W Durham
University

AR

Durham E-Theses

Abstract control rules and their use in domain
independent planning

Murray, Luke Caleb James

How to cite:

Murray, Luke Caleb James (2005) Abstract control rules and their use in domain independent planning,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/2715/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2715/
 http://etheses.dur.ac.uk/2715/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

A copyright of this thesis rests
with the author. No quotation
from it should be published
without his prior written consent
and information derived from it
should be acknowledged.

ABSTRACT CONTROL RULES AND THEIR USE IN DOMAIN
INDEPENDENT PLANNING

Luke Caleb James Murray

Submitted in conformity with the requirements
for the degree of PhD
Department of Computer Science
University of Durham

Copyright (¢) 2005 by Luke Caleb James Murray

2 1 SEP 2005

for Jim, Liz, Dano and Sam. I am you.

“A sense of symbolism sees you through, you see,
Abstraction’s no distraction,

Similarities will set you free.”

Abstract

Abstract control rules and their use in domain independent
planning

Luke Caleb James Murray

Control rule based planners that take advantage of hand coded domain specific
control knowledge currently out-perform fully automatic planners. Generic
types have been presented as abstractions of the behaviour of types identi-
fied in planning domains and we extend this abstraction to sets of interacting
generic types, or generic clusters. A state based modal temporal logic is pre-
sented for expressing properties of sequences of states, the terms of which are
features of generic clusters. The logic enables control strategies to be written
in terms of generic clusters. Automatic generic cluster identification provides
a way of automatically specialising expressions with the details of any domain
level instances, yielding domain specific control rules. We show how control
rules employed by current control rule based systems can be expressed in the
framework presented and also demonstrate generic control rules being used to

improve plan quality in a state of the art, fully automatic planning system.

)

The work contained in this thesis has not been previously submitted for
any degree in this or any other university. Any text that is not the author’s
has been appropriately referenced.

The copyright of this thesis rests with the author. No quotation should be
published from it in any format, including electronic and the Internet, without
the author’s prior written consent. All information derived from this thesis

must be acknowledged appropriately.

Contents

1 Introduction

1.1
1.2

1.3
14
1.5

Planning
The problem of search
1.2.1 Facing the problem of search
1.2.2 Making use of extra information
The integrated approach
Statement of thesis
Thesis Map

2 Background

2.1
2.2
2.3

2.4

2.5

2.6
2.7

Introduction to background material
Domain independent planning

Control rule based planners

2.3.1 Integrated control
2.3.2 Modularised control Lo
Domain Purity o o

Control of search
2.5.1 Explicit search control
2.5.2 Hard and Soft Control Information
2.5.3 Heuristics as control information
2.5.4 Domain specific solvers and policies
Domain Analysis
Type inference L

271 Generic Types L.

12
12
13
14
15
17
19
20

22
22
22
22
23
24
28
29
30
31
35
36
37
40
41

2.8 Uniting domain analysis and control rules 44
2.9 Chapter Summary 46
3 Abstract control rules 47
3.1 Overview of Proposed Architecture 47
3.2 Componentso e e 48
3.2.1 Generic Types and Clusters 48
3.2.2 Language for abstract control rules 50
3.2.3 Exploiting features of a generic cluster 57
3.2.4 Domain specific control rules 59

3.3 Generic Types 60
3.4 Inclusive and exclusive generic control rules 64
3.4.1 Inclusive and exclusiverules 65
3.4.2 Exclusive and inclusive instances 67

3.5 Generic cluster prototypes 68
3.5.1 Prototypes and their features 70
3.5.2 The functionsof TIM 71
3.5.3 An example prototype and its features 74
3.5.4 Linking prototypes to generic clusters 76

3.6 The language of control rules 7
3.6.1 The need for a new language 77
3.6.2 Abstract syntax L. 77
3.6.3 Semantics 79

3.7 Prototypes Detail L. 82
3.8 Domain level language 83
3.8.1 Abstract syntax, 83
3.8.2 Semantics 85
3.8.3 Strong versus weak interpretation of the GOAL modality 86

3.9 Instantiation. e e e 87
3.10 Proof 91
3.10.1 Subtleties of the GOAL modality 100

3.11 Chapter Summary 101

CONTENTS 8

4 Issues concerning generic control rule logic 103
4.1 Unificationof terms 0oL 103
4.1.1 The Implicit Variable 104
4.1.2 Relic Predicates, 106
4.1.3 Terms and comparisons 107

4.2 Persistent Relations, 109
4.3 Hierarchies of generic clusters 112
4.4 Multiple generic clusters oL, 114
4.5 Binary Predicates o oo, 116
451 Two freevariables. 116

4.6 Local versus global constraints 117
4.6.1 Local contraintsin GCRL 118
4.6.2 Global ‘local’ constraints 119

4.7 Completeness preservation 119
4.8 Chapter Summary 121
5 Proof of Concept 123
5.1 Overviewofresults 123
52 Results. 124
5.3 Integrationwith FF 126
5.3.1 Helpful actions 127
5.3.2 Control rule application 127
5.3.3 Thevalueof FF 128

54 Constructed domain 130
54.1 Problemsetandresults 130

5.5 Other genericclusters 132
5.5.1 Safe construction cluster 132
5.5.2 Orienteering cluster 136

5.6 Comparison with the control rules used by TLPlan 137
5.6.1 Generic structures in the domain 137
5.6.2 Assumptions made in the TLPlan encoding 137
5.6.3 Embedded control information 138

5.6.4 Analogous control information 138

CONTENTS

5.6.5 Differences between the alternative styles of control in-

formation

5.7 Chapter Summary
6 Conclusions

6.1 Timepenalty
6.2 Utility
6.3 The bigger picture 0oL
6.4 Otherissueso
6.5 Contributions
6.6 Furtherwork L.

7 Summary

A The ZenoTravel domain

154
154
156
159
160
161
163

167

169

List of Figures

1.1

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5

4.1

5.1
5.2
5.3
5.4
9.5

Overview of proposed system architecture 20
Rejection rules in the search space 33
Selection rules in the search space 34
The relation between generic types 43
System architecture oL 48
The properties of portable objects 62
The attributes of location objects 63
Language relation 87
Evaluation approaches for abstract level expressions 92
Completeness preservation in pruning the search space 121
Example rule situation e e 131
Domain description for simple logistics style domain 150
Problem 1 1561
Problem 2 152
Problem 3 153

10

List of Tables

5.1
5.2
9.3
5.4

miconic-STRIPS running times 147
mprime running timeso oL L. 148
Logistics running times L. 149
Running times for constructed problems 151

11

Chapter 1

Introduction

1.1 Planning

The general problem of classical planning is to construct some ordered sequence
of operators to transform an initial state into a desired goal state. This involves
searching for a solution in a problem space defined by the initial state and the
mechanics of the domain in which the problem is posed. The problem space
maybe in one of various forms, typically either a state space in which the
nodes in the space are states of the domain and the transitions are operator
applications or a partial plan space in which the nodes are partial plans and

the transitions are additional constraints on those partial plans.

The domain description describes the mechanics of the domain. It specifies
the relationships that can hold between objects in the modelled world and the
operators that change those relationships. Operators are defined in terms of
preconditions and effects. Preconditions are the conditions that must hold in
order that an operator may be applied legally in a state, while effects are the
the way in which an application of the operator affects that state. The domain
description sets out the way the particular domain being modelled works and it
does so through the use of variables (implicitly universally quantified over any
constants that may inhabit that world), so both the predicates that describe
properties of objects and the operators that affect these may be instantiated

with constants from any given problem instance. Domain descriptions can

12

CHAPTER 1. INTRODUCTION 13

contain more than a pure description of the workings of the model, but this is
discussed in Section 2.4.

The initial state Sy gives the constants involved in a given problem as well
as their initial configuration (in terms of properties and relations). The goal
state S, gives the desired final state into which the planner must, through the
use of legal operators, transform the initial state to successfully complete its
task. Sp must be a complete state description but S; may only be a partial
state description. A plan is valid if every operator is applied in a state in
which its preconditions are satisfied. A plan solves a planning problem if it is
valid and the state reached through the application of the plan from Sy, S,,
contains the goal conditions.

Sy C Sy

(Beyond the realms of classical planning we might look for

S = S,

where S, is a formula instead of a conjunction of literals. Discussion on this
difference is contained further in.)

1.2 The problem of search

Brute force search is not an effective way to search for solutions in an enor-
mous search space. In the field of planning, generating a solution to a problem
instance generally involves looking for the solution in just such an enormous
search space, be it of states or partial plans. While solutions can often be
found quite easily in very small instances, the task of locating a solution be-
comes insurmountable (propositional planning is PSPACE-complete [6]) very
rapidly as more complex instances are attempted (other formal analyses of
the complexity of planning has been conducted [10, 11, 7], as has work on the
complexity of specific planning domains [27]).

Many algorithms for search have been presented. They can be described
as complete or incomplete and systematic or stochastic. Complete algorithms,

as the name implies, have the ability to search the entire search space for the

CHAPTER 1. INTRODUCTION 14

desired solution (unlike incomplete methods). Systematic approaches work me-
thodically through their available spaces, while stochastic methods are more
‘hit and miss’. That is not to say that incomplete or stochastic methods are
not valuable search strategies. In fact incomplete strategies can make unman-
ageably large search problems much more accessible [29] (obviously there is
a risk of excluding a region of the search space in which a solution lies) and
stochastic methods have shown their ability to find solutions quickly [51].

The basis for most complete search procedures is either breadth-first search
or depth-first search, which consider siblings before children and children before
siblings respectively. Search can also be guided through the use of heuristic
functions (an estimate of the ‘worth’ of a node), such as best-first search or A *
search [48]. Heuristic searches order the sequence in which nodes are considered
and expanded, and guarantees about the admissibility of a search strategy can
be made on the strength of the admissibility of the heuristic function used.
For example, the use of an admissible (conservative, never over-estimating)
heuristic in A* search guarantees that the solution found will be optimal. A *
search values a node by the sum of the cost to reach that node and the heuristic
estimate of distance from the goal state. The fact that the heuristic does not
over-estimate the distance to the goal state forces the search to consider the
optimal solution (a complete non-optimal solution will necessarily have a lower
estimation of worth than a partial solution that coincides with the optimal
solution, forcing the algorithm to continue its search).

The ultimate goal of all of the search strategies presented is to find solutions
in large search spaces, though there are necessarily trade-offs between such
factors as time and space requirements. Whether the search is for an optimal
solution (according to some metric) or simply any solution can affect these

decisions.

1.2.1 Facing the problem of search

Planning problems are most commonly posed as a domain description and a
problem instance in that domain. However, many benchmark domains im-

plicitly contain structure which, if it can be made available to the planning

CHAPTER 1. INTRODUCTION 15

algorithm, can be used to traverse the search space in a more intelligent way.
This structure can range from domain invariants (propositions that hold for
every possible state in the domain) to patterns of behaviour which, once identi-
fied, can totally transform the way in which one decides to tackle the problem.
But, as in much of Al research, what is obvious and easy to us is very difficult
to recreate in machines (e.g. natural language engineering is subject to ongoing
research, but speaking and understanding our native language is trivial).

So having noted that there is sometimes implicit structure in a domain, the
problem becomes how to recognise, access and exploit it. Static pre-planning
domain analysis can identify various forms of information relating to the do-
main, including hypothesise-and-test generated domain invariants [26], oper-
ator based domain invariants [47], inferred state constraints [24] and rigorous
type inference of objects in the domain [21].

Alternatively, the domain can be studied by a human domain engineer
and any structure or features of the behaviour of the domain can be hand-
coded and supplied to the planner in addition to the declarative description of
the domain’s mechanics (in some cases the declarative description is explicitly
modified to incorporated any control strategies). There are many planners

whose performance depends on this manner of additional input (e.g. TLPlan
[3], TALPlanner[16], SHOP [46]). These will be discussed in Section 2.3.

1.2.2 Making use of extra information

There are a number of ways to make use of knowledge of these structures or
behaviours in the context of planning but in essence they are all used to restrict
the search space being considered. Although static domain analysis techniques
can be very powerful and extract deeply hidden behavioural structure, it has
been noted that planning systems that take hand coded domain-specific control
knowledge perform best in terms of scalability [39).

There are two main problems with hand-coded domain-specific control
knowledge, though; it has to be hand-coded and it is domain specific.

Firstly, there is a great onus on the author of the control knowledge. He

has not only to analyse the domain in depth and translate high level obser-

CHAPTER 1. INTRODUCTION 16

vations into some formal language specified for control information but also
bear the responsibility that the performance of the planning system is essen-
tially dependent on his input. Any mistakes or inconsistencies could result in
the planner failing to perform at all in the given domain, rendering useless all
the work involved in supplying the additional information. Over the past few
years, at international planning competitions, it has been commonplace for
teams running control rule based planners to spend all night constructing and
tweaking the control rules for their planners when new domains are introduced
1.

Where planning system authors are given significant time to construct con-
trol information for a particular domain (as in the international planning com-
petitions), several questions are raised: Do comparisons of planners’ perfor-
mances compare the planning technology, the ability of the control rule author
to identify and encode suitable strategies or the ease in which the relevant con-
trol information can be represented in the particular language accepted by the
planner? Do we need to draw a distinction between planner-independent con-
trol knowledge and planner dependent control knowledge, and can the latter be
seen not as supplying the system with control knowledge but rather tailoring a
domain-independent planner to become more domain-specific? Khambampati
presents an excellent discussion of some of these questions [30].This thesis will
not answer all these questions, but the language and methods described herein
make a valuable tool with which to address them.

Secondly, the encodings of the control information are not reusable outside
of that particular manifestation of the given domain. The very fact that the
control information is domain-specific means that even if the author recognises
similar patterns of behaviour in other, possibly very similar, domains then the
control strategies must be re-encoded with respect to the new specifics. Not
only is this time-consuming but it also allows more room for human error.

However, much of the control information used can be seen to be exploiting

analogous features across different domains. Bacchus and Kabanza [5] noted

“We have found that there are many ‘meta-level’ strategies that are

lPrivate communication with Fahiem Bacchus

CHAPTER 1. INTRODUCTION 17

applicable across different domains under slightly different concrete

realisations.”

A final problem with hand-coded control information is that humans, unlike
machines, are not infallibly methodical. By this I mean that they may overlook
some structure or feature in the domain because it does not appear in some
expected fashion. The naming of objects and operators is a classic example of
this, as, for instance, with the Mystery domain [42] but other examples exist
(such as the PaintWall domain [38]).

1.3 The integrated approach

The thesis we present is that useful control knowledge can be expressed at an
abstract level and efficiently and automatically translated into domain specific
control rules. The work details an integrated approach to generating domain-
specific control knowledge that draws on both static domain analysis as well
as human observations (to compose the abstract control rules). Abstract be-
haviour based structures will be presented to represent sets of types exhibiting
generic behaviours which have been shown to occur across many benchmark
domains. This allows the control information to be written at a higher level,
that is at the level of an abstract structure.

Existing domain analysis tools can already identify the structures that ex-
hibit this generic behaviour and provide detailed information on their domain
specific instances [38, 40, 22]. By identifying generic types in a domain, we
are identifying types of objects that behave in ways that we recognise and
understand. The recognition of generic types can be seen as identifying classes
of domains (those in which an instance of a specific generic type is identified)
or classes of types (those types from the universe of domain object types that
exhibit particular behaviour).

The control information that is expressed at the abstract level can then be
specialised using the details of the realisation of that abstract structure in the
domain under consideration. The machinery that identifies generic types also

supplies the details of their realisations. Once fully instantiated, the control

CHAPTER 1. INTRODUCTION 18

information will be indistinguishable from that hand-coded specifically for the
domain. It will then used as any other control information is, in restricting
the search for a solution plan, the exact process of which will depend on the
planning algorithm. An overview of the proposed system architecture is shown
in Figure 1.1.

Let us see how this abstraction could be drawn. Consider two transporta-
tion domains in which the vehicles have different type predicates (such as
truck(z) and lorry(x) to represent that z is the transportation vehicle). Cur-
rently, though the behaviour of the domains may be identical, any control
strategies must be explicitly written for each domain. The strategy of never
immediately returning to the previous location (of the vehicle) would need to
be expressed both in terms of truck and lorry. By expressing this strategy at
an abstract level based on the behaviour of the objects, both domain specific
rules are covered (as in ‘for every object, z, whose type behaves as a trans-
portation vehicle type, never immediately return x to its previous location’).
Although this is the simplest of examples, it displays the behaviour based
abstraction that we refer to.

As more generic types are recognised, and rules written for those types,
a library of generic control knowledge will be built up and provided with the
machinery to instantiate them (namely the generic type analysis currently
performed by TIM [38]). This would provide a plug-in module for use with
any planners in the community capable of making use of control knowledge
(assuming that knowledge can be expressed in a suitable form). The library
could be used, for instance, in comparisons between planners that take control
rules; up till now such comparisons really compare not just the planners them-
selves, but the product of the planners, the work invested in constructing hand
coded control knowledge and, not least, the control-rule writer’s own ability
to identify appropriate search strategies.

The work done in producing the abstracted control rules is totally reusable
(so long as the control information can be instantiated or translated into a form
usable by any given planning system). Where and whenever the appropriate
structures are recognised in a domain, the instantiation mechanism can provide

control rules as though they were hand-coded especially for that domain. In

CHAPTER 1. INTRODUCTION 19

this sense, the investment made into constructing the rules has a higher return
than simply constructing domain specific rules for every domain. The rules not
only cover behaviours that occur in many benchmark problems (removing the
need to manually construct these control strategies) but also provide support
for domains yet to be encountered (that contain types exhibiting the appro-
priate behaviour patterns). The automation of this process also eliminates the
drawbacks of manual domain analysis/control rule formulation.

It could be argued that the construction of abstract rules is more taxing
than their domain specific counterparts. It is the opinion of the author that
where a direct mapping between the instance and the abstract structure is
given, the construction of rules in terms of the abstract behaviour structures
is no harder than in terms of their instances.

With more work in the community on generic types and abstracted control
information, it is conceivable that planners that have to date been classed as
hand-coded could be run as totally automatic with comparable performance.
We could also use the rules as a basis to compare planners that rely on control
information for their performance, avoiding debates on the significance of the
manual formulation process of those rules.

However, not all of the control knowledge used in current planners is classifi-
able as exploiting particular generic behaviour; perhaps that generic behaviour
has not been identified yet or maybe the behaviour is not a product of any-
thing less than the unique structure of domain in its entirety. Even if this is the
case, the construction of control information for the generic behaviour that is
the whole of some complex domain would have value. Its value would be pre-
cisely having ‘off-the-shelf’ control mechanisms to use whenever the particular

behaviour is recognised in a planning problem.

1.4 Statement of thesis

This work attempts to verify the the following thesis:

Behavioural cluster based abstractions of useful control strategies

can be automatically instantiated to provide domain specific con-

CHAPTER 1. INTRODUCTION

20

Domain description
and problem
instance

Generic type
identification
machinery

Detail of instances
of generic types

Planner

Generic control

A

l Plan

rule module

Domain specific
control rules

Figure 1.1: Overview of proposed system architecture

trol rules, which in turn can be used by planning systems to aid

the generation of higher quality plans.

1.5 Thesis Map

Chapter 1 has provided an introduction to the main areas covered in this thesis.

Chapter 2 provides a more detailed exploration of the literature concerning

the appropriate aspects: control rule based domain independent planning,

search control and domain analysis (with particular focus on type inference

and generic type identification).

Chapter 3 presents the methods and structures employed to test the thesis

in the form of a system that automatically generates domain specific control

rules from abstract control rules. This comprises a system architecture and

an in-depth presentation of each of the components. Firstly, generic types are

explored and developed to present abstract behaviour based structures. The

syntax and semantics of these structures is presented and discussed. Secondly,

CHAPTER 1. INTRODUCTION 21

a linear temporal logic is presented whose terms are parts of the abstract be-
haviour based structures. This allows control information to be expressed at
the abstract level by specifying properties of sequences of states. The syntax
and semantics of the logic are presented. Thirdly, a domain level language
is presented for the expression of domain specific control rules, again with its
syntax and semantics. Fourthly, the instantiation process that specialises ab-
stract control rules into their domain specific realisations is described. Finally,
a proof is given that the semantics of the abstract logic are consistent with the
combined processes of instantiation and evaluation with respect to a sequence
of states. This proof is reminiscent of demonstrating the equivalence of ex-
pressions by normal order reduction, but involves transform operators so the
resulting equivalences are based on the evaluation of expressions in different
languages (the expressions all yield truth values on evaluation).

Chapter 4 discusses some of the subtleties implicit in the ideas presented in
Chapter 3, including some decisions that needed to be made in the specification
of the languages and structures.

Chapter 5 provides proof of concept of the thesis. These results take sev-
eral forms. The integration of the generic control rule module with an existing
planning system is described. Results are presented showing the effect of the
additional automatically generated control information. Results are also pre-
sented demonstrating the time penalty incurred for the process of instantiating
abstract control rules (without subsequently using them). The control strate-
gies employed by a highly acclaimed control rule base planner are discussed and
abstracted forms of that control knowledge are presented. The wider applica-
bility of the approach presented is also demonstrated by considering another
behaviour structure with a well acknowledged control strategy, which, in light
of the work presented, can be expressed in an abstracted form.

Chapter 6 draws conclusions form the results of Chapter 5. The contri-
butions that have been made to the field are stated, along with suggested
directions for further research. Finally, Chapter 7 provides a summary of the

thesis.

Chapter 2

Background

2.1 Introduction to background material

The work presented in this thesis falls under the umbrella term of domain
independent planning and draws on two points of focus for the international
community; domain analysis and domain specific control information. In ad-
dition to these areas, the work is related to generic behaviours across aspects
of different domains. In this section, the background and state of the art in

these areas is discussed and explored.

2.2 Domain independent planning

The task of domain independent planning is to produce planners that perform
on a range of different tasks, rather than tailoring the system to solve only one
type of problem. Although domain dependent planners are acknowledged and

cited, this thesis concerns, in the main, domain independent planning.

2.3 Control rule based planners

Domain independent planning strives to develop planning systems that per-
form well across a range of domains. The trouble is that, by the very nature

of their generality, domain independent algorithms are not as well suited to

22

CHAPTER 2. BACKGROUND 23

individual domains as those developed specifically for one application. An ap-
proach that has tried to overcome this problem is to supply additional informa-
tion alongside the bare bones of the domain description and problem instance,
in order to give the planning algorithm more knowledge about searching for a
solution in a particular search space. This idea is not new; domain knowledge

of some form was used by several early planning systems [44, 55, 13, 57].

2.3.1 Integrated control

The early attempts at incorporating domain specific knowledge were very much
tied to the planning algorithm to which it was supplied. This meant that the
domain engineer had not only the responsibility of correctly identifying appro-
priate search strategies, but also needed extensive knowledge of the planning
algorithm and the ways it would make use of the additional information. This
afforded no scope for reuse of search strategies across the community, let alone
reuse of search strategies across domains. To some extent, even alternative
domain encodings required the effort in constructing and integrating search
strategies to be reinvested.

One of the early examples of a planning system making use of control
knowledge is the PRODIGY system [44], which used control rules of various
forms to control several different aspects of the planning process (there was
also a module capable of learning control rules, discussed further in). The
control rules used were very much dependent on the planning architecture and
because of the way that PRODIGY works, four types of control rule were
naturally identified. During plan generation in PRODIGY, there are four
easily recognisable choice points. Firstly, there is the choice of which node in
the search tree to expand. Once that node has been picked, a goal at that
level must be chosen to be achieved (goals are often preconditions of operators
to be applied later in the plan). Next, there is the choice of which operator
to select to achieve that goal and finally there is the decision about variable
bindings within an operator instance. At each of these points PRODIGY could
use control information to guide its selection, though it could resort to blind

search if none was supplied.

CHAPTER 2. BACKGROUND 24

The control rules used by PRODIGY are all of the form of “if-then” state-
ments, i.e. a left hand side for matching a particular state and a right hand
side which offered one of three types of advice. Selection, rejection and pref-
erence rules were identified, each with a slightly different role within the con-
trol hierarchy employed at each decision point. First, any selection rules
whose left hand side matched the situation were used to select a subset of
nodes/operators/goals/variable bindings. Next, any applicable rejection rules
were used to restrict that set. Finally, any applicable preference rules gave
information on an ordering with which to explore the alternatives. The syntax
for each of the three types of control rule is the same.

One of the features that made PRODIGY so appealing for research pur-
poses was its modularity. The architecture was such that it was very easy to
add on new functionality, such as the EBL module [43] (Explanation-Based
Learning, the module previously mentioned, designed to learn control rules).
This module learns control rules through the use of target concepts (some
predicate over a universe of instances that characterizes some subset of those
instances) and training examples. The training examples are instances of the
target concept and the explanation is the proof demonstrating that the exam-
ple satisfies the target concept. The control rules generated are implications
whose antecedent is the weakest precondition of a proof and whose consequent
expresses some preference based on the proof’s conclusion. This approach suf-
fers from the drawback that you must provide a high level target concept for

the system to attempt to learn.

2.3.2 Modularised control

An important alternative to integrated control strategies was the seperation
of the control knowledge from the planning algorithm. Bacchus and Kabanza
were the first to present an independent formal language for representing do-
main specific knowledge, in the form of a state-based linear modal temporal
logic [3]. They used this in conjunction with a forward chaining planner in the
TLPlan system, using the control knowledge expressed in the logic to prune

candidate branches in the search space that violated the control conditions.

CHAPTER 2. BACKGROUND 25

This approach was very successful when compared with contemporary systems
[42], and for a while remained unchallenged as the system to beat.

This was a successful attempt to introduce the idea of a language for ex-
pressing control knowledge with no reference to the the planning algorithm it
was augmenting. The abstraction from ‘integrated’ to ‘independent’ control
knowledge afforded its users several benefits. The control rules for a given
domain no longer had to be written by someone with an intimate knowledge
of the planning algorithm; the control rules that were written described only
behaviours of the domain itself. This provided both implementational and
conceptual modularisation. The control knowledge itself was specified in a
first-order linear temporal logic, which allowed reasoning about statements in
the language. The temporal modalities that were added to their first order logic
were: (O (next), O (always), ¢ (eventually) and U (until). Bounded existential
and universal quantification were employed in order to avoid infinite conjunc-
tions and disjunctions when evaluating quantified formulae (as would be the
case if unbounded quantification was used in an infinite domain). Bounded
quantification avoids this problem with the assumption that there will only
ever be a finite number of objects in the domain that satisfy the bounding
condition.

Importantly, statements written in the logic (control rules) could be subject
to a ‘progression algorithm’ which allowed the semantics to be preserved over
a progression of states. The progression algorithm provided an interpretation
of the temporal modal operators used in the logic, and statements could refer
to, through these modalities, particular states in a progression of states (via
successive applications of the) modality).

Aside from temporal modalities, Bacchus and Kabanza added to their linear
temporal logic a GOAL modality, to enable them to reference properties of the
goal state. In empirical tests, they found that making reference to the goals

of the problem under consideration was
“essential in writing effective control strategies.” [5]

For example, in a simple transportation domain in which a vehicle has a goal

location somewhere on a map of sites, we might use a control strategy that

CHAPTER 2. BACKGROUND 26

states “do not move into a location from which there are no exits.” Except
in the case where the goal location of the vehicle is a dead-end, this control
strategy will always be advantageous. However, the rule does not currently
have the power to recognise situations when the goal location is a dead end and
without admitting a goal modality this eventuality could never be accounted
for. Allowing control rules access to problem specific goals (through the use
of the GOAL modality) enables the control strategy to become “do not move
into a location from which there are no exits unless that location is the goal

location of the vehicle.”

Originally in [3] the semantics of the goal modality were specified in terms
of entailment. Given a goal expressed as a first order formula ¢ and the set
of domain state constraints v, GOAL(f) is true iff $ A ¢ |= f. Bacchus and
Kabanza note, however, that testing GOAL(f) is intractable in the general case
and in their original implementation of TLPlan they restrict a problem’s goal
to a set of positive literals. They then use the goal set under a closed world
assumption. This makes checking for the goal condition easy as the entailment
is reduced to set membership, i.e. ¢ = f iff f € ¢ where f is a positive literal.
Their original implementation could not handle state constraints over the goal
world. These restrictions are propagated through later work, and though no
mention is made of the closed world assumption in [5], the same restrictions
apply (i.e. GOAL(Sf) is true iff f € ¢ where ¢ is a set of literals given as the
goal of the problem). These subtleties of the logic are particularly relevant to
certain aspects of the work presented in this thesis (c.f. Section 3.10.1).

Doherty and Kvarnstrom, in their TALPlanner [16] system, provided a
different approach to the use of temporal logic control rules. Again, the imple-
mentation was a forward-chaining planner which used domain specific control
rules written in a formal logic to help it search more efficiently through its
search space. The first apparent difference is the logic. Whereas TLPlan used
a linear modal tense logic for reasoning about states of the world, TALPlanner
used a linear temporal logic with explicit time for reasoning about actions and
changes in the world. The basis for TAL (Time and Action Logic), the logic
used by TALPlanner, was earlier work by Sandewall. A description of this

work (with reference to its extension into TAL) can be found in [49].

CHAPTER 2. BACKGROUND 27

Two planning algorithms were presented, one which progresses temporal
statements (as in TLPlan) and the other which translated any statements con-
taining temporal modal operators into equivalent statements without those
modalities. Both versions of the planner worked with narratives, a represen-
tation of a plan which uses explicit time, and plans were output in the form
of narratives. The work is successful in that there are obvious performance
enhancements (the TALplanner system performed extremely well in both the
AIPS-2000 and 2002 competitions, and is still the planner to beat in certain
domains) and richer expressivity in the language (through the representation
of durative actions with internal state). A full explanation and specification
of the Temporal Action Logic can be found in [15].

Further work with TALPlanner has looked at compiling control information
into operator preconditions [37]. Precondition control has been explored before
(2], but only as a manual process. This carried with it all the drawbacks of
manual control rule entry. The recent work with TALPlanner has investigated
automatic precondition control, with marked success. Gabaldon [23] has also
explored automatic precondition compilation using a technique that is proved
to be equivalent to the progression algorithm employed by TLPlan in terms of
the effect of pruning the search space.

Precondition control has an advantage over using control information to
additionally guide search. By qualifying operators’ applicability through the
use of precondition control, the search space branches far less rapidly than
with the unrestricted preconditions. This means that the planner is search-
ing a greatly reduced search space, one which necessarily obeys the control
information encoded in the operator preconditions. However, unlike stand-
alone control information, work has to be done up front to compile the control
strategies into the operator preconditions.

