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Abstract 

The dominant electroweak two-loop corrections to the precision observables Mw 
and sin^ ^eff are calculated in the MSSM. They are obtained by evaluating the two-
loop Yukawa contributions of 0{aas) and 0{a^), 0{atab), 0{al) to the quantity 
A/9. A review of the one-loop Standard Model calculation is given in the large 
Top-Yukawa coupUng limit. 

The 0{a^), 0{atai,), 0{al) result, involving the contributions from Standard 
Model fermions, sfermions, Higgs bosons and higgsinos, is derived in the gauge-
less limit for arbitrary values of the lightest CP-even Higgs boson mass. A thorough 
discussion of the parameter relations enforced by supersymmetry is given. Two 
different renormalisation schemes are appUed. Compared to the previously known 
result for the quark-loop contribution we find a shift of up to -|-8 MeV in Mw and 
—4 X 10~^ in sin^ ^eff- Detailed numerical estimates of the remaining uncertainties 
of Mw and sin^ ^eff from unknown higher-order contributions are obtained for 
different values of the supersymmetric mass scale. 

The calculations are preceded by a review of EWPO and supersymmetry. The elec
troweak precision variable Ap is defined. We renormalise using both dimensional 
regularisation and dimensional reduction. 
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Chapter 1 

Introduction 

// you want to make an apple pie from scratch, you must first create 

the universe. 

Carl Sagan (1934 - 1996) 

The Standard Model (SM) [1] of particle physics, developed over the last f i f ty years, 

has been hugely successful in describing observed natural phenomena at the current 

energy scale. It agrees with all confirmed experimental data from accelerators but 

is theoretically very unsatisfactory. It fails to explain a large number of phenomena 

observed in nature such as the quantum numbers electric charge Q, weak isospin 

I , hypercharge Y and colour. It contains at least 19 free parameters in the form 

of masses, mixing angles, vector boson couplings and CP-violating phases. I t also 

requires the existence of a scalar (Higgs) boson whose coupling to the other SM 

particles is proportional their masses but no elementary scalar bosons have yet 

been observed. 

Despite its success it is clear that the SM is incomplete and cannot be the ful l 

description of nature, not least because gravity is completely omitted. In addition 
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the Standard Model suffers from quadratic divergences [2]. Consider, for example, 

the contribution of the heavy fermion loops to the two-point function of the SM 

Higgs as shown in Fig. 1.1. The SM Higgs mass, M f j y must be ^ 1 TeV to preserve 

unitary of the W W scattering amplitudes [3]. Here we see that if the H-F-F cou-

H 
H 

Figure 1.1: Fermion-Antifermion contribution to the self energy of the Higgs Boson 
in the Standard Model 

phng is A and N(F) is a multiphcity factor (eg. N(b) = 3 for bottom quarks from 

the colour summation) then the correction is given by [2 

n£„(0) = - ; v ( F ) / A t . . | ( i A ) ^ ( a ) ^ j 

The first term in the last line above is quadratically divergent. We could regulate 

the divergence by imposing a cut-off, A. To do this we must assume that the SM 

is valid up to the scale A. If the SM is valid up to the plank scale, Mpi, then the 

cut-off is 0{Mpi). If the divergence is replaced by Mp^ it one would expect that 

Mf{ ~ Mpi, otherwise huge fine-tuning is necessary. 

The question that now arises is what new physics might we expect to discover 

in future experiments. Clearly one could formulate all kinds of new theories so 

it would be helpful if we could use the current experimental data to restrict or 
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guide our ideas. With this in mind we shall review some theoretical contributions 

to precisely measured observables. In this thesis we limit the discussion to Elec-

troweak Precision Observables (EWPO) and in particular the contributions to the 

rho parameter, p. 

1.1 The search for new Physics 

Restrictions on new physics can be imposed using both direct and indirect con

straints. The unsuccessful direct search for the Higgs Boson at LEP places a lower 

bound on the SM Higgs mass of Mh > 114 GeV [4]. Indirect constraints are 

imposed by the measurement to very high precision of known processes and com

paring the result with the theoretical prediction. This analysis of precision physics 

was successfully used to predict the mass of the Top quark to within 10% of the 

direct measurement at the Tevatron [5] of 

mt = 172.7 ±2 .9GeV (1.2) 

which agrees well with the value derived from precision electroweak data [4] of 

mt = 172.3l:l^GeY (1.3) 

Current experimental high-precision measurements agree well with SM. This puts 

an upper bound on effects from extensions of the SM. Thus corrections from any 

proposed extension must be relatively small in order to maintain good agreement 

with experimental data. 

High precision experimental results require equally precise theoretical predictions 

in order for comparisons to be made. It is insufficient to just use tree level results 
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for SM processes when performing this type of analysis as both 1- and 2- loop 

corrections will produce measurable effects. Whilst this makes the theoretical cal

culations more involved, it also gives the possibility of observing the effects of new 

phenomena. Since both 1- and 2-loop SM contributions have been calculated and 

provide small corrections to the tree-level result, it is plausible that contributions 

from new models in further loop corrections will give rise to equally small but no

ticeable effect, and may even provide a better description of data than the SM. We 

will therefore proceed by taking our favoured theory of new physics and calculate 

higher order corrections to precision observables in that theory to constrain (or 

even exclude) the parameter space of that model. 

1.2 Thesis Outline 

This thesis is in two parts: Chapters 2 - 4 contain a brief introduction to the 

physics used in later calculations and serves to define our notation. Chapters 5 -

7 give details of three calculations performed by the author. 

In the next chapter we review the p parameter and discuss the leading order result 

for Ap. We justify the need to renormahse the calculations presented later and 

outline our calculational method and choice of regulator. 

In the following chapter will introduce supersymmetry and define our notation 

for later chapters. Chapter 4 introduces renormalisation using counterterms gives 

describes their implementation in our calculations. 

In chapter 5 we present the leading QCD corrections to scalar quark contributions. 

Leading two-loop electroweak corrections are presented in chapter 6 in the heavy 

supersymmetric limit. Both these results have been published previously but are 
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reproduced here independently both to introduce the calculational method in a 

more simple framework and to verify the previous results. 

Leading Squark Yukawa corrections are presented in chapter 7. This chapter con

tains some new results, as well as giving explanation for many of the observations 

made in the original publications of the work presented in chapter 6. 

In the final chapter we conclude. 



Chapter 2 

Electroweak precision observables 

and calculation of loop corrections 

A vacuum is a hell of a lot better than some of the stuff that nature 

replaces it with. 

Tennessee Williams, "Cat on a Hot Tin Roof (1955)" 

Electroweak precision observables (EWPO), like the masses of the W and Z bo

son Mw,z or the effective leptonic weak mixing angle sin^ ̂ eff, are highly sensitive 

probes of the quantum structure of the electroweak interactions. The standard 

model (SM) and any extension or alternative predicts certain relations between 

these observables that can be tested against the corresponding experimental val

ues. The experimental resolution is better than the per-mille level, and thus the 

measurements can be sensitive to even two-loop effects. Hence the EWPO are 

very powerful for discriminating between different models of electroweak interac

tions and for deriving indirect constraints on unknown parameters such as the 

masses of the SM Higgs boson or supersymmetric particles. 
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An important part of the theoretical predictions of all EWPO both in the SM and 
in extensions of it is contained in Ap (see section 2.4). The follow section gives a 
brief explanation as to why. 

2.1 Muon decay and A r 

The muon lifetime,r^, is a very precisely know experimental value. It can also be 

calculated theoretically from first principles [6 

with F{x) = 1 - 8x - 12x'^log{x) + 8x^ - x'^ and where me,m^ are the electron 

and muon masses respectively and J\q represents QED corrections from the Fermi 

model. Equation 2.1 can be used to define the Fermi constant G^. By comparing 

the theoretical prediction for the muon lifetime within a given model with Eq. 2.1 a 

relation between and the parameters of the model can be derived. This relation 

receives radiative corrections from vertex, box and self-energies diagrams (see, for 

example, fig 2.2), which, at first order, can be parameterised by the quantity Ar : 

G. = J""^ ^ (1 + A r ) , (2.2) 

where = 1 — M ^ / M | and a is the electromagnetic couphng constant. For 

A r = 0 this relation corresponds to the lowest-order SM prediction. In accordance 

with the definition of in Eq. 2.1, the contribution corresponding to the QED 

correction in the Fermi model has to be extracted from A r 

At one-loop order of the SM, A r is a finite combination of one-loop diagrams and 
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counterterms(see chapter 4). It can be decomposed in the foUowing way: 

A r i _ i o o p = Aa - - f A p + ArremainderlMn) (2.3) 

~ log ̂  - mf ~ Iog(M//) 

- 6% ~ 3.3% ~ 1% 

where Aa is the correction from the running of a, Ap is the leading top mass 

(rrit) contribution to EWPO entering quadratically and Arremainder(^H) are the 

remaining one-loop contributions. This later term contains the leading MH de

pendence (~ log{MH))- Since the correction from Aa is ~ ^og ̂  it is shielded 

from the effect of heavier fermions and thus makes it a poor choice to examine 

new physics (where one typically expects masses to be larger than those of SM 

particles). A p , however, can provide corrections 0 { ^ ) (or possibly even larger 

for new physics models), proportional to the mass splitting of isodoublets, allowing 

one to calculate measurable corrections to EWPO. 

2.2 T h e p parameter 

The p parameter [7] is defined as the ratio of the neutral current to the charged 

current in processes such as those in Fig.2.1 

Figure 2.1: Electron - Neutrino scattering via neutral and charged currents 
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At tree level p is given by 

P = ^ (2-4) 4 M | 

= 1 

where Mz,w are the masses of the Z and W boson respectively and Cw is cos(^iy), dw 

the weak mixing angle. In equation 2.4, p = 1 at tree level is a manifestation of 

the custodial symmetry in the SM [8]. At higher orders, p receives corrections 

from vertex loops, box loops and propagator loops (see figure 2.2). In this thesis 

we will only be concerned with leading corrections to the internal propagators (ie. 

the third diagram in fig. 2.2). 

v.. 

V( (V 

Figure 2.2: Examples of Vertex, Box and Propagator loop corrections to p . V is 
either a Z or W boson; F is an electron or neutrino 

Loop diagrams such as those shown in fig.2.2 give rise to integrals such as those 

seen earlier in chapter 1 (equation 1.1). Before proceeding we briefly discuss the 

problems of evaluating such expressions. 
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2.3 Loop calculations: Regularisation + Compu
tation 

The integral expressions for loop diagrams are formally infinite in the limit k oo 

(ultra-violet divergent) [9]. That is, the 'bare' parameters that appear in the 

Lagrangian (eg. mass, charge) are infinite and cannot be physical parameters. In 

order to overcome this problem one must regulate these divergences away to leave 

only renormalised (finite), physical values. 

This could be be done by imposing a cut-off on the integral, introducing some 

(arbitrary) upper bound and taking the hmit as the cut-off —> oo in the final 

result. In practice, however, it turns out to be more convenient to use dimensional 

regularisation [10] [11], that is to shift the integral from 4 to D = 4 —2e dimensions, 

working in the limit of e —> 0. The divergences then show up as poles in e. 

Dimensional regularisation has the advantage of respecting gauge invariance, as 

well as regularising infra-red {k —» 0) divergences. 

Dimensional regularisation is not without problems, however. The 75 matrix is not 

well defined in dimension D ^ 4 [12], since it is intrinsically a 4-dimension object. 

The problems arise when trying to evaluate the trace of four or more 7 matrices. 

Fortunately in the calculations presented in this thesis we will only be concerned 

with two-loop self-energies where there will be maximum of three independent 

momentum parameters, and consequently a maximum of three 7 matrices. Thus 

we never meet these problems here. 

In later chapters we will be performing calculations in supersymmetry (SUSY), 

where extending dimensions to D > 4 is not straight forward. SUSY is a symmetry 

between fermions and bosons. Changing the dimension from 4 to D changes the 

number of degrees of freedom of vector bosons, as they are D-dimensional objects. 

10 
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The number of degrees of freedom of the fermions remains unchanged. This leads 
to a contradiction in SUSY and therefore in supersymmetric calculations we work 
in the analogue of dimensional regularisation: dimensional reduction [13]. The 
most notable difference between the two schemes is that g^^ = 4 in dimensional 
reduction (ie.not D as in dimension regularisation) to avoid potential conflicts. 

Al l Feynman diagrams in this thesis, unless explicitly stated, have been calculated 

using the following procedure: The amplitudes for each diagram are produced with 

the Mathematica package FeynArts [14], making use of the MSSM model file [15 

where appropriate. Unless stated otherwise, we work in the Feynman gauge. 

Dirac algebra and traces have been evaluated using the program Twocalc [16]. The 

reduction to scalar integrals has been performed also using the routines built into 

Twocalc, which performs the integrals using dimensional regularisation (for SM 

diagrams) or dimensional reduction (for Supersymmetric diagrams). 

As a result we obtained the analytical expression for Ap in terms of the one-loop 

integral functions AQ and BQ [17] and on the two-loop integral function T134 [16,18]. 

For the further evaluation the analytical expressions for AQ, BQ and T134 have been 

inserted. The scalar integrals are given in Appendix A. Both infra-red and ultra

violet divergences show up as poles in e, in the limit as e ^ 0. Summing all 

diagrams for a physical process and series-expanding^ in e gives a finite result in 

the limit e —> 0. Finally, numerical analysis is performed. 

2.4 A p at one loop 

To calculate the rho parameter at a given order one has to calculate the ful l neutral 

current (Z-exchange) and charged current (W-exchange) processes at this order (ie. 

^Because of problems discovered with some of the numerical routines in Mathematica, the 
series expansion and algebraic manipulation is performed in Maple. 

11 
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all possible diagrams in fig. 2.2) and take their ratio. Performing this calculation 
gives (amongst others) a term from the renormalisation of the weak-mixing angle 
of the form 

This term contains the leading top/bottom contribution in the SM. In the low 

energy limit this contribution can be obtained in the approximation of evaluating 

the Z / W self-energies at zero momentum. This quantity is what one usually calls 

Ap: 

=^p ^ P + Ap (2.6) 

where Ti^zi^), E^iy(O) denote the transverse parts of the unrenormalized Z and W 

boson self-energies, respectively, at zero momentum transfer. Here the transverse 

(and longitudinal) self-energy parts are defined by decomposing the self-energy 

llvv{<i^) into Lorentz tensors and scalar parts as follows: 

^vv,M) = - ( 3 m . + ^ ) S ^ v ( 9 ^ ) - ^-^^'vv{<l') (2.8) 

The term on the right of Eq.2.7 is a finite correction to p. 

Historically the p parameter was a precision observable measured in experiments. 

In more recent experiments observables measured to high precision include Mw 

and sin^ ̂ eff- The quantity Ap is a useful parameter to calculate as it parametrises 

the leading universal corrections from vector boson self energies induced by the 

mass splitting between fields in an isospin doublet [7]. Any contribution to Ap 

12 
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induces the following shifts to Mw and sin^^eff: 

6Mw 

6 sin^ êff 

w 
2 4 -

-Ap 

Ap 

(2.9) 

(2.10) 

Experimentally p is very close to one. It turns out that any model with only 

Higgs doublets (and singlets) will automatically give p = 1 at tree level (with 

small corrections at higher orders). Thus Ap is a very useful quantity exactly to 

calculate for constraining new physics through higher order corrections. 

For reference we now present the dominant one loop correction to Ap in the SM. As 

previously stated the dominant contribution in the SM arises from the top/bottom 

sector due to the large mass sphtting in the quaxk doublet. To obtain this contri

bution one must calculate the Feynman diagrams show in Fig 2.3 

Figure 2.3: Leading corrections to Z and W self-energies within the SM entering 
Ap 

The divergent parts of the one-loop SM result for the Z and W self-energies in fig 

2.3 are: 

W 

3ê  {ml + ml)Ml M | 
327r2e ( M ^ , - M | ) " 

3ê  {ml + m1)Ml 
327r2e {M^ - M | ) 

13 

(2.11) 

(2.12) 
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where nib^t are the mass of the bottom, top quark respectively. 
One may now calculate the correction to Ap using equation 2.7. Prom equations 
(2.11) and (2.12) it is manifest that at one-loop the top/bottom contribution to 
Ap is finite without renormalisation. This is not just by chance. Since p = 1 
at tree level, there are no parameters to renormalise at the one-loop level. For 
higher orders in general, however, corrections to Ap will not be finite and we will 
need to renormahse the calculation. This is one of the more appealing aspects of 
the Ap calculation as all renormalisation scheme dependence is suppressed to the 
two-loop level. The method of renormalisation is described in chapter 4 and exact 
renormalisation schemes will be defined as required. 

The finite one-loop SM result for the diagrams in fig. 2.3 is: 

-3e'{mt -mj+ 2m,X(log[g])) 

0.00986 (2.14) 

where e is the electron charge and mt = 178 GeV, rrib = 4 GeV. Thus the leading 

SM result gives a small but measurable contribution of about 1%, which corre

sponds to (using Eq. 2.3) a 3.3% correction to A r . 

