
Durham E-Theses

Just-in-time Hardware generation for abstracted

recon�gurable computing

Grocutt, Thomas Christopher

How to cite:

Grocutt, Thomas Christopher (2005) Just-in-time Hardware generation for abstracted recon�gurable

computing, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/2704/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2704/
 http://etheses.dur.ac.uk/2704/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Just-In-Time Hardware
Generation For Abstracted
Reconfigurable Computing

Thomas Christopher Grocutt

The copyright of this thesis rests with the
auttior or the university to which it was
submitted. No quotation from It, or
information derived from it may be published
without the prior written consent of the author
or university, and any Information derived
from It should be acknowledged.

A Thesis presented for the degree of

Doctor of Philosophy

D u r h a m
University

Centre for Electronic Systems

School of Engineering

University of Durham

England

2005

1 OCT 2006

Declaration

The work in this thesis is based on research carried out in the Centre for Electronic

Systems, School of Engineering, University of Durham, England. No part of this

thesis has been submitted elsewhere for any other degree or qualification and it is

all my own work unless otherwise referenced to the contrary in the text.

Copyright (c) 2005 by Thomas Christopher Grocutt.

The copyright of this thesis rests with the author. No quotation from it should be

pubhshed in any format, including electronic and the Internet, without the author's

prior written consent. All information derived from this thesis must be acknowledged

appropriately.

Acknowledgements

I would like to thank my project supervisor, Simon Johnson, for his time, help and

encouragement; the staff in the engineering department for their continued help and

the AIG group in the department of physics for allowing me to use their Cray XDl .

In particular, I would like to thank my father for his patience whilst proof reading

this thesis. I would also Uke to thank the open source programming team that

created KT^X and thus saving me from Word.

ni

Abstract

This thesis addresses the use of reconfigurable hardware in computing platforms, in

order to harness the performance benefits of dedicated hardware whilst maintain­

ing the flexibihty associated with software. Although the reconfigurable computing

concept is not new, the low level nature of the supporting tools normally used,

together with the consequent limited level of abstraction and resultant lack of back­

wards compatibility, has prevented the widespread adoption of this technology. In

addition, bandwidth and architectural limitations, have seriously constrained the

potential improvements in performance. A review of existing approaches and tools

flows is conducted to highlight the current problems being faced in this field.

The objective of the work presented in this thesis is to introduce a radically new

approach to reconfigurable computing tool flows. The runtime based tool flow intro­

duces complete abstraction between the application developer and the underlying

hardware. This new technique eliminates the ease of use and backwards compatibil­

ity issues that have plagued the reconfigurable computing concept, and could pave

the way for viable mainstream reconfigurable computing platforms. An easy to

use, cycle accurate behavioural modelling system is also presented, which was used

extensively during the early exploration of new concepts and architectures. Some

performance improvements produced by the new reconfigurable computing tool flow,

when applied to both a MIPS based embedded platform, and the Cray XDl , are also

presented. These results are then analyzed and the hardware and software factors

iv

affecting the performance increases that were obtained are discussed, together with

potential techniques that could be used to further increase the performance of the

system.

Lastly a heterogenous computing concept is proposed, in which, a computer sys­

tem, containing multiple types of computational resource is envisaged, each having

their own strengths and weaknesses (e.g. DSPs, CPUs, FPGAs). A revolutionary

new method of fully exploiting the potential of such a system, whilst maintaining

scalability, backwards compatibility, and ease of use is also presented.

Contents

Acknowledgements iii

Abstract iv

List of Figures xvi

List of Tables xix

List of Listings xx

Glossary 1

1 Introduction 4

1.1 Conventional Computing Architectures 4

1.1.1 Instruction Set Expansion 4

1.1.2 Dedicated Hardware 5

1.2 Reconfigurable Computing 6

1.2.1 Hardware Implementations 7

vi

1.2.1.1 Direct Processor Integration 7

1.2.1.2 External RC Area 9

1.2.2 Tools Flows 11

1.2.2.1 Separate SW And HW Tool Flows 11

1.2.2.2 Common High Level Language 12

1.2.2.3 Low Level Tool Flows 15

1.2.3 Scheduling 16

1.2.4 Floating Point Maths 17

1.3 Research Conducted 18

1.4 Warp Processing 20

1.4.1 Hardware Platforms 20

1.4.2 Tool Flow 21

1.4.3 Performance Improvements 22

1.5 Summary 23

2 Behavioural Simulation 25

2.1 Background 25

2.2 CPUSim 27

2.2.1 Concurrency. • • • . • • - j^: 27

2.2.2 Flexibihty 30

vii

2.2.3 Instantiation and Connection 32

2.2.4 Visualisation and Statistics 34

2.3 Summary 35

3 E P I C Simulation 37

3.1 CPU Architecture 37

3.1.1 Additional RC Hardware Blocks 38

3.1.1.1 Code Profiler 39

3.1.1.2 Reconfigurable Execution Unit 39

3.2 RC Conversion Algorithms 40

3.2.1 Instruction Combination 40

3.2.2 Loop Conversion 43

3.2.2.1 Data Flow Pipehne 44

3.3 Performance evaluation 46

3.3.1 Test Algorithms 46

3.3.1.1 Copy algorithm 47

3.3.1.2 Haff Brightness Algorithm 47

3.3.1.3 Mandelbrot Algorithm 47

3.3.2 Loop Dependencies . ̂ . 47

3.4 Results 48

viii

3.4.1 Copy algorithm 48

3.4.2 Half Brightness Algorithm 49

3.4.3. Mandelbrot Algorithm 51

3.4.4 HW Pipehne Implementation 54

3.4.5 Summary 57

4 Loop Conversion 58

4.1 Abstract Instruction Model 60

4.1.1 Supporting Additional IS As 61

4.2 Targeting The Hardware Pipehne 62

4.3 Loop Identification 63

4.4 Instruction Linearization 64

4.4.1 MUX Insertion 65

4.4.2 Instruction Guarding 66

4.5 Optimization 66

4.5.1 Hardware Dependency Removal 67

4.5.2 Stack Removal 67

4.5.3 Iteration Dependency Removal 68

4.5.4 Instruction Removal 69

4.5.5 Tree Re-balancing 70

ix

4.6 Pipeline Generation 71

4.6.1 Operation Scheduling 71

4.6.1.1 Pointer Ahasing 73

4.6.2 Data Forwarder Addition 74

4.6.3 Register Remapping 74

4.7 Target Implementation 75

4.7.1 Pipeline configuration generation 75

4.7.2 Program modification 76

5 MIPS Test Platform 78

5.1 Platform Details 78

5.1.1 RC Area Integration 79

5.1.2 Hardware 80

5.1.2.1 CPU/RC Area Interface 84

5.2 Software 86

5.2.1 Console Software 86

5.2.2 Data Transfer Software 87

5.3 Test Algorithms 87

5.3.1 PRBS Generator 88

5.3.2 FFT 91

5.3.3 Low Pass Filter 91

5.3.4 Normalization 92

5.3.5 Block Search 92

5.3.6 Mandelbrot 94

5.3.7 Half Brightness 94

5.3.8 Factorial and Series Sum 95

5.3.9 Copy 96

5.3.10 Sort 96

5.4 Performance Scalability 97

5.4.1 Bandwidth 97

5.4.2 Parallelism 98

5.4.3 Algorithm Complexity 100

5.4.3.1 Increased section size 101

5.4.3.2 Increased complexity 102

5.5 Platform Evaluation 103

5.5.1 Abstraction 103

5.5.2 Automatic conversion 103

5.5.3 Low conversion time 104

5.5.4 Large performance increase 104

xi

5.6 Summary 104

6 Cray X D l Platform 106

6.1 Cray XDl Overview 106

6.2 Platform Details 109

6.2.1 Execution 109

6.2.2 Tool flow 110

6.2.3 Memory Access I l l

6.3 Performance Evaluation 113

6.3.1 PRBS Generator 114

6.3.2 Half Brightness 116

6.3.3 Low Pass Filter 117

6.3.4 Normalization 117

6.3.5 Copy 119

6.3.6 Series Sum 120

6.4 MIPS RC Platform Comparison 120

6.5 Summary 122

6.5.1 Cray X D l Platform Limitations 122

6.5.2 Clock Speeds 123

6.5.3 Performance Improvements 124

xii

7 Optimisations Of The Reconfigurable Computing System 125

7.1 Hardware Conversion Tools 125

7.1.1 Loop Extraction 125

7.1.2 Floating Point Operations 127

7.1.3 Optimization 127

7.1.4 Scheduling 128

7.1.4.1 Operation Variants 128

7.1.4.2 Local Feedback 129

7.1.4.3 DMA Operation Scheduling 130

7.1.4.4 FPGA Tool Integration 130

7.1.5 Hardware Software Integration 131

7.2 Platforms 132

7.2.1 MIPS 132

7.2.2 XDl 133

7.2.3 Benchmark Algorithms 134

7.3 An Ideal Reconfigurable Computing Platform 135

7.3.1 Processor Integration 135

7.3.2 Homogeneous RC Area 137

7.3.2.1 Partial Reconfigurability 138

xiii

7.3.2.2 Homogeneous Structure 138

7.3.2.3 Configuration Controller 139

7.3.2.4 Specialized Hardware 139

7.3.2.5 Design For Place And Route 140

7.3.2.6 Clock Domains 140

7.3.3 Memory Sub-System 141

7.3.4 Code Profiling 142

7.3.5 Hardware Scheduling 143

7.4 Heterogeneous Computing 144

7.5 Future Research 147

7.6 Summary 148

8 Conclusion 150

Bibliography 156

A MIPS Test Algorithms Source Code 172

A . l PRBS Generator (Standard) 172

A.2 PRBS Generator (Unrolled) 173

A.3 FFT 175

A.4 Low Pass Filter 178

xiv

A.5 Normalization 180

A.6 Block Search (Planar) 182

A.7 Block Search (Packed) 185

A.8 Mandelbrot 188

A.9 Half Brightness 189

A. 10 Factorial and Series Sum 190

A. 11 Copy 190

A.12 Sort 191

XV

List of Figures

1.1 Separate SW and HW tool chains 11

1.2 Common high level language 13

1.3 Low level tool chain 15

1.4 Warp processor architecture 21

2.1 Single function clocking 29

2.2 Dual function clocking 29

2.3 CPUSim simulating an experimental processor, showing the contents

of the instruction cache and a Mandelbrot fractal generated by soft­

ware running on the simulated processor 35

3.1 EPIC CPU core with additional RC blocks shown in red 38

3.2 EPIC CPU RC tool flow 41

3.3 Example RC data flow pipeline 44

3.4 Performance improvement of copy algorithm with loop extraction . . 50

XVI

3.5 Performance improvement of half brightness algorithm with instruc­

tion combination 52

3.6 Performance improvement of half brightness algorithm with loop ex­

traction 53

3.7 Performance improvement of Mandelbrot algorithm with instruction

combination 55

3.8 Performance improvement of Mandelbrot algorithm with loop extrac­

tion 55

3.9 FPGA tiles used to implement real hardware data flow pipeline . . . 56

4.1 Simphfied Loop conversion block diagram 59

4.2 Example operation scheduhng onto data flow pipeline 72

4.3 Loop constant and stage 0 shift register arrangement 75

5.1 FPGA tiles used to implement MIPS CPU, RC pipeUne, and peripherals 82

5.2 MIPS system block diagram 83

5.3 Example logic analyzer trace showing RC pipeline execution 84

5.4 USB data transfer application displaying the contents of the data

buffer as an image 87

5.5 Logic analyzer trace showing RC pipehne execution of FFT algorithm 91

5.6 Pixel graphics formats 93

5.7 Logic analyzer trace showing RC pipeline execution of half brightness

algorithm 95

xvii

5.8 Logic analyzer trace showing RC pipeline execution of quick sort al­

gorithm 97

5.9 Generalized effects of parallelism on performance (Software vs Hard­

ware) 101

5.10 Picture processing and compression 102

6.1 Cray X D l blade architecture 108

6.2 Cray FPGA interface cores 108

6.3 Hardware conversion tool flow for Cray X D l I l l

6.4 Cross bar architecture for QDR memory interface 112

6.5 Operations on the hardware data flow pipeline for the low pass filter

algorithm 118

7.1 Example data flow pipelines with and without the local feedback op­

timization 129

7.2 Block diagram of idealized CPU architecture 136

xvni

List of Tables

1.1 Warp processing test platforms 23

3.1 EPIC CPU specification 38

3.2 Test algorithms and characteristics 46

3.3 Test cases implemented in FPGA hardware 57

5.1 MIPS platform summary 82

5.2 Test algorithms used on MIPS test platform 89

6.1 Test algorithms used on the Cray X D l 115

6.2 Predicted performance improvement after resolving current Cray X D l

limitations 115

X I X

List of Listings

3.1 Sample code before instruction combination 42

3.2 Sample code after instruction combination code 42

3.3 Example code loop with dependency 48

3.4 Example code loop without dependency 48

4.1 If-else statement implemented with branches 65

4.2 If-else statement implemented with MUXs 65

4.3 Conditional store implemented with branching 66

4.4 Conditional store implemented with guarding 66

4.5 Hardware dependency present 67

4.6 Hardware dependency removed 67

4.7 Stacking ("push" first) 68

4.8 Stack operations removed ("push" first) 68

4.9 Stacking ("pop" first) 69

4.10 Stack operations removed ("pop" first) 69

X X

4.11 Before instruction removal 70

4.12 After instruction removal 70

4.13 Sequential value combination 70

4.14 Balanced value combination 70

4.15 Program before trigger instruction insertion 77

4.16 Program after trigger instruction insertion 77

5.1 Example RC trigger instruction sequence 80

7.1 Example code with multiple nested loops 126

X X I

Glossary

A I M Abstract Instruction Model

A M D Advanced Micro Devices

API Application Programming Interface

ASIC Apphcation Specific Integrated Circuit

BSD Berkeley Software Distribution

CISC Complex Instruction Set Computer

CMS Code Morphing Software

CPU Central Processing Unit

DDR Double Data Rate

DMA Direct Memory Access

DSP Digital Signal Processing

EPIC Explicitly Parallel Instruction Computing

FFT Fast Fourier Transform

FIFO First In First Out

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

GCC GNU Compiler Collection

GNU GNU'S Not UNIX

GUI Graphical User Interface

HDL Hardware Description Language

HPC High Performance Computing

HSI Hardware Software Interface

HW Hardware

IEEE Institute of Electrical & Electronic Engineers

ILP Instruction Level Parallelism

10 Input/Output

IP Intellectual Property

ISA Instruction Set Architecture

JIT Just In Time

JPEG Joint Photographic Experts Group

LFSR Linear Feedback Shift Register

LOG Logarithm

LPF Low Pass Filters

LRU Least Recently Used

LUT Look Up Table

MAC Multiply and Accumulate

M M U Memory Management Unit

M M X Multi-Media Extensions

MPEG Motion Pictures Experts Group

MUX Multiplexer

NRE Non-Recurring Expenditure

OS Operating System

PAR Place And Route

PC Personal Computer

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PNG Portable Network Graphics

PRBS Pseudo Random Binary Sequence

QDR Quad Data Rate

RAM Random Access Memory

RLE Run Length Encoding

ROM Read Only Memory

RC Reconfigurable Computing

RGB Red Green and Blue

RS232 Serial Interface

SAD Sum of Absolute Differences

SIMD Single Instruction Multiple Data

SMT Simultaneous Multi-Threading

SoC Systems On a Chip

SDRAM Synchronous Dynamic RAM

SRAM Static RAM

SW Software

TSF Technology Scale Factor

TV Television

USB Universal Serial Bus

WAV Waveform Audio

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

V L I W Very Long Instruction Word

v u Vertical Unit

YUV Y = Luminance, U = Normalised BY, V = Normalised RY

Chapter 1

Introduction

1.1 Conventional Computing Architectures

Since the birth of the "Von Neumann architecture" [1] the performance of computers

has continued to increase. In 1965 Gordon Moore made the observation [2] that the

number of components on an integrated circuit doubles every 18 months, leading

in turn to a doubling in processor performance over the same time period. Despite

this dramatic and ongoing increase in computational speed, there are applications

such as games, computational fluid dynamics and realtime multimedia applications

that tax even the fastest modern computers. This problem has been addressed in

the past by expanding the instruction set and also adding dedicated hardware.

1.1.1 Instruction Set Expansion

Although central processing unit (CPU) instruction sets allow the programmer to

perform almost any task, it can require many lO's of instructions to perform some

relatively simple tasks. If an operation frequently occurs it may, under certain cir-

1. Introduction

cumstances, be added into the instruction set to advantage. A good example of

this is floating point maths. Many early instruction sets (e.g. x86, 68k, MIPS)

didn't include this functionality, requiring i t to be emulated using numerous inte­

ger operations. Floating point instructions were added when applications required

the performance boost that they provided and when the available transistor count

increased to the point where this became a practical solution.

Many modern CPU instruction sets have been extended to include single instruction

multiple data (SIMD) instructions [3, 4]. This allows multiple arithmetic operations

to be performed by a single instruction, by packing multiple values into a single

register. An example of this would be a 32bit CPU that has a SIMD instruction

that performs 4x8bit additions. This is implemented in hardware by disabUng the

carry propagation between the 8 bit groups which results in a significant performance

improvement with very httle additional hardware.

Although extending the instruction set can speedup a wide range of apphcations,

the performance gain will always be hmited by the instruction pipehne, register file

and other fundamental components of the Von Neumann architecture.

1.1.2 Dedicated Hardware

As the execution units of a processor occupy only a small proportion of the total

die area, CPUs are very inefficient in terms of both hardware utihzation and power

consumption. A popular way to address this and overcome the hmitations of the

Von Neumann architecture is to create dedicated hardware for specific tasks. As

this solution doesn't require many of the hardware blocks found in a processor, (e.g.

instruction fetch/decode, register files, etc) a larger proportion of the hardware is

used to perform useful calculations. _ . -

A common example of this approach can be found in the current generation of

5

1. Introduction

personal computers (PCs). Since the computational power required by modern 3D

computer games is far greater than that available from even the fastest processors,

dedicated hardware on the graphics card [5, 6] is used to render the 3D scenes. This

releases the CPU to perform ah the other tasks that are required in order to cre­

ate the game environment. This "offloading" of computationally intensive tasks to

hardware is even more frequently employed in embedded systems (e.g. set top boxes

7], mobile phones [8], etc) where CPU resources are often hmited. Other common

examples of hardware acceleration are cryptography, MPEG compression/decom­

pression, and image improvement algorithms.

Using dedicated hardware is extremely powerful, however, it is only a practical

solution where a task needs to be performed very frequently as such hardware is

only capable of performing the specific task that it was designed to do. I f that

task doesn't need to be performed then the dedicated hardware will be idle. Rising

mask costs and other non-recurring expenditures (NREs) are forcing manufacturers,

especially in the embedded markets, to create devices for a much larger market

segment. Consequently it is not always economically viable to design and implement

hardware that is specific to only a small section of the market. A popular technique

to reduce the amount of apphcation specific hardware in these types of devices is

to use one or more digital signal processing (DSP) cores [7, 8]. However there is a

limit to how much processing power can be provided by this approach.

1.2 Reconfigurable Computing

By adding reconfigurable logic to a system it is possible to obtain a substantial

performance improvement [9]. Although the performance achieved is very depen­

dent on the application, speedups of 50 times or. greater are not uncommon, whilst

maintaining most of the flexibihty associated with software [10, 11, 12, 13, 14 .

1. Introduction

In general algorithms with the characteristics listed below will benefit the most

from the use of reconfigurable computing. Algorithms that possess all of these

characteristics (e.g. encryption) achieve speed up factors of 1000 or more [15, 16 .

High levels of instruction level parallelism (I L P) The greater the amount of

ILP the more data can be processed in parallel.

Inherently parallel algorithms Some algorithms are inherently parallel in na­

ture, as such different parts of the computation can be done in parallel (this

parallelism is orthogonal to ILP). One example of this kind of parallelism is

a simple brightness reduction algorithm, the calculation of the values of the

pixels are independent from one another.

Simple operations Some classes of operation (e.g. bitwise AND, OR, etc) require

minimal hardware resources to implement. The lower the number of resource

required my an algorithm, the more instances of that algorithm can be imple­

mented in the reconfigurable hardware.

Low memory bandwidth requirements Since the core algorithm will be instan­

tiated many times in the FPGA, the total bandwidth required can become

considerable. Since the amount of "off chip" bandwidth is restricted by phys­

ical factors (i.e. number of pins and maximum frequency) the amount of

memory bandwidth available can severely limit the overall performance of a

reconfigurable computing system.

1.2.1 Hardware Implementations

1.2.1.1 Direct Processor Integration

In some systems reconfigurable logic is an integral part of the processor [12, 13]. In

these cases there are usually two communication channels. The first channel allows

7

1. Introduction

instructions to be issued to the reconfigurable computing (RC) area, enabling the

software to control the execution and setup initial parameters. The second channel

gives access to memory allowing the RC area to perform direct memory access

(DMA) operations, independently of the rest of the CPU core. This approach has

several advantages :-

Low Latency As the RC area is directly connected to the instruction pipeline, only

a few clock cycles are required to trigger execution. This is a major perfor­

mance advantage for applications where the RC area is triggered repeatedly.

Cache Coherency As the DMA channel from the RC area is usually connected

to the data cache, rather than directly to the memory interface, the system is

naturally cache coherent.

Virtual Memory On systems that implement virtual memory, the DMA connec­

tion from the RC area can be made in the processor before the memory man­

agement unit (MMU), resulting in both the application hardware and software

existing in the same virtual address space. This removes the overhead associ­

ated with translating pointers from the virtual to the physical address space

and also reduces the complexity of the software to hardware conversion pro­

cess.

High Bandwidth Because the computational throughput of reconfigurable com­

puters is significantly higher than conventional processors, the memory band­

width available will have an even greater impact on performance [17]. As a

result the RC area must be closely integrated with the existing memory system

to maximize bandwidth and to minimize the effect of this bottleneck.

In many systems where there is a direct connection to the instruction pipeline, the

CPU will stall and remain idle while execution takes place in the RC area. However,

this inefficiency is avoided on systems that implement simultaneous multi-threading

8

1. Introduction

(SMT) [18] as the CPU issues instructions from multiple thread contexts at the

same time. Consequently, a stall in one thread does not result in the entire CPU

core becoming idle. Because the RC area is very tightly integrated with the CPU

core, it must be fabricated on the same die, resulting in a significant increase to the

overall die area of the device; this can also provide a significant improvement over

dual core processors [19, 20, 21] which at most yield a 2x speedup for the cost of a

doubling in the die area.

1.2.1.2 External R C Area

Although directly connecting the RC area to the CPU has many performance ad­

vantages, it is not always feasible to do this due to the high levels of integration

required. The notable exception being CPUs that provide an interface to the in­

struction pipeline which allows the user to create their own execution units; this

feature is not present on main stream processors, and is only usually found on CPU

cores that are specifically developed for FPGAs [22, 23 .

In systems where it is not possible to directly connect the RC area to the CPU

pipehne, the RC area can, instead, be connected to one of the peripheral buses,

usually the peripheral component interconnect (PCI) bus [24, 25, 26]. As discussed

in section 1.2.1.1, the bandwidth available to the RC area has a significant im­

pact on performance, however the standard PCI bus (32bit,33MHz) only provides

133 MBytes/s, which rises to 533 MBytes/s with the PCLX bus (64bit,66MHz).

Both are significantly lower than the 6.4 GBytes/s provided to the processor by

the dual channel DDR-400 memory interface, present on modern computers. To

try to address these bandwidth issues, research has been conducted into connecting

field programmable gate arrays (FPGAs) directly to a computer's memory inter­

face. This can be accomplished by mounting aff FPGA onto a printed circuit board

(PCB) with the same form factor as a memory module. The FPGA can then be

9

1. Introduction

simply plugged into any computer system that supports the appropriate memory

standard [27, 28, 29]. Although this improves both bandwidth and latency, addi­

tional problems are created:-

D M A Conventional memory buses are designed to be single master, which limits

the FPGA to only accessing memory to which it is directly connected.

Obsolescence Unhke PCI, backwards compatibihty is not a design goal for the

memory bus, therefore any system that utilizes such an interface will need to

be redesigned for each new memory standard.

Operating system (OS) integration Due to the low level and unorthodox na­

ture of this interface, integration with the OS is required at the kernel level.

This generally limits the use of the technique to those operating systems where

the kernel source is available, for example Linux/BSD.

High performance computing (HPC) vendors Cray [30] and SGI [31] have introduced

systems where FPGAs are directly connected to the main system bus, which results

in high bandwidths. In addition, because these busses are multi master, there are

no issues associated with DMA transactions. Although the latency is significantly

better than in PCI based solutions, it is not as low as that in systems where the RC

area is directly connected to the CPU. To reduce the performance impact caused,

both the Cray and SGI systems have high bandwidth, low latency QDR-SRAM

memories directly connected to the FPGAs. Both these external memories and the

SRAM present inside the FPGA itself can be used to create small caches and buflfers

to improve performance.

10

1. Introduction

1.2.2 Tools Flows

Creating the hardware infrastructure for a reconfigurable computing system is rel­

atively straightforward and several solutions [26, 30, 31, 32] are commercially avail­

able. However a viable platform also requires a tool flow to create both the software

application and the accompanying hardware configuration.

1.2.2.1 Separate S W And H W Tool Flows

Figure 1.1 shows the simplest tool flow. This has a high level language compiler (e.g.

C/C-I-+) for the software and a completely separate hardware description language

(HDL) (e.g. VHDL or Verilog) in order to generate the hardware configuration

image [33]. Although this approach gives the application developer great flexibility,

it also exposes him/her to a spht programming paradigm. This can introduce design

flaws and bugs as most developers do not possess both hardware and software skill

sets.

As current HDLs are very low level languages, manually porting existing software

to hardware can take a considerable amount of time. One example of this is a seis­

mic data processing algorithm, the kernel of which was ported to hardware [34 .

Although this corresponds to a mere 80 lines of C code, the process took six man

Hardware
description
(eg VHDU

Verilog)

High level
language

(eg C/C++

rdware
generator

Compiler

Hardware
conlig
image

Program
executable

Figure 1.1: Separate SW and HW tool chains

11

1. Introduction

months to complete. Although the result provided a considerable increase in per­

formance, the effort levels and skills required represent a significant barrier to the

widespread adoption of this technology.

It is possible to build library components of common functions (e.g. Fast Fourier

transforms (FFTs), random number generators, sorting algorithms, etc) to reduce

the amount of effort required to port applications to reconfigurable computing plat­

forms. These library components consist of the hardware and a software wrapper

to control it . This not only promotes intellectual property (IP) reuse but also pro­

vides a familiar interface to software developers requiring the performance benefits

of hardware. An additional advantage of this approach is that the library function

can also be implemented in software, thus allowing the system to decide, at runtime,

whether functions are to be performed in software or in hardware [35 .

1.2.2.2 Common High Level Language

To overcome the problems outlined in the section 1.2.2.1 the tool flow shown in

figure 1.2 is becoming increasingly common. This flow uses a high level language

to describe both the hardware and software [36, 37, 38, 39, 40, 41]; often a variant

of C (as a large proportion of software is written in this language, porting software

kernels to hardware is made considerably easier).

As with many other high level languages C [42], was originally created as a pure soft­

ware language. Consequently it lacks some of the constructs required in a high level

HDL. Most notably, there is no way of explicitly specifying parallelism. In addition,

for reconfigurable computing platforms, it is not possible to specify whether a sec­

tion of code should be implemented in software or in hardware. To overcome these

hmitations, most hardware C compilers extend the language with either additional

keywords or pragmas. As both these directives have a significant impact on the effi-

12

1. Introduction

mptler

Program
executable

High level
language

(eg C/C++)

Hardware
generator

Hardware

image

Figure 1.2: Common high level language

ciency of the resulting hardware and also have the potential to introduce bugs into

the system, it is important that the developer has, at the very least, a rudimentary

knowledge of both hardware in general and the target platform in particular.

The resulting executable from these types of tool flow contain the RC area config­

uration data which is very closely related to the underlying hardware architecture.

Because of these low levels of abstraction, applications need to be compiled for the

specific RC area concerned. Therefore, in order to create a viable platform one of

the following options must be chosen:-

Fixed R C area By fixing the architecture, size, and speed of the RC area it would

be possible to distribute applications to customers with a variety of different

reconfigurable computing systems without the need to recompile and re-target.

However this approach is not without its drawbacks. Given that different

market segments have vastly different needs (e.g. mobile, desktop, server) it

would be impractical to fix the RC area. In addition to this, since the speed

of processors is increasing, as stated in section 1.1 if the parameters of the

RC area were to be fixed the performance of pure software would eventually

1.3

1. Introduction

overtake the performance of hardware.

Compile every application for every R C area If there is no requirement for

backwards compatibiUty, the RC area may be freely changed with each version

of the processor, allowing the performance of the RC area to be appropriately

scaled as technology advances. However with no backwards compatibility,

every application would need to be compiled for every system. Clearly this is

not feasible in the mainstream computer market. However this does provide a

possible solution for embedded markets were applications are typically written

for specific platforms.

To address some of the above problems, it has been proposed that the hardware

configuration image could be distributed in a high level, abstracted form [43]. As

a result the target platform would perform both the mapping and place and route

(PAR) stages and new device architectures and tools have been designed that sig­

nificantly reduce the time taken to perform these steps [44], albeit at the expense

of device size and operating frequency. However there are still several problems

associated with this approach:-

Application vendors need to target hardware Because the program contains

an abstracted hardware binary, application vendors will require additional time

and hardware expertise to gain the performance advantages associated with

reconfigurable computing.

Performance does not automatically scale with R C size Although the size

of the RC area can be increased without the need to recompile, only those

applications that have been written specifically to take advantage of the in­

creased hardware resources will benefit.

Compiler modifications The compiler tool chain would need to be extended in

order to support both the additional partitioning and synthesis steps required.
14

1. Introduction

Program
executable

Execution
profile

Hardware
generator

New
program

executable

Hardware
config
image

Figure 1.3: Low level tool chain

This would have to be done for every supported language (e.g. C / C + + , For­

tran, Java).

1.2.2.3 Low Level Tool Flows

Instead of using a high level language as the starting point for the reconfigurable tool

chain as described in section 1.2.2.2, it is possible to start from an existing software

binary [45]. This approach can be extended to form the tool flow shown in figure 1.3

by using runtime execution profiling [46, 47] to identify computationally intensive

sections of code. The key difference between this and other tool flows is that it is run

by end users on their systems and not by application developers, as is usually the

case. This is similar to just in time (JIT) compiler technology, now commonplace

in the software domain, where it is used to execute non native code at close to

native performance [48, 49, 50]. However, instead of translating one instruction set

to another, this tool flow translates computationally intensive sections of code from

the native instruction set to hardware whilst at the same time generating a modified

version of the application in order to utilize the newly generated hardware.

With this tool flow, the reconfigurable hardware is completely abstracted from the

application software. Indeed, the software developer, is not even aware of the pres-

1. Introduction

ence of the reconfigurable hardware. Two benefits arise from this approach: appli­

cation developers do not need specific hardware knowledge and existing applications

will benefit from hardware acceleration without having to be recompiled. This com­

plete abstraction also gives hardware vendors the fiexibility to change the size, speed,

and architecture of the RC area without adversely affecting backwards compatibil­

ity. As a result the performance, cost, and power consumption of the system can be

tailored to suit different market segments (e.g. mobile, desktop, and server) whilst

still providing the fiexibility to allow the system to keep up with the ever increasing

pace of technological change.

1.2.3 Scheduling

Amdahl's law [51] states:-

"If F is the fraction of a calculation that is sequential, and (1-F) is

the fraction that can be parallelised, then the maximum speed-up that

1 5) can be achieved by using P processors is ^ ^ i_p

Although originally related to multi processor systems, Amdahl's law can also be

applied to reconfigurable computing since, in order to achieve a large overall increase

in performance, a large proportion of the computationally intensive code must be

converted to hardware. Because computer systems often perform multiple tasks with

each task containing several computationally intensive loops, there are, potentially, a

large number of code sections that may benefit from hardware conversion. However

merely increasing the size of the RC area to accommodate simultaneously all the

intensive sections of code is very wasteful of hardware resource, since only a small

proportion of the RC area will be active at any one time. To address this problem it

is possible, utilizing the dynamic nature of a reconfigurable computing environment

to move hardware in and out of the RC area as required [52, 53 .
16

1. Introduction

To minimize the idle time associated with reconfiguring the RC area, it has been

proposed that multi context devices [54] be used, allowing the RC area to be active

with one context whilst another context is being reprogrammed. These contexts can

then be quickly swapped thus activating the newly programmed context. This is

similar to the double buffering technique often used in computer graphics. Mult i-

context aware scheduling algorithms can be used to minimize both the memory

bandwidth and the idle time associated with moving configuration data around the

system [55 .

1.2.4 Floating Point Maths

The hardware resource required to implement some mathematical functions can be

considerable. As a result most modern FPGAs contain dedicated hardware to per­

form such operations as multiplication, since this and similar functions are relatively

common and consume a considerable amount of hardware resource. Until recently,

reconfigurable computing has been restricted to integer and fixed point arithmetic

due to the large hardware resources required by floating point units. However, the

combination of floating point cores that are specifically designed and optimized for

FPGAs [56, 57, 58], together with the latest generation of larger devices means that

floating point arithmetic is now achievable on FPGAs.

Due to their size, it is important to match floating point cores to the specific ap­

plication that is to be implemented in hardware. For example, in most cases, it is

advantageous to increase the latency of a core to match the surrounding hardware.

Not only does this ehminate the need to pipeline the result through several stages of

registers to match the rest of the data flow, but it also provides the opportunity to

further optimize the core and reduce its hardware utilization. To this end, research

has been conducted to produce floating point core generators [59] rather than fixed

cores. These core generators allow the RC tool flow to generate different cores for

17

1. Introduction

different sections of the algorithm depending on both the latency and throughput

requirements.

To reduce further the hardware requirements, it is possible to change the number

representations that are used depending on both the number and type of operations

present in the hardware. For example, by using a higher radix floating point nota­

tion, it is possible to reduce the hardware requirements of floating point cores by

12-25% [60]. However, the decision to use a higher radix notation must be made on

a case by case basis. This is due to the fact that the amount of hardware required to

convert to and from the IEEE format used by the host CPU can, in some cases, be

greater than the hardware saved by using the high radix notation. Using logarithm

(LOG) notation has also been investigated, as this can also produce substantial re­

ductions in hardware usage provided the algorithm contains mainly multiply and/or

divide operations [61]. The decision to employ LOG notation has to be informed by

the overhead associated with converting to and from the IEEE floating point format

and also by the number of addition/subtraction operations involved, as these require

significant amounts of hardware resource in the LOG domain.

1.3 Research Conducted

The research presented in this thesis concentrates on the development and investi­

gation of low level tool flows (see section 1.2.2.3) with the ultimate aim of creating

a reconflgurable computing system that would be suitable for mass market adop­

tion. In order to achieve this goal it is important that the final system exhibit the

following characteristics:-

Abstraction Complete abstraction between the hardware and software is required

to provide backward compatibihty. Without this basic requirement it is im­

possible to create a platform that will achieve mass market adoption.

18

1. Introduction

Automatic conversion The conversion from software to hardware, and the sub­

sequent integration of the newly created hardware must be completely au­

tomatic, and require no user intervention. This requirement is particularly

important if the conversion is performed on the end user computer, rather

than the original software developers (see section 1.2.2.3).

Low conversion time To obtain wide spread user acceptance the software to hard­

ware conversion process must be performed relatively quickly. Again this is

especially important on systems where the conversion is performed by the end

used. Although the output of the conversion process can be cached and re­

used during aU subsequent executions of a program, this technique can't be

used during the software development process, where the program is chang­

ing frequently. In addition some users would find the relatively slow, initial

execution un-executable.