Kautz and Selman offered modularised control in the form of their four
classes of heuristic (discussed in 2.6) as a

“way to encode domain specific knowledge in a purely declarative,
algorithm independent manner.” [32]

However, this was in the realm of planning as satisfiability, and as such was

CHAPTER 2. BACKGROUND 28

not readily usable by those in the community taking different approaches.
Gerevini and Schubert [26], on the other hand, constructed constraints in the
form of STRIPS-style literals connected by logical operators. They also went
on to compile these into SAT clauses (and in fact used Kautz and Selman’s
SATPLAN to demonstrate their results) but the original constraints generated
were of a more widely applicable format. Gerevini and Schubert’s methods are

discussed in 2.6.

2.4 Domain Purity

Domain descriptions can be specified in a number of fashions, independently of
the different languages that exist for different planning systems (e.g. PDDL,
TAL). Domain descriptions that give only the declarative functionality of a
domain are what we call pure. Not all planning systems have use for this
kind of pure domain description and instead need the functionality to be inte-
grated with the search control to solve problems in the domain. For example,
SHOP [46] (and its successor, SHOP2 [45]) requires search control strategies
to be encoded into its operators, methods and axioms in order to achieve
the performance demonstrated in [1] (and [39]). We have also noted that al-
though TLPlan will accept and use temporal control knowledge over and above
a declarative domain encoding, in practice the control knowledge was some-
times encoded in the form of auxiliary predicates (that Bacchus and Kabanza
called defined and declared predicates [3]), as in the TLPlan encoding of the
ZenoT ravel domain [39] (c.f Appendix A). This is not the independent, stand-
alone temporal control information that they set out to define and use. The
simplest and purest domain descriptions give only the declarative mechanics
of the domain. The work described in this thesis supports the separation of
domain functionality and search control strategies.

Including control knowledge in the domain description has a similar flavour
to the early approaches of integrating search control with the planning algo-
rithm, though the control strategies can still be domain specific (being tied to
the domain description). This approach does have the advantage of restrict-

ing the problem space (the number of applicable actions in a given state is

CHAPTER 2. BACKGROUND 29

restricted according to the control strategies encoded in the operator precon-

ditions). Precondition control

“has proven to drastically reduce the number of states generated”
[37]

but removes the modularisation of control knowledge. Control knowledge can
be succinctly and declaratively specified as control knowledge, but once it
is embedded in operator preconditions it becomes inextricably entwined with
the domain’s functionality. Search control knowledge is not part of a domain’s
functionality. Automatic generation of precondition control from stand-alone
control strategies has been demonstrated [37] and can not, as an automatic
process, be affected by human error no matter how complex the operators or
strategies. This approach has the advantages of both modularisation of the

control information and a search space with reduced complexity.

2.5 Control of search

There are many approaches to the process of guiding search through control
information. Not only are there many different ways to express control strate-
gies, there are various ways in which that information is used.

Early informal attempts at managing the control of search included imple-
mentation and problem specific methods such as operator ordering. By order-
ing action definitions in the domain description, the order in which actions are
selected at solution generation time can be affected. This is a very basic way
to assign sequential preference to actions, but requires detailed knowledge of
the way the planning algorithm selects actions. It is a naive strategy as one
ordering is imposed for all problem instances and for all action selection points
in any given instance (it may also affect search negatively).

Considering actions based on their primary effects was also seen to im-
prove solution generation. A primary effect of an action is not a well defined
concept in the literature but tries to describe the intended effects of an action
as opposed to any incidental consequences. For instance, the primary effect
of boiling a kettle would be said to be heating the water to 100° C, but its

CHAPTER 2. BACKGROUND 30

secondary effects include electricity consumption and steam production. This
is obviously an ill-defined term as the motivation for boiling a kettle could
well be steam production (for example, to open an envelope without tearing
the paper). Planners including PRODIGY used the notion of primary effects
informally though later work tried to formalise and justify the concept [20].

Kautz and Selman offer up a taxonomy of what they call heuristics derived
from their manual domain analysis (see Section 2.6). These are essentially
presented as forms of control knowledge playing different roles in solution gen-

eration.

An excellent discussion of some of the issues involved in using control knowl-
edge for domain independent planners (in the context of the international
planning competitions) is given by Kambhampati [30]. Important questions
are raised to do with the role of control knowledge in the comparisons of plan-
ning systems dependent on control strategies for their performance, as well as

some observations regarding the acquisition of that control knowledge.

2.5.1 Explicit search control

We use the term ezplicit search control to describe stand-alone strategies, ex-
pressions or suggestions with the purpose of controlling the way a search space
is explored. As has been stated previously, explicit search control has two main

origins, namely manual and automatic domain analysis.

Search control can be described action-based or state-based. Action-based
control knowledge reasons about the actions that should or should not be con-
sidered under given conditions, whereas state-based approaches reason solely
about the states involved. Both types of search control declaration have been
explored in the literature, and examples of particular relevance and interest in-
clude TALPlanner [16] and TLPlan [3] which use action-based and state-based
logics respectively in forward-chaining planning algorithms. Both methods can
describe similar strategies, though state-based examples are used in this thesis

in keeping with the state-based logic presented further in.

CHAPTER 2. BACKGROUND 31

2.5.2 Hard and Soft Control Information

Hard control information is definite and absolute. It describes courses of ac-
tion that must necessarily be followed. Soft control information on the other
hand is more suggestive than absolute. It is possible for a planner using soft
control information to disregard that advice in situations where alternatives

are considered more advantageous.

A particular type of soft control rule is what Delgrande, Schaub and Tom-
pits call a preference [14]. This is not an optimising control rule for construct-
ing better plans (as in the preference rules described for PRODIGY), rather
they are additional opportunistic goals. Where a goal G can be achieved by
plans P, and P,, we may have a preference for how that goal is achieved.
Though P; may satisfy the necessary goal conditions, we will select P, given
the choice, if it adheres to our domain specific preferences. Failing the exis-
tence of P,, we will be satisfied with the solution offered by P,. They classify
preferences as fluent or action preferences (and agree that both are analogous
as stated previously) and choice or temporal preferences. Choice preferences
are those concerning the method of attainment of a subgoal, whereas temporal

preferences are those concerning the ordering of subgoals.

An example of hard control knowledge is the preclusion of sequential com-
plementary actions. Where actions @ and b exist such that a changes state S
to Se and b changes state S; to S, both with strictly no effect on any goals
or subgoals in the plan, sequential applications of a and b will never have any
positive outcome. Hard control information would specify that an a action
never directly follows a b action and vice versa. There would never be any
benefit in ignoring this rule, as doing so could only introduce redundant steps
in the plan (according to the definition of @ and b). If hard control information
is not completeness preserving then this necessarily introduces incompleteness
into the search space.

Examples of soft control include preference rules (see below) or the knowl-
edge that some plan fragment a4, . . ., a,, achieves some goal G (such as a macro-
operator [36]). In general solution generation, this plan fragment is useful when

G needs establishing. If, however, in the course of solution generation the goal

CHAPTER 2. BACKGROUND 32

G arises then it may be the case that the actions a4, ..., a,, where m < n are
redundant and the whole plan fragment may not be needed. It is then pointless
(and possibly illegal) to invoke the entire plan fragment. The planner in this
case would need the option of overriding the suggested control information in
order to plan efficiently. Consider a very simple blocksworld problem with one
gripper and three blocks, a, b and c. a is on the table, b is on @ and ¢ is on b.
The goal specifies that both b and ¢ should be on the table. Our soft control
information tells us that if we want ¢ to be on the table, we should remove
blocks from on top of ¢, then pick ¢ up, then put it down on the table. If
we try to achieve on(b, table) first, we will initially take ¢ and put it on the
table. When we go on to try and achieve on(c, table), we no longer need to use
the entire plan fragment given as soft control information (in fact if we work
sequentially through its suggested actions, we may end up picking up c only to
put it straight back down again!). Both hard and soft control knowledge may
have positive or negative manifestations. These will be called prescriptive and

restrictive respectively.

Restrictive Rules

Restrictive (or rejection) rules give information on when not to follow certain
courses of action. They can be used for simple or complex control strategies,
one of the most basic uses being to stop successive applications of an action
and its complement (see example above).

Hard restrictive rules are used to prune branches from the search space that
do not adhere to control information. They can be described by sentences of
the form

Given the state S), never go to state S,.

To see the effect of hard restrictive advice on pruning branches of the search

space, consider the following restrictive rule.

In any state where the literals A(X,Y) and B(X,Z) are true,
C(Y, Z) should not be true in the following state.

CHAPTER 2. BACKGROUND 35

adhere to the control information, all prescriptive advice should be followed.
In states where multiple selection rules are appropriate, the direction to the
planner is that that the next state should be as specified by all the control rules.
This could mean that the domain needs to be in many different states in the
next state, which may be a contradiction (construction of parallel plans might
deal with some cases, but if the prescriptive strategies interact at the level of
preconditions and effects then problems still exist). A simple way to avoid
such issues is the use of soft prescriptive rules, or preference rules. Instead
of telling the planner exactly what it must do to progress at plan generation,
they give advice on which courses of action are to be preferred. This avoids
the problems of conflicts that prescriptive rules incur, as there is no obligation
to follow the advice given. This allows the planner to delay or disregard any
of the set of conflicting courses of action at its own discretion (obviously the
planner still has the choice to make between conflicting actions, but this is

encountered in any plan generation anyway).

2.5.3 Heuristics as control information

Heuristic evaluations as used in search are an attempt at formalising a value of
worth, and allow a planner to make comparisons between alternatives. Most
commonly, states are evaluated by some heuristic function to give some indica-
tor of that state’s worth in the search for an optimal solution, though heuristics
relating to metrics other than plan length do exist (such as minimising fuel
consumption in a transportation domain). Heuristic functions vary in their
approach, from counting the number of literals in a state that match the goal
specification to some estimate of a state’s distance (in some defined sense)
from the goal.

Nearly all planning systems use some form of heuristic for more efficient
traversal of the search space. Those that do not must rely on brute force
search (which is impractical in all but the most trivial of instances), or else are
guided by explicit direction of which actions to consider (such as HTN based
planners). Heuristics are a form of controlling the search for a solution, albeit

a very different form of control to the domain specific rules that are usually

CHAPTER 2. BACKGROUND 36

intended with the term ‘control information’.

The heuristics employed by a planning algorithm direct the global search
strategy of the system, and in contrast to control knowledge do not concern a
particular domain, type of domain, problem instance or top level goal. How-
ever, a planner’s heuristics do hold significant influence over the traversal of
the search space under consideration. Let us consider FF [29], the forward
chaining state-based planner. FF uses the relazed plan heuristic [28] to esti-
mate the worth of a state, as an indication of the distance from that state to
the desired goal state. The relaxed plan heuristic relaxes the planning prob-
lem by ignoring the delete effects of actions. This relaxation allows a solution
to the particular planning problem to be found very quickly (not necessarily
the optimal solution, however). The literature shows us that heuristic guided
search can be a competitive approach to planning (FF is a prime example
of how powerful the approach can be), but the performance of these systems
can be further improved by employing domain specific control knowledge (see
Section 5.2).

2.5.4 Domain specific solvers and policies

Hybrid systems can employ dedicated problem solvers to solve either the whole
of, or various aspects of, a problem. There have been numerous examples of
hybrid systems presented [22], [33], [17], though most use a selection of plan-
ning algorithms rather than specialist solvers. Using specialist solvers may
have many performance benefits, but also suffers from significant drawbacks.
Only exact problems can be tackled by the dedicated solvers, and given any
other problem structure there is non-trivial work in the integration of solu-
tions and plan construction, as suggest in [22]. An interesting new method of
problem reformulation by Smith [52] is described in Section 2.8.

An alternative to the use of domain specific solvers is the construction
of domain-specific policies. Policies are mappings from planning problems to
actions, and can be seen as macro operators [36] in the domain (possibly for
the entire planning problem). These can be constructed by hand, though
recent work such as that by Baral and Eiter [8] and Fern, Yoon and Givan [19]

CHAPTER 2. BACKGROUND 37

have looked at automatic generation. Policies can be seen to represent control

strategies within a domain.

2.6 Domain Analysis

Domain analysis is the process by which a domain is examined with a view
to either discovering useful properties or truths that are not explicit in the
domain description or verifying some properties that are expected to hold.
The prime motivation behind domain analysis is to provide the planner with
more information about a domain ultimately to aid the construction of a plan,
although domain verification is also enabled (domain analysis techniques can
highlight errors or unforseen consequences in domain specification). Typically,
domain analysis is performed as pre-processing before the planner is invoked.
The planner may then use the results of the analysis in many ways, including
pruning the search space or guiding the search through preferences. Here
we discuss the process of domain analysis itself from the stance of using the
findings to help construct plans, as opposed to domain verification.

Broadly speaking, there are two ways to approach domain analysis; either
we can do it ourselves, or we can try and get a computer to do it. The first

attempts were by hand, using (as Kautz and Selman observed)

“introspection to capture both ‘obvious’ inferences that are hard to
deduce mechanically [41] and simplifying assumptions that follow

from abstracting the essence of the domain.” [32]

However, Kautz and Selman acknowledged that the manual approach has its
limitations. A similar acknowledgement was made by van Beek and Chen [56]
with regard to planning as constraint satisfaction (of which satisfiability is an

instance), who noted

“For each new domain, a robust CSP model must be developed.

The modelling phase can require much intellectual effort...” [56]

Kautz and Selman, in their attempts at solving planning problems as sat-

isfiability, augmented the domain description with the results of their manual

CHAPTER 2. BACKGROUND 38

domain analysis. They identified four classes of heuristics’, though within this

term they included state invariants as well as simplifying assumptions:

Conflicts and derived effects: Derived from the operator axioms only by com-
paring the precondition and delete lists, these represent the information
about those operators that conflict with each other if applied to the same

arguments.

State invariants: Derived from the operator and initial state axioms, these
represent the invariants that hold in all reachable states of the problem,

such as the single valuedness of the location of an object.

Optimality conditions: Derived from the operator and initial state axioms
along with a plan length n, these represent the conditions that are true

of a solution of minimal length.

Simplifying assumptions: Not derived, these simplify the domain and as such

introduce incompleteness into the solution space.

Kautz and Selman make no mention of the labour or time spent analysing
domains, nor of the possibility of human error, but it is natural to assume
these were among the limitations they accepted.

Invariants (also referred to as state constraints or domain constraints in
the literature) are truths about the initial state that are preserved over the
application of any action. Many domain analysis techniques are concerned
with invariants, which are implicit in the domain and problem descriptions.
Other aims of domain analysis include typing of objects and identification of
known sub-structures.

Following work on inferring operator parameter constraints [25] (or param-
eter domains) to speed up SATPLAN [31], Gerevini and Schubert went on to
look at other automatic domain analysis techniques with their system, DIS-
COPLAN [26]. By looking at operator definitions, they were able to generate
various kinds of invariants. The basis of their analysis was a hypothesise and
test strategy, which allowed them to identify implicative constraints (of the
form

(IMPLIES ¢ ¢) 01, ..,0%)

CHAPTER 2. BACKGROUND 39

where the implication holds when
J1y...,0k

are true), single-valuedness constraints and combinations of these two. An
algorithm for determining predicate domains was also presented, based on
IPP’s code for plan graph construction [35]. They went on to extend the work
to cover conditional effects within their previous analysis, typing of objects
(according to type predicates), antisymmetry constraints (a special form of
implicative constraints) and XOR-constraints (a form of constraint capturing

the exclusive disjunctions of properties of objects).

There are many algorithms presented solely for the discovery of invariants.
Kelleher and Cohn [34] present an early attempt at constructing invariants
based on on restricted operator forms, in which pairs of facts are examined for
particular relations (they introduced the notion of a persistent precondition).
Later work has included invariant synthesis as an extension of type analysis
[21] as discussed in Section 2.7, analysis of the initial state and successive
operator applications [47] and analysis of operator descriptions only to search

for c-constraints (based on the consumption of atoms by operators) [50].

Although work on the synthesis of domain specific knowledge is not new,
many planners still use manually generated hand coded information. Their
success in competition with fully automatic planners shows us that the auto-
matic synthesis is currently still inferior to the human approach. The TLPlan
and TALPlanner systems, for all their performance achievements, still rely on
human domain analysis. The manual domain analysis in these cases is used to
generate temporal logic control strategies, state based in the case of TLPlan
and action based in the case of TALPlanner. Certainly humans are gener-
ally better (currently) than machines at constructing high level strategies, but
humans are also more error-prone in their analysis. It has already been demon-
strated that automated domain analysis techniques can uncover structure in a
domain that humans have overlooked (the paintwall domain [38]).

There have been some recent attempts to integrate automatically derived

information into solving planning problems. Policies can be learned from ran-

CHAPTER 2. BACKGROUND 40

dom walks in conjunction with approximate policy iteration, as demonstrated
by Fern, Yoon and Givan [19]. These policies are shown to give performance
competitive with FF in many domains from AIPS-2000, but there are decisions
in the process that still require human input. Baral and Eiter describe the au-
tomatic construction of k-maintainable policies (8], a particular type of policy
used for making guarantees about properties under time and exogenous event
restrictions. This work uses a SAT encoding of the planning problem to con-
struct its policies. Younes and Simmons describe the generation of policies for
continuous-time probabilistic planning problems with concurrency [58]. This
work uses a relaxation of the probabilistic element of the problem, and con-
structs a deterministic plan from which initial policies are generated. These

initial policies are used to seed the policy search algorithm.

As the field matures, the available technology is improving towards the goal
of totally relying on automatic analysis techniques to aid the construction of

domain specific solutions, though as yet this remains a target.

2.7 Type inference

Some domain analysis is concerned with the typing of objects, that is meaning-
ful classification based on particular properties. Fox and Long [21] described
a systematic process of type inference through their Type Inference Module
(TIM), which constructs a type hierarchy for objects in a domain. Type iden-
tification is achieved by viewing the planning domain as a set of finite state
machines (FSMs) for each domain object. The states of the FSMs are the
properties an object can have, where a property is the potential of that object
to participate in a particular part of a relationship within the domain. Proper-
ties are distinguished by naming them according to the domain description, i.e.
names are given to properties comprised of a predicate name and an argument

position within that predicate.

For example, given the fact

X(Y, 2)

CHAPTER 2. BACKGROUND 41

object Y is said to have property X; and Z the property X,. From the initial
state in a problem, a reachability analysis is performed to show every property
it is possible for all objects to have; i.e. all actions are performed in each reach-
able state to give other reachable states, and the set of properties associated
with each object monotonically increases. Objects that have like sets of prop-
erties are said to be of the same type, as they can share the same relationships
with other objects and change those relationships by use of the same opera-
tors. This not only classifies the objects in the domain, but also gives type
information about operator parameters. As a result, search can instantly be
restricted to those actions whose arguments fit the type descriptions and any
unit type predicates can be evaluated to boolean values (e.g. in the logistics
domain [42], truck(truckl) would evaluate to TRUE while truck(packagel)
would evaluate to FALSE).

The type inference machinery provided by Fox and Long also allows the ex-
traction of various kinds of invariants. Four classes of invariant are described,
along with the algorithms for inferring them. Identity invariants, state mem-
bership invariants and uniqueness invariants are inferred from the property
spaces integral to the type inference process and fized resource invariants are
constructed by examining the initial state and the operator definitions. The
identity invariants are what Gerevini and Schubert called single-valuedness
constraints [26], but the systematic analysis performed by TIM provide us
with a richer set of constraints.

2.7.1 Generic Types

Following on from their work on type identification, Fox and Long presented
the concept of the generic type [38]. These are meta-types, populated by
classes of types according to some classification.

It was observed that various types across different domains shared some
basic characteristics. Initially an attempt at problem decomposition in order
to solve routefinding aspects of larger problems more efficiently, the ability
to formally group types according to their behaviour has become a useful

classification. Once type inference is complete, the FSMs relating to types

CHAPTER 2. BACKGROUND 42

can be examined. Regardless of the domain environment and details such as
predicate and object names, types whose FSMs are of similar topology have
analogous behaviour; i.e. the relationships they have with other objects and
the operators used to change those relationships are directly equivalent in
terms of their functionality.

Several generic types have been recognised and been given intuitive in-
terpretations, including construction types [12] (where composite objects can
be constructed out of component objects according to some rules), maps of
locations with portable objects and vehicles and multiprocessor scheduling
problems. However, it is worth noting that the interpretations that we attach
to generic types are solely for our own understanding; the generic type itself
only describes a behavioural pattern regardless of the actual realisation of the
type in the domain.

Each particular generic type has features which play specific roles in its
behaviour. These features can be described at either the generic type level or
at the level of the instance of the generic type. For example, one established
generic type is the portable object type. The distinguishing feature of a portable
object is that is can be transported around a map of locations by an object of
an associated carrier type. The portable object can be located at a location,
loaded into a carrier and unloaded from a carrier. Carriers have the ability
to make self-propelled movements from one location to another, according to
the map. Figure 2.3 shows how these associated types relate to each other in
a domain. This diagram is important as it shows how generic types exists in
clusters of inter-related types.

Definition 1 A generic cluster is a set of interacting generic types, whose
member types are each required for the expression of the composite generic
behaviour of the cluster.

A special instance of the portable object type is the safe portable object
type (or SPOT). A SPOT has all the features of the portable object type, but
specifically never have any other role in the plan than to be located some-
where (commonly they have a specified goal location). Safe portable objects
(or SPOs) are distinguished from other portable objects precisely because it

is safe to transport them, without affecting other processes in the domain. A

CHAPTER 2. BACKGROUND

Must be located

at a location

Locations

g, .., 1)

Can be loaded ‘ /
into a carrier

’

Portables Can be located

at location

{Pg»+»P i

Figure 2.3: The relation between generic types

SPO (like portable objects in general) changes location by being transported
by a carrier, which can pickup and deposit the object at any of the locations
on its map. For example, the logistics domain [42] is a simple transportation
domain, in which packages can be transported around a map of cities by air-
planes and around maps of city locations by trucks. The trucks and airplanes

are identified as two types of carriers, each with an associated map of loca-

tions, and the packages are identified as portables. Furthermore, the packages
are deemed safe portables as they have no other role than to be located some-

where; if the packages had in fact been keys for particular unlock operations
they would not have been identified as safe.

43

CHAPTER 2. BACKGROUND 44

It is possible to talk about the locatedness predicate of a SPO, meaning the
predicate (relationship) which relates the SPO to the location at which it is
situated. For instances of a SPO, such as packages in the logistics domain, we
can say that the locatedness predicate (or at-relation) is the at predicate. In
the case of the gripper domain [42] (a domain in which a number of ball objects
must be moved between two rooms by a robot with two grippers) where the
balls are identified as SPOs, in-room is the appropriate predicate. The other
features that all members of a SPOT possess are a contained-in predicate (to
show they are being carried by a carrier) and the ability to have load and
unload operations performed on them (to be loaded onto or deposited from a
carrier). Through these relations, is possible to talk about either the location
or the carrier object to which the SPO is related in any given state. However,
it is important to remember that a group of objects is only identified a SPOT if
it meets the requirements; that those objects form a portable object type and
the members of that type have no other role in the plan than to be transported
between locations.

There have been steps taken to find a suitable language with which to
formalise the results of the generic type analysis, with a view to making the
analysis available to the wider community; however, to date it is only STAN

[38] that is able to make full use of the structures uncovered in domains.

2.8 Uniting domain analysis and control rules

An attempt to unite automatic domain analysis with search control in a plan-
ning algorithm has been made by Fox and Long in their graphplan-based sys-
tem, STAN [38]. Originally only designed to recognise route-planning subprob-
lems, the partnership of STAN and TIM (the earlier type inference module)
employed pathfinding heuristics with great success in applicable domains (such
as logistics). This work progressed as more generic types were identified, and
became more directed towards problem decomposition. This is an approach to
planning whereby a top level problem is decomposed into subproblems which
in turn are solved by their own dedicated solvers. This approach reaps the

benefits of solving smaller problems using dedicated technology, but integrat-

CHAPTER 2. BACKGROUND 45

ing the sub-solutions into a solution to the top level problem is a non-trivial

process.

More recently, Smith has offered an alternative approach to problem de-
composition [52]. In this novel work, over-subscription planning problems are
decomposed into orienteering problems, the solutions to which are used to of-
fer goal ordering control information to a partial order causal link (POCL)
planner solving the original problem. Over subscription planning problems
model situations in which there are a large number of goals of varying value
and the planner must decide on a subset of these to achieve within the time
and resource constraints. Smith presents not only a manually controlled run-
ning example, but also describes techniques for automating the whole process
(subject to manual tuning of the sensitivity analysis involved, though this too
could be automated through a simple learning process). Although he admits
the limitations of this abstraction of the problem, Smith’s techniques are widely
applicable. The identification of the orienteering subproblem reminds us very
much of the classification offered by Fox and Long in their generic types. Al-
though these two techniques are both based on the behaviour of the domain,
the analysis is not similar and the approaches in identifying the subproblem

are, as a result, quite different.

The use of the orienteering problem as a problem abstraction is also very
similar to the use of relaxed planning graphs for heuristic evaluation (such
as in FF [29]), but additionally considers orderings (according to the set of
propositions that are used as the basis of the abstraction to the orienteering
problem) that are necessarily lost in the relaxed planning graph. The informa-
tion gained is also used differently (heuristic evaluation versus goal ordering
information) and this is reflected in the decision to supply the information
gathered to a POCL planner.

Recent work has considered generating pruning constraints from state in-
variants [37]. State invariants can be automatically generated by several dif-
ferent methods (see 2.6) and though the work currently involves inputting the
state contraints (of the type that can be automatically generated) manually,

an intended progression is to automate this part of the process too.

CHAPTER 2. BACKGROUND 46

2.9 Chapter Summary

In this chapter the methods by which control information has been used by
planning algorithms in the literature have been examined. Control information
has been either integrated with or separated from the algorithms employing it.
Where control strategies were not tied to a planning algorithm, those strategies
were either integrated into the domain physics or given as declarative rules over
and above the domain description.

Different types of control information have been considered, as have the
different methods of expoiting each type. The effect of general search heuristics
employed by planning algorithms on the traversal of the search space was also
discussed.

Varying approaches to domain analysis were presented and comments made
on the type of information extracted by such techniques. The work on type in-
ference of objects in planning domains and itsbsubsequent extension to generic
types was introduced and a definition of the generic cluster was given as a set
of interacting generic types.

Finally, attempts at marrying the processes of domain analysis and control
of search were considered, in which the structures involved in or information

discovered about a problem can be used to aid solution generation.

Chapter 3

Abstract control rules

3.1 Overview of Proposed Architecture

The integration of the generic control rule extension to provide a planner with
domain specific control knowledge involves several components. The generic
type identification machinery is required to discover the presence of any generic
clusters. A collection of abstract control rules indexed by the generic clusters
they describe forms a library. An instantiation component is needed to cre-
ate domain specific realisations of the abstract rules from the library for the

planner to use. This architecture is shown in figure 3.1.

Given a declarative domain description and problem instance, the generic
type identification machinery will be invoked. This will give information on
any generic clusters that are present in the particular domain. Any clusters
identified will be passed to the generic control rule extension with the specifics
of their realisation in the domain. The generic control rule extension then
requests any rules in the library that pertain to the clusters that have been
identified in the domain. The generic control rule extension has the informa-
tion from the generic type identification machinery to provide domain specific
instances of the abstract control rules in the library. The generic control rule
extension then provides the planning system with the domain specific control
rules it has instantiated. There may be some translation procedure needed

to provide the planner with the domain specific rules in an appropriate form,

47

CHAPTER 3. ABSTRACT CONTROL RULES

48

Domain description
and problem
instance

Y

> Planner

Generic control
rule module

A

l Plan

Generic control rule
library

Figure 3.1: System architecture

depending on the planning system employed.

3.2 Components

3.2.1 Generic Types and Clusters

The idea of abstracting control knowledge across different domains is not new.

The work of Fox and Long {38] explored using generic search control strategies

for a particular behaviour pattern (specifically route planning across some

map of locations). However, this was an integrated approach in partnership
with the hybrid Graphplan [9] and forward-chaining planner, STAN4 [22] (the
route planning subproblems were handled by the forward chaining planner,
FORPLAN [22]). Though the work progressed to look at the more general

case of problem decomposition (through the consideration of a larger number of

generic types), no language was specified to represent the information relating

to the generic structures outside the compound system of STAN4. This meant
that the information that STAN4 had available could not easily be used by

CHAPTER 3. ABSTRACT CONTROL RULES 49

other planners or the rest of the planning community.

Generic types provide abstractions of the behaviour of types that occur in
planning domains. They describe the way in which members of instances of
generic types interact with other objects in a domain. However, it is rarely
(if ever) useful to consider generic types in isolation. As previously stated,
the very behaviour that is abstracted by generic types describes not just the
type’s own characteristics but its changing relationships with other generic
types (or other objects of similar generic type). This has led to the proposal of
a generic cluster, which is precisely a set of interacting generic types. A generic
cluster is identified in the same manner as a generic type, i.e. by looking at
the fingerprint of the finite state machines describing a type’s properties. An
instance of a cluster is identified by the fingerprint of the collection of finite
state machines for the related types. By grouping together interacting sets of
generic types into clusters, we encapsulate patterns of behaviour for interacting

sets of types.

The generic types that form the member types of a cluster are meta-types
(higher level types populated by domain level types). So the cluster is a similar
abstraction of the behaviour of interacting sets of types. In the same way that
generic types allow us to abstract from the concrete realisations of domain
level types, the cluster affords us an abstraction of the concrete realisations
of interacting sets of types. For example, in a mobile object cluster (in which
mobile objects move on a map of locations) we are not concerned, at the cluster
level, with the manifestation of the relationship that relates mobile objects to
their locations. The domain realisation may be at(< mobile >, < location >
), wibble(< location >, < mobile >), atyuer(< location >), etc. but the
abstraction to the cluster level is concerned only with the fact that the mobile
is related, through some domain relation, to the location object (though that
relationship must behave in a prescribed manner for the types to be identified

as mobiles and locations).

Arguably, the grouping of related generic types has been implicit in any
discussions about generic behaviour of any types. It simply does not make
sense to look at process types without also considering processor types (as

in multi-processor scheduling) or mobile types without considering their as-

CHAPTER 3. ABSTRACT CONTROL RULES 50

sociated maps of location types (as in transportation domains). However, no
formal concept of a group or set has been proposed to date.

