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Gethin Lloyd Owens 

Abstract 

In any product design process there is a fundamental endeavour to design reliable 

products. This is to ensure that the product will have the capability to perform as 

designed for a required period of time. However in a world that demands faster and 

greater functionality of products, ensuring long-term reliability is ever becoming an 

increased concern. Advances in technology have provided huge performance bene­

fits, but have also accelerated the onset of reliability problems. Compounding the 

problem is a growing demand for devices applicable to a wide range of operating 

environments such as elevated temperatures. 

Traditionally reliability assurance has relied on failure analysis at the latter stages of 

the product development process. This involves a time consuming and costly cycle 

of re-design and testing that is simply no longer practical for today's time-to-market 

requirements. What is required is a quick and effective way of evaluating product 

reliability at the earliest stages of conceptual design and to allow the designer to 

repeatably examine and improve the product. In this thesis we address this prob­

lem with the design of a new reliability tool. This tool uses a novel methodology 

to integrate for the first time several failure mechanism models, thus providing a 

'method ()f reliability analysis that can be used throughout the design process. 



An Integrated Reliability Methodology (IRM) is presented that encompasses the 

changes that technology growth has brought with it and includes several new de­

vice degradation models. Each model is based on a physics of failure approach and 

includes on the effects of temperature. At all stages the models are verified experi­

mentally on modern deep sulrmicron devices. The research provides the foundations 

of a tool which gives the user the opportunity to make appropriate trade-offs be­

tween performance and reliability, and that can be implemented in the early stages 

of product development. 
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Chapter 1 

Introduction 

T HE DESIGN OF accurate reliability methodologies must be seen as a vital ele­

ment for the future evolution of Complimentary Metal-Oxide Semiconductor 

(CMOS) technologies. The ever continued scaling of CMOS technologies, has made 

it increasingly difficult to ensure device reliability. Added to this the influence of 

an external factor such as temperature, the process of predicting the lifetime of 

a product is made even more complex. Hence, development of a novel reliability 

methodology is needed to encompass external conditions -such as temperature but 

to also prevent device modelling falling behind the fast changes in technology. 

As we enter the age of the nanometer scale, it is essential any reliability or perfor­

mance issues brought about by reduced dimensions are addressed. Deep sub-micron 

dimensions have introduced a set of new reliability challenges which are forcing a 

dramatic change in the approaches used to assure integrated circuit reliability in 

the product design flow. High speed and low power are not the only targets that 

designers have to aim for. The designer has to able to simulate how several factors 

may change the behaviour of known failure mechanisms or even bring aoout the 

introduction of a new failure mechanism. 
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1. Introduction 

Determining the lifetim'e of a particular device is dependent on numerous considera­

tions. Device geometry, architecture, materials, and environmental and operational 

stresses are all factors which play a key role in reliability assessment. The envi­

ronmental stresses include temperature, relative humidity, pressure, static charge, 

and their cycles, gradients, and transients. Accelerating operational stresses include 

voltage and current. While high levels of these stresses will overstress the device to 

catastrophic failure, smaller values of the same stresses may result in a performance 

degradation and not necessarily hard breakdown. Hence device modelling is not 

strictly confined to predicting when a device will fail, but also analysing the effects 

of any performance degradation over time. 

In this thesis we consider how deep sub-micron devices degrade for a varied set of 

operating and environmental conditions and then develop new models to simulate 

such behaviour. Using a physics of failure approach, novel models are designed for 

well known failure mechanisms and also for mechanisms only very recently emerg­

ing. This provides the foundation for the development of a new integrated reliability 

tool. Combining each failure model into a single tool will allow analysis of how any 

technology changes and/or elevated temperatures affect the performance and life­

time of devices. The author believes the provision of this information is vital to 

recognise trends in the failure mode distributions for both present day and future 

technologies. At present we are entering a time when physical limitations may pre­

vent any further scaling. Variations in channel dimensions and oxide thickness to 

take two examples are undoubtedly going to cause variance to the physical operation 

of associated failure mechanisms. Hence, the development of a integrated reliability 

tool would provide invaluable information to how certain failure mechanisms vary 

after such changes. Furthermore, the tool will provide the capability to predict if 

the present rate of scaling can continue. 
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1. Introduction 

1.1 Obj~ctives and Focus of the Research 

The aim of the research is to address the actual impact of temperature and device 

technology on the failure mechanisms utilising a physics of failure approach. This is 

to be achieved through the development of an integrated reliability tool and failure 

models. To accomplish this goal, the following tasks were set. 

• To understand how temperature affects the operation of a CMOS device and 

the development of a new temperature dependent MOSFET model. This will 

provide current-voltage characteristics and individual parameter data. 

• Determine the prominent failure mechanisms that occur in deep sub-micron 

devices. In particular knowledge about each physical mechanism and its tem­

perature dependence. 

• Concentrated research on gate oxide failure mechanisms: how has the reduc­

tion in gate oxide thickness affected device performance and reliability. 

• Identify any new failure mechanisms such as Negative Bias Temperature In­

stability (NBTI): Investigate the physical mechanism behind this new failure 

and develop novel models. 

• Studies into how leakage degradation such as Gate Induced Leakage Currents 

(GIDL) are effected by temperature in modern devices. 

• Hot-Carrier Stress: In particular investigate the temperature dependence of 

hot-carrier damage in deep sub-micron devices. 

• Development and design offailure/degradation models using a Physics of Fail­

ure (PoF) approach. 

• Integrated Reliability Methodology (IRM): how best to rntegrate the PoF mod­

els in a novel way to provide accurate and efficient device analysis. 
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1. Introduction 

1.2 Organisation of Thesis 

A critical review of reliability in CMOS technology given in chapter 2. This cov­

ers the relevant background to the subject from reliability fundamentals such as 

the bathtub curve through to a review of alternative technologies. In addition the 

prominent failure mechanisms and the main effects of temperature are discussed in 

this chapter. Following this, chapter 3 describes the development of a new temper­

ature dependent MOSFET model. The mathematical foundation behind the model 

is presented along with a set of benchmark simulation and experimental test results. 

This chapter serves to update present MOSFET current-voltage modelling but also 

as a foundation for later chapters. 

Chapters 4-6 describe the research into the three failure mechanisms covered in this 

thesis. Chapter 4 investigates a recent degradation phenomenon, Negative Bias 

Temperature Instability. In chapter 5 a new Gate Induced Drain Leakage model is 

presented. Finally chapter 6 covers the present understanding of hot-carrier effects 

including some new results on its temperature dependence. In each of these chapters 

a new failure model is developed based on experimental data. 

Chapter 7 combines the research and model developments in the previous chapters. 

The current-voltage model and each failure model are integrated into a novel relia­

bility tool and simulation findings presented. 

Future work and possible tool developments such as layout diagnostics are included 

in chapter 8 along with conclusions of what has been accomplished. The appendices 

include further details of the experimental setup in Appendix A, and an example of 

parameter optimisation in Appendix B. 
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Chapter 2 

Reliability in CMOS Technology : 

A Review 

2.1 Introduction 

A CRITICAL REVIEW of reliability in CMOS technology and the impact of higher 

temperatures on devices is given in this chapter. The reliability of a product 

is defined as its ability to fulfill its intended function, under stated conditions for 

a stated period of time. Reliability associated failures in this case are caused by a 

failure mechanism, that is induced generally by internal and external stresses. How 

these mechanisms are monitored, understood and modeled has seen considerable 

research in the past. The following provides a review of this work looking at different 

reliability techniques that have previously aimed to predict device lifetimes. A 

critical review of past and present failure mechanisms is presented. Furthermore the 

influence of temperature and the growing demand for devices applicable for higher 

temperatures is reviewed. 

7 



2. Reliability in CMOS Technology : A Review 

2.2 CMOS Reliability Review 

As early as the 1940s product and system reliability was identified as a major engi­

neering discipline. However engineers have always worked towards reliable design. 

For example, in 1860, A. Wohler [1] presented some of the earliest fatigue failure 

information, which occurred on stagecoach and railroad axles. The applied load 

versus cycles to failure diagrams, which resulted from Wohler's work, were used to 

identify the load condition (called a fatigue limit) below which 'no failures' should 

be expected. 

Although both technology and reliability have moved on significantly, the funda­

mental endeavour to design products to not fail still remains. The establishment of 

the Ad Hoc group on Reliability of Electronic Equipment in 1950 and subsequent 

Advisory Group on the Reliability of Electronic Equipment (AGREE) began relia­

bility engineering in the electronics field. It was not until1956 though that the first 

reliability methodology was conceived with the publication of the RCA release TR-

1100, titled "Reliability Stress Analysis for Electronic Equipment," which presented 

models for computing rates of component failures [2]. It was this document that first 

applied the term reliability to integrated circuit manufacturing. It defined reliability 

as the lifetime during which a component is expected to perform its desired function. 

This definition can be represented graphically with the now well known mortality 

(bathtub) curve shown on the next page in figure 2.1. The first stage shows a high 

failure rate. This period is called the "early period," "burn-in period," "break-in pe­

riod," or "infant mortality period." During this period, failures occur which are due 

to design or manufacturing weaknesses [3]. In other words, failure is due to weak or 

substandard components in which the probability of failure depends on how long the 

component has been operating. The next region is known as its useful life since the 

components can be used to the greatest advantage. Failures in this stage are mainly 
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2. Reliability in CMOS Technology: A Review 

Infant 
mortality Useful life 

Operating life 

Figure 2.1: Bathtub curve 

Wear-out 

due to a low level of residual defects or electrical overstress/electrostatic discharge 

events. The failures are known as "chance," "random", "catastrophic failures" 

since they occur randomly and unpredictably. Failures are inevitably going to rise 

though as time goes on and this is what we see from figure 2.1. The final stage is 

the wear-out period where degradation failures begin to appear as a consequence 

of ageing or wear when the components are nearing their "rated life." In general, 

reliability is concerned with all three periods. In a lot of cases though, early life 

can be made as short as desired (even eliminated) by proper design, fabrication, 

and assembly, or by deliberate burn-in periods. Also if design and application are 

correct, the wear-out period should never be reached within operating life. This 

is because components are replaced as they fail during useful life, and each com-

ponent is replaced (even if it has not failed) no later than at the end of its useful life. 

The bathtub curve is ideal in illustrating reliability over the operating lifetime of 

a component. It is important also to consider how reliability changes throughout 

the whole product development cycle. Figure 2.2 ilhistrates this process ffoniinitial 

concept to production. Low reliability of the initial prototype could be a flaw in de-
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sign, an unknown manufacturing process problem, or the cumulative effect of several 

environmental stresses. As these factors are determined and overcome throughout 

the development process, the reliability starts to improve. With the transition to the 

manufacturing production line though there is usually a fall in reliability. In many 

cases this is because the manufacturing production line environment can be very 

different from the environments of the research and development line. Additionally, 

at this point in the product life cycle the human involvement factor is usually at its 

most drastic transition, causing variances in the fabrication process. 

Potential 
reliability 

Initial 
prototype 

Reliability 
growth during 
development 

Reliability 
growth during 

production 

Initial 
production 

Time (t) 

Figure 2.2: Product development cycle 

From the manufacturing perspective it is very important to shorten this develop-

ment time as much as possible. Traditionally, reliability assurance has relied mainly 

on failure detection at the end of the product development process. Due to the reli­

ability analysis taking place towards the end of the development cycle any re-design 

work adds significantly to design time and cost. Ideally a manufacturer can use 

methods to allow reliability growth to occur in conjunction with product develop­

ment. This would allow the manufacturer to gain a quicker tim:e-t6-lliarket time of 

a reliable product that will not require costly warranty repair or replacement. 
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To quantify reliability tve must take the concept of reliability as a probability dis-

tribution. One of the most common and simplest ways is to use the cumulative 

failure function F(t). It is defined as the cumulative probability that a component 

fails at time t, or a fraction of the total number of components that have failed. It 

originates from the probability density function f(t). This is a plot of the frequency 

at which components fail as a function of time divided by the whole population. 

f(t) 

Probability 
of failure 

: Time (t) 

' a 

Probability 
of success 

Figure 2.3: Reliability distribution 

The probability density function can take many forms but one of the most common 

and simplest is the normal (Gaussian) curve. Figure 2.3 shows the normal distri­

bution probability density function f(t). This describes the probability of a failure 

occurring between two different points in time. However, in terms of quantifying 

component reliability, determining the probability of failure occurring before or after 

a certain time would be of greater use. This is where the cumulative failure function 

COil1eS in. It measures the area under the failure probability curve; up to a given 

time, in this case, point a. This returns the probability of a failure occurring before 
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point a. Given .that thE! area under the probability density function is always equal 

to 1, subtracting the cumulative density function from 1 would result in the prob­

ability of a failure occurring after a given time. This is the widely used reliability 

function R(t) and is defined as the fraction of the surviving good parts at any time. 

R(t) = 1 - F(t) (2.1) 

The cumulative failure function F(t) is then found by taking the integral of the 

probability density function f(t) between zero and time a. 

F(t) = 1a j(t)dt (2.2) 

Therefore the reliability function R(t) can be expressed as: 

R(t) = 1 -1a j(t)dt (2.3) 

R(t) = 1oo j(t)dt (2.4) 

From this follows the failure rate which is also known as the hazard rate function. 

The failure rate is the rate of change of the cumulative failure probability divided 

by the probability that the unit will not already be failed at time t. Thus it gives 

us the instantaneous failure frequency based on accumulated age and is defined as: 

.X(t) = f(t) 
R(t) 

(2.5) 

It is simply the probability density failure function divided by the reliability function, 

and has the units of failure per unit time among surviving parts, e.g. two failures 

per month. There is a clear and important distinction though to be made between 

this and-the probability failure function. The probability failure function f(t)1s the 

unconditional probability that the component will fail between to time a and time b. 
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The instantaneous failute rate :>...(t) is the conditional probability that the component 

will fail in the same time interval, given it has reached age T without failure. By 

analogy, the probability that a brand new component will fail in its fifteenth and 

sixteenth year of use is very small. However the probability of the same component 

failing in that same period, provided the component has lasted fifteen years is much 

greater. Another function that is very useful when trying to quantify component 

reliability is the the Mean Time To Failure (MTTF). This can again be derived from 

the probability density function f(t) and is the weighted average of all time values 

from zero to infinity, weighted according to the density. Hence the mean time to 

first failure J-t is expressed as: 

MTT F = = fooo t f(t)dt 
/-l f0

00 f ( t )dt 
(2.6) 

Given that the denominator will normally be 1, because the component has a cu­

mulative probability of 1 of failing some time from zero to infinity, the mean time 

to fail is usually be expressed as 

MTTF = J-t = 1oo t f(t)dt (2.7) 

For simplicity up to now I have only dealt with the normal probability distribution. 

The probability distribution curve can take many forms though that can resolve the 

above functions such as the MTTF. The common distributions including the nor­

mal distribution are the lognormal distribution, the Weibull distribution, and the 

exponential distribution. From figure 2.3 we can see how the normal distributions 

are appropriate when there is a strong tendency for the variable to take a central 

value, and positive or negative deviations from this central value are equally likely. 

Alternatively where components have a constant failure rate, it has been very com­

mon to use the exponential distribution. 

13 
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The exponential distrib'ution is described mathematically as: 

f(t) =A e-At (2.8) 

where A is the failure rate. The mean time to failure J-L, and the reliability R(t) of 

this distribution is expressed as: 

1 
MTTF = J-L=­

A 

R(t) =e-At 

(2.9) 

(2.10) 

As an example consider a batch of 1000 devices, with each functioning device having 

a probability of 0.1 of failing on any given day, regardless of how many days it has 

already been functioning (constant failure rate). We would expect 100 devices to fail 

on the first day leaving 900 functioning devices. On the second day we would expect 

to lose 0.1 of our remaining devices, thus leaving us with 810 functioning devices. 

Given a constant failure rate the decrease in functioning components with respect to 

time is exponential. It is however important to evaluate whether the devices really 

do have a constant failure rate. This is because this form of distribution assumes 

the probability of failure for a functioning device at any given time is independent 

of how long it has already been functioning. Therefore it does not consider the 

'wear-out' stage. However in general, components are replaced as they fail during 

useful life, and each component is replaced no later than at the end of its useful life. 

In this section I have only briefly covered what I feel are two of the most frequently 

used distributions in reliability engineering. There is scope for much more detailed 

analysis and comparisons. Kapur and Lamberson [4] have written a book titled 

"Reliability in Engineering Design" which has an excellent review and detailed com­

parisons of all the distributions. 
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A vital and common el~ment to all failure distributions and failure analysis is the 

collation of reliability data from real-life measurements. The most direct way to 

obtain the data would involve testing a large number of samples in normal use con­

ditions and monitor their performance against the failure criteria over time. Given 

that most applications have lifetimes of several years this approach is clearly not 

practical. One method which has been widely used in the electronic industry has 

been accelerated life testing. This employs a variety of high stress test methods that 

shorten the life of a product or accelerate the degradation of the products perfor­

mance. Thereafter the accelerated lifetime values for different stress levels can be 

used to extrapolate the lifetime to normal operating conditions. Using this method 

efficiently obtains performance data that yields reasonable estimates of the life of a 

product or performance under normal conditions. Common stresses used to accel­

erate the failure include temperature, voltage, humidity and vibration. 

For a long time, mathematically determining how different stresses affect the lifetime 

has been fulfilled by the use of the Arrhenius equation. This relates how increased 

temperature accelerates the age of a product as compared to its normal operating 

temperature and is given by: 

(2.11) 

where Af is the acceleration factor, A a proportional multiplier, Ea is the activation 

energy of the chemical reaction or physical process ( e V), kb is Boltzmann's constant 1 , 

Tu is the steady state use temperature (Kelvin) and T8 is the stress temperature. The 

activation energy is derived from empirical data gathered during accelerated test­

ing and it represents the effect that the applied stress has on the product under test. 

1Boltzmann's constant= 8.617 X w-5 eV/K 
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The concept of using the century old Arrhenius relationship to model electronic 

component failure rates was first formally introduced in the RADC 2 release TR-

1100, titled "Reliability Stress Analysis for Electronic Equipment," [2]. From this 

the first reliability prediction handbook for electronics, MIL-HDBK-217 A presented 

data to confirm that the Arrhenius relationship can be applied to the thermal ageing 

processes of semiconductor components. An important point to highlight is that the 

use of Arrhenius is only valid under the assumption that the dominant component 

failure mechanisms depend on steady state temperature. This assumption eliminates 

any failure mechanism that may have a temperature threshold below which the 

mechanism is not active, plus those which have a negative temperature dependence. 

Despite this, reliability requirements based on constant failure rates lead developers 

to continue to use this approach as a basis. It is the authors belief that reliability 

could be quantified much more accurately with not only the use of mathematical 

approaches such as Arrhenius, but also with a realisation of the physical cause of a 

failure. This is why this work follows an approach to fundamentally understand the 

physical mechanism behind the failure before any models and predictions are made. 

2.3 Physics of Failure 

Even with the MIL standard being updated by a number of companies and Uni­

versities such as Boeing and the Computer Aided Life Cycle Engineering Centre 

(CALCE) at the University of Maryland, rapid improvements and increased com­

plexity of microelectronic devices pushed the application of MIL-HDBK-217B be­

yond reason. The last version of the document was published in 1991. At this time 

many companies had discarded traditional methods of reliability prediction that 

were included in this publication. In its place, they started to use a new reliability 

assessment technique, b'ased on the root cause of a failure, called physic~ of f~ilure. 
2Rome Air Development Centre 
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Figure 2.4: Physics of failure process 

The underlying process behind the physics of failure approach is shown in figure 

2.4. Physics of failure provides a method to understand the interaction, or physics, 

between a product's materials within specific use environments by identifying the 

underlying physical causes. This allows predictions to be made on how the failure 

mode will be affected by specific change to a device or technology. It is based on 

the fact that failure mechanisms are governed by fundamental mechanical, electrical, 

thermal, and chemical processes. Hence to exploit its potential, a firm understanding 

of the physical failure mechanisms present in the device is necessary. 
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The process begins with the preliminary design, looking at the device geometry, 

architecture and materials. Failure mainly results from the application of an over­

stress, or by a lower stress level over a period of time. The next step is to define 

the applied life-cycle loads. Once the inputs have been established the process then 

moves to the main element of the physics of failure process: to determine the sources 

of reliability risks under life-cycle loads by identifying the potential weak-links and 

dominant failure mechanisms. This step is best described in two stages. 

• Stress Analysis - to decide how the stress factors affect the device. This is to 

identify which failures may occur, where they occur, their cause (failure mode) 

and the consequences of such a failure. 

• Lifetime Prediction - after identifying the likely failure mechanisms, the analy­

sis involves the reliability prediction. Implementation of device models allows 

device degradation and lifetimes to be predicted. This allows not only the 

most dominant failure mechanism to be identified, but also to plot trends of 

the less likely failures. This will allow prediction of changes in failure distribu­

tions that would not be noticed in an approach that only identifies the most 

dominant failure mechanism. 

In addition to establishing the failure modes of a device and the dominant mecha­

nisms, a physics of failure approach can be used to ensure the device has adequate 

stress margins and that it meets the reliability targets. By understanding the root 

causes of the failure it also allows potential problems in technology changes, i.e. 

technology change to be identified and solved before they occur. However, the use 

of physics of failure is only one part of the complete process for predicting reliability. 

For complete reliability analysis the physics of failure or any other approach must 

. fit into a reliability methodology or simulation tool. 
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2.4 Failure Methodologies 

The traditional reliability prediction methods such as the MIL standards were based 

on analysis almost at the end of the design process. This meant that at this point in 

the product development cycle only minor design changes could be made. Also the 

tests often did not address the actual failure mechanisms occurring in the applica­

tion environment. The stuck at fault test is one such example. Classically designers 

assumed they could model a circuit dependent on each node being stuck at one or 

zero. Banerjee et al [5] proposed that in a real life environment an MOS circuit can 

produce logic levels that cannot be classified as either a zero or one. Today this 

hypothesis has clearly been proven with the emergence of soft failures such as stress 

induced leakage currents that in some cases lead to a degradation but not necessarily 

complete circuit failure. Furthermore, some manufactures have previously used the 

same models for both temperature and voltage acceleration. It is unlikely that we 

can accept that in case of failure one activation energy can be used for all failures in 

acceleration factor calculations, knowing that different failure modes have different 

dependencies on temperature and voltage. 

Shoucair [6] previously called for the development of new CAD tools to include a 

number offeatures that would be desirable for purposes ofrendering high-temperature 

IC design more accurate, flexible, and realistic. It is the authors belief that the same 

call is now needed to advance the understanding again and provide a novel tool to 

include the most recently discovered failure mechanisms. This is something Ferg­

erson and Shen [7] highlighted in their analysis of reliability methodologies during 

the last decade. Some good developments have been made, such as that of Li et 

al [8]. Li and his co-workers proposed the Failure Rate-Based SPICE (FaRBS) re­

liability simulation methodology. It combined modules of~SPICE simulation with 

wear-out models and acceleration factor models to identify critical or failure prone 
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circuit block in. a systetn. Both McClusky et al [9] in the form of Computer Aided 

Design of Microelectronic Packages II (CADMP-II) and Charpenal et al [10] in the 

form of FIDES developed similar tools. FIDES arose from a consortium of industry 

groups and was particularly interesting from the aspect it was designed to incorpo­

rate Commercial Off The Shelf (COTS) components into the reliability assessment. 