Large performance increase The use of reconfigurable technology in mainstream

environments would represent a significant departure from the conventional

techniques used to increase performance (e.g. larger caches, wider execution

pipelines, faster clock speeds, etc). If such a radical technology is be be adopted

then it must offer significant performance advantages over existing approaches

over a wide range of different types of software.

Much of the previous research conducted in this field has concentrated on producing

systems that produce significant increases in performance [10, 11, 12, 13, 14, 15 .

Although this is an important aspect to any reconfigurable computing platform,

it must not be overshadow other aspects hke abstraction, as without these extra

features it is not possible to create a viable reconfigurable computing platform.

The research presented in this these addresses all of the required features, with

the exception of the time required to perform the software to hardware conversion,

as this is an issue that is closely linked to the architecture of the reconfigurable

19

1. Introduction

area, and not the conversion tool chain. This has however been addressed on other

research [44]. In addition to the work presented in this thesis, extra development and

investigation is required before a viable platform is available, details of the required

work can be see in chapter 7.

1.4 Warp Processing

The concept of generating hardware at runtime from an existing software binary was

termed "warp processing" by F Vahid and his team at the Department of Computer

Science and Engineering, University of Cahfornia, Riverside [62]. This research

group performed some preliminary research into the development and use of low

level tool flows that is similar to that described in section 1.2.2.3.

1.4.1 Hardware Platforms

During the course of their research, evaluations of several reconfigurable computing

systems based on different host processors were performed. The general hardware

architecture that they used is shown in figure 1.4. The first thing to note about this

particular architecture is the use of a completely separate processor to perform the

software to hardware conversion which, in many of the test cases that they presented,

was a duplicate of the main host CPU [62, 63, 64]. Although not made exphcit in

their research, this would result in a device that is considerably larger than twice

the size of the original processor core, after the additional hardware required for

the RC area is taken into account. As a result, the hardware acceleration must

produce substantially more than a 2x increase in performance for their platform to

pfoduce any advantage. In the majority of computer systems the CPU will spend

a significant proportion of its time idle. Since this idle time, could in most cases,

20

1. Introduction

be used to perform the hardware conversion without impacting performance, it is

questionable, whether this second, dedicated processor is required.

1.4.2 Tool Flow

The hardware generation tool flow utilized by the "warp processor" developed by F

Vahid and his team, differs shghtly from the tool flow described in section 1.2.2.3

as their first step was to decompile the program that was to be converted to the C

language [63, 65]. They then used the additional information available in this high

level language to further optimize the hardware generation process [65, 66]. However

deriving this additional information necessitated making certain assumptions based

on a knowledge of the original compilation process. Such assumptions can lead to

errors in the decompiled source code and this is especially true in cases where the

software was originally written in a different language (e.g. Fortran). This is due

to the fact that different languages can handle high level constructs (e.g. arrays)

very differently. Any errors in the decompiled source code can result in bugs, data

corruption, and/or system instabihty.

It is not always possible to decompile a program executable. The use of intricate

branching, differing high level languages and high levels of optimization all increase

R C Area

Host C P U

Hardware Conversion Block

C P U MM Memory

Instruction
Cache

Data Cache

Links To
Y Main

Memory

Figure 1.4: Warp processor architecture

21

1. Introduction

Host CPU Reference
Clock speeds Speedup produced

Host CPU Reference CPU RC area Average Peak
ARM 7 [62] 100 MHz 250 MHz 7.4x 16x
MicroBlaze [64] 85 MHz 250 MHz 5.8x 16.9x
ARM 7 [68] 75 MHz 60 MHz 2.1x 4.2x
MIPS [69] 100 MHz 100 MHz 1.4x 1.9x

Table 1.1: Warp processing test platforms

the complexity of the program executable, reducing the likelihood that the decompi­

lation of a specific section of code wUl be successful. In a "warp processing" system,

this can lead to highly computationally intensive sections of code not being con­

verted to hardware. This is probably the reason why the majority of the compiler

optimizations were turned off for some of the test cases evaluated [65]. This dis-

abhng of the compiler optimizations reduces the performance of the software and

can artificially increase the speedup achieved by the conversion to hardware.

1.4.3 Performance Improvements

The "warp processing" concept was evaluated by the California team on a number of

different host processors, including ARM, MIPS, and the MicroBlaze. A summary of

their test platforms is shown in table 1.1. The performance increase produced by the

first two test cases averaged 7.4x and 5.8x respectively. These performance increases

are partially due to the fact that the clock speed of the RC area is considerably higher

than that of the CPU. However, as a result of the overheads associated with the

reconfigurable nature of the RC area, it is not uncommon for the RC area to be an

order of magnitude slower than the CPU. One example of this is the Cray X D l [67

where the maximum clock speed of the FPGA is U x lower than the CPU. In the

"Warp" test cases where the clock speed of the RC area is either the same as or

slightly lower than the CPU, the average performance improvement drops to a mere

2.1x and 1.4x respectively.

22

1, Introduction

Due to the complex nature of the hardware platforms, the performance improve­

ments were calculated by combining the results of VHDL simulations of the RC

area with behavioural simulations of the CPU cores. Due to the lack of actual hard­

ware, several real world factors, such as the communications overhead between the

CPU and the RC area, would not have been taken into account. These factors will

further reduce the performance improvements that were reported.

1.5 Summary

The performance of computer systems roughly doubles every 18 months. However,

since the vast amount of computing power that this provides is still not enough

for many apphcations there has been a shift to the use of dedicated hardware. In

the PC arena this is illustrated by the fact that some graphics cards now have

higher transistor counts than their companion CPUs (GeForce 7800 GTX = 302

miUion transistors, Dual core AMD Opteron = 233 million transistors). Although

this translates into extremely high levels of performance, it is limited to 3D graphics

applications. A new computing paradigm is required that provides the performance

offered by these dedicated hardware solutions without loosing the flexibility and

backwards compatibility associated with conventional software.

Reconfigurable computing has the potential to provide the required performance

without sacrificing flexibility. However, memory bandwidth, device size and tool

flow issues have blocked the widespread adoption of this technology. The latest gen­

eration of larger FPGAs combined with new techniques for implementing floating

point arithmetic, have finally made reconfigurable computing an achievable goal.

As such, several major HPC vendors have started to incorporate FPGAs into their

product ranges. The tight couphng and integration provided by these systems has

dramatically increased the memory bandwidth available when compared to tradi-

23

1. Introduction

tional expansion card solutions. With the emergence of runtime JIT based tool

flows, reconfigurable computing is finally becoming a possibility, however significant

work is required to fully realize the potential benefits.

24

Chapter 2

Behavioural Simulation

2.1 B ackgr ound

Modern systems on a chip (SoC's) are becoming increasingly complex, and often

include a mixture of dedicated hardware blocks together with real time software,

running on one or more embedded processors [70]. To help ensure that the next

generation of these devices hit their market windows, avoiding expensive redesigns

and/or over engineered solutions, it is essential that the initial design concept is

correct, and that the system is capable of performing aU the specified use-cases

without exceeding such device performance limits as memory bandwidth, CPU uti­

lization, and latency. Usually the first stage in the design process is to define the

system use-cases and calculate the device performance required to implement each

of these. Commonly, this is determined by adding up the required bandwidth for

each component of a use-case and adding a safety margin. However, this approach

can be very prone to error as the bandwidths required by the different components

in the system are frequently estimates. In addition, this approach wiU only give

the average bandwidth required by the use-case, and will not take into account any

peaks that might occur in the required bandwidth. These peaks may cause buffers

25

2. Behavioural Simulation

to overflow and data to be lost, resulting in, for example, dropped video frames or

other artefacts that are not acceptable to the customer.

It has been shown [71, 72] that the use of behavioural simulation tools (with a

high level of abstraction) in the early stages of a project, produces useful data

which can, in turn, be used to guide architectural decisions. In addition to this,

behavioural models have many other uses. For example if a complete behavioural

model of a system is produced, it may be used to provide an early hardware target for

embedded software engineers [73], enabling software development to run in parallel

with hardware development throughout the majority of the project. This not only

decreases time to market, but also reduces the knock on effect of late and/or unstable

hardware on the software development cycle. Even when a stable hardware platform

is available, a cycle accurate model can still be extremely useful. For example, it

may be used when writing optimised DSP software [74] in order to provide detailed

information on which sections of code need to be optimised, and it will also indicate

the types of performance bottlenecks that are present. To date, a lot of behavioural

models have been written using proprietary and often inflexible frameworks. This

can hinder the re-use of blocks within the model and cause problems when trying to

integrate multiple models (e.g. DSP core, MPEG decoder) into a model of a SoC.

Open standards such as SystemC [75] are starting to appear that provide a common

framework that enhances re-use. Unfortunately these standards often have serious

flaws in their architectures and do not address many of the other problems, such

as visualisation, simulator overheads and ease of use, associated with behavioural

modelhng.

26

2. Behavioural Simulation

2.2 CPUSim

A behavioural simulation system cafled CPUSim was developed during the course

of this research to address some of the problems traditionally associated with be­

havioural modelling e.g. ease of use, simulation speed and re-use. This system allows

the quick and early evaluation of different device concepts and also provides data

on a wide variety of performance metrics. The language chosen for CPUSim was

Java [76], which enables the simulation to be run, without modification, on a wide

range of platforms including Windows, Linux, Mac and Unix. In addition to being

used extensively throughout the course of this research, CPUSim has also been used

by Philips Semiconductors to model the effects of changing the arbitration settings

and the sizes of the first in first out (FIFO) buffers present in the memory hub of

the PNX8550 hybrid TV processor [7.

2.2.1 Concurrency

The inherent parallel nature of hardware requires that any model incorporates some

mechanism for emulating this. Commonly, this is done at the block level where the

behaviour of a block is defined using normal sequential code and then each block

in the system is run pseudo-concurrently. In most cases this pseudo-concurrency is

implemented by running each block in its own thread [75]. This approach, unfortu­

nately, has several side effects:-

• As most threading systems are random in nature, blocks can be executed in

any order. This can result in the system being non-deterministic.

• As there is no concept of time within the system, it is extremely problematic

or even impossible to get accurate data on any time related metric such as

bandwidth.

27

2. Behavioural Simulation

• The threading mechanism is exposed to the model writer. Writing multi­

threaded programs can be very error prone and can lead to deadlocks, con­

current access, and priority inversions. These are often very difficult to debug

owing to the random nature of these types of problems.

• Since each block in the system exists in its own thread, a complex simula­

tion may easily contain over 50 threads. Context switching between so many

threads is a very time consuming process, leading to large overheads and poor

simulation speed.

To resolve some of these problems, it is common to implement some form of syn­

chronisation within the system; usually in the form of a clock event that triggers the

actions of the blocks in the simulator [77]. However, this does not solve the problems

associated with debugging a multi-threaded application, or the poor performance

associated with this type of approach.

To avoid the above problems, CPUSim uses a different method to simulate concur­

rent execution. A clock generation block calls the "clockPulse () " function on

each block in the clock domain advancing the state of the block by one clock cycle.

Once this is complete the process is repeated. However, there is a serious problem

with this simple clocking scheme. For instance, take the example of a counter which

is incremented every clock cycle and a display, which is also updated once every

cycle. The simulator will give different results depending on the order in which

the blocks are clocked (see figure 2.1). Clearly this is unacceptable. To resolve this

problem, a second clock function called "clockSwapState () " may be used. This,

when combined with the following rules, will ensure an accurate simulation:-

• A block is only allowed to communicate to another block during the execution

of the "clockPulse 0 " function.

• The externally visible state of a block is only allowed to change during the
28

2. Behavioural Simulation

Counter clocked before display. Display reads "1" after
first clock pulse

Counter clocked after display. Display reads "0" after
first clock pulse

0) JO

Reset

Counter
Value

Display
Value

I I

t -
I

o
o

Time

I

±11

Reset

Counter
Value

Display
Value

3 ^
I T

I I
Time

Figure 2.1: Single function clocking

Counter clocked before display. Display reads "0" after
first clock pulse

Counter clocked after display. Display reads "0" after
first clock pulse

•S o .Si

*- CO

Counter
Value

Display
Value

5 8
I

I

I I

T

I I

Counter
Value

Display
Value

I I
l__L

T k
I

_ i _

Time Time

Figure 2.2: Dual function clocking

29

2. Behavioural Simulation

execution of the "clockSwapState () " function.

• The clock block must ensure that all the "clockPulse () " functions on the

blocks have been completed before any of the "clockSwapState () " func­

tions are called and visa versa (see figure 2.2).

This clocking scheme has the following advantages:-

• As the simulator is deterministic and cycle accurate, it can be used to provide

accurate performance metrics.

• As the threading scheme is handled centrally, there is only a very small amount

of multi-threading code, simplifying testing and debugging. Additionally as

there is no synchronization code in the models of the blocks, the development

time is also reduced.

• Since the number of threads used to clock the system can be based on the

number of processors present in the host computer and not the number of

blocks in the simulator (as is often the case), a lot of the simulation overheads

are eliminated.

It is also worth noting that this two stage clocking strategy is similar to the use of the

rising and falling edges of a conventional clock signal. This facilitates the integration

of real hardware with the simulation environment as is described in section 3.4.4.

2.2.2 Flexibility

To reduce the cost of modelling a system, it is important that the blocks in the

simulator are Teusable. There are, therefore, two factors that should be considered

before writing a block:-

30

2. Behavioural Simulation

Parameterization How generic is the model - how many different situations can

it be used in?

Interface How many different types of blocks can the block be connected to?

The concept of having a parameterizable simulation has been used in the past to

investigate different architectures [78]. However, parameterization can be taken a

step further to create generic blocks which can be used in multiple situations. One

example of this is the case of a simple memory block with parameterizable size,

latency and number of ports. If a memory were to be instantiated with the follow­

ing features: large size, high latency and one port, it could be used to simulate a

synchronous dynamic random access memory (SDRAM) device. If the same mem­

ory were to be instantiated with a much smaller size, single clock cycle latency and

multiple read and write ports, it could then be used to simulate the register file in

a processor.

For this "write once, use anywhere" approach to work, there must be common

interfaces. For example, a data cache must fetch data from the memory using the

same mechanism that the instruction decoder uses to fetch data from the register

file. This, in turn, means that the interface must be generic enough to allow its

use in both of these situations, whilst at the same time allowing for a high degree

of simulation detail. One example of this is the "Addressable" interface which

specifies the following functions:-

• boolean wr i te (i n t address, i n t data)

• boolean issueRead (in t address. Track trackObj)

• Integer checkRead (Track trackObj)

This interface allows a connected block to issue a read or a write operation to the

destination block, and in the case of the "read" obtain the result at a later point in
31

2. Behavioural Simulation

time by using the "checkRead () " function. This approach offers the implementer

a great deal of flexibility. For example, a burst transaction could be implemented

by returning the result of the first read operation after ten clock cycles together

with the result of a subsequent read to an adjacent address with a one cycle latency.

This type of interface also allows transactions to be rejected and, by changing the

way in which transactions are rejected, the destination block can effectively alter

the number of simultaneous pipelined transactions that are allowed.

Because this interface is highly abstracted, it can be implemented by a wide variety

of blocks (e.g. register files, frame buffers, caches, and hardware input/output (10)

links) and as a result all of these blocks become interchangeable. This gives the user

great flexibility when choosing precisely which blocks to add to a simulation and

how best to connect them.

2.2.3 Instantiation and Connection

The time taken between the conception of a new system architecture and obtaining

a set of performance metrics from it is one of the limiting factors which determines

how many different architectures can be evaluated before market pressures force the

start of the implementation phase. The two major contributing factors to this round

trip time are: the time taken to implement new architectures in the simulator and

the speed of the simulation. The majority of the simulation environments that are

available produce static models [75]. This obliges the user to go through a laborious

process of changing the source code and then recompiling the model, before the

simulation can be run and the effects of the changes evaluated. In addition to being

a time consuming task, this also requires software development skills that many

hardware engineers and system architects lack. Because CPUSim uses common

interfaces for both instantiating and connecting the blocks, it is possible to make

changes to:-

32

2. Behavioural Simulation

• The number and type of blocks

• Their parameters

• How they are connected

at runtime from the graphical user interface (GUI) without the need to recompile

the program. This fact allows the user to make changes quickly and easily to the

system and to observe instantly the effects of any modifications.

At the heart of this flexibility is the run-time connection and checking interface.

This is comprised of the following two functions:-

• connectToDestination (HardwareBlock dest inat ionBlock ,

in t portNum)

• connectionsComplete 0

By calling the "connectToDestination () " function on a block, the simulator

can create a connection between that block and the "dest inat ionBlock". As

some blocks have to be connected to several blocks of diff'erent types (e.g. an in­

struction decoder needs to be connected to the instruction fetch unit and also to

the register file) a "portNum" is used to specify from which port on the block the

connection is being made. The top level simulation infrastructure also enumerates

these port numbers in order to present meaningful names to the user. If an error

occurs (e.g. the "dest inat ionBlock" is not the correct type of block), an excep­

tion is thrown. When all the connections have been made, the simulator calls the

"connectionsComplete 0" function allowing the block to throw an exception

if any of the required connections are missing. Any exceptions that are thrown by

these two functions are caught by the simulator and turned into a meaningful error

message which is displayed to the user.

33

2. Behavioural Simulation

2.2.4 Visualisation and Statistics

Good visualisation of a simulated system is vital, as this can greatly speedup both

the development and the debugging of the blocks in the model. Good visuahsation

also aids the user in understanding the behaviour of the block within the context of

the wider system.

Often the visualisation of models is, unfortunately, an afterthought and is not an

integrated part of many behavioural modeUing systems. In some cases, the visuali­

sation framework is not even written in the same language as the model implemen­

tation [79]. This can slow down the development of a visuahsation and it can also

discourage, altogether, the model writer from producing a visualisation. Not taking

the time to produce an effective means of visuahsation is a false economy that is far

outweighed by the additional time taken to debug and understand the behaviour of

a block within the context of the wider system.

To address the above, CPUSim has an integrated visuahsation framework that re­

duces the time taken to produce the visualisation for a block, whilst also providing

several visuahsation modules that can be reused. For example, the visualisation

of the frame buffer block provides a graphical view of the buffer together with an

editable, table based view of the raw data within the buffer. This table based view

reuses the same visuahsation component that is used by the memory block. It is

worth noting that because the simulated system is built up graphically from indi­

vidual blocks using a hierarchical block diagram, the user also has an automatically

generated structural tree diagram of the system.

Although visuahsation is a good way to examine the state of a system at any given

point in time, it is not well suited to gather information on the behaviour of the

system over a period of more than a few ten's of clock cycles. In order to overcome

this limitation a statistics infrastructure is incorporated into CPUSim, allowing

34

2. Behavioural Simulation

System block disgtam i ^ B
f ^ EKtemal Memoir S

Q Data Mem
t [^Memorv

Q Stack

Q Prof Data

Q Data Ram

• Stack Mapp

• Prof Data M

D Data Mem

D MemofY

D DumyUrk

a m .
• 10 Mappe

Qio
D CachedAJncat

Q Level 2 Cache

D insl Me
(9 CPU CoiB

Q Data Mem

Q Insl Mem

D Insl Cache

D Insl Fete h

D Inst Decode

• Data Cache

» - (^ E « c « Retire

¥ I S Reg Files

D instFelcn

D Guard Reg

D Data Reg Fl

D Stack P

D Data Reg

Q OuardAccs

D^Cor r t

D s P W M a p

WotdQ.l !
_: 1188821761

168297*73
"2 1720930

25969900
1009:5707
iOI 468112
21471966

toi OnO
0x2 16x0
11K3 £ M
DK4 Ort

313/'
B52001
394364001

'478446689
1450399

J38337
.3614158/3

U J529253669
25252761T

21136422
20633j05

^04758
2084437?
?0761

ax7 (hO

139899168, QKC IOKO

Reaet t ing siftuIaDDC
- C * l M d 10:09!5S 27-05-03

Copped 11:29:11 21-0S-03, a iau ls ted 91645193 cyc l
Ls i ted 11:29:21 27-05-03
Upped 14:05:2S 27-05-03, S l w U a u d 1SD614953 CJQUS 6 19.282629 KHz

a 19.310673 KHi

Figure 2.3: CPUSim simulating an experimental processor, showing the contents of
the instruction cache and a Mandelbrot fractal generated by software running on
the simulated processor.

any block in the system to generate statistics on any aspect of its operation. The

underlying infrastructure can then graphically display these statistics to the user on

a block by block basis and/or produce a report containing some generic details of

the simulation run, together with the statistics data from every block in the system.

Some of the visual elements that make up the CPUSim system are shown is figure

2.3.

2.3 Summary

Behavioural modelling is a vital tool for the exploration of device and system archi­

tectures. However, existing simulation systems lack key features such as an integral

visualization framework and a statistics gathering mechanism. This not only in­

crease model development time, but also hinder the user's understanding and usage

35

2. Behavioural Simulation

of the system. In addition, the reliance on threading techniques in these simulators

to provide the inherent parallelism, present in hardware, is not only a source of

bugs and longer development times, but also significantly decreases the speed of the

resulting simulation.

CPUSim was developed to address the shortcomings of existing behavioural simula­

tion systems. Its centralized clocking mechanism significantly improves both model

development and execution times. This together with its integral visualisation/s­

tatistics frameworks and GUI based parameterization and connection system, make

CPUSim a ideal tool for quickly creating and evaluating new system concepts and

architectures.

36

Chapter 3

E P I C Simulation

3.1 C P U Architecture

To evaluate potential reconfigurable computing tool flows and architectures, a model

of a CPU and its associated peripherals was created for the behavioural simulator

CPUSim which was described in section 2.2. Although based on an experimental

architecture, the CPU core is fundamentally an explicitly parallel instruction com­

puting (EPIC) processor [80], sharing many design concepts with the Intel Itanium

81, 82] range of processors. However, the following differences are worth noting:-

• The instruction bundle size is variable, instead of being fixed at three instruc­

tions as is the case with the Itanium.

• There is no register stack engine [83], so as with most other CPU architectures

stacking has to be handled explicitly.

The specification of the simulated CPU is shown in table 3.1.

37

3. E P I C Simulation

Effective core/bus clock ratio 10
Max instruction fetches per cycle 6
Max instruction issues per cycle 5
General purpose register file 256 X 32 bit registers
Guard register file size 32 registers
Num exec units per type 3
L I I cache 16 KBytes, 4 way set associative
L I D cache 16 KBytes, 4 way set associative
L2 cache 256 KBytes, 8 way set associative
L3 cache 9 MBytes, 18 way set associative

Table 3.1: EPIC CPU specification

Data Cache Instruction Cactie

Fetch Code Profiler

Decode Register File

Sctiedule

Fixed Exec
Units Reconfigurable

Exec Unit

Ret i re

Figure 3.1: EPIC CPU core with additional RC blocks shown in red

3.1.1 Additional R C Hardware Blocks

For the purpose of evaluating potential reconfigurable computing architectures and

tools flows, the direct connection topology described in section 1.2.1.1 was used.

This topology has clear performance advantages and can easily be implemented in

the simulation environment. To support reconfigurable computing, two additional

blocks are added to the CPU instruction pipehne as shown in figure 3.1.

38

3. E P I C Simulation

3.1.1.1 Code Profiler

The code profiler block is connected to the instruction fetch unit and monitors any

jumps or branches that occur. This block consists of some control logic together with

a cache that holds both the target address of the branch and the number of times

that the branch has occurred. As new branches are encountered, additional cache

entries are created and old entries are flushed out to memory, as necessary, based on

a least recently used (LRU) pohcy [84]. This approach has two main advantages:-

• Since it is performed in hardware there is no software overhead associated with

profiling the execution of a program.

• Since a cache is incorporated into the block, the memory bandwidth consumed

by the profile data is minimized.

It has been demonstrated that performance profihng of this nature can be added

to a MIPS 4Kp processor with a 2.4% increase in power consumption and a 10.5%

increase in die area [47]. As MIPS 4Kp is a relatively small CPU core, by modern

standards, the percentage die area utihzed and the power consumed are both sig­

nificantly higher than would be the case if a larger/modern CPU core were to be

used.

3.1.1.2 Reconfigurable Execution Unit

This block presents the same interface as other execution units in the processor, but

in addition it has a connection to the data cache which enables DMA operations

from within the reconfigurable hardware. The exact nature of this block is defined

by the output of the RC conversion tools, however, there are two distinct operating

modes:-

39

3. E P I C Simulation

Behavioural simulation, using the simulation infrastructure provided by CPUSim.

A wrapper interface to a real hardware implementation of the RC hardware

as described in section 3.4.4.

3.2 R C Conversion Algorithms

The experimental RC tool flow used (see figure 3.2), is essentially the same as the

flow described in section 1.2.2.3, differing only in that the hardware generation step

operates on assembly code and not on the raw program binary and as such there

are additional disassembly/assembly stages in the flow.

To facilitate the evaluation of different hardware conversion algorithms, the hard­

ware generation tool contains a plug-in interface that abstracts the conversion pro­

cess from the majority of the tool flow. Instruction combination and loop extrac­

tion hardware conversion plug-ins have also been developed (See sections 3.2.1 and

3.2.2). The performance improvements produced by these conversion algorithms is

compared in section 3.4. As the loop conversion algorithm was found to be effective

an enhanced version was developed, this is described in chapter 4.

3.2.1 Instruction Combination

As discussed in section 1.1.1, it is common practice to add instructions to proces­

sors, instructions that are speciflc to certain classes of applications [85, 86]. Although

these operations can usually be performed using generic instructions, the number of

instructions required is often greater, thus leading to lower performance. Addition­

ally, it is not possible to predict exactly what specialist instructions wiU be required

for every application. Furthermore, power consumption and die area limitations

make it impractical to implement such a large number of additional instructions.
40

3. E P I C Simulation

PFogtam

ueiierdlof

New
program

executable
config
image

Figure 3.2: EPIC CPU RC tool flow

Processor manufacturers are, therefore, forced to implement only such commonly

used instructions as the multiply and accumulate (MAC) [87].

By analyzing the instruction interrelationships in computationally intensive sections

of code and by looking for patterns of instructions that occur repeatedly, it is possi­

ble to dynamically extend the instruction set to include instructions that would be

beneficial to a program that is currently being executed. For example, code listing

3.1 contains two occurrences of the "iadd (iadd (a , b) , i m u l (c , d)) " instruction

pattern. Once these instruction patterns have been identified, they are converted

into hardware blocks with the number of instances of each hardware block being

based on the number of occurrences of the instruction pattern in the software, to­

gether with the available hardware recourses in the RC area. The final stage of the

optimization process is to remove aU occurrences of the instruction pattern from

the software and replace them with instruction(s) that refer to the newly created

hardware, as shown in listing 3.2. It is worth noting, that because the instruction

pattern in this example uses four different parameters, it requires two instructions

to feed the data into the new execution unit.

11

3. E P I C Simulation

and rlO , rlO Oxff
imul r58 , r2 r l l 3 # Inst group 1
and r34 , r34 Oxff
and r l l , r l l Oxff
imul r59 , r3 r l l 3 # Inst group 2
and r35 , r35 Oxff
imul r42 , r34 r i l l
imul r50 , rlO r l l 2
imul r43 , r35 r i l l
imul r51 , r l l r l l 2
iadd r97 , r42 r50 # Inst group 1
iadd r98 , r43 r51 # Inst group 2
iadd r97 , r97 r58 # Inst group 1
iadd r98 , r98 r59 # Inst group 2
ssr r97 , r97 Oxf
ssr r98 , r98 Oxf

Listing 3.1: Sample code before instruction combination

and rlO , rlO Oxff
and r34 , r34 Oxff
and r l l , r l l Oxff
and r35 , r35 Oxff
imul r42 , r34 r i l l
imul r50 , rlO r l l 2
imul r43 , r35 r i l l
imul r51 , r l l r l l 2
hwO r97 , r42 r50 RC i n s t s for group 1
hwl r97 , r2 r l l 3 # RC i ns t s for group 1
hwO r98 , r43 r51 # RC insts for group 2
hwl r98 , r3 r l l 3 # RC insts for group 2
ssr r97 , r97 Oxf
ssr r98 , r98 Oxf

Listing 3.2: Sample code after instruction combination code

42

3. E P I C Simulation

3.2.2 Loop Conversion

The loop conversion algorithm uses the execution profile to locate the most compu­

tationally intensive loop that is viable and then translates this in its entirety to a

hardware data flow pipeline. The following three factors are considered to determine

whether a loop is viable and if it can be converted into hardware:-

Hardware implementable instructions All the instructions in the candidate

loop must be able to be converted into hardware. Whilst this is true of the

vast majority of instructions, some classes of instructions cannot easily be im­

plemented in a data flow pipeline (e.g. Traps, breaks, and cache operations).

None branching code The loop body must not contain any branching code as

a hardware pipeline cannot implement non-linear execution flow. Since the

host EPIC CPU implements guarding [88, 89], the majority of non-hnear code

flow is resolved to data flow by the compiler. In most cases this results in the

remaining branching being due to function calls and/or nested loops.

Hardware resource usage During the early stages of the conversion process, the

tools estimate the hardware resource usage and the candidate loop is rejected

if this estimate is greater than the available hardware resources.

The actual mapping from software to hardware is performed by instantiating a

hardware primitive for each instruction in the loop, and these are then placed onto

a hardware pipeline similar to the one shown in figure 3.3. This results in paralleUsm

in two orthogonal directions:-

• Conventional instruction level parallelism (ILP) is exploited by packing mul­

tiple operations onto the same pipeline stage.

• Loop level parallelism is exploited by having multiple data sets iterating through

43

3. E P I C Simulation

the pipeline at the same time. This is equivalent to processing multiple itera­

tions of the loop simultaneously.

Loop Const
Registers

Source and Result Registers

Inter-stage Registers

1
erations

•

Inter-stage Registers

Figure 3.3: Example RC data flow pipehne

3.2.2.1 Data Flow Pipeline

As shown in figure 3.3 there are three distinct classes of registers in the pipeline:

source/result, inter-stage and loop constant registers:-

Source/result registers The source/result registers are on the first stage of the

pipeline. They hold all initial values and can only be read by the operations

on this first stage, however they may be written to from any stage of the

pipeline. Once all the required registers of this type have been written to, the

next iteration can start regardless of whether the previous one has finished.

Inter-stage registers The inter-stage registers hold temporary/intermediate val­

ues used throughout the loop, and are only accessible by operations on adjacent

44

3. E P I C Simulation

stages. As a result, if a value is generated on one stage but only used on a

stage much further down the pipeline, data forward operations must be placed

into the intermediate stages in order to carry the value down the pipehne to

the stage where it is required.

Loop constant registers The loop constant registers are used to hold values that

are read, but not written to, during the execution of the pipeline and these

are directly accessible from every pipeline stage. Although their functional­

ity could be implemented by a combination of the data forward operations,

source/result and inter-stage registers, the use of a dedicated set of registers

for this function significantly reduces the hardware resources that are required.

Because this hardware architecture uses a distributed register file instead of the

centralized one found in most processors, there are no limitations imposed by the

number of registers or read/write ports. It is also worth noting, that this approach is

ideally suited to modern FPGAs which have flip flops distributed evenly throughout

their logic fabric.

Execution in the data flow pipeline is spht into three distinct phases: initiahzation,

execution and retirement. In the initiahzation phase, the initial values are written

into the loop constant and source/result registers. Once this operation is complete,

the pipeline is triggered and the data flows down the pipeline and is processed as it

passes through the operations on each stage. When the source/result registers have

been fiUed with the all data required for the next iteration and the loop branch op­

eration indicates another iteration is required, the next data set starts flowing down

the pipeline. Once the loop branch instruction indicates no further iterations are

required, and all remaining data has propagated through the pipeline, the final re­

tirement phase is started. In this phase all the required values from the source/result

registers are copied back to the appropriate registers in the host processor.

45

3. E P I C Simulation

3.3 Performance evaluation

3.3.1 Test Algorithms

To evaluate the performance of the hardware conversion system described in section

3.2, three algorithms with different characteristics were chosen. These are shown in

table 3.2. For each algorithm the performance of the software was compared to that

of the hardware optimized version over a range of values for two critical parameters:-

Technology Scale Factor (TSF) This is a measure of how much slower the re-

configurable area of the processor is when compared to a standard fixed exe­

cution unit (i.e. the ratio of the time taken for execution in the reconfigurable

logic compared to the time taken in a hardwired application specific integrated

circuit (ASIC) logic). Thus the TSF is a measure of the overhead present in

reconfigurable hardware when compared to standard ASIC logic. It is worth

noting that the TSF does not take into account other factors that will affect

performance, such as the number of execution units present in the processor.

Loop unroll factor This is the number of times that the body of the critical loop

has been duplicated and is consequently equal to the reduction factor in the

number of loop iterations. This increases the ILP in the code, and as this is a

common software optimization technique, it becomes important to know how

this efltects the hardware conversion.

Algorithm Bandwidth to
instruction ratio

Loop branch
point position

Instruction depen­
dencies (no unroll)

Copy High Beginning High
Half brightness Medium Beginning Medium
Mandelbrot Low End High

Table 3.2: Test algorithms and characteristics

46

3. E P I C Simulation

3.3.1.1 Copy algorithm

This test was a simple 80 KByte copy from one area of memory to another. The

main purpose of this test was to see if the hardware conversion would have a detri­

mental effect under the worst case scenario (i.e. a low number of highly dependant

instructions which are extremely bandwidth limited).

3.3.1.2 Half Brightness Algorithm

This algorithm converts an image from the RGB colour space to the YUV colour

space, halves the luminance value of each pixel and reconverts it back to the RGB

colour space.

3.3.1.3 Mandelbrot Algorithm

The Mandelbrot fractal was chosen as a test algorithm because of its computationally

intensive nature and minimal bandwidth requirements. In this case, performing a

traditional loop unroll (i.e. rephcating the body of the loop) is of little benefit, due

to the high number of data dependencies. To address this, the loop is un-roUed by

processing multiple pixels in a single iteration. Since there are no data dependencies

between adjacent pixels, a significant performance improvement in the software case

is produced and this operation is typical of the type of optimization that a software

developer might perform.

3.3.2 Loop Dependencies

Software loops commonly contain variables whose values are used to determine if

another iteration of the loop is required. Listing 3.3 shows a simple code loop that

47

3. E P I C Simulation

iadd r2 , 0 0
loop :

aload r5 , r4 r2
isub r5 , r5 —1
astore r 5 , r4 r2
iadd r2 , r2 1
neq g2, r2 10

g2 ajump loop

loop
iadd r 2 , 0 0

iadd r6 , r2 0
aload r5 , r4 r6
isub r5 , r5 - 1
astore r5 , r4 r6
iadd r2 , r2 1
neq g2, r2 10
ajump loop

Listing 3.3: Example code loop with Listing 3.4: Example code loop with-
dependency out dependency

decrements the values in a ten element array. In this example the load and store

operations use the value of the loop counter "r2" as an offset into the array and as

a result, the loop counter cannot be incremented until the store operation has been

issued. When the loop is converted into hardware, an inter-iteration dependency

is created that reduces the number of simultaneous loop iterations that can be

executed, impairing performance. By rephcating the value of the loop counter as

shown in listing 3.4, this dependency can be removed together with the associated

performance limitation. Where applicable, this optimization was performed by hand

on the test algorithms and the performance was then compared to the original non-

optimized test case.

3.4 Results

3.4.1 Copy algorithm

Due to the small number of instructions present in this algorithm, the instruction

combination conversion was not able to identify any candidate groups of instructions

and as a result no hardware acceleration was performed.