The acknowledgment of a generic cluster allows the discussion of the inter-
action of the generic types involved to be more precise and can provide a basis
for ensuring the right domain types are considered with respect to each other
(e.g. for domains with multiple MPS aspects, relating a process type to the
right processor type). It also facilitates dealing with domain types that show
more than one kind of generic behaviour. The identification and classification
of generic clusters is not, however, the focus of this thesis.

Objects within an instance of a generic cluster interact with each other in
known ways (according to the nature of the cluster). Using the knowledge
of how these objects behave allows us to write various control strategies for
the objects involved. Furthermore, because the generic cluster represents an
abstraction of the behaviour of the objects involved, any control information
that we construct is similarly abstracted. This abstracted control information
can be made available for any instance of the particular generic cluster, saving
the work that would normally be invested in formulating and encoding similar
control rules for every instance.

Definition 2 A generic control rule is an abstracted control strategy ez-
pressed as a logical statement whose atoms are features of a generic cluster.
(the term GCR may be used as shorthand for generic control rule)

The recognition of an instance of a generic cluster gives us some information
about how the search space for problems in that domain is structured. By
writing control strategies at the level of the generic cluster, that structuring is

described for all instances of the cluster.

3.2.2 Language for abstract control rules

As discussed in Section 2.5, control rules can be of several forms. Importantly,
we shall be considering only pruning rules (hard restrictive rules). Issues re-
garding the preservation of completeness of the search space while using prun-
ing rules are discussed in Section 4.7.

A control rule is a logical statement describing the properties of some se-

CHAPTER 3. ABSTRACT CONTROL RULES 51

quence of states. Given an actual sequence of states, the control rule will
have an evaluation that corresponds to whether that sequence has the spec-
ified properties or not. If the sequence of states is not inconsistent with the
properties described by the rule it will evaluate to TRUE, otherwise it will
yield FALSE. In the light of these evaluations, it is possible to identify paths
in the search space that do not follow the control strategies described; they are
those paths that cause an evaluation of FALSE. Conversely, those sequences
of states that do follow the strategy represented by a control rule will cause
that rule to evaluate to TRUE.

For example, given the modal control strategy
a(X, Y)AGOAL o(X, Y) > NEXT o(X, Y)

in a problem instance where the goal condition contains the literal a(X, Y),

the sequence

a(X, Y) € statecurrent
a(X,Y) ¢ statenes

would evaluate to FALSFE (indicating that the sequence contravened the con-
trol strategy), where as the sequence

a(X,Y) € statecyrrent
a(X, Y) € statepes

would evaluate to TRUE.

Having looked at previous languages for expressing control knowledge, such
as the action-based TAL used by TALPlanner [16] and the state based modal
logic employed by Bacchus and Kabanza (3], it was observed that a new lan-
guage was required in order to be able to abstract the control knowledge above
the domain level. None of the languages to date have been able to express meta-
constraints on the search space or dealt with any form of generic behaviour
across different types that the use of generic clusters allows.

The most obvious difference between GCR logic and other previously pre-

CHAPTER 3. ABSTRACT CONTROL RULES 52

sented logics for expressing control information (LTL{18], MITL [4], etc.) is
the level at which that information is expressed. To date, only object level
languages have been presented that specify control strategies at the level of
objects in a particular domain, though the objects that are used may be object
variables, quantified either over all domain constants or some bounded set of
domain constants.

The proposed language will be able to express generic control information
at a level abstracted from any particular domain realisation. Specifically, this
demands not only the abstraction of predicate and object names, but also
of the predicate structure used to express some generic semantic relationship

between objects.

Expressing abstract forms of control rules necessitates abstract entities in
terms of which the control rules can be formulated. Generic clusters provide
precisely those entities. The language that expresses the control rules at the
abstract level expresses the control information in terms of the generic cluster.
This describes the control information for all instances of the generic cluster.
For the purpose of the work described in this thesis, control rules are assumed
to use only a single generic cluster. This decision is discussed in Section 4.4.

The generic cluster structure tells us how objects that belong to the member
types relate to each other. Using the knowledge that such relationships exist
allows us to refer to objects as a function of their relation to some known
object. For example, objects of generic type portable are related to objects
of generic type location by some locatedness predicate. At the level of the
generic cluster, we have no information about any particular manifestation of
that relationship, but we do know that such a relationship exists, in some form,
for any instance of the cluster. As such it is possible to refer to the location of
some portable object X of type Tportanie Dy the locatedness relationship specific
to Tportabie, Tegardless of the actual manifestation of that relationship for any
type T that is an instance of Tportabie-

Let us look at an example control rule to see how the abstraction to the

generic cluster applies. A simple strategy for safe portable objects is

Do not move the safe portable object once it is at its goal location.

CHAPTER 3. ABSTRACT CONTROL RULES 53

In the logistics domain, this rule could be formulated as
Vz : package . Vy : location . at(z,y) AGOAL at(z,y) = NEXT at(z,y)

If we try and abstract this rule to the generic cluster level, we will have
no information about the predicates that express locatedness (i.e. the ’at’
predicate in the above example). We simply know that safe portables can be
located at location objects, and that when a safe portable is located at the
location object specified as its goal location, then the safe portable should

maintain that location. So we can re-formulate the control strategy above as

V safe portable objects x, if currentLocationO f(z) = goalLocationO f (z)
then nextLocationO f(z) = currentLocationO f (z)

In the above example, we see the reference to objects through their rela-
tionships with other known objects. In particular, equality is asserted on the
location object to which the object z is related in both its current and goal
states. This is done without any knowledge of how that relationship will be
manifest in any given domain or any knowledge of the sequence of states in
which the specified situation arises. Importantly, this rule can not only be
re-instantiated into the logistics domain but can be instantiated into which
ever domain in which the correct generic structure is recognised (i.e. the iden-
tification of safe portable objects and associated types).

If we consider taking this abstracted rule and specialising it back to the
domain specific version, it is obvious that we need access to the particular
predicates in the domain that manifest the relationships such as the locatedness
of an object. The manifestation of these predicates is tied to the types involved
in the concrete domain (in this case, the logistics domain). Put another way,
the way in which the currentLocationO f function will be interpreted is tied to
the type of the object z, let us call it 7,,. To make this clear in the control rule,
the function is subscripted with the type. This makes plain the dependence of
the manifestation of the function on the type for which it is being instantiated.

The control rule then appears as

CHAPTER 3. ABSTRACT CONTROL RULES 54

V safe portable objects z,
if currentLocationO fr,(z) = goalLocationO fr, ()

then nextLocationO fr,(z) = currentLocationO fr,(z)

The proposed language of control rules already has certain features defined.
As we will be working with abstractions rather than any particular domains,
we will not have access to domain constants. The terms of the language must
therefore be variables of some sort. We know also that we are classifying
objects according to type, so the object variables will be typed. However,
we know that at the abstract level, the details of any domain types are not
known. This tells us our object variables will be typed, not with concrete
types, but with type variables. Finally, we can see that the language will refer
to objects not exclusively explicitly, but also by their relationships with other
objects. This will be achieved using functions that abstract the domain level
expression of some particular semantic relationship that the object’s type is
identified as exhibiting.

Definition 3 A term describing an object by a function ezpressing its
relationship to another object will be referred to as a function term.

Giving a function term a state argument qualifies the state in which the
relationship expressed through the function holds. The state in which the
relationship holds is important, as the object referred to by the function term
may be dependent on the state. The location of the mobile X may be different
in the current and next states, for example. In this case, the function expressing
locatedness of X with the state argument denoting the current state returns
a different object to the same function with the state argument denoting the
successor to the current state. Using a state argument denoting the goal state
of the problem allows objects to be referred to through their relationships
as specified by the problem specific goal set. In the above examples, the
state argument is implicit in the function (there are different functions for
the location of objects in the current, goal and next states). This approach,
however, involves multiple incarnations of functions to represent every state

that is referenced.

An explicit state argument allows the same function to be used, the state

CHAPTER 3. ABSTRACT CONTROL RULES 55

argument taking responsibility for the specification of state. The function
currentLocationO fr, (z)

becomes

LocationO fr, (z, now)

The function
goal LocationO fr,(z)

becomes

LocationO fr,(z, goal)

The function

nextLocationO fr, (z)

becomes

LocationO fr, (z, next)

The abstraction from state specific functions reflects the domain level rela-
tionships, which remain the same regardless of the state in which they hold (a
predicate expressing locatedness is the same predicate no matter which state
is being considered).

Imposing conditions such as equality on the objects involved in particular
relationships facilitates the specification of configurations of those objects. We
can, for example, describe any two mobile objects x and z' that are located at
the same location object by asserting an equality between the objects referred

to by functions expressing the locatedness of z and z'.

V mobile objects z,z’

LocationO fr, (z, now) = LocationO fr: (', now)

Asserting conditions on objects specified by functions involving different
state arguments allows the specification of conditions that span states. Objects
that are in relationships that match their goal relationships can be described
by equality on the function terms for both the current and goal states. To

describe a mobile object x that is situated at the location given as its goal

CHAPTER 3. ABSTRACT CONTROL RULES 56

location, we simply assert an equality on the function expressing its location
in the current state and the function expressing its location in the goal state
(the function remains the same, the state argument for the former term denotes

the current state and the for the latter denotes the goal state).

V mobile objects z

LocationO fr, (z,now) = LocationO fr, (z, goal)

Using state arguments that refer to sequences of states, relationships can be
described that hold over that sequence of states. For example, a mobile object
X that changes location between the current and next states can be described
by an inequality between the function expressing its location with respect to
the current state and the same function with respect to the successor to the
current state.

A control rule is a logical statement describing some properties of a se-
quence of states. Properties of states can be described by objects’ relations
to other objects (and conditions on those relations) and these properties can
span states by determining in which states those relations hold. As a result,
abstracted control information can be expressed by the relationships described
at the level of the generic cluster.

Control information is expressed as relationships between objects that hold
over sequences of states in a plan trajectory. However, at the level of the generic
cluster, there is no information on the objects that will populate the member
types of the cluster other than the knowledge that there will be those sets of
objects. As a result, the terms of this language are object variables quantified
by type. The type is given as a type variable, as the member types of the
cluster describe sets of domain types that exhibit the appropriate behaviour.

Taken in isolation, expressions at the level of the generic cluster can have no
evaluation. In order to be evaluated, the expression requires a plan trajectory

(i.e. a sequence of states for a particular domain). For example, the expression

Y mobile objects x

LocationO fr,(z,now) = LocationO fr,(z, goal)

CHAPTER 3. ABSTRACT CONTROL RULES 57

needs both the current state (in order to assess LocationO fr,(x,now)) and
the goal state. If there were references to states following the current state,
these state descriptions would be needed too.

However, it is not a pre-requisite that the domain contain the structures
in terms of which the expression is given. If an expression is evaluated with
respect to a trace in a domain that does not contain the generic cluster used
in the expression, the expression trivially evaluates to TRUFE (in the example
above, the expression would evaluate to TRUFE in the case where there did
not exist an = such that z was a mobile object). If, on the other hand, the
domain does contain the appropriate generic clusters, then in order to evaluate
the abstract expression with respect to the trace there must be a direct and
known mapping between the abstract structures and features of the domain
itself. This should seem perfectly reasonable; in order to evaluate the abstract
expression with respect to the concrete realisation, we must have a complete
mapping from the abstract structures to their instantiations in the concrete

domain. The process of evaluation is given by the semantics presented in
Section 3.6.3.

3.2.3 Exploiting features of a generic cluster

Knowing that types belong to a generic cluster gives information on how those
types interact in their domain. The structure representing a cluster must be
able to refer to the types that form that cluster.

In order to exploit the features of a cluster, two pieces of information are
needed. Firstly, the types that form the cluster must be identified and secondly,
there must be an indication as to how the types interact according to their
generic behaviour.

Given an instance X of a domain type Tx identified to be an instance
of a particular generic type within a generic cluster, it is possible to refer to
objects related to X through the generic behaviour described by the cluster.
For instance, a vehicle moving on a map locations will always be related to
one location through its locatedness predicate. It is possible to describe the

location through function application, using a function that gives the location

CHAPTER 3. ABSTRACT CONTROL RULES 58

of a vehicle object. Functions in general will return the object (or set of
objects) to which X is related. Bearing this in mind, X will always be an
argument of the function and as the function expresses relationships inherent
to X we adopt the syntax of a member function as if that object were a class
in an object-oriented language.

Definition of functions

Given two domain types Tx and Ty that express some generic behaviour

through the domain level predicate
p(< X :Tx >, <Y :Ty >)

there will be two functions, one for each type involved, to access the objects of
the other type to which they are related through this predicate. If X relates
to precisely one Y and Y to possibly many Xs through p (i.e. p is a partial
function) then the following functions will be defined:

pon T, -1,
p z = y where p(z, y)
p'ou T, o [T
'y = {z|p(s y)}
(3.1)

(N.B. The syntax of function definitions and function type declarations used
here is borrowed from functional programming)

The functions are adopted as member functions of objects of the appropriate
type. Binding the functions to the particular type highlights the fact that
every instance of that type may have its own expression of the relationship
described by the function. As a result we get X’s corresponding Y given by

X .pifx

CHAPTER 3. ABSTRACT CONTROL RULES 59

while conversely the set of X's related to Y is given by

Y. pi_,'wy

(this example may return an empty set, if there are no objects related to YV
through p). If Tx is a vehicle type whose location type is Ty where the
location predicate is

at(< X : Tx >, <Y : Ty >)

then
X.atp,

returns the location of the object X and likewise
n
Y.atTy

returns the set of objects located at Y.

The example above shows one particular relation involved in the expression
of some arbitrary generic behaviour. It demonstrates how referring to objects
through functions representing generic behaviour at the abstract level can be
interpreted to describe objects at the domain level. Notice that the functions
can return both single objects and sets of objects.

There must be some declaration of the functions available for the member
types of a generic cluster in order that we know which functions are defined.
The functions are declared along with the member types in a structure known

as a prototype. Details of this structure can be found in Section 3.5

3.2.4 Domain specific control rules

There must also be a language for expressing the control information at the
level of instances of the clusters for which that information was formulated.
An instance of a cluster is a set of types in a concrete domain whose objects
interact according to the behaviour abstracted by the cluster. This behaviour
is expressed by domain level predicates in which members of the types can

participate (and the change in those predicates through operator application).

CHAPTER 3. ABSTRACT CONTROL RULES 60

Control information at this level describes relationships between objects ex-
pressed through predicates inherited from the domain description. The lan-
guage must therefore describe the control information in terms of the concrete
domain. The terms of the predicates are domain constants or variables ranging
over domain constants.

The predicates populated by domain constants give propositions. The eval-
uation of the proposition is a boolean describing the proposition’s inclusion in
the state description. Temporal modal operators give qualification of the state
in which a proposition is to be evaluated. Expressions at this domain level will
give a boolean result when evaluated with respect to a plan trajectory, i.e. a
sequence of states visited by a plan. The evaluation denotes whether or not
the particular sequence of states adheres to the conditions of the expression.

The description of the features of this language may appear to fit the
definition of Emerson’s LTL [18] and in fact the language being described is a
subset of this previously defined logic. A more formal description of the subset
of LTL that is used is given in Section 3.8. What should be remembered is that
we are not claiming the originality of this language, rather that it is used as the

language into which expressions of a higher level language are instantiated.

3.3 Generic Types

As discussed in Section 2.7.1, generic type identification is an extension of the
type inference machinery. Some features that are apparent at the level of type
inference are carried through and affect the behaviour of generic types in a
generic cluster. In fact, the return types of the functions introduced in Section
3.2.3 are dependent on characteristics of structures that are constructed as an
intrinsic part of the type inference and invariant generation processes. In order
to examine this, let us first describe those structures in more detail.

We will use the portable objects cluster as a running example in this dis-
cussion. An instance of this cluster is a classic transportation domain, with
packages (the portable objects), carriers (the vehicles that transport the pack-
ages) and a map of locations. ’

The first stage of type inference examines the operators in terms of each of

CHAPTER 3. ABSTRACT CONTROL RULES 61

their arguments. A property relating structures (or PRS) is built for each ar-
gument of an operator, where a PRS is a triple of bags of properties. The bags
show the properties the argument has in each of the preconditions, positive
effects and negative effects of the operator (where an object has more that one
occurrence of a property, the bag contains multiple instances of that property).
The bags of the PRS will be used to construct the transition rules that describe
objects’ behaviour, where the properties in the preconditions form the enablers
of the transition from the properties described in the deleted preconditions bag
to the properties described in the added properties bag.

An example of a transition rule derived from the move operator

(:action move
:parameters (7vehicle 7source ?destination)
:precondition (and (carrier ?vehicle)
(at ?vehicle ?source)
(l1ink ?source ?destination))
;effect (and (at ?vehicle 7destination)

(not (at 7?vehicle ?7source))))

would be
at, — aty

This transition rule is formed for the 7vehicle parameter, and has no enablers
(the parameter does not appear in any persistent preconditions).An example

of a transition rule with and enabler would be
link, = aty — null

If either the added properties or the deleted preconditions bag is empty,
the transition rules constructed are used to form attribute spaces and not prop-
erty spaces. A property space is comprised of FSMs (showing the changes in
properties), the objects that traverse them, the properties the objects can have
and the transition rules describing the manner in which the objects’ properties

are changed. An attribute space contains the objects that can have, lose or

CHAPTER 3. ABSTRACT CONTROL RULES 62

unload

load

Figure 3.2: The properties of portable objects

acquire the described attributes, along with the transition rules pertaining to
those losses and acquisitions.

An attribute is distinguished from a property by the inclusion of the null
property in a FSM. The null property is used to denote the lack of a property
lost or gained in a transition rule. This represents the object traversing the
FSM acquiring or losing a property p without exchanging that property for
another property g. Conversely, properties are always exchanged for properties
(possibly the same property), which means the number of properties is fixed
for objects of a specific type.

Figure 3.2 shows the FSM for portable objects (the packages in the trans-
portation domain). The transitions represent classic load and unload opera-
tors, in which a package z changes from at(z, < location >) to in(z, <
vehicle >). This FSMs is associated with a property space. Figure 3.3 depicts
the FSM showing how location objects gain and lose the attribute of ‘having
something situated at them.’

CHAPTER 3. ABSTRACT CONTROL RULES 63

move

null

move

Figure 3.3: The attributes of location objects

The objects in the domain are grouped into types according to those at-
tribute and property spaces in which they are included. The objects are in
fact given a bit vector showing their inclusion and omission from each space
constructed in the domain, and objects sharing the same vector are said to be
of the same type.

Type analysis provides the basis for invariant generation. Only the property
spaces are used for the generation of invariants, as the use of attribute spaces
would yield incorrect invariants (the number of attributes that the associated
objects can acquire is not encoded at the level of the attribute space). Three
types of invariant are constructed from the property spaces, identity invariants,

state membership invariants and uniqueness invariants.

CHAPTER 3. ABSTRACT CONTROL RULES 64

State membership invariants show all the properties that objects of par-
ticular type can have, by creating a disjunction of propositions composed of
predicates into which the objects can be instantiated (according to their prop-
erties). Uniqueness invariants show the mutual exclusivity of pairs of prop-
erties in the space, by asserting that the objects can not be simultaneously
present in conflicting propositions. In both cases, the predicates are populated
by existentially introduced variables to create propositions. Identity invari-
ants show the single-valuedness of properties. When a property P, occurs at
most once in every state (where a state is the properties an object can have
simultaneously, described by the initial state and reachability according to the
transition rules) it is possible to restrict the propositions employing objects
with the property P;. This is achieved by asserting equality on the remaining
arguments involved in multiple instances of an object z displaying the prop-
erty P; (an object displaying a property is that object in the correct position
in the predicate P).

3.4 Inclusive and exclusive generic control rules

The question of the extent to which generic type identification describes a
type’s behaviour is interesting. A type is identified as of generic type if it
displays the patterns of behaviour defined for that generic type. Whether or
not that is the only behaviour it displays is not addressed in generic type
identification. It is certainly possible that a type T identified as an instance of
generic type T could have other behaviour in the domain separate from the
behaviour described by T;. From the point of view of GCRs, the important
question is whether or not any of the other behaviours affects the behaviour
described as generic or the interactions with the other generic types in the
cluster.

This draws attention to the need to qualify both in which instances of a
generic cluster the rules concerning that cluster apply and, conversely, which
rules apply for varying instances of that cluster. Let us first address the latter,
then return to the former. In fact we present a classification of rules into two

classes, inclusive and ezclusive and describe the conditions that necessitate

CHAPTER 3. ABSTRACT CONTROL RULES 65

this distinction. We also classify instances of generic types as inclusive or

exclusive.

3.4.1 Inclusive and exclusive rules

Definition 4 Inclusive rules are applicable based solely on the interaction of the
types as described by the generic cluster. No matter what other behaviours may
or may not exist for the types involved, the interaction of types according to
the behaviour described by the generic cluster is the only thing that determines
the applicability of the rule.

An inclusive rule is based on behaviour that an instance of a cluster displays
that is totally described by the cluster. That is to say, the behaviour on which
an inclusive rule is based must not be affected by any other behaviours that
the type exhibits outside its behaviour as described by the cluster to which it
belongs.

Inclusive rules can include rules to prevent complementary action cycles
(in which an action and its complement form a redundant cycle, reverting the
world state to one strictly the same as before the cycle). An example of a
complementary action cycle is unloading then reloading a package from truck
in the logistics domain. A more subtle example of an inclusive rule is the rule
that states that a member of a safe portable objeét type should never be moved
once it reaches its goal location. In this particular example, the source of its
inclusiveness stems from the restrictions involved in its type being identified
as safe at the point of generic type identification (portables are qualified as
safe precisely when they have no other role in the domain other than to be
located somewhere).

Definition 5 Exclusive rules ezploit behaviours which may be affected by
operations outside the scope of the generic cluster for which they are identified.
They rely not just on the behaviour as described by the cluster, but the implied
consequences of that behaviour occurring exclusively.

This may sound like we are undermining the argument for abstracting con-
trol strategies to the level of the generic cluster, but let us examine the issue

fully before any conclusions are drawn. Generic type identification (the basis

CHAPTER 3. ABSTRACT CONTROL RULES 66

for generic cluster identification) assigns a type the status of an instance of
a generic type if it satisfies the appropriate conditions of behaviour. Except
in special cases (such as qualifying a portable type as a safe portable type)
this behavioural analysis is not exclusive with respect to any other behavioural
aspects. In other words, type T identified as generic type C¢g within generic
cluster C' may have not only behaviour other than its generic behaviour, but
furthermore that behaviour may even affect its relationships with other mem-
ber types of C.

Let us look at an example of how this situation might arise. The generic
type mobiles are defined as able to make self-propelled (requiring no other
objects/resources) transitions from being associated with one object o, : T
(through an identifiable predicate) to being associated with another object o, :
T ([38] gives a full description of the process of identifying mobile objects). As
long as this required behaviour is a subset of the type T}, 0pi¢’s entire behaviour,
it will be identified as being of generic type mobile. If, however, in addition
to its mobile behaviour with respect to {01,00,...,0n} : Ty, Tiovite has a
Beam Up operator which changes its members location by different rules to the
previously outlined behaviour (this too would be identified separately as mobile
behaviour), then certain control rules applicable to mobiles in general may
have some unforseen or error-inducing consequences. For example, a general
control strategy for mobiles is “do not enter a dead-end location (a location
from which there are no exit routes) unless it is the mobile’s goal location.”
This rule is completeness preserving in the case where the mobiles have no
other behaviour (than its generic mobile behaviour) with respect to objects of
the associated location type. However, if as suggested above there is further
behaviour, for example in the form of the BeamUp operator (which teleports
the mobile type between apparent dead end locations, according to the mobile
map identified), then the completeness of the search space is threatened. It
may be the case that applying the rule will prune branches of the search space
in which solutions reside.

The example rule given above is a case of an exclusive rule. Exclusive
rules are applicable where the interaction of the types involved is described

by the particular cluster to which they belong to the exclusion of any further

CHAPTER 3. ABSTRACT CONTROL RULES 67

interactive behaviour. An interesting point mentioned in the example is the
notion of preservation of completeness of the search space. The effect of control

rules on the completeness of the space is discussed in Section 4.7.

3.4.2 Exclusive and inclusive instances

Instances of generic clusters can also be classified as ezclusive or inclusive.

Definition 6 Exclusive instances of a generic cluster are those instances
wn which the generic relationships do not appear in the preconditions or effects
of any operators in the domain other than the generic operators associated with
that cluster and in which those generic operators contain only preconditions
and effects that are recognised in the generic cluster.

This means that the generic behaviour of the member types is unaffected by
any other patterns of interaction that they may be involved in in the domain,
whether or not other such behaviour exists.

Definition 7 Inclusive instances are those in which the predicates describ-
ing generic relationships do appear in the preconditions or effects of at least
one operator that is not a generic operator or in which the generic operators
contain preconditions or effects that are not recognised by the generic cluster.
The member types’ behaviour in the domain includes that described by the
cluster, but is not exclusively defined by the cluster.

Inclusive rules are applicable to both exclusive and inclusive instances of the
cluster over which they are quantified. Exclusive rules can be safely applied to
exclusive instances of a cluster, but though it may be safe to apply them to an
inclusive instance, there is no guarantee. The fact that inclusive instances of a
cluster have additional behaviours (to those described by the cluster prototype)
admits the possibility that those additional behaviours affect the interaction
between the member types of the cluster. In this case, applying exclusive rules
could result in solutions to the problems being lost (pruned) from the search
space.

The classification of generic clusters as inclusive or exclusive goes some
way towards answering the previous question, namely in which instances of a

generic cluster the rules concerning that cluster apply. It also provides a basis

CHAPTER 3. ABSTRACT CONTROL RULES 68

for talking about hierarchies of types and clusters, and the implications on the
applicability of rules within a hierarchy. This will be discussed in Section 4.3.

An examination into the relation between behaviour recognised as an in-
stance of a generic cluster and additional behaviours (that may interact with
the behaviour of the cluster) would provide an interesting extension to the
work presented in this thesis. The classification of instances as exclusive or
inclusive will also, in future work, assist the specification of rules for multiple
clusters by qualifying to what extent instances of clusters interact with each
other (c.f. Section 4.4).

The fact that exclusive rules are a subset of inclusive rules tells us that
tighter constraints are possible using the former. This is intuitively verified, as
we can be sure about the generic behaviour of an exclusive instance whereas we
can only know that certain generic behaviour is included in the total behaviour
of an inclusive instance. The generic type identification machinery identifies
both inclusive and exclusive instances of clusters. For the sake of demonstra-
tion of concept, though we acknowledge the existence of inclusive and exclusive
rules and instances of clusters, we will treat any rules and instances as exclu-

sive. In most of the benchmark problems, this is a safe assumption.

3.5 Generic cluster prototypes

A generic cluster is an abstract structure that describes a collection of types
and the interactions between those types that produce some known and inter-
esting pattern of behaviour.

The abstraction of a set of interacting types that is provided by a generic
cluster necessitates a way to describe the relationships between objects of the
member types without reference to any domain specific realisation of those
relationships. There also needs to be some description of the types involved in
the cluster. A generic cluster prototype is provided to describe a cluster.

Definition 8 A prototype of a cluster C is the structure that is used to
declare the types of which C 1s comprised and to declare the relationships that
hold between objects of the member types that produce the generic behaviour of

C.

CHAPTER 3. ABSTRACT CONTROL RULES 69

The prototype describes, at an abstract level, the relations between parts of
the structure that can be used to describe configurations of objects by their
generic behaviour.

Where no reference can be made to the predicates that provide the rela-
tionships between objects, those relationships must be described in some other
fashion. The information that must be captured is the fact that such a relation-
ship exists, between which types of objects that relationship holds and what
the characteristics of that relationship are (e.g. one-to-one, one-to-many). The
functions as such are declared with an identifier, source and target types and
the type of the relationship.

The prototype serves several purposes. Firstly, it gives the relationships
that exist between objects of types that instantiate the cluster. In this role
it introduces those relationships without any information over and above the
fact that some relationship holds between the objects of the member types.
This information specifies the interactions between the types that allow us to
refer to objects by their relation to other objects.

Secondly, it allows us to say what it means for a control rule at the cluster
level language to be well formed. That is, it specifies the functions that are
available for objects variables according to type. The abstract syntax of the
generic control rule language can be seen to describe a family of languages.
Without any reference to the prototype of a cluster used in an expression,
it is impossible to determine whether or not an expression is well formed or
not as there is no information regarding the functions available for objects
of the member types. The members of that family of languages are specified
by the conjunction of that syntax and the generic prototype used in a given
expression.

The declaration of the types and functions in a prototype gives a working
model of the cluster. It outlines how the cluster can be used to describe
objects that belong to its member types and as such how that information can
be used in the context of writing control information. In this sense it provides
a bridge between the abstract structures that are the clusters themselves and
any instance of those clusters. The features that are defined for all instances

of the cluster are given at the level of the structure that is the abstraction of

CHAPTER 3. ABSTRACT CONTROL RULES 70

any particular instance.

3.5.1 Prototypes and their features

A structure of a prototype is straight forward. There are several aspects of a
cluster that need declaration in its prototype. Firstly the prototype needs a
unique name. This allows the prototype to be related to the correct cluster.
The issue of relating a prototype to a cluster is discussed in Section 3.5.4.
Secondly the prototype needs a declaration of the types involved in the cluster.
The types are given as unique type variables. Finally, a prototype needs the
declaration of relationships that exist between objects of its member types
as an expression of the behaviour of the cluster. These are given as member
functions of the types declared.

The functions are given return types that show not only the type of object
that is returned but also whether a single value or a set value is returned.
The types that can appear in the return values are any subset of the union
of all the member types declared for the cluster. The prototype also declares
the single-valued functions that may return, in addition to a domain constant
of the appropriate type, the special value NULL. The NULL value may be
returned where the function is descriptive of an exchanged property. This point
is discussed further in Section 3.7. The functions that may return NULL are
suffixed with a “+”.

The syntax of the prototype

The abstract syntax of a prototype is given by the following rules:
1. If Cyp is a unique cluster ID and B is a cluster body, then

prototype Crp { B }

is a cluster prototype.
2. If tList is a list of member generic types and fList is a list of member

functions then

Types : tList
Functions : fList

CHAPTER 3. ABSTRACT CONTROL RULES 71

is a cluster body.

