We describe a contribution as leading order (LO) if
the power of the coupling constant in the amplitude is the lowest possible
value for that process. The next order in the perturbation series is known as
next-to-leading order (NLO). This will have one more power in the coupling
constant than the LO contribution. The next order in the series is known as

next-to-next-to-leading order, and so on.

2.4.1 The interaction picture

We start from the Heisenberg picture where we have
P(z) = etep(Z)e (2.28)

At any fixed time ty, we can write 1 in terms of creation and annihilation

operators:

o a3k
Y(to, T) =/m

(a(to, k)eRE 1 ot (to, E)e—“?-f) (2.29)
We define the field in the interaction picture through
r(t,Z) = etfot=tly(ty, F)eHolt—t0) (2-30)

and immediately see from inspecting the expression in terms of the creation

and annihilation operators that this is just the usual expression for the free

3Providing, of course, that we are at a suitable energy scale such that a, is small.
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7) = /(27r)d:—k2m (a(to, Re=*= 1 al (1o, E)eik.z)

zo=t—1g

(2.31)

We now want to express the full Heisenberg field in terms of the interaction

picture field. Formally we have

W(t, T) = eiHt=to)gmiHolt=to)y, (¢ 77)eiHo(t=to) g=iH(t=to)

= U'(t, to)yu(t, DU (L, to) (2.32)
where we have defined the unitary operator
U(t, to) = efolimto)g=iH(i~to) (2.33)

which is known as the time-evolution operator. We now want to express
this operator in terms of the interaction picture fields. We start by noting
that U(t, to) satisfies the following differential equation (with initial condition

Ulto, to) = 1)

i%U(t,to) — eiHo(t——to)(H _ Ho)e—iH(t—tg)

— eiHo(t—to) (Hint)e_iH(t—tO)

— eiHo(t—to) (Hint)e—iHo(t—to)eiHo(t—to)e—iH(t—to)
— Hi(H)U(t,10) (234)
where

- Hi(t) = efol-to) (H;, ) Holt=to) (2.35)

is the interaction Hamiltonian in the interaction picture. Since the inter-
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Chapter 2: Conventional Methods 2.4 Perturbative expansion

action Hamiltonian in the Heisenberg picture contains a product of fields
(also in the Heisenberg picture) and we are free to insert a factor of 1 =
e~ tHo(t=to)iHo(t=t0) ip hetween the fields, we can see that H;(t) is just Hin

with all the fields placed in the interaction picture.

We now solve Eq.(2.34) for U(t,to) (see e.g. [35] for details), arriving at the

form

Ult,to) =T {exp [—i /t t dt’HI(t’)] } (2.36)

where the time ordering of the exponential is defined as the Taylor series

with each term time ordered.

We can easily generalise our definition of U so that its second argument can
assume values other than the reference time ¢;. The correct definition is
simply

Ut t) =T {exp [—i /t t dt”HI(t”)]} (t>¢) (2.37)

U(t,t') satisfies the same differential equation as as U(t, ty), (2.34), but now
with the initial condition that U=1 for ¢ = t’. This equation shows that U

is unitary since we can see that

U(t, t/) — e‘iHo(t—to)e—iH(t—t')e—iHo(t'—to) (238)

We also find the following useful identities for t; > ty > t5:

Ulty,t2)U(ta, ts) = U(ty, t3) (2.39)

Ul(ty, t3) U (tg, t3) = U(ty, ta) (2.40)

We are now in a position to manipulate our correlation function. For the
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moment we shall assume that 20 > 20 > .-+ > 2. We then find

(0l(21) - - . ¥(24)10) =
(O|UT (22, to)tr (21)U (21, t0)U' (23, to) . . . U' (23, t0) s (21)U (29, t)|0)
= <0|UT (T, tO)U(T, Z?)’(ﬁ](zl)U(z(l), Zg)’(/J[(ZQ) ce wl(zn)U(zg, —T)U(—T, to)lO)
(2.41)

where we have introduced a new reference time 7' which we will now allow
to approach co; in this limit we will now have T later than 2? and —T earlier
than 22, allowing us to place the majority of the expression in a time-ordered

product as follows

OIT {(21) ... ¥(2a)} |0) =
(O[T (T, )T {1/11(;:1) - r(zn) exp [—i /

-T

T

dtH,(t)] } U(=T, t)|0) (2.42)

where we have rewritten U(T, —T') using the form given by Eq.(2.37)

We now have our expression completely in terms of the free fields except for
the operators U(—T,t,) and U'(T,t;). We shall remove them by showing

that the vacuum |0) is the eigenstate of these operators in the limit T — oo.

We consider an arbitrary in-state |a, p);, containing a particle, p, along with

any other number of particles which we denote collectively by the symbol a.
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We can then write

(@, pIU(=T,10)[0) = in{@laim(p)U(=T)10)|0)

=—i / dze VD b, (alg(~t, DU (=T, t0)|0)
=i / Bre—itC—5D g, m{a|U (=t to)b(—t', D) [U(=t', t0)]TU (=T, t0)|0)

(2.43)

Using the asymptotic condition from Eq.(2.18) as we send T = t' — oo this

approaches

Z‘1/2 in(‘l’lU(_T, tO)am(p)lO) + 7 / d3$6—i(potl—ﬁ'f)

X inla|U(=T, to) (=T, &) + U(=T, to)p(~T, £)U' (=T, to)U(—T, t,)|0)
(2.44)

The first term will clearly vanish since a;,,(p)|0) = 0. A closer look will reveal

that the second term vanishes as well
Uy + UypUTU = UUtQU + gUUNU = [UUY, ¢|U = —i[H;, U =0 (2.45)

where we have used Eq.(2.34) in the second last step and assumed no deriva-

tive couplings in Hj.

We are therefore able to conclude that

(o, p|U(=T,10)|0) > 0as T — oo (2.46)
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for all in-states {c, p} containing at least one particle. It then follows that
U(—-T,0)|0) = A_|0) when T — oo (2.47)
and we can similarly show that
U(T,%)|0) = A+|0) when T — oo (2.48)
Now these constants A; and A_ appear in Eq.(3.32) in the form

ANy =(0|UN(T, t0) 0){0|U (T, t0)|0)

=(0|U(=T, t)U"(T, 10)|0) = (0|U(~T, T)|0)

=(0|T {exp [z /_i dtHI(t)] } 10)
=(0|T {exp [—z’ /_i dtHI(t)] } 0)~!

We can now rewrite Eq.(3.32) as

(Oleh(21) - .. ¥(2)|0) =
. |7 {1/)1(;:1) . 1(zn) exp [—z’ [ dtHI(t)] } o)
T—00 o|T {exp [—z’ I dtH,(t)] } l0)

(2.49)

where we have assumed the time-order 29 > 20 > ... > 20,

To arrive at the general case for any time ordering of the z’s we note that the
right hand side of the expression is in time order, and would be so regardless

_of whatever time ordering we were to choose at the start of our manipulation.
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Chapter 2: Conventional Methods 2.5 Wick’s theorem

We can therefore write the general case as:

OIT {¢(z1) ... P(2a) }0) =
- (0|T {w,(zl) . 1(zn) exp [—z‘ [ dtHI(t)] } o)
T—o0 (01T {exp [—i . dtH,(t)] } 10)

(2.50)

This expression will be our starting point for performing perturbative cal-
culations. We simply need to expand the exponential as a power series to
whatever order is necessary for our calculation. Once we have identified the
order to which we want to calculate our amplitude, we are left with various
correlation functions of free fields. Next we shall look at how we reduce these
(potentially) large correlation functions into separate propagators and how

we can eventually represent them as sums of Feynman diagrams.

2.5 Wick’s theorem

Our immediate aim is to break down our time ordered correlation functions
containing an arbitrary number of fields into products of propagators con-
taining only two fields each. In order to achieve this we shall consider only
two time ordered fields, and gradually extend the number upwards. If we
start by placing the time ordered fields T {¢(z)¢(y)} in normal order (de-
noted by : ¢(z)¢(y) : and meaning that all the creation operators have been

placed to the right of all the annihilation operators) we can see that

T{¢(z)p(y)} =: ¢(x)d(y) : + complex number (2.51)
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Chapter 2: Conventional Methods 2.5 Wick’s theorem

since time order and normal order differ only in commutators of the anni-
hilation and creation operators. We can easily identify the complex number
by taking the vacuum expectation value of the expression since we note that
the vacuum expectation value of any normal ordered product of operators

must vanish. We find

T{¢(z)p(y)} = : ¢(z)p(y) : +(0|T {¢(z)¢(y)} 0) (2.52)

Our ultimate goal is to prove the general case for an arbitrary number of

fields*

T{8(m1) . $(z)} = d(zr) . 4(zn)
+ [(O|T {p(z1)P(z2)} |0) : ¢(z3) ... ¢d(x,) : + permutations] + . ..

+ [(0|T {@(z1)p(z2)} |0} . .. (O|T {P(zn_1)d(x,)} |0) + permutations]
(2.53)

which can be done by induction [36]. The advantage of writing our time
ordered fields in this form is clear, since when we take the vacuum expectation
value all the terms containing normal ordered pieces vanish, leaving us with
nothing in the case of an odd number of fields, or a sum of all possible time

ordered pairs in the case of an even number

O {¢(z1) - . . 9(zn) } |0)
0 :0odd n
Y pOIT {¢(z1)9(22)} 10) ... (O|T {¥(zp_1)¥(zn)} |0) :evenn

4The example here is for an even number of fields n. In the case of n odd, the final line
would include one single field as well as the vacuum expectation values of time ordered
pairs.
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Chapter 2: Conventional Methods 2.6 Feynman diagrams

where P is a sum over all permutations of the z; such that we only count
(0|T {¢(z1)¢(z2)} |0) and (O|T {v(z2)(x1)} |0) as a single term. These time
ordered correlation functions of two free fields are the propagators of our

theory which we have already met in Section 2.2.

2.6 Feynman diagrams

From this point it is simple to place the general time ordered correlation func-
tion in the form of a sum of Feynman diagrams. We work from a Lagrangian
standpoint so that [ dtH;(t) becomes — [ d*zL;(z). Once we have expanded
the exponential of Eq.(2.50) to the required order for our calculation, we will
then have a time ordered correlation function comprising our external fields
- located at distinct points in space-time - and a series of groups of fields
corresponding to the possible interactions of the theory - all fields in the
group will be located at the same space-time point which is integrated over
all space-time. The number of these groups will correspond to the order of
our expansion. For example, in the case of ¢* theory, where £; = %gb‘l, with
two external particles an expansion to first order in the coupling constant,

A, would give

o|T {¢(x)¢(y) exp (-i/d“z%(ﬁ“)} |0)’0(,\)

- oir{s@0) (57) [ = s0E000 | 0) 250

We can now apply Wick’s theorem to this correlation function. We get one
term for each way of contracting pairs of the ¢ operators. Many of these

contractions will be equivalent (for example, if we contract ¢(z) with ¢(y)
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Figure 2.2: A possible Feynman diagram for Eq.(2.54)

in the example above then there are three ways to contract the ¢(z)’s with
each other). Each distinct way of performing these contractions will make

up one of our Feynman diagrams.

We now consider one possible configuration of these propagators. To create
our diagram we represent each propagator (0|7" {¢(z)¢(y)} |0) as a line con-
necting the points x and y. Vertices will appear as a result of the interaction
terms since these will contain three or more fields at the same space-time
point. Consequently, when we use these diagrams as a resource for calcula-
tion, any factors other than the fields present in the interaction Lagrangian
will be associated with the relevant vertex. For example, a Feynman dia-
gram from the expression in Eq.(2.54) is shown in Figure 2.2. It is relatively
straightforward to come up with a set of Feynman rules which allow us to
write down the amplitude to be calculated directly from the Feynman di-
agram (see e.g. [35]). Conventionally we will use Feynman rules which are
formulated in momentum space. Since momentum is conserved at each ver-
tex we will be left with one four-dimensional momentum integral for every

closed loop in the diagram.

The topological structure of Feynman diagrams at LO is usually that of a
tree diagram (i.e. there are no closed loops in the diagram). The NLO

contribution will have one more power in the coupling constant than the LO
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contribution and will consequently have an extra vertex but no new external
legs. NLO diagrams must therefore have an extra loop when compared to
leading order diagrams. This means that NLO contributions usually have
the topology of a single loop, in other words a one-loop Feynman diagram.
We can see that as we increase the order of the calculation the same thing
will keep happening. For example, NNLO processes will have one loop more

than NLO processes and so usually result in two-loop Feynman diagrams.

2.6.1 Disconnected diagrams

When we consider the perturbative expansion of the correlation function that
appears in the LSZ reduction formula, we see in Eq.(2.50) that along with
the Green’s function for however many external particles we are consider-
ing we also need to calculate the Green’s function with no external parti-
cles, (0|T {exp [—i fTT dtH I(t)] } |0). Following our prescription for drawing
Feynman diagrams, we can see that this will correspond to disconnected di-
agrams where none of the legs are connected to external points®. If we now
consider the Green’s function with external legs we can see that a typical
Feynman diagram derived from this starting point will contain several dis-
connected pieces as well as a diagram with the external legs connected (see

Figure 2.3).

We label the set of possible disconnected pieces V;; these are connected in-

ternally, but disconnected from external points, as illustrated in Figure 2.4.

We then consider an arbitrary diagram which has n; pieces of the form V; for

5These are not to be confused with the disconnected pieces which appeared briefly in
Section 2.3 when we described the LSZ reduction formula. Disconnected pieces contain
no parts which aren’t connected to external legs, but consist of two or more parts with no
connection between them.
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ah
m\QJy

Figure 2.3: A typical Feynman diagram in ¢* theory including both connected
and disconnected pieces.

. § @

Figure 2.4: The set of disconnected diagrams, V;, in ¢* theory.

each 7, along with one piece which is connected to the external legs. If we
also let V; denote the walue of the piece V;, then the value of this diagram

will be given by
(value of connected piece) x H i(V)"“ (2.55)
p ‘ nl! 1 .

where 1/n! is a symmetry factor which arises from interchanging the n; copies
of V;. The numerator of Eq.(2.50) will be given by the sum of all possible

diagrams which we can write as follows
: 1 e
Z Z (value of connected piece) x H —'(V,) i (2.56)
all connected pieces all {n;} i i

)

where “all n;” refers to ordered sets of nonnegative integers only. We can
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factor out the sum of connected pieces from this expression, arriving at

- Z( connected) x Z H nii!(vi)ni (2.57)

all {n;} ¢

In a similar fashion we can factor the rest of expression as well

= Z( connected) x (Z TLLI'(VI)M) (Z n%,l(%)m) ..

n :

= Z( connected) X H Z nil'(v‘)m
= Z( connected) X Hexp (V2)

= Z( connected) X exp (Z Vi) (2.58)

This shows that the sum of all diagrams is equal to the sum of all connected

pieces multiplied by the exponential of the sum of all disconnected pieces.

By a similar argument we can show that (0|T {exp [—z’ ff:r dtH I(t)] } |0 is
simply the exponential of the sum of all disconnected pieces alone. Conse-
quently, when we calculate (0|7 {¥(z1)...%(2,)}|0) using Eq.(2.50) we see
that the exponential factor in the numerator will cancel the denominator and
so our final prescription for calculating our correlation functions will simply

be the sum of all possible connected Feynman diagrams.

2.7 Phase Space calculations

Since we are forced to perform our calculation through a perturbative ex-
pansion, this means that we will be calculating amplitudes to a particular

order in that expansion. It follows that we will also calculate the physical
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Chapter 2: Conventional Methods 2.7 Phase Space calculations

observables of Eq.(1.1) to a particular order. Since physical observables con-
tain the modulus squared of the amplitude, the contribution to a particular
order will involve the multiplication of amplitudes at different orders. For a

general physical observable ¢; at order n we will have

o], = /dLiPS(Phn-,Pk)AT X An_y J(p1,- .-, Dk)
+ /dL?’ps(pla e )pl)A; X An—Z J(pla coe 7pl)

... +/sz'ps(p1,...,pm)A:;_1 x Ay J(p1,- -+, Pm) (2.59)

where Lips(py,...,p;) is the phase space associated with integrating over
the momenta of the external particles in the amplitudes given by A;, and ¢
denotes the order in the coupling to which we have calculated the amplitude.
J(p1,...,p;) is the weighting function for the physical observable and will
also depend on the momenta of the external particles. This means that if
we want to calculate a process up to a certain order in perturbation theory
we would need all the amplitudes from leading order up to that order to get
the complete result. Since we must include all physically indistinguishable
contributions in our calculation of the process the amplitudes at different
orders may contain different numbers of incoming and outgoing particles.
This means that each piece will in general have a different phase space integral

and the sum of the amplitudes will, in general, be an incoherent sum.