48

3. E P I C Simulation

The results for the copy algorithm with the loop conversion applied are shown in

figure 3.4. These graphs have been scaled so that the efî ects of the hardware conver­

sion can be clearly observed and as a result the minor fluctuations in performance

(0.6%) that are produced by the pseudo-random nature of the cache, appear to be

quite large.

As shown in figure 3.4(a) the hardware conversion produces a marginal increase in

performance even in the worst test case (Unroll factor = 1, TSF = 16). However,

as the unroll factor increases, the performance of aU hardware accelerated test cases

quickly reaches the bandwidth hmit.

By removing the loop iteration dependency, as described in section 3.3.2, the perfor­

mance of all hardware accelerated test cases reaches the bandwidth limit, as shown

in figure 3.4(b). Removing this dependency had no effect on the performance of the

software only case.

Overall the performance improvement ranged from 0.02% to 0.8%. Although these

improvements are minimal and would not normally warrant the hardware resources

used, this demonstrates that the loop conversion algorithm performs well even under

the extreme condition of a low number of highly dependent and bandwidth intensive

instructions.

3.4.2 Half Brightness Algorithm

Figure 3.5(a) shows the increase in performance generated by the instruction com­

bination when compared to the normal software case. At best, the conversion pro­

duced a 6.8% speed improvement with a TSF value of one. Additionally, as the TSF

value is increased this marginal gain quickly turns into a reduction in performance.

UnroUing the loop increases the amount of ILP. This reduces the performance im­

provement of the instruction combination with low TSF values and also reduces the

49

3. E P I C Simulation

Unroll factor

(a) Dependency present

4 5

Unroll factor

—•—sw
HW (T S F . 1)
HW (TSF . 2)
HW (T S F . 4)
HW (T S F . 8)
HW (T S F . 16)

— • — S W
HW (TSF = 1)
HWfTSF •2)
HW (TSF .4)
HW(TSF •8)
HW(TSF . 16)

(b) Dependency removed

Figure 3.4: Performance improvement of copy algorithm with loop extraction

50

3. E P I C Simulation

performance degradation produced at higher TSF values.

As shown in figure 3.5(b), removing the loop iteration dependency increased the

performance of both software and hardware accelerated test cases by around 9%.

However, this improvement in performance quickly diminishes as the unroll factor

is increased. Again, this is due to the increased ILP associated with unrolling the

loop.

The performance improvement provided by the loop conversion algorithm is shown in

figure 3.6(a). A performance improvement of 3.1x is demonstrated in the ideal case

of a TSF value of one. This decreases to 67% as the unroll factor is increased to eight.

More reahstic values of the TSF produce a substantial reduction in performance. At

high unroU factors, the performance of the software is hmited by the maximum issue

rate of the instruction pipehne. Since this does not affect the hardware pipeline,

the performance continues to increase as the unroll factor increases. As a result,

the performance degradation produced by high values of the TSF is reduced as the

unroU factor increases. With the loop iteration dependency removed, all hardware

accelerated test cases produced a significant performance improvement ranging from

6.6x to 1.75x as shown in figure 3.6(b). As the unroll factor is increased beyond the

value of three, there is httle additional improvement in the performance of the

hardware due to the performance of the hardware pipehne being limited by the

available memory bandwidth.

3.4.3 Mandelbrot Algorithm

As with the half brightness test, when the instruction combination algorithm is

applied to the Mandelbrot test, only a marginal improvement in performance is

^observed with, low values of the TSF (28% performance* improvement, TSF = -l-,

unroll factor =15). This quickly becomes a reduction in performance as the TSF

51

3. E P I C Simulation

5 10.000 I
•g 8,000

4 5

Unroll factor

(a) Dependency present

—•—sw
HW(T8F 1)
HW (TSF •2)
HW(TSF -*)

HW (TSF •8)
HW(TSF = 16)

i
!

—»—sw
H W (T S F . 1)
HW (T S F . 2)
H W (T S F . 4)
H W f T S F . 81
H W (T S F . 161

Unroll (actor

(b) Dependency removed

Figure 3.5: Performance improvement of half brightness algorithm with instruction
combination

52

3. EPIC Simulation

8 16,000

4 5

Unroll factor

• sw
HW(TSF 1)
HWfTSF •2)
HW (TSF .4)
HW (TSF •8)
HWfTSF 161

12,000

4,000

(a) Dependency present

— ^ S W
HW (T S F . 1)
HW (T S F . 2)
HW (T S F . 41

- H W (T S F . 81
H W (T S F . 161

Unroll factor

(b) Dependency removed

Figure 3.6: Performance improvement of half brightness algorithm with loop extrac-
l i o i i

53

3. E P I C Simulation

increases, as shown in figure 3.7. It was not possible to perform loop dependency

removal on the Mandelbrot algorithm, because the decision as whether or not to

perform another iteration, is based on the resultant values from the body of the

loop and not on values that are available earlier in the iteration.

Figure 3.8 shows the effects of the loop conversion algorithm on the Mandelbrot test.

As the unroU factor increases, the performance of the software only case increases

until the issue rate of the instruction pipehne becomes the limiting factor. Since

the data flow pipeline is not affected by either the instruction issue rate or by the

available bandwidth, its performance continues to scale almost linearly throughout

all the test cases. This results in a maximum speed improvement of 6.4 times with

a TSF of one and an unroll factor of sixteen. As shown previously, the performance

improvement degrades as the TSF increases. With a TSF value equal to eight the

performance becomes worse than that in the software only case.

3.4.4 H W Pipeline Implementation

To validate the performance improvements obtained by the loop conversion algo­

rithm, the model of the data flow pipeline in the simulator was replaced with a

wrapper block linking the simulator with a real pipeline, which was implemented

using FPGAs as shown in figure 3.9. To keep the simulator synchronized with the

hardware, the master simulator clock was used to clock the FPGAs. The paral­

lel port was chosen for the interface between the FPGAs and the PC due to its

low latency characteristics. This was necessary in order to achieve an acceptable

simulation speed, given the clock and DMA connections between the FPGAs and

the simulator. Additionally, the hardware conversion tool was modified to produce

VHDL for the FPGAs instead of a simulator model of the pipehne.

The following factors determined which test cases could be implemented in the

54

3. E P I C Simulation

200.000

— • — S W
HWfTSF 1)
HWfTSF 21
HW (TSF -4)
HW(TSF .8)
HW (TSF 16)

1 2 3 4 5 7 8 9 10 11 12 13 14 16 16

Unroll factor

Figure 3.7: Performance improvement of Mandelbrot algorithm with instruction
combination

400,000

200.000

— • — S W
HW(TSF •1)
HW (TSF 2)
HW (TSF -4)
HW (TSF 8)
HWfTSF- 161

1 2 3 4 6 6 7 8 e 10 11 12 13 14 16 16

Unroll factor

Figure 3.8: Performance improvement of Mandelbrot algorithm with loop extraction

55

3, E P I C Simulation

1 PC interface FPGA 4 PC Parallel port connection
2 RC pipeline FPGA 5 Logic analyzer connections
3 Monitoring tile

Figure 3.9: FPGA tiles used to implement real hardware data flow pipeline

FPGAs:-

Hardware resources The FPGA used to implement the data flow pipeline was

an Altera APEX 20K1500. As this device contains 51,840 logic cells, it is not

possible to implement a pipeline that requires a higher logic cell count.

Floating point maths Due to time constraints, floating point primitives were not

created for the FPGAs. Therefore, it was not possible to implement any

pipehne that contains floating point instructions.

T S F To simplify the generation of the VHDL, only pipehnes with a TSF value of

one were implemented in hardware.

Table 3.3 shows which tests were re-implemented using the FPGA. In each case, the

number of clock cycles required to run the test was exactly the same as the simulation

model. Even though only a hmited number of test cases could be implemented in the
56

3. E P I C Simulation

FPGA, the fact that the clock cycle counts precisely matched those in the previous

simulations provides a reasonable level of confidence in the accuracy of the remaining

test cases.

Algorithm
FPGA implemented test cases

Algorithm Interaction dependency
removed

TSF value Unroll factors

Copy No
Yes

1
1

1 - 8
1 - 8

Half brightness No
Yes

1
1

1 - 4
1 - 6

Mandelbrot None

Table 3.3: Test cases implemented in FPGA hardware

3.4.5 Summary

The instruction combination algorithm produced only marginal improvements in

performance, due to a hmited exploitation of the available paralleUsm and also

because of the bottlenecks imposed by the instruction pipeline. The improvements

were only observed when extremely low and unrealistic values were chosen for the

TSF.

The Loop conversion algorithm significantly improved performance over a wide range

of TSF values. This is especially true when it was combined with the loop itera­

tion dependency removal optimization. This conversion technique even managed to

produce a marginal performance improvement under the extreme conditions that

were present in the copy test cases (i.e. low unroU factors, high TSFs and high

bandwidths). As such, this hardware generation algorithm is a viable candidate

for further investigation and optimization. To this end an enhanced version of the

algorithm was developed and is described in chapter 4.

57

Chapter 4

Loop Conversion

During the evaluation of different hardware conversion algorithms in section 3.4, it

was concluded that the loop conversion algorithm had the greatest potential to form

the basis of a viable reconfigurable computing platform. Accordingly, this conversion

algorithm was re-implemented with additional features and optimizations that would

both increase performance and also allow it to be evaluated on a wider range of test

systems. In order to achieve the goal of a completely abstracted reconfigurable

computing system this entire tool flow and set of optimizations would be performed

at runtime. A block diagram of this loop conversion process is shown in figure 4.1.

This system contains two abstraction layers which are shown in green:-

Platform abstraction layer This isolates the conversion algorithms from the host

platforms, aUowing the tool to be easily and quickly ported to different com­

puter systems.

Output target abstraction layer This layer separates the pipeline generation

stage from the physical implementation details of the RC area, thus enabling

the same conversion system to be used with different hardware platforms, as

well as the behavioural simulation system described in section 2.2.

58

4 . Loop Conversion

Execution
profile

Program
executable

Platform Abstraction Plug-ins

Identification

Instruction
Linearization

Optimisation
Plug-in Ubrary isation

gar Instruction
Insertion

Pipeline
Generation

Output Target
Converters

New
Program

executable

Hardware
config

images

Figure 4.1: Simphfied Loop conversion block diagram

59

4. Loop Conversion

In addition to having the capabiUty of working with a variety of host platforms

and target RC areas, the new loop conversion tool flow is also able to convert to

hardware, several computationally intensive loops from the same program. It is

worth noting that, the tool flow operates on small sections of the program in situ

and therefore avoids the need to disassemble the entire program. This significantly

speeds up the conversion process when it is applied to large applications.

4.1 Abstract Instruction Model

As part of the platform abstraction layer the instructions in the source program are

converted to an internal abstract instruction model (AIM). The abstract instruc­

tions are generic in nature and can be used with any input parameter type (i.e.

static value, register, constant register) unlike conventional instruction where the

type of the parameters are usually fixed when the instruction set is defined. This

flexibihty reduces the number of abstract instructions that must be supported as

several instructions from the same CPU ISA can be mapped onto the same abstract

instruction (e.g. the MIPS XOR and XORI map to the same abstract instruction).

The generic nature of the abstract instructions also means that instructions for dif­

ferent ISAs will map onto the same abstract instruction (e.g. both the MIPS and

IA64 ISAs have 32 bit addition operations). Most of the abstract instructions cor­

respond to hardware primitives that can be instantiated in the RC area (e.g. an 32

adder), any instructions that do not have hardware primitives must be removed by

the optimisation steps in the conversion process or the hardware generation will fail.

To utilise the essentially unhmited number of registers (due to the 1:1 flipflop to

LUT ratio) that can be instantiated in a hardware pipeline, the A I M must also

have an unlimited number of registers. During the mapping from CPU ISA to A I M

each CPU register is mapped onto a diflferent A I M register, this therefore leads to

60

4. Loop Conversion

an initial register utilisation equal to the number of registers present in the host

ISA. The various optimisation steps performed (described in sections 4.5 and 4.5.1)

during the hardware conversion remap the register numbers so that a much larger

number of registers are used than were present in the original host ISA, this increases

ILP and therefore performance.

The A I M is a representation of what operations are performed, together with infor­

mation about what data is passed between operations (and not how it is passed).

Therefore the A I M can represent a wide variety of instruction sets including EPIC,

RISC, and CISC. To concept of using an A I M to represent a wide variety of IS As

(e.g. MIPS [90], IA32 [86]) is a proven concept and is extencivly used by Transitive

91 •

4.1.1 Supporting Additional IS As

The following steps must be performed to add support for a new instruction set:-

Write instruction decoder An instruction decoder must be written to take the

binary representation of the instructions and translate them into the op-codes

and the register numbers/parameter values. The instruction decode translates

from the CPU specific ISA to a format suitable for the A I M .

Create mapping tables The mapping table contains all the op-codes in the ISA

together with references to the abstract instructions they are equivalent to.

NULL references are placed in the tables for any any op-code that can not be

supported in the A I M (e.g. cache instructions).

Implement additional abstract instructions The majority of instructions are

common to nearly all CPU ISAs. As a result the same abstract instructions

can be re-used for many host CPUs. However some rare instructions will be

61

4. Loop Conversion

specific to certain CPUs (e.g. vector instructions like MMX) . Although such

instructions could be left out of the A I M this would prevent the conversion

system from processing any code that contained such instructions. The best

approach is to add the CPU specific instructions to the A I M . This is a simple

matter of writing a small VHDL fragment (called a primitive) that performs

the same function at the instruction, and added it to the A I M table along with

various estimates of its latency and hardware resource usage.

General information In addition to detailed information about the instructions,

the hardware conversion system requires some general information about the

host platform. This includes the number of branch delay slots, the register the

stack pointer is stored in, and which instructions will trigger execution in the

RC area.

Physically the A I M is separated from the CPU ISA by Java interfaces [76]. This

enforce the strict rules defined by the abstraction layer, and provides a starting point

when implementing front ends for new host CPUs.

4.2 Targeting The Hardware Pipeline

The final hardware is a pure data flow pipehne it does not process instructions in the

same way as a conventional CPU. Instead each instruction in the original software

becomes a separate piece of hardware in the pipeline. The following characteris­

tics enable the creation of an efficient hardware pipehne that produce significant

increases in performance:-

Linear non-branching code A hardware pipeline can not handle non-linear in­

structions streams, however software typically contains branching code. There­

fore all branching must be removed (see section 4.4).
62

4. Loop Conversion

High levels of I L P The higher the level of ILP the more parallehsm will be ex­

ploited be the final hardware pipeline. Several optimizations are performed

during the conversion process to increase the levels or ILP (see sections 4.5.5,

4.5.1 and 4.6.1).

Low memory bandwidth requirements In many cases the performance of the

hardware pipeline is hmited by the available memory bandwidth. Although

memory bandwidth is primarily a characteristic of the original algorithm and

the way the software was written some optimizations can be performed that

will reduce the bandwidth required (see section 4.5.2).

No inter-iteration dependencies As the hardware pipehne can simultaneously

process several iterations the presence and position of inter-iteration depen­

dencies (see section 3.3.2) will significantly reduce performance.

Instruction complexity The latency of each instruction is related to its complex­

ity (e.g. a multiply has a much higher latency than a bitwise AND). The lower

the latencies the more instructions can be packed onto a single pipeline stage,

therefore leading to higher levels of ILP and performance.

Sections 4.3 to 4.6.1 describe the processes and optimizations that are performed to

make the software suitable for implementation in a hardware data flow pipeline.

4.3 Loop Identification

The first stage in the loop conversion process, is to inspect those sections of the

program surrounding the branch target addresses in the execution profile. This

process allows the algorithm to determine which branches are due to loops and which

branches are due to other control flows, such as " i f , else , s w i t c h " statements.

Candidate loops are then discarded if they fail to meet the following criteria:-
63

4. Loop Conversion

Hardware implementable instructions A l l the instructions in the candidate

loop must be capable of being converted into hardware (whilst this is true

of the vast majority of instructions, some classes of instructions cannot easily

be implemented e.g. traps, breaks, cache operations).

Flinction calls or nested loops The loop must not contain any nested loops or

function calls (although this appears to be a major limitation, small functions

will usually be in-Uned by the compiler, and if a nested loop is present that

loop itself will stiU be considered as a candidate for conversion).

Once the candidate loops have been identified, a measure of their computational

intensity is calculated by the hardware conversion tools (equation 4.1a shows the

simplest way of doing this). However, as many loops contain " i f , else , s w i t c h "

statements, the total number of instructions can be very different from the number

of instructions that are executed per iteration. To allow for this, a worst case value

is calculated using equation 4.1b. This rough measure of execution time is used,

together with an estimate of the required hardware resources, when deciding which

loops should be implemented in the RC area.

Loop exec time w Num iterations x Total num instructions (4.1a)

Maximum exec time w Num iterations x Num instructions in longest path (4.1b)

4.4 Instruction Linearization

The target RC area is used to implement a data flow pipeline similar to the one

described in section 3.2.2.1. Since this type of pipeline cannot directly implement

the branches in the execution flow that are common in the software domain, the loop

conversion system removes all branches by using a combination of two techniques:

multiplexer (MUX) insertion and instruction guarding. This process is performed
64

4. Loop Conversion

blez r2 elseBody
r3 add r3 1
b end

elseBody
r3 sub r3 1
r l mov r2

end

gO blez r2
r5 add r3 1
r6 sub r3 1
r4 mov r2
r l mux gO r l r4
r3 mux gO r5 r6

Listing 4.1: If-else statement imple- Listing 4.2: If-else statement imple­
mented with branches mented with MUXs

recursively, in order that complex program flows containing sets of nested branch

instructions can be converted to hardware. The end product of the instruction

linearization stage, is a serial stream of non-branching instructions that perform the

same function as the original loop body.

4.4.1 MUX Insertion

Listing 4.1 shows the way in which an " i f / else" statement is coded in Assembly.

First, the branching is removed by executing both branch paths, and then one

or more MUXs, as shown is listing 4.2, are appended (note that the MUXs are

controlled by a boolean value generated by the original branch instruction). If a

register is changed in both branch paths (e.g. " r3") , then the corresponding MUX

will select between the two newly generated values. I f however, the register value

was only changed on one of the branch paths (e.g. " r l ") , then the MUX will

select between the original value and the value generated by the branch path. MUX

insertion may lead to redundant instructions being present, an example of this is the

"mov" instruction in hsting 4.2, however this will be removed by the optimization

process described in section 4.5.4.

65

4. Loop Conversion

blez r2 end
sw r3 r4

end

gO blez r2
sw gO r3 r4

Listing 4.3: Conditional store imple- Listing 4.4: Conditional store imple­
mented with branching mented with guarding

4.4.2 Instruction Guarding

MUX insertion cannot be used on instructions that have effects external to the CPU

core/RC area, since both paths are executed regardless of the branch condition (e.g.

store instructions). A guard [88] value is generated by the original branch instruction

to control whether or not the store instruction performs the memory operation when

it is executed (see hstings 4.3 and 4.4). Although not necessary for correct pipehne

function, guarding of the load instructions is also carried out to reduce memory

bandwidth and consequently increase performance.

4.5 Optimization

A plug-in interface is provided to accelerate the development of additional optimiza­

tions, allowing any number of optimizations to be apphed to the abstract represen­

tation of the serial instruction stream. I t is interesting to note that, generally, as

the number of optimizations is increased, the overall conversion time decreases. A l ­

though these optimizations slightly increase the time taken to generate the pipehne,

they also simplify its structure thus reducing the time required to perform the PAR

(by far the most time consuming stage of the entire process). The following opti­

mization plug-ins have been developed:-

• Hardware dependency removal

• Stack removal

66

4, Loop Conversion

• Iteration dependency removal

• Instruction removal

• Tree re-balancing

4.5.1 Hardware Dependency Removal

The amount of ILP present is often hmited by hardware dependencies, where instruc­

tions share a common hardware resource that prevents them from being executed in

parallel. This can be seen in listing 4.5 where the temporary register "r2" is used

by two sets of otherwise independent instructions. This dependency can be removed

by remapping some of the instructions so that they use a new register "r5" as

shown in listing 4.6. This is similar to the register renaming [92] technique used in

superscalar processors. However, the increase in ILP produced by register renaming

may be limited by the number of physical registers present in the CPU. Since, it is

possible to create as many registers as may be required in an RC area, hardware

dependency removal can yield higher levels of ILP in a reconfigurable computing

environment than it would in a conventional superscalar processor.

r2 s r l r l 1 r5 s r l r l 1
r3 or r2 1 r3 or r5 1
r2 add r l 1 r2 add r l 1
r4 and r2 255 r4 and r2 255

Listing 4.5: Hardware dependency Listing 4.6: Hardware dependency re­
present moved

4.5.2 Stack Removal

Since CPUs have fixed numbers of registers, if a section of code requires more regis­

ters than are present, temporary values must be "pushed" and "popped" to and from
67

4. Loop Conversion

loop :
sw r l 0 (sp)
r l s r l r2 1
r2 or r2 31
r2 or r2 r l
r l Iw 0 (sp)
bne r3 r l loop

Listing 4.7: Stacking ("push" first)

loop :
r5 s r l r2 1
r2 or r2 31
r2 or r2 r5
gO bne r3 r l loop
sw gO r l 0 (sp)

Listing 4.8: Stack operations removed
("push" first)

the stack, as shown in hsting 4.7. Stacking, increases the number of instructions

that need to be executed, decreases ILP, and increases the amount of bandwidth

required. Stack operations may be removed on a reconfigurable computing platform

by creating additional registers, as shown in hsting 4.8. This increases the amount

of paraUelism and also reduces the bandwidth required by the RC area. To maintain

consistency with the original code, a single "push" to the stack is performed on the

last iteration of the loop, so as to leave the stack in exactly the same state as the

software which the hardware pipeline replaced.

In some situations the stack "pop" occurs before the "push", as shown in listing 4.9.

The majority of the stack operations may still be removed by creating an additional

register. However, the "pop" operation remains in the loop, guarded by a flag that

is true for the first iteration (see listing 4.10). This allows the initial value to be

retrieved from the stack. The "push" operation is again guarded so it only occurs

on the final iteration of the loop.

4.5.3 Iteration Dependency Removal

As shown in section 3.4, removing the loop iteration dependency (see section 3.3.2)

can have a significant effect on the overall performance of the system. As a result,

the optimization is automatically performed by this plug-in.

68

4. Loop Conversion

loop :
r l Iw 0(sp)
r l add r2 r l
sw r l 0(sp)
r l s r l r2 1
r2 or r2 r l
bnez r3 loop

Listing 4.9: Stacking ("pop" first)

loop :
r6 Iw i s F i r s t 0(sp)
r l mux i s F i r s t r l r6
r l add r2 r l
r5 s r l r2 1
r2 or r2 r5
gO bnez r3 loop
sw gO r l 0 (sp)

Listing 4.10: Stack operations re­
moved ("pop" first)

4.5.4 Instruction Removal

Because of the limited capabilities of CPU instruction sets, it is quite common for

code to contain instructions that can be removed without affecting the functionality.

These instructions fall into two categories:-

Immediate values Many instructions can only take values directly from the reg­

ister file. In addition, instructions that are able to take immediate values can,

usually, only accept small numbers (16 bits in the case of the MIPS instruction

set [90]). As a result, it is common to find groups of instructions that set the

value of a register, followed by further instructions that use this value (shown

in listing 4.11).

Copy instruction Due to the centralized register file architecture present in most

processors, copying values from one register to another is a common process.

An additional source of these copy instructions, is the linearization process

described in section 4.4.1.

Due to the flexible nature of the RC area compared to that of a fixed instruction

set, i t is possible to remove both of these types of redundant instructions as shown

in listing 4.12.

69

4. Loop Conversion

r l l u i 0x802
r l or r l 0xa578
r l Iw r l
r 4 mov r 1

r4 Iw 0x802a578

Listing 4.11: Before instruction re- Listing 4.12: After instruction re­
moval moval

r l or r l r2
r l or r l r3
r l or r l r4

r5 or r l r2
r6 or r3 r4
r l or r5 r6

Listing 4.13: Sequential value combi- Listing 4.14: Balanced value combi­
nation nation

4.5.5 Tree Re-balancing

If a series of values need to be combined, it is common for compilers to generate a

sequential stream of instructions, as shown in fisting 4.13. Altfiougfi this approach

minimizes the number of temporary registers required and consequently the need

for stacking, the resultant code has very low levels of ILP. By using additional

temporary registers and rearranging the way in which the values are combined, it is

possible to increase the ILP as shown in listing 4.14. This is similar to the concept

of balancing binary trees [93 .

If all the source values for the tree are produced on the same stage of the data

flow pipefine, then the tree could be balanced so that each data path is of the same

length. However, this is not always be the case. For example, if one of the source

values is not available until much further down the pipehne, the result would be a

reduction in performance. To compensate for this, the balancing algorithm estimates

at which point in the pipeline each source value becomes available and skews the

tree accordingly.

It is important to note that the number of stages required for the pre optimization

70

4. Loop Conversion

sequential case, scales linearly with the number of input values (see equation 4.2a),

whilst in the post optimization balanced tree case this scaUng becomes logarithmic

(see equation 4.2b). Therefore, the performance improvement produced by this

optimization increases dramatically as the number of input values increases.

Num stages (Sequential) = Num values — 1 (4.2a)

Num stages (Balanced) = logs (Num values) (4-2b)

4.6 Pipeline Generation

After the code hnearization and optimization steps have been performed, the pipehne

is generated. A simplified overview of this procedure is shown in figure 4.2. This

pipehne generation process can be broken down into the following distinct stages:-

• Operation scheduling

• Data forwarder addition

• Register remapping

4.6.1 Operation Scheduling

The position of the operations in the pipeline may be calculated by analyzing the

data dependencies, the results of this calculation are shown in figure 4.2(b). RC

areas are based on a regular array of fundamental logic elements. In the case of FP-

GAs each element usually consists of a single flipflop and a 4 input Look Up Table

(LUT) [94], whereas most software instructions have only 2 input parameters. Con­

sequently placing a single operation between registers, can result in half the inputs

to the logic elements remaining unused. This leads to high latencies and inefficient

71

4. Loop Conversion

r lO s r 1 r l 2 29
rS s r l r l 2 26
rS and rS 0x1
r lO and r lO r l 3
r lO xor r lO r8
r9 s r l r l 2 30
r9 and r9 r lO
r l xor rS r lO

(a) Sequential operations

Stage 0 r lO s r l r l 2 29 r8 s r l r l 2 26 r9 s r l r l 2 30
Stage 1 rS and r8 0x1 r lO and r lO r l 3
Stage 2 r lO xor r lO r8
Stage 3 r9 and r9 r lO r l xor r8 r lO

(b) Scheduled operations

Stage 0 r lO s r l r l 2 29 r8 s r l r l 2 26 r9 s r l r l 2 30
Stage 1 r8 and r8 0x1 r lO and r lO c r l 3 r9 ^ r9
Stage 2 r lO xor r lO r8 r8 ^ r8 r9 ^ r9
Stage 3 r9 and r9 r lO r l xor r8 r lO

(c) Schedulec operations with forwarders

Stage 0 rO s r l rO 29 r l s r l rO 26 r2 s r l rO 30
Stage 1 rO and r l 0x1 r l and rO crO r2 ^ r2
Stage 2 rO xor r l rO r l ^ rO r2 ^ r2
Stage 3 b r l and r2 rO r l xor r l rO

(d) Pipeline with remapped registers

Figure 4.2: Example operation scheduhng onto data flow pipeline

72

4. Loop Conversion

usage of the available hardware resources. To reduce both latency and hardware

usage, the estimated propagation delay of each operation is calculated based on the

types of its input parameters (i.e. register or static value). If the combined delay of

two or more dependent operations is less than the target propagation delay between

registers, then the operations are packed into the same pipeline stage. Since this

optimization is performed when the pipehne is generated, a considerable reduction

in the overall length of the pipehne is produced. This is similar to the technique of

register retiming [95, 96] where registers are moved forwards or backwards through

the logic to even out propagation delays. However, with this technique, the to­

tal number of registers and therefore the number of pipeline stages must remain

constant.

4.6.1.1 Pointer Aliasing

In addition to conventional data dependencies, pointer ahasing can also cause op­

erations to be dependent upon each other. For example, when the addresses of two

memory operations are the same, the original order of these memory operations

must be maintained. Unfortunately, it is very difficult to identify which pointers are

prone to ahasing [97, 98]. Simply assuming that all pointers have the potential to

alias, is the safest solution. However, this approach significantly hmits both ILP and

loop level parallelism. One potential solution, is to perform aggressive optimizations

and to implement hardware ahas detection. If pointer aliasing is detected, the state

of the hardware is roUed back to the point before the occurrence of the alias and

the code is then re-executed with less aggressive optimizations. This technique has

been successfully implemented in the Crusoe range of processors from Transmeta

99, 50]. However, this procedure could not be implemented in the current hardware

generation system because the error detection stage would have to be based on ex­

ceptions and/or interrupts, which are either not implemented or not accessible on

73

4. Loop Conversion

the current host target platforms. To overcome this hmitation, the user is able to

specify whether or not pointer aliasing is present. This is the only user intervention

that is required in the entire conversion process and this can be eliminated with the

next generation of target platforms.

4.6.2 Data Forwarder Addition

As discussed in section 3.2.2.1, the lack of a centralised register file means that values

generated on one stage need to be piped forward to the stage where they are to be

used. This can be seen in figure 4.2(c), where the value of register " r9" is generated

on stage 0 but is not used until stage 3. As a result of this, data forwarders have

been added to stages 1 and 2.

If a value is read but never written to during the execution phase of the pipeUne,

then additional data forwarders are not required. Instead, the input to the operation

is directly connected to the loop constant centralized register file, which can only be

read by the pipeline. This can be seen in figure 4.2(c) where the second operation

on stage 1 has the input parameters " r l 3 " flagged as a constant.

4.6.3 Register Remapping

Initially, the instructions all accessed a global register file. Once the operations

have been placed into the data flow pipeline, they are only able to access the loop

constant registers and the registers on adjacent pipeline stages. The final stage of

the pipehne generation process is to remap the register numbers so that each set of

registers is numbered sequentially, as shown in figure 4.2(d). During this process,

the number of registers required on each stage is also calculated.

Operations that produce either: the final result values or the data required for the

74

4. Loop Conversion

— Reg Nums Reg Nums •

0 N - 1 0 N - 1

Loop Const Stage 0 Src Stage 0 Src & Stage 0
Regs Regs Result Regs Result Regs

Figure 4.3: Loop constant and stage 0 shift register arrangement

next iteration of the pipeline, are remapped so that the data is written to stage 0

instead of to the next pipeline stage, as would normally be the case. An example is

operation 1 on stage 3, shown in figure 4.2(d).

To eliminate the need for complex clock enables and large MUXs, the loop constant

and stage 0 registers are connected together to form a shift register. Additionally,

stage 0 parameters are assigned register numbers according to their usage, as shown

in figure 4.3. By grouping registers that are used as source values close to the start

of the shift register and by also grouping result registers close to the end of the shift

register, the number of values that must be shifted into and out of the RC area is

minimized.

4.7 Target Implementation

The final stage of the loop conversion process, is to generate a target specific pipeline

configuration from the abstract representation produced by the pipeline scheduling

phase. In addition to this, a new version of the program executable is created that

utihzes the newly created hardware.

4.7.1 Pipeline configuration generation

The configuration generation is abstracted from the rest of the tool flow by a plug-in

interface. This aUows multiple configuration formats to be generated for different

75

4. L o o p Convers ion

target platforms. These include:-

M I P S hardware This plug-in generates a V H D L representation of the pipeline

that can be directly synthesized using the Altera Quartus [100] software, thus

producing the F P G A configuration bitstream.

M I P S s imulat ion A simulation model of a MIPS CPU and its peripherals was

created using the behavioural simulator described in section 2.2. The RC area

in the simulation is configured f rom a file that is generated by this plug-in.

C r a y X D l hardware I n order to target the FPGAs present i n the Cray X D l [67

this output plug-in creates a V H D L representation of the pipeline, which in

t u rn is converted to a F P G A configuration bitstream by the X i l i n x ISE [101

software.

In addition to producing the configuration for the RC area, these plug-ins also

provide the following information to the rest of the tool flow:-

• The RC area size

• The maximum number of pipelines that the RC area can contain

• The latencies of the operations for each input configuration

• The sizes of the operations for each input configuration

4.7.2 Program modification

The register remapping information produced during the pipeline generation phase,

identifies which register values need to be sent to the pipeline before execution,

and which values should be copied back to the CPU register file. This information

is also used to determine the order of the parameters in the trigger instructions.

76

4. L o o p Convers ion

l o o p :
r l sub r l 1
r2 m u l r2 r l
bne r l 0 l o o p
< R e s t of p r o g r a m >

l o o p :
b t r i g l n s t s
r2 m u l r 2 r l
bne r l 0 l o o p

e n d O f L o o p :
<R,est o f p r o g r a m >

t r i g l n s t s :
r2 r c p t O r l r 2 7
b e n d O f L o o p

List ing 4.15: Program before trigger List ing 4.16: Program after trigger in-
instruction insertion struction insertion

These trigger instructions are generated and, together w i t h a j u m p instruction, are

appended to the program (as shown in hsting 4.15 and 4.16). Once the pipeline

has finished executing, this j u m p instruction returns the program execution back to

the main body of the software. Placing the trigger instructions at the end of the

program provides two main advantages:-

• The hardware acceleration can be enabled or disabled by simply swapping the

first instruction in the loop w i t h a j u m p to the start of the trigger instructions

at the end of the program.

• I n some cases, the number of trigger instructions required w i l l be greater than

the number of instructions in the original loop. Since, only a single instruction

needs to be replaced in the original loop, this removes the need to move the

rest of the program up in the address space and consequently removes the need

to relink.

Header information is also added to the trigger instructions at the end of the pro­

gram. This can be read by the program at runtime and is used to give the end user

the abihty to enable or disable the hardware acceleration.

77

Chapter 5

MIPS Test Platform

To evaluate the performance of the loop conversion system outhned in chapter 4, a

test p la t form was created using the MIPS architecture [102]. This was chosen due

to the widespread availabihty of compilers, open source CPU cores, and reference

manuals.

5.1 Platform Details

The MIPS test pla t form consists of three separate targets:-

H a r d w a r e A standalone hardware implementation of the MIPS pla t form and RC

area was created using FPGAs. A l l the performance evaluations were per­

formed on this target.

Simulat ion A behavioural simulation of the MIPS CPU, RC area and peripherals

was created using the simulator described in section 2.2. The high level of

visibi l i ty provided by this environment makes i t an ideal debug tool for both

the MIPS and the hardware conversion software. Because the hardware soft-

78

5. M I P S Test P l a t f o r m

ware interface (HSI) exactly matches the standalone hardware target, the same

software binaries can be run on both wi thout either modification or porting.

M i x e d s imulat ion and hardware pipeline This target was used as both a de­

bug system and as an intermediate stage to the f u l l hardware solution. I t

combines the behavioural simulation of the CPU core w i t h its associated pe­

ripherals w i t h an RC area implemented in an Altera A P E X 20K1500, and

is similar in concept to the mixed hardware/simulation system described in

section 3.4.4.

5.1.1 R C Area Integration

The MIPS test platform uses the directly connected topology outlined in section

1.2.1.1. As a result, the RC area is connected to the instruction pipeline of the CPU

as an additional execution unit . To control the RC area, four extra trigger instruc­

tions have been added to the MIPS instruction set. A l l four of these instructions

are identical except for the fact that each one refers to a different data flow pipehne

wi th in the RC area. The trigger instructions have four parameters:-

Dest inat ion register This is set to the register number where value shifted out

of the pipeline wiU be stored. I f the instruction does not return a value, then

this parameter should be set to "$0", which corresponds to the hard wired

zero register in the MIPS ISA.

Source register 1 & 2 The next 2 parameters are the source registers that contain

the values to be loaded into the pipehne. I f a source value is not required the

parameter should again, be set to "$0".