3. If GT,,...,GT, are generic type IDs then {GTy,,...,GT,} is a list of
member generic types.

4. If f;p is afunction name, GT; € {GTy,,...,GT,} and GT; € {|JTs|Ts €
©{GTy,...,GT,} } then

fip = GT; = GT,
fID o GTIL — GTz‘f‘
fID i GT; — {GTm}

are all member functions (where ¢ — b is a many-to-one function, a — b+ is
a partial function and a — {b} is a many-to-many function or relation).

The prototype declares the types and relationships that exist for all in-
stances of the cluster that it describes. This statement gives us an informal
semantics for the prototype: The prototype states that, for any instance of the
cluster, that instance will have the following features:

1. Types that relate to each of the type variables given in the prototype.

2. An expression of relationships declared as functions between objects of
the member types of the cluster.

Note: the expression of the relationships may take several forms including
predicates in which all arguments are explicit, predicates in which some argu-
ments are implicit and totally implicit predicates (e.g. locations on a totally
connected map that do not use an explicit predicate to show map connections).

However, the precise semantics of a prototype can only be given with re-
spect to a domain in which the cluster described in the prototype is identified.
This involves examining the relationship between the prototype and the do-
main level realisation of the cluster described by the prototype.

3.5.2 The functions of TIM

As has been stated, the identification of generic clusters through the recogni-
tion of their member types and interrelations is handled totally be TIM. That
is not, however, TIM’s only function in the use of generic cluster prototypes
and control rules. The results of the generic type analysis not only identify

the existence of generic types (and, by association, generic clusters) and their

CHAPTER 3. ABSTRACT CONTROL RULES 72

constituent features, they also provide the mapping from the abstraction to
the domain instance of any given generic cluster identified. This should not
come as a surprise, as to identify an instance of a generic cluster is precisely
to identify those domain types that, through specific domain level predicates
and operators, exhibit the appropriate behaviour.

The first task is to identify an instance of a generic cluster in a domain,
from the universe of instances of that cluster. As has been discussed, this
identification is carried out by TIM. The result of this identification process is
the ‘naming’ of the instances of the cluster that are discovered in the domain.

Let this identification function be known as Ap, and let it be defined as

Np(C) = C where C is the name of an instance of C and C € D

Note that in fact the function Np may return a set of instances of the

cluster C, as in

Np(C) = {C|C is the name of an instance of C and C € D}

representing the fact that multiple instances of a cluster may occur in a single
domain. However, for the purposes of discussing the processes involved it
will be assumed that Ap returns only one instance C. For domains where
Np actually returns {Cy,...,C;}, the bindings of the prototype and likewise
interpretations of control rules may be given for every instance C,.

The function Np also gives us identifiers for the features of the cluster.
Where a member type of a cluster C is given as Cr, the name of the type in
an instance C of C will be given as Cr. This preserves the naming convention
of the member types in naming the concrete domain type representing the
member type in an instance of C.

Np(Cr) = (Np(C))r

The names of the functions that are attached to the member types of
a cluster are also preserved, but a similar binding of the cluster to one of
its instances allows the discussion of the manifestation of a function for a

particular instance. This gives the manifestation of fc, for an instance C of C

as fer-

CHAPTER 3. ABSTRACT CONTROL RULES 73

No(fer) = fivpe)r

The identifiers that the function Ap returns allow the instances of the
cluster to be described and discussed. This will be shown to be important in
the specialisation of an abstract control rule (see Section 3.9).

The second responsibility that TIM carries is to provide the system with
the grounding function F that relates instances of a cluster to their concrete
realisations in a domain. It is this function that allows the system access
to the domain level specifics of the instance that are crucial to the power of
the abstracted control rules. The grounding function gives concrete domain
types as a realisation of the member types and propositional expressions in the
language of the domain relating objects of those types as a realisation of the

member types’ functions.

F(Cr) =T where T € {UTs|Ts € p{To,-..,Ti}},
Tg, ..., T; are primitive domain types and 7 is the instance of the
type T within C

F(fer) = Plz, y] where P is the propositional expression with at
most two free variables that is the manifestation of the generic
relation captured by f in C

[z, y] represents the fact that z and y may be free in the expression P. The
decision to put an upper limit of two on the free variables in P is discussed in
Section 4.5.

The responsibility of dealing with particulars of domain expressions of func-
tions falls entirely on the function F, including implicit arguments and even
implicit predicates. The case of implicit arguments is covered by the expres-
sion P using domain level predicates with implicit arguments. For example,
the gripper domain has an implicit argument to the predicate describing the
location of robby the robot. The locatedness predicate of robby is at—robby(z),
where z is robby’s location (this is in contrast to a classic logistics domain,
in which the locatedness predicate takes two arguments, the object and that

object’s location).

CHAPTER 3. ABSTRACT CONTROL RULES 74

The case of implicit predicates is more interesting, but easily managed. In
the case where the realisation of the relation fe, in a domain is an implicit
predicate, F returns TRUE, as in F(z.fc,) = TRUE. This point necessitates
the consideration of truth values in the language and functions discussed in
Sections 3.8 and 3.9.

In light of the two functions that are required from TIM, it is now possible
to show the semantics of the prototype with respect to a domain D. The
semantics are given as a set of interpretation rules, where Ip[a] represents the

interpretation of a in D.

Ip[C] F(Np(C))
Ip[Cr] = F(Np(Cr))
Iplfe,] = FNb(fer))

3.5.3 An example prototype and its features

This example prototype is for the SafePortable generic cluster.

prototype SafePortableCluster {

Types: {SafePortable, Carrier, Location}

Functions : at::SafePortable—Location+
at’::Carrier—Location
in::SafePortable—Carrier+
locationOf: :Location—{SafePortable,Carrier}
link::Location—{Location} }

This cluster prototype tell us that there are three types in the cluster,
SafePortables, Carriers and Locations. Objects of type SafePortable have
two functions available to them, the at and in functions, which return a possi-
ble Location object and a possible Carrier object respectively. The fact that
SafePortables are either located at some location or being carried by some
carrier necessitates the inclusion of the NULL value in the return type. Ob-
jects of type Clarrier have one function available to them, namely the at’ func-

tion. This function returns a single-valued variable of type Location. Objects

CHAPTER 3. ABSTRACT CONTROL RULES 75

of type Location have two functions available to them, namely locationO f and
link. Both of these functions return set-valued variables, though locationO f
returns a set of objects of type Carrier U SafePortable while link returns
a set of objects of type Location. It might be supposed that the locationO f
function should have the option to return the NULL value, for the cases where
there is indeed no objects located at a particular location. However, because
this function returns a set of values, it simply returns the empty set in this
situation.

Although the names of the member functions of objects (of certain generic
type) are somewhat arbitrary (in the example above they are in fact sugges-
tive of an intuitive interpretation of the generic types involved), it must be
remembered that they refer to other objects through specific and identifiable
relationships that, by the type’s identification as an instance of a certain GT,
the object necessarily has. The decision to name two of the functions in the
above example at and at’ reflects the fact that they both represent the same
semantic relationship (i.e. that of being associated with a location object). It
would in theory be possible to overload functions, under the condition that
no two functions with the same type signature share a name. The overload-
ing would be resolved by the type of the object calling the function and the
function term’s context (i.e. the types of the terms in the predicate using the

function term).

Member function notation

The decision to give the relations as member functions of the types in the
cluster was made for several reasons. What we are trying to achieve through
the use of functions is the identification of an object (or set of objects) by
their relation to some known object. With this in mind, any domain level
realisation of that relation will either be a propositional expression in which
the base object of the function term is required as an argument, or a dedicated
propositional expression in which the base object is an implicit argument.
Although it is true that the expression showing the relation is not dependent
on the base object of the function term, the function expresses a relationship
that is inherent to that object (as a direct result of its type). We adopt the

CHAPTER 3. ABSTRACT CONTROL RULES 76

syntax of a member function as if the base object were an object in a class in
an object-oriented language to reflect that the relationships are dependent on
the base object.

The member function notation not only allows us to abstract away from
the names of the predicates that relate objects, but also provides us with a con-
venient way in which to abstract the structure of those predicates. We simply
say that objects are related through the function and leave the details of the
manifestation of that relation to be resolved when the function is interpreted

with respect to the specifics of the domain level instance of the cluster.

3.5.4 Linking prototypes to generic clusters

A problem exists when we try to formalise the classification of generic types,
and by association, generic clusters. The inclusion of a type into a generic
type is based on a description of the FSMs for that type, though there is no
language currently presented for that description in a formal sense. Currently,
the identification process is hard coded implicitly in TIM (the type inference
module that also handles generic type identification).

Although there is no language currently presented for the identification of
generic clusters, such a language would require certain features that can be
outlined. In the same way that generic types are identified by the fingerprints
of the finite state machines associated with the type, so the a generic cluster
is identified by the fingerprints of its member types.

The language would need to supply constructs to allow generic clusters to
be described in terms of their constituent patterns (FSMs and other structural
elements). This would involve a categorisation of the states involved as single
properties, exchanged properties, etc. and of the transitions as self-connecting,
connecting exchanged properties, etc..

The generic type identification machinery provided by TIM is able to iden-
tify interacting sets of generic types by the fingerprints associated with the
finite state machines for each type. The properties involved in the fingerprints
of related types refer to the domain level expression of the relation of the types

involved.

CHAPTER 3. ABSTRACT CONTROL RULES 77

In order to formally define generic clusters, the language would need to de-
scribe the relation of the properties of the fingerprints for each of the member
types. The preconditions of operators in the domain can also be involved in
the specification of features of associated types (e.g. the map of locations for
a mobile type is inferred using the preconditions of the move operator). The
language would as such need the capability of referring to operators and specif-
ically identifying the predicates that appear in the preconditions according to
conditions on the arguments of those predicates. _

A useful extension to the work covered in this thesis would be to explore
the definition of a language to formally classify and identify generic types and
clusters.

3.6 The language of control rules

3.6.1 The need for a new language

In order to represent control knowledge at a level abstracted from any specific
domain, two components are required. Firstly the abstract structures are
needed in terms of which the control information will be formulated. Generic
clusters have been presented as such structures, with their prototypes giving
information about how they can be used to describe objects and types that
instantiate them. So it remains to specify the language that makes use of

generic clusters to formulate control information.

3.6.2 Abstract syntax

The logic used for expressing generic control rules (GCRs) is an abstract logic.
That is, expressions have no evaluation in isolation. In order to evaluate an
expression it must first be specialised with an instance of a generic cluster. The
expression can then be evaluated with respect to a plan trace in the domain
that provides the instance of the generic cluster.

Generic control rule logic (GCRL) is an extension of a first order predicate

logic. The predicates are equality (==) and set membership (€). The only

CHAPTER 3. ABSTRACT CONTROL RULES 78

terms of the predicates are variables, representing objects or sets of objects.
Terms can be used explicitly or denoted by a function applied to an object
variable (according to the functions available for objects of that type).

The set of formulas in GCRL is given by the following rules:

1. If p and p’ are object terms and ¢ is a set term, p == p’ and p € g are
logical formulae

2. If P and @ are logical formulae, then P A @Q and —P are logical formulae

3. If t is an object variable, C,, is a type variable where m is a member
type in the prototype for cluster C and P is a logical formula then V¢ : C,, P
is a logical formula and 3¢t : C,, p is a logical formula

4. If C is a generic cluster ID and p is a logical formula then V C p is a
formula
Standard abbreviations are employed, specifically pV ¢ abbreviates —=(-pA-q)
and p — ¢ abbreviates —p V ¢. Note that the V quantifier is overloaded. It is
used to quantify over objects according to type (given as a type variable) and
also to quantify over all instances of a generic cluster.

The set of terms is given by the following rules:

1. If z is a simple object variable of type C,,, then z is a term

2. If z is a simple object variable of type C,,, f is a function defined for
Cn, in the prototype of the cluster C, and S is a state term, then z.f(S) is a
term (also called a function term). The term is either a set or object term,
according to the type of f in the prototype.
A state term is either a temporal state or a special state. The set of temporal
state terms S; is given by the following rules:

1. The constant symbol NOW

2. If s is a temporal state term then NEXT(s) is a temporal state term
NEXT abbreviates NEXT(NOW) which provides, we feel, a more intuitive manner
to describe successor state terms and nested successor states. For example, the
state term representing the successor of the state term NOW is simply NEXT,
and the successor of NEXT is given as NEXT(NEXT).

The set of special state terms S; contains only the constant symbol, GOAL.

The set of state terms, S, is given by the formula

CHAPTER 3. ABSTRACT CONTROL RULES 79

S=S5US,

Objects are structured (according to type), as different functions are avail-
able for objects of different types. The abstract syntax given above is intended
to define a family of logics, whose individual members are parameterised by
the generic cluster prototypes used in any given expression. The logical syntax
of all the family members remains the same, but the constants that are the
names of member types of the generic clusters and the names of the functions
available for use in function terms by each member type are cluster-specific.
As such it is the conjunction of the abstract syntax and the prototypes of
the clusters involved that specify whether or not a particular expression is

well-formed.

3.6.3 Semantics

The semantics of the language is given by the interpretation of the language
constructs involved, as given in Section 3.6.2. The interpretation can only
be given with respect to a domain, D, and to a sequence of states, SqSts,
< 8¢,.--.,5n, > and a goal state, G. The domain must contain the structure
that is used in the expression being interpreted, i.e. the appropriate generic
cluster. The interpretation of a formula f in domain D will be given by
Ip[f1(SqSts, G).

At the heart of the interpretation process is the interpretation of the lan-
guage’s terms. Terms can either be simple object terms or function terms.
Simple objects can only represent single objects, but function terms can rep-
resent either single objects or sets of objects (according to the type of the
function given in the prototype). The interpretation of simple objects terms
is just the object that they represent,

Ip[X](S¢Sts,G) = X

(N.B. Simple object terms will always be object variables, and well formed

CHAPTER 3. ABSTRACT CONTROL RULES 80

sentences will only use object variables that have been appropriately quanti-
fied. A simple object term will only ever interpreted within the scope of the

quantification of the object variable involved.)

The interpretation of function terms where a function f describes the rela-
tion of objects through some generic relationship, which is expressed through
some propositional expression in the language of the domain D in which the

rule is being interpreted, is given as
Ip[X.fe,. (S)](SgSts,G) =Y where Ip[S](SqSts,G) = F(fe..)[z/X,y/Y]

for f as a single-valued function and

Ip[X.fe.(S)](SqSts, G) = {Y|Ip[S](SqSts, G) = F(fe.)le/ X, y/Y]}

for f as a set-valued function (= is used here as standard entailment of an
expression by a planning domain state). In the case where f represents a
function describing an exchangeable property (Section 3.7) of type C,,, f may
return a NULL value according to the following rule

IplX.fe,. (S)](Sq¢Sts, G) = NULL where there does not exist any YV
such that Ip[S](SqSts,G) & F(fe.)z/X,y/Y]

Notice that the interpretation of the function term involves the grounding
function F that gives the domain level realisation of the function f_ according
to the instance C of its prototype as well as the logical entailment of the
resulting propositional expression with respect to the interpretation of the
state term and the sequence of states. The term F(f¢,) is the propositional
expression with at most two free variables and the substitution [z/X,y/Y]

replaces all occurrences of x with X and y with Y.

The interpretation of state terms gives the state in which the propositions

involved in interpreting function terms should be evaluated.

CHAPTER 3. ABSTRACT CONTROL RULES 81

Ip[Nnow](SqSts, G) = sg

Ip[NEXT(S)](SqSts,G) = siy1 where s; = Ip[S](SqSts, G)
Ip[coAL](SqSts,G) = G

The interpretation function for the remainder of the language is given by

Ip|X ==Y](SqSts,G) = TRUE
iff Ip[X](SqSts, G) equals Ip[Y](SqSts, G)
Ip[X € Y](S¢Sts,G) = TRUE
iff Ip[X](SqSts,G) is in Ip[Y](SqSts, G)
Ip[X AY](S¢Sts,G) = TRUE
iff Ip[X](S¢Sts, G) and Ip[Y](SqSts,G)
Ip[-X](SqSts,G) = TRUE
iff it is not the case that Ip[X](SqSts, G)
Ip[VopjectX : Cm . P](SqSts,G) = TRUE
iff Ip[P[X/4]](S¢Sts, G) is TRUE for all ¢t € F(C,,)
Ip[3objectX : Cpm . P}(SqSts,G) = TRUE
iff Ip[P[X/t]](SqSts,G) is TRUE for some t € F(Cy,)
Ip[VeiusterC - P}(SqSts,G) = TRUE
iff Ip[P[C/C]](SqSts,G) is TRUE for every C € Np(C)

The semantics of the language is quite standard for a predicate logic, though
there are several points to note. Firstly, the interpretation of the terms and
specifically the function terms gives the language the power to express rela-
tionships between objects in specified states given by their state arguments.
The overloaded V operator allows not just quantification over types but also

over instances of a generic cluster and as a result must be interpreted in two

CHAPTER 3. ABSTRACT CONTROL RULES 82

different ways. As with the syntax, the logical abbreviations V and — are
accepted. NULL can be seen as a special constant value. It behaves just like

a constant value in equalities, that is, it is equal to only itself.

3.7 Prototypes Detail

Interestingly, both properties and attributes are used as the basis of functions
given in the prototypes to relate objects within a generic cluster. This is in
contrast to the use of attribute and property spaces in invariant generation
within TIM, where only the property spaces are used. Functions describe
objects or sets of objects that are related to an object z through predicates.
Where an object z is of certain generic type and has some generic behaviour
given as a property describing the predicate and argument position within that
predicate, it will have a function which describes the objects with properties
relating to the other argument positions in that predicate.

The characteristics of the functions that are used to relate objects within
generic clusters (c.f. Section 3.2.3) can be traced back to the PRSs (property
relating structures) that are used in invariant generation (c.f. Section 3.3). The
basis of the identification of identity invariants, namely the single occurrence
of properties in states given by the PRS, determines whether a function will
be single-valued or set-valued. If property P, caused the identification of a
identity invariant then the functions that relate some object z with property
P, to other objects through P will be single valued functions. For any other
property P; that did not cause the identification of a identity invariant, the
functions that relate objects z with property P; to other objects through P
will be set-valued functions.

Where z’s property P; was based on a FSM with a singleton state, functions
based on that property will always be defined. The singleton state tells us that
objects that have the property P; always have the property P;, and hence will
always be related to the other objects present in the predicate P. If in addi-
tion to this, the property P; caused the identification of an identity invariant,
functions based on the property P; will always be single-valued objects.

However, where property P; is an exchangeable property, i.e. a property

CHAPTER 3. ABSTRACT CONTROL RULES 83

that is exchanged for another in the FSM, the functions based on P; may re-
turn a NULL value. This represents the fact that in any given state, objects
that can have property P, may not have that property currently. For exam-
ple, portable objects have the exchangeable properties of being either located
at some location or contained in some carrier. Functions that describe the
location of the portable will return NULL if the portable is currently being
carried and conversely functions to describe the carrier will return NULL if
the portable is not being carried. If the property P; caused the identification of
an identity invariant, functions based on the property P; will always be single-
valued, but the NULL value may be returned. This effectively adds the spe-
cial object NULL to the set of objects that may be returned by the function.
Within a set of exchangeable properties {Fx,..., P}, 3P, . P, # NULL.
Functions based on any properties that did not cause an identity invariant
to be generated or attributes will always return a set of objects. This may
be the empty set if the object has no occurrences of the particular attribute
in the required state (in the case of a function based on an attribute), or if
the property does not hold at all for that object in the state being considered
(it the case where the function is based on an exchangeable property of the
object). For example, the attribute of a location as having some mobile or
portable located at it may return an empty set if there are no objects located
there. Note that the only case where property based functions can return a
set of objects is in the case where an object can have multiple occurrences or
a particular property in a state. In principle this allows the size of the set of
objects described to be limited to the number of occurrences of the particular

property for the type.

3.8 Domain level language

3.8.1 Abstract syntax

The domain level language used is a version of linear temporal logic presented
by Emerson {18]. The base language is a first-order language, whose elements

can describe a single state in a planning domain. The language includes con-

CHAPTER 3. ABSTRACT CONTROL RULES 84

stants from the universe of planning domain objects and predicates as well
as TRUF and FALSE. Objects can also be represented by typed variables.
Propositions in the language are predicates, populated with constants or ob-
ject variables. Propositions are formulae in the language, as are propositions
joined by standard logical connectives. The quantification of object variables
is by type. The types identified by TIM are given as sets of domain objects.

These may be named to avoid listing large sets of objects in expressions.

To the base language is added the temporal modality O (next). The base
language is extended such that if p is a temporal proposition, then QOp is a
temporal proposition (all unadorned propositions are also temporal proposi-
tions). The intuitive interpretation of (Op is that p holds in the sequence of

states succeeding the state in which (Op is asserted.

The modal operator GOAL is used to assert the inclusion of a literal in the
problem-specific goal set. The base language is extended such that if P is a
formula containing no temporal modal operators, then GOAL P is a formula.
We call this a weak GOAL modality, as it does not bind tightly to a single
proposition but instead can be used to qualify any atemporal formula. A
strong GOAL modality would be such that if p is a proposition, then GOAL p

is a formula. This decision is discussed further in Sections 3.8.3 and 3.10.1.

The set of formulae in the domain level language is given by the following

rules:

1. If p is a predicate of ¢ arguments in P, the universe of domain predicates,
and {z1,...,z;} are object variables from O, the universe of domain objects,
or object variables then p(z,, ..., z;) is an atomic formula, as are the variables
TRUFE and FALSE. Atomic formulae are also temporal formulae.

2. If P and @ are formulae then P A @ and —P are formulae.
3. If P is a temporal formula then (P is a temporal formula.

4. If P is a formula containing no temporal modalities then GOAL P is a

formula.

5. If P is a formula, z is an object variable and O is an object type then
VobjectZ @ O . P is a formula.

V and — are accepted as abbreviations under the standard definitions.

CHAPTER 3. ABSTRACT CONTROL RULES 85

3.8.2 Semantics

In order to evaluate formulae in the domain level language with respect to a
plan execution trace, the semantics of the language must be given. A basic
standard semantics, such as that given by Emerson [18], is described by the
following interpretation rules over the language specified in Section 3.8.1. Let
Sg¢Sts be an infinite sequence of world states {sg, s1,...}, G be the problem
specific goal set, P be an unadorned proposition, f and g be formulae in the

extended language and O be a set of domain constants.

() kp TRUE =TRUE

() Ep FALSE = FALSE

() Ep Piffsy =P

(SqSts,G) Ep fAgiff (S¢Sts,G) =p f and (SqSts,G) =p g

() Ep ~f iff it is not the case that (S¢Sts,G) Ep f

() Ep Yz : O.fiff (S¢Sts,G) =p f[z/o] forallo € O
() Ep Of iff (tail(SqSts),G) =p f

(SqSts,G) Ep coAL fif G f

The function tail is defined in a standard manner as
tail(z : zs) = zs (3.2)

The semantics use a modified version of entailment, namely |=p. This is to
reflect the fact that instead of standard entailment of an expression by a single
state we are dealing with a tuple composed of a sequence of states (the plan
trajectory) and a single state (the goal set). =p does use standard entailment
on single states, the particular state being dictated by the mode in which the
expression is qualified. As with the syntax, the logical abbreviations V and —
are accepted.

CHAPTER 3. ABSTRACT CONTROL RULES 86

3.8.3 Strong versus weak interpretation of the goal modal-

ity

There are two possible ways in which we can interpret the GOAL modality
in the context of the domain entailment. The first option is to allow only
literals to be adorned with the GOAL modal operator, i.e. a strong GOAL.
This is dictated by the syntax of the language but would manifest itself in the

semantics as

(S¢Sts,G) =p GOAL P iff PeG

The alternative is to use a weak GOAL, i.e. the modality can qualify any

atemporal expression. This would manifest itself in the semantics as

(SqSts,G) Ep GOAL Piff G = P

Notice that the entailment used in the interpretation of the weak GOAL

would become simple set membership under a strong GOAL modality, since

G = P where P is a single proposition iff P € G

Aside from the fact that the use of a strong GOAL gives us a subset of the
language provided if a weak GOAL is used, the decision has an impact on the
proof contained in Section 3.10. Further discussion on the GOAL modality can
be found in Section 3.10.1.

Domain level expressions are obtained from abstract level expressions through
the instantiation process. Instantiation provides us with the domain-specific
versions of the abstract expressions. Figure 3.4 shows how the languages re-
late to each other through the processes of interpretation, instantiation and

evaluation.

CHAPTER 3. ABSTRACT CONTROL RULES 87

Generic control

rule logic

Instantiation

Interpretation
of abstract
language

Domain level
language

Evaluation of domain

level language with

respect to plan
Truth value

trajectory

Figure 3.4: Language relation

3.9 Instantiation

Instantiation is the process by which an abstract control rule is specialised and
results in a domain-specific control rule. This gives the rule in a form that can
be evaluated in a concrete domain according to the semantics of the domain
level language. As a result, instantiation is with respect to an instance of the
cluster that occurs in that concrete domain.

The process of instantiation is achieved using the two functions supplied by
TIM to give the realisation of the types and functions involved in the expression
while preserving the logical structure. The instantiation procedure is defined
over the language specified in Section 3.6.2.

instp[Vewster C . Bl = J\ instp[B[C/C]] for all C € Np(C)

CHAPTER 3. ABSTRACT CONTROL RULES 88

instp] VobjetX : Cr . B] = VX :F(Cr).instp[B]
instp[TovjectX : Cr . Bl = 3X : F(Cr).instp[B]
instp[AA B] = (instp[A]) A (instp[B])
instp[~B] = -(instp[B])
instp[X.fer (S) == Y] = instp[S (F(fer)lz/X,y/Y])]
for equalities using a function term
instp[X ==Y] = X ==
where X and Y are constants

instplY € X.fer (S)] = instp[S (F(fer)[z/X,y/Y))]

(again, the auxiliary logical operators — and V are accepted, being defined by
the — and A operators)
The construction of modal operators is also handled by the instantiation

function:

instp[NOW P] = P
instp[succ(S) P] = Ol(instp[S P])
instp[GOAL P] = GOAL P

Notice that the Ve instantiates a conjunction of the instantiations of its
body for all instances of the cluster found in the domain. As mentioned in
Section 3.5.2, we will consider only examples where a cluster appears at most
once in a domain. This decision affects only the demonstration of the instan-
tiation process by example, not the process itself which is robust to multiple
instances.

Let us consider an example, through the instantiation of the control strat-

egy of never moving a safe portable from its goal location. This is expressed
as a GCR as

vclusterc' : SafePortableCluster VobjectX : CSafePortable VobjectY : CLocation

CHAPTER 3. ABSTRACT CONTROL RULES 89

X'atCSa.fePortable (NOW) = Y A X'atCSafePortable (GOAL) = Y

- X'atCSafePortable (NEXT) = Y (3'3)

Given a domain D in which TIM has identified an instance C of the safe

portable cluster with the following types.

',F(CSafePortable) = {Ob]].,ObJQ,Ob]3}
f(CLocation) = {lOC].,lOCZ}

TIM also provides the binding function that tells us how to interpret the
function terms used

F(a‘tCSafePortab[e) = SitEd(I : CSafePortable, y: CLocation)[x, y]

The first stage of instantiation is to apply the domain specific instp function
to the expression 3.3. This yields

/\ inStD ﬂvobjectX : CSafePortable VobjectY : CLocatizm
X'atcSafePartable (NOW) = Y A X'a'tcSafePortable (GOAL) = Y
— X.teg, oportanie (NEXT) = Y] for all C in Np(C)

Assuming there is only one unique C in Np(C), the outer conjunction becomes

a single term as in

instp [[VobjectX : CSafePortable VobjectY : ClLocation
X'atCSafePorta.ble (NOW) = Y A X'atCSafePortable (GOAL) = Y

- X'atCSafePortable (NEXT) = Y]]

giving

CHAPTER 3. ABSTRACT CONTROL RULES 90

vobjectX . -,F(CSafePortable) Vobjecty .]:(CLocation)
7:‘nStDI]:)('a'tCSaje}:’ov‘tul'ole (NOW) = Y A X'atcSa}'ePortable (GOAL) = Y

— X'atCSafePorta.ble (NEXT) = Y]]

Inside the body of the expression, the logical structure is preserved and
instp is propagated to the terms.

YObjectX . f(CSafePortable) vobjecty . f(CLocation
inStD[IX'atCSafePortable (NOW) = Y]I N ZnStD ’[X'atCSafePortable (GOAL) = Y]]

- ILnStD I]:X'a’tcSachartnble (NEXT) = Y]I

The grounding function, F, that TIM provides alongside the identification
of the instance of the cluster gives us the propositional expression representing
the function for the type Cssfeportabie (this may be a truth value as discussed
in 3.5.2). According to instp, the base object of the function term is given as
the first argument to the propositional expression and the other argument to
the predicate (equality or set membership) is given as the second argument.
The first equality in the example is instantiated as

inStDI[(X'a’tCSafePortable (NOW) == Y)Il
= ZnStD IINOW f(atCSafePortuble)[x/X7 y/ Y]]]

= Sited(x : CSafePortable; y: CLocation)[m/X, y/Y]
= sited(X,Y)

After all the function terms are instantiated, the expression becomes

vobject)(. f(CSafePortable) VY : f(CLocation)
sited(X,Y) N GOAL sited(X,Y) - NEXT sited(X,Y)

CHAPTER 3. ABSTRACT CONTROL RULES 91

An expression that is fully instantiated can then be evaluated according to
the interpretation function for the domain level language (Section 3.8), with
respect to a plan trajectory in the concrete domain. This yields a truth value
that represents whether or not the plan trajectory adheres to the control rule.

The process of instantiation is very similar to the interpretation of abstract
level expressions, but does not expand quantifications or check the entailment
of the resulting expression (it having no plan trajectory against which to be
evaluated). The interpretation of the abstract level language provides its se-
mantics, but in the implementation of this work control rules are instantiated

before they are evaluated.

3.10 Proof

The processes of interpretation of an expression in the abstract language and of
instantiation followed by interpretation of the resulting domain level expression
can be shown to be equivalent. Figure 3.5 illustrates the equivalence to be
proved. The proof is reminiscent in structure of proofs showing the equivalence
of normal forms.

