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Abstract 

A highly efficient aeromechanical forced response system is developed for pre­

dicting resonant forced vibration of turbomachinery blades with the capabilities of 

fully 3-D non-linear unsteady aerodynamics, 3-D finite element modal analysis and 

blade root friction modelling. 

The complete analysis is performed in the frequency domain using the non­

linear harmonic method, giving reliable predictions in a fast turnaround time. A 

robust CFD-FE mesh interface has been produced to cope with differences in mesh 

geometries, and high mode shape gradients. A new energy method is presented, 

offering an alternative to the modal equation, providing forced response solutions 

using arbitrary mode shape scales. The system is demonstrated with detailed a 

study of the NASA Rotor 67 aero engine fan rotor. Validation of the forced response 

system is carried out by comparing predicted resonant responses with test data for 

a 3-stage transonic Siemens industrial compressor. 

Two fully-coupled forced response methods were developed to simultaneously 

solve the flow and structural equations within the fluid solver. A novel closed-loop 

resonance tracking scheme was implemented to overcome the resonant frequency 

shift in the coupled solutions caused by an added mass effect. An investigation 

into flow-structure coupling effects shows that the decoupled method can accurately 

predict resonant vibration with a single solution at the blade natural frequency. 

Blade root-slot friction damping is predicted using a modal frequency-domain ap­

proach by applying linearised contact properties to a finite element model, deriving 

cont~ct pr()R~rties_ frpm a!l adya~ced ~~l!!i-an~yt~~aJ ~l~ro~iP_rno<ieL An_~§_et!s_-_~----- _____ , 

ment of Coulomb and microslip approaches shows that only the microslip model is 

suitable for predicting root friction damping. 
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Chapter 1 

Introduction 

1.1 Motivation 

It is becoming widely accepted that forced response analysis must be integrated into 

the design phase of all modern turbomachinery blades in aero-engine, industrial and 

marine applications. Fluid flow through turbomachinery is inherently unsteady, 

where strong periodic flow disturbances can cause high levels of blade vibration 

for certain unavoidable resonant conditions. Flow-induced vibration has long been 

recognised as the primary source of High Cycle Fatigue (HCF) blade failure a 

problem regularly experienced throughout the gas turbine industry. The scale of the 

problem is demonstrated by Kielb [1], who highlights that fluid-structure interaction 

problems continuously arise during the development of each new machine, with every 

jet engine development program experiencing 2.5 serious HCF problems on average. 

Fransson [2] mentions that problems which are not discovered during development 

are responsible for over 25% of all engine distress cases, accounting for almost 30% 

of total development costs. Putting these costs into perspective, Wisler [3] states 

that total development costs for an aero-engine can exceed $1 billion, with the 

development of an aero-derivative engine costing up to $400 million. Additionally, 

Kielb [4] indicates that HCF-related development and field usage costs incurred by 

the US military could exceed $2 billion over the 20 years leading up to 2020. 

The driving force to eliminate vibration problems is high for all turbomachinery 

applications. Aero-engines are subject to stringent weight and size limitations and 

1 



1.1. Motivation 2 

operate at a wide range of operating conditions, making them highly susceptible 

to HCF problems - particularly for military jet engines. The process of achieving 

airworthiness certification requires very vigorous testing, ensuring that most HCF 

problems are uncovered during the development stage before potential failures can 

arise in service. However, catastrophic engine failure with loss of life is not unknown 

in civil and defence aerospace. Industrial and marine turbomachinery is subject 

to less stringent safety regulations and weight and size limitations, allowing more 

conservative designs to be adopted. These machines generally operate within a 

less-demanding operating range, with some exceptions such as industrial pumps, 

which can operate at off-design conditions for long periods of time. However, no 

turbomachines are immune to blade vibration problems and the expense of a plant 

shut-down can be very high, creating losses of up to £1 million per day in the case 

of the shut down of an electrical power generation plant. Development budgets of 

industrial turbomachines are normally much smaller than those of aero-engines, and 

the expense of remedial redesign action following the discovery of a blade vibration 

problem during testing can significantly increase the total development cost of a new 

machine. 

The occurrence of HCF problems is expected to increase in the future with cur­

rent trends in modern blade designs. In search of improved efficiency and reduced 

engine size and weight, commercial pressures are demanding higher blade loading 

and closer axial spacing, making modern blades more prone to high vibration levels. 

Conventional design methodologies based on empirical design rules can not confi­

dently predict vibration levels and the assessment of aeromechanical performance is 

achieved through rigorous engine testing. Analytical prediction methods are gener­

ally too costly for routine design use and are currently limited to the larger aero­

engine manufacturers. With increasing demands on aeromechanical performance 

and without an early predictive capability, manufacturers run the risk of moving 

towards a passive 'repair philosophy', using an iterative method of eliminating HCF 

problems in new projects by redesigning blades based on engine test results. In or­

der to reduce lead times and development costs of new projects using modern blade 

designs, there is a great need for a fast and reliable design tool for the prediction of 
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flow-induced vibration levels. Such capabilities will allow blade designers to assess 

vibration performance early in the design stage and eliminate potential HCF failures 

before the first test is performed. 