We could now use IR regulated amplitudes to calculate an infrared safe quan-
tity. When we combine all the pieces of Eq.(2.59) this will then give us a
completely finite result with the exception of one significant case [3, 38, 39].
We find that all the divergent parts of an amplitude which contributes to

Eq.(2.59) will cancel with similar divergent parts associated with the other
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amplitudes. We are then free to remove the regulator leaving us with our
desired result. The only exception to this occurs when we have initial state
collinear singularities. In this situation the initial state singularities do not
all cancel and instead we absorb them into the definition of what are known
as parton distribution functions (PDFs) which describe the probability of
finding a certain type of parton within an incoming particle [1]. The factori-
sation theorem [1] then allows us to separate out the long range behaviour,
including the collinear singularities and non-perturbative effects, into these
PDF's. The short distance behaviour then has no initial state infrared diver-

gences and can be calculated perturbatively.

2.8 An example infrared safe calculation

We now give a brief illustration of the cancellation of infrared divergences
when calculating IR safe observables. We take as an example the total cross
section for ete™ — 2 jets at NLO. As described in Section 2.4 we need
to consider amplitudes which give physically indistinguishable contributions
and so we will have to calculate the amplitude for an incoming photon and
an outgoing quark and anti-quark (known as the virtual contribution since it
involves a virtual gluon) and the amplitude for an incoming photon and an
outgoing quark, anti-quark and gluon (known as the real contribution since
we have a real gluon in this case). The first process is shown in Figure 2.5

and its amplitude is given by

A(qu‘ipz;')’(P)) =

eAO,l(qpla q_pz; ’Y(P)) + engQ,l(qpu q-pz; 7(P)) + 0(94) (260)
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n

k|

/

D2

Figure 2.5: The vertex correction diagram

where e is the electromagnetic coupling constant and g is the strong coupling
constant, Ag ; contains a single quark-antiquark-photon vertex and Ag 1 con-
tains a quark-antiquark-photon vertex and two quark-antiquark-gluon ver-

tices.

The second process is shown in Figure 2.6 and its amplitude is given by

A(@p1» Tpas 9pss V(P)) = €9.A1,1(qpy s @pz» Gps; V(P)) + 0(93) (2.61)

where A;; represents the amplitude containing a single quark-antiquark-
photon vertex and a single quark-antiquark-gluon vertex. We can rewrite

the general form of Eq.(2.59) for this specific process at order e?g® as

1] = iy [ ALins(or,p2) 45, x Ao, (01,92
+/dLiPS(Pl,PmP3)|A1,1|2J(P1,P2,Pa)

+ [ dLips(on, pa) A3,y % Ao T(o1,p0) (262)
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Y4l

ps/

Figure 2.6: The real emission diagram

where € is our regulator in dimensional regularisation as before. We can, in
fact, represent Eq.(2.59) in the form of a diagram as well. We notice that if
we interpret the A*s which appear in the equation as mirror image Feynman
diagrams and fuse the final states with those of their respective As then each
separate term will give rise to the same composite diagram. Each possible
way of cutting this composite diagram in two generates a cut diagram which
corresponds to one term in our original equation. This can now be thought
of as the sum over the cuts of the composite diagram. The cut diagrams in
our particular example are shown in Figure 2.7 where cuts 1, 2 and 3 refer

to the first, second and third terms in Eq.(2.62) respectively.

To ensure that o, is an infrared safe observable the weighting function
J(p1, - .. ) must satisfy certain conditions in the soft and collinear limits. No-

tably it must not change between processes which differ only by the emission
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Figure 2.7: The cut diagrams for Eq.(2.62)

of a soft or collinear particle so that we have

J(Ph- .. vpmaoapm—i—%' = apn) = J(pl’ «o oy Pmy Pm42, - - - >pn)

J(ph ceey (1 - A)p'rrn Apm:pm+2a SR )pn) = '](pla <oy PmyPm42; - - - »pn)
(2.63)

For this example however we will just choose the simplest example of the
total cross section and set J = 1. We can now perform the phase space

integration and obtain

0= 0sm = [ doo+ iy [(PgPdog + P dowg) + O (260

where

dog ~ |~A0,1(q111’ qu;’Y(P))P (2'65)
dogg ~ 2Re [Ao1(dpy, Tpr; Y(P)) A3 1 (@, Gpr; 7(P))] (2.66)
daqfiy ~ IAI,I(QPU (jpw 9p3’ 7(P))|2 (2'67)
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As expected, both the virtual cross section, dogg, and the real cross section,
dogge contain infrared singularities which only cancel when we combine them
to form an infrared safe observable. We obtain the following results for the

various cross sections

4o’ _e2N,

em~q-'C
o o (2.68)
Qg 1 3 19 nx?
Og5 = UOCF_’Ir cr (6—2 + % + VD) ) + O(e) (2.69)
o 1 3 2
Oaag = 000~ >cr (—6—2 T 4T ?) +00 (270)

where cr = 1 4+ O(e) and Cr = (N2 — 1)/(2N,.) = 4/3. Our final result for
the cross section at next to leading order will be obtained by summing these
results and then setting € to zero

Q

s 3CF) (2.71)

a=ag-}-crqq—f—aqqg=00(1—}—47r

where since all negative powers of ¢ have cancelled it is safe to remove the

regulator by taking the limit ¢ — 0.
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A New Approach

The goal of our approach to performing calculations in perturbation theory
is to remove the problems of infrared divergences. In the standard approach
to computing transition amplitudes within a Hamiltonian framework we split
the Hamiltonian, H, into two parts so that H = Hy + H; where H; contains
all the interactions of the theory. The external states, |¢;) are characterised
by a complete set of quantum numbers, i, of the free Hamiltonian, Hy. The
matrix element for this state to evolve into a given final state, (¢¢| is then
given by (¢|S|¢:), where S = 0! Q0 can be expressed in terms of Méller
operators

Qr = Tli»gloo e'TH g=iTHo (3.1)

However, as we saw earlier, in the presence of long-range interactions free

states are not true asymptotic states and this incorrect formulation leads to

infrared singularities.

In order to overcome this problem we choose to work in the asymptotic
interaction picture (AIP) [31]. We split our interaction Hamiltonian into

hard and soft parts, H; = Hyg + Hg, such that all the long range interactions
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are contained in Hg. We then define our asymptotic Hamiltonian as H4 =
Hy + Hgs and now propose an approach where our external states,|Z;) are
characterised by a complete set of quantum numbers, %, of the asymptotic
Hamiltonian, H4. We can then construct modified Méller operators

Qaz = TlibI:EOO e'THeiHa (3.2)

and compute modified matrix elements of the asymptotic S-matrix
(E71SalZs) = (B[, _Qay[E:) (3.3)

which will be infrared finite.

This is the approach which was followed in [34], and while it proved possible
to perform a simple calculation in this fashion, the amplitudes produced by
this method are not covariant. This results in various complications which
make the construction of cross sections for more complicated examples im-
practical. Consequently, we wish to create a similar approach based on a

Lagrangian formalism in order to arrive at covariant amplitudes.

We achieve this by splitting the QCD Lagrangian into “free” and “interac-

tion” parts in a similar manner to the Hamiltonian AIP approach so that

L=La+Ly=Ly+Ls+ Ly (3.4)

Here, Ly is the usual free Lagrangian which is used to define the traditional
free states; the usual interaction Lagrangian has been split into a soft or in-
frared part, Lg, which contains all the soft and collinear parts of the interac-

tions, and a hard part, Ly, containing the rest of the interaction Lagrangian
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Chapter 3: A New Approach 3.1 The asymptotic condition

such that £; = L5+ Ly. We will define our asymptotic states through our
asymptotic Lagrangian L4 = Ly + Lg, thus including the necessary infrared
parts of the Lagrangian in our definition. We can then create our asymp-
totic interaction picture using £4 in exactly the same way that the standard

interaction picture is created with L.

As in the standard interaction picture we will find that we are interested in

the calculation of time ordered correlation functions such as

OIT {(z1) ... ¥(zn)} |0) (3.9)

although in our case these will be related to S4-matrix elements calculated
using asymptotic fields derived from L4 rather than £o. This will require us
to modify the usual LSZ derivation. We will examine this later; we start by

looking a little more closely at the asymptotic states themselves.

3.1 The asymptotic condition

The adiabatic assumption asserts that as ¢ — $oo we find the following weak

operator limit result!

(alp(2)|8) = Z,/* (alpa(z)|B) (3.6)

where Z},/ ? relates the fields of the full theory ¥ to the asymptotic fields ¢4
which obey the equations of motion generated by £4. It is usual to take the

asymptotic field ¢4 to be the free field ¢; however, as we have seen, it is

1This condition is often written as ¥(z) — Z;/ 2 64 (z) with the understanding that it
does not hold in general but only for quantities calculated between two states as detailed
here.
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this assumption which leads to the appearance of infrared divergences in our
amplitude calculations. Consequently, in our new approach, we shall adopt

the asymptotic condition
Y(z) - 22" E(x) (3.7)

where we use = to represent our asymptotic fields. Amplitudes calculated in
the asymptotic interaction picture on these asymptotic states should be free
of infrared divergences and should also be equivalent to amplitudes calculated
in the interaction picture on the free states once the infrared divergences have

been regularised.

3.2 The asymptotic fields

We want to find a suitable representation for the asymptotic states of a full

theory satisfying
oLy

(O +m?)(a) = o (33)

and the equal-time commutation relations
[¢(t> f)a ’tﬁ(t, g)] = [W(ta f)’ w(t’ g)] =0 (3'9)
Ro(t, 2), (2, §)) = i6(Z ~ §) (3.10)

Assuming no derivative coupling terms are present in L;,; then we also have

7(z) = Gotp(z) (3.11)

We now require that our asymptotic field =(x) fulfils the following properties:
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e In order to preserve the covariance of the states, =(x) must transform
in the same way as the corresponding (z) under coordinate displace-
ments and Lorentz transformations. In particular, for displacements,

this will give
0E(x)

[P“,E(:L‘)] =—t (993,1

(3.12)

e =(z) will obey the equations of motion deriving from £ 4 and will there-

fore satisfy the following equation

dLs
0E(x)

(0, + m»)=E(z) = (3.13)
We are unable to solve this equation for = exactly, and so we will not have the
same ability to calculate with the asymptotic fields that we have with the free
fields, but will have to find ways of relating the two perturbatively. We shall
discuss this in more depth later but for the moment we notice that the fact
that the expression for our asymptotic fields contains part of the interaction
Lagrangian suggests that parton number will no longer be a good quantum
number for our external states. We can use the conditions in Egs.(3.12) and
(3.13) to illustrate this by investigating the states which Z(z) creates from

the vacuum.

Consider an arbitrary eigenstate
P¥|n) = p#|n) (3.14)

and form the following matrix element with the vacuum |0)

—ia;;(nIE(ﬂ?)IO) = (n| [P*,E(2)]|0) = ph(n|=(z)(0) (3.15)
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Repeating the operation and using Eq.(3.13) we find

(Be +m?)(n|Z(2)[0) = (m® - p})(n|E(2)|0) = (n]

o) (3.16)

In other words, the states we are producing are not those with p2 = m? as
in the usual free case, but their invariant mass will differ from this in a way
which depends on our asymptotic Lagrangian. This can be identified with
the interpretation that these states no longer consist solely of the original

parton, but include a cloud of soft and collinear partons as well.

We now assume that we can write the asymptotic fields in terms of creation

and annihilation operators as in the free case, arriving at the form

=(+ 7 &’k NeikE | ot DY, —ik.E
._.(t, 513) —/(37;)—3—\/2—Tk (aa(t, k)e +(la(t, k)e ) (317)

with the conjugate momentum now given by

S d3k
0.9 = | o

= z/(27r)d33——k2_\/Tk ([HA,aa(t, E)] eF T 4 [HA,aL(t, E)] e‘i’;j)

(Boaa(t, l_c')e“;"? + Boal(t, E)e”ig'f)

where we will no longer have the relation kg = V k2 + m?2 since, as we saw
earlier, our asymptotic states will have a different invariant mass from the

usual free states.

Our annihilation operators are defined so that they give zero when they act

on the vacuum at asymptotic times

lim (0la} (¢, k) = 0 and Jim a2, k)|0) = 0 (3.19)
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while the creation operators create an asymptotic state

lim al(t,k)|0) = Jim [E(t,K)) = |Zin(R)) (3.20)

t——o00

and they satisfy the usual equal time commutation relations

[aa(t, %), aa(t, ié')] =0, [a};(t, k), al (¢, ic")] =0 (3.21)

We now use the commutation relation for the asymptotic fields,
[E(t, ), I=(t,§)] = i6(Z — F), to investigate the structure of the commu-
tators which appear in our expression for [I=(z). Applying this relation we

require

' dk d°K A TN Jik.E iE.
'] @n)3V2E, (2n)*V2Ey (YO AN B

+ [aa(t, k), [Ha, al(t, F)Ne® 26757 + ol (8, F), [Ha, aa(t, Kl 27

+ [ah(t, ), [Ha, al(t, e 556 #9) = is(z - ) (3.22)
and we see that the expected relation
[Ha,a4(t, k)] = —Ey ag(t, k) , [Ha, al(t, B)] = By aa(t, k) (3.23)

is indeed suggested. This allows us to write the creation and annihilation
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operators in terms of the fields as follows

aalt, F) = / Bz e FH(B B(t, 7) + ill=(t, ©))

ol (t, F) = / Bz F4( B, 3, 7) — ille(t, 7)) (3.24)

or, putting them in the Heisenberg picture via aq(t, k) = eHatq,(k)e—iHat

and applying the commutation relation from Eq.(3.23), we find

aa(F) = / & e (ByE(t, ©) +ill=(t, )| o_p,

ol (F) = / Pz & (B E(1, &) - illa(t, ) o_p, (3.25)

3.3 The modified LSZ reduction formula

Now that we have some understanding of the asymptotic states we shall
look at how the definition of the LSZ reduction formula will proceed in the
asymptotic interaction picture. Here we will do this for a scalar theory but
the extension to fermions and vector fields should proceed easily as in the
usual derivation. This will then allow us to relate the time ordered correlation
functions of Eq.(3.5) to Ss-matrix elements calculated on the asymptotic
states. As in the usual case we start by extracting an asymptotic creation

operator from the initial state

A = mtt(pl)' . ->pn|(h, .. "qm>i'n

:qolim ou,t(pla .. ,pnlazn(Q1)|QQ, - aqm>in (326)
100
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where a! (¢)) is an asymptotic creation operator al. We now write the cre-

ation operator as an asymptotic in field using equation Eq.(3.24)

lim out<p11-~ ',pnlain(q1)|Q2»- . -an>in
oo

= lim [ &z B (py,...,po|EySin(t, ®) — ill=(t, B)|ga, - . ., gm) (3.27)

where we have dropped the in and out labels from the in and out states. In

the asymptotic limit we can then write

iELE(t, 7) + Us(t, ) = i(e B 8, 2(t, 7))

= iZ2"(e 7 By (1, 7)) (3.28)
Eq.(3.27) then becomes

lim (—i)Z§1/2/d3we'“’"’” B (P1y- - Pl B)lga, - qm)  (3.29)

t——o00

where the invariant mass is different from its value in the traditional inter-
action picture since it now depends on Lg and we write it as ¢ = M2. We

then add and subtract the following term

q(l)lmoo out(pla s apn'alut(QI)lq% e 7qm>i’n. (330)
1—)

and use the result

ty 8
. IRt 3 — : - 3
(tllglo t-l—}l;noo) /d z F(z,t) tf_’ol’l’gl_’_oo/ti dtat /d zF(z,t) (3.31)

o4



Chapter 3: A New Approach 3.3 The modified LSZ formula

to write Eq.(3.29) as

22 [ dtnon (0 3 (o b D )

+ q(l)imoo out(pla <o 7pn|a'Jcrmt(ql)|q27 R (Im)in (332)
1—)

We can represent the second term in the following way

A (P Palbue(@)lg2, - - Gm)in = LIRS AL
(3.33)

where ,u:({p}, —q1| represents an out state with a particle of momentum

q1, if present, removed from the set {p}%. In other words, the second term

in Eq.(3.32) represents a disconnected piece. In the usual LSZ formalism

we would drop any terms such as this since they wouldn’t contribute to

the scattering; however, in our case, since our asymptotic states are able to

interact weakly we will not necessarily be able to discard these terms. We

shall not investigate them further at this stage and will proceed along the

traditional reasoning for the LSZ reduction, but we will keep in mind that

they will have to be investigated later.