The result can be rewritten in the compact form 

Apr = Foimlmll (2.15) 

where 

Foix,y) = x + y - ^ ^ l o g - . (2.16) 
x - y y 

Fo has the properties Fo(m^,m^) = Fo(m|,m^), Fo{m^,m'^) = 0, Fo{m'^,0) = m?. 

14 
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One therefore obtains Fo{mf,ml) ^ mj, giving rise to the well-known quadratic 
dependence of the one-loop corrections to the EWPO on the top-quark mass. In 
this form it is manifest that the largest contribution to Ap at one-loop comes from 
the t/b-isodoublet due the large mass-splitting. 

15 
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Supersymmetry 

'Supersymmetry must exist in order to solve the problem of what to give 

graduate students to calculate...' 

Conversation with Nick Evans, Spring 2003 

Supersymmetry^ [20] (SUSY) is regarded by many theorists as the most attractive 

extension of the SM. Proponents of SUSY highlight the following as evidence of 

the model's appeal: I t is the only non-trivial extension of the Poincare group; con

sistent with the unification of the gauge couplings beyond the TeV scale; provides 

a natural solution to the dark matter problem; can incorporate a description of 

gravity; solves the Hierarchy problem. 

Here we do not attempt to justify SUSY from a theoretical point of view but 

take a more pragmatic approach. We take the model and ask what, if any, region 

of the parameter space allows us to make predictions consistent with the current 

experimental evidence. By restricting the parameter space we hope to narrow the 

_searchior supersymmetric particles at the next generation of colUders. Conversely, 

^Much of the information in this chapter appears in ref. [19] but is reproduced here to define 
notation 

16 
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we may also hope to find regions of the parameter space that provide contributions 
to EWPO giving better agreement with current data than the SM. 
Supersymmetry, as the name suggests, is a symmetry in nature between bosons 
and fermions. The fermionic operator Q generates the transformations: 

Q\Boson > = \Fermion > (3.1) 

Q\Fermion > = \Boson > (3.2) 

SUSY predicts that every particle within the SM has a supersymmetric partner. 

The superpartner will have identical quantum numbers with the corresponding 

SM particle with the exception of spin. The spin is a half integer difference, hence 

SUSY maps bosons to fermions and vice-versa. 

There is an obvious problem with SUSY: no superpartners have yet been observed 

in nature so immediately we see that the symmetry must be broken. This is 

not the disaster that it might at first seem. The success of the SM illustrates 

the usefulness of broken symmetries. In general SUSY breaking leads to 105 free 

parameters. For simplicity however, many of these can be restricted by assuming a 

breaking mechanism, although full understanding of the breaking mechanism will 

require the discovery and measurement of several key SUSY parameters. 

3.1 T h e M S S M particle spectrum 

The Minimal Supersymmetric Standard Model (MSSM) is the simplest supersym

metric extension of the SM. I t contains only those particles necessary to build a 

consistent theory. The quarks and leptons have superpartners squarks and slep-

tons, respectively. The photon, Z and W bosons have superpartners: the photino, 
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Chapter 3: Supersymmetry 3.1 The MSSM particle spectrum 

zino and wino, all with spin | . These are not physical states however, as they 

mix with the SUSY partners from the Higgs sector, the higgsinos, to form physical 

mixing states: neutralinos and charginos. The full particle spectrum of the MSSM 

can be seen in table 3.1. 

Spin i Spin 0 
(S)Quarks [u,d, c,s,t,b]j^ j^ [it, d, c, s, i, b]^ j^ 
(S)Leptons A*, 7']x,,fi, We,n,T]i [ e , / i , f ] L , f i , [i>e,^l,T]L 

Spin 1 Spin 0 Spin i 
Neutral Bosons (Bosinos) 7 , ^ Al,2,3,4 
Charged Bosons (Bosinos) ~ i 

X Gluon (gluino) 9 - 9 

Table 3.1: The Particle Spectrum of the MSSM 

3.1.1 The Higgs Sector of the MSSM 

The most noticeable difference between the MSSM and the SM can be seen in 

the Higgs sector. In SUSY at least two Higgs doublet superfields are required. 

A supersymmetric model with only a single Higgs doublet superfield suffers from 

quadratic divergences, has non-vanishing gauge anomalies and cannot give masses 

to the both the up- and down-type fermions [2]. The MSSM thus contains two 

Higgs doublet superfields, Hi and H2, where the first doublet, Hi, gives mass to 

the d-type fermions (with weak isospin I = — ^) and the second, H2, gives mass to 

the u-type fermions (I = - f | ) . 

The introduction of a two Higgs doublet to the MSSM gives rise to five^ physical 

Higgs bosons. In contrast to the SM, where the Higgs boson mass is a free param

eter, the quartic coupUngs of the Higgs potential in the MSSM are fixed by the 

^The Goldstone Bosons, G° and in the MSSM are 'eaten' by the Z and in the same 
way as in the SM. 
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gauge couplings as a consequence of SUSY. So in the MSSM one parameter, //, 

replaces two parameters in the Higgs sector of SM. Unfortunately SUSY breaking 

in general leads to the introduction of many more free parameters. 

The Higgs masses can all be predicted from two free parameters at tree level (along 

with other SM parameters), conventionally chosen to be MA, the mass of the CP-

odd Higgs boson and tan(/?) = V2/V1, the ratio of the vacuum expectation values 

of the Higgs doublets. 

The two Higgs doublets form the Higgs potential [21] 

KSTM = K + l M n i ^ i | ' + (m^ + M ' ) |^2 | ' -m?2(6„57^?7^^ + ^.c.) 

+I{9l + 9l)[m' + \n2\r + \9l\n\n2\' (3.3) 

where mi, m2, mi2 are soft SUSY breaking parameters and /u is the Higgsino mass 

parameter, gi and §2 are the U(l) and SU(2) gauge couplings and = - 1 - The 

Higgs doublet fields Hi and H2 are given a vacuum expectation value (vev) in the 

following way: 

Hi = 

Ho = 

/ \ 

V 

+ 

Hi 

-<t>i 

4>t 

J 
\ 

V2 + ^,{cl>'2-ix'2) ) 

(3.4) 

(3.5) 

The potential, Eq (3.3) can be re-parameterised in terms of M^o and tan(/9) and 

SM parameters (M^) . This can be achieved by substituting equations 3.4 and 3.5 

into 3.3 and making use of the minimum conditions, i.e. the first order terms in 

The neutral fields must vanish. 

Diagonalisation of the bilinear part of the Higgs potential, i.e. the Higgs mass 
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matrices, is performed via the orthogonal transformations: 

\ 
/ 

v 

COS a sm a 

— sin a cos a 

COS (5 sin (3 

- s i n j3 cos 13 

cos 13 sin /5 

- s i n ;9 cos (3 

X? 

/ 

/ 

(3.6) 

(3.7) 

(3.8) 

where the mixing angle a is defined through 

tan 2a = tan 2(3 
+ Ml _7r 

Ml,-MV 2 
< Q; < 0 (3.9) 

and the masses of the gauge bosons are given in analogy with the SM: 

M'w = hlivl + vD- Ml = \{gl + gl){vl - f - vl)- M, = 0 (3.10) 

At tree level the mass matrix of the CP-even Higgs bosons in the (pi - 02 basis is 

given by 

M 2,tree 
Higgs,even 

MloSl + MlCl 

-{Mlo + Ml)Sp Cp 

-{Ml, + Ml)SpCp 

Ml.Cl + MlSl 

\ 
(3.11) 

where C/j, 5^ = cos(/?), sin(/3). The mass matrix for the CP-odd Higgs boson 
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is [22]^: 

A#2,tree m XI 
m X1X2 

m 

m 

X1X2 
2 
X2 

M%Cl 

\ 

J 

(3.12) 

Similarly the mass matrix for the charged Higgs bosons is: 

2,tree 
Higgs,charged 

V 

(Mlo + Ml)Sp Cp {Ml, + M^)Cl 
) 

(3.13) 

The CT -̂even Higgs mass matrix, Eq.(3.11), can be diagonalised using Eq.(3.6 )to 

give the tree level Higgs boson masses 

a 

Higgs fiven 

( 

V m h,tree J 

(3.14) 

The results for the tree level neutral Higgs bosons masses are 

Mlo + M | ± yJ{Mlo + M | ) 2 - 4M|M2oCos22 /3 (3.15) 

which yields an upper bound of mh,tree < Mz for the hghtest CP-even Higgs boson 

mâ ss. Such a value for the mass has already been experimentally excluded [23], 

^For the benefit of the reader who is cross-referencing with ref. [22], in this thesis we work 
only in the real (CP-conserving) MSSM so T], the possible phase between the two Higgs doublets 
in ref. [22], is set to zero and hence M//± (= + Mw in [22])= M^o 
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but because of large higher order corrections the MSSM prediction for the hght-
est Higgs mass is not excluded. In fact the combined effect of 1st and 2nd order 
corrections increases the theoretical bound to rrih < 135 GeV. [24 
The CT^-odd and charged Higgs boson masses can be deduced similarly by diagonal-
ising the mass-matrices 3.12 and 3.13 using equations (3.7) and (3.8) respectively. 
For reference the Higgs boson masses are given by: 

Ml 
1 
2 

Ml + Ml^yJ{Ml + M | ) 2 - 4 M 2 M | cos2 2(3 (3.16) 

M l . = Ml + Ml (3.17) 

Ml = Ml (3.18) 

Ml. = M'^, (3.19) 

3.1.2 The Squark Sector of the MSSM 

The Squark mass term of the MSSM Lagrangian is 

1 I f \ 
^mf = - ^ { f l f i ) Z ' (3.20) 

\ f R j 

where Z = M'^^^y the mass matrices for the { u , d } type squarks. In this thesis 

we w i l l be only concerned w i t h the dominant corrections f rom the squark sector. 

A t the one-loop level the dominant contribution is f rom the stop/sbottom sector 

due to the large mass-splitting between the top and bot tom quarks. A t two-loops, 

diagrams containing, for example, a squark-squark-Higgs vertex are enhanced by 

a factor {Mquark/Mw)- Since the top mass is so much greater than the other quark 

masses contributions f rom the other squarks is usually , negligible. The off-diagonal 

terms in the sbottom sector, however, are multipUed by a factor tan j3 and so for 
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large values of tan p the sbottom sector produces measurable effects. The sbottom 

sector is also required for SU(2) gauge invariance. We therefore restrict further 

discussion of the squark sector to only the stop and sbottom squarks. 

The mass matrices for the stop and sbottom squarks are 

Ml = 

( + c o s 2 / ? ( | - | s 2 ^ ) M | 

M ^ ^ + c o s 2 / ? ( - i + i s 2 ^ ) M | 

tR 

rutXt 

mbXb 

M? - i s ^ c o s 2 / ? M | 

(3.21) 

(3.22) 

Here M?^^^^ = M^^^^^ + m^, where M?^^^^ are the left- and right-handed squark 

masses. Also 

Xt = At- IJ, cotp 

Xb = Ab — fi tanP 

(3.23) 

(3.24) 

where Ag are the soft-SUSY breaking trihnear couphngs. Furthermore, SU(2) 

gauge invariance at tree level requires 

Mi, - Mb, (3.25) 

I n order to diagonalise the mass matrices and determine the physical mass eigen-

states the following rotat ion is performed: 

cos 6 J sin 9^ 

— sin 9J cos 9J 

( f \ 
JL (3.26) 
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Af can then be wr i t ten as follows 

sin 6 f cos 6 f{m% — m^-) 
Af = ^ ^ + / /{cot P; tan /?} (3.27) 

where { c o t t a n / 3 } correspond to the t,b-type squarks. 

3.1.3 Charginos and Neutralinos 

The chargino and neutralino part of the MSSM Lagrangian is given i n ref. [25 . 

Here i t wi l l suffice to define their masses through the diagonalisation of the fo l 

lowing matrices. First for charginos, the mass matrix, X is given by 

/ 
X = 

Ma V2Mw sin P 

V2Mw cos /3 n 
(3.28) 

and for neutralinos, the mass matr ix Y is given by 

Y 

M l 0 

0 Ma 

-MzSwcos/3 MzCwcosP 

-MzSwcosP MzSwsinP 

MzCw cos /3 -MzCw sin /5 

0 - f i 

\ 

y MzSwsinp -MzCw sin P -/i 0 

(3.29) 
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Chapter 4 

Renor malisat ion 

/ don't do this for my health, you understand. I do it for the pain. I 

*LOVE*the pain! 

Professor Hugh D. Young, quoted out of context. 

As explained in earlier chapters, when performing loop calculations infinities do 

not generally cancel and divergences have to be regularised (see section 2.3). 

Renormalisation is required in order to achieve a finite (physically meaningful) 

result. Renormalisation of many hundreds of diagrams is both technically chal

lenging and computationally demanding and so must be done in a systematic way. 

Here we renormalise using counterterms and illustrate our method in the following 

schematic example. We use dimensional regularisation [11] for SM calculations 

and dimensional reduction [13] for calculations involving SUSY. 
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4.1 Renormalisation of higher order terms 

Consider the Lagrangian 

C = A{P^ - MAM (4.1) 

where A is some field w i t h mass M ^ . A l l parameters in the Lagrangian need to 

be renormahsed [9] i n order to be f ini te (physically meaningful). The field A is 

renormalised by 

A ^ A { 1 + ^5ZA) (4.2) 

and the mass MA by 

MA^ ^ MA^ + 5MA^ (4.3) 

So the Lagrangian becomes 

= £ + A(P2 _ MA^)A5ZA - ASMARA (4.4) 

in f irst order of the counterterms 5ZA, 5M^. 

In the on-shell scheme the mass and field renormalisation constants are given by 

5MA' = T.A{P' = MA') (4.5) 
dT.A^^), 

dp 5ZA = — X — l p 2 = M ^ ^ (4-6) 

where S^(p^) represents the self-energy of the A field. 

Since the calculations presented in this thesis are for physical (measurable) pa-
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rameters, the field renormahsation parameters, 5ZA, must all cancel in the final 
result. For simpUcity (and to save computer t ime) these renormaUsation constants 
are often set to zero at an early stage. 

The additional mass term ASMA^A i n the renormalised Lagrangian, Eq. 4.4, yields 

a new counterterm propagator which has to be added to the ordinary Feynman 

rules and leads to a counterterm graph (see fig 4.1). For a given particle, the 

addition of the counterterm to the one-loop self-energy renormalises the mass. 

Renormalisation of a more general Lagrangian, eg. the MSSM Lagrangian, w i l l 

also require vertex renormalisation and hence vertex counterterms (and vertex 

counterterms graphs). The renormalisation scheme and exact definition of is 

E(p2) + 5w? 

Figure 4.1: Example of mass renormalisation: Self-energy + Counterterm yielding a 
finite mass 

given as required in later chapters. 

Renormalisation of two-loop self-energy diagrams, such as the example shown in 

figure 4.2, is performed using a similar but increasingly laborious method. 

Figure 4.2: Two-loop Z Sglf-einefgy 
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The two-loop Z and W self-energies, such as that shown here and which w i l l 
be encountered often in later chapters, can be renormalised by five counterterm 
diagrams as shown in figure 4.3. 

z / ^ z z / \ z 

t t 
_ Z 

z V z 
f f 

Figure 4.3: Z counterterms contributions to the two-loop self-energy 

Recall that the one-loop result is finite wi thout renormalisation. As a consequence 

at the renormalisation at the two-loop level only requires one-loop counterterms. 

The two-loop counterterm, shown on the left of figure 4.3 is not required. 

4.2 Implementation of Counterterms 

As explained in section 2.3, the amplitude for all diagrams are produced using 

FeynArts. Whils t the Feynman rules for SM counterterms have already been pro

grammed in the FeynArts model files, the Feynman rules for SUSY counterterms 

have not been introduced. They have therefore been calculated explicitly and 

appended to the MSSM model file. We now briefly describe our approach. 
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4.2.1 Squark sector counterterms 

Consider first the squark sector of the MSSM. We begin by renormalising the Vec

tor boson-Squark-Squark vertices. I n principle all parameters appearing in the 

vertex should be renormalised. Calculations presented in this thesis, however, 

can be of many hundreds or thousands of Feynman diagrams and expressions can 

be large and cumbersome. To reduce calculational complexity we systematically 

group the diagrams in to classes that give a contribution of a given order and 

consider only those class of diagrams that give a contribution of dominant or

der. I t follows that only those parameters that give a contribution of the same 

order when renormalised need to be included in the renormalisation procedure. 

To demonstrate this we take, as an example, the Z-Stop-Stop vertex coupling, 

C[isi,is2, Z] i n the MSSM: 

ru~ r 71 ( - 3 + ̂ S'wWlliUki + ^S'wUllA^ 
L^[tai,ts2,^\ = — ^ y i . l ) 

where t[i,2] represents the i i , t 2 squark and f/^_y is the Stop mixing matrix: 

/ 

^ — sin 6i cos 6i 

cos 6J sin 9 J 
(4.8) 

for 6i the Stop mixing angle. 