The work presented in this thesis involves the development and assessment 

of aeromechanical forced response analysis methodologies based on finite element 

analysis and computational fluid dynamics for the calculation of resonant blade 

vibration levels. The methodologies are intended for routine design use with the 

capability of accurately assessing resonant stress levels and predicting blade fatigue 

life with minimal computational costs. 

1.2 Background to the Physical System 

1.2.1 Turbomachinery Configurations 

A turbomachine is a rotating device for the purpose of either extracting energy 

from a continuously flowing working fluid (turbine) or applying energy to the fluid 

(compressor). Energy transfer in a turbine or compressor is made by respectively 

decreasing or increasing the pressure of the fluid by the dynamic action of mov­

ing blades. The common elements of most turbomachines are a) a rotor, containing 

blades, buckets or an impellor to decelerate or accelerate the flow; b) a shaft to trans­

fer mechanical power to or from the rotor; c) a casing to direct the fluid around rotor; 

and d) stator blades in the form of inlet guide vanes or downstream blades to control 

flow swirl around the annulus. Thrbomachines are categorised by the orientation of 

the flow path: axial flow machines employ flow wholly or partially parallel to the 

axis of the rotor; radial or centrifugal machines involve a flow path mainly normal to 

the axis of rotation; and mixed flow machines contain significant amounts of radial 

and axial flow components. Flow can be compressible or incompressible and is not 

always enclosed within a casing, for example in the case of some fans, wind turbines 

and tidal turbines. 

Gas turbines are a common configuration of turbomachinery, which combine a 

compressor and a turbine with the addition of heat to the fluid (normally air) in 

order to generate shaft power or thrust. Incoming air is compressed and fed into a 
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combustion chamber, where fuel is injected and burned. The resulting combustion 

gases pass through a turbine to drive the compressor and the remaining high en­

ergy exhaust gases are used to provide useful power in the form of thrust or shaft 

power from a secondary power turbine. Axial turbomachines are most commonly 

used in aero-engine, industrial and marine gas turbine applications, mainly due to 

the higher efficiency over their radial counterparts. Axial machines have relatively 

thin blades and high aerodynamic loads and are more prone to aeroelastic prob­

lems than radial machines, which have fairly sturdy impellors. Axial turbomachines 

usually comprise of several stages in order to achieve the necessary pressure ratios, 

which can be up to around 20 stages for compressors and 5 stages for turbines, with 

each stage comprising of one stator and one rotor bladerow. Whilst the analytical 

methodologies described in this thesis can theoretically be applied to most turbo­

machinery configurations, the work contained herein focuses on air-breathing axial 

gas turbines. 

1.2.2 Aeroelastic Phenomena 

Aeroelasticity is concerned with the static or dynamic interaction between the de­

formation of an elastic body and behaviour of a surrounding fluid. The study of 

aeroelasticity is best described by Collar's triangle of forces (Figure 1.1), showing 

the various levels of interaction between the fluid and structure. The interaction 

of elastic and inertial forces is involved purely with mechanical vibration without 

the influence of the surrounding fluid. The interaction between aerodynamic forces 

and the inertia of a structure represents a rigid body subject to a fluid flow and is 

typical of the type of problem encountered in aircraft stability and control appli­

cations. The interaction of fluid forces with the elastic deformation of a structure 

neglects structural acceleration and is considered to be a static problem. Static 

aeroelasticity is experienced by turbomachinery blades, where the steady-state fluid 

loads of the mean flow result in the static deformation of the blades, varying the 

aerofoil geometry. Combined with the effects of centrifugal and temperature load­

ing, the static deformation is known as blade untwist and small variations in blade 

shape can have a significant impact on machine performance. The analysis of sta-
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tic blade deformation is very important in turbomachinery design, where the blade 

must be manufactured to a certain profile, accounting for untwist to ensure that 

the blade conforms to the correct geometry under normal operating conditions. Dy­

namic aeroelasticity provides the focus of the work within this thesis and relates to 

flow-induced vibration problems, combining the effects of aerodynamic, inertial and 

elastic forces. Dynamic aeroelastic analysis in turbomachinery poses a challenging 

problem due to the complex interaction between high-speed fluid flow and the dy­

namic response of the blade structure. Whilst many forms of dynamic aeroelastic 

behaviour exist throughout a range of engineering sectors, two of the most important 

dynamic aeroelastic phenomena in turbomachinery applications are forced response 

and flutter. This thesis primarily deals with the analysis of forced response, but as 

discussed later, the methodologies can also be applied to flutter prediction. 

Forced Response 

Aeroelastic forced vibration is caused by periodic flow disturbances passing through 

the blade passages, resulting in an unsteady pressure field acting on the blade sur­

faces. The aerodynamic excitation forces are primarily due to circumferential varia­

tions in the flow, normally caused by blades passing through the wakes of upstream 

blades, potential interaction from upstream or downstream blades, non-uniform inlet 

flow or from fluctuations in the back pressure. Resonant vibration occurs when the 

frequency of the incoming flow disturbances matches a blade mode natural frequency, 

which can lead to excessive blade stress amplitudes and eventual HCF failure. The 

frequency of the flow disturbances in such synchronous excitation is normally pro­

portional to the speed of the rotor, denoted by the engine order (EO), giving the 

integer number of disturbances experienced during one complete rotor revolution. 