Flags The final parameter is the bitwise OR of three flags that contrprthe execution

of the instruction. The first b i t is set to trigger the start of the pipeline

79

5. M I P S Test P l a t f o r m

execution; the second bi t is set i f the source parameters of the instruction

need to be shifted into the pipehne; the th i rd bi t is set i f a result parameter

needs to be shifted out of the pipeline. A n instruction which triggers execution

in the data flow pipeline w i l l stall un t i l the RC area has completed execution.

A n example trigger instruction sequence, for data flow pipehne zero, is shown in

listing 5.1. The first instruction loads two parameters into the pipeline; the sec­

ond instruction loads two additional source parameters and then triggers execution.

Once execution in the RC area has completed, the first result parameter is stored

in the register " a l " and the final instruction stores another result parameter in the

register "aO".

r c p t O $0 , $ v l SvO 0x2
r c p t O Sa l , Sa l SaO 0x7
r c p t O $aO , $0 $0 0x4

List ing 5.1: Example RC trigger instruction sequence

5.1.2 Hardware

Figure 5.1 shows the hardware used to implement the standalone target. By recom-

pihng the code for the RC area w i t h different interface libraries, the pipeline can

also be connected to the behavioural simulator for use in a mixed simulation/hard­

ware target. This connection is made via the parallel port due to the low latency

requirements of the connection.

The specification of this system is outlined in table 5.1. As shown in figure 5.2, one

F P G A contains the open source Plasma MIPS CPU core [103], together w i t h its

peripherals, and the second F P G A contains the reconfigufable data flow pipeline(s).

A n RS232 port is used to provide a command line interface to the software running

80

5. M I P S Test P l a t f o r m

on the target. Due to the low data rates provided by this interface a USB port is

also present to aid the transfer of large sets of test data to and f rom the target.

A 64 bi t clock cycle counter is present in the system, the value of which can be

read by the CPU and is used to time, accurately, the execution of the various test

algorithms.

The Plasma CPU core used, is open source and as such the V H D L code for the

processor is freely available. Modi fy ing the instruction pipeline to incorporate the

RC area was, therefore, a relatively simple task. The processor, based on a three

stage pipehne design, is capable of issuing one instruction per clock cycle and the

major i ty of instructions w i l l execute wi thout staUing the pipeline. However, the

multiplier, divider, and load/store units all take multiple cycles and can, therefore,

stall the instruction pipeline. Since the memory interface takes multiple cycles to

perform an operation, and is not pipelined, the memory bandwidth available is

l imited. This hmited bandwidth prevents the high computational rate of the RC

area f rom being fu l ly reahzed. However, due to the relatively low computational

rate of the CPU, this l imi ta t ion does not significantly impact on the performance

of this processor. As the memories connected to the CPU are low latency SRAMs,

the lack of caches in the core has only a marginal effect on performance.

Due to the l imited number of block R A M s in the A P E X 20K200 used for the CPU,

i t was not possible to implement the code profiler block described in section 3.1.1.1.

Consequently, the code profi l ing was performed on the simulation target. This,

together w i t h the fact that i t is not possible to run the Quartus [100] synthesis tool

on the platform, prevents the system being used in a runtime self adaptive mode.

Instead the conversion process is performed pre-runtime using only the program

binary and profile report, no access to the original source code is required.

The clock speed of both the processor core and the RC area is T6MHz, w i t h the

l imi t ing factor being the path f rom the load/store unit in the processor to the

81

5. M I P S Tes t P l a t f o r m

1 Plasma MIPS CPU core and peripherals 6
2 RC area F P G A 7
3 2 MByte S R A M & power dis tr ibut ion tile 8
4 PC Parallel port connection to simulator 9
5 Misc (Monitor , CPUSim interfaces, etc)

Logic analyzer connections
Monitor ing ti le
RS232 console interface
USB data transfer interface

Figure 5.1: F P G A tiles used to implement MIPS CPU, RC pipeline, and peripherals

CPU ((.iv Plasma MIPS C P U @ 16 MHz in Al tera A P E X 20K200 F P G A
RC area Data flow pipeline @ 16 MHz in Altera A P E X 20K1500 F P G A

10
RS232 for console command line interface
USB for data transfer

Memory
8 KBy te R O M (read = 1 cycle)
256 KByte R A M (read = 1 cycle, write = 2 cycles)
2 M B y t e R A M (read = 1 cycle, write = 2 cycles)
64 Bi t cycle counter for t iming program execution

Table 5.1: MIPS pla t form summary

82

5. M I P S Test P l a t f o r m

E

CO

w c
3

I
2

O O * lor
n

nt
er

(U
(0 t •p lor

n

nt
er

"o o ni

nt
e

on
t a:

<D

1 C
ou

c
o te

rf

C\J
CO

o 1 C
ou

O c
C\J
CO m

\^
o m

CVJ < >. < w W 00 O cc

•

5
m
w

o
Q-

I

(0
w 133 a.

Ad
dr

M

ap

Q.

Co
i

n l

sm

PU

« O
Q.

c

B
c

03
(U O

< rfa

o B
ir

I
a
0)
CO

>>
CO
CO

id

a

o CVl CO
a <D <B
c c c c

"5 d) 0) •55
Q. Q. CL a.
b. b. b. 0.
o O o 0
cc CE oc CC

83

5. M I P S Test P l a t f o r m

output rss

shift en 0 r 1 L _
start exec 0 r r n 0

re running 1 ^ 1
mem complete 0 1 1 0 r -1 0 1 1 1 0 1 1 1
mem Is load stors load Store 1 load 1 Store

E - d m a tran 1 X Word Idle / Word \ Idle X Word \

(ihpipeline ID 0

d h b u s a 00 X DB X EA \ 00 X D8 X D4 \ 00 X 08 \ 00 X 68 X OH

ID-bus b 00 6C y B6 \ 00 X DA 00 / ' >: ,<[DA V, 00 / ' [lA 00 • DC 80 X .

Figure 5.3: Example logic analyzer trace showing RC pipeline execution

external SRAMs. The t iming report for the CPU core indicate that, i t should be

capable of running at 30 MHz. This would be considerably higher i f the CPU core

were to be implemented in ASIC logic rather than in an FPGA. I n comparison, the

t iming report for the RC area, suggests that clock speeds in excess of 100 MHz are

achievable, however, this is very dependent on the particular algori thm that is being

converted to hardware (note that, routing delays are minimized as most operations

in the data flow pipehne only access registers on adjacent stages, thus minimizing

the length of the signal paths). I n practice, the potentially higher clock rate of the

RC area is unhkely to increase performance, as most algorithms w i l l be l imited by

the available bandwidth, which remains constant. Consequently, i t was decided to

minimize the complexity of the system by using a single clock domain, which results

in a TSF value of one.

5.1.2.1 C P U / R C A r e a Interface

A logic analyzer trace of the interface between the Plasma MIPS CPU core and the

RC area is shown in figure 5.3. Execution in the pipeline is split into four stages as

detailed below:-

Setup During the setup stage, in i t i a l values are loaded into the constant and stage

0 registers as described in section 4.6.3. Because the MIPS instruction set

architecture (ISA) allows instructions to have two source parameters, two par­

allel shift registers are used to set up the data flow pipehne. On every clock

84

5. M I P S Test P l a t f o r m

cycle where the "shif t en" signal is high, two new values f rom "bus a" and

"bus b" are shifted into the pipehne as indicated by the "pipeline I D " signal.

Trigger Once all the required parameters have been loaded into the pipehne, ex­

ecution can be triggered. This is accomplished by setting the "pipeUne I D "

signal to the number of the pipeline that is to be triggered and by holding the

"start exec" signal high for one clock cycle. On the following clock cycle, the

pipeline w i l l drive the "rc running" signal high to indicate that the pipeline is

busy.

E x e c u t e During the execution stage, the RC area can issue D M A operations to the

main memory. A D M A operation is started by driving the " D M A tran" signal

w i t h one of three possible values (i.e. "Word" , "Hal f Word" or "Byte") which

indicate the size of the operation that is to be performed. A t the same time

as the " D M A tran" signal is asserted, the "bus a" signal is used to indicate

the address of the operation and "is mem load" then indicates whether the

operation is a load or a store. The signal "bus b" is used to transfer the data

associated w i t h the D M A operation and is driven by either the CPU or the

RC area, depending on whether the operation is a load or a store. Once the

D M A operation is complete, the "mem complete" signal is driven high by the

CPU. The RC area is then free to post the next D M A operation or return to

the " I D L E " state. Once the pipeline has finished executing, the "rc running"

signal w i l l go low.

R e t i r e The retirement stage is optional, and is only entered i f results f rom the RC

area need to be moved back into the central register file in the CPU. This

is done by the CPU asserting the "output res" signal. A t this point, both

"bus a" and "bus b" are driven by the RC area w i t h the last values f rom the

two parallel shift registers that make up the constant and stage 0 registers. I f

additional results are required, the CPU w i l l drive the "shif t en" signal high

85

5. M I P S Test P l a t f o r m

to shift out the next two values.

The hmited number of connections between the MIPS CPU board and the board

containing the RC area, restricts the "pipeline I D " signal to a w i d t h of 2 bits. As

a result, the maximum number of simultaneous data flow pipelines that can be

implemented is four. This is more than adequate for most apphcations.

5.2 Software

5.2.1 Console Software

The main application that runs on the MIPS pla t form is a console program, wr i t ten

in C. This presents a simple command line interface that allows the user to run

a variety of test algorithms (e.g. low pass filters (LPF) , FFTs, image processing,

sorting, etc). In addition, the console apphcation contains: low level drivers for

the USB interface, a cycle counter and functions to test/diagnose any hardware

problems that are found during the pla t form bring up phase.

A cut down version of the console application, without the test algorithms, is placed

in the 8 KBy te R O M inside the FPGA. This boots the CPU and is then used to

download the much larger version of the console application, complete w i t h the test

algorithms, to the external 256 KByte S R A M (this memory is also used for the stack

and all non-constant variables). This approach removes the need to resynthesize the

F P G A bi t stream every t ime that the program is updated. The remaining 2 M B y t e

external S R A M is reserved for test data (e.g. images, audio, raw data, etc).

86

5. M I P S Test P l a t f o r m

Mem Image 1 | hnaae 2 | Audio

Figure 5.4: USB data transfer application displaying the contents of the data buffer
as an image

5.2.2 Data Transfer Software

The data transfer application is used to transfer test data to and f rom the hardware

target via the USB interface. A t the heart of the application is a 2 M B y t e buffer,

which can be uploaded/downloaded t o / f r o m the 2 MByte S R A M on the target.

Mul t ip le view windows, display the buffer contents in the following three formats:

raw, image and audio waveform (see figure 5.4). By default, there are two image

views each displaying a different area of the buffer. Test data can be loaded into the

buffer f r o m a variety of different image and audio file formats (e.g. JPEG, PNG,

WAV, etc). In addition, the data can also be loaded or saved in a raw format.

5.3 Test Algorithms

The loop conversion algorithm, described in chapter 4, was applied to a series of

test algorithms w i t h different characteristics such as: the number of instructions,

the bandwidth requirements, the levels of ILP, etc. The source code for all the test

87

5. M I P S Test P l a t f o r m

algorithms (kernels of the algorithms are included in appendix A) was combined w i t h

that of the console software (see section 5.2.1) and compiled into a single application.

The types of benchmark algorithm used was ristricted due to the various pla t form

limitations outlined below:-

None stat ic arrays None static arrays that are local to a funct ion are allocated to

the stack, to reduce the amount of stack space consumed the GCC C compiler

uses miss-aligned loads and stores to access the array elements. However for

patent reasons these instructions were not implemented by the author of the

open source CPU core used [103]. As a result software that contains none

static arrays can not be used.

Standard C functions The console software does not include a f u l l C runtime

library. Therefore most of the standard C functions can not be used (e.g.

malloc, sin, fopen, sqrt, etc).

Float ing point maths The CPU core does not contain any floating point maths

hardware. Normally floating point support would be emulated by a maths

library, however the console software does not contain such a library. As such

software that requires floating point arithmetic could not be executed.

For the purposes of the evaluation, all the algorithms were run on the fuU hardware

target. A summary of the speedups produced, together w i t h the hardware resource

uti l ization for the various test algorithms, is shown in table 5.2.

5.3.1 PRBS Generator

Linear feedback shift registers (LFSRs) are often used to create pseudo-random bi­

nary sequences (PRBS) [104]. The high number of bitwise operations present in this

algorithm often leads to highly efficient hardware implementations. I n comparison,

88

5. M I P S Test P l a t f o r m

•X) o o lO lO CM o CO CO o o oo o CO CM

S
pe

e
:a

c1

CO lO lO d
r—1

CO 1—5
CM

r—1
1—1 id CM CO CM 1—5

S
pe

e
im

e
yc

le

CJ
CD o CM CO in I—1 CM lO

27
3.

4
12

6.
1 CO O o CO CO CO lO

Ex
i o o

o"
CO CM T—1 CO CO o 27

3.
4

12
6.

1

CO OO I — { o
CM

o
r—f

1—5 CM 1—1 1—< id
CM

o
1—H

- i l - i l

^
CO

im
e

yc
le

o
o Cvl lO lO CO CO CO CM C35 o O CJ5

E
xe

o CO
lO CO

00
d
00

CD
CO

CO lO
00

lO CO 05
d
CM lO o

CM CM
O
lO CO CO

05
CO O CO

o
CO

o

of

FP

CM 00 I-- CO (35 lO 1—1 CM lO CM 00 CO o

us
ag

of

FP

o 1—i lO
t - H

CO 05 CO
i - H

id 1—1 CM d 1—5 1—5 CO

cu
i-l ai ai

CO

c
ce

ll
H

ar

c
ce

ll

00
I — 1 CM

00
CO CO

o
CM

00
I — 1

CO
05

05
CO LO

t—H

lO
o o

lO o
oo

05
1—1
CO

O lO
i - H

CO
lO CM

CO o
CO

05
CO 05 co

1 - H
lO lO

bO

00
I — 1 CM

00
CO CO 00 >—1 CM lO CM I—1

CO
lO CM

CO o
CO

05
CO 05 CM 1—1

O

ps

o
o to

o ed

I — 1 J—I CO I—1 CM I—1 1—1 1—(1—1 t—(1—< 1—(1—H 1—1 CM
<v + j

m
b

ve
r

: ^ C
O

S
ub

al

go
ri

th
m

S

ta
nd

ar
d

U
nr

ol
le

d
F

or
w

ar
d

In
ve

rs
e

P
ac

ke
d

P
la

na
r

B
ub

bl
e

H
ea

p
Q

ui
ck

o CO

ne
ra

t

fil
te

i
at

io
n

k
se

ar
ch

4 ^
O ht

ne
s

a

ri
th

r

IS
 g

e

pa
ss

na

liz

k
se

ar
ch

de
lb

]
br

ig

or
ia

l
sr

ie
s'

su
i

o

A
lg

o m FT

ow

i-<
o

B
lo

c

[a
n t+-i o

03 sr
ie

s'
su

i

o
+i
i-i o

A
lg

o

B
lo

c

fa CO CO

^1

CO a;
+ j

CO
fa

o

CO

O
hO

CO

CM
id

89

5. M I P S Test P l a t f o r m

the fixed instruction pipefine present in CPUs, can often severely l imi t the perfor­

mance of a software solution. Al though there are several classes of application (e.g.

Monte Carlo simulations) that use random numbers directly [105, 106], there are

many other classes of apphcation (like encryption [107]) that share w i t h the PRBS

the characteristic of having large numbers of bitwise operations.

The random number generation test, used a 32 bit LFSR to generate 2 MBytes of

random numbers (see appendix A . l) and took 156.2 mil l ion clock cycles to perform in

software. On application of the automatic hardware conversion, this was reduced to

26.2 miUion cycles. Al though this represents a significant factor of 6 speedup, there

is stiU scope for improvement, as the hardware occupied only 0.4% of the F P G A and

the algorithm used was not l imited by the available bandwidth. To increase the level

of ILP, the inner loop was removed by completely unrolhng i t (see appendix A.2)

and as a result each iteration of the remaining outer loop produced a completely

new 32 bi t value. Performing this common optimization technique, improved the

software only performance by 55.4%. Although this is a major improvement in

performance, i t is dwarfed by that obtained by the hardware case, which is over 99

times faster than the original non-optimized algorithm and is 54.9 times faster than

the optimized software version.

The performance of the hardware is l imited by the poor memory bandwidth of the

MIPS host. I f this hmita t ion were to be removed, the hardware would be capable of

generating a new 32 bi t value every clock cycle, which would tr iple the performance.

Because the software only test case is highly instruction hmited, its performance is

unlikely to increase significantly. As a result, the hardware would be approximately

160 times faster than the software. Since this hardware occupies only 1.2% of the

F P G A and the algorithm can be linearly scaled w i t h increased hardware resources,

the potential increase in performance, given unlimited bandwidth, is extremely large.

90

5. M I P S Test P l a t f o r m

shm en

start exec

rc running

mem complete

mem is load

SHdma tran

Figure 5.5: Logic analyzer trace showing RC pipeline execution of F F T algorithm

5.3.2 F F T

This test performs an integer fixed point F F T on 2 MBytes of audio data (16 bits

per channel @ 44.1 KHz) . Since the F F T algorithm used (see appendix A.3) can

only process data sets up to a maximum size of 1024 samples, the audio data is spht

into blocks of this size which are then processed independently. The conversion to

hardware resulted in a 5.5x speed improvement for both the F F T and the inverse

FFT . To achieve this, the tools automatically converted the four innermost loops

present i n the F F T algorithm to hardware.

During the course of the F F T , multiple passes of the data set are performed. Due to

the but terf ly nature of the F F T algori thm [108, 109], the later passes of the data set

result in the RC area being triggered repeatedly w i t h only a few data values being

processed on each occasion. As is shown in figure 5.5, this results in a significant

amount of idle t ime between RC executions. This and the bandwidth intensive

nature of the algorithm, are the two main performance l imi t ing factors.

5.3.3 Low Pass Filter

A low pass audio filter was implemented using a finite impulse response (FIR) [110

design, the coefficients of which are shown in equation 5.1. As the audio data was

arranged so that a single 32 bi t word contains both the left and right 16 bit samples,

the algorithm was implemented to filter both channels simultaneously (see appendix

A.4) . This reduces the number of passes of the data set and therefore increases the

91

5. M I P S Test Platform

efficiency of the memory sub-system.

yn = ^ (5.1)

The conversion to hardware yielded a 7.2 times increase in performance and although

this is a significant improvement, i t is by no means the maximum that is achievable.

Computing the new sample values for both channels requires eight clock cycles, five

of which are spent idle while the pipeline is stalled whilst awaiting data from/to

the memory. The overall performance of the system could be further increased by

improving the memory controller and also by implementing a data cache in the

MIPS CPU core.

5.3.4 Normalization

Normalization of audio data is commonly performed to maximize the dynamic range,

thereby improving the signal to noise ratio during playback. This requires two passes

of the data set. The first pass determines the maximum sample value and the second

scales all the data so that the maximum value is set to the maximum possible value

(see appendix A.5). The loop conversion tool was used not only to extract these

loops but also to convert them into hardware. An order of magnitude speedup was

obtained, using only 5.3% of the FPGA, despite the fact that the performance of

the hardware is bandwidth limited.

5.3.5 Block Search

Motion estimation is a key component in such video processing systems as MPEG

111] and picture improvement algorithms [112]. The basic approach, is to divide

up the image into macro blocks (16x16 pixels in the case of MPEG) and a sum of

92

5. M I P S Test Platform

absolute differences (SAD) algorithm is then used to determine the closest match to

each block in the next frame. A motion vector for each block is then derived from

the difference in position of the blocks in the two frames. Typically, this operation

is only performed on the luminance component of the pixels in the YUV colour

space, as this considerably reduces the processing workload with little effect on the

accuracy of the resultant motion vectors.

Image data is commonly arranged in one of two pixel formats in computer graphics:

packed and planar :-

Packed Al l the values for a single pixel are grouped together in the packed format,

with the data for adjacent pixels on a line being stored in adjacent memory

locations (see figure 5.6(a)).

Planar In the planar format, the colour components are grouped together to form

planes, with each plane able to exist in a completely different section of memory

(see figure 5.6(b)).

A i Y i U i V i A2Y2U2V2 A3Y3U3V3 A4Y4U4V4
(a) Packed

A1A2A3A4 Y1Y2Y3Y4 U1U2U3U4 V1V2V3V4
(b) Planer

Figure 5.6: Pixel graphics formats

The block search test searches an image for the closest match to a particular 16x16

pixel macro block. This test is performed on both planar and packed pixel images

(see appendices A.6 and A.7 respectively for the source code). The packed pixel

implementation executed fewer instructions but necessitates a much greater number

of memory operations. This is reflected in the performance results, where the planar

format is 8.4% slower than the packed pixel format when both are performed in

software. This situation is reversed when the algorithms are converted to hardware,

as the higher number of operations present in the planar version, translates into

93

5. M I P S Test Platform

a higher FPGA resource utilization rather than into an increased execution time.

Additionally, the significantly lower number of memory operations also contributes

to a clear performance advantage for this data format. Overall, the packed pixel

search was 3.1 times faster, and the planer search 7.4 times faster in hardware when

compared to the software implementation. In both cases, the hardware performance

was severely limited by the available memory bandwidth.

5.3.6 Mandelbrot

Rendering the Mandelbrot fractal is a highly intensive computational task, with

minimal bandwidth requirements. Due to the fact that the MIPS CPU core and

therefore the RC conversion tools do not support the use of floating point instruc­

tions, the algorithm was modified to use fixed point arithmetic (see appendix A.8).

By converting the core loop to hardware, a speedup factor of 21.6 was obtained

using only 5.4% of the FPGA.

The use of fixed point arithmetic can cause values to saturate and become corrupted,

if the outer loop is unrolled to process multiple pixels simultaneously (as it was

in section 3.3.1.3). Although this problem can be resolved by adding additional

code, the overhead and register stacking that this introduces results in no significant

increase in performance.

5.3.7 Half Brightness

The half brightness algorithm converts an image to the YUV colour space where the

luminance value is halved, the image is then converted back to the RGB colour space

see appendix A.9, to produce a correctly colour balanced reduction in brightness.

The performance improvement produced by the hardware conversion is due to a

94

5. M I P S Test Platform

' . Shift en

start ewe

' rerunning
mem complete •blFlofli'TDjilCLfFloĴ

Figure 5.7: Logic analyzer trace showing RC pipeline execution of half brightness
algorithm

combination of two factors: performing an average of 7.2 operations in parallel

on each pipeline stage and processing up to 10 loop iterations simultaneously due

to the automatic removal of the loop iteration dependency. However, in practice

the hardware only performs 44.3 times faster than the software solution. A logic

analyzer trace shows that, the "DMA Tran" signal never returns to the idle state

after the pipeline has started (see figure 5.7), indicating that the hardware is severely

bandwidth hmited. If this limitation were to be removed, the resulting performance

would be in the order of 220 times faster than the original software.

Since only 14% of the FPGA was used to create the pipeline, the complexity of

the algorithm could be increased without reducing the performance of the hardware

solution, provided that the independent nature of the loop iterations was maintained.

This type of scalabihty is un-matched in the software domain, where every additional

instruction increases the execution time.

5.3,8 Factorial and Series Sum

The factorial calculation and series sum tests are both very tight loops with low

levels of ILP (see appendix A. 10). In order to increase the execution time and

therefore obtain an accurate measure of the speedup factor, both tests were run

with a starting value of 10,000,000 and, as a result, the multiplication result register

overflowed. Although this means that the value calculated for the factorial is invalid,

this does not aff^ect the time taken to calculate the value.

The speed increases obtained for the series sum and the factorial were 5x and l l x
95

5. M I P S Test Platform

respectively. The significantly higher performance increase of the factorial, was

mainly due to the poor performance of the multiplier used by the software in the

MIPS CPU core. As expected, the hardware utilization for both algorithms is

quite low, with that of the factorial hardware loop being slightly larger due to the

multiplier.

5.3.9 Copy

The low number of highly data dependent, bandwidth intensive, instructions present

in the copy test (see appendix A. 11) represents one of the worst test cases that a

reconfigurable computing platform would have to handle. I t is important to know,

therefore, what performance improvements, if any, are produced under these extreme

conditions. The hardware conversion tools successfully exploit the minimal amount

of ILP and loop level parallelism that is present to produce a speedup factor of 2.8.

5.3.10 Sort

Data sorting is a common task in modern computing, and consequently many differ­

ent sorting algorithms have been developed [113]. Three such algorithms (bubble,

heap, and the quick sort, see appendix A. 12) have been tested with the hardware

conversion tools. In each case a data set generated by a PRBS was used, aUowing the

sorting algorithms to be consistently tested with the same set of random numbers.

The heap and quick sorts were performed on a 262144 element data set, whereas

the bubble sort was performed on a 8192 element data set. The reduced number of

elements for the bubble sort results from the very slow nature of this algorithm and

the need to keep the test times manageable.

The speedup produced by the conversion to hardware for the bubble, heap and quick

96

5. M I P S Test Platform

outpulres

shtft en

start exec

re running

mem complete

rriBmisload

S-dmatran

Figure 5.8: Logic analyzer trace showing RC pipeline execution of quick sort algo­
rithm

sorts are: 3x, 2.3x and 1.2x respectively; in all cases under 5% of the FPGA was used.

As expected, the quick sort is the faster algorithm in software. However, when the

algorithms are translated into hardware the heap sort is 32% faster than the quick

sort, due to the fact that the hardware conversion can only operate on the innermost

loops. In the case of the quick sort algorithm, these loops are very small and are

executed many times, resulting in the hardware pipeline being triggered repeatedly.

This can be deduced from the fact that the "start exec" signal frequently goes high

as shown in figure 5.8. The overhead associated with this has a significant impact on

performance, as the "output res" and "shift en" signals are active for a considerable

amount of time.

5.4 Performance Scalability

The conversion of kernel loops to hardware, increased performance by up to a factor

of 54.9. Although this is a significant increase, since the average hardware utilization

was only 6.3%, there is considerable room for further improvement. Furthermore,

the current generation of FPGAs [114, 115] on the market, are up to four times

larger than the APEX 20K1500, used for this evaluation.

5.4.1 Bandwidth

Many of the algorithms tested here are highly bandwidth limited and this is partly

due to the non-pipehned nature of the memory interface. As a result, load operations
97

5. M I P S Test Platform

take two clock cycles and store operations take three. By pipelining the memory

interface, a potential and additional 2-3x increase in performance might be obtained.

The current hardware conversion system extracts parallelism in two orthogonal di­

rections and, in the majority of test cases, the resulting parallelism is enough to

saturate the available bandwidth. The parallel nature of many algorithms when

combined with the additional optimizations outlined in section 7.1.3, enables the

utilization of all available hardware resources. However, considerable bandwidth

may be required. A good example of this, is the random number generation test

which is capable of producing 64 MBytes/s of data at a clock speed of 16 MHz

whilst occupying a mere 1.2% of the FPGA. If the hardware were to be scaled to

use all the available logic cells in the FPGA, it would generate over 5.3 GBytes/s

of bandwidth. Memory systems that can handle this level of bandwidth are readily

available (e.g. dual channel DDR-400 = 6.4 GBytes/s), however, the hmiting factor

soon becomes the bandwidth available out of the FPGA itself. The FPGA used in

the MIPS test platform has 488 user 10 pins. At 16 MHz, this results in a maximum

bandwidth of 967 MBytes/s, which is 5.5x lower than the data rate that the system

requires. This scales to a required bandwidth of 83.3 GBytes/s compared to an

available bandwidth of 15.3 GBytes/s when the clock speed is raised to its maxi­

mum of 250 MHz (the fastest that the 10 pins will allow). Although it is possible

to create memory systems with this level of performance, this is impractical in a

mainstream computing environment.

5.4.2 Parallelism

Increasing the amount of parallelism in code will produce dramatically different

results, depending on whether the algorithm is to be performed in software or in

hardware. This is because processors and FPGAs are based on completely different

computing paradigms:-

98

5. M I P S Test Platform

Processors Even the most modern superscalar and EPIC CPUs only operate on

small sections of code at a time, executing instructions pseudo-sequentially.

In general, since a single processor can only exploit ILP, the number of in­

structions that can be simultaneously executed is hmited by both the data

dependencies and the maximum issue rate of the instruction pipeline. As a

result, increasing the number of instructions to be executed leads directly to

an increase in execution time. Equation 5.2 demonstrates this by the fact that

the number of instructions executed, is directly proportional to the execution

time.

SW exec time
Num loop iterations x Num instructions in loop

Average issue rate x Clock speed
(5.2)

Number of instructions executed
Average issue rate x Clock speed

F P G A s Once converted to hardware each instruction is represented by its own

block. The clock rate is Umited by the speed of the slowest block and not by the

number of blocks. Because hardware is inherently parallel, several orthogonal

types of parallehsm can be exploited (e.g. ILP, loop iteration and inter-loop

parallelism). Therefore, the number of operations that can be performed in

any one clock cycle, is limited only by the data dependencies and not by the

issue rate of an instruction pipeline. The parallelism is demonstrated by the

fact that the number of operations that the pipeUne performs has no effect on

performance and this is, therefore, not a factor in equation 5.3, which calculates

the execution time. Consequently, as the number of instructions increases the

hardware utilization also increases, whilst the clock speed remains roughly

99

5. M I P S Test Platform

constant.

{Cxl) + L
HW exec time !^ ——;

Clock speed

C = Cycles between iteration starts
(5.3)

L = Pipeline length

I = Number of loop iterations per run

Several common optimization techniques, hke loop unrolling and loop pipehning,

are designed to increase the ILP in the code. The effects of increasing the level of

parallelism, for both hardware and software, are shown in figure 5.9. The speed

of the software only case increases until the maximum issue rate of the pipeline

is reached, at which point the performance remains constant. If the parallehsm is

increased further by unroUing, the performance will eventually start to decrease as

instruction cache misses and register stacking reduce the efficiency of the processor.

Because the hardware is not limited to only exploiting ILP, its performance will

increase more rapidly than the performance of the software. At some point, the

performance of the hardware will level off as the bandwidth limit is reached. Any

further increase in parallehsm due to unrolling, will only result in additional hard­

ware utihzation without any further increase in performance, and should therefore

be avoided. Ultimately, the hardware conversion will fail, as the resources required

will become greater than those available.

5.4.3 Algorithm Complexity

An initial analysis of the results, suggests that reconfigurable computing platforms

will always be bandwidth limited. However, by increasing the size and/or the com­

plexity of the section of code that is to be converted into hardware, i t is possible to

increase further the performance of bandwidth limited algorithms.

100

5. M I P S Test P l a t f o r m

Further increases in parallelism
cause hardware conversion to fail
due to limited FPGA resources

— Software
— Hardware

Figure 5.9: Generahzed effects of parallelism on performance (Software vs Hardware)

5.4.3.1 Increased section size

Generally, the larger a section of code is (that is to be converted into hardware), the

greater the parallelism and therefore the higher the performance (see section 5.4.2),

even if the system is already bandwidth limited. If the additional code being added

to the RC area operates on a data set that is already processed or produced by the

RC area, then the bandwidth requirements may not change significantly. In some

cases, the off chip bandwidth requirements will actually be reduced. One example

of this is picture processing and compression, a simple example of which is shown

in figure 5.10. If the RC area contains a histogram correction algorithm, adding run

length encoding (RLE) compression will reduce the off chip bandwidth. Similarly,

adding a low pass filter to the RC area will not change the bandwidth requirements

but would increase performance. The process of adding additional sections of code

to the RC area can be automated using the procedure described in section 7.1.1.

101

5. M I P S Test Platform

Raw
Picture

Data

Low P a s s Histogram R L E
Filter Correction Compression Picture Data

Figure 5.10: Picture processing and compression

5.4.3.2 Increased complexity

A cursory analysis suggests, that there is Uttle or no benefit to be obtained from

reconfigurable computing on a real time system such as MPEG decode and play­

back, since once the real time constrains have been met, there is little advantage in

increasing performance. However, in many environments the complexity of an algo­

rithm or data processing system is limited by the available computational power. A

good example of this is 3D games, where, with the advent of ever faster CPUs and

3D graphics cards (that offload the rendering of the display to dedicated hardware),

the amount of processing power available has increased dramatically. However, the

amount of idle time has remained roughly constant due to the ever increasing com­

plexity of the physical models on which the games are based. The same trend can

be seen in HPC environments, where the time required to perform intensive tasks,

like simulation, has also remained approximately constant. This is due to the fact

that the complexity and therefore the accuracy of these systems has increased inline

with processing power.

The bandwidth constraints outlined in section 5.4.1, can severely limit the perfor­

mance improvement obtained when reconfigurable computing is applied to existing

algorithms. However, in many cases, bandwidth does not limit the size of the al­

gorithm. As a result, in addition to producing significant increases in performance,

reconfigurable computing could yield dramatic increases in the complexity and there­

fore the accuracy of many computing tasks/models.

102

5. M I P S Test Platform

5.5 Platform Evaluation

Section 1.3 outhned the features required to produce a viable reconfigurable com­

puting platform, in general these can be summarized by the following requirement:-

• Abstraction

• Automatic conversion

• Low conversion time

• Large performance increase

5.5.1 Abstraction

Because the conversion process used (see chapter 4) is designed to be performed at

runtime instead of compile time, the original software executable contains no infor­

mation specific to the target RC area. In addition to providing complete abstraction

this also has the benefit that existing legacy software will also benefit from hardware

acceleration.

5.5.2 Automatic conversion

With the expecting of the user setting for pointer afiasing (see section 4.6.1.1) the

tool flow is completely automatic and autonomous. Since section 4.6.1.1 outlines

a solution that eliminate the need for any user intervention i t is expected that the

requirement for an automatic conversion process can be fulfilled by the tool flow

presented in this thesis.

103

5. M I P S Test Platform

5.5.3 Low conversion time

The total time required to perform the conversion process is largely dominated by

the time required to perform the FPGA place and route, and is therefore outside the

control of the tools presented here. However research has already been conducted on

possible methods to significantly reduce this overhead [44]. A considerable amount

of effort has gone into ensuring the conversion tools do not require large amounts

of CPU time (currently a few seconds, even for the most complex conversions), so

that, in the future the overall conversion time should be minimal.

5.5.4 Large performance increase

The use of reconfigurable computing offers the opportunity to greatly accelerate the

performance of a system. With speed up factors of 55 times achieved, the new tools

flow presented in this thesis is no exception. In the future much greater perfor­

mance improvement should be achievable once the bandwidth restrictions outlined

in section 5.4.1 have been resolved.

5.6 Summary

In most cases the performance enhancement is constrained by the memory band­

width available. Although this is a general problem with all computing paradigms, it

is especially true of reconfigurable computing platforms because of the higher com­

putational throughput, and therefore the requirement for faster data transmission.

Unfortunately, the memory interface/controller that was present on the host MIPS

CPU used, was only designed to support the minimal bandwidth requirements of

a single issue CPU. As a result, it requires 2 cycles to perform a load and 3 cycles

to perform a store operation and this is further compounded by the fact that the

104

5. M I P S Test Platform

memory interface is not pipelined. Although this severely limits the performance

produced, the conversion to hardware still achieved speedups in the range of 1.2x to

54.9x.

In the software domain, the execution time is governed by the number of instruc­

tions that are executed. However, in the hardware domain, this translates into the

amount of hardware used in implementing the loop, and as such does not directly af­

fect the execution time. Instead the hardware execution time is determined by both

the amount of parallelism that can be exploited and also by the available bandwidth.

The average FPGA unitization was only 6.3% (3200 logic cells) showing that there

is a considerable amount of unused hardware resource which could be used to in­

crease the algorithm complexity/parallelism. This would directly lead to additional

increases in the speedup produced.

