W Durham
University

AR

Durham E-Theses

CRIKEY!

It’s co-ordination in temporal planning

Halsey, Keith

How to cite:

Halsey, Keith (2004) CRIKEY! __ Ii’s co-ordination in temporal planning, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2707/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2707/
 http://etheses.dur.ac.uk/2707/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Declaration

The material contained within this thesis has not previously been submitted for a degree at
the University of Durham or any other university. The research reported within this thesis
has been conducted by the author unless indicated otherwise.

Copyright Notice

The copyright of this thesis rests with the author. No quotation from it should be
published in any form, including electronic and on the internet, without their prior written
consent and information derived from it should be acknowledged.

Acknowledgements

Firstly, I would like to thank Prof. Maria Fox and Dr. Derek Long, for their supervision,
guidance and, above all, encouragement too many times ! have needed it. Also to all
members of the Strathclyde Planning Group!, past and present, for their friendship and for
making the past three years so fulfilling.

I also extend my very grateful thanks to the University of Strathclyde and its Department
of Computer and Information Sciences who have so gencrously leant me their facilitics and
resources in the final year of my PhD. Without their support I would have been sure not to
complete this work.

Finally I would like to thank my family for their unerring emotional support, often in the
face of complete bewilderment at my ever changing plans. Bexstar: thanks for being patient
— put the kettle on; I’ll be home soon.

1 Alex, Amanda, Andrew, John, Jonathan, Julie, Luke, Pete, Richard, and Stephen

Abstract

CRIKEY! — It’s Co-ordination in Temporal Planning
Keith Halsey

Temporal planning contains aspects of both planning and scheduling. Many temporal plan-
ncrs assumc a loosc coupling between these two sub-problems in the form of “blackbox”
durative actions, where the state of the world is not known during the action’s execution.
This reduces the size of the search space and so simplifies the tetnporal planning problem,
restricting what can be modelled. In particular, the simplification makes it impossible to
modcl co-ordination, where actions must be exceuted concurrently to achicve a desired cffect.

Co-ordination results from logical and temporal constraints that must both be met, and
for this reason, the planner and scheduler must communicate in order to find a valid temporal
plan. This communication effectively increases the size of the search space, so must be done
intelligently and as little as possible to limit this increase.

This thesis contributes a comprehensive analysis of where temporal constraints appear in
temporal planning problems. 1t introduces the notions of minimum and maximum temporal
constraints, and with these isolates where the planning and scheduling are coupled together
tightly, in the form of co-ordination. 1t characterises this with the new concepts of envelopes
and countents.

A new temporal planner written, called CRIKEY, uses this theory to solve temporal
problems involving co-ordination that other planners are unable to solve. However, it does
this intelligently, using this theory to minimise the communication between the sub-solvers,
and so does not expand the search space unnecessarily. The novel search space that CRIKEY
uscs docs not specify the timings of futurc events and this allows for the handling of duration
inequalities, which again, few other temporal planners are able to solve.

Results presented show CRIKEY to be a competitive planner, whilst not making the same

simplifying assumptions that other temporal planners make as to the nature of temporal

planning problcms.

Contents

1 Introduction 11
1.1 Preliminary Introduction and Overview,. 11
1.1.1 Classical Planning 11

1.1.2 Scheduling 12

1.1.3 Temporal Planning 13

1.2 Comtext e 13
1.3 Scope, Aims and Motivation 0 L. 15
1.4 Outline e e 16
2 Background 18
21 Modelsof Timeo 18
211 ViewsofChange 18
2.1.2 Classifications L e 20

2.1.3 Temporal Problems 22
214 Durative Actions 22
2.1.5 Reasoning About Time 26

2.2 Resources in Planning and Scheduling 26
2.3 Decomposition of Problems 27
23.1 HybridSTANand TIM 28
2.3.2 Translation of the Planning Problem 29
2.3.3 Goal Orderings as Decomposition 29
2.3.4 Advantages of Decomposition 0. 30

2.4 Integrating Planning and Scheduling Technologies 30
25 Planners e e e e e e e 31
2.5.1 Graphplan-based Temporal Planners L3
2.5.2 Forward Heuristic Search 33
2.5.3 Decomposing Planners 35
254 Stateofthe Art 36

2.6 Chapter Summary it e e e e 37

CONTENTS

3 Theory
3.1 An Initial Solution The LPGP/FF Hybrid
3.2 Coupling of Planning and Scheduling
3.2.1 Failure of the LPGP/FF Hybrid
3.3 Temporal Constraints in PDDL2.1
3.3.1 Translationofthe Domain.
34 Envelopesand Comtents ueue..o...
3.5 Dctecting Single Potential Envelopes oL L.
3.5.1 Reasons for Precedence
3.5.2 Defining Potential Envelopes
3.6 Chapter Summary e
4 CRIKEY
4.1 Version 1 e e
4.1.1 Envelope Analysis
412 Planpingin Version 1
4.1.3 Schedulingin Version 1
4.2 Characteristicsof Version 1 Lo L.
43 Version 2 e e e
4.3.1 Envclopc Management L.
4.3.2 Scheduling e
44 ComparisonwithSapa
4.5 Chapter Summary 0 it e e e e e
5 Results
51 Capabilities e
52 IPCO4 e e e e
5.2.1 Analysis Overview of IPC’04 Domains
53 Co-ordination e e
5.3.1 The Match Domain Revisited
54 DriverLog Shift
541 Mousetrap.
542 Baseball
55 UsingthcMetric
5.6 Chapter Summary e
6 Conclusions
6.1 Summary e e e e
6.2 Critique of CRIKEY e

A Example LPGP Translation

38
38
47
49
50
54
56
58
59
59
63

64
65
66
68
74
74
75
76
79
85
86

87

88

90
109
109
110
117
120
121
121
122

124
124
125

128

CONTENTS

o O w

=

The Zeno Travel Domain

The Match Domain

Alternative Formalisation

The Café Domain

The Lift Match Domain
F.1 Partial Lift Match Numeric Domain

G DriverLog Shift Domain

Mousetrap Domain

Baseball Domain

136

139

141

143

146
149

150

154

157

List of Figures

1.1

21
2.2
2.3
2.4

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14
3.15
3.16
3.17

4.1
4.2
43
4.4

A Generic View of Temporal Planning

Views of Change in Planning
Possible Concurrency Issues with Durative Actions
Different Types of Temporal Planning Graph
Commwnication in RealPlan

The Proposed Separation of Planning and Scheduling in the Hybrid Planner .
Architecture for Separating Planning and Scheduling
The LPGP Translation of Durative Actions
The Veloso Algorithm to Translate Totally Ordered Plans to Partially Or-
dered Plans e e e
Example of a Broken lnvariant
Example of an End Action Deletinga Goal
Coupling Between Planning and Scheduling in Temporal Planning Domains .
A Valid Plan for the Match Problem
Expressing a Maximum Minimum Elapsed Time Between Actions in PDDL2.1
Possible Combinations of Representing the Same Constraint
Expressing both Minimum and Maximum Time Between Actions in PDDL2.1
Two Possible Equivalent Representation of the Breakfast Domain
Comparison of the Match Domain and Minimmum and Maximum Delays in
PDDL2.1 . . . o e
Envelopes and Contents L.
The Three Reasons to Order Actions
Potential Envelopes (with achieving contents)
A Hard Envelope modelling a time limited resource

Differences Between the LPGP/FF Hybrid and the Two Versions of CRIKEY
Architecture Overview of CRIKEY
Alternative Architecture Overview of the LPGP/FF Hybrid
Example Precedence Graph

39
40
43

4
46
46
47
49
51
52
54
54

55
58
59
62
63

LIST OF FIGURES 9

4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

A Partial Order for the Café Domain 84
Two Plans with Identical Goals but Different Metries. 84
Two Possible Complex Envelopes 89
Non-tcmporal Small PSR Domain 92
Non-temporal Dinning Philosophers Domain, 94
Non-temporal Optical-Telegraph Domain 95
Non-temporal No Tankage Pipesworld Domain 97
Temporal No Tankage Pipesworld Domain 98
Non-temporal Tankage Pipesworld Domain 99
Temporal Tankage Pipesworld Domain 100
Temporal UMTS Domain 102
Temporal Flawed UMTS Domain 103
Temporal UMTS Domain with compiled Time Windows 104
Non-temporal Airport Domain 106
Temporal Airport Domain 107
Temporal Airport Domain with Time Windows 108
Standard Match Domain, 111
Variable Time Match Domain 113
The Lift Match Domain 0o....... 115
Performance of CRIKEY with and without matches encoded using fluents . . 116
Standard DriverLog domain as used in IPC'02 118
DriverLog Simple Time Domain Converted to use Shifts 119

Degradation of Performance when DriverLog Domain Converted to use Shifts 120
Plan Quality in the Café Domain with CRIKEY version 2 123

List of Tables

2.1
2.2

3.1

4.1

5.1
5.2
5.3

54

Nine Possible Combinations of Start End Pairs from the Three Ordering Rea-
sons from the Veloso Algorithm

Possible Specifications of Durations and Resource Conditions and Operators .

Temporal Planner Concurrency Capabilities
Temporal Planner Temporal Capabilities
Percentage of Time Spent in Temporal Planning by CRIKEY in the Match
Domain oo
Percentage of Time Spent in Temporal Planning by CRIKEY in the Driverlog

Domain e e

10

Chapter 1

Introduction

1.1 Preliminary Introduction and Overview

1.1.1 Classical Planning

Classical Planning is a well defined construction problem where actions are chosen to reach
a goal state from an initial state. In its simplest form (STRIPS [23]), states are defined by
a set of logical propositions that describe currently true facts about the world. The effects
of actions change the state by cither adding propositions (“add cffcets”), or removing them
(“delete effects”). Actions also have “conditions” —- propositions that must be true in a
state in order to apply the action.

The solution to a planning problem is an ordered sequence of actions called a plan, to be
exccuted by an cxccutive (or agent) that applics cach action in turn from the initial statc
to reach a goal state.

It is well known that planning is a P-space hard problem [22], but furthermore, it is
considered preferable to produce a good quality solution and at best, an optimal plan, that
is, one with a minimum number of actions. Recently the notion of optimality has not been
researched as much as satisfiability (simply finding a plan).

STRIPS has been extended to ADL [58] to increase the expressiveness of the problem
definition language, including typing of objects in the domain, negative preconditions, and
quantified conditions and effects. However, classical planning still makes a number of as-
sumptions that are described in [70]. These include:

e Static World — The only cause of change in the world is from the actions performed

by the cxccutive.
¢ Deterministic — The effects of actions are completely known.

e Fully Observable — The state of the world is completely known.

11

CHAPTER 1. INTRODUCTION 12

¢ Finite — The world is finite in every aspect and objects cannot be created.

¢ Atomic Time — Time is composed of indivisible units with each action taking a

single time unit.

These assumptions have all been weakened and the consequences explored. This thesis
is interested in the relaxation the last of these, that of atomic time. As it holds, it has a
significant consequence: The state of the world need not be considered whilst the execution
of an action is in progress. Instcad, the exccution is an atomic transformation from onc statc
to another. Importantly, on account of this, concurrent execution of actions is impossible.
The addition of time into classical planning is called “Temporal Planning” and will be looked
at closer in Section 1.1.3.

Another common cxtension to classical planning is “Metric Planning”, where therc arc
not only propositional variables taking the values of true and false, but also metric fluent
variables that can take numeric values. This allows the easy modelling of resources, but
makes the problem more complex, as the state space is potentially infinite.

1.1.2 Scheduling

Within the research community there is less agreement, when compared to the planning
problem, as to exactly what the scheduling problem is. However, there is agreement as to
what the class of scheduling problems entail. Whereas planning is a construction problem,
deciding which actions should be uscd to rcach a goal without breaking any logical con-
straints, scheduling is often an optimisation problem deciding when actions (often called
tasks or activities) should occur without breaking any temporal or resource constraints.
Alternatively, scheduling could be defined as allocating resources to activities over time.

Classes of scheduling problem include job shop scheduling {allocating tasks to machines in
a factory), multiprocessor scheduling and timetabling. Sometimes the tasks are pre-emptive
and can be interrupted, other times not so. Scheduling problems can also be recursive, where
the jobs are reoccurring and a repeating schedule must be found. It is common for the jobs
to have deadlines.

Planning is commonly characterised as the problem of “what” activities should be per-
formed and scheduling as the problem of “when” and “with what” should they be executed.
Generally, in planning there may be fewer solutions to find, but in scheduling, finding a
solution can be relatively easy, making it more important to tind a good quality or optimal
solution. What constitutes a good solution can change; it may be preferable to maximise
the slack, or altcrnatively to minimisc the number of late jobs, the quantity of resource used,
the total time for the whole schedule or another, different, criteria.

CHAPTER 1. INTRODUCTION 13

1.1.3 Temporal Planning

Temporal Planning is classical planning with the assumption of atomic time removed. Metric
time (where time takes a value, rather than simply being relative) is explicitly modelled in
the planning problem. It is incorrect to assert that classical planning has no time as it is
the building of a trajcctory (a futurc coursc of actions), with a predicted outcome, and so
is developed inherently with respect to time. However, in classical domains there is a very
restrictive set of assumptions on the nature of time.

Time is an important element in many “real world” problems and adding a significantly
less restrictive time model makes the problem more expressive. For example, it is impossible
to form a good model of concurrency in the classical planning framework. It is also not
suitable when modelling actions that preserve a value over time, goals that are situated
in time or dynamic domains with predictable exogenous events outside the control of the
executive. And of course, actions rarely all have the same duration in reality.

The modelling of time is examined closer in Section 2.1. It has an impact on the complex-
ity of the planning problem (making it harder still) and also on what the planning problem
is: temporal constraints must be met, as well as the logical constraints. Importantly, a
solution is no longer simply an ordered sequence of actions, since these can now be executed
concurrently, but a time-stamped plan, where actions are given metric time values for their
proposed execution.

Temporal planning is the combination of classical planning and scheduling, since now
the problem combines the “what”, “when” and “with what” elements (i.e. it must both
plan the actions to use and schedule them in time against the resources). This is a natural
combining of problems as they have similar building blocks (i.e. actions / activities).

All these problems lie on a spectrum. At one extreme are the pure planning problems,
concerned only with logical reasoning, and at the other extreme sit the pure scheduling
problems, with no choice of actions, just their position in time. Temporal planning problems
lie somewhere on this spectrum in-between the two extremes.

1.2 Context

This thesis focuses on where problems lie on this spectrumm — how much planning and
how much scheduling is present in the problem and how they interact. The constraints
between the two problems affects how coupled they are. Problems that are independent
have no constraints between them. A weak sct of constraints will results in one problem
only affecting the quality of the other, and a strong set of constraints results in the solution
to one problem affecting whether the other is satisfiable (that is, possible to solve).

Described here are three examples of temporal planning problems to put this work in
context.

CHAPTER 1. INTRODUCTION 14

Building a House

When people decide they want to build a house, they must decide both what to do and
when to do it. This is a temporal planning problem. It is logical to first decide on a plan of
action which will contain tasks such as dig the foundations, build the walls, and put in the
windows. Only once these activitics have been planned would the human decide when to
do the various activities. There will be some precedence constraints between some of these
actions (for example, to build the walls before the roof is put on). However, there will also
be some choices, for example the electrician could either come before or after the plumber,
but not at the same time (as thoy would get in cach others way). Having the clectrician
come first could mean that the plasterers can complete their job quicker and so the house is
finished sooner. Other tasks could happen conecurrently, for example the upstairs could be
painted whilst the carpets are laid downstairs.

In this example the planning stage and the scheduling stage do not impact on each other.
In this case it is logical to do the two phases completely separately, since only decisions made
whilst scheduling affect how quickly the building is completed.

Evacuating an Island

Suppose there has been a volcanic eruption on an island, and it is necessary to evacuate
it. This again is a temporal planning problem as there is an initial state (volcanic island
with inhabitants), a goal state (all people evacuated) and actions to choose from (building a
landing strip, evacuate by plane, evacuate by boat etc...). In this case the choice of action
will affect the quality of the schedule. It may be quicker to build two landing strips and
then operate twice as many planes. The choice of actions may also affect the satisfiability
of the schedule. There may not be enough fuel to evacuate everyone by plane, so some must
go by boat.

In this problem the planning and scheduling are more tightly coupled than in the previous
cxample as the choice of action affects both the quality and the satisfiability of the schedule.

Air to Air Refuelling

in planning to perforn air to air refuelling with aeroplanes, the planes must be co-ordinated
to achieve the goéil. They must both be at their respective locations at the same time
and they must both be planned and scheduled simultanecusly to achieve this. Some action
will have to happen concurrently. Here the scheduling task cannot be separated from the
planning task as in the first example:

CHAPTER 1. INTRODUCTION 15

1.3 Scope, Aims and Motivation

Temporal Planning Problem

[Planner l

b

{ -Scheduler T

Temporal Plan

Figure I.I+ A Generic View of Temporal Planning

Figure 1.1 illustrates a general temporal planning architecture where the problem is decom-
poscd into planning and scheduling. Partial solutions, satisfiability, constraints and cost
estimates can all be passed between the two solvers. For example, the planner choses some
actions and passes them to the scheduler. The scheduler can then pass back the feasibility
of finding such a schedule, a cost estimate of what a potential schedule might be in terms
of time and resource consumption, or it could pass back a full or partial schedule to the
planner: The planner can then use this information in its search.

Pivotal to the nature of the temporal planner is the amount of communication passing
between the two solvers: both how often and how much information they communicate.
This lcads to a tradc-off: the more they interact, potentially the higher the quality of the
final solution. However, the communication is expensive and so it is preferable to minimise
it, thus reducing execution time and resources.

In cases where there is no interaction between the planning and the scheduling, then
no communication need take place. Where the choice of action affects the guality of the
schedule, then the trade-off stands. Finally, where the planning and scheduling are tightly
coupled and the choice of action affects whether a schedule can be found for the problem,
the solvers must communicate in order to find a valid final solution.

Splitting the problem is not the only way to solve temporal planning, however to do so
the interactions between the sub-problems must be understood. Once this is understood,
the communication between the solvers can be controlled and the trade-off met with some
intelligence.

The scope of this work is to examine and understand where, and to- what extent, planning
and scheduling interact in temporal planning domains. The focus is on where the problems
are very tightly coupled, as in the case of co-ordination, as there are currently few temporal
planners capable of solving such problems and it is largely ignored in the benchmark domains.
The motivation is to understand the communication needed between the planner and the
scheduler, with the aim to write a temporal planner to understand these interactions and

CHAPTER 1. INTRODUCTION 16

perform accordingly, communicating only where necessary. Whilst the nature of the planner
and scheduler will, of course, greatly affect the performance of the overall system, this thesis
is-only concerned with the interaction between them.

Here is a summary of the objectives of the thesis as written above:

Scope of Theory To examine and understand where planning and scheduling interact in
temporal planning.

Focus The thesis will focus on where the problems are tightly coupled.
Motivation To intelligently solve problems currently ignored by the community.

Aim To build a competitive planner to solve these problems using the understanding of

Tlogical and ternporal constraint interactions.

The contribution to the community through this work is:

o Understanding of temporal constraints in temporal planning (specifically in PDDL2.1
and similar languages).

» A planner that uses this theory to minimise communication between the planner and

scheduler and so solve problems that are not solved by other planners,

o A novel search state that does not specify the future timings allowing for duration
inequalities.

1.4 Outline

The next chapter reviews different models of time and resources and how this affects the
temporal planning problem (Sections 2.1 & 2.2). It looks at the decomposition of problems,
and an abstract look at communication between sub-solvers in Section 2.3. Finally, it takes
a closer looks at temporal planning, the general principles behind integrating Planning and
Scheduling (Scetion 2.4) and a survey-of other rescarch in the ficld that is tackling temporal
problems (Section 2.5).

Chapter 3 develops a theory of co-ordination in temporal planning by looking at where
planning and scheduling problems are tightly coupled. It examines where temporal con-
straints appear in temporal planning problems using durative actions. It introduces new
concepts of envelopes and contents, and of minimum and maximum precedence relation-
ships to classify the temporal constraints. The chapter starts with a planning system where
the planning and scheduling are split, but very little communication takes place between
the solvers. An example domain containing co-ordination is presented and it is shown how

this system fails in this case.

CHAPTER 1. INTRODUCTION 17

Chapter 4 describes the implementation of a temporal planner called CRIKEY, written
to solve the failures of the system set out in Chapter 3 and achieve the aims set out above.
It uses the theory developed in the previous chapter to do this intelligently and efficiently.
Two versions of the planner are described (Section 4.1 & 4.3), the second of which is built
on the first and contains a novel search state. This new state results in complete search for
domains where the planning and scheduling are tightly coupled. The planner is compared for
similaritics and diffcrences with Sapa, a similarly-cxpressive temporal planncr (Scction 4.4).

Chapter 5 presents some results of the implemented system, using temporal planning
problems that lie on a range of positions on the spectrum between planning and scheduling,
both where they interact heavily and where they do not. It is compared against systems
described in Chapter 2 on both the quality of the plan produced and also of the speed of
the planners. These results are analysed and explained. Finally, Chapter 6 summarises the
work presented in the thesis and this is followed by a critique of it, including the strengths
and weaknesses of the approach taken.

Chapter 2

Background

2.1 Models of Time

Modelling the flow of time is intrinsic to temporal planning and scheduling and requires
a specific representation that is domain independent to allow general temporal reasoning.
Its representation impacts on what is expressible, such as concurrency and also on the
complexity of the problem. In many ways, time can be likened to resources but has an
important property that differentiates it. Time flows independently and regardless of any
actions: it is not produced and consumed like a traditional resource. Also, it orders causality,
that is, causes must precede effects.

2.1.1 Views of Change

Change is fundamental in planning and is inextricably linked to time as time can only be
observed through change. Classical planning can be seen as a state transition diagram,
where change happens when transitioning from one state to another. Therefore, since the
actions are sequenced, the flow of time in classical planning is represented by the transitions
to get from the initial state to a goal statc. Howcever, concurrency is impossible (since it
means taking two or more transitions at once).

Lansky [51] idcntifics a duality between actions and statcs. Actions arc scen as state
changing functions (taking a state orientated view), but simultaneously, states are seen as
rccords of what actions have taken place (resulting in an action orientated view). The
first of these is coherent with the state transition model, the second gives rise to a new
description described in [29] as “the histories view of change”. In this, states are seen as
evolving continuously, with different evolutions linked by instantancous moments of change.
States not only represent the current state of the world but also what has come before
and is to happen in the future. Effects of actions, or exogenous cvents, can change this
evolution and not necessarily at the time of the action. Fox and Long [29] produce two

useful representations of these views (Figure 2.1).

18

CHAPTER 2. BACKGROUND

“alisl — 782
a2:s1 — 83
a3.62 — 54
ad:82 — sb
ab:sd — s5
-ab:83 — 85

(a) The Classical State Transition View of Planning

sl = Null

$2=al

83 = a2

s4 =al.a3

85 = al.a3.ab
V al.ad 15
vV a2:ab :

{b) The Histories View of Change: states are made up of histories
of events

Figure 2.1 Views of Change in Planning

19

CHAPTER 2. BACKGROUND 20

2.1.2 Classifications
Medelling Change. in Time

Time is most naturally thought of as passing in intervals whereas (logical) change tends
“to happén At poiiity in tithe. Thils tie ¢ éither be modelled us interval:bised or point-
based [65].
One such interval-based framework is described in {1] and specifies thirteen basic relations
that can hold between two intervals (sce Table 2.1).

Table 2.1: Basic Relations Between Intervals
Relation Predicate Symbol | Inverse | Meaning |
xbeforey | BEFORE(xy) | < | > [+—2— +1=
Xy
xequaly | EQUAL(x,y) = = |t
| xmeetsy | MEETS(xy) {1 m=m | m - Y
—5—
x overlaps y | OVERLAPS(x,y) 0 o Ly
2
xduringy | DURING(x,y) . d d |t Y 1.
—%—
X starts y STARTS(x,y) s s C Y {
—X—
x finishes y | FINISHES(x,y) f f b Y y

Disjunctions are allowed between these relationships for greater expressivity
(t.e. {<}U{=}={<}) and so the predicate IN is defined as:

IN(t1,t3) & (DURING(t1,t3) V STARTS(t1,t2) V FINISHES (21, 2))

Furthermore, there are axioms asserting that each relationship is mutually exclusive of the
others and axioms to describe the transitivity of them, such as:

BEFORE(t1,t3) A BEFORE(t3,t3) = BEFORE(t,,15)

The predicate HOLDS(p, ¢) defines whether a proposition p is true during the interval £.
With these relationships it is possible to reason about other, more complex, relation-
ships, and prove that certain facts must be true over certain intervals. “Occurrences” allow
descriptions of action and are split into two categories: “processes” that refers to activity not
culminating in a result (such as a fan being on) and “cvents” that produce an outcome (such
a moving across a room). Causality is expressed by ECAUSE (natural causes, such as a
non supported object falling) and AC AUSFE (where a dcliberate action by the agent causcs

CHAPTER 2. BACKGROUND 21

an affcct). The rclationships allow rcasoning about time and change in time. In particular
this model can represent non-activity (such as waiting at the road side) and maintenance
goals (satisfying a goal over a period of timc).

Point-based frameworks include [55] and [69]. In the second of these there are only three
realations that can hold between two points: <, =, and >. Again, disjunctions are allowed
so the complete set of possible relations between two points are {0, <, <,=,>,>,#,7}.

It is proven in [69] that it is possible to translate between a subset of the interval-based
framework and the point-based framework. We refering to the beginning and end of a point
based action such that A~ is the start of A and the end A*. Using an example from [65],
representing that “Fred read his paper, during which he started drinking his tea”:

paper{o, s, d}tca =

(paper™ < paper™) A (tea™ < tea™) A (papert > tea™) A (papert < teat)

Discrete or Continuous

Metric time is classified as discrete or continuous. Where the time is contimuous, time
variables can-take ‘any real value. This means that time is always divisible, and if two
timepoints are not exactly simultaneous, then it is always possible to order them. Conversely,
discrete time proceeds in steps and it is impossible to reason about the state in between two
time units. Whilst continuous time is more expressive, it leads to an infinitely larger search

space.

Concurrency, Co-ordination and Synchronisation

Key to the concept of temporal reasoning is “Concurrency” — what can and what cannot
‘happen simultaneously. For two actions to be able to happen concurrently they must not
interfere with one another, for example, they cannot delete each others effects. Two actions
that are concurrent have an interval relationship of {=, 0, ¢', d, d’, s, ¢/, f, f'} (Section 2.1.2).

“Co-ordination” is where the actions can (or cven must) happen together (so arc con-
current) and interact with one another. The classic example is of lifting a bowl! [35]. To
succeed without spilling the contents, both sides must be lifted at the same time. These
two actions (lifting the left and lifting the right side) interact to keep the bowl level. This is
opposcd to two actions that arc not co-ordinated (but can stilt happen in paralicl) such as
one truck being driven from Glasgow to Edinburgh and another being driven from London
fo Durham. Co-ordinated actions have an interval relationship of {o, o, d, d'}.

Finally, “Synchronisation” is a form of co-ordination where the precise timings are im-

perative to the effect of the actions. An example is the hitting of a ball with a bat. It is
essential that the throwing of the ball and the swinging of the bat happen at ezactly the right

times to ensure the correct outcome: Synchronised actions have an interval relationship of

{:1 87 3,’ f! fl}'

CHAPTER 2. BACKGROUND 22

Typically, benchmark temporal planning problems do not contain any co-ordination or
synchronisation.

2.1.3 Temporal Problems

In relation to temporal planning, [29] identifies two classifications of temporal planning prob-
lems, “Temporally Extended Actions” (TEA) and “Temporally Extended Goals” (TEG).
TEA is, “the classical planning problem extended with the notion of activities taking time
to have their expected effects”, and so encompasses cases where actions have a duration.
Plan quality can takc a ncw mctric: thc length of time taken to complete the plan (since
TEA allows actions to occur concurrently). Importantly in TEA, the representation of the
goal and initial state are no different from classical planning. As will be seen in Section 2.5,
these are the temporal problems that have been explored most extensively by researchers in
temporal planning. This perhaps is not surprising since TEG is an extension of TEA and
80 more complex.

In TEG, the goal state is no longer associated with the final state, but with trajectories
through the search space. As an example, a goal could require a proposition to be true over
a specified time interval or achieved by a specified deadline which could force concurrency
to occur in the plan. A further extension is Temporally Extended Initial States that allows
predictable exogenous events to be expressed.

2.1.4 Durative Actions

The most common way to model time in temporal planning is to use durative actions (actions
with an associated duration) where the effects of an action take time to change the world.

The casicst {and least cxpressive) method is to simply cxtend a classical action with
the addition of a numeric duration. Preconditions must hold at the beginning and for the
duration of the action. Effccts arc undcefined during the action and only become truc (or
false) at the end. These are generally called “blackbox” actions since there is no knowing
what is happening during their execution. Because of this, they only allow a very restrictive
concurrency model; only actions that do not interfere in any way can be executed together.
This does not allow for co-ordination and does not support actions that make a fact true
only during their exceution. Blackbox actions arc used in TGP [62], TPSys [33] and T4 [40)
(sce Scction 2.5).

A more expressive form of durative action stipulates conditions to hold at the start or
cnd of the action or for whole duration (thesc arc called invariants). In addition, cffccts can
become true at the start or end of an action, and so are defined during the execution of the
action. Take as an example a “fly” action. It should be a precondition that the plane is at
its start location. However, as soon as the action starts, it is no longer there, so this should
be a start delete effect. For the duration of the flight, it should be an invariant that the
engines remain on and it should be an end effect to assert that it is now at its destination.

CHAPTER 2. BACKGROUND 23

This allows for a much greater degree of concurrency, namely co-ordination, since the state
of the world is known during the execution of an action.

PDDLE2.x

This durative action model is used by PDDL2.1 [28] and has been widely adopted, mainly.
due to its use in the International Planning Competitions (IPC)."PDDL [37] in its original
version was specified for the first two competitions (FPC'98 [56) and IPC00 [2]). It covers
STRIPS and ADL for classical planning. The problem is deseribed in two parts: firstly the
(abstract) domain, describing the operators (abstract actions) and predicates, and sccondly
the problem instance, specifying the initial and goal states.

For the third competition in 2002 [27], PDDL was extended to PDDLZ2.1 to include
temporal and metric domains. The temporal aspects are introduced through durative actions
where conditions and effects are specified to hold either at the start or at the end of the
action. Conditions that must hold throughout the execution of the action are specified as
invariants.

PDDL2.1 also introduces numeric variables (fluents) that become part of the state along
with propositions. They can be used in both effects and conditions. The effects use operators
(scale up, scale down, increase, decrease and assign) to change the value of a fluent by some
function (4, —, x, +) of flucnts and rcal numbers: Conditions usc comparators (<, <, =, >
,>) between functions of fluents and real numbers.