For example, a bladerow consisting of 32 blades will impart 32 EO wake disturbance 

on the downstream bladerow, where the downstream rotor will experience an exci­

tation frequency equal to 32 times the frequency of rotation. The inlet distortion of 

an aero fan subject to a cross wind will result in a 1 EO excitation at the frequency 

of rotation. 

An important tool for visualising when the flow disturbances cause resonant 
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vibration is the Campbell diagram shown in Figure 1.2. This example maps the 

frequencies and engine speeds of a large aero fan, showing where resonance is en­

countered from the individual engine orders. Such resonant conditions are named 

crossing points, indicating where the frequency of a given EO coincides with a blade 

natural frequency. It can be seen that the modal frequencies increase with engine 

speed, which is due to centrifugal stiffening of the blade. Centrifugal stiffening oc­

curs when the blade is deformed out the plane of rotation or in the circumferential 

direction. For a rotating beam, where the centre of gravity ( CG) of each section is 

radially aligned, the radial centrifugal load will be reacted by a purely radial shear. 

However, when the blade is deformed and the sections are deflected away from the 

radial alignment, the blade shear reaction to the centrifugal load will provide a com­

ponent acting to re-align the section CG 's. This restoring force provides a stiffening 

effect, thus increasing the frequencies of vibratory modes with engine speed. 

The Campbell diagram can either be obtained analytically from a finite element 

analysis (FEA) or experimentally in a rotating engine test using strain gauges placed 

on the blades. In blade design, the Campbell diagram is used to place natural fre­

quencies either above the maximum engine speed or below the normal operating 

range with the aim of avoiding continuous resonant excitation during operation. 

However, crossing points at speeds below the operating range are always encoun­

tered during the start-up and shut down of each operational cycle, resulting in 

resonant vibration contributing to HCF. Since resonance in turbomachines can not 

be avoided, the vibration levels at all encountered crossing points must be evaluated 

to determine the risk of fatigue failure during the service life of the machine. 

Aeroelastic forced response prediction poses a challenging problem due to the 

complex interaction between the fluid flow and blade structure. As illustrated in 

Figure 1.3, blade vibration is caused by incoming flow disturbances creating a pe­

riodic pressure distribution over the blade surface. Consequently, the vibration of 

the blade within the surrounding fluid induces a local unsteady pressure field in 

the fluid around the blade surfaces. In forced response cases, the motion of the 

blade through the vibration-induced pressure field results in energy dissipation to 

the fluid, creating an aerodynamic damping effect. Combined with any mechanical 
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damping present in the system, the total damping forces limit the amplitude of vi­

bration. Due to the high level of computation required by unsteady computational 

fluid dynamic flow solvers, routine forced vibration analysis remains prohibitively 

expensive for most manufacturers. Instead, designers rely on empirical design rules 

and full-scale engine tests to evaluate vibration performance. 

Designers have a number of options to reduce resonant vibration levels in the 

eventuality that a particular crossing point creates a HCF risk. This can be done 

either by moving the synchronous vibration frequency, reducing the aerodynamic 

forcing function or incorporating friction dampers into the blading. Varying the 

frequency of the crossing point can be done by either modifying the blade natural 

frequency or by varying the blade count to change the forcing EO. A shift in natural 

frequency can be achieved by varying the blade shape, changing parameters such 

as thickness versus span, aspect ratio, taper, solidity and radius ratio. A drastic 

method of increasing frequencies is the addition of a tip or part-span shroud to 

stiffen the blades, usually with a secondary friction damping effect. Moving syn­

chronous frequencies outside the operating range is not always possible, particularly 

for aero-engines, which operate within a wide range of speeds and conditions. An 

additional point of interest regarding geometry change is that the resulting variation 

in modeshape may have a significant effect on both the sensitivity of the mode to a 

particular forcing function and the aerodynamic damping of that mode. This is due 

to the positioning of the force distribution in relation to areas of high motion of the 

modeshape. 

The strength of the aerodynamic forcing function is strongly influenced by the 

axial spacing between adjacent bladerows and the strength of upstream wakes can 

generally be reduced by increasing the axial spacing. However, this action contra­

dicts the aims of modern designs which aim to minimise spacing to reduce engine 

weight. 

Flutter 

Unlike forced response where blade excitation is provided by incoming flow distur­

bances, flutter is a self-excited phenomenon and is not caused by incoming external 
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disturbances. Flutter occurs, when small levels of blade vibration are amplified 

by the vibration-induced pressures giving rise to further blade excitation. Flutter 

analysis can be considered in a similar manner to aerodynamic damping in forced 

response problems, where the blade motion through the local induced pressure field 

results in an energy transfer between the fluid and structure. The fundamental dif­

ference is that flutter causes the addition of energy to the blade instead of energy 

dissipation. Flutter can therefore be considered as negative aerodynamic damp­

ing. As the self-exciting aerodynamic forces increase with blade motion, flutter can 

quickly lead to escalating vibration levels causing fatigue failure within a short space 

of time. 