A number of simulation tools have been developed that concentrate on hot-carrier 

effects. Texas instruments developed HOTRON [11] as a proprietary simulator of 

hot-electron effects. The University of Southern California developed RELY [12] to 

simulate hot-electron effects and electromigration. Also hot-carrier simulation tools 

BERT3 [13] and CAS4 [14] were developed by the University of California, Berkeley. 

Many of these tools have been developed for relatively large devices in comparison 

to today's technologies. Additionally at present there is not an accurate simulation 

tool that can take into account a range of temperatures and includes the most re-

cently discovered failures mechanisms for deep sub-micron devices. In 2006 Li et 

al [15] stated that the advancement of device failure modelling had fallen behind 

the development of CMOS technology which has raised many new issues related 

to both circuit performance and reliability. Success in today' s globally competi­

tive environment requires the ability to repeatably examine and constantly improve 

manufacturing processing. Thus a time, and hence cost effective reliability test tool 

is required. For the future generation of devices, it is no longer practical to design 

the product and then measure and improve the reliability at the latter stages of 

development. A physical understanding of the failures to allow identification and 

prioritisation in the early stages of development is the key. The development of this 

idea continues in chapter 7, but it is clear to see that something new is needed to 

cope with the combination of elevated temperatures and any new failure mechanisms 

the dramatic changes in technology growth~may have brought with it. 

3 Berkeley Reliability Tool 
4Circuit Ageing Simulator 
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2.5 Failure Mechanisms 

As well as providing the methodology for predicting reliability, if a physics of failure 

approach is to be harnessed it is critical that there is a fundamental understanding 

of the failure mechanisms themselves. The history of CMOS development has been 

dogged by three major causes of IC failures. These have been electromigration, gate 

oxide wear-out and hot-carrier effects. 

2.5.1 Electromigration 

Electromigration is the dominant mechanism in terms of interconnect failure and 

has been a major failure mechanism in discrete solid state devices since 1970. The 

first ICs were constructed with pure aluminium (AI) metal lines that were 10JLm in 

width or more. At the same time they were very thin, in the order of 3000A. This 

meant a high current density was being passed along a material with a low melting 

temperature, which implies fast diffusion at low temperature. This combination 

was a recipe for disaster and failed parts were soon returned from the field. Under 

inspection many failures were caused by very fine cracks ·in the metal resulting in 

open circuits. This structural damage was due to ion transport in metal lines. If 

the current density is high enough, the momentum exchange between conducting 

electrons and diffusing metal atoms can be significant, resulting in noticeable mass 

transport generating electromigration damage. The damage manifests itself in the 

movement of vacancies and interstitials. The vacancies coalesce into voids and in­

terstitial become hillocks. The voids in turn, decrease the cross sectional area of the 

circuit metallisation and increase local resistance and current density at that point 

in the track. Conversely, hillocks can cause a short to the adjacent or overhead 

metallisation. 
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Modeling of el~ctromigration was first significantly contributed to by a landmark 

paper by Black [16]. He proposed an empirical model for prediction of electromigra-

tion lifetime as a function of current density J, and metal line temperature in the 

following form: 
A E 

t5o =- e~ Jn 
(2.12) 

Where t50 is the median time to failure, A is a material and process dependent con­

stant, kb Boltzmann's constant, T the absolute temperature, and Ea is the activation 

energy for failure. Traditionally, according to Blacks original work it was observed 

that electromigration failure followed a 1/ J2 inverse square law. After 1967 most 

subsequent experiments indicated a current exponent ranging from 2 to 3, usually 

2 and although the mechanism was not clear, most experiments were consistent 

with Black's relationship [17]. There is an assumption though in Black's model, 

that the mechanism leading to electromigration induced failures under the acceler­

ated lifetime test conditions are the same as those under device operating conditions. 

At the time that Black developed his model, the physical solution to the electro-

migration problem was simple: make the tracks thicker. However as device minia­

turisation demanded smaller and smaller interconnects, this became no longer a 

solution. Today tracks are often in the order of 0.5J.Lm thick, carrying a current of 

1mA which can result in a current density of 106A/cm2 . The continued increase 

in current density over the past 40 years has meant new methods to counter the 

electromigration problems have needed to be devised. The first idea to make the 

metallisation more resistant to electro migration was to add a small amount (up to 

4%) of copper to the aluminium. This solution bought some time but in the past five 

years there has again been the need to develop a better interconnect for two main 

re!l$ons. Firstly, there is a resistance-capacitance delay in fine tracks. The use of 

narrower lines, not only increases the resistance, increasing the likelihood of electro-
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migration but also the capacitance between the lines increases, bringing down signal 

propagation. The second problem is the high cost of building a multilayer intercon­

nect structure. The solution adopted by industry has been to turn to pure copper 

as the on-chip conductor material. Since copper has a much higher melting point 

(1083°C) than aluminium (660°C), diffusion should be much lower in copper than 

aluminium at the same device operation temperature [18]. Experiments by Tu [18], 

Lloyd [19], and Tao et al [20] on copper tracks found the electromigration lifetime 

increased. Tao et al [20] found that in both DC and pulsed-DC tests, the lifetimes 

of the pure copper interconnects were about one and two orders of magnitude longer 

than those of aluminium alloyed with copper. His work was also interesting in that 

it aimed to make the interlayer as thin as possible. Because there had been issues 

with adhesion of copper to the Si02 dielectric layer [18], previous test structures 

had employed a interlayer metal with significant thickness (compared to the co:rr 

per thickness) to improve adhesion. Tao's and his colleagues work cleverly used a 

seeding layer of 15nm Cobalt. Firstly, this solved the adhesion problem as cobalt 

adheres well to Si02 . Secondly with a reduction in interlayer thickness, its effect on 

the electromigration properties of copper interconnects was kept to a minimum. 

Developments in the use of copper has helped to make its introduction easier. Some 

authors [19, 21] still see the processing problems of using copper to be an issue. 

Further downscaling and also technological advancements continue to require more 

reliable interconnects under conditions where metallisation is inherently less reliable. 

One example is the introduction of flip chip solder joints, which tend to become weak 

links in the system. Due to the unique geometry of the joints, current crowding at 

the contact interface causes increased current density and electromigration damage. 

This and a number of other reasons documented by Tu [18] mean electromigration 

in flip chip solder joints is now competing ·with on-chip metallisation as the major 

electromigration reliability problem in microelectronic devices. 
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Although this is a very brief history of its origins, problems and solutions, it is 

clear electromigration is always going to be an important reliability issue. The 

promise of developing future metallisation schemes that will eliminate the problem 

has so far not been solved [21]. Recent advances have shown that with careful 

design electromigration can at least be controlled such that advanced microcircuits 

can be designed with the required reliability. As a result it was felt it would be 

more beneficial for the time spent on this project to be aimed towards other more 

prominent failure mechanisms. Although electromigration for a long time has been 

seen as the major failure mechanism is CMOS devices, continued device scaling 

has brought about more pressing issues needing study including gate oxide failures 

and hot-carrier effects. This can also be seen as a reflection of the amount of 

current research and publications work in this area. The following section goes on 

to highlight such failures and why it is the authors belief they pose the greatest 

reliability problems for future technologies. 

2.5.2 Gate Oxide Failures 

-
In today's technology, transistor dimensions have been scaled dramatically and one 

of the most critical issues of this scaling has been the reduction of the gate ox­

ide thickness [22]. Table 2.1 on the following page shows the road map of MOS­

FET minimum feature size as predicted by the semiconductor industry, showing the 

prospect of less than 2nm dielectrics by the year 2014 for standard CMOS fabri-

cation. As a result of the reduction in oxide thickness, oxide related failures have 

increased and many see these to be the limiting failure modes for future technologies 

[22, 23, 24, 25, 26]. With oxide thickness now being measured in atomic units, there 

is cause to be concerned and subsequently a major element of this research aims to 

investigate the failure modes that are currently a problem and which pose a limiting 

factor for further scaling. 
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Parameters 1991 1994 1997 2001 2005 2007 2009 

Channel length (J.tm) 0.5 0.35 0.25 0.18 0.13 0.09 0.065 
tox (nm) 13.5 9.0 8.0 7.0 4.5 3.5 2.7 

Table 2.1: MOSFET road map 

For many years gate-oxide was more of a production problem than an intrinsic relia-

bility problem. Most of the research conducted was concerned with extrinsic failures 

as the intrinsic quality of the oxide never posed a serious reliability threat under 

typical operating conditions [22]. However, over the past ten years as oxide thick­

ness (tox) has decreased, the intrinsic reliability limits have been approached and the 

study of gate-oxide breakdown has become no longer limited by extrinsic failures. 

The dominating factor to account for this was the change in feature size without 

proportional scaling of the power supply voltage. This resulted in a significant in­

crease of the horizontal and vertical electrical fields in the channel of the device [27]. 

As a result new problems that posed an additional constraint on the acceptable 

supply voltage and or oxide thickness became evident for deep sub-micron devices 

[28, 29, 30]. 

2.5.2.1 Gate Induced Drain Leakage 

Gate-induced leakage current is the name given to a tunnelling effect that occurs 

in the gate-to-drain overlap region of MOS devices in the OFF -state. It is caused 

by high transverse and lateral electric fields close to the drain region, generated by 

gate-source (Vas) and drain-source (VDs) voltages [31]. Huang et al [32] presented 

a paper in 1998 that recognised GIDL current as the major drain leakage current 

phenomenon in OFF-state MOSFET's. Before this Chan et al [28] reported GIDL 

as a new mechanism in 1987, showing the presence of leakage in the sub-half mi­

cron regime. A significant drain leakage was detected in thin gate ox!qe {1p,5nm) 
. - . - ' - -· .. . . . -

MOSFET's at drain voltages much lower than the junction breakdown voltage. 
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Chan et al discussed device design considerations for minimising the GIDL current. 

In order to limit the leakage current to 0.1pA/ p,m of the channel width, it was 

proposed that the oxide field in the gate-to-drain overlap region should be limited 

to 1.9MV /em. An important proposal by Chan et al was also to attribute the 

gate-induced leakage to the band-to-band tunnelling process. The belief that band­

to-band tunnelling is the root cause of GIDL has continued to the present time. 

Endoh et al in 1990 [33], Guo et al in 1998 [34], Chen et al in 2001[35], Touhami 

et al in 2002 [31], and Lopez et al in 2004 [36], all published notable papers stating 

that they saw band-to-band tunnelling as the major leakage mechanism responsible 

for GIDL. Endoh et al [33] was one of the first to propose a model to describe the 

band-to-band tunnelling effect and the leakage current assessment. It built upon 

Chan's et al [28] model that neglected the dependence of the transverse electric 

field on the drain doping profile and used .a fixed value of band bending. Both 

Chen et al [35] and Touhami et al [31] developed models that considered doping 

concentration, vertical field, and lateral field with results showing good agreement 

with measurement data over a range of gate and drain biases. None of the above 

authors mentioned above have considered the influence of temperature on GIDL. It 

has not been until very recently that researchers have started to investigate this [37]. 

Limited data is available on how temperature affects GIDL current. It was proposed 

in a report by Slisher et al [38] that GIDL is independent of temperature whereas 

both Lopez et al [36] and Bouhdada et al [39] presented results showing an increase 

in GIDL at elevated temperatures. Lopez et al [36] hypothesised that the variation 

in leakage was due to the variation of the energy band gap of silicon with temper­

ature. Bouhdada et al [39] had an alternative outlook. Again, results showed an 

increase in GIDL current with temperature but it was believed to be due to increased 

carrier generation. Several authors have studied how changes in device dimensions 

and process parameters have effected GIDL. Chung et al [40] found that GIDL is 
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enhanced by either dec~asing oxide thickness, or by increasing drain voltage. In the 

same study GIDL was seen to be virtually independent of channel length because 

the tunnelling depends only on conditions in the immediate gate-to-drain overlap 

region. Bouhdada et al [41] found that at higher doping densities, the electric field 

increases in the overlap region, encouraging carrier generation, and hence causing 

an increase in GIDL current. 

The review of published data has provided a valuable background to GIDL. I be­

lieve there is still a requirement for the development of a computationally efficient 

expression for GIDL ideal for use within a complete reliability tool. Currently there 

is only one GIDL model for use in a SPICE like simulator, which is a complicated 

expression in the BSIM4 model [42]. Our aim is to develop a simple, easy to use 

model, that would ideally have the capability to predict the effect of high temper­

atures on deep sub-micron devices. Chapter 5 details the development of one such 

model along with further detailed analysis of the physical mechanism behind GIDL. 

2.5.2.2 Negative Bias Temperature Instability 

The degradation phenomenon of Negative Bias Temperature Instability (NBTI) is 

characterised by an increase of threshold voltage and decrease of drive current, as a 

result of elevated temperatures and a high negative gate bias stress. Typical stress 

temperatures lie in the 100-250°C range with oxide electric fields typically below 

6 MV /em i.e fields below those that lead to hot-carrier degredation. Potentially 

parameter variations caused by NBTI can lead to transistor mismatch, timing issues 

and reduced switching speed. Given that the number of digital transistors approach 

millions of devices in modern products, such NBTI degradation characteristics have 

today become a_critical issue for circuit designers, 
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NBTI has been known since the very early days of MOS device development, hav­

ing been observed as early as 1967 [43]. Deal [44] named it Instability Number VI. 

Goetzberger [45] and his co-workers at Bell laboratories were one of the first groups 

to investigate NBTI degradation. They stressed 100 nm oxides at 300°0 and found 

an increased interface trap creation for negative gate voltage stress compared to 

positive stress. The generation of interface traps under negative gate voltage stress 

was discovered to have a time dependence of t 0·25 . Their investigations also found 

a higher trap density for p-channel devices compared to n-channel devices. Never­

theless, NBTI effects remained marginal for many years, especially when compared 

to mechanisms like hot-carrier effects [ 46]. 

NBTI effects have become a critical reliability issue for modern deep sub-micron 

devices in recent times for three main reasons. Firstly slower scaling of operat­

ing voltages for both digital and analog circuits compared to more aggressive oxide 

thickness scaling has gradually increased the effective field across the oxide. Sec­

ondly thinner oxides have brought the poly-silicon gate closer to the Si/Si02 interface 

increasing the chances of hydrogen diffusion, trap creation and NBTI susceptibil­

ity. Thirdly the introduction of nitrogen atoms into the oxide has enhanced NBTI 

degradation. To increase the dielectric constant nitrogen was added, intended to 

improve hot-carrier resistance and gate current leakage. However, nitrogen tends to 

increased NBTI problems. Tan et al [47] presented some excellent results showing 

the enhancement of NBTI with incorporation of nitrogen into the oxide. Compar­

isons between pure Si02 and various interfacial nitrogen concentrations showed an 

increase in NBTI degradation, sometimes by a factor of 10 as in the case when com­

paring pure Si02 to 15.5% nitrogen concentrate. These results were complimented 

by Huard and his co-workers [46] who further investigated the effect of nitrogen, 

showing an accelerated NBTI degradation for increased nitrogen concentrations. 
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As well as highlighting the influence of nitrogen on NBTI, Huard et al [46] also pre­

sented some results on oxide field and temperature dependence of NBTI. A range of 

gate oxide thickness (1.6 to 6.5nm), were stressed for ten thousand seconds at vary­

ing gate voltages and temperatures. The investigation found that both trap creation 

and charge trapping were increased for higher gate voltage stress levels. Results also 

showed an increase in threshold voltage shift at higher temperatures, which was pro­

posed to be due to increased interface trap creation. Similar characteristics were 

observed by Aono et al [48] and Mahapatra et al [49] who pointed out that ~ vth has 

a tendency to saturate with increasing stress time. This is a characteristic noted by 

Goetzberger et al [45] over thirty years ago. Since then many groups have reported 

the time-dependent shift to follow a power law dependence with an exponent around 

0.25. This value was what early studies by Jeppson and Svensson [50] proposed but 

there after the value has been widely debated. As Ershov et al [51] stated, one of 

the reasons for this debate is that the exponent is not a universal parameter, and 

may depend on stress and measurement conditions. This was proven by Aono et al 

[48] who showed that the coefficient decreases with increasing stress time and can 

vary from 0.3 down to 0.16. Further deviations from the single exponent power law 

were presented by Alam et al [52]. 

A key characteristic of NBTI first noted by Schli.inder et al [53] in 1999 was a 

recovery effect. He noticed that the combination of high temperature and high pos­

itive gate voltage resulted in strong relaxation of the NBTI effects. Ershov et al 

[51] performed experiments with measurements taken during and after sequences of 

stresses revealing the the recovery contains a fast initial transient followed by a very 

slow non-exponential transient, which appears to saturate with time. This would 

suggest that NBTI degradation contains a level of permanent damage, possibly re­

lated to fixed positive charge in the gate oxide. The obvious question that springs 

to mind when considering the recovery effect, is how NBTI degradation would be 
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effected by dy~amic stfessing. The majority of published research has focused on 

static stressing. Tan et al [54] presented some insight into the effects of pulsed 

stress finding an increased lifetime enhancement for dynamic signals compared to 

constant voltage stressing. Chen et al [55] presented results showing dynamic NBTI 

(DNBTI) degradation was less than that of equivalent static NBTI (SNBTI) stress 

and DNBTI effects were frequency independent. In contrast Mahapatra et al [49] 

proposed that interface trap creation and thus !::,. vth decreased at higher frequencies. 

Exact modelling of NBTI has been made difficult because the physics and root cause 

of the degradation is still not fully understood [46]. It is believed that NBTI is a 

result of a build up of positive charge either at the Si/Si02 interface or in the oxide 

layer, which in-turn leads to an increase in threshold voltage. A number of authors 

[43, 49, 51, 56] have attributed the formation of this positive charge to the diffusion 

of hydrogen away from the Si/Si02 interface. Mahapatra et al [49] explained this 

process using the Reaction-Diffusion (R-D) model. The model states that under 

NBTI stress the interface trap is due to the dissociation of Si-H bonds at the Si/Si02 

interface (reaction) and the subsequent movement of released H species away from 

the interface (diffusion) leaving behind a positively charged interface state. Accord­

ing to the R-D model, the movement of hydrogen species back to the interface when 

the stress is removed would also give an explanation to the the recovery effect. This 

is what Mahapatra et al [49] proposed but Huard et al [46] argued against this. His 

results compared the reduction of the threshold voltage with interface trap density 

after stress removal. The results showed a strong decrease (more than 50%) of the 

threshold voltage whereas the interface trap density remained almost unchanged. 

He therefore proposed that the recovery effect should not be accounted for by the 

re-passivation of hydrogen, but failed to detail any alternative reason. 
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It is acknowledged that 1at present exact determination of the the process that leads 

to NBTI degradation and its recovery is not fully understood. It is clear also just 

from this review that there are a number of issues still be resolved, including the 

effects of dynamic stressing. The use of models such as the reaction-diffusion type 

has helped put together a more complete understanding of NBTI physics, but it 

could be said that the NBTI signatures noticed by Goetzberger [45] and his co­

workers over thirty years ago are still valid today. 

2.5.3 Hot-Carrier Effects 

Hot-carrier damage leads to degradation of the threshold voltage, transconductance 

(on-resistance), and drain current driving capabilities. The driving force behind 

the degradation is the channel electric field. This has always posed an important 

consideration to the development of CMOS transistor technology and there has 

been substantial research into hot-carriers effects and the cause of the degradation 

[57, 58, 59]. However the repeating problems brought about by aggressive scaling 

has resulted in its effects being enhanced in recent years. Ning et al [60] was one 

of the first to recognise the problem hot-carriers posed to device scaling. Chen 

et al [61] continued Ning's early work to apply the lucky electron model in the 

study of substrate hot electron injection. The lucky electron model developed by 

Shockley hinges on there being a supply of 'lucky' hot electrons. Two factors that 

constitute the electron being 'lucky' are firstly if it has enough kinetic energy from 

the channel to become 'hot'. Within the literature several analytical models for 

substrate current behaviour have been reported [57, 62, 63]. Hu et al [57] used the 

lucky electron model as a basis for a landmark paper that explored the use of the 

substrate current as a measure of hot-carrier effects. Using the substrate current as 

a link to hot-carrier degradation he proposed a method for predicting device lifetime 
- - - -· .. - -

that has been used extensively since by numerous researchers. 
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The model pre$ented by Hu et al [57] was based on the belief that both the substrate 

current and hot-electron effects had a common driving force - the channel electric 

field, or more specifically the maximum channel electric field Em. Since Hu's work, 

several authors have attempted to refine his original substrate current model. Kol­

hatkar and Dutta [64] proposed a model but some of the fitting parameters used in 

their analytical approximation were difficult to extract. In recent years a number of 

lifetime models have been developed that characterise the hot-carrier effect for mod­

ern sub-micron technologies [57, 65, 66]. These semi-empirical models were shown 

to be valid only down to 0.25J.Lm technology [66]. However for smaller technologies 

as used in this study it needs to be confirmed if they are still valid. 

There has been limited research in the temperature dependence of hot-carrier ef­

fects. One reason being that it is generally believed that the substrate current and 

hence hot-carrier effects decrease at higher temperatures. A comprehensive study by 

Bravaix et al [67] confirmed this finding that on one hand high temperatures cause 

mobility degradation which reduces the current gain and device switching speed, but 

on the other hand, also contributes to a reduced sensitivity of the device character­

istics to hot-carrier effects. However recently there has been some concern that the 

assumption that hot-carrier degradation is reduced at elevated temperatures may 

not be true for deep sub-micron devices [67, 68]. 

As we approach oxide thickness on an atomic level and higher electrical fields than 

ever before, it is the author's belief that further hot-carrier consideration is needed. 

This is particularly needed to further the understanding of the hot-carrier mechanism 

and to clarify its temperature dependence. Additionally, most studies concentrate 

on hot-carrier effects in n-channel devices only, due to increased degradation [69]. 

We aim in our studies to investigate both types of devices for complete analysis. 
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2.6 High Temperature Effects 

Devices have found their way into many applications with varied conditions, and one 

aspect in particular is a growing demand for devices applicable for higher operating 

temperatures. Existing semiconductor products are typically released for maximum 

ambient temperatures of 125°C although many applications require devices to oper­

ate at much higher temperatures. Three of the largest potential application of high 

temperature devices are within aerospace, automotive, and well-logging [70, 71, 72]. 

An example where reliable high temperature devices were needed was seen in a Rus­

sian remote space exploration to Venus. The Venera 1 was prevented from probing 

the surface of Venus and ended up only gathering atmospheric data due to the lack 

of electronics capable of withstanding the higher temperatures [73, 74]. 

There are a number of physical effects that make it difficult to build devices that 

operate reliably at high temperatures. Among the prominent limitations of conven­

tional CMOS technology are increasing intrinsic carrier density, and junction leakage 

currents increasing the chance of latch-up. Decreasing mobility and threshold volt­

age add to the degradation of device performance with implication to noise margins 

and switching speeds in digital circuits. Decreasing gain-bandwidth products, and 

increasing input-offset voltages are also likely performance problems faced in analog 

circuits at elevated temperatures. These effects are well understood with notewor­

thy contributions from a number of authors. Prince et al [75] observed a decrease 

in threshold voltage with increasing temperature, while Palkuti [76] et al studied 

integrated circuits up to 300°C reporting degradation's due to leakage currents, and 

reduced mobility. Shoucair has provided a great wealth of significant research, with 

analysis of digital and analog circuits at elevated temperatures [77], detailed exper­

imental and analytical models of leakage currents [78], and future outlooks relating 

to issues of downscaling, and process evolution [79]. 