For the purposes of the competition, PDDL2.1 was split into levels [26]. Levels 1 to 4
refor to the agreed specification and level § is the completed language with formal scmanties
(PDDL+) that allows the modcling of processcs. The first four levels arc as follows, with
each level extending the previous level:

Level 1 As the original PDDL, corresponding to the propositional parts including ADL.
Level 2 Numeric variables and the ability to.test and update their values. instantaneously.
Level 3 Durative actions as described above.

Level 4 Effects happening during the execution of an action (much like the invariants for
“conditions). So called “continuous effects” can update a numeric variable by some
function of time passed since the start of the action.

Level 4 allows an action to continuously update a numeric variable, the value of which is
known throughout ‘the execution of the action. For example, in an action representing the
filling of a bath, the level of the bath is always known. Co-ordination is also cxpressible
here as it is easy to model action interactions, such as where a jug of water is also poured
concurrently into the bath, filling it up quicker. The numeric value representing the level of
the water is updated correctly.

CHAPTER 2. BACKGROUND 24

The language has been extended further once more to PDDL2.2 [21] for the last competi-
tion held in 2004 [44] to include two new features ; “Derived Predicates” and “Timed Initial
Litcrals” (TIL). Derived predicates change the classical planning problem. Actions arc stilt
the sole cause of change, but not necessarily explicitly so. It is possible to specify when a
proposition becomes true or false in relation to other propositions, based on “if then” rules.
For example it is possible to express, “if the washing is on the line, and it is raining, then
the washing is wet.”

Timed initial litcrals allow the specification of exogenous cvents in the initial state. So
for example, it is possible to state that a shop will open at 0900 and close at 1730. These
events are outside the control of the planner, although are predictable and known in advance.

PDDL2.2 problems that contain either of these features can be compiled down to
PDDL2.1 problems but whereas timed initial literals is a polynomial compilation, derived
predicates can potentially lead to an exponential growth in the number of actions needed.

PDDL2.1 has a TEA outlook on the nature of temporal planning problems. However,
just as it is possible to model timed initial literals easily in PDDL2.1, so it is also possible to
model other TEG aspects, such as deadlines, maintenance goals and temporal constraints.
This is discussed in [30]. Whilst they are not cleanly represented, it is still perfectly possible
to express these features and the translation is polynomial in the size of the instance. Note
however, that it is not possible to translatc PDDL2.1 domains (with numecrics and timc)
into the original PDDL domains polynomially in the size of the instance.

One problem encountered by the semantics of durative actions is illustrated in Figure 2.2. In
part (a), action A achieves action B. The question is, can B start immediately as A finishes
i.e. what is the truth value of p at this point? This is known as the “divided instance
problem”. The solution adopted by PDDL2.1 is that intervals are half open on the right,
represented as [A). That is to say, the point of change takes the value of the interval on the
right. c.g. in this casc p is truc at that point (since p is true after this point).

Figurc 2.2(b) shows an instancc where two actions finish at the same time, but havce
confradictory effects. The question here is what is the truth value of p after these two
actions? Omnc solution is to takc them in somc (arbitrary) predefined order but this docs
not seem satisfactory. PDDL2.1 adopts the “no moving targets” rule that declares that
ncgative intcractions between actions arc mutually cxclusive (mutex). In this casc they
must be separated by some small value, €. A theoretical point is how small can this value
be before they are again considered mutex? If time is continuous, as it is PDDL2.1, then
this value could be infinitely small whilst never letting the two timepoints be equal. To
overcome this, the user must set the minimum value of £, where ¢ > 0 or it defaults ¢ =0.1.
This is known as the tolcrance value, and specifics the minimum separation distance of two
mutually exclusive actions. Through this, PDDL2.1 prohibits some synchronisation.

There is a more practical point to this; any executive carrying out the plan will only be
accurate to a certain degree and so precise synchronisation of actions will be impossible to
achicve. Therefore, no plan’s validity should rest upon it.

CHAPTER 2. BACKGROUND 25

A l B |
b !
(a) A achieving B
A |
Fw
I B |
1 P
(b) A and B with an ambiguous combined effect
1 A |
| Fp

l B -—E—

| v

(¢) A and B with negatively interacting effects separated by ¢

Figure 2.2 Possible Concurrency Issues with DPurative Actions

Action Durations
The duration of actions can take one of four forms, increasing in complexity:

Fixed The duration of the operator is fixed and so the same for all instantiations. For
cxample, all fly actions take the same length of time regardless of their start and
destination cities (that does not change during planning).

Statically Computed The duration of the action is dependent on its parameters, but not

* the state of the world. For example, the length of a fly action will depend on the
distanice between the two-cities.

State Dependent The duration of the action is dependent on the state of the world and

so will change during the planning and scheduling. For example, completely filling up
a tank will take longer the emptier the tank is.

Variable The duration of the action can be chosen by the planner subject to some con-
straint. For example it is possible to fill up a tank for as long as needed, so long as
it is not over filled. The final level of the tank will depend on the length of time for
which the action is executed?!.

PDDL2.1 durative actions can express all of these forms.

Other Languages

Some languages (notable those used by Sapa [17] and IxTeT [38]) allow effects to oceur at
any point during the action, not only at the two end points. It is simple to see these actions

fn PDDL2.1 these are known as “duration inequalities”

CHAPTER 2. BACKGROUND 26

as a form of abstraction, where they take the place of many shorter PDDL2.1 actions, and
so can be translated into such actions using “clips” and “magnets” as described in [30]. It
is harder to see the state transition approach to time and change with these actions where
effects can happen at any time, as it leans further towards the histories view. Furthermore,
having only interesting effects happen at the start and end makes it easier to understand
the association with the temporal relations described in Section 2.1.2.

LTL (Lincar Tcmporal Logic) is a logic that allows thc modalitics of I (always), ¢
(eventually) and O (next). This allows facts (including goals, conditions and effects) to be
cxpressed in the form “always p vV ¢” (for cxample). It is possible to convert LTL formulac
into PDDL2.1 [14]. TLPlan 3] uses LTL to express domain dependent control rules.

2.1.5 Reasoning About Time

One of the most common ways to reason with time is with a Simple Temporal Network
(STN) [15]. These take constraints of the form b; < z—y < by where x and y are timepoints.
This constraint semantically means that r must follow y by at most by and at least by, i.e.
it describes a time interval over which one timepoint can lie in with respect to the other. A
spccial timepoint, X, fixing the beginning of time (the start of a plan) can place timepoints
relative to absolute time. Simple precedence constraints can be expressed by setting by = oc
and 51 =0

Temporal constraints can be put into a directed weighted graph where the nodes are
the timcpoints and the cdges arc the constraints. An inconsistent nctwork (where not
all the constraints can be met) is identified by finding negative cycles in the graph, and
constraints are propagated by finding shortest paths between points. There are two well
known algorithms that do this with negative edges: Bellman-Ford’s [32] which performs
Single Source Shortest Path (SSSP) and is of order O(nc), (where n = number of nodes,
and e = number of edges), and Floyd-Warshall’s [32], which performs All Pairs Shortest
Path (APSP) and is of order Ofe®).

2.2 Resources in Planning and Scheduling

Resources form an integral part of both planning and scheduling but how they are normailly
modelled is very different. This is partly because they can take many forms. Resources can
be qualitative (represented by the state of some object, such as the availability of a ma-
chine) or quantitative (often represented by a numeric variable, such as fuel). Quantitative
resources are associated with their consumption and production, which can be discrete or
contimous. They may be perishable (consumed by the passage of time) and exchangeable
(omc resource used to replenish another, such as buying fucl with moncy). Both quantitative
and qualitative resources may or may not be renewable. A qualitative resource that can only
handle one task is described as unary, and one that can take many, as multi-capacity.

CHAPTER 2. BACKGROUND 27

Resources are seen as part of the scheduling problem and represented explicitly. They
are then reasoned with directly as this is the scheduling problem - to allocate a known set of
activities to available resource whilst respecting precedence, capacity and other constraints.

Planning, however, takes a different view of resources. They are not seen as part of
the problem and are mostly represented implicitly. There is no distinction between an
object acting as a resource or as part of the planning problem. For example, a truck may
be seen as a resource when the goal is to get packages to destinations, but could also be
part of the goal, where it itsclf must be at a particular location. Discrete resources can be
modeclicd in STRIPS, whercas continuous resources nced an cxtension (such as PDDL2.1).
[54] examines the role of resources in planning noting that “they place constraints on the
shape and structure of o plaw that will have to be met by the planner.” A non-renewable
resource will limit what can be achieved. Perhaps a more general view of what a resource is
in planning is as a facilitator object whose actual identity is immaterial for the correctness
of the plan [64].

The main disadvantage of representing resources implicitly is that it is difficult to do any
specialised reasoning with them. It is also harder to realise the use of alternative resources,
and this leads to excessive symmetry in the problem. However, by not representing them
explicitly, the system must discover them for itself. When they can do this, they are able to
find resources that perhaps the domain designer- (incorrectly) did not realisc were resources.

As with STNs, algorithms exist to perform consistency checking and propagate resource
constraints. These include Timctabling [18], Edge-finding techniques [9] and Precedence
Graphs [50] and can be used in conjunction with planning and “time” scheduling techniques
as parf of a temporal metric planner. They work well with STNs since they take and modify
the earliest and latest start times. These can then be propagated back and forth with
the STN. Resource-Envelopes [49] work out heuristics based on where resources are tightly
constrained in planning problems.

2.3 Decomposition of Problems

Splitting problems into smaller components is a common strategy in computer science. Di-
viding the problem into smaller instances of the same problem and combining the solutions
(“Divide and Conquer”} is intuitively a good idca. Indeed, this is a possible scarch strategy
for planning problems, Rather than into smaller instances of the same problem, tempo-
ral planning can be divided into two different problems: classical planning and scheduling.
This is not such a common technique since most academic computer science problems are
“atomic”; whilst they may be big in the size of the instance, they are structurally small.
Planning is “compound” as it can have many other sub-problems encoded within it. For
example, a logistics planning problem will contain a route solving problem within it. This
section looks at research into how problems integrate in planning and how they can be sep-
arated. This is then put into the context of separating planning and scheduling in temporal
planning,.

CHAPTER 2. BACKGROUND 28

2.3.1 HybridSTAN and TIM

Many problems, for example travelling salesman, bin-packing and multi-processor scheduling
problems, can be encoded as and within planning problems. HybridSTAN [25], with the aid
of TIM [24]{52], is ablc to find thesc sub-problems and abstract them out. It uscs independent
sub-solvers for the sub-problems and also solves the remaining parts of the problem. It then
combines the solutions, to form a complete plan.

TIM identifies generic types, which are specific kinds of behaviours, examples of which
appear in many different planning domains. For example, there is often a form of trans-
portation in a domain, so TIM can identify “mobile” objects, the maps on which they move
(static or dynamic) and the actions by which thcy move round the map. The types arc
identified even when they are not recognisable as such to a human. Using the information
from TIM, HybridSTAN can recognise a sub-problem embedded in the planning problem.
Take as an example the travelling salesman problem (TSP). This problem is then abstracted
out by changing the actions to ignore parts of the problem that are in the TSP. Hybrid-
STAN then uses a heuristic forward chain planner to start the planning problem. It uses
the TSP-solver for two purpeses. Firstly it can ask it for heuristic cost estimates, in this
case, the cost of moving a mobile object round the map, and use this to contribute to the
overall heuristic estimate of a state. Secondly, when it needs a mobile to be at a location, it
can ask for a solution from the TSP-solver to move it to that location.

Most relevant to this thesis is the study of the possible interactions of the sub-problems,
as identified in [31]:

1. Planning problem is itself a single problem
In this case the entire problem can be solved by the specialised sub-solver. There is
a simple layer between the sub-solver and the overall planning system to present the
sub-problem in the correct form to the sub-solver and to convert the solution back into
a plan.

2. Sub-problem is an independent component of the planning problem
This is the case that has already been described. The sub-problem must be abstracted
away from the overall problem, and the sub-solver used both to provide heuristic cost

estimates and solutions to the sub-problem.

3. Multiple independent sub-problems

This is a generalisation of the previons case where there is more than one sub-problem.

4. Hierarchical sub-problem dependency
Here the sub-problems are in a strict hierarchy, where one sub-problem is encapsulated
in another. Whilst this is slightly more complex, the theory behind it remains the same.
In order for the higher sub-solver to provide either a cost or solution to the overall

case, it calls on the sub-solvers below it for costs and solutions.

CHAPTER 2. BACKGROUND 29

5. Sub-problem interdependency
This is the most difficult case, where the solution to one sub-problem is dependent on
the other, and vice versa. This relationship can exist more generally as a cyclic depen-
dency between a collection of sub-problems. This case is not solved by HybridSTAN.

How the sub-problems of planning and scheduling in temporal planning interact in rela-
tion to this classification is included in the next chapter.

Results presented in both [25] and [31] show that this is a successful approach to dividing
up a problem, both in the quality of the solution and the performance of the planner. The
key to this is that it uses specialised sub-solvers to tackle different parts of the problem.
A single search strategy is not likely to always be appropriate either to find a solution or
heuristic estimate of the cost of reaching the goal state from the current state. Fox and
Long note that even in the fifth case, whilst it may be very hard to find a solution where
there is an interdependency, it may still be better at producing a heuristic estimate with
the interdependencies ignored than the overall solver is.

2.3.2 'Translation of the Planning Problem

LPSAT {71] and BLACKBOX [47] both convert planning problems to Satisfiability Problems
(SAT) problems, and GPCSP (16] and CPlan [66] both convert to Constraint Satisfaction
Problems (CSP). After the translation, the compiled problem is solved and the solution
to this is then translated back into a plan. Whilst in all cases the problem is not being
decomposed in any way, it demonstrates the advantage of having a modular approach to
planning. Just as with HybridSTAN, specialised solvers can be used with these planners. Of
course the problem is no easier to solve in its new form, but the solvers could be much more
advanced than planning technology. Should an improved SAT or CSP solver be written, it
can replace the old one and the improvement can immediately been seen in the planning
system. This is the same for HybridSTAN and any modular approach: if a better specialised
solver is written, it can simply replace the old one and any improvement passed onto the

planner.

2.3.3 Goal Orderings as Decomposition

“Goal Apendas” are precedence. relationships between goals to determine the order they
should be met in such that goals already met in the plan are not deleted when planning for
goals latcr in the agenda. (48] describes a polynomial algorithm to find thesc. This is a kind
of decomposition where each atomic goal is treated as its own sub-problem, thus splitting
the overall planning problem into many smaller, potentially easier, planning problems. The
algorithm is used in a relaxed form to estimate a goal agenda for the planner FF [45].
SGPlan (10] is a planner that also partitions large planning problems into sub-problems,

cach with its own sub-goal. Again a goal ordcering is found, and the search constrained so

CHAPTER 2. BACKGROUND 30

the sub-problems do not interfere and the sub-solutions can be fused into one plan. This
again has the advantage of a modular approach since it chooses from a selection of planners
(currently LPG [36] and MetricFF [42]) to use the best for each sub-problem. Once again,

new planning technologics can be added to the choice as they become available.

2.3.4 Advantages of Decomposition

As discussed, there are two major advantages to problem decomposition, and with plan-
ning in particular. The first is that there is a smaller search space for each sub-problem.
Backtracking in one of the search spaces does not necessarily mean having to backtrack
over decisions made in the other. The second, only really relevant if the problem has been
decomposed into different sub-problems, is that specialised solvers can be used on each sub-
problem, rather than having one general solver for both. Specialised heuristics and search
strategies can be tailored and used for each of the sub-problems. This in turn benefits from a
modular approach. Here, once better sub-solvers have been written, they can be plugged in
without changing any other part of the systemr and an improvement is gained by the whole
system.

2.4 Integrating Planning and Scheduling Technologies

It has already been noted that realistic temporal planning problems lie somewhere in between
the two problems of planning and scheduling. How these two interact is studied in the next
chapter. Studied here are the problems associated with the integration of the two problems.
i.e. how planning and scheduling problems can be combined to form temporal planning.
This is not necessarily easy for a number of reasons:

e The scheduling problem is not uniquely defined, so it is necessary to decide what

version to use, or to use some more generic version.

» The modelling of the two problems have differences, especially the manner in which

resources are represented.

e The two problems must use a common model of time and this will affect which tech-
nologies can be re-used and integrated from the two areas.

s Scheduling tends to be an optimisation problem requiring the best solution, and is
often an over-subscription problem. Little work has been done with planning as an
over-subscription problem where there is a choice of goals. These two views need to
be brought together for integration.

An example of where integration has succeeded is described in [5] which looks at a formal
model for combining planning and production scheduling. [61] considers three different

classes of integration.

CHAPTER 2. BACKGROUND 31

Stratified Where planning is performed first to decide what actions are needed, and then
these are scheduled.

Interleaved Where the two problems are separated, but decisions made in one solver are
propagated through to the other.

Homogeneous One problem is turned into the other. Since [61] comes from a scheduling
point of view, the examples given arc for turning planning problems into scheduling

problems where there is' no distinction between action choices and ordering decisions.

In PDDL2.1 temporal planning problems, scheduling is introduced into classical planning
through the use of durative actions. [11] performs an extensive review of how durative actions

can be introduced into classical planning frameworks.

2.5 Planners

In this section, some non-temporal and temporal planners are described to demonstrate
some of the aspects presented in this chapter so far, and also to introduce some other ideas

common in planning which will become relevant later.

2.5.1 Graphplan-based Temporal Planners

Many successful planning techniques are based on GraphPlan [6] that works by building a
planning graph. This is a compacted representation of the search space. It is a directed
graph with the nodes in alternate layers of facts and actions. Edges between the nodes
in each layer connect preconditions and effects with actions. Each fact layer contains all
propositions that could possibly be true at that point and each action layer contains all
actions that could be applicable at that point. Fact pairs and action pairs arc marked
mutex if they cannot both be true or applicable in the same layer. “No-ops”, special actions
with a single precondition and effect, ensure the persistence of facts over time. There are
two distinct phases of GraphPlan: the planning graph is built, and then a plan is extracted
throngh regression search. The planning graph is built from the initial state until all goals
appear non-mutex im a fact layer: If a plan cannot be found in the graph, then it is extended
somme further layers and extraction tried again. Graphplan is sound, complete and optimal
(in its makespan).

This planuer has been modified a number of times, both to improve its implementation
and fo extend it to make it more expressive, not least for temporal planning to produce
“temporal planning graphs”. It lends itself well to this since non-mutex actions appearing
in the same layer could happen concurrently.

CHAPTER 2. BACKGROUND 32

TGP

TGP [62] (Temporal Graphplan) is an optimal planner that extends GraphPlan to handle
metric time. It uses a restrictive blackbox model of durative actions. A new type of mutex
that exists between layers is introduced between actions and preconditions. These are facts
that cannot be truc whilst an action is being exceuted (i.c. the invariants of the action).
Time is associated with actions and so each action layer represents the same amount of time.
This leads to a difficult question; how long should the action layer represent? It really only
makes sense to set this to the smallest interval in which “something interesting” will not
happen. Any smaller and the graph becomes too big, consuming more memory and taking
longer to search. If the interval is any bigger, a possible action that could happen will be
missed or the planner is no longer optimal (in terms of the duration of the plan). The
solution is to sct it to the GCD (Greatest Common Divisor) of the all actions’ durations. If
this number is low in comparison to the majority of the actions’ durations the graph built
becomes large. For cxample, in Figure 2.3(a) there is an action A that takes 1000 time
units and another, B, that takes 999 time unit, so the GCD is 1. This produces a graph
where every 1 time unit is examined to see if anything new could happen. If state dependent
durations were allowed (which in TGP they are not), calculating the GCD could be hard
to do and bc vory small since all the actions can be of wvery difforent lengths. LPG [36]
performs local search on a planning graph of this type.

LPGP

LPGP [53] (Linear Programming Graph Plan) is another planner that extends GraphPlan
and uses the richer semantics of PDDL2.1. However, the temporal planning graph associates
time with state (i.e. the fact layers), rather than associating time with actions. The action
layers are only present when something interesting happens (i.e. the state changes). The
plangraph no longer represents the flow of time, but the logical structure of the plan. It
docs this by splitting up durative actions into two instantancous actions, onc for the start
conditions and effects and another for the end conditions and effects. Invariants are kept
through invariant actions for which no no-ops are constructed, forcing the planner to put in
the invariant action at every layer necessary. This translation converts between an interval-
based framework of time and a point-based framework. The duration for cach fact layer is
not fixed, but solved through constraint satisfaction. This results in it not being dependent
on the GCD of the actions’ duration (see Figure 2.3(b)). However, this does mean that it is
not optimal in this form without extending the graph further.

TP4

TP4 [40] does not directly extract its plan from a temporal planning graph, (it is an extension
of HSP — see below) but uses a temporal planning graph similar to LPG where time is
associated with action layers. In [39] it describes a novel method for solving problems

CHAPTER 2. BACKGROUND 33

F Ai=1 F Ax=1 Figoo Atoor =1 Fioo
aYavYaYs ararTe
A
B

AW AWA, AR,

(a) Time associated with action layers (action)

FU=€ Al F1 =999 A2 .F2= 1 A3 F3=€

N Y Y Y Y Y

Astart Ainv Aend

B stary] Bend [c-0p

.

—/ N N NN N

(b) Time associated with fact layers (state)

Figure 2.3: Different Types of Temporal Planning Graph

with a low GCD of action durations. Firstly, all action durations are rounded up to the
nearest integer. Then the resulting problem is solved using the standard TP4 method
(Scction 2.5.2). The cost of this solution is an upper bound on the optimal solution cost of
the original problem. Finally, action durations are restored to their original values, and a
branch-and-bound search, starting from the known upper bound, is used to find the optimal

solution.

2.5.2 Forward Heuristic Search

Whereas GraphPlan-based planners perform full systematic search, Heuristic Search plan-
ners will often not, but instead rely on good heuristics to guide the search. The consequence
of this is usually a tradc-off of quality (and cspecially optimality) for the performance of
the planner. In fact, since all planners involve search, all will use a heuristic guide to decide
which branches to explore first. Calculating the heuristic functions can be computationally
expensive, often in proportion to the accuracy of the guess, so a trade-off is made. Planners
described as beuristic search planners do little work with other reasoning functions, so the
heuristic function can be relatively complex. If the heuristic is admissible, it is possible

CHAPTER 2. BACKGROUND 34

to use a search algorithm such as A* which will still guarantee optimality, but a general
admissible heuristic that is also informative is hard to find. Heuristics can be also be used
to prune dead end states. In temporal planning, the search space tends to be significantly
larger than those in classical planning, implying that the heuristics have to be better and
take temporal aspects into account.

HSP and FF

HSP [7] (Heuristic Search Planner) and FF [45] (Fast Forward) both perform heuristically
guided forward search from the initial state to the goal state. They both base their heuristics
on a relaxed planning graph. This is identical to a regular planning graph but the delete
effects of actions are ignored. This has a number of consequences (all proved in [45}):

1. There are no mutexes in the graph, since there are no delete effects.
2. The graph takes polynomial time to. build.

3. A (relaxed) plan can be extracted without the need for backtracking (so can be done
in “one shot”). This makes this phase also polynomial. Search can be performed to
find an optimal relaxed plan, to produce an admissible heuristic, but this is NP-hard

to computce.
4. The graph need never be extended.

HSP’s estimates are based on computing weight values for all facts {and so also goals) based
on how difficult they are to achieve — assuming all facts are achieved independently —
whilst FF find a relaxed plan that can take account of positive interactions between goals
(and sub-goals). The number of actions in the plan forms the heuristic cost estimate. The
diffcrences botween the two heuristics arc cxplored in [46]. Hcuristics based on relaxcd
planning graphs have varying success (as investigated in [43]).

Since FF exploits positive interactions between goals, it is generally considered to be
the more successful heuristic approach. Many have incorporated it into their planners and
modificd it or cxtended it, including McetricFF [42] (that cxtends the heuristic to handle
metric variables according to PDDL2.1 level 2), MacroFF (8], Marvin [12] (both of which
extend the search to include macro operators), Fast Downward [41] (extends the planning
graph to dcal with caunsal dependencies) and YAHSP [68] (a scarch strategy based on the
extracted relaxed plan). Nonc of these can yet handle temporal domains.

More TP4 and HSP*,

TP4 [40] and HSP*; are both temporal planners that perform regression search using the
HSP heuristic. They are both optimal although they assume different semantics to PDDL2.1

in the form of blackbox actions.

CHAPTER 2. BACKGROUND 35

Sapa

Sapa [17] searches a set of time stamped states, represented by a tuple S = (£, M,I1,Q,t)
Where P is the set of propositions true at time t, M is the set of values of metric resources,
II, the set of invariants that must currently remain true and @, the set of updates scheduled
to happen in the future at some point. These states do not just describe the state of the
world now, but also the state of planners search; It takes a step towards the histories view of
change. An action can be applied if its preconditions are satisfied by P and M, the effects do
not interfere with anything in IT or @ and there are no future events that will interfere with
the invariants of the action. A special “advance-clock” action is added that can advance the
state to the next timepoint in .

There are several heuristics that it can be configured to use, all based on a relaxed
temporal planning graph. The search is A*, and some of the heuristics are admissible,
making Sapa optimal when they are used.

Sapa does not decompose temporal planning problems into scheduling and planning, but
solves both the problems at once. As shall be seen later, this leads to a larger search space.
Sapa is unable to handle end conditions and contains bugs not allowing it to correctly solve
problems where the scheduling and planning are tightly coupled (although in theory this
should not be the casc).

2.5.3 Decomposing Planners

In this section, two planners that decompose temporal planning problems are described.

MIPS

MIPS [19][20] is based on mode! checking methods by compactly representing planning states
in binary decision diagrams and then searching the underlying space though A* search,
with the heuristic once again based on relaxed plans. These are then scheduled to improve:
the heuristic. It is also helped by a pattern database to serve as a domain-independent,
admissible heuristic estimate that is computed off-line.

It splits the temporal planning problems into classical planning and scheduling, as sug-
gested could be done earlier in Section 1.1.3. Again, it assumes a loose coupling between the
two problems through the use of blackbox actions. It performs two lots of scheduling, firstly
on the relaxed plan as part of the heuristic (this allows it to minimisc the total duration
of the plan) and secondly, after the final plan has been found. For this it performs Critical
Path Analysis.

RealPlan

RealPlan [63] does not perform any temporal reasoning (i.e. it cannot solve temporal plan-

ning problems) but is interesting as it separates the causal reasoning from the resource

CHAPTER 2. BACKGROUND 36

rcasoning (rcsource scheduling). There arc two versions, RealPlan-MS (Master-Slave) and
RealPlan-PP (Peer-to-Peer) (Figure 2.4). The difference is in how the scheduler of the re-
sources and the planner interact. In both cases, the resources are abstracted out of the
domain and translated into a CSP (Constraint Satisfaction Problem), which is then solved
by a specialised CSP solver. In the Master-Slave scenario, should the scheduler fail to find
a solution to the current context, then that partial plan is not pursued any further. In this
version, where all the allocation policies lead to failure, it implies that the causal reasoning
and the resource reasoning were, in fact, tightly conpled. In this case, the planner resorts to
traditional planning methods where the resource reasoning is not abstracted out. However
in the peer-to-peer relationship, the causal reasoning is also translated into a CSP (from a
planning graph}. Both €SP problcms can be solved simultancously and so should the sched-
uler not find a solution it can tell the planner why not (i.e. what constraints are broken) and
the planner can act accordingly. RealPlan does not use PDDL2.1 as its problem description

language.
policy
PLANNER | ?("'HEDULER
failure/success

(a) Master-Slave a lave Relationship
) R
Policy/ Al Translated
No-good N| Feedback
PLANNER | T “|SCHEDULER
Translated |A No-good
Feedback |T
O
R

(b) Peer-to-Peer Relationship

Figure 2.4: Communication in RealPlan

2.5.4 State of the Art

The International Planning Competition has been held 4 times (1998 [56], 2000 [2], 2002 [27],
and 2004 [44]) with the aim of comparing current planning technologies. Many problems,
differing in size and difficulty, are run for a selection of domains and the performance and
quality of solution compared for each planner. There is a time limit and memory restriction
on finding a plan. PDDL2.1 (and so, tcmporal planning) was introduced in 2002, and
PDDL2.2 in 2004. Over these two competitions there have been 11 domain independent
planncrs (cxcluding CRIKEY, the subject of this thesis) that have competed in the temporal
domains. These are listed in Table 2.2.

Chapter 5 takes a closer look at the capabilities of these planners, however, none of these
temporal planners split the problem into its component parts of planning and scheduling

CHAPTER 2. BACKGROUND 37

Table 2.2: State of the Art Temporal Planners

| Planner Description IPC’02 | IPC’04
CPT a constraint programming based planner. X v
HSP and TP4 | see Section 2.5.1 X v
LPG local search of “action graphs” | particular sub- v v

graphs of the planning graph representing par-
tial plans. It is non-deterministic, so can be
run multiple times and the best solution taken.
This results in anytime behaviour.

MIPS see Section 2.5.3 X

Optop an optimal planner performing regression X v
search

P-MEP an expressive planner that performs A¥* X v
search, using a relaxed planning graph.

Sapa see Section 2.5.2 v X
SGPlan see Section 2.3.3 X v
tilSapa extension of Sapa to deal with timed initial X v

literals and derived predicates.
TPSys 1&2 | builds and repairs plans around a relaxed plan. v X
VHPOP a partial order temporal planner. v X

and can handle the full temporal cxpressive power of PDDL2.1 (i.c. thosc that do split the
problem, assume a blackbox model of action). There is a good reason for this as blackbox
actions assume a loose coupling between the two components of planning and scheduling.
Therefore, when the problem is split, the two components are relatively independent of cach
other and the planner and scheduler need not communicate. If the full temporal semantics of
PDDL2.1 are used and the problem split, then the planner and scheduler must communicate
and this can be expensive and complex. This is explored further in the next chapter.

As sct out in Scetion 1.3, the aim of this work is to fill this gap. That is, to writc a
temporal planner that splits planning and scheduling, whilst not assuming a loose coupling
between the problems. To avoid the problems of expensive communication between the
solvers, a theory is developed as to how the problems are coupled, so as to minimise this

communication.

2.6 Chapter Summary

This chapter has looked at the current knowledge in the field of temporal problem solving,
in particular in temporal planning. There are various models of time, which differ in what
they can and cannot represent. The most common way to integrate planning and time is
through the use of durative actions. Many planners described in this chapter use these, and
in particular, durative actions defined by PDDL2.1 semantics. All planners are searching
some search space, however, through assumptions to this search space they simplify the
problems by making the search space smaller and so easier to solve.