The proof will follow a basic inductive proof on the structure of the language
(whose grammar is given in Section 3.6.2), where we show the equivalence for
the base cases and then extend that equivalence for each of the step cases.
The base cases will show the equivalence of the primitive predicates, and the
step cases will be the language constructs that form expressions from those
predicates. The nature of the state argument means that an auxiliary induc-
tive proof must be performed to demonstrate the equivalence of the primitive
predicates.

Ip[f](SqSts,G) represents the interpretation of a GCRL expression with
respect to a plan execution trace of goal condition G and states SqSts =
{s0, 81, 82, - - .}. instp[f] gives the domain instantiation of f, and (S¢Sts, G) Ep
g is the domain entailment of an expression g in the domain level language
(see 3.8).

CHAPTER 3. ABSTRACT CONTROL RULES

92

Generic control

Truth value

rule logic .
instp
Interpretation e Instantiation
of GCRL followed by
expression 'éva}uation
Ip, E Domain level

language

Sq«‘Sfts;‘G;j. Ep

Figure 3.5: Evaluation approaches for abstract level expressions

The proof requires the following lemma.

Lemma 1.

V states S,V 1
Ifs
and Ip[S'](SqSts, G)
then Ip[S'](tail(SqSts), G)

= NEXT(S')

i
Y2
-

Sit1

This lemma is proved by induction on the structure of the state argument S'.

The base case considers the state argument “Now”.

Base Case

s =
Ip[Now](SqSts,G) =

NOW

S0

CHAPTER 3. ABSTRACT CONTROL RULES 93

The definition of the function tail 3.2 allows us to prove the base case, given
SqSts = {sq, 51, 82, S3,- - - }-

tail(SqSts) = {s1,82,83,...}
Ip[Now](tail(SqSts),G) = s

Inductive case

S = NExT(S")

Inductive hypothesis

VS'Vi
If S = NeEXT(S")
and Ip[S"](Sq¢Sts,G) = s;
then Ip[S"](tail(SqSts),G) = si4q

Assuming Ip[S’](SqSts, G) = S; = Ip[NEXT(S")](S¢Sts, G) = s;

Ip[S"](SqSts,G) = s
(Definition of Ip)
Ip[S")(tail(SqSts),G) = s;
(Inductive hypothesis)
Ip[NEXT(S")](tail(SqSts),G) = sin1
(]

The proof obligation we are undertaking is to show the equivalence of the

CHAPTER 3. ABSTRACT CONTROL RULES 94

interpretation of an expression in GCRL and the result of instantiation followed

by the entailment of the domain level expression created can be stated as

Ip[f1(SqSts,G) = TRUE
iff
(SqSts,G) Ep instp[f]

There are two primitive predicates in GCRL, namely equality and set mem-
bership. These will be dealt with first.

Base case 1 (Equality) Atoms are propositions of the form
X.fer(S) ==Y

From the syntax of GCRL, Y must be a simple object (rather than a function

term).

IplX.for () == Y(SqSts,G) = Ip[X.for(S)}(SaSts, G) = Y
= Z=Y
where
Ip[S1(SqSts,G) | F(fer)lz/X,y/Z]
(remembering that F(fc,)is the propositional expression with at most
two free variables that provides the domain level manifestation of the
relationship represented by the function (fc,). Also note that there must
only be one unique Z that satisfies the entailment.)
= TRUE
iff
Ip[S(SqSts,G) = Flicp)lz/X,y/Y]
(by the equivalence of Y and Z)

CHAPTER 3. ABSTRACT CONTROL RULES

95

We must now show that this dependency holds for the three cases of the state

argument S, namely S = NOW, S = GOAL and S = NEXT(S").
Case S = NOW

Ip[Now)(S¢Sts,G) = F(fer)lz/X,y/Y]
sk FUe)ls/Xu/Y)
(definition of Ip)
iff
(8¢5ts,G) Ep F(for)lz/X,y/Y]
(since (S¢Sts,G) =p P > 59 | P)
iff
(S¢Sts,G) Ep instp[NOWF(fe,)[z/X,y/Y]]

(since instp[NOWP] = P)

Case S = GOAL, where F(fc,)[z/X,y/Y] is a literal.

Ip[coar](SqSts,G) | Flfer)lz/X,y/Y]
G F Fllo)z/X,y/Y]
(definition of Ip)
(SeSts,G) p GOAL F(fo,)lz/X,y/Y]
(using a weak version of the GOAL modality,
(S¢Sts,G) Ep GOALP - GEP
c.f. Section 3.10.1)

(SqSts,G) Ep instp[GOAL F(fcr)[z/X,y/Y]]

(since instp[GOAL P] = GOAL P)

Case S = NEXT(S')

Ip[NexT(89)](SgSts,G) | Flfer)lz/X,y/Y]

CHAPTER 3. ABSTRACT CONTROL RULES 96

sitt | Flfor)lz/X,y/Y]
(where Ip[S'] = s:)
Ip[S')(tail(SqSts, G)) = Flfor)lz/X,y/Y]
(lemma 1)
(tail(SqSts,G)) Ep instp[S'F(fer)[z/X,y/Y]]
(by application of the inductive hypothesis of the whole proof obligation)
(S4Sts,G) p insto[NEXT(S)F(for)la/X, /Y]]

Having proved for each case of the state argument, we have now proved

IoX.for (5) == Y](SeSts, G)
iff
(SqSts,G) Ep instp]S F(fer)[X/x,Y/y]]

Base Case 2 (Set membership) Atoms are propositions of the form

Ye XfCT(S)

Again, from the syntax of GCRL, Y must be a simple object or simple object
variable.

IplY € Cp(9)](SqSts,G) = Y € Ip[X.fc . (S)](SqSts, Q)

= YeZ

where
{Z'|Ip[S1(SqSts,G) E Flfer)lz/X,y/Z'}
= TRUFE
iff
Ip[S](SqSts,G) E F(for)lz/X,y/Y]

(by the definition of the set Z)

CHAPTER 3. ABSTRACT CONTROL RULES 97

The proof concerning the three cases of state argument does not require re-
peating, as we have already (see above) proved

Ip[Y € Cr(S)](SqSts, G)
iff
Ip[S1(SqSts,G) = F(fer)lz/X,y/Y]

We have now proved

Ip[f](S¢Sts, G)
iff
(SqSts,G) [Ep instp[f]

for f = atomic propositions in GCRL. The dependency remains to be shown

for the remaining language constructs.

Negation We need to prove:

Ip[-P](SqSts,G) = TRUE
iff
(SqSts,G) [Ep instp[—P]

Ip[-P](Sq¢Sts,G) = TRUE
iff it is not the case that
Ip[P](SqSts, G)
iff it is not the case that
(SqSts, Q) [=p instp[P]
(inductive hypothesis)
iff

CHAPTER 3. ABSTRACT CONTROL RULES 98

(SqSts,G) Ep instp[—P]

Conjunction We need to prove:

Ip[P A Q](S¢Sts,G) = TRUE
iff
(SqSts,G) kEp instp[P A Q]

Ip[P A Q](S¢Sts,G) = TRUE
iff
Ip[P)(SqSts, G) and Ip[Q)(S¢Sts, G)
(definition of Ip)
iff
(SqSts,G) Ep instp[P] and instp[Q]
(inductive hypothesis)
iff
(SqSts,G) Ep instp[P] Ainstp[Q]
iff
(Sq¢Sts,G) Ep instp[P AQ]

Quantification Quantification appears in GCRL in three forms, so we must

tackle each one. The first is universal quantification over objects. To prove:

IplvX : C.P](SqSts,G) = TRUE
iff
(SqSts,G) Ep instp[VX : Cp.P]

CHAPTER 3. ABSTRACT CONTROL RULES

Ip[vX : Cn.P](SqSts, G)
iff
Ip[P[X/t]](SqSts, Q) for all t € F(Cp,)

iff

(SqSts,G) [Ep instp[P[X/t]] for all t € F(Cp)

(inductive hypothesis)

iff

(S¢Sts,G) Ep VX :Cp.instp[P]
iff

(SgSts,G) Ep instp[VX : Cn.P]

Next comes existential quantification over objects. To prove:

Ip[3X : C.P)(SqSts,G) = TRUE
iff
(qutS,G) I=D znstD[[EiX CmP]‘

Ip[3X : C,,.P](SqSts, G)
iff
Ip[P[X/t]](SqSts, G) for some t € F(Cy,)

iff

(Sq¢Sts,G) [Ep instp[P[X/t]] for some t € F(C,,)

(inductive hypothesis)

iff

(S¢Sts,G) Ep 3IX :Cp.instp[P]
ift

99

CHAPTER 3. ABSTRACT CONTROL RULES 100

(SqSts,G@) kEp instp[dX : Cp.P]
Finally we reach universal quantification over generic clusters. To prove:

Ip[VC.P](SqSts,G) = TRUE
iff
(SqSts,G) Ep instp[VC.P]

Ip[VC.P}(SqSts, G)
iff
Ip[P[C/C]}(SqSts, G) for every C € Np(C)
iff
(SqSts,G) k=p instp[P[C/C]] for every C € Np(C)
(inductive hypothesis)

iff

(SqSts,G) Ep J\instp[VC.P] for all C € Np(C)
iff

(S¢Sts,G) Ep instp[VC.P]

a

3.10.1 Subtleties of the goal modality

As was mentioned in 2.3.2, the treatment of the GOAL modality involves cer-
tain subtleties. The strong goal modality presents a much easier task when
interpreting expressions in the domain level language. We simply look for in-
clusion in the specified goal set of any particular proposition. However, in the
context of proving the equivalence of the two interpretation approaches for
expressions in GCRL, we are posed with a problem. The strong goal modality
does not allow us to show the equivalence of the atomic predicates. It is the
use of a weak goal that allows the following step in the proof:

CHAPTER 3. ABSTRACT CONTROL RULES ' 101

G E Flfe)z/X,y/Y]
(8¢Sts,G) Ep GOAL F(fer)lz/X,y/Y]

This step would not be provable in the general case if the semantics of the
domain level language were given with a strong goal modality. However, as
long as F(fc,)[z/X,y/Y]) evaluates to a single proposition in a domain, there
is no difference in practice between the strong and weak versions of the goal
modality.

G k= P iff P € G where P is a single proposition

This means that the proof given above holds for all domains in which for all
function terms X.fc,.(GOAL), F(fe,)[z/X,y/Y]) is a single proposition. The
fact that in GCRL state qualification is only given for function terms means

that instp never results in the body of a GOAL expression being more complex
than the result of F(fe,)[z/X,y/Y]).

3.11 Chapter Summary

In this chapter the architecture of a system that uses generic control rules has
been described and each of the components considered. This has necessitated
various definitions. The generic cluster prototype wass introduced to represent
clusters at an abstract level. A syntax and semantics was given for prototypes
and the association between features of generic clusters and the structures that
appear as part of the generic type identification process was examined.

A language in which control rules can be expressed (gerneric control rule
logic, or GCRL) was declared. This language is a temporal logic whose terms
are comparisons between features of a generic cluster. A domain level language
in which domain specific instances of control rules can be expressed was iden-
tified, and an instantiation procedure which converts GCRL epressions into

their domain specific instances was provided. The equivalence between the

CHAPTER 3. ABSTRACT CONTROL RULES 102

interpretation of GCRL expressions and the combined processes of instantia-
tion followed by interpretation (of the resulting domain level expression) was
proven.

Classifications were proposed to describe both generic control rules and
instances of generic clusters. These classifications enable us to be more specific

in stating which control rules apply to which instances of generic clusters.

Chapter 4

Issues concerning generic

control rule logic

4.1 Unification of terms

The comparisons used in GCRL (‘=="and ‘€’) provide forms of unification.
However, only a restricted form of unification is used in that the structure of
the terms is not matched. In that sense, unification is used only as substitution.
Unification as substitution is the process by which a variable is bound to either

a value or the same value as another variable.

In GCRL the right hand side of the == operator and the left hand side
of the € operator are forced to be object variables. It is the value of these
variables that the other terms in the comparisons are bound to. The right
hand side of the == operator may be an object variable or a function term
representing a partial function. The right hand side of the € operator may be
a function term representing a set-valued partial function. The point of the
comparisons is to bind the objects described by the function term to the object
given as the other argument of the comparison, or in the case where function
terms are not used, to bind the values of object variables to be the same.

An interesting point to note is that the terms involved in the unification
operators can have a temporal aspect. This allows us to unify objects that

may be temporally separated, i.e., the unification of objects that may be in

103

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 104

different states. In fact it is this temporal aspect of objects that sets GCRL
apart. In contrast to other forms of temporal logic, such as LTL, that allow
only temporal qualification of propositions, in GCRL we can talk about a
particular object in a particular state.

4.1.1 The Implicit Variable

Though we do not allow the unification of two function terms, the subject
provides some issues worth discussing. Allowing unification of two function
terms has the subtlety of implicitly introducing a variable. The unification
describes the very fact that its two arguments express some relationship with
the same implicit object. The variable introduced is the object to which the
roots of the function terms are related through their respective functions. Let

us take the equality

X.atr, (NoW) == X.atr, (GOAL) (4.1)

This represents the fact that some object X of type Tx is related to the
same location argument in both the current and goal states (importantly with-
out naming or referencing that location object). In the evaluation of the terms
at unification there would be an additional object involved (which would relate
to X in both the current and goal states). The expression 4.1 is equivalent to

the slightly longer

Y . X.atr, (Now) == Y A X.atp, (GOAL) == (4.2)

What was an implicit variable has been introduced accordingly. It might be
supposed that universal quantification of the implicit variable would be used
in the evaluation of set membership (as the function term on the right hand

side must be set-valued) as in

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 105

X.atr, (Now) € Y.inkp, (NOw) (4.3)

(where Y is a location object and the set-valued function link returns the
locations accessible from Y) However, expression 4.3 describes the states in
which X is situated at any of the locations accessible from Y, not the states
in which X is situated at all of those locations. In the evaluation of the set
membership at unification, a third object (the unnamed location) must be

introduced. This means expression 4.3 is equivalent to

3Z . X.atr, (NOW) == ZAZ € Ylinkr, (Now) (4.4)

The implicit variable is introduced existentially as the term X.atr, (NOW)
must only refer to one object. The decision not to allow comparisons between
two function terms was made precisely to make explicit these subtleties and

does not decrease the expressive power of the language.

An aside on V and 3

Unification involving two function application terms introduces a variable ex-
istentially (because of the way that unification is defined). Likewise, if that
variable is explicitly introduced then it is done so existentially. However, as
is evident in many of the examples in this thesis, the variable that is used
to name the object referred to by a function term is introduced universally.
This is a subtlety relating to implication, which is used in most of the control
rules in this work to enforce the conditions described. If a variable is intro-
duced existentially within the antecedent of an implication, its quantification
can be brought outside the implication by changing it to universal quantifica-
tion. This process groups the quantification of variables at the beginning of
the expression and leaves the body without nested quantifiers. Both from a

implementational and conceptual point of view, this is a simplification.

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 106

4.1.2 Relic Predicates

The decision not to allow equality between two function terms had the addi-
tional benefit of avoiding the unnecessary repetition of predicates in instanti-
ated expressions. The term relic predicate refers to these repeated predicates.
In order to demonstrate how relic predicates occur, the instantiation of equal-
ity must be examined in both cases (between two function terms and between
a function term and an object variable). The control strategy “never move a
safe portable object from its goal location” will be used in this example. Let

us first look at the case without equality between function terms.

VX : T, .VY : T, . X.atg,(Now) ==Y A X.atr,(GOAL) ==
— X.at7, (NEXT) == Y (4.5)

This will instantiate to something of the form

at(p, ¢) NGOAL at(p, q) = NEXT at(p, q) (4.6)

If we allow the generic control rule to state equality between function terms
then the instantiation is slightly different. This is due to the introduction of
the implicit variable (c.f. Section 4.1.1). Allowing functor equality, the above
GCR would be written

VX : T,. Xaty,(NOoW) == X.atr, (GOAL) (4.7)

— X.atr, (NEXT) == X.at7, (GOAL) (4.8)

(N.B. The final term in expression 4.7 (X.atz, (GOAL)) could be replaced by
X.atr, (NOW) as equality of these terms is stated in the antecedent. In practice,
the use of the GOAL state argument may be more efficient. This is because the
set of goal facts is accessible throughout runtime (from the problem instance),

whereas X.atr, (NOW) would need to be evaluated for each node in the search

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 107

space.) Expression 4.7 will instantiate to something of the form

at(p, q) NGOAL (at(p, q)) = NEXT (at(p, q)) N GOAL (at(p, q)) (4.9)

Notice the repetition of the term GOAL (at(p, ¢)). It is not required in the
consequent as part of the functionality of the control rule, rather it appears
there as a relic of instantiation. In particular it is a direct result of allow-
ing equality between two function terms where the object they both refer to
has not been explicitly introduced. However, it should be pointed out that
whether implicit or explicit variables are used, the resulting expressions are
both logically equivalent.

The term X.atr, (GOAL) is needed to ensure the location object in the
subsequent state (described by X.atr,(NEXT)) is bound to the same value as
in the current and goal states (expressed in the antecedent). However, using
the term X.atr, (GOAL) commits to evaluation into a predicate.

By restricting the equality to only one function term, this situation can be
avoided. A variable must be introduced and bound to the function term and
that variable can then be used throughout the expression. This removes the
necessity to repeat function terms in order to reference the same value and

results in evaluating the function terms to predicates only when necessary (as
in 4.5 and 4.6).

4.1.3 Terms and comparisons

The object from which a function is applied (along with a state argument)
shall be referred to as the root object of a function term. Objects that appear
without function applications will be referred to as simple objects.

Though the idea of comparison between objects (using either equality or
set membership) through function terms is easy to comprehend, the process in-
volves careful consideration to be totally understood. No novel or unusual way
of interpreting the comparisons themselves is proposed, rather how to apply
them in the context of terms that are more complex than simple objects. What

and when we are comparing the objects referred to is of particular interest.

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 108

Take the equality
Xp'(S) == (4.10)

This states that the object related to X through the relationship described
by the function p’ in the state S is equal to the object Y. Likewise the set

membership expression
X € Yp'(S" (4.11)

states that X is in the set of objects related to Y through the relationship
described by the function p” in the state S'.
Using the definition 3.1, 4.10 refers to the fact

p(X, Y) (4.12)

being in the state S. This will obviously have an associated boolean value
representing whether it actually ¢s in the state description. Likewise, using
the definition 3.1, 4.11 refers to the fact

p(X, Y) (4.13)

being in the state S'.

The evaluation of a comparison involving a function term and an object
corresponds to the membership in the specified state of the expression that
relates the objects concerned through the predicate given by the function.
Evaluation is really a two step process, as is shown in the examples 4.10 and
4.11 above. The first stage is to create an expression whose arguments are
bound to the right objects. The function determines the manifestation of the
propositional expression P (Section 3.5.2). The function term is then bound to
the simple object, with the effect of substituting the free variables in P with the
root of the function term and the simple object. Were the expression P to be
an expression with more than two free variables, for example a predicate with
more than two arguments, the other arguments would need to be existentially
quantified over all values of the correct type. However, the responsibility for
this lies with the interpretation of the function, which according to this work

must return an expression with at most two free variables.

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LocIic 109

Having evaluated the relation between the objects involved to create an
expression in the language of the domain, the next stage of the evaluation looks
at entailment. We look for the entailment of the expression P in the complete
state description, and yields TRUE or FALSE. The state in which we look
for entailment is given by the state argument of the function application term.

Simple objects play a different role to function application terms in com-
parisons. Simple objects are used to refer to domain objects by their identity
only. They are not evaluated in a relation or a state; an object is a constant ir-
respective of state or the predicates it is involved in. The objects referenced by
function terms are such objects, but they are identified by their relationships
and importantly the state qualification of those relationships. The objects
themselves are still constants, but instead of being identified by name they are
identified by their relation to other named objects.

A comparison cannot be evaluated without being given the context in which
it is said to hold; i.e. the relevant sequence of states. The only states that
can be expressed in the language are the current state, future states (using the
NEXT modal operator on relations in the current state) and the goal state.
The goal state is known throughout solution generation, but the current and
(proposed) future states are specific to the particular plan trajectory at a given
point.

Comparisons serve the purpose of identifying relations in a state with par-
ticular bindings. The control rule as a whole can be thought of as describing
a specific pattern of relations between a set of objects, with advice on how to
preserve or change that pattern in future states. The control rules can express
strategies quantified over both a domain’s objects as well as across domains
themselves.

4.2 Persistent Relations

Persistence of generic relations can be expressed in GCRs. By stating that a
particular relation r holds between objects a and b in the current state and
in the next state (through the function f that describes the relation r), the

persistence of that relation is enforced for the entire plan being constructed (a

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 110

rule is quantified over all ’current’ nodes in a plan).

...a.f(NOW) =bAa.f(NEXT)=b...

This is very reminiscent of the temporal modality O (always), though we do
not have an explicit analogous construct. The notion of persistence is ex-
pressed inductively, the base case of which is the assertion of persistence from
the current state to its successor state. The inductive step is implicit in the
quantification of a rule over all states in the plan trajectory (every state in the
plan will be considered the current state at the point of extending the plan
from that state).

The semantics of O as given in Emerson’s LTL as z = Op < Vj(z7 E p)
(Emerson actually uses G to represent the always operator O), where p is a
formula in LTL. In GCRL, we can express £ = Or, where r is a relationship

between objects of generic types.

We can also express the fact that once a particular relation 7 holds between
objects, that relation persists. This is achieved by using an implication instead

of a conjunction.

...a.f(NOW) =b — a.f(NEXT) =b...

A restricted version of the linear temporal modality U (until) can be ex-
pressed through the persistence of generic relations. By a disjunction of a
persistent relation r between objects a and b by function f and some other
relation r’ between objects a’ and b’ by function f’, we can express the notion
that either now or in some future state, ' holds between o’ and b’ and until
that state, r holds between a and b.

... (a.f(NOW) = b A (a.f(NEXT) = bV a'.f(NEXT) = b)) Vd'.f(Now) =¥ ...
Notice that it is not sufficient to state

...a.f(NOW) = b A (a.f(NEXT) = bV ad'.f (NEXT) == b') ...

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 111

as this does not allow the relation 7’ to hold in the first node of the search space.
This example actually states a subtly different condition; that the relation r
holds and persists until the relation 7' holds (if it in fact ever does) i.e. there

must be a state in which r holds before some state in which 7’ holds.

The restricted version of U that we can express in GCRL is weaker than
its true semantics in LTL. In LTL, z | (pUq) « Jj(z7 E gAYk < j(z*F E p))
where z is the timeline and z* is the ith state in that timeline. This asserts
that there must be a future state z7 in which p is true and that in all states
preceding 27, q is true. The GCRL notion of r U7’ is weaker in the sense that
it cannot assert that a particular relation 7’ necessarily holds in some future
state. The most it can express is that if 7' holds in some future state then r
holds up till that state, or the relation r persists. z |= (rUr') & (Jj(«7 E
'Y AVk(k < jAzF |=1)) Vv VE(2F =)

In fact the weaker version of U is what Emerson describes as weak until or

unless (denoted as Uy). The semantics are given as
zEpUyq e Vi((Vhk <jAzh = —q) = 27 =p)

Within his PLTL (propositional linear temporal logic), Emerson describes
the relationship between weak and strong until (Us) as

pUsp = pUy ¢qAOg
pUy p = pUsgqVilp
pU3zqVO(pA —q)

In linear temporal logic, the modalities O and < (eventually) are equivalent
to until assertions [18], though they are employed as intuitive short versions.
In particular, Oz = TRUE Uz and Oz = 2 U FALSE. Through the use
of persistent relations, O and Uy statements can be expressed in GCRL. It
might therefore seem natural that & expressions were also possible within the
language, as reformulations of always or until expressions. This, however, is

not the case. Because we do not have a way to express & we can not express

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 112

strong until.

The reason we cannot express < is to do with the way that the lan-
guage uses the state argument of a function term. We can refer to, through
the use of nested successor functions, relationships that hold in states be-
yond the immediate successor state. These states must be explicitly specified
(for example, the third successor state is referenced by the state argument
NEXT(NEXT(NEXT))). In order to express ¢, we would need to existentially
quantify over the number of nested ‘NEXT’s in an expression, to denote that
a relationship holds in some future state. This is a critical difference between
GCRL and other proposed temporal logics such as LTL.

Expressions are evaluated at the point of selecting an action to progress the
plan from its current state to its next state. Rules that refer to relationships
at most one state into the future need not be progressed (at evaluation, a
candidate successor state is known), though a progression algorithm would
need to be employed to maintain the semantics of expressions across sequences
of states beyond the immediate successor.

4.3 Hierarchies of generic clusters

Having introduced the ideas of inclusive and exclusive instances of generic
clusters in Section 3.4, we are now in a position to discuss their implications
on hierarchies of generic clusters.

It is evident that hierarchies of generic clusters do exist. There are several
simple examples that demonstrate this. A cluster C' involving mobile objects
on a map of locations can be seen to be a base cluster for the derived cluster C’
in which there are portables that can be transported by those mobile objects.
C' in turn can be seen as a base cluster for the derived cluster C” in which the
portable objects are identified as safe portables. The interesting question here
is that of the applicability of rules to the derived cluster that were formulated
for the base cluster.

Derived clusters can be seen to be exclusive or inclusive with respect to the
base cluster of which they are an instance. A derived cluster C' is exclusive

with respect to C if and only if the generic relationships of C do not appear in

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 113

the preconditions or effects of any of the operators that are additional generic
operators in C'. Failing that condition, C' is inclusive with respect to C (i.e.
C' includes the behaviour of C' but has some behaviours in addition that may
affect the behaviour derived from C).

A point worth emphasising here is that the inclusivity or exclusivity of a
derived cluster with respect to a base cluster is independent from the inclusivity
or exclusivity of the particular instantiation of a cluster in a domain. An
instance of a cluster in a domain may be described as an inclusive or exclusive
instance, according to its characteristics (see Section 3.4). This classification is
distinct from the relationship between abstract forms of clusters, at which level
one may be seen to be a derived instance of the other in either an exclusive or

inclusive fashion.

Both inclusive and exclusive rules (applicable to some base cluster C) can
be correctly applied to derived clusters if the derived clusters are exclusive
with respect to the base cluster C. This is because the derived instance only
adds behaviour that does not disrupt the behaviour described in C (for which
the rule was formulated). If, however, the derived cluster is inclusive with
respect to C, there is no guarantee that the behaviour for which the rule was
formulated will be unaffected by any additional behaviours the derived cluster
adds. In this case, it is clear that exclusive rules can not be safely employed by
the derived instance, but the case of inclusive rules is not to straight forward.

Inclusive rules rely only on the behaviour described at the cluster level,
irrespective of any additional behaviours that an instance of a cluster may
display. It should then seem that inclusive rules be applicable to clusters
derived from the cluster for which the rule was formulated.

However, having admitted the possibility that a derived instance may add
behaviours that affect the behaviour described by the base cluster, is it pos-
sible that we cannot rely on the instance to exhibit the behaviour for which
the inclusive rule was formulated? If the behaviour of the base cluster is not
exhibited by the derived cluster, it is difficult to see in what way it is a de-
rived instance. The crucial observation is that although the derived instance
may add behaviour that interacts with the behaviour inherited from the base

cluster, that inherited behaviour must be present in the derived instance. As

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 114

the definition of an inclusive rule (3.4) is based solely on the existence of the
appropriate behaviour, regardless of other behaviour that may exist for the

types involved, we can apply inclusive rules to inclusively derived clusters.

4.4 Multiple generic clusters

All of the example abstracted control strategies in this thesis are quantified over
only one generic cluster. The generic cluster provides us with an abstraction
of a set of types of objects that necessarily interact or relate to each other
in a determined fashion. It is precisely this behaviour that we have used to
construct abstractions of optimising control strategies. We have not considered
control strategies that are based on the interaction of multiple generic clusters.
There are several reasons for making this simplifying decision.

Were we to consider strategies based on multiple interacting clusters, we
would need methods of describing the relation between those clusters. The
relationships that we would need to specify are the same as those described in
Section 3.5.4 (namely the relationships required for generic type identification),
but would relate features of one generic cluster to another. The proposed
language outlined in Section 3.5.4 would in fact be able to accurately describe
the relationship between instances of generic clusters.

The extent to which generic clusters interact is closely related to the defi-
nition of exclusive and inclusive instances of clusters (c.f. Section 3.4). If the
interaction is between exclusive instances of generic clusters, the behavioural
functionality of each cluster remains unchanged and the interaction must be
between properties that the types have in addition to their generic features.
In this situation, any control strategies that were applicable to the individual
clusters would still be valid, with the scope for additional constraints based on
the compound behaviour.

Consider a domain (let us call it painted—blocksworld) which extends the
standard blocksworld domain by allowing the blocks to be painted (whether or
not they are stacked). We know from the PaintWall domain that the painted
objects can be seen as mobiles on a map of colours. The colours are identified

as locations, where a link between locations a and b is encoded as the ability

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 115

to paint over colour a with colour b [38]. As long as the stacking behaviour
of the blocks does not interfere with the painting of those blocks, we have a
domain in which there are two exclusive instances of clusters. The blocks are

both construction objects and mobile objects.

If the interaction is between inclusive instances, the only strategies we have
available are inclusive rules. By their definition, these inclusive rules are still
applicable if the cluster to which they pertain is affected by other behaviour,
be that in the form of other recognised generic behaviour or not. The de-
pots domain [39] is an example of of the interaction between two inclusive
instances of generic types. In this domain, crates are transported on trucks.
In this respect the crates can be seen to be portable objects. On top of that
behaviour, the crates can be stacked (either on the lorry or in the depot).
This behaviour is that of a construction type (as with blocksworld, where the
blocks are construction materials and the compound objects are the towers).
Note that although the depots domain was designed to sythesise the elements
of blocksworld and transportation domains, the existing generic type identi-
fication machinery does not identify the crates as portables as only ezclusive
instances of generic clusters are recognised (the fact that they display addi-

tional behaviour means that the crates are an inclustve instance of a portable

type).

An interesting point raised in Section 3.4 is that we can give tighter con-
straints with an exclusive instance than with an inclusive one. This is because
we know that the behaviour outlined by the generic cluster is unaffected in the
instance, whereas all we can say about an inclusive instance is that it includes
certain generic behaviour. With this in mind, it could be argued that an exclu-
sive instance of a ‘compound’ generic cluster (a cluster describing the overall
behaviour of interacting constituent clusters) would be of greater use than in-
clusive instances of two or more interacting clusters. This line of argument
suggests the creation of new compound clusters whenever we have interacting
clusters, but in the general case this would result in an unmanageably large
collection of clusters. The exploration of the interaction of generic clusters is

an important and interesting direction for further research.

v S it 7 8

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 116

4.5 Binary Predicates

There were several factors contributing to the restriction of the predicates dealt
with to be at most binary.