In flutter analysis, blade designers are interested in the flutter stability of the 

system, determined by the direction of energy transfer between the blade and the 

fluid. The system is stable when the vibration-induced pressures result in energy 

dissipation (positive aerodynamic damping) and a decay of vibration amplitude. 

Flutter instability occurs with energy application to the blade from the fluid, indi­

cated by a negative damping value. It can be argued that a system is stable with 

small flutter forces, providing that sufficient mechanical damping is present to bal­

ance the destabilising fluid work. Under this condition, equilibrium will be achieved 

and the blade will vibrate with a finite amplitude. 

Flutter is predominantly seen in fans, front compressor blades and low pressure 

turbine blades, and usually occurs above a critical flow velocity or when a high in­

cidence angle causes large flow separation. Since the 1940's when flutter was first 

encountered in turbomachinery, the most important design parameters safeguard­

ing against flutter have been the reduced frequency and the incidence angle. The 

reduced frequency is a non-dimensional parameter relating flow velocity with vibra­

tion frequency by comparing the period of one vibratory cycle with the time taken 

for a fluid particle to travel a representative distance (i.e. chord length). The angle 

of incidence is concerned with the degree of fluid loading on the blade, where flow 

separation occurs at high values. In practice, the reduced frequency and the inci­

dence angle can only be used as a rough guide to indicate flutter stability since many 

other critical factors often come into play, for example modeshape, nodal diameter 
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pattern, and operating conditions such as pressure ratio and flow. 

Flutter in turbomachinery applications is categorised into different areas, each 

showing different characteristics and physical reasoning. The most important flutter 

regions in a compressor are indicated on the performance map shown in Figure 1.4. 

This figure also briefly introduces the main physical mechanisms behind stall, su­

personic and choke flutter. The details of various flutter are mechanisms beyond the 

scope of this thesis and more in-depth descriptions are provided by Marshall [5] and 

Fransson [6]. Ideally, flutter boundaries are placed at locations on the compressor 

map that can not be reached during normal operation, a technique commonly called 

"stall protection". Most modern engines have a relatively large stall margin, leav­

ing a sufficient margin to account for engine-to-engine variations, altitude effects, 

transient operation and engine deterioration. 

1.2.3 Vibration Characteristics 

In turbomachinery applications, the vibration characteristics of a structure are 

largely independent of the aerodynamic loads and are generally determined from 

the mass and stiffness properties of the blade, together with any mechanical damp­

ing. This simplification is primarily due to the high density of blades compared 

to the surrounding fluid, represented by the mass ratio. The mass ratio is defined 

as the ratio of the mass per unit span of the structure divided by the mass per 

unit span of a cylinder circumscribing the leading and training edges. Unlike the 

aeroelastic analysis of aerofoils of lower density such as aircraft wings and helicopter 

blades, forced response and flutter of turbomachinery blades usually involves the vi­

bration of a single mode, with very little mode interaction and a minimal variation 

in modeshapes and natural frequencies by aerodynamic loading. 

U nshrouded blades 

Unshrouded blades, with their slender aerofoils, exhibit similar vibration charac­

teristics to beams and plates, particularly for low-order modes. Beam-type modes 

give rise to flapwise, edgewise and torsional modes, but without chordwise bending. 

The blade root can influence aerofoil modeshapes, particularly the constraints at 
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the root / disk interface which effectively determine the stiffness of the lower part 

of the blade. Unshrouded blades without under-platform dampers require a rigid 

disk to avoid mechanical inter-blade coupling between blades, with coupling consid­

ered to be only provided by aerodynamic loading. The mechanically independent 

nature of such blades greatly eases vibration analysis, usually allowing aeroelastic 

calculations to be performed using a single blade analysis without the influence of 

structural nonlinearities or disk dynamics. 

Disc flexibility 

The flexibility of the disk itself can have a significant effect on the overall char­

acteristics of the blades. A relatively rigid disk, such as used in a fan assembly, 

will provide little influence on the individual blades, which will tend to vibrate in 

their individual mode shapes. However, a flexible bladed disk assembly will include 

the characteristics of the individual blades and the disk itself. Disk vibration is 

characterised by nodal diameter modes, usually consisting of double modes. These 

modes arise from the circular symmetry, where two consecutive modes possess the 

same natural frequency with different orientations of modeshape. These modes oc­

cur in axial, radial and tangential directions. Disk vibration is characterised by 

groups of nodal diameters, where each group is associated with a nodal circle. As 

the mode number and natural frequency increase, the number of nodal circles in­

creases. Without the effect of additional friction dampers, the strong mechanical 

coupling between the flexible disk and the blades effectively combines the assembly 

into one structure, combining the natural frequencies of the blades and disk. For a 

disk-dominated mode, the individual blade will vibrate in a mode with a significant 

degree of general plane motion. 

Shrouded blades 

Shrouded blades offer greater rigidity with the mechanical coupling of adjacent 

blades, resulting in significant disk vibration characteristics. The interlocking shrouds 

provide a significant degree of friction damping and can be optimised for the de­

sired damping performance. However, the non-linear damping behaviour of friction 



1.2. Background to the Physical System 11 

damping creates difficulty in the aeroelastic analysis of shrouded blades. 