Chapter 3

Theory

This chapter examines where planning and scheduling interact in temporal planning prob-
lems, and in particular where they are tightly coupled. Through examining where temporal
contraints arisc in problems (through durativc actions and their precedece relationships),
new concepts of envelopes and contents, and of minimum and maximum precedence rela-
tionships are developed. These are then used to minimise the communication between a
planner and scheduler in a new planner described in Chapter 4 that does not assume a loose

coupling between the problems, but still solve the problems separately.

3.1 An Initial Solution — The LPGP/FF Hybrid

This first section describes a temporal planning system that separates the planning from the
scheduling in PDDL2.1 domains. The communication between the planner and scheduler
is onc way (Figurc 3.1) as there is no feedback from the scheduler to the planncr. This
is a specific case of the more general case presented back in Figure 1.1. In this system,
the two sub-solvers work in a strict sequential order. First the planner solves the planning
problem, ignoring all temporal information, selecting actions purely for logical reasons, and
then passes this (classical) plan onto the scheduler!.

Whilst this system has been implemented, it is not proposed as a good solution due to the
lack of communication between the solvers. It is presented here to show how the planning
can be separated from the scheduling in PDDL2.1 domains, to simplify the explanations,
and to help understand where the sub-problems interact.

The architecture for this system is presented in Figure 3.2. Firstly, a temporal planning
domain and problem are passed through a translator which takes out the temporal aspects,
converting it to an equivalent STRIPS-like domain that preserves all the key temporal
relationships. Durative actions are split into three instantaneous actions, representing the
start of the action, the end of the action and the invariant. It stores the duration of the

1This is stratified integration as classified in Section 2.4

38

CHAPTER 3. THEORY 39

Temporal Planning Problem

Planner

1

Scheduler

Temporal Plan

Figure 3.1: The Proposed Separation of Planning and Scheduling in the Hybrid Planner

actions in a separate file. The translated problem is passed through a classical planner, in
this case FF. This is where the ‘hard’ work is done. The resulting totally ordered plan is
passed through a program that lifts a partially ordered plan, allowing actions that can be
executed together to happen concurrently. The partial ordering, along with the duration file
crcated by the translator, arc put as constraints into a Simple Temporal Network (STN).
This schedules the plan by calculating the relative and actual timings of the actions to
produce a valid temporal plan.
Each box is now taken in turn and explained in more detail.

LPGP Translator

The translator is taken from the LPGP planner (as described in Section 2.5.1). It takes in
domain files and separates the durative actions into three separate instantaneous STRIPS
actions: a start action, an end action and an invariant action. The start action takes the
start conditions and start effects of the durative action, and the end action takes the end
conditions and end effects. The invariant action has the durative action’s invariants as
preconditions. This translation takes the model of time from interval-based to point-based,
as described in Section 2.1.2. The interval between the end points is represented by the
invariant action.
STRIPS and durative actions are defined followed by the translation between them.

Definition 3.1 — STRIPS action
An instantaneous STRIPS action operator o is a triple

0 = (cond, add, dcl)

where each element is a set of propositions. cond is the set of logical precondi-
tions, add is the set of add effects (propositions that become true after execution
of the action), and dct is the sct of dclcte cffects (propositions that becomce falsc
after the execution of the action).

CHAPTER 3. THEORY

PDDL2.1 Problem PDDL2.1 Domain
~_ — Translator
Problem
; PDDL PDDL
?i?;atlon Problem Domain

Classical Planncr

Total Order Plan

Total Order to Partial Order Converter

Partial Order Plan

Simple Temporal Network

Temporal Plan

Figure 3.2: Architecture for Separating Planning and Scheduling

Definition 3.2 — Durative Action

A Durative Action operator da is a quad-tuple
da = (ta.cond, ta_add, ta_dcl, dur)

where the first three elements are a many-to-many mapping from propositions
to time annotations

ta_cond : proposition — {at start, at end, over all}
taadd : proposition « {at start, at end}
ta.del : vproposition — {at start, at end}

ta.cond are the time annotated conditions of the actions, ta_add are the time
annotated add effects and ta_del are the time annotated delete effects.

40

CHAPTER 3. THEORY

For each mapping ta_.map, we define

ta.mapr = {z - proposition|ta.map(z) = at start)
ta.map.. = {z- proposition|ta.map(z) = over all}
ta-mapy = {z - proposition|ta.map(z) = at end}

dur is the duration of the action where

dur e Rt

Definition 3.3 — LPGP Action Translation

A Durative Action da is split into 3 STRIPS actions, day., da., and day.
da- = (condy, add-,dcl.) is

cond- = ta_cond-
addy = ta-.addy
del- = tadel. U {Action_Name_inv}

da., = (cond.., add.,dcl..) is

cond., = ta-cond.. U {Action_.Name_inv}
add., = {Action_.Name_inv, i_Action_Name_inv}
del. = @

da4 = (cond4, add4,dcly) is

condy = ta_condyU {Action_Name_inv, i_Action_Name_inv}
add4 = ta_addq
dely = ta.dely U {Action.Name_inv, i_Action_Name_inv}

The durations file is a function df that contains an entry for each durative action
and its corresponding duration

df : da — R*

41

CHAPTER 3. THEORY 42

a-, a, and a4 are the corresponding split actions for a durative action a whose

duration is agyr.

Durations can be computed durations (based on a function of a static flucnt) but not statc
dependant.

An example durative action is that of loading a truck. This has a duration, as it takes
time to complete this action. To carry out this action successfully, it is necessary that the
object that is to be loaded into the truck must be at the location where the loading is to
take place at the start of the action. For the duration of the action, the truck must also
remain at this location and this is modelled as an invariant. Immediately after the start it
can be considered that the object is no longer at the location; this stops it being loaded into
two trucks at once. However, only at the end of the action will the object be in the truck.

Figure 3.3 illustrates the split of the LOAD_.TRUCK durative action from the driver-
log domain. The full example translation of the domain is given in Appendix A. In the
LOAD_TRUCK start action, it is a precondition that the object is at the location where
the loading is to take place. After the start, the object is no longer considered to be at
this location (as it is being loaded). For the duration of the action (as represented by the
invariant action), it is a condition that thc truck stays at the location where the loading is
taking place. At the end of the durative action (as represented by the end action) it is an
effect that the object is now inside the truck.

There are two extra dummy propositions added during the conversion process. The
first, Action_Name-inv, is an effect of the start and invariant action, and & condition of the
invariant and end action. The second, iAction_Name-inv, is an effect of the invariant action
and a condition of the end action. These ensure that if an end action is chosen, then so is the
corresponding invariant, and similarly, if an invariant is chosen, then so is the corresponding
start action. This works as follows:

The dummy propositions take the parameters of the durative actions and are unique
to the three split actions. Action_.Name-inv is precondition of the invariant action and end
action. For these actions to be applicable, Action_Name-inv must be truc and this can only
be achieved by the start action. Therefore an invariant and end action can only be present
in the plan if the start action has already been applied and achieved this condition. If not,
the preconditions for these actions are not met. The same logic applies for iAction_Name-inv
and the invariant and end action.

Both dummy propositions are deleted by the end action. This is required so multiple
identical invariant and end actions are not put in the plan without another corresponding
start action. Deleting the dummy propositions ensures that a new start action is needed to

achieve new invariant and end actions (as before).

CHAPTER 3. THEORY 43

(:durative-action LOAD-TRUCK
:parameters (7o - object 7t - truck 71 - location)
rduration (= ?duration 2)
;condition (and (over all (at 7t ?71))
(at start (at 7o 71)))
:effect (and (at start (mot (at ?o0 71)))

(at end (in 70 7t))))

(:action LOAD-TRUCK-END
:parameters (7o 7t 71)
:precondition (and
(iload-truck-inv 7o ?t ?71)
(load-truck~inv 7o 7t ?1)))
:effect (and (in 70 ?t)
(not (load-truck-inv 7o 7t 71))
(not (iload-truck-inv 7o 7t 71)))

(:action LOAD-TRUCK-START
:parameters (7o 7t ?71)
:precondition (at 7o 71)
:effect (and (not (at 7o 71))

(load-truck-inv %o 7t 71)))

(:action LOAD-TRUCK-INV
:parameter (7o ?t 71)
:precondition (and (at 7t 71)

(load-truck~inv 7o 7t 71))
:effect (and

(load-truck-inv 7o ?t ?1)

(iload-truck-inv 70 7t 71)))

Figure 3.3: The LPGP Translation of Durative Actions

The Planner

This translated domain with the problem file is then passed to the classical planner, in this
case F'F, the working of which is described in Section 2.5.2. Any classical planner would
suffice here.

The Partial Order Lifter

The Partial Order Lifter takes the totally ordered plan produced by FF and converts it into
a partially ordered plan. This is an implementation of the Veloso algorithm [67] (sketched
out in Figure 3.4) that takes advantage of the given total ordering of the plan by visiting only
earlier actions in the plan on each iteration of the algorithm, and then removes unnecessary
precedence orderings from the total order to produce a partial order. The total order plan is
a valid partial order plan, and so in the worst case no precedence orderings will be removed

CHAPTER 3. THEORY 44

and it is this total order that will be returned. This algorithm finds concurrency where
possible.

Input: TO-Plan: A list of actions (a,...,a,)
Output: PO-Plan: A set of orderings between actions {a; < a;}
for i = n down-to 1 do
(a) for each p € precond(a;) do
Find an action a; where p € add(a;)
Add an ordering a; < a;
(b) for each d € del(a;) do
Find all actions a; where d € precond(a;)
Add an ordering from all actions a; < a;
(c) for each p € primary-add(a;) (in the goal or sub-goal chain) do
Find all actions a; where p € del(a;)
Add an ordcring from all actions a; < a;

Figure 3.4: The Veloso Algorithin to Translate Totally Ordered Plans to Partially Ordered
Plans

Note that this is still operating on the translated split durative actions, and so will find
the correct orderings between the start, invariant and end action triplets, due to the dummy
propositions.

The Veloso algorithm is a greedy polynomial algorithm that does not necessarily find the
best (temporally shortest) partial order. However, step (a) is a choice point as there could
be a number of achievers for an action, of which only the latest in the plan is used. Search

could be performed here to find a better ordering using different achievers.

Phe STN

The start and end actions represent instantaneous moments of time but the invariant action
represents an interval of time (between the two end points). STNs, however, only reason with
instantaneous timepoints. Before the partial order can be converted into an STN, precedence
relations involving invariant actions must be converted to use their corresponding end points:

i, <A = 0Gi4 2 a
Ui < djo = (L,‘juj[-.

G < Qjes = G4 X Q-

In a precedence relationship (a; < a;), should onc action (a;) follow an invariant action
(a;) then this action a; should now follow the whole interval that a; represents. The interval's
tatest point is just before the end of the durative action, and so the precedence relationship
is changed to follow this end.

CHAPTER 3. THEORY 45

Conversly, should an action (a;) precede an invariant action (a;), it must precede the
whole interval that a; represents. The reason that the precedence relation turns from a
strict ordering (<) to a simple or cqual to ordering (=) is the PDDL2.1 scmantics statc that
invariants hold from just after the start to just before the end. Thus the orderings are not
between the end points, but rather either side of them.

Definition 3.4 — Conversion of Partial Order to STN

A Partial Order pop = (ia, pr) where ia is a set of instantaneous STRIPS Actions
and pr is a set of precedence relations between the members of ia, is converted
into a set of temporal constraints ¢c such that

(a) Va; <aj €pr-{e <aj —a; <00} €tc
¢ Va; Rajepr-{0<a; —a; < 0} €t
(c) Va; €ia-{e < a; — Xp < oo} €te
(d) Var € ia - {Ggur < @4 — ar < Ggur} € tc

where Xy = 0 and represents the start of the plan.

Part (a) of Definition 3.4 cnsurcs that timcpoints that arc in strict precedence must be
separated by at least ¢ (the tolerance value), reasons for which are described in Section 2.1.4.
Timcpoints that arc not in strict precedence can happen simultancously (part (b)). Part (c)
constrains each action to start after the start of the plan (X;). Each corresponding start
and cnd action must have a constraint, madc by part (d), for their duration, which is rcad
from the duration file produced by the LPGP translator. These constraints take the model
of time from a point-based, back to an interval-based model.

To calculate the earliest possible start time for each action, the shortest distance must be
found between the action’s start timepoint and X in the network. Floyd-Warshall’s All Pairs
Shortest Path algorithm is used once and is of complexity O(n?®) (where n is the number of
timcpoints.} Bellman-Ford’s Single Source Shortest Path would have to be used repeatedly
— once for each action (3) — making the complexity O(%) x O(ne) = O(n%e) (where e is
the number of constraints). Since there are at least n constraints (one for each timepoint to
make it follow the start - see part (d) of Definition 3.4) this makes the complexity at least
O(n’n) = O(n*). As there will be in fact more constraints from precedence relations and
duration constraints, the complexity will be greater than this, and seo it is less complex to
nse Floyd-Warshall’s.

It should be noted that this system could potentially not respect invariants correctly. In
Figure 3.5, a start (A.) and invariant action (A.,) are put in the plan, followed by an
action (B) that brcaks the invariant condition, s, before the end action (A5). Even if the
invariants become conditions of the end action, it would still be possible for the invariants to

CHAPTER 3. THEORY 46

be broken and then re-achieved. This is because the translation of the durative action treats
the invariant as a single point of time, when it should actually be an interval. Therefore,
in Figure 3.5, FF produces & “valid” total order classical plan for the translated domain,
however, when this is passed through the partial order lifter and scheduled, it produces an
invalid temporal plan with respect to the original temporal domain, since the invariant s of
action A has been broken.

B-Inv] iB-inv}
A-iny] B-invi iA-inv
A-inv]
A A B B. B, Al
A-inv m iB-inv —~iB-inv —iA-inv
A-inv iA-inv B-inv B-inv —B-inv —~A-inv

(a) Valid Total Order Plan

‘ inv: s ‘11
| A l
| |

s, p B |

{b) Corresponding Invalid Temporal Plan where the Invari-
ant s is Broken

Figure 3.5: Example of a Broken Invariant

A further problem with this hybrid is in the way in which the dummy propositions
operate in the translation. Whilst there cannot be an end action without a start, there
could be a start in the plan without its end. This is against PDDL2.1 semantics as all
actions must complete, so a post processing step is needed to ensure that an invariant and
end action are put in the plan for each start action if necessary. This is how LPGP handles
these cases. However, this is not snitable if the end action then deletes a goal (as shown in
Figurc 3.6).

current state: r goal: p, r 8 iA-inv]
: : A-iny| A-inv
! A ! A
¥ = f e A-{ -
| 14] [A-inv —iA-inv
1 A-inv) iA-inv ~A-inv
[] [}

Figure 3.6: Example of an Tnd Action Deleting a Goal

This is an initial solution to the temporal planning problem which demonstrates how to
separate the planning from the scheduling in PDDL2.1 domains by taking a point based
representation and planning using only logical reasoning, and then re-introducing temporal
aspects. The main advantage is demonstrated by its modular approach; FF could be replaced

CHAPTER 3. THEORY 47

with any classical planner, and the partial order lifter and STN also could be replaced with
equivalent scheduling algorithms. By decomposing the problem, it is searching smaller
state spaces than if it were to combine the problems. The planner and scheduler do not
communicate with one another and the weaknesses of this is analysed later. First the

structure of temporal planning domains is investigated.

3.2 Coupling of Planning and Scheduling

No Loose Tight Loose No
Coupling Coupling Coupling Coupling Coupling

®

@ @ O ® @ ()
—\

QZ—~Z2Zp1r""
QZ~CCQUHEQWm

Figure 3.7: Coupling Between Planning and Scheduling in Temporal Planning Domains

Figure 3.72 illustrates the spectrum of coupling between planning and scheduling in temporal
planning domains. The coupling increases with the number. This spectrum is compared
with the sub-problem interactions classified for TIM, as described in Section 2.3.1. In this
case, the main problem is the temporal planning problem and the sub-problems are planning
and scheduling.

On the left (1p) are pure planning problems that contain no scheduling. These include
classical planming benchmark domains. On the far right (1s) there arc the domains that arc
completely scheduling problems that have been encoded as planning problems, where there
is no choice of actions. Each goal is achievable by one action that the planner must choose.
These problems (1p and 1s) refer to interactions of type 1 on TIM’s classification, where
either the planning or the scheduling is a complete sub-problem of temporal planning.

Domains in 2 represent, problems where there is a component, from the other sub-problem
but this is easily solved and has no consequence either on satisfiability or on the quality of
the other the problem. For example, a domain in 2b will be predominantly a scheduling
task with a planning component where the choice of actions is easy and has no effect on

22a and 2b are equivalent, as arc 3a and 3b since the planner must slways choose the actions before they
can be scheduled. However, they are separated here, partly for symmetry reasons and partly to demonstrate
how a problem may be more planning centric or more scheduling centric.

CHAPTER 3. THEORY 48

the schedule. Here there is no coupling between the problems and an example would be the
problem of building a house as set out in Section 1.2. These domains are associated with
interactions of type 2 and 3 on TIM’s classification, where the scheduling is an independent
component of planning.

Domains of type 3 have a loose coupling where the solution to one problem only affects
the quality of the solution to the other, and not the satisfiability. All the problems in the
IPC’02 [27] were of this type, where the choice of action affected only the quality of the
schedule produced. An example is the ZenoTravel Time domain (see Appendix B) that has
two fly actions: one for flying fast, and the other for flying slowly that uses less fuel, but is a
longer action. The choice of action (i.e whether to fly fast or slow) affects the quality of the
schedule that is produced, but a schedule can always be found for the plan. Concurrency
in these domains may oconr in order to produce a better schedule. A consequence of this is
that all plans to problems in the first three levels of this spectrum can be sequentialised so
that there is a complete ordering between the actions with no concurrency. Domains of this
typc arc classificd as type 4 (hicrarchical sub-problem dependency) on TIM's classification,
where the scheduling is an dependent component of planning.

The tightest coupling happens in domains in the centre of the spectrum (4 and 5) where
concurrency must happen and is of type § on the classification TIM uses, as the sub-problems
are interdependent. 4 refers to TEG domains where the concurrency must happen only in
order to achieve the goals by their deadlines. This is a similar coupling to 3, but the quality
of the solution is now a hard constraint that must be met. In domains of type 5, concurrency
maust happen, not to achieve a goal by a deadline, but to achieve a goal at all. The coupling
between planning and scheduling is stronger in domains of type 5 since the concurrent actions

interact, whereas they do not in domains of type 4; This interaction is co-ordination.

Definition 3.5 — Co-ordination

“Co-ordination” occurs where actions which, when executed concurrently, inter-
act to produce an interesting effect.

An example of co-ordination as present in a domain of type 5 occurs in the match domain
(Appendix C, a variant of which was first presented in [53]) where the goal is to mend
fuscs. To mend a fuse (with the MEND_FUSE action), there must be light for the duration
of the action. This is achieved by lighting a match (with the LIGHT_MATCH action) which
providcs light only whilst it burns (i.c. for the duration of the action). To mend a fusc you
must also have a hand free, the effect of which is that you can only fix one fuse at a time.
Where the LIGHT_MATCH action is 8 time units long and the MEND_FUSE action is
5 time units long, it should be obvious that two matches will be needed, since both fuses
cannot be fixed by the light of one match before it burns out. However, if the fuses take
less time to fix, the matches burn for longer, or fuses can be fixed concurrently, then a
different number of matches may be required. Importantly, the MEND_FUSE actions must

CHAPTER 3. THEORY 49

be exceuted {and completed) during the exccution of the LIGHT _MATCH action. Thesc
actions must be co-ordinated (i.e. happen concurrently and in the correct order) so that the
goal of fixing the fuse is reached. Figure 3.8 is a valid plan for the problem.?

0.01: (LIGHT_MATCH matchi) [8.0]

0.02: (MEND_FUSE fusel matchl) [5.0]

2.04: (LIGHT_MATCH match2) [8.0]
5.03: (MEND_FUSE fuse2 match2) [5.0]

LIGHT_MATCH matchl]

|
l} MEND_FUSE fusel matchl | |

[!| MEND_FUSE fuse2 match2 |
| LIGIJIT_MATCH match2 Il
| |

Figure 3.8: A Valid Plan for the Match Problem

Temporal planning domains in IPC’04 [44] where the new features of PDDL2.2 were not
used were of type 3. Variants where the new feature of timed initial literals were used, were
of type 4. Once compiled down to PDDL2.1 they become of type 5 as the dummy actions
required co-ordination.

An alternative view of the spectrum in Figure 3.7 is in terms of “constrainedness”.
Generally, the more constrained a problem, the harder it is. In respect to temporal planning
problems, the more constraints there are between the planning and scheduling, the tighter
they are coupled and the harder the problems become. Domains of types 1 and 2 have no
constraints between the problems whereas domains of types 4 and 5 have many.

3.2.1 Failure of the LPGP/FF Hybrid

The system described at the beginning of this chapter is capable of planning for all domains
of type 1, 2, and 3, where there is no forced concurrency. The LPGP/FF Hybrid cannot
producc valid plans where the two problems arc tightly coupled (i.c. types 4 and 5). In this
section the failure of the system and the reason for this un-soundness is examined to gain
an understanding of where co-ordination arises in domains of this type and how to handle
it best. In the match domain, FF produces the plan:

31t is valid according to the problem specification, even if semantically it is odd.

CHAPTER 3. THEORY 50

(LIGHT_MATCH_start match1)
(LIGHT_MATCH_inv match?)
(MEND_FUSE _start fusel matchl)
(MEND_FUSE_inv fusel matchl)
(MEND_FUSE_end fusel matchl)
(MEND_FUSE _start fuse2 matchl)
(MEND.FUSE.inv fuse2 matcht)
(MEND_FUSE _end fuse2 match1)
(LIGHT.MATCH_end match1)

The partial order lifter produces the constraints:

¢ < (MEND_FUSE start fuse2) — (MEND_FUSE_end fusel) < oo

€ < (MEND_FUSE start fusel) — (LIGHT_MATCH _start matchl) < co

£ < (LIGHT_MATCH_end matchl) — (MEND_FUSE_end fusel) < oo

€ < (MEND_FUSE.start fuse2) < (LIGHT.MATCH_start matchl) < oo

e < (LIGHT_MATCH_end matchl) — (MEND_FUSE_end fuse2) < oo

€ < (LIGHT_.MATCH_end matchl) — (LIGHT_MATCH_start matchl) < 8
€ < (MEND_FUSE_end fusel) — (MEND_FUSE_start fusel) < 5

€ < (MEND_FUSE_end fuse2) — (MEND_FUSE_start fuse2) < §

Finally, the STN finds this set of constraints to be inconsistent and, as there is no feedback
to the planner, the system fails. The reason for the inconsistency is that two matches arc
needed in order to have enough time to fix both fuses, but since all temporal information
is ignored whilst planning, it failed to realise this, trying instead to fix both fuses by the
light of one match. Communication is needed between the planner and the scheduler at this

point.

The rest of this chapter looks at where co-ordination occurs in temporal planning domains

and this is then nsed to minimise communication between the planner and the scheduler.

3.3 Temporal Constraints in PDDL2.1

The reasoning in this section is restricted to PDDL2.1 where logical change can only happen
at the start of a durative action, or on its completion. Unschedulable plans come from
temporal constraints in the problem that cannot be met. In PDDL2.1, temporal constraints
are not represented explicitly, but rather implicitly, using other, potentially dummy, durative
actions, as these are the only way to represent temporal information in the problem. What
follows is a review of possible constraints that can be represented in PDDL2.1 and the
different ways that these constraints can be expressed.

Temporal constraints take the form (or can be rearranged to) x—y {<, <, >, <} b, where
z and y are the actual times of the start or end points of actions, and so their difference
(z — y) is how far apart in time they are relatively. b gives the maximum or minimnm

(depending on whether it is greater than or Iess than) that this difference can be.

CHAPTER 3. THEORY 51

All other constraints that do not use disjunctions are specialised cases of these. For
example, to represent an exogenous event e that occurs at a particular time, ¢, y is simply
set to zero and the constraint becomes

t<e—-0<t¢

To represent a deadline, d, that some end point, e, must happen by, y is again set to zero
and constraint is

e—~0<d

Figure 3.9 (a) and (b) show diagrammatically how the constraint B — A < b, which
semantically represents the maxiinum time by which B follows A, can be enforced using a
dummy action?. Figure 3.9 (c) and (d) shows how the constraint B — A > b can be encoded,
and represents the minimum time by which B follows A.

b4 2e b+ A_dur + B_dur + 2¢
[\ dummy_max dummy_max
— \— -/
(a) Maximum B—-A<b {b) Maximum B—- A <b
b — 22— b+ Adur + B_dur — 2e—

A dummy.min
5] (2] &Y

(¢} Minimim B—A>bH (d) Minimum B—A>b

Figure 3.9: Expressing a Maximum Minimum Elapsed Time Between Actions in PDDL2.1

In each case the duration of the dummy action has been extended or reduced by 2e.
This is because the PDDL2.1 semantics dictate they must be separated by a small amount
(as discussed in Scction 2.1.4). When calculating the duration of the dummy action, two
gaps between the dummy action, and A and B must be compensated for. For the rest of
the explanation ¢ is omitted from the reasoning to ease the complexity, but can easily be
reintroduced.

For both figurcs (b) and (d) the dummy action’s duration must also havc thc duration
of A and B summed on to it. This is because the dummy action now encapsulates both of
these actions.

These figures have been arranged in a fashion that should make obvious the similarities
both within the different representations of the same constraint, and also the similarities

4llere z—y < b can be rearranged as y—z > —b, which of course means exactly the same. Other constraints
can be equally rearranged, however, since an action cannot have a negative duration, all constraints are kept
in the form that keeps b non-negative.

CHAPTER 3. THEORY 52

in representing the different constraints. The different representation can be “mixed and
matched” within themselves, as shown in Figure 3.10.

max I min |
A B A B
IL max min
A B A B
| max | min
I l
A B A B
{ max I I min
A B A B
(a) Maximum Constraints (b) Minimum Constraints

Figure 3.10: Possible Combinations of Representing the Same Constraint

Regardless of the form used, when expressing a maximum time between actions, the
ordering is from the start of the dummy action to A, and from B to the end of the dummy
action, whereas when expressing a minimum time, regardless of the form used, the ordering
is from A to the start of the dummy action and then from the end of the dummy action
to B.

if B-A<b
then dummy_max,_ < A

B < dummy_max

if B-A>)
then A < dummy_max_

dummy_max_ < B

Notably, in maximum constraint orderings, there are no precedence relations where an
end action precedes a start action and in minimum constraint orderings, there are no prece-
dence relations where a start action precedes an end action. In both cases, ends precede
ends and starts precede starts.

From this observation, two new precedence relationships (<™2% and <™") are defined.

CHAPTER 3. THEORY 53

Definition 3.6 — Maximum Precedence Relationship

Maximum Precedence Relationship between two action end points ¢ and j where
t < j is defined as:

1 <™ 4= T < J
Vi < g
Vooig <4

Definition 3.7 — Minimum Precedence Relationship

Minimum Precedence Relationship between two action end points ¢ and j where
t < j is defined as:

i< G = iq < jr
Voo < g
Vg < g4

The maximum precedence relationships occur in maximum tcmporal contraints (Fig-
ure 3.10(a)) and the minimum precedence relationships occur in minimum temporal con-
traints (Figurc 3.10(b)). Thesc two dcfinitions have an interscctions of types (an cnd can
precede an end, and a start can precede a start), however a maximum temporal constraint
docs not have any cnds forced to precede a start (as in a minimum tcmporal constraint)
and a minimum temporal constraint does not have any starts that must precede another
action’s cnd (cxcept, in both cascs, through transitive relationships).

Where there are maximum constraints with no minimum, B could happen before A, and
of course with minimum constraints, B could happen infinitely after A without breaking
the constraint. The more interesting cases occur when both a maximum and minimum
time occur, i.e. where the constraints are combined to the form b; < z —y < b. To
form these constraints, the minimium and maximum constraints arc simply combined in any
combination. Two possibilities are shown in Figure 3.11.

Of course, for it to be possible for these constraints with both maximum and minimum
time differences to be met, the duration of min must be less than or equal to the duration
of max.

CHAPTER 3. THEORY 54

min min |

I
| L !

H—{ e 1 (A HB,

! |

max

Figure 3.11: Expressing both Minimum and Maximum Time Between Actions in PDDL2.1

3.3.1 Translation of the Domain

Consider another domain which involves making a cup of tea. There must be a maximum
time between boiling the water and pouring it into the mug {or else the water cools, and tea
cannot bc madc with cold water). There is also a minimum time sct between the boiling and
pouring of the water (to avoid steam burns). This could be expressed in two ways; either
by the first clipping mcthod, or the sccond enveloping method (as scen in Figure 3.12).

| MAXDELAY |

| BOIL WATER l| ||POUR_WATER l

! Ii MIN_DELAY Il !
(a) clips’

MAX_DELAY |

I
'l BOIL.WATER | | POURWATER l]
|

| [MIN_DELAY |,I |

(b) envelopes

Figure 3.12: Two Possible Equivalent Representation of the Breakfast Domain

As shown in the previous section, these two representations are equivalent. If the
BOIL_WATER action in fact has a greater duration (for example if more water is put in
the kettlc), the LPGP/FF Hybrid would not producc an un-schedulable plan with the clip
method, whereas if envelopes are used there is a danger that this could happen. This would
occur where the MAX_DELAY action is not long enough to include the BOIL_WATER, the
MIN_DELAY and the POUR_WATER actions. The dummy action’s duration relies on the
duration of the other actions where an cnvelope is used (sce previous Figure 3.9), whereas it
does not where clips are used (with the exception of the MIN_DELAY action. It is fair to as-
sume that thc domain designer cnsurcs that MIN_DELAY 4, < MAX_DELAY,4,,.) Howcver,
if the duration of the BOIL_WATER or POUR_WATER actions were to change then either
the duration of the envelope would have to change to keep the constraint the same, or the
constraint would change meaning accordingly.

The clipping method is therefore better for encoding maximum constraints as it does not

CHAPTER 3. 'THEORY 55

rcly on the duration of the actions it is trying to constrain. The LPGP/FF Hybrid would be
able to produce a valid temporal plan for the clipping method, but not necessarily for the
envelope method, if the MAX_DELAY action were not sufficiently long enough to contain all
actions. Could it be possible to detect such cases with envelopes and translate the problem
to use the easier clipping method? In this particular case it would seem so.

Returning to the match domain, it is possible to change it such that there is a delay
between fixing the two fuscs (in order to get the fusc out of its packet) and also so that it
is possible to fix two fuses with one match (i.e. the LIGHT_MATCH action is longer). When
this is done, it looks identical in structurc to the domain where tea is made (sce Figure 3.13
(a) and (b)). Would it then be possible to translate this domain, as was done previously,
into a form in using clips? This would mean changing the duration and structure of the
LIGHT _MATCH action, which would result in a plan as in Figure 3.13 (c). This scmantically
does not make sense, but this plan could be translated back again in a post processing
step to the original form. Whilst this guarantees that there is enough time to fix the fuses,
problems arise if a third action relies on the duration or structure of the LIGHT_MATCH
action. Clearly, if the LIGHT_MATCH action changed duration, there would be difficulties
with anything else requiring that light. Also it is unclear how the translation would work in
the case where there are three or more fuses to fix. Bearing all this evidence in mind, this
is not a viable solution to co-ordination.