Domains that contain predicates with arities greater than two can be trans-
formed into equivalent domains in which all the predicates are at most binary
[54].

Instantiating a function term results in a propositional expression P with
at most two free variables. This is because the function term describes a
relationship between two objects, namely the base object of the function term
(z in z.fc, (S)) and the object that the function term represents. In the case
of a set-valued function term, the function term denotes a binary relationship
between the base object of the function term and each of the objects in the
set that the function term represents. These binary relationships are reflected

by the binary comparison operators.

4.5.1 Two free variables

As has been discussed (3.5.2), the binding function F that is supplied by
TIM yields a propositional expression with at most two free variables when
applied to a function f¢,.. To understand why this expression may have two
free variables we must consider what the function f¢, represents, namely that
a recognisable relationship exists in a domain between the base object of the
function and the object that the function describes (or in the case of a set
valued function, that the relationship exists for every object in the set de-
scribed). It is this binary relationship that dictates the number of variables
that may occur free in the propositional expression given by F(fc,). Section
3.5.2 describes how F(fc,) may return an expression that actually contains
fewer free variables, in the case of implicit arguments to predicates or implicit
predicates in the domain. In these cases, the same binary relationship is de-
scribed by the function, but it is the realisation of that relationship in the
domain that may use one or more of the objects implicitly. Another interest-
ing point worth noting is that where F(fc,) gives an expression that involves
objects other than the base object of f¢, and the object(s) described by fc,.,

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 117

those objects must be introduced explicitly by F. For example, if in a logistics
style domain the locatedness predicate of a mobile was a predicate of three
arguments at(z,y, z)(where z is the mobile, y the location and z the city in
which the location is found), the GCRL proposition X.at(NOW) ==Y would
be instantiated as (VP : Tp . at(z,y, P))[X/z,Y/y))

4.6 Local versus global constraints

We need to acknowledge the difference between local and global constraints (a
control rule or strategy can be seen as an imposed constraint). The terms local
and global refer to the structure of the plan; a global constraint is concerned
with the global structure of the plan whereas a local constraint affects prop-
erties of a plan fragment. The terms local constraint and global constraint
are used informally in the literature, so we provide definitions here for the
purposes of concise discussion.

Definition 9 Local constraints restrict a sequence of states, <
S0y - -5n >, based on a state description (s; where 0 <1 < n) or sequence of
state descriptions (< sj,..., s, > where 0 < jAk < n), possibly in conjunction
with the goal set (Sgoa1)-

An example of a local constraint is generic control rule that states “never
move a safe portable object from its goal location.” This is a local constraint
as it constrains the subsequent sequence of states based on a local state de-
scription (the state in which a safe portable is located at its goal location).

Definition 10 Global constraints restrict the structure of the plan
as a whole, i.e. they necessarily constrain the sequence of states <
Sinitials - - - 1y Sfinal >. The restrictions may be based on individual state descrip-
tions s; where initial < @ < final, but only in the context of the entire plan
structure. The restrictions may be put in the context of the entire plan in two
ways, in the form of goal ordering information (top level goals or subgoals) or
by ezplicit state references (such as ‘let proposition P be true in the xth state
in the plan’)

An example of a global constraint is the ordering of subgoals, such as “move

object z to its goal location before moving object y to its goal location. Notice

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 118

that once z is located at its goal location, the achievement of y at its goal
location is still a global constraint, precisely because we only want to achieve
this once we have located z. Tt is not the case, however, that global constraints
are necessarily object specific. Consider the strategy “locate all safe portable
objects at their goal locations before locating mobile objects at their goal
locations,” which is not object specific. Both local and global constraints can
be problem specific but are not necessarily so (in fact the local constrains used
in this work are necessarily not problem specific, as a result of the abstraction

to generic clusters).

Generic control rule logic can only describe relationships between objects
in states that are ezplicitly related to the current state (or the goal description)
and can not express object specific statements. Because of this, the logic can
only specify a subset of local constraints. Let us examine the qualification of
that subset.

4.6.1 Local contraints in GCRL

GCRL is not an object level language. As such it can only express those con-
straints that are not object specific. More than that, as the object abstraction
is based on the behaviour of interacting generic types, the constraints we can
express are limited to those that can be described within a generic cluster (or
generic clusters, c.f. Section 4.4). Finally, the expressible local constraints are
restricted to those that use reference to explicitly related states in a sequence
of states (rather than through modes such as ‘until’ (|J) and ‘eventually’ (¢).

The following expression represents these restrictions.
Cocrr = C/(Co U Cy)

where Cgcry, are the local constraints expressible in GCRL, C is the universe
of local constraints, C, are those local constraints not expressible within a
generic cluster and C, are those constraints do not use explicit sequential

relations between states.

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 119

4.6.2 Global ‘local’ constraints

There are two situations in which local constraints might be considered global
constraints. The first is the case in which the plan fragment used by the local
constraint happens to be the entire plan sequence. We would classify this as
a local constraint that was incidentally global for that specific problem. The
second is the case in which local constraints are quantified over all sequences
of states in the plan. The quantified expression is a global constraint as it
imposes the condition that every plan fragment adheres to the local constraint
throughout the entire plan. This case is very interesting as it relates to the
control rules used in this work (the rules are implicitly quantified over all
states through the use of the NOW state argument, which refers to the current
state at every stage in plan construction).

We argue that through the case of implicitly universally quantified local
constraints, a subset of global constraints can be represented in GCRL. That
subset is the set of local constraints, Cecrr (see above), implicitly quantified
over all state sequences in the plan (through the use of explicit state relations
relative to the current state).

It should be noted that the language of GCRL does not explicitly exhibit
features for the specification of global constraints. It is the way in which
the rules are used in conjunction with plan generation that enables this phe-
nomenon. However, it is the nature of the rules that suggests this use (unless a
local constraint given in terms of a current state was intended to be universally
quantified over all current states, precise qualification of which current state

in a particular problem would be required).

4.7 Completeness preservation

Whenever control rules are used to direct search, the preservation of the com-
pleteness of the search must be considered. It is not the case that completeness
must necessarily be preserved, rather that awareness of this issue should be
acknowledged. Here we discuss the concepts involved and make statements re-

garding the completeness preservation of the methods described in this thesis.

CHAPTER 4. ISSUES CONCERNING GENERIC CONTROL RULE LOGIC 120

Soft control information, such as the preference rules described in Section
2.5.2, is completeness preserving no matter what strategy is expressed. This
is because is does not restrict the search space, rather the control information
enforces orderings on the expansion of nodes (or regions) in it.

Hard control information can be completeness preserving but can also in-
troduce incompleteness into the search space, depending on the strategy it
expresses. Let us look at examples of both of these situations.

Consider the strategy, in the logistics domain, that states that packages
should never be loaded into a vehicle from which they have just been unloaded.
This is hard control information as branches will be pruned from the search
space in which packages are put straight back into vehicles from which they’ve
been removed. Though there may be solutions residing in the branches that are
removed, those same solution states will remain in the search space elsewhere
(intuitively, we will be left with paths to the solutions that do not contain
irrelevant cycles of loading and unloading packages). This is represented in
Figure 4.1.

Let us look at an example of hard control information that does introduce
incompleteness into the search space. Consider a transportation style domain,
in which packages must be delivered to a selection of destinations from a se-
lection of sources, where the fuel of the carriers is considered. A strategy that
is employed by control rule based planners such as TLPlan in transportation
domains states that only packages with like goal destinations should be loaded
into the same carrier. Depending on the available resources of fuel in the do-
main, this control strategy may threaten the completeness of the search space.
There may only be enough fuel available in the domain to reach the goal state
by transporting the packages in a more efficient manner, so adhering to the
control strategy may in fact make the problem unsolvable.

The control strategies expressed in GCRL can be used as either hard or soft
control information. They can also express completeness preserving and com-
pleteness threatening rules. The rules used in the system described in Section
5.3 are all completeness preserving and are used as hard control information
(they are used to prune branches of the search space).

A possible use of GCRs is in the form of a control information toolkit. The

CHAPTER 4. [SSUES CONCERNING GENERIC CONTROL RULE LOGIC 122

U modal operators of LTL, the extent to which analagous strategies can be
expressed was discussed.

The definitions of generic control rules and instances of clusters as exclusive
or inclusive (c.f. Section 3.4) facilitated discussion of both hierarchies of generic
clusters and rules involving multiple generic clusters.

The way in which using generic control rules affects the search space was
considered. Both the types of constraint that can be imposed with GCRL and

the notion of completeness preservation were examined.

Chapter 5

Proof of Concept

5.1 Overview of results

The results gathered for the work described in this thesis are in four sections.

These demonstrate various aspects of the ideas presented.

Data is presented showing the time cost of generating domain specific in-
stances of abstract control rules for several problem sets. The problem sets
are collections of randomly generated instances of domains used in the 1998
planning competition [39], including domains into which none of the rules in-
stantiate (instances of the appropriate generic clusters are not present). This
demonstrates the cost of using the generic control rule module to generate do-
main specific rules. Analogous versions of these rules can be seen to be used by
control rule based planners such as TLPlan and TALPlanner (but are object
level instances of the abstract rules presented here). These results use a stand
alone version of the control rule instantiation system, in which the abstract
control rules are instantiated into domain specific control rules but are sub-
sequently not used with any planning system. The results are important in
their own right as they demonstrate the time cost of instantiation (and the

cost involved where no rules are appropriate).

A method is described for linking the abstract control rule instantiation
system to a competitive state of the art planner, FF [29]. This planner was not

designed to have control rule input over and above the bare domain description

123

CHAPTER 5. PRooF oF CONCEPT 124

and problem instance, but successful integration is achieved and improvement,
in the resulting plan quality is observed. Some initial results are presented
demonstrating this improvement, with the addition of the generic control rule
module. The subsumption, by the heuristics employed by FF, of many of
the basic rules that are used by control rule based planners is discussed. It
should be noted that the results supporting the thesis do not rest on these
limited empirical results, but on all of the results presented in the context of
the literature. These preliminary results are presented to demonstrate that
the methods described can be successfully integrated with existing planning
systems and have a positive effect on the quality of the plans produced.

We show the wider applicability of the use of generic control rules. A
method is presented for instantiating an abstracted form of the well known
‘good tower’ heuristic [3]. This process is supported by the outlining of a
generic cluster prototype for safe construction clusters (an extension to the
work covered by Clarke [12]). We then present an abstracted version of the
good tower rule in terms of that prototype and detail the instantiation of
that rule for a particular domain. We also go on to propose a generic cluster
prototype for a behaviour cluster that is identified by an alternative process
to ‘classic’ generic type identification. We discuss the use of such a behaviour
cluster with respect to writing reusable abstract control rules, and consider
extensions to the language that may be demanded.

We present a translation of the control rules used in a TLPlan domain
encoding. This involves interpreting that encoding, then demonstrating that
analogous control information can be expressed in generic control rule logic.
Not all of the control strategies are accommodated by the behaviour based
abstract versions, but of those that are, some of the GCRL representations
presented are more succinct (the TLPlan rules contain repetition). We explain

why a full set of analogous control strategies is not presented here.

5.2 Results

The results show the times taken to run the stand alone version of the control

rule instantiation system for the indicated domains (an independent version

CHAPTER 5. PROOF OF CONCEPT 125

of TIM was also timed on the problem sets; these results were not explicitly
included in order to simplify presentation in the table). The average running
time was taken over ten randomly generated problem instance for each size of
problem (where the size of the problem is given by the set of parameters used
in problem generation). The systems (the generic control rule module and an
independent version of TIM) were run on each problem in each problem set
ten times, in order to get more reliable timing results irrespective of minor
variations in actual running times. The time measured is the average user
CPU time. This measure of the running time was selected to give a fair repre-
sentation of how much time the program demanded of the CPU, irrespective
of any other processes that happened to be running. All tests were performed
on a 600MHz machine with 128Mb of RAM running Mandrake Linux 8.1. The
systems described use a mixture of C and C++, and were all compiled using

the gnu compiler.

The results also show the average difference between the running times for
the generic control rule module and TIM. This gives a measure of any time
penalty that is paid for using generic control rules on top of the existing TIM
analysis. Finally, the results show timings based on the number of rules that
the generic control rule module has that may be instantiatable (for one, two

and three available rules).

Tables 5.1 and 5.2 demonstrate the cost of using the generic control rule
module in domains where appropriate generic clusters are not identified. As
we can see, the running time of the generic control rule module does not change
significantly with the number of rules that it has available to instantiate. This
should not surprise us, as, by the nature of the domains, we cannot instantiate
any of the rules. The problem sets used increase in complexity as all their
parameters are increased by a factor of two. Although there is some increase
in running time for the harder problems, it is less than a linear relationship
with this increase in the parameter values. We can also see that no matter
what the complexity of the domains, nor the number of rules that are available,
the additional time penalty of using the generic control rule module is only a
few thousandths of a second (of the order of a few percent of the total running

times).

CHAPTER 5. PROOF OF CONCEPT 126

Table 5.3 shows the running times for the stand alone generic control rule
module on the logistics domain. This is a domain in which there is an instance
of a safe portable cluster, so the times show the combined cost of generic cluster
identification and instantiation of the indicated number of rules. Again, the
problem sets represent problems generated with all parameters increased by a
factor of two. As can be seen, there is an obvious increase in time as the system
is given harder problems. There is a massive increase from around 0.13s to
between 9s and 10s as we compare the times for the penultimate and ultimate
problem sets. However, by looking at the results showing the additional time
penalty for using generic control rules on top of the TIM analysis, we can see
that it is TIM that dictates this increase. The additional penalty paid is still
only of the order of a few percent of the total running time. There appears
to be a definite increase in the additional time measurement as more rules are
made available. For the first four problem sets, there is only a few thousandths
of a second between results for all problem sets and numbers of rules. For the
hardest problem set the additional time penalty is around a half a percent of
the total running time but for one or two rules, but for three rules this metric
jumps to around four percent.

5.3 Integration with FF

FF was chosen to test the utility of GCRs for a number of reasons. The
fact that it is a forward chaining planner means that at every node in the
search space a complete state description is known. With respect to state-
based control rules, complete state descriptions provide all the information
that could be required. The fashion in which FF extends its current solution
path also provided an ideal opportunity to use control information of the form
that GCRs supply. FF considers a set of successors to the current search
node and selects the first candidate that improves on the heuristic value of
the current state. It does so with an estimate distance to the goal state based
on the length of the relaxed plan from that state to the goal. In the event of
none of the successors offering a better heuristic evaluation, as in a plateau,

FF considers the successors’ successors, and so on. On top of this powerful

CHAPTER 5. PROOF OF CONCEPT 127

heuristic, it has an additional strategy of selecting helpful actions.

5.3.1 Helpful actions

The idea of helpful actions is to restrict the candidate successor states from
any search node. Based on the assumption that achieving any of the goals
{gi, ..., g;} in the first layer of the relaxed plan from a node will be useful
in progressing the solution being generated towards the goal, helpful actions
are precisely those actions that achieve a goal g, where g, € {g;, ...,g;}. FF
uses helpful actions to restrict the candidate successor states to a search node,
but still uses the strategy of selecting the first candidate in the set that yields

a better value than the current state according to the relaxed plan heuristic.

5.3.2 Control rule application

As FF was not designed to take control knowledge, the process of using the
control rules generated was not as straightforward as it otherwise might have
been. Rather than implement what would amount to a first-order formula
interpreter to facilitate the use of control rules with FF, the instantiated control
rules were fully grounded in the results presented. It is accepted that this
approach is very naive and expensive but in the name of implementational
simplicity it was decided that it would be sufficient to demonstrate proof of
concept. In this respect, proof of concept entails the generation of plans whose
sequential length is closer to the optimal length (i.e. shorter). We are not
demonstrating competitive timing results for the working of the system, hence
the decision to fully ground the expressions.

At the point where FF selects a candidate successor state, it has complete
descriptions of both the current and the candidate next states. Given these,
and the representation of the goal conditions (which FF can access at any point
during search time), there is the perfect opportunity to analyse the proposed
next state with respect to any control rules. This is the case whether the
proposed next state comes from the set of helpful actions, or in the case of this
set becoming empty, the full set of available actions.

N.B. In order to make use of control rules that refer to any successor states

CHAPTER 5. PROOF OF CONCEPT 128

past the immediate successor, a progression algorithm would need to be em-
ployed. This would convert the control rule to show the appropriate constraints
on the successor states. This has not been included in the implementation as
considering only the immediate successor state in control rules has been enough
to demonstrate proof of concept. This would, however, be a logical extension
of the work described and a version of the progression algorithm described by
Bacchus and Kabanza [3] could be employed.

Since the control rules used in this implementation only refer to at most
the immediate successor state, the control rules can be evaluated with respect
to the current and proposed next state. The control rules are given the goal,
current and next states and on the basis of their truth evaluation, the candidate
next state is either kept or rejected. All the control rule reasoning is in addition
to FF’s own search strategies.

5.3.3 The value of FF

As one of the most competitive current planning systems, it was decided that
any improvement in FF’s performance seen with the addition of GCRs would
be significant. It was felt that improving the performance of simpler, out-
dated forward chaining planners would demonstrate proof of concept but that
a greater show of value would be gained from using a state of the art system.
This decision was not without consequences. The very fact that FF is so com-
petitive meant that there was some difficulty in identifying control strategies
that were not subsumed by FF’s very powerful combination of the relaxed
plan heuristic with helpful actions. Where much more naive planners would
be expected to show a performance improvement with some basic control rules
(such as the preclusion of complimentary action cycles), FF needed some more
subtle examples. This point has had a major influence on the empirical re-
sults presented, which are forced to be only a preliminary proof of concept.
However, the results for both the time penalty incurred (over and above the
TIM analysis), the expressibility of proven control strategies and the wider
applicability of the approach to other behaviour clusters and subproblems all

support the limited empirical results. In particular, the ability to express es-

CHAPTER 5. PROOF OF CONCEPT 129

tablished control strategies in their abstract forms in conjunction with the
literature (where object specific analogous rules have shown their worth) is

proof of concept in itself.

Attempts at finding suitable heuristic

As has been mentioned, FF’s own heuristic which comprises a relaxed plan
estimate of distance to the goal and helpful actions is very powerful. This
meant that some examples of control rules that are employed by control rule
based planners such as TLPlan and TALPlanner were simply subsumed by
FF’s own mechanics. A prime example of this is the rule that states that a
safe portable object should never be moved from its goal location. FF never
adds an action that moves a safe portable from its goal location, as the relaxed
plan estimate would give a higher value for the distance to the goal state if a
suitably located safe portable was picked up. A control rule was found that

was not subsumed by FF’s default behaviour and is described here.

Forall Safe Portable clusters, when a carrier ¢ contains a portable
p that has the same goal location as another portable p’ and the
carrier can move directly between it’s current location and the lo-
cation of p’, ¢’s location in the next state should be the same as
the location of a portable p” in the next state where p” has the
same goal location as p.

(N.B. p” must be introduced to allow for the fact that there may be more
than one possible value for p’, and we simply want to select one of those.
Also, importantly, this rule only applies where the carriers are of unlimited

capacity.)

The generic control rule expressing this is

CHAPTER 5. PRooF OF CONCEPT 130

VC : SafePortableCluster. Vd, e, f, g : CLocation VC : Ccarrier-
Vz,y : CsafepPortabie: 32 : CsafePortabie-
TANCg, s porcabie (NOW) == C A C.OLCL 00 pi0n (NOW) == d A
Y-QECsa e portasie (NOW) == € A T.abCg, /e poriane (GOAL) == f A (5.1)
Y.0Cg, roportaste (GOAL) == f A€ € d.linkc,, .y, (NOW)
- z'atCSajePortable (NOW) == fA 2.0Cs, feportabic (NEXT) ==g A
C.atcy, 000, (NEXT) == g

The situation described in this rule can be see in Figure 5.1, where the
goal location of both spo 1 and spo 2 are the same. Application of the rule
would mean that the carrier would move, if it moves at all, to the location of
spo 2 (or the location of some other safe portable with the same goal location

as spo 1, if one exists).

5.4 Constructed domain

The domain used to demonstrate the partnership of FF and the control rule
instantiation system is a simple logistics style domain (with no planes). The
domain description is given shown in Figure 5.2. Various problem instances
were constructed to highlight the rule employed. It is important to remember,
however, that the control rule used in this example is expressed at the abstract
level, and is instantiated into the domain automatically as problems posed in
this domain are encountered (the same rule would be instantiated into any

domain encountered that ezhibits the SafePortable cluster).

5.4.1 Problem set and results

The problems were constructed to show situations in which the chosen control
rule can improve on the plan quality delivered by FF. By plan quality we mean
linear plan length, where higher quality plans have lengths closer to the optimal
plan length. It should be stressed that we are not looking for improvements

in solution generation time (we have acknowledged that a naive instantiation

CHAPTER 5. PRroor or CONCEPT 131

spo 1

carrier 1

Figure 5.1: Example rule situation

method is used, though future work may address this). It should also be noted
that only preliminary results are included, but that those preliminary results

do show the positive effect of the addition of generic control rules.

For each problem, the compound system of FF plus generic control rules
(we may refer to this as FF++) was run ten times, and the average CPU user
time was recorded. Again, this measure of running time was chosen to most
appropriately represent the work demanded of the processor. An independent
version of FF was also run on the problems, to compare both plan length and
solution generation time. This too was run ten times for each problem. Lastly,
a stand alone version of the control rule module (instantiation of the rules
without further use) was also timed on the problems. This system mirrored the

work being done by the composite system, in terms of the available rules and

CHAPTER 5. Proor or CONCEPT 132

domain and problem definition, and was also run ten times on each problem.

The initial state of problem 1 is shown in Figure 5.3. The goal is that
packagel and package2 should both be located at Z. Problem 2 is the first
variant on problem 1, with an additional location I on the path between X
and Z. The initial state for problem 2 is shown in Figure 5.4 and the goal
remains the same as for problem 1. Problem 3 is another variant of problem
1, with the addition of more locations and another package to be delivered at
location Z. Problem 3 shows the way in which the simple situation captured
in problem 1 can recur in a domain, enabling multiple steps in the plan to be
saved by the use of the appropriate generic control rule. The initial state for
problem 3 is show in Figure 5.5, and the goal location of all three packages is
location Z. Table 5.4 shows the timing results for this problem set.

In each of the problems tested a reduction in solution length can be ob-
served. Both FF and the instantiation only version of the generic control
rule module have quite uniform running times across the problems. FF++’s
running times increase as we look down Table 5.4 but we also note that the
number of objects involved in the problems grows (for example, problem 1 has
only three locations, four location links and two packages whereas problem 3

has six locations, nine location links and three packages).

5.5 Other generic clusters

5.5.1 Safe construction cluster

Another generic type that has been identified in the literature is the construc-
tion type [12]. This is the generic type whose members can be comprised with
other objects in specified states to create new objects (such as towers in the
blocks world). We propose a safe construction object cluster, whose member
types are a safe construction type and a state type (denoting the state of con-
struction objects). A safe construction type is similar to a safe portable type
in that the construction type is identified as safe if and only if its members
play no other role in the plan than to be ’built’ with (comprised with other
objects).

CHAPTER 5. PROOF OF CONcEéT 133

prototype SafeConstructionCluster {
Types: { Material, State }
Functions : neutralState:Material—TV
composedOf :Material—Material+
oldState:Material—State+ }

where TV is a truth value.

We know that a useful rule for construction objects uses the good compound
[12] definition (which is itself an abstraction of the good tower definition [3])
but we must look at two natural extensions to the language. We use the term
definition for a truth valued function, as in the neutralState function shown
above. Definitions are needed when the type has a property that needs to be
verified on a per object basis, where no other relationships exist that reveals
this property. This addition alone does not, however, enable us to represent
the good compound rule using the safe construction object cluster prototype
as it is. To understand the reason for this, let us attempt to encode the good
compound definition. A compound object with outermost object = (such as
the top block on a tower in the blocks world) is a good compound if either z is
in its neutral state in the current and goal states or z is composed of y in the
current and goal states and y is a good compound. It is this last recursive call
to the definition that causes the problem, as we cannot name the definition
(as a control rule) in GCRL. This prevents us being able to call the defined

rule from within itself as in

VC : safeConstructionCluster . VX,Y : Craterial

X.neutralStatec GOAL) A X.neutralStatec GOAL)

material (material (

(X.composedO f¢ NOwW) ==Y A X.composedO fc GOAL) ==Y

material (material (

A (recursive call on Y))

CHAPTER 5. PROOF OF CONCEPT 134

A solution to this problem is to add the definition of good compound to

the primitive functions of the prototype, as in

prototype SafeConstructionCluster {

Types: { Material, State }

Functions : neutralState:Material—TV
composed0f :Material—Material+
oldState:Material—State+
goodCompound :Material—TV }

and leave it up to the grounding function JF to interpret the manifestation of
this property in the domain. The good compound rule could then be expressed
as

VC : safeConstructionCluster . VX, Y : Craterial

X .neutralStatec_,.....(GOAL) A X.neutralStatec, ... (GOAL)

V
(X.composedOfe,,,,....(NOW) ==Y A X.composedOfe, ... (GOAL) ==Y
AY.goodCompoundc_,. . (NOW))

It is feasible that we could expect this but would force the domain level
language presented in Section 3.8 to be extended to allow definitions (the
recursive nature of the definition would be passed on and would still need to
be expressed). We do not see this as a problem in the language (the temporal
logic of TLPlan was extended similarly for precisely the same reasons).

It could be argued that we are placing too much responsibility on the
grounding function in terms of the amount of work we are expecting it to
invest in delivering the manifestations of functions expressed at the cluster
level. However, it is not evident exactly where we should draw the line. It
is certainly reasonable to give the grounding function some responsibility, as

in accounting for things such as implicit arguments or implicit predicates. A

CHAPTER 5. PROOF OF CONCEPT 135

useful addition to the mobile object cluster might be the addition of a reachable

function with the declaration
reachable :: Location— > Location

the intended meaning of which would be to return the set of locations that
are reachable from a location (this could also be expressed as a truth valued
function of two arguments). The interpretation of path existence is certainly
more complex than dealing with implicit predicates, but nonetheless it would
be useful to be able to rely on the grounding function to provide this. It has
already been demonstrated that an abstract version of the good compound rule
can be automatically interpreted and used to guide search in a planner [12].
It is therefore proposed that this is a reasonable expectation of the grounding

function.

We do realise that as the number of behaviours that are captured at the
cluster level increases, more work will be involved in instantiating the functions
and definitions and that this may counteract any timing benefits of using the
rules. However, extending the toolkit of the generic control rule writer can only

add to the rules that can be abstracted, and as a result, reused automatically.

We are also aware of the fact that recursive rules may introduce the danger
of infinite recursion when evaluating their interpretations. This would only be
the case in domains in which the evaluation of the recursive function was not

defined, and could in fact be a useful analysis tool for debugging domains.

It was envisaged, during the progress of the work, that as more clusters
are identified a library of generic control rules would be augmented by these
new additions. So too it is with functions defined for existing clusters; if a
new and useful definition or function is presented (such as the good compound

definition), the prototype is extended accordingly.

However, this again underlines the need for a logic with which to identify
and discuss features of a generic cluster (in terms of the properties and at-
tributes of the members of types), as the grounding function must be told how
to interpret functions. As has been stated previously, the grounding functions

used in the current implementation are all hard-coded (with respect to generic

CﬁAPTER 5. PROO; oF CONCEPT 136

types; the automatic identification of types gives appropriate grounding func-
tions automatically). This proposed logic would allow us to formally define the
functions declared in the prototype. This is an obvious direction for further

work.

5.5.2 Orienteering cluster

An interesting exercise would be to implement the orienteering cluster, which
would represent the locations and reward based actions at those locations as
proposed by Smith [52]. This would show the applicability of the logic and
control rules to behavioural structures other than those discovered by TIM.
This cluster too would demand extensions to the language of control rules,
not least as the reward based actions return values. This would require the
generic control rule logic to be extended to handle quantitative values. The
orienteering cluster could be a derived instance of the mobile cluster (see 4.3)

and would have a prototype such as

prototype OrienteeringCluster {
Types: { Mobile, Location }
Functions : at:Mobile—Location
value:Location—Number+

link:Location— {Location } }

where Number is a value.

This cluster would test any language proposed for relating functions to
generic cluster features, as the mapping is not clearly defined (as in clusters
identified by generic type analysis). In fact, the identification of the orienteer-
ing subproblem in [52] is based on a kind of sensitivity analysis of the extent
to which propositions affect the applicability of actions required for goals. In-
terestingly, the type of control knowledge that we would construct for the ori-
enteering cluster would be global constraints rather than local constraints (c.f.
Section 4.6), and this too would suggest more language extensions. Smith uses

the orienteering subproblem as an object specific goal ordering technique but

CHAPTER 5. PROOF OF CONCEPT 137

object specific subgoals could not be expressed in the abstracted language of
GCRs. For subgoals that were not object specific (such as choosing whichever
location has the highest valued reward-function in Smith’s orienteering sub-
problem) ordering could be imposed but would require new state arguments

such as ‘until’ and ‘eventually.’

5.6 Comparison with the control rules used by
TLPlan

In this section we will consider the control information encoded in the TLPlan
encoding of a particular domain (the zenotravel domain [39]) and see the
extent to which that control information can be captured by generic control

rules.

5.6.1 Generic structures in the domain

The zenotravel domain contains an instance of the SafePortable generic clus-
ter. The planes are identified as carriers, the people are identified as safe
portables and the cities are the locations between which the carriers move and
at which the people can be situated. The board and debark operators are the
load and unload operators for loading and unloading the safe portables. The
fact that there are fuel levels associated with the carriers does not affect the

identification of the cluster as a safe portable cluster.

5.6.2 Assumptions made in the TLPlan encoding

There are several assumptions implicit in the TLPlan encoding of the zeno-
travel domain that are closely tied to the embedded control information:

The carriers (planes) have unlimited capacity.

Restricting carriers’ cargo to portables with like goal locations does not
make the goals unreachable.