During the execution of some of the test algorithms, i t was noted that the hardware

pipeline was triggered repeatedly, often with large amounts of idle time between ex­

ecutions. This is due to the fact that the hardware conversion can only process the

innermost loops of an algorithm. Substantial, further improvements could be ob­

tained by optimizing the hardware triggering method and by changing the hardware

generation process, so as to be able to handle nested loops

105

Chapter 6

Cray X D l Platform

In order to evaluate the performance potential of reconfigurable computing when uti-

hzed in a high performance computing environment, the hardware conversion tools

outlined in chapter 4 were used in conjunction with the Cray X D l supercomputer.

6.1 Cray X D l Overview

The Cray X D l [67] is the first of a new generation of computers that contain FPGAs

as an integral part of the system. In these, the FPGAs are tightly coupled to the

processor, have high bandwidth and low latency access to memory. The X D l is a

modular and scalable system, consisting of one or more 3 VU rack mount chassis.

Each chassis contains 6 compute blades, with each blade consisting of an FPGA and

two Opteron CPUs running Linux (as shown in figure 6.1). Although XDls, based

on the new generation of dual core Opteron processors and Virtex4 FPGAs are now

available, the system used during the course of this research contained single core

CPUs clocked at 2.2 GHz together with Virtex I I Pro 50 FPGAs.

In addition to providing a high bandwidth link between the FPGA and the rest

106

6. Cray X D l Platform

of the system, the chipset also provides a set of software accessible registers to

control the supporting hardware for the FPGA. Included in this, is a programming

interface which allows the user to reconfigure the FPGA. Since the user defined logic

in the FPGA is in a different clock domain from the interface to the CPU and main

memory, the user logic is able to run at any clock speed between 63 and 199 MHz,

in 1 MHz increments. This can be changed whilst the system is running and is

controlled by the chipset.

To interface the FPGA to the rest of the system, Cray provides several interface

cores. These are combined with the user defined logic to form the FPGA configu­

ration, as shown in figure 6.2. Together, these cores occupy approximately 8% of

the Virtex I I Pro 50 FPGA leaving a substantial number of logic cells and other

hardware resources available for the implementation of user logic.

Clock & reset core This block generates all the clock signals required by the in­

terface hardware and user logic, derived from the reference clock which is

generated by the chipset. The block also provides additional reset signal gen­

eration and distribution.

R T core The data interface from the chipset is a simplified version of the Hyper-

Transport protocol [116]. This interface is very complex and runs at a high

clock rate. The RT core translates this into a wide, low clock rate interface

that simphfies the design of the user logic section in the FPGA.

Q D R interface There are four instances of the QDR interface - one for each ex­

ternal memory. Like the RT core, they provide a simple, easy to use interface

to these otherwise complex devices.

107

6. Cray X D l Platform

DDR-400
SDRAM J

DDR-400
SDRAM Jl-I

1 1

2.2 GHz 2.2 GHz
AMD Opteron AMD Opteron

1 1

Cray Chipset Cray Chipset

1 1

6.4 G B y t e s / s

^ — 3.2 G B y t e s / s

2.0 G B y t e s / s

Xlllnx Virtex II
Pro 50 FPGA

QDR-SRAM

QDR-SRAM
QDR-SRAM

QDR-SRAM

Links to rest of system

Figure 6.1: Cray X D l blade architecture

g. 6 >.
O

Xilinx F P G A

0)

5

Clock & Reset Logic

User Defined Logic

Q D R Interface

Q D R Interface k

Q D R Interface k

Q D R Interface

Q D R - S R A M

Q D R - S R A M

H Q D R - S R A M

A Q D R - S R A M

Figure 6.2: Cray FPGA interface cores

108

6. Cray X D l Platform

6.2 Platform Details

6.2.1 Execution

The user defined logic section of tlie FPGA is used to implement a data flow pipeline

similar to the one described in section 3.3. Unhke the MIPS test platform described

in chapter 5, the FPGA is not integrated into the instruction pipeline of the proces­

sor. As a result, execution in the FPGA is triggered by accessing memory mapped

control registers within the FPGA and not by executing specific RC trigger instruc­

tions, as is the case with the MIPS test platform.

To measure the performance increase of both the software only and hardware accel­

erated test cases, the clock cycle counter present in the Opteron processor was used

117]. This was the most accurate way available to measure the execution time.

The hardware in the XDl contains a link between the FPGA and the interrupt con­

troller. This would normally allow the CPU to trigger execution in the FPGA and

then continue conventional software execution. When the FPGA finishes its task or

requires software intervention, it should be able to trigger an interrupt that would

cause the CPU to jump to the FPGA control code. However, the software to sup­

port the hardware interrupt connection is unfortunately not yet available, although

it is scheduled for a future release of the Cray FPGA software application program­

ming interface (API). This, together with other platform limitations, reduces the

functionality and performance of the hardware conversion tools described in chap­

ter 4. In particular, the lack of interrupt capability results in the CPU having to

continuously poll the FPGA registers to determine when the execution has finished.

109

6. Cray X D l Platform

6.2.2 Tool flow

Like many other modern computing platforms, the XDl implements a virtual mem­

ory system. Since the FPGA is connected directly to the main system bus instead of

to the MMU, it exists in the physical address space, whereas the software is executed

in one or more virtual address spaces. This makes it extremely difficult to produce

an x86 front end for the hardware conversion tools. As a result, the C source code

is compiled to a MIPS executable and is processed using the existing MIPS front

end for the hardware generator (as shown in figure 6.3). As outhned in section

7.2.2, once the next release of the Cray support software is made available, this

problem can be resolved and an x86 front end produced. Since a MIPS executable

is the starting point for the hardware conversion process, it must be accompanied

by a MIPS execution profile. This is because the location of the branches will be

very different in the x86 executable, due to the differences in the compiler and the

complex instruction set computer (CISC) nature of this processor. Therefore, the

execution profile is generated by the behavioural simulation of the MIPS platform,

described in section 5.1. The original source code is compiled, without modification,

using the x86 GCC compiler; the execution of this code provides a reference which is

then used to determine the speedup factor produced by the hardware acceleration.

The use of the MIPS front end instead of an x86 front end will have an effect on the

results, however it is expected that any differences will be minimal, and would be

dwarfed by other factors, such as available bandwidth and the amount of parallelism

present in the code. This is due to the fact that both of the C compilers used (MIPS

and x86), are variants of GCC, and therefore the same types of optimisations will

be performed in both cases.

Due to the complex and time consuming nature of handwriting the RC trigger

instructions, the conversion process is limited to accelerating only a single software

loop.

110

6. Cray X D l Platform

Program
source

code in C

Hand written
trigger code

insertion

MIPS
Execution

profile

Original
XDl

program

K86 GCC
compiler

Accelerated

program

MIPS GCC
compiler

generator

I

Hardware
conllg
image

Figure 6.3: Hardware conversion tool flow for Cray XDl

6.2.3 Memory Access

Due to the issues associated with virtual memory that were outlined in section 6.2.2,

aU the DMA operations in the data flow pipehne access the QDR-SRAM memories,

instead of the main SDRAM memory that is connected to the processor. Even if the

virtual memory issues were to be resolved so that DMA operations could access the

main SDRAM, the performance of the FPGA would stiU be severely limited owing

to the high levels of bandwidth consumed by the CPU pohing the FPGA, described

in section 6.2.1. A connection between the RT core and the QDR-SRAM cross bar

switches is present, which allows the host CPU to read and write test data to these

memories.

Each Cray QDR-SRAM interface core, provides independent 72 bit read and write

ports capable of running at up to 200 MHz. Consequently, the combined bandwidth

to each SRAM is 3.2 GBytes/s. AU four SRAMs are interleaved to form one 16

MByte address space. This is accomplished by the two cross bars that are used to

interface the memory operations in the data flow pipeline to the SRAMs, as shown

in figure 6.4. The cross bars analyse the addresses of the memory transactions

111

6. Cray X D l Platform

Load Op 1 Load Op 1

Load
Operation
Cross Bar

1

«

Load
Operation
Cross Bar

Load Op N

Load
Operation
Cross Bar

Load Op N

Store Op 1 Store Op 1

Store
Operation
Cross Bar •

Store
Operation
Cross Bar

Store Op M

Store
Operation
Cross Bar

Store Op M

QDR-SRAM

QDR-SRAM

QDR-SRAM

QDR-SRAM

Figure 6.4: Cross bar architecture for QDR memory interface

and allocate them to the corresponding memories. Each cross bar can issue up to

four operations per cycle, provided that the addresses of pending operations do not

reside in the same physical memory device. As a result, the maximum theoretical

bandwidth is 12.8 GBytes/s, but in practice this is reduced to 6.4 GBytes/s, as the

maximum width of a value in the pipehne is 32 bits compared to the 64 bit width of

the memories. However, this reduced bandwidth exactly matches the bandwidth to

the main DDR-SDRAM memory, available to the Opteron processors, which confers

more validity to the performance comparison between the software only and the

hardware accelerated test cases. It's worth noting that the latency of the SDRAM

is dependent on many factors, which include previous access patterns and which

rows, columns, and pages are active. In contrast, the latency of the QDR-SRAM,

including the controllers and cross bars, is always 10 clock cycles.

Although in theory, the minimum operating frequency for the RT interface and

other support cores is 63 MHz, due to a bug in the implementation of the QDR core

provided by Cray, clock speeds lower than 130 MHz resulted in memory access errors.

Algorithms that contain DMA operations are, therefore, hmited to a frequency range

of 130 - 199 MHz instead of 63 - 199 MHz, as both the QDR memories and the data

flow pipeline are in the same clock domain.

.To minimize the performance impact due to the latency of the memory interface,

all the DMA operations in the data flow pipeline are fully pipehned. For example.

112

6. Cray X D l Platform

a load operation spans ten pipeline stages and can have active data in every stage.

As the latency of the DMA operations in the pipehne matches the latency of the

memories, the pipehne will only stall if the addresses of multiple operations issued

on the same cycle, reside on the same SRAM device. In the ideal case, the pipehne

is able to issue four load and four store operations on every clock cycle without

stalling. This is a considerable improvement over the MIPS test platform where

every load operation stalled for 2 clock cycles and each store operation stalled for 3

cycles.

6.3 Performance Evaluation

All the test algorithms are based on the same source code and run under the same

test conditions as those used on the MIPS platform (See section 5.3 and appendix

A). Each test was executed both in software and also with the hardware acceleration

enabled; the number of clock cycles required was recorded and then used to calculate

the improvement in performance. For algorithms that contain memory operations,

the software case accessed a 16 MByte buffer allocated in the main DDR-SDRAM

of the system, while the hardware accelerated version of the algorithm accessed the

local QDR-SRAMs. The effect of the different memory latencies between the FPGA

and CPU is minimized, due to the intelligent cache prefetching performed by the

CPU, together with the streaming nature of many of the test algorithms. This com­

bined with the identical memory bandwidths (as described in section 6.2.3), make

the results of the software only and hardware accelerated test cases approximately

comparable. Both memories were initialized with the same test data, and a bitwise

comparison was performed on the results, once the test had completed. In every

case, the contents exactly matched, indicating that the hardware present in the

FPGA functioned correctly.

113

6. Cray X D l Platform

For each test case, the average number of parallel operations executed in the pipeline

was recorded. This measure of parallehsm can be used to give a rough indication of

the performance increase that is to be expected. It is worth noting, that the number

of pipehne operations will be different from the number of software instructions, due

to the nature of the optimization steps performed during the hardware conversion.

Because the frequency of the FPGA is set at the maximum for each algorithm, the

TSF value is different for each test case. The TSF values, hardware utilizations,

and performance improvements for each algorithm are shown in table 6.1.

Due to the bugs in the Cray XDl outlined in section 6.2 and summarised in section

6.5.1 the following restrictions were placed on the test algorithms:-

• Only a single software loop can be converted to hardware.

• Complex algorithms that require repeated triggering of the hardware can not

be evaluated.

• The hardware resulting from the conversion process must be able to run at

130MHz or greater.

The predicted results with these limitations resolved are shown in table 6.2.

6.3.1 P R B S Generator

The PRBS test generates 2 MBytes of random numbers using an LFSR. The pre­

dicted number of operations that can be performed per clock cycle is 161, this is

due to the high levels of ILP present in the algorithm. The simple bitwise nature

of this algorithm, results in a high operating frequency of 196 MHz which leads to

a relatively low TSF value of 11.2. As the amount of parallelism is coflsiderably

higher than the TSF value, a significant increase in performance was expected when

114

6. Cray X D l Platform

a,

KM
CO

w
0)

I
o o o

X

S ^

X o
m o ^ o

CO

CO
EH

O I

CO
.1—1

i
I

o
OH

O

1 ^

o
o

'o o
I I

a
O

00

CM

CO

o
!-l

CO

CD

CO

r — I
C C
c«

^ .

I

CO

CM

CM

o
O

CO

00

P
X

o

o
<D
CO
J3

CO
0)

I

CO

CO

O
o
o

g . a;

CO

o
o o o

CO

PH

I
CP

8

o o

a
o

CM

o
l-H

d
CD
bO

CO

CO

CO

CM

CO

i

PQ

CO

l-H
Q;

CO
CO

05

o
o
CM
CO

00

CO

CO

CO
00
CM

tr­io
CO
00

CD

55 is

s ^

CM

CM
05

OO

CM

CO

00
CO
CM
l O

CM
o
CM
CM

od
CO

CO CO
CM

CO
00

CO
CM

00
CO

CO

o CD

o

"3

,1

CO

o

u

M

O
bC

o
CO <u
f-i
CD

> o

0)

a
(A

a

PL,

CM
CO

115

6. Cray X D l Platform

the algorithm was converted into hardware. This was found to be the case as the

hardware accelerated version of the algorithm was in excess of 18x faster than the

pure software case.

As the software case uses a mere 41 MBytes/s out of the 6.4GBytes/s of available

bandwidth, it is clear that the CPU is instruction limited, rather than bandwidth

limited. In comparison, the hardware accelerated case only issues one memory write

per cycle out of a possible four. This combined with the low hardware utilization of

8.4% and the parallel nature of the algorithm, suggests that the hardware could be

further improved to give a 72x overall increase in performance, when compared to

the software only case.

6.3.2 Half Brightness

The half brightness test algorithm produces a reduction in brightness that is cor­

rectly colour balanced; this is accomplished by performing the operation in the YUV

colour space instead of in the RGB colour space. The complex operations present

in this algorithm, lead to a reduced clock speed of 161 MHz and therefore to a TSF

value of 13.7; a value that is higher than that in the PRBS generator test described

above. This, combined with the subsequent lower amount of parallelism, results in

a 2.6x increase in performance when compared to the software only case.

As the hardware implementation of this algorithm merely issues one load and one

store operation per clock cycle, it is only utihzing a quarter of the available band­

width. The body of the loop was unrolled by a factor of two to increase the amount

of parallehsm in the section of code. This, consequently, improved the performance

by using more of the available bandwidth. At first sight, it was expected that this

would double the performance of the system, but in fact the performance only in­

creased by an additional 1.7x, equating to a 4.4x increase over the pure software

116

6. Cray X D l Platform

case. This is due to the increased complexity of the hardware reducing the max­

imum clock speed from 161 MHz to 146 MHz. In theory, the unroU factor could

be increased to four, which would result in an overall performance increase of ap­

proximately 6.4x. However, this configuration could not be tested as the clock speed

would fall below 130 MHz and the bug described in section 6.2.3 would then produce

memory corruption.

6.3.3 Low Pass Filter

Converting the audio low pass filter algorithm to hardware, produced a 7x reduc­

tion in performance due to the combination of a low clock speed (145 MHz) and

the relatively low number (4.2) of operations per clock cycle. Because of the data

dependencies present between iterations of the loop, the next iteration cannot be

started until the majority of the calculations for the previous iteration have been

completed. This, combined with the high latency of the load operation, leads to

eight clock cycles of idle time per iteration, as is shown by the lack of any data pro­

cessing operations between stages 1 and 8 in figure 6.5. A potential way to increase

the efficiency, is to unroll the loop, so that the algorithm would occupy more than

the 13% of the FPGA utihzed in this test. Again, it was impossible to evaluate the

effects of this optimization due to the clock speed bug in the QDR interface core.

Alternatively, it may be possible to further increase the performance by changing

the way, in which, the hardware is generated so that the data is pre-fetched from

memory, thus greatly reducing the effects of the high memory latency.

6.3.4 Normalization

This algorithm is'siriiilar to that of the audio normahzation test, performed on the

MIPS platform (see section 5.3.4 and appendix A.5). However because the XDl

117

6. Cray X D l Platform

| X) CO

IS

00

CM

T3

T 3
43

CM
CO

CM
T3

CO

o
cn

CO
O
bX)

CO

i-H

CO
T3

CO

o

CO

a
I

C
.1—(

'a

o
03

-(-^

- d

a

X)
i-i
ci

<v

o
tn
CH

. 2
+^
03
i-i
<u

a.
O
to

l-H

bp

^ ^ ^
X) O

:S

CD CM

_ HH
^

CO X5 CO rO x !

CO

CO
03

h3 ^
CO ~

1

CM
• CD

,00 ^
XJ 73

CS

CO
r-H

CM
XJ

CO
o3
CO

CO

CO t-H
T3 T 3
O T3

S 3
^ ^ ^
CM 0 0 00
X) ^ X)

CO , 0 CO

X)

1
X)
lO
X)

05
X)

X3

X)

c« p

:=! 1^
CO X3

i-H CO
X3 X)

I—I
o
X3

CO

X3
CO
X)

CO

1l
CO X i

CM

X)
CO

CM

CO
X !

CO

X)

o
X3

o
XJ

1
- ,
"to O

X)

CM
X3
X)

CM
XJ

CO
^ o

1 ^ ^
CO x3
03 ^
f-i r j .

1^ %

CO

UO
o ^
CO ^
N CO

o _,
CO X3

O
X !
O

o

X)
CO

O
X)

CO

CO
X)

CO
X3

CO
X)

CO

lO
X3
o
>—I
XJ

CO
XJ

a.-3
XJ CO
X T3

1
XJ

o
CM
i-H

-O
-l-i
I—I

CO

o 1
X !
O
XJ
X5

CO
X3
CM
XJ
X3

XJ
I—I

CO
XJ

CO
XJ
CO

>—t
o
XJ
X !

o

CM
X3

XJ

X)

CM

73
X !

LO
XJ

CO

O
XJ

o
X !
o

1
X)
CO
XJ

XJ
CO

o3 CO

CM
XJ

CO
' d

CO

o
CO PL|
. . XJ

CO

cu

CO

CM

CO

CO

CO

bO
03

CO

PH

CL>"
bO
o3

CO

PL,

CO
'cu'

hO
o3

CO

XJ

XJ

I
XJ
CO
XJ

o
X i
XJ
o3

O

X)
CO
03
CO

kO
X)

CO

CP

CO

00

-I-i
CO

05

CO

<v
bO
03
-I-i
CO

•3,0
CO XJ

-I-i
CO

XJ
o
XJ

CO

CM

o3
-i-i
CO

118

6. Cray X D l Platform

platform is hmited to implementing one loop in hardware, only the value scaling

section of the algorithm is tested.

As the normalization algorithm has very few inter-iteration dependencies, a new

iteration of the loop may be started on every clock cycle. This not only eliminates

the effects of the memory latency but also increases the parallelism to 17 operations

per clock cycle. This conversion to hardware actually produced a 32% reduction in

performance. This is because the parallelism that was extracted was not sufficient

to overcome the fact that the CPU used can execute multiple instructions per cycle

and has a clock speed approximately 15x higher than the FPGA.

The above test algorithm issues two memory operations per cycle out of a possible

eight. Given that hardware utilization is a mere 9.8%, the main loop is a prime

candidate for unrolhng. Once again, the effects of this could not be evaluated due to

the bug in the QDR interface core. However, it is expected that the hardware would

be 2.1x faster than the pure software case, if the loop were to be unrolled by a factor

of four. Because this case would use the ma:ximum available bandwidth, further

increases in performance could only be achieved by either optimizing the hardware

to increase the clock speed, or by increasing the complexity of the algorithm (see

section 5.4.3).

6.3.5 Copy

The copy algorithm is extremely bandwidth intensive and only contains a small

number of instructions. When the original version of the source code is converted

into hardware, only two memory operations per cycle out of a possible eight are

issued. This confers a significant performance advantage to the CPU. However,

in practice, the hardware solution is only 41% slower than the software test case.

When the loop is unrolled by a factor of two, the performance of the software

119

6. Cray X D l Platform

remains constant, whereas the performance of the hardware doubles. This results

in a speedup of 20% when compared to the software case. Although it couldn't be

tested due to the bug in the QDR interface, the performance of the hardware is

expected to increase to a factor of 1.9x if the loop were to be unrolled by a factor

of four.

The most hkely cause of the poor performance of the CPU, is the "read before

write" architecture used in the caches. This architecture, reduces the complexity of

the cache by using only one data valid bit per cache fine. However, this can result

in up to a 100% increase in the bandwidth required for some classes of algorithms,

because a cache line fill must be performed before any cache writes are allowed to

take place.

6.3.6 Series Sum

The series sum test consists of a very tight loop with an extremely low level of ILP,

consequently the hardware accelerated test case only performs 3 operations per clock

cycle. The simple nature of this algorithm, leads to the relatively high clock speed

of 190 MHz (TSF = 11.6). Overall, the algorithm produced a 5.9x reduction in

performance when it was converted into hardware. On account of the high numbers

of data dependencies together with the tight nature of the loop, it is unhkely that

unrolling the loop would produce a significant increase in performance.

6.4 MIPS R C Platform Comparison

Although the MIPS and Cray X D l platforms share the same hardware conversion

tools, there are significant differences in the hardware architectures of these two

systems, which are detailed below. The most obvious difference, is the way in which

120

6. Cray X D l Platform

their FPGAs are connected to their processors. In the MIPS platform, the FPGA

is directly connected to the instruction pipeline of the CPU, which enables the RC

area to be triggered with a minimal overhead. In the XDl platform, the FPGA is

connected to the system bus via a Cray proprietary chipset, as such, execution in the

RC area is triggered by accessing a series of memory mapped registers. Although the

Cray approach enables reconfigurable computing to be added to an existing system,

it considerably increases the number of clock cycles required to trigger execution in

the RC area. Consequently, a much higher overhead is experienced by applications

that repeatedly trigger the RC area. In the MIPS platform, because the FPGA is

directly connected to the processor, it utilizes the same load/store interface as the

CPU. This interface severely constrains the performance of the data flow pipehne,

and this is due to the memory interface being designed to support a single issue

CPU core and not a highly parallel RC area. At peak performance the MIPS FPGA

can issue one DMA operation every 2-3 clock cycles. By comparison, the memory

subsystem present in the XDl platform, is fully pipelined and parallehzed, and is

therefore capable of processing up to 8 DMA operations per clock cycle. To fully

exploit the available bandwidth in the XDl , the data flow pipeline instantiated

within the FPGA must be highly parallel in nature.

The FPGA used to implement the RC area in the MIPS platform was an Altera

Apex 20K1500. This is a relatively old device compared to the Virtex I I Pro 50 used

in the Cray XDl . Consequently, the Apex device does not contain any hardware

multiplier blocks, so multiple operations have to be implemented using standard

logic cells. This reduces the clock speed of the system and leads to significantly

higher hardware resource utihzation, than that found in the Cray XDl . The Virtex

device used in the XDl is also capable of running at much higher clock frequencies

than the Apex device, further increasing the performance of the Cray platform.

Since the FPGA in the XDl exists in a separate clock domain from the rest of the

system, its clock speed can be set to the optimal value for the specific hardware

121

6. Cray X D l Platform

that is to be implemented. However, in the MIPS platform the FPGA runs from

the same, fixed frequency clock source as the CPU core.

6.5 Summary

6.5.1 Cray X D l Platform Limitations

Due to a series of bugs, unimplemented features, and architectural problems asso­

ciated with the XDl host platform, the scope of the performance evaluation was

limited in the following ways:-

Manual integration The FPGA is connected to the system after the MMU. As

a result, the FPGA exists in the physical address space, whereas the software

exists in a virtual address space. This complicates the integration of the auto­

matically generated hardware with the software. As a result, this integration

is currently done manually, limiting the system to converting a single loop to

hardware. The need for manual integration also prevents the XDl system run­

ning in a runtime self adaptive mode. Like the MIPS platform (see chapter 5)

the conversion process in performed pre-runtime using only the program binary

and a execution profile. No access to the original source code is required.

No concurrent execution The current release of the Cray software does not sup­

port the use of the hardware interrupt line between the FPGA and the CPU.

Consequently, the processor must continually poll the FPGA to determine if

the execution has finished, or if there are any outstanding requests that need

servicing. This prevents the CPU working concurrently with the FPGA.

No DMA to rnaih memory DMA operations must be performed to the QDR-

SRAM memories that are connected to the FPGA instead of to the main

122

6. Cray X D l Platform

SDRAM memory, as the majority of the available bandwidth is consumed by

the CPU polhng the FPGA.

Restricted clock speed range Due to a bug in the QDR-SRAM interface core

provided by Cray, clock speeds less than 130 MHz, resulted in data corruption.

Therefore, some algorithms could not be tested with higher loop unroll factors,

despite the abundance of hardware resources.

Although these factors do influence the results, in many cases the effect is to arti­

ficially reduce the performance produced by the hardware acceleration. Therefore

these limitations do not change the conclusion, that using automatic hardware con­

version tools on HFC platforms like the XDl , can produce significant increases in

performance.

6.5.2 Clock Speeds

During the course of the evaluation, it was noted that algorithms that contained

multiply operations had lower clock speeds. To increase the clock speed, multiply

operations were pipelined. This was achieved by placing additional sets of registers

after each multiply operation and ensuring that the register re-timing feature was

enabled. Although this was in accordance with the Xilinx guidelines, it did not

result in a significant increase in clock speed, despite the fact that the timing re­

ports indicated that multiply operations were stiU the limiting factor. This could be

resolved by hand coding the multiply operations to explicitly specify the placement

of the additional pipeline registers. In addition, since a new range of FPGAs, con­

taining dedicated ceiscade logic between the hardware multiplier blocks has become

available (e.g. Virtex4 [114]), it is now possible to create 32 bit wide multiphers

that are capable of running at up to 500 MHz.

It was noted that algorithms containing large numbers of DMA operations also had
123

6. Cray X D l Platform

lower clock speeds. This is because, as the size of the crossbar switches increases, so

does the MUXs that they contain, causing their propagation delays to rise. In order

to maintain high clock rates for algorithms with large numbers of DMA operations,

it would be possible to modify the data flow pipeline generation system to also

generate the crossbar switches, so that additional registers are automatically added

as required.

6.5.3 Performance Improvements

The Opteron processor present in the Cray XDl , can issue multiple instructions

per cycle, and has a clock speed of 2.2 GHz. Since the FPGA that is present

has a maximum clock speed of 200 MHz, a high level of parallehsm is required

for this FPGA to produce a significant increase in performance. In general, if the

conversion to hardware produces more than 30 parallel operations, a significant

increase in performance will result. Some algorithms, such as the series sum test,

are not well suited to hardware conversion due to the low levels of parallehsm present.

However, since the number of parallel operations is calculated at an early stage in

the conversion process, this calculation can be used to both identify and screen

out non-ideal sections of code from the hardware generation process. Although the

current hardware conversion system produced performance improvements of over

18x, it is clear that there is scope for further enhancement.

124

Chapter 7

Optimisations Of The

Reconfigurable Computing System

The results from both the MIPS embedded platform in chapter 5 and the XDl

HPC platform described in chapter 6, demonstrate that a considerable increase in

performance can be achieved by converting computationally intensive sections of

software into hardware. However, it is also clear that further improvements can be

made by changing both the conversion software and the hardware platform.

7.1 Hardware Conversion Tools

7.1.1 Loop Extraction

As the hardware conversion tools are only capable of processing the innermost loops,

a large proportion of the execution time may still be spent outside of these loops,

resulting in some cornputationally intensive code not being converĵ ed to hardware.

This is one of the major causes of the poor performance of the hardware in the

125

7. Optimisations Of The Reconfigurable Computing System

for (y = 0; y < 600; y++)
{

/ / Inner loop A
for (X = 0; X < 800; x++)
{

i f (pictureA [y] [x] > max) max = pictureB [y] [x] ;
}
/ / Inner loop B
for (X = 0; x < 800; x++)
{

i f (pictureB [y] [x] < min) min = pictureB [y] [x] ;
}
/ / ca lculate sum of absolute d i f fe rences
d i f f — pictureA [y] [0] — pictureB [y] [0] ;

SAD (d i f f >= 0) ? d i f f : - d i f f ;
}

Listing 7.1: Example code with multiple nested loops

quick sort algorithm on the MIPS platform (see section 5.3.10). Another side effect,

is the high level of overheads for algorithms where the inner loop is triggered re­

peatedly, one example of this being the FFT test (see section 5.3.2). It is possible,

however, to alter the hardware conversion system so that these outer loops might

also be converted to hardware. In addition to removing the overhead associated

with triggering the inner loop multiple times, this would also enable the conversion

system to exploit parallelism in an additional, orthogonal direction. This can be

seen in listing 7.1. When using conventional software execution, the two inner loops

and the calculation of the sum of absolute differences is done sequentially. However,

as there are no dependencies between them, they may be executed in parallel in

the hardware domain. This can produce a substantial increase in the amount of

parallelism, and consequently will fully exploit the performance increase enabled by

hardware acceleration.

The current hardware generation tools are not capable of converting loops that

contain function calls. The loop extraction algorithm could easily be modified to

automatically inline suitable functions. This would increase the performance of the

126

7. Optimisations Of The Reconflgurable Computing System

system by increasing the number of loops that could be converted to hardware.

7.1.2 Floating Point Operations

The use of floating point operations is currently not supported. The implementation

of this feature is a simple matter of adding the VHDL primitives, for the various

operations, to the operation library in the hardware generation software. There are

several commercially available floating point cores on the market that are specifically

optimized for use in FPGAs [58, 57]. Consequently, adding support for floating point

arithmetic, is a relatively simple task. However, as discussed in section 1.2.4, the

use of higher radix notations [60] and logarithm formats [61] can significantly reduce

the hardware utihzation in some circumstances. The decision about which floating

point notation/format provides the optimal implementation for a specific data flow

pipehne, can be made at run time, by the hardware generation tools. This is possible

because the conversion tools possess detailed information about the number, type

and connectivity of all the operations in the pipehne.

7.1.3 Optimization

As demonstrated in sections 6.3 and 3.4, loop unroUing can substantially increase

the speedup factor produced when the code is converted to hardware. Although loop

unrolling is a common software optimization technique, the optimum unroll factor is

different depending on whether a section of code is being executed in software or in

hardware. In addition, the unroll factor can have a dramatic effect on performance;

too smaU a value can result in low levels of parallelism, thereby limiting the perfor­

mance of the system; too large a value can result in inefficient usage of the available

hardware resources, which in extreme cases can prevent the loop from fitting into

the RC area. Since the optimal unroU factor is dependent on several parameters

127

7. Optimisations Of The Reconfigurable Computing System

that may differ from one system to another (e.g. bandwidth, memory latency and
RC area size), it is not possible to determine the most appropriate value at compile
time. A potential solution to this problem is for the hardware generation tools to
examine the code and to calculate the most suitable unroll factor. The conversion
tools could then either unroll or re-roll the loop as appropriate, producing code
which is specifically optimized for the particular system, without reducing the level
of abstraction.

When a host platform becomes available that supports exceptions/interrupts, an

error detection and roll back system could be implemented. This would resolve

the pointer aliasing issue outlined in section 4.6.1.1, and also allow more aggressive

optimizations to be performed. In this case, if the optimization were not suitable for

a specific section of code, producing errors and therefore invahd data, the hardware

execution would be terminated and the state of the system rolled back to a point

before the error occurred. The hardware conversion system would then re-implement

the hardware without the optimization that caused the error.

7.1.4 Scheduling

7.1.4.1 Operation Variants

Complex operations like multipliers, dividers and barrel shifters, can take a consid­

erable number of logic cells to implement. Operations can be implemented using

different methods, depending on the latency, throughput requirements and device

usage constraints. The hardware generation software described in chapter 4, cur­

rently implements all operations with the minimum possible latency. Since in some

cases the result of an operation is not required until further down the pipeline, data

forwaMei-s are added to the pipeline, as described in section 4.6.2. This provides

the potential for the hardware generation tools to decrease the hardware utihzation

128

7. Optimisations Of The Reconfigurable Computing System

Stage 0

Stage 1 •<

Stage 2

•
o

: Src/Result Register

: Inler-stage Register

•• Stage Operation

Stage 0

Stage 1

Stage 2

Sre/Resull Register

Inler-slage Regislec

Stage Operation

(a) Feedback to stage 0 (b) Local feedback

Figure 7.1: Example data flow pipehnes with and without the local feedback opti­
mization

of an operation, albeit at the expense of increasing its latency without, however,

affecting the overall performance of the system.

7.1.4.2 Local Feedback

In several of the test algorithms evaluated (e.g. Low pass filter), the number of clock

cycles between iterations is artificially high, since the resultant values can only be

passed backwards to the very first stage of the pipeline; this limits the performance.

One such example is shown in figure 7.1(a), where the result of the addition operation

on stage 2 is forwarded back to stage 0, delaying the next iteration until after

the previous iteration finishes. This performance restriction can be removed by

modifying the pipeline to include local feedback, so that the value of register " r l "

on stage 0 is not required to start the next iteration (as shown in figure 7.1(b)).

The number of clock cycles between starting iterations in the pipeline has a signifi­

cant effect on performance and is, as shown in equation 5.3, roughly proportional to

the overaU execution time. Performance will, therefore, be significantly enhanced by

adding the capability to perform local feedback optimizations, such as in the simple

example shown in figure 7.1, where this optimization has tripled the performance.
129

7. Optimisations Of The Reconfigurable Computing System

7.1.4.3 DMA Operation Scheduling

The current scheduhng algorithm places operations onto the pipeline based solely on

the data dependencies that are present. However, if the scheduhng algorithm places

more DMA operations onto a stage than the system can support, the pipeline is

forced to stall. By altering the placement of DMA operations within the pipehne,

the amount of idle time could be reduced, and thus performance increased. The

exact placement of these operations would be influenced by the following factors:-

• The DMA issue constraints of the RC area.

• The number and type of DMA operations in the section of code being converted

to hardware.

• The stages in the pipeline where data from load operations is required.

7.1.4.4 F P G A Tool Integration

Estimates of both the latency and also the hardware utilization for the operations

that make up the data flow pipeline, are used extensively during the hardware

generation process. In particular, the estimated latency is used during the scheduling

phase to determine which operations can be packed onto the same pipeline stage,

without exceeding the target propagation delay, as this would reduce the clock speed.

Although the estimation process takes account of the effects of the four possible input

configurations, its accuracy is severely hmited due to the following factors:-

Logic cell packing The majority of the operations that will be scheduled onto the

pipeline have two inputs, whereas the logic cells present in most FPGAs have

four inputs. The tools provided by FPGA vendors automatically combine

operations and pack them into the available logic cells. Exactly how this

130

7. Optimisations Of The Reconfigurable Computing System

is accomplished, has a considerable impact on both latency and hardware
utilization.

Hardw^are resource type used Some structures, like memories or multipliers,

can be implemented using either general purpose logic cells or dedicated hard­

ware blocks present in the FPGA. The type of resource to be used is deter­

mined by the FPGA tools, and can have a significant effect on both latency

and resource usage.

Routing delays The position of hardware blocks relative to that of connected

blocks within the FPGA, is the major factor that influences routing delays,

and as a consequence affects the overall delay between register stages.