I(
I

a Cc

) LIGHT_.MATCH | (©) LIGHT_MATCH

MEND-FUS% IMEND_FUSI_EP ‘MEND_FUSQ lr‘J«END-Fusgi
I FIND_FUSE | = I FIND_FUSEl

(

’ b) max_delay } @ I rmax.delay I
| BOIL | ! POUR I ‘ BOIL l I POUR l

Figure 3.13: Comparison of the Match Domain and Minimum and Maximum Delays in
PDDL2.1

Whilst the representations are syntactically equivalent, they are not always semantically
equivalent. The actions that need translating, those which are the equivalent of the dummy
maximum and minimum actions, may not actually be dummy actions and have other con-
ditions and effects that are important to the domain. It is reasonable to assume that if a
domain writer wished to explicitly express such a constraint, then they would make sure
that the minimum value was less than the maximum. However, this assumption cannot be

relied upon where the constraints arise naturally or in a disguised form. e.g. you cannot
assume that FIND_FUSE,,,, < LIGHT_MATCH,,,..

CHAPTER 3. THEORY 56

For these reasons, it would seem that in the general case you cannot always loosen the
coupling between the planning and scheduling sub-problems through s simple translation of
the domain.

3.4 Envelopes and Contents

Strong coupling between planning and scheduling occurs in co-ordination (Dcfinition 3.5)
where actions must happen concurrently. Envelopes and contents are sequences of actions
that are logically constrained to be executed concurrently with one another.

Definition 3.8 -— Envelope and Contents
An Envelope E and Contents C are both triples

E= (A, P, T.)
C= (44437 £, Tc)

where A, and A, are sets of action end points (either a start or end), P, and P,
are sets of precedence constraints between those end points, and T, and T, are
sets of temporal constraints relating to the duration of corresponding end point
pairs in A, and A, respectively.

In the envelope:
Vi<je P, iM%

and in the contents:
Vi<je P, i<™";

In co-ordination concurrent actions are logically, as well as temporally, constrained. One
sct of actions, called the “content” actions, must be executed whilst another set of actions,
called “envelope” actions, executes. The contents must fit in the envelope, that is to say, the
contents must start after the envelope has started and finish before the envelope finishes.

Definition 3.9 — End Points
The first end point in each is defined as

Firste=zecA-(VyeAe-y<zg€ P. Az #Yy)
Firstc=aue€ A, (VyeAs-y<acdP.Na#y)

CHAPTER 3. THEORY 57

And the last end point in each is defined as

Last,=ze€ A. - (Vyec Ae -z <ygP. Az #y)
Lastc=z € A.-(Vye Az <yg P. Az #y)

To ensure that they happen concurrently

First, < First,

Last. < Last,

For it to be schedulable it is necessary to know whether the minimum amount of time
that the content actions can be executed in is less than the maximum amount of timc that
the envelope actions could take to execute. It stands to reason that if the envelope has
an infinitely large maximum time or the content actions have a minimum time of zero,
then there will be no problems scheduling since the content actions will always “fit in” the
envelope. The problem occurs where the inverse is true. An envelope will have a finite
maximum total execution time where all the temporal constraints between the actions are
of a maximum type and the content will have a greater than zero minimum time where
all the temporal constraints between the content actions are of a minimum type. This is
regardless of whether these temporal constraints are explicitly encoded with dummy actions
or whether they arise naturally with normal durative actions.

If there is even one precedence relationship in the content actions which is of the max-
imum type and not the minimum type (i.c. where 4 < j4), then the content actions can
have a minimum time of zero and so definitely fit. inside the envelope. Conversely, if there is
even one precedence relationship in the envelope actions which is of the minimum type and
not the maximum type (i.e. where iy < j.), then the envelope can be infinitely large and
so can encompass any contents. This is the reason why:

Vi<jeP, -i<m™j
Vi<jelP-i<m™n"j

Lportantly, coutent actious can be envelope actions themselves (with other actions being
the contents) and so similarty, envelope actions can also be content actions for other envelope
actions. Content and envelope actions cannot be sequentialised with respect to one another
and must be executed in parallel. In the case of the match domain, the LIGHT_MATCH
action is the envelope action, and the MEND_FUSE actions are the content actions. See

Figure 3.14 for examples of envelopes and content actions.

CHAPTER 3. THEORY

58

singlc content action

single cnvelope action

}parallel content actions

)
1
"
]

! single envelope action

-T-

scqucntial content actions

i

! single envelope action

| single content action

I
h—“ }sequentia,l envelope action
1

| | }complcx contcnts

F— i ' }complex envelope

Figure 3.14: Envelopes and Contents

3.5 Detecting Single Potential Envelopes

The vast majority of action interactions in a domain are of the minimum precedence type;
an end add effect of one action simply achieves a start condition of another, so must precede
it. It is much morc rarc to find cxamples of cnvelopes (such as the LIGHT _MATCH action)
involving start effects and end conditions (as already noted — none appear in benchmark
domains), and so it is these cnvelopes that arc focused on. In this chapter, only cnvclopes
that are one durative action long (and so two instantaneous actions, one for the start and one
for the cnd) will be looked at, but later in the next chapter, longer cnvelopes arc investigated.

Definition 3.10 — Single Envelope

An envelope E = (A,., P., T.) is a Single Envelope iff

lAel =2

This definition means that in fact a clip és an envelope, as the two action extremity points
containcd in the contents come from different durative actions.

The following reasoning shows where these potential envelopes can occur. It should be
noted that this only holds for the STRIPS and durative-action subsets of PDDL2.1; In
particular, negative conditions are not permitted.

CHAPTER 3. THEORY 59

3.5.1 Reasons for Precedence

The precedence of the actions is forced through logical constraints. The Veloso algorithm
from Figure 3.4 identifies three reasons why it may be necessary to order actions (summarised
below in Figurc 3.15).

() P a;’s effects achieves a precondi-
a; a; | tion of a; so a; < a;

(b) P a; dcletes a precondition of a; so
aj a; a; < a;
P

(e 7 a; deletes a proposition that is

a5 a; ax an effect of a; that is used to

P p Lo achieve a third action, a;. Here
a;j < a;. If this ordering is not
put in, then a; could follow g,
and so a; would not have its pre-
condition met.®

Figure 3.15: The Three Reasons to Order Actions

3.5.2 Defining Potential Envelopes

Presented here is a case analysis of where single envelopes could occur

For a single envelope and content action, two orderings are needed to | 2
ensure that the contents must fit inside the envelope:
First(E) < First(C) A Last(C) < Last(E)

There are three possible reasons to order two timepoints, as detailed in | 3
Figure 3.15.

There are then a possible 32 combinations which are shown in Table 3.1. | 32 =9

There are a further six possibilities if the precondition involved in the | 6 + 9 = 15
(a) start orderings from Figure 3.15 or in the (b) end orderings is instead

an invariant.

5This is a standard declobbering technique used in partial order planners. Another is to order a;, < aj,
however, the Veloso algorithm does not allow for this as it can only remove orderings from the total order.
i.e. if an < 8,41 is in the total order, it is not possible to make an4+1 < an.

CHAPTER 3. THEORY 60

Each possibility is complicated further if the same proposition is used for | 15 x 2 =
both the start ordering and the end ordering (i.e. if p = ¢ in Table 3.1). | 30
This doubles the number of possibilities.

The total number of possible envelopes is therefore 30

In fact any action with cithcr a condition or cffeet (add or delete) at both the start and
end of the action could be an envelope since all three of these propositions are involved in
a potential ordering.

Compounded with these possibilities, it is assumed that the propositions involved in the
envelope and content actions are not achieved by other actions. If they were, the following
reasoning would be complicated even further. This is assumed since deciding whether a
particular action (that could achicve this proposition) appears in a plan can be as hard as
planning itself.

These single envelopes can be catagorised further. In some envelopes, such as the a-b
pairing or the b-c pairing in Table 3.1, the content actions ecould appear outside (in thesce
cascs, aftcr) the envelope action. Others cascs (such as the a~a pairing), there is no possibility
of this. These cases are referred to as “Hard Envelopes” and cases where potentially the

content action could appear outside the envelope, are called “Soft Envelopes”.

Definition 3.11 — Hard Envelopes
In a Hard Envelope the content actions must go in the envelope such that

First, < First, A Last. < Last,

Table 3.1: Nine Possible Combinations of Start End Pairs from the Three Ordering Reasons
from the Veloso Algorithm

End Orderings

a l b | c
a-a a-b |] a-c
fﬂ"—q{ i e lﬁ_—iq
S 9 a pl I‘I pl , pl {-q
: ‘% ba, bb e,
. I l naq }—‘Iq
ta b B 1 r—tq
g c-8 «b c-¢
° kp 4 b bel br lo
c |p |q |7’ I l? - *“1

CHAPTER 3. THEORY 61

Definition 3.12 — Soft Envelopes

In a Soft Envelope the content actions could occur somewhere outside (either

before or after) the cnvelope action such that

First, < First, A Last. < Last,
V Last, < First,
vV Last, < First,

With co-ordinated actions the actions must oceur in parallel to produce the desired offect.
However, with Hard Envelopes, the actions can only be executed concurrently, but with Soft
Envelopes they could also be executed sequentially but with a different effect.

It is important to note that in the case of soft envelopes, the contents cannot simply “slip”
out of the envelope. There must be an ordering between the end points of the envelope and
content action. However, in the case of soft envelopes, there will be two similar states in the
search space, one with the content inside the envelope and one with the content outside the
envelope. In the case of hard envelopes, there will only be one state relevant in the search
space, that where the content action is in the envelope.

Soft envelopes are distinguished between being “relevant soft” and “irrelevant soft”. In
relevant soft envelopes (such as the b-¢ pairing), moving the content action outside the
envelope does not result in any more true facts, so there would be no reason to do so, unless
the content action did not fit in the envelope action. Conversely, in the case of irrelevant soft
cuvelopes (such as the a-b pairing), keeping the content action inside the cnvelope results
in fewer true facts, so there would be no reason to keep it in.

Figurc 3.16 gives cxamples of these different cnvelopes. Figure 3.16(d) shows a possible
envelope-content pair that is impossible (since the envelope action deletes its own invariant)
so cannot be in the search space.

So, whilst there are 30 possible situations where one content action may be forced to
bc placed within onc cnvelope action (assuming these arc the only actions involving the
propositions), some of these simply cannot arise with content actions (as in the case of
dclcting an invariant of the cnvclope action) and some do not compromise complctencss (as
in the case of irrelevant soft envelopes). Further still, some of these cases are obscure and are
unlikely to arise in realistic domains. For these reasons, only one envelope will be analysed
here: the case that occurs in the match domain.

Definition 3.13 — Single Hard Envelope
A Durative Action, da, is a Single Hard Envelope where:

add- £V Ndels #0

CHAPTER 3. THEORY 62

(c) Soft envelope — irrelevant

N D 9]
rp 1

(d} Impossible envelope content pair

Figurc 3.16: Potential Envclopes (with achicving contents)

There is a good reason to select this particular potential envelope. This is because it models
a unary resource that is only available over a time window. It is common to want to model
this. In the case of the match domain, the resource is light which is only available during the
LIGHT_MATCH action. The handfree proposition also models a unary resource, however,
the difference here is that this resource is always available, ezcept during the MEND_FUSE
action.

This potcntial cnvelope has another unique property. It is the only hard cnvelope (i.c.
the contents cannot appear outside it) that is capable of existing on its own (i.e. the contents
arc not compulsory). This is proved below.

We shall name three states, s1, the state immediately before the start of the envelope
action, s2, the state immediately after the start of the action, and s3 the state immediately
after the end of the action (see Figure 3.17). An action applicable in 2 and not in s1 must
have been achicved by the start add cffects (since there are no negative conditions, it could
not have been achieved by a start delete effect). Taking it further, there are no actions that
could be applied in s2 and not in s3 which could not have been applied in s1, apart from
those achieved by the start add effects and then deleted by the end delete effects.

Any action conforming to this could be one of these envelopes, and so a simple domain
analysis step can detect these in a problem.

The next chapter describes this and a temporal planner bascd on the LPGP/FF Hybrid
system that can use this analysis to ensure that a valid plan is found, and so solve the match
domain problem and other cases where co-ordination is present in the problem.

CHAPTER 3. THEORY 63

y ..
®w
]

gl 82

p

=3
.-...ga.__

Figure 3.17: A Hard Envelope modelling a time limited resource

3.6 Chapter Summary

The FF/LPGP Hybrid splits planning and scheduling by decomposing the durative action
into three separate instantaneous actions, planning with these, and then scheduling the
resulting plan. This planner fails where the planning and scheduling sub-problems are
tightly coupled on the spectrum of “tightness” (i.e. in the case of co-ordination).

Temporal constraints arise in PDDL2.1 problems through the arrangement of durative
actions. Some arrangements lead to maximum precedence relationships, and others to min-
imum precedence relationships. An envelope is made of just maximum precedence rela-
tionships between the actions which will have a maximum execution time which cannot be
exceeded, whilst a set of content actions will all be arranged with minimum precedence re-
lationships, and so have a minimum execntion time which cannot be reduced. Where these
two sets of actions are logically constrained to happen concurrently, the execution time of
the contents must be less than the execution time of the envelope. To simplify matters,
envelope actions that are only one action long are examined, of which one case is singled
out, the single hard envelope. This models a unary resource that is only availiable during
the execution of the action.

Chapter 4

CRIKEY

This chapter describes a temporal planner named CRIKEY that splits the planning and
scheduling components of temporal planning in a similar fashion to the LPGP/FF Hybrid
(described at the beginning of Chapter 3). CRIKEY solves problems involving co-ordination
where the hybrid system, and indeed all other planners, fails. In these cases the components
are tightly coupled, which requires some communication between the planner and scheduler.
CRIKEY minimises this communication using the theory presented in the previous chapter.

Whilst CRIKEY is based on the LPGP/FF Hybrid system, all components have been
re-implemented in Javal.4 to form a complete unified system. Two versions of CRIKEY
are described in this chapter. Figure 4.1 illustrates the differences between each of them
including the LPGP/FF Hybrid. CRIKEY version 1 performs envelope analysis to detect
singlc hard cnvclopes (Definition 3.13), whilst version 2 can reason with all envelopes (cven
those of many actions in length). Version 2 also performs more complex scheduling to handle

duration inequalities.

Temporal Planning Temporal Planning Temporal Planning
Problem Problem Problem
Planner : : Planner Planner
Single Hard Al
Envelope Envelopes
Scheduler Scheduler Complex Scheduler
Temporal Plan Temporal Plan Temporal Plan
(a) LPGP/FF Hybrid (b) CRIKEY version 1 {c}) CRIKEY version 2

Figure 4.1: Differences Between the LPGP/FF Hybrid and the Two Versions of CRIKEY

64

CHAPTER 4. CRIKEY 65

4.1 Version 1

This version can only handle co-ordination where there are single hard envelopes and was
the version used in the International Planning Competition 2004 (IPC’04). The architecture
is outlined in Figurc 4.2 and can be comparcd against a similar diagram for the LPGP/FF
Hybrid in Figure 4.3.

Temporal Domain

Extracted
Temporal
Information
PLANNING
i : 1 Current
! Actions State
Envclopes OI‘Wa.rd -
.+ \ Search T
euristic
Coni;'{gnr Distance &
~onsIstency Helpful Actions

Totally
Ordered Plan §OHEDULING

TO to :
PO -
Lifter Partial
QOrdered

Plan

Temporal Plan

Figure 4.2: Architecture Overview of CRIKEY

In Figure 4.2, therce is still no arrow back to the planncr from the scheduler (as there is in
Figure 4.1(b)). However, they are conceptually the same, since the envelopes in Figure 4.2
perform scheduling and it is here that the communication between the planner and scheduler
takes place.

CHAPTER 4. CRIKEY 66

Temporal Domain

LGP
Tra:nsla-
tion Extracted
Temporal
Classical Information
Problem
FF
Current
Statce
orward
Search
Heuristic
Distance &
Helpful Actions
Totally
Ordered Plan SCHEDULING

Plan

TO to @
PO —— -
i Partial

Lifter Ordered

Temporal Plan

Figurc 4.3: Alternative Architecture Overview of the LPGP/FF Hybrid

4.1.1 Envelope Analysis

After parsing the domain, durative actions (Definition 3.2) that are not single hard envelopes
(Definition 3.13) are compressed into single, instantaneous STRIPS action (Definition 3.1)

Definition 4.1 — Compressed Action

A compressed action, ca = (cond, add, del), is an STRIPS action that has been
formed from a durative action, da = (ta_cond, ta_add, ta.dcl, dur), where

It

cond ta-cond, U ((ta.cond,y U ta_cond._,} \ ta_add,-)
add = (ta-add- \ ta_dely)Uta_add,

del (ta-del- \ ta.add,) U ta_del

CHAPTER 4. CRIKEY 67

A compressed action has the effect of applying the whole action at once, i.e. applying
the start effects first followed by the end effects, while still respecting the conditions. The
preconditions to the compressed action are the start conditions of the durative action and
all end conditions and invariants not achieved by the start effects. The add effects of the
compressed action are the end add effects of the durative action and all start add effects that
are not deleted by the end effects. Finally the delete effects of the compressed action are the
end delete effects of the durative action and all start delete effects that are not re-achieved
by the cnd add cffects.

Single hard envelopes are split into two actions, one each for the start and end points,
and not three as in LPGP translation (Definition 3.3) used in the LPGP/FF Hybrid. The
rationalc for this is that invariants arc not dcalt with corrcctly in the LPGP/FF Hybrid (as
explained in Section 3.1) and so to rectify this, invariants are now handled separately, not
requiring their own action. This is described below in Section 4.1.2.

Definition 4.2 — CRIKEY Action Translation
CRIKEY splits a single hard durative action da = (ta_cond, ta_add, ta.del, dur)
into two instantaneous STRIPS actions, da- and da+

doi = (condw, add,-, del.) is

cond. = ta-cond- U (ta-cond- \ ta_add.)
add- = ta.uadd- U {iAction_Name}
delr = ta_del- U {gAction_Name}

da = (cond., addy, dcly) is

condy = ta.cond4U ta-cond., U {iAction_Name}
add4y = ta_add+ U {gAction_Name}
dely = tadel U {iAction_Name}

As in the LPGP translation, a dummy proposition (iAction.Name) is used to ensure that no
end action is placed in the plan without its corresponding start action. This proposition is
an add effect of the start action, and a condition and delete effect of the end action. Once
again the dummy proposition is unique to the split actions; Therefore, the only way that
the precondition for the end action can be met is for start action to already be present in
the plan. As with the LPGP translation, this is deleted by the end action so there is only
one end action per start action. iAction_Name-inv, present in the LPGP translation, is no
longer required since the durative action is now only split into two actions rather than three.

Another dummy proposition {gAction_Name) is added by the end action and deleted by
the start action. The role of this is the converse of iAction_.Name: that if a start action is

CHAPTER 4. CRIKEY 68

present in the plan, then so also is its corresponding end action!. gAction_Name is added
to both the initial and goal states. Selecting a start action deletes the goal gAction_Name,
which can only then be re-achieved by selecting the corresponding end action.

To summarise, the envelope analysis stage will either compress a durative action into a single
STRIPS action, or, if it is a single hard envelope, split it into two STRIPS actions: one each
for the start and end of the envelope. This leaves only STRIPS actions in the problem.

4.1.2 Planning in Version 1

As in FF, searching is Enforced Hill Climbing (EHC) followed by Best First Search (BFS)
should EHC fail to find a plan. The heuristic estimate is the length of a relaxed plan?,
extracted from a relaxed planning graph where the delete effects of actions are ignored. As
proved in (45}, this takes polynomial time to compute. In the same way as FF, helpful
actions (actions in the rclaxcd plan that appcar in the first layer of the rclaxcd planning
graph) are used in EHC, but not in BFS.

States in the search contain open envelopes — split durative actions that have started
but have not yet completed. Content actions that must go in these envelopes, are checked
to ensure that they fit. This is formalised and described in detail in the rest of this section.

Definition 4.3 — Planning State
A planning state S is
§=(F, ¢

where F is the set of true facts and &, the set of open envelopes.

Envelopes

£ is the set of open envelopes. They are “open” in the sense that the start action has been
selected (and so present in the plan), but not the end action.

Definition 4.4 — Open Envelope Version 1
An open envelope & in version 1 is

& =(2,€, TE)

where @4/ is the single hard cnvelope durative action, € is a list of content ac-
tions that must go inside the envelope, and Z % is the set of temporal constraints
between the content actions and also the envelope action.

1The LPGP translation does not guarantee this, as explained in Section 3.1.
2The relaxed plan may not be optimal.

CHAPTER 4. CRIKEY 69

An open envelope is effectively just a part of the plan containing co-ordination. It is partially
ordered so that its consistency can be tested. Importantly, the consistency is only tested
when there is an cnvelope action (i.c. when there is co-ordination) and only for the envelope
and its contents (i.e. only for that part of the plan).

Definition 4.5 — Consistency Function

The function consistent(nodes, edges) returns the consistency of an STN, where
nodes are the action end points in the network, and the edges are the temporal

constraints.

Therefore, an envelope is consistent if
consistent({ZH} UE, T¥)

A consistent envelope means that the contents “fit in” the envelope. Consistency is tested
by performing Bellman-Ford’s Single Source Shortest Path algorithm from 244 (i.e. from
thc cnd of the cnvelope). Any negative cycles for this ecnvelope must involve this end action
as this will have a positive edge directed out of it for the maximum time difference from its
start action, and then negative edges leading back to it for the minimum duration of the
contents.

The Veloso function is used to decide whether an action becomes a content action of an

envelope.

Definition 4.6 — Veloso Function
The Veloso function returns a set of temporal constraints t¢c between an action

a; and an open envelope ¢ = (9%, ¥, F¥) with its contents.
tc = veloso(a;, ¢)
The function is defined as

(a) if Do/ < a; then (Do < a;} Ctc
(b) ifa; < Do 4 then {a; < 24} C tc
(C) Va; € € ifa; < a; then {ai - aj} Ctc

Onc itcration of the Vcloso algorithm (Figurc 3.4) decides whether a; < a;.

Part (a) adds a constraint if a; must follow the start of the cnvelope action, part (b) adds a
constraint if a; must precede the end of the envelope action, and part (c) adds a constraint
if a; must follow any of the content actions already in the envelope. 3

3As in the LPGP Hybrid, < constraints arc used where invariants arc involved (sce Scction 3.1).

CHAPTER 4. CRIKEY 70

If the Veloso function rcturns no constraints, then the action (a;) is not a content action
for the envelope (e).

veloso(a;, €) = 0

Invariants

Where durative actions are compressed into instantaneous STRIPS actions, their invariants
cannot be broken, since the start and the end of the action are in effect applied one after the
other, leaving no chance to break the invariants in between. However, where the durative
action has been split there is a possibility that the invariant could be broken and then
rcachicved (as possible in the LPGP/FF Hybrid in Figurc 3.5). To cnsurc this docs not
occur, an action, a = (cond, add, del), must not delete any invariant of the open envelopes
in statc s = (F,£).
Ve € & delNcond,(Ds#{(e)) =10

Applicability of Action

Definition 4.7 — Applicability

An action ¢ is applicable in state s if

(a) condC F
A (b) Veet-delncond (24 (e)) =0
A (c) Vee€ & consistent({P/(e), a} U¥€(e), 7€ (e) Uwveloso(a, €))

This states that (a) a’s preconditions must be met, (b) a must not delete any invariants that
are currently protected, and (c) a must be consistent with all currently open envelopes in
s. That is to say, if ¢ must go in any of the currently open envelopes, then there is enough
time to execute a and the other contents concurrently with the envelope action before the
end of the envelope.

Application of Actions

Definition 4.8 — Update Envelope
update(e, a), where an action a is placed in an open envelope, ¢ = (24, ¢, 7€),
to produce ¢’ is defined as:

e=e «— veloso(a, €) = 0
= (D ,€ U {da(a)-, da(a)4},
T € Uveloso(a, €)

U {da(a)aur < da(a)+ — dala)- < da(a)dur}) « othcrwisc

where da(a) is the corresponding durative action for a

CHAPTER 4. CRIKEY 71

The update(c, a) function placcs a content action in an open cnvelope if necessary, or if
not, leaves the envelope unchanged. If it must go in, it updates the temporal constraints
for precedence relationships between a and the rest of the contents and envelope action. A
temporal constraint for the duration of « is appended to the set of temporal constraints.
Note that regardless of whether q is a split action or a compressed action, the corresponding
durative action is split (using Definition 4.2) and these two actions are placed as contents
in the envelope. Therefore, the envelope only contains split actions.

Definition 4.9 — Result
The result, Result(s, (a)), of applying a single STRIPS action a = (cond, add, del)
in state s = (F,{) is &' = (F',£") where

(8) F' = (FUadd)\ del

(b) & =¢&U{(daa), 0, {da(@)aur < da(a)4 — a < da(@)qur}} — a=F

(c) =&\ {e} - a=244(e) —a=
(d) =¢ — otherwise
(e) &" = {update(e, a) | e € ¢}

where a =t~ denotes a is a start action, and a = denotes a is an end action.

Part (a) is the logical cffcets of the action @ on s. It adds the add cffcets and then removes
the delete effects of a from the set of true facts. Part (e) stipulates that where necessary, the
action must be placed in the open envelopes to become a content action, using the update
function defined above. Part (b) adds a new open envelope to the state if the action is
the start of a singlc hard cnvelope. If @ is the end of a single hard cnvelope, then part (c)
“closes” this envelope and removes it from the state. No additional content actions can now
be placed in this envelope. If a is a compressed action, then no new open envelopes are
either created or removed from the state (part (d)).

For completeness, a planning problem and its solution are defined.

Definition 4.10 — Planning Problem
A planning problem is

P=(0,1,G)

where O is a set of STRIPS actions (Definition 3.1), I is the initial state and G
is the goal state.

CHAPTER 4. CRIKEY 72

Definition 4.11 — Goal State
A goal state g = (F, £) must satisfy all the goal conditions, and the set of open

actions must bc cmpty (since the PDDL2.1 scmantics require that all actions

must complete).
FCGAE=D

Definition 4.12 — Valid Plan
A solution to a planning problem is a plan p

p={ay, ..., a,)

where {ay, ..., a,) is an ordered list of actions. The result of applying & plan
on a state s is defined recursively

Result(s, (a1, ..., an)) = Result(Result(s, (ai, .., Gn-1)), {an))

A plan p is valid if a goal state is reached when each action is applied in sequence
from the initial state.
Result(1,p)

Relaxed Plan

The relaxed plan is calculated in the standard way, using the compressed and split actions.
‘The length of the relaxed plan gives the heuristic estimate of the distance from the current
state to the goal.

Metrics

CRIKEY can handle metric variables as defined in PDDL2.1 by the fluents flag. Each state
keeps a record of the current resource levels. These are changed by the operators in the
effects of actions, and tested by conditional statements in the conditions.

The metric aspects have been omitted from the reasoning and definitions presented so
far for simplicity and ease of understanding. There are two areas of note when considering
metrics in CRIKEY. The first is in the compression and splitting of durative actions. Metrics
involved in both the start effects and invariants of an action must be treated in a similar

fashion to where invariants met by a start effect do not become conditions of the compressed

CHAPTER 4. CRIKEY 73

or start action (Dcfinitions 4.1 & 4.2). For cxamplc, if an action has a start cffcct to incrcasc a
resource by 2 and an invariant requiring that the resource be less than 10, then the conditions
of the compressed action or start action becomes that the resource should be less than 8.

The second area that metrics complicate is in the lifting of the partial order. Any
precedence relationship in the total order between two actions that either test or change the
same resource is kept in the partial order.

Metrics are incorporated into the heuristic in a similar fashion to MetricFF. At each
fact layer of the relaxed planning graph, the maximum and minimum possible levels of each
resource is calculated based on the values at the previous fact layer and the actions available
in the previous action layer. For an action to be applicable in the relaxed planning graph,
either the maximum or minimum level must meet the metric condition.

Version 1 and the Match Domain
in the case of the match domain (as described in Section 3.2.1), assuming it is part of a
bigger domain, CRIKEY will search forward ignoring temporal information.

] LIGHT_MATCH When it comes to put in the start action to the
LIGHT_MATCH action (a single hard envelope),

it. will create a new open envelope.

LIGHT MATCH It will then test to see if a MEND.FUSE action
: . need go in this envelope, and if so, if it is consis-
¥ 1
| MEND.FUSE | ton.
i I

LIGHT_MATCH Indeed, it fits, so the action is applicable and

sclected for the plan.

MEND_FUSE

|

[LIGHT _MATCH. It will then test the second MEND_FUSE action.

This is not consistent with the envelope (there is

1 {
MEND.FUSE i—-M-EN—Q'—EUSE-i: not enough time left to fix it before the match
| 1

]

burus out), so cannot be inserted in the plan.
(If the fuses could be fixed in paraltel, then this
second action would be consistent).

l LIGHT_MATCH l The end of the light action could then be selected
and the envelope closed. CRIKEY would then
proceed to either light a second match (and so

MEND_FUSE

]

start a new envelope) or solve another part of
the problem. In this way a schedulable plan is
produced.

CHAPTER 4. CRIKEY 74

4.1.3 Scheduling in Version 1

All the compressed actions in the total order plan are split into a start and end action as
in Definition 4.2. Scheduling is then identical to the scheduling in the LPGP/FF Hybrid
system. A partial order is lifted from the total order plan by an implementation of the Veloso
algorithm and is translated into temporal constraints. As with the LPGP/FF Hybrid,
these constraints are put into a 2-D matrix, representing the graph of the STN and the
shortest distance is found between the start actions and Xj, calculated by Floyd-Warshall’s
algorithm. Once again, the temporal plan is then output as a list of time stamped actions
with their durations.

Although the same scheduling process is followed in version 1 as in the LPGP/FF Hybrid,
unschedulable plans cannot be produced because the planner has already checked at the
critical points (where there is co-ordination) that a schedule can be found through the
detection of envelopes.

A Note on the Implementation The formalisation of this first version is closely linked
to the implementation of the planner. In particular, CRIKEY has an cnvelope class that
contains small STNs, which are discarded once the envelope is closed, and then has a totally
separate scheduling phase. This has the disadvantage of not. showing clearly exactly how the
planner and scheduler communicate. To address this, an alternative formalisation is given
in Appendix D where the scheduling is integrated into the planning phase, and a partial
order built rather than a total order. Onc STN (representing the whole plan) is kept for the
state, rather than many smaller STNs (in the case of the envelopes). However, once again,
the partial order is only checked for consistency when and where absolutely necessary (that
is, where the actions are involved in co-ordination). This makes it conceptually ezactly the
same as the above formalisation. The disadvantage of implementing the planner in this way
is that the STN must be duplicated for each state in the search. This would be expensive,
both in terms of memory and CPU time. In the current implementation, only the small
envelope STNs are duplicated and then discarded once the envelope is closed.