The map that the carriers move on is totally connected, and there is no

difference in cost associated with travel between different cities. This means

CHAPTER 5. PROOF OF CVONCEPT 138

that there is no need for route planning or efficient use of carriers (e.g. chang-
ing planes en route to a goal destination). The fact that the map is totally
connected is the reason it is safe to restrict the cargo of carriers to portables
with like goal locations (see below), as every city is just one step away from
any other. It should be noted that this simplifying assumption precludes the
generation of optimal plans for domains in which the optimal plans do involve

packages changing planes.

5.6.3 Embedded control information

The full TLPlan encoding of the zenotravel domain can be found in Appendix
A. As can be seen, the control information is not explicitly stated as temporal
control rules, but rather manifests itself in the defined predicates (there are also
auxiliary predicates declared, such as the scheduled predicate, that Bacchus
and Kabanza call described predicates). These defined predicates are then
used in the operator definitions, not unlike precondition control. We will now
consider the defined predicates and propose analogous generic control rules
where appropriate.

5.6.4 Analogous control information

The ok-to-board predicate is used in the preconditions of the board action, has

two arguments (the person, #p, and the plane, ?a) and has two clauses:

e The person is not currently at their goal location.

e The plane is scheduled to fly to the person’s goal location (this will be
the case if there are other passengers on board that have the same goal
destination) or is not scheduled to go anywhere (this will be the case if

there is currently no-one on board).

The first clause can be covered by the expression

Vobject Y: CLocation

?p'atcsafepo"tﬂble (NOW) == Y /\ ﬂ(?p'atcSafePortable (GOAL) ==)

CHAPTER 5. VPROOF OF CONCEPT 139

It should be noted that the GCR versions of the control strategies are quantified
over all objects of the correct type - this is analogous to the implicit universal
quantification of operator parameters or predicate arguments in the domain
description. The second case can be expressed without the use of the additional
scheduled predicate, once we understand that that predicate is descriptive of

something being aboard the plane. This gives us the expression

Vobject Y : Crocation
(Vobject X CSafePortable X-inc5afeport,,,,,e (NOW) ==%a A

X'atcSafePortable (GOAL) == Y/\?p‘a’tCSafePortable (GOAL) ==)

~Jobject X : CsafePortatie X-1NCsq s portanie (NOW) ==7a

In the TLPlan encoding, the predicate ok-to-board is formed from the con-
junction of the two cases above. By quantifying the analogous generic control
rules over all the appropriate objects in the domain, we avoid the need to
conjoin them into a single expression.

The ok-to-fly predicate is used in the preconditions of both the fly and
zoom operators (these are instances of the move operators for carriers). This
predicate has two arguments (the plane, ?a, and the destination of the flight,
?c) and a non-trivial logical structure, in that it contains nested conjunctions
and disjunctions. We will treat the clauses individually, under the assumption
that generic control rule logic has similar logical operators and the clauses could
be reconstructed into a compound expression. The clauses of the definition of
the predicate express:

e The plane is not scheduled to fly anywhere else.

e The plane is scheduled to fly, and there are no additional people at the
current location with the same goal location as those currently aboard
the plane.

e All the people at this location are at their goal location, and there are

CHAPTER 5. PROOF OF CONCEPT 140

people at the plane’s destination who are not currently at their goal

location and there are neither planes at that location nor any scheduled

to go there.

e The plane’s destination is its goal location and there are no people that
need to travel anywhere.

The first clause can be expressed by the expression

_‘Hobject X: CSafePortable

X'incSafePortable (NOW) ::?a /\ ﬁ(X'atCSa.fePortable (GOAL) ::?C)

The second clause can be expressed, remembering the definition of the sched-
uled predicate, by the expression

Jobject X 1 CsafePortable
X'inCSafePortable (NOW) =7a
A
—Jovject X : CsafePortable Vobject Y : CLocation
X'a'tcSafePortable (NOW) ==Y A X'atCSa.fePortable (GOAL) ==7cA

?a'atCCarn’er (NOW) == Y

The third clause is expressed as

Vabject X : CSafePortable vobject Y: CLocation X-atcs,.fepomble (NOW) ==Y

/\?a'a’tCSafePortable (NOW) == Y — X'atCSafeParmble(GOAL) ==

(Jobject X : CsafePortatie X-0lcg, ;. poriarie (NOW) ==TC A

- (X'atCSafePortable (GOAL) ::?C))

(Vobject A CCarrier_‘(Z'atCCa,,ie, (NOW) ::?C) A

' !
_‘(Bobject X CSafePortable X MNCs4 fePortable (NOW) ==ZA

CHAPTEI{ 5. PROOF O-F CONCEPT 141

Xl'a'tCSafePortable (GOAL) ::?C)

The final clause is expressed as

a?.ateg,, ... (GOAL) =="c

(Vobject X CSa.fePartable Vobject Y. CLocation X'atCsafepo,.table (NOW) ==Y

- X'atCSafePartable (GOAL) ==)

The need-to-fly predicate is only used in the definition of the ok-to-refuel
predicate. This predicate has one argument (the plane, 7p) and together with
the ok-to-refuel predicate makes sure that a plane is only refuelled if it needs
to fly somewhere. The definition of this predicate has clauses that express the

following statements:

e The plane is scheduled to fly somewhere or someone has boarded the

plane (these both describe the same property).

e There is at least one person who needs to be taken to their goal location,

and there is neither a plane at their current location nor any scheduled

to go there.

e The current location of the plane is not its goal location.

The first clause can be expressed by the generic control rule

Elobject X: CSafePortable

XJnCSa]ePortable(Now) =:?a
The second clause can be expressed as

3object X : CSafePortable VY : CLocation
X'a'tcSajePortable (NOW) == Y A —ﬂ(X'atCSafePortable (GOAL) ==)

CHAPTER 5. PRrooF or CONCEPT 142

A
Vovject Z : Carrier ~(Z.atcg,, ... (NOW) ==Y)
AN=Fovject X' : Csafeportatie X' iMcs, ;. portapie (NOW) == Z
NX'.ateg, e porian. (GOAL) ==Y

The third clause can be expressed as

vobject Y: CLocation

7D.atc gy i (NOW) ==Y — =(Tp.atc,,,,... (GOAL) ==Y)

The TLPlan encoding contains one more defined predicate, ok-to-refuel.
We have already offered a generic control rule analogous to the defined predi-
cate, need-to-fly, used in the definition of ok-to-refuel. However, this predicate
references the fuel level of the plane. Within the safe portable cluster, there is
no mention of fuel levels of carriers. In order to express this part of TLPlan’s
control strategy, we have three options. We could use a derived instance of the
safe portable cluster in which carriers’ fuel is taken into account (or conversely
a derived instance of a fuelled mobile cluster in which safe portables are iden-
tified), we could construct a rule that uses both the safe portable cluster and
a fuelled mobile cluster, or we could allow ourselves to supply additional rules
by hand on top of those generated automatically. We do not present alterna-
tive clusters here for simplicity of the analogy, as the cluster in the existing
analogy (the SafePortable cluster) has been well introduced in previous ex-
amples in this thesis. Remarks on supplying additional information by hand
are contained in Section 5.6.5.

The clauses in ok-to-refuel that do exploit relationships described by the
safe portable cluster could be expressed in a similar fashion to those described
above. In fact, there a lot of repetition in the individual clauses (with respect
to the other defined predicates), a point that is discussed below.

A final and important remark is that the analogous control rules presented

would would totally describe the control strategies of a similar TLPlan en-

CHAPTER 5. PROOF OF CONCEPT 143

coding where fuel levels of the vehicles were not considered (as in the classic

logistics domain).

5.6.5 Differences between the alternative styles of con-

trol information

One of the main differences between the defined predicates as used in the
TLPlan encoding and the GCRL (generic control rule logic) rules is the way
that the defined predicates are used as preconditions in the standard operators
for the domain. It is envisaged that the control rules will be used to actively
guide search (though the use of generic control rules in precondition control
is suggested in Section 6.6) and the differences between this and the role of
passive preconditions raises some interesting points.

Firstly, the defined predicates (and their translation into GCRL) contain
quite an amount of repetition. This is because the defined predicates are
written as preconditions to specific actions, with some control strategy in mind
for that particular action. For example, the second main clause in both ok-
to-fly and need-to-fly performs the same check - namely that there are some
SPOs at some location (not their goal location) and there are neither carriers
at that location nor carriers heading to that location. The fact that each
defined predicate is written for one action means that any information that
two actions need must be repeated. We observe that while translating the
defined predicates gives a subset of analogous control rules, a more concise set
of control rules could be constructed by disregarding the structure imposed by
those defined predicates.

This point also has consequences when we consider the problem of con-
flicting control advice. If the preconditions (defined predicates) for different
actions contain conflicts or offer similar but slightly different advice, then this
is not necessarily a problem. The reason this is not a problem is that as a
precondition, where the specified condition does not hold, the operator will
simply not be applied. However, once we translate the defined predicates into
GCRL, we have a different situation. The GCRL rules tell us what will to be

true in the next state, according to certain conditions that hold in the current

CHAPTER 5. PROOF OF CONCEPT 144

state. If there are any conflicting courses of prescriptive action then we may
end up with a contradiction in the specification of the next state (according

to the control rules) which will need to be resolved.

One method, as employed in certain places in the defined predicates used
above, is to provide disjunctive advice. This allows the control rule to suggest
alternative courses of action, typically of the form ‘do z or maintain the current
situation.” This would allow the system using the rules to decide whether to
take the action suggested (z) or wait and take that action at a later date (by
maintaining the situation, the antecedent of the rule will be matched again in
the subsequent state). This approach can also be used to force the resulting
plan to be linear, whereby one of any pair of concurrent actions is delayed

while preserving the preconditions required for its applicability.

The defined predicates used by TLPlan are unrestricted in referring to any
predicates in the domain, whereas the analogous GCRs only have access to the
relationships declared in the prototype of the cluster being used. The discus-
sion of the fuel level of the vehicles above relates to this observation. However,
the advantage with using GCRs is that the control information can be reused,
not just when we encounter this particular domain again, but whenever we en-
counter a domain with similar generic structure, under the same assumptions.

With respect to giving a full analogy to the ok-to-refuel predicate, one
option mentioned was to supply the additional strategies by hand on top of
those strategies generated automatically. This suggestion, though seemingly
contrary to the direction of this thesis, is easily justified. The performance of
TLPlan is driven by the control information supplied. For such control rule
dependent planners, a large portion of the work involved in producing control
rules could be taken care of by automatic instantiation from generic control
rules. The addition of some rules by hand to augment those automatically
supplied involves less work than the construction of a full set of rules. It should
also be noted that, where automatically generated rules are used by a planning
system whose performance is not dependent on control information (such as in
conjunction with a fully automated planner), that planning system will reap
the benefits of any control strategies that are supplied and default to its natural

behaviour in situations where none of those strategies are appropriate.

7 CHAP'L:ER 5. PROOF (SF CONCEPT 145

The temporal logic of TLPlan allows the expression of described predicates.
This is an addition that could be made to GCRL without significant compli-
cations to the semantics. This addition to the language was also suggested by

the discussions in Section 5.5.1.

5.7 Chapter Summary

Chapter 5 has presented various results which constitute a proof of concept of
the thesis. These results take several forms.

Firstly, timing results were presented to show the time taken to instantiate
control rules in a range of domains. Included in these domains were those in
which the control rules could not be instantiated, these results demonstrating
that no significant time penalty was incurred by the instantiation machinery
when the appropriate generic clusters were not recognised. The timing results
for the domain in which the control rules could be instantiated gave an indica-
tion of the time cost associated with the process of automatically instantiating
those control rules. All of the timing results were compared with the running
timeS of TIM on the same problems. This provided a measure of how much
additional time was incurred by control rule instantiation over and above the
analysis that enabled it.

Secondly, a method was described for integrating automatic control rule in-
stantiation with an existing planning algorithm, namely FF, and subsequently
using the domain specific strategies generated to influence the search for a
solution. This successful integration demonstrated that generic control rules
can be used by the community, and specifically that they can be used to sup-
plement existing algorithms and techniques. Some preliminary results have
shown an improvement in solution length with the addition of domain specific
strategies automatically instantiated from generic control rules.

Thirdly, the utility of generic control rules in providing abstractions of
strategies relating to other known subproblems from the literature was dis-
cussed.

Finally, a comparison was made between control strategies employed by

TLPlan and analagous control strategies given as generic control rules. These

CHAPTER 5. PROOF OF CONCEPT 146

results have shown that useful control information that is currently used by
control rule based planners can be expressed at an abstract level using generic

control rules.

147

CHAPTER 5. PROOF oF CONCEPT

surdfqoid urewop §JJY LS — 2100t
pajeIsusd A[WOpURI IO] WIYSAS UOTJRIJUR)SUL [T [OIJUOD JoBIISqR 10} sowry Sutuuni aferoae SUImols a[qe], :1°G 8[qe],

G000 900°0 | S00°0 | G200 | 9400 [SL0°0 91 45

€000 ¢00°0 | 2000 | ¥cO'0 | €200 | €200 8 91

100°0 1000 | €000 | L1I0°0 | LI0°0 | 8100 4 8

¢00°0 1000 | €000 | LT10°0 | SI0'0 | 9100 4 4

¢00°0 ¢00°0 | ¢000 | 2100 | 9T°0 | 9100 I 4

SOINI ¢ SonIg | oMY [| somig | somig |9y | sroBusssey | $100[4
sowrr) Suruuni], 98eIsae snuruwr Saw) Suruuni afeIoAy | sowl} Suiuunl sfeIsAy

148

sud[qoad urewop awiidus
pojeIauss A[uopuel I0] WId)SAS UOTIRTJUR)SUT S[TLI [OIUOD JORIISqR 10} SOWIl) SUTuuNI s5eisae SULMOYS J[qR], 7' d[qRL

CHAPTER 5. PROOF OF CONCEPT

0 G000 | €00°0 | L862°0 | €€0E0 | LTOEO 91 91 91 91 (45
G00°0- €00°0- | ¢00°0- | 6€0°0 | 60¥0°0 | ¥C¥0°0 8 8 8 8 91
100°0- 100°0- 0 1€¢0°0 | 8¢20°0 | 8€20°0 4 14 4 4 8
100°0 1000 | 1000 | €00 | 6610°0 | G6T0°0 4 4 (4 4 4

0 ¢000 | TOO'O0 | S810°0 | ¢0C0'0 | ¥610°0 ! ! ! ! (4
so[nI so[nI 1 nI sa[nI a[nI

mmawp wMEnE _\ﬂﬁﬁmomww\aﬁ iad k- m@_ESm oI o81e)) | SopIIyap | seoedg | [onJ XeJA | SUOIIRIOT]
SNUTW SowWI) FUTUUNI 9FRIOAY Suruuni o8eIeAy

CHAPTER 5. PROOF OF CONCEPT

149

surs[qold urewiop §2128160]
pajeIoUed A[WOpURI 10§ WAYSAS UOI}RIIUR)SUL S[NI [0OIU0D J0RIISqR 10] SoWIl} Sutuunl ddersse JuIMoYs 3[qe], £'G 9[qeL,

€vo ¢90°0 | ¢¥0'0 | 2066 | L6V'6 | ¥IG6 91 91 91 91
600°0 G000 | S00°0 | SET0 | €ET0 | IETO 8 8 8 8
600°0 G00°0 | ¥00°0 | L20°0 | G200 | 2c00 4 4 4 v
600°0 L00°0 | ¥00°0 | 200 ¢0'0 | 8100 4 4 4 G
800°0 2000 | ¥00°0 | ¢¢0°0 ¢0'0 | 8100 ! 1 ! 1
nI ni 9 n
mmwwa mmﬁqamwf ,Hmowfﬁmdﬂ =t MMMMQN = SedToRd | SAWI JO AZIG | SAWL) | SOUT]
snuIul SouIr} SUIUUNI 93RIIAY SUTUUNI 98RIAY

CHAPTER —5_. PROOF OF CONCEPT 150

(define (domain lukeslogistics-strips)
(:requirements :strips)
(:predicates (obj 7obj)

(truck ?truck)

(location 7loc)

(in ?obj 7truck)

(at ?obj ?loc)

(1ink ?locl ?loc2))
(:action LOAD-TRUCK

:parameters
(70bj
?truck
71oc)
:precondition
(and (obj 7obj) (truck ?truck) (location ?loc)
(at ?truck ?loc) (at ?7obj ?loc))
;effect

(and (not (at ?7obj 7loc)) (in ?obj ?truck)))
(:action UNLOAD-TRUCK

:parameters
(?0bj
?truck
?loc)
:precondition
(and (obj ?7obj) (truck 7truck) (locatiom ?loc)
(at 7truck ?loc) (in 7obj ?truck))
:effect

(and (not (in ?obj 7truck)) (at 7obj 7loc)))
(:action DRIVE-TRUCK

:parameters
(?truck
?loc-from
?loc~to0)
:precondition
(and (truck ?truck) (location ?loc-from) (location ?loc-to)
(at ?truck ?loc-from) (link ?loc-from ?loc-to))
:effect

(and (not (at ?truck 7loc-from)) (at ?truck ?loc-to)))

Figure 5.2: Domain description for simple logistics style domain

CﬁAPTER 5. PROOF OF CONCEPT a 151

locY locX
packagel package?
’j truckl
O O
locZ
Figure 5.3: Problem 1
Problem Average running times Solution length
FF++ | FF++ (instantiation only) | FF | FF++ | FF
1 0.11 0.02 0.01 7 8
2 0.29 0.02 0.01 7 8
3 4.30 0.02 0.01 11 13

Table 5.4: Table showing average running times for abstract control rule in-
stantiation system and FF for constructed simple logistics domain problems

CHAPTER 5. PROOF OF CONCEPT 152
locY locX
packagel package?
o -

truck1

@) O

locl
locZ

Figure 5.4: Problem 2

CHAPTER 5. PROOF OF CONCEPT

153

locY locX

packagel package2

truckl

locl
locZ
package3
loc]
locK

Figure 5.5: Problem 3

Chapter 6
Conclusions

The varied nature of the results presented in conjunction with the literature
enable us to draw several conclusions and also suggest directions for further

research.

6.1 Time penalty

The generic control rule module uses the already established TIM system. This
system delivers the results of various forms of domain analysis which have been
shown to aid search in planning algorithms. The time penalty paid for using
the GCR module incorporates the time taken to conduct the TIM analysis.
More than that, the running times for the GCR module have been shown to
be dominated by the TIM analysis; the time spent instantiating the control
rules is only a few percent of the total running time of the stand alone control
rule instantiation system. This observation can be interpreted in a number of
ways.

It could be argued that whenever the decision is made to use the results
generated by TIM, no significant additional penalty is incurred by also taking
advantage of GCRs. Admittedly, further experimentation may show that with
vast numbers of rules available for instantiation, the additional time penalty
may be more significant (see Section 6.6 for discussion of this). However, it

has been shown that some rules used with great success by systems such as

154

CHAPTER 6. 'CONCLUSIONS 155

TLPlan and TALPlanner can be instantiated automatically with minimal cost
over and above the basic TIM analysis. This is a very positive and novel
contribution of the work.

We cannot say for certain that the process of identifying the behaviour
structures that allow generic control rules (generic clusters) is more costly than
the process of using those results to instantiate template rules. This is due
to the fact that TIM performs many forms of analysis other than the generic
type identification that enables generic cluster identification (such as invariant
generation); the timings of the TIM system on the problem sets incorporate
all these analyses.

We can conclude that when the decision to use TIM to perform pre-planning
domain analysis is made, we can also supply a collection of generic control rules
(that have been shown to improve search in control rule based planners) that
can be automatically instantiated into domain specific control rules. This addi-
tional reasoning is added with a small time cost relative to the TIM algorithm.

The time results presented in Section 5.4.1 are not presented to show any
competitive performance. As can be seen, the additional time penalty for inte-
grating generic control rules into FF grows rapidly even on this simple example
domain. These results were included to describe fully the work undertaken,
and require some explanation. As has been stated previously, the integration
of domain specific control reasoning into FF has been implemented for proof
of concept only, and as such adopts the very naive strategy of fully grounding
control rules. The set of fully grounded control rules (subject to some restric-
tions, such as removing those that refer to goal states other than the goal of
the current problem) were then used to verify whether proposed extensions to
a partial plan adhere to control restrictions.

It is these processes of full grounding and then exhaustive verification that
dominate the increase in running time that is seen in this problem set. We can
see that the instantiation only version of the generic control rule system takes
only two hunderedths of a second to generate domain specific rules quantified
over domain types. Compared to the 4.3s that FF++ takes to generate a
solution to problem 3, the time taken to instantiate the rule is not significant.

We can see that this performance decrease must be incurred by the processes

CHAPTER 6. CONCLUSIONS | 156

described, though unfortunately we can not break down this penalty further
(by considering time to fully ground versus increased cost of searching).

It is worth noting that we consider the utility of generic control rules in-
dependently of these timing results. This point is discussed further in Section
6.4. The timing results are included here to demonstrate that the generic con-
trol rule module can be successfully integrated with existing planners, whether
or not those planners were designed to accept control knowledge. We consider
it an achievement that one abstracted rule has been used to improve the plan
quality of FF, irrespective of the naive grounding and verification techniques
employed.

Another point of note is that the tests were performed on, by current stan-
dards, a relatively low-spec machine. It was decided that as the tests were
designed neither to showcase running times nor to tackle massive problems,
a humbler machine was satisfactory (the machine is significantly less power-
ful, for example, than the machines used to run systems in recent planning

competitions [39]).

6.2 Utility

The utility of generic control rules is supported by the literature. Control
rules that are used by current control rule based planners can be expressed
as generic control rules and automatically instantiated into domain specific
forms (c.f. Sections 5.5 and 5.6). We are not suggesting that generic control
rules currently match the power of hand coded control knowledge. What we
are presenting is a method of representing a subset of control rules based on
an abstraction of the behaviour of objects in domains (the generic cluster).
This allows the expression of reusable forms of control knowledge that can be
automatically instantiated. We have shown that useful control strategies can
be abstracted in this manner and successfully instantiated automatically into
domain specific rules.

We have indicated how to implement an abstraction of the powerful 'good
tower’ heuristic within the framework described. This involved the outlining

of a prototype for the newly proposed safe construction cluster. Although no

CHAPTER 6. CONCLUSIONS 157

data is presented showing the utility of this heuristic, examples can be found
in the literature. We discuss an abstracted version of the rule that would be
available for use whenever the appropriate behaviour structure is identified.

Although we have not demonstrated that large numbers of rules can be
generated with reasonable time cost, this does not detract from our findings.
The fact that we can capture useful control rules is in itself justification that the
process is beneficial, as those control rules can be abstracted and instantiated
automatically.

The results presented in Section 5.4.1 describe the successful integration
of the control rule module and an existing planning system. The results show
that with the addition of an appropriate generic control rule and supporting
instantiation and search restriction machinery, the solution quality of the state
of the art planner FF can be improved. When we say that the quality has been
improved, we mean that the length of the solution generated is closer to the
optimal plan length. This result has been demonstrated in a small domain, in
which problems were set to highlight the use of a particular rule.

The reason that control rules can improve plan quality in FF in particular
is to do with the way that FF constructs its plans. FF uses a very powerful
combination of a relaxed plan estimate of distance from the goal state and
helpful actions (c.f. Section 5.3.1) to extend partial solutions. However, this
approach can produce non-optimal solutions. FF extends a partial solution
with the first action it considers that has a better heuristic evaluation (accord-
ing to some restrictions based on the identification of helpful actions) than the
current state. Because the relaxed plan estimate is based on a relaxation of
the problem that ignores the delete effects of actions, the search space of the
relaxed plan does not necessarily directly correspond with the entire problem.
Thus the ordering of actions in the relaxed plan may give a misleading im-
pression of the required ordering of actions in the top level plan. The use of
generic control rules adds to FF’s plan construction phase by pruning proposed
extensions to partial plans according to domain specific control knowledge.

Let us consider an example of this process in detail, using problem 1 from
Section 5.4.1. FF’s own solution is sub-optimal as it accomplishes locating

packagel at location Z before picking up package2. The reason it selects this

CﬁAPTER 6. CONCLUSIONS 158

course of action is the relaxed plan from the state where packagel is being
carried by truckl at location Y. From this state, the relaxed plan with the

best heuristic estimate is:

drive(truckl, Z) and drive(truckl, X)

unload(packagel, truckl) at location Z and load(package2, truckl) at
location X

drive(truckl, Y)from location X

drive(truckl, Z)from location Y

unload(packagel, truckl)

FF will construct a helpful actions set of {drive(truckl, Z), drive(truckl, X)},
from which it will select the first action it considers that gives a better heuristic
estimate than the current state. As both of these actions satisfy this condition,

the action selected will be whichever is first in FF’s own internal set.

The inclusion of domain specific control rules into FF prunes those states
from this set that contravene the control rules. The domain specific control

rule instantiated from the generic control rule described in Section 5.3.3 is

Vg:2Ve:2VYd:2VC:0VX :1VY :13z:13h:2
((link(D, E) Nin(X,C) Aat(C, D) A at(Y,E) A GOAL at(X, g)A
GOAL at(Y,g)) = (GOAL at(z,9) NNEXT at(C,h) NNEXT at(z,h))
(6.1)

where the types identified are 0 = {truckl}, 1 = {packagel, package2} and
2 = {X,Y,Z}. Application of this rule has the effect of pruning the ac-
tion drive(truckl, Z), which once removed from the set leaves only the action
drive(truckl, X). FF follows this course, and the resulting solution length is
one step shorter.

CHAPTER 6. (CONCLUSIONS 159

6.3 The bigger picture

Generic control rules provide the community with a method of expressing
abstracted control structures. We have shown that many widely accepted
control strategies can be expressed in this framework. The fact that generic
control rules can be automatically instantiated into domain specific rules means
that they are not only reusable (saving the time and effort of control rule
authors) but may also be communal; the community can share abstracted

control rules and even libraries of control rules.

Generic control rules, however, are not being billed as a panacea. It is
widely accepted that writing good control strategies for a particular planning
system working on a known problem is a non-trivial task. The control rule
author must have a good knowledge of both the domain and the language be-
ing used to capture control. He may, in addition, need to know the mechanics
of the planning algorithm intimately. Even then, the quality of the control
rules produced is reliant on the author’s ability to identify useful strategies.
Generic control rules allow the reuse of control knowledge, but it is not claimed
that authoring them is any simpler than constructing domain specific exam-
ples (although by their nature, abstract control rules will not be tied to the
mechanics of one planning algorithm). In fact, writing control rules at the
abstract level could be considered a harder task than that of writing domain

specific instances.

We are not, however, presenting generic control rules as a method of fa-
cilitating the layman in successfully managing a planning system. We accept
that the current state of technology dictates that the field of planning is still
largely academic and that only people with substantial knowledge with respect
to the technology can use it (although some commercial systems do use plan-
ning technology, such as BridgeBaron [53]). This statement is all the more true
if we consider the more technical tasks, such as constructing control strategies.
It is the opinion of the author that this will remain the case for some consid-
erable time, due to the nature of the process. What generic control rules do
offer is a way to write, share and compare reusable abstract control strategies,
though we readily admit that it will be people already in the field that will

CHAPTER 6. CONCLUSIONS 160

benefit from this. There is motivation in the community to apply planning
technology to real world applications. Through the use of domain specific
control rules, planning systems are producing better plans, faster. Reusable
control knowledge can only add to this trend of increase in performance and

may help move planning technology into practical applications.

6.4 Other issues

The claims of improved performance are based on solution length and not
running times. This point highlights some interesting observations that might
otherwise have gone unnoticed. When we supply control information to a
planning system, we are affecting the way it searches for a solution in the
search space. This can be through ordering, branch pruning and other forms
of search space restriction. The desired effect is that plans will be found that
have qualities we specify (through control knowledge) and that they may be
found faster than without control knowledge (restricting the search space may
lead to reduced search time).

The control rules used in the results were optimality rules. We would expect
them to improve plan quality by pruning sub-optimal branches from the search
space. As can be seen from the results, generic control rules can be used to
improve plan quality (although they will not necessarily do so for all problems
- control rules were used to enforce optimality constraints that the planning
algorithm did not). In fact they improve plan quality in the very successful
fully automatic system, FF. Solution generation times were not improved, but
as has been discussed the implementation handled the control information in a
naive way. There is also no guarantee that optimality constraints reduce search
time, as they may make it more difficult to find a solution (in domains where
non-optimal solutions are very dense and optimal solutions are very sparse).

There is comfort in the solution generation times for the instantiation only
system, though this result is harder to qualify. The fact that the control rule
instantiation is very quick with respect to the full TIM analysis is positive, and
there is the possibility that a bare-bones version of TIM could be constructed

that only put effort into identifying generic clusters with the intention of speed-

CHAPTER 6. CONCLUSIONS 161

ing this part of the process up. An interesting observation is that to compare
the running times for the instantiation only system with the state of the art
in control rule generation, we would need to time human control rule authors

producing the same set of rules!

6.5 Contributions

The novel work presented in this thesis can be summarised by the following
list of contributions to the field:

Demonstration of the thesis that useful control strategies can be represented
in a language that uses behaviour based abstractions of interacting types and
automatically instantiated into domain specific rules.

The proposal of the generic cluster as a basis for writing reusable, abstract
control knowledge. Within this definition, cluster prototypes are presented
as declarations of the available features of a cluster. The notion of a generic
cluster is an extension of the idea of generic types and provides, we feel, a
more powerful way of exploiting interacting generic behaviours. Where generic
types abstracted the types involved in a subproblem, the generic cluster gives
a behaviour based abstraction of the whole subproblem. The isolation or
integration of subproblems is discussed using the novel terminology of inclusive
and exclusive instances of generic clusters.

An extension to the domain analysis package offered by TIM, which to
date had offered the results of various analyses (object typing, invariants, etc.).
Generic control rules provide an interface for writing reusable abstracted con-
trol rules for the behaviour structures that TIM identifies. As such, the work
contained in this thesis can be seen as providing a rational reconstruction
of the processes of abstraction and reuse of control knowledge, as seen in the
hard coded subproblem specific control strategies employed by the TIM/STAN
partnership. The ability to provide abstract control strategies affords us many
benefits. Some of the work provided by control rule authors can be fully au-
tomated, removing the problems associated with manual domain analysis and
control rule formulation. They also provide a basis for the shared use of control

information across the community.