I n the calculation of 0{aas) and 0{al) yukawa contributions to A/? presented 

in this thesis only the renormalisation of the squark masses and mixing angles 

produce corrections of the same order. Since these are the dominant effects the 

renormalisation of the electric charge, e, and Weak mixing angle, Sw, can be 

omitted. I n the example aboye only the Stop mixing matr ix requires renormalising. ^ 
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Thus the renormalised vertex is given by 

C[isuUZ]= ^ ( ( - 3 + 45^)(^f / ,^ ; , i t / i2 , i + t ^ i u ^ f ^ k i ) 

+ ^SUSUll2Ul2,, + Ull,5Us2,2)) (4.9) 

where SUl y represents the renormalisation of the Stop mixing angle given by ^ 

di^ei + dOi (4.10) 

which leads directly to 

cos di —> cos 6i - sin OiSOf, sin 6^ —> sin 6^ + cos 9i59i (4.11) 

and thus 

^ -cos6'(- - s i n ^ t ^ 
SOi (4.12) 

Equation 4.9 should also contain field renormalisation parameters but these have 

been omit ted here for simplicity. 

The squark mass-matrix renormalisation is performed in analogy w i t h equation 

4.3. In FeynArts 3 however, Feynman rules are expressed in terms of the physical 

masses M? ^, not the parameters ^ which appear in the Lagrangian. The 

mass-matrix has therefore to be diagonalised, in accordance w i t h Eq.(3.26), be

fore renormalising. As a result the squark mixing renormalisation parameter 60j 

appears in the mass-counterterms along wi th the mass renormahsation constants. 

^The renormalisation of the Sbottom mixing angle is defined in an analogous way 
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I n this diagonal basis the squark mass-matrices become: 

^ / , . - % . + ^ ^ / . . (4-13) 

w i t h 

% 0 

0 ^ h / 

(4.14) 

and 

5M 
1,2 (4.15) 

^ 5Mf^ ( M ? - M ? ) < 5 ^ , 

^ ( M ? - M p 5 ^ , 5M;^ 

where field renormalisation constants have again been ignored. 

4.2.2 Higgs sector counterterms 

Recall f rom section 3.1.1 that the Higgs sector of the MSSM depends on two SM 

parameters, Mz and Mw, and two free MSSM parameters: M^o, tan/3. To renor-

malise the Higgs sector in principle all these parameters should be renormalised. 

Fortunately, once again the calculation can be simplified: The quantity Ap is only 

well define in the gauge-less limit'^. I n this l imi t the vector boson masses, Mz and 

Mw, are set to zero (whilst keeping the ratio Mz/Mw fixed). Therefore the W 

and Z boson masses do not require renormalisation and we are left w i t h only M^o 

and tan/3. I n fact the renormalisation of tan/3 does not produce contributions 

of 0{aas) or 0{a^),0{atab),0{al) and can therefore be omit ted f rom further 

discussion. 

A full discussion of the gauge-less limit is given, as required, in later chapters 
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There is, however, one further complication. I n section 3.1.1 i t was noted that in 

order to reparameterise the Higgs sector i n terms of M^o and tan/3 one had to 

make use of the minimum conditions (ie. linear terms in the neutral Higgs fields 

must vanish). A t higher orders these linear terms are in fact the tadpole terms and 

must be included in the mass-matrices and thus appear in the Higgs counterterms. 

The f u l l derivation of the resulting Higgs mass-matrices can be found in ref. [22 . 

Here we state the results, first for the neutral CP-even Higgs boson: 

Mjjo^no = ^Ml 
(C/jSc - Cc^S^f SpCp{sl - Cl) + SaCaic^ - s|) 

«/3C/3(Sa - Ca) + S a C a ( 4 " 4 ) (^^^'^ + "̂̂ Z?)̂  
( \ 

-C^s\s\ + 2SaCaSl + Cpcl{l + s}) S ^ ( 4 " S^) - S „ C « C / j ( l + 2sp 

^ 4(^1 - Sl) - SaCaC^( l + 2sl) -2CcSaSl + C^i-cls^ + 5^(1 + S^)) j 

^ 2CaSaCl - clclSfi + S/3S^(1 + c j ) C ^ ( 4 " + SaCaSfi{l + 2c|) 

4{cl-sl)+SaCaS0il + 2cl) - 2 c « S ^ C ^ + 5/3(^(1 + C^) - s2c2) 

where = cos a, = sin a, cp = cos (3 and sp = sin/3. Also 5M'\o is the 

renormalisation constant for M^o and tx — t^^^ are the tadpole terms. 

The neutral CP-odd Higgs boson mass-matrix now follows: 

(4.16) 

Mho,AO 
^ Cjiti -\- 5/3̂ 2 Spti — C(jt2 

y Sfsti - C0i2 M^o 
(4.17) 

A n d the charged Higgs boson mass-matrix is given by: 

Ml±M± = 
- f - S / j t i - Cpt2 Mlo 

I 

(4.18) 
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4.3 Summary 

A l l the mathematical tools and conventions required for the calculations presented 

in this thesis have been illustrated in this and the previous chapters. In the follow

ing three chapters we present three independently performed calculations. Each 

of the calculations forms a well defined and separately renormalisable subset of 

the dominant two-loop contributions to A p . For all calculations presented the re

quired counterterm propagators and vertices have been derived using the methods 

illustrated i n this chapter and appended to the MSSM model file i n FeynArts. 

The renormalisation scheme and renormalisation parameters are defined in later 

chapters. 
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Chapter 5 

Leading QCD Corrections to 

Squark Contributions to Sp 

It is a good morning exercise for a research scientist to discard a pet 

hypothesis every day before breakfast. It keeps him young. 

Konrad Lorenz (1903 - 1989) 

In the MSSM [26], the theoretical evaluation of the E W P O is not as advanced 

as i n the SM. I n order to fu l ly exploit the experimental precision for testing the 

MSSM and deriving constraints on the supersymmetric parameters, i t is desirable 

to reduce the theoretical uncertainty of the MSSM predictions to the same level as 

the SM uncertainties. So far, the one-loop SM contributions to A r and sin^ ^eff have 

been evaluated completely [27,28]. I n the case of non-minimal fiavour violation the 

leading one-loop contributions are known [29]. A t the two-loop level, the leading 

0{aa3) corrections to Ap [30] and the gluonic two-loop corrections to A r [19,31 

are known, see Ref. [19] for a review. 

34 



C h a p t e r 5: Lead ing Q C D Correct ions 5.1 One-loop result 

The dominant gluonic 0{aas) correction [30] is now reproduced here to provide 
an independent verification of the previous result and to check our calculational 
method^ and numerical routines. 

5.1 One-loop result 

To begin, the one-loop result is presented for reference. W i t h i n the MSSM the 

dominant correction to A p f rom SUSY particles at the one-loop level arises f rom 

the scalar top and bot tom contribution, shown in fig. 5.1. Even at the one-loop 

level the number of MSSM diagrams to be calculated is significantly greater than in 

the SM as a consequence of the larger particle spectrum and possible combinations 

of sparticles w i th in loops. 

\ z,w 

Figure 5.1: One-loop Z,W Vector Boson self Energies in the MSSM. Here V represents 
a Z or W boson, q represents a stop or sbottom squark. 

5.1.1 Analytical result 

As in the SM, the result is finite wi thout renormafisation as a consequence of the 

same custodial symmetry. We have explicitly checked that the result is analytically 

^In ref. [30] the amplitudes were generated using FeynArts 2.0 [14] (FA2), which performs 
calculations in the qL,R basis in the squark septor (ie. using Lagrangian paxameters). Here we 
use FA3, where the Feynman rules are written in terms of the mass eigenstates. The calculation 
presented here also provides a consistency check between the two versions. 
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identical to that in ref. [32] and is given by equation (5.1). The behaviour of this 
result is now examined for some common SUSY scenarios. 

A SUSY _ 3 Gfj, 
POne-Loop - sin^ (9j cos^ 9iFo (m? , m | ) - sin^ 6*5 cos^ 6*5̂ 0 {mf^, mf^) 

+ cos^ Of cos^ 6'^Fo(m? , H- cos^ 9^sin^ 9iFo{mj^, m?^) 

+ sin^ 9i cos' ^^Fo ( m | , m?^) + sin^ 9i sin^ ^^FQ ( m | , m | ) 

(5.1) 

Here m£.,m^.(z = 1,2) denote the stop and sbottom masses; are the mixing 

angles in the stop and in the sbottom sector. C?̂  is the Fermi constant. Fq was 

defined in chapter 2. 

Yet to be enforced is the SU(2) gauge relation, Eq.3.25, which reduces the number 

of free SUSY parameters f rom 6 (4 masses and 2 mixing angles) to 5 by setting 

h = bL = Mq^. 

We analyse the result for different mass and mixing scenarios. I n principle those 

scenarios which show the greatest contrast in results (ie. those scenarios that give 

the extreme values for A p ) are of most interest since they show the l imits of the 

A p corrections f rom the MSSM. As we shall now see, however, i t is not always 

t r iv ia l to infer these values of the SUSY parameters. 

To begin we look at the Squark mass matrices given in chapter 2. There are three 

free parameters in the stop sector, which may be chosen as Mf^ ,Mi^ and Xt- Using 

equations 3.23 and 3.27 we can rewrite Xt as 

sin 9f cos 9Am,J- - mj-) 
Xt = ^ (5.2) 

TTlf 

By forming a rotat ion matr ix f rom the normalised eigenvectors of the stop-mass 

matr ix (3.21) and equating w i t h the rotat ion matr ix (3.26) Xt can conveniently 
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be rewritten i n terms of M? , M? and sin 9f 

Xt = 
sm0i cos9i ( 6 M ^ - 6 M ^ + ( - 3 + 8 5 ^ ) M | cos(2/3)) 

6 m ( ( l - 2sin2 9^) 
(5.3) 

The behaviour of Xt against sin 9i is shown in fig. 5.2 for the case when M^^ — 

(a commonly used simplification when performing numerical analysis). Notice that 

Xt diverges as sin 9i approaches -j^. This is the region referred to as 'maximal mix

ing' in ref [30]. Here we w i l l consider the same scenario to allow direct comparison 

of our result, thus verifying our numerical routines before analysing the (more 

complex) two-loop contribution. 

100 

50 

-100 

0.2 0.4 0.6 0.8 

Figure 5.2: Xt (GeV) against sinO^ for M^, = M^^ , mt = 175 GeV and tan/3 = 1 . 6 

Evaluating the Ap result at sin^^ = is not straight forward. From equation 5.3 

we see the the divergence of Xt only disappears i f the numerator is equal to zero, 

ie. the off diagonal terms in the squark mass-matrix are zero and thus the mixing 

angle is | (sin^j —> -^)'^. Therefore, where appropriate, Xt is used as an input 

^In fact the mass-matrix will only produce a rotation matrix with sin % = - L jf it is diagonal 
and the diagonal elements are equal. 
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parameter rather than sin^j. The (arbitrary) value of Xt = 200 GeV, chosen in 
ref [30], gives an approximation in the region where sin^f —> 

5.1.2 Numerical analysis at one-loop 

In Figures 5.3 and 5.5 we display the one-loop correction to p from the i, b isodou-

blet. For comparison with ref. [30] we plot the result against MQ (defined below) 

and sin in the same scenarios. The scalar squark masses are assumed to be equal 

for simpUcity: M^^ = M^^ = M-^^ = M^^ = MQ. In this hmit equation 5.3 implies 

sin^t ^ unless Mz = 0. Here, however, we have set Mz to its experimental 

value of 91.187 GeV. As we will show, deviations from this MQ choice can be large. 

For illustration in ref. [30] tan/3 is set equal to 1.6 but since (not At and /i) 

is used as the input parameter, analysis depends only marginally on tan/3. For 

large values tan /3 ~ mt/mb, the mixing in the sbottom sector should be taken into 

account. It was observed in ref. [30] that due to the comparatively small b-quark 

mass the effect from large tan /3 and large off-diagonal (Xb) terms in the sbottom 

sector on the one-loop result is barely noticeable. We have checked that varying 

the value of tan (3 produces almost indistinguishable results. Here and throughout 

this chapter we use rrit = 175 GeV and mt = 4 GeV. 

Figure 5.3 shows the one-loop correction against MQ for Xt = 0 and 200 GeV. 

As the value of Xt = 200 GeV is only an arbitrary approximation in the limit as 

sin 6i ^ we also give the correction for Xt — 500 GeV. The corrections grow 

rather large for small values of M Q , exceeding the current level of experimental 

sensitivity of approximately Ap < 2 x 10~^ [19]^. Conversely the corrections 

become small for large values of the SUSY parameters as SUSY decouples from 

^The experimental results for Ap are not given in [19] but bounds on SMw and Jsin^^eff 
appear. Bounds on Ap can be inferred using Eq.2.10. 
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Figure 5.3: Ap at one-loop against MQ = Mf^ = M^^ = M^^ = M^^, mj = 175 GeV 
and tan/S = 1.6. The correction is given for Xt = 0,200 and 500 GeV. 
^6 = 0. 

0 GeV 

— — Xt = 200 GeV 

Xt = 500 GeV 

200 300 
MQ 

Figure 5.4: M^^ against MQ in the same scenario as fig 5.3. The correction is given for 
Xt = 0,200 and 500 GeV 

the SM. 

The correction for Xt = 500 GeV in fig. 5.3 stops abruptly at MQ ~ 250 GeV. 

This can be explained by looking at fig. 5.4, which shows the how the ii mass 

varies with MQ in the same scenario. At MQ ~ 250 GeV for Xt 500 GeV 

the ^1 mass falls to zero (all other squark masses stay above 100 GeV in this 
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region of the parameter space). Since the experimental lower bound for SUSY 
particles is O(IOO) GeV, the Xt = 500 GeV correction has already been excluded 
for MQ < 300 GeV. In fact the correction for Xt = 200 GeV is also excluded for 
MQ < 150 GeV. Thus when the simplification MQ{= Mi^ = Mi^ = M^^ = M^^) 
is used as an input variable, care must be taken to avoid regions of the parameter 
space that produce experimentally excluded physical parameters. 

The behaviour of Ap against sin^f, shown in figure 5.5 for three values of MQ = 

150 ,250 and 500 GeV, is practically fiat except in the region sin^f ~ where 

the oflp-diagonal terms in the stop-mass matrix become large. In this region the 

behaviour is less clear so the same result is replotted in figure 5.6 against Xt (in 

this scenario figure 5.6 is merely just a rescaling of the x-axis in the region of 

sin9i :^)- The latter plot shows that for MQ = 500 GeV and large off-diagonal 

elements in the Stop-mass matrix, the corrections to Ap become very large and 

again are experimentally excluded. This is in contrast to fig. 5.3 where for large 

MQ (but not quite so large Xt) the SUSY contributions decouple. As a final 

remark we note that for small values of MQ in figure 5.6 the curve showing the 

contribution to Ap again abruptly stop as M^j —> 0 in the corresponding region of 

Xf 

Both figures 5.3 and 5.5 agree"* with those pubfished in ref. [30 . 

We now briefly examine the case when we allow the left and right squark masses 

to be different. As stated in chapter 3, the SU(2) gauge symmetry enforces the 

relation M? = M? = M%. For convenience we also use M? = Ml = MX^. 
t i , bL '̂ L (ft ba VR 

We set M Q ^ = 500 GeV. Here again tan/? = 1.6 so sbottom mixing produces 

negligible effects (sin^^ set to zero). The result is plotted in figure 5.7. Note that 

throughout the parameter space considered here, with the choice of M Q „ ^ MQ^ 
^The small numerical differences with [30] are due to slight differences in the values of Mw, 

Mz, and ag used here. 
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Figure 5.5: Ap at one-loop against sm9^ for mj = 175 GeV and tan/3 = 1.6 The 
correction is given for MQ = 0,250 and 500 GeV 
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Figure 5.6: Ap at one-loop against Xt for the same parameters as in fig.5.5 . This is 
merely a rescaling of fig.5.5, enlarging the region around sin 6^ ~ ^ 

all physical squark masses are > 0(100 GeV) (ie. above the lower experimental 

bound). 

One complication that arises when M Q ^ ^ M Q ^ is in the definition of the squark 

rotation matrices (Eq.3.26). The problem is most clearly evident in the limit 
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Figure 5.7: Ap at one-loop against MQ^ = M -̂̂  = M^^ for M^^ = M^^ = 500 GeV 
tan/3 = 1.6 

^t,6 0 (referred to as the 'no mixing' case in ref. [30]), where the squark mass-

matrices are diagonal. One has a choice as to how to define the rotation matrices, 

since both 

^ 0 ^ 

0 1 
and 

J 

( 

\ 

0 - 1 

1 0 
(5.4) 

will diagonalise the squark mass-matrices in the no-mixing limit (the former cor

responds to a mixing angle = 0, the latter to ^ ) . The latter matrix has the effect 

of swapping / i and j^- One could redefine / i ( /2 ) such that / i ( /2 ) has the greater 

(smaller) mass. Given our derivation of equation 5.3 however, it is more convenient 

to rewrite sin ^ j , sin Qi in terms of Xt;b everywhere in the result for Ap. Whilst the 

freedom to choose sin%, sin^^ etc. as free parameters is lost, the ordering of / i 

and li is automatically taken care of. The implication for the squark masses is 

that M^-j > Mj^. 