The structural analysis of blade static and dynamic vibrational behaviour is gen­

erally finite element based. Cantilevered blades with rigid disks are often modelled 

individually, neglecting disk dynamics and assuming that all blades are identical. 

Analysis of flexible disk and shrouded assemblies take advantage of the cyclic sym­

metry, allowing the structure to be modelled as a segment with cyclic symmetric 

boundary conditions and reducing computational effort. Other approaches model 

the entire bladed disk and can include the effects of structural non-linearities and 

variation in the properties of individual blades, but at the expense of high compu­

tational effort. It has also been known to use multi-stage models to capture the 

mechanically coupling between stages. 

Mistuning 

A structural characteristic that can have a significant impact on the aeroelastic per­

formance of blades is mistuning. Blade mistuning arises when the cyclic symmetry 

is broken by small geometric and structural variations in individual blades, resulting 

from manufacturing processes or wear in service, causing a significant variation in 

the aeroelastic performance of a system. Flutter stability has been reported to be 

improved with blade mistuning, backed up by experimental and numerical evidence. 

However, mistuning generally has a detrimental effect on forced vibration behav­

iour with the effect of amplifying the vibration levels of certain blades. Whereas a 

tuned bladed disk assembly will show a single nodal diameter modeshape at a single 

frequency, a mistuned assembly can simultaneously contain components of several 

nodal diameters with slight variations in blade modeshapes and natural frequencies. 

Therefore, the frequency response curve of a mistuned assembly will show a number 

of resonant peaks around a particular crossing point, increasing the chance of being 

excited by another excitation order. Hence, amplification in forced response can be 

caused by secondary resonance from a disturbance of another excitation orders or 

due to the variation in blade modeshape causing higher sensitivity to aerodynamic 

forces. Forced vibration amplitudes of mistuned blades can be 100% higher than 

vibration levels predicted for tuned blades (Ewins [7]). This so-called stress ampli-
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fication effect is caused by highly-localised bladed disc modeshapes amplifying the 

responses of a small number of blades. The sensitivity of bladed disks to mistuning 

has been found to be dependant on a number of parameters, including the amount 

of interblade coupling present in the system and the densities in natural frequencies 

of adjacent mistuned blades. 

1.2.4 Unsteady Flow in Turbomachinery 

Fluid passing through turbomachinery experiences strong time-dependant distur­

bances due to the complex nature of high-speed flow and the relative motion of 

adjacent bladerows. Flow through a blade passage is subject to potential and 

convective disturbances propagating from upstream sources, potential fields from 

downstream bladerows and local vibration-induced pressures from the motion of the 

blades themselves. 

Bladerow Interaction 

Bladerow interaction between relatively moving bladerows occurs due to the prop­

agation of wakes from upstream blades and the potential interaction between adja­

cent rows. Due to the high numbers of blades found in turbomachinery bladerows, 

bladerow interaction normally involves high-frequency excitation of the higher-order 

modes. In the case of a compressor wake, the wake produced by a blade is primarily 

a reduction in the flow velocity. Therefore, a downstream blade passing through the 

wake experiences a sharp perturbation in flow velocity due to the deficit in wake 

velocity. In the case of a turbine blade wake, the velocity deficit in the wake is seen 

by the passing blade primarily as a perturbation in the flow velocity but without 

a significant change in the flow angle. In the past, wakes were determined by ex­

perimental measurements, yielding actual wake data or empirical correlations, but 

modern methods often rely on steady CFD calculations. 

Unlike blade wakes, potential disturbances have the capability to propagate up­

stream and interfere with convective disturbances and potential reflections. Poten­

tial interaction involves the propagation of a potential field created by an aerofoil, 

which can travel both upstream and downstream in axially subsonic flow. Bladerow 
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interaction can also involve the upstream propagation of shock disturbances, which 

can cause strong shock excitation of upstream blades. In a transonic stage, a shock 

can become detached from the blade passages, resulting in a leading edge shock that 

can propagate upstream to reach the neighbouring bladerow. This type of shock ex­

citation has been known to create problems with the guide vanes of military fans. In 

addition to leading-edge shock propagation, the trailing edge shocks of high-speed 

vaneless HP turbine blades have been reported by Kielb [1], to reach the leading 

edge of the LP turbine blades. The effects of potential and wake interaction are not 

independent and the presence of the two disturbances can cause interference, either 

amplifying or cancelling the effects of one-another. 

Inlet Distortion 

Another major source of blade excitation is inlet distortion, which describes dis­

turbances approaching the first stage due to circumferential non-uniformities in the 

inlet flow. Inlet distortion is often encountered in aero fans and is seen in first 

stages of compressors and high-pressure turbines. Unlike bladerow interaction, inlet 

distortion usually provides a low EO excitation, affecting only the low-order modes 

intersecting the first few engine orders. 