CHAPTER 6. CONCLUSIONS | 162

A modal temporal logic for expressing properties of sequences of states.
The logic uses the features of the behaviour based generic cluster to express
configurations of objects over states. The logic itself is novel as it departs from
the tradition of qualifying the temporal mode of propositions or expressions
and instead considers the temporal mode of an object’s relationship with some
other known object or objects. None of the logics previously presented for the
expression of control strategies have been able to express meta-constraints on
the search space that the use of generic clusters enables (the languages used
by both TLPlan and TALPlanner can only offer object level rules and as such
can only offer object level control rules). A proof that the normal form of the

generic control rule logic is the the same as the domain level language.

Direction on how to construct prototypes for a range of generic clusters,
including a cluster relating to a subproblem that is not identified by the es-
tablished generic type identification process. Demonstration of some natural,
possibly necessary, extensions to the languages proposed. This includes the
declaration of definitions (truth valued generic functions) such as good com-

pound, the interpretation details of which are also presented.

Demonstration of the need for an additional language, the features of which
have been described and discussed, for identifying and defining the features of
a generic cluster in terms of the behaviour of the types involved. As has
been stated, the vocabulary of this language would be the structures that
enable the identification of generic types, i.e. properties of varying kinds,
attributes, etc.. A question has been raised concerning the possibility of other
such languages, potentially with identification techniques in addition to the
established relational behaviour-based analysis (as would be required by the
identification of the orienteering subproblem by Smith [52]).

Demonstration not only that behaviour based abstract rules can be auto-
matically instantiated, but can also be used to aid the search process of a state
of the art planning system that was not originally intended for such additional
information. An example of the pruning that can be achieved is demonstrated.
Timing results show that the additional work carried out by the generic control
rule instantiation module is not significant with respect to the TIM analysis

that is used to analyse the domain.

CHAPTER 6. CONCLUSIONS 163

6.6 Further work

The work presented in this thesis suggests many directions for further research.
Here we discuss some possibilities.

Although the machinery for automatic instantiation has been implemented,
a more comprehensive library of rules for a range of generic clusters would give
a clearer picture of the impact of using abstracted control rules. Building a
library of applicable rules (that are not subsumed by the search strategy using
them) would allow us to consider how the benefits of using large sets of rules
compare with the increased time penalty paid for instantiating those rules. As
new generic clusters are identified, the library can be extended to handle not

just new rules but also new clusters.

A more comprehensive library would also allow control rule based planners
to be evaluated on a level playing field. Giving different planners the same
control information would facilitate fairer comparisons between these systems.
This is in contrast to the international planning competitions, in which the
performance of control rule based planners is dependent on the work done by
human control rule authors in the available time.

We have not claimed that abstracted control rules can currently match the
power of hand coded domain specific control information. We have shown
that a subset of the rules that currently must be manually generated can be
automatically instantiated from abstracted forms. This suggests a tool that
could be used in conjunction with other forms of control rule generation that
would be of use not jlist to those running planning systems but also to domain
engineers (for domain verification purposes). An obvious inclusion in this
tool would be the availability of both completeness-preserving rules and non-
completeness-preserving rules. This would allow the selection of rules that
introduce incompleteness into the search space on a per problem basis (for
example, a control structure that is used to find some solution very quickly
may be selected if we are more concerned with time performance than plan
optimality).

A larger collection of rules for a range of generic clusters would allow the

examination of any increase in running times entailed. If a significant time

CHAPTER 6. CONGCLUSIONS ' 164

penalty is incurred by large rule sets, one way in which the work could progress
is through the use of rule priorities. Rules could be rated in terms of their
utility (with respect to the appropriate cluster), allowing the planner to select
a subset of the rules available. This approach could also be applied in domains
with multiple generic clusters, where only the best rated rules are selected
irrespective of the cluster they exploit.

Abstract control rules were used in conjunction with a forward-chaining
state based planner, and though this type of algorithm lends itself naturally
to the pruning enabled by control rules, a dedicated control rule based planner
could use the control rules in a less naive way (control rules were fully grounded
in the implementation). FF’s powerful heuristics meant that many rules that
were tried were overshadowed by the natural search strategy of the planner.
The full effect of pruning the search space could be seen with planning systems
employing brute force search.

As has been described, it is possible to envisage declaring a prototype for a
cluster that has not been identified by the deterministic behavioural analysis
that TIM offers. The orienteering subproblem in planning domains described
by Smith is just such a problem. Although we can quite easily construct a pro-
totype for this subproblem (a generic cluster is really a recognised subproblem),
it is not obvious how we would provide the appropriate binding function. In
the work presented, the binding function is supplied automatically by TIM. We
have demonstrated the need for a new language that would be used to define
the functions of a generic cluster using the same vocabulary as that of generic
type identification. However, the identification of the orienteering problem is
not a deterministic behaviour based analysis. It involves a sensitivity analysis
where results are compared with some user defined threshold. The proposed
language for relating function definitions to behaviour aspects may not be ap-
propriate for such behaviour structure. This seems to suggest that new logics
would be needed to supply the definitions of functions for behaviour structures
that are identified in different ways. We suspect that in reality, some base lan-
guage (such as that outlined earlier) would be sufficient and could simply be
extended to cater for structures that are identified in novel ways. However,

this is an interesting area for exploration.

CHAPTER 6. CONCLUSIONS 165

Extensions in line with the development of the domain description lan-
guage. By this we mean the hand-in-hand development of the TIM/generic
control rule module partnership to cater for aspects being introduced into the
common language of the community such as time, durative actions, numerical

functions, etc..

Much recent work has focussed on the automatic generation of control
knowledge, be that in the form of goal orderings or policies. We suggest that
the framework of generic clusters for discussing features of a subproblem may
be useful in such control generation. For example, [19] uses a random walk
strategy and approximate policy iteration to learn and refine policies. It is
conceivable that the random walk strategy could be used to learn policies
relating to the subproblem represented by the cluster by constructing a state
space relating to the pure subproblem. This would improve on the policy
generation described in [19] as the policies would be abstracted; the system
would only have to learn the policy once but could apply it to every instance
of the abstracted subproblem. This technique might not be so applicable to
some forms of control knowledge, such as extracting goal orderings, as these
strategies are problem specific and hence not abstractable with respect to the
subproblem. This suggests the classification of control knowledge as either
problem specific or domain specific, where problem specific control knowledge
can only be guaranteed to be useful for the particular problem instance and
not for any problem in general in the domain. Only domain specific control
knowledge could be abstracted to the cluster level.

Generic control rules that refer to states beyond the immediate successor
of the current state require a progression algorithm, or compiling into the op-
erator preconditions (a compilation technique that is proven to be equivalent
to TLPlan’s progression algorithm is given in [23]). Implementation of either
of these would allow control rules to specify longer sequences of states, and po-
tentially offer new pruning opportunities. The compilation of control rules into
preconditions simplifies the search space associated with the domain, and with
an automatic compilation algorithm [23], the overhead of manually compiling

those control rules is removed.

Considering the applicability of abstracted control rules demanded the clas-

CHAPTER 6. CONCLUSIONS 166

sification of instances of generic clusters, rules for generic clusters and derived
instances of base clusters as exclusive or inclusive. We also considered and
discussed the relationships between hierarchies of generic clusters. Along with
discussions on the completeness preservation of rules, these issues are all con-
cerned with the appropriateness of control knowledge. Although many obser-

vations were made, these areas would benefit from further examination.

Chapter 7
Summary

We have successfully demonstrated the thesis of this work. This demonstration
has involved many aspects.

We have extended the notion of generic types as abstractions of domain
types with recognised behaviour to the notion of generic clusters as abstrac-
tions of sets of domain types that interact in known ways. This provides an
abstraction of subproblems in planning domains. Generic cluster prototypes
have been presented to encapsulate the behaviour of any given generic cluster.

A state based temporal logic has been specified, whose terms are features of
generic cluster prototypes. This allows the description of sequences of states
in terms of the features of generic clusters. Describing sequences of states
provides a method of expressing control knowledge (properties that must hold
over a sequence of states). Control knowledge expressed at this abstracted
level is reusable.

Existing domain analysis techniques are used to automatically identify in-
stances of generic clusters in planning domains. The details provided by generic
cluster identification supply the information required to specialise any expres-
sion given in terms of that abstraction. This facilitates the automatic instan-
tiation of abstract control rules into domain specific instances, removing the
need for those rules to be manually constructed.

We have shown that abstractions of many control strategies that are em-
ployed by current control rule based planners can be expressed and automati-

cally instantiated in the framework described. Furthermore, we have demon-

167

CHAPTER 7. SUMMARY 168

strated that automatically instantiated control strategies can be used to im-
prove plan quality in a competitive contemporary fully automatic planning
system. The time penalty incurred by the provision of these rules is small
compared to the TIM analysis on which that provision is based.

The specification of a logic for abstracted control knowledge provides the
community with a common language in which to share, compare and compile
control strategies. A repository of reusable control rules will reduce the onus
of control rule authors and provide a level playing field on which to compare
the performance of control rule based planning systems.

In addition to introducing the generic cluster as an abstraction of subprob-
lems (through the representation of interacting sets of types) we have discussed
the relationships that exist between derived instances of generic clusters and
their base clusters. This discussion introduced the classification of derived
instances of a cluster as exclusive or inclusive, a classification that was also
introduced both with respect to control rules for generic clusters and instances
of a cluster in a domain. These classifications were necessary in specifying the
applicability of control strategies within the generic control rule framework.

The methods detailed in this thesis have been justified using both empir-
ical data and their context in the field of planning. They have also set the

foundations for many further avenues of enquiry.

Appendix A

The ZenoTravel domain

This is the complete TLPlan encoding of the ZenoTravel domain

..

2253339325333 3323932 INNFN NN NN NI NN ENIEI IS NN SN SNNSIINNIYONYY

;33 ZenoStripsWorld.tlp
;33 TLPlan Zeno travel world.
;37 Based on the 2002 PDDL strips domain

..

IR R I A I A N A I I I I A I I I I A R A A I AR IR 2R IR I 2
;33 Imitialization

..

IR RS E R R RN E R R I I A I I A N I I R B I A A N R N A R BT 2 B A

(clear-world-symbols) ;Remove old domain symbols
(enable pddl-support)

(set-search-strategy depth-first-no-backtracking)
(disable cycle-checking)

..

29929337 2333229523222 23539 L NI NI NP NN NI NI S IN SN SN ININENIINIYNYY
;33 1. The world symbols.

..

IR e RN R R A I I I R AR RN R RS I I I AR RS BN TN B A)

(declare-described-symbols
(predicate at 2) ;domain predicates
(predicate in 2)
(predicate fuel-level 2)

(predicate fuel-next 2 no-cycle-check)

(predicate aircraft 1 no-cycle-check)

169

APP_E‘;NDIX A. THE ZENOTRAVEL DOMAIN 170

(predicate person 1 no-cycle-check)

(predicate city 1 no-cycle-check)
(predicate scheduled 2)) ;7plane is scheduled to travel to 7city

(declare-defined-symbols
(predicate ok-to-board 2)
(predicate ok-to-fly 3)
(predicate ok-to-refuel 1)
(predicate need-to-fly 1))

IR N S NN SRR RN EE SRR I I A A I A

;33 2. The defined predicates.

..

I NI I I I I I I I I I R i I I I I A A A A A A IR A A A I I

; OK for person 7p to board plane 7a

;; Don’t board a plane unless we need to go somewhere else
;; We can board this plane either if it’s not scheduled to go anywhere

;; or it’s scheduled to go to our goal city

(def-defined-predicate (ok-to-board 7person ?aircraft)
(and
(forall (7city) (at 7person ?7city) (not (goal (at 7persomn ?city))))
(forall (7city) (scheduled 7aircraft Tcity)
(goal (at ?persomn 7city)))))

;; OK for plane 7a to fly to city 7c

;; We can fly if we’re scheduled and there is no one else who needs

;; a ride to our destination.

;; Or, there is no one here who needs to go somewhere else and there

;; are people at our destination and no other plane is there or no other
;3 plane is scheduled to go there.

;3 Or we need to get to our goal location and every person is at

;3 their goal

(def-defined-predicate (ok-to-fly 7a 7c 7f) ;; 7f is dummy argument
(and
(forall (?c2) (scheduled 7a 7c¢2) (= 7c 7c2))

APPENDIX A. THE ZENOTRAVEL DOMAIN

(or
(and
(scheduled 7a 7c) ;; we’'re scheduled
(forall (7c2) (at Ta ?c2) ;; no one else here going our way
(not
(exists (7p) (at 7p 7c2)
(and
(person ?p)
(goal (at 7p 7¢)))))))
(and
(forall (?7c2) (at 7a 7c2) ;; we’re no longer needed here
(forall (?p) (at 7p 7c2)
(implies
(person 7p)
(goal (at 7p ?c2)))))

171

(exists (7p) (at ?p 7c) ;; persons need a ride at destination

(and
(person 7p)
(not (goal (at ?p ?7c)))))

(or

(not ;; there is no plane at destination
(exists (7a2) (at 7a2 7c¢)))

(not ;; there is no plane scheduled for destination
(exists (7a2) (scheduled 7a2 7c)))))

(and
(goal (at 7a ?¢)) ;; destination is our goal
(forall (?p 7c¢2) (at ?p 7c2) ;; no person needs to travel
(implies

(person 7p)
(goal (at ?p ?¢2))))))))

;; We need to fly somewhere (so we’ll need fuel)

(def-defined-predicate (need-to-fly ?a)

(or
(exists (7c) (scheduled 7a 7c)) ;; we’re scheduled
(exists (7p) (in ?p 7a)) ;; someone has boarded the plane
(and

(not
(exists (?p 7a2) (in 7p 7a2)))

APPENDIX A. THE ZENOTRAVEL DOMAIN 172

(forall (7c) (at 7a ?c)
(exists (7¢2) (city 7c2)

(and
(not (= 7c 7¢2))
(exists (7p) (at 7p ?7c¢2) ;; persons who need a ride
(and
(person ?p)
(not (goal (at 7p 7¢2)))))
(or
(not ;; there is no plane there

(exists (7a2) (at 7a2 7c2)
(aircraft 7a2)))
(not ;; there is no plane scheduled for there
(exists (7a2) (scheduled 7a2 7c2))))))))
(forall (7c) (at ?7a ?c¢) ;; we’re not at our goal
(exists (7c2) (goal (at ?a 7c¢2))
(not (= 7c 7c2))))))

;3 OK to refuel plane ?7a
;3 Only refuel if we’re out of fuel and we need to fly

(def-defined-predicate (ok-to-refuel 7a)
(and
(forall (7f) (fuel-level 7a ?7f)
(not (exists (7f2) (fuel-next 7£f2 7£))))
(need-to-fly 7a)))

..

IR e N N R N IR R R RN N R A)
;33 3. Initialization Formula.

..

IR RN R N R R I A I I RS R I |
(set-initialization-sequence
;3 Delete any person without a goal location.

(forall (7p) (person 7p)
(or
(exists (?c) (goal (at 7p 7c)))
(and

APPENDIX A. THE ZENOTRAVEL DOMAIN 173

(del (person 7p))
(forall (7c) (at ?p 7c)
(del (at 7p 7c)))
(forall (%a) (in ?p 7a)
(del (in ?p 7a))))))

..

IEE R EEEEEEEEEEREEEEEEEEEEEEEEEENEEREEEEREEREEEEENEEEEEEEEEEEEREREEIENEEEERERE)

;33 4. The temporal control formula.

..

..

2302 23 32932222 3NFNRRNRYRNYNSEINNDNNINNISNNNNSNENNYENNINNEININNNY OSNNNNNNNY
;33 5. Operators.

..

I NN N A A A I I A R A I R B O D R AU N N I RN N B RS I B R |
;33 Debark a person from a plane

(def-adl-operator (debark ?person 7aircraft ?city)
(pre
(?person 7aircraft) (in 7person 7aircraft)
(?city) (at Paircraft ?city)
(goal (at ?person 7city)))
(add
(at 7person 7city))
(del

(in ?person ?aircraft)))
;33 Board a person onto a plane

(def-adl-operator (board 7person ?aircraft ?city)
(pre
(7aircraft) (aircraft 7aircraft)
(7city) (at 7aircraft 7city)
(7person) (person ?person)
(and
(at ?person ?city)
(ok-to-board ?person Taircraft)))
(add
(in ?person Taircraft))
(forall (?c2) (goal (at ?persom 7c2))
(or

ApPPENDIX A. THE ZﬁzivoTRAVEL DOMAIN 174

(scheduled 7aircraft 7c¢2)
(add
(scheduled 7aircraft 7c2))))
(del
(at 7person ?city)))

;33 Fly a plane from one city to another

(def-adl-operator (fly 7aircraft ?from 7to ?fuel-from ?fuel-to)
(pre
(7aircraft) (aircraft 7aircraft)
(?from) (at 7aircraft ?from)
(?to) (city 7to)
(?fuel-from) (fuel-level 7aircraft 7fuel-from)
(7fuel-to) (fuel-next 7fuel-to 7fuel-from)
(and
(not (= 7from 7to))
(ok-to-fly 7aircraft 7to ?fuel-to)))
(add
(at ?aircraft 7to)
(fuel-level 7aircraft 7fuel-to))
(implies
(scheduled 7aircraft 7to)
(del
(scheduled 7aircraft 7to)))
(del
(fuel-level 7aircraft 7fuel-from)

(at ?aircraft 7from)))
;73 Zoom a plane from ome city to another

(def-adl-operator (zoom 7aircraft ?from ?to 7fuel-from 7fuel-mid 7fuel-to)
(pre
(7aircraft) (aircraft 7aircraft)
(?from) (at 7aircraft 7from)
(7to) (city 7to)
(?fuel-from) (fuel-level 7aircraft 7fuel-from)
(7fuel-mid) (fuel-next ?fuel-mid 7fuel-from)
(?fuel-to) (fuel-next 7fuel-to ?fuel-mid)
(and

APPENDIX A. THE ZENOTRAVEL DOMAIN 175

(not (= 7from 7t0))
(ok-to-fly Zaircraft ?7to 7fuel-to)))
(add
(at ?aircraft 7to)
(fuel-level Taircraft 7fuel-to))
(implies
(scheduled ?aircraft 7to)
(del
(scheduled 7aircraft 7to)))
(del
(fuel-level 7aircraft 7fuel-from)

(at ?aircraft ?from)))
;;; Refuel a plane

(def-adl-operator (refuel ?7aircraft 7city ?fuel-from 7fuel-to)

(pre
(?aircraft) (aircraft Zaircraft)

(7city) (at 7aircraft 7city)
(?fuel-from) (fuel-level 7aircraft ?fuel-from)
(?fuel-to) (fuel-next 7fuel-from 7fuel-to)
(ok-to-refuel 7aircraft))

(del
(fuel-level 7aircraft ?fuel-from))

(add
(fuel-level 7aircraft 7fuel-to)))

............................

LI I I IR A A I D A D AR A h A e O B I O O

;33 World Print Routine

IR EEEEEEREEEEEEEEFEEEEEEEEEEER

(def-defined-predicate (print-zeno-world ?stream)
(and
(forall (?x 7y) (fuel-next 7x 7y)
(print ?stream "(fuel-next "A “A)~U" 7x 7y))

(print 7stream ""~%")

(forall (?x) (city 7x)
(print ?stream "(city “A)"4" 7x))

(print 7stream "“%")

APPENDIX A. THE ZENOTRAVEL DOMAIN 176

(forall (7x) (aircraft 7x)
(print ?stream "(aircraft “A)~%" 7x))

(print 7stream ""%")

(forall (7x) (person ?x)
(print 7?stream "(person "A)~%" 7x))

(print ?stream "~%")

(forall (7x ?y) (at ?x 7y)
(print 7stream "(at ~A “A)U" ?x 7Ty))

(print ?stream "~%")

(forall (?x 7y) (in ?x 7y)
(print 7stream "(in A “A)"%" 7x Ty))

(print ?stream "~Y")

(forall (7x 7y) (fuel-level 7x 7y)
(print 7stream "(fuel-level ~“A “A)~%" ?x 7y))
(print ?stream "~%")

(forall (?x 7y) (scheduled 7x 7y)
(print 7stream "(scheduled "A ~“A)~%" ?x 7y))

(print ?stream "~%")))

; (set-print-world-fn print-zeno-world)

Acknowledgements

If your name is not remembered, it does not mean that you are not ...

Beck

Maria and Derek

Amy, Badger, Curly Phil, Copley, David and Geni, Dom, Don J, Dyna White,
Dyson, Ed, EPSRC, George, GOJ, Handy, Hazel, Jared, Jazz, JB, John, Ken,
Keith, Lou-Lou, Mike and Derek, Naomi, Nick, Olly, Paddy, Parky, Paula,
Rory B, Sash, Simon and Sally, Smith, Tom, Tori, WATN, Yaz.

177

Bibliography

[1]
2]

3]

[4]

[5]

[6]

[7]

8]

F. Bacchus. Aips-2000 planning competition, 2000.

F. Bacchus and M. Ady. Precondition control. Unpublished manuscript,
1999.

F. Bacchus and F. Kabanza. Using temporal logic to control search in a
forward chaining planner. In Proceedings of Second International Work-
shop on Temporal Representation and Reasoning (TIME), Melbourne
Beach, Florida, 1995.

F. Bacchus and F. Kabanza. Planning for temporally extended goals. In
Proceedings of the Thirteenth National Conference on Artificial Intelli-
gence (AAAI-96), pages 1215-1222, Portland, Oregon, USA, 1996. AAAI
Press / The MIT Press.

F. Bacchus and F. Kabanza. Using temporal logics to express search
control knowledge for planning. Artificial Intelligence, 116(1-2):123-191,
2000.

C. Backstrom. Computational Complezity of Reasoning about Plans. PhD
thesis, Linkoping University, Linkoping, June 1992.

C. Backstrom and B. Nebel. Complexity results for SAS+ planning. Tech-
nical Report LiTH-IDA-R-93-34, Linkoping University, Linképing, Swe-
den, 1993.

C. Baral and T. Eiter. A polynomial-time algorithm for constructing
k-maintainable policies. In Proceedings of the Fourteenth International
Conference on Automated Planning and Scheduling (ICAPS04), 2004.

178

BIBLIOGRAPHY 179

[9]

[10]

[11)

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Blum and M. Furst. Fast planning through planning graph analysis. In
Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI 95), pages 1636-1642, 1995.

T. Bylander. Complexity results for planning. In Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence (IJCAI
91), pages 274-279, 1991.

T. Bylander. The computational complexity of propositional STRIPS
planning. Artificial Intelligence, 69(1-2):165-204, 1994.

M. Clark. Construction types: A generic type solved. In Proceedings of
the Twentieth Workshop of UK Planning and Scheduling Special Interest
Group (PLANSIG 01, pages 3243, 2001.

K. Currie and A. Tate. O-Plan: The open planning architecture. Artificial
Intelligence, 52(1):49-86, 1991.

J. P. Delgrande, T. Schaub, and H. Tompits. Domain-specific preferences
for causal reasoning and planning. In Proceedings of the Fourteenth Inter-
national Conference on Automated Planning and Scheduling (ICAPS04),
2004.

P. Doherty, J. Gustafsson, and L. Karlsson. Temporal action logics (TAL):
Language specification and tutorial. Linkoping University E-Press, 1998.

P. Doherty and J. Kvarnstrom. TALplanner: An empirical investigation of
a temporal logic-based forward chaining planner. In TIME, pages 47-54,
1999.

S. Edelkamp and M. Helmert. The model checking integrated planning
system. AI Magazine, 22(3):67-71, Fall 2001.

E. Allen Emerson. Temporal and modal logic. Handbook of Theoretical
Computer Science, B:997-1072, 1990.

BIBLIOGRAPHY 180

[19] A. Fern, S. Yoon, and R. Givan. Learning domain-specific control knowl-
edge from random walks. In Proceedings of the Fourteenth International
Conference on Automated Planning and Scheduling (ICAPS04), 2004.

[20] E. Fink and Q. Yang. Planning with primary effects: Experiments and
analysis. In IJCAI 95, pages 1606-1611, 1995.

[21] M. Fox and D. Long. The automatic inference of state invariants in TIM.
JAIR, 9:367-421, 1998.

[22] M. Fox and D. Long. Hybrid STAN: Identifying and managing combina-
torial optimisation sub- problems in planning. In IJCAI pages 445-452,
2001.

[23] A. Gabaldon. Precondition control and the progression algorithm. In Pro-
ceedings of the Fourteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS04), 2004.

[24] A. Gerevini and L. Schubert. Extending the types of state constraints
discovered by DISCOPLAN. Proceedings of the Workshop at AIPS on
Analyzing and Exploiting Domain Knowledge for Efficient Planning, 2000.

[25] A. Gerevini and L. K. Schubert. Computing parameter domains as an
aid to planning. In Proceedings of the Third International Conference
on Artificial Intelligence Planning and Scheduling AIPS96, pages 94-101,
Menlo Park, CA, 1996. AAAI Press.

[26] A. Gerevini and L. K. Schubert. Inferring state constraints for domain-
independent planning. In AAAI/IAAI pages 905-912, 1998.

[27) M. Helmert. Complexity results for standard benchmark domains in plan-
ning. Artificial Intelligence, 143(2):219-262, 2003.

(28] J. Hoffmann. A heuristic for domain independent planning and its use in
an enforced hill-climbing algorithm. In International Syposium on Method-
ologies for Intelligent Systems, pages 216-227, 2000.

BIBLIOGRAPHY | 181

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation
through heuristic search. JAIR, 14:253-302, 2001.

S. Kambhampati. A critique of knowledge-based planning track at ICP,
2003.

H. Kautz and B. Selman. Pushing the envelope: Planning, propositional
logic, and stochastic search. In H. Shrobe and T. Senator, editors, Proceed-
ings of the Thirteenth National Conference on Artificial Intelligence and
the Eighth Innovative Applications of Artificial Intelligence Conference,
pages 1194-1201, Menlo Park, California, 1996. AAAI Press.

H. Kautz and B. Selman. The role of domain-specific knowledge in the
planning as satisfiability framework. In Artificial Intelligence Planning
Systems, pages 181-189, 1998.

H. Kautz and B. Selman. Unifying SAT-based and graph-based planning.
In Jack Minker, editor, Workshop on Logic-Based Artificial Intelligence,
Washington, DC, June 14-16, 1999, College Park, Maryland, 1999. Com-
puter Science Department, University of Maryland.

G. Kelleher and A. Cohn. Automatically synthesising domain constraints
from operator descriptions. In Proceedings of the Tenth European Con-
ference on Artificial Intelligence (ECAI 92), pages 6563-655, 1992.

J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending plan-
ning graphs to an ADL subset. In Proceedings of the Fourth European
Conference on Planning (ECP 97), 1, 1997.

R. Korf. Macro-operators: a weak method for learning. Artificial Intelli-
gence, 26:35-77, 1985.

J. Kvarnstrom. Applying domain analysis techniques for domain-
dependent control in TALplanner. In Proceedings of the Sizth Inter-
national Conference on Artificial Intelligence Planning and Scheduling
(AIPS 02), pages 101-110, 2002.

BIBLIOGRAPHY 182

[38] D. Long and M. Fox. Automatic synthesis and use of generic types in plan-
ning. In Artificial Intelligence Planning Systems, pages 196-205, 2000.

[39] D. Long and M. Fox. The 3rd international planning competition: Results
and analysis. Journal of AI Research, 20:1-59, 2003.

[40] D. Long and M. Fox. Planning with Generic Types, volume Exploring
Artificial Intelligence in the New Millenium, chapter 4, pages 103-138.
Morgan Kaufmann, 2003.

[41] D. McAllester. Observations on cognitive judgments. In National Con-
ference on Artificial Intelligence, pages 910-914, 1991.

[42] D. McDermott. The 1998 Al planning systems competition. AI Magazine,
21(2):35-55, Summer 2000.

[43] S. Minton. Learning effective search control knowledge: An explanation-
based approach. Technical Report CMU-CS-88-133, CMU, 1988.

[44] S. Minton, C. Knoblock, and J. Carbonell et al. PRODIGY 2.0: The
manual and tutorial. Technical Report CMU-CS-89-146, Carnegie-Mellon
University, 5, 1989.

[45] D. Nau, T. Au, O. Ilghami, U. Kuter, J. Murdoch, D. Wu, and F. Yaman.
SHOP2: An HTN planning system. JAIR, 20:379-404, 2003.

[46] D. S. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. SHOP: Simple hierar-
chical ordered planner. In T Dean, editor, Proceedings of the Sizteenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI 99), pages
968-975. Morgan Kaufmann, 1999.

[47] J. Rintanen. An iterative algorithm for synthesizing invariants. In
AAAI/IAAI pages 806-811, 2000,

[48] S. Russell and P. Norvig. Artificial Intelligence. Prentice Hall, New Jersey,
1995.

[49] E. Sandewall. Cognitive robotics and its metatheory. Linkoping University
E-Press, 1998.

BIBLIOGRAPHY 183

[50] U. Scholz. Extracting state constraints from PDDL-like planning domains.
Proceedings of the Workshop at AIPS on Analyzing and Exploiting Do-
main Knowledge for Efficient Planning, April 2000.

[61] B. Selman, H. J. Levesque, and D. Mitchell. A new method for solving
hard satisfiability problems. In Paul Rosenbloom and Peter Szolovits,
editors, Proceedings of the Tenth National Conference on Artificial Intel-
ligence, pages 440446, Menlo Park, California, 1992. AAAI Press.

[52] D. Smith. Choosing ojectives in over-subscription planning. In Proceedings

of the Fourteenth International Conference on Automated Planning and
Scheduling (ICAPS04), 2004.

[63] S. J. J. Smith, D. S. Nau, and T. Throop. A planning approach to declarer
play in bridge. Computational Intelligence, 12(1):106-130, February 1996.

[54] K. Stergiou and T. Walsh. Encodings of non-binary constraint satisfaction
problems. In AAAI/IAAI pages 163-168, 1999.

[55] G. A. Sussman. A computational model of skill aquisition. Technical
Report AI-TR-297, MIT, 1973.

[66] P. van Beek and X. Chen. CPlan: A constraint programming approach to
planning. In Proceedings of the Sizteenth National Conference on Artificial
Intelligence, pages 585-590. AAAI/MIT Press, 1999.

[57] D. E. Wilkins. Practical Planning: Extending the Classical AI Planning
Paradigm. Morgan Kaufmann, San Mateo, California, 1988.

[58] H. L. S. Younes and R. G. Simmons. Policy generation for continuous-
time stochastic domains with concurrency. In Proceedings of the Four-

teenth International Conference on Automated Planning and Scheduling
(ICAPS04), 2004.