33 



2. Reliability in CMOS Technology: A Review 

2. 7 Alternative Materials 

Concerning the use of alternative materials and technologies, this research has fer 

cused solely on bulk CMOS. A number of wider band-gap semiconductor materials 

such as Silicon Carbide (SiC), diamond and nitrides, offer promising alternatives for 

high temperature applications. The author does not dismiss the clear advantages of 

using wider band-gap materials and recent developments by a number of researchers 

[73, 80, 81, 82, 83] in this area show great promise. Table 2.2 [84] shows the key 

properties of a range of wide band-gap materials. 

Property Si GaAs SiC GaN AiN 

Band-gap (eV) 1.12 1.43 3.26 3.4 6.1 
Breakdown field (V / p,m) 30 30 250 250 1200 
Thermal conductivity (W/cm K) 1.5 0.5 4.5 1.5 3.3 
Saturated velocity (cmfs) 1E7 1E7 2E7 2.4E7 1.8E7 
Electron mobility (cm2 /V s) 600 4000 400 1500 
Hole mobility (cm2 /V s) 150 30 

Table 2.2: Comparison table of different semiconductor materials 

With a bad-gap of 1.43eV, versus 1.12eV for silicon, Gallium Arsenide (GaAs) ap­

pears to have the potential for higher temperature operation. The onset of diffusion­

dominated leakage currents generally occur at much higher temperatures than in 

Silicon, because of the relatively higher band-gap [83]. Fricke et al [85] presented 

a GaAs fabrication that provided reliable device operation up to 300°C, demon-

strating the possibilities of high temperature operation. There is a major difference 

though between Si and GaAs in the fabrication process. Si forms a tough, adherent 

native oxide, while GaAs oxides are not adherent. This means that the conventional 

MOSFET cannot be made in GaAs, and MESFETS's are the most common tran­

sistor type in GaAs technology [80]. With no oxide in a MESFE'r, the channel is 

isolated from the gates by reverse biased Schottky junctions. In turn experiments 
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by Shoucair et .al [83] Have shown the MESFET's to display a significant high gate 

leakage current. Dreike et al [80] also presented data highlighting the problem of 

leaky gates in MESFET's plus problems faced particularly in the area of achieving 

reliable ohmic contacts to the devices. Both Dreike and Shoucair agree that further 

developments in GaAs technology are needed to exploit its full potential but also 

state these efforts would likely be better spent on a larger band-gap semiconductor 

or heterostructure technology for high temperature operation [80]. 

Silicon Carbide has been investigated for a number of years for its potential use as 

a wide band-gap semiconductor [86, 87]. During the late 1960s, SiC was considered 

to be the semiconductor material of the future [73]. Recent research in material 

growth, doping, oxidation, and metalisation has seen considerably more commercial 

interest and activity in the past decade. Cree Inc. in particular have carried out 

extensive R&D. They have now launched their second generation SiC microwave 

metal semiconductor field effect transistor (MESFET) process. Aimed towards the 

wireless base station business it was a lOW power device which operates up to 2.4 

GHz and apparently showed no degradation at 175°C and only limited degradation 

at 240°C junction temperature. GE Global Research Centre have also been looking 

at SiC devices. In 1993 they developed a NMOS integrated circuit, including a 300°C 

operational amplifier. However it was reported they faced oxide reliability problems 

with the SiC/Si02 interface prone to interface state densities and poor dielectric 

reliability at elevated temperature [84]. Another focus of research is recent years 

has been the growth of nitrides epitaxially on dissimilar substrates such as GaAs, 

SiC and sapphire. The growth of Gallium Nitride (GaN) or Aluminium Nitride 

(AlN) to form a heterostructure with a SiC substrate has shown improved electrical 

and thermal performance. They offer many potential solutions to high temperature 

problems such as reduction in leakage but have suffered from high development 

costs. 
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Invented in the 1960's at Rockwell, Silicon on Sapphire (SOS) is an additional tech­

nology that has long held great promise. Early on it was recognized for its high speed 

and low power potential. Peregrine Semiconductor developed an ultra thin silicon 

process which left a high quality ultra thin layer of silicon on a insulated sapphire 

substrate. Elimination of the substrate capacitance allowed for higher speeds at 

lower power and avoided voltage dependent capacitance distortions. Kronberg [88] 

compared results of SOS devices with comparable bulk CMOS devices. He found 

SOS devices showed most of the effects seen in bulk silicon MOSFET's. The SOS 

devices though were found to have much smaller leakage levels and useful character­

istics were seen at 300°C. The major trade off for SOS versus other technologies, bulk 

silicon in-particular, is cost. The higher material starting cost of SOS technology is 

a difficulty for development and as a result SOS is still to become a viable alternative. 

The above alternatives clearly posses potential as materials suited for harsh envi­

ronment electronics. However the most common low power and high speed device 

technology today is still silicon CMOS [6]. Along with the interests of the project 

sponsor, it is the authors belief that to maximise the capacity of this project con­

ventional CMOS technology is the viable option. 

2.8 Silicon-On-Insulator Technology 

The use of Silicon-on-insulator (SOl) technology has come in response to the desire 

for increased performance and lower operating voltages as conventional CMOS tech­

nology approaches its fundamental limits. Silicon-on-insulator devices differ from 

bulk CMOS by placing the transistors silicon junction area on top of an electri­

cal insulator. Advantages over bulk devices include speed, power dissipation and 

reduction of leakage currents [89]. 
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For a long time SOl has been seen as a serious contender to substantially extend 

the temperature range of silicon integrated components [90]. The device structure 

reduces high leakage currents that can lead to latch-up occurring in bulk CMOS. 

Because each source and drain junction is surrounded by insulator, the junction 

capacitance is largely reduced compared to bulk silicon transistors. This means 

the circuits can operate at higher speeds or substantially lower power at the same 

speed. Results [90, 91, 92, 93] have demonstrated SOl technology to offer a real 

opportunity for integrating at reasonable cost, digital and analogue circuits which 

can withstand temperatures in excess of 300°C. One important feature is smaller 

threshold voltage shifts. Reichert et al [94] showed reduced threshold voltage shift 

for elevated temperatures up to 200°C. 

One company that has developed silicon-on-insulator technology for high temper­

ature use is Honeywell electronics. They have developed a reliable high temper­

ature process designed to produce integrated circuits capable of operation up to 

300°C. The process is a fully isolated 1.25f,lm analag/0.7f,lm digital process. Re­

duction in leakage currents is provided by all junctions bottomed out to the isola­

tion, while maintaining transistor switching frequencies through reduced junction 

capacitance. Examples of SOl device fabrication by Honeywell, are a family of high­

performance static random access memories designed for high temperature opera­

tion, that have demonstrated over 2500 hours of operation at 300°C under dynamic 

burn-in-conditions. Very recently the application of silicon-on-insulator devices for 

high performance products has also seen significant progress. Companies such as 

AMD and IBM have started to use SOl technology for their ultra deep sub-micron 

processes. Both seem to have harnessed the technology successfully without any 

reliability concerns and have shown a 20-25% improvement in device cycle time 

compared to that of. similar CMOS devices. 
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2.9 Conclusion 

The aim of this chapter has been to provide a critical review of reliability in CMOS 

technology with emphasis on those parts of the subject that are of particular interest 

to the research in later chapters. This has covered classical reliability functions such 

as the bathtub curve, the reliability probability distribution, the Arrhenius equation 

through to new reliability approaches such as physics of failure. 

An overview of reliability methodologies is given, highlighting the drawbacks of tra­

ditional methods such as the stuck at fault model, and new alternatives identified. 

Proposed is the development of a novel reliability simulation tool to allow fault 

identification in the early stages of development, something vital in today's market. 

Such a simulation tool requires a clear understanding of the root causes of failure, 

of which the most prominent mechanisms were reviewed in section 2.5. 

Electromigration was once the ruling CMOS failure mechanism but aggressive scal­

ing of device dimensions has revealed new prominent fa-ilures. With gate oxide 

thicknesses approaching atomic levels concerns over failure mechanisms such as Gate 

Induced Drain Leakage, and Negative Bias Temperature Instability have arisen. The 

review of present GIDL studies highlighted the need for accurate deep sub-micron 

models that consider the effect of elevated temperatures. NBTI is a new degradation 

phenomenon, the root cause of which is still not fully understood. Investigations are 

required into the effects of dynamic stressing, and the development of a new model 

capable of predicting the cumulative and recovery effect. The past and present 

significance of hot-carrier effects is also reviewed. This points towards the need 

for further consideration to whether the classical belief that hot-carrier effects are 

re<:luced -at high -temperatures is still \r~lid for deep sub-micron devices. 
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In section 2.6, the addit'ional influence and difficulties presented by elevated temper­

atures is given. The largest potential users are within the aerospace, automotive, 

well-logging and space applications. Additionally a review of past research into 

degradation factors related to enhanced temperatures, shows an expected decrease 

in threshold voltage and channel mobility, while an increase in junction leakage cur­

rents. These issues are addressed again in more detail in chapter 3. 

Consideration of alternative materials and technologies concluded that despite hav­

ing some unique advantages for high temperature use, there are still key challenges 

in process and manufacturing that make them not a viable option for this project. 

Cost, and process availability means any new ideas are much more open to viable 

development and implementation within bulk CMOS. The author believes for near­

term research and development pay-off bulk CMOS and possibly commercial off the 

shelf components are the most practical options. 

The author concludes from the literature review that there must be a clear un­

derstanding of how the product will fail to accurately quantify the reliability of 

electronic products. This means a critical understanding of the physical root causes 

behind the failure mechanisms. In particular failures related to the gate oxide and 

its interface are in need of further investigation for deep sub-micron devices. Bulk 

CMOS is by far the most widely used and viable technology for development and 

research. It provides the greatest potential gain for creating new methodologies to 

predict device degradations, failures, and ultimately allow problems to be spotted 

before they occur. This principle forms the basis for the following chapters and the 

design of an integrated reliability methodology. 
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Chapter 3 

High Temperature Device Model 

3.1 Introduction 

DEVELOPMENT OF A new simple but accurate high temperature MOSFET 

model is demonstrated in this chapter. This model is designed to use fewer 

parameters than other models, whilst accurately predicting the effects of tempera­

ture on state-of-the art devices. 

During the design stages of any model I believe there are two words which should 

always be kept in the back of the designer's mind: accuracy and efficiency. They 

are of course conflicting terms, but as designers we are responsible for defining the 

compromise. Accuracy is obviously an important consideration but must not be the 

overriding aim. We must consider efficiency not only in terms of computational time 

but also in the model's usability. How well the end user understands the model is 

a sign of good design. Therefore, providing the end user with a model that is both 

accurate but also useable, is a main aim in the development of this mod~l. 
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At present, compact models are of growing complexity and the number of model 

parameters has tended to double about every 10 years [95] . The models presented 

here deviate from that trend, with the aim of developing a model with fewer pa­

rameters. Simple expressions taking into account temperature effects for each of 

the MOSFET's operation regions are given. This has been done by retaining the 

basic functional form of fully physical models whilst improving the accuracy of the 

temperature dependent components. A smooth transition between each region is 

provided and the model allows for easy extraction of parameters. This approach 

of simplifying the expressions is novel for present day modelling trends, but I be­

lieve usability is an important characteristic if the model is to be successful in the 

hands of the end user. One such end user is the project sponsor company, Goodrich 

Aerospace. Regular discussions with them allowed me to present this approach to 

them. The provision of models that they could understand and modify to their 

needs was seen as particular importance and met with positive feedback. 

3.2 Devices and Measurement 

Throughout this work conventional n-channel and p-channel MOSFETs were used. 

Fabricated using a 0.18p.m (1.8V) process by Taiwan Semiconductor Manufacturing 

Company (TSMCTM) with a channel width of 10p.m and gate oxide thickness of 

4.2nm. Figure 3.1 shows an image of one such n-channel device. 

Figure 3.1: An image of 0.18p.m n-channel device 

41 



3. High Temperature Device Model 

For testing purposes, test structures each containing five n-channel and five p-

channel MOSFET's were separately bonded into dual in-line packages. Measure­

ments were carried out with the use of KeithleyTM 2400 and 6487 source/measure 

units1 . This provided a link directly from the devices under test to a PC via GPIB2
. 

Below is a schematic diagram of the experimental setup. 

2400 Sow-cefMeasure Unit 6487 Source/Measure Unit 

ChAssis Ground 

2400 Front Panel 6487 Back Panel 

I 
-------------_..J 

Figure 3.2: Schematic diagram of experimental setup 

Using LabviewTM to control the units, a set of custom test patterns were created to 

collate the large quantities of experimental data and provide for varying test con­

ditions. A variable heating element (not shown) provided a temperature range of 

27-155°C. Further information and a detailed diagram of the experimental test rig 

is contained within Appendix A. 

1 Measurement resolution ±lOpA 
2General Purpose Interface Bus 
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3.3 1-V .Model 

Current-voltage (I-V) characteristics are vital for any designer in his or her circuit 

design. This work concentrates on the influence of temperature on the I-V charac­

teristic. Current-voltage equations are derived as a function of threshold voltage, 

and each operating region is considered separately. 

3.3.1 Thresho.ld Voltage 

The threshold voltage vth represents the gate bias Vas at which a conducting channel 

is formed between the source and the drain junctions, and the device in deemed 'ON'. 

If Vas is below vth, then the device is in the weak inversion (subthreshold) region. 

For Vas above vth, the device is in the strong inversion region. vth is the gate voltage 

which results in a surface potential cf>s at the Si02 interface that is equal to twice 

the potential difference between the bulk Fermi level EF, and the intrinsic Fermi 

level Ei. Simplistically, vth as a function of substrate bias VHs is expressed as: 

(3.1) 

where vtho is the ideal threshold value and 1 the substrate bias effect coefficient. 

Equation 3.1 is only valid for large devices and pays no consideration to the short 

channel effects seen in today's technologies. For short channel devices, vth is affected 

by the drain voltage Vvs. This is called Drain Induced Barrier Lowering (DIBL). 

Equation 3.1 can be modified to account for this affect as below, where a is the 

DIBL factor. 

(3.2) 

As Vvs is increased, the potentia], qarrier from the source to channel junction is 

lowered allowing electrons to be injected into the channel region more freely. 
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Figure 3.3 shows good 1agreement between experimental data and equation 3.1 for 

device types. It indicates a linear relationship between 6 "Vth and Vvs where the 

gradient of the lines is O". Solid lines represent the model calculation and symbols 

represent the measurement data. This way of illustrating model/measurement data 

is continued throughout the thesis unless indicated otherwise in the figures. 
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Figure 3.3: Threshold voltage as a function of drain voltage 
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Threshold voltage value~ were calculated using the constant current method as docu­

mented in the Joint Electron Device Engineering Council (JEDEC) Standard No.90 

[96]. JEDEC states that the threshold voltage is the gate voltage at which the drain 

current Ivs is equal to a constant current, multiplied by the ratio of gate width to 

gate length. This is expressed as: 

vth = Vas ( @.lvs = Ivso · ~) (3.3) 

where Ivso is typically O.lJL.A or -0.025JL.A for n-channel or p-channel respectively. 

This value can change but must be selected such that vth is in the subthreshold 

region of the device. Throughout this thesis Ivso values of 0.375JL.A and -0.06JL.A 

were used for all the threshold voltage calculations. 

3.3.2 Linear Region 

The linear region of a devices operating characteristic describes the current-voltage 

behaviour of a MOSFET when a small drain bias is applied. The region is also 

sometimes called the ohmic region, because the MOSFET acts as a resistor whose 

resistance can be modulated by changing the gate bias. When the drain voltage 

is zero, the drain current is zero regardless of the gate-to-source voltage. However, 

as the drain voltage is increased, a channel is created between the drain and the 

source that allows current to flow. The amount of current that flows in the channel 

is defined as the total charge in the inversion layer, divided by the time the carriers 

need to flow from the source to the drain. 

I 
Qinv 

lJS = -­
tr 

(3.4) 

where Qinv is the inversion layer charge per unit area and tr is the transit time. 
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3. High Temperature Device Model 

Assuming the velocity, 1v, of the carriers between the drain and source is constant, 

the transit time is equal to the channel length divided by the carrier velocity. 

L 
ir =­

v 
(3.5) 

The carrier velocity is the product of the carrier mobility, p,, and channel electric 

field, E, where E = Vvs/ L. Hence equation 3.5 becomes: 

£2 
ir = ---

1-L • Vvs 
(3.6) 

The inversion layer charge Qinv can be approximated by the product of the gate 

oxide capacitance per unit area Cox, and the effective gate voltage (Vcs - l-'th). 

(3.7) 

Referring to figure 3.4, the gate oxide capacitance is given by Cox = EoxA/i0 x, where 

Eox is the permittivity of the oxide material, A the area of the gate over the channel 

and iox the oxide thickness. 

Metal Gate 

Gate Oxide 

~----- L ---~~ 

Substrate 

Figure 3.4: MOSFET gate construction 
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Expanding the.gate oxitle capacitance parameter in equation 3.7, the inversion layer 

charge can be expressed as: 

(3.8) 

Hence in the form of equation 3.4 the current flowing in the channel of a device is the 

combination of equation 3.8 with that of 3.6. This leads to the following expression 

for the linear drain current: 

w 
Ins = J.L • - ·Cox· (Vcs - vth) · Vns 

L 
(3.9) 

This model is valid if it is assumed the carrier velocity, electric field and inversion 

layer charge are uniform between the drain and source. Using equation 3.9 the drain 

current flowing in a device will rise linearly with applied drain voltage. In reality 

though, the drain current reaches a peak and saturates. By considering a variable 

inversion layer charge this effect can be easily modelled. It is based on the fact that 

the current at each point in the channel is constant, and is related to a local channel 

voltage. Considering a small section within the device with length dy and a channel 

voltage Vc, equation 3.9 becomes: 

w 
IDs= J.L ·-·Cox· (Vcs- vth- Vc) dVc 

dy 
(3.10) 

The drain voltage is replaced with the change in channel voltage over distance dy, 

namely dVc. To model the carrier velocity more accurately in the channel, we split 

the channel length into segments of length dy and consider the change of channel 

voltage across each segment dVc. Thus: 

E _ dVqy) 
(y)-~ 
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Given that the. carrier telocity, v = J-LE, where the carrier mobility J-L is constant, a 

semi-empirical model can be used to describe the relationship between the channel 

field and carrier velocity, expressed as: 

V(y) = I 1 + E(y) Esat 
(3.12) 

where Esat is the critical field at which the carrier velocity becomes saturated given 

by Esat = 2vsatl f-L. Values of V8 at are typically around 7 x 106cmjs. Equation 3.10 

can then be modified to model a variable electric field and carrier drift velocity along 

the channel. This assumes the carrier mobility J-L is constant. 

I vs = v(y) · Cox · W · (Vcs - vth - Vc(y)) 

(3.13) 

Vcs'l' is the effective gate bias given by the applied gate voltage minus the threshold 

voltage Vcs'l' = Vas- vth· Rearranging equation 3.13 for the electric field we get: 

(3.14) 

Integrating both sides from the source to the drain, so that y varies between zero 

and the gate length, and the channel voltage Vc varies between zero and the drain 

voltage we get: 

where f3 is the transconductance parameter. 

w 
f3 = /-L' Cox ' -

L 
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Using this quadratic fulnction the drain current increases with applied drain bias, 

and then reaches a maximum value at Vvssat· According to equation 3.15 the current 

would then decrease and eventually become negative. In reality though, the current 

voltage characteristic continues to rise with a weak dependence on the drain voltage. 

This section is called the saturation region. 

3.3.3 Saturation Region 

When the drain voltage reaches the saturation point, the channel pinches-off and 

the inversion layer no longer reaches the drain junction. On the onset of channel 

pinch off, the lateral electric field in the channel is equal to Esat and the carrier 

velocity equal to Vsat· The saturation voltage Vvssat is the corresponding channel 

voltage at this point. Therefore at saturation we can substitute the velocity Vsat 

for V(y) and channel voltage Vvssat for Vc(y) in equation 3.13. The resultant drain 

current at saturation becomes: 

Ius = Vsat ·Cox· W · (VesT - Vvssat) (3.17) 

The saturation voltage can be derived by letting V(y) = Vsat and Vvs = Vvssat in 

equation 3.15 and setting it equal to equation 3.17. The resultant saturation voltage 

equation presented in [97] is expressed as: 

Esat · Leff ·VesT Vvssat = ___ ____:_.::_____ __ _ 
(Esat · Leff) +VesT 

(3.18) 

This model is consistent for Vvs = Vvssat, taking into account velocity saturation 

effects. We must also consider the condition when Vvs > Vvssat· As the drain 

voltage is increased beyond the saturation voltage, the pinch-off point moves further 

away. from the drain. 'This effectively reduces the channel length and adds more 

charge carriers to the channel region. For short channel devices this difference is 
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not negligible and the dtain current in short channel devices increases for increasing 

drain bias after saturation. This is called Channel Length Modulation (CLM). In 

the development of this model a semi empirical expression is used to consider these 

effects so that equation 3.17 now becomes: 

Ivs = Vsat ·Cox· W ·(VesT- Vvssat) · {1 + ..\Vvs) {3.19) 

where ,\ is the channel length modulation factor, typically < 0.1. To ensure continu-

ity between the linear and saturation regions, the channel length modulation factor 

is also included in equation 3.15 for the linear region. Thus, the model for the drain 

current in the strong inversion regime of a MOSFET becomes: 

I 
{ 

f3 · l+Vvs
1
/ }<).atL • (VesT - Vt~l) · {1 + A Vvs) if Vvs < Vvssat, 

JJSo = 
Vsat ·Cox · W · (Ves:r - Vvssat) · {1 + AVvs) if Vvs > Vvssat 

{3.20) 

3.3.4 Mobility Model 

Up to now it has been assumed that f-L, the carrier mobility, is constant. It has 

been shown [98] though that 1-L has a dependency on Vas that must be taken into 

account if we are to compare our I-V model to real data. A widely used expression 

for mobility field dependency is: 

/-LO 
1-L = ------:-----:-

1 + f-Lv (VesT) 
(3.21) 

where f-Lo is the low field mobility and /-Lv is the gate bias factor. I have found this 

model does not match my experimental results and therefore propose a different 

model. I have created a simple empirical model given by: 

1-L = /-Lo- 1-lv(VcsT) (3.22) 
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3. High Temperature Device Model 

Figure 3.5 shows a colnparison between measured data and theoretical mobility 

values calculated using equation 3.22. It also highlights the inaccuracy of equation 

3.21 for modelling the mobility field dependency in deep sub-micron devices. All 

measurements and calculations were determined at room temperature. 
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Figure 3.5: Mobility as a function of gate voltage 

Good agreement can be seen between the measured and the new model data. A 

simple extraction of J-lo can be determined experimentally from the point where the 

device transconductance ( Gm) is at a maximum. 