4.2 Characteristics of Version 1

This ncw planncr has a numbcr of advantages over the LPGP/FF Hybrid system. By
compressing actions where there is no co-ordination, the search space becomes smaller.
States where actions have been started but not completed are no longer in the search space:
intnitively a goond idea since any action must complete at some point. In scarching, it
effectively skips through this intermediate state and applies both the start action and end
action at once. Compressed actions are effectively blackbox actions where the state of the
world is not known while the action is being executed. However, CRIKEY only compresses

these actions where it is safe to do so (i.c. not in the case of single hard envelopes).

CHAPTER 4. CRIKEY 75

Splitting the action into only a start and cnd, and not also an invariant action (as the
LPGP/FF Hybrid does) reduces the search space by a third. This applies to both the
planning search space and also the relaxed plan graph. This is only a polynomial reduction
in size, but will have an impact on performance in practice.

The main advantage (and purposc) of this planncr is that it can handle domains with
co-ordination where the LPGP/FF Hybrid cannot. To do this the search must have access
to the intcrnal statc of an action (by splitting the durative actions into two). Whilst the
hybrid does this, it cannot guarantee that the resulting plan is schedulable, since it does not
test the consistency of the schedule until the plan is fully built. CRIKEY, however, detects
single hard envelopes in advance and so can realise where the internal state of an action
needs to be known and also when and where to test this consistency. In the benchmark
domains, where there is no co-ordination, the consistency will never be tested, but CRIKEY
minimises the consistency testing in domains where there is co-ordination. It will only test
for consistency where there are envelopes (and so co-ordination), and will only check the
consistency on that part of the plan which needs to be checked, that is, only on the part of
the plan containing the envelope and contents.

There is one major disadvantage of this version of CRIKEY. As discussed in the previous
chapter, there are many places where envelopes could occur, and so many places where it
could, potentially, be necessary to test for consistency. However, CRIKEY, in the form
described above, only detects one such instance. Albeit a common instance that it recognises,
it does not preclude the fact that this makes the temporal planner incomplete. Furthermore,
this version is unable to handle envelopes that are more than one action long,.

One possible way to extend CRIKEY would be for it to perform further envelope analysis
to detect other (possibly common) potential envelopes. This would still not make CRIKEY
complctc, unless all cnvelopes where found and this (as discussed previously) would mcan
seeing every action as a potential envelope.

The rest of this chapter looks at an extension of CRIKEY which splits all actions, but
detects envelopes “on the fly” during planning. This enables it still to minimise consistency
checking, once again performing it only when and where necessary.

Another woakness of this architecture is that it is hard to find good quality plans since
thc mctric (and specifically the tcmporal information, for minimising the total cxccution
time of a plan) is ignored during planning. The second version takes steps to remedy this.

4.3 Version 2

This second version of CRIKEY performs no envelope analysis to find envelopes in advance.
Instead it splits all durative actions into two actions as in Definition 4.2. This increases the
size of the search space compared to version 1. Since incompleteness occurs where states
do not appear in the search space, this increase in size is inevitable. The main difference
between version 1 and version 2 is the ability to handle all envelopes, even those which are
multiple actions long.

CHAPTER 4. CRIKEY 76

4.3.1 Envelope Management
The form that envelopes take is different in this version.

Definition 4.13 — Open Envelope Version 2

An open envelope, e, in version 2'is
e=(S, &, F, P, I%)

where . and & are the start and end actions of the envelope respectively. &
is the list of content, actions that must follow the start of the envelope, and 2
is the list of content actions that must precede the end of the envelope. ¥
is once again the set of temporal constraints both between the envelope actions

and also the content actions.

Open envelopes in version 2 allow for envelopes that are many actions long, and not just
single hard cnvelopes. . and & need not belong to the same durative action.

The consistency function remains the same as in the first version, so to test the consis-
tency of an open envelope e, it is now:

consistent({&, S} UF UL, TE)

The two lists of actions (thosc that must follow the start and thosc that must precede the
end) keep the transitive closure for these end actions. If the intersection of these two sets is
nof empty (ie. F NS # 0), then the consistency of the envelope must be checked, again
using Ford-Bellman's SSSP algorithm from the end (&) of the cnvelope. If the intersection
is empty, then there is no need to check the consistency, as the contents have a minimum
time of zero and the envelope will definitely be consistent.

The Veloso function must also change as open envelopes are different in this verion.

Definition 4.14 — Veloso Function

The veloso function returns a set of temporal constraints tc between an action

a; and an open envelope e = (&, &, F, #, J%) with its contents.
te = veloso(aj, ¢)
The function is defined as

(a) if < ajthen {F < a;} Ctc

(b) Va; € # ifa; < a; then {a; < a;} Ctc
(c) ifa; < & then {a; < &} Cte

(d) Va; € Zifa; < a; then {a; < a;} Ctc

One iteration of the Veloso algorithm (Figurc 3.4) decides whether a; < a;.

CHAPTER 4. CRIKEY

Applicability of Action

77

Definition 4.7 part (c), the applicability of an action, changes to reflect the fact that the

consistent function is now used differently with the new envelopes.

Definition 4.15 — Applicability

An action a = (cond, add, del) is applicable in state s = (F, &) if

(a) cond C F

(b) A Veeé&-delncond(da(&(e))) =0

() A Vee - consistent({.#(e), &(e), a} U F(e) U P(e),
€ U veloso(a, €))

Application of Actions
Definition 4.8 must be revised.

Definition 4.16 — Update Envelope

update(e, a), where an open envelope, € = (¥, &, F, P, F¥), has an action
a placed in it to produce €’ = (&', &', F', P', TE") is defined as

S =

=&

F'=F U{a} —3a; € FU{SL} ai<a
=% +— otherwise

P =P UJ{a} —3Jda; € PU{E} a<a,
=P

+ otherwise

T€' = T€ Uwveloso(a,e)
U {da(a)aur < dala)4 — da(a)r < da(a)aur}

This has the effect of adding the action a to the list of followers %, if it must follow either
the start of the envelope or any other action in the list of followers. Additionally, it is added
to the list of preceders 4 should it precede any other action in that list or the end of the

CHAPTER 4. CRIKEY 78

envelope. A temporal constraint for the duration of the action is added to € in addition
to the constraints returned by the Veloso function.

Another function is needed to create new envelopes, multiple actions long, by expanding
other open envelopes through the addition of new envelope actions.

Definition 4.17 — Expand Envelope
cxpenv(e, a), where an open cavelope, ¢ = (%, £, .F, 2, 7%) has an action a
placed in it, to produce ¢’ is defined as:

e = (S,da(a)+, F UL,
{da(a)dur = da(a)4 — a < da(@)gur, & —a < e} U TE})
—3a; e {FIUF -a <™ q;

Ii
@

+« otherwise

If an action forms a maximum precedence relationship (Definition 3.6) with either the end of
a currently existing envelope, or any action that precedes it, then a new envelope is created
which is the combination of the original envelope and the new action. The new envelope is a
copy of the original envelope, however the envelope’s end action is set to the end of the new
action, and the actions that preceded the end now follow the start. A temporal constraint
is also added for the duration of this new action, and also to specify that the two (or more)
envelope actions are of the maximum precedence type.

Definition 4.18 — Result

The result, Result(s, (a)), of applying a single STRIPS action a = (cond, add, del)
in state s = (F,£) is 8’ = (F',£"") where

(a) F'=(FUadd)\ del

(b) & =¢U {expenv(e, a)|e €'}

© € =€U{(da(a)s, 0, B, {da(a)awr < da(a)s— o < da(@)aw))} o a=F
(d) =\ {e} - a= P (e) —a=A
(¢) & = {update(e, a) | e € €'}

Ncw cnvclopes arc created in a state in onc of two ways. In the first casc (c), a ncw start
action is chosen. This is the same as for single envelopes as described in version 1 where the
start and end actions in the envelope correspond to the start and end actions of the durative
action. The two sets of actions that precede and follow the extremes of the envelope are

CHAPTER 4. CRIKEY 79

initially empty. The temporal constraint set contains only one constraint corresponding to
the duration of the envelope action. Alternatively, new envelopes can be created where
cavclopes arc multiple actions long (d). Again, open cnvelopes arc removed from a state
(closed) when the end action to an envelope is chosen (d). Part (e) places content actions
in open envelopes if necessary.

In cases where there is no co-ordination (and so no envelopes), as in the traditional
benchmark domains, envelopes are created when the start action is chosen. If the end action
is not immediately chosen next, then an action may have to follow the start of the cnvelope
(say, if it has a start cffcct) or precede the end of the cnvelope (say, if there is a condition to
meet). However the intersection of the two sets will remain empty and consistency checking
will not be performed.

To summarise, in this version CRIKEY again only communicates with the scheduler where
absolutely necessary and only on that part of the plan where there is danger of producing
an unschedulable plan. This version, however, can deal with all types of envelope including
those which arc many actions in length. If, when putting a content action in the envelope,
there is a maximum precedence relationship, then a new covelope (many actions long) is

created.

4.3.2 Scheduling

Scheduling in the second version differs from the first. As before, the Veloso algorithm
lifts a partial order from the total order plan, however the resource reasoning is performed
with precedence graphs. As this is not strictly in the scope of this thesis and not a novel
technology, but rather an new application of it, it is not presented in detail here. Precedence
graphs are summarised below and described in full in [50]. The rest of this section describes
how they arc integrated into CRIKEY including the changes to [50] that had to be made,
followed by an example of how they operate.

Precedence Graphs

Most resource scheduling approaches reason with the actual timing bounds of actions. How-
ever, Precedence Graphs look at their relative positions. Each resource in the plan has its
own graph, where the nodes are action end points that contain either a condition relating to
that resource, or a resource operator in the effect. Each node is labelled with the minimum
and maximum production or consumption of the resource at that node. Edges between the
nodes are precedence orderings. These graphs need not be represented explicitly but can be
deduced from the STN that holds this information.

The “balance constraint” is calculated for each node in each graph?. The basic idea of

4For reservoir resources (as PDDL2.1 fluent variables are), the balance constraint requires the resource
to be closed, i.e. there are no more nodes to be added to the graph. This is the case in CRIKEY, since the
resource reasoning is performed after the planning is complete.

CHAPTER 4. CRIKEY 80

the balance constraint is to compute a lower and upper bound on the resource level just
before and just after each event (i.e. z +¢). To calculate an upper bound, all maximum
production levels of all events that could happen before the event are summed with the
minimum consumption levels of all events that must happen before the event. In a similar
way the other balance constraints are calculated.

In fact, precedence graphs as described in [50] use a slightly different model of resources
to PDDL2.1. In that model, all resources have a maximum possible level and a minimum
possible level that is always zero. PDDL2.1 does not explicitly model resources, and docs
not have maximum and minimum possible levels encoded in. Instead, the resources must
meet conditions which can change from action to action. This has the effect of changing the
minimum and maximum possible levels of the resource throughout the plan.

For example, the model used in [50] would specify a fuel tank to have a minimum level
of zero and some constant maximum capacity. In PDDL2.1, this maximum capacity can
change during the plan, as can the minimum.

For this reason, some simple changes are made to the reasoning presented [50]. Instead of
calculating balance constraints at cvery node in the graph, it only caleulates them for those
nodes that contain conditions. The maximum and minimum levels must then meet these
conditions, (and not, as in the model in [50], keep the maximum and minimum between zero
and thc maximum level). Sccondly, when calculating the minimum and maximum valucs, it
only considers nodes that contain resource operators.

The balance constraints can then be used to discover:
e dead ends

¢ new precedence relations

¢ new bounds on resource usage

e ncw bounds on time variables

Dcad cnds (where the conditions cannot be met) arc not found in CRIKEY, sincc it keeps
track of metric values during the planning phase to ensure that there is always adequate
resource. Resource reasoning is not scparated out (unlike the temporal reasoning) so there
is no chance of finding an un-schedulable plan due to lack of resources. In the worst case,
the precedence graphs will order all the actions identically to the total order plan produced.
However, it will find concurrency where possible.

CRIKEY does discover new precedence relations. For each condition, it is made sure
that either the maximum and minimum resource levels must meet the condition and if not,
precedence relations arc put in to cnsurc that the condition is met (by ordering producers
or consumers to occur before the condition).

CRIKEY can use the balance constraints to find new bounds on both the time variables
(which can be propagated through to the STN) and resource usage variables. This only

CHAPTER 4. CRIKEY 81

occurs where there are duration inequalities in the domain, as this is the only case where
operators in the plan can produce or consume variable amounts of resource with actions of
variable duration.

An example precedence graph is given in Figure 4.4(a) for the fuel level of a car. There
are two move actions, both of which consume between 10 units of fuel. There is also a refuel
action (not presently ordered with respect to the move actions) that can produce between
0 and 20 units of fucl (depending on the length of the action).

Firstly, in Figure 4.4(h), the precedence graph is able to reason that the REFUEL action
must happen before the second MOVE_TO_B action and so the appropriate precedence re-
lationship is added. This is turn allows reasoning for the resource bounds of the REFUEL
action, as it must now produce a minimum of 5 units. The refuel action must now be of
sufficicnt length to supply the 5 units, and this information can be propagated up to the
STN.

Duration Inequalities

PDDL2.1 allows the specification of duration inequalities. Rather than fixing the duration
of a durative action, these allow bounds to be put on the duration. These bounds can be a
function of other metric values (for example, you cannot drive for longer than the amount
of fuel available). However, resource change can also be dependent on the duration of an
action (for cxample, the longer you heat watcr for, the hotter it becomes). The duration of
an action now effectively becomes a hidden parameter of the action. This allows resource
change to be decided by the planner. For example, it is possible to decide how long to fill
the tank up for (the duration of the refucl action) and so therefore how full the tank is at
the end of the action. The possible combinations are summed up in Table 4.1.

The (c) and (f) cases then present resource scheduling problems where it would intuitively
seem illogical to decide exactly how long an action should be and exactly how much resource
shounld be produced or consumed until after the plan is produced (i.c. the problems should
be scparated out). This version of CRIKEY provides the ideal architecturc for this since
both the STN and the precedence graphs handle upper and lower bounds on both resource
production and consumption and also on time. Through these, contents can be made to
fit exactly in envelopes, and resources can be maximised and minimised. For example, in
the match domain, if the duration of the match is set to :duration (<= ?duration 8) it
wotld be possible to “blow out” the match once the fuse is fixed.

CRIKEY reads the quality metric in the PDDL2.1 problem file to decide what to max-
imise or minimise in the precedence graphs. This could be a resource or the total time.
If it is a resource that is to be maximised, then that precedence graph is selected and the
producers maximised and the consumers minimised (by changing the duration of their cor-
responding actions). If it is to be minimised, then the converse happens. After calculating
this, CRIKEY propagates the results through to the STN and the other precedence graphs.

CHAPTER 4. CRIKEY 82

REFUEL [?’ 20]
=15
START
MOVE.TO Av— 1 MOVE.TO.By
J '
> 10 [10,10] > 10 (10,10}
(a) Precedence Graph for the Fuel Level of a Car
REFUEL [9’ 20]
=15
START
MOVE_TO.Av— —1 MOVE.TO.B
=™\ v-l I >
>10 [10,10] >10 (10, 10]
(b) A Precedence Relationship is Added
REFUEL [?’ 20]
=15
START
MOVE_TO Ac— —1MOVE_.TOB
> 10 [10,10] > 10 (10, 10}
(¢) The Resource Bounds change
KEY: O Initial Resource Level

[[] Action End Point (with Condition)

A Action End Point with Increase in Resource Level

v Action End Point with Decrease in Resource Level
[min, maz] min and maz Resource Change

— Preeedence Relationship

Figure 4.4: Example Precedence Graph

CHAPTER 4. CRIKEY 83

Table 4.1: Possible Specifications of Durations and Resource Conditions and Operators

Specification | Example | Notes
Durations
~ {a) Fixed (= 7duration 5) The duration of the action |
is always known and does
_ | not change. ‘
{b} Function | (= 7duration (fuel 7t)) The duration of the action
will depend on the state.
(c) Condition | (< 7duration (fuel 7t)) The duration is a choice of

the planner.

Resource éonditions and Qperators

(d) Fixed (> (fuel 7t) 0) The value of the oper-
(increase (fuel 7t) 3) ator or condition is al-
ways known and does not

) change.
(e) Function | (> (fuel ?t) (fuel _required 7t)) The value of the operator
(decrease (fuel 7t) (fuel.used 7t)) or condition is dependent

| on the state.
(f) Function | (increase (fuel 7t) (x (refuelrate) | The resource change is de-

of Duration | ?duration)) pendent on the duration.
Combinations

(f) & (b) equivalent to (e)

() & {¢) The resource change is a

- choice of the planner

If it is the total-time to be minimised, then the duration of each durative action is set to its
minimum. The defanlt behaviour is to minimise the total-time and the resource levels.

An cxample of this is the Café Domain (scc Appendix E) wherce the object is to deliver
breakfast to a table in a café, as drawn diagrammatically in Figure 4.5°. However, due to
there only being one electrical socket in the kitchen, the toast and the tea cannot be made
simultaneously. Once either is made, it starts to cool, until delivered to the table. Whilst it
is preferable to have them as hot as possible when delivered, it is also preferable to deliver
them at the same time (or as close to each other as possible). There are three possible
metrics, one is to minimise the heat lost by each item whilst it is in the kitchen, another is
to have them delivered as close as possible together (i.e. minimising the delivery window),
and finally simply to minimise the total-time of the whole plan.

For cach metric the same partial order plan is lifted, with the same bounds on both
the resource levels and the action times. However, if the first metric is chosen, then the
LOSING_HEAT actions are minimised. This has the effect of delivering the tea and toast
as soon as they are made. This is propagated through to the precedence graph with the

5This domain contains maximum. orderings (the LOSING_HEAT and DELIVERY_WINDOW. actions) and

80 also co-ordination.

CHAPTER 4. CRIKEY 84

} MAKE tea

LOSING_HEAT tea |
ﬂ- DELIVER tea |

I I
| DELIVERY.WINDOW l

| |
| I.DELIVER toast |
LOSING._HEAT toast |

|
l I
| MAKE toast |

Figure 4.5: A Partial Order for the Café Domain

DELIVERY_WINDOW, which will mean this can no longer be as short as it could have been.
Then, by defanlt the DELIVERY WINDOW is minimised and then the total-time. If the
sccond mctric is chosen, first the DELIVERY _WINDOW action is minimiscd (rcsulting in the
tea waiting and cooling whilst the toast is prepared) and then the LOSING.HEAT actions
are minimised. Finally, if the total time is to be minimised, the precedence graphs are
ignored, the actions’ duration minimised, and then the earliest start times chosen for each
action. Figure 4.6 shows two plans. One where the heat lost is minimised, and one where
the delivery window is minimised.

(:metric minimize (total_delivery_window)) (:metric minimize (total_heat_lost))

0.01: (MAKE_TEA teal socketl) [1.00] 0.01: (MAKE_TEA teal socketi) [1.00]
1.00: (LOOSING_HEAT teal) [2.04] 1.00: (LOOSING_HEAT teai) [0.03]

1.02: (MAKE_TDAST toastl socketi) [2.00] 1.01: (DELIVERY_WINDOW tablei) [4.03]
3.01: (LOOSING_HEAT toastl) [0.03] 1.02: (DELIVER teal tablel) [2.00]

3.02: (DELIVERY_WINDOW tablel) [2.02] 1.02: (MAKE_TOAST toastl socketl) [2.00]
3.03: (DELIVER teal tablel) [2.00] 3.01: (LODSING_HEAT toasti) [0.03]

3.03: (DELIVER toastl tablel) [2.00] 3.03: (DELIVER toastl tablel) [2.00]
Total Delivery-Window: 2.02 Total Delivery-Window: 4.03

Total Heat-Lost: 2.07 Total Heat-Lost: 0.06

Figure 4.6: Two Plans with Identical Goals but Different Metrics

Some assumptions were made in the implementation of the precedence graphs that limit
what can be expressed in the problem. Firstly a resource operator’s change cannot be a
function of another resource that is also a function of an action’s duration. This means that
once a change has been made in a precedence graph (i.e. a new resource bound found or a
ncw limit on the duration of an action), this will propagatc only up to thc STN, and will
not affect any other resource changes in other precedence graphs. There is no reason why

CRIKEY cannot be extended to relax this assumption, meaning that the propagation must

CHAPTER 4. CRIKEY 85

happen also between precedence graphs, but this is not in the scope of this thesis. Secondly,
resource change that is a function of the duration, cannot be a binary function of the
duration. Once again, there is no reason why this cannot be relaxed, but has been kept for
ease of implementation. Finally, the metrics in PDDL2.1 allow functions of resources to be
optimised, but this implementation only allows for a single resource to be optimised. Once
more, there is no reason for this apart from ease of implementation. These assumptions
can all be relaxed to allow for the full expressive power of PDDL2.1 with no additional

complexity.

4.4 Comparison with Sapa

Similarities and differences can be observed between Sapa (as described in Scction 2.5.2)
and CRIKEY. They are both able to plan with problems that contain concurrency, and in
particular, co-ordination®. Both perform forward chaining state space search using a relaxed
plan as an heuristic, with both having a similar notion of state. They both take a histories
view of changc since they both keep a record of the past (i.c. the current plan) and both keep
a record of propositions that are currently true, the values of the metric resources and the
invariants that must not be broken in the current state. But it is in the view of the future
that they differ. Sapa associates a time with each state. This is not the case in CRIKEY s
states, since the actual times are scheduled during a separate scheduling phase. Secondly,
whereas Sapa keeps a list of time stamped updates scheduled to happen at a particular point
in the future, CRIKEY keeps a set of updates that will happen at some undetermined point
in the future.

The consequence of these two differences is that Sapa does not separate the scheduling
from the planning whilst CRIKEY does. CRIKEY orders its actions and puts times on them
only after the actions have been chosen whereas Sapa does this simultaneously with choosing
the actions. If there are two non-interforing actions, and in one state they are ocenrring
in parallel and in another, sequentially, Sapa will consider these to be two different states,
whereas CRIKEY will consider them to be the same state, and make this decision during
the scheduling phase. This means an increase in the state space for Sapa, which in turn
conld mean more to backtrack over (i.c. not just the planning deeision made, but also the
scheduling decisions as well).

Key is Sapa's “advance-time” action that changes the state to the next update in the
queue. Sapa discourages its use by not re-calculating the heuristic after using it, and in
doing so favours concurrency in its plans. If it did not do this, then it would always be
advantagcous (in tcrms of the heuristic value) to move the statc onto the next timepoint.
As the states in CRIKEY are not time stamped, there is no need for the “advance-time”
action. The choosing of an end action is CRIKEY’s equivalent. It takes an update which is

%1n fact, Sapa contains a bug that results in invalid plans being produced for domains with co-ordination.
This is discussed in the next chapter.

CHAPTER 4. CRIKEY 86

known to happen in the future and advances the state to that point. Only counting the start
actions in a relaxed plan to form the heuristic has the same effect ag Sapa not recalculating
the heuristic. This is not necessary though, as CRIKEY puts in the-concurrency after-
planning,.

Since scheduling happens during the search for a plan with Sapa, envelopes are handled
in the search. Alternatively put, there is no need to check the schedulability of the state,
because the-schedule is part of the state:

An advantage of CRIKEY’s states is where there are duration inequalities with resource
operators and constraints dependent on the duration of the action, as discussed in the
previous section. These effectively allow the parameters of an action to take numeric values.
Unlike Sapa’, which would be forced to decide on a duration there and then (and so also
on the resource levels), CRIKEY need not commit at this point. Sapa could then have to
backtrack to change this decision. CRIKEY, through the use of an STN and precedence
graphs, can keep the plan unconstrained in this respect. The vsual pitfall of this approach
is that the planner must make sure-that the STN is consistent through- communication with
the scheduler. This communication is minimised by only checking when and where it is
necessary, through the detection of envelopes.

Sapa has the advantage of being able to know the quality of the plan during the search
since it calculates the schedule as it plans. This can be used to guide the search to better-
quality plans. As CRIKEY ignores all temporal information during planning, it is unable
to do this, potentially leading to inferior plan quality.

4.5 Chapter Summary

Two versions of CRIKEY were built and formalised here. Both use the theory presented
in the previous chapter to minimise the communication between the planner and scheduler
(or by an alternatively view; minimise the search space). The first version only handled one
type of single envelope, the second any envelope, including those which are multiple actions
lohg. This second version results in a larger search space but this is necessary since the
inability to handle them in the first version was due to missing states. The second version is
also able to handle duration inequalities as it does not specify the future timings of known
actions.

"In fact, Sapa is unable to handle duration inequalities, but it could be extended to use this feature.

Chapter 5

Results

This chapter presents and analyses empirical results from testing both versions of CRIKEY
on a varicty of domains and comparing them with results from other temporal planners.
Firstly, the capabilities of the planners are listed and compared. This is followed by results
from the 4th International Planning Competition (IPC’04) in which the first version of
CRIKEY competed. These domains contain no co-ordination, which CRIKEY is specifically
designed for, so this is tested through some new domains. Finally, the second version of
CRIKEY’s ability to use the plan quality metric provided is examined. In all cases, both
the speed of the temporal planners and the quality of their plans are compared.

The aim of this chapter is not to evaluate the planning and scheduling technology used in
CRIKLEY, but rather to evaluate the interaction between them, especially in domains where
the components of planning and scheduling are highly coupled.

Points to Note The temporal planners being compared are written by different people
and in different languages. Some implementations are more highly optimised than others,
especially to certain domains (namely, the competition domains). Both these facts will
affect the performance of the planners, not making it a completely fair comparison. Ideally,
it is the core algorithms of the planners and their complexity that needs to be compared
(for example, the number of states visited, or the complexity of the heuristic). Empirically
testing them is only, albeit strongly, indicative of this. For this reason, it is sometimes better
to view the rate of change of the planners performance as the complexity of the problems
increases, rather than the actual timings. For all comparisons, the planners are run on the
same machine with the same resources.

Just as CRIKEY is not designed with planning and scheduling in mind, but instead the
communication between them, so other planners also have their own agendas. This will

affect the performance of planners on the general problems.

87

CHAPTER 5. RESULTS 88

5.1 Capabilities

A variety of planners have been chosen to compare their capabilities in temporal planning
problems against those of both versions of CRIKEY. Only original planners are used (i.e.
not extensions to planners that explore some non-temporal aspect of planning). Also, only
planners where there ig sufficient documentation or the source code is available are included.
The documentation and previously published results are used to determine the capabilities,
alongside testing the planners on a simple set of domains with the characteristics under
comparison. In all cases, descriptions of the planners can be found in Section 2.5.

Table 5.1 comparcs the capabilitics of diffcrent planners with regard to the complexity
of concurrency that they can handle. Only CRIKEY, Sapa, VHPOP, and LPGP can handle
domains with co-ordination. MIPS, LPG and TP4 cannot, and it is not thought that there
are any other temporal planners that are able to (including the SAT-based planners). The
planners that cannot find plans in these cases assume a blackbox durative action-model, and
fail to take into account start effects and end conditions.

Table 5.1: Temporal Planner Concurrency Capabilities

PDDL2,2 Single | Lomplex
Temporal Timed Initial | TIL compiled Hard Multiple
Planner Literals (TIL) { to PDDL2.1 | Envelopes | Envelopes
CRIKEY V1 X v v X
CRIKEY V2 X v v v
Sapa X X v X
MIPS v X X X
LPGP X v v v
LPG v X X X
TP4 X X X X
VHPOP X v v v

Sapa uses a slightly different model of durative action to PDDL2.1. Effects can happen
at any time during the duration of the action (and so the end effects of PDDL2.1 can be
easily translated into Sapa’s language). Conditions and invariants can hold for any arbitary
length of time but must start from -the beginning-of the-action. This makes it impossible
to correctly translate the end conditions which are not invariants. For this reason, Sapa is
marked as not being able to solve envelopes many actions long since this often requires the
use of end conditions. For example, Sapa cannot find a plan for Figure 5.1(b) (that contains
end conditions), but can for Figure 5.1(a), whereas CRIKEY version 2 and VHPOP can
find plans for both.

Sapa, whilst it should theoretically be able to plan with co-ordination where there are
single hard envelopes, in practice cannot. The reason for this is two fold. When Sapa first
finds & plan it does not respect the tolerance value correctly. This is partly because the

CHAPTER 5. RESULTS 89

Init;ialI State Goal IState
1 |
I |
! , S | | l
H o
) ' m q, "p '
| i P m P |
| it 7 |
(a) Solvable by CRIKEY v2, VHPOP and Sapa
InitialI State Goal |St.ate
qn S!
| |
q I ir
I K] q, p '
r f P . P |
| t i }

(b) Solvable Only by CRIKEY v2 and VHPOP

Figure 5.1: Two Possible Complex Envelopes

“advance-time” action would then only take the time forward by e rather than to the next
cvent in its quenc. It post-processes the plan to optimisc it and scparate the actions by
€. However, this post-processing does not account for start effects (even though Sapa does
whilst planning), and so wrongly places the content actions outside the envelope actions.
Secondly, Sapa contains a bug whereby when it first searches for a plan, it can fail to check
that an invariant of an action is not deleted by an action already in the quene.

Also LPGP theoretically should be able to find plans in domains containing co-ordination.
However, a few modifications to the planner are needed. Often in domains involving co-
ordination, it is the start effects of an envelope action that are required and not the ends.
Since' LPGP searches backwards in finding a plan, it must choose to place the (unwanted)
end action in before it realises that it needs the start of the envelope, and so fails to find a
plan.

Table 5.2 looks at the capabilities of these planners with respect to the kind of durative
action it can support in PDDL2.1 (see Table 4.1).

Only CRIKEY version 2, Sapa and MIPS can plan with durative actions where the
resource change is reliant. on the duration of the action. Only CRIKEY version 2 and MIPS

CHAPTER 5. RESULTS 90

Table 5.2: Temporal Planner Temporal Capabilities

Duration
| State Dependent

Temporal Dependent | Resource Duration
Planner Encoding | Resources | Durations Change Inequalities
CRIKEY V1 || STRIPST v v X X
CRIKEY V2 [| STRIPST v v v v
Sapa STRIPS! v v v X
MIPS ADL v v v v
LPGP STRIPS Xt X X X
LPG ADL* v v X X
TP4 STRIPST | Vs X X X
VHPOP ADL X X X X

1Can handle Typed STRIPS domains

can handle duration inequalities. CRIKEY makes some assumptions as to the nature of
these as set out in Section 4.3.2. Again it is not thought that there are any other planners

with these capabilities.