Once we have dropped any terms which correspond to disconnected pieces

this can be rewritten as

izz'? / d*z(py,...,pale = (83Y(t, 7)) ~ (2™ 12) (L, T)|g2, - - - » Grm)
(3.34)
Now we know that

Die™ T = (V? — M32)e 12 (3.35)

2 As before, if there is no such particle present then this term will be absent
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so this leads to

izz? / dz(p1,. .., pale” ™ (839 (t, 2))— ((V — M32) e 1) h(t, D)|ga, - - ., Gm)
(3.36)
After we have used integration by parts to swap the space integrals in the

first term this becomes

izz'\? / d*ze ™% (py, . .. ol At )|, - - -, g (3.37)

with q1 = (Eq,, ¢1) and where we have defined A, by rewriting Eq.(3.13) in
the form A,=(z) = (O, + m?)Z(z) — 86—55(5—). We can extract all the in and

out states in a similar way to find that

. _n+tm
out{Pls -« s Pulll, - - 3 GmYin = (122)™ "3 /d4m1---d4mmd4y1---d4yn

e RPUTILETA, Ay Ay, - A (OIT {(31) - $(ya)¥(21) . . .9 (21m) } [0)
(3.38)

remembering that we will have to consider all combinations of disconnected

pieces as well.

This takes a very similar form to the usual LSZ reduction formula, Eq.(2.26).
As in the familiar case we have the following time ordered correlation function
O|T {(v1) ... ¥(yn)¥(x1) . . . ¥Y(xm)} |0) and once again the external legs are
removed. In this case, however, it is the A, and A, operators which are
responsible for removing the external legs. This means that our external

states are no longer the free states which we understand, but the asymp-

~ ‘totic states which we cannot calculate. This will require us to reach some

understanding of how we actually represent these external states; we shall
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discuss this later. Once again we find that we set these external states on-
shell but, as mentioned earlier, in this case on-shell no longer means p? = m?,
but the invariant mass will now depend on Lg as found in Eq.(3.16). This
is understandable as a consequence of the fact that the external states will
now incorporate soft interactions and so will no longer be interpretable as a
single particle (such as a quark), but rather as a collection of particles close
in form to a single particle (such as a quark with a cloud of soft gluons).
Similarly, we note that the propagators of these fields will no longer have a
single particle pole, but a branch point, reflecting the fact that an arbitrary

number of soft partons must be included in this as well.

3.4 Correlation functions in the AIP

Now that we have our modified LSZ reduction formula we need to see how we
will go about extracting results from it. Once again, our main area of interest
will be the time ordered correlation functions. Unlike in the conventional LSZ
formula, however, our correlation functions are related to asymptotic states
through the operators A, rather than to free states through the Klein-Gordon
operators K. Consequently we must place our correlation functions in the

asymptotic interaction picture rather than in the interaction picture as we

did before.

We construct the asymptotic interaction picture in precisely the same way
that we constructed the interaction picture, but now we substitute £ 4 for Lg
and Ly for £;. We start by defining asymptotic evolution operators following

EE (2.33) where we are now using the asymptotic Hamiltonian, H4, which

has been derived from the Lagrangian, £4. We can write these evolution
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operators as

Un(tte) =T {exp (—i /t t dtlHH(tl)) } (3.39)

where Hy = H — H,4.

In order to place the correlation functions in the asymptotic interaction pic-

ture we relate the full fields ¥ to the asymptotic fields = via

Y(t, T) = Uh(t, to)E(t, D)Uat, to) (3.40)

The correlation functions can then be written

O T {9(z1) ... 9(xa)} 10)
=(0|T {UL(wl, t0)Z(z1)Ua(z1,t0) . . . Uk (@0, to)E(20) Un (@, to)} |0)
= (OUL(T to) T{Ua(T, 2:)E(z1)Ua(21,72) . ..

X Up(@n-1, Tn)Z(xn)Ua(zp, =T }UA (=T, t0)|0) (3.41)

in the limit T — oo. We can then see that the vacuum, |0) will be an
eigenstate of Ua(—T,t,) and UL(T, to) in the same way that we saw this for
the conventional interaction picture in Section 2.4.1, and so we eventually

arrive at

(0| T{E(z1) . . . E(zn)exp (—z' ol d4x£H)}|O)

O T{w(z1) .. ¥(zn)}|0) =
(01 T{ (=i [, d*zLn ) }10)

(3.42)
The fields in Ly are now all asymptotic fields =. The amplitudes generated
in this way will consist entirely of “hard” vertices generated by our new
inferaction part of the Lagrangian which has had the soft and collinear parts |

removed; these pieces of £ are now entirely contained in the propagators of
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the = fields. The denominator of Eq.(3.42) will remove any disconnected
pieces in exactly the same way that the equivalent expression did in the

interaction picture, as we saw in Section 2.6.1.

3.5 Wick’s Theorem

We want to calculate the time ordered correlation functions which appear in
Eq.(3.42) (removing disconnected pieces as usual and hence only considering
the numerator). We now choose to split our interaction Lagrangian £; =

Ls + Ly by defining soft and hard vertex functions f, and f; so that

Ls= fs({p})Lr (3.43)
Ly = fa({p})Lr (3.44)
fs({p})) + f{p}) =1 (3.45)

where the set {p} represents the momenta of all lines attached to that par-
ticular interaction vertex. Once we expand the term exp (——z’ 2 d4zLH)
which appears in the time ordered correlation function we can see that the
resulting terms will be made up of time ordered products of asymptotic fields
multiplied by hard vertex factors (along with the usual constant vertex fac-

tors such as the coupling)

(0|Z(z1) - . . E(z0)[0) frlq1,42,3) - - fal@m—2,Gm_1,@m) X other vertex factors

(3.46)
__We want to use Wick’s theorem as in the usual case to reduce the time ordered
correlation function to a.series of propagators. Since our asymptotic fields are

made up of annihilation and creation operators with the same commutation
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relations as in the free case we can proceed with exactly the same method.

It can easily be shown that [36]

T{E(2)=(y)} = : E(=)E(y) : HOIT {E(2)=(y)} [0) (3.47)

We can then use induction to prove the relations for the time ordered product
of larger numbers of fields as the sum of all possible normal orders and

contractions [36]. From this result we can easily infer

(OIT {=(z1) - . - E(2a)} |0)
0 :odd n

> pOIT {E(z1)=Z(22)} |0} ... (0|7 {=(2n-1)Z(x4)} |0) :even n

where P is a sum over all permutations of the z; such that we only count
O|T {Z(21)E(z2)} 0) and (0)T {Z(z2)=(x1)}|0) as a single term. This is
exactly the same decomposition into propagators as in the free field case.
We now have a prescription for calculating amplitudes in our theory: we
proceed in exactly the same way as in the usual free field case, but we add
hard vertex factors to each interaction point, use the propagator for the
asymptotic fields, and associate our external states with asymptotic states
rather than free states. As we saw earlier, however, we are unable to solve
the equations of motion for the asymptotic states and so will also be unable

to calculate the propagator for the asymptotic fields exactly.
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3.6 Practical applications

We have now reproduced the main features of traditional amplitude calcu-
lations with the modifications which are required in order to address the
incorrect assumption that the in and out states of the theory are free states.
However, as we have seen, there are certain aspects of our modified approach
which we are unable to deal with in the same way as before, specifically
the asymptotic propagators and the asymptotic external states. We will
now explore the practical aspects of performing calculations using our new

approach.

3.6.1 Propagators in the AIP

In Section 3.5 we saw how the correlation functions, (0| T {¢(z1) ... ¥(z,)} |0),
which appear in our reduction formula, Eq.(3.38), can be rewritten in terms
of the asymptotic propagators (0| T {Z(x1)=(z2)} |0). In contrast to the stan-
dard field theory approach we cannot solve for these propagators exactly. We
can, however, calculate them perturbatively by relating the asymptotic fields
to the free fields. This takes exactly the same form as the relation between
the full fields of the theory and the free fields, but where we now substitute
Lg for the usual full interaction Lagrangian, £;. In order to do this we take
the full Heisenberg representation of the asymptotic fields, =, and make the
usual transformation into the interaction picture using the following evolu-

tion operator

Us(t,t')=T {exp (—i tdt"Hs(t”)) } (3.48)

tl
where the fields in Hg are now in the interaction picture. The propagator is

given by the two point correlation function of the asymptotic fields. We now
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follow exactly the same procedure as in Eq.(3.41) and Eq.(3.42) to write our

correlation function in terms of the free fields. We end up with

(01T {¢(@1)¢(ws) exp (=i [, d'z L(2)) } [0)

O] T {Z(z1)E(x2)} |0) = 0| T {exp (_i [ dix Es(:c))} |0)

(3.49)
This means that we can calculate the propagators perturbatively by con-
sidering the Feynman diagrams for the two point correlation function for
that particular propagator, but adding a soft splitting function f, to each
vertex. Once again, the denominator of the above formula will remove any
disconnected diagrams for us and so we only need to consider fully connected

diagrams.

To proceed further with this approach we must next decide on a particular

form for our split of £; into Ly and Ls. We shall do this in the next chapter.

3.6.2 Interpretation and application of the asymptotic

states

The other area of our new approach which we are unable to treat in the
conventional manner is that of the external states which appear in our mod-
ified LSZ formula. If we were able to calculate the asymptotic states in our
new picture then we could apply our modified LSZ formula in a very similar
way to the conventional method. Unfortunately we are forced to relate the
asymptotic picture to the free picture and calculate propagators perturba-
tively as we saw earlier. It is clear that a similar approach will have to be
applied to the expressions which represent the amputation of the external

propagators, A, (0|T{Z(z)Z(y)}|0), but it is rather less clear how to proceed
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with this. In order to investigate this further we shall start to consider a per-
turbative approach, but we shall see that questions remain which will have
to be addressed pragmatically rather than theoretically for the time being at

least.

We can rewrite this expression as follows:

A (0| T{E(z)E(y) }0) =

(5~ 257 @) Ot e (~i [ a5 3oy 350)

—00

where we have dropped the denominator which corresponds to disconnected

diagrams; from now on we shall assume that these have been factored out.

Two things make this different from the usual expression encountered in the
conventional case. Firstly where we would usually have (0|T{#(z)é(yv)}|0)
corresponding to a simple propagator we now have a perturbative series in-
cluding soft interactions. Secondly, there is a whole new term involved which
again depends on Lg. We first consider the effect of the perturbative series

replacing the simple propagator.

We can treat this part of the expression in exactly the same way that we
would treat the conventional LSZ formula: expand as a perturbation series
and then remove the relevant external propagator. The upshot of this is
that where we might have expected a simple external line, we now have an
external line attached to a soft self energy diagram. This corresponds to
taking the residue of the pole caused by the external leg as usual, but using
the perturbatively calculated asymptotic propagators rather than the free

propagators.

The second part of the expression is altogether more complex. It is not
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S S S

Figure 3.1: Some diagrams which may contribute to a single asymptotic external
state.

g =-1
9=(z)—

immediately clear how to treat an operator such as (z) so we shall

start by making some general observations. First of all, the presence of %‘—(i—)
suggests the presence of various fields located at the same point in space-
time as our external particle. This would seem to indicate that, as expected,
parton number will not be a good quantum number for our external states
and that they will contain both quarks and gluons. Secondly, this part
will contain powers of the coupling constant even at the lowest order in
perturbation theory and so will be suppressed relative to the leading order
part of the first term. Consequently, the leading part of our external states
will be the same as the conventional external states, but as we consider
higher orders in perturbation theory we add soft self-interactions and other
soft particles to this state in ways which we are unable to determine exactly;
some examples of these two observations are shown in Figure 3.1. Thirdly,
the presence of some form of soft interaction terms suggests the possibility of
some connection between the conventional external states as shown in Figure
3.2. It is reasonable to presume, however, that these external states will be
those which mimic the conventional external state when we are unable to

resolve energies small enough to distinguish them.

When we derived the modified version of the LSZ formula in Section 3.3
we also disregarded the effect of the altered asymptotic states when we dis-

carded any disconnected pieces. These will not remain disconnected as in
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S

~ ]

Figure 3.2: Some diagrams which may contribute to a two pseudojet external
state.

the conventional method, but can potentially interact softly with the rest
of the in and out states and consequently need to be taken into account
in a similar way. Once again, although the basic idea behind this effect is

straightforward, it is not clear exactly how to approach this theoretically.

3.6.3 An alternative method

The ideal approach to our method of calculating amplitudes would be to work
perturbatively only with the coupling appearing in L£z. Since we would be
applying this to QCD, the natural scale for this coupling would be a hard
scale, justifying a perturbative expansion. Soft effects, related to a coupling
with a soft scale, would then be taken into account to all orders and even
non-perturbative effects would be included. This corresponds to solving for
our asymptotic states exactly which we are unable to do. This leads us to
apply a perturbative approach to the soft area of the theory as well. As we
have seen, we are able to apply this approach to calculating the propagators
of the theory, but we run into problems when attempting to calculate the

" external states themselves.

We can use the fact that we have a qualitative understanding of these ex-
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ternal states to approach the whole problem from a more technical point of
view. We have seen above that although we have defined a theory with hard
interactions only, if we are forced to treat the soft part of the theory perturba-
tively we will in actuality be calculating diagrams which contain soft vertices
as well as hard. We have split the original interaction Lagrangian into hard
and soft parts, and so calculating amplitudes in the conventional manner
would correspond to summing diagrams with all possible combinations of
soft and hard vertices. It seems natural to hypothesise that the application
of these two different formulations of the amplitude calculation will result
in the same answers. In the absence of a clear theoretical prescription for
performing calculations based on our altered LSZ formula we shall use the
approach of calculating all possible combinations of soft and hard vertices
when we consider specific examples. In this case though, we find that the
consideration of asymptotic rather than free external states will cause us to

group these amplitudes in different ways to the usual method.

In the conventional treatment, we group the amplitudes by the number of
final state particles and then perform the phase space integrals accordingly.
In our case we are led to group our amplitudes by the asymptotic external
states, and so while the case of v — gg with one of the quarks then emitting
a hard gluon would be considered a “three jet” event, the similar process of
v — qq with one of the quarks then emitting a soft gluon would fall into the
category of a “two jet” event since soft gluon emission from a quark line will

clearly appear in the asymptotic quark state as shown in Figure 3.3.

The infrared finite nature of this viewpoint comes from this new division of
amplitudes. Essentially, rather than attempting to correct the assumption

that the in and out states are free by including long range interactions in
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Figure 3.3: The emission of a hard gluon contributes to a three jet final state;
the emission of a soft gluon contributes to a two jet final state.

the asymptotic Lagrangian, we are simply changing our definition of which
amplitudes belong in which external states to reflect the fact that they are
not in fact free. If, for example, we were considering an order in perturbation
theory which would give us four jet diagrams at most, then we would find
that the infrared divergences arising from the phase space integration of
the four jet diagrams would all be contained in the pseudo two and three
jet configurations; in other words those four jet diagrams where the soft
and hard vertices were distributed such that they belonged to the sets with
either two or three external asymptotic “particles”. These divergences would
then cancel with those introduced by soft vertices into the two and three
jet diagrams. Thus, by splitting our amplitudes up based on the number
of external asymptotic “particles” rather than the number of external free
particles we would now find that the sum of the amplitudes squared for each

process would be separately finite.

In order to apply this approach we need a system of determining which
diagrams are to be placed in which groups. Ultimately we should hope to
define a basic algorithm for categorising the various diagrams. As we shall
see in Section 5.2, such an approach does not seem very far off; for the time

being though, we shall have to deal with each diagram individually. The
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simplest way of doing this is to consider the soft vertices and identify which
diagrams should have various jets collapsed into pseudo jets, although the
locations of the various hard vertices will have a part to play as well. There
are, of course, more aspects of this to consider; we shall examine these when

we consider different examples in Chapter 5.
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Lagrangian

Our next task is to perform the split of £; into Ls and Lg. This corresponds
to defining the forms of the splitting functions f;({p}) and f,({p}) which
we introduced in Section 3.5. Strictly speaking, we should choose Lg such
that L4 is precisely the asymptotic limit of £. However, we are unable to
calculate this limit and so we must be a little less precise in our definition. It
is enough for us to choose £ 4 such that its asymptotic limit is equivalent to
the asymptotic limit of £. This will ensure that we do not neglect any long-
range interactions in our definition of our asymptotic states; the fact that
we are likely to include some short-range interactions as well is unnecessary,
but does not cause any problems. Consequently our asymptotic Lagrangian

will differ from the “true” asymptotic Lagrangian by a finite amount.

Since we shall not be using the exact £, we will clearly have a choice in our
definition of £g5. We introduce a parameter A which describes how much

of £; will be put into Lg. Consequently we see that our splitting functions
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from Eq.(3.45) must depend on A and therefore take the form f;({p}; A) and
fn({p}; A). The asymptotic states which we considered in Section 3.6.2 are
derived from our £4 and consequently the parameter A contained in £ 4 will
be present in their definition. We must now ask ourselves how these states

are related to the states that we would measure in an experimental situation.