Gm(max) · L 
J-lo = 

Cox· W · Vvs 
(3.23) 

This yields J-lo values of 523cm2 /Vs and 154cm2 /Vs for n-channel and p-channel 

devices respectively. This mobility model can be used for both electrons and holes 

but with different extracted values for the parameters J-lo and J-lv· All instances of J-l 

in the previous calculations are replaced with that of equation 3.22. 
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3.3.5 Parasitic Drain/Source Resistance 

An additional short channel effect that has been incorporated into the model is the 

influence of parasitic resistance (Rvs). As a MOSFET's channel length is scaled 

down, the impact of RDs on IDS becomes more influential, especially at low drain 

bias. To model RDs in a direct method would lead to a significantly more com­

plicated drain current expression. The development of this model is based on Rvs 

comprising of RD, the drain resistance and Rs the source resistance: 

(3.24) 

For efficiency and simplicity it is assumed that RD = Rs even though the author 

acknowledges that asymmetric Lightly Doped Drain (LDD) structures result in a 

non-equal Rv and Rs. This is implemented into the model as below: 

I _ IDso 
lJS - Rus ·Jus (3.25) 

1 + 0 
Vvs 

where fvso is the previously derived drain current expression (equation 3.20). 

3.3.6 Subthreshold Region 

In section 3.3.1 it was stated that current flows in the channel of a MOSFET when 

the surface potential is equal to, or greater than 2¢F, and Vcs > vth· This current 

is called drift current. However when Vcs < vth, there also exists a concentra-

tion of electrons near the surface, which create leakage current between the drain 

and source even when the surface is not in strong inversion. This current is called 

diffusion current, and is what characterises the subthreshold region. For deep sub­

micron.devices the modelling of the subthreshold current is vital because as devices 

are scaled the relative magnitude of the OFF -state current becomes more significant. 
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3. High Temperature Device Model 

This problem of increas~d OFF-state current is illustrated later in chapter 5. How­

ever in this chapter we adopt the following simple expression for the subthreshold 

current. This is an established model [99] that characterises the drain current as 

rising exponentially with the gate voltage. 

(3.26) 

where the parameter Vaff is the offset voltage, n the subthreshold swing factor, vtm 

the thermal voltage, and Is0 is the current at Vas = 0 given by: 

w 2 
I so = f.J, • L · Cox · "Vtm (3.27) 

The thermal voltage is expressed as: 

(3.28) 

where q is electron charge3
. All other terms have been previously quantified. Figure 

3.6 illustrates a comparison between measured and simulated data using equation 

3.26. Good agreement can be seen in the middle region "Of the curves. For long 

channel devices, the subthreshold current is independent of the drain bias. In short 

channel devices, Is can be significantly larger for higher drain bias due to DIBL ef­

fects mentioned in section 3.3.1. The model allows for these DIBL effects. Parameter 

extraction for the subthreshold model is simple with only Vaff and n to determine. 

For the results presented in figure 3.6(a) Voff and n were -0.062 and 1.85, and for 

figure 3.6(b), -0.030 and 1.54 respectively. There are clear inaccuracies though at 

higher drain voltages and also above vth· The former is due to a tunnelling process 

called GIDL that was reviewed in chapter 2. It occurs at the gate-to-drain overlap 

region when there is a high lateral electric field close to the drain region. As a result 

a new OFF -state leakage co~ponent is seen. Further examination and modelling of 

3 Electron charge= 1.602177xl0-19C (Coulombs) 
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Figure 3.6: Subthreshold current as a function of gate voltage 

GIDL is given in chapter 5 and the present subthreshold model is modified to char-

acterise its effects. The later inaccuracy in figure 3.6, seen above "Vth is one of the 

common difficulties in modelling a MOSFET I-V characteristic. As Vcs approaches 

Vth, the device is moving from weak to strong inversion. This means for a complete 

I-V model, we need a smooth transition between these two regions. 
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3.3. 7 Transitior.t Region 

There is no simple physical model available for the drain current in this region. 

One approach is to define a unified expression across all regions. It is the author's 

belief though that this approach is inefficient for computing the whole I-V model 

and goes against the aims of this work. Providing separate expressions for each 

region is not only more computationally efficient but also allows the user greater 

freedom to modify and analyse individual components. In BSIM24 a spline function 

is used, but determining all the coefficients of the spline is time consuming. I there­

fore propose the use of a much simpler way to accurately model the transition region. 

To provide a continuous IDs characteristic, lower Vcs(low) and upper Vcs(high) tran­

sition points must be defined. A mid-point drain current Ivs(mp) must also be de­

termined. Then with the use of a weighting factor, a smooth curve between Vcs(low) 

and Vcs(high) through IDS(mp) can be provided by the following equation [99]: 

(3.29) 

where Is(low) and IDS(high) are the corresponding subthreshold and drain current 

values at Vcs(low) and Vcs(high), and w is the weighting factor that varies between 

zero and one. The drain current mid-point (Ivs(mp)) was found to be dependent on 

drain bias and I have defined an empirical expression to match the measured data. 

( 
1 ) w = (Vcs - Vcs(low) · 

) Vcs(high) - Vcs(tow) 

where Ma and Mb are fitting parameters. 

4Berkeley Short-channel IGFET Model 
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Figure 3. 7 shows how ~ffective this transition function is at avoiding any disconti­

nuities at the boundaries between regions. 
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Figure 3. 7: Illustration of the transition region 

3.3.8 I-V Model Test Results 

1.0 

A set of benchmark tests were performed to check the model's general applicability, 

robustness (lack of discontinuities), and accuracy. Results for deep sul:r-micron n-

channel and p-channel devices at room temperature are shown. The core operating 

voltage Vvv of the devices in the measurements is 1.8V. 

At the introduction of this chapter, I promoted an approach to modelling that en­

couraged simplicity and the use of minimal model parameters. Table 3.1 shows 

the parameters extracted and used for model calculations in all results presented in 

this section. A total.of 8 I vs measurements were taken for each device type and 

employed to extract the 9 model parameters needed. The threshold voltage, DIBL 
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Model Parameters n-channel p-channel 

Gate Length L (J.Lm) 0.18 0.18 
Gate Width W (J.Lm) 10 10 
Oxide Thickness tax (J.Lm) 4.2 4.2 
Threshold Voltage l-'thO (V) 0.66 -0.55 
vth D IBL Factor a 0.035 0.02 
Low Field Mobility J.Lo (cm2 /Vs) 372 111 
Mobility Field Factor f.Lv 35 10 
Velocity Saturation V8 at (cmjs) 6.8x106 6.6x106 

CLM Factor ), 0.01 0.03 
Parasitic Resistance RDs (0) 22 65 
Subthreshold Offset VoJJ (V) -0.062 -0.028 
Subthreshold Swing n 1.85 1.54 

Table 3.1: Extracted model parameters 

factor, mobility and subthreshold parameters can be extracted from the linear re­

gion characteristic Vas- IDs· The channel length modulation (CLM) parameter is 

extracted by fitting the model to IDs - VDs at Vas = 1.8V (VBs = 0). The field 

dependence of the mobility was also fitted to the Ivs - Vvs characteristic. 

With only a small number of parameters needing to be found, the models were fitted 

manually for best fit. However the author acknowledges tbat in practice where the 

characterisation of a large number of devices may be needed, it would be more 

efficient to use an optimisation technique such as least squares. Least Squares is 

a mathematical optimisation method which attempts to find a "best fit" function 

that has the minimal sum of the deviations squared (least square error) from a given 

set of measured data. An example of using such a technique for the calculation of 

the subthreshold parameters no and Vaff is described in Appendix B. The resultant 

optimised parameters for an-channel device were no = 1.93 and VaJJ = 0.065, which 

are close to those manually extracted as shown in table 3.1. An alternative approach 

is to use a program such as MATLAB™ and its optimisation toolbox. This type of 

program is of great help and can be used to automate tasks such as the le~t squares 

optimisation shown in Appendix B. 
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Using the parai;Ileters defined in table 3.1, figure 3.8 shows the simulated Ins- Vns 

characteristic and measured data. The gate voltage is varied between Vih and Vuv­

Excellent agreement between model and measured data is seen with R2 values of 

0.985 and 0.999 for n-channel and p-channel devices respectively. The R-squared 
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value is the proportion1 of the variance in the y attributable to the variance in x, 

and hence a quantifiable value of fit between model and measurement. A smooth 

transition between the linear region and saturation region is illustrated. At high 

drain bias (Vvs > 2.5V) the n-channel model is seen to deviate from the experi­

mental data. When the electrical field near the drain is very large (>O.lMV /em), 

some electrons coming from the source will be energetic enough to cause an addi­

tional current component. This is the onset of impact ionisation and the creation of 

electron-hole pairs adding a substrate leakage to the drain current . Further analysis 

of this is given in chapter 6, but at this stage it gives us a nice indication as to why 

hot-carrier degradation is greater in n-channel devices than p-channel. Figure 3.8 

also illustrates how the point at which velocity saturation occurs (Vns(sat)) increases 

with higher gate bias. N-channel devices reach Vvs(sat) earlier due to higher carrier 

mobility. Figure 3.9 compares the saturation voltages as a function of gate bias for 

both n-channel and p-channel devices. 
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The next piece .of analy~is looks at the Ins- Vas characteristic. For constant drain 

bias, Vas is swept from zero to two volts taking measurements every 20m V. In figure 

3.10 the drain current increases with gate bias when Vas > vth· The relative drain 

current values are also higher, as one might expect for higher drain bias. 
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A reduction in threshola voltage at high drain bias due to DIBL effects, introduced 

by equation 3.1, can be seen for both n and p-channel devices. Additionally the 

importance of considering RlJs is seen. The effect of the parasitic resistance is more 

evident at low drain bias, causing the current to curve-off at high gate voltages. 
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This verifies the incorpdration of the parasitic resistance in the drain current expres-

sion (equation 3.25), adding to model accuracy. When a substrate voltage is applied 

to a MOSFET, it effectively increases the voltage required to turn the device on. 

This change was introduced with the use of{, the substrate bias effect coefficient 
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in equation 3.2. Measu~ements were taken at four different substrate voltage, and 

the results compared in figure 3.11. Using 1 values of 0.26 and 0.3 for n-channel 

and p-channel devices respectively, the model results show excellent agreement with 

experimental data. Figure 3.12 is the final result of this section showing the I-V 

characteristic for the entire MOSFET operation, from subthreshold to the strong 

inversion region. Excellent agreement between the model and measured data is seen. 

In particular the transition between the two regions is very smooth and verifies the 

use of the transition expression 3.29. Again the underlying aim of this work is met 

with only two parameters being needed to model the subthreshold region, Van and 

n, making the modelling process simple and accurate at the same time. 

3.4 Temperature Effects 

This section describes the models that were developed to account for the effect of 

temperature on a MOSFET's operation. I have modelled the effect of temperature 

on five parameters. I believe this is all that is needed to allow accurate simulations 

and this is justified by the accuracy of the final model as shown later. 

3.4.1 Carrier Mobility 

Modelling the effects of temperature on carrier mobility is vital for any high tem­

perature model. The following empirical relationship has been used to model the 

mobility temperature dependence J-L(T). 

( 
T )J.tT 

J-L(T) = /-L('l'norm) - () Tnorm - 1 (3.32) 

where f.-L('l'norm) is the mobility at room temperature, f.-L'l' the temperature exponent 

and () a fitting parameter. 
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Figure 3.13 shows the dependence of mobility on temperature, where /1'1' was fitted 

to be 0.56 and 0. 7 for n-channel and p-channel devices respectively. 
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Figure 3.13: Carrier mobility as function of temperature 

Mobility values were calculated from the linear Ivs - Vcs characteristic using the 

procedure mentioned in section 3.3.4. The decrease seen in carrier mobility at dif­

ferent temperatures is due to scattering effects in the channel. At room temperature 

the mobility is stable due to there being no scattering of free carriers, and subse­

quently the carriers do not interchange energy with the stationary lattice structure. 

As the temperature rises though, vibrations in the lattice cause energy to be trans­

ferred between the carriers and lattice. This increase in lattice scattering results in 

a decrease in carrier mobility. 

3.4.2 Velocity Saturation 

The temperature dependence of Vsat is usually ignored in the literature. However, the 

author believes the use of a simple model expression enhances the model's accuracy. 
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As the electric. field in 1 the channel increases so does the velocity of the carriers. 

At high fields the carriers reach a velocity saturation and the relationship with the 

electric field is no longer linear. This is due to the scattering of highly energetic 

electrons at high fields, increasing the transit time of carriers through the channel. 

Hence it effects the voltage at which current saturation occurs and for accurate 

modelling any Vsat temperature effects must be considered. The following empirical 

expression was found to adequately simulate Vsat(T). 

Vsat(T) = Vsat0 - Cfvsat ( Tn: - 1) (3.33) 

where Vsato is the velocity saturation at room temperature and CTvsat the velocity 

saturation temperature factor. Figure 3.14 illustrates a comparison between the 
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Figure 3.14: Velocity saturation as function of temperature 

simulated temperature dependence of Vsat for n-channel and p-channel devices. It 

can be seen that for both types of devices Vsat reduces with increased temperature. 

This is believed to be due to the-reduction in carrier mobility at higher temperatures 

highlighted in section 3.4.1. 
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3.4.3 Threshold' Voltage 

Given that vth is dependent on <Ps the surface potential, it is this component that 

is the main cause of vth temperature variations [100]. As temperature increases, so 

does the intrinsic carrier concentration ni, whilst the energy band gap is reduced. 

The combination of these effects brings the Fermi potential <Pt towards the mid-gap. 

One can solve <Pt as: 

(3.34) 

where kb is Boltzmann's constant5 , T temperature, and N the numbers of ionised 

donors and acceptors in n-channel and p-channel devices respectively. Figure 3.15 

illustrates the influence of temperature on the Fermi potential for silicon with donor 

impurity concentration as the parameter. As temperature increases, <Pt approaches 

zero meaning the extrinsic semiconductor will become intrinsic at sufficiently high 
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Figure 3.15: Fermi potential as a function of temperature 

temperatures. Figure 3.15 also shows how semiconductors with greater doping levels 

maintain extrinsic behaviour to higher temperatures. It should b~ noted that the 

gate oxide charge has been shown to be essentially temperature independent [101]. 

5Relates temperature to energy= 1.38x10-23J K-1 
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Given that cf>s = 2 · ¢>1, 1at higher temperatures the surface potential is reduced and 

Vth would be expected to follow a similar trend. Experiments were carried out on 

both n-channel and p-channel devices at various temperatures and the results are 

shown in the figure below. 
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Figure 3.16: Threshold voltage as a function of temperature 

Figure 3.16 shows that Vth changes approximately linearly. with temperature in the 

range 27-155°C. Threshold voltage values decrease with increased temperature by 

1.1m V ;oc and 1.3m V ;oc for n-channel and p-channel respectively. To model this 

I have used a simple temperature relationship as show in equation 3.35. 

(3.35) 

where Vth(Tnorm) is Vth at room temperature, Tnorm the room temperature, and Tvth 

the threshold voltage temperature coefficient. The model gives very good agreement 

with the experimental data over this temperature range as shown in the above figure. 

Sl,ight varhttions between n-channel and p-channel devices are taken into account 

with Tvth equalling -0.030 and -0.035 respectively. 
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3.4.4 Subthreshold Swing Factor 

In the weak inversion regime the diffusion current displays a temperature dependence 

due to increased carrier concentration. I have used a very simple relationship to 

model the temperature effects seen in the subthreshold region. 

n(T) = no + nT · ( Tn:m - 1) (3.36) 

where n0 is the swing at room temperature and nT, the temperature factor. Figure 

3.17 illustrates how well this simple expression agrees with measured data over a 

wide range of temperatures. n0 was extracted as 1.54 and n'l' as 0.11. At higher 

temperatures it can be seen that for p-channel devices there is an increase in drain 

current. The ability of the model to predict how higher temperatures influence 

the subthreshold current is also shown. The importance of incorporating n(T) is 

illustrated with a 155°C model response with a constant n value. Similar results 

were obtained for n-channel devices. 
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3.4.5 Drain Sou'rce Resistance 

The fifth and final temperature dependent parameter included is the drain/source 

resistance Rvs- The existence of a drain/source resistance can cause a reduction in 

the drain current, because the effective voltages at the source and drain junctions are 

less than those applied to the terminals. Hu[102] proposed that the drain/source 

resistance increases almost linearly with temperature. I have used the following 

expression to model RDs(T): 

RDs(T) = Rvs(o) + CRDS · ( Tn: - 1) (3.37) 

where Rvs(o) is the parasitic resistance at room temperature, CRDS the temper­

ature constant, and Tnorm room temperature. Figure 3.18 shows the simulated 

drain/source resistance values against temperature. It can be seen that the model 

predicts RDs to rise linearly with temperature, and hence will result in a reduction 

of drain current at higher temperatures. 
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3.4.6 Temperathre Results 

Having incorporated all the temperature dependent components into the original 

I-V model, we now compare and analyse the influence of temperature on the MOS­

FET operating characteristics. Figure 3.19 shows Ins versus Vas for a number of 
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different temperatures. 1Figure 3.19(a) illustrates the influence of temperature on the 

saturation region of a n-channel device. The same characteristic is shown is figure 

3.19(b) for p-channel, but this time biased in the linear region. In both figures the 

the influence of higher temperatures (>155°C) is also predicted using the model. 
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At low fields there is ah increase in IDS similar to what we saw in the subthresh­

old region (see figure 3.17). This creates a point where the drain current is not 

influenced by temperature. This point is called the Zero-Temperature Coefficient 

point (ZTC). Below the ZTC point, the channel is weakly inverted and the current 

increases due to increased carrier concentration. Above the ZTC point, a decrease 

in carrier mobility causes the change in lvs. The resultant impact of the mobility 

change on drain current fvs is further illustrated with the ILJs- Vus characteristics 

in figure 3. 20. 

3.5 Conclusion 

The design of a new high temperature MOSFET model has been presented in this 

chapter. Deviating from the current trend of using a unified current expression, each 

operational region of the device has been considered separately. This is to ensure 

simplicity, ease of use, and efficiency. 

The basic functional form of a fully physical model is retained whilst important 

physical phenomena are implemented through a semi-empirical approach. This is 

to achieve high computational efficiency and ease of parameter extraction. For 

high temperature characterisation, the model requires specifying the temperature 

dependence of at most, five parameters. A level 2 PSpice model requires eight pa­

rameters. Furthermore the model accounts for major physical effects in state-of-the 

art MOSFET devices such as velocity saturation, CLM, DIBL, and carrier mobility 

reduction due to a vertical field. The work strays from the tendency to concentrate 

on n-channel devices only, with both types always being considered. 
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Discontinuities at the bbundaries between regions are overcome by using a weighting 

function that leads to a smooth and accurate model for the whole MOSFET opera­

tion. Both n- and p-channel simulations show good agreement with measured data. 

The temperature dependence of f..L, V8 at, lith, n, and Rvs are presented in section 

3.4. At elevated temperatures the decrease in carrier mobility and threshold voltage 

are the main cause of change in drain current. Their competing influence creates a 

ZTC point where the drain current is stable over a wide range of temperatures. 

Accuracy and efficiency were the two words in the introduction to this chapter that 

I believed should always be considered when designing a new model. This work ex­

tends the understanding of device modelling and derives simple formulae. Parameter 

extraction is very simple and requires only a small number of I-V measurements. 

However accuracy is not sacrificed and the model provides additional precision for 

high temperature prediction. Close resemblance between the calculated and mea­

sured data validates the model. 

This work aims to design an improved high temperature I-V model. I believe it fulfils 

this, and forms the basis for failure mechanism modelling and the development of a 

simulation tool in a later chapter. 
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Chapter 4 

NBTI 

4.1 Introduction 

N EGATIVE BIAS TEMPERATURE INSTABILITY (NBTI) has emerged as one 

of the biggest reliability concerns for today's CMOS technologies. It pre­

dominantly occurs in p-MOSFET devices when stressed at elevated temperatures 

with negative gate voltages. The effects on device charact~ristics are an increase in 

threshold voltage and decrease in drive current, causing a reduction in device speed. 

At present there is no existing model that is comprehensive enough to predict all 

known NBTI effects. In this chapter a new model is developed to physically explain 

the effect of NBTI stress on device characteristics. The model is designed to accu­

rately predict the influence of temperature and gate voltage on NBTI effects. Each 

development stage is validated with experimental data. Novel models for the in-

corporation of recently discovered NBTI phenomenon such as degradation recovery 

and a cumulative effect are presented. Additionally the impact qn _device lifetime 

under dynamic stress conditions is investigated. 
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4.2 Mechanism Overview 

Negative bias temperature instabilities are caused by elevated temperatures and neg-

ative gate voltages. NBTI effects have been observed for gate voltages which result 

in a electric field of less than 6MVcm-1 [43]. This level of electric field is smaller 

than those capable of initiating hot-carrier effects. The rate of NBTI degradation is 

influenced by temperature and becomes more severe within the range of 100-250°C. 

Devices can encounter such stress conditions when they are in static state operation. 

An example circuit to demonstrate when devices experience NBTI stress is shown 

in the below figure. 

n-MOS PBTI Stress p-MOS NBTI Stress 
f'•••···-·-----·-····-···------------l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VOUT . . 

ov 
Time (s) 

Figure 4.1: Stress time window" 

Considering the p-MOSFET there are two different stress time windows. The first 

is when the inverter input is low and output voltage is high. During this period 

no current flows through the p-MOSFET transistor and only the oxide is stressed 

by an electric field. This is when NBTI stress occurs. The second stress window 

is during the dynamic switching period. As the inverter output is pulled up, the 

p-MOSFET experiences hot-carrier stress. The same situation occurs for the n-

MOSFET during the opposite dynamic stage when the inverter output switches to 

a low voltage level. The n-MOSFET also undergoes a static state stress when the 

input voltage is h.igh and the outputvoltage low. Similarto NBTI, instab111ties occur 

for n-MOSFET and p-MOSFET devices. For n-MOSFET devices the degradation 
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is called Positive Bias Temperature Instability (PBTI). To understand the relative 

impact of both NBTI and PBTI on p-channel and n-channel devices a comparative 

test was conducted. Each type of device was stressed under both NBTI and PBTI 

stress. The voltage and temperature stress conditions were chosen to significantly 

accelerate degradation. Figure 4.2 shows the results. 
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Figure 4.2: NBTI n-channel and p-channel degradation comparison 

Both p-channel and n-channel devices under both NBTI and PBTI stress exhibit a 

change in threshold voltage. However the greatest degradation is seen in the NBTI 

stressed p-channel device. This is consistent with previous research conducted by 

Huard et al [46]. Huard proposed that NBTI stress is closely related to the tunnelling 

of holes into the SifSi02 interface. Considering there is only a negligible hole density 

at the Si/Si02 interface in n-channel devices, degradation is minimal. Whereas p-

channel devices exhibit the greatest degradation supporting Huard's proposal [46]. 

However, today the hypothesis involving the tunnelling of holes is still debated and 

at present there is still not a strict consensus on the _prec.ise physical mechanism 

behind NBTI. 
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Following Huard's hypo'thesis, it is believed that NBTI effects are a result of a build­

up of positive charge at the silicon-oxide interface Si/Si02 and/or in the bulk oxide 

layer. When a gate voltage is applied, it initiates a field dependent reaction at 

the interface that generates interface traps. The interface traps are created by the 

breaking of passivated Si-H bonds at the interface and the subsequent movement 

of released hydrogen species (H) away, leaving behind positively charged interface 

states. Figure 4.3 illustrates this reaction-diffusion process. 