In the current system, the hardware conversion tools are completely separate from

the FPGA vendor's synthesis and PAR tools. By closely integrating these two tool

chains, the limiting factors, hsted above, may be eliminated, producing an optimized

pipeline layout. In addition, the PAR tools could be made to relay information both

about the routing congestion and also about any unmet timing constraints. This

would enable the hardware generation tools to insert additional registers and thus,

reorder the pipeline in an iterative process to produce the optimal configuration.

7.1.5 Hardware Software Integration

The instructions that trigger execution in the RC area are currently placed at the

end of the program. As described in section 4.7.2, this approach avoids the need to

relink the program in the event that the trigger instructions are larger than the loop

that they replace. However, if the RC pipeline is triggered repeatedly, the additional

jump instructions that are required can introduce a significant overhead. In cases

where the number of trigger instructions is less than the number of instructions that

the RC area replaces, it is possible to embed the trigger instructions into the body
131

7. Optimisations Of The Reconfigurable Computing System

of the program without relinking. This proposed optimization reduces the overhead
associated with starting execution in the RC area, however this is at the expense of
increasing the time required to enable or disable the hardware acceleration. Since
the number of times that the RC area will be triggered is considerably higher than
the number of times that the hardware acceleration will be enabled/disabled, this
trade off is of overall benefit.

As mentioned in section 7.1.1, it is possible to automatically inline and thus incor­

porate function calls into the hardware data flow pipeline. Although this allows the

conversion of sections of code that would otherwise be ineligible, it can lead to ineffi­

cient usage of hardware resources, in cases where the function is called conditionally

on a small number of loop iterations. Such cases can easily be recognized by further

analysis of the profile data that is used to identify candidate loops. These ineffi­

ciencies can be avoided by replacing the function call with a interrupt trigger. This

enables the data flow pipeline within the RC area to be paused and execution of the

function to be carried out in the software domain. Once the function call completes,

the results would be passed to the data flow pipeline and execution resumed. This

would not only improve the efficiency of the hardware utilization, but would also

enable a loop to be converted to hardware that would otherwise be too large to fit

into the RC area.

7.2 Platforms

7.2.1 MIPS

The results in section 5.3, indicate that substantial increases in performance can be

obtained by performing the conversion to hardware. However, significant additional

speed improvements can be obtained if the memory bandwidth to the RC area is

132

7. Optimisations Of The Reconfigurable Computing System

increased. By simply pipelining the memory interface, it is possible to perform one
DMA operation per clock cycle which, in some test cases, results in a further tripling
of performance. Overall, this enables performance improvements in the excess of two
orders of magnitude, whilst stiU consuming a level of memory bandwidth which is
inline with the capabilities of most modern embedded platforms.

Currently the FPGA exists in the same clock domain as the CPU core, forcing the

two components to operate at the same clock speed. The maximum clock speed

of the CPU is fixed at design time, however the maximum clock speed of the RC

area is determined at runtime when its configuration is generated. As a result, in

the majority of cases, the RC area is not operating at the optimal clock speed.

Moving the FPGA to a separate clock domain would enable the RC area to run at

its optimum clock speed, as determined by the hardware generation and synthesis

tools that are described in section 7.1.4.4.

7.2.2 X D l

As described in section 6.5.2, pipelines with high numbers of DMA operations

have lower maximum clock speeds due to the increased complexity of the cross

bar switches that connect the load/store operations to the memory interface. Since

the cross bars are inside the RC area, they can be easily modified to suit the specific

data flow pipeline to which they are connected. Extra registers could be added to

the cross bars for pipelines with high numbers of DMA operations, increasing the

maximum clock speed at the expense of increasing the memory latency Clearly, this

is advantageous for highly parallel algorithms, as the additional latency would not

decrease the overall throughput. However, for some applications which contain high

numbers of data dependencies, the additional memory latency might result in an

overall reduction in performance. Since, the level of parallelism is calculated during

the early stages of the hardware conversion process, the conversion tools would be

133

7. Optimisations Of The Reconfigurable Computing System

able to determine whether adding additional registers to the cross bars is hkely to
increase performance. This information may then be used to decide whether or not
the optimization is performed.

Once software support for the FPGA interrupt line is made available by Cray, many

additional enhancements can be made to the hardware conversion process and ac­

companying execution environment. One key improvement would be the introduc­

tion of virtual memory. This could be effected by implementing an MMU inside

the FPGA to perform the virtual to physical address translation. Any DMA trans­

actions to memory pages that are not present in physical memory would pause

execution in the RC area and trigger an interrupt that would cause the main CPU

to re-load the page from disk. Once this had been accomphshed, execution in the

RC area would resume. This would allow DMA operations to be performed on the

main SDRAM memory instead of on the local QDR-SRAMs. To reduce the effec­

tive latency of the main SDRAM, the QDR-SRAMs would be used to implement

a cache. Since the RC area and the CPU would exist in the same virtual address

space, the software/hardware integration could be performed automatically, as de­

scribed in section 4.7.2. With the integration process fully automated, it would also

be feasible to implement multiple loops inside the RC area, as in the case of the

MIPS platform (see section 5.1).

7.2.3 Benchmark Algorithms

Once the various platform limitations outlined in sections 5.3 and 6.5.1 have been

resolved, it would be possible to run a range of standard benchmarks and real appli­

cations. The relevant sections of these pieces of software could then be automatically

converted to hardware. This would provide a much more detailed understanding of

the performance improvements that can be obtained in real world applications. In

addition to aiding the understanding and future development of the runtime tech-

134

7. Optimisations Of The Reconfigurable Computing System

niques outhned in this thesis, using standard benchmarks would also enable the
performance to be compared with other reconfigurable computing platforms and
tool sets.

7.3 An Ideal Reconfigurable Computing Platform

The majority of current reconfigurable computing platforms (such as those avail­

able from Cray [67] and SGI [31]), are based on existing, commonly used hardware

architectures, with FPGAs grafted onto the system. Although these systems are

capable of producing considerable performance improvements in excess of an order

of magnitude, their performance wiU always be limited by the system architecture.

To fully exploit the potential of the reconfigurable computing concept, the hardware

conversion tools must be combined with a hardware platform that has been specifi­

cally designed with the reconfigurable computing environment in mind. The block

diagram of the ideal reconfigurable processor is shown in figure 7.2.

7.3.1 Processor Integration

In many of the test algorithms evaluated, the RC area was triggered repeatedly (e.g.

quick sort, FFT, Mandelbrot). As a result, the time taken to trigger execution can

have a considerable impact on the overall performance of the system. To minimize

the trigger time, the RC area can be integrated into the same die as the CPU core.

This eliminates the high latency associated with slow, off chip busses. Additionally,

if the CPU core were to be placed on the same die as the RC area, the RC area

may be interfaced directly to the instruction pipeline via an APU port [22], further

decreasing the time taken to transfer execution from the CPU core to the RC area-

It is worth noting that, the proposed system has only one CPU core, whereas many

135

7. Optimisations Of The Reconfigurable Computing System

nJ o
S E

ra Q o -4—• .
3a

tc
h

tn S
o CO

6

•4—•
01
o

ys
t • c

CO

<D
>

o

ed

C
a

c
3

o
O O
EI O
rS

g i
"c
o
o

T

01 a
5 »
2 < P
o "

l i
= Si
« o
t E
nJ o

Q- I

< •

O

CT)
Q

io
n

it
or

c
o

CO 2
tl- o

s

o
Q-
<

2
to

i3

ra
Q

o
. i - H

o

5

O

o

a

1̂
o
s
oi

136

7. Optimisations Of The Reconfigurable Computing System

modern processors are dual or multi core [19, 20, 21, 118]. Moving to a dual core
architecture, more than doubles the die area giving a maximum theoretical perfor­
mance improvement of 2x. The results from both the MIPS and XDl platforms (see
sections 5.3 and 6.3 respectively), indicate that the die area used to implement the
second CPU core would produce a significantly larger increase in performance, if it
were to be used to implement an RC area. In addition to increasing performance,
replacing a CPU core in a dual core system with an FPGA will also dramaticaUy
reduce the power consumption and thus the heat generated. This is due to the lower
operating frequencies of FPGAs. This is highly beneficial as the thermal envelope
and thus the operating temperature, is a major design consideration, with modern
systems generating up to 130 watts of heat [119 .

Execution in the RC area is started by executing one or more trigger instructions, as

outlined in section 5.1.1. Once these trigger instructions have been issued, the CPU

core will stall until execution in the RC area has completed. Having such a large area

of silicon idle for even short periods of time, wiU significantly reduce the efficiency of

the system. In addition, the CPU must be active in order to perform auxihary tasks

like: virtual memory paging and the execution of sub-functions (described in section

7.1.5). In order to improve efficiency and also to accommodate the execution of vital

tasks, the CPU core in the ideal system implements SMT [18]. This enables the CPU

to simultaneously handle and issue instructions from multiple thread contexts. Since

the RC trigger instructions only staU the execution of a single thread, the CPU can

continue to execute instructions from other threads, thus enabling the RC area and

the CPU core to run in parallel.

7.3.2 Homogeneous R C Area

The following is a list of ideas and concepts that should be incorporated into the

RC area of an ideal reconfigurable computing platform:-

137

7. Optimisations Of The Reconflgurable Computing System

• Partial reconfigurability

• Homogeneous structure

• Configuration controller

• Speciahzed hardware

• Design for PAR

• Clock domains

7.3.2.1 Partial Reconfigurability

The FPGA resources used to implement most software loops in hardware, are typ­

ically, significantly lower than the resources available (in all the results thus far

obtained, the FPGA utihzation did not rise above 20% for any of the test algo­

rithms). To obtain the highest possible improvement in performance, the RC area

can be used to implement several sections of code at the same time. Due to the dy­

namic nature of computing environments, the specific hardware blocks that the RC

area will be required to implement, changes over time. The reconfiguration required

by this, involves the RC area being idle. To minimize the associated performance

impact, the RC area can be partially reconfigured so that one section of the hard­

ware is actively processing data, whilst another area is being configured for the next

task.

7.3.2.2 Homogeneous Structure

As a direct result of the runtime scheduhng and reconfiguration (described in section

7.3.2.1), it is not possible to determine exactly where, in the RC area, a hardware

block will be placed during the synthesis and PAR stages. To avoid the need to

re-run the PAR process every time the RC area is reconfigured, the RC area must
138

7. Optimisations Of The Reconfigurable Computing System

have a homogenous structure that allows location independent hardware blocks to
be synthesized.

7.3.2.3 Configuration Controller

To decrease the time taken to reconfigure the RC area, the configuration controller

is connected to a cache instead of directly to the MMU. As such, pre-fetching and

caching of configuration data wiU greatly speedup the reconfiguration process. Since

the configuration data for even small hardware blocks can be larger that the level 1

instruction cache, "cache trashing" is likely to occur (large amounts of useful cache

data, flushed out to make room for a large, infrequently used data sets). To prevent

this "cache trashing" the configuration controller is connected directly to the much

larger, level 2 cache.

7.3.2.4 Specialized Hardware

Early FPGAs contained only logic cells together with their associated routing matri­

ces. However, modern FPGAs also contain block RAMs and hardware multipUers

[114, 115]. These additional, specialized hardware resources can significantly in­

crease the performance of hardware implemented on these devices. Due to the

complex nature of commonly used floating point operations, FPGAs designed for

reconfigurable computing would benefit from additional specialized hardware primi­

tives. As mentioned in section 7.3.2.2, the RC area must have a regular, homogenous

structure to allow for the relocation of hardware blocks. Although the addition of

speciahzed hardware resources, like multipliers, disrupts the homogenous structure

locally, if they are evenly distributed throughout the RC area a regular structure

can be maintained at the global level. Accordingly, it is still possible to create relo­

catable hardware blocks whilst maintaining the advantages of specialized hardware.

139

7. Optimisations Of The Reconfigurable Computing System

In order to maintain the appearance of homogeneity, FPGA resources could only be
allocated at the granularity of the smallest repeating hardware unit. The hardware
utilization within a block will decrease slightly owing to the increased size of the
repeating units, caused by the addition of memory blocks, multipliers etc. This mi­
nor decrease in efficiency, is more than outweighed by the increase in performance
produced by the presence of specialized hardware primitives.

7.3.2.5 Design For Place And Route

Modern FPGAs are optimized to provide the most efficient usage of die area at

the expense of ever increasing synthesis and PAR times. Although this trade off

is ideal for situations where the hardware is compiled once, and used to configure

many devices, it is not well suited to environments, such as runtime reconfigurable

computing, where the hardware compilation process occurs repeatedly. By changing

the structure of the routing matrix in the FPGA, it is possible to decrease the amount

of memory used during the PAR process by a factor of 18, whilst at the same time

reducing the time taken, by a factor of 3 [44]. This kind of optimization will have a

significant impact on the system, given that the PAR dominates all the other stages

of the conversion process, in terms of both execution time and memory usage.

7.3.2.6 Clock Domains

Although not shown in figure 7.2, the RC area exists in a separate clock domain

from the CPU core, and all other blocks in the processor. This is primarily due to

the fact that the reconfigurable nature of the RC area, prevents it from running at

the higher clock speeds used by the CPU. However, the presence of a clock domain

boundary between the RC area and the rest of the system, allows its clock speed

to be set at the optimal value for the specific hardware being implemented. As the

140

7. Optimisations Of The Reconfigurable Computing System

RC area may be used to simultaneously implement multiple hardware blocks, the
RC area also contains multiple clock distribution trees. This enables each block to
be clocked at its optimum frequency, independently of the surrounding blocks. The
presence of multiple, independent clock trees is a common feature of many modern
FPGAs [114, 115 .

7.3.3 Memory Sub-System

As shown in figure 7.2, the DMA channel from the RC area connects to the memory

hierarchy at the same point as the CPU core (i.e. the level 1 data cache). Not only

does this mean that the RC area will benefit from both the level 1 and the level

2 caches, but it also results in the system being naturally cache coherent. There

is therefore, no overhead associated with the snoop traffic that would otherwise be

required to keep the data in parallel caches synchronized. The configuration data for

the RC area is read directly from the unified level 2 cache, instead of from either of

the level 1 caches. As described in section 7.3.2.3, this eliminates the possibility of

"cache trashing". However, as a result, newly generated configuration data will not

be visible to the configuration controller, unless it has been first flushed back to main

memory from the level 1 data cache (this is similar to the cache coherency problem

faced by applications using self modifying code). One possible solution, could be

to implement additional snoop hardware to ensure cache coherency, however, the

additional hardware might result in a lower overall clock speed for the system.

Since only a small section of software, that runs infrequently, handles the hardware

generation and configuration, the cache coherency can be easily and efficiently be

managed in the software domain.

Since the RC area is connected to the memory hierarchy before the MMU, any hard­

ware insidie the RC area exists in a virtual address space instead of in the physical

address space. This eliminates many of the integration and hardware conversion is-

141

7. Optimisations Of The Reconfigurable Computing System

sues that are faced by existing reconfigurable computing platforms such as the Cray
XDl [67 .

The computational rate of the RC area is considerably higher than that of the CPU

core, resulting in memory bandwidth requirements that are significantly higher than

those of CPUs [17]. This is demonstrated by the fact that, many of the algorithms

tested on both the MIPS and XDl platforms (see sections 5.3 and 6.3 respectively)

became bandwidth limited after they were converted to hardware. To provide the RC

area with the maximum possible bandwidth, the RC area is connected, through the

caches, to the latest dual channel DDR2 memory architecture [120]. Additionally, to

decrease memory latency and to further increase performance, the memory controller

is integrated directly into the processor. This approach has already been successfully

implemented in the AMD Athlon and Opteron lines of processors and Intel plan to

incorporate it in future products.

7.3.4 Code Profiling

A hardware code profiler, similar to the one described in section 3.1.1.1, monitors

the software execution. Because the profiling operations are performed by dedicated

hardware, there is little or no performance impact. Since the profiler, contains its

own small cache, the bandwidth consumed by the profile data is minimal. As the

profile data will never be read back by the profiler block, connecting the block to

one of the data caches would not result in an increase in performance. In fact, due

to the "read before write" policy of these caches, the overall performance would

be reduced. In order to prevent this, the code profiler is connected directly to the

MMU. The metrics gathered by the profiler are used by the hardware conversion

software to determine which sections of code consume the most CPU time, and

therefore to determine which sections should be converted to hardware.

142

7. Optimisations Of The Reconfigurable Computing System

The code profiler monitors the execution of aU the code running on the system, and
as a resuh the hardware conversion software, itself, will be profiled. This, in turn,
will result in the hardware generation software converting computationally intensive
sections of itself, to hardware. This will further speedup the generation of hardware
for all other applications.

7.3.5 Hardware Scheduling

As mentioned previously in section 7.3.2.1, the RC area is capable of simultaneously

implementing multiple sections of code in hardware. This, combined with the fact

that the hardware required will change as the execution of the application progresses,

means that a runtime scheduling algorithm is required to load the hardware blocks

into the RC area, at the correct time. This process is described in section 1.2.3

52, 53 .

Due to the limited size of the RC area, it is not possible to load all the hardware

blocks generated by the conversion software. As it is not always possible to predict

which sections of code will be executed, it may be that the corresponding hardware

block is not present in the RC area, when it is required. If this occurs, the section will

be executed in the software domain by the SMT CPU core. A dedicated hardware

block called the, "section monitor" (see figure 7.2), monitors the code being executed

by the CPU core. If the code being executed matches one of the sections that the

monitor is configured to detect, an interrupt wiU be raised. This interrupt then

triggers the hardware scheduling software which will then load the corresponding

section of hardware into the RC area. Once this has been completed, the scheduler

will modify the apphcation software to use the newly instantiated hardware. The

section monitor may also be configured to only raise an interrupt, if the number of

times a section of code is used in a set time period, exceeds a threshold value. This

allows the system to detect changes in the amount of execution resource used by

143

7. Optimisations Of The Reconflgurable Computing System

different sections of code, without the generation of large numbers of time consuming
interrupts.

The scheduling software supported by the two hardware monitoring blocks would

gather information about code usage and RC area congestion. This information, may

then be used by the hardware generation tools to inform the generation of additional

variants of the hardware blocks. For example, if the RC area can only accommodate

2 out of 3 blocks that are simultaneously required, the system could automatically

adapt and generate new versions of the blocks with lower unroll factors, thus allowing

all 3 blocks to be concurrently implemented in the RC area.

7.4 Heterogeneous Computing

Many different types of computational resource have been developed since the birth

of the "Von Neumann architecture" in 1945 [1]. A few existing architectures, to­

gether with their advantages and disadvantages, are listed below:-

C I S C / R I S C C P U Conventional CISC and RISC CPUs are by far the most com­

mon form of computational resource. This is due to their flexibihty, scalability

and backwards compatibility. Their basic architecture is based on an instruc­

tion pipeline that executes a series of sequential instructions, the generic nature

of which, enables this type of processor to perform an almost hmitless number

of different tasks. However, this flexibly comes at the cost of efficiency, for

this type of processor has a very low computational rate, compared to the die

area used. Common examples of this architecture include: the AMD Athlon

121], the Intel Pentium 4 [122] and the MIPS [102] range of processors.

V L I W Very Long Instruction Word (VLIW) processors (e.g. the TriMedia [85'

and Efficeon [123]) have a lot in common with CISC and RISC CPUs, as they

144

7. Optimisations Of The Reconfigurable Computing System

are also based on an instruction pipeline. However, they differ in that, the
instructions are grouped together to form bundles, where the instructions in
each bundle are independent and are executed in parallel with each other.
This explicit parallelism, leads to greater performance per unit die area, due
to the absence of complex dependency checking and scheduling hardware. The
use of VLIW cores has been limited to embedded applications where the code
is compiled for a specific processor, due to the inherent lack of backwards
compatibility and scalability provided by this architecture.

F P G A In contrast to CISC, RISC and VLIW processors, FPGAs do not contain an

instruction pipehne, instead they contain an array of logic elements that can

be connected together to form a great variety of different circuits. Although

they are capable of extreme computational workloads, a very high level of data

parallelism is required to enable this. This limitation, is further compounded

by the fact that FPGAs inherently have considerably lower clock speeds than

those exhibited by conventional processors. In addition, the simple nature

of the logic ceUs used in FPGAs, can lead to large inefficiencies when imple­

menting such complex functions as floating point arithmetic. The low level

of abstraction between the configuration data and the device itself, leads to a

total lack of backwards compatibility.

Array processor Array processors (e.g. ClearSpeed CSX600 [124]) are similar to

FPGAs, as they also consist of regular arrays of elements, connected together

by a routing matrix. Array processors differ from FPGAs, in that each element

is capable of performing complex mathematical functions, instead of just the

simple 4 input logic functions of the FPGA. Although the architecture of an

Array processor leads to highly efficient floating point implementations, it is

not as efficient in performing bitwise and integer operations as the FPGA.

Like FPGAs, array based processors can also suffer from a lack of backwards

compatibility.

145

7. Optimisations Of The Reconfigurable Computing System

All the architectures currently available have disadvantages, and many exist due to
their superior performance in certain, specialized areas. It is, however, possible to
create a system that will provide the optimal performance for every type of appli­
cation by combining, CISC, VLIW, and Array processors, together with FPGAs, in
a single platform. Since CISC processors have high levels of abstraction, and can
thus maintain backwards compatibility, they are the best choice for the primary pro­
cessor in the system, and therefore the architecture that all applications would be
written for. Runtime monitoring software would analyze computationally intensive
sections of code, to determine which type of computational resource is best suited
to performing each task. The corresponding dynamic translation layer could then
convert the code to the appropriate assembly language or hardware configuration.
This approach would provide the performance advantages of a specialized system,
whilst still maintaining compatibility with existing software appHcations.

For a heterogeneous computing system to provide significant increases in perfor­

mance, a viable hardware platform is required. Some multi-core, multi-architecture

devices have recently been introduced (e.g. the Cell processor [118]), however, be­

cause in these devices, the number and type of the processing elements is fixed, this

category of system will not be optimal for every class of application. One possible

solution, is to base the hardware platform on a blade architecture with a very high

bandwidth between the compute blades (e.g. Cray XDl [67]). Blades with different

types of computational resources could then be created. This approach would allow

system administrators to optimize systems for the specific needs of their applica­

tions, by altering the proportions of the various computational resources present in

the system. Blade architectures also provide an open, flexible platform to ease the

introduction of new types of processor and/or new reconfigurable hardware.

Software to software translation is commonplace (e.g. Java [49] and Transmeta [50]),

and hardware to software translation is addressed throughout this thesis. This com-

146

7. Optimisations Of The Reconfigurable Computing System

bined with the fact that the hardware platforms required, either already exist or are
relatively easy to develop, indicate that the concept of a heterogeneous computing
environment is achievable.

7.5 Future Research

In addition to implementing the additional optimizations and concepts outlined in

this chapter, the following should be investigated during any future work:-

Cache configuration A lot of work has be conducted to determine the opti­

mal cache size and organization for CPUs with various type of memory sub­

systems. Although a reconfigurable computing system will be used to execute

the same algorithms as conventional CPUs, the memory bandwidth RC sys­

tems require is significantly higher due to the increase in computation rate.

In addition any bandwidth required for instruction fetches is eliminated. A

detailed analysis of the effects of different cache architectures and hierarchies

should be conducted.

Clock speed to bandwidth ratio Because RC systems consume high amounts

of memory bandwidth in investigation into the relationship between RC area

clock speed and required bandwidth should be performed. Although some

work in this field has already been performed [17] a good understanding of the

levels of bandwidth required is lacking, particularly in the context of a large

scale RC system with multiple high performance CPUs (e.g. the Cray XDl)

High level optimizations The possible use of high level optimization to restruc­

ture algorithms should be investigated. Typically code is optimized for soft­

ware execution unfortunately this does not provide the best solution for recon­

figurable computing platforms. In the future it might be possible for compilers

147

7. Optimisations Of The Reconfigurable Computing System

to include some form of meta data in the final program binary that could be
processed by the hardware conversion tools at runtime. This could provide
the additional information required to make many high level optimizations
possible.

Virtual memory Since the RC area is usually connected directly to the memory

sub-system it exists in the physical address space. However the instructions

that the RC hardware will be based on operate in a virtual address space. One

solution to this problem is to implement a full MMU between the RC area

and the memory sub-system. Since the core code loops that are converted to

hardware usually only access a small sub-set of the data present within a large

application, it may be possible to create a more effective memory mapping

system.

7.6 Summary

By extracting parallelism in an additional orthogonal direction, and combining this

with the new optimisation techniques described in section 7.1, it is possible to con­

siderably increase the performance achieved by the hardware generation tools de­

scribed in chapter 4. Several of these optimisations will also reduce the hardware

resources required, and consequently allow a greater proportion of an application to

be converted to hardware, thus further increasing performance.

A detailed design of an idealised computing platform is presented, which allows the

hardware conversion tools to fully exploit the potential offered by the reconfigurable

computing concept. In addition, a heterogeneous computing system is proposed,

which combines reconfigurable hardware with a variety of other computational re­

sources. This would enable runtime translation of code to the most appropriate

computational resource, producing dramatic increases in performance over a wide

148

7. Optimisations Of The Reconfigurable Computing System

range of applications, whilst minimizing power consumption and maintaining back­
wards compatibility.

149

Chapter 8

Conclusion

Over the past forty years, the performance of conventional computing platforms has

increased exponentially, in line with "Moore's Law" [2]. Although this has resulted

in enormous levels of computing power being available, some applications such as

computer games, simulations, multimedia programs and others, require even greater

levels of performance. In addition to this need for increased performance, power

consumption is becoming a critical factor in the design of modern microprocessors.

At up to ISOWatts per processor [119], not only are the power requirements for

super computers and large clusters a major cost issue, but the heat generated,

causes thermal design problems, for all modern computing systems.

The use of dedicated hardware (e.g. PC graphics cards [5, 6]) can dramatically

increase performance and reduce power consumption, compared to a conventional

software solution. However, dedicated hardware is only capable of performing the

specific task for which it was designed, leaving it idle for significant amounts of time

when not required. This has hmited its usage to frequently performed computational

tasks. The use of reconfigurable hardware (e.g. FPGAs), has long been seen as a

potential solution to this problem, as it can be used to provide the increased perfor­

mance and also the reduced power consumption that is associated with dedicated

150

8. Conclusion

hardware. In addition, the reconfigurable nature provides the flexibility associated

with software solutions. Historically there have been two major barriers to the

widespread adoption of this technology:-

Hardware platforms The high performance of hardware based solutions, leads

to high bandwidth requirements, which necessitates the reconfigurable hard­

ware to be closely integrated with both the CPU and the rest of the system.

However in the past, reconfigurable hardware, has usually been added to ex­

isting platforms as an afterthought. Consequently the RC area was usually

connected to one of the peripheral buses, which resulted in low bandwidth and

poor performance.

Abstraction and backwards compatibility Due to its low level nature, recon­

figurable hardware (unlike CPUs) has a very low level of abstraction between

the configuration data and the underlying hardware. Consequently it is not

possible, at the present time, to produce scalable systems that allow backwards

compatibility.

In this thesis it has been shown that by using JIT techniques, it is possible to

convert computationally intensive sections of software to hardware at runtime, and

thereby fully abstract the RC area from the application. Not only does this allow

the performance of the system to be scaled, as new, faster FPGAs become available,

but it also enables applications that were not written for reconfigurable computing,

to be accelerated by this technology.

To evaluate the performance improvements that could, potentially, be provided by

runtime JIT techniques, a complete tool flow has been developed and described,

which together with various test algorithms, was applied to two hardware platforms:-

MIPS platform The MIPS platform contains a small, embedded class CPU and

has an FPGA connected directly to the instruction pipeline. As the CPU
151

8. Conclusion

core and the FPGA are in the same clock domain, they run at the same clock

speed of 16 MHz. This single clock domain approach, significantly reduces the

complexity of the hardware.

Cray X D l platform The Cray XDl is one of a new generation of supercomputers

that integrate FPGAs into the core of the system, giving the FPGA high

bandwidth and low latency access to the main memory. The CPU in the test

system was a 2.2 GHz AMD Opteron, which was paired with a Virtex I I Pro

50 FPGA, having a maximum clock speed of 200 MHz.

The automatic hardware acceleration of programs on the MIPS test platform, pro­

duced performance increases ranging from 20% to a factor of 54.9, with many of the

test algorithms being over lOx faster than in the original software case. The results

obtained from the Cray XDl platform, ranged from a 7x decrease in performance

to an 18x increase in performance. The reduction in performance, in some of the

test cases, was due to the low levels of parallehsm in the original software, com­

bined with the fact that the FPGA ran at clock speeds up to 15 times slower than

the CPU. It is worth noting, that in the majority of cases, the performance of the

FPGA was limited by the available bandwidth, and not by the computational speed

of the FPGA itself. Although significant increases in performance, in excess of an

order of magnitude, have been obtained, it is clear from the results presented that

reconfigurable computing cannot accelerate every test case. However, it is possible

for the JIT hardware generation software to easily identify and screen out non-ideal

kernel loops, and thus prevent reductions in performance.

Although significant increases in performance are produced by the JIT tool flow,

higher levels of performance can usually be obtained by handwriting the hardware

in an HDL (e.g. VHDL, SystemC [40]). However, this requires a time consum­

ing and expensive process, that needs to be performed for every target platform.

In comparison, the JIT based automatic conversion system outlined in this thesis

152

8. Conclusion

provides the advantages of scalability and total abstraction. As a result, the die

area being utilized in the latest generation of CPUs to instantiate multiple cores,

119, 118] would produce much higher performance gains, if it were used instead, to

instantiate an RC area. This solution would also help address the power consump­

tion and thermal issues that are currently being faced by the industry. The proposed

JIT based tool flow does present some additional problems and drawbacks:-

Verification A runtime tool flow that dynamically changes the nature of an ex­

ecutable presents some verification problems. This is because it is almost

impossible for the developer to verify the correctness of the system as a whole,

however this level of verification is only usually required for life support, avia­

tion, and other critical applications. As such the vast majority of applications

can still benefit from the increased performance provided by the use of JIT

techniques. In these cases the application developer must verify that there ap­

plication functions correctly on the platform without hardware acceleration,

and the JIT tool flow vendor must verify the conversion process itself. It can

therefore be assumed that in the majority of cases any application will still

function correctly once it has been hardware accelerated. The concept of re­

lying on abstraction in the verification model is common place (e.g. software

vendors do not verify there applications against every possible combination of

PC hardware components). It is worth noting that this approach is also used

in the verification of many other JIT based tool fiows (e.g. Java [49], FX32

48], Crusoe [50]).

Time consuming tool flow Although the time required to perform the place and

route operations, and therefore the overall conversion time is quite high, this

wiU be reduced by the introduction designed for PAR (see section 7.3.2.5). In

most cases the high conversion time does not pose a significant problem as the

majority of programs fall into one of the following two categories; applications

153

8. Conclusion

that are run repeatedly (e.g. word processing) where the conversion can be

perform during system idle time and the results stored for future runs, or

programs that have very long run-times (e.g. complex simulations) where the

time required to perform the conversion becomes insignificant.

Debugging Many threading related bugs are sensitive to the timing on the exe­

cution process. As such these bugs could be exposed and cause crashes on

platforms that implement dynamic hardware acceleration. As this issue is

common to any increase in system performance (e.g. increasing CPU clock

speeds) care should be taken when writing multi-threaded apphcations for

any platforms. In addition software development tools exist that can help

identify these problems before the software is released.

Application specific performance increases The use of reconfigurable hard­

ware can produce significant increases in performance. However this increase

is very dependant on the application being accelerated, in some cases the per­

formance might not increase at all. This drawback is common to virtually

every method of increases performance (e.g. increasing cache sizes, number of

execution units, memory bandwidth, etc).

Many different types of computational resource currently exist (e.g. RC areas [115,

114], floating point array processors [124], conventional superscalar CPUs [122, 121]),

each with their own inherent strengths and weaknesses. In the future, it should be

possible to create a system that harnesses the combined power of all of these types of

computation resource, whilst still providing scalability, abstraction and backwards

compatibility. This could be achieved by combining existing software to software

conversion techniques [50, 48, 49], with the software to hardware translation outlined

in this thesis. The conversion software would locate intensive sections of code,

identify the most suitable computational resource, and automatically migrate the

code accordingly. This ability to dynamically translate and move sections of code

154

8. Conclusion

from one resource to another, would produce a dramatic increase in performance

and would also significantly reduce power consumption and operating costs.

155

Bibliography

1] J. von Neumann, "First draft of a report on the EDVAC," IEEE Annals of

the History of Computing, vol. 15, no. 4, pp. 27-75, 1993.

[2] G. E. Moore, "Cramming more components onto integrated cir­

cuits," Electronics, vol. 38, no. 8, Apr 1965. [Online]. Available:

ftp://download.intel.com/research/silicon/moorespaper.pdf

3] A. Peleg and U. Weiser, "MMX technology extension to the Intel

architecture," IEEE Micro, vol. 16, no. 4, Aug 1996. [Online]. Available:

http://www.eecs.lehigh.edu/~mschulte/ece401/papers/mmx.ps

4] L. Gwennap, "AltiVec vectorizes PowerPC," Microprocessor Re­

port, vol. 12, no. 6, May 1998. [Online]. Available:

http://docencia.ac.upc.edu/ETSETB/SEGPAR/microprocessors/altivec

%20(mpr).pdf

[5] (2005, May) GeForce 6 series. nVidia Corporation. [Online]. Available:

http: //www.nvidia.com/page/geforce6.html

6] (2005, May) Radeon X850 graphics technology. ATI Technologies Inc.

Online]. Available: http://www.ati.com/products/radeonx850/index.html

7] (2005, May) Nexperia PNX8550. Philips Semiconductors. [Online.

Available: http://www.semiconductors.philips.com/acrobat/hterature/9397/

75012469.pdf

156

B I B L I O G R A P H Y

8] (2005, May) OMAP 2 architecture: OMAP2420 processor. Texas Instruments.

Online]. Available: http://focus.ti.com/pdfs/wtbu/TLomap2420.pdf

9] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, "A quantitative analysis

of the speedup factors of FPGAs over processors," in FPGA '04:

Proceedings of the 2004 ACM/SIGDA 12th international symposium on

Field programmable gate arrays, 2004, pp. 162-170. [OnUne]. Available:

http://www.cs.ucr.edu/~vahid/pubs/fpga04_anal.pdf

10] G. Lu, H. Singh, M.-H. Lee, N. Bagherzadeh, F. J. Kurdahi, and E. M . C.

Filho, "The MorphoSys parallel reconfigurable system," in Euro-Par '99: Pro­

ceedings of the 5th International Euro-Par Conference on Parallel Processing,

1999, pp. 727-734.

11] M . Sima, S. Cotofana, S. Vassiliadis, J. T. van Eijndhoven, and K. Vis­

sers, "MPEG-compliant entropy decoding on FPGA-augmented TriMedi-

a/CPU64," in 10th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, Apr 2002, pp. 261-270.

12] J. R. Hauser and J. Wawrzynek, "Garp: a MIPS processor with a reconfig­

urable coprocessor," in IEEE Symposium on FPGAs for Custom Computing

Machines, Apr 1997, pp. 12-21.

13] M . J. Wirthlin, "A dynamic instruction set computer," in IEEE Symposium

on FPGA's for Custom Computing Machines. IEEE Computer Society, 1995,

pp. 99-107.

14] C. Ebehng, C. Fisher, G. Xing, M . Shen, and H. Liu, "Implementing an OFDM

receiver on the RaPiD reconfigurable architecture," IEEE Transactions On

Computers, vol. 53, no. 11, pp. 1436-1448, 2004.

15] J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua, M. Taylor, J. Kim,

S. Devabhaktuni, and A. Agarwal, "The raw benchmark suite: computation

157

B I B L I O G R A P H Y

structures for general purpose computing," in FCCM '97: Proceedings of

the 5th IEEE Symposium on FPGA-Based Custom Computing Machines.