Figure 5.7 can be directly compared with 5.3. The results manifestly coincide at 
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MQ^ = = 500 GeV. The behaviour is not significantly different except for 

the case where Mg^ is small and Xt is large (ie. the lowest curve in fig 5.7). In 

this scenario lowest stop mass, M^^, stays well above zero and curve shows smooth 

behaviour (unlike the abrupt stop already discussed in fig. 5.3). This is reassuring 

since without moderate fine-tuning, it is likely that Mg^ ^ ^QR-

5.2 Two-loop calculation 

Having reviewed the one-loop result we now discuss the two-loop calculation. The 

dominant two-loop correction within the SM of 0{aas) is given by [33 

A P 2 - C - -Apf^ ,oop^V (1 + ^ V 3 ) . (5.5) 

I t screens the one-loop result by approximately 10%. 

In the MSSM at the two-loop level there are many thousands of diagrams making 

a ful l calculation too laborious and (computer-) time consuming. To overcome 

this problem we split the calculation into separately renormalisable classes; each 

class giving a contribution of a given order. We then concentrate on those classes 

that will give dominant contributions. To begin we calculate the contribution 

from the squark-gluon loops, of 0{aas)- A complete and detailed analysis of this 

contribution can be found in ref. [30 . 

5.2.1 Renormalisation 

The diagrams that contribute are shown in figure 5.8.^ The counterterm diagrams 

and insertions required-in* order to renormalise these-two-loop diagrams are shown 

^Two-loop diagrams containing a squark, a quark and a gluino as internal particles will also 
give a contribution of ©(aa^) as shown in ref. [30]. The gluino contribution yields a finite result 
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Figure 5.8: Two-loop Z,W self-energy diagrams for the contribution of squark loops to 
Ap at 0{aas). q^''^ = ^i,2/61,2 squark. 

in figure 5.9. For gluon exchange contributions only squark loops are included 

here, since gluon exchange in quark loops is just the SM contribution, yielding the 

result in Eq.5.5. Before calculating these diagrams in ful l there are a number of 

simplifications that can be made: 

(i) To isolate the contributions of 0{aas) the yukawa and electroweak couphngs 

are set to zero in the four squark vertex. 

Separately and is not niproducod licrc (although full numerical analysis of the 0{aas) result 
should include the gluino contribution). 
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Figure 5.9: Z,W Counterterm diagrams of ©(aa^) for Ap. q^'^ = f̂ -̂  or b^'^. 
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Figure 5.10: Counterterm insertions of 0{aas) for Ap. q^'^ — t}'"^ or 6̂ '̂  

(ii) Diagram 1 in figure 5.8 only gives rise to longitudinal modes, which do not 

contribute to the transverse self-energy. 

(iii) Two-loop self-energy diagrams 2 and 4 contain a squark loop sitting on top 

of another squark loop. Contributions from these two classes of diagram will 

be cancelled by the counterterm diagrams 1 and 2 (figure 5.9) with squark-loop 

insertion diagram 1 (figure 5.10). This is because contributions from the 'upper' 

loop must be independent of the incoming momentum at the four-squark vertex 

in order to satisfy momentum conservation at this vertex. The counterterm will 

give rise to exactly the same expression but with the incoming momentum set (eg. 

in the OnShell scheme) to = M | . But having argued that the contribution is 

independent of the incoming momentum the cancellation is manifest. Since we 

are, however, performing this calculation in part to verify our method, this result 

has been explicitly checked.^ 

^The squark loop insertion into the vertex counterterms are part of the gluino renormalisation, 
so do not appear here. 
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(iv) Diagrams 3 and 5 would not contribute for exactly the same reason as for 
diagrams 2 and 4 given above were it not for the fact that they both contain a 
massless gluon loop, giving rise to a scaleless integral. They are manifestly zero 
and thus we do not include them in the counterterm insertions. 

(v) I t has been argued that only the second counterterm insertion in figure 5.10 

will contribute. Note that there is no qi — q2 — gluon (squark-mixing) vertex giving 

rise to the counterterm insertion required for renormalising the mixing angle. I t 

is manifest that renormalisation of the squark-mixing angles do not appear in this 

calculation. A final simplification can then be made by noticing that the vertex 

counterterms (diagrams 3 and 4 in figure 5.9) only renormaUse the squark mixing 

angles^ (as opposed to the masses). As there is no renormalisation of the mixing 

angles, these vertex-counterterm diagrams also do not contribute and need not be 

calculated. 

The results presented here are precisely the same in dimensional regularisation 

and dimensional reduction, although intermediate unphysical results can (and do) 

differ. The renormalisation procedure is as follows. We work in the on-shell scheme 

where the squark masses are defined as the real part of the pole of the corresponding 

propagators: 

6ml = ^ a H . ) f o r / i = ^i,2,bi,2. (5.6) 

This definition of the renormaUsation constants breaks the SUSY relation Eq.3.25, 

which requires one of the renormalisation constants to be expressed in terms of the 

other three (and top and bottom renormalisation constants). The definition above 

was used initially in ref. [30], however, and will suffice to check our calculation 

without unnecessary complication of introducing further relations and renormali-

^We omit the field renormalisation constants (see later) 
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sation constants. 

In addition, a prescription for the renormalisation of the squark mixing angle is 

required: 

The renormalisation of the mixing angle is defined to vanish at a given momentum-

transfer, 2?̂ . Here we choose = M?^ to allow comparison with ref. [30]. This 

means that for this value of the squark masses do not mix but propagate in

dependently. One could choose set to equal the q2 mass but in practise the 

numerical result differs only slightly with p'^. 

Finally, one ought to include definitions of the field renormalisation constants. 

However, since none of the internal fields exist in the final state, all these param

eters must drop out in the final calculation. This was verified in ref. [30]. Here, 

to save computing-time, the field renormalisation constants are omitted from the 

start. 

5.2.2 Numerical Analysis 

The full result for the gluon contribution has been calculated and is analytically 

identical to the result given in ref [32 

A p ! ' - w = V [ - ^ < ^ < ^ - ^ ' ^ ^ < ' < ^ 

+ cos^ di coŝ  e^Fi (m?, m?^) - f cos^ 9i sin^ ̂ ^Fj (m? , m?^) 

-(- sin^ (9( cos^ %Fi ( m | , J -f- sin^ 9i sin^ e^Fi ( m | , m?^) 

- ' ^ ^ (5.8) 
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with 

Fi{x,y) = x-\-y-2 log- 2 -(- -In-
y 2/J x - y y 

(x-h^)a;2 X ^, x. ' .\2^09'l-'i{x-y)Li^[l-l) (5.9) 
{x-yY y y 

where Fi has the following properties: Fi{ml,ml) = Fi{ml,ml), Fi(m^,m^) = 0, 

Fi(m^, 0) = m^( l + f ) . Li2 is defined in appendix A. 

Figures 5.11, 5.12 and 5.13 show the two-loop gluon result for Ap. 

Figure 5.11 shows the result against the common squark mass MQ for the same 

scenario as the one-loop result shown in 5.3. This plot is shown in ref. [30] and is 

reproduced here again as a check. The behaviour is similar to the one-loop result 

and the two-loop result increase the one-loop contribution by up to 35% . This is 

certainly a measurable effect and justifies further analysis at the two-loop level. 

Figure 5.12 shows the two-loop result plotted against M Q ^ (the right-handed 

squark mass) with M Q ^ = 500 GeV, ie. the same scenario as for the one-loop 

result in figure 5.7. In figure 5.13 we show the behaviour for large tan/3 = 40 

where effects from the sbottom-mixing are most noticeable { X b = 2000 GeV). In 

fact the result barely changes from that shown in figure 5.12, justifying the decision 

to ignore the sbottom mixing until now. 

Figure 5.14 shows the two-loop result against X t in the same scenario as the one-

loop result in figure 5.6 Once again the behaviour is similar to the one-loop result 

and increases the contribution by around 10%. 

Finally, we now go beyond the scenario considered in [30] and examine the be

haviour of Ap against X b for large tan/3 = 40. The result is shown in figure 5.16 

for common squark mass MQ = 250 GeV. The result has been plotted over a much 

larger range than for X t (fig. 5.14) in order to show a significant change in Ap. 
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For small X t the result for Ap seems to diverge for large X b (much larger than 
required for X t in fig. 5.14) but falls to zero for X t = 500 GeV, although the curve 
may diverge for even larger X i , than is plotted here. To examine the behaviour 
further we rewrite Xt^b using equations 3.23 and 3.23 and re-plot the result against 
tan P for A t = A t , = 500 GeV and for three values of p (equivalent to varying both 
X t and X b together). 

The curves in fig. 5.16 show a marked difference for each value of p. For larger p 

the result diverges. One would expect similar behaviour for p = 200 GeV in the 

very large tan/3 range (going beyond the experimental bounds on tan/3). 

5.3 Chapter summary 

In this chapter we have independently verified the dominant gluon contributions 

to Ap in the MSSM. The result is the same as that given in ref. [30]. This agree

ment not only confirms the previous result but serves as a check for our squark 

counterterm additions to the FeynArts code. Contrary to the SM case, these cor

rections can enter with the same sign as the one-loop result, therefore enhancing 

the sensitivity to the squark effects. The behaviour of the result is examined for 

several new scenarios. 

In the next two chapters dominant quark and squark Yukawa contributions are 

presented. 
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Figure 5.11: Ap at two-loops against MQ - Mj^ = M j ^ = M^^ = M^^, mt = 175 GeV 
and tan^ = 1.6. The correction is given for Xt^= 0,200 and 500 GeV. 
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Figure 5.12: Ap at two-loops against MQ^ = M^^ = M^^ for Mf^ = M^^ = 500 GeV, 
mt = 175 GeV and tan/3 = 1.6. The correction is given for Xt = 0,200 
and 500 GeV. 
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Figure 5.13: Ap at two-loops against Mg^ = M j ^ = M^^ for M^^ = M^^ = 500 GeV, 
mt = 175 GeV and tan/3 = 4 0 , = 2000 GeV. the correction is given 
for Xt = 0,200 and 500 GeV. 
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Figure 5.14: Ap at two-loops against Xt for M Q ( = = M^^ = = M ^ ^ ) 
150,250and500 GeV, = 175 GeV and tan/3 = 1.6. 
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Figure 5.15: Ap at two-loops against Xb for M Q ( = M^^ = M ^ ^ = M^^ = M ^ ^ ) 
250GeV, mf = 175 GeV and tan^S = 40. 
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Figure 5.16: Ap at two-loops against tan;9 for M Q . ( = . M ( ^ = M^^ = M^^ = ) = 
250 GeV, mt = 175 GeV. At = = 500 G'eV " 
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Chapter 6 

Leading Electroweak corrections 

to Ap (part I) 

What we call 'Progress' is the exchange of one nuisance for another 

nuisance 

Havelock Ellis (1859 - 1939) 

In this and the following chapter we calculate the two-loop MSSM corrections to 

the EWPO that enter via Ap at 0{a^), 0{atab), 0{al). These are the leading two-

loop contributions involving the top and bottom Yukawa couplings and come from 

three classes of diagrams with quark/squark loop and additional Higgs or Higgsino 

exchange (sample diagrams for the three classes are shown in Fig. 6.1). These 

contributions are of particular interest, since they involve corrections proportional 

to mf and bottom loop corrections enhanced by tan /3, the ratio of the vacuum 

expectation values of the two Higgs doublets of the MSSM. 

As a first step, in Ilef. [32] t^^e^O{a^) '/b{atab), 0(al) corrections were calculated 

in the limit where the scalar quarks are heavy, corresponding to taking into account 
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(9) (91 

Figure 6.1: Sample diagrams for the three classes of contributions to Ap considered 
in this thesis: {q) quark loop with Higgs exchange, {q) squark loop with 
Higgs exchange, {H) quark/squark loop with Higgsino exchange, (j) denotes 
Higgs and Goldstone boson exchange. 

quark/Higgs diagrams (class {q)) only. This result is once again reproduced here 

for several reasons: To verify the result given in [32]; to check our addition to the 

FeynArts model file of the Higgs-sector counterterms; to give explanation for some 

of the observations in [32] and prepare the reader for the result presented in the 

following chapter. 

While this class of corrections turned out to be well approximated by the SM 

contribution (setting the Higgs-boson mass of the SM to the value of the CP-even 

Higgs-boson mass of the MSSM), a potentially larger effect can be expected from 

diagrams with squarks and higgsinos, classes (?), {H) in Fig. 6.1, which do not 

possess a SM counterpart. This latter result is presented in chapter 7. 

6.1 Electroweak two-loop corrections to Ap: the 

gauge-less limit 

The Yukawa contributions of C(a^) form a set of leading two-loop contributions 

entering the EWPO only via Ap, where a/ = y^/(47r), and yj \s the Yukawa 

coupling of fermion / . For the top and bottom quarks the Yukawa couphngs are 
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given by 

yt = —r—5", Vb = ^ , (6.1) 
V smp V cos P 

where v = y/vf + v^. In the SM another subset of leading electroweak two-

loop corrections to Ap is given by the corrections for large Higgs-boson masses 

of 0{G^MffM^) [38]. We will focus on the Yukawa corrections in the following. 

In order to evaluate the leading Yukawa contributions of 0{a'j) the gauge-less limit 

has to be applied. I t consists of neglecting the electroweak gauge couplings gi^2 0 

and thus also = g^v^ —> 0 and M | = {g\ -t- gl)v^/2 0, while keeping the 

ratio Cy, = Mw/Mz and the vacuum expectation value v fixed. Accordingly, TJZ,W 

in eq. (2.5) need to be evaluated at 0{gi 2) in order to obtain a finite contribution 

of 0 ( 5 ° 2 ) in gauge-less limit. In this limit only diagrams with fermions 

and scalars contribute to A/9, while no gauge bosons appear in the loop diagrams. 

At the one-loop level the only non-vanishing contributions to Ap in the gauge-less 

limit of the MSSM are the fermion-loop and sfermion-loop contributions as given 

in eqs. (2.15), (5.1). While the Higgs sector of a general two-Higgs-doublet model 

yields a contribution to Ap in the gauge-less limit, the contribution vanishes once 

the symmetry relations of the MSSM are imposed (see the discussion in Sect. 7.2.1 

below). 

At the two-loop level the gauge-less limit results in the desired Yukawa contribu

tions of 0{a'^i). For the quarks and squarks of the third generation this yields in 

particular terms of 0{mj/v'^) and (9(m^tan^/?/w''). I t is easy to see that no other 

contribution to Mw and sin^ êff besides the gauge-less limit of Ap yields terms of 

this order. 

In order to extract the contributions oi-G{af), Q{atctb^\ Q{al) from the diagrams 

involving quark and Higgs bosons, the coefficients of ytiVtybiyl have been ex-
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tracted. The coefficients of these terms were then evaluated in the gauge-less 

limit, ie. for Mw,Mz —>• 0, keeping cw = Mw/Mz fixed. For the Higgs masses 

appearing in the two-loop diagrams we use the same gauge-less hmit relations as 

those adopted in ref. [32]. 

m]j± = M% 

rriQO = 0 

= 0 (6.2) 

Applying the gauge-less limit in the neutral CP-even Higgs sector also gives 

MHO = 0 (6.3) 

as well as 

rn\jo = M%> 

sin a = — cos (3 

cos a — sin/3. (6.4) 

In the SM the two-loop result for Ap in the gauge-less limit was first obtained for 

the special case M^SM = 0 [39], 

A p f , ^ W „ = 3 ^ m ; ( l 9 - 2 . ^ ) . (6.5) 

This result was then extended to the case of arbitrary values of MfjsM [40]. The 
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corresponding result is given by 

A p - r o p ( ^ H - ) = ^ 1 ^ - ^ 1 - 3 , r _ 4 ^ ^ l o g ^ l V ^ l (6-6) 

+ -w log 

_ (̂ 6 + 6a:2 - - J log (x^) + 3 ' ^^^^ _ 4) ^ log ) 

+ 25- 4x^ + Tv^ 

^ ^lQ-6x^ + x \ . f l - w 
+ Gwx-' L12 

3{x 

2x\x^ - 4) 
x \ . (1-

a;2 _ 4 —^'^ \ -

= ^ ^ L i 2 ( l - . ^ ) } , 

where x = M^jsu/rrit, and = y ^ l — 4/a;2. The effect of going beyond the ap

proximation Musu = 0 turned out to be numerically very significant. While the 

numerical value of the result in eq. (6 .5 ) is rather small due to the accidental can

cellation of the two terms in the last factor of eq. (6 .5 ) , the result is about an 

order of magnitude larger for values of M;/SM in the experimentally preferred re

gion. As a consequence, the result for the 0{aj) corrections to Ap with arbitrary 

Higgs-boson mass as given in eq. (6 .6) provides a much better approximation of the 

ful l electroweak two-loop corrections to the EWPO [34-37] than the limiting case 

where M^^SM = 0, eq. (6 .5 ) . As an example, for M//SM = 120 GeV the resulting 

shifts in Mw and sin^^eff are —10 MeV and -|-5 x 10~^, respectively. 