H 

Silicon Gate Oxide Poly-Si 

Si H-
Si 

H>H
2 Si H H 

Si 
Si H H 

Si H 

Figure 4.3: Interface trap creation 

This Reaction-Diffusion (R-D) process was first proposed by Jeppson and Svensson 

[50]. It assumes that the dissociation of hydrogen species is caused by tunnelling 

of inversion layer holes that are captured by Si-H bonds. This weakens the Si-H 

bond, which is easily broken at higher temperatures. The newly released hydrogen 

diffuses away from the interface until it meets the poly-Si, leaving a silicon dangling 

bond (interface trap). Some H species are absorbed into the poly-Si and saturation 

occurs when all the Si-H bonds are broken. 
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The process by which i:hterface traps are created can be schematically expressed as: 

( 4.1) 

where Si3 = Si-H is a hydrogen terminated trivalent silicon bond, which is electri­

cally inactive in this form. However when the terminated hydrogen H0 is released 

we are left with a positively charged interface trap denoted by Si+. It is this increase 

in charge that contributes to the increase in threshold voltage seen after NBTI stress. 

Although certain microscopic details of the NBTI mechanism are still debated such 

as how the reaction itself takes place, the R-D model has formed the basis for many 

NBTI investigations. Throughout this work it is applied as a foundation for the 

cause of NBTI and experimental results work towards validating its use. 

4.3 Experimental Method 

All NBTI results were characterised using the procedure. outlined in the JEDEC 

Procedure for Measuring P-Channel MOSFET NBTI document [96]. A negative 

voltage higher than the nominal supply voltage to accelerate degradation was applied 

to the gate, whilst the drain, source, and substrate were grounded. Temperatures 

were varied from room temperature to a maximum 155°C. Periodically the gate 

stress was interrupted to measure (at nominal voltages) the threshold voltage and 

saturation current. Delays between stress and measurements were less than 500ms. 

The shift in vth was monitored over a stressing period (up to 20,000s) to determine 

device lifetime. This is defined as the stress time when the threshold voltage changes 

more than the specified failure criteria ( 6 lith = 30m V). All measurements were taken 

using the apparatus specified in section 3.2. 
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4.4 NBTI Model 

A physical model for NBTI voltage and temperature dependence is formulated in 

this section. Comparisons between model predictions and experimental results of 

such stress on device performance are presented. Throughout the design of the 

iriodel the i.iiJ.deHyiiig aiiii to develop ~iriiple but accui:ate rnodelli that cai1 be im­

plemented in a common reliability framework is maintained. 

The design of the model had to consider several factors. Firstly it needed to he a 

function of stress time. It also had to be capable of predicting the influence of electric 

field and stress temperature. Moreover the model had to be linked to the physical 

mechanism believed to be behind the cause of NBTI. In section 4.2 it was stated 

that we believe NBTI-is a result of a reaction-difflision procesS, and the generation of 

interface traps to be the main cause of vth shift. Using this as a physical foundation 

we design a model around an expression for interface trap generation, Nit [43].-

Nit = D · Eox · t · - · exp --3.5 0.21 1 (-Ea) 
tom kbT_ . 

(4.2) 

where Dis a technology constant, Eox the electric field dependent on stress voltage, 

t stress time, and Ea. the thermal_activation~~mergy. The fnwtion~l power Jaw time 

dependence provides a simple solution to the reaction-diffusion process. During the 

early stress-period the disassociated hydrogen species .diffuse away from the interface 

causing a rapid increase in interface traps and threshold voltage shift. When the 

hydrogen diffusicni front meets the poly-Si interface and there are fewer Si-H bonds 

to be broken the interface trap generation rate slows and Vfh shift begins to saturate. 

The voltage dependence arises due to the electro-chemical nature of the NBTI stress 

and the-best fitting model was found to bc-Eox3
·
5

, whcrc-Eox = Vqsstres./tox. An 

Arrhenius relationship is used to model the temperature dependence of NBTI. 
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Using equation 4.2, the' net contribution of l:i.Nit to the threshold voltage shift can 

be expressed as follows: 

(4.3) 

where 6Qit is the effective charge due to interface trap generation 6Qit = b::.Nit · q. 

A comparison between model data and experiments is shown below in figure 4.4. 

A negative gate voltage was applied to a p-channel device whilst the source, drain, 

and substrate were grounded. The stress temperature was constant at 155°C. 
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Figure 4.4: Threshold voltage shift under DC stress 

Good agreement is seen between experimental and model data. With increased stress 

voltage, the threshold voltage degradation increases. This is believed to be due to 

tunnelling holes having greater energy and breaking the Si-H bonds more easily at 

higher stress voltages. Furthermore we can see the power law time dependence. In 

this case a power law coefficient of 0.22 was found to best fit experimental data. 

Differen~ values for thi~c coeffici~nt ha.ye been published in the literature. [46, 50]; 

although it is commonly extracted to be around 0.25. The degradation is seen 
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to saturate with stress 'time. This is due to the hydrogen diffusion front reaching 

the polysilicon/silicon interface. Also the hole tunnelling probability reduces with 

time as there are fewer Si-H bonds to be broken. This saturating feature seen in 

the experimental results supports the use of the theoretical reaction-diffusion process 

described in section 4.2. As well as voltage experiments fresh devices were stressed at 

different temperatures. The gate voltage was constant at -2. 75V whilst various stress 

temperatures applied. Periodically the stress temperature was monitored to ensure a 

constant temperature throughout the experiment. The results are illustrated below. 
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Figure 4.5: NBTI stress as a function of temperature 

There is good correlation between experimental and model data, supporting the 

use of the Arrhenius expression in equation 4.2 to predict NBTI temperature de-

pendence. Higher temperature enhances NBTI degradation, thus the degradation 

process is thermally activated. This is due to the thermal energy increasing hole 

tunnelling probability, and enhancing the diffusion of hydrogen species. Hence at 

higher temperatures interface trap generation, and effective oxide charge is greater. 
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The activation energy was extracted from the Arrhenius plot shown in figure 4.6. 

For the p-channel device stressed at -2.75V we obtain Ea = 0.14eV. This is compa­

rable to the range of activation energies (0.12- 0.16eV) that have been reported in 

the literature recently [46, 52]. 
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Figure 4.6: Arrhenius plot showing temperature dependence of 6 Yfh 

The temperature and voltage results presented in this section validates the use of 

equation 4.2. These results provide a basis for DC stress" predictions. However it 

has been observed that after the removal of this stress there is a recovery phase that 

needs to be incorporated into the model. 

4.5 Recovery Effect 

Until recently it was assumed that after stress removal, NBTI degradation was 

permanent. However it has been observed that some of the threshold voltage shift 

induced by NBTI stress can be recovered. As continuous DC stress is seldom seen, it 
. . 

is essential that this post stress phenomenon is contained in the model for a complete 

picture of NBTI. 
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It is believed that wh~n stress is removed, hydrogen species diffuse back to the 

Si/Si02 interface, thereby recovering some of the vth degradation. To explore this, we 

performed an experiment with measurements taken during and after stress periods. 

A fresh device was stressed for up to 4000s and then allowed to recover for another 

lO,OOOs. The temperature was constant as 155°C. The measurement results are 

shown below in figure 4.7. 
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Figure 4. 7: Threshold voltage recovery after NBTI stress 

The recovery consists of a fast initial transient followed by a slow slope which appears 

to saturate with time. We presume that these characteristics of the recovery are 

due to the origin of interface trap generation. When an opposite voltage is applied 

during the recovery period the hydrogen species diffuse back from the gate oxide 

bulk towards the Si/Si02 interface. Thus the hydrogen can now diffuse back and 

recombine with silicon dangling bonds restoring them to their passive Si-H state. It 

is believed that because not all broken Si-H bonds are re-passivated.the degradation 

does not fully recover. Another proposal is that the permanent damage may be 
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caused by hydrogen sp~cies that have reached the poly silicon electrode during the 

stress phase, which cannot be recovered during the relaxation phase. To further 

understand this, we also undertook experiments to investigated if the recovery effect 

was field dependent. During the recovery stage different positive voltages were 

applied to the gate as well as taking measurements when the gate electrode was 

grounded. The experimental results are illustrated below. 
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Figure 4.8: Threshold voltage recovery as a function of gate voltage 

Several interesting observations can be deduced from the above figure. Firstly 

greater recovery is seen when more positive voltages are applied, and the rate of 

recovery is a function of the gate voltage. Secondly even when no voltage is ap­

plied during the recovery period, vth recovers a certain amount. The fact that vth 

recovers over time when no stress is applied is an important result as it supports 

the reaction-diffusion hypothesis. Under no applied field, the hydrogen species dif-

fuse back to the silicon-oxide interface. This is enhanced when a positive voltage is 

applied to the gate, comparable to the NBTI stress characteristic. On this basis we 

adopt a similar model as that of equation 4.2, for NBTI recovery. The coefficient for 
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the recovery period waS extracted from figure 4.8 to be 0.17. Thus the new model 

proposed for voltage dependency of NBTI recovery is given by: 

R = R . E 2.5 . t0.17 . - . exp __ a 1 (-E) 
ec 1 ox lox kbT ( 4.4) 

where R 1 is the recovery fitting constant. To simulate the recovery when the gate is 

grounded the dependency on oxide field was removed from the expression as shown 

below in equation 4.5. The time coefficient under OV recovery conditions also differed 

slightly. This is because the diffusion process is enhanced when a positive voltage is 

applied and therefore tends to saturate quicker. 

(4.5) 

Using both the stress and recovery models, the figure below shows a comparison to 

experimental data. Devices were stressed at varying voltages up to 4000s followed 

by a recovery period. Notice the relative decrease in recovery rate when the device 

is left to recover at OV compared to Vas > 0. 
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Figure 4.9: Comparison between NBTI model and experimental results 
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Figure 4.9 shows that the model efficiently predicts the change in threshold voltage 

during both stress and post-stress phases. These two key features of NBTI are 

modelled on the physical basis of interface trap creation and re-passivation of Si-H 

bonds during recovery. We must also study the effect of temperature in vth recovery. 

The recovery model (see equation 4.4) contains an Arrhenius relationship to account 

for the temperature dependence. The author is presently unaware of any model 

that accounts for the temperature dependence of NBTI recovery. To extract their 

activation energy, the devices were stressed and then allowed to recover (Vas = OV) 

at various temperatures. The results are illustrated below, showing a comparison to 

the NBTI stress in an Arrhenius plot. 
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Figure 4.10: Comparison between stress and recovery activation energies 

The results indicate that the recovery is enhanced at higher temperatures. We 

hypothesise that both the diffusion and re-passivation of Si-H bonds increase with 

elevated temperatures, thus promoting vth recovery. The activation energy for NBTI 

recovery was extracted to be Ea = 0.17eV. This is greater than that during the stress 

period. This could be due to an electro-thermal interaction enhancing interface trap 

creation, as the gate was grounded during recovery measurements. 
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Figure 4.11: Temperature dependence of NBTI stress and recovery 

The ability of the model to predict the NBTI temperature dependence during both 

stress and recovery is shown in the above figure. Good agreement between experi-

mental and model data can be seen. Both the voltage and temperature dependencies 

are accurately traced by the model predictions. This supports the use of equations 

4.2 and 4.4 is the design of this new NBTI model. 

4.6 Lock-in 

Another new feature built into the model is the lock-in effect. This is sometimes 

referred to as the cumulative effect and there is no model at present that accounts 

for its effect. We have seen that NBTI stress can recover a fraction of the vth 

shift. However if the device is re-stressed the degradation reappears. We have 

speculated that this permanent damage is because hydrogen has reached the poly­

silicon electrode during the stress phase and the charge calmot be recovered during 

relaxation. 
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To investigate ~his we stressed a device over 20,000s, periodically removing the stress 

and allowing the device to recover at Vas= OV. 
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Figure 4.12: NBTI lock-in illustration 

In figure 4.12, at each stress interval Vfh degradation returns quickly at first, then 

continues to degrade more slowly. Over the total 20,000s test period, the net degra-

dation is less than that for the same DC-equivalent stress. The ratio of the reversible 

component to the permanent component decreases with time, so the relative impor-

tance of the recovery becomes smaller with time. From these results we support 

the speculation that the lock-in effect is caused by hydrogen that has diffused into 

the poly-silicon electrode interface and cannot be recovered. To implement this 

characteristic into the model, a very simple numerical equation is used. 

( 4.6) 

where tstress is the time at which the stress is re-applied, T temperature, and £ 0 is 

a constant that determines the relative increase in /':, vth at each stress interval. 
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Figure 4.13 shows comp1arisons of model data to experimental recovery andre-stress 

measurements. The model is able to capture the observed experiential trends accu-

rately. Each time the stress is reapplied the degradation increases, but over time 

this increase reduces. It appears that there is a slight increase in the relative lock-in 

value at decreasing temperatures. A valid explanation for this is that at higher tem­

peratures the diffusing hydrogen is encouraged to move back away from the poly-Si 

interface. 
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Figure 4.13: NBTI lock-in temperature dependence 

At this point in the experimental analysis, the results we had collected, not only 

gave us greater understanding of NBTI but also guided us into the next area of 

research. We deduced that if NBTI effects are recovered during a relaxation period 

then this would imply that NBTI degradation could be an influence in applications 

where dynamic signals are used. Therefore the impact of dynamic degradation is 

the next subject of investigation. 
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4. 7 Dynamic Degradation 

In practical applications, devices rarely experience continual DC stress. Typically 

a device may be exposed to periodic AC and DC stress conditions. Given that 

NBTI is a relatively new failure mechanism, research on NBTI effects under pulsed 

or dynamic NBTI stress is limited. The literature that is available has shown var­

ied results. Chen et al [55] presented results showing dynamic NBTI degradation 

(DNBTI) was less than that of equivalent static NBTI (SNBTI) stress and DNBTI 

effects were frequency independent. In contrast Mahapatra et al [49] proposed that 

interface trap creation and thus ~ vth decreased at higher frequencies. In this sec-

tion we further the research needed in this area by presenting new findings on NBTI 

frequency dependency. We show that device lifetime is substantially enhanced un­

der DNBTI conditions. We also present a model that can accurately predict device 

degradation due to DNBTI stress and can be easily incorporated into the complete 

NBTI framework. 

To analyse DNBTI effects we simulated the stress conditions a p-channel device is 

exposed to in a CMOS inverter. The test configuration is show in figure 4.14. 

-Vas 

JL -V~h 
ov : nnnn 

n-substrate UUUUtJ. 
Time (s) 

Figure 4.14: Dynamic stress configuration 

Pulsed signals are applied to both gate and drain of the device. They are supplied 

out ofphase to simulate actual p-MOSFET bias operating conditions. Thus in this 

configuration the device will alternate between ON and OFF stressing modes. 
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Figure 4.15 shows a cotnparison between DNBTI and SNBTI measurements. The 

stress voltage for gate and drain junction was -2.75V. The temperature was constant 

throughout the experiment at 155°C. For all DNBTI stress the duty cycle was 50%. 
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Figure 4.15: NBTI frequency dependence 

For all DNBTI stress conditions vth shift is reduced at any given time, compared to 

the worst case DC condition. Additionally as frequency is increased, the degrada­

tion increases, disagreeing with the results presented by Mahapatra et al [49). We 

believe that at higher frequencies the recovery effects seen in section 4.5 do not have 

sufficient time to take place. At lower frequencies the relaxation period is greater 

and therefore allows time for the diffusion of hydrogen species back towards the 

Si-Si02 interface and re-passivation of Si-H bonds. Therefore for longer taff during 

DNBTI stress (lower frequency) it is hypothesised that the hydrogen species have 

more time to recover and thus less overall degradation occurs. 
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From these results we tleveloped a simple numerical expression to predict DNBTI 

frequency dependence. We propose that vth degradation follows a power law depen­

dence on frequency and can be given by: 

(4.7) 

where R is a process constant, that can be obtained along with the frequency ex­

ponent from a small number of frequency experiments. From figure 4.15 it can be 

seen that the model is able to capture the observed experimental trends accurately. 

Further comparisons were made between SNBTI and DNBTI degradation, analysing 

device lifetime. Figure 4.16 shows a plot of lifetime as a function of operating voltage 

Vnn where lifetime is defined as the time needed for D. vth to reach 30m V. 
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4. NBTI 

Extrapolating lifetime to normal operating conditions (Vnn x 1.1 for safeguarding) 

device lifetime is just under 2 years for SNBTI, whereas it reaches 4~ years for 

DNBTI. The ten year operating voltage is 1.62V and 1.8V for SNBTI and DNBTI 

respectively. The enhanced lifetime for DNBTI stress is due to the longer relaxation 

period andre-passivation of Si-H bonds described earlier in this section. As a result, 

if DNBTI effects are not considered the lifetime of devices that experience dynamic 

signals could be overestimated if predicted under only SNBTI stress conditions. 

4.8 Conclusion 

In this chapter we have developed a novel model that encompasses several new NBTI 

phenomena. We began with experimental results comparing NBTI and PBTI stress 

in both n-MOSFET and p-MOSFET devices. Greatest degradation was found to 

occur in p-MOSFET devices stressed with a negative gate voltage. It was hypoth­

esised that this degradation was due to the breaking of Si-H bonds at the Si/Si02 

interface and creation of interface traps. On this basis a model was designed to 

predict NBTI voltage and temperature dependencies. At poth higher voltages and 

temperatures vth degradation was found to increase due to increased interface trap 

generation. Recovery effects, as well as the lock-in effect were included in the model. 

Experimental results demonstrated that in practical operating conditions where de­

vices experience dynamic signals, lifetime is prolonged. This is due to hydrogen 

diffusing back to the Si/Si02 interface during the relaxation periods. At all stages 

the model predictions were supported by experimental results. 

In conclusion, several relatively new NBTI effects have been researched. A simple 

but accurate and comprehensive NBTI model has been designed that can be easily 

implemented into a complete reliability framework. 
- . 
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Chapter 5 

GIDL 

5.1 Introduction 

I N THIS CHAPTER we investigate the temperature dependence of an OFF-state 

leakage current that is posing serious limitations on future device scaling. GIDL 

is the Gate Induced Drain Leakage. This leakage current is caused by a gate-induced 

high electric field in the gate-to-drain overlap region whi<;h many researchers have 

attributed to band-to-band tunnelling [28, 32, 35]. The relentless reduction of gate 

oxide thickness mean suppression of GIDL is becoming an increasingly difficult tech-

nological challenge, and vital new models are developed as a result. 

The need for detailed models of GIDL is particularly important for ULSI1 applica-

tions, where any increase in OFF-state power dissipation is detrimental. Very little 

work on GIDL has focused on the effect of temperature [37). We therefore emphasise 

the analysis of this aspect and present a new temperature dependent GIDL model 

that accurately follows experimental trends. 

1 Ultra Large Scale Integration 
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5.2 Mechanism Overview 

GIDL has been identified as a major drain leakage phenomenon in OFF-state MOS­

FET's. GIDL has been detected in DRAM and EEPROM cells and is the dominant 

leakage mechanism responsible for discharging the storage node [35]. There has been 

considerable interest in the study of the mechanisms responsible for GIDL current 

[28, 29, 35]. Several mechanisms have been proposed to describe the behaviour of 

the leakage current and many have attributed it to band-to-band tunnelling taking 

place in the gate-to-drain overlap region. 

y 
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Figure 5.1: Illustration of gate-to-drain overlap region 

Figure 5.1(a) illustrates the cross-section of a MOSFET device, where the gate 

length L, gate width W, and gate-to-drain overlap region Lx are indicated. Figure 

5.1(b) shows the equivalent device from above. From figure 5.1(a) we can see that 

during device fabrication the gate length does not equal the physical dimensions of 
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the gate, but rather th~ distance between the source and drain regions underneath 

the gate. The reason for this is that an overlap between the gate and source/ drain 

regions is required to ensure that the inversion layer forms a continuous conducting 

path between the drain and source. The overlap is made as small as possible in order 

to minimise its parasitic capacitance. Typically for devices smaller than 0.35~tm the 

gate-to-drain overlap Lx < 150nm. 
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Figure 5.2: GIDL mechanism (n-channel) 

Figure 5.2 illustrates how the GIDL mechanism occurs in the gate-to-drain overlap 

region. In this case we describe GIDL in ann-channel device, but the process is the 

same for p-channel devices except the roles of the electrons and holes are reversed. 

When a voltage is applied to the drain with the gate grounded (figure 5.2(a)), an 

accumulation layer is formed at the silicon surface. Due to the presence of accu-

mula ted holes at the surface, it behaves like a p-type region more heavily doped 

than the substrate. This causes the depletion layer at the surface to be narrower 

than anywhere else in the channel. As a consequence there is field crowding and 

an increase in the local electric field in this region. If the drain voltage is increased 

further or the gate voltage made more negative, then+ region can become depleted 

and at sufficiently high voltages even inverted as shown in figure 5.2(b). Hence if 
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the field crowding and 1 peak electric field is high enough, there is an increase in 

both the tunnelling probability and the generation of electron-hole pairs. Due to 

the substrate being at a lower potential for minority carriers, any minority carriers 

created (holes in n-MOSFET's and electrons in p-MOSFET's) in the drain region 

flow to the substrate due to the lateral field. Any electrons (holes in p-MOSFET's) 

generated are collected by the drain resulting in the increase of the GIDL current. 

5.3 Experimental Method 

To measure the GIDL current, both the gate and source electrodes were grounded 

whilst the drain voltage was swept from 0 to ±5V. Current measurements were 

taken every 0.05V. Normal Vas- Ins measurements were also taken at various drain 

voltages to analyse the impact of GIDL on operating characteristics. To compare n­

channel and p-channel devices the same measurement voltages and conditions were 

applied to both types of devices. The maximum drain voltages were chosen so as 

not to cause rapid breakdown at the gate oxide. For th.e devices under test the 

breakdown voltage specified by the manufacture was 3.8V and -5.0V for n-channel 

and p-channel devices respectively. The gate oxide thickness was 4.2nm and the 

channel length O.l8J.Lm. The gate to drain overlap region was estimated to be O.lJ.Lm. 

The OFF-state current for the devices was specified by the manufacturer to be less 

than 50pA. The temperature was varied between room temperature and a maximum 

of 155°C. All measurements were carried out in electrically shielded conditions using 

the Keithley 2400 and 6487 precision pica-ammeters. These ammeters are capable 

of measuring in the pica-amp range with a measurement resolution of ±lOpA. For 

further details of the experimental set-up please see Appendix A. 
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5.4 GIDL Model 

In this section we develop a new GIDL model. We begin by highlighting the inac-

curacies in present models, and then proceed to describe each design stage of our 

model. The model is designed to provide accurate predictions over a wide range of 

gate and drain voltages and also the capability of predicting the influence of tern-

perature. Its design also allows for easy incorporation into a complete I-V model. 

To date a number of GIDL models based on tunnelling theory have been proposed in 

the literature [28, 35, 36]. All of the models are very similar, calculating the GIDL 

current using a simple 1-D band-to-band tunnelling expression given by: 

IcwL = A·Es exp ( t) (5.1) 

where A and B are fitting constants and Es the electric field at the Si-Si02 interface 

in the gate-to-drain overlap region. Figure 5.3 shows a comparison between the tun-
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Figure 5.3: GIDL characteristic (p-channel) 
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nelling model a.nd experimental data for a p-channel device. The gate was grounded 

and the drain swept from OV to -5V to distinguish the GIDL characteristic. Despite 

carefully fitting with constants A and B, the tunnelling model is not precise. It 

does follow the trend above ~ -2.5V which is expected as this is the region where 

tunnelling may occur, but because this is a model that describes tunnelling any 

leakage current below~ -2.5V is not accounted at all. Furthermore, no direct tern-

perature dependence is provided for, and its simple closed form makes it difficult to 

implement into a current-voltage model. Currently there is only one GIDL model 

for use in a SPICE like simulator, which is a complicated expression in the BSIM4 

model [42]. Our aim from the outset was to provide simple, easy to use models. 