5.2 TPC’04

The competition was run over a period of approximately three months during which time
competitors ran their planners on a series of problems on a Linux PC with two CPUs running
at 3GHz. For each problem, planners were limited to 1GB of memory and 30 minutes of
CPU time. During the competition, competitors were allowed to modify their planners to
correct bugs and optimise them for the domains.

There are 7 domains: airport, pipesworld, promela, PSR, sateilite, settlers and UMTS.
These are described below and in more detail in [44]. The domains are split into “domain
versions”, which relates to the number of PDDL2.2 features in the problem (for example,
STRIPS only, fluents, durative actions etc...). Competitors were encouraged to tackle as
many versions as their planner could handle. They then choose a “version formulation”.
Each formulation had equivalent problems, but expressed differently. The formulation refers
to STRIPS, ADL, and whether the new features in PDDL2.2 of derived predicates and timed
initial literals are compiled down to PDDL2.1. Some of the domains (satellite and settlers)
did not have non-ADL formulations and so CRIKEY could not compete in these domains.

There is no co-ordination in any of the competition domains, except for where PDDL2.2
timed initial literals are compiled into PDDL2.1 domains. In these cases, the dammy actions

!LPGP can handle static fluents that do not change during planning.

2LPG is unable to handle conditional effects.

3TP4 can only handle resources that model reservior resources and not the full range of fluent variables
possible in PDDL2.1.

CHAPTER 5. RESULTS 91

involved in the compilation require envelopes. The temporal aspect of the domains are
further limited since there are no state dependent durations.

Planners were compared with those that used both the same version and formulation as
itself. On quality, it was decided by the competition organisers to only compare planners
that were trying to optimise the same criteria. There were three options: the makespan of
the plan, the number of actions in the plan, or the quality metric provided in the problem.
The theory behind this decision is that it does not make sense to compare two planners
that arc trying to solve different- problems (by optimising different factors). CRIKEY was
evaluated by the total number of actions in the plan it produced and this is what is referred
to by “quality” in the results presented here.

Furthermore, in the competition, optimal planners were compared separately from sub-

-optimal planncrs. Comparisons for the competition were done informally, by simply looking
at the results and judging who performed best.

Results from the competition are presented here to show that CRIKEY.is competitive
in general benchmark domains. The planning and scheduling technology is not novel or
“cutting -edge” but simple and well known in such domains. For this reason and the fact
that CRIKEY was not optimised during the competition, it was not expected to perform
outstandingly.

PSR

in this domain the goal is to resupply & number of lines in a faulty electricity network. The
flow of electricity through the network, at any point in time, is given by a transitive closure
over the network connections, subject to the states of the switches and electricity supply
devices. The problems rely heavily on derived predicates, of which only the smallest could
be translated. All versions of this domain are non-temporal.

Results for performance and plan quality are shown in Figures-5.2(a) and. 5.2(b). There
is little difference between the competing planners. No planner performs consistently better
than any other, and, with the exception of LPG, the quality is comparable for all planners.

The domain shows CRIKEY performing competitively against state of the art planners
in classical propositional planning and solving 29 of the 50 problems.

CHAPTER 5. RESULTS 93

Promela Domain

The goal in this domain is to find deadlocks in communication protocols, translated into
PDDL from the Promela specification language. The communication protocols used in the
competition were the dining philosophers problem, and an optical telegraph routing problem.
CRIKEY only compcted in the non-temporal domain versions since the other versions all
contained ADL, which was impractical to compile to STRIPS.

Figures 5.3 and 5.4 show the results for these domains. The plans are all of the same
length as there is only one solution (plan) to bring the system to deadlock (the goal). In
problem 7 of the dining philosophers domain, CRIKEY put in some irrelevant actiouns due
to a bug in the code. CRIKEY, as with Macro-FF and P-MEP, has a significantly greater
gradient than FAP, SGPlan, and YAHSP in the performance graph, where the scale is
logarithmic. This shows that the performance is much worse. This is further shown as
CRIKEY solves fewer problems than those planners. Given more resources, CRIKEY would
have continued to solve the problems but with a continued deterioration in performance.

CHAPTER 5. RESULTS 96

Pipesworld

In this domain, the object is to control the flow of 0il derivatives through a pipeline net-
work, obeying various constraints such as product compatibility and tankage restrictions.
Orne interesting aspect of the domain is that if something is inserted into one end of a
pipcline segment, something potentially completely different can come out at the other end.
CRIKEY competed in four domains, two without resources (no-tankage) and two with re-
sources (tankage). Of these domains, one was non-temporal, the other was temporal. The
results are shown in Figures 5.5, 5.6, 5.7, and 5.8.

In all these versions CRIKEY performed competitively showing that it can compete
in both temporal and metric planning problems. In the temporal metric version it solves
problems that no other planner does. It proves that the decomposition of temporal planning
into planning and scheduling is a viable solution.

CHAPTER 5. RESULTS 101

UMTS

In the UMTS domain, the task is to set up applications for mobile terminals. The objective
is to minimise the time needed for the set up, i.e. to minimise the makespan of the plan. If
this objective is ignored then the planning is trivial. CRIKEY competed in three versions
of this domain: a temporal domain (Figurc 5.9), a flawed tcmporal domain (Figure 5.10)
and a temporal domain with time windows which had been compiled down to PDDL2.1
(Figure 5.11).

CRIKEY managed to solve almost all the problems in this domain?. Whilst it is not
as quick as other planners competing in the standard temporal version, its performance
degrades at a similar rate and so this could be due to implementation differences.

The flawed temporal domain was created to deliberately disrupt planners guided by
relaxed temporal plans, such as CRIKEY. It has an action that could achieve a goal in one
step, but this deletes other goals and 80 cannot be used. CRIKEY resorts to Best First
Search which leads to a deterioration both in performance and in the quality of the plan.
This shows the fragility of the relaxed plan heuristic.

Only two planners competed with the time windows compiled into PDDL2.1: CRIKEY
and SGPlan. Whilst CRIKTY solved all problems in reasonable time (less than 100 seconds),
SGPlan is faster still. In fact, CRIKEY and SGPlan were finding the same plans. The reason
for the difference in the number of actions is that CRIKEY includes the dummy actions in
the total action count, whereas SGPlan does not.

This domain shows that CRIKEY can handle co-ordinstion when it is in the form of
time initial literals compiled into PDDL2.1.

4Those it did not solve were discovered later to be due to a bug in detecting repeated visited states.

CHAPTER 5. RESULTS 105

Airport Domain

The purpose in this domain is to control ground traffic in airports, moving planes between
gates and runways safely. The largest instances (problem numbers 21-50) in the test suites
are realistic encodings of Munich airport. CRIKEY competed in the non-temporal version
(Figure 5.12), the temporal version (Figure 5.13) and the temporal version with- deadlines
complied into PDDL2.1 (Figure 5.14).

Again, CRIKEY performs competitively in all versions of this domain and was ranked
second in the competition for the propositional, sub-optimal airport domain. Where there
is co-ordination in the compiled-time windows versions, CRIKEY finds solutions-that -other

planners do not.

CHAPTER 5. RESULTS 109

5.2.1 Analysis Overview of IPC’04 Domains

These competition results show that CRIKEY is a temporal planner that performs reason-
ably well in propositional, metric and temporal benchmark domains. CRIKEY’s implemen-
tation is not optimised and its design and algorithm are not intended to be outstanding.
Particular issucs (namely co-ordination) not present in the domains were focused on in-
stead. However, CRIKEY is more expressive than the other planners competing (as shown
in Section 5.1 at the beginning of this chapter), with the possible exception of the poorly
performing P-MEP. By limiting the expressive power of the problems, assumptions are made
as to the nature of the problems. These-assnmption lead to a decrease in the computation
necessary which in turn leads to better performance. CRIKEY does not make these assump-
tions, and so whilst it can plan for more domains (see the rest of this chapter) it pays for it
in its performance in general domains.

5.3 Co-ordination

In this section, those planners that can handle co-ordination are compared against one an-
other as before, but on domains specifically designed to contain co-ordination. The machine
from the IPC’02 competition was used and is a Linux PC running at 800Mhz. The planners
had 500MB of memory and a time limit of twenty minutes. This is significantly less resources
than for the IPC’04. To compensate for this the problem instance sizes are smaller. One
rcason for the reduction in resources available is that the difficulty in the problems does
not come from the size of the instance but from the interaction between the planning and
scheduling (i.e. the co-ordination) and it is of more interest to know whether the planners
easily find the solution in the search space (if at all) and not actually how long the planners
take.

The performance graphs are now on a linear scale (not logarithmic), and the quality is
no longer calculated by the number of actions in the plan but by the temporal length of
the plan. The domains contain forced concurrency (in the form of co-ordination) and so
the temporal length of the plan is quite separate from the number of actions in the plan.
Content actions are effectively not counted as it is the envelope actions that account for
the length of the plan. It is these actions that a good planner will want to minimise. By
comparing the temporal length, it is the scheduler, planner and their interaction which is
really being tested, whereas when comparing the number of actions, the scheduler has no
impact on the quality. It is also important to compare the temporal length of the plan where
there are duration incqualitics, since the number of actions will remain the same regardless

of their duration.

CHAPTER 5. RESULTS 110

5.3.1 The Match Domain Revisited

Both versions of CRIKEY, VHPOP and Sapa were all tested on 4 variations of the match
domain, based on the domain initially presented in Section 3.2 and in full in Appendix C.
However, VHPOP and Sapa do not obey PDDL2.1 semantics quite as closely as CRIKEY,
and-where an invariant of an action is achicved by the start cffccts of an action (as in the
LIGHT _MATCH action), the planners report that no plan can be found. For these tests these
invariants are removed. This does not affect the meaning of the domain as the fuses must
still be fixed within the burning of the match. The necessary changes to LPGP could not
be made and so is not included in these domains.

Figure 5.15 presents results for the standard match domain. In this domain it takes five
time units to fix a fuse, and a match burns for eight time units. The number of matches
and fuses in the instance is twice the task number (e.g. problem number 5 has 10 matches
and 10 fuses to fix).

As discussed earlier, Sapa fails to find valid plans. It realises that more than one match
is required, but produces plans where two fuses are fixed by the light of one match, resulting
in plans with half the number of matches required. For this reason, Sapa is compared only
for its performance.

VHPOP can use a multitude of search strategies, flaw selection preferences and heuristic
guidance. Some experimentation was performed to find out which combination work best in
the match domain and it was found that A* search with the ADD heuristic and preferring
plans with few open conditions.

As can be seen, CRIKEY version 1 performs significantly better than version 2. This is
because a plateau is reached in the search space when one fuse has been fixed by the light
of one match and the planner is trying to fix another fuse. The heuristic in this case does
‘not guide the planner to-close the envelope -and light- another -mateh. ‘Instead the planner
must perform a small amount of search to discover this, including checking that all of the
unfixed fuses arc not able to be fixed using the rest of the available light. Version 2 splits
all its actions into 2 actions, whereas version 1 compresses the fix fuse actions into a single
-action. For this reason, the size of the search-at-every plateau where a new match is needed
is twice as big for version 2 as version 1, and so takes longer.

Table 5.3 shows the percentage of time that both versions of CRIKEY spend on parsing
and instantiation, planning, and scheduling. The reason that version 2 spends proportionally
longer planning is again attributed to the larger search space. Both versions spend most of
their time planning as this is the harder problem to solve. The scheduler is not complex,
finding a quick greedy solution.

All planners find the same (optimal) solution.

CHAPTER 5. RESULTS 112

Table 5.3: Percentage of Time Spent in Temporal Planning by CRIKEY in the Match

Domain B
Problem CRIKEY vl CRIKEY v2
Parsing &) Parsing &

Grounding | Planning | Scheduling {| Grounding | Planning | Scheduling
1 33.33% 33.33% 33.33% 33.33% 33.33% 33.33%
2 0.00% 100.00% | ©0.00% | 0.00% | 100.00% 0.00%
3 0.00% 100.00% 0.00% 0.00% 66.67% 33.33%
4 0.00% 66.67% 33.33% 12.50% 62.50% 25.00%
5 0.00% 50.00% 50.00% 5.56% 66.67% 27.78%
6 0.00% 37.50% 62.50% 2.94% 76.47% 20.59%
7 8.33% 33.33% | 58.33% 0.17% 97.97% 1.86%
8 6.25% 31.25% 62.50% 0.79% 84.25% 14.96%
9 5.00% 30.00% 65.00% 037% | 83.52% .| 16.10%
10| 4.00%._ | 32.00%.). 64.00%--||--0:36%" "~ 91.55% | 8.09% -

Match Domain with Variable Durations

Figure. 5.16 show the results for a variant of the standard match domain. In this domain,
the fuses take different times to fix and different matches also burn for different durations.
A fuse that takes a long time to fix must be fixed by the light of a match that burns for
a sufficient amount of time. This match must therefore not be wasted on another shorter
fuse.

The light match action is-changed® so-that-only one match-can be alight at-any-one time.
This makes it advantageous to fix as many fuses as possible by the light of one match, in
order to minimise the temporal length of the plan. This variant is cffectively a bin packing
problem.

This variant uses fluents to model the burning time of the match and also the mending
time of the fuse. VHPOP cannot handle luents and so could not be tested on this domain.
Again, Sapa produces invalid plans, but is plotted to give an approximate comparison of
time.

Once again, CRIKEY finds plateaux in the search space and this again is the reason why
the second version of CRIKEY performs worse since it has a bigger search space to explore
at this point.

Figure 5.16(b) shows the quality of the solutions produced, including the optimal quality
achievable. Both versions of CRIKEY produce the same solutions. In some problems, this
is the optimal solution. This is usually where the problem is highly constrained and the

BI'he proposition light no longer takes the match providing it as a parameter. 'Lhis prevents two
LIGHT _MATCH actions executing concurrently, as one would delete the “light” from the other when they
burnt out. Whilst this may not be what is intended, it does mean that the FIX_FUSE action does not need
to apecify where the light comes from to fix the fuse. Ideally a combination of these two models is needed:
two matches could burn at once and not delete each other’s light at the end of the action, whilst also not
specifying where the light comes from for the fix fuse action. To model this, conditional effects are needed
which CRIKEY is unable to handle.

CHAPTER 5. RESULTS 114

optimal solution is the only solution. (On other problems it may have found the optimal
solution purely by -accident). In-cases where the problem is highly -constrained (i.e. some
fuses must be fixed by one of the matches), the planner must perform BFS in order to find
a solution as EHC fails, since the heuristic ignores the temporal information and pairs the
wrong match with the wrong fuse. In these cases, it takes longer to find a solution.

The Lift-Match Domain

So far, the match domains have only contained co-ordination. 1t is more likely that a “veal-
life” domain with co-ordination will also have some actions that are not co-ordinated (i.e.
need not happen concurrently). The next variant of the match domain (Appendix F) reflects
this. As before, electricians must fix fuses by the light of matches. The fuses however, are
distributed about rooms in a building which the electricians must navigate around using
-the corridors-and lifts. This navigation-is -not co-ordinated. Since there is now more than
the one electrician, more fuses can be fixed concurrently by the light of one match, so long
as the fuses, light and electricians are all present in the same room. Figure 5.17 shows the
results from this domain.

This is a much more complex domain and the planners do not fair so well on it. Again,
failure occurs most where the problems are highly constrained and there are fewer matches
than fuses. In this case, both electricians must be in the same room at the same time
to fix fuses by the light of only one match. In the previous match domains there have
only been two operators (LIGHT-MATCH and MEND_.FUSE), two types (match-and fuse)
and four predicates (mended, light, handfree and unused). In this domain there are seven
operators, six object types and eleven predicates. This makes the search space bigger and
so the problems take longer to solve. .

As in -the previous -match - domains, -the relaxed plan heuristic is -of little help since it
ignores delete effects, but the LIGHT_MATCH action deleting the light is critical to plan. As
a consequence, CRIKEY often fails in LHC and instead must resort to BFS. This is a poor
search strategy when the problem is big. A more informed heuristic is needed.

In-an-attempt to reduce the size -of -the -domain, the match -objects are turned into -a
numeric value where only the number of matches unburnt is recorded. Since all matches
are symmetric, this reduces the symmetry in the problem and so the size of the search
space. The LIGHT_MATCH action reduces the number of unused matches by one and has a
-condition that there is-at least one match left (see Appendix F.1). Figure 5.18 shows how
this reduces the time needed to solve the problems.

CHAPTER 5. RESULTS 117

5.4 DriverLog Shift

The Driver Logistics domain was used at IPC’02 (as used in Appendix A for the example
LPGP translation). It involves moving packages around cities using trucks and drivers
to transport them. This domain, with the problems used in the competition, has been
transformed to the DriverLog Shift domain (Appendix G), where drivers can only work for
a certain amount of time before they must take a break and have a rest. This involves
co-ordination, as the shift action is an envelope, into which must fit the contents of driving
and walking.

‘Figurc 5.19 shows the performance of VHPOP-and CRIKEY on-the original first fiftcen
problems of the Simple Time domain. Figure 5.20 shows the performance of the planners on
the same problems converted into shift problems. Figure 5.21 shows how the performance
of the planner deteriorates. This shows how much harder the problems become once co-
-ordination is introduced into the problem. VHIPOD in particular performs much worse-cven
though it is using the flags that worked best on this domain in IPC’025.

The search must sometimes take arbitrary decisions on which branch on the search tree
to explore first where they have the same heuristic value. Problems (e.g. problem 10) where
the planner actually performed: better on the shift domain is thought to be-due to luckily
choosing the correct path at this point. .

Since the temporal length of the plan is dictated by the shift envelope action, all planners
find the same quality of plan, except in Problem 7 where VHPOP finds a plan that can use
one less shift.

Table 5.4 shows the proportion of time spent by CRIKEY in the planning and schedul-
ing phases. Again, the second version of CRIKEY spends more of its time proportionally
planning, than the first version. This is again due to the increased search space in planning.
They are-both performing exactly the same task for the scheduling so you would-expect this
to be equivalent.

Neither the match domain nor the driverlog shift domains can be handled by any of the
planners in Table 5.1 that cannot plan with either the single hard envelopes or the complex
multiple envelopes. A variation of the driverlog shift domain, originally presented in [13], is
where the times-of the shift are fixed and cannot not be moved-as in the variation presented
here. This fixed shift variation can be encoded using PDDL2.2 timed initial literals and so
any planner able to handle these could tackle that domain. The variation presented here
cannot be represented using timed initial literals since the times of the shifts are not known
in the initial state, but are a choice of the planner.

Two more domains are presented in the rest of this section that again involve co-
ordination and so again can only be handled by those planners which do not assume a
blackbox model of durative action.

SVHPOP uwsed grounded actioms with A*seacch, Lhe ADDR heucistic and the MC=Lioc=Conl flaw selection
criteria.

CHAPTER 5. RESULTS 121

Table 5.4: Percentage of Time Spent in Temporal Planning by CRIKEY in the Driverlog

Domain
Problem CRIKEY v1 CRIKEY v2
Parsing & |- A Parsing &
- Grounding | Planning | Scheduling || Grounding | Planning | Scheduling

1 33.33% 33.33% 33.33% 50.00% 50.00% 0.00%
2 14.29% 28.57% 57.14%

3 25.00% | 25.00% 50.00% 5.56% 88.89% 5.56%
4 14.29% 28.57% 57.14% 0.88% 97.37% 1.75%
5 10.00% 40.00% 50.00% 2.08% 93.75% 4.17%
6 12.50% 37.50% 50.00% 0.55% 98.90% 0.55%
7 20.00% 20.00% | 60.00% 2.56% 94.87% 2.56%
8 5.26% 42.11% 52.63% 0.16% 99.20% 0.64%
9 3.23% 45.16% 51.61%

10 15.38% 15.38% 69.23% 1.23% 97.95% 0.82%

5.4.2 Baseball

This domain (in full in Appendix I) models an innings of baseball. The batsmen must travel
around all four bases which is dependent on the speed they can run. The duration the ball
is in the air is dependent both on how well the batsman can bat and how fast the pitcher
is able to throw the ball. The longer the ball is in the air, the more time available for the
batsmen to run around the course. Batsmen must reach a base before the ball is retrieved
‘by the fielders. The model deliberately does not allow for-one batsman to-overtake -another.

The co-ordination in this domain is in the running of the players (some actions may hap-
pen concurrent, as with two hitters running to different bases, some must occur sequentially,
where one hitter runs first to base one and then to base two) and the action that represents
the ball travelling through the air.

Again, this domain can only be handled by planners that can reason with co-ordinated
actions. i.e. CRIKEY, Sapa, VHPOP and LPGP should (at least in theory) all be able to

represent and reason with this domain model.

5.5 Using the Metric

CRIKEY does not hold a queue (or schedule) of exactly when future events happen, allow-
ing it to -easily be -extended to -use Precedence Graphs and handle domains with -duration
inequalities. It looks at the quality metric given to decide on the duration of actions. As
with temporal information, this metric is ignored during the planning phase, so no guarentee
of quality can be given.

Few planners automatically -consider the metric given (only LPG claims to use it in
IPC’04), but this could be because most temporal domains specify minimising the temporal
length of the plan. Only MIPS is known to handle duration inequalities (but as previously

CHAPTER 5. RESULTS 122

observed, cannot handle domains with co-ordination}.

The goal in the Café domain (as introduced in Section 4.3.2 and in full in Appendix E)
is to deliver breakfast (tea, toast and a cooked breakfast) to tables in a café. The plans
are constrained in the number of electrical sockets and chefs available in the kitchen. Two
possible metrics for this domain include minimising the heat lost by the breakfast items
before they are delivered to the table, -and minimising the total time window over which
items are delivered to a table.

Figurc 5.22 shows plan quality with respect to a metric for ten problems in the Café do-
main. Both graphs show results from exactly the same problems, however in Figure 5.22(a},
the metric is set to minimise the heat lost, and in Figure 5.22(b), the metric is set to min-
imise the delivery window. CRIKEY is trying to minimise the delivery window in the green
line, and heat loss in the red line. (Thus the two red lines are for the same plans, and the
two green lines for the same plans).

As can be observered, CRIKEY finds a better plan with respect to the metric, when it
considers that metric in the scheduling (as should be expected). In each case (for the four
lines) the planner produces the same totally ordered actions, but makes different choices
when it comes to deciding on the duration of actions where duration inequalities are present.

Again, this-domain contains temporal coustraints, represented using duration inequalities
that cannot be encoded using timed initial literals (since heat loss and delivery windows can
occur at any time).

5.6 Chapter Summary

CRIKEY is a competitive planner in the benchmark domains that do not contain any
co-ordination. Its non-exceptional performance is explained in Section 5.2.1. However,
CRIKEY is able to solve problems containing co-ordination that other planners do not do

correctly (if at all) and solve them quicker.

Chapter 6

Conclusions

6.1 Summary

Temporal planning is made up of two components; planning and scheduling. Many tem-
poral planners decompose the problem into these two sub-problems. Where these two sub-
problems interact, the separate solvers must communicate and this can be expensive, both in
terms of CPU time and memory. Most planners, even if they use a PDDL2.1 model of time,
assume “blackbox™ durative actions where the internal state of an action is not known. This
greatly simplifies how the problems can be coupled and does not permit the modelling of
co-ordination. Those temporal planners that do plan with more expressive durative actions
resort back to solving both components at once.

This thesis has examined where in temporal planning the planning and scheduling com-
poncnts interact. In casecs of co-ordination, not only is the quality of the schedule affected by
the plan, but the possibility of finding a schedule at all. This occurs where content actions
must execute within the duration of envelope actions. It is in these situations, with both
logical and temporal constraints, that the sub-solvers must communicate, and this theory is
put to use in a temporal planner called CRIKEY.

CRIKEY does not assume “blackbox” durative actions, but still decomposes the temporal
planning problem. Communication between the two sub-solvers is minimised and occurs
only where strictly necessary and checking only the part of the plan that contains the co-
ordination.

In Chapter 4, CRIKEY is compared to its nearest relative: Sapa. One of the advantages
of CRIKEY over Sapa, is the ability to not specify the exact time in the future that effects
occur. This allows CRIKEY to handle duration inequalities.

To summarise once again what the contibution to the planning community is, this thesis
has an indepth study of the how temporal constraints appear in temporal planning and the
nature of them. It is through these and logical constraints that the planning and scheduling
interact. A planner was written that uses this theory to minimise the communication be-

124

CHAPTER 6. CONCLUSIONS 125

tween the planner and scheduler and so solve problems that are not solved by other planners.
A novel search state that does not specify the future timings-allows for duration inequalities.
Through this, the scope, aims, motivation and objectives as set out in Section 1.3 are met.

6.2 Critique of CRIKEY

Whilst CRIKEY performed competitively in IPC’04, it cannot be classed as a leader, either
in the performance of the planner or in the quality of the plans it produced. However,
CRIKEY obeys the semantics of the competition language and, unlike all other participants
in the temporal domains!, CRIKEY does not make -assumptions -as to the nature of the
problems (i.e. that the problems contain no co-ordination). In assuming “blackbox” durative
actions, the other competitors are effectively making the problem easier and so it is no
surprise when they perform better than CRIKEY.

There are another two good reasons for the non-exceptional performance by CRIKEY,
both are connected with the split of the planning and scheduling. The first is a practical
point. CRIKEY was written to explore the interaction between planning and scheduling, and
not the two problems themselves. In this, the work has succeded. However it is reasonable
to say that there is not a great amount of scheduling occurring in CRIKEY and that simply
lifting a partial order does not qualify as scheduling. This is a valid criticism and could
also be extended to the planner as it only performs simple scarch with a commeon, yet poor,
heuristic.

CRIKEY has a modular architecture, the advantages of which are set out in Section 2.3.4.
There is no reason why the planning and scheduling technology aspects cannot be improved.
The planner could use a better henristic and wuse technigues cmployed by other planners,
such as goal ordering or symmetry detection. The scheduling uses a very simple partial order
lifter with the Veloso algorithm. The main problem with this (and other similar polynomial
algorithms such as Regnier and Fade algorithm [59]) is that if a < b in the total order plan,
then in the partial order plan it cannot be the case that b < a; it must either keep a < b
or remove it, but it cannot reverse it. As proved in [4], lifting an optimal partial order is
a hard problem to solve. Critical Path Analysis (also referred to-as PERT scheduling) can
go some way to solve this and indeed, this is the approach taken by MIPS. In any case, the
theory of where the planning and scheduling interact still holds and can be integrated into
any improved technology, such that the planner and scheduler continue to communicate as
little as possible. This could all be further work in the development of CRIKEY.

The second reason for the non-exceptional performance of CRIKEY connected with
problem decomposition is a theoretical point. Minimising the communication between the
planner and scheduler means that they cannot guide each other to good quality solutions
where the problems are looscly coupled. The quality of CRIKEYs plans is generally not as

Lwith the possible exception of tilSapa. There is little documentation of this system but it is based on
Sapa. Whilst Sapa should, in theary, be able to solve such problems, in reality it fails.

CHAPTER 6. CONCLUSIONS 126

good as other planners, since all temporal information is ignored and no scheduling takes
place during the planning phase (except in the case of co-ordination, where the plan is
checked to make sure that it will be schedulable, but this does not guide the search to a
better quality plan). To improve this, communication between the planner and scheduler
could be increased, and partially formed plans in the search scheduled to rank them according
to their quality. Indeed this is the approach that MIPS takes; It performs a cheap scheduling
algorithm on partially built plans, to help guide the search to good quality plans, and then
performs the more complex critical path analysis on the final plan.

The heuristic could also be changed to favour plans of better quality. Cuirently no
-account is taken of the metric during the search, but the quality of the relaxed plan extracted
could be used rather than simply the number of actions in it. A relaxed plan could be drawn
from a relaxed temporal planning graph to take some account of temporal aspects in the
search (this is the approach taken by Sapa).

Again, this could be further work in the development of CRIKEY. An interesting and
useful investigation would be to see how both the quality of the plans and the time taken
to find a plan changed relatively to the amount of communication between the sub-solvers.
There could be cases where there is great gain on quality with little time lost, and vica versa,
there could be cases where the opposite is true. Using this knowledge it could be possible
to meet this trade-off with some intelligence.

Another reason for suggesting that there is only limited planning and scheduling taking
place is that the temporal planning problems themselves do not contain much planning or
scheduling. Benchmark planning problems generally do not contain conflicting goals where
the problems are highly constrained and this is reflected in the success of the relaxed planning
heuristic and of the planner SPG, both of which rely on this fact.

Temporal planning problems typically contain no, or at best, very little, scheduling.
Whilst it is perfectly possible to encode a job shop scheduling problein as a temporal planning
problem, it soon becomes apparent that this is not a good method by which to solve the
problem (and certainly not with the current technology). This is because planners choose
the actions (which in the encoded problem is easy) and do not reason much about their
ordering. Not only do the benchmark domains not contain any hard planning problems and
little scheduling (as noted several times so far), they do not interact in a hard way either,
as is the case in co-ordination.

Currently, as reflected by the planning competition domains, a hard planning problem
is equated to a large (in the number of predicates, objects and actions) planning problem.
However, I believe that the hardness of a problem should correspond to how constrained the
problem is. (Interestingly, problems that become too constrained become easier to solve,
since there are fewer choices to be made. In terms of constraint satisfaction problems: $oo
few constraints, and the variables can take any value without impacting on other variables;
too many constraints, and the values that the variables take soon propagate through the

CHAPTER 6. CONCLUSIONS 127

rest of the problem resulting in no search being needed). By assuming no hard constraints
between the planning and scheduling, the problems become easier.

It is perhaps incorrect to say that CRIKEY completely separates the scheduling from plan-
ning, since, as defined at the beginning of this thesis, scheduling is the allocation of resources
to actions over time. However, most resource reasoning is performed by the planner, leaving
the scheduler to only perform “time” scheduling.

Part of the difficulty arises from how resources are encoded. They are not explicitly
modclied, and while there are some good reasons for this (not least becanse it makes it
easier for the domain encoder), this does mean that, say, in planning, processing a job on
a machine is seen as a different action for each machine. This should not be the case and
the planner should not specify on which machine the job should be processed. The actual
identity of the resource is immaterial for the plan, and so also for the action. To realise
this automatically is very hard and so restricts how the planning and scheduling can be
separated.

The planning community is in an interesting position. On the one hand there has been criti-
cism of the expressive power of PDDL2.1 ([34], [67], [60]), but then on the other hand, there
are many assumptions made by people using it, who fail to exploit its full potential. Whilst
PDDL2.1 is perfectly capable of modelling many problems (with the notable exception of
disjunctive goals that lead to over subscription problems), it may not be the best way of
representing such problems. However, domain independent planners should still be able to
tackle the full range of problems expressible by a language (and not make assumptions on
the input problems) or alternatively limit the language.