We suspect that the amplitudes themselves may be independent of A. If we

examine the matrix elements in the asymptotic interaction picture we have
(E6(A)|Sa(A)[Ea(A)) (4.1)

where we have written the A dependence of each of the quantities explicitly.

Of course we are free to choose any A and could equally well have written

(Ep(20)[Sa(28)|2a(24)) = (E5(A)|10571054(A2)00T0 |2.(A))

= (Ep(A)[Sa(A)|Ea(D)) (4.2)

where Q(([) is a unitary operator which relates the two pictures. We know
that Q((i—) is unitary since the two different pictures should only differ by a
finite amount. The fact that both pictures will give the same result suggests
that the amplitudes should be independent of our choice of A. In practice,
however, this is unlikely to hold since we were unable to calculate the asymp-
totic propagators exactly and so were forced to define them perturbatively.
This may introduce a dependence on A in our amplitudes which is related

to the order in the perturbation series at which we are working.

It is clear from the dependence on A of our external states that they are not

fundamental in any sense!. However, despite the dependence on A we can see

1The fact that we do not attempt to obtain fundamental external states is a significant
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that our external states and their corresponding amplitudes will be extremely
useful for perturbative calculations. As in the traditional approach, a phys-
ical cross section will receive contributions from several squared amplitudes
integrated over the phase space. If we make sure that we don’t choose our
external states to be too inclusive and consequently that the physical quan-
tity to be calculated does not resolve the pseudojets related to our external
states, then the cross section which we calculate should be independent of A.
It is, in effect, a resolution parameter which determines to what extent we
want to be able to resolve any jets which appear in our calculations; differ-
ent observables which we wish to calculate will place different restrictions on
suitable values of A. A similar interpretation was placed on the parameter

used to split the Hamiltonian in [34].

The use of states other than the true asymptotic states suggests that our
definitions of physical observables may have to be altered in order to match
the behaviour of these states; however, since our usual choice of asymptotic

states based on Hj also falls into this category this is hardly a new problem.

We now need to investigate the properties which our splitting functions must
exhibit in order to split the Lagrangian in a covariant manner. For the
moment, we shall consider three-point vertices only as these are all that will
be needed at lower orders. Four-point vertices should not introduce any new

problems.

difference between our approach and the majority of the previous work mentioned in
Section 1.4.1.
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4.1 Soft-Hard splitting requirements

There are several possible choices for our splitting functions, but all of them
must fulfil several criteria. Firstly, we require that none of the legs of the

vertices are special. We must have

fi(Pl,pz,pa; A) = fi(Pz,pl,Ps; A) = fi(Ps,pz,pﬁ A) (4-3)

where 7 = s or h. Secondly, we want the UV regions to be excluded from the

soft regions? which imposes the constraint
fs(£00,p2,p3;4) =0 (4.4)

Thirdly, we require that our vertex functions separate the soft and collinear
regions from the hard regions. Taking a three point vertex as an example

again, this suggests

fs(o’p2ap3; A) =1

fs(p1, Ap1,p3;A) =1

(4.5)

However, it is generally accepted (see e.g. [40,41]) that it is enough to exclude
the emission of soft and collinear partons from external lines in order to
achieve finite amplitudes. Since this condition would allow us to specify a
simpler form of the vertex functions, this is the approach that we shall adopt.

Once we accept this form of the conditions, we can alter Eq.(4.5) to

fs(p1, P2, p3; A) = 1, all momenta on-shell (4.6)

2This is not strictly necessary for our approach to work, but it is highly desirable as it
will greatly simplify the process of renormalisation.
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This fits the new requirement since momentum conservation will ensure that
all three momenta are on-shell for the emission of a soft or collinear par-
ton from an external line. Let us now investigate the infrared behaviour of

amplitudes restricted by these hard vertex functions.

4.2 Power counting techniques

We have seen in Section 3.6.3 that our approach will result in infrared fi-
nite amplitudes by effectively redistributing the existing infrared singular-
ities present in the amplitudes which will contribute to an observable so
that they now cancel within each amplitude. Since the various parts of any
conventional amplitude can only be reassigned to an asymptotic amplitude
with the same or fewer “particles” in the final state it follows that, for our
approach to work successfully, any amplitude containing hard vertices only
must be infrared finite. We shall now consider the infrared behaviour of
such amplitudes; to do this we shall use a slightly extended version of the

straightforward method of powercounting [42].

We want to examine the general structure of infrared singularities in massless
scattering amplitudes. In order to do this we consider the general form of
the massless Green’s function G({p.}) with external momenta {p.} once it

has been put in Feynman parameterised form

G({p.}) (H / da,) (Za,— 1) (H / d“k> a,,( kr,kz))ei .
(4.7)

where there are 7 lines in the diagram and r loops. The function F(«;, &, pe)
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represents the numerator factors present in the diagram and

l;‘L(pe) k) = Z (bjnkp + cj,npﬁ) (4.8)

n

with b and ¢ being complex numbers and k* being the internal loop momenta

such that l;‘ is the momentum of the jth line.

Singularities in the amplitude will arise from zeros of the denominator. In the
absence of any such zeros, the integrand in Eq.(4.7) is bounded and analytic
everywhere in the integration region, and G({p.}) is an analytic function of
the {p.}. However, a much stronger condition than the simple presence of a
zero of the denominator is necessary to produce a singularity in G({p.}). This
is because the integrals of Eq.(4.7) are contour integrals in complex (k, @)
space. This means that the k# and ¢; integrals can be deformed from one
path to another. In the case of isolated poles this means that we can choose
a new contour where the denominator does not vanish, and the integrand
is an analytic function of the external momenta everywhere. Thus, isolated

poles in the integrand do not produce singularities in the amplitude.

There are two classes of unavoidable singularity which we shall have to con-
sider. The first case is the end-point singularity; these occur when the inte-
grand contains a pole at one of the fixed end points of the integration contour.
The contour cannot then be deformed around the singularity and this corre-
sponds to a real singularity of the amplitude. The second case is the pinch
singularity. This type of singularity occurs when the contour is trapped be-
tween two poles and the singularity cannot be avoided. In our multi-variable
case, these pinch points become surfaces in the space of the complex variables

{k;, o;} if at each possible pinch point one variable is trapped while we keep
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the remaining variables fixed. These are known as pinch surfaces.

We will not need to consider end point singularities since the momentum
integrals were unbounded before Feynman parameterisation and so these
will not occur. Consequently, we will only concern ourselves with pinch
singularities. To find all the possible pinch surfaces, and hence all the possible
regions of infrared singularities, we would have to use the Landau equations

[37,42]. These can be derived as follows: singularities appear when
Z a;l3(p, k) +ie =0 (4.9)
J

We expect to find two solutions to this equation since it is quadratic in k*.
These will only give a pinch singularity when the derivative of this equation

is zero at these solutions. This means that

0
J J J

The values of {k;, a;} which satisfy Eq.(4.9) and Eq.(4.10) will then be our

pinch surfaces. We now have possible solutions given either by
?=0and ) byoll =0 (4.11)
i
for every loop j which includes the line ¢, or by
?#0and a; =0 (4.12)

A pinch surface solution to the Landau equations is a necessary, but not
sufficient condition for an infrared singularity to exist. To determine whether

such singularities exist on any of these surfaces we must look more closely at
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the behaviour of the amplitude at these points.

4.2.1 Reduced diagrams

In order to make a closer investigation of the singularity structure we will use
diagrams to visualise the pinch surface solutions to the Landau equations.
These are known as reduced diagrams [40-42] and we construct them in the
following way. We start with the normal Feynman diagram for the amplitude
which we wish to calculate. Next, we reduce any off-shell lines to a point,
connecting the vertices on either end to produce a composite vertex. We do
this since the only way for off-shell lines to satisfy the Landau equations is if
o = 0 which corresponds to a vanishing contribution to the denominator of
Eq.(4.7). Since any on-shell lines can satisfy the Landau equations for o # 0,

they are kept unchanged.

4.2.2 Infrared power counting

Not all pinch surfaces will give rise to infrared singularities. In order to
investigate whether a particular pinch surface is potentially infrared divergent
we need to use powercounting techniques®. In order to do this we must first
consider how the momenta {k;, o;} internal to a diagram G({p.}) given by
Eq.(4.7) affect the behaviour of the pinch surfaces of that diagram. The
pinch surfaces of G arise when a line goes on-shell and is therefore either
soft or collinear to an external particle. This set of requirements upon the

momenta of G which lead to pinch surfaces therefore forms a surface ¢ in

3Even when we have identified the dangerous diagrams through powercounting, they
may not be infrared divergent since we will not take the momentum structure of the
numerator of the diagram into account just yet. This could set a potentially troublesome
diagram to zero.
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the space of all the momenta variables. The momenta on this surface can
then be divided into two distinct groups. The first group contains momenta
which keep G on the pinch surface when they are altered arbitrarily. These
are called internal variables to the momentum surface o. The second group
consists of those momenta which will take G away from the pinch surface if
they are altered by even a small amount. These variables are called normal
to the momentum surface 0. We want to observe the behaviour of G as we
alter the normal variables of ¢ close to the pinch surface. We achieve this by
calculating the superficial degree of infrared divergence of the homogeneous

integral [37,42].

To define the homogeneous integral we start with the general form of an

amplitude as given in Eq.(4.7). We rewrite this as

G({p.}) =/HdleHdkiIa(kisljvpe) (4.13)

where the [; are the internal variables and the k; are the normal variables of
o. The 0 on the k; integral indicates that we are investigating these variables
close to their mass-shell limit which corresponds to operating close to the
pinch surface of G. The homogeneous integral I, is defined as the limit of
I, as the k; go on-shell. In the case of a soft limit, for example, we would
take the internal loop momenta k; as our normal variables. We would then
construct the homogeneous integral by keeping only the lowest order terms
in k;. In this way a numerator factor such as (p + k)* would become p*, and

a denominator factor such as (p + k)2 would become p? + 2p.k .

If we now observe how the homogeneous integral behaves when we scale k;,

this will provide us with an insight into how G approaches its pinch surfaces.

77



Chapter 4: Splitting the Lagrangian 4.3 Infrared finiteness

To do this we rewrite the homogeneous integral as [42]

G((peh) = [ Tt [ [T dbikaths b0
= /Hdzj /Ooo d,\2/0Hdki § </\2 - Zlki|2) L (ki, lj, pe)
= 2/Hdzj /Ooo dX AB(@-1 /Oﬂdk; ) (1 — Z|k§|2) I (ki i, pe)  (4.14)

)

where p(o) is known as the superficial degree of infrared divergence and
ki = ki/A. If p(o) > 0 then we expect the amplitude to be infrared finite.
This may not always be the case though since there could be further sub-
divergences from the k! integrals®. We then use powercounting techniques
similar to those frequently used for ultraviolet divergences to determine the
form of p(c). In order for a diagram to be infrared finite we then assume
that we need only show that at each possible pinch surface the superficial

degree of divergence is greater than zero.

4.3 Infrared finiteness of completely hard am-

plitudes

From our arguments above we see that we can disregard the exact form of
fs and fp, for the moment and simply define a soft vertex as one where all
the attached legs are on-shell and a hard vertex as one where at least one

of the attached legs is off-shell. This will allow us to look into the infrared

4We shall not consider such divergences here as we are interested in discovering whether
the entire theory is infrared finite. Since any sub-divergence is also a diagram which must
be investigated in its own right this problem will not arise as long as we find u(c) > 0 for
all diagrams.
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behaviour for the most general case to start with; we can then adopt a
particular form for f, and f; if and when it becomes necessary. Since our
modified interaction Lagrangian will be Ly rather than the usual £;, when
we calculate Feynman diagrams each vertex will be a hard vertex. We will
now investigate whether amplitudes consisting entirely of hard vertices have

any potential infrared singularities.

As mentioned earlier we will be considering a field theory with three point
vertices only. This could be ¢3 scalar theory, QED, or QCD with the four
point vertices removed. We start by considering an arbitrary diagram with
n vertices and all internal lines on-shell. We now take internal lines off-shell
one by one until we are left with a reduced diagram which corresponds to an
original diagram where no vertex is connected to three on-shell lines. This
reduced diagram corresponds to a particular point in loop momentum space.
Consequently we can produce many different possible reduced diagrams by
choosing different values for the loop momenta such that different combi-
nations of internal lines are on and off shell. We can see that in order to
investigate any infrared divergences associated with the diagram we must

consider all the possible reduced diagrams produced in this manner.

From now on we are now going to deal with reduced diagrams, and hence any
lines present in the diagrams we consider will be on-shell. All internal lines
in the reduced diagram can be divided into two categories: jets and a soft
subdiagram. The internal lines with momenta k! = 0 form the soft subdia-
gram while a connected set of lines k! which all have momenta proportional

to some lightlike momentum p* such that

k:‘ = /Bipya IBi > 0) p2 = O, (415)
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make up a jet. One option for our reduced diagram is that all the internal
lines form a soft subdiagram; in the cases where we also have some jets we
can place some restrictions on the form that the diagram must take. First

we consider diagrams without any jets.

4.3.1 Power counting for the soft subdiagram

We will now investigate the infrared behaviour of the reduced diagrams with-
out jets (i.e. all internal lines are soft). When all the internal lines are soft
we can see that, unless we have any external particles with zero momentum,
all the external lines must be connected to a single vertex. Since all the in-
ternal lines in the reduced diagram will be soft we can see that each eventual
internal line must be connected to two off-shell lines in the original diagram.
We will use powercounting techniques to see if such a diagram contains any

infrared divergences.

Since we're only dealing with soft rather than collinear singularities in this
case we can choose the loop momenta as the normal momenta in the homo-
geneous integral. Consequently in a diagram with L loops we will have 4L
normal variables. We will also have Ig internal boson lines which contribute
—2 and I internal fermion lines which contribute —1 to the superficial degree

of divergence. Our powercounting gives us,

w(S)=4L — 2Ig — Ir = 4 + 3Ip + 2[5 — 4V (4.16)

where the number of vertices, V, obeys the relation L = Ig+Ip—(V —1). We

now write the total number of lines in the diagram in terms of the number
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of lines attached to a particular vertex using,

1 1
IF=§;fv and IB=§;b,, (4.17)

where the sum is over all vertices v and f, and b, represent the number of
internal fermion and boson lines attached to a particular vertex respectively.

We can then rewrite Eq.(4.16) as,

,u(S)=Z(b,,+§fv—4) +eb+gef (4.18)

v—1

We sum over all the vertices in the diagram except the one connected to
the external momenta so e and e, are the number of internal fermion and
boson lines connected to that vertex. We can now see that if b, + -g— fo >4 at
every vertex then we will have p(S) > 0. The fact that we have taken two
propagators off-shell at each original vertex attached to a soft line means
that the only vertices permissible in the reduced diagram apart from the
vertex with the external momenta must be those made from off-shell loops.
This allows us to have two and three point vertices in the reduced diagram
which could potentially give rise to diagrams where p(S) < 0. In order
to investigate this further we will need to consider these diagrams in more
detail. First, though, we will consider the case where there are jets present

in the reduced diagram.

4.3.2 Power counting including jets

We now investigate the case where we allow our reduced diagram to contain

jets as well as a soft subdiagram. For the moment, we will conduct our
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investigation using ¢ scalar theory. Since we no longer include fermions with
their extra factor in the numerator of the propagator this will represent a
worst, case scenario. The contributions to the superficial degree of divergence
will now consist of +4 from each of the L; soft loops, +2 from each of the
L; collinear loops, —2 from each of the I; internal soft lines and —1 from
each of the I; collinear lines in each jet loop. Soft loops contribute +4 to
the powercounting since all four components of each loop momentum are
normal coordinates to the pinch surface. Each loop momentum in a collinear
loop only has two components which are normal coordinates and so only
contributes +2 to the superficial degree of divergence [42]. We will consider
general reduced diagrams where all the vertices are hard. These are not

necessarily pinch surfaces.

We go about the powercounting by splitting the superficial degree of diver-
gence, 4, up in to a soft part, x(S), and a collinear part, u(C). We can then
write

where N; is the number of collinear lines also in soft loops such that N;+N; =

.