Within the MSSM also the contributions involving the bottom Yukawa coupling 

can be relevant at large tan/?. The corresponding contributions of C?(Q;(), 0{atat)), 

and 0{al) to Ap have been obtained in Ref. [32] in the limit of heavy scalar 

quarks. In this limit only the top and bottom quarks and the Higgs bosons (and 

Goldstorie bosons) of the "MSSM appe& in the loops. The tesult^ tufhed but to 

be numerically relevant, leading to shifts in Mw and sin^ ^eff of up to 12 MeV and 
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6 X 10~^, respectively. Since in the gauge-less limit the couphngs of the Ught CP-
even Higgs boson of the MSSM to fermions become SM-like, the 0{a^) correction 
in the MSSM can be well approximated by the corresponding correction in the SM, 
as given in eq. (6.6). Potentially larger effects compared to the SM case can be 
expected from the contribution of supersymmetric particles (with not too heavy 
masses), since these corrections do not have a SM counterpart. 

Because in the SM case the limit —> 0 turns out to be a poor approximation 

to the result for arbitrary [40], it is desirable to keep M^o nonzero in the 

calculation here (formally a higher order effect). Keeping a arbitrary is also nec

essary to retain non SM-like couplings of the lightest CP-even Higgs boson to the 

fermions and gauge bosons. It is not possible, however, to keep all parameters in 

the Higgs sector completely arbitrary as the underlying symmetry of the MSSM 

Lagrangian must be exploited in order to achieve UV-finiteness of the two-loop 

corrections to Ap. 

It was observed in ref. [32] that in the limit yb — 0, where only the 0{a^) contribu

tion was considered, only the relations in Eq. 6.2 are required for UV-divergences 

to cancel. For the full 0{a^), 0{atab), 0{al) contributions however, the relations 

in both 6.2 and 6.4 are required but M/jO can be kept arbitrary (an explanation 

for this observation is given in the following chapter). 

Here we have reproduced the ful l 0{aj),0{atab),0{al) calculation in the quark 

sector, applying the full gauge-less limit relations 6.2 and 6.4. M^o is kept a free 

parameter but the coupling of the lightest CP-even Higgs boson to gauge bosons 

and fermions become SM-like. 

In order to calculate the 0{af),0{atab),0{al), corrections to Ap, the generic 

Feynman diagrams shown in figure 6.2 have to be evaluated. Al l possible diagrams 

involving the t / b doublet and the ful l MSSM Higgs sector have been included here 
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in direct analogy with ref. [32] and corresponding to the limit where all SUSY 
masses are heavy. Absent are the diagrams from the i/b doublet and Higgsino 
sector (which are presented in next chapter). 

V y V 
4>2 

V V 

Figure 6.2: Two-loop vector boson self-energies contain t/b quark plus the full MSSM 
Higgs sector. V = W,Z boson, (/ii_2 = physical Higgs or Goldstone boson, 
q = t,b quark 

The two-loop diagrams in figure 6.2 are supplemented with their corresponding 

one-loop counterterms and insertions. The Counterterms are shown in figure 6.3. 

The counterterms from the quark sector enter via the top/bottom mass coun

terterms 6mt,5mb. Recall from chapter 3 the Higgs sector of the MSSM is pa-

V V 

Figure 6.3: Vector boson counterterms to supplement the self-energies shown in fig. 6.2. 
V = W,Z boson, 01,2 = Higgs or Goldstone boson, q = t,b quark 

58 



Chapter 6: E W Corrections I 6.1 Electroweak two-loop corrections to Ap 

rameterised in terms of two variables: M^o and tan/3. Thus the Higgs sector 
renormalisation enters via the the counterterms SM]^^, 5tan(3 and the tadpoles 
6Th, and 5TH- Wave-function renormalisation entering via the diagrams in fig. 6.3 
once again must drop out so are omitted from the start (A check of wave-function 
renormalisation was done in ref. [32]). 

6.1.1 Renormalisation 

A renormalisation prescription for the Higgs sector is not required since it was 

observed that all renormalisation parameters drop out when all the second and 

fourth diagrams in fig. 6.3 are summed (an explanation for this observation is 

given in the following chapter). 

In order to define the renormalisation constants one has to choose a renormalisation 

scheme. For the SM fermion masses nit^b we always choose the on-sheU scheme. 

This yields for the top mass counterterm 

5mt = imt[ReEt^(m2) + ReEtj,{mj) + 2ReEts{mj)] , (6.7) 

with the scalar coefficients of the unrenormaUzed top-quark self-energy, T,t{p), in 

the Lorentz decomposition 

Et(p) = ^uj_i:t,ip')+^u+Et^{p') + mtE,,(p2) , (6.8) 

and analogously for the bottom mass counterterm. 

The result calculated is analytical identical to the rather lengthy expression given 

in ref. [32]^ for the full ©(a^), 0{atab), 0{al) quark result. 

^The result was actually compared with an expression obtained from the authors of [32]. A 
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4>i 

<i 

Figure 6.4: Quark self-energy insertion, q = t /b quark, 0i = Higgs or Goldstone boson. 

6.1.2 Numerical analysis 0[al)^0{atah),0[oLl) quark result 

Since a ful l numerical analysis is presented in ref. [32], here we briefly show the 

behaviour of the result calculated above. Our numerical routine differs from that 

used in [32]. We use the program FeynHiggs [41-44] to calculate the mass of the 

lightest CP-even Higgs boson, M^o in terms of M^o, which allows the inclusion 

of (large) higher order effects in the Higgs sector. In order for FeynHiggs to do 

this we need to specify the parameters in the Higgs sector: At = Af, = 2000 GeV, 

MsusY = 1000 GeV, (x = 200 GeV^. In addition, the SM parameters used here 

are rrit = 174.3 GeV, rub = 4.25 GeV, Mw = 80.45 GeV and Mz = 91 .187 GeV. 

The 0{al),0{atai,),0{al) quark result contains parameters from the SM and 

the Higgs sector of the MSSM. Since the SM parameters are known, the result is 

shown against the two free parameters in the MSSM Higgs sector, M^o (which is 

repaxameterised in terms of M/jO and tan /3. 

Figure 6.5 shows the result against M/iO for small and large tan/?. Since M^o is 

a dependent parameter we have varied M^o from 80 GeV to around 600 GeV. In 

the large M a o region, large changes to MAP cause only small changes in M^o, thus 

M / j O does not extend much beyond 130 GeV. Both results converge to a (different) 

point as M^o is increased. 

direct comparison with the result in [32] has not been performed. 
^This represents a marginally different scenario to that examined in ref. [32] 
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-0.0001 

0.00016 

0.00018 

-0.00022 

Figure 6.5: Ap against M^o for tan/3 = 3 (dashed line) and tan/3 — 40 (sohd line). 

Figure 6.6 shows the result plotted against tan p for MAO = 300 and 500 GeV. 

Ap 

-0.00019 

-0.00021 

-0.00022 

-0.00023 

10 20 40 tan/3 

Figure 6.6: Ap against tan/3 for M^o = 300 GeV (sohd line) and M^o 500 GeV 
(dashed line). 

The behaviour shown in both figure 6.5 and 6.6 qualitatively agrees with that 

shown in ref. [32]. The absolute value of the result varies by ~10% because higher 

order corrections have been included within the Higgs sector (from using FeynHiggs 

to calculate MSSM parameters). 
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6.2 Chapter summary 

The dominant quark-Yukawa contributions to Ap in the MSSM have been calcu

lated and the result is analytically the same as that given in ref. [32]. We confirm 

the observations made in [32] that the result is finite for arbitrary M^Q and the 

Higgs sector renormalisation parameters all drop out. In the following chapter we 

present the dominant squark-Yukawa contributions to Ap and give an explanation 

for the observations made here. 

62 



Chapter 7 

Leading Electroweak corrections 

to Ap (part II ) 

'There comes a time in every man's life and I've had many of them.' 

Casey Stengel (1890 - 1975) 

In this chapter new results at 0{a^), 0{atab), 0{al) are presented in the light 

squark limits In particular, diagrams of the class q and H in figure 6.1 have been 

calculated. In this chapter we complete the discussion of the 0(0;^), 0{atab),0{al) 

results that began in chapter 6. 

For the two-loop Yukawa corrections in the SM it turned out that the dependence 

on the Higgs-boson mass is numerically important. While the Higgs-boson mass is 

a free parameter in the SM, the masses of the CP-even Higgs bosons of the MSSM 

are given in terms of the other parameters of the model. In the gauge-less limit 

that has to be applied in order to extract the leading two-loop Yukawa corrections, 

^The material presented in this chapter is original work produced by the author in collabo
ration with the authors of [45], where some results have also been published. 
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the mass of the lighter CP-even Higgs boson, M^, formally has to be put to zero. In 
the previous chapter it was observed for the calculation of the diagrams of class (q) 
of fig. 6.1 that M/i can be set to its true value instead of zero in a consistent way. 
In this chapter we provide a detailed discussion of the gauge-less limit, yielding an 
explanation of this observation. We will analyse the Higgs-mass dependence also 
for the other classes of diagrams in Fig. 6.1. 

We analyse the numerical effects of the new corrections for various scenarios in 

the unconstrained MSSM and for SPS benchmark scenarios [52]. We study two 

different renormalisation schemes and investigate the possible effects of unknown 

higher-order corrections for Mw and sin^^eff-

7.1 The 0{aj), 0{atab), 0 ( a | ) contributions to 

Ap 

The purpose of this chapter is to perform a complete calculation of the 0{af), 

0{atab), and 0{al) contributions to Ap in the MSSM, including the contributions 

of supersymmetric particles. This means that all diagrams have to be evaluated 

(applying the gauge-less limit) that contain top and bottom quarks (as given in 

chapter 6), their scalar superpartners stop and sbottom, and Higgs bosons or 

higgsinos. 

The contributions to Ap at 0(0;^), 0{atab), 0{al) can be grouped into three 

classes (see Fig. 6.1): 

(?) diagrams involving t/b quarks and Higgs bosons (see also Ref. [32]), 

(q) diagrams with i/b squarks and Higgs bosons (see Fig. 7.1 for generic dia

grams), 
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(H) diagrams with higgsinos (containing also quarks and squarks) (see Fig. 7.2 
for generic diagrams). 

The generic diagrams shown in Figs. 7.1, 7.2 have to be evaluated for the Z boson 

and the W boson self-energy. 

q ( f ) 

,^ V 

V \ / V V \ ' / V V \ I / y \ > ^ 
^ V ' ""T" <l> q q q 

0 

V V 

Figure 7.1: Generic Feynman diagrams of class [q). V denotes either W OT Z, q is 
either a f or a 6, and 0, x denote Higgs and Goldstone bosons. 

In the following sections we describe the necessary ingredients for the evaluation 

of these contributions, starting with the relevant sectors of the MSSM. 
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Figure 7,2: Generic Feynman diagrams of class {f{). V denotes either W or Z, q is 
either at or a. b, while q is a, t or a b, and H denotes a higgsino (neutral or 
charged). 

\ V 

Figure 7.3: Generic Feynman diagrams for the vector boson self-energies with counter-
term insertion. V denotes either W or Z, q is either at or a b, while q is 
at or a b 

7.1.1 The relevant MSSM sectors 

Here we specify the MSSM contributions that are relevant for the 0{a^), 0{atab), 

0{al) corrections. As explained above, the calculation involves the gauge-less 
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limit where Mw, Mz —> 0 (keeping = Mw/Mz fixed). Accordingly, we discuss 
the implications of the gauge-less limit for the different sectors of the MSSM. 

The scalar top and bottom sector 

The squark mass-matrices were defined in chapter 3. Recall, as a consequence of 

Eq. 3.25, there are only five independent parameters in the i/b sector. The masses 

and mixing angles are connected via the relation 

E l ^ ^ l ' " ^ S . = E l ^ ^ l ' ^ + m , ^ - m ? - M | c ^ c o s 2 ^ . (7.1) 
i=l,2 i=l,2 

In the gauge-less limit the terms proportional to M | in the diagonal entries of the 

mass matrices and in eq. (7.1) vanish. 

Except where stated otherwise, we will assume universality of all three soft supersymmetry-

breaking parameters in the diagonal entries of the stop/sbottom mass matrices, 

MsusY = = Mi^ = Mi^ . (7.2) 

The common squark mass scale is denoted as MSUSY-

The Higgs sector 

In the gauge-less limit the Higgs sector parameters satisfy the relations 6.2 and 

6.4, as well as Eq 6.3: Mho = 0. These are restated (re-ordered) here for later 
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convenience: 

Mji± = Mjj = Ml, (7.3a) 

sino; = -cos/?, coso: =s in /? , (7.3b) 

M^ = Ml± = 0 . (7.3c) 

Because of the accidental cancellation in the SM result for M//SM = 0, see eq. (6.5), 

it is desirable to retain the dependence on Mh as much as possible in the MSSM 

result. In this way the numerical impact of the M/i-dependence can be studied, 

which within the MSSM is formally a higher-order effect. This is particularly 

interesting in view of the fact that higher-order corrections to the masses and 

mixing angles in the MSSM Higgs sector are sizable, see e.g. Ref. [46] for recent 

reviews. 

We will therefore discuss the implementation of the gauge-less limit in some detail. 

In particular, we will investigate in how far a consistent result for Ap can be 

obtained without imposing eq. (6.3). We will also briefly discuss the case where 

eq. (7.3b) is relaxed, see Sect. 7.2 below. For higher-order corrections in the Higgs 

sector we use the results as implemented into the code FeynHiggs [41-44]. 

Higgsinos 

In the gauge-less limit the contributions from the chargino and neutralino sector 

reduce to those of the higgsinos. The Diagonalisation matrices for the chargino 
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and neutralino sectors (defined in chapter 3) in this limit are given by 

U = V = 
0 0 

0 1 

1 

^ 0 0 0 0 ^ 

0 0 0 0 

0 0 1 - 1 

0 0 1 1 

(7.4) 

where N is the diagonalising matrix for the neutralinos and U*.X.V^ forms the 

diagonal matrix for the charginos [25,47]. 

The corresponding elements of the diagonalised mass matrices are 

(7.5) 

Al l entries corresponding to gauginos are zero since the gaugino couplings vanish 

in the gauge-less limit. Note that the negative sign in m^o has to be taken into 

account; the physical masses of the charged and neutral higgsinos are all equal to 

- I - 1 I in the gauge-less hmit. 

7.1.2 Evaluation of the Feynman diagrams 

In addition to the two-loop diagrams, one-loop counterterms corresponding to the 

renormalisation of divergent one-loop sub-diagrams have to be taken into account. 

The whole calculation can be performed both in dimensional regularisation [11 

as well as in dimensional reduction [13]. The Yukawa extraction is performed 

using the method illustrated in chapter 6. Since no gauge bosons appear in the 

loops, both regulaxisation schemes preserve gauge invariance and supersymmetry 

for the present calculation. Therefore the necessary counterterms correspond to 

multiplicative renormalisation of the parameters in the MSSM Lagrangian. 
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7.1.3 Counterterms 

The renormalisation constants that are relevant in the gauge-less limit are 

5mt, Srub, Srn^^, ^̂ f' '̂ "̂ 62' 

SMl, 5tan/?, 5th,H, S^, (7.6) 

corresponding to the renormaUsation of the fermion masses, the parameters of 

the i/b sector, the Higgs sector parameters and tadpoles, and the //-parameter. 

I t is not necessary to introduce wave function renormalisation constants for the 

fermions and scalar fields since they drop out in the sum over all diagrams. 

There are two possible ways to obtain the counterterm contributions: 

1. Generate and evaluate one-loop diagrams with insertions of counterterm ver

tices, as depicted generically in Fig. 7.3. In order to generate these diagrams, 

the required counterterm Feynman rules had to be added to the FeynArts 

MSSM model file. In the explicit evaluation of the counterterm diagrams 

it turned out that the renormalisation constants 5M^, 5tan/5, dth,H, <5M) 

corresponding to the Higgs/higgsino sector, drop out. Only the quark and 

squark mass and mixing renormalisation constants contribute. 

2. The renormaUsation transformation i i+Si iov each parameter i appearing 

in eq. (7.6) is performed directly in the one-loop result Apf!^i^^^^^ {{). The 

counterterm contribution for the two-loop calculation is then obtained by 

expanding Apf^{^^p^^ {i + 5i) to first order in the 5i, where the contributions 

to Apf^;^,oo^^^ have been given in eqs. (2.15), (5.1). In this setup it is obvious 

that the renafmalisatlofi Coristaiits 5M^, 5 tan /?, 5fh^i{, S/x do riot c6ri;tribute, 

since the one-loop result in the gauge-less limit consists only of the quark and 
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squark loop contributions and therefore does not depend on the Higgs-sector 
parameters. Accordingly, the counterterm contributions for the two-loop 
calculation, Apc t , can be written as 

Apct = E (sm,d^^ + Y: 5m)d^. + Y : S u l d ^ Apf^,:!^'\ (7.7) 
f=t,b \ i=l,2 ' i j = l , 2 ' V 

In order to have a non-trivial check of the counterterm contributions, we imple

mented them using both approaches and found agreement in the final result. 