CRIKEY addresses this by being the only temporal planner that fully respects the logical
semantics of PDDL2.1, by reasoning correctly about start effects, invariants (when achieved
by the start effects) and end conditions. Not only does it include those states in its search
space that other planners omit, but also reasons intelligently about when and where to check
those states for consistency.

Appendix A
Example LPGP Translation

The DriverLog Time Domain as used in IPC’02:

(define (domain driverlog)
(:requirements :durative-actions :fluents)
(:predicates

(DBJ ?0bj)
(TRUCK 7truck)
(LOCATION 7loc)
(driver 7d)

(at ?obj 7loc)
(in 7objl 7obj)
(driving ?d ?v)
(1ink ?x ?y)
(path 7x 7y)
(empty ?v)§

(:functions
(time-to-walk ?loc ?locl)
(time-to-drive 7loc 7locl))

(:durative-action LOAD-TRUCK
rparameters (?obj ?truck ?loc)
:duration (= ?duration 2)
:condition (and

(at start (0BJ 7obj))

(at start
(at start
(over all
(at start

(TRUCK ?truck))
(LBEATIOBN ?loc))
(at 7truck ?loe))
(at ?obj ?loc)))

:effect (and
(at start (not (at 7obj 7loc)))
(at end (in 7obj ?7truck))))

(:durative—action UNLOAD-TRUCK
:parameters (7obj 7truck 7loc)
:duration (= ?duration 2)
:condition (and

(at start
(at start
(at start
(over all
(at start
;effect (and

(OBJ 7obj))

(TRUCK ?truck))
(LOCATION ?loc))
(at ?truck ?loc))
(in ?0bj ?truck)))

128

APPENDIX A. EXAMPLE LPGP TRANSLATION

(at start

(not (in ?obj 7truck)))

(at end (at 7obj ?loc))))

(:durative—-action BUOARD-TRUCK
:parameters (?driver ?truck ?loc)
:duration (= ?duration 1)

icondition (and
(at start
(at start
(at start
(over all
(at start
(at start

:effect (and
(at start

(DRIVER 7driver))
(TRUCK ?truck))
(LOCATION ?7loc))
(at 7truck 7loc))
(at ?driver ?loc))
(empty 7truck)))

(not (at ?driver Zlec)))

(at end (driving. ?driver ?7truck))

(at start

(not (empty ?truck)))))

(:durative-action DISEMBARK-TRUCK
:parameters (?driver 7truck ?lec)
:duration (= ?duration 1)

:condition (and
(at start
(at start
(at start
(over all

(DRIVER ?driver))
(TRUCK ?truck))

(LOCATION ?loc))
(at ?truck ?loc))

(at start
:effect (and

(at start (not (driving ?driver 7truck)))

(at end (at ?driver ?loc))

(at end (empty ?truck))))

(driving ?driver ?truck)))

(:durative—action DRIVE-TRUCK

:parameters (?truck ?loc-from 7loc-to 7driver)

:duration (= 7duration (time-to-drive 7loc-from 7loc-to))

:condition (and
(at start
(at start
(at start
(at start
(at start
(over all
(at start

:effect (and
(at start (not (at 7truck 7loc-from)))
(at end (at 7truck ?loc-to))))

(TRUCK ?truck))

(LOCATION 7loc-from))
(LOCATION ?loc-to))
(DRIVER 7?driver))

(at 7truck 7loc-from))
(driving ?driver ?truck)) .
(1ink 7loc-from Tloc-to)))

(:durative-action WALK
:parameters (?driver ?loc-from 7loc-to)
:duration (= 7duration (time-to-walk ?loc-from 7loc-to))
rcondition (and o ’ ’ '
(at start (DRIVER ?driver))
(at start (LOCATION ?loc-from))
(at start (LOCATION ?loc-to))
(at start (at ?driver ?loc-from))
(at start (path ?loc-from ?loc-to)))
:effect (and
(at start (not (at ?driver ?loc-from)))
(at end (at 7driver 7loc-~to)))))

APPENDIX A. EXAMPLE LPGP TRANSLATION 130

Problem file 1 for the DriverLog Time Domain as used in IPC’02:

(define (problem DLOG-2-2-2)
(:domain driverlog)
(:objects
driverl driver2
truckl truck2
packagel package2
s0 s1 s2
p1-0 p1-2)
(:init
(at driverl s2)
(DRIVER driveril)
(at driver2 s2)
(DRIVER driver2)
(at trucki s0)-
(empty truckl)
(TRUCK trucki)
{at truck2 s0)
(empty truck2)
(TRUCK truck?2)
(at packagel s0)
(DBJ packagel)
(at package?2 80)
(0BJ package?2)
(LOCATION 80)
(LOCATION a1)
(LOCATION s2)
(LOCATION p1-0)
(LOCATION p1-2)
(path si p1-0)
(path p1-0 s1)
(path 50 p1-0)
(path pi1-0 s0)
(= (time-to-walk s1 p1-0) 43)
(= (time~-to-walk p1-0 si) 43)
(= (time-to-walk s0 pi1-0) 80)
(= (time-to-walk p1-0 s0) 80)
(path 81 p1-2)
{path p1-2 s1)
(path s2 p1-2)
(path p1-2 s2)
(= (time-to-walk s1 pi-2) 29)
(= (time-to-walk p1-2 s1) 29)
(= (time-to-walk s2 p1-2) 79)
(= (time-to-walk pi1-2 s82) 79)
(link 80 s1)
(link 81 s0)
(= (time-to-drive s0 sl1) 70)
(= (time-to-drive si s0) 70)
(link s0 82)
(1ink =2 s0)
= (time-to-drive s0 s2) 47)
(= (time-to-drive s2 s0) 47)
(1ink s2 s1)
(link s1 82)
(= (time-to-drive 82 sl1) 24)
(= (time-to-drive s1 s2) 24))
(:goal (and
(at driveril si)

APPENDIX A. EXAMPLE LPGP TRANSLATION

(at truckl s1)
(at packagel s0)
(at package2 s0)))

(:metric minimize (total-time)))

The domain file after translation:

(define (domain driverlog)
(:requirements)
(:predicates

(obj ?obj)
(truck ?truck)
(location 7loc)
(driver 7d)
(at 7obj ?loc)
(in ?7objl ?obj)
(driving 7d ?v)
(link ?x 7y)
(path ?x ?y)
(empty ?v)
(load-trucking-inv ?obj 7truck ?loc)
(iload-trucking-inv ?obj 7truck ?7loc)
(unload-trucking-inv ?obj ?truck ?loc)
(iunload-trucking-inv Tobj ?truck ?loc)
(board-trucking-inv ?driver ?truck ?loc)
(iboard-trucking-inv ?driver ?truck ?loc)
(disembark-trucking-inv ?driver ?truck ?loc)
(idisembark-trucking-inv ?driver ?truck 7loc)

(drive-trucking-inv 7truck ?loc-from ?loc-to ?driver)
(idrive-trucking-inv ?truck ?loc-from ?loc-teo ?driver)

(walking-inv ?driver ?loc-from ?loc-to)
(ivalking~inv ?driver 7loc-from 7loc-to))

(:action load-truck-start
:parameters (?obj ?truck ?loc)
:precondition (and
(obj ?abj)
(truck ?truck)
(location ?loc)
(at 7obj ?loc))
reffect (and
(not (at ?obj ?7loc))
(load-trucking-inv ?obj ?truck ?loc)))

(:action load-truck-invi
:parameters (7obj ?truck ?loc)
:precondition (and
(at 7truck ?loc)
(load-trucking-inv ?obj ?truck ?loc))
reffect (and
(load-trucking-inv ?obj ?truck ?7loc)
(iload-trucking-inv ?obj ?truck ?loc)))

(:action load-truck-end
:parameters (7Tobj ?truck ?7loc)
:precondition (and
(load-trucking-inv 7obj ?truck ?loc)
(iload-trucking-inv ?obj ?truck ?loc))

131

APPENDIX A. EXAMPLE LPGP TRANSLATION 132

:effect (and
(in ?obj ?truck)
(not (load-trucking-inv ?obj 7truck ?loc))
(not (iload-trucking-inv 7obj 7truck ?loc))))

(:action unload-truck-start

:parameters (?obj ?truck 7loc)

:precondition (and
(obj ?obj)
(truck 7truck)
(location 7loc)
(in ?obj 7truck))

:effect (and
(not (in ?obj Ttruck))
(unload-trucking~inv ?obj ?truck ?loc)))

(:action unload-truck-invi
:parameters (?obj ?truck ?loc)
:precondition (and
(at ?truck ?7loc)
(unload-trucking-inv ?obj ?truck ?loc))
:effect (and
(unload-trucking~-inv ?obj ?truck ?loc)
(iunload-trucking-inv ?7ecbj ?truck ?loc)))

(:action unload-truck-end

:parameters (7obj ?truck 7loc)

:precondition (and
(unload-trucking-inv ?obj ?truck ?loc)
(iunload-trucking-inv 7obj ?truck ?loc))

:effect (and
(at ?obj ?7loc)
(not (unload-trucking-inv ?obj ?truck ?loc))
(not (iunload-trucking-inv ?obj ?truck 7loc))))

(:action board-truck-start
:parameters (?driver 7truck ?loc)
:precondition (and (driver ?driver)
(truck 7truck)
(location ?loc)
(at ?driver 7loc)
(empty 7truck))-
:effect (and
(not (empty ?7truck))
(not (at ?driver ?loc))
(board-trucking-inv ?driver ?truck ?loc)))

(:action board-truck-invi
:parameters (?driver 7truck ?loc)

:precondition (and (at ?truck ?loc)
(board-trucking-inv ?driver ?truck ?7loc))
teffect (and

(board-trucking-inv ?driver 7truck ?7loc)
(iboard-trucking-inv ?driver ?truck ?loc)))

(:action board-truck-end
:parameters (?driver ?7truck ?7loc)
:precondition (and
(board-trucking-inv ?driver 7truck ?loc¢)

APPENDIX A. EXAMPLE LPGP TRANSLATION

(iboard-trucking-inv 7driver ?truck ?loc))
:effect (and

(driving ?driver 7truck)

(not (board-trucking-inv ?driver ?truck ?loc))

(not (iboard-trucking-inv ?driver ?7truck ?loc))))

(:action disembark-truck-start

:parameters (?driver 7truck ?loc)

:precondition (and
(driver ?driver)
(truck ?truck)
(location ?loc)
(driving ?driver ?truck))

:effect (and
(not (driving 7driver ?truck))
(disembark-trucking-inv ?driver ?truck ?loc)))

(:action disembark-truck-invi
:parameters (?driver ?truck ?loc)
:precondition (and
(at ?truck ?loc)
(disembark-trucking-inv ?driver ?truck ?loc))
:effect (and
(disembark-trucking-inv ?driver ?7truck ?loc)
(idisembark-trucking-inv 7driver ?truck ?loc)))

(:action disembark-truck-end

:parameters (?driver 7truck 7loc)

:precondition (and
(disembark-trucking-inv 7driver ?truck 7loc)
(idisembark-trucking-inv ?driver ?truck ?loc))

:effect (and
(empty ?7truck)
(at ?driver ?loc)
(not (disembark-trucking-inv ?driver ?truck ?loc))
(not (idisembark-trucking-inv ?driver 7truck ?loc))))

(:action drive-truck-start
:parameters (?truck 7loc-from ?loc~to ?driver)
:precondition (and
(truck ?truck)
(location ?loc—from)
(location ?loc-to)
(driver ?driver)
(at 7truck ?loc-from)
(link ?loc-from 7loc-to))
:effect (and
(not (at ?truck ?loc-from))
(drive-trucking-inv ?truck ?loc-from 7loc-to 7driver)))

(:action drive-truck-invi
:parameters (?truck ?loc-from ?loc-to ?driver)
:precondition (and
(driving ?7driver 7truck)
(drive-trucking-inv ?truck ?loc~from ?loc-to 7driver))
:effect (and
(drive-trucking-inv ?truck ?loc-from ?7loc-to 7driver)
(idrive-trucking-inv ?truck 7loc-from ?loc-to 7driver)))

133

APPENDIX A. EXAMPLE LPGP TRANSLATION 134

(:action drive-truck-end

:parameters (?truck ?loc-from ?loc-to ?driver)

:precondition (and
(drive-trucking-inv ?truck ?loc-from ?loc-to 7driver)
(idrive-trucking-inv 7truck ?loc-from ?loc-to 7driver))

reffect (and
(at ?truck ?loc-to)
(not (drive-trucking-inv ?truck ?loc-from ?loc-to 7driver))
(not (idrive-trucking-inv ?truck ?loc-from ?loc-to 7driver))))

(:action walk-start
:parameters (7driver ?loc-from ?loc-to)
:precondition (and
(driver ?driver)
(location ?loc-from)
(location 7loc-to)
(at ?driver ?loc-from)
(path ?loc-from ?loc-to))
:effect (and
(not (at ?driver ?loc-from))
(walking-inv ?driver ?loc-from ?loc-to)))

(:action walk-invi
rparameters (?driver ?loc-from ?loc-to)
:precondition (and
(walking-inv ?driver ?loc-from ?loc-to))
:effect (and
(walking-inv ?driver 7loc-from 7loc-to)
(iwalking-inv 7driver 7loc-from 7loc-to)))

(:action walk-end

:parameters (?7driver ?loc-from 7loc-to)

:precondition (and
(walking-inv ?driver ?loc-from ?loc-to)
(iwalking-inv ?driver ?loc-from ?loc-to))

:effect (and
(at ?driver 7loc-to)
(not (walking-inv ?driver ?loc-from ?loc-to))
(not (iwalking-inv ?driver ?loc-from 7loc-to)))))

The durations file created:
load-truck = 2
unload-truck =
board-truck = 1

2

disembark-truck = 1

drive-truck s1 sO0 = 70
drive-truck s2 s0 = 47
drive—truck s si = 70

drive-truck s2 si = 24
drive-truck s0 s2 =
drive-truck si s2 = 24
walk pl1-0 s0 = 80

i
'S
~

walk p1-0 s1 = 43
walk p1-2 s1 = 29
walk p1-2 82 = 79
walk sO p1-0 = 80
‘walk s1 pl1-0 = 43
walk sl pl1-2 = 29
walk 82 p1-2 = 79

APPENDIX A. EXAMPLE LPGP TRANSLATION 135

The problem file after the translation:

(define (problem dlog-2-2-2)
(:domain driverlog)
(:objects

driveri driver2
truckl truck?2
packagel package?2
80 s1 s2
pi-0 p1-2)
(:init
(at driverl s2)
(driver driveri)
(at driver2 s2)
(driver driver2)
(at truckl sO)
(empty truckl)
(truck truckl)
(at truck2 s0)
(empty truck2)
(truck truck2)
(at packagel s0)
(obj packagel)
(at package2 s0)
(obj package2)
(location s0)
(location s1)
(location s2)
(location p1-0)
(location p1-2)
(path s1 p1-0)
(path pi-0 1)
(path sO p1-0)
(path p1-0 s0)
(path 81 p1-2)
(path p1-2 s1)
(path 82 pi-2)
(path p1-2 82)
(1ink s0 s1)
(Iink s1 s0)
(link s0 s2)
(link s2 s0)
(link s2 s1)
(link s1 s2))
(rgoal (and
(at driveril si)
(at truckl si)
(at packagel s0)
(at package2 s0))))

Appendix B

The Zeno Travel Domain

The Zeno Tavel Time Domain as used in IPC’02:

(define (domain zeno-travel)
(:requirements :durative-actions :typing :fluents)
(:types aircraft person - locateable city ~ object)
(:predicates (in 7p - person 7a - aircraft)
(at 7x - locateable 7c - city))
(:functions (fuel ?7a - aircraft)
(distance 7cl - city 7c2 - city)
(slow-speed 7a - aircraft)
(fast-speed 7a - aircraft)
(slow-burn 7a - aircraft)
(fast-burn ?a - aircraft)
(capacity 7a - aircraft)
(refuel-rate ?a - aircraft)
(total-fuel-used)
(boarding-time)
(debarking-time))

(:durative-action board
:parameters (?p - person ?a - aircraft ?c - city)
:duration (= ?duration (boarding-time))
:condition (and (at start (at ?p ?c))
(over all (at 7a ?c)))
:effect (and (at start (not (at 7p 7¢)))
(at end (in 7p ?7a))))

(:durative-action debark
:parameters (?p ~ person ?a - aircraft ?c - city)
:duration (= ?duration (debarking-time))
:condition (and (at start (in 7p 7a))
(over all (at 7a 7c¢)))
reffect (and (at start (not (in ?p 7a)))
(at end (at ?p 7c))))

(:durative-action fly

:parameters (7a - aircraft ?cl 7c2 - city)
:duration (= ?duration (/ (distance 7cl ?7c2) (slow-speed ?a)))
:condition (and (at start (at ?a ?cil))

(at start (>= (fuel 7a)

(* (distance ?cl ?7c¢2) (slow-burn 7a)))))

ieffect (and (at start (not (at ?a ?c1)))

(at end (at ?a ?7c2))

136

APPENDIX B. THE ZENO TRAVEL DOMAIN 137

(at end (increase total-fuel-used

(x (distance ?7cl ?7¢2) (slow-burn 7a))))
(at end (decrease (fuel 7a)

(* (distance ?cl ?c2) (slow-burn 7a))))))

(:durative-action zoom
:parameters (?a - aircraft 7cl ?c2 - city)
:duration (= ?duration (/ (distance ?cl 7c2) (fast-speed ?a)))
:condition (and (at start (at ?a ?cl))
(at start (>= (fuel 7a)
(*x (distance 7cl ?7¢2) (fast-burn 7a)))))
:effect (and (at start (not (at ?a ?cl)))
(at end (at ?a ?c2))
(at end (increase total-fuel-used
(* (distance 7cl ?¢2) (fast-burn ?a))))
(at end (decrease (fuel 7a)
(* (distance ?c1 7c¢2) (fast-burn 7a))))))

(rdurative-action refuel
:parameters (?a — aircraft ?c - city)
:duration (= ?duration (/ (- (capacity 7a) (fuel ?7a)) (refuel-rate ?a)))
icondition (and (at start (> (capacity 7a) (fuel 7a)))
(over all (at ?a ?c)))
:effect (at end (assign (fuel 7a) (capacity 7a)))))

APPENDIX B. THE ZENO TRAVEL DOMAIN 138

An example problem file (problem file 5) taken from IPC’03:

(define (problem ZTRAVEL-2-4)
(:domain zeno-travel)
(:objects
planel plane2 - aircraft
personl person2 person3 person4 - person
city0 cityl city2 city3 - city)
(:init
(at planel cityl)
(= (slow-speed planel) 178)
(= (fast-speed planel) 520)
(= (capacity planel) 2990)
(= (fuel planel) 174)
(= (slow-burn planel) 1)’
(= (fast-burn planel) 3)
(= (refuel-rate planei) 1800)
(at plane2 city2)
(= (slow-speed plane2) 198)
(= (fast-speed plane2) 330)
(= (capacity plane2) 4839)
(= (fuel plane2) 1617)
(= (slow-burn plane2) 2)
(= (fast-burn plane2) 5)
(= (refuel-rate plane2) 830)
(at personl city3)
(at person2 city0)
(at person3 city0)
(at persond cityl)
(= (distance.city0 cityQ) Q)
(= (distance city0 cityl) 569)
(= (distance city0 city2) 607)
(= (distance city0 city3) 754)
(= (distance cityl city0) 669)
(= (distance cityl cityi) 0)
(= (distance cityl city2) 504)
(= (distance cityl city3) 557)
(= (distance city2 city0) 607)
(= (distance city2 cityi) 504)
(= (distance city2 city2) 0)
= (distance city2 city3) 660)
= (distance city3 city0) 754)
= (distance city3 cityl) 557)
(= (distance city3 city2) 660)
(= (distance city3 city3) 0)
= (total-fuel-used) 0)
(= (boarding-time) 0.3)
(= (debarking-time) 0.6))
(:goal (and
(at personi city2)
(at person2 city3)
(at person3 city3)
(at persond city3)))
(:metric minimize (+ (* 1 (total-time)) (* 0.002 (total-fuel-used)))))

Appendix C
The Match Domain

The domain:

(define (domain matchcellar)
(:requirements :typing :durative-actions)
(:types match fuse)
(:predicates
(light 7match)
(handfree)
(unused 7match - match)
(mended ?fuse - fuse))

(:durative-action LIGHT_MATCH
:parameters (?match - match)
:duration (= ?duration 8)
:condition (and
(at start (unused ?match))
(over all (light ?match)))
:effect (and
(at start (not (unused 7match)))
(at start (light ?match))
(at end (not (light 7match)))))

(:durative-action MEND_FUSE
:parameters (?fuse - fuse 7match - match)
:duration (= ?duration 5)
:condition (and
(at start (handfree))
(over all (light ?match)))
:effect (and
(at start (not (handfree)))
(at end (mended ?fuse))
(at end (handfree)))))

139

APPENDIX C. THE MATCH DOMAIN 140

A problem instance:

(define (problem fixfuse)
(:domain matchcellar)
(:objects

matchl match2 - match
fusel fuse2 - fuse)
(:init
(unused matchi)
(unused match2)
(handfree))
(:goal (and
(mended fusel)
{mended fuse2)))
(:metric minimize (total-time)))

Appendix D

Alternative Formalisation

Presented here is an alternative formalisation for CRIKEY version 1. In this formalisation
the scheduling is done in parallel with the planning, but consistency of the schedule is
only checked when and where necessary. Rather than checking whether contents can fit in
envelopes at the action applicability stage, the action is added to the state and then the state
is considered a “dead-end” in the search if the content action does not fit in the envelope.

Definitions for a STRIPS action (Definition 3.1), durative action (Definition 3.2), single
hard envelope (Definition 3.13), compressed action (Definition 4.1) and split action (Defini-
tion 4.2) remain the same.

Durative actions are split or compressed as in the formalisation in Chapter 4.

Definition D.1 — Planning State

A planning state S is
S= (Fg <a1, ey an)1 9%, f)

where F' is the set of true facts, (a1, ..., a,) is the list of split actions so far
present in the plan, J% is the set of temporal constraints between the split
actions, and £, the set of open envelope durative actions.

Definition D.2 — Applicability of Action

An action a = (cond, ,add, del) is applicable is state S if

cond C F
A Vda € € - del N cond..(da) =

Definition D.3 — Result

The result, Result(s, (a)), of applying a single STRIPS action e = (cond, add, del)
in state s = (F, (a1, ..., an), I€, &) is s’ = (F', (a1, ..., @n, @), TE€", &)

141

APPENDIX D. ALTERNATIVE FORMALISATION 142

where

F' = (F Uadd) \ del

€I=€U{((ia(a)} — a =k
~ £\ {(da(a)} e
=¢ «— otherwise

T%€' = F€ U {da(a)aur < da(a)+ — da(a)- < da(a)gu}

TE€" = T€ Uveloso(a, (ay, ..., an))

where da(a) is the corresponding durative action for a and veloso(a, (a1, . . ., a,))
returns the temporal constraints found from performing one iteration the Veloso
algorithm to see which actions in the list a must follow.

At each stage of the search, a state must not be expanded before it is checked to see if it
is a “dead-end”. The consistency is checked from the end of each currently open envelope
using a Single Source Shortest Path algorithm. Once the envelope has been closed there
is no need to check the consistency. The following definition uses the consistency function
(Definition 4.5).

Definition D.4 — Dead end

A state s is a dead end (invalid) if

de € - —~consistent({(ay, ..., an), TE)

The definition of a planning problem (Definition 4.10) remains the same.

Definition D.5 — Goal State

A state g = (F, (a1, ..., a,), 7%, £) is a goal state for the problem P = (0, I, G)
if
F(Result(l, (a1, ..., an))) CGAE=0

Appendix E
The Café Domain

The domain:

(define (domain CafeDomain)
(:requirements :typing :fluents :durative-actions :duration-inequalities)
(:types table chef socket - object tea toast coocked_breaky - item)
(:predicates
(delivered ?7i - item ?t - table)
(d_w_available ?t - table)
(d_w_open 7t - table)
(ready ?7i - item)
(loosing heat 7i - item)
(started_delivery ?7i - item)
(chef_free 7c - chef)
(socket_free ?s - socket)
(started_cooking ?i - item))
(:functions
(total_delivery_window)
(total_heat_lost))

(:durative—-action DELIVERY_WINDOW
:parameters (?t - table)
:duration (<= ?duration 10000000)
:condition (and
(at start (d_w_available 7t)))
:effect (and
(at start (not (d_w_available 7t)))
(at start (d_w_open 7t))
(at end (not (d_w_open 7t)))
(at end (increase (total_delivery_window) ?duratiomn))))

(:durative-action DELIVER
:parameters (?i - item 7t - table)
:duration (= 7duration 2)
:condition (and
(at end (d_w_open ?t))
(over all(d_w_open 7t))
(at start (ready ?i)))
:effect (and
(at start (started_delivery 7i))
(at end (not (started_delivery ?i)))
(at end (delivered ?7i 7t))
(at end (not (ready ?i)))))

143

AprPENDIX E. THE CAFft DOMAIN 144

(:durative-action LOOSING_HEAT
:parameters (?i - item)
:duration (<= ?duration 1000)
:condition (and
(at start (started_cooking ?i))
(at end (started_delivery 7i)))
:effect (and
(at start (loosing_heat ?7i))
(at end (not (loosing_heat 7i)))
(at end (increase (total_heat_lost) ?duration))))

(:durative~action MAKE_TEA
:parameters (7i - tea ?s - socket)
:duration (= ?duration 1)
:condition (and
(at start (socket_free 7s))
(at end (loosing_heat ?i)))
:effect (and
(at start (not (socket_free ?s)))
(at start (started_cooking ?i))
(at end (socket_free 7s))
(at end (ready ?7i))))

(:durative-action MAKE_TOAST
:parameters (7i - toast 78 - socket)
:duration (= ?duration 2)
:condition (and
(at start (socket_free 7s))
(at end (loosing heat ?i)))
reffect (and
(at start (not (socket_free 78)))
(at start (started_cooking ?7i))
(at end (socket_free 7s))
(at end (ready 7i))))

(:durative-action MAKE_COOKED_BREAKY
:parameters (?i - cooked_breaky ?c - chef)
:duration (= 7?duration 4)

:condition (and
(at start (chef_free ?c))
(at end (loosing_heat 7i)))
:effect (and
(at start (not (chef_free 7c)))
(at start (started_cooking ?i))
(at end (chef_free 7c))
(at end (ready 7i)))))

APPENDIX E. THE CAFE DOMAIN

A problem:

(define (problem CafeProbleml)
(:domain CafeDomain)
(:objects

tablel - table
teal - tea
toastl - toast

cheft - chef
socketl - socket)
(:init

(d_w_available tableil)
(chef_free chefl)
(socket_free socketl)
(= (total_delivery_window) 0)
(= (total_heat_lost) 0))
(:goal (and
(delivered teal tablel)
(delivered toastl tablel)))
(:metric minimize (total_heat_lost)))

An alternative metric could be:

(:metric minimize (total_delivery_window))

145

Appendix F
The Lift Match Domain

The domain

(define (domain matchlift)

(:requirements :durative-actions :typing)

(:types fuse match lift electrician floor room - object)

(:predicates
(1ight ?match - match 7room - room)
(handfree ?elec - electrician)
(unused 7match - match)
(mended ?fuse - fuse)
(onfloor ?elec - electrician ?floor - floor)
(inlift 7elec - electrician ?71ift - 1lift)
(roomonfloor ?room - room ?flcor - floor)
(liftonfloor ?1ift - lift ?floor - floor)
(inroom ?elec - electrician ?room - room)
(fuseinroom 7fuse - fuse ?room - room)
(connectedfloors ?floorl ?floor2 - floor))

(:durative-action LIGHT_MATCH

:parameters (?match - match
?elec - electrician
?room - room)

:duration (= ?duration 8)

:condition (and
(at start (unused ?match))
(over all (inroom ?elec 7room))
(over all (light ?match ?room)))

:effect (and

(at start (not (unused ?match)))
(at start (light ?match 7room))
(at end (not (light 7match ?room)))))

(:durative-action MEND_FUSE

:parameters (?fuse - fuse
7match - match
?room - room
?elec - electrician)

rduration (= ?duration 5)

:condition (and
(at start (inroom 7elec 7room))
(over all (inroom 7elec ?room))
(at start (fuseinroom ?7fuse 7room))
(at start (handfree 7elec))

146

AprrPENDIX F. THE LIFT MATCH DOMAIN 147

(at start (light ?Tmatch ?room))

(over all (light ?match 7room)))
:effect (and

(at start (not (handfree 7elec)))

(at end (mended ?fuse))

(at end (handfree 7elec))))

(:durative-action ENTER_ROOM
:parameters (?floor - floor
?room ~ room
7elec - electrician)
:duration (= ?duration 1)
:condition (and
(at start (onflcor 7elec 7floor))
(at start (roomonfloor ?room ?floor)))
reffect (and
(at end (inroom 7elec ?room))
(at end (not (onfloor ?elec ?floor)))))

(:durative-action EXIT_ROOM
:parameters (?floor - floor
?room - room
?elec - electrician)
:duration (= ?duration 1)
rcondition (and
(at start (inroom ?7elec ?room))
(at start (roomonfloor 7room ?floor)))
:effect (and
(at end (not (inroom 7elec ?7room)))
(at end (onfloor 7elec ?floor))))

(:durative-action ENTER_LIFT
:parameters (7floor - floor
?1lift - lift
7elec - electrician)
:duration (= ?duration 1)
:condition (and
(at start (onfloor 7elec 7floorx))
(at start (liftonfloor ?1ift ?floor))
(over all (liftonfloor ?1ift ?floor)))
:effect (and
(at end (inlift 7elec 71ift))
(at end (not (onfloor 7elec ?floor)))))

(:durative-action EXIT_LIFT
:parameters (7floor - floor
?1ift - lift
7elec - electrician)
:duration (= ?duration 1)
:condition (and
(at start (inlift ?elec ?1ift))
(at start (liftonfloor ?1ift 7floor))
(over all (liftonfloor 71ift 7floor)))
:effect (and
(at end (not (inlift ?elec ?1ift)))
{at end (onfloor 7elec 7floor))))

(:durative-action MOVE_LIFT
:parameters (7floorfrom 7floorto - floor

APPENDIX F. THE LIFT MATCH DOMAIN 148

71lift ~ lift)
:duration (= ?duration 2)
:condition (and
(at start (connectedfloors ?floorfrom ?floorto))
(at start (liftonfloor ?1lift 7floorfrom)))
:effect (and
(at start (not (liftonfloor ?lift ?floorfrom)))
(at end (liftonfloor ?1ift ?floorto))))

Problem 01:

(define (problem matchliftproblem01)
(:domain matchlift)
(:objects matchi match2? - match
fusel fuse2 - fuse
lift1 - 1lift
elecl elec2 - electrician
floorl floor2 - floor
roomla roomib room2a room2b - room)
(:init
(unused matchi)
(unused match?2)
(handfree elecl)
(handfree elec?2)
(onfloor elecl floorl)
(onfloor elec2 flooril)
(roomonfloor roomla floorl)
(roomonfloor roomib floorl)
(roomonfloor room2a floor2)
(roomonfloor room2b floor2)
(liftonfloor lifti floort)
(fuseinrcom fusel roomla)
(fuseinroom fuse2 room2b)
(connectedfloors floort floor2)
(connectedfloors floor2 floorl))
(:goal (and
(mended fusel)
(mended fuse2)))
(:metric minimize (total-time)))

APPENDIX F. THE LIFT MATCH DOMAIN 149

F.1 Partial Lift Match Numeric Domain
Domain header and LIGHT_MATCH action:

(define (domain matchCellarComplexNumeric)
(:requirements :durative-actions :typing :fluents)
(:types fuse match lift electrician floor room - object)
(:predicates

(1ight ?room - room)

(handfree ?elec - electrician)

(mended 7fuse - fuse)

(onfloor 7elec - electrician ?floor - floor)

(inlift 7elec - electrician ?1ift - 1ift)

(roomonfloor ?room - room ?floor - floor)

(liftonfloor ?71ift - 1lift ?floor - floor)

(inroom 7elec -~ electrician ?room -~ room)

(fuseinroom 7fuse - fuse ?room - room)

(connectedfloors ?floori ?floor2 - floor))
(:functions

(matchesleft))

(:durative~action LIGHT-MATCH

:parameters
(7elec - electrician
?room - room)

:duration (= ?duration 8)

:condition (and
(at start (> (matchesleft) 0))
(over all (inroom 7elec 7room))
(over all (light ?room)))

;effect (and
(at start (decrease (matchesleft) 1))
(at start (light ?room))
(at end (not (light ?7room)))))

Appendix G

DriverLog Shift Domain

The domain:

(define (domain driverlogshift)
(:requirements :typing :durative-actions)
(:types
location locatable - object
driver truck obj - locatable)
(:predicates
(at ?obj ~ locatable ?loc - location)
(in 7obji - obj Pobj - truck)
(driving ?d - driver ?v - truck)
(link ?x ?y - location).
(path ?x ?y - location)
(empty ?v - truck)
(working ?d - driver)
(resting ?7d - driver)
(rested 7d - driver)
(tired ?d - driver))

(:durative-action WORK

:parameters
(?driver - driver)

:duration (= 7duration 102)

:condition (and
(at start (rested ?driver)))

;effect (and (at start (working ?driver))
(at end (not (working ?driver)))
(at start (not (rested ?driver)))
(at start (not (resting ?driver)))
(at end (tired 7driver))))

(:durative-action REST

rparameters
(?driver — driver)

:duration (= ?duration 20)

:condition (and
(at start (tired ?driver)))

:effect (and
(at start (resting ?driver))
(at end (not (resting ?driver)))
(at start (not (working ?driver)))
(at start (not (tired ?driver)))
(at end (rested ?driver))))

150

APPENDIX G. DRIVERLOG SHIFT DOMAIN

(:durative-action LOAD-~TRUCK
:parameters
(?obj - obj
?truck - truck
?loc - location)
:duration (= ?7duration 2)
:condition (and
(over all (at ?truck ?loc))
(at start (at ?obj 7loc)))
teffect (and
(at start (not (at 7obj ?loc)))
(at end (im 7obj ?truck))))

(:durative-action UNLOAD-TRUCK
:parameters
(?0bj - obj
?truck - truck
?loc - location)
rduration (= ?duration 2)
:condition (and
(over all (at ?truck ?loc))
(at start (in %obj ?truck)))
:effect (and
(at start (mot (in 7obj ?truck)))
(at end (at ?7obj ?loc))))

(:durative-action BOARD~TRUCK
:parameters
(?driver - driver
?truck - truck
?loc - location)
:duration (= ?duration 1)
:condition (and
(over all (at 7truck ?loc))
(at start (at ?driver ?loc))
(at start (empty 7truck)))
:effect (and
(at start (not (at 7driver ?loc)))
(at end {(driving ?driver ?7truck))
(at start (not (empty ?truck)))))

(:durative-action DISEMBARK-TRUCK
:parameters
(?driver - driver
Ttruck - truck
?loc - location)
:duration (= ?duration 1)
:condition (and
(over all (at 7truck ?loc))
(at start (driving ?driver ?truck)))
ieffect (and
(at start (not (driving ?driver 7truck)))
(at end (at 7driver ?loc))
(at end (empty ?truck))))

(:durative-action DRIVE-TRUCK
:parameters
(7truck - truck

151

APPENDIX G. DRIVERLOG SHIFT DOMAIN

7loc-from - location
7loc-to - location
?driver ~ driver)
:duration (= ?duration 10)
:condition (and
(at start (at 7truck ?loc-from))
(over all (driving ?driver ?truck))
(at start (link ?loc-from ?loc-to))
(over all (working 7driver)))
:effect (and
(at start (not (at 7truck ?loc-from)))
(at end (at ?truck ?loc-to))))

{rdurative-action WALK

:parameters
(?7driver - driver
?loc-from - location
7loc-to - location)

:duration (= ?duration 20)

:condition (and
(at start (at ?driver ?loc-from))
(at start (path 7loc-from ?loc-to))
(over all (working ?driver)))

:effect (and
(at start (not (at ?driver ?loc-from)))
(at end (at ?driver ?loc-to)))))

152

APPENDIX G. DRIVERLOG SHIFT DOMAIN

A problem instance:

(define (problem DLOG-2-2-2)
(:domain driverlog)
(:objects

driveri driver2 - driver

truckl truck2 - truck

packagel package2 - obj

80 81 82 p1-0 p1-2 - location)
(:init

(at driverl s2)

(rested driverl)

(at driver2 s2)

(rested driver2)

(at truckl s0)

(empty truckl)

(at truck2 s0)

(empty truck?2)

(at packagel s0)

(at package2 s0)

(path s1 p1-0)

(path p1-0 si)

(path s0 p1-0)

(path p1-0 s0)

(path s1 p1-2)

(path p1-2 s1)

(path s2 p1-2)

(path p1-2 s82)

(link =0 s1)

(1ink s1 80)

(link s0 s2)

(1ink s2 s0)

(link 82 si1)

(1ink sl 82))
(:goal (and

(at driverl si)

(rested driveril)

(at truckl si)

(at packagel s0)

(at package2 s80)))
(:metric minimize (total-time)))

153

Appendix H

Mousetrap Domain

The domain:

(define (domain mousetrap)
(:requirements :durative-actions :typing)
(:types mouse junction cheese - object
trap part - contraption
contraption - object)
(:predicates
(at ?m - mouse 7j - junction)
(cheese_loc 7c - cheese 7j - junction)
(connected 7ji 7j2 - junction)
(trigger_connected ?j1 7j2 - junction ?p - contraption)
(eaten 7¢ - cheese ?m - mouse)
(clipx)
(clipy)
(causes 7pl 7p2 - contraption)
(triggered ?p - contraption)
(trap_up ?t - trap ?c - cheese))
(:functions
(contraption_time ?p - contraption)
(run_time 7j1 ?j2 - junction))

(:durative-action RUN
:parameters
(?m - mouse
?from ?to - junction)
:duration (= ?duration (run_time 7from 7to))
:condition (and
(at start (connected ?from ?to))
(at start (at ?m 7from)))
:effect (and
(at start (not (at ?m 7?from)))
(at end (at ?m ?to))))

(:durative-action RUN_TRIGGER
:parameters
(?m - mouse
7from ?to - junction
?p - contraption)
:duration (= 7duration (run_time ?from 7to))
:condition (and
(at start (trigger_connected 7from ?to 7p))
(at start (at ?m ?from))

154

APPENDIX H. MOUSETRAP DOMAIN 155

(at end (clipx)))
:effect (and
(at start (not (at ?m ?from)))
(at end (at ?m ?to))
(at end (triggered 7p))))

(:durative-action CLIP

:parameters

0]
:duration (= ?duration 1)
:condition (and

(at start (clipy))

(at end (clipy)))
:effect (and

(at start (clipx))

(at end (not (clipx)))

(at start (not (clipy)))))

(:durative-action EAT_CHEESE

‘parameters

(?m - mouse

?j - junction

?7¢ - cheese

7t - trap)
:duration (= Pduration 5)
:condition (and

(at start (cheese_loc 7c ?j))

(at start (at 7m 7j))

(over all (trap_up 7t ?c)))
:effect (and

(at end (eaten ?c ?m))))

(:durative-action PERFORM

:parameters

(?p1 - part 7p2 - contraption)
:duration (= ?duration (contraption_time 7pl))
:condition (and

(at start (causes ?pl 7p2))

(at end (clipx))

(at start (triggered 7pl)))
:effect (and

(at start (clipy))

(at end (triggered 7p2))))

(:durative-action DROP_TRAP
rparameters
(7t - trap
7c - cheese)
:duration (= ?duration (contraption_time 7t))
:condition (and
(at start (trap_up 7t ?c))
(at start (triggered 7t)))
:effect (and
(at start (clipy))
(at end (not (trap_up 7t ?¢))))))

APPENDIX H. MOUSETRAP DOMAIN

A problem:

(define (problem mousetrapProblem02)
(:domain mousetrap)
(:objects

mousel - mouse
j1 j2 j3 j4 j5 j6 - junction

cheesel cheese2 — cheese

trapl trap2 - trap

crank kick_bucket rolling ball see_saw project_diver - part)

(:init

(at mousel j1)
(cheese_loc cheesel j4)
(cheese_loc cheese2 j6)

(trigger_connected ji j2
(trigger_connected ji j2
(trigger_connected j2 j4
(trigger_connected j4 j2
(trigger_connected j2 j6
(trigger_connected j6 j2

(connected j2 j1)
(connected j2 j3)
(connected j3 j2)
(connected j3 j4)
(connected j4 j3)
(connected j5 j4)
(connected j& j5)
(connected j5 j6)
(connected j6 j5)

(=
(

(=
(

(=
(=
(=
(.—
(=
(=
(=
(=
(=
(=
(=
(=
(=
(=
(=
(_
(=

(causes
(causes
(causes
(causes
(causes

(contraption_time

= (contraption_time
(contraption_time rolling_ball) 15)
= (contraption_time

(contraption_time
(contraption_time
(contraption_time
(run_time j1 j2)
(run_time j2 j1)
(run_time j2 j3)
(run_time j3 j2)
(run_time j4 j3)
(run_time 3j3 j4)
(run_time j2 j4)
(run_time j4 j2)
{run_time j4 j5)
(run_time j5 j4)
(run_time j5 j6)
(run_time j6 j5)
(run_time j2 36)
(run_time j6 j2)

crank)
crank)
see_saw)
see_saw)
see_saw)
see_saw)

crank) 5)

kick_bucket) 2)

see_saw) 3)

project_diver) 2)

trapl) 15)
trap2) 4)

5)
5)
10)

10)

(trap_up trapl cheesel)
(trap_up trap2 cheese2)
(clipy))
(:goal (and
(eaten cheesel mousel)

(eaten cheese2 mousel)))

b
crank kick_bucket)
kick_bucket rolling_ball)
rolling_ball trapl)
see_saw project_diver)
project_diver trap2)

(:metric minimize (total-time)))

156

Appendix 1

Baseball Domain

The domain:

(define (domain baseball)
(:requirements :durative-actions :typing)
(:types base runner pitcher)
(:constants homebase basel base2 base3 - base)
(:predicates
(at ?r - rumner 7?b - base)
(free 7b - base)
(connected ?bl ?b2 - base)
(completed 7r - runner)
(still_to_run ?r - runner)
(next_pitcher 7p - pitcher)
(pitcher_order ?pl ?p2 - pitcher)
(free_to_pitch)
(ball_in_air))
(:functions
(pitch_speed ?p - pitcher)
(hit_speed ?r - runner)
(run_speed ?r - runner))

(:durative-action RUN
:parameters
(?r - runner
?from ?to - junction)
:duration (= ?duration (run_speed ?r))
ccondition (and
(at start (connected ?from 7to))
(at start (at ?r 7from))
(over all (free 7to))
(over all (ball_in_air)))
:effect (and
(at start (not (at ?r ?from)))
(at start (free 7from))
(at end (not (free 7to)))
(at end (at ?r ?to))))

(:durative—-action COMPLETE
:parameters
(?r - runner)
:duration (= ?duration (run_speed ?7r))
:condition (and
(at start (at ?r base3))

157

APPENDIX I. BASEBALL DOMAIN 158

(over all (ball_in_air)))
:effect (and

(at start (not (at ?r base3)))

(at start (free base3))

(at end (completed ?r))))

(:durative-action STEP_UP

:parameters
(?r - runner
?pl 7p2 - pitcher)

:duration (= ?duration 1)

:condition (and
(at start (free homebase))
(at start (free_to_pitch))
(at start (still_to_run 7r))
(at start (pitcher_order 7pl 7p2))
(at start (next_pitcher 7pi)))

;effect (and
(at end (at ?r homebase))
(at end (not (still_to_run 71)))
(at start (not (free homebase)))
(at end (not (next_pitcher 7p1)))
(at end (next_pitcher 7p2))))

{:durative-action HIT
:parameters
(?r - runner
?p - pitcher)
:duration (= ?duration (* 4 (* (hit_speed ?r) (pitch_speed 7p))))
:condition (and
(at start (at ?r homebase))
(at start (next_pitcher 7p))
(at start (free_to_pitch)))
:effect (and
(at start (ball_in_air))
(at end (not (ball_in_air)))
(at start (mot (free_to_pitch)))
(at end (free_to_pitch)))))

APPENDIX I. BASEBALL DOMAIN

A problem (taken from the Boston RedSox vs. Houston):

(define (problem RedSoxVsHouston)

(:domain baseball)
(:objects
Martinez Lowe

Wakefield Embree Foulke

Schilling Leskanic Timlin Mendoza Arroyo - pitcher
Biggio Vizcaino Ensberg Berkman Kent
Bagwell Beltran Ausmus Palmeiro Chavez - runner)

(:init

(free homebase)

(free basel)
(free base2)
(free base3)

(connected homebase basel)
(connected basel base?2)
(connected base2 base3)
(pitcher_order Martinez Lowe)
(pitcher_order Lowe Wakefield)

Wakefield Embree)

(pitcher_order
(pitcher_order
(pitcher_order
(pitcher_order
{pitcher_order
(pitcher_order
(pitcher_order
(pitcher_order

Embree Foulke)
Foulke Schilling)
Schilling Leskanic)
Leskanic Timlin)
Timlin Mendoza)
Mendoza Arroyo)
Arroyo Martinez)

(still_to_run
(still_to_run
(still_to_run
(still_to_run
(still_to_run
(still_to_run
(still_to_run
(still_to_run
(still_to_run
(still_to_run
(next_pitcher

Biggio)
Vizcaino)
Ensberg)
Berkman)
Kent)
Bagwell)
Beltran)
Ausmus)
Palmeiro)
Chavez)
Arroyo)

(free_to_pitch)

(=
(=
(=
(=
(=
(=
(=
(=
(=
(=
(=
(=
(=
(=
(=

(pitch_speed
(pitch_speed
(pitch_speed
(pitch_speed
(pitch_speed
(pitch_speed
(pitch_speed
(pitch_speed
(pitch_speed
(pitch_speed

Martinez)1.2)
Lovwe)1.3)
Wakefield)1.0)
Embree)0.9)
Foulke)1.1)
Schilling)0.8)
Leskanic)1.4)
Timlin)1.6)
Mendoza)1.2)
Arroyo)1.2)

(hit_speed Biggio) 0.9)
(hit_speed Vizcaino) 1.3)
(hit_speed Ensberg) 0.7)
(hit_speed Berkman) 2.1)
(hit_speed Kent) 0.6)
(hit_speed Bagwell) 1.0)
(hit_speed Beltran) 0.9)
(hit_speed Ausmus) 0.9)
(hit_speed Palmeiro) 0.8)
(hit_speed Chavez) 0.7)
(run_speed Biggio) 1.5)

159

APPENDIX I. BASEBALL DOMAIN

= (run_speed Vizcaino) 1.3)
(= (run_speed Ensberg) 0.6)
(= (run_speed Berkman) 0.9)
= (run_speed Kent) 1.0)

(= (run_speed Bagwell) 1.1)
= (run_speed Beltran) 1.7)
= (run_speed Ausmus) 0.8)
(= (run_speed Palmeiro) 0.8)
= (run_speed Chavez) 0.5))

(:goal (and
(completed
(completed
(completed
(completed
(completed
(completed
(completed
(completed
(completed
(completed

Biggio)
Vizcaino)
Ensberg)
Berkman)
Kent)
Baguell)
Beltran)
Ausmus)
Palmeiro)
Chavez)))

(:metric minimize (total-time)))

160

Bibliography

[1] J. F. Allen. Towards a general theory of action and time. Artificial Intelligence,
23(2):123-154, 1984.

[2] F. Bacchus, 2000. web site of the 2nd International Planning Competition 2000:
http://www.cs.toronto.edu/aips2000/.

[3] F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge
for planning. Artificial Intelligence, 116(1-2):123-191, 2000.

[4] C. Backstrom. Finding least constrained plans and optimal parallel executions is harder
than we thought. In C. Béckstrom and E. Sandewall, editors, Current Trends in Al
Planning: EWSP’93—2nd FEuropean Workshop on Planning, Vadstena, Sweden, Dec
1994. 10S Press.

(5] R. Bartdk. Integrating planning into production scheduling: A formal view. In Pro-
ceedings of the Workshop on Integrating Planning into Scheduling at ICAPS-0/4, pages
1-8, June 2004.

[6] A. Blum and M. Furst. Fast planning through planning graph analysis. In Proceedings
of the 14th International Joint Conference on Artificial Intelligence (IJCAI 95), pages
1636-1642, 1995.

{7} B. Bonet and H. Geffner. Heuristic search planer 2.0. AI Magazine, 22(3):77-80, 2001.

[8] A.Botea, M. Enzenberger, M. Miiller, and J. Schaeffer. Macro-ff. International Planning
Competition 4 Booklet, ICAPS 2004, June 2004. Extended Abstract.

[9] J. Carlier and E. Pinson. A practical use of jackson’s preemptive schedule for solving
the job-shop problem. Annal of Operation Research, 26:269-287, 1990.

(10] Y. Chen, C.-W. Hsu, and B. W. Wah. SGPlan: Subgoal Partitioning and Resolution
in Planning. International Planning Competition 4 Booklet, ICAPS 2004, June 2004.
Extended Abstract.

161

 BIBLIOGRAPHY 162

[11]

[14]

[15]

[16]

(17]

18]

[19]

[20]

(21}

22}

A. Coddington, M. Fox, and D. Long. Handling Durative Actions in Classical Planning
Frameworks. In J. Levine, editor, Proceedings of the 20th Workshop of the UK Planning
and Scheduling Special Interest Group, pages 44-58. University of Edinburgh, December
2001.

A. Coles and A. Smith. Marvin: Macro actions from reduced versions of the instance.
International Planning Competition 4 Booklet, ICAPS 2004, June 2004. Extended
Abstract.

S. Cresswell and A. Coddington. Planning with Timed Literals and Deadlines. In J. Por-
teous, editor, Proceedings of the 22nd Workshop of the UK Planning and Scheduling
Special Interest Group, pages 22-35. University of Strathclyde, December 2003. ISSN
1368-5708.

S. Cresswell and A. Coddington. Compilation of LTL goal formulas into PDDL. In
European Conference on Artificial Intelligence (ECAI 2004), 2004.

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. In Proceedings from
Principles of Knowledge Representation and Reasoning, pages 83-93. Toronto, Canada,
1989.

M. B. Do and S. Kambhampati. Planning as constraint satisfaction: Solving the plan-
ning graph by compiling it into CSP. Artificial Intelligence, 132(2):151-182, 2001.

M. B. Do and S. Kambhampati. Sapa: a Domain-Independent Heuristic Metric Tem-
poral Planner. In Proceedings from the 6th European Conference of Planning (ECP),
2001.

B. Drabble and A. Tate. The use of optimistic and pessimistic resource profiles to
inform search in an activity based planner. In Proceedings of the Second International
Conference on AI Planning Systems (AIPS-94), Chicago, USA, june 1994. AAAI Press.

S. Edelkamp. Taming numbers and duration in the model checking integrated planning
system. In Journal of Artificial Research (JAIR), 2002.

S. Edelkamp and M. Helmert. On the Implementation of Mips. In Proceedings from
the 4th Artificial Intelligence Planning and Scheduling (AIPS), Workshop on Decision-
Theoretic Planning, pages 18-25. Brekenridge, Colorado: AA Al-Press, 2000.

S. Edelkamp and J. Hoffmann. PDDL2.2: The Language for the Classical Part of
the 4th International Planning Competition. Technical report, Fachbereich Informatik,
Germany and Institut fiir Informatik, Germany, 2003.

K. Erol, D. Nau, and V. S. Subrahmanian. Complexity, Decidability and Undecidability
Results for Domain-Indedpendent Planning. Artificial Intelligence Journal, 76(1-2):75-
88, july 1995.

BIBLIOGRAPHY 163

[23] R. E. Fikes and N. J. Nilsson. STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. In Proc. of the 2nd IJCAI, pages 608-620, London, UK,
1971.

[24] M. Fox and D. Long. The Automatic Inference of State Invariants in TIM. Journal of
Al Research, 9:367-421, 1998.

(25] M. Fox and D. Long. HybridSTAN: Identifying and Managing Combinatorial Optimi-
sation Sub- problems in Planning. In Proceedings of the 12th International Conference
on Automated Planning and Scheduling (ICAPS), pages 445-452, 2001.

[26] M. Fox and D. Long. PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Techuical report, University of Durham, UK, 2001.

(27] M. Fox and D. Long. The third International Planning Competition: Temoral and
Metric Planning. In Proceedings from the 6th International Conference on Artificial
Intelligence Planning and Scheduling (AIPS’02), pages 115-117, 2002.

[28]) M. Fox and D. Long. PDDL2.1: An extension of PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 20:61-124, 2003.

[29] M. Fox and D. Long. Time in Planning. to be published, Jan 2004.

[30] M. Fox, D. Long, and K. Halsey. An Investigation into the Expressive Power of
PDDL2.1. In Proceedings of the 16th European Conference of Artificial Intelligence
(ECAI), 2004.

[31} M. Fox, D. Long, and M. Hamdi. Handling Multiple Sub-problems within a Planning
Domain. In Proceedings of the 20th UK Planning and Scheduling Special Interest Group
(PlanSIG), 2001.

[32] G. Gallo and S. Pallottino. Shortest path algorithms. Annals of Operations Research,
13:38-64, 1988.

[33] A. Garrido, M. Fox, and D. Long. A Temporal Planning System to Manage Level 3
Durative Actions of PDDL2.1. In Proceedings of the 20th UK Planning and Scheduling
Special Interest Group (PlanSIG), pages 127-138, 2001.

{34} H. Geffner. PDDL 2.1: Representation vs. Computation. Journal of Artificial Intelli-
gence Research, 20:139-144, 2003.

[35] M. Gelfond, V. Lifschitz, and A. Rabinov. What are the Limitations of the Situation
Calculus? In R. S. Boyer, editor, Automated Reasoning: Essays in Honor of Woody
Bledsoe, pages 167-180. Kluwer, London, 1991.

BIBLIOGRAPHY 164

(36]

[37]

[40]

(41]

[43]

[45]

(46]

A. Gerevini and I. Serina. LPG: A Planner based on Local Search for Planning Graphs.
In Proceedings of the 6th International Conference of Artificial Intelligence Planning
and Scheduling (AIPS’02), Menlo Park, CA, 2002. AAAI Press.

M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. PDDL—The Planning Domain Definition Language, 1998. Ghallab, M.;
Howe, A.; Knoblock, C.; McDermott, D.; Ram, A.; Veloso, M.; Weld, D.; and Wilkins,
D. 1998, PDDL—The Planning Domain Definition Language. AIPS-98 Planning Com-
mittee.

M. Ghallab and H. Laruelle. Representation and control in IxTeT, a temporal plan-
ner. In Proceedings of the Second International Conference on Artificial Intelligence
Planning Systems (AIPS-94), pages 61-67, Menlo Park, CA, 1994. AAAI Press.

P. Haslum. TP4'04 and HSP*,. International Planning Competition 4 Booklet, ICAPS
2004, June 2004. Extended Abstract.

P. Haslum and H. Geffner. Heuristic planning with time and resources. In Proceedings
of the 6th European Conference on Planning, 2001.

M. Helmert and S. Richter. Fast downward — making use of causal dependencies in the
problem representation. International Planning Competition 4 Booklet, ICAPS 2004,
June 2004. Extended Abstract.

J. Hoffmann. Extending FF to Numerical State Variables. In F. V. Harmelen, editor,
Proceedings of the 15th European Conference on Artificial Intelligence (ECAI-02), pages
571-575, Lyon, France, July 2002.

J. Hoffmann. Loeal search topology in planning benchmarks: A theoretical analysis. In
M. Ghallab, J. Hertzberg, and P. Traverso, editors, Proceedings of the 6th International
Conference on Artificial Intelligence Planning and Scheduling (AIPS-02), Toulouse,
France, April 2002. 379-387.

J. Hoffmann, S. Edelkamp, R. Englert, F. Liporace, S. Thiébaux, and S. Triig. Towards
realistic Benchmarks for Planning: the Domains used in the Classical Part of IPC-
4. International Planning Competition 4 Booklet, ICAPS 2004, June 2004. Extended
Abstract.

J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation Through
Heuristic Search. Journal of Artificial Intelligence Research, 14:253-302, 2001.

J. Hoffmann and B. Nebel. What makes the difference between HSP and FF?7 In
Proceedings 1JCAI-01 Workshop on Empirical Methods in Artificial Intelligence, 2001.

BIBLIOGRAPHY 165

[47) H. Kautz and B. Selman. BLACKBOX: A New Approach to the Application of Theorem
Proving to Problem Solving. In AIPS-98 Workshop on Planning as Combinatorial
Search, pages 5860, 1998.

[48] J. Koehler. Solving Complex Planning Tasks Through Extraction of Subproblems. In
Artificial Intelligence Planning Systems, pages 62—69, 1998.

[49] T. S. Kumar. Incremental Computation of Resource-Envelopes in Producer-Consumer
Models. In Proceedings of The Ninth International Conference on Principles and Prac-
tice of Constraint Programming (CP 2003), 2003.

{50} P.Laborie. Algorithms for propagating resource constraints in Al planning and schedul-
ing: existing approaches and new results. Artificial Intelligence, 143(2):151-188, 2003.

[51] A. L. Lansky. A Representation of Parallel Activity Based on Events, Structure, and
Causality. In M. P. Georgeff and A. L. Lansky, editors, Reasoning about Actions and
Plans, pages 123-159. Kaufmann, Los Altos, CA, 1987.

[52] D. Long and M. Fox. Automatic synthesis and use of generic types in planning. In
Proceedings of AIPS 2000, pages 196205, 2000.

[53] D. Long and M. Fox. Exploiting a Graphplan Framework in Temporal Planning. In Pro-
ceedings of the 13th International Conference on Automated Planning and Scheduling
(ICAPS), pages 52-61, 2003.

[54] D. Long, M. Fox, L. Sebastia, and A. Coddington. An examination of resources in
planning. In Proceedings of the 19th workshop of the U.K. Planning and Scheduling
Special Interest Group (PLANSIG), 2000.

[55] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence, pages 26-45. Morgan Kaufmann Publishers Inc., 1987.

(56] D. McDermott. The 1998 Al Planning Systems Competition. AI Magazine, 21(2):35-55,
2000.

[57] D. McDermott. PDDL2.1 — The Art of the Possible? Commentary on Fox and Long,
Journal of Artificial Intelligence Research, 20:145-148, 2003.

(58] E. P. D. Pednault. ADL: Exploring the Middle Ground between STRIPS and the
Situation Calculus. In R. J. Brachman, H. J. Levesque, and R. Reiter, editors, KR’89:
Proc. of the First International Conference on Principles of Knowledge Representation
and Reasoning, pages 324-332. Kaufmann, San Mateo, CA, 1989.

[59] P. Regnier and B. Fade. Complete determination of parallel actions and temporal
optimization in linear plans of action. In Proceedings of the Furopean Workshop on
Planning, pages 100-111. Springer-Verlag, 1991.

BIBLIOGRAPHY 166

[60]

(61]

(62]

[63]

[64]

[65]

[66]

[67]

(68]

69}

[70]

[71]

D. Smith. The Case for Durative Actions: A Commentary on PDDL2.1. Journal of
Artificial Intelligence Research, 20:149-154, 2003.

D. Smith, J. Frank, and A. Jénsson. Bridging the gap between planning and scheduling.
Knowledge Engineering Review, 15:61-94, 2000.

D. Smith and D. S. Weld. Temporal Planning with Mutual Exclusion Reasoning. In
Proceedings of the 16th International Joint Conference on Artificial Intelliegence (1J-
CAl), pages 326-337, 1999.

B. Srivastava. RealPlan: Decoupling Causal and Resource Reasoning in Planning. In
Proceedings from the Twelfth Innovative Applications of Artificial Intelligence Confer-
ence on Artificial Intelligence (IAAI), pages 812-818, 2000.

B. Srivastava and S. Kambhampati. Scaling up planning by teasing out resource schedul-
ing. In Proceedings of the 5th European Conference on Planning (ECAI-00), pages
172-186. Springer-Verlag, 2000.

P. van Beek. Reasoning about qualitative temporal information. Artificial Intelligence,
58(1-3):297-326, 1992,

P. van Beek and X. Chen, CPlan: A Constraint Programming Approach to Planning. In
Proceedings of the Sizteenth National Conference on Artificial Intelligence (AAAI-99),
pages 585-590, 1999.

M. M. Veloso, M. A. Pérez, and J. G. Carbonell. Nonlinear planning with parallel
resource allocation. In Proceedings of the DARPA Workshop on Innovative Approaches
to Planning, Scheduling, and Control, pages 207-212, San Diego, CA, November 1990.
Morgan Kaufmann.

V. Vidal. The yahsp planning system: Forward heuristic search with lookahead plans
analysis. International Planning Competition 4 Booklet, ICAPS 2004, June 2004. Ex-
tended Abstract.

M. Vilain, H. Kautz, and P. van Beek. Constraint propagation algorithms for temporal
reasoning: a revised report, pages 373-381. Morgan Kaufmann Publishers Inc., 1990.

D. S. Weld. An Introduction to Least Commitment Planning. Al Magazine, 4, 1994.

S. A. Wolfman and D. S. Weld. The LPSAT Engine & Its Application to Resource
Planning. In Proceedings of the Sizteenth International Joint Conference on Artificial
Intelligence (1JCAI-99), pages 310-317, 1999.