First, we will calculate u(S). We write L; = I; + N; — (V; + Vo — 1) where V}
is the number of vertices with only soft lines attached and V; is the number

with both soft and collinear lines. We now have

w(S) =4L; — 2I; =4+ 4N; + 21, — 4(V1 + V) (4.20)

If we now consider the fact that once we remove the soft lines, the collinear

lines which were also part of soft loops must form a system without any loops
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we can write N; — (Vo — (1 + X)) = 0 where A > 0 and (1 + A) is the number
of disconnected parts that the system of collinear lines has been divided into

by the removal of the soft lines®. This leaves us with

w(S) = 2I; — 4V — 4 (4.21)

Now we consider p(C). We can write L; = I; + N — (V — (1 + A)) where
N is the number is the number of internal lines which are not part of any
loops and V is the number of vertices attached to collinear lines (i.e. the

total number of vertices is V + V;). This gives us
and so combining the two parts we get

p=2+2L+ I+ 2N — 4V; — 2V — 2\ (4.23)

In order to investigate the worst potential case we will first set N = 0. To
start with we consider the A = 0 case. Once again we write the total number
of lines in the diagram in terms of the number of lines attached to each vertex

using,
1 : 1 _
Ii = 5 Ev v and Ij = 5 Ev Jv (424)

this then gives the result

A
p= Z (zv + 5du = 20y — 4v1) +2 (4.25)

5The case with soft lines only has been dealt with already and would correspond to
A= -—1.
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where v; is 1 if the vertex has soft lines only attached to it and 0 otherwise
and vy is 1 if the vertex has any collinear lines attached and is 0 otherwise.
We can immediately see again that a reduced diagram consisting of four
point and higher vertices would give ¢« > 0. This is because a vertex where
v1 = 1 must have all lines attached soft. Also worth noting is the fact that
any mixed vertex cannot have a negative contribution to the powercounting

since it must have at least one soft and two collinear lines attached.

Next we need to consider cases with A # 0. We will examine the case where
we have a reduced diagram consisting of four point vertices and higher and
see whether increasing the value of A\ can create a negative powercounting.
In the case where A = 1 we must add at least two mixed vertices in order to
provide the soft link between two disconnected systems of jets. Now since
the power counting for each vertex v is given by 4, + % Jv — 2vy — 4v; we
can see that the minimum contribution to u for each mixed vertex will come
when 7, = 1 and j, = 3. This gives a contribution to u of +% for each vertex
which when combined with the contribution of —1 from the A term produces
no overall effect. This means that setting A = 1 cannot reduce the value of
p. Now we imagine increasing the value of A\ further. In order to do this
we must add at least one more mixed vertex and then either add another
mixed vertex or modify an existing mixed vertex so that it has two soft lines
attached. The first case gives no change in p in precisely the same manner as
the A = 1 case, and in the second case the reduction in u due to the increase
in A is matched by the contribution of +% due to adding a new mixed vertex
and the increased contribution from +% to +1 due to the modified mixed
vertex. It is easy to see that in the general case any possible increase in A

will be matched by corresponding increases in the number of mixed vertices
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and the number of soft lines attached to mixed vertices. Thus, in the case of
four point interactions and higher, diagrams including jets will be infrared

finite.

As with the earlier case where we considered a completely soft reduced di-
agram this powercounting approach suggests that we could potentially run
into infrared singularities if we have effective vertices which correspond to
two or three point interactions. We will now investigate these interactions

more closely to see whether they will in fact cause problems.

4.3.3 Two point vertices in reduced diagrams

We start by considering an effective two point fermion vertex. If we look at
two fermion lines with momentum p connected by such a vertex we will have

a composite object given by
i i
L5 1% = 5,07, )L, (4.26)

where S, corresponds to the system of off-shell lines which have been con-
densed to a point in the reduced diagram. Now S;, must not have any mass
dimensions, and since it depends only on p? and A we can see that if we
were to expand it in p?/A (since we are interested in the behaviour as p goes

on-shell) it must take the following form:

2 2\ 2 2
P P A A
S,=A+ (B] A + B, (—A—) + ) + (Cl I? + Cs (;2') + ) (4.27)

where A, B, and C,, are all constants. It is immediately obvious that provid-

ing the C’s are all zero, our composite propagator made up of two on-shell
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fermion propagators will actually be the powercounting equivalent of one
propagator rather than two. As a result, two point fermion vertices would
not affect the powercounting in reduced diagrams. If we were to calculate S,
using the standard Feynman rules it is clear that we would find B, = C, =0
since the absence of any dependence on A means that p? is the only possible
mass scale. In this scenario, this composite two-point vertex would clearly
not increase the negative powercounting. In order to investigate this in our
case however, we will need to pick a form for f; and f, in order to perform the
calculations explicitly. Before we do this we will make a similar examination

of the effective two-point gluon vertex.

If we now examine gluon lines with two point interactions we find that we

have a composite object given by

—1 PP’ oo —1 ’p’

o) (9“” - fx—pT> P (p, A)p—z (QW —&x p (4.28)
(where £€x = 1—¢, and we have £ = 0 in Landau gauge and £ = 1 in Feynman
gauge) where P4’ corresponds to the system of off-shell lines which have been
condensed to a point in the reduced diagram and we have ignored any colour
factors for the moment. Now we decompose P;’ into two parts with separate

tensor structures so that we write
P (p, A) = g > A(p®, A) + p°p° B(p*, A) (4.29)

which then gives us the form of our composite object as

1 . LoV 1oV
5[4 (o + extexr - 928 ) + B - e 2E (4.30)
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Again, we can expand A and B in the same manner as in Eq.(4.27), and again
we find that as long as the (l%)n coefficients (the C,, coefficients) are zero,
the powercounting of a chain made up of these two point interactions will be
the same as for a simple propagator. The fact that the usual Feynman rules
have p? as the only possible mass scale again means that in the standard case
we would find that this sort of subdiagram would not increase the negative

powercounting. In order to investigate the effects on our theory we must now

pick a form for f, and f), and perform the necessary calculations explicitly.

Before we perform these calculations though, we notice that the tensor struc-
ture of our composite gluon line is different to the structure of the bare gluon
propagator. This is because our split of the Lagrangian will break gauge in-
variance. Since it is gauge invariance which protects the gluon mass in the
conventional approach and this is now missing from our approach we there-

fore expect that we shall find that the gluon will generate a mass.

4.4 Choosing the splitting functions

We now make a specific choice for our vertex functions fy(p;,p2, p3; A) and
Jr(p1, P2, p3; A). We will first choose the form of f, and then infer f; from the
relation f, = 1— f,. Our main consideration in our choice of f, after fulfilling
the necessary conditions in Eqgs.(4.3),(4.4) and (4.6) will be to choose a form
which makes it as simple as possible for us to perform analytic calculations.
Since the eventual aim of this project is to perform calculations numerically
this does not immediately seem to be the best criterion upon which to base
our choice. However, at the present stage it is important that we are able

to perform the calculations analytically in order to gain as much insight as
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possible into the workings of our new approach. It is this necessity which

leads to our choice of splitting function.

In order to perform the necessary momentum integrals as comfortably as
possible, the best case scenario would clearly be to make as much use as
possible of the existing methods for performing similar integrals. It follows
that the obvious approach is to try and find a way of casting our splitting
functions in a similar form to the usual Feynman propagators. We make the

following choice for our soft splitting function:

_ A
pI+p+p3+A

fs(p1’p23p3;A) (431)

This would give the following corresponding form for our hard splitting func-

tion:

) p? + P2 + p?

A) =1— fy(p1, p2, p3; A) = 4.32
fh(Pl,Pz,Ps, ) f (Pl D2, D3 p%+p§+p§+A ( )

We can check that these fill the requirements as follows: firstly, the functions
are symmetrical in the momenta {p;} and thus trivially fulfil the requirement
of Eq.(4.3); this allows us to only consider p/ in the remaining conditions.

Secondly, for p§ — +o0o we have

A
:}200+p2+p3+A

fs(p17p2ap3;A) 0 (433)

which fits the requirement in Eq.(4.4). Finally we consider the conditions in
Eq.(4.5) in order to check that our decision to replace these conditions with

that of Eq.(4.6) is justified. Taking into account momentum conservation at

88



Chapter 4: Splitting the Lagrangian 4.4 Splitting functions

the vertex we have for p{ — 0

A

_ — 4.34
2p2 + A (4.34)

fs(pl)p2’p3; A)

and in the case where p; is a soft parton emitted from an external line we will
have p3 = 0 and we will recover f; = 1 as required. Likewise, for p¥ — A\p}

we have

A
I+X2+(1+M))pi+A

fs(p1,p2,p3; A) — ( (4.35)

and in the case where p; is a collinear parton emitted from an external line

we will have p2 = 0 and we will recover f, = 1 as required.

We can see that if we were to take the limit A — 0 we would find f, — 1
and f; — 0. As a result we expect the remainder of a soft singularity to
manifest itself as In(A). This split appears to satisfy all the necessary criteria,
however we shall see that although f, does satisfy (4.4) in the form that it was
stated earlier, it does not dampen the ultraviolet behaviour quickly enough
in the presence of quadratic singularities. This will require an additional

subtraction in the case of the gluon self energy.

4.4.1 Two point vertices in hard reduced diagrams

We now calculate the one-loop corrections to the fermion and gluon prop-
agators with hard vertices. We start with the fermion propagator (shown
in Figure 4.1) where we are interested in Sy (p?, A)|2. We can see from the

definition in Eq.(4.26) that this will be the coefficient of  in the one-loop
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-— -— -—

p+k P

]

Figure 4.1: Correction to the fermion propagator

correction. We need to calculate the integral

_ppehpn [ 40k (B + k) (0" Ex ) ( PP+ K2+ (p + k)’ )2
’ (2m)P  (p+k)? k? PP+E+(@+E)32+A
(4.36)

It is reasonably straightforward to perform this integration, and after per-

forming an expansion in p? and taking the coefficient of p we get the result

Su(?, A)], = % [4(1 —€x) (% —In (—%)) -4+ + 0 (%2)]
(4.37)

where ¢, = (47)e E,

It is immediately obvious that all the coefficients C,, are zero for this one-loop
case (at least up to O(¢)®). This means that composite two point fermion
vertices will not increase the negative powercounting of diagrams and so can

be disregarded as a possible source of infrared divergences.

We must now perform a similar calculation for the gluon propagator. In this
case we want to calculate A(p?, A)I2 and B(p?, A)|2. We can see from the
definition in Eq.(4.29) that we must consider the coefficient of g#p? for A

and the coefficient of p#p” for B. This time we will have to calculate two

8Any discrepancies at O(e) or higher will not alter the argument since they will cancel
the potential singularities introduced by any increased negative powercounting.
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k-+p

Figure 4.2: Fermion loop correction to the gluon propagator

Figure 4.3: Gluon loop correction to the gluon propagator

separate integrals; one for the contribution from the fermion loop and one
for the contribution from the gluon loop. The fermion loop contribution is
shown in Figure 4.2, and takes the form

) Pk 1 1, vy (PR R\
~gst"(t/‘tﬂ)/ (27)P (p + k)2 (@ +E)E) (p2+ k2 + (p+k)? +A>

(4.38)
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The gluon loop contribution is shown in Figure 4.3, and takes the form

ot / 4Pk (ga“—fx——(ﬁg:(g{k)d) (gﬁp"ﬁxki#>
— 9sJAapc/BCD (2m)D (0 + k)2 2
x (—g"*k? + g* (p + 2k)* — g**(p + k)*)

p*+k2+ (p+k)? )2
PP+E+(p+Ek)2+A

(4.39)

X (—g"*(p + k)° + g (p + 2k)” — g"°k*) (

Again, it is relatively straightforward to perform these calculations, and after
performing an expansion in p? we get the following results for the fermion

loop contribution (A, (p?, A)I2 and By, (p?, A) |2)

Anz(p%, A)|, =
iNpc.g? 9 A A 6 A p?
o2 ((e 91n( 2)>p2+€ 61n( 2) 10)+(9(A
(4.40)
2 _ iNFcegs2 12 _é _ p_2
Bne(p ,A)|2 = Tdin2 ( . —12In 5 5)+0 A (4.41)

and also for the gluon loop contribution (A, (p?, A)|, and B, (p? A)|,)

ANc(pza A)|2 =

iNCce(fx - l)gg 8 A A
T e ((2‘81“(‘3)”);‘7) (

p
A
iNceeg? 1
Bn. (%, 8)], = 384n2 (12(€x +5) (— —In ( ) )

12 A p
+—=—12In <_3) —ggX—ss) (Z) (4.43)

This time, however, we do indeed find a contribution like ,%. This means
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that a chain of these two point gluon interactions will indeed contain terms
with higher negative powers of p? than a single propagator, and so can re-
sult in diagrams with infrared divergences. In order to see how our scheme
copes with these it is now necessary to look more closely at the propagators

themselves.

4.5 Calculation of the propagators

In Section 3.6.1 we saw that although we are unable to calculate the propaga-
tors for the asymptotic fields exactly, we can expand them as a perturbative
series in the free fields. Now that we have chosen a form for our splitting
functions f; and f, we can investigate how our asymptotic propagators will
behave by calculating the corrections to the free propagators. We will start

by calculating the lowest order correction to the fermion propagator.

4.5.1 The fermion propagator

For the case of a fermionic propagator we have

S=(x1 = x9) =(0|T{E(z1)=(x2) }|0)
(o|T {¢(m1)¢3(x2) exp (—i I diz Es(a:)) } 10)

- - (4.44)
T {exp (—z' I diz ,cg(:c))} o)
If we examine Eq.(4.44) at zero order in the coupling we find
. d4p ZS —ip.(x1—x2)
Szo = z/ 2n)i Pt z_0_‘-6 (4.45)
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which is the usual free field propagator. Higher order terms will result in
corrections to this. We split up all the higher order terms into 1PI diagrams
Y=. To get the “complete” solution we would then sum the perturbation

series to all orders:
Sz = SE,O -+ Sg,o Y= SE’O -+ SE.,O Y= S_:_,o 2= SE,O + ... (4.46)
which gives

S= = =0 (1 + 25 (SE,() + S_’:_,() EE SE,() + ... ))

Sz = Sz0(1+ 2= 5=) (4.47)

We can rewrite this as

S= 52,0

= =7 4.4
= s (4.48)

In order to derive a form for this we need to calculate ¥=. We will do this

perturbatively, order by order in the coupling. If we define the following

relation
Y=l = ip Fe(p®/A) (4.49)
and use the standard form Szo(p) = pz—l’i.’é: then we can write Sz in the

following way which shows the correction to the standard form more clearly

i 1

S=(p) =
=) = T30, T+ F=02/D)

(4.50)

We will now consider the lowest order correction to the fermion propagator

in QCD. From Eq.(4.44) we see that there is no first order term, and so the
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first contribution to L=z will be at second order”:

Sal, = / " i &y (0T {9(e1)d(2) Ls(@) Ls(y)} [0)

—0o0

_ —gQC'p/ Ak 7,6+ )w (9" — Ex55) ( A )2
3 2mP (p + k)? K2 P+ (p+k)?+A

(4.51)

where p* is off-shell. Infrared divergences will only appear when p goes on-
shell, and our f, functions will cut off the ultraviolet regions of the integrals.
Consequently we can perform the integral in D = 4 dimensions without any

further UV or IR regulators, arriving at the result

Crg? 2 A2
(2 - _ FYs A O
F=(p*/A) 3272(1 + p2/A)3 (45){ In (1 + 3p? + 2A) (p2>

P’ A p

2

2
~2(1-7¢x)In (1 ~ épzi—m) +48x(3In(2)—1)+ (2(1—2£x) In (2p2p m A)

—2(1 - 4éx)1n (1 - @’Ljﬁ) +2x(21n(2) — 1)) (%2) ) (4.52)

Later on we will see that the possible IR divergence when p goes on-shell will

not be a problem.

4.5.2 The gluon propagator

We now perform a similar calculation for the gluon propagator. We write

the full two point correlation function as PL”(p), the free field propagator as

"We have now dropped the denominator of Eq.(4.44) and so will be discarding any
disconnected diagrams.
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PE(p) and the 1PI higher order terms as I1Z"(p) so we have the relation
PE*(p) = PEQ(p) + PEG(p)TTzas (p) PEG(P) + - (4.53)

We now write

my _ 2\ uv 2 pﬂp”
2 (p) = A(P")g™ + B(*)— (4.54)
and
LoV MV
Pes) = P (P - 9 ) + Py (4.55)

and using the fact that P£(p) = ﬁ((l - g)"—f,g—" — g") we find that

PES(p)zap(p) PE4(p) = Po(p2)2( — A(p?) (% - 9"")
+EH(AP*) + B(p%)’%) (4.56)

(where Py(p?) = and in general an n** order term in P£(p) will become

pz-li-ie )

R (A (25 - ) + (-9r(0) + By 2L )

P
(4.57)
Equating the Z£~ — g4 terms we find
Pi(p*) = Po(p”) + Po(p*)*(—A(®) + Ro(0)*(—A(®*)* + ...
= Py(p*) — Ro(p®) A(P*) P (p*)
S A = D)y g

T 1+ R()AR?)
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Equating the remaining P%g: terms we find

Pa(p®) = —EPy(p®) + (—EP:(p))*(A(®®) + B(p?))
+ (—ER(P*))*(AP®*) + B(PH))* + ...
= —£P(p°) — EPy(p®)(A(p®) + B(p?)) P2(p?)