Due to supersymmetry and SU(2) gauge invariance, see eq. (3.25), there are only 

five independent parameters in the i/b sector, leading to eq. (7.1). As a conse

quence, not all the parameters appearing in eq. (7.1) can be renormaUsed inde

pendently. Choosing m?̂  as the dependent parameter, its counterterm 5m? can be 

expressed in terms of the other counterterms. In the gauge-less limit the relation 

reads 

^111 i=l,2 

- 2 f / f i t / | i (w?^ - m | )5(7f2 - 2mt 6mt + 2m(, Srrib^ , (7.8) 

where the renormalisation transformation of the mixing matrix is defined in chap

ter 4. Note that the above relation was not used in our analysis of the QCD 

contributions in chapter 5, since the earlier calculation was performed using the 

same relations as enforced in [30] in order to provide a ful l analytical check. 

In order to define the renormalisation constants one has to choose a renormalisation 

scheme. For the SM fermion masses mt,b we always choose the on-shell scheme, as 
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in the previous chapter. This yields for the top mass counterterm 

5mt = lmt[ReEt^{m^t) + ReEi^(m2) + 2ReEt^(m^)] . (7.9) 

and analogously for the bottom mass counterterm (in order to take higher-order 

QCD corrections into account, we use an effective bottom quark mass value of 

nib = 3 GeV). For the five independent i/b sector parameters we choose either 

the on-shell [48,49] or the DR scheme. The precise definitions will be given in the 

following section. 

7.2 Renormalisation prescriptions and result for 

Ap 

As explained above, the strict implementation of the gauge-less limit in the eval

uation of the 0{af), 0{atab), 0{al) contributions to Ap would imply that the 

mass of the lightest CP-even Higgs boson has to be set to zero, see eq. (6.3). In 

the SM case, where M ^ S M is a free parameter, it turned out that the two-loop 

Yukawa contribution to Ap yields a much better approximation of the ful l elec-

troweak two-loop corrections to the E W P O for (realistic) non-zero values of M^/SM 

than in the limit M^^SM = 0 . It is therefore of interest to investigate the impact of 

non-zero values of Mh also for the MSSM, where Mh is a dependent quantity that 

is determined by the other supersymmetric parameters. 

I t has been observed already in Ref. [32] that the pure fermion contributions of 

class (q) (see Fig. 6.1) may consistently be obtained even if eq. (6.3) is not em

ployed. In this section w r disctiss this issue in detml Mid'explain the physical 

origin of this behaviour. Based on this result we show how the calculation of all 
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three classes of contributions to Ap, i.e. (q), (q), and (H), can be organised in 
such a way that Mh can be set to its true MSSM value essentially everywhere. We 
will use the resulting expression in order to study the numerical effect of non-zero 
M/i values for the new corrections calculated in this chapter, namely the squark 
contribution {q) and the higgsino contribution (H). 

7.2.1 Higgs sector 

In order to discuss the implementation of the gauge-less limit it is useful to com

pare the MSSM case with the one of a general two-Higgs-doublet model (2HDM). 

In the following "2HDM" is to be understood as a two-Higgs-doublet model in

cluding squarks and higgsinos, but without any supersymmetric relations imposed 

on them. The MSSM can be regarded as a special case of a 2HDM, with supersym

metric relations for couplings and masses. In the 2HDM without these coupling 

relations, Ap is also well-defined and can be calculated at 0{a'f), 0{atab), 0{al) 

in the gauge-less limit. The corresponding two-loop diagrams are identical to the 

diagrams of the classes (q), (q), (H) in the MSSM. However, in contrast to the 

MSSM, the Higgs-boson masses in the 2HDM are independent parameters and do 

not have to obey Eqs. 6.2, 6.4, ( and 6.3) in the gauge-less Umit. 

The essential diflPerence between the MSSM and the 2HDM case concerns the 

renormalisation and counterterm contributions. Restricting ourselves in a first 

step to class (5), these contributions can be decomposed in the MSSM and the 

2HDM as 

^PSSSM = Ap^'iioop + A p £ c t (7 .10) 

APSDM = A p g i o o p + A p L l t + ApS?^-ct . ( 7 . 1 1 ) 
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respectively. Here the two-loop contribution Ap"2\ogp and the counterterm con
tributions from the t/b doublet Ap[f_^^ are identical in the two models, while the 
Higgs sector counterterm contribution Ap^l,,,^ appears only in the 2HDM result. 

As mentioned above, in the MSSM there are no one-loop contributions from the 

Higgs sector and correspondingly no Higgs sector counterterm contributions at 

0(0}), 0{atab), 0{al). In the 2HDM, the Higgs sector one-loop contribution to 

Ap reads 

« P - 1 2 8 ^ N ^ - ' ^ ^ ^ 

+ sm'iP - a) {FoiMji^, M^) - Fo{Ml Ml)) 

+ cos\f3 - a) {Fo{Ml^,Ml) - Fo{Ml Ml)) ] (7.12) 

in the gauge-less hmit. Note that this contribution indeed vanishes if the MSSM 

gauge-less hmit relations (6.2, 6.4) hold. The counterterm contribution from the 

Higgs sector at the two-loop level can be obtained from this expression as 

/ \ 
Ap^-c t = E 5 M | a M 2 + 5 t a n / ? a t a „ / j + (5sinaasi„„ A p ^ ™ . 

(7.13) 

Since Fo(a:;,t/) and dxFo{x,y) vanish in the limit x = y, we find that Ap^^_j,j 

vanishes if 

MH = MH± - MA, COS(/3 - a) = 0, Mh = arbitrary (7.14) 

or 

MH± = MA, 5Mfj± = 5 Ml, Mh,MH,a = arbitrary. (7.15) 
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The relations in eq. (7.14) are the same as the constraints imposed by the gauge-
less limit in the MSSM except for the fact that M/j = 0 is not necessary. The 
observation made in Ref. [32] that the class (q) contributions to Ap can be evalu
ated in the MSSM in a meaningful way for non-zero values of can be understood 
from eq. (7.14). For class {q) the two-loop diagrams and the fermion sector coun
terterms are identical in the MSSM and the 2HDM. If the relations in eq. (7.14) 
hold, Ap^^_j,^ = 0 in eq. (7.11), so that eq. (7.10) and eq. (7.11) become identical. 
Thus, the calculations in the MSSM and the 2HDM are the same in this case. This 
means that the result of class {q) derived in the MSSM for non-zero M/i is well-
defined and consistent, as it corresponds to a certain special case of the general 
2HDM result. 

7.2.2 Inclusion of the i/b sector in the on-shell scheme 

For the fu l l set of contributions to Ap, also the sfermion diagrams of class {q) 

and the higgsino diagrams of class (H) have to be taken into account. In the 

following, as explained above, we consider a 2HDM including also stops, sbottoms 

and higgsinos (although without any supersymmetric relations). The analogy of 

the calculation in the MSSM and the 2HDM does no longer hold, since the sfermion 

sector renormalisation differs in the two models. 

As discussed above, supersymmetry and SU(2) gauge invariance imply that not all 

parameters in the squark sector can be renormaUsed independently in the MSSM. 

Choosing m^^ as the dependent mass in the MSSM, its renormahsation constant 

5m?^ is given by eq. (7.8), and no independent renormalisation condition can be 

imposed on it . We will refer to the expression for Sm-^^ in terms of the other coun

terterms of the fermion and sfermion sector as given in eq. (7.8) as the "symmetric" 

renormalisation, Smi 
bi symm 
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In the on-shell scheme [48], the three other squark masses "^(^2,62 are defined as 
pole masses, and the mixing angle counterterms can be defined via on-shell mixing 
self-energies: 

5m] I = ReEf^imj^) for = t,,2,h; (7.16) 

SUL = " for f = t,,. (7.17) 

In a 2HDM with squarks, on the other hand, an on-shell renormalisation can be 

apphed for all four squark masses. In this case 5m?̂  is given by 

K l o s = R ^ ^ S . ( < ) . (7.18) 

where E^̂  is the h\ self-energy. Hence there is a mass shift 

Am? =5m? -5m? (7.19) 
01 Oi symm Oi Ob ^ ' 

at the one-loop level between the mass parameter m?̂  as given by the "symmetric" 

renormalisation and the physical pole mass. 

For the class (g, H) the decomposition of Ap in the two models is given by 

^ P M S S M - ^P2-loop + ^Ptb-ct + ^Ptb_ct, symm ( ' - ^ ^ ^ 

^P2HDM - ^P2-loop + ^Ptb-ct + ^Pt6-ct, full O S ^ ^ P « - c t • i'-^-'-J 

Here A p | | ^ | ^^^^ corresponds to the "symmetric" renormalisation of the squark 

sector in the MSSM described above. Ap^S'^] , „ denotes the contribution from 
'̂ «6-ct, full O S 

the ful l on-shell renormalisation of all squarks. As one eaai see from eqs. (7.20) 

and (7.21) the MSSM result differs from the 2HDM result even for the case where 
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Ap^Lct = 0- The MSSM result therefore does not correspond to a special case of 

the 2HDM expression. 

7.2.3 Result for Ap in the on-shell scheme 

The total result for Ap at 0{af,ataij,al) in the MSSM is given by the sum of 

eqs. (7.10) and (7.20), 

Ap('-^-^) = Apffss^ + APS'IL • (7.22) 

As discussed above, in Ap^ '^ ]^ the "symmetric" renormalisation in the sfermion 

sector has to be applied, leading to the relations (7.1), (7.8) for m?̂  and ^fn^^. The 

contribution of class {q, H) can be rewritten by using the mass shift as defined in 

eq. (7.19) (see also Ref. [30]), leading to the expression 

Ap( '̂̂ --^) = ApffssM + APSIL, fun OS + A < ^ p f - Z , , (7-23) 

where ApJ^^^j^^ f„i, Qg is given by 

' ^ P M S S M , full OS - ^P2-loop + ^Ptb-ct + ^Pfb-ct, full OS ' i ' • ' ^ ^ i 

APMSSM result for the fermion-loop contributions as obtained in Ref. [32 

(employing an on-shell renormalisation of the fermion masses and inserting non

zero values for Mh). Apj^g^]^ fuiios contribution of the squark and higgsino 

diagrams obtained by normalising all sfermion masses, i.e. including m? ,̂ on-shell, 

while the last term in eq. (7.23) is a symmetry-restoring contribution involving 

Am? . The one-loop sfermion contribution Apf^^,^^p has been defined in eq. (5.1). 

Comparing eqs. (7.24) and (7.21) shows that the "full OS" contribution in eq. (7.24) 
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is UV-finite already for the partial gauge-less limit of eq. (7.14), according to the 
discussion of the previous two subsections. 

Consistency requires that the mass shift in eq. (7.19) has to be UV-finite as weU. 

One can easily check that this requires taking into account both squark/Higgs and 

quark/higgsino loops. Correspondingly, because of the necessity of this shift only 

the sum of the (q) and (H) contributions to Ap is physically meaningful in the 

MSSM. 

Moreover, the mass shift Am?^ is only finite in the gauge-less limit, i.e. it can 

only consistently be evaluated if all the gauge-less hmit relations (7.3a)-(7.3c) and 

Mh — 0, eq. (6.3), are used. The last term in eq. (7.23) can therefore only be 

obtained in the approximation where M^ = 0. 

The expression in eq. (7.23) represents the main result of this Thesis. For the first 

term on the right-hand side of eq. (7.23), Apj^gg^, we keep the ful l dependence 

on Mh- As explained above, this is possible because this term is not affected by 

the renormalisation in the sfermion sector. For the second term, Ap^g^]^ fuiios' 

we will keep the M/j-dependence as well and compare to the strict gauge-less limit 

case where Mh = 0. The mass shift Am?^ entering the last term in eq. (7.23) is 

evaluated for Mh = 0. 

The last term in eq. (7.23) can be expressed using eqs. (7.20) and (7.21) as 

Correspondingly the ful l result can be rewritten as 

- ^PmsU + ^P2-lobp + ^Ptb-ct + ^Pfb-ct, full OS 

+ \AO''^'"^ - Ao^^'^^ 1 (7 26) 
[ '^tb-ct, symm Mh=0 ^ t 6 - c t , full OS Mh=oJ ' \''^^JJ 
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Al l contributions in the first fine of eq. (7.26) can be evaluated by keeping the 
ful l Mh dependence. For the other parameters of the Higgs sector we impose the 
gauge-less limit as specified in (7,3a)-(7.3c). 

As a result of eq. (7.15), the gauge-less hmit can be rela:x;ed in another way. If 

the sum of all contributions {q, q, H) is considered, the relation 5M^± = 5M\ in 

eq. (7.15) is valid. As a consequence, in the evaluation of the first fine of eq. (7.26) 

it is not even necessary to use the gauge-less hmit for sino; and MH- Instead, sin a 

and MH can be set to their true MSSM values. We will discuss the case where the 

gauge-less limit is relaxed also for these two parameters below. 

7.2.4 Renormalisation in the DR scheme 

As an alternative to the on-shell scheme in the squark sector, we also consider the 

DR scheme. In this scheme the counterterms of the soft supersymmetry-breaking 

parameters are defined to be pure divergences. The squark mass and mixing angle 

counterterms receive finite contributions corresponding to rrit^b in the squark mass 

matrices (3.21), (3.22): 

'^^/Jfin = {u'f5M)Uf^)^Jor ~f,=^h^2.K2, (7.27) 

rrij — rri; 
fl 12 

5M\ n = Sruf „ 
/ f i n J fin 

^ 2m/ Xf ^ 

^ 2m/ j 
(7.29) 

The result for Ap^i'^'^^ in the DR scheme follows from eq. (7.26) by replacing 

^Pfb'-cl full OS corresponding counterterm resulting from eqs. (7.27)-(7.29). 

As a consequence, the terms in the second fine of eq. (7.26) vanish. The results in 
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DR the DR scheme depend on the renormahsation scale ^ 

7.3 Numerical analysis 

In this section the numerical effect of the electroweak two-loop correction eq. (7.23), 

or equivalently eq. (7.26), is analysed, using the formulae in eq. (2.10) to obtain 

the corresponding shift in Mw and sin^^eff- In addition to the ful l MSSM correc

tion resulting from Ap(*'^'^\ we also present the effective change compared to the 

SM result (where the SM Higgs boson mass has been set to Mh). This effective 

change can be decomposed into the contribution from class (q) and from classes 

{q, H). The contribution from class (g), which was studied in Ref. [32],' reads 

Ap(')(MSSM - SM) = ApffssM " A p f / ^ " ^ ( ^ H S M = M , ) , (7.30) 

where A(^^{^^^ has been given in eq. (6.6). The contribution from classes {q,H) 

is given by 

Ap(^-'^) = A p J l l L , OS + Am?^ d^.^ Apf Yfolp , (7.31) 

where M/^ = 0 is used in the second term. Here and in the following we drop the 

subscript "MSSM" for simplicity. 

As SM input parameters we use the values mj = 178.0 GeV, m^ = 3 GeV. The 

bottom quark mass is to be understood as an effective bottom quark mass, taking 

into account higher-order QCD corrections. 

80 



Chapter 7: E W Corrections I I 7.3 Numerical analysis 

7.3.1 Impact of relaxing the gauge-less limit for Mh and 

sin a 

In the first step we study the impact of evaluating Ap^g^]^_ Qg (see eq. (7.31)) for 

the true value of the lightest MSSM Higgs-boson mass rather than for = 0. 

Accordingly, we compare the effect on the EWPO resulting from Ap^'^^Mh) -\-

Ap^^'"\Mh) and Ap^'^^Mh) + Ap^^'^\0). 

We have investigated the numerical effect of keeping the dependence on Mh in 

the squark and higgsino contributions for various MSSM scenarios. Fig. 7.4 shows 

an example where the numerical impact on the prediction of Mw and sin^ ^eff is 

quite sizable. The EWPO are given as a function of with Mgusv = —^t,6 = 

400 GeV, n = 800 GeV and tan/3 = 50. The effect of keeping a non-vanishing 

value of M/i in the squark and higgsino contributions amounts to about +5 MeV 

in Mw and - 3 x 10~^ to sin^ ̂ etr for all considered MA values. The effects for other 

MSSM scenarios are typically smaller than for the example shown in Fig. 7.4. Un

less otherwise stated, we will always keep the ful l M^ dependence in the results 

shown below. The difference between the result with and without the Mh depen

dence can be employed for estimating the residual theoretical uncertainties from 

unknown higher-order corrections, see the discussion in Sect. 7.3.4 below. 