The first consideration in our model design was that we wanted to provide an expres-

sian that could model GIDL for the entire range of drain voltage. In our first design 

stage we used a simple exponential expression and figure 5.4 shows a comparison 

with the measured data and existing tunnelling model. 
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The exponential equati6n used in the first model was given by: 

1 e (s·Vvs 2
)- Io 

GIDL = (5.2) 

where / 0 is the zero offset current and S the plot gradient. We can see from figure 

5.4 that the calculated results agree well for a range of drain voltages, but it fails 

to accurately match the measured data between -1.5 and -3.0V. This is because in 

this region the physical mechanism producing the leakage current is changing. In 

the low field region (Vvs < 2.0V) leakage is caused by diffusion but in the high field 

region (Vvs > 3.0V) tunnelling is the main contributor to increased current. 

In order to develop an accurate model for the complete GIDL characteristic we 

decided that each region should be modelled by separate functions. Given that the 

GIDL effect consists of two linear regions on the log plot, equation 5.2 was developed 

further separately for each region. To describe the GIDL current in the low field 

region we used the following expression: 

IciDL(L) = e (SL. Vvs) - Io (5.3) 

where / 0 is the zero offset current and SL the gradient in the low field region. Using 

a similar expression the GIDL current in the high field region was given by: 

IciDL(H) = e [SH · (-Vvs+VMAx)] - IT (5.4) 

where Ir is the current tunnelling point, S H the gradient in the high field region, 

and VMAX the maximum drain voltage. The parameters / 0 , /r, SL, SH and VMAX 

can be extracted from one simple device measurement to allow accurate fitting to 

the experimental data. 
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To achieve a smooth transition between the two expressions a transition function 

Grran is used to move between IaiDL(L) and IawL(H) through a mid-point GMP· 

Grran = [w · IaiDL(H)] + [(1- w) · IaiDL(L)] + [2 (1- w) · w · GMP] (5.5) 

where w is the weighting function that goes between 0 and 1 during the transition. 

The transition range is defined by the VDs(tow) and VDS(high) drain voltage values. 

w = VDs - VDS(low) · ( 
1 ) 

VDS(high) - VDS(low) 
(5.6) 

Figure 5.5 illustrates how this transition function is implemented to establish a 

complete GIDL characteristic. Beyond the transition point VDs(tow)• the model 

moves from the low field expression to the transition function and then onto the 

high field expression above VDS(high) providing a smooth function for the whole 

range of drain voltage values. 
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By using separate equations to describe each region of the characteristic the accuracy 

has been improved. It can be seen in figure 5.6 that during the transition from 

diffusion to tunnelling current (-2.0V < Vvs > -3.0V) and also in the low field 

region the modelling accuracy is particularly refined. Additionally, in comparison 

to the tunnelling expression, our new GIDL model provides for prediction over the 

total range of operating drain voltages. 
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Figure 5.6: Comparison of GIDL model with 1st design 

Having considered GIDL at room temperature the next stage of the investigation 

was to research the influence of temperature. Limited data is available on how 

temperature affects GIDL current. It was proposed in a report by Slisher et al 

[38] that GIDL is independent of temperature whereas both Lopez et al [36] and 

Bouhdada et al [39] presented results showing an increase in GIDL at elevated 

temperatures. In all cases no physical explanation was provided for why the GIDL 

mechanism stayed constant or changed at different temperatures. 
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5. GIDL 

GIDL measurement were taken over a range of temperatures using the experimental 

set-up detailed previously. The measured data is illustrated in figures 5.7(a) and 

5.7(b) for n-channel and p-channel devices respectively. 

l.OE-05 

l.OE-06 

3: 
~ l.OE-07 
~ 
;:l 

0 
d l.OE-08 

"Oil 
1-< 

0 

l.OE-09 

l.OE-10 

l.OE-05 

0.0 

T = 27, 60, 80, 100, 135, 155°C 

0.5 1.0 1.5 2.0 

Vns (V) 

(a) n-channel 

T = 27, 60, 80, 100, 135, 155°C 

l.OE-06 -o- Measurement 

Vas= O.OV 

l.OE-07 
~ 

~ 
~ l.OE-08 

~ 
0 l.OE-09 
d 

"@ ... 
0 l.OE-10 

l.OE-ll 

l.OE-12 

2.5 3.0 3.5 4.0 

0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 

V08 (V) 

(b) p-channel 

Figure 5. 7: Measured GIDL current at various temperatures 
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We can see from figure 5.7 that as the temperature is elevated, the GIDL current for 

both n-channel and p-channel devices increases. For both n- and p-channel devices 

there is however a different temperature dependence for each of the GIDL regions. 

In the low field region the leakage is strongly dependent on temperature whereas in 

the high field region the temperature dependence weakens. The relative difference 

between each region is illustrated in figure 5.8. 
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Figure 5.8: Change in GIDL in different operating regions (p-channel) 

In the low VDs region leakage is highly sensitive to temperature, increasing exponen-

tially with temperature and 6IDs can be attributed to thermal electron-hole pair 

generation. In the high field region (VDs = -5.0V) 6IDs is almost insensitive to 

temperature since the tunnelling probability and the electric field across the oxide 

does not strongly depend on temperature. This finding substantiates the hypothesis 

that the GIDL characteristic is caused by two different conduction mechanisms and 

supports our decision to model each region separately. 
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5. GIDL 

The nature of the modJl developed allows for easy modification to include temper-

ature dependence. The parameters 10 , Ir, and SL, SH were used in the model to 

define the offset and slope respectively. Therefore to follow the trends illustrated in 

figure 5. 7 requires that these parameters become functions of temperature. The low 

field expression is then given by: 

JGIDL(L) = e (SL(T) · Vvs) - Io(T) (5.7) 

where I 0 (T) and SL(T) are the temperature dependent zero offset and model gradi-

ent in the low field region. These parameters were found to fit most accurately to 

measured data when taking the following form: 

SL(T) = (0.0580. T) - SL (5.8) 

I0 (T) = (0.0029 · T) - 10 (5.9) 

Similarly, in the high field region IcwL(H) is expressed as: 

1 - e [SH(T)' (-Vvs+VMAx)] - lr(T) GIDL(H)- • (5.10) 

where parameters Ir(T) and SH(T) were expressed as: 

SH(T) = (0.009·T) -SH (5.11) 

Ir(T) = (0.009 · T) - 1r (5.12) 

These modifications to the model now allow for the low and high field regions to be 

predicted at various temperatures. However we can see from figure 5. 7 that we must 

also allow for changes in the transition points at different temperatures. We must 

also incorporate the change in the transition mid-point if the model is to accurately 

follow the trends at higher temperatures. 
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5. GIDL 

As temperature is indeased the transition points were also seen (figure 5.7) to 

increase. This effect could be modelled simply for the low transition point as: 

Vvs{low)(T) = Vvs(low)- 0.19 ( Tn~m - 1) (5.13) 

and for the high transition point as: 

Vvs(high)(T) = Vvs(high)- 0.28 (r. T - 1) norm (5.14) 

where Vvs(low) and Vvs(high) are the low and high drain transition voltage points at 

room temperature. The mid-point value used in the transition function (equation 

5.17) was expressed as a function of temperature as: 

GMP(T) = GMP + [o.00145 (rn~m- 1) r·5 

(5.15) 

where GMP is the mid-point value at room temperature. The resultant effects on 

the transition range are illustrated in the figure below. 
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Figure 5.9: Change transition points with temperature (p-channel) 
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Figure 5.10 shows a comparison between measured data and the model predictions 

after incorporating the temperature effects for both low and high field regions, along 

with the changes to the transition function. The calculated results agree well with 

the measurement data throughout the range of drain voltages for both n-channel and 
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Figure 5.10: Model predictions at various temperatures 
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p-channel devices. Godd agreement is seen for low drain voltages, where diffusion 

is the cause of GIDL current. Predicted tunnelling current for higher drain voltage 

(VDs > 3.0V) is also seen to be accurate. The model predictions also match the in­

creased current at higher temperatures. At low temperatures the transition function 

follows the measured data well but there is a slight error at higher temperatures, 

which could possibly be eliminated with further work on defining the transition 

mid-point function. The advantage of the GIDL expressions in their present state is 

that with a simple set of measurements the temperature dependence of only a small 

number of parameters can be extracted. 

Model Parameters n-channel p-channel 

Low field zero offset ! 0 (A) 21.948 26.17 
High field offset (@VMAX) lr (A) 13.67 14.61 
Low field slope SL 0.02 -0.78 
High field slope SH 4.20 -3.73 
Maximum drain voltage VMAX (V) 4 5 
Low transition point VDS(low) (V) 1.8 -2.0 
High transition point VDS(high) (V) 2.8 -3.0 
Transition mid-point IMP (A) 5x10-10 7x10-11 

Table 5.1: Extracted GIDL model parameters 

Table 5.1 shows the eight parameters needed to complete the fitting to measure­

ment data. With a single set of temperature measurements the model allows for 

easy calibration. Although our model provides an empirical expression for GIDL, 

we believe it provides a simple and accurate way of taking into consideration the 

different physical mechanisms behind the effect. Furthermore the model we have 

developed can be incorporated easily into a larger simulation tool. 
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5. GIDL 

5.5 Integration into 1-V Model 

Having developed the present GIDL model over a range of drain voltages, the final 

design stage of this work involved integrating it with the complete current-voltage 

model. Figure 5.11 illustrates the complete gate voltage characteristic of an-channel 

device. Only measurement data is plotted. 

_..-..._ 

< ...___., 

+> 
~ 
Q) 
1-1 

~ 
0 
~ 

'@ 
1-1 

Q 

l.OE-02 

l.OE-03 

l.OE-04 

l.OE-05 

l.OE-06 

1.0E-07 

l.OE-08 

l.OE-09 

l.OE-10 

--o- Measurement 

Vns = 2.8V 

T = 27"C 

Subthreshold Strong-inversion 

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 

Vcs (V) 

Figure 5.11: Illustration of device operating regions (n-channel) 

During the measurement the drain voltage was set above the normal operating 

voltage (Vnorm = 1.8V) to enhance the GIDL current. We can see that the total 

characteristic is divided into three regions. The strong inversion region where drift 

current contributes to the drain current was described in section 3.3 of chapter 3. 

Below the threshold voltage the characteristic moves into the subthreshold region. 

The transition between these two regions was also covered in chapter 3 in section 

3.3. 7. A means-of implementing the GIDL model is now needed. 
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5. GIDL 

To do this we used a weighting function similar to that used previously. This will 

provide a smooth transition between the subthreshold and GIDL model and will 

allow for relatively easy implementation into the complete simulation tool. Thus 

the transition between the subthreshold and GIDL model can be defined as: 

IawL if Vas = Vas(low) 

Ivs(Sub) = r 1Tran if Vas(tow) > Vas < Vas(high) 

Is if Vas > Vas(high) 

where the transition function hran is expressed as: 

ITran = [wr· Is]+ [(1- wr) · IawL] + [2 (1- wr) · wr· IMP] 

The weighting function w I was defined as: 

WI= Vas- Vas(low) · ( 
1 ) 

Vas(high) - Vas(low) 

(5.16) 

(5.17) 

(5.18) 

The low transition voltage Vvs(low) was set to equal OV. It was found that the high 

transition point Vas(high) was a function of drain voltage, which we defined as: 

Vas(high) = Vhigh + (0.16 · Vvs) (5.19) 

For n-channel and p-channel devices the high transition voltage Vhigh was found to 

be 0.15 and -0.15V respectively. The mid-point value IMP was found to increase 

exponentially with drain voltage and was expressed as: 

(5.20) 

where M H ahel M P2 are fitting constants. 
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5. GIDL 

Figures 5.12(a) and 5.12(b) compare the model against measured data in the sub­

threshold region. In section 3.3.6 we highlighted an error in the subthreshold plot at 

very low gate voltages. Now with the integration of the GIDL model this error has 

been removed and good agreement is seen for both n-channel and p-channel devices. 
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A smooth transition is 'seen from the subthreshold to the GIDL model. At higher 

drain bias we can see the importance of making the high transition point Vvs(high) 

a function of drain voltage. Further illustration of how the GIDL model has been 

incorporated into the complete I-V characteristic is shown in :figtrre 5.13. 
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As Vas approaches zero1we can see that for high drain voltages (VDs > ±1.8V) there 

is a significant increase in the OFF-state leakage which is representative of GIDL. 

The higher drain voltage results in a higher electric field in the gate-to-drain overlap 

region increasing the chances of tunnelling and hence increased GIDL current. 

5.6 Conclusion 

A new voltage and temperature dependent model for GIDL has been presented 

in this chapter. Initially we highlighted the inaccuracies in existing models. We 

attempted to predict GIDL with a single expression but found that this poorly 

described the transition between low and high field regions. Separate exponential 

functions were used to overcome this problem and the influence of temperature was 

also investigated. In the low field region leakage is highly sensitive to temperature 

attributed to thermal emission; in the high field region leakage was almost inde­

pendent of temperature since the tunnelling probability and electric field across the 

oxide does not strongly depend on temperature. This finding supported the hypoth­

esis that the GIDL characteristic is caused by two different conduction mechanisms 

and validated our decision to model each region separately. 

Investigations into the effect of scaling on the GIDL mechanism would provide for 

further development of the model. Chung et al [40) found that GIDL is enhanced 

by decreasing oxide thickness. In the same study GIDL was seen to be virtually 

independent of channel length because the tunnelling depends only on conditions in 

the immediate gate-to-drain overlap region. However the aim of this work was to 

develop a simple but accurate model that could be implemented into a I-V model 

and we believe this has been demonstrated. 
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Chapter 6 

Hot-Carrier Effects 

6.1 Introduction 

H OT-CARRIER EFFECTS have been a major reliability concern for over 20 years, 

and a great deal of research has aided the understanding of the mechanism 

and its effects. Nonetheless, continued device scaling and increases in channel elec-

tric fields has required the research community to extend the understanding of hot-

carrier effects in deep sub-micron devices. 

In this chapter we examine the influence of temperature on hot-carrier effects for 

deep sub-micron devices. For many years it has been believed that hot-carrier 

degradation is reduced at elevated temperatures, and for this reason research on 

this topic has been minimal. We aim to further the understanding of temperature 

on hot-carrier effects and present new results to clarify if this belief is correct for 

today's technologies. We propose a new temperature dependent substrate current 

model, and demonstrate how it can be used to predict device lifetime .. The model 

is supported by experimental results at each stage of its development. 
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6. Hot-Carrier Effects 

6.2 Mechanism Overview 

Hot-carrier effects are the result of high lateral electric fields in the channel near the 

drain region. This is the main reason why aggressive scaling of devices has resulted 

in an increase of hot-carrier degradation. While higher electric fields provide for 

increased carrier velocity, and hence switching speed, these also present a serious 

concern for the long term reliability of the devices. 

There has been substantial research into hot-carriers effects and the cause of the 

degradation [57, 58, 59]. A strict consensus exists that under high electric fields 

carriers can gain enough energy to cause impact ionisation. This results in the 

generation of electron-hole pairs causing an increased substrate current. Moreover 

if the electric field is high enough, carriers gain sufficient energy to be injected and 

trapped in the oxide generating interface states and oxide charges. 

Gate 

Gate Oxide 

hot-carrier 

Trapping 

Substrate 
Current 

Drain 

Figure 6.1: Illustration of hot-carrier mechanism (n-channel) 

Figure 6.1 illustrates the hot-carrier mechanism in ann-channel device. Under high 

drain voltages, a pinch-off region is formed between the inversion layer and drain. 

The large voltage drop across this region causes a high lateral electric field close to 
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6. Hot-Carrier Effects 

the drain junction. Tllis accelerates carriers travelling from the source such that 

they reach energies which are considerably higher than the thermal equilibrium 

energy in the silicon lattice. This is why the carriers are referred to as hot-carriers. 

They loose their energy via impact ionisation generating electron-hole pairs. The 

majority of the carriers generated are swept to the substrate resulting in substrate 

currents. Hence the substrate current serves as an excellent measure of hot-carrier 

degradation. Any carriers generated with energies large enough to overcome the 

potential barrier between the Si/Si02 interface can be injected into the gate oxide. 
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Figure 6.2: Illustration of silicon-oxide interface energy bands 

As we can see from the above figure, silicon in conventional devices has a band-gap 

of approximately 1.12eV and silicon dioxide has a band-gap of approximately 9.0eV. 

The band alignment at the silicon-oxide interface results in an energy barrier of ~ 

3.leV for electrons and ~ 4.8eV for holes. Due to the energy barrier for electrons 

being smaller than that of holes, the probability of electron injection is greater than 

that of hole injection. This is why hot-carrier degradation is different in n-channel 

than in p-channel devices. In both types of devices any injected carriers cause a 

change in the oxide charge distribution, and this acts as the main ·mechariism for 

degradation of device parameters. Increases in threshold voltage subsequently lead 
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6. Hot-Carrier Effects 

to a transconductance tlegradation, and decrease in drain current drive capability. 

An example of parameter degradation is shown in figure 6.3. It shows a comparison 

between the transconductance of a n-channel device before and after hot-carrier 

stress. Measurement data only is shown in the figure. 
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Figure 6.3: Transconductance degradation after hot-carrier stress 

After stressing, there is a significant decrease in the transconductance of the device. 

This will result in a reduction in device operating speed and can have detrimental 

effects on circuit functionality. This experiment was conducted at room temperature 

and until now the effects of high temperatures on the hot-carrier mechanism has 

seen limited research. From the literature, it is believed that at higher temperatures 

impact-ionisation is decreased and hence hot-carrier degradation is reduced [67]. 

Recently though there has been some concern that this assumption may not be true 

for deep sub-micron devices [68]. Hence a part of this work aims to further the 

understanding of the hot-carrier mechanism, clarifying its temperatlire dependence. 
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6. Hot-Carrier Effects 

6.3 Experimental Method 

Hot-carrier stress was applied to single n-channel and p-channel devices for different 

periods of time, and measurement were taken at periodic time intervals. Each test 

was automated using a Lab VIEWTM program. All test measurements followed the 

JEDEC procedure for hot-carrier measurements [103]. The drain current charac­

teristics were utilised to provide information about the degradation process during 

hot-carrier stress. The threshold voltage was measured using the constant current 

method describes in section 3.3.1 of Chapter 3. Additionally for hot-carrier analysis 

substrate current measurements were taken. 

V OS Stress 
Gate 

Gate Oxide 

Substrate 

Figure 6.4: Hot-carrier stress configuration 

Figure 6.4 illustrates the test configuration used throughout hot-carrier tests. Before 

stressing, characteristic measurements were taken to determine the gate bias at 

which maximum substrate current occurs. Stresses were applied at Isub(max) and 

various drain voltages above the normal operating voltage (1.8V) to accelerate the 

degradation. Stress tests were performed at various temperatures in the range of 

27-155°C. Hot-carrier lifetime was defined as the strf)SS time required to produce a 

10% shift in the saturation drain current from its fresh value. 
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6.4 Hot-Carrier Model 

It is the high electric field at the drain end of the channel that causes impact ion-

isation, generation of electron-hole pairs and hence device degradation. However, 

it is difficult to measure the peak electric field and verify it experimentally. The 

substrate current lsub which is caused by hot-carriers generated by the same electric 

field is a simple measurable quantity that can be correlated with device performance 

and can be used to monitor device degradation. Hence the majority of models de­

veloped to predict hot-carrier lifetime are based on substrate current generation 

[62, 63]. It is therefore very important to have accurate substrate models to provide 

a good estimate of individual hot-carrier device lifetime. In this study we improve 

an existing substrate current model to accurately predict the substrate current for 

deep sub-micron devices for a range of voltages. We also develop the model further 

to encompass temperature dependence. 

Within the literature several analytical models for substrate current behaviour have 

been reported [57, 62, 63]. However there is concern over the accuracy of these 

models for today's deep sub-micron devices as substrate current has been expected 

to increase dramatically with reductions in device dimensions. Our work initially 

used the following expression for substrate current [57]. 

A->. ( -¢· ) 
lsub =IDs· ¢im · (VDs- VDssat) · exp >.mE~ (6.1) 

where ¢i = 1.3eV is the critical energy for a hot-carrier to cause impact ionisation, Ai 

a technology dependent constant, and Am is the electron-phonon scattering mean free 

path. EM is the peak electric field near the drain region and can be approximated 

using two-dimensional analysis as EM= (VDs- VDssat)/ld. The saturati?n voltage 

Vvssat is the potential at the pinch-off point defined by equation 3.18 in chapter 3. 
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6. Hot-Carrier Effects 

The characteristic length ld is the effective length of the channel pinch-off region 

and is a function of oxide thickness tax, channel length L, and drain junction depth 

XJ. For the devices used in this study XJ was approximated as 0.1J.Lm. For deep 

sub-micron MOSFET's with thin gate oxide, ld has been formulated as [67]: 

(6.2) 

From equation 6.1 it is expected that the substrate current is proportional to the 

drain current and the probability for impact ionisation. Figure 6.5 shows a plot 

of lsub versus Vas at varying drain voltages comparing measurements and model 

predictions. 
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Figure 6.5: Inaccuracy in substrate current prediction (n-channel) 

As the gate voltage increases from zero the supply of channel carriers increases 

resulting iJ?- an increase in the lsub· However, as the gate bias approaches the drain 

voltage, the lateral electric field in the channel decreases resulting in a decrease in 
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6. Hot-Carrier Effects 

substrate current. Godd agreement can be seen in figure 6.5 between model and 

device measurement at VDs = 2.8V which was the initial condition used for model 

calibration. However despite trying to optimise the parameters used in equation 6.1 

the drain voltage dependency of the substrate current was foUiid to be inaccurate 

for the deep sub-micron devices used in our tests. We therefore propose a simple 

way to develop the existing substrate current expression. 

(6.3) 

Defining the drain voltage dependency of the technology constant A, with fitting 

parameters A0 and CA, the drain voltage dependency of !sub can be calibrated for 

different technologies. With the incorporation of equation 6.3 into the substrate 

current expression, figure 6.6 illustrates the improvement in accuracy. 
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Figure 6.6: Substrate current versus gate voltage (n-channel) 

121 



6. Hot-Carrier Effects 

Similarly the model wall used to predict I Sub in p-channel devices as shown below in 

figure 6. 7. Good agreement can be seen and also shown is the common bell shaped 

characteristic resulting from the relative variation between carrier supply and the 

lateral electric field. Furthermore the refinement of the drain current model in the 

subthreshold region provides for better lsub accuracy in the low gate voltage range. 

5.0E-05 

Vns = -3.5V 

O.OE+OO 

0.00 -0.40 -0.80 -1.20 -1.60 -2.00 

Vcs (V) 

Figure 6. 7: Substrate current versus gate voltage (p-channel) 

Most studies concentrate on hot-carrier effects in n-channel devices only, but we 

conducted studies of both n-channel and p-channel devices. The reason why hot-

carrier effects in p-channel devices are often neglected is because the mean free path 

of the majority carriers is shorter in p-channel type devices. This means hot-carrier 

induced problems are more severe in n-channel devices due to the longer mean free 

path and hence higher energy of electrons. However concerns have arisen over the 

hot-carrier reliability of p-channel devices in deep sub-micron devices [69). 
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Figure 6.8 compares th~ relative substrate currents for both n-channel and p-channel 

devices. We can see that the peak substrate current in n-channel devices is about 2 

to 3 orders of magnitude larger than in p-channel devices. 
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Figure 6.8: Comparison between n- and p-channel substrate currents 

Under the same bias conditions there are fewer hot-carriers and hence lower sub--

strate current for p-channel devices compared to that of n-channel devices. Hence 

in a CMOS inverter it would be expected that then-channel device would undergo 

greater stress and fail before the p-channel device. 