2 _§P0(p2)
=B = Temmae s ey Y

Proceeding in a similar manner to the fermion propagator we define
pv .2 2 uv 2 p'p”
" (p)|2 = —ip® | G=(p*/A)g™ + Hz(p /A)p—2 (4.60)

and then we see that

' 1 ptp”
PH(p) = " _ g
=) P2+ie(1+Gs(p2) ( Y )

p'p”
T ITEC=00) T B0 7 ) (461

rny

We will now consider the lowest order correction to the gluon propagator in
QCD; once again, there’s no first order term and so we will work at second

order in a,. The fermion loop contribution is given by

w | ay a0+ E)E) 1 A :
HE,NF|2 = —g, tr(t"™t )/ (2r)D (p+ k)2 k2 (p2+k2+(p+k)2+A)
(4.62)
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while the gluon loop contribution is given by

4Pk (gaa —&x (P+’(C):§kg)-;k)°) (gﬂp —€x kiégp)
o, |, =—¢° / P
Enelp = —95 fapcfeep 2P TEWAE 2

x (—g"kP + g% (p + 2k)* — g" (p + k)°)

A 2
_up k) po o2k — "’k
X (=g +k) +9g"(p+2k)" —yg )(p2+k2+(p+k)2+A)

(4.63)

Again, the inclusion of soft vertices will remove the ultraviolet regions of
the integrals, and infrared divergences will only appear as p? goes on-shell
allowing us to perform the integral in D = 4 dimensions again. Writing

tr(t4t?) = Npé“B, we find the following results for the fermion loop:

Nog? 3p2 +2A\ [A\?
B 9 — FYs P p—
Gane®' /8 = 330 1 oAy (‘Hn (4p2+2A) (p2)
~(om(Ga) +2) () +2 (0 (Gri3s) +2) (5

3p% + 2A 2p?

Nrg? 3p°+ 24 (A’
Hz 2 = - ° 492 + 2A p?
=m0/ By = Ty IYINE (81n <4p2 120 ) \p?
+2 (151‘1 (4p2+2A) +2) (F) e (gln (4p2+2A 2]\

3p? + 2A 2p?
—_— 4.
+15111(4[102_*_2A)—G—lm(2p2+A +4] (4.65)
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and in the gluon loop case, writing fAPC fBCD = N8 we get:

Ne(Ex — 1)g2 . (3p2+2A\ [A\?
Gzne(P*/B)], = ——= gﬂz )95 1, 4p” + 20 ) \p? (4.66)

32m2(1 4 p2/A 4p? + 2A

3p® 4 2A AN
+2 ((35 — 236x)In (—QA> oo 35") (?)
3p® +2A a

3p? + 24 2p?

HeneW 1B, = gyl (4(5 ~ 3 (M) (pé)

31 — 22¢4) In (2222
*+ £x) n<4p2+2A

4.5.3 Checking the limits

We now investigate these results by checking that they reproduce the ex-
pected behaviour when we take the limits A — 0 and p? — 0. First, we
take p? to be finite and non-zero; then, in the A — 0 limit we find that the

fermion propagator correction is given by

/) = S (fx o (%) a —4&)) (%)2 L0 ((g)j (4.68)

which tends to zero as expected since we should recover the free propagator

as we shrink the soft region down to zero.

We now take the limit p? — 0 assuming A to be finite and non-zero and find

F=(p?/A) = g:: (4(1 —&x)In <2§2) + 3§X> + 0 (?Ai) (4.69)

This is divergent, which gives us the expected return of the infrared diver-
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gences when the propagator goes on-shell.

However, when we consider the resummed propagator given in Eq.(4.50), we
see that the full propagator will behave like p /(p? In(p?)) as p goes on-shell
and so while the infrared behaviour of the propagator is indeed altered we still

have a singularity at p? = 0, indicating that the fermions remain massless.

We now take the same limits for the case of the gluon propagator correction.

Taking the A — 0 limit we see

Gz e (P°/B)], =NF93(224;S In(;)) (%)2 +0 (%)3 (4.70)
Hz N, (P°/A)], = - Nrg (41;7325 In(3)) (%)2 +0 (%)3 (4.71)
Gaoly?/ )], = — gl Ex) o) (]—,A—) +0 (pé) @.72)
IR TR SR )
(4.73)

Again, all of these tend to zero, and so we recover the free propagator in this

limit as expected.

We now take the limit p> — 0 and we find the following results for the

fermion loop contribution

T 14472

N 2 2 2 2
Hz e (9%/)], = 1 42795 (1 ~12 In (% ) +0 (”Z) (4.75)

N 2 A 2 2 2
Cenp (P/D)], = 228 <91§ +12 In (%) - 16) +0 (;)Z) (4.74)
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and similarly for the gluon loop contribution

N, -1g2 [/ A 2
Gz (P?/D)], = %)& (4;? — 7) +0 (”K) (4.76)

2 2

Neg? A 2
He e (P°/4)], = 38(;;7952 (6(& +5)5+121In (%) —9x — 55) +0 (%)

(4.77)

The full result, incorporating both diagrams and taking Np = %, N¢ = 3,

will be as follows

G=(p*/A)|, =
_ 9% (18— 6e)2 — 241 (22 — 157+ 18965 ) + O (2
576m2 X2 A X A
(4.78)
HE(pz/A)|2 =
2 2 2
9s A 27\ 401 P
T (54(5+§x)p2 +601n( A > 491 81§X> +0 (A)
(4.79)

This is divergent, as in the case of the fermion propagator. However, unlike
the case of the fermion propagator, these corrections contain a 1% divergence
as well as the weaker ln(l%) part. This will shift the location of the pole of the
gluon propagator and will therefore generate a gluon mass as we predicted
in Section 4.3.3. If we look at Eq.(4.61) - taking the case where £x = 0
for simplicity - since we now have p’Gz(p?) # 0 as p> — 0 we see that
the singularity of the propagator is no longer located at p? = 0, but at
p? + p2G=(p?) = 0. The value of p? which satisfies this equation will be our

gluon mass.

We note that our new gluon mass depends on g2. We could also calculate
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corrections to this which would depend on higher powers of the strong cou-
pling. If we were able to solve the asymptotic propagators exactly then we
would use that form including a massive gluon throughout our calculations;
since we are forced to employ a perturbative approach it will only become
necessary to include the increasingly higher order corrections as we calcu-
late higher order diagrams. By the same token, when calculating diagrams
at lower orders (such as all the examples contained in this thesis) it is not
necessary to take the mass of the gluon into account. This does not cause
any problems with potential infrared singularities arising from neglecting the

gluon mass since these can only occur at higher orders in perturbation theory.

4.6 Infrared finite amplitudes

Now that we know that the gluon will have a dynamically generated mass
we can finally see how our approach will result in infrared finite amplitudes.
Our powercounting approach earlier showed that problems could potentially
arise if we had reduced diagrams which included effective two or three point
interactions. We then looked more closely at the form of the two point effec-
tive interactions and saw that (at one loop) there was no problem associated
with the two point fermion interaction, but that the two point gluon inter-
action could still potentially introduce infrared divergences. Our discovery
that the gluon will have a dynamically generated mass, however, means that
this two point interaction will no longer be a problem®. In fact, it appears
to be no coincidence that a mass is generated in the gluon case where it is

necessary for the theory to be finite and not in the fermion case where it

8In calculations of a low enough order for us to neglect the gluon mass even two and
three point effective vertices are not enough to cause infrared singularities.

102



Chapter 4: Splitting the Lagrangian 4.6 Infrared finite amplitudes

is unnecessary. This is due to the fact that the hard vertices which intro-
duce the potentially problematic factors in the reduced diagrams obey the
relation fs(A) + fn(A) = 1 which means that if we consider the sum over
diagrams with all possible combinations of soft and hard vertices we must
recover a result with no dependence on A. Since the powers of p?/A which
cause problems when we consider the reduced diagrams (where we have hard
vertices) are the same as those which introduce a mass in our calculation of
the propagator (where we have soft vertices), it follows that we expect these
two situations to coincide in order to recover the case with no A depen-
dence®. This allows us to be confident that although we have only checked
these issues at one loop, we won’t run into problems at higher orders; it also
suggests that the seeming dependence of this proof of infrared finiteness on
our choice of vertex function is actually misleading since any vertex function
which did not produce a gluon mass would result in an effective two point

gluon interaction which did not alter the powercounting of reduced diagrams.

It is now simple to check that three point effective vertices will also not lead
to infrared divergences. We consider specifically the case of a completely soft
subdiagram since our earlier analysis distinguished between fermions and
bosons; a similar argument can be made for the case including jets if we
consider the smaller contribution of fermions to the negative powercounting.

From Eq.(4.18) we see that the contribution to p at each vertex is

3

9To recover the case without A dependence we must also consider the cases with one
hard vertex and one soft vertex. It is, however, unlikely that the relevant powers of p%/A
shotld be present in the hard-hard and hard-soft amplitudes and yet absent from the
soft-soft amplitude. Consequently, this is unlikely to present a problem.
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where we have disregarded the gluon contribution since they are now mas-
sive. It is immediately obvious that an effective three point fermion vertex
will make a positive contribution to the powercounting and so will not con-
tribute to infrared divergences. An effective three point vertex with one or
more gluons will clearly have an even larger positive contribution. The fi-
nal check we need to make is that our earlier argument that increasing the
value of \ could not reduce the value of u holds in the case of three point
vertices'®. We now have a theory with fermion lines being the only potential
source of singularities since our gluon is now massive, and so we now have
a contribution of only —1 from each of the I; soft fermion lines and there
is no possibility of soft gluon lines adding negative powercounting. We now

update Eq.(4.19) to get
w=4L, —I; +2L; — N; — N; (4.81)
We follow the reasoning through to find that
u(S)=4L; — I, =4+ 4N; + 3I; — 4(V1 + V2) (4.82)
eventually ending up with the updated form of Eq.(4.25):
3. 1.
= Z (izv + 5y = 2vv = 4v1) +2 (4.83)

It is now apparent that since any three-point mixed vertex must have 7, = 1
and j, = 2 we will recover the result of a contribution of +1 to x from each
of the two vertices required to increase A by 1. Consequently, we now have

a theory which produces infrared finite completely hard amplitudes.

107t is impossible to have a mixed two point vertex.
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4.7 Infrared finite phase space integrals

While the main focus of this thesis is on the calculation of the amplitudes
themselves, we can see that for our method to be successful it is also a nec-
essary condition that no infrared singularities appear when we integrate the
completely hard amplitudes over the final state phase space. Consequently

we shall now take a very brief look at how this occurs.

The simple explanation for this is that the hard splitting functions which are
present at every vertex which is connected to an external line (and, of course,
at any other vertices too) will be zero whenever an external particle becomes
soft or collinear to the particle from which it has been emitted. This will
ensure that the regions of the phase space which contain potential infrared

singularities are removed from the integral.

To give a very basic demonstration of how this works we shall consider the
case of v — ggg at tree level; one configuration for this process was shown in
Figure 2.6. The three particle phase space is proportional to f $13S23 Where
si; = (pi + p;)® and p; represents the momentum of the particle emitted
from one of the external legs. This integral will therefore become divergent
if we have terms containing 1/s;3 or 1/s,3. Each of the possible diagrams
will contain one of these factors (the configuration in Figure 2.6 has a factor
of 1/s13, a factor of 1/s.3 appears when the gluon is emitted from the other
fermion leg), but we can see that it will cancel with the numerator of the
relevant hard vertex factor in each case. Consequently, the presence of hard

vertices will render the results of the phase space integrals finite.

We shall not consider more complicated cases in any detail here, but the end

result is that the numerators of the hard vertex factors will always cancel any
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denominators which might potentially introduce infrared divergences. Am-
plitudes with hard vertices only will therefore be completely infrared finite.
Amplitudes which contain some soft vertices may still pick up some infrared
divergences from the phase space integration; these will invariably belong to
asymptotic states with fewer asymptotic “particles” and the divergences will

cancel when combined with the other amplitudes present in that group.
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Example calculations

In order to demonstrate how our new approach will work we shall now look
at some example calculations. Although our ultimate aim will be to perform
the calculations completely numerically, we shall start by considering ana-
lytic calculations in order to gain more insight into the workings of the theory.
Also, as we saw in Section 3.6.2, we will need to calculate a selection of di-
agrams with various combinations of hard and soft vertices; the application
of the method to distinct examples will help to illustrate the ways in which
these different contributions contribute to the various observables. Conse-
quently we shall start with a simple example: ete™ — two jets at NLO. We
shall then briefly consider how this method would be applied to more compli-
cated examples, where the potential difficulties with our approach will appear
and how we can deal with them. In all of our examples we shall apply the
asymptotic interaction treatment to QCD interactions only. Consequently,
the QED parts of the interactions - such as quark-photon vertices - will not

have any vertex splitting functions attached to them.
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5.1 ete” — two jets at NLO

As in the usual approach, we will calculate diagrams with both real and
virtual gluons, although in our case this is not due to the fact that the
results for these two configurations are divergent when considered separately,
but rather that our consideration of asymptotic rather than free external
states will cause us to include various parts of different traditional external
states. We shall designate the conventional final states which we will need
to consider by |gp,@p,) and |gp, @p,9ps) While we represent the asymptotic final
states by |{gp,dp,}) and |{gp,dp,9p;}). The two particle states consist of a
quark and an antiquark with momenta p; and p, respectively, but as we
shall see later the asymptotic two particle state may also contain additional
soft or collinear particles (up to one gluon at NLO). The state does not
depend on the momentum of this gluon since we are completely inclusive
with respect to soft and collinear emissions. The three particle states will
both contain a gluon with momentum p3 in addition to the quark antiquark
pair; even though there is no possibility of any extra soft or collinear particles
in the asymptotic state at NLO these two states are indeed different as the
asymptotic state will not allow the gluon to be soft or collinear to one of
the quarks. For the moment we will consider only the QCD part of the
amplitude; we shall deal with the initial QED interaction when we perform

the phase space calculation.

The general virtual correction diagram for any particular combination of hard
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Figure 5.1: Some of the cut diagrams for the vertex correction calculation.

and soft vertices can be written as

Aversy = [ LEBIGEN D RV HE )0 o
YT ) 2nP R 0 [k pa)? + i0¥][(k — o) + 0]

kok
k2ﬂ> fi(pla kapl + k) fj(p2a kap2 - k) (51)

X 04B (gaﬁ —&x

and corresponds to the right-hand side of cut 1 in Figure 5.1. Here (p;| and

|p2) are helicity spinors such as those described in [43].

We will also need to include virtual correction diagrams such as the right-
hand side of cut 4 in Figure 5.1 and the similar case where the gluon is

attached to the other fermion leg. We can write this diagram as

Ay o = / dPk (p1|(igst v*)i(h 1 + F ) (igst®7°)ip 1(ie7™) po)
VORI | 2nP T [k 4 i0¥][(k + pa)? + i07][p? + i07]

k.k
X 04B (gaﬁ - fx—kz‘é) filpr, k,pr + k) fi(p1, k,p1 + k) (5.2)

We now perform these calculations for the specific cases of two hard vertices,

two soft vertices and one of the cases with one hard and one soft vertex!.

Once we have the relevant amplitudes we will need to calculate the different

1Since the only scales present in the calculation are A and p;.p; and the diagram is
unchanged under the transformation p; — —pa, ps — —p1, both possible configurations
for one hard and one soft vertex will yield the same result.
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cross sections which appear in Figure 5.1. In order to proceed we will need

the following expressions for the two and three-particle phase space [4]

1
Ps®@ =Ao/d812 0(y12 — 1)@ (5.3)
A 1 4\ € 1
PS(3) =§0 (@ (?> F(l — e)) /dy13 dy23 (3113 y23(1 — Y13 — y23))_6
X (1 — y13 — Yo3) (5.4)

where s is the centre of mass energy, we introduce relations for the following

invariants
s..
sij = (P + )% sik=Di+pj +pe)°, Y= —;—] (5.5)

and Ag is given by
(1 T(1—¢) [4m\°
Ao = (27r T(2 — 2¢) ( s ) S) (5.6)

We will also need to include the QED part of the interaction at this point.
We can write the whole amplitude in terms of a QED part, L* (which will
be unchanged for all our amplitudes), and a QCD part, H° (which will
correspond to the particular QCD amplitude we’re calculating), as follows

—igho —joko
A= D H7 = (lfiey*|l,) —

HC (5.7)

where [; and [, are the momenta of the incoming electron and positron.

The amplitude squared can then be written in the form

1

|A]” = L= Hy (5.8)
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with L*” given by

S

L¥ = —e® tr(f oy 1v") = 4€® (2

g — Uy — i) (5.9)

Since the leptonic part of the calculation will always be the same, we can
simplify the rest of the process by working with the average of the leptonic

tensor, (L#*). This is given by

<LIW> = 4?62 (Sg‘w — (ll + l2)l‘(l]_ + lg)u) (510)

We can then replace the lepton momenta using the relation [; + I, = Yoo

which then allows us to calculate our desired cross section from the expression

11
i —— 1

where the phase-space integration is now only over the QCD part and the

factor 1/(8s) comes from considering the average flux.