Inlet distortion can be a significant problem for aero fans which often have non­

symmetric inlets and can operate with a non-zero angle of attack. Significantly high 

angles of attack can result from high cross-winds and aircraft manoeuvres, including 

take-off. Such conditions can cause a large region of flow separation at the inlet, 

leading to substantial excitation of the fan. Inlet distortion is a particular problem 

for military jet engines, which can have highly non-symmetric inlets and undertake 

high agility manoeuvres. Land and marine-based compressors are subject to inlet 

distortion from the non-uniformity of inlet ducts and the inclusion of struts in the 

inlet. Gas turbine HP stages are subject to excitation from inlet temperature distor­

tions, provided by the hot streaks exiting the combustor cans. Due to the relatively 

high number of combustor cans, temperature distortion provides an excitation EO 

typically between 10 and 20. Inlet distortion can also be experienced by steam 

turbines under partial flow conditions. 
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1.2.5 Friction Damping 

Background to Friction Modelling 

Solid surfaces are inherently rough on a microscopic scale, causing the actual area of 

contact between two solids to be much smaller than the apparent area of contact. It 

is described by Bowden and Tabor [8] that "Putting two solids together is rather like 

turning Switzerland upside down and standing it on Austria- the area of intimate 

contact will be small". When two macroscopically fiat surfaces with microscopic 

roughness are put in contact under a normal force, the load is transmitted through 

a number of asperities of varying shape, size and height, as illustrated in Figure 1.5. 

Local contact pressures are much greater than the average nominal pressure, giving 

elastic or plastic deformation at the asperity junctions. 

When the contact surfaces are subject to a relative tangential displacement, the 

contact stress in each asperity is further increased until the elastic limit is reached 

and the plastic flow of the asperity junction occurs. At this point, the asperity 

is said to reach the transition from stick to slip. The result is a tangential force 

opposing the motion, which increases with displacement until the yield stress is 

reached, after which, the force remains constant as the asperity flows plastically. 

The resulting effect is a tangential force opposing the direction of motion, which 

increases with displacement up to a maximum value when the asperity reaches the 

stick-slip transition. Since asperities vary in size, height and loading, each individual 

asperity reaches plastic yield at different points on the loading cycle. Whereas 

highly-loaded asperities can each yield with normal loading alone and slip with any 

given tangential displacement, lightly-loaded asperities withstand a degree of elastic 

deformation before slip. Under very small tangential displacements, lightly-loaded 

asperities may not reach yield and will remain stuck. Friction forces are considered 

to be the combined tangential forces of all individual asperity junctions acting over 

the entire contact surface, where all asperities are subject to individual loading 

conditions at various states in the stick-slip transition. 

Due to the highly complex geometries of engineering surfaces at microscopic level 

and the random nature of individual asperity properties, friction models simplify 
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the underlying asperity mechanics to varying extents. Three friction models are 

considered in this thesis: two macroslip friction models, which account only for 

the net effects of two contacting surfaces; and a microslip friction approach, which 

calculates the net effects based on the contributions of individual asperities. 

Friction Damping in Turbomachinery 

The sources of damping in turbomachinery blades are from vibration-induced fluid 

pressures, friction at the blade root attachment, hysteretic material damping or any 

additional friction dampers. Whilst damping data for root friction and hysteretic 

damping is scarce, Kielb [9] provides a brief comparison for blades without addi­

tional friction dampers. He states that aerodynamic damping usually dominates for 

the 1st bending, 1st torsion and 2nd torsion modes and that root friction normally 

dominates for the 2nd and 3rd bending modes, whilst hysteretic damping is negli­

gible. Where additional friction dampers are used, Kielb states that well-designed 

platform dampers can produce a critical damping ratio above 2%. 

Friction damping occurs in regions of relative motion between contacting surfaces 

in blade attachments or at the contact interface of friction dampers. The most 

common type of damper is the platform damper, which usually takes the form of a 

wedge-shaped piece of metal. Platform dampers can either rest against two adjacent 

blades (blade-blade damper) or be placed between each individual blade and the 

disk (blade-ground dampers). Blade-blade dampers utilise the relative movement 

between adjacent blades, causing a sliding motion between the contact points of 

the damper and each blade. The friction force is strongly dependant on the inter­

blade phase angle (IBPA) of the blade movement and causes a degree of mechanical 

coupling between each blade. Blade-ground dampers are attached to the disk, with 

frictional forces caused by the blade motion in relation to the disk without interaction 

between neighbouring blades. Platform dampers are used on most high-pressure 

turbine blades and some fan, compressor and low pressure turbine blades. Some 

gas turbine manufacturers make it mandatory to include platform dampers on all 

high-pressure turbine blades to allow for low-order blade excitation from flow non­

uniformities created with the ageing of the machines, such as partial vane burnout. 
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Other methods of providing friction damping incorporate tip shrouds, part-span 

shrouds or split-ring dampers. Shrouds normally have the primary intention of 

increasing the natural frequencies of high aspect ratio blades, such as aero fan blades 

and LP turbine stages. The nature of the interlocking shrouds can provide useful 

levels of friction damping and damping performance is becoming an integral part of 

shroud design. Split-ring dampers in the form of metal rings can be used between 

blisk stages for the damping of the low nodal diameter nodes. 