Fig. 7.5 illustrates the numerical effect of relaxing the gauge-less limit on sin a. As 

discussed at the end of Sect. 7.2.3, the sum of the contributions of classes (q, q, H) 

can be evaluated in a meaningful way even if sin a and MH are set to their true 

values in the MSSM instead of their values in the gauge-less hmit. Since the 

corresponding shift in MH is usually quite small [41] we do not analyse the effects 

arising from diflFerent choices iov Mn and use its gauge-less value throughout the 

paper. The situation is different for the Higgs mixing angle a. Here the ful l tree-
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Figure 7.4: AMw and Asin^^eff are shown as a function for MA for the case where 
the full dependence on the mass of the light CP-even Higgs boson is kept, 
Ap(9)(M/i) + Ap^^'^^Mh), and for the case where the strict gauge-less 
limit for Mh has been applied in the squark and higgsino contributions, 
Ap(i\Mh) + Ap(^'f^){0). 

level value sina*^"" as given in eq. (3.9) can significantly deviate from its gauge-less 

value, sina^' — - cos/3. Fig. 7.5 shows the results for AMw and Asin^^eff based 

on sino!^"" and sina^^ The parameters are chosen in such a way as to maximise 

the infiuence of sina^"" vs. sinews'. The value tan/? = 6 is rather small, and e.g. 

together with MA = 150 GeV it leads to sina^"" = -0.31 and sina^' = -0.16. For 

^ s u s Y = P- = 400 GeV and At^b = —800 this parameter set is in agreement with 

aU experimental constraints from Higgs boson searches [50,51] and fe-physics [4]. 

Fig. 7.5 shows that even in this scenario the numerical effect of relaxing the gauge-

less limit on sin a is negligible. We have checked that this holds in general. In 

particular for larger tan/3 and/or MA the effect is even smaller. Therefore we will 

always set sin a to sin a '̂ in the following. 
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Figure 7.5: AMw and Asin^ êff shown for the case where the Higgs mixing angle 
a obeys either the full tree-level relation, eq. (3.9), or is fixed by the gauge-
less limit, eq. (7.3b). 

7.3.2 Dependence on supersymmetric parameters 

In Figs. 7.6, 7.7 and 7.9 we explore the numerical impact of Ap^''^'^) on Mw 

and sin^^eff for various MSSM parameter choices. The values are chosen such 

that experimental constraints are fulfilled for most parts of the parameter space. 

Fig. 7.6 shows a scenario with large tan/?, tan/3 = 50, and MSUSY = MA = 

300 GeV and fx = 500 GeV. The results are plotted as functions of the stop-

mixing parameter Xt — A — p/ tan/3 (see eq. ( 3 .21 ) ) , and we chose = A. 

The two-loop contributions AMw and A sin^ êfr are decomposed into the SM 

result, Ap2^{^^p{MfjsM = Mh), as given in eq. (6 .6) (shown with reversed sign for 

better visibility), Ap(«)(MSSM - SM) as given in eq. (7 .30) , and Ap^*'^) as given 

in eq. (7 .31) . For the latter contribution both the result with the correct MSSM 

value for Mh and with M/, = 0 is shown. We find that Ap^^-^'> induces shifts 

in Mw and sin^^efr of up to +8 MeV in Mw and - 4 x 10~^ in sin^^eff- The 
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corrections are significantly larger than the effective change compared to the SM 

arising from class (q), Ap(')(MSSM — SM). The impact of relaxing the gauge-less 

hmit on in Ap^^'^^ is clearly visible, although not as pronounced as in Fig. 7.4. 

It should be noted that small mixing in the stop sector (in this scenario values 

of \Xt\ ^ 350 GeV) is disfavoured by the LEP Higgs searches [ 5 0 , 5 1 ] , i.e. the 

dependence on M^. is largest where its value is already experimentally excluded. 

For small values of \Xt\ the supersymmetric contribution Ap(^)(MSSM — SM) + 

^p(ifi) is almost as large as the SM result, A(^1^^^{MUSM = Mh), and largely 

compensates it . For large values of the supersymmetric contribution reduces 

the SM result by about 40%. 
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Figure 7.6: AMw and A sin^ ^eff are shown as a function of Xt in a scenario with lar^e 
tan/3. The two-loop contribution involving squarks and higgsinos, Ap^^'^\ 
is shown for the correct MSSM value of Mh and for M^ — 0. For the class 
(q) the effective change from the SM to the MSSM is shown and compared 
with the pure SM contribution (with the sign reversed for better visibility). 

In Fig. 7.7 we show a similar plot for a parameter scenario with small Higgsino 

mass, p = 200 GeV, and tan/? = 6, MSUSY = 400 GeV, MA = 300 GeV. The 
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Figure 7.7: AMw and A sin'̂  ^eff are shown as a function of Xt in a scenario with small 
p, and tan j3. The two-loop contribution involving squarks and higgsinos, 
Ap(9'^), is shown for the correct MSSM value of Mh and for Mh = 0. For 
the class {q) the effective change from the SM to the MSSM is shown and 
compared with the pure SM contribution (with the sign reversed for better 
visibihty). 

contribution of Ap^^'^^ amounts to about 1-2 MeV in Mw and — 1 x 10~^ in 

sin^ ^eff in this case. The fermion loop contribution Ap^^^ (MSSM — SM) is very 

small here because the small value of tan /? does not lead to an enhancement of Off, 

in the MSSM with respect to the SM. 

Fig. 7.8 shows the one-loop results, ApfYi^^p, corresponding to the scenarios of 

Figs. 7.6, 7.7. Due to the larger value of MSUSY and the smaU value of tan/? the 

one-loop contributions for the second scenario are relatively small. The region of 

small \Xt\ is again ruled out by LEP Higgs searches. The largest eflFects visible in 

Fig. 7.8 are thus experimentally excluded. Comparing the one-loop with the two-

loop results, one can see that the two-loop contributions from Ap^^'^^ amounts to 

about 10% of the one-loop supersymmetric contributions. 
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Figure 7.8: One-loop SUSY contributions to AMw and A sin^ ^gff are shown as a func
tion of X f . The parameters correspond to the two scenarios analysed in 
Figs. 7.6 and 7.7. 

A common feature of the two scenarios, visible in Figs. 7.6, 7.7, 7.8, is that both 

the one- and two-loop supersymmetric contributions first decrease for increasing 

\Xt\ until a minimum is reached in the vicinity of Xt ~ —2MSUSY- For even larger 

mixing one stop mass becomes very small and the supersymmetric contributions 

increase again. 

7.3.3 Results in SPS scenarios and renormalisation scheme 

dependence 

Fig. 7.9 shows the results for Ap^''^^ in the SPS l a benchmark scenario [52] for a 

moderate value of tanp = 10 and four different combinations for n and MA, 

(///GeV, M^/GeV) = (200, 200), (200,1000), (500,500), (500,1000). (7.32) 
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In order to display the dependence on the scale of supersymmetry, we start from 
the nominal values of the MSSM parameters corresponding to the SPS la point [52 
(besides and MA that are chosen as specified in eq. (7.32)) and vary the param
eters MsusY and At^ using a common scale factor; the results are then shown as 
functions of MSUSY -^ The range of MSUSY values shown in Fig. 7.9 has been chosen 
such that compatibility with Higgs-boson mass [51] and 6-physics [4] constraints 
is ensured for most parts of the parameter space. For small values of Msusv the 
corrections differ by up to 4 MeV depending on the choice of and /x. Smaller 
values of MA and / i result in larger corrections to Mw and sin^^eff- In all cases 
the result decreases with increasing MSUSY as expected. The corresponding su-
persymmetric one-loop contributions induced by ApfYpQ p̂ are shown in Fig. 7.10 
for comparison. The two-loop correction from Ap^^'^^ amounts up to 25% of the 
MSSM one-loop result. 

We now study the renormalisation scheme dependence of the one-loop and two-

loop results for three benchmark SPS scenarios. Besides the "standard" scenario 

SPS la, we also investigate the SPS l b scenario, which is characterised by a larger 

tan/? value, tan/3 = 30, and SPS 5, which involves a relatively light i [52]. Fig. 7.11 

shows the one-loop results for the three scenarios, while Figs. 7.12, 7.13, 7.14 

display the two-loop results. As above, the results are shown as functions of MSUSY-

We have started from the nominal values of the MSSM parameters for the three 

benchmark points and varied the parameters M S U S Y , ^t ,6) A* (for the D R results 

also the scale fjP^) using a common scale factor. The actual SPS la, SPS l b 

and SPS 5 benchmark points correspond to MSUSY = 495.9, 762.5, 535.2 GeV, 

respectively [52]. 

For a meaningful cornparison of the results in the on-shell and the DR renormal-

^More precisely, for the SPS points the soft supersymmetry-breaking parameters M^^ 
for the left- and right-handed i, b are all slightly different. MSUSY is identified with Mj^. 
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Figure 7.9: The shifts AMw and A sin^ êff induced by Ap^^'^^ are shown as a function 
of MsusY in the SPS la scenario for four combinations of and MA = 
200,500 GeV and / i = 200,500,1000 GeV. 
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Figure 7.10: The shifts AMw and Asin^ 0eff induced by the supersymmetric one-loop 
contributions are shown as a function of MsuSY in the SPS la scenario 
for /X = 200, 500,1000 GeV and tan^a = 10. 
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Figure 7.11: The shifts AMw and Asin^^eff induced by the supersymmetric one-
loop contribution A/jfl:̂ pQ'̂ p are shown for the three benchmark scenarios 
SPS la, SPS lb and SPS 5 as a function of Msusv- The parameters of 
the squark sector correspond to the on-shell scheme. 

isation schemes, the input parameters in the two schemes have to be physically 

equivalent, which implies that they are numerically different. Since the parameters 

in the SPS scenarios are defined as DR parameters, they can directly be used as 

input parameters in the DR scheme. The corresponding input parameters for the 

calculation in the on-shell scheme are obtained by requiring 

^ ji !i' ^ Si Si' 
2 \ D R (7.33) 

for the squark masses and similarly for the mixing angles. 

In the one-loop results Ap^^i^^p for the three SPS scenarios shown in Fig. 7.11 

the squark sector parameters correspond to the on-shell scheme. The shift in the 

precision observables induced by Apf^ioop found to be particularly large for the 

SPS 5 scenario, as a consequence of the large sphtting between the squark masses 
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in this scenario. 

In Figs. 7.12-7.14 we show the one-loop result parametrised in terms of on-shell 

parameters (dotted line) and the two-loop (g, H) results obtained in the DR (full 

line) and the OS scheme (dot-dashed line), in all cases relative to the one-loop 

result parametrised in terms of the DR parameters. Accordingly, the three lines 

in each plot correspond to 

A SUSY.OS 
^ P l - l o o p 

The pure two-loop correction in the DR scheme is given by the ful l Hne, while the 

two-loop correction in the on-shell scheme corresponds to the difference between 

the dot-dashed and the dashed line. 

The numerical impact of the two-loop correction Ap^^'^) in the scenarios SPS la, l b 

amounts to about 5-6 MeV in Mw and —3 x 10~^ in sin^ êff for small Msusv and 

decreases to about 1 MeV in Mw (-0.5 x 10"^ in sin^^efr) for larger values of 

^susY- For SPS 5 the corrections are slightly smaller. While in the scenarios 

SPS la, l b the two-loop results in the two schemes are very close to each other, a 

larger deviation is visible in the SPS 5 scenario. In the latter scenario the two-loop 

corrections in the on-shell scheme are less than 1 MeV, while in the DR scheme 

they are more than twice as large. Comparison with the one-loop results given 

in Fig. 7.11 shows that the two-loop corrections amount to about 10% one-loop 

MSSM contribution. 

The comparison of the renormahsatipn schenies shows that the schesme dependence 

is strongly reduced by going from the one-loop to the two-loop level. At the 
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Figure 7.12: AMw and Asin^^eff are shown in the SPS la scenario as a function of 
^SUSY • The results for the one-loop contribution expressed in terms of 
on-shell parameters and for the two-loop result Apf^f^^p + Ap^^'^) in 
the on-shell and the DR scheme are given relative to the one-loop result 
expressed in terms of DR parameters, see eq. (7.34). 

one-loop level, where the scheme difference is entirely due to the different input 

parameters for the squark masses and mixing angles, the difference between the 

on-shell and the DR scheme is of 0{1 MeV) in Mw Taking into account the 

two-loop corrections reduces the difference below 0.1 MeV for SPS la,b and about 

0.2 MeV for SPS 5. 

The size of the two-loop corrections for SPS la,b is found to be much larger than 

the difference between the two schemes at the one-loop level, which is only about 

1 MeV for these scenarios. This indicates that the difference between the results 

in two renormalisation schemes, if taken as the only measure for estimating the 

theoretical uncertainties from unknown higher-order corrections, may result in a 

significant underestiinate of the actual theoretical uncertainty. The SPS-5 scenario, 

on the other hand, is an example where the two-loop corrections turn out to be 
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-2 ĉ i 

-1 

I I I I I I I I I I r I I I I I I I I I I I I I ry i'V i'l rv r r I r r i T !• r i T i i- i i 1 1 i n 
OO 400 500 6 0 0 700 8 0 0 900 1000 1100 1200 1300 

M S U S Y [GeV] 

Figure 7.13: AMw and Asin^^eff are shown in the SPS lb scenario as a function 
of MsuSY- The results for the one-loop contribution expressed in terms 
of on-shell parameters and for the two-loop result Apf^p^^p + Ap^^'^^ in 
the on-shell and the DR scheme are given relative to the one-loop result 
expressed in terms of DR parameters, see eq. (7.34). 

smaller than the scheme difference at one-loop order. 

Finally we compare the two-loop results for the {q, H) contributions obtained in 

this paper with the two-loop QCD corrections of 0{aas) as obtained in Ref. [30 . 

In Fig. 7.15 we show the results in the on-shell scheme for the three S P S scenarios 

as a function of MSUSY (as explained above). For S P S l a and l b both corrections 

are roughly of the same size and compensate each other to a large extent. Only for 

the case of S P S 5 the QCD corrections are significantly larger than the two-loop 

Yukawa corrections. Both the QCD and the Yukawa corrections are non-negligible 

in view of the anticipated future experimental accuracies and are larger than the 

current theoretical uncertainties in the S M . 
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Figure 7,14: AMw and Asin^^eff are shown in the SPS 5 scenario as a function of 
MSUSY- The results for the one-loop contribution expressed in terms of 
on-shell parameters and for the two-loop result Apf̂ ,̂ Q p̂ + Ap^^'^^ in 
the on-shell and the DR scheme are given relative to the one-loop result 
expressed in terms of DR parameters, see eq. (7.34). 

7.3.4 Estimate of unknown higher-order corrections 

As discussed above, the theoretical evaluation of the E W P O in the SM is signifi

cantly more advanced than in the MSSM. In order to obtain an accurate prediction 

for the E W P O within the MSSM it is therefore useful to take all known SM cor

rections into account. This can be done by writing the MSSM prediction for the 

observable 0 ( 0 = Mw, sin^ ̂ eff, - • -) as 

C^MSSM = OsM + OMSSM-SM , (7.35) 

where OSM is the prediction in the SM, including all known corrections, and 

OMSSM-SM is the difference between the MSSM and the SM predictions, evalu-
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Figure 7.15: The effect of the two-loop Yukawa corrections from squark and higgsino 
loops is compared with the squark-loop corrections of 0{aas). AMw and 
A sin^ êff are shown in the three SPS scenarios as a function of MsuSY 
in the on-shell scheme. 

ated at the level of precision of the known MSSM corrections. The expression 

given in eq. (7.35) contains higher-order contributions that are only known for SM 

particles in the loop but not for their superpartners (e.g. two-loop electroweak 

corrections beyond the leading Yukawa contributions calculated in this thesis and 

three-loop corrections of 0{aal)). In the decoupHng limit where all superpartners 

are heavy and the Higgs sector becomes SM-like, the result of eq. (7.35) obviously 

yields a more precise prediction than a result based on only those corrections which 

are known in the full MSSM. In this case the second term in eq. (7.35) goes to 

zero, so that the MSSM result approaches the SM result with M^su = Mh- For 

lower values of the scale of supersymmetry the contribution from supersymmetric 

particles in the the loop may be of comparable size as the known SM corrections. 

In view of the experimental bounds on the masses of the supersymmetric particles 

(and the fact that supersymmetry has to be broken), however, a complete can-
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cellation between the SM and supersymmetric contributions is not expected. I t 
therefore seems appropriate to apply eq. (7.35) also in this case. 

Expressing the predictions for the EWPO as in eq. (7.35) implies that the theo

retical uncertainties from unknown higher-order corrections reduce to those in the 

SM in the decoupling Hmit. In the SM, based on all higher-order contributions 

that are currently known, the remaining uncertainties in Mw [35] and sin^ ̂ eff [36 

have been estimated to be 

6M^ = 4 MeV, 6 sin'' 9^^ = 5 x 10'^ . (7.36) 

Below the decoupling limit an additional theoretical uncertainty arises from higher-

order corrections involving supersymmetric particles in the loops. In the following 

we will estimate this additional theoretical uncertainty in the prediction of Mw 

and sin^ den depending on the supersymmetric parameters. We will provide esti

mates for the uncertainty for three values of the squark mass scale, MSUSY = 200, 

500, 1000 GeV. A similar approach of estimating the remaining uncertainties 

from unknown higher-order corrections with dependence on the supersymmetric 

parameters has recently been applied to the Higgs sector and implemented in the 

program FeynHiggs2.2, see Ref. [44] for details. 