In this section we have developed a semi-empirical model that captures the basic 

physical theory of hot-carrier effects, but whose parameters are based on measurable 

quantities such as lsub· The next stage in the study investigated how temperature 

influenced the substrate current and subsequently hot-carrier degradation. 
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6.5 Influence of Temperature 

Until recently it has been assumed that at higher temperature hot-carrier effects 

are reduced. For this reason the majority of hot-carrier research has concentrated 

on the influence of increased electric field and voltage dependency at room tem­

perature. However conflicting results on !sub temperature dependence have been 

recently reported [67, 68]. In this section we aim to accurately establish the tem­

perature dependence of substrate current for deep sub-micron devices and extend 

the room temperature model to encompass temperature effects. 

Figure 6. 9 shows the temperature dependence of the substrate current for a p-channel 

device. We can see that at higher temperatures the substrate current is reduced. 

The drain voltage during this experiment was relatively high at -4.2V. 
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Figure 6.9: Substrate current at various temperatures (high Vvs) 
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A comparable trend was also found for n-channel devices, with Isub decreasing at 

elevated temperatures at high drain voltages. The reasoning behind the decrease in 

I sub is as the thermal energy increases at higher temperatures, the Si lattice vibrates 

more, and hence the electron-phonon scattering is increased. As a result the hot­

carrier mean free path is reduced and the electrons have less time to gain energy. 

Subsequently impact ionisation and electron-hole pair generation both reduce. 

From the trend shown in figure 6.9 it could be assumed that substrate current is 

reduced as higher temperatures and hot-carrier effects reduced. This is the assump-

tion that has been made in the past. We proposed though that there is a transition 

in the temperature dependence of !sub and it does not always decrease at elevated 

temperatures. Consider figure 6.10 illustrating the temperature dependence of a 

p-channel device at VDs = -2.6V. 
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Figure 6.10: Substrate current at various temperatures (low VDs) 
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Clearly at low~r drain 'voltages the substrate current increases with elevated tem­

peratures, contradicting the common belief. This finding prompted further investi-

gations. Experiments were conducted to study the temperature dependance of !sub 

at various drain voltages. The results are shown in figure 6.11. 
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Figure 6.11: Substrate current crossover point 

From figure 6.11 it can be seen that there is a transition point in the temperature 

dependence of the substrate current at a certain drain voltage. This was found to be 

2.6V and -3.3V for n-channel and p-channel devices respectively. The measurements 

were taken at the maximum substrate current values. 

To understand this let us first consider the high field region where !sub decreases 

with temperature. The dominant cause of the decrease in !sub is the reduction in 

electron mean free path ..\m· This reduces the mobility of the hot-carriers and results 

in a decrease of the impact ionisation rate. At the same time the electron relaxation 
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length Ae also decreases at higher temperatures. This is the average distance over 

which an electron will lose its energy after the impact ionisation event has occurred. 

At high drain voltages the temperature dependence of Ae is overshadowed by the 

reduction in -'m· However at lower drain voltages its effect is· not negligible. In 

this region the decrease in Ae with temperature causes an increase in the effective 

electric field which dominates over the relative reduction in electron-phonon mean 

free path. Thus the increase in electric field at higher temperatures results in an 

increased substrate current and subsequently the cause of the transitions seen in 

figure 6.11. This effect has not been noticed in previous long channel technologies 

because the increase in electric field at lower drain voltages and elevated temper­

atures was not sufficiently significant to dominate over the decrease in mean free 

path. Therefore it has not been included on any previous substrate current models 

making them inaccurate for deep sub-micron devices at low Vvs· 

To extend the room temperature substrate current model previously described in 

section 6.4 we propose the following expression for the temperature dependence of 

the electron-phonon mean free path -'m· 

(6.4) 

where -'mo is the mean free path at room temperature. The transition point is 

implemented into the model by the parameter T P in equation 6.4. This is a function 

of drain voltage and is expressed as: 

TP = TPO- (Vvs · Cr) (6.5) 

where T PO and Cr are fitting constants that determine the transition voltage. To 

the author's knowledge this transition effect has not been previously modelled. 
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6. Hot-Carrier Effects 

Figure 6.12 shows the tlrain voltage dependency of !sub at different temperatures. 

Having incorporated the transition effect into the substrate current model there is 

good agreement between model and measurement data for a range of voltages with 

the transition point accurately predicted for both n-channel and p-channel devices. 
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To further illustrate tHe models capability to simulate the transition, figure 6.13 

compares the temperature dependence of Isub below and above the transition point 

for ann-channel device. In figure 6.13(a) the substrate current increases at higher 

temperatures, whereas the opposite is true in figure 6.13(b). Model predictions agree 

well with measured data. 
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Figure 6.13: Substrate current characteristic above and below transition 
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6.6 Lifetime ~Prediction 

Having extended the substrate current model to accurately encompass the transition 

in Isub temperature dependence, this section investigates whether this new finding 

has any effect on device lifetime. This is particularly important to clarify previous 

assumptions that substrate current and hence hot-carrier degradation is strictly 

reduced at elevated temperatures. 

r = A· exp (_!!__) 
Vvs 

(6.6) 

Equation 6.6 is a hot-carrier lifetime model in its simplest dimensionless form. The 

lifetime r is calculated based on a drain voltage acceleration law, where A and Bare 

fitting constants. Despite providing reasonable accuracy and a very simple model, 

it is not based on the physical process behind hot-carrier degradation and is un­

suitable for the aims of our study. A model based on the foundations of hot-carrier 

degradation and capable of encompassing different technologies is needed. We have 

already seen that the substrate current is a good indication of the level of hot-carrier 

stress, and hence it can be used as a measure of device d_egradation. Previously a 

number of successful lifetime models have been developed that characterise the hot­

carrier effect with peak substrate current [57, 65, 66]. These semi-empirical models 

were shown to be valid only down to 0.25J,tm technology [66]. However for smaller 

technologies as used in this study it needs to be confirmed if they are still valid. 

[(
Isub)m] 

r=AHcE· Ivs (6.7) 

The above equation is a widely used hot-carrier lifetime model for sub-micron de­

vices, where AHcE and m are constants [58]. It relates device lifetime to the nor­

malised current Usub / Ivs). The model is both temperature and dimensionally 

dependent with the use of Ivs and Isub· 
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Using equation.6.7, figure 6.14 shows.device lifetime as a function of drain voltage for 

an n-channel device. The main parameter degradation caused by hot-carrier effects is 

an increase in lith and decrease in IDs, hence the measurement data was obtained by 

stressing the device at some fixed VDs and monitoring the change in saturation drain 

current. Device lifetime was defined at D.IDs = 10%. The gate voltage was biased at 

Isub(max) and the complete test repeated at an elevated temperature. Measurements 

were obtained at the lowest VDs stress possible to provide high confidence of the 

extrapolated lifetime, however a compromise was needed to make the test time 

practical. 

l.OE+09 

1.0E+08 

l.OE+07 
~ 

00 
--._.; 

(L) 
1.0E+06 s ..... 

.;..> 

.B ...... 
~ l.OE+05 

1.0E+04 

1.0E+03 

l.OE+02 

10 Years 

" Measurement (T = 27°C) 

0 
Measurement (T = 155°C) 

1.40 1.80 2.20 2.60 3.00 3.40 3.80 4.20 4.60 

Vns (V) 

Figure 6.14: Hot-carrier lifetime (n-channel) 

The measurement data captures the essential device degradation information and 

there is good correlation with the model predictions. The model predicts a hot­

carrier lifetime at normal operation conditions (VDD x 1.1 for safeguarding) of 70 

days at 27oC and 34 days at 155°C. This is a DC stress worst case lifetime. According 
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to Hu et al [104] the A~ lifetime can be calculated using the ratio TAG = Tvc · /tr 
where f is the switching frequency and tr is the gate signal rise time. Hence for the 

test results in figure 6.14 the AC lifetime (f = lOOMHz, tr = Ius) at 27°C is 8.2 years 

and 4.1 years at 155°C. A quality and reliability report by Winbond manufacturing 

[105], specified hot-carrier device lifetime for their DRAM devices at DC > 0.2 year 

and AC > 10 year. The DC lifetime of our devices at room temperature are above 

the required 0.2 year period. However at elevated temperatures they are below. We 

propose that this is because of the transition of !sub temperature dependence at 

low Vvs presented in the previous section. At high Vvs the belief for long channel 

devices that hot-carrier effects are reduced at higher temperatures is true, but this 

is not the case at lower Vvs near real life operating conditions. This raises doubts 

over the validity of current hot-carrier models and their capability of predicting the 

influence of temperature. 

6. 7 Integration into the 1-V Model 

The final part of this chapter describes how the substraty current is implemented 

in the complete I-V model, and the resultant effect on the I vs characteristic. In 

figure 3.8 of chapter 3 an inaccuracy was highlighted at high drain voltages. It was 

particularly evident in n-channel devices compared to p-channel. It was proposed 

that the deviation of the measurement data from the model prediction was due to 

the onset of impact ionisation and increase in drain current as a result. 

Ivss = lvs + lsub (6.8) 

As we have seen at high drain voltages a significant substrate current is produced. 

Hence to complete the I-V characteristic a simple addition of the drain current and 

substrate current is all that is required. 
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Figure 6.15: Complete I-V characteristic 

From figure 6.15(a) the inaccuracy in the n-channel drain current model has now 

been removed. The R2 value has risen from 0.985 to 0.996. Whereas previously the 

model failed to follow the data at high drain voltage (VDs > 2.0V), now the added 

substrate current is evident in the model prediction. The substrate current was also 

implemented into the p-channel model, however due to the lower level of substrate 

current it had no effect to the I-V characteristic in the operating range of interest. 
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6.8 Conclusion 

A clear understanding of hot-carrier effects in a high temperature environment is 

essential to ensure product reliability. In this chapter we have presented results that 

further this understanding. It was identified that at low drain bias the substrate 

current for both n-channel and p-channel devices increased at elevated tempera­

tures. This is believed to be due to the reduction of the electron relaxation length 

Ae resulting in increased electric field, and hence increased substrate current. This 

is contrary to common belief that hot-carrier effects are strictly reduced at elevated 

temperatures. This helps to support a number of concerns risen in recent literature 

that the common belief is no longer true for deep sub-micron devices. 

A new semi-empirical substrate current model was developed to account for the 

transition in temperature dependence of !sub at low drain voltages, and good agree­

ment was observed between model predictions and measurement data. Despite most 

studies concentrating only on n-channel devices, we investigated and developed a 

model for both types of devices to provide a complete hot-carrier analysis. 

These new findings cast some doubt on the understanding of the hot-carrier phenom­

ena in deep sub-micron devices and are particularly disconcerting to those interested 

in high temperature operating conditions. If temperature effects are not considered 

the lifetime of devices could be overestimated, and is an obvious concern for future 

technologies. 
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Chapter 7 

An Integrated Reliability 

Methodology 

7.1 Introduction 

I N THE PREVIOUS CHAPTERS separate models were developed for the operating 

characteristics of devices and also the prominent technological life-limiting failure 

mechanisms. Each operating characteristic/mechanism has been investigated for a 

given technology and the developed model verified experimentally. In this chapter 

we present a new methodology to combine these models into a complete framework. 

A simulation tool is designed that can be implemented into the product design 

process to allow quick evaluation of device performance and reliability. The tool is 

designed around the current-voltage model and the failure models are provided as 

add-ons for device failure analysis. Simulations are undertaken to investigate how 

the combination of elevated temperaturf:)s and chaJJ.ges in device dimensions may 

affect the performance and reliability of future technologies. 
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7.2 Methodology 

Behind the design of the simulation tool is a methodology: an idea or ideal of what 

the basis for the tool is, and how it fits into the present product development and 

reliability qualification process. In short our methodology is to provide a reliability 

tool that is based on physical models and can be implemented in the early product 

development stages. 

Traditionally reliability assurance has relied mainly on failure detection at the end 

of a lengthy product development and qualification process. Due to the reliability 

analysis taking place towards the end of the development cycle any re-design work 

adds significantly to design time and cost. For today's technologies, time-to-market 

requirements make it no longer practical to design the product and then quantify 

and refine the reliability by a sequence of test and fix steps at the latter stages of 

development. What is required is a quick and effective way of evaluating product 

reliability at the earliest stages of conceptual design. In practice a designer will 

make a number of changes/optimisations to his or her design and it would be an 

oversight to neglect simulation before committing the design and waiting to discover 

if there are any failures or errors. Thus, the provision of a simulation tool at this 

stage of development would prevent the nervous wait to see if the performance of the 

circuit meets specification. Furthermore it would allow the user to optimise design 

performance and analyse the effect of any changes. 

On the basis that a tool is required at the early stages of product development, the 

methodology we develop aims to provide an element of built-in reliability to the 

design process. To develop some means of simulating device reliability with simple 

but effective models, to replace the traditional end of the line reliability testing. 

136 



7. An Integrated Reliability Methodology 

Figure 7.1 illustrates how it is envisaged that the simulation tool fits into the inte­

grated reliability methodology. It can be seen that the reliability analysis is built 

into the early stages on the development process before any fabrication or material 

cost. The core elements of the tool are the I-V and failure mechanism models that 

take the user specified technology and operating parameters and calculate the re-

sultant effect on device performance or lifetime. Each model is based on a physics 

of failure approach built around the understanding of the mechanism. 
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Operating conditions 

1-V model 
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Performance optimisation 
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Reliability simulation 

Package 
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Wafer fabrication 
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Figure 7.1: Integrated reliability methodology 

With a top-down approach the operating conditions are fed into models to simulate 

the actual failure mechanisms occurdng in the application environment. This allows 

the influence of outside factors, such as temperature, on device performance to be 
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addressed. D~igners can use the simulations to aid optimisation and provide the 

opportunity for interactive feedback during the design process. How design choices 

affect reliability of the chosen design can be analysed and then any faults fixed by 

re-design before fabrication. The intention is to give the user the opportunity to 

make appropriate trade-offs between performance and reliability, and reduce prod­

uct development cost and time. 

7.3 Tool Design 

This section describes how the integrated reliability methodology was implemented 

into a usable simulation tool. A means of combining the current-voltage and failure 

models into a complete tool was needed. Up to this point all the mathematical cal­

culations and models had been written using MathCADni worksheets for analysis. If 

each model were to be treated separately, then this program is excellent as it allows 

for easy input of formulae and provides quick visual results. A way of using these 

files in the proposed tool was investigated. MATLABTI>i w~ considered as an option 

and the complete I-V model was implemented in this program. However only very 

slight improvements in simulation time were noticed. Additionally one of the aims 

of this tool is to allow the user to easily change a parameter and see the resultant 

effects and it was felt the MathCAD interface was more suited to this. In addition, 

the suppliers of MathCAD provide an extension that allows MathCAD files to be 

embedded into an Excelni spreadsheet. Several input and output links can be made 

to allow data to be transferred from the MathCAD file to an Excel spreadsheet and 

vice versa. This provided for the exact ideal of the methodology: a way of giving 

the user access to the workings behind the models and calculations whilst providing 

a visual ousednterface. 
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Figure 7.2 illustrates th'e MathCAD file that was developed containing the models. 

The complete I-V model and failure models were written into a single file . Drop­

down areas were then used to section the various input parameters and models. A 

selection of these drop-down boxes have been expanded in the diagram and placed 

behind the main model file. 

Figure 7.2: Layers of MathCAD development 

The MathCAD application calculates top-down and so all constants and input pa­

rameters are placed at the top. The parameters drop box contains all the technolog­

ical and dimensional parameters such as device channel width and length, gate oxide 

thickness, and carrier mobility values. The extracted fitting parameters obtained 

from the accelerated DC tests are also contained in this box. User defined param­

eters such as drain and gate voltages, operating temperature and stress times are 

contained in the input bias/output bias drop-down box; this allows the user to set 

the operating and environmental conditions as appropriate. Thereafter the models 

developed in the previous chapters including the I-V, GIDL, substrate current , and 

hot-carrier models are implemented into the corresponding drop box. 
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Visual analysis is designed into the MathCAD file in the graphical analysis box, 

which contains a collection of graphs illustrating the model predictions. However 

for successful tool implementation, real time comparison to experimental data would 

be a great asset. To achieve this, the MathCAD file was embedded into an Excel 

worksheet. 

Figure 7.3: Embedded MathCAD file 

Figure 7.3 shows a snapshot of the Excel worksheet. The MathCAD file is embedded 

into the worksheet and then different input/output variables defined. For example, 

in the first worksheet the MathCAD file illustrated in figure 7.2 is embedded. The 

predicted drain current outputs are entered into the worksheet at the appropriate 

point. All that is then required is to click the calculate button on the MathCAD 

toolbar to generate the result. Depending on the set input parameters, the Math­

CAD file outputs the corresponding drain current values and updates the graph. 

This allows for immediate comparisons between the measured data and model pre-

dictions. Up to ten inputsjouputs are available for each embedded file and so a 
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range of model simulations can be output into the worksheet. For instance the 

second sheet compares the model predictions to measured data of a drain current 

characteristic at varying temperatures. An additional sheet for the NBTI model is 

provided for in a third sheet. This is separate from the main I-V model as it is only 

required for p-channel devices. 

7.4 Simulation Results 

With the tool implemented into the simulation framework as described in the pre­

vious section, it can be used to predict changes for a wide range of parameters. 

In this section the most prominent factors that influence future technologies are 

investigated and simulation results presented. 

7 .4.1 Scaling 

Scaling of device dimensions has always been at the forefront of technology develop­

ment. With dimensions now entering the nanometer scale, it becomes vital that any 

reliability or performance problems relating to reduced dimensions are addressed. 

Thus, the provision of a tool such as the one developed in this work is essential to 

predict the fast change in device scaling. In 2006 Li et al [15] stated that the ad­

vancement of device failure modelling had fallen behind the development of CMOS 

technology which has raised many new issues related to both circuit performance 

and reliability. Throughout the history of CMOS development a new technology 

generation has typically been introduced every 2 years. At present we are approach­

ing a time when further scaling may be limited by physical factors and the capability 

to predict whether the present rate of scaling can continue would be of great use. 
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The two main reasons eo decrease the dimensions of a MOSFET are circuit density 

and speed. Ever decreasing device dimensions means higher device density, shorter 

propagation delay times, and hence improved performance. However at the nanome-

ter scale there are some notable concerns including increased leakage current, direct 

tunnelling in ultra thin gate oxides, and increased power dissipation [26]. 
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Figure 7.4 illustrates an example result using the simulation tool. The leakage 

current of a n-channel device was simulated at varying channel lengths and oxide 

thicknesses. The typical leakage current limit of 50pA set by the wafer manufactures 

is also shown. As the channel length is reduced the leakage current rises. The leakage 

is also enhanced for thinner gate oxides. This is because as devices become smaller 

and the oxide thickness is reduced the electric field rises, resulting in increased 

leakage. This trend is particularly relevant to battery operated devices where an 

increase in leakage causes higher power dissipation when the device is in its OFF­

state, and hence reduced battery life. To overcome increased leakage it is common 

practice to scale the operating voltage. For today's and future technologies·this may 

no longer be an option. Traditionally the threshold voltage along with the operating 
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voltage have been redu~ed relative to the reduction in device dimensions. However 

the difference between the thermal voltage and threshold voltage has become smaller 

and smaller to the extent that it can no longer be reduced. Hence there is a physical 

limit to the difference between the operating voltage and threshold voltage. As 

well as leakage limits, another important parameter affected by scaling is saturation 

drain current. 
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From figure 7.5 we can ~ee that for both n-channel and p-channel devices with thick 

oxides the scaling of channel length has little effect on the saturation drain current. 

We would expect this from equation 3.19. As the channel length approaches zero, 

the drain current approaches a constant value. However for thinner oxides the oxide 

capacitance and electric field is greater, magnifying current increase. The simulation 

results also match the trend of previously published data [1o6] for similar devices. 
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Figure 7.6: Influence of temperature on scaling channel length (n-channel) 

Further analysis of scaling and its effect on the saturation drain current was un-

dertaken, simulating the influence, if any, of temperature on the device. In figure 

7.6 the saturation current is predicted as a function of channel length at 27°C and 

also 155°C. For large channel devices (l > 0.5p,m) the reduction in drain current is 

minimal. As the the channel length is reduced the influence of temperature becomes 

more prominent. In section 3.4, we showed that when a device is in saturation the 

dominant cause of drain current reduction is a decrease in carrier mobility. Hence 

it is proposed that as channel length is reduced the iriflueiice of temperature on mo­

bility reduction is increased and subsequently we see a greater decrease in current. 
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Being able to predict s~aling trends of the saturation drain current is vital for fore­

seeing the performance of future technologies. The reason being that this determines 

the time needed to charge and discharge capactive loads in critical paths. This there­

fore impacts speed more so than any other parameter. Equation 7.1 [107] shows a 

simple expression for the propagation delay of an inverter. 

(7.1) 

Using the simulated drain current values, the average time Td to discharge a load 

capacitor CL from VDD to VDD I 2 and to charge from 0 to VDD I 2 can be calculated. 

The simulated time delay for a single inverter where CL is assumed to be constant 

and the p-channel device is twice the width of the n-channel is shown in figure 7. 7. 
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It can be seen that the simulation follows previously published trends [108], with 

the switching speed roughly doubling every two generations. The prediction for the 

0.18,um agrees well with manufacturers data that specify an approximate delay of 
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27ps per stage. The scaling method used in this prediction was both a voltage and 

gate oxide thickness reduction. The corresponding values used in the simulation for 

past, present and future technologies are shown in table 7.1. 

Parameters 

VDD (V) 
tax (nm) 

0.9~-tm 0.5 

5.0 3.3 
19.0 11.0 

0.35 

3.3 
9.0 

0.25 

2.2 
6.5 

0.18 

1.8 
4.2 

Table 7.1: Scaling parameters 

0.12 

1.8 
4.0 

0.09 

1.8 
3.4 

0.065 

1.2 
2.2 

This constant scaling method attempts to keep the electric field approximately con­

stant by reducing the oxide thickness and operating voltage appropriately for each 

technology. As shown in figure 7. 7 this approach allows the required increase of 

device speed. However the desire for increased speed and subsequent reduction in 

dimensions can enhance stress and have a detrimental effect on device reliability. 

7.4.2 Failure Mechanisms 

In addition to using the simulation tool to predict the effect of scaling on device 

performance, it can also be used to analyse device degradation. Within the tool, 

each failure model was incorporated into a drop-down box in the MathCAD file as 

described in section 7.3. Each failure model can then use data from the MathCAD 

calculations. It was assumed that each of the mechanisms (NBTI, GIDL, and HCE) 

were independent from each other, and hence implemented in separate models. By 

using different parameters as the degradation monitor for each model, i.e, threshold 

voltage in NBTI, offset current in GIDL, and substrate current in HCE, each mech-

anism can be separately analysed and provide comparisons of resulting degradation. 