1. 3 Research 0 bjectives 

The objective of the project is to develop effective methodologies to integrate the 

non-linear harmonic aerodynamic method with structural dynamics for blade forced 

response predictions. The intention of the research is to provide a complete aerome­

chanical analysis tool capable of providing routine resonant forced response calcula­

tions for turbomachinery blade designers under the commercial restraints of solution 

times and computing resources. Various coupling strategies are to be implemented 

for the purpose of evaluating the capabilities of decoupled and fully-coupled methods 

to capture important flow-structure coupling effects. In addition, the effects of fric­

tion damping within 'fir tree'-type blade root attachments is to be investigated, with 

the development of a friction analysis method and a study on the overall sensitivity 

of the aeroelastic system to friction. 

The non-linear harmonic method has been developed by the University of Durham, 

providing an efficient frequency-domain unsteady flow solution, capable of dealing 

with significant flow non-linearities. The method has been previously validated for 

both rotor-stator interaction and oscillating blade cases. Further validation of the 

fluid solver has been done in parallel with this project by members and industrial 

partners of the University. 

The basic strategy for the blade structural dynamics is to take a standard com­

mercial finite element (FE) package as the baseline analysis method to produce 

detailed mode shapes and natural frequencies for all the blade vibration modes of 

interest. The FE package used is Ansys 7.1, a standard code commonly used by 
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turbomachinery designers. The modal reduction technique will be used to decouple 

the structural equations, reducing the forced response calculation to a single degree­

of-freedom (DoF) for each mode of interest. The forced response calculation for each 

mode of interest is performed in modal space based on the CFD mesh. 

An FE-CFD mesh interface is to be developed for the interpolation of mode 

shape data onto the CFD mesh. The interface must accurately interpolate mode­

shapes from an unstructured FE mesh to a structured CFD mesh and be capable of 

dealing with a variety of element types and shapes. The interface must prove to be 

sufficiently robust in order to deal with the complexities of industrial use, such as 

high modeshape gradients with low density meshes and slight variations in geometry 

between meshes. 

The interaction between fluid and structure will be performed in the frequency 

domain for compatibility with the flow solver. A separate analysis is conducted for 

each mode of interest at the operating points given by the respective crossing points 

of the Campbell diagram. Two distinct coupling philosophies are to be implemented: 

• Decoupled approach. Fluid and structure are calculated separately, forming 

an open-loop system with minimal interaction. Two separate executions of 

the fluid calculations provide the aerodynamic excitation and damping terms, 

which are subsequently used to solve the decoupled forced response equation. 

• Fully-coupled approach. Fluid and structure are integrated simultaneously 

within the CFD code, forming a closed loop system with tight coupling between 

the aerodynamic forces and structural response. 

The blade root friction damping analysis is to be carried out using an FE model 

of the blade and the methodology must be compatible with the frequency-domain 

aeroelastic calculations to provide friction damping predictions with minimal user 

effort and computational time. The approach is to linearise the friction contact and 

allow the highly-efficient modal reduction approach to be exploited. Both Elastic 

Coulomb friction and microslip friction are to be considered and an evaluation of 

the sensitivity of damping predictions to the fidelity of contact modelling will be 

carried out. 
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The NASA Rotor 67 transonic fan rotor will be used as the primary test case 

during the development of the methodologies due to the relative simplicity of the 

case and the availability of published data. This case will be used to demonstrate 

the application of the forced response systems and provide a basis for further inves­

tigations into fluid-structure interaction. 

Validation of the forced response system is carried out on the last stage rotor 

of a Siemens three-stage industrial transonic compressor. Initial verification on the 

accuracy of the forced vibration predictions will be checked against strain gauge data 

obtained from full-scale rotating compressor tests, provided by Siemens. This case 

is to be used for the analysis of root friction damping, where damping predictions 

will be compared with damping measurements from test data. 

1.4 Overview of Thesis 

This thesis is divided into eight chapters, including this introductory chapter. The 

literature review is given in Chapter 2, starting with a fairly comprehensive overview 

of CFD developments and leading to an overview of structural modelling techniques 

with an emphasis on FE analysis. A description of FE-CFD coupling methodolo­

gies then follows, and the chapter concludes after a review of friction modelling in 

turbomachinery applications. 

Chapter 3 introduces the computational models and methods employed, starting 

with a summary of the non-linear harmonic method used in the fluid calculations, 

followed by a overview of the finite element method and a detailed description of the 

modal method further developed in this thesis. An overview of the current Coulomb 

and microslip friction models is given with an explanation of how such models can 

be implemented into the aeroelastic analysis. 

Chapter 4 provides a detailed explanation of the decoupled forced response sys­

tem and the major components, in particular, the FE-CFD mesh interface, and the 

modal reduction theory used in the aerodynamic forcing, damping and forced re­

sponse solution. Additionally, a new energy method of forced response solution is 

presented. A demonstration and validation of the decoupled forced response system 
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and system components is provided in Chapter 5, using case studies of the NASA 

Rotor 67 transonic aero fan and a Siemens 3-stage transonic test compressor. 

Two fully coupled forced response methods are presented in Chapter 6, based 

on a frequency-domain and a hybrid frequency-time domain approach, leading to 

an evaluation against the decoupled method, the implementation of a closed loop 

resonance tracking scheme and an investigation into the convergence behaviour of 

the coupled solution. Significant fluid-structure coupling effects were found in the 

coupled solution due to a fluid added mass effect, which is further investigated in 

Chapter 7, based on a variation of the decoupled method. An investigation into the 

sources of resonant frequency shift in both decoupled and fully-coupled methods is 

performed, leading to a study of sensitivity of a solution to frequency shift. The 

chapter concludes with an evaluation of the use of decoupled and fully-coupled 

methods for forced response prediction. 