Writing the virtual correction amplitudes in the form
AVC,ij = —ie(P1|’Y“|p2>ch,ij = A(O)HVC,ij (5.12)

where the superscript (0) indicates the power of the strong coupling, g,, we
can then calculate the various NLO cross sections by multiplying by the

complex conjugate of the leading order contribution and integrating over the
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phase space with the relevant jet function

2
—e
ove,ij =-8—8§P5(2) (L*MVtr( 17u (=P 2)v) Hve,ij J(p1,p2)

A 2
= _ fe / dys Sz — 1) (2 — 2 Hyei; J(prps)  (5.13)

12s

In the case where the jet function is 1 this will give us Hyc,;; multiplied by

the Born cross section.

These calculations are relatively straightforward and, after expanding in
As = A/s, we arrive at the following results, with the designations VC1
and VC?2 corresponding to the topologies of the diagrams containing cuts 1
and 4 in Figure 5.1 respectively:

a [(—s\ ¢

2
X g—2ln2A3—4lnAs—6+2§+2(1+£)ln2—%-f—(’)(As)]

Qg —$8 —¢ 2(In As +1
Ag)C'I,hng(O)CFQE(ﬁ) [_ ( (6) )

+3In% (A,) — (€ — 3)In(A,) — (€ + 1)(1 + In(2)) + %2 +0 (As)] (5.15)

ALy o = A9 Cr 063—; (;—f) (5.16)
_ 2
—6% + (41n (A8)€+ 1= _ 41n® (A,) —2(1 = &) In(A,) — % +0 (As)]
as (—s\° 3+

(5.17)
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At ne = A Crp e [-€+ O (A) (5.18)
as, (—s\ ¢ 3—7¢
Aonw =49 e e 22 (2) [E- o -m@pe- 25" 0 )

(5.19)
where Cp is the colour factor, ¢, = (47)%e~"® as before, and the terms
O (A;) are finite in the limit A — 0. The full form of these results without
any expansion in A can be found in Appendix A. In order to arrive at the
corresponding cross sections, we must perform the phase space integral; this
will result in replacing A® with o which was defined in Eq.(2.68). We note
that the singular parts in the hard-hard amplitudes are due to ultraviolet
divergences and could be removed by renormalisation in the usual manner.
However, in this particular case, we shall see that the ultraviolet divergences
which appear in the two different topologies will cancel when we sum them
and so we can choose to ignore them. This will not be possible for all other
calculations. If we were performing the calculation numerically we would

have to add counterterms to the separate amplitudes in the manner of [11].

The two possible contributions to the real emission diagram are given by

A =08 ﬁ[(zf ?:)zfgzl++i§f])(ievu)lp2>fi@hpa,pl +p3)  (5.20)

AW _ _ (¢l (Ger)i(B 2 + P 5)(igat” £ * (p3)) Ip2)
RE2,i [(p2+p3)2+20+]

fi(p2, p3, p2 + p3) (5.21)

where the label RE1 refers to emission from the leg with momentum p; and
RE? refers to emission from the leg with momentum py; they correspond to

the two sides of cut 2 in Figure 5.1.

When we construct the possible cross sections there are again two possible

topologies: products of amplitudes with emission from the same leg, and
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products with emission from different legs. We shall denote the first case
by ogre1 and use the case where gluon emission occurs from the p; leg, and
the second by ogrpe. We find the following results for the two categories of

diagram

8(2 — 2€)(y12 v13 + (2 — 2€)y93)
313

org1,i = PS®

1
X 33 e 92 s fi(p1, p3, ;1 + p3) fi(P1, P31y + p3)  (5.22)

(2 — 2€)(2y12(y12 + ¥13) — Y12 Y13 Y23 + 2(y12 + 2€y13)Ya3)

ORE2,ij = PS® &
3Y13Y23

1
X 23 e* g2 fi(p1,p3, 1 + 3) £ (P2, P3, P2 + p3)  (5.23)

and once we’ve performed the phase space integrals? and expanded in A, we

arrive at the following results

Qs 9 23 n?
ORE1,hh = O Cr CEE 21]n (As) + 4ln(As) + E - ? + O (As) (5.24)

o s\ “[2(In(A,)+1
ORrE1,hs = 00 CF Ce e (—2) [ (&) +1)
m \ p €

— 31n% (A) — 2In (A) + 4 — 2—;:3 +0 (As)] (5.25)

2Normally we would be interested in a certain jet definition and so would not inte-
grate the totally hard part over the full phase space; we do this here for the purposes of
comparing our answer with the conventional method of calculating the total cross section.
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Q, 7
ORE2,hh = 0p CF CEE |:—— IH(AS) — § + O (As)] (527)
OrEshe = 00 Cr et [1+ O () (5.28)
o, s\ [ 1
ORE2,3s = Op CF CCE (F) |:—'€' + ln(As) -2 + ) (As):| (529)

5.1.1 Allocating cross sections to the different asymp-

totic states

At this stage we need to consider how we will allocate the different cross
sections which we have calculated to the |{gy,dp,}) and |{gp,@p,9p,}) final
states. It is obvious that the various virtual correction cross sections can
never mimic a three jet event and so will clearly belong to the |{gp,dp,})
state. Similarly, the real emission cross section with all hard vertices is part
of |{4p,@,9p,}) by construction while the real emission cross section with
all soft vertices clearly belongs to |{gp,dp,}). The other cross sections will
require more thought though since they contain both hard and soft vertices
on their external legs. This would seem to suggest that one of the amplitudes

making up the cross section belongs in |{g,,dp,}) while the other belongs in
{81352 9p: })-

On closer inspection this is not the case for ogg; s since here the hard vertex
prevents the gluon from becoming soft or collinear to p;, but does nothing

to prevent it becoming collinear to ps. This is also consistent with the soft

vertex, and so we see that this does fit into |{gp,dp,}). This analysis is
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upheld by the presence of an infrared divergence in this cross section which

must cancel with other amplitudes in the group, prohibiting it from being a

member of |{gp,@p,9ps })-

If we apply the same analysis to oggs, rs, We see that this case is genuinely
ambiguous since the hard vertex prohibits the gluon from becoming soft or
collinear to p; while the soft vertex requires it. This reasoning would imply
that the diagram should be zero, but due to the fact that our vertex functions
only tend to their required values in the soft/hard limits there is some overlap;
we shall come back to this point a little later on. Since this cross section
is finite we could safely place it in either category without disrupting the
infrared finite nature of the amplitudes. For the purposes of this example we

shall place it in {{gp, gy, })-

5.1.2 The complete result

We now have all the elements we require for the final result for ete~ —
two jets at NLO. To reach the total real and virtual cross section results,
({@p,, Tpar 9ps }) and o({gp,, Gp, }) respectively, we add the relevant cross sec-
tions with the correct weighting. This weighting corresponds to the number
of cut diagrams which share identical topologies; we also include a factor of
a half for those diagrams, oy 45, which comprise the contributions of /Zz=.
This is because these diagrams correspond to X if we write Z= = 1 + o, X.
Consequently, when we expand the factors of \/Z= which appear in the cal-
culation, these diagrams appear with a factor of a half as we get the form
1- %as)l To give an example, we see that oy s has a weighting factor of
four; one factor of two is a result of the fact that this cross section is given

by cuts 1 and 3 in Figure 5.1 while the other comes from the two possible
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configurations of one hard and one soft vertex. Similarly, we see that oy o ss
has a weighting factor of two; one factor of two as a result that cuts 4 and
6 contribute, another factor of two for the similar diagrams with the gluon

emitted from the other quark leg and the factor of a half as a result of /Z=.

In order to show how this approach will work at the amplitude level, we
would also like to write the parts of the real cross section which will end up
in the |{gp,dp, }) final state as amplitudes. The amplitudes and their complex
conjugates which make up the virtual terms contain factors of In"(—s) and
[In"(—s)]* respectively®, with n € {1,2}. The real terms contain factors of
In(s) and In®(s). We rewrite these as In(s) = 1/2(In(—s) + In*(—s)) and
In?(s) = 1/2(In?(—s) + %) + 1/2(In*(—s) + 72)* and associate the two parts
with the amplitude and its complex conjugate respectively. This will only
affect the form of the result for ogg1 ss which - once we have replaced og

with A© - now reads

a, (—s\ [2 4log(As
ORE1l,ss = A(O) CF Ce— — - = g( )
Am \ p € €

+4log? (Ay) + — + O (4A,) | (5.30)

A similar substitution can be made for the other real contributions.

Once we now add up all the relevant contributions we get

({9p1+ Tps> Gps }) = 20RE1RE + 20RE2,1N

Qg 2m?
= 0 CF CEE 3— T + 21n(As)(3 + 21n(A3)) + O (As)

(5.31)

3These appear explicitly in our results when we expand the factors of (—s)™¢,
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_ 2 2 (2 (2 2
AD ({gp,, @p}) = 2A$/)C'l,hh + 2A$/)C'2,hh + 4 AR s T 4‘AR)E2,h.s + 4‘A$/)C1,hs
2 2 2 2 2 2
+4‘Ag/é‘1,hs + 4A$/)C2,hs + 2A§2)El,ss + 2"4521)22,33 + 2A$/)C'l,ss + 2A$/)C2,ss
o, [272

= A® Cp e | 5 = 2n(A)(3 + 21n(A,)) + O (B,)

(5.32)

where the divergences cancel giving us a finite amplitude. We can now triv-

ially perform the phase space integration to arrive at the cross section

o, [27?

U({qm’qm}) = g9 Cr CEE 3 2In(A,)(3 + 2In(Ag)) + O (As)
(5.33)

We can see that if we add the two parts of the result together all dependence
on A cancels and we recover the conventional result given in Eq.2.71. The
result is exactly the same if we use the unexpanded versions of the cross
sections which are given in Appendix A. This is as we expect since we’ve
included all possible combinations of hard and soft vertices in our calculations
and so the total sum is equivalent to the calculation performed with the
conventional method. We note also that the expected factors of In(A,) which
we predicted in Section 4.4 do appear in our expressions, giving us the return

of our soft and collinear singularities if we were to send A — 0.

We can now investigate how our three jet result compares to the standard

three jet result; in order to do this we choose a basic jet definition

J = O(Y12 — Yeur)O (Y13 — Yeur)O (Y23 — Yeut) (5.34)

and use this as we perform the phase space integration for the two cases. The
results of these integrations can be found in Appendix B. We now plot the

results as a function of y.,; for different values of A,; the results are shown
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Figure 5.2: A comparison between the results for cross sections formed using the
final states |gp, @p,9p;) (s0lid line) and |{gp, dp,9p,}) (dashed line) for
Ag =0.01.

in Figures 5.2 and 5.3.

As we expect, we find that when our value of y.,; is significantly larger than
our value of A, the two results will give the same answer. As y.,; becomes
smaller the two results start to separate as the jet definition starts to be
able to resolve jets with more accuracy than we include in our resolution
parameter, A;. In the case where we have picked a smaller value of A, we
note that this divergence takes place at a lower value of y.,;. This confirms
that our approach will be applicable to various situations providing that we
choose a value of A, appropriate to the jet definition we are using. We also
note that while the standard three jet result diverges as y.,; tends to zero,

the asymptotic three jet result will remain finite.

We can carry out the same procedure with the two jet part of the cross
section, this time varying A, and arriving at the result shown in Figure 5.4.
We note that while we can plot the |{gp, Gy, }) and |{gp,dp,9p;}) contributions

separately, we must combine the |gp,@p,) and |gp,dp,9p;) Parts in order to
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Figure 5.3: A comparison between the results for cross sections formed using the
final states |qp, gp,9p;) (s0lid line) and |{gp,@p,9ps}) (dashed line) for
Ag = 0.002.

achieve a finite result; we also note that while the two separate asymptotic
contributions diverge as A; — 0 their sum remains finite. Once again we
see that as the value of A; falls beneath that of y.,; we start to recover the

conventional result.

5.2 Extending our approach

We now want to extend our approach to more complicated examples. How-
ever, when we do this we see that there are deficiencies in our split of the
Lagrangian into hard and soft parts as they do not cut off sharply, but in-
stead tend to one or zero in their respective limits. This has, in fact, also
had an effect on our previous example since it is this aspect of our split-
ting functions which is responsible for the fact that the contribution to the
fermion self-energy diagram in Figure 4.1 with one hard and one soft vertex

is not zero, but finite; this is also the cause of our ambiguous contribution to
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Figure 5.4: A comparison between the results for the |{gp,dy,}) cross section
(long dashed line), the two jet part of the |{gp, p,9ps }) cross section
(short dashed line), their sum (dotted line) and the two jet result
obtained from |gp, Gp,) and |gp, Gp,9p,) (solid line) for ye,s = 0.05.

the cross section which could be placed in either |{gy,dp, }) or |{gp,@p,gp; }) in
Section 5.1.1. Although this is inconvenient, it does not cause any problems
since the unexpected contributions will all not only be finite, but will be
suppressed by a factor of A; and so do not affect our division of the ampli-
tudes into two and three jet contributions. In more complicated examples,
however, we may come across situations where our choice of splitting func-
tions not only fails to set certain diagrams to zero, but even results in them
having divergent parts; this will clearly cause problems with our allocation

of amplitudes into the different asymptotic final state groups.

If we consider the form of the numerator of our hard vertex function, which is
responsible for setting the amplitude to zero when all the attached lines are
on shell, we see that it has dimensions of mass squared and so can effectively
only negate the singularity coming from one propagator going on shell. This

means that problems can arise in diagrams where a single hard vertex should
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set the diagram to zero when one of two or more identical propagators goes
on shell. As each hard vertex can only cancel one propagator this will result
in finite corrections when one of these propagators goes on shell, but in the
case where two or more of them go on shell together we see that cancelling

one of them does not remove the infrared singularity completely.

To give a simple example of this we look at cut a in Figure 5.7 with vertices
1 and 3 hard and the rest soft. The hard vertices on one side of the cut
should clearly prevent any infrared divergences arising from the phase space
integration, but if we look closer we will see that this is not, in fact, the case.
Discarding the tensor structure of the diagram and the constant factors we

are left with

/ dy134 dyo3s dysa 9(?]34) 9(1/34 +1—9134 — ’!/234) @(y134y234 - y34)

( 1 Y34 Y34 + Y134 ) ( 1 A, A )

X

Y134 Y34 Y3a + Dy Y34 + Y13 + A Y134 Y34 Y3a + Ag Y34 + Y13a + D
(5.35)

We can immediately see that, although one power of 1/y34 will be cancelled
by the numerator of one of the hard vertices, we will still be left with one
more such factor and this will result in a singularity when we perform the

Y34 integration.

Consequently there is a certain amount of “mixing” of the infrared singu-
larities between the various amplitudes. In order to address the problems
that this will cause when we allocate the various amplitudes to different
asymptotic final states we will need to make a more appropriate choice of
our splitting functions. In the example above, we see that in order to avoid

unintended infrared singularities it would be sufficient for us to have one
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more power of y34 in the numerator. Consequently, if we were to define new
splitting functions f; and f, through the relation f/({p};A) = fi({p}; Q)
we would once again achieve the proper distribution of infrared singularities
in our example. This approach would not address the inclusion of unwanted
finite parts however and, furthermore, we can see that if we were to calculate
more and more complex examples we could always find diagrams where the
power we chose to raise our original splitting functions to would not be large
enough and we would be forced to increase it. This indicates that really we

need to find a new form for these functions.

One possible form which avoids all these problems is

fa(pr, P2, p3; A) = O(A — [pf]) ©(A — [p3]) ©(A — |p3]) (5.36)

fn(P1, P2, p3; ) = 1— O(A — [pi]) ©(A — [p3]) ©(A — |p3]) (5.37)

The obvious drawback to this formulation though is that it is not practical
for performing analytic calculations. This does not present any problems for
our ultimate aim as there should be no specific difficulty in implementing
these in a numerical approach, but it does limit our ability to pursue further

investigation analytically.

It is immediately clear that using this division of the Lagrangian highlights
the relation between the approach based on our LSZ formula and a simple
reallocation of the singularities which we discussed in Section 3.6.3. The new
form of the splitting functions sets many of the fermion self energy diagrams
with mixed hard and soft vertices to zero. For example, all the diagrams
in Figure 5.5 are trivially zero as is any diagram where a hard vertex is

connected only to soft vertices. Similarly, an external line radiating other
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lines is zero if a soft vertex appears earlier in the chain than a hard vertex.