The remaining uncertainties from unknown higher-order corrections involving su

persymmetric particles mainly arise from the following sources: 

Electroweak two-loop corrections beyond the leading Yukawa corrections 

evaluated in this paper: 

We estimate the numerical effect of these corrections by assuming that the 

ratio of the sub-leading electroweak two-loop corrections to the two-loop 

Yukawa corrections is the same in the SM as in the MSSM. Inserting the 
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known SM corrections [34,35] we infer an estimate of the possible size of the 
missing supersymmetric electroweak two-loop contributions. 

• 0{aas) corrections beyond the Ap approximation: 

We estimate the size of these corrections by assuming that the ratio of the 

contribution entering via Ap to the ful l result is the same as for the known 

SM result [53 . 

• 0(00^) corrections: 

We use three different methods for estimating the possible size of these cor

rections. The unknown ratio of the O(aa^) supersymmetric contributions 

to the 0{aas) supersymmetric contributions can be estimated by assuming 

that it is the same as for the corresponding corrections in the SM [54] (esti

mate (a)) and, using geometric progression from lower orders, by assuming 

that it is the same as the ratio of the 0{aas) supersymmetric contributions 

and the 0{a) supersymmetric contributions (estimate (6)). As a further 

indication of the possible size of unknown corrections of 0{aal) we vary 

the renormalisation scale of as{fjP^) entering the 0{aas) result according to 

iTit/2 < < 2mt (estimate (c)). I t should be noted that this variation of 

«s(At°'^) corresponds to only a part of the higher-order corrections, so that 

estimates (a) and {b) should be regarded as more conservative. 

• 0{a'^as) corrections: 

Similarly as for the 0{aal) corrections, we again use three different meth

ods for estimating these corrections. The unknown ratio of the 0(0:^0:5) 

supersymmetric contributions to the C(a^) (leading Yukawa) supersymmet

ric contributions can be estimated by assuming that it is the same as for the 

corresponding corrections in the SM [55] (estimate (a)) and by assuming that 

it is the same as the ratio of the 0{aas) supersymmetric contributions and 
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the 0{a) supersymmetric contributions (estimate (b)). As a further indica
tion of possible corrections of 0{a'^as) we change the value of rrit in the result 
for the two-loop supersymmetric Yukawa corrections from the on-shell value, 
rnP^, to the running mass mf(mt), where mt{mt) = m P ^ / ( l - | - 4 / ( 3 7 r ) as{mt)) 
(estimate (c)). The latter replacement accounts only for a subset of the 
unknown 0{a'^as) corrections. 

• Electroweak three-loop corrections: 

As an indication of the possible size of these corrections we use the renor

malisation scheme dependence of our result for the supersymmetric two-loop 

Yukawa corrections, see Figs. 7.12-7.14. 

We have evaluated the above estimates for the three scenarios SPS la, SPS lb , 

and SPS 5, each for MgusY = 1000 GeV, 500 GeV, and for MgusY < 500 GeV ̂  

(as above we have varied M S U S Y , and // using a common scale factor). The 

estimated theoretical uncertainties for Mw arising from the different classes of 

unknown higher-order corrections are shown in Tab. 7.1. The result given in each 

entry corresponds to the largest value obtained in the three considered SPS scenar

ios. The three numbers given for the 0{aal) and 0{a'^as) corrections correspond 

to the estimates (a), {b) and (c) described above. 

As expected, the estimated uncertainties associated with the supersymmetric higher-

order contributions decrease for increasing MSUSY - For the 0{aa^) and 0{a'^as) 

corrections, method (c) that accounts only for a part of the higher-order correc

tions yields in both cases the most optimistic estimate. As discussed earlier, by 

taking into account the true MSSM-value of M/i, certain parts of the electroweak 

^The lowest values considered for MSUSY are 200, 300, 400 GeV for SPSla, SPSlb, SPS5, 
respectively. These are the lowest values shown in Figs. 7 1 2 , 7.13, 7.14. For lower values the 
parameter points are excluded by Higgs mass constraints. 
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<500 GeV 500 GeV 1000 GeV 

(9(q:^) sub-leading 6.0 2.0 0.8 

0{aas) sub-leading 1.8 0.9 0.5 

(9(aa2) 3.0, 5.3, 1.5 1.4, 1.1, 0.7 0.9, 2.2, 0.5 

1.5, 2.2, 1.4 0.6, 0.8, 0.4 0.2, 0.2, 0.2 

0{a^) 0.3 0.3 0.3 

Table 7.1: Estimated uncertainties for Mw in MeV for different classes of unknown 
higher-order corrections involving supersymmetric particles are given for 
three values of MSUSY - The estimates have been obtained using the results 
for the SPS la, SPS lb, and SPS 5 scenarios. The three entries for the 
0{aa1) and 0{a^as) corrections correspond to three different methods for 
estimating the uncertainties (see text). 

corrections, beyond the leading two-loop Yukawa corrections, are included in our 

result. The difference between Ap( ' '^^(M/i) and Ap(^''^)(0) may be interpreted as 

an estimate of the size of further, not included higher-order electroweak correc

tions. The numerical analysis in Sects. 7.3.1 and 7.3.2 shows that this estimate is 

typically smaller than the estimated total uncertainty in Tab. 7.1. 

We now combine the values given in Tab. 7.1 into our total estimate of the re

maining theoretical uncertainties from unknown higher-order corrections involving 

supersymmetric particles. Adopting the largest of the three values for the 0{aal) 

and 0{a''as) as a conservative error estimate and adding the different estimates 

in quadrature we obtain 

SMw = 8.5 MeV for MSUSY < 500 GeV, 

5Mw = 2.7 MeV for MSUSY = 500 GeV, 

5Mw = 2.4 MeV for MgusY = 1000 GeV. 

(7.37) 
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An analogous analysis of the remaining higher-order uncertainties can also be 
carried out for sin^^efF- Since parts of the missing higher-order corrections to 
sin^^eff and Mw are related to each other, we employ eq. (2.10) to infer estimates 
for sin^^eff from our results for Mw This yields 

Ssin^e^ff = 4.7 X 10"^ for MsusY < 500 GeV, 

(5sin2^eff = 1.5 X 10-^ for MsusY = 500 GeV, (7.38) 

(^sin^^eff = 1-3 X 10"^ for MgusY = 1000 GeV. 

The full theory uncertainty in the MSSM can be obtained by adding in quadrature 

the SM uncertainties from eq. (7.36) and the SUSY uncertainties from eqs. (7.37)-

(7.38). This yields SMw = (4.7 - 9.4) MeV and ^sin^^eS = (5.2 - 6.7) x 10"^ 

depending on the SUSY mass scale. 

The estimated uncertainties are smaller than the estimates in Ref. [19] (where 

an overall estimate has been given without analysing the dependence on the su

persymmetric parameters), reflecting the improvement associated with the new 

corrections calculated in this paper. 

The other source of theoretical uncertainties besides the one from unknown higher-

order corrections is the parametric uncertainty induced by the experimental errors 

of the input parameters. The current experimental error of the top-quark mass [5] 

induces the following parametric uncertainties in Mw and sin^ ^eff 

Smf"^ = 2.9 GeV =̂> (5MP ,™' = 17.5 MeV, 5 sin^ ^P^^^-'"* = 9.4 x 10"^ . 

(7.39) 

This uncertainty will decrease during the next years as a consequence of a further 

improvement of the accuracy on mt at the Tevatron and the LHC. Ultimately 
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it will be reduced by more than an order of magnitude at the ILC [56]. The 
accuracy of the theoretical predictions for Mw and sin^^eff will then be limited 
by the uncertainty from unknown higher-order corrections (for a discussion of the 
parametric uncertainties induced by the other SM input parameters see Ref. [19]). 
A further reduction of the uncertainties from higher-order SM-type corrections 
(see eq. (7.36)) and corrections involving supersymmetric particles (see eqs. (7.37)-
(7.38)) therefore seems to be required in order to fully exploit the prospective 
experimental accuracies on Mw, sin^^eff and rrit reachable at the next generation 
of coUiders [56,57 . 

7.4 Chapter summary 

In this chapter we have calculated the two-loop corrections of 0{a^), 0{atab), 

0{al) to the electroweak precision observables Mw and sin^^eff in the MSSM. 

These are the leading, Yukawa-enhanced electroweak two-loop contributions; they 

enter via Ap and arise from diagrams involving SM quarks, squarks, Higgs bosons 

and higgsinos. While previously only the contribution from the diagrams with 

quarks and Higgs bosons had been known (corresponding to the limiting case where 

all supersymmetric particles are infinitely heavy), we have evaluated the complete 

set of Yukawa corrections including the effects of supersymmetric particles. 

We have given a detailed account of the theoretical basis of the calculation, focusing 

on the implications of the parameter relations enforced by supersymmetry. In the 

gauge-less limit that needs to be employed to extract the Yukawa corrections of 

0{a^), 0{atab), 0{al) the lightest MSSM Higgs boson mass M^ vanishes. We 

have studied in how far the true MSSM value for Mh can be- taken into account 

in a consistent way. We have shown that the result can be expressed in such 
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a way that the M/i-dependence, being formally a sub-leading effect, can be kept 
essentially everywhere and we have compared this result with the case where the 
gauge-less limit is strictly imposed. 

In our numerical analysis we have put the main emphasis on the new supersymmet

ric contributions involving squarks and higgsinos. We have analyzed the results of 

the new contributions as functions of the squark mass scale M S U S Y , the stop mix

ing Xt and the higgsino and Higgs boson mass parameters n and MA- For squark 

masses of about 300 GeV we find corrections of typically -|-4 MeV in Mw and 

—2 X 10~^ in sin^^eff- In certain parameter regions, in particular slightly smaller 

values of MSUSY or small mixing in the stop sector, we find shifts up to -|-8 MeV 

in Mw and — 4 x 10~^ in sin^ ^efr- For a wide range of parameters, the squark and 

higgsino two-loop corrections increase the corresponding one-loop contributions by 

about 10%. 

We have derived our result in two renormalization schemes, the on-shell scheme 

and the DR scheme for the squark sector parameters. Comparing the two-loop 

results with the one-loop result expressed in terms of the parameters of the two 

schemes shows a significant reduction of the scheme dependence. 
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Conclusion 

'After all is said and done, a lot more will be said than done. 

Unknown 

In the first four chapters we introduced and motivated the calculation of E W P O 

and in particular Ap . We jus t i fy the need to renormalise the calculation and give 

details of the procedure used. We give a brief introduction to supersymmetry, 

defining our notation and conventions as required. 

We give explicit details of three large two-loop calculations i n chapters 5 - 7 . These 

are the dominant 0{aas) and 0 { a f ) , 0{atab), 0{al) results. I n chapters 5 and 

6 we verify two previously published results, the 0{aaa) and the quark 0{a^), 

0{atab), 0{al) result and find complete analytical agreement. I n chapter 7 we 

complete the discussion of the 0(0^), 0{atai,), 0{al) by including all dominant 

squark and higgsino loops. 

The class of diagrams w i t h squarks and higgsinos, which has no SM counterpart, 

gives rise to significant deviations firom the SM predictions. This is in contrast 
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w i t h the contribution of the diagrams involving quarks and Higgs bosons, which 

can be well approximated by the corresponding SM contribution (setting the SM 

Higgs-boson mass equal to the mass of the lightest CP-even Higgs boson of the 

MSSM). We have compared our result for the two-loop Yukawa correction of 0{a'}), 

0{atab), 0{al) to Mw and sin^ ^eff w i t h the 0{aas) correction, which is the only 

other genuine two-loop contribution to Mw and sin^ ^eff known in the f u l l MSSM. 

We f i nd that the two corrections are of comparable size and can largely compensate 

each other for small values of MSUSY (depending on the other supersymmetric 

parameters). 

We have shown how the known corrections to the electroweak precision observables 

in the SM and the MSSM can be combined such that the currently most accurate 

prediction in the MSSM is obtained. In the decoupling l imi t , where al l supersym

metric particles are heavy, the theoretical uncertainty f rom unknown higher-order 

corrections reduces to the uncertainty of the SM contribution. For non-vanishing 

contributions of the supersymmetric particles an additional theoretical uncertainty 

arises f rom unknown higher-order corrections involving supersymmetric particles. 

We have estimated the current uncertainty f rom unknown higher-order correc

tions involving supersymmetric particles for different values of the squark mass 

scale MSUSY- This has been done using geometric progression f r o m lower orders, 

employing known results for corresponding SM corrections, investigating the renor-

malisation scheme dependence, varying the renormalisation scale, and taking into 

account formally sub-leading M/j-dependent contributions. For a squark mass scale 

below 500 GeV we obtain an estimated uncertainty of about 8.5 MeV in Mw and 

4.5 X 10"^ in sin^^eff- These uncertainties reduce to about 2.5 MeV in Mw and 

1.5 X 10"^ in sin^^eflf for MSVSY — 1 TeV. They can be combined quadratically 

w i t h the theory uncertainty f rom unknown higher-order SM contributions to ob-
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ta in the f u l l MSSM theory uncertainties. While currently these uncertainties (for 

•^susY < 500 GeV) are about a factor of two smaller than the parametric theoret

ical uncertainties induced by the experimental error of the top-quark mass, their 

impact w i l l become more pronounced w i t h the expected improvement of the ex

perimental precision of rrit. The new two-loop corrections evaluated in this thesis 

have been important to reduce the theoretical uncertainties to the present level. 

Further efforts on higher-order corrections in the MSSM w i l l be necessary in or

der to reduce the theoretical uncertainties f rom unknown higher order corrections 

wi th in the MSSM to the level that has been reached for the SM. 
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Appendix A 

Scalar Integrals 

The BQ, AQ and T'134 integrals used through-out calculations presented in this 

thesis are defined here. Each integral is given as an expansion in e (si in the 

case of Bo). The parameters and ^ have been absorbed into the divergences. 

The renormalisation scale, //, must drop out of all the calculations of physical 

parameters calculated in this thesis, hence /x is set to 1 (ie. l o g / i = 0) in all the 

definitions. 

The BQ integral is given by 

Bo\p'^,mi,m2] = — +Bojinitelp^,nil,1712]+£iBo,ei\p^,rnum2] (A . l ) 
£1 
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5 o , / i m t e b , "^1, "^2 = 2 -t- r Lop m j m a 

1 . 2 irriim^ 
j m i m 2 ( -p2 _ |_^2 _|_^2 _ p 2 ^ ^ 

- i £ 2 + - I - m 2 - - I -

2mim2 

^ 2mim2 

2, (m^ - p'^)Log[w? 
p2 

{m? - p'^)Log[—ie2 + — 
(A.3) 

So,/^m^e["^^0,m] = 2 - Log[m?] ( A . 4 ) 

where A = y ' - 4 m f m 2 - I - (i£:2 - m\-m2+ p^Y- I t is not necessary to define the 

funct ion BQ^^^ since all coefficients of such functions drop out in the results in this 

thesis. 

The AQ integral is given by 

Aalm] = ^m^ + Aojinite[rn\ + eAo^s[rn] (A.5) 

Aojinitelm] = m^{l - Log[m?]) (A.6) 

AoAm] - m\l + ^a^) + ^{Log[m'])'-Log[m']) ( A 7 ) 

and C(2) = 7rV6. 
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The Ti34 integral is given by: 

Ti34[mi, 1713,1714] = r d i „ , i 3 4 [ " ^ i , m 3 , m 4 ] + r / i „ i ( e , i 3 4 [ m i , m 3 , m 4 ] (A.8) 

^ r 1 mj + ml + ml 
7 d i „ , i 3 4 [ m i , m 3 , m 4 ] = — 

2£2 
3 ( m f + ml + ml) - 2 ( m f L [ m f ] - m3'^L[ml] - mA'^L[ml]) 

2e 

Tfi„ite,i34[mi, 1713,1714] = ^ { ^ ( m j + m4)(42 + 7r^) 

+ ^ ( 4 m 2 ( - 3 + LK])LK]) 
i=l ,3,4 

- {rnl + ml-ml)L[myml]'^ 

- {ml -ml + ml)L[ml/ml]^ 

+ {mf — ml — m4)L[m3/m4]^ 

(tt^ - 3L[ml/ml]L[ml/ml 

m j - m l + m l - m l A [ § , ^ ] ^ 
+6L[ 

2 m l 

-ml + ml + m l - m l A Q , ^ ] 

2ml 

ml-ml + ml-mlKO_,^l 
- 6 L Z 2 

2ml 

(A.9) 

-ml+ml + ml-ml A [ ^ , ^ ] , ^ 

where h.[x,y] = ^ 1 + + y2 _ 2a; - 2y - 2xy, L[x] = Log[x] and 

00 f. 

fc=i 
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