Washington, DC, USA: IEEE Computer Society, 1997, p. 134. [Online].

Available: http://www.crhc.uiuc.edu/ mfrank/pubs/Babb-1997-FCCM.pdf

16] S. Bono, M. Green, A. Stubblefield, A. Juels, A. Rubin, and

M . Szydlo, "Security analysis of a cryptographically-enabled," in l^th

USENIX Security Symposium, 2006, pp. 1-16. [Online]. Available:

https: / / www.usenix.org/events/sec05/tech/bono.html

[17] S. Derrien and S. Rajopadhye, "FCCMs and the memory wall," in IEEE

Symposium on Field-Programmable Custom Computing Machines, Apr 2000,

pp. 329-330.

18] J. L. Lo, J. S. Emer, H. M . Levy, R. L. Stamm, D. M. Tullsen, and S. J.

Eggers, "Converting thread-level parallehsm to instruction-level parallelism

via simultaneous multithreading," ACM Transactions on Computer Systems,

vol. 15, no. 3, pp. 322-354, 1997.

19] (2005, May) Intel dual-core processors. Intel Corporation. [Online]. Available:

http://www.intel.com/technology/computing/dual-core/?iid=search&:

20] (2005, May) Introducing multi-core technology. Advanced Micro Devices, Inc.

[Onhne]. Available: http://multicore.amd.com/Technology/

21] T. Takayanagi, J. L. Shin, B. Petrick, J. Y. Su, H. Levy, J. H. P. Son, N. Moon,

D. B. D, U. Nair, M. Singh, V. Mathur, and A. S. Leon, "A dual-core 64-bit

UltraSPARC microprocessor for dense server applications," IEEE Journal of

Solid-State Circuits, vol. 40, no. 1, Jan 2005.

22] A. Ansari, P. Ryser, and D. Isaacs, "Accelerated system performance

with APU-enhanced processing," Xcell, no. 52, pp. 36-39, 2005. [Onhne.

158

B I B L I O G R A P H Y

Available: http: / / www.xilinx.com / publications / xcellonline/xcell_52 / xc_pdf/

xc_xcell52.pdf

[23] (2005, May) Custom instructions. Altera Corporation. [Online]. Avail­

able: http: / / www.altera.com / products/ip/processors / nios2 / features / ni2-

custJnstructions.html#customJnstructions

[24] R. Laufer, R. R. Taylor, and H. Schmit, "PCI-PipeRench and the SWOR-

DAPI: A system for stream-based reconfigurable computing," in IEEE Sym­

posium on Field-Programmable Custom Computing Machines, Apr 1999, pp.

200-208.

25] S. D. Haynes, R Y. K. Cheung, W. Luk, and J. Stone, "SONIC-a

plug-in architecture for video processing," in IEEE Symposium on Field-

Programmable Custom Computing Machines, Apr 1999, pp. 280-281. [Onhne .

Available: http://www.ee.ic.ac.uk/pcheung/publications/fpl99_sonic.pdf

26] (2005, May) Nallatech FPGA computing solutions. Nallatech Inc. [Online .

Available: http://www.nallatech.com/?node_id=l.2.l&;id=l

27] C. Plessl and M. Platzner, "TKDM A reconfigurable co-processor

in a PCs memory slot," in IEEE International Conference on Field-

Programmable Technology, Dec 2003, pp. 252-259. [Onhne]. Available:

http://www.tik.ee.ethz.ch/~plessl/publications/fpt03/fpt03.pdf

28] P. Leong, M. Leong, O. Cheung, T. Tung, C. Kwok, M. Wong, and K. Lee,

"Pilchard A reconfigurable computing platform with memory slot interface,"

in IEEE Symposium on Field-Programmable Custom Computing Machines,

Apr 2001, pp. 170-179.

29] (2005, Jun) SRC Computers Inc. - Hardware elements. SRC Computers Inc.

Online]. Available: http://www.srccomp.com/HardwareElements.htm

159

B I B L I O G R A P H Y

30] (2005, Jun) Apphcation acceleration with FPGA-based re-
configurable computing. Cray Inc. [Online]. Available:
http: //www.cray.com/products/xdl/acceleration.html

[31] (2004, Nov) Extraordinary acceleration of workflows with reconfigurable

application-specific computing from SGI. Silicon Graphics Inc. [Online.

Available: http://www.sgi.com/pdfs/3721 .pdf

[32] (2005, May) The hypercomputer product line. Star Bridge Systems Inc. [On­

line]. Available: http://www.starbridgesystems.com/products/hardware.html

[33] M. Verderber, A. Zemva, and D. Lampret, "HW/SW partitioned optimization

and VLSI-FPGA' implementation of the MPEG-2 video decoder," in Proceed­

ings of the conference on Design, Automation and Test in Europe. IEEE

Computer Society, 2003, pp. 238-243.

34] (2005, May) Case study: Oil & gas

seismic exploration. Nallatech Ltd. [Online]. Available:

http://www.nallatech.com/mediaLibrary/images/english/970.pdf

35] P. Waldeck and N. Bergmann, "Dynamic hardware-software partitioning on

reconfigurable system-on-chip," in IEEE International Workshop on System-

on-Chip for Real-Time Applications, Jun 2003, pp. 102-105.

36] T. Maruyama and T. Hoshino, "A C to HDL compiler for pipeUne processing

on FPGAs," in IEEE Symposium on Field-Programmable Custom Computing

Machines, 2000, pp. 101-110.

37] D. C. Cronquist, P. Franklin, S. G. Berg, and C. Ebehng, "Specifying and com­

piling applications for RaPiD," in IEEE Symposium on FPGAs for Custom

Computing Machines, 1998, pp. 116-125.

160

B I B L I O G R A P H Y

38] (2005, May) Complete design environment for C-based algorithmic
design entry, simulation and synthesis. Celoxica Ltd. [Online]. Available:
http://www.celoxica.com/products/dk/default.asp

39] (2004, Oct) A true software approach to

FPGA programming. Mitrionics AB. [Onhne]. Available:

http://www.mitrion.com/press/Mitrion_whitepaper_041030.pdf

40] G. Arnout, "SystemC standard," in Asia South Pacific Design Automation

Conference, 2000, pp. 573-578.

41] J. Hopf, G. S. Itzstein, and D. Kearney, "Hardware join Java: A high level

language for reconfigurable hardware development," in IEEE International

Conference On Field Programmable Technology, Dec 2002, pp. 311-347.

42] B. W. Kernighan and D. M . Ritchie, The C Programming Language, 2nd ed.

Prentice Hall, 1988.

43] R. Lysecky, F. Vahid, and S. Tan, "Dynamic FPGA routing for just-in-

time FPGA compilation," in DAC '04-' Proceedings of the 41st annual

conference on Design automation, 2004, pp. 954-959. [Online]. Available:

http: / / www.cs.ucr.edu/~vahid/pubs/dac04_jitfpgaroute.pdf

[44] , "A study of the scalability of on-chip routing for Just­

in-Time FPGA compilation," in IEEE Symposium on Field-

Programmable Custom Computing Machines, 2005. [Onhne]. Available:

http://www.cs.ucr.edu/~vahid/pubs/fccm05_jitroute.pdf

[45] J. M. P. Cardoso and H. C. Neto, "Macro-based hardware compilation of

Java(tm) bytecodes into a dynamic reconfigurable computing system," in

IEEE Symposium on Field-Programmable Custom Computing Machines, 1999,

pp. 2-11.

161

B I B L I O G R A P H Y

46] J. L. Schilling, "The simplest heuristics may be the best in Java JIT compil­

ers," ACM SIGPLAN Notices, vol. 38, no. 2, pp. 36-46, Feb 2003.

47] A. Gordon-Ross and F. Vahid, "Frequent loop detection us­

ing efficient non-intrusive on-chip hardware," in Proceedings of the

2003 international conference on Compilers, architecture and synthe­

sis for embedded systems, 2003, pp. 117-124. [Onhne]. Available:

http://www.cs.ucr.edu/~vahid/pubs/cases03_profile.pdf

[48] A. Chernoff, M . Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. B.

Yadavalfi, and J. Yates, "FX!32: a profile-directed binary translator," IEEE

Micro, vol. 18, no. 2, pp. 56-64, Mar 1998.

[49] C.-H. A. Hsieh, J. C. Gyllenhaal, and W. mei W Hwu, "Java bytecode to native

code translation: the caffeine prototype and prehminary results," in MICRO

29: Proceedings of the 29th annual ACM/IEEE international symposium on

Microarchitecture, 1996, pp. 90-99.

50] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,

A. Klaiber, and J. Mattson, "The transmeta code morphing™ software:

using speculation, recovery, and adaptive retranslation to address real-life

challenges," in CGO '03: Proceedings of the international symposium on

Code generation and optimization, 2003, pp. 15-24. [Onhne]. Available:

http://www.cs.aau.dk/~fleury/bug_cms/CMS_Reverse/Papers/DGB03.pdf

[51] G. M. Amdahl, "Validity of the single-processor approach to achieving large

scale computing capabihties," AFIPS Conference Proceedings, vol. 30, pp.

483-485, Apr 1967.

[52] H. Walder and M. Platzner, "Online scheduling for block-

partitioned reconfigurable devices," Design Automation and

162

B I B L I O G R A P H Y

Test m Europe, pp. 290-295, 2003. [Onhne]. Available:
http://www.tik.ee.ethz.ch/~walder/HomePage/XFORCES/DATE03.pdf

53] A. Ahmadinia, C. Bobda, and J. Teich, "A dynamic scheduhng and

placement algorithm for reconfigurable hardware," Lecture Notes In

Computer Science, vol. 2981, pp. 125-139, Mar 2004. [Online]. Available:

http://wwwl2.informatik.uni-erlangen.de/publications/pub2004/ABT04.pdf

[54] Z. L i , K. Compton, and S. Hauck, "Configuration caching management

techniques for reconfigurable computing," in IEEE Symposium on Field-

Programmable Custom Computing Machines, 2000, pp. 22-36. [Online].

Available: http://www.ece.wisc.edu/~kati/Publications/Li_FCCMOO.pdf

55] M. Sanchez-Elez, M. Fernandez, R. Maestre, F. Kurdahi, R. Hermida, and

N. Bagherzadeh, "A complete data scheduler for multi-context reconfigurable

architectures," in Design Automation And Test In Europe, 2002, pp. 547-552.

Online]. Available: http://www.eng.uci.edu/comp.arch/new_pubs/c84.pdf

56] (2005, June) Floating point cores. Nallatech. [Online]. Available:

http://www.nallatech.com/mediaLibrary/images/english/2432.pdf

57] (2005, June) Double precision floating point cores. Nallatech. [Online]. Avail­

able: ht tp: / / www. nallatech. com / mediaLibr ary / images/english/3269.pdf

[58] (2005, June) Quixilica(R) floating point cores. QinetiQ. [Online]. Avail­

able: http://www.qinetiq.com/home-rtes/quixilica_products/firmware_cores/

quixillica Jp. SupportingPar.0001. File, pdf

[59] J. Liang, R. Tessier, and O. Mencer, "Floating point unit generation

and evaluation for FPGAs," in IEEE Symposium on Field-Programmable

Custom Computing Machines, 2003, pp. 185-194. [Onhne]. Available:

http://www.doc.ic.ac.uk/~oskar/pubs/fccm03.pdf

163

B I B L I O G R A P H Y

60] B. Catanzaro and B. Nelson, "Higher radix floating-point representations for

FPGA-based arithmetic," in IEEE Symposium on Field-Programmable Cus­

tom Computing Machines, 2005.

61] M. Haselman, M. Beauchamp, A. Wood, S. Hauck, K. S. Hemmert, and K. Un­

derwood, "A comparison of floating point and logarithmic number systems

for FPGAs," in IEEE Symposium on Field-Programmable Custom Computing

Machines, 2005.

62] F. Vahid. (2005, Jul) Warp processors. [Online]. Available:

ht tp: / / www .cs.ucr.edu/ ~ vahid / warp /

63] G. Stitt, R. Lysecky, and F. Vahid, "Dynamic hardware/software

partitioning: a first approach," in DAC '03: Proceedings of the 40th

conference on Design automation, 2003, pp. 250-255. [Onhne]. Available:

http://www.cs.ucr.edu/~vahid/pubs/dac03_dhs.pdf

64] R. Lysecky and F. Vahid, "A study of the speedups and competi­

tiveness of FPGA soft processor cores using dynamic hardware/software

partitioning," in DATE '05: Proceedings of the conference on Design,

Automation and Test in Europe, Mar 2005, pp. 18-23. [Online]. Available:

http: / / www.cs.ucr.edu/~vahid/pubs/date05_warp_microblaze.pdf

65] G. Stitt, Z. Guo, W. Najjar, and F. Vahid, "Techniques for synthesizing

binaries to an advanced register/memory structure," in FPGA '05:

Proceedings of the 2005 ACM/SIGDA 13th international symposium on

Field-programmable gate arrays, 2005, pp. 118-124. [Online]. Available:

http://www.cs.ucr.edu/~vahid/pubs/fpga05-binsyn.pdf

66] Z. Guo, B. Buyukkurt, and W. Najjar, "Input data reuse in compihng window

operations onto reconfigurable hardware," in Proceedings of the 2004 ACM

164

B I B L I O G R A P H Y

SIGPLAN/SIGBED conference on Languages, compilers, and tools for em­

bedded systems, 2004, pp. 249-256.

67] (2005, Jun) Cray X D l supercomputer. Cray Inc. [Onhne]. Available:

http://www.cray.com/products/xdl

68] R. Lysecky and F. Vahid, "A configurable logic architecture for dynamic

hardware/software partitioning," in DATE '04: Proceedings of the conference

on Design, Automation and Test in Europe, vol. 1, no. 1, Feb 2004, pp. 480-

485. [Onhne]. Available: http://www.cs.ucr.edu/~vahid/pubs/date04_clf.pdf

69] G. Stitt and F. Vahid, "Hardware/software partitioning of software binaries,"

in Proceedings of the 2002 IEEE/ACM international conference on Computer-

aided design, 2002, pp. 164-170.

70] (2005, May) Highly integrated, programmable system-

on-chip (SoC). Philips Electronics. [Online]. Available:

http://www.semiconductors.philips.com/products/nexperia/

71] P. Lieverse, P. V. D. Wolf, K. Vissers, and E. Deprettere, "A methodology for

architecture exploration of heterogeneous signal processing systems," Journal

of VLSI Signal Processing Systems, vol. 29, no. 3, pp. 197-207, Nov 2001.

72] D. D. Gajski, S. Narayan, L. Ramachandran, F. Vahid, and P. Fung, "System

design methodologies: aiming at the 100 h design cycle," IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 4, no. 1, pp. 70-82, Mar

1996.

[73] (2005, May) Virtio - Virtual platforms for embedded system design. Virtio.

Online]. Available: http://www.virtio.com

[74] (2005, May) TriMedia SDK. Phihps Semiconductors. [Online]. Available:

http://www.alacron.com/downloads/vncl98076xz/sde_2_75006255.pdf

165

B I B L I O G R A P H Y

75] P. R. Panda, "SystemC: a modeling platform supporting multiple design ab­

stractions," in Proceedings of the 14th international symposium on Systems

synthesis, 2001, pp. 75-80.

76] J. Goshng, B. Joy, G. L. S. Jr, and G. Bracha, The Java™ Language

Specification, 3rd ed. Addison-Wesley Professional, Jun 2005. [Online .

Available: http://java.sun.eom/docs/books/jls/download/langspec-3.0.pdf

77] R. K. Gupta and S. Y. Liao, "Using a programming language for digital system

design," IEEE Design & Test, vol. 14, no. 2, pp. 72-80, Apr 1997.

78] J. Gong, D. D. Gajski, and A. Nicolau, "Performance evaluation for

application-specific architectures," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 3, no. 4, pp. 483-490, Dec 1995.

79] P. Paulin, C. Pilkington, and E. Bensoudane, "StepNP: a system-level explo­

ration platform for network processors," IEEE Design & Test, vol. 19, no. 6,

pp. 17-26, Nov 2002.

80] M. S. Schlansker and B. R. Rau, "EPIC: Explicitly Parallel Instruction Com­

puting," Computer, vol. 33, no. 2, pp. 37-45, Feb 2000.

[81] H. Sharangpani and K. Arora, "Itanium processor microarchitecture,"

IEEE Micro, vol. 20, no. 5, pp. 24-43, Sep 2000. [Online]. Available:

http://courses.ece.uiuc.edu/ece512/Papers/itaniumarchitecture.pdf

82] C. McNairy and D. Soltis, "Itanium 2 processor microarchitecture," IEEE

Micro, vol. 23, no. 2, pp. 44-55, Mar 2003.

83] A. Settle, D. A. Connors, G. Hoflehner, and D. Lavery, "Optimization for the

Intel® I tan ium® architecture register stack," in CGO '03: Proceedings of

the international symposium on Code generation and optimization, 2003, pp.

115-124. [Onhne]. Available: http://rogue.colorado.edu/draco/papers/cgo-

03-register.pdf

166

B I B L I O G R A P H Y

84] M. Chrobak and J. Noga, "LRU is better than FIFO," in
SODA '98: Proceedings of the ninth annual ACM-SIAM sympo­
sium on Discrete algorithms, 1998, pp. 78-81. [Online]. Available:
http://www.cs.ucr.edu/~marek/pubs/lru_vsJifo.ps

85] G. Slavenburg and M. Janssens, DataBook: PNX1300 Se­

ries Media Processors. Philips Electronics North America

Corporation, Feb 2002, ch. Appendix A. [Online]. Available:

http://www.semiconductors.philips.com/acrobat_download/hterature/9397/

75010145.pdf

86] IA-32 Intel@ Architecture Software Developer's Man­

ual, Intel Corporation, Apr 2005. [Online]. Avail­

able: ftp://download.intel.com/design/Pentium4/manuals/25366615.pdf,

ftp: / / download.intel.com/design/Pentium4/manuals/25366715.pdf

87] R. B. Lee, "Multimedia extensions for general-purpose processors," in IEEE

Workshop on Signal Processing Systems, Nov 1997, pp. 9-23. [Online .

Available: http://www.ee.princeton.edu/~rblee/HPpapers/sipsl5go.ps

88] M. L. Anido, A. Paar, and N. Bagherzadeh, "Improving the operation auton­

omy of SIMD processing elements by using guarded instructions and pseudo

branches," in DSD '02: Proceedings of the Euromicro Symposium on Digital

Systems Design, 2002, pp. 148-156.

89] D. N. Pnevmatikatos and G. S. Sohi, "Guarded execution and branch predic­

tion in dynamic ILP processors," in ISCA '94: Proceedings of the 21ST annual

international symposium on Computer architecture, 1994, pp. 120-129. [On­

hne]. Available: http://www.mhl.tuc.gr/research/publications/ISCAl994-

GuardedExecution.pdf

90] MIPS32'^^ Architecture For Programmers, MIPS Technologies Inc, Jun 2003.

167

B I B L I O G R A P H Y

91] (2006, Apr) Transitive corporation: Technology overview. Transitive

Corporation. [Online]. Available: http://www.transitive.com/technology.htm

92] D. Sima, "The design space of register renaming techniques," IEEE

Micro, vol. 20, no. 5, pp. 70-83, 2000. [Online]. Available:

http://www.dc.uba.ar/people/materias/ap/Articulos/The Design Space of

Register Renaming Techniques.pdf

93] G. H. Gonnet, "Balancing binary trees by internal path reduction," Commu­

nications of the ACM, vol. 26, no. 12, pp. 1074-1081, 1983.

94] V. Betz and J. Rose, "How much logic should go in an FPGA logic block?"

IEEE Design & Test, vol. 15, no. 1, pp. 10-15, 1998. [Online]. Available:

http://www.eecg.utoronto.ca/~jayar/pubs/betz/design98.pdf

95] K. Eckl and C. Legl, "Retiming sequential circuits with multiple register

classes," in DATE '99: Proceedings of the conference on Design, automation

and test in Europe, Mar 1999, pp. 650-656.

[96] C. Leiserson and J. Saxe, "Optimizing synchronous systems," in Journal of

VLSI and Computer Systems, vol. 1, no. 1, 1983, pp. 41-67.

97] W. Landi and B. G. Ryder, "A safe approximate algorithm for interprocedural

pointer aliasing," ACM SIGPLAN Notices, vol. 39, no. 4, pp. 473-489, 2004.

Online]. Available: http://athos.rutgers.edu/pub/sigplan92-landi-ryder.ps

98] G. Ramalingam, "The undecidabihty of aliasing," ACM Transactions on Pro­

gramming Languages and Systems, vol. 16, no. 5, pp. 1467-1471, 1994.

99] D. R. Ditzel, "Transmeta's crusoe: Cool chips for mobile computing," Hot

Chips Symposium, Aug 2000.

168

B I B L I O G R A P H Y

100] (2005, May) Quartus I I software. Altera. [Onhne]. Avail­

able: http://www.altera.com/products/software/products/quartus2/qts-

index.html

101] L. Hansen, "Design performance leaps forward with ISE

7.1i software," Xcell, no. 53, pp. 64-66, 2005. [Online.

Available: http: / / www.xihnx.com / pubhcations / xcellonline/xcell_53/xc_pdf/

xcjx;cen53.pdf

102] G. Kane and J. Heinrich, MIPS RISC architecture, 2nd ed. Prentice-Hall,

Inc., 1992.

103] S. Rhoads. (2005, June) Plasma - most

MIPS I ^ " ^ opcodes. Opencores.org. [Online]. Available:

http: / / www.opencores.org/projects.cgi / web/mips / overview

104] T. Balph, "LFSR counters implement binary polyno­

mial generators," EDN, May 1998. [Onhne]. Available:

http: / / www.pldworld.com/html/technote/1 ldf_06.pdf

105] H. Niederreiter, Random number generation and quasi-Monte Carlo methods.

Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 1992.

106] P. J. M. Laarhoven and E. H. L. Aarts, Eds., Simulated annealing: theory and

applications. Norwell, MA, USA: Kluwer Academic Publishers, 1987.

[107] B. Preneel, A. Biryukov, E. Oswald, B. V. Rompay, L. Granboulan, E. Dottax,

S. Murphy, A. Dent, J. White, M. Dichtl, S. Pyka, M. Schafheutle, P. Serf,

E. Biham, E. Barkan, O. Dunkelman, J. J. Quisquater, M. Ciet, F. Sica,

L. Knudsen, M. Parker, and H. Raddum, NESSIE security report. NESSIE,

Feb 2003, ch. 3.

108] E. getin, R. C. S. Morling, and L. Kale, "An integrated 256-

point complex FFT processor for real-time spectrum analysis and
169

B I B L I O G R A P H Y

measurement," IEEE Proceedings of Instrumentation and Measurement-

Technology Conference, vol. 1, pp. 96-101, May 1997. [Onhne]. Available:

http: //dolphin.wmin.ac.uk/~cetine/IMTC97.pdf

109] L. C. Ludeman, Fundamentals of digital signal processing. Wiley, 1996, ch. 6,

pp. 272-286.

110] , Fundamentals of digital signal processing. Wiley, 1996, ch. 5, pp. 246-

252.

I l l] D. L. Gall, "MPEG: a video compression standard for multimedia applica­

tions," Communications of the ACM, vol. 34, no. 4, pp. 46-58, 1991.

112] G. de Haan, "IC for motion-compensated de-interlacing, noise re­

duction, and picture-rate conversion," IEEE Transactions Consumer

Electronics, vol. 45, no. 3, pp. 617-624, 1999. [Onhne]. Avail­

able: http: / / www.semiconductors.philips.com/acrobat_download/other/cms/

99_225.pdf

113] W. A. Martin, "Sorting," ACM Computing Surveys, vol. 3, no. 4, pp. 147-174,

Dec 1971.

114] (2005, June) Virtex-4 family overview. Xilinx. [Online]. Available:

http: //www.xihnx. com/bvdocs / publications/ds 112 .pdf

115] (2005, June) Stratix I I device family data sheet. Altera. [Online]. Available:

http: //www.altera.com/hterature/hb/stx2 / stx2_sii5vl _01 .pdf

116] (2005, Jul) HyperTransport Consortium. [Online]. Available:

http://www.hypertransport.org/

117] (1997) Using the RDTSC instruction for perfor­

mance monitoring. Intel Corporation. [OnUne]. Available:

http://www.math.uwaterloo.ca/~jamuir/rdtscpml.pdf

170

B I B L I O G R A P H Y

118] (2005, Aug) The CELL project at IBM research. IBM Corporation. [Online .
Available: http://www.research.ibm.com/cell/

119] Intel® Pentium® D Processor 84O, 830 and 820

Datasheet, Intel Corporation, May 2005. [Onhne], Available:

http: / / download. Intel, com / design/Pentiumd/datashts/30750601. pdf

120] B. Davis, T. Mudge, B. Jacob, and V. Cuppu, "DDR2 and low latency vari­

ants," in The 27th Annual International Symposium on Computer Architec­

ture, May 2000.

121] (2005, Aug) AMD Athlon"^^ 64. Advanced Micro De­

vices, Inc. [Online]. Available: http://www.amd.com/us-

en/Processors/ProductInformation/0„30_118_9484,00.html

122] (2005, Aug) Intel® Pent ium® 4 processor. Intel Corporation. [Online.

Available: http://www.intel.com/products/processor/pentium4/index.htm

123] (2005, Aug) Transmeta'T^' Efficeon'^^ TM880 pro­

cessor. Transmeta Corporation. [Online]. Available:

http://www.transmeta.com/pdfs/brochures/tmta_efficeon_tm8800.pdf

124] (2005, Aug) CSX600 apphcation accelerator. ClearSpeed Technology pic.

Online]. Available: http://www.clearspeed.com/products/si.php

171

Appendix A

MIPS Test Algorithms Source

Code

This appendix contains only the kernels of the test algorithms used to evaluate the

MIPS platform. The source code for the console application (described in section

5.2.1) is not included.

A . l P R B S Generator (Standard)

v o i d r a n d o m F i l l (unsigned long data [] , unsigned long l eng th
unsigned long seed)

{
i n t i , c u r l n d e x ;
unsigned long b i t S l , b i t 2 8 ;
unsigned long s h i f t R e g ;

s h i f t R e g = (seed = 0) ? DEFAULTJ'RBS-SEED : seed;
/ / f i l l the a r ray
f o r (cu r lndex = 0; c u r l n d e x < l e n g t h ; cur lndex-H-)
{

/ / generate 32 b i t s of random data
f o r (i = 0; i < 32; i + +)
{

172

A. MIPS Test Algorithms Source Code

/ / get the l a s t 2 b i t s of the r e g i s t e r
b i t 3 1 = (s h i f t R e g » 31) & 0 x 1 ;
b i t 2 8 = (s h i f t R e g » 28) & 0 x 1 ;
/ / s h i f t the reg up and or in the new
s h i f t R e g « = 1;
s h i f t R e g 1 = b i t a i ' bit28 ;

}
/ / s to re the random number
da ta [cu r lndex] = s h i f t R e g ;

b i t

A.2 P R B S Generator (Unrolled)

void r a n d o m F i l l O p t (unsigned long d a t a [] ,
unsigned long leng t h ,
unsi gned long seed)

i n t c u r l n d e x ;
unsigned i n t b i tS l , bitao , bit29 , bit28 , bit27 , bi t26
unsigned i n t b i t25 , b i t 2 4 , b i t23 , b i t 22 , b i t 2 1 , b i t 2 0
unsigned i n t b i t l 9 , b i t l 8 , b i t l 7 , b i t i e , b i t l 5 , b i t l 4
unsigned i n t b i t l S , b i t l 2 , b i t l l , b i t lG , bit9 , b i t s ;
unsigned i n t bi t? , bi te , bi t5 , bi t4 , b i ts , b i t2 ;
unsigned i n t b i t l , b i tO ;
unsigned i n t tempO , t empi , temp2 , s h i f t R e g , new S h i f t R

s h i f t R e g = (seed
/ /
f o r
{

i l l the a r ray
(cu r lndex = 0; c u r l n d e x < len

/ / Get the b i t s of the s h i f t r
b i t 3 1 = (s h i f t R e g » 31) & 0x1
b i t 3 0 = (s h i f t R e g » 30) & 0x1
b i t 2 9 = (s h i f t R e g » 29) & 0x1
b i t 2 8 = (s h r f t R e g » 28) & 0x1
b i t 2 7 = (s h i f t R e g » 27) & 0x1
b i t 2 6 = (s h i f t R e g » 26) & 0x1
b i t 2 5 = (s h i f t R e g » 25) & 0x1
b i t 2 4 = (s h i f t R e g » 24) & 0x1
b i t 2 3 = (s h i f t R e g » 23) & 0x1
b i t 22 = (s h i f t R e g » 22) k 0x1
b i t 2 1 = (s h i f t R e g » 21) & 0x1
b i t 2 0 = (s h i f t R e g » 20) & 0x1

173

0) ? DEFAULT_PRBS^EED : seed;

1 ; cur lndex-H-)

i n t o the r e g i s t e r s

A. MIPS Test Algorithms Source Code

b i t l 9 =
b i t l 8 =
b i t l 7 =
b i t l 6 =
b i t l 5 =
b i t l 4 =
bi t 13 =
b i t l 2 =
b i t l l =
b i t lO =
b i t9 =
b i t s =
b i t? =
bi te =
b i t s =
b i t4 =
b i t s =
b i t 2 =
b i t l =
bitO =
/ / Calc
temp2 =
tempi =
tempO =
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
aewShif tReg
newShif tReg
newShif tReg
newShif tReg

s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g
s h i f t R e g

»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»

19
18
17
16
15
14
13
12
11
10
9)
8)
7)
6)
5)
4)
3)
2)
1)
0)

k 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1
& 0x1

the new s h i f t r e g i s t e r value
b i t S l
bitSO
b i t 2 9

bit28
bi t27
bit26
bitO
b i t l
b i t2
b i t s
b i t4
b i t s
b i te
b i t7
b i t s
b i t9
b i t lO
b i t l l
b i t l 2
b i t l S
b i t l 4
b i t l 5
b i t i e
b i t l 7
b i t l 8
b i t l a
bit20
b i t21
bit22

tempO)
t e m p i)
temp2)
bitO
b i t l
b i t2
b i t s
b i t4
b i t s
b i te
b i t7
b i t s
b i t9
b i t lO
b i t l l
b i t l 2
b i t l S
b i t l 4
b i t l S
b i t i e
b i t l 7
b i t l S
b i t l 9

«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«

1
2
3
4
5
6
7
8
9
.10
11
12
13
14
15
16
17
18
19
20

« 21
« 22:

174

A. MIPS Test Algorithms Source Code

newShi f tReg
newShi f tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
newShif tReg
/ / r o t a t e vars
s h i f t R e g = new
d a t a [cu r lndex

(b i t 2 3 " b i t 2 0) « 23
(b i t 2 4 " b i t 2 1) « 24
(b i t 2 5 ^ b i t 2 2) « 25
(b i t 2 6 " b i t 2 3) « 26
(b i t 2 7 " b i t 2 4) « 27
(b i t 2 8 " b i t 2 5) « 28
tempO « 29;
t empi « 30;
temp2 « 3 1 ;
and s to re the random number

Sh i f tReg ;
= s h i f t R e g ;

A.3 F F T

/ * W r i t t e n by: Tom Roberts 11/8/89
* Made p o r t a b l e : Malcolm Slaney 12/15/94
* ma lco lm@in te rva l . com
* Embedded MIPS p o r t : Thomas Grocu t t 10/1/2005
*/

i n t f i x e d P o i n t F f t (v o l a t i l e unsigned long d a t a [] ,
unsigned long m, bool inve r se)

{
i n t mr , nn , i , j , 1 , k , n , scale , temp ;
bool s h i f t ;
shor t qr , qi , t r , t i , wr , w i ;

mr = 0;
scale = 0;
n = 1 « m;
nn = n — 1;
/ / check t ha t the f f t i s n ' t to b i t to process
i f (n > N_WAVE) r e t u r n - 1 ;

/ / dec ima t ion i n t ime — re —order data
f o r (m = 1; m < = nn; mH-)
{

1 = n ;
do
{

1 » = 1;
} w h i l e ((mr + 1) > nn) ;

175

A. MIPS Test Algorithms Source Code

mr = (mr & (1 - 1)) + 1 ;
/ / make sure elements are i n the r i g h t order
i f (mr > m)
{

temp = data [m] ;
da t a [m] = data [mr] ;
data [mr] = temp;

}
}

k = L0G2J^.WAVE - 1;
f o r (1 = 1; 1 < n ; 1 « = 1)
{

i f (i nve r se)
{

/ / v a r i a b l e s c a l i n g , depending upon data
s h i f t = f a l s e ;
f o r (i = 0; i < n ; i - f +)
{

temp = data [i] ;
t r = temp & OxFFFF;
t i = temp » 16;
i f (t r < 0) t r = - t r ;
i f (t i < 0) t i = - t i ;
i f ((t r > 16383) | | (t i > 16383))
{

s h i f t = t r ue ;
i = n ;

}
}
i f (s h i f t) s c a l e + + ;

}
else
{

/ * f i x e d s ca l ing , f o r proper n o r m a l i z a t i o n .
* There w i l l be l o g 2 (n) passes, so t h i s r e s u l t s
* i n an o v e r a l l f a c t o r of 1/n, d i s t r i b u t e d to
* maximize a r i t h m e t i c accuracy .
* /

s h i f t = t r ue ; }

/ * are we on f i n a l b u t t e f f l y where there is only 1
* pass of inner looi^
* / "

i f ((1 « 1) < n)
{

176

A. MIPS Test Algorithms Source Code

/ * i t may not be obvious , but the s h i f t w i l l be
* per formed on each data p o i n t e x a c t l y once ,
* d u r i n g t h i s pass .
*/

f o r (m = 0; m < 1; mH-)
{

j = m « k ;
wr = s i n L u t [j + (N_WAVE / 4)] ;
wi = —sinLut [j] ;
i f (i nve r se) wi = —wi ;
i f (s h i f t)
{

wr » = 1;
wi » = 1;

}
else

f o r (i = m; i < n ; i + = 1 « 1)
{

j = i + 1;
temp = data [j] ;
qr = temp & OxFFFF;
q i = temp » 16;
t r = F I X ^ U L (wr , qr)

- FIX_MUL(w i , q i) ;
t i = F I X ^ U L (wr , q i)

+ FIX^/[UL(wi , qr) ;
temp = data [i] ;
qr = temp & OxFFFF;
q i = temp » 16;
i f (s h i f t)
{

qr » = 1;
q i » = 1;

}
da t a [j] = ((q i - t i) « 16)

I ((q r - t r) & OxFFFF):
da t a [i] = ((q i + t i) « 16)

I ((q r + t r) & OxFFFF)
1

/ * t h i s is e x a c t l y the same as above, except i t s
* the s p e c i a l case on the l a s t b u t t e r f l y when
* the inner loop only does 1 i t e r a t i o n .
* Removing t h i s loop r educ ing the overhead and

177

A. MIPS Test Algorithms Source Code

* speeds t h i n g s up.
* /

f o r (m = 0 ; m < 1; mH-)
{

j = m « k ;
wr = s i n L u t [j + (N_WAVE / 4)] ;
wi = —sinLut [j] ;
i f (i nve r se) w i = —wi ;
i f (s h i f t)
{

wr » = 1;
wi » = 1;

}
j = m + 1 ;
temp = data [j] ;
qr = temp & OxFFFF;
q i = temp » 16;
t r = FIXJ4UL(wr , qr)

- FIX_MUL(w i , q i) ;
t i = FIXJ4UL(wr , q i)

+ FIX_MUL(wi , qr) ;
temp = data [m] ;
qr = temp & OxFFFF;
q i = temp » 16;
i f (s h i f t)
{

qr » = 1;
q i » = 1;

}
da ta [j] = ((q i - t i) « 16)

I ((q r - t r) & OxFFFF);
da t a [m] = ((q i + t i) « 16)

I ((q r + t r) & OxFFFF);
}

}
k — ;

}
r e t u r n (scale) ;

A.4 Low Pass Filter

void l p f A u d i o (v o l a t i l e unsigned i n t b u f f e r

178

A. MIPS Test Algorithms Source Code

)
unsigned i n t l e n g t h

i n t
unsigned i n t
shor t
shor t
shor t
shor t
i n t
i n t
i n t
shor t
shor t
shor t
shor t
i n t
i n t
i n t

temp;
cO ;
cOCur ;
cOPrevl
cOPrev2
cOPrevS.
cOPrev4.
cOPrevS.
c l ;
c l C u r ;
c l P r e v l
c lP rev2
c lPrevS .
c l P r e v 4 .
c lP revS .

mul2
mul2
mul2

mul2
mul2
mul2

/ / pre calc some temp vars
cOCur
c lCur
cOPrevl
cOPrev2
cOPrev3-mul2
cOPrev4_mul2
cOPrev5-mul2
c l P r e v l
c lP rev2
c lPrevS-mul2
c lPrev4_mul2
c lPrev5_mul2

b u f f e r [0] & OxFFFF;
b u f f e r [0] » 16;
cOCur;
cOCur;
cOCur * 2
cOCur * 2
cOCur * 2
c l C u r ;
c l C u r ;
c l C u r * 2
c l C u r * 2
c l C u r * 2

/ / go t h rough the b u f f e r low pass f i l t e r i n g each channel
f o r (i = 0; i < l e n g t h ; i -H-)
{

/ / get the value of the 2 channels
temp = b u f f e r [i] ;
cOCur = temp & OxFFFF;
c l C u r = temp » 16;
/ / calc the I p f ou tpu t
cO = ((cOCur * 4) +

(cOPrev2 * 3) +
cOPrev4_mul2 +

c l =

(cOPrevl * 3) +
cOPrev3-mul2 +
cpPrev5_mul2) / 16;

(c i C u r * 4) + (c l P r e v l * 3) +
(c l P r e v 2 * 3) + c lPrevS_mul2 +

c lPrev4_mul2 + c lPrevS-mul2) / 16;

179

A. MIPS Test Algorithms Source Code

/ / r o t a t e valus
cOPrev5_mul2 = cOPrev4_mul2 ;
cOPrev4_mul2
cOPrev3_mul2
cOPrev2
cOPrevl
c lPrev5_mul2
c lPrev4_mul2
c lPrev3_mul2
c lP rev2
c l P r e v l
/ / s to re 1p f

= cOPrev3_mul2 ;
= cOPrev2 * 2;
= cOPrevl ;
= cOCur;
= c lPrev4_mul2 ;
= c lPrev3_mul2 ;
= c lP rev2 * 2;
= C l P r e v l ;
= c l C u r ;
r e s u l t

b u f f e r [i] = (c l « 16) | (cO & OxFFFF)

A. 5 Normalization

v o i d no rma l i seAud io (v o l a t i l e unsigned i n t b u f f e r
unsigned i n t l e n g t h)

i n t
shor t
shor t
shor t
shor t
shor t
shor t
shor t
i n t

1 ;
cOVal
cOMin
cOMax;
c l V a l
c l M i n :
c lMax:
absMax;
upScale ;

unsigned i n t temp;

/ * go th rough the b u f f e r g e t t i n g the min and max
* values of each channel
* /

cOMax = b u f f e r [0] & OxFFFF;
cOMin = cOMax;
clMax = b u f f e r [0] » 16;
c l M i n = c lMax;
f o r (i = 0; i < l e n g t h ; i-H-)
{ .