If we consider Figure 5.6, we have the relation

PLm+1 2 PLm (5.38)

since all the p; are on shell. If we now suppose that we have the first hard

vertex at vertex m then we see that we have the vertex function

1-0(A - |pin))® (A = Iprss))O (A = [P i) (5.39)

Now we have p},,, = 0 since it is an external momentum and p?,, = 0 since
all the previous vertices are soft. This means that we must have p? > A
otherwise the hard vertex function will set the diagram to zero. As a result,
the presence of a soft vertex later on in the chain would involve the vertex

function
O (A -t oA -2 e (A - |p, ul), r>m (5.40)

which must be zero due to the relation in Eq.(5.38). It is straightforward
to apply this to the diagrams produced by the completely real cuts of a
cut diagram where each side of the diagram will correspond to a tree-level
Feynman diagram. For each separate Feynman diagram we move along each
branch from the outside, noting the form of each vertex we pass. If the first
vertex we come to is soft, we combine the two partons to form a parent par-
ton. Similarly, for each additional soft vertex we reach we reduce the parton
number by one each time as we continue to combine the original partons
into one asymptotic parton. However, once we hit the first hard vertex this

process immediately stops (and as we have seen earlier, the presence of any
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vertices while the propagators and the external states include a collection of

soft interactions.

5.2.1 Categorising external states

In order to investigate the relation between conventional external states and
asymptotic external states in more detail we shall now consider an example at
higher order in perturbation theory. We choose ete™ — two jets again, but
this time at NNLO. Also, in order to reduce the number of diagrams which
we will have to consider, we will only consider the contribution proportional

to NF.

This time there will be three different classes of diagram which will eventually
contribute to the result: the virtual correction diagrams at NNLO, the real
emission diagrams at NLO and ete~ — four jets at LO as shown by the
various cuts in Figure 5.7. Cuts a and d comprise the four jet LO diagrams,
cuts b and e comprise the real emission LO and NLO diagrams and cuts ¢ and
f comprise the virtual correction LO and NNLO diagrams. We denote the
cross sections by o, ;1 where ¢, j, k and ! denote whether vertices 1,2, 3 and
4 respectively are hard or soft and z will be replaced by VC, RE or 4J to
refer to the cuts which result in two, three and four particle final states, with
suffixes 1 and 2 denoting the diagram with cuts a, b and c or the diagram
with cuts d, e and f respectively in the case where we need to differentiate

between them.

We have not included every possible permutation of hard and soft vertices

since here (and in the real emission and four jet examples as well) we can
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Figure 5.7: Cuts for the Nr contribution at NNLO

use the relations

ove,ijki = Ove, ikl and  Ovye,ijkl = Ove,ijik (5.41)

We must now consider which of these cross sections belong to which groups of
asymptotic final states. Once again it is clear that all the virtual correction
cross sections belong in the asymptotic two jet group along with the totally
soft cross sections for the real emission and four jet cases. Similarly, we can
place the totally hard real emission cross section and the totally hard four
jet cross section in the asymptotic three and four jet groups respectively. We

will now consider the remaining cross sections more carefully.

First we consider the real emission cross sections. Since they differ from the
LO case purely in the addition of a fermion loop to the external gluon, and
since this loop can do nothing to affect the momentum of the gluon we see
that we can discount the nature of the vertices in the fermion loop and apply
exactly the same analysis as we did to the leading order case (note that the

only possibilities for the vertices in the fermion loop are both hard or both
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soft as a mix of hard and soft would set the diagram to zero). Consequently
we see that org, ssk1 Will belong in the asymptotic two jet group for any k, [.
ORE2, hski Will belong in the asymptotic two jet group as well while org; pski

will be zero.

In the four jet case, the situation is rather more complicated. We shall
consider the possible halves of the cut diagrams separately at first, classifying
them by their asymptotic final state form, and then match them up with other
diagrams which fit into the same group. It is possible to have diagrams which,
while they may not forbid certain groups of particles to become collinear, are
not themselves singular in this limit; they will only give rise to singularities
if multiplied by the complex conjugate of a diagram which is singular in
this limit. The first half cut diagram may therefore find itself in different
asymptotic final states depending on which other half cut diagram it is paired
with; an example of this from earlier would be oggipr and ogrgrns, two
different possibilities for cut 2 in Figure 5.1. If we take the left hand side
of the cut to contain a hard vertex in both cases we see that this vertex
will forbid the gluon from becoming collinear to the quark from which it was
emitted, but not to the other quark; it must therefore include parts of both
1{25,p29p;}) and |{gp,3p,}) states. In the case of orgy ps, the other half of
the cut diagram prevents the remaining collinear possibility and so projects
out the finite |{gp,dp,9p,}) state. In the case of orpi s, the other half of
the cut diagram requires the gluon to be collinear and so it projects out the

singular |{g,,dp,}) state. As we have seen though, the total contribution to

1{9p,8p, }) is finite.

For our analysis here we shall consider the left hand side of cut a in Figure

5.7 and refer to the “original” quarks produced by the initial interaction as
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having momenta p; and ps, while the quark pair produced at vertex 3 have
momenta p3 and py. The cut diagrams with both vertices hard obviously

adopt a four jet profile since p3 and p4 cannot go collinear.

If vertex 1 is soft and vertex 3 is hard our new splitting functions set the
diagram to zero. In the case where we now have vertex 3 soft and vertex
1 hard we have a three jet profile since p3 and ps can now go collinear or
one of them can go soft. The hard vertex will prevent p; and ps both going
collinear to p; or both going soft and so stops this becoming a two jet event.
When both vertices are soft we will clearly have a two jet event, either with
p1,p3 and py all collinear or with some of them soft. A simple consideration
of the restrictions imposed by various combinations of hard and soft vertices
will show that 01 hski, Og,ijhs and oagpjs Will all be set to zero where the

designation x can be any one of VC, RE or 4J.

We can now allocate our cross sections to their separate groups. In the two
jet group we have ovcijki, OrE,sjk and 044,551 for any (4,7, k,1) subject to
the previously mentioned constraints which would set the diagrams to zero
and allowing the possible permutations given in Eq.(5.41). In the three jet

group we have 0rg hhhh, ORE hhss B0d T45ppss- In the four jet group we have

O4J,hhhh-

We can now see how our allocation of the various amplitudes to the different
asymptotic final state groups will result in infrared finite amplitudes. We
know that the sum over all cuts of a cut diagram which corresponds to an
infrared safe observable will be infrared finite [44] and if we look at the am-
plitudes included in each group we see that we can use this fact to investigate

the divergences separately within the different groups.

It is not necessary to consider the amplitudes with hard vertices only since
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these will be separately finite and therefore the fact that different cuts place
them in different groups does not result in any divergences. Since the only
diagram which remains in the four jet group is one with hard vertices only,

this means that we only need to consider the two and three jet groups.

In the three jet group (other than diagrams with hard vertices only), we
only have org hnes and o4ynnss. At first glance this appears to be a problem
since we are missing the virtual correction cuts of this amplitude. When we
consider this more carefully, however, we see that the cut diagrams included
in the two jet section all include the fermion loop contribution to the gluon
self energy with soft vertices (as shown in Figure 4.2). When we calculated
this with the old splitting functions we discovered that it was finite provided
the gluon was off shell. We now note that the hard vertices which make
up the other interactions in each of these diagrams will prevent the gluon
momenta from going on shell; this tells us that each of these diagrams must
be separately finite as we can consider them to be composed of hard vertices
only and propagators that are only divergent when they’re on shell. This
realisation that all the relevant cut diagrams which are excluded from the
three jet group are separately finite means that the sum over the cut dia-
grams in the three jet group must also be finite. We could also consider this
from the perspective that this configuration of the soft vertices makes up a.
divergent subdiagram and the cuts which are included in the group make
up the complete set of cuts over this subdiagram; this also implies that the

family of cuts which exist in this group should be infrared finite.

This leaves us with only the diagrams which are left in the two jet group.
Since this is an infrared safe observable and the four jet and three jet contri-

butions are both finite it follows that the two jet contribution must be finite
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Figure 5.8: Cut diagram with apparently mismatched external states.

too. Thus we see how our division of the amplitudes will result in infrared

finite amplitudes.

As our last example of classifying the external states we will look at one
very specific example where the two halves of the cut diagram appear to be
completely mismatched in order to demonstrate how such apparent contra-
dictions will be reconciled. We choose as our example the diagram shown
in Figure 5.8 where the black dots correspond to hard vertices and the grey

dots to soft vertices.

If we now consider the naive external states suggested by both sides of the cut,
we arrive at the forms shown in Figure 5.9 where we have combined external
partons produced by soft vertices into the asymptotic partons present after

the last hard vertex in the chain.

We can immediately see that one half appears to have an external state
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5.2.2 Towards a numerical approach

Now that we have a reasonable understanding of how the asymptotic external
states work in practice, the next goal is to implement a numerical approach
to our calculations. As we have seen, although our approach does produce
separately infrared finite amplitudes, the different parts which make up these
amplitudes still contain infrared divergences if calculated separately. Some
of the amplitudes will also contain ultraviolet divergences. In order to pursue
a numerical approach, both of these sources will have to be removed. This
is relatively straightforward in the case of the ultraviolet divergences where
we shall use an approach along the lines of the one outlined in [11]. In the
case of the infrared singularities however, some of the divergences appear in
the amplitude through loop integrals while other divergences appear in the
phase space integrals. Consequently we need to find a method of aligning
the parameterisation of the loop and phase space integrations so that we can
write the sum of all the contributions to the amplitude as one finite integral.

We will now give a brief outline of how such a scheme might proceed.

We imagine starting from a completely real cross section (e.g. tree level
diagrams on both sides of the cut) with n external particles where we will
perform our numerical integration by repeatedly generating the momenta of
the external particles. If we now generate a set of on-shell momenta, p; where
¢ runs from 1 to n, for these particles we can infer the momenta of all the
internal lines of the diagram. This allows us to categorise each vertex as
either hard or soft. In the case where we have generated a completely hard
diagram there will be no divergences and we can simply store the result. If we
now imagine that one vertex at the end of a branch is soft (a single soft vertex

further albng a branch is kinematically impossible) this will clearly give rise
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to an infrared singularity and so we will have to consider the relevant extra
cut diagrams which will make this finite. From our previous consideration of
the external asymptotic states we know that these extra diagrams will have a
soft loop in place of the soft vertex with the cut redrawn appropriately either
side of it. The precise details of how we determine these extra contributions
and the cross section to which they are assigned, particularly for cases with

a more complex arrangement of soft vertices, are yet to be addressed.

In general we will end up with an expression of the form

/{d3pi} [Ir + Iy + Iyv] (5.42)

where I represents the real contribution, Iy represents the virtual contri-
bution and Iyy is the ultraviolet counterterm. In the case mentioned above
where all the vertices were hard the only nonzero term would be . In other
cases we will have to deal with the fact that the virtual contribution contains
a loop momentum which is not constrained to be on-shell; consequently we
will require a method of performing the integral over the energy part of this
momentum, leaving all the terms in the same form. The implementation
of a suitable method for this along with the determination of which virtual
contributions to include should then allow the numerical calculation of cross

sections.
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Conclusions and outlook

In this thesis we have discussed an approach to producing covariant scatter-
ing amplitudes for non-abelian gauge theories which are infrared finite. In
Chapter 1 we provided a motivation for investigating infrared finite ampli-
tudes and reviewed the previous research in this area. We saw that a general
method for cancelling infrared singularities at NLO existed, but that the
more complex form of singularities present in NNLO calculations meant that
no general method was available; this indicated that a method for working
with infrared finite amplitudes would clearly be of benefit. We saw that two
approaches to defining infrared finite amplitudes had been investigated, but
that in the case of non-abelian theories no satisfactory methods for perform-

ing actual calculations existed.

In Chapter 2 we started our investigation of infrared finite amplitudes by
considering the traditional calculational methods in order that we might
later modify them in order to avoid the incorrect assumptions described in
Chapter 1. We presented the conventlonal theoretlcal approach to calculatmg

amphtudes and Cross sectlons focusmg on areas which we would later alter,
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and demonstrated the application of the traditional method of cancelling

infrared divergences through a simple example.

In Chapter 3 we considered how to adapt the conventional approach in or-
der to produce infrared finite amplitudes. We introduced the asymptotic
interaction picture as the basis for our calculations. This involved splitting
the Lagrangian up into asymptotic and hard parts, subsuming the soft and
collinear areas of the interaction Lagrangian into the definition of our asymp-
totic Lagrangian. This asymptotic Lagrangian was then used to construct
our external states, leaving the hard part of the Lagrangian to determine
the interactions of the theory. We then saw how this gives rise to an altered
LSZ reduction formula which has many similarities to the usual formula, but
with the crucial difference that it is now given in terms of asymptotic exter-
nal states. We saw that the inclusion of an interaction term in our definition
of the external states meant that we were unable to solve for them exactly,
leading to problems in incorporating this into our theory. Consequently, we
looked at the problems caused by the asymptotic external states in more
detail and saw that it might be helpful to adopt a more pragmatic view of
our approach, considering it as a method of dividing up the traditional cal-
culation differently such that infrared singularities could be cancelled at an

amplitude level.

In Chapter 4 we looked more closely at how we split the interaction La-
grangian into hard and soft parts. Since we were unable to determine the
exact form of the asymptotic Lagrangian we were forced to introduce the pa-
rameter A to describe how we chose to make the split. Once we had chosen
a form for this split we demonstrated how this would produce infrared finite

~amplitudes with all hard vertices. In order to show this we had to look at
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the form of the propagators in more detail, and as a result we saw how the

gluon would acquire a dynamically generated mass.

In Chapter 5 we looked at a couple of example calculations in order to il-
lustrate the method and to gain more insight into the categorisation of the
asymptotic external states. We saw that our method did indeed produce
the correct results for ete™ — 2 jets at NLO and investigated the effect of
our choice of the resolution parameter, A, on the predictions for different
observables. We then saw how our choice of a splitting function which would
facilitate analytic calculation would be unsuitable for more complex exam-
ples. We defined another possible form of splitting function which would
be more suitable for application to numerical calculations and demonstrated
how this would be applied to a more complicated example and how this

illustrates the connection between the two approaches.

The main aim of future work will be the generalisation of our method in such
a way that it can be applied at higher orders. In practice this means extend-
ing our understanding of the approach in two separate areas. Firstly, more
work is required on understanding the modified LSZ formula and in particular
on a more detailed understanding of the asymptotic states. Any complete
understanding of the asymptotic states, while highly desirable, seems un-
likely. However, a deeper investigation into how the approach derived from
the modified LSZ formula and a simple alternative division of the conven-
tional amplitudes relate to each other and how the conventional external
states fit into the definition of the asymptotic picture would be an important
next step. Although we have seen that it is possible to ascertain which con-
ventional final states belong in which asymptotic final states through careful

" inspection of the amplitudes, we have no systematic process for categorising
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them automatically yet; from the investigations into the subject which we
‘have performed so far though it appears probable that we should be able
to formulate the ideas which we have developed in such a manner without
too much trouble. It would be most desirable to devise a general method
for achieving this. This would allow an automated process for grouping the

various components of the calculation into their correct finite groups.

Secondly, once we have a more thorough understanding of the method we
would like to take the next step to making full use of the infrared finite
nature of the calculations. This would involve constructing methods for
calculating the various finite groups of amplitudes numerically. In order to
implement this we will need to include a system for subtracting the ultraviolet
divergences as in [11] although this should not present too many problems:
Once such a system is in place we would, of course, need to compare the
results obtained against various known calculations in order to confirm that
the method does indeed work correctly. As it stands at the moment there are
certainly challenges to be overcome before this method could be considered as
a possible angle of attack for the infrared problem but the prospects certainly

appear to be very promising.
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The full result for the vertex

correction calculation

In this appendix we present the full result of the vertex correction calculation
performed in Section 5. Before performing the expansion in A the results

are

oreLRh = 00 CFCe ;—; ( —3In(-A, - 1) A, (A, + 1)2 +241n (Ay)

. A,
—24In (A, + 1) — 9A, (2A; + 1) — 6Li, (2As n 1) (24, + 1) (A2 - 2)

+ 6Lij (2AAs 111> (24, +1) (A2 - 2) + 3( —2(2A, + 1) (A2 - 2) In® (A,)
2 A, +1 2
+(2In(A;+1)(2A, +1) (A2 —2) —2In A 1 (24, +1) (A2 -2)

+ A, (5 — Ay (TA, + 10))) In (Ay) + In (=Ay) A, (A +1)°

+In (A, +1) (2In (2AA:- 1) (24, +1) (A2 - 2)

+ A, (A, (TA, + 10) = 5) )) + 23) (A1)
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7]
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Appendix B

Cross sections for a basic jet

definition

In this appendix we present the cross sections for |gp, @p, 9p,) and |{gp, @, 9ps })

which were used to create the graphs in Figures 5.2 and 5.3.
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