It was believed that developing a tool capable of simultaneously simulating the in­

teraction of two or more mechamsms woUld significantly increase computation time 

and the results would be difficult to verify experimentally. 
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7.4.2.1 ~131rl 

With the increase of NBTI effects being seen in recent deep sub-micron technologies, 

it is essential that any simulation tool should include this effect, Previously, simu-

lation tools such as HOTRON [11], RELY [12], BERT [13], CAS [14], and SCALE 

[65] have only concentrated on hot-carrier degradation. In chapter 4 we presented a 

new model for NBTI effects in p-channel devices. To implement this model into the 

simulation tool an extra worksheet was added to embed the NBTI model within the 

Excel framework. This was seen previously in figure 7.3. Within the NBTI model a 

drop-down box was used to define the stress conditions allowing the user to specify 

stress voltages, stress times, stress temperatures and signal frequencies. A snapshot 

of the result is shown in figure 7.8 . 
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Having the ability to ttansfer data between embedded MathCAD files means that 

the predicted change in threshold voltage as a result of the NBTI stress can be fed 

back into the I-V model. Hence the user can specify the stress conditions and then 

simulate the resultant effect on device characteristics. Typical calculation time to 

calculate the change in Vfh and update the current-voltage characteristics was around 

11 seconds. The only modification of the I-V model needed was the threshold voltage 

calculation which is now expressed as: 

(7.2) 

where Vfh(Fresh) and vth(NBTI) are the original threshold voltage and voltage change 

after NBTI stress. Figure 7.9 shows an example NBTI stress simulation. The device 

was stressed with a gate voltage of -2.8V for 72 hours at 155°C. The model simulates 

the increase in threshold voltage due to the creation of interface traps. Subsequently 

the saturation drain current, and device operating speed, is reduced after stress. 
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In chapter 4 we highlighted the enhancement of NBTI stress at elevated temper­

atures. This can also be simulated by the tool. Figure 7.10 illustrates an NBTI 

simulation at three stress temperatures: 27°C, 155°C and 250°C, with a negative 

stress voltage of -2.8V. The resultant increase in threshold voltage is depicted in an 

Ins- Vas characteristic biased in the saturation region at room temperature. 
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Figure 7.10: NBTI stress simulation at varied temperatures 

At higher stress temperatures an increase in threshold voltage shift can be seen. 

This simulation result supports the belief that it is the combination of both elevated 

temperature and a negative voltage that causes the most significant degradation as 

only a small vth shift is seen at 27oC. In section 4.4 the increased shift in threshold 

voltage was attributed to the increased breaking of silicon-hydrogen bonds at the 

silicon-oxide interface; elevated temperatures and negative voltage stress causes the 

dissociation of hydrogen species away from the Si/Si02 interface leaving behind an 

interface trap. Tll.is changes the charge distribution and hence causes an increase in 

threshold voltage. 
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As well as temperature bausing an increase in NBTI degradation, it is expected that 

an increase in oxide field would also affect the mechanism. Device scaling inevitably 

reduces the gate oxide thickness and results in an increase in oxide electric field. 

The NBTI model developed in chapter 4 had an oxide thickneSS dependency built 

into equation 4.2. Thus a simulation could be undertaken to investigate how the 

NBTI mechanism may be affected by future scaling and the progression towards 

ultra deep sub-micron technologies. 
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Figure 7.11: NBTI stress simulation as a function of oxide thickness 

Oxide thickness values were chosen to be representative of recent, past and future 

technologies. For past technologies (tox > 6nm), the shift in vth after an 8000sec 

stress is seen to be negligible. However as the oxide thickness is reduced (tox < 4nm), 

we can see that the vth shift is significantly increased. This is due to an increased 

oxide electric field and hence increased probability of interface trap generation. Sim-

ulations undertaken to see if any reductions in channel length had an effect found 

that .6vth was minimal, agreeing with results presented by Chaparala et al [109]. 

This is to due to NBTI stress not involving any lateral electric field stress. 
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7.4.2.2 (;JJ)J. 

Analysis of the GIDL mechanism in chapter 5 highlighted that the increased leakage 

current was attributed to band-to-band tunnelling taking place in the gate-to-drain 

overlap region. This would suggest that GIDL would not be affected by a reduction 

in channel length. With the GIDL model implemented into the tool, figure 7.12 

shows the resulting simulated leakage current as a function of drain voltage. 
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Figure 7.12: Voltage dependency of GIDL for varied channel lengths 
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It can be seen from fig~re 7.12 that for low Vns the leakage current increases with 

smaller channel lengths. This agrees with figure 7.4 and is attributed to increased 

electric field. However at higher drain voltages, where GIDL is the dominant mech-

anism, the leakage is insensitive to channel length variation. This is because the 

tunnelling depends only on conditions in the immediate gate-to-drain overlap region 

and any reduction in channel length has little effect on the mechanism. These find­

ings agree with a study by Chung et al [40] which found that GIDL was virtually 

independent of channel length and support the results presented in chapter 5. 
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Figure 7.13: Temperature dependency of GIDL at varied channel lengths 

Further analysis of GIDL is shown in figure 7.13. The simulation shows that in­

creased temperature has no effect on the channel length dependency of the GIDL 

characteristic. This simulation supports findings in chapter 5, that in the low Vvs 

region the increased leakage at high temperatures can be attributed to thermal emis­

sion and in the high-field region the leakage current is insensitive to temperature 

since the tunnelling probability arid electric field across the oXide is not strongly 

dependent on temperature. 
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7.4.2.3 Hot-Carriet Effects 

In a similar fashion to the NBTI and GIDL models, a hot-carrier model was written 

into a drop-down box in the simulation tool. A snapshot of the lifetime model 

is shown in figure 7.14. Drain and substrate current values are fed from above 

drop-down boxes to allow for lifetime calculations. Also shown in figure 7.14 is the 

addition of substrate current with the current-voltage calculation. 
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The hot-carrier study covered in chapter 6 was based around a substrate current 

model. This was because the substrate current and hot-carrier mechanism are phys-

ically linked via impact ionisation. Therefore the substrate current is an excellent 

measure of hot-carrier stress. However, during hot-carrier stress the main degra-

dation that affects device performance is a threshold voltage shift. This is because 

electrons may gain enough energy to be injected into the oxide and subsequently 

change the oxide charge distribution. Hence for the complete simulation tool changes 

in vth were linked to the substrate current with the following expression. 

(7.3) 

where CHcE is a process constant, t stress time, and m typically takes values between 

0.2-0.5. Figure 7.15 shows a hot-carrier stress simulation. Then-channel device was 

biased at maximum substrate current with a drain voltage of 3.4V. The simulated 

stress time was 72 hours and the temperature was set at 27°C. 
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From figure 7.15 we carl see that after hot-carrier stress the introduction of interface 

traps has increased the threshold voltage making it harder to turn the device on. 

Similar results were seen for p-channel simulations. With the hot-carrier model 

integrated into the simulation tool, further investigations were undertaken for a 

range of channel lengths. In this simulation we investigated whether the substrate 

current has any channel length dependence. The results are presented in figure 7.16. 

3.0E-06 

2.5E-06 
< ___.. 

1:i 
Q) 2.0E-06 
~ 

0 

~ 1.5E-06 
1-1 

~ .g 
oo l.OE-06 

5.0E-07 

O.OE+OO 

_.,._ Simulation 
Channel length= 0.12~m 

V0 s = -1.8V 

0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0 

Yes (V) 

Figure 7.16: Substrate current as a function of channel length (p-channel) 

As the channel length is reduced we see an increase in substrate current. This 

occurs because as the channel length is scaled, there is an increase in electric field 

which enhances carrier velocity in the channel. Hence carriers with more energy 

result in increased impact ionisation and substrate current generation for shorter 

channel lengths. To further understand the relationship between electric field and 

channel length figure 7.17 illustrates the relationship between the two. As expected, 

the electric field for both the n-channel and p-channel device increase with reduced 

channel length under constant voltage scaling. 
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Inevitably higher electric fields increase electrical stress and reduce device lifetime. 

In figure 7.18, the DC worst case lifetime is simulated for an n-channel device. It can 

be seen that as the channel length is reduced the lifetime is shortened. The decrease 

in lifetime for shorter channel devices occurs due to the increased electric field and 

hot-carrier stress. Also shown in figure 7.18 is the projected lifetime for a lower 

operating voltage. As expected, with reduced voltage and electric field, hot-carrier 

degradation is reduced and hence the lifetime of the device is lengthened. 

7.5 Conclusion 

In this chapter a simulation tool developed from a new integrated reliability method­

ology has been presented. Failure models have been integrated into the tool which 

can be used by designers to compare simulations and measured data and to evalu­

ate the effect of any design change on device performance and reliability. The idea 

behind this methodology is to allow any design changes to be undertaken at the 

early stages of product development, to ensure robust design and reduce testing and 

re-design time. 

In section 7.3 the integration of the failure models into a simulation tool was covered. 

With the use of MathCAD and Excel a tool was developed that allowed the user to 

delve into its inner workings and become familiar with their operation and function. 

Each failure model was integrated into separate drop-down boxes and the relevant 

information fed between the MathCAD file and excel for analysis. The tool allowed 

the user to change any parameter and visualise the resultant calculation immedi­

ately. This enabled the user to simulate many changes such as the impact of scaling 

on the relit~.bility and performance of future ultra deep sub-micron technologies. 
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Simulations predicted fhat as devices become smaller the saturation drain current 

increases and hence delay time decreases. A simulation of a single inverter showed 

that as the channel length was reduced, it becomes possible to approximately main­

tain the doubling of speed every two device generations. Additionally it was shown 

that the increase in saturation drain current is greater in shorter channel devices 

for thinner gate oxides. This is due to the increased electric field. However the re­

duction of device dimensions was not without its disadvantages and leakage current 

simulations showed a significant increase for short channel devices. This increase 

was enhanced for thinner gate oxides and could be the inevitable physical limit to 

future scaling. The influence of temperature on device performance for small de­

vices was also investigated revealing that the reduction in drain current at elevated 

temperatures was greater for smaller devices. It was proposed that this was because 

the main cause of drain current reduction, mobility degradation, was enhanced in 

short channel devices. 

The NBTI model was integrated into the complete tool in section 7.4.2.1. It al­

lowed the user to specify any number of stress configurations and see the resultant 

effects. Simulations showed the expected increase in the threshold voltage after a 

NBTI stress caused a decrease in drain current values reducing device speed. The 

ability to predict this degradation at varied temperatures was also shown. Further­

more simulations showed that the change in threshold voltage associated with NBTI 

stress significantly increased as gate oxide thickness was reduced. This is because 

NBTI is linked to only vertical electric fields and it is seen that reduction in channel 

length plays no part in the level of degradation. 

GIDL simulations identified an increase in leakage at low drain voltages for shorter 

channel devices. However at higher drain voltages the GIDL current was found not 
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to be influenced by variations in channel length. The reason for this is that GIDL 

current is caused by tunnelling only in the immediate gate-to-drain overlap region. 

Hence a reduction in channel length has little affect on the mechanism. Simulations 

found also that increased temperature had no effect on the channel length depen­

dency of GIDL. 

Simulations using a hot-carrier model in section 7.4.2.3 demonstrated the effect of 

hot-carrier stress on operating characteristics. A threshold voltage expression linked 

to the substrate current calculations was presented. The increase of vth after hot­

carrier stress and the resultant effect on the IDs -Vas curve was demonstrated. 

The substrate current was found to increase for shorter channel lengths and simula­

tions showed that this was because of increased electric field in the pinch-off region. 

Hence device lifetime decreased for smaller devices. However if the operating volt­

age is reduced at the same time as dimensions the electric field can be reduced and 

subsequently lifetime lengthened. 

In summary, a new simulation tool has been developed that for the first time in­

cludes NBTI effects as well as GIDL and hot-carrier degradation. Its design within 

MathCAD and Excel means that new models can be easily added in the future. It 

provides for a quick and easy to use tool that allows for immediate comparison of 

measured and simulated data. Any parameter can be easily modified by the user 

and all workings are completely accessible. The tool can provide the designer with 

information to understand how devices degrade over time and can reinforce any de­

sign changes in the early stages of product development. 
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Chapter 8 

Future Work and Conclusions 

THE MAIN AIM of this research was to address the impact of temperature on 

device performance and failure mechanisms utilising a physics-of-failure ap­

proach. The thesis has focused on individual aspects of device operational charac­

teristics and device degradation accumulating in the development of a new method-

ology and simulation tool. This chapter covers areas of future work that it is felt 

could further the foundations presented in this thesis. Conclusions of the thesis are 

presented in section 8.2. 

8.1 Future Work 

In addition to the novel results and analysis presented in this thesis the research 

provides a framework and foundation for future development. The development of 

a simulation tool together with several new failure models focused on the influence 

of temperature, have provided many new results. However analogous to the ever 

increasing desire for higher performance and the requirement of smaller devices, 

there is scope for further development of the models and simulation tool. 
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8.1.1 Layout Diagnostics 

A simulation tool was developed in chapter 7 to predict performance and degradation 

at device level. Potentially this tool could be developed further to provide circuit 

anaylsis. Throughout the thesis deivce lifeitime has been defined as a 10% shift in a 

certain parameter. Whilst this is an arbitni.ry value that reflects the degree of wear­

out, this level of drift may not necessarily lead to a circuit failure. If the simulation 

tool could include circuit layout information, signals levels could be analysed and 

allow analysis of circuit functionally and identification of high risk areas. 

Technology description 

1 
Model parameters 

Circuit layout 

1 
Operating conditions 

I-V model Performance I optimisation 

NBTI model t 
Ranked fault list 

GIDL model 
t 

Hot-carrier model Layout fault indification 

Reliability simulation 

Wafer fabrication 

l 
Reliability qualification 

Figure 8.1: Development of methodology for layout diagnostics 
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Figure 8.1 illustrates hdw the methodology presented in section 7.2 may be adapted 

to provide for layout diagnostics. Ideally the circuit simulation would be able to use 

layout information to translate degradation information into a ranked fault list and 

allow identification of weak-spots in the circuit. For example, analysing the signals 

each device is exposed too would allow those devices which experience high DC bias 

levels to be highlighted for potential NBTI damage. Threshold voltage shifts could 

be calculated and the resultant effect on circuit functionality simulated. However 

this is not a trivial exercise since some of the NBTI stress effects are recovered in 

dynamic circuits and extra thought would be needed as to how such a calculation is 

performed. Furthermore circuit simulations would have to take into account process 

variability, potentially over millions of devices. 

The current tool provides accurate simulation at device level. Development of the 

tool to render it capable of layout analysis would be an excellent enhancment. How­

ever the added accuracy provided by cirucit analyisis would inevitably increase com­

plexity, and experimental work, whilst compromising computational efficiency. 

8.1.2 Competing Failures 

The simulation tool developed in chapter 7 included three different degradation 

models in the same environment. Although all three models work in conjunction 

with the I-V model, each mechanism was treated by an individual model such that 

they are independent of each other. Using different parameters as the degradation 

monitor for each model, i.e, threshold voltage in NBTI, offset current in GIDL, and 

substrate current in HCE, each mechanism was separately analysed to provide com­

parisons of resulting degradation. A disadvantage of this method is that it does not 

account for any interaction between mechanisms. 
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A device will experienc~ varying stress conditions throughout its operating life, and 

so will be exposed to different degradation mechanisms at different times. This 

means that the generation of interface traps, for example, may be contributed too 

by both hot-carrier effects and NBTI during a particular device lifetime. Hence it 

would be advantageous to have the capability of simulating the interrelationship of 

two or more mechanisms. This could be potentially undertaken by analysing signals 

patterns over time to determine the relative occurrence of each stress condition 

associated with each failure mechanism. However time constraints may make this 

impractical and it would be difficult to simulate actual real-life signal characteristics. 

Hence it seems at present the most accurate way of predicting lifetime is to treat 

each mechanism separately for direct comparison. 

8.1.3 Tool Implementation 

In section 7.3 the design of the simulation tool using a combination of MathCAD 

and Excel was presented. These packages were chosen because I wanted to design 

a tool that not only provided a front-end interface, but also allowed users to delve 

into its workings. This however does not restrict the implementation of the models 

developed in this work to these packages and any number of programs could be 

used. For instance some time was spent implementing the models in MATLAB, 

the popular industry standard mathematical analysis program. However I found 

the use of MathCAD and Excel provided for an excellent compromise between real­

time visual analysis and computational effi.ceincy. Furthermore if a tool was required 

with only front-end interface, such as SPICE, then there is no reason why the models 

could not be written into such a tool. 
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8.2 Conclusions 

The design of a novel simulation tool that encompasses prominent and new failure 

mechanisms in modern CMOS devices has hopefully gone some way to reduce the 

gap between failure modelling and the continued development of CMOS technology. 

Issues relating to the effect of temperature on deep sub-micron devices have been 

addressed and novel findings presented to further the understanding of CMOS reli­

ability. 

A new high temperature MOSFET model was developed to form the foundation of 

the simulation tool. A computationally efficient and accurate I-V model gave excel­

lent agreement with measured data and any discontinuities at boundaries between 

regions were overcome. Using a small set of parameters the model accounted for the 

major physical effects in modern devices such as velocity saturation, CLM, DIBL, 

and carrier mobility reduction due to a vertical field. Furthermore the influence of 

temperature, notably a reduction in threshold voltage, carrier mobility and drain 

current at elevated temperatures were included in the model with the predictions 

showing close resemblance to experimental results. 

It was shown that with an understanding of the physical process behind many of the 

failure mechanisms, relatively simple but accurate models can be developed. NBTI 

damage was demonstrated to be greater in p-channel devices compared to n-channel 

devices, and a number of distinct NBTI characteristics investigated. A new NBTI 

model capable of predicting the influence of temperature, recovery and lock-in effects 

and dynamic degradation was presented. Experimental results demonstrated that 

in devices that experience dynamic signals, lifetime is prolonged due to hydrogen 
= • • - • • • ' - • 

diffusing back to the Si/Si02 interface during relaxation periods. 
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A temperature dependE!nt model for GIDL was developed and validated with good 

agreement to experimental data. Experimental results demonstrated that GIDL cur­

rent was almost independent of temperature since the tunnelling across the oxide 

does not strongly depend on temperature. This supported the choice to accurately 

model GIDL in both low and high field regions with the use of two separate expo­

nential functions. 

Contrary to common belief hot-carrier effects were found to increase at elevated tem­

peratures and low drain bias. A new semi-empirical substrate current model was 

developed to account for the temperature dependance of the substrate current with 

good agreement to measurement data. It was highlighted that these findings cast 

some doubt on the understanding of the hot-carrier phenomena in deep sub-micron 

devices and is particularly disconcerting to those interested in high temperature op­

erating conditions. 

A simulation tool was realised to allow analysis in the early stages of product de­

velopment. The effects of device scaling on performance" were simulated showing 

an increase in drive current and speed with decreased dimensions. A simulation of 

a single inverter demonstrated that it was possible to roughly maintain the dou­

bling of speed every two device generations. However an increase in leakage current 

for thinner oxides highlighted how increased leakage could pose as the inevitable 

physical limit to future scaling of conventional CMOS devices. Simulations showed 

that both NBTI and hot-carrier effects were enhanced with decreasing dimensions. 

It was demonstrated that GIDL leakage at high drain voltages was not affected by 

variations in channel length as it is caused by tunnelling in the gate-to-drian overlap 

region only. 
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8. Future Work and Conclusions 

The aim of this work whs to provide a new methodology with the potential to allow 

any design changes to be made in the early stages of product development. This aim 

has been achieved with the development of a new simulation tool and several novel 

models. Currently a number of papers are being prepared for journal submission 

which cover individual failure models and also the simulation tool as a whole. It is 

hoped that the thesis has provided a foundation for further development and the 

possibility of using its findings in a practical environment. 

Gethin Lloyd Owens 
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Appendix A 

Experimental Setup 

The experimental test rig used for device measurements is illustrated in figure A.1. 

It was designed and manufactured in-house to suit the specific testing requirements. 

A grounded metal base (I + H) was used to support the board (F) upon which the 

device package (G) was mounted. Dual in-line sockets were used to allow replace­

ment of test packages. An aluminium heating block (E) was placed in contact with 

the underside of the package. The block was held in place with an adjustable screw 

(B) through a fixed bar (C +D). The heating block was milled to allow insertion of 

a heating element to provide a temperature range up to 155°C. Fixing screws (A) 

secure the board and heating components to the base. 

Silicone heatsink compound was placed between the heating block and package un­

derside surface to aid heat conduction. The package was not hermetically sealed to 

allow direct device temperature monitoring and measurement. Stable temperatures 

were ensured with regular infrared measurements. Additionally the package was held 

upside down to prevent the bond wires sagging at high temperatures and possibly 

causing short circuits. Shielded wires were used for all electrical connections. 
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A. Experimental Setup 
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Figure A.l: Schematic diagram of test rig 
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Appendix B 

Parameter Optimization 

Contained within this Appendix is a example of parameter optimisation using the 

least squares technique. Determining model parameters is an essential part of the 

simulation process. Some tools such as those contained in MATLAB™ have been 

developed to help with parameter optimisation. One technique adopted within such 

tools and commonly used in curve fitting is least squares optimisation. 

The least squares method seeks to minimise the sum of the square of the differences 

between a predefined functional model and a data set. In the case of a straight line 

the functional model is given by y = mx + b, the task is then to minimise the cost 

function J = l:((mx + b- data)2) by selecting optimal values of m and b. These 

optimal parameter values are found by differentiating the function J with respect 

tom and b and setting these differentiated functions equal to zero, thus identifying 

the minima of the function J. MATLAB™ code to implement this method is shown, 

using the subthreshold function and parameters n and Voff as an example. Further 

details on least squares can be found in [110]. 
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B. Parameter Optimization 

% MATLAB Parameter OPtimisation 

% Subthreshold Parameter Extraction 

% 

% 

% 

% 

% !Sub = IsO * (exp((Vgs-Vth-Voff) \ (n*vtm))) * (1 - (exp(-Vds I Vtm))) % 

% 

% Where IsO = u * (W/L) * Cox * Vtm 

% 

% 

%------------------------------------------------------------------------% 

%-------Define constants 

Vth = 0.66; 

Vds = 0.1; 

Vtm = 0.026; 

IsO = 1e-5; 

%-------Define data 

x = Data(:,1); 

y = Data(:,2); 

y = log(y); 

%-------Plot measurement data 

hold off 

semilogy(x,exp(y),'o') 

hold 

%-------Define the number of data points (n) 

n = 36; 
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B. Parameter Optimization 

%-------Calculate da~a sums for least squares calculation 

sumy = sum(y); 

sumx = sum (x) ; 

sumx2 = sum(x.-2); 

sumxall = sumx-2; 

sumxy = sum(x.*y); 

%-------Least squares calculation 

m = (n*sumxy - (sumx*sumy)) I (n*sumx2 - sumxall) 

b = (sumx2*sumy - (sumx*sumxy)) I (n*sumx2 - sumxall) 

f = m.*x + b; 

%-------Plot optimised model 

semilogy(x,exp(f),'r') 

%-------Subthreshold swing (n) calculation 

%-------Subthreshold offset (Voff) calculation 

c = 1- exp(-Vds I Vtm); 

Voff = (b-log(IsO*c) + (Vth I (n*Vtm))) * n * Vtm 

%-------Subthreshold zero current (Ioff) calculation 

Ioff = exp(b) 

H~5 .. r·e 