/ / get the value of the 2 channels
temp = b u f f e r [i] ;
cOVal = temp & OxFFFF;

180

A. MIPS Test Algorithms Source Code

}

c l V a l = temp » 16;
/ / update min and max vals
i f (cOVal > cOMax) cOMax = cOVal
i f (cOVal < cOMin) cOMin = cOVal
i f (c l V a l > clMax) c lMax = c l V a l
i f (c l V a l < c l M i n) c l M i n = c l V a l

/ / f i n d the max abso lu te value and calc the scale f a c t o r
absMax = (cOMin < 0) ? (- 1 * cOMin) : cOMin;

= (cOMax < 0) ? (- 1 * cOMax) : cOMax;
f (i > absMax) absMax = i ;

= (c l M i n < 0) ? (- 1 * c l M i n) : c l M i n ;
f (i > absMax) absMax = i ;

= (c lMax < 0) ? (- 1 * c lMax) : c lMax;
i f (i > absMax) absMax = i ;
upscale = (MAX_VALUE * MAX_VALUE) / absMax;

/ / now apply the c o r r e c t i o n
f o r (i = 0; i < l e n g t h ; i -H-)
{

temp = b u f f e r [i] ;
cOVal = temp & OxFFFF;
c l V a l = temp » 16;
/ / get the value of the 2 channels
cOVal = (cOVal * upScale) » 15;
c l V a l = (c l V a l * upScale) » 15;
b u f f e r [i] = (c l V a l « 16) | (cOVal & OxFFFF);

181

A. MIPS Test Algorithms Source Code

o

ffl .2
O 4 ^

S S

O O
O O
Pi
PH PL,

I I
W W o o < <

• - l O

CO >—I

• i - H . i - H

-a

0)

m
o

A

!3

o

p—I

CO

<

* -x-

M S-i

^ .̂4-1
PQ

a a

o o
PL, PLH

I I

O O

<; <

03

O

03

~ CO

<+-! <-)-(

< 0 3
CO CO
cn ai

o3 o3

> >
CO

<: pq
^ ^ ^

03
>

CM

<; pq

•-PLH

03 =̂

o

m
!-H
1=)
o

0 5 03

>
T3 X) ^ ^

<: pq
o o

O 00 CO m
<H-1 ^ . — I • — I

03 o3

CM

o

s
o

<;
o

s
o
o
03

+ ^ -1-= - t - i

c! C C

(-1

+^ -»-> o3
a

-1—1 • I—t o o

-o
a; CD cu

C3 a P5
bfl bO bC bO

•f-H • . — I • 1—t • 1—1
m M w CO CO

a n ° a '
:=i

o
o s

+^
CO
Q;
CO
O
o
•)«•

03
n d
o

a
bO
tn
cl
;=!

l-H 0)
o3 CO
<0 o3

o

o

s i
s -S
CD

^ CD
+^ a
O CO

CO =3
CO ^ '

o3

o

o3 O

o

s
o
CJ
03

<
CJ

ffl
o
l-l
o
o3

a

T 3

m
o
! - (
O
03

a

bX)
03
c! 1
P) 1

CD
bO

-
CD

1—t

CO +^
i — 1 CB

<V Oi
X
a ,

V

o3

CO

a C3
CJ

— <

o
- C J

II

-a <u

bC c! no Li

i-<

+ J

O
bC

o

182

A. MIPS Test Algorithms Source Code

CP

V

a,
o

V — ^

CO

X5 0. ^

• rt CO

J <P

o

^ +

<

0)

CO

CD

O

CD

a
CO

o

O

i-i

O

s

o

O
CO

a
CO

CD

+^

C J

0 3

O

CO

o

CO

CD

i - H

II * + (D <D
X) -a Pi

• >—(S-H
+^

CO CO

O A A
O 1 1 s +j +^ s CO CO

CD CD

o

*
CD

a

o o
o O

\ ^ 1—H 1—1

o S-H
=3 3̂

q O O

M O o
^ —'
o II ffi

o

^ O

—< o

^ CO

(M ^ (30

^ ^ ^
A A A

(M . - H C X)

A A A
A A A

o o O O O o
o o O TT. O O o
o o l-M

/-^
O O o

o
o FF

O

OO
F:

c ^
O
o
o

O
O
O FF

O

OO
F:

O
O
O

o o o o o o
o o o o o o

X X X X X X X X
o o o o O o o o

<^

m pq m
o o o o 1—(1—1 I—1

CO CO CO CO CO CO CO (O

> > > > > > > >

I I I I I I

< CP <: m <; PQ < ;
O O I — I 1—I (M CC| C O

P3
C O

03 CO CO CO CO CO CO CO CO 03

B 03 03 o3 03 03 o3

= ^ > > > > > > > >
CM CM

a n 00 oo

+ + + + + + CO -CD 0) 0) 1—(CM I — (CM CM t—1 CM
n a CD QJ CD <V CD Q J
bX)

-1—I
bO

• 1—1
d Pi a a fl a Pi

CO CO >

o
o
o
o
o
o

X
o

o
o
o
o

o
o
X

o

o
o

o
o
o
o
X

o

o
o
o
o
o
o
X

o

o
o
o
o
o
o
fa
fa
X

o

o
o
o
o
fa
fa
o
o
X

o

o
o
fa
fa
o
o
o
o
X

o

fa
fa
o
o
o
o
o
o
X

o
<=»<̂ c*^ c j ^ < ^

< < < <

PI
P!

CD CD CO

.5 .2

Q Q Q < < < o o o H H H
CO CO CO
CO CO CO

Q Q Q <;<;<; o o o H H H
CO CO CO
CO CO CO

o
H
CO
c«

< ^ <
rt:̂ o o o o

CO CD CO CO

o3 o3 03 o3
> > > >

CO CO CO CO

o3

> > > >

O - — i C M c o ^ i o t o i r -

^ ^ s s s s s
>H

. o3 O

. to ^

183

A. MIPS Test Algorithms Source Code

+ + + + + +

CO l O
CO L O
«̂ _(t4-H t ^ - ^

I I I I I I I I

^ C O . -
CM >—I 0 0

A A A
A A A

^ CO
CM . - I 0 0

A A A
A A A

o
o
o
o
o
o

o

o
o
o
o

o
o
X
o

o
o

fa
o
o
o
o
X

o

o
o
o
o
o
o
X

o

o
o
o
o

o
o
X
o

o
o

o
o
o
o
X

o

fa
o
o
o
o
o
o
X

o
o < j cl<J Ci<^ Ci<^

m CQ m
CM CM CM
w CO CO

d c3 d
> > >

m m m PQ m
CM f O C O C O C O

CO CO CO CO CO

I I I I I I I

o
o
o
o
o
o
fa
fa
X
o

o
o
o
o
fa
fa
o
o
X

o

o
o
fa
fa
o
o
o
o
X
o

o
o
o
o
o
o
fa
fa
X
o

o
o
o
o
fa
fa
o
o
X

o

o
o
fa
fa
o
o
o
o
X
o

fa
fa
o
o
o
o
o
o
X
o

T—I C O l o

C^. c^- c^- c^- c^- c^-

o o o o o o o o

II II II II II II II II
A A A A A A A A

t C O l O
1 — l c o L o ^ ^ a i I — I . — 1 ^
<4—(U—t < - H ^ - H M—(

+ -l- + + -t- + + +

O CM

O C M - * i O 0 0 ^ > - l > - l

<u I I I I I I I I
o
i-H

O CM ^
O C M ^ C O O O . - * - — I T — I

C^- (N - c^- c^- c - c^- c^- c^-

1 3 0 0 0 0 0 0 0 0
c i ^ < ^ c»<^ d ^ cl<^ cl<^

C M C M C M C M C O C O C O C O
c n c o c o c o c o c o c o c o

c3

>

o
CO A A A A A A

o
A A

CM
O CM
<-l-l <-l-l

^ CO 0 0 .-H .—I .—I

^ ^ ^ ^ ^ ^ ^ ^ s _
^ ^ ^ ^ ^ ^ ^ ^ s ^

II II II II II II 11 II ^ I
O CM C O l O O

O O C T I T — l > — I . — I i — I t — I d
^H-H t4-H ^ - H M — I ^—(«-t—I e4_(

o

CO

CO

:=!
hJ

o
- l—i

>
CP
; - i 11
D H li

o
O

1—<

m
+^
CO

OJ
CO

^ O
o 1—1

o

a
o

!-(o
<l> <—1

-t^ , V

CO o
+^
CO II II
cu

o O
o • — 1 O

' — '

II
V

ce II
V C O +^

CO + j CO

xs CO <a
ce CO
CO O

^ - — ' O • — 1

CO o
.1—t —

CO

CO

A

CO CO
CD

0)
t-i

X3

CO

^

s 1
O
(-1

o O
o . — 1

m
CO

D
CO

O
1—1

t 4 - l O
O

a
o

"-̂ —^
03

— ^

O
'—' II

CD

o
' — 1 X
a

fa
i-i

\ , :=! o

184

A. MIPS Test Algorithms Source Code

-̂1 1-1
cn cfi

cc cfi

DH CL, -73

CO
II II ^

M -
o o

cj o
o o (1)

CD

o

O

s
o
CJ>
cd

o

cd
o o

'o 'o

O O
O O
Pi pci

o o < <

CO 7 3

?3 I D

oj cu

cd cd

I I

o o
Pi Pi

O O
<; <:

X5
a>

o
cd

PH
o o s

o
• - — I

cd
+^
CO

T 3 X J

CO
t + H < - l - l

C O

M-l < - t - l

" CM
^ I

• I-H . - — I

- O T O

•~ >—I
C O . - I

" o
(N . - I
<*-(< - t - l

<U
P i

' O X ! • - (B o O
X a o „ „ — m

- O <X3 J « tl
T 3 l H_, <H_l (-1 S-H !-H P

=̂ ^ ^ "
CO T3 o o o -x-

. - C Q

oj CU J3

d n cd
:^ z; s

<
o pq

cd

cu
o

C O CO

CO CO
<U o
O '3

4J> 4-D + J + J

cn G i=) P i a

i-l cd cd - (- ^

P l P l
o o .1—1

7 3 T 3 7 3 7 3 7 3
CU a; cu cu

P l P l P l P l
hO tuO bC

• 1—1 • 1—1 -I—(-I—1 - ^
CO . CO CO CO CO

a P l P l P l
p! p i p) P!

o

Cd

o

o
(-)
o
cd

0)

o

S
o
o

a
+
(U

7 3

CO

CU

CO

s
O

CU

cd

7 3
7 3

<;
cu
CO

cd

A
cu

O CO

CU

Cd

<D
r p l

7 3
7 3

o

s
o
cd

B

185

A. MIPS Test Algorithms Source Code

i — 1

d X
• 1—4

• 1—1 ><
P L ,

><

!-l

d d
o d

o

1^ ,
bO
oi

tv -d
-d bO

CO - t J
•—' CO
<V (D
X
Ci,

d
cc3

d

V

(D

d

i-i
d
CJ

Q; O

5 II
-d 0^
bO d

d
CJ

-a

CO

V

fli
L<

d

PL,

d
o

CO

U
(—'

CD

+ d

-73

O
CO

ci3

CO O

^ s
-̂ ^ d
CO CO
cu

CP
-d

•X- -t^

OJ bfl
i=i d

• < ^

d ^
o d

.—. ^
\~, CJ

T 3

1 3 c/2 < ^
CO O
03 ^

X I rX

CO O)

1 3 - i - j

=y 'SJ

-d
CJ -1-̂ o

—< O
ffl bO

S-H
d
CJ

0)
d

o o
S
d
o

T3 i - ^
. 03 O
. CO ^

<0

CO

CO

CO

CO

T 3

o o

•X- * d
CD

d

CJ

o
m
d
CJ

A !
CJ o s
S-I

d
o

o3
-d
o

13
CD
d
bp
CO
d
d

CP — .
fH _ _ . „ _ . „ . „ . „ . „ . „

CP — . . . — . . — .

-d
^ ^ , , ^ , s ^ v , ^ ^, X

O O ' - H C M C O ^ k O C D t ^ t X D C l O - — l C M C O ' = * < l O
^ d ^ ^ ^ ^ ^ ^
P3 M r * * * * * * * * * * * * * * *

!-i CO
d •'nt^ "^t^ ^c^* ""vj^
CJ <P ^ ' - — ' ^ — — — '

— • ^ + + + + + + + + + + + + + + + +
T3 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

CP <; ^
^ + ^ C M C M C M C N C N C M C M C < l C M C < l C C t C M C M C N C M C M

O C P C P c P C D c P < P c P C P C D (P C D c p c p c p c P C P

^ ^ d d d d d d d d d d d d d d d d
m ^ -zz

§ ^ I I I I I I I I I I I I I I I I

1^
c< j CO

^ ' - n O ' — i C M C O - ^ i O C O b - C X ^ c O l O i — t C M C O - ^ i O
— , I >-H •-^ (I—(I I— I

•X- -a * * * * * * * * * * * * * * * *
L< CO
a 3 - Q T } < - s } < - v J < - ^ - ^ - ^ - ^ - ^ - ^ - r } < - ^ - * - ^ T : } < ^ - ^

^ 03 ^ ^ ^ ^ ^ ^ - — ^ ^ - - ^ ^ ^ ^ ^ ^ ^ ^

<1J + + + + + + + + + + + + + + + +
T 3 ^

d
.2? o r r : T ^ r r r : " " : r r : : : : : : : :rrrr:"
2 c p c p c p c D < P C D Q ; i c p c p c p i P ' P C D < P c p < p

^ a d d d d d d d d d d d d d d d d
d ^ .„ .-H .-, .-H .-H .-H .-H .-H .-H ^ ^

C N
<P

d

^ o - - H CM C O lo
" ^ O - — I C M C O ^ l O C O I ^ C X D C ^ , - H , - H > - H T - H r - H , - H

T 3 T 3 X 5 ' T 3 T 3 T 3 ' T 3 ' T 3 ' T 3 ' T 3 T 3 ' T 3 ' T 3 T 3 ' T 3

o •
LH
O

186

A. MIPS Test Algorithms Source Code

+ + + + + + +

T-H CO lO
T—I CO i-H t-H
<-l-l •H-I •-1-1 <-!-(4-1 4-1 4H 4-1

7 3

1
7 3

1
7 3

1
7 3

1
7 3

1
7 3

1
7 3

1
7 3

1

CO lO
I-H CO lO cn I—1 r-H I-H

4-1 4-1 4-1 4-(4-1 4-1
• 1—< • 1—1 • •—1 • 1—1 • >—< 'i—t • f - i • 1—1

7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3

(N- (> - I N - (>-• (>-• <>-

O o O O o O o O

II II II II II II II II o

A A A A A A A A cd

I-H CO lO a 1 CO I-H T-H I-H
<-i-i 4-(4-1 4-1 4-1 4-1
• I—c • •—) • r-l 'i—t • r—< CO

7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 cu

+ + + + + + + +

CM

A
A

7 3
7 3

<
cu
CO
cd
A

O C N
O C M ' ^ C O O O . - H i - H i - H

7 3 7 3 7 3 T 3 7 3 7 3 7 3 7 3

I I I I I I I I

CO

CO 7 3
CO

cd

O CM
O C M ' ^ C D O O . - H ^ i - H

7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3

O. c^ . o . (>-. c^ . c ^ . o . c^ .

II II II II II II II II
A A A A A A A A

O CM ^
O C M ^ C D O O i - H i - H i - H
4-1 4-t 4-1 4-(4-1 4-1 4-1 4-1

7 3 7 3 7 3 7 3 7 3 T 3 7 3 T 3

+
7 3
cd
CO

cu
o

cd pi
CO o

O
7 3
cd pq

CO + J
+ j CO
CO <u
<V CO
^ O

2 ^ - -
4-1 o <u

O 7 3 7 3 ^ ^ ._

— • CO CO

^ S A A
CO I I

<U O +^ -i-^
^ ^ CO CO
+j O 0) cu

7 3 7 3
4-1 r V

p)

P l .^^ _X ^
.2 (X (X 7 3
4 J ^ !-, (_

CJ 4 J
CO

II II I

P l P l ^

- X .2 .2 s
cd 4 J ^ ,
U PH Cd Cd pi

IH o O - |J
| J o o cu

^ C J ^ —I M

cd
o
o

(V

pi

187

A. MIPS Test Algorithms Source Code

A.8 Mandelbrot

vo id mande lb ro t (IMAGE_PROC_FrameBuffer * f b)
{

n t Z r , Z i ;
n t Cr, C i ;

.nt X , y ;
i n t modulous ;
i n t i ;
i n t tempR, t e m p i ;

/ / i t e r a t e over the l i n e s and the p i x e l s on the l i n e s
f o r (y = 0; y < 240; y - ^)
{

f o r (X = 0; X < 320; x ^)
{

/ / scale p i x e l s so they are i n the complex plane
Cr = ((x - X_OFFSET) « FIX_POINT_SCALE) / XJSCALE;
Ci = ((y - Y_OFFSET) « FIX_POINT_SCALE) / Y ^ C A L E ;
/ / i t e r a t e over the z value
Zr = 0;
Z i = 0;
modulous — 0;
f o r (i = 0; (i < MAKJTERATIONS) &fe

(modulous < MOD_THRESHOLD); i+-|-)
{

/ / calc the mod and f o r e a r l y e x i t
modulous = Zr * Z r ;
R_DIV(modulous, FIX_POINT_SCALE) ;
modulous + = Zi + Zi ;
/ / calc the square of Z
tempR = (Zr * Zr) - (Z i * Z i) ;
R_DIV(tempR, FIX_POINT_SCALE) ;
t empi = 2 * Zr * Zi ;
R_DIV(t e m p i , FIX_POINT_SCALE) ;
/ / add C to get new Z value
Zr = tempR + Cr;
Z i = t empi + C i ;

}
/ / calc the modulous of z | (a+ib) | = (a2+b2) 1/2
i = (modulous < MOD_THRESHOLD) ?

OxFFFFFF : (i * 15) ;
fb ->baseAddr [(y * f b - > s t r i d e) + x] = i ;

}
}

188

A. MIPS Test Algorithms Source Code

A.9 Half Brightness

void h a l f B r i g h t n e s s (IMAGE_PROC_FrameBuffer * f b)
{

i n t r , g , b , y , u , v ;
i n t cu rL ine , c u r P i x e l , w i d t h ;
unsigned i n t v a l u e , * l i n e ;

w i d t h = f b - > w i d t h ;
/ / g o th rough the l i n e s i n the p i c t u r e
f o r (c u r L i n e = 0; c u r L i n e < f b - > h e i g h t ; curLine-H-)
{

l i n e — fb—>baseAddr + (c u r L i n e * f b — > s t r i d e) ;
/ / go th rough the p i x e l s on the l i n e
f o r (c u r P i x e l = 0; c u r P i x e l < w i d t h ; c u r P i x e l - H -)
{

/ / unpack the RGB value and convent to YUV
value = l i n e [c u r P i x e l] ;
b = value & OxFF;
g = (va lue » 8) & OxFF;
r = (va lue » 16) & OxFF;
y = ((Y_R_CONST * r) + (Y_G_CONST * g) +

(Y_B_CONST * b)) » 15;
u = (U.CONST * (b - y)) » 15;
V = (V_CONST * (r - y)) » 15;
/ / h a l f the b r i g h t n e s s
y » = 1;
/ / conver t back to RGB, c l i p
r = ((R.CONST * v) »
g = y - (((G_V_CONST

(G_U_CONST
(B_CONST * u) »

to range and repack

b =
r >
r <
g >
g <
b >
b <

value =
value =
value 1 =

255
0

255
0

255
0

r «
g «
b ;

value
value
value
value
value
value

16;
8;

15) + y ;

* v) +
* u))
15) + y ;

255;
0;
255;
0;
255;
0;

» 15) ;

l i n e [c u r P i x e l] = v a l u e ;

189

A. MIPS Test Algorithms Source Code

A. 10 Factorial and Series Sum

s t a t i c vo id f a c t (const CONSOLE_GeneralCmdType *cmd,
vo id *params [])

{

}

i n t c u r V a l ;
i n t f a c t ;

c u r V a l = (i n t) p a r a m s [0] ;
f a c t = (c u r V a l = 0) ? 0 : 1;
/ / calc the f a c t o r i a l i t s e l f
f o r (; c u r V a l > 0; c u r V a l —) f a c t *= c u r V a l ;
/ / p r i n t out the r e s u l t s
p r i n t N u m (f a c t) ;
p u t S t r i n g (" \ n ") ;

s t a t i c vo id seriesSum(const CONSOLE_GeneralCmdType *cmd,
v o i d *params [])

{
i n t c u r V a l ;
i n t sum = 0;

/ / calc the f a c t o r i a l i t s e l f
f o r (c u r V a l = (i n t) p a r a m s [0] ; c u r V a l > 0; c u r V a l —)
{

sum + = c u r V a l ;
}
/ / p r i n t out the r e s u l t s
p r i n t N u m (sum) ;
p u t S t r i n g (" \ n ") ;

A. 11 Copy

s t a t i c vo id copyFunc(const CONSOLE_GeneralCmdType *cmd,
v o i d *params [])

{
unsigned long *s rcAddr ;
unsigned long *des tAddr ;
unsigned long len ;
unsigned long i ;

190

A. MIPS Test Algorithms Source Code

/ * e x t r a c t the data f rom the params a r ray
* and mask the addresses
*/

srcAddr = (uns igned long *) (((uns igned l o n g)
params [0]) & WORD ADDRESSJVlASK);

destAddr = (uns igned long *) (((uns igned l o n g)
params [1]) & WORDADDRESSJVIASK);

len = ((uns igned l ong) params [2]) » 2;
/ / do the memory copy
f o r (i = 0; i < len ; i -H-)

destAddr [i] = srcAddr [i] ;

A.12 Sort

/*
* @(#) BubbleSor t A l g o r i t h m . Java 1.6 95 /01 /31 James Gos l ing
*
* Copyr igh t (c) 1994 Sun Microsys tems , I n c . A l l Righ ts
* Reserved
*
* Permiss ion to use, copy, m o d i f y , and d i s t r i b u t e t h i s
* s o f t w a r e and i t s documenta t ion f o r N0N-(X)1\'1A'IERCIAL
* purposes and w i t h o u t fee is hereby gran ted p rov ided t h a t
* t h i s c o p y r i g h t n o t i c e appears i n a l l c o p i e s . Please r e f e r
* to the f i l e " c o p y r i g h t . h t m l " f o r f u r t h e r i m p o r t a n t
* c o p y r i g h t and l i c e n s i n g i n f o r m a t i o n .
*
* SUN MAKES NO REPRESENTATIONS OR WARRANTIES 7\B0UT THE
* SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
* NOI^INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DM/IAGES
* SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
* DISTRIBUTING THIS SOFFVVARE OR ITS DERIVATIVES.
* /

/**
* A bubble sor t demons t r a t i on a l g o r i t h m
* S o r t A l g o r i t h m . j a v a , Thu Oct 27 10:32:35 1994
*
* © a u t h o r James Gos l ing
* © v e r s i o n 1.6, 31 Jan 1995

191

A. MIPS Test Algorithms Source Code

* M o d i f i e d 23 Jun 1995 by Jason Harrison@cs . ubc. ca:
* A l g o r i t h m completes e a r l y when no i tems have been
* swapped in the l a s t pass.
* M o d i f i e d 9-9-2004 by Thomas Grocu t t
* Minor o p t i m i z a t i o n s and por ted to C
*/

s t a t i c vo id bubbleSor t (unsigned long data [] ,
unsigned long l e n g t h

)

{

*

i n t i ;
i n t j ;
unsigned long dataTemp;
bool complete = f a l s e ;

/ / keep sweep u n t i l reach end or we completed e a r l y
f o r (i = l e n g t h - 1; (i > = 0) && ! comple te ; i —)
{

complete = t r ue ;
dataTemp = data [0] ;
/ / sweep the a r ray swapping out of order pa i r s
f o r (j = 0; j < i ;)
{

/ / should the 2 elements be swapped
i f (dataTemp < = data [j + 1])
{

dataTemp = data [j + 1] ;
}
else
{

data [j] = data [j + 1] ;
da t a [j + 1] = dataTemp;
complete = f a l s e ;

}

* @(#)HeapSor tA lgo r i t hm . j a v a 1.0 95/06/23 Jason H a r r i s o n

*
* Copyr igh t (c) 1995 U n i v e r s i t y of B r i t i s h Columbia
*
* Permiss ion to use, copy, m o d i f y , and d i s t r i b u t e t h i s
* s o f t w a r e and i t s documenta t ion f o r NON-<X)^'IMERCIAL
* purposes and w i t h o u t fee is hereby gran ted p rov ided t h a t

192

A. MIPS Test Algorithms Source Code

* t h i s c o p y r i g h t n o t i c e appears i n a l l cop i e s . Please r e f e r
* to the f i l e " c o p y r i g h t . h t m l " f o r f u r t h e r i m p o r t a n t
* c o p y r i g h t and l i c e n s i n g i n f o r m a t i o n .
*
* UBC A^<ES NO REPRESENTATIONS OR WARRANTIES ABOUT THE
* SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
* AffiRCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
* NO^INFR[NGE]\/IENT. UBC SHALL NOT BE LIABLE FOR ANY DM/IAGES
* SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
*/

/* *
* A heap so r t demons t r a t i on a l g o r i t h m
* S o r t A l g o r i t h m . Java , Thu Oct 27 10:32:35 1994
*
* © a u t h o r Jason Harrison@cs . ubc . ca
* © v e r s i o n 1.0, 23 Jun 1995
*
* M o d i f i e d 9-9-2004 by Thomas Grocu t t
* Minor o p t i m i z a t i o n s and por ted to C
*/

s t a t i c v o i d heapSort (unsigned long data [] ,
unsigned long l e n g t h

)
{

}

unsigned long i ;
unsigned long temp;
unsigned long curElement ;

f o r (i = l e n g t h / 2; i > 0; i —)
{

heapSortDownHeap (d a t a , i , l e n g t h) ;
}

f o r (curElement = l e n g t h - 1; curElement > 0:
curElement —

)

{
temp = data [0] ;
data [0] = da t a [curElement] ;
data [curElement] = temp;
heapSortDownHeap (d a t a , 1 , curElement) ;

}

s t a t i c vo id heapSortDownHeap (unsigned long d a t a [] ,

193

A. MIPS Test Algorithms Source Code

unsigned long k ,
unsigned long curElement

)

{
unsigned long temp;
unsigned long j ;
bool done = f a l s e ;

temp = data [k — 1] ;
w h i l e ((k < = c u r E l e m e n t / 2) ! done)

{
j = k + k ;
i f ((j < curElement) (d a t a [j - l] < d a t a [j]))

{
j + + ;

}
i f (temp > = d a t a [j — 1]) done = t r u e ;
else
{

d a t a [k —1] = d a t a [j — 1] ;
k = j ;

}
}
data [k — 1] = temp;

}

/*
* @ (#) Q S o r t A l g o r i t h m . j a v a 1.6 f 95 /01 /31 James Gos l ing
*
* C o p y r i g h t (c) 1994-1995 Sun Mic rosys tems , I n c . A l l Rights
* Reserved .
*
* Permiss ion to use, copy, m o d i f y , and d i s t r i b u t e t h i s
* s o f t w a r e and i t s documenta t ion f o r NON-COADS'IERCIAL or
* COA'DV'IERCIAL purposes and w i t h o u t fee is hereby g r a n t e d .
* Please r e f e r to the f i l e
* h t t p : / / j a v a . s u n . c o m / c o p y _ t r a d e m a r k s . h t m l f o r f u r t h e r
* i m p o r t a n t c o p y r i g h t and t rademark i n f o r m a t i o n and to
* h t t p : / / j a v a . s u n . c o m / l i c e n s i n g . h t m l f o r f u r t h e r i m p o r t a n t
* l i c e n s i n g i n f o r m a t i o n f o r the Java (tm) Technology.
*
* SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE
* SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
* NON-INFRINGEAiENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES
* SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR

A. MIPS Test Algorithms Source Code

* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
*
* THIS SOFTWARE IS NOT DESIGNED OR INTENDED FOR USE OR
* RESALE AS ON-LINE CONTROL EQUPMENT IN HAZARDOUS
* ENVIRONA/IENTS REQUIRING FAIL-SAFE PERF0RA4ANCE, SUCH AS IN
* THE OPERATION OF NUCLEAR FACILITIES , AIRCRAFT NAVIGATION
* OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, DIRECT
* LIFE SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHIQI THE
* FAILURE OF THE SOFTWARE COULD LEAD DIRECTLY TO DEATH,
* PERSONAL INJURY, OR SEVERE PHYSICAL OR ENVIRON'A'IENrAL
* DAMAGE ("HIGH RISK A C T I V I T I E S ") . SUN SPECIFICALLY
* DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR
* HIGH RISK ACTIVITIES.
*/

/**
* A ciuick so r t demons t r a t i on a l g o r i t h m
* S o r t A l g o r i t h m . j ava , Thu Oct 27 10:32:35 1994
*
* © a u t h o r James Gos l ing
* © v e r s i o n 1.6 f , 31 Jan 1995
*
* 19 Feb 1996: Fixed to avoid i n f i n i t e loop discoved by
* Paul H a e b e r l i . Misbehaviour expressed when
* the p i v o t element was not uniciue.
* —Jason H a r r i s o n
*
* 21 Jun 1996: M o d i f i e d code based on comments f rom Paul
* Haeber l i , and Peter Schweizer
* (P e t e r . S c h w e i z e r @ m n i . f h - g i e s s e n . d e) . Used
* Daeron Meyer ' s (daeron@geom.imm.edu) code
* f o r the new p i v o t i n g code.
* — Jason H a r r i s o n
*
* 09 Jan 1998: Another set of bug f i x e s by Thomas Ever th
* (everth@wave . C O . nz) and John Brzus towsk i
* (jb rzus to@gpu . srv . u a l b e r t a . ca) .
* 9-9-2004 M o d i f i e d by Thomas Grocu t t
* Minor o p t i m i z a t i o n s and por ted to C
*/

s t a t i c v o i d q u i c k S o r t (unsigned long d a t a [] ,
unsigned long loO ,
unsigned long hiO)

{
unsigned long lo ;
unsigned long h i ;
unsigned long temp;
unsigned long p i v o t ;

195

A. MIPS Test Algorithms Source Code

/ / set i n i t i a l values
lo = loO ;
h i = hiO ;

i f (10 > = h i) r e t u r n ;
else i f (lo = h i — 1)
{

/ / so r t a two element l i s t by swapping i f necessary
i f (d a t a [l o] > d a t a [h i])
{

temp = data [lo] ;
data [lo] = data [h i] ;
data [h i] = temp;

}
r e t u r n ;

}

/ / Pick a p i v o t and move i t out of the way
p i v o t = da ta [(l o + h i) / 2] ;
d a t a [(l o + h i) / 2] = data [h i] ;
da t a [h i] = p i v o t ;
w h i l e (lo < h i)
{

/*
* Search f o r w a r d f rom a [l o] u n t i l an element is
* found t h a t is g r ea t e r than the p i v o t or lo > = h i
*/

whi le ((d a t a [lo] < = p i v o t) (l o < h i)) l o + + ;
/*

* Search backward f rom a [h i] u n t i l element is
* found t ha t is less than the p i v o t , or lo > = h i
*/

whi l e ((p i v o t < = data [h i]) && (l o < h i)) h i — ;
/ / Swap elements a [l o] and a [h i
i f (lo < h i)
{

temp = data [lo] ;
d a t a [lo] = da t a [h i] ;
da ta [h i] = temp;

}
}

/ / Put the median i n the " c e n t e r " of the l i s t
d a t a [hiO] = data [h i] ;
da t a [h i] = p i v o t ;

196

A. MIPS Test Algorithms Source Code

/*
* Recursive ca l l s , elements a [l o O] to a [lo—1] are
* less than or eciual to p i v o t , elements a [h i + l
* to a [h i O] are g rea t e r than p i v o t .
*/

q u i c k s o r t (d a t a , loO , lo—1) ;
q u i c k s o r t (d a t a , h i + 1, hiO) ;

197