Chapter 8 describes a method for predicting blade root friction damping in the 

frequency domain based on an advanced microslip friction model, to provide the 

highest degree of compatibility with the aeroelastic forced response system. Im­

plementation of Coulomb and microslip models into ANSYS are described, and an 

evaluation of the suitability of such friction models for predicting root friction damp­

ing is given. Initial validation of the friction damping predictions is given for the 

Siemens test compressor. 

The thesis concludes with Chapter 9, summarising the conclusions and providing 

recommendations for future research. 
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Figure 1.3: Interaction of aerodynamic excitation forces, aerodynamic damping 

forces and mechanical damping forces with blade vibration 
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Chapter 2 

Literature Review 

2.1 Introduction 

Aeroelasticity in turbomachinery is a multidisciplinary subject based around struc­

tural mechanics and unsteady fluid dynamics, usually involving the integration of 

finite element analysis (FEA) and advanced CFD methods. Due to the high com­

putational demands of unsteady CFD calculations, the development of aeroelastic 

methods in recent years has generally progressed with advances in CFD. Much of 

the research on CFD has been focused on reducing the computational demands of 

the direct solution of the unsteady flow equations, which is normally prohibitively 

expensive for multistage turbomachinery applications. Similarly, advances in FEA 

have resulted in a number of techniques for reducing computational effort using var­

ious mathematical approaches and model techniques. For a particular application, 

the choice of structural modeling technique and the strategy for flow-structure cou­

pling are largely dictated by the type of flow solver used, where methods of coupling 

have been established for specific types of CFD analysis. Whilst friction modelling 

has been used for many years in structural analysis, the use of friction models within 

aeroelastic calculations is starting to emerge, driven by the need to optimise friction 

damper design. Such friction models involve modelling contact surfaces at micro­

scopic level to varying degrees, which vary significantly from empirical relationships 

based on experiment to advanced analytical calculations. Integration techniques be­

tween friction models and aeroelastic calculations are relatively immature and levels 

23 
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of integration are subject to large variation. 

This chapter starts with a fairly comprehensive overview of developments in un­

steady CFD methods, which have had the strongest influence in the progress of 

turbomachinery flutter and forced response calculations. An outline of significant 

developments in structural modelling is given, with a particular emphasis on FE 

analysis and the common approaches for reducing computational effort. An outline 

of flow-structure coupling methodologies is given, describing the common config­

urations for integrating FEA with CFD. The chapter concludes with a review of 

the development of various friction models and implementation into structural and 

aeroelastic calculations. 

2.2 Computational methods for unsteady turbo-

machinery flows 

2.2.1 Governing flow equations 

The governing system equations for a CFD model are obtained from the Conserva­

tion Laws of fluid flow through a discretised computational domain. These laws can 

be condensed into a compact form to give the full system of Navier-Stokes equations, 

providing the general description of fluid flow. The Reynolds-averaged Navier-Stokes 

equations with turbulence modelling can predict viscous flow in great detail and can 

include the mechanisms of aerodynamic losses and vortices. However, the high 

accuracy of the Navier-Stokes equations is at the expense of high computational 

demands. By making the assumption of inviscid, isentropic flow and neglecting the 

viscous stress terms in the Navier-Stokes equations, a simplified system of equations 

is derived - the Euler Equations, which are less computationally demanding. This 

simplification provides an accurate description of a fluid with highly turbulent flow 

with high Reynolds number, where the effects of boundary layers can be neglected. 

Traditionally, the Navier-Stokes and Euler equations were used to perform the 
- --. ~ -~ -- -- - -

steady flow analysis, which forms the basis of turbomachinery blade design. How­

ever, unsteady flow analysis is a more complex problem due to the temporal variation 
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in the flow field. Both the Navier-Stokes and Euler equations can be applied to un­

steady flow where the time-dependent variables are represented discretely either in 

the time-domain or in the frequency-domain as Fourier coefficients. 

2.2.2 Spatial discretisation 

Spatial discretisation techniques currently used for CFD analysis largely fall into 

two categories: finite difference and finite volume. The finite difference scheme 

is the oldest method used to obtain solutions of differential equations and is the 

simplest to apply. However, it is not commonly used in turbomachinery analysis, 

instead being mainly used in external aerodynamics. The finite difference scheme 

requires an orthogonal mesh with uniform spacing. For analysis of realistic cases, a 

transformation from the physical mesh to a computational mesh is required. Trans­

formation is difficult for complex geometries, such as that of turbomachinery, but is 

more straightforward for more common profiles, as used in external aerodynamics, 

where transformation procedures and corresponding grids are used routinely. 

The finite volume scheme, widely used in turbomachinery analysis, involves the 

discretisation of the fluid domain as a continuum, divided into a finite number of 

control volumes. The discretised equations are represented in integral form as fluxes 

through the control volumes, satisfying the conservation laws. This approach allows 

calculations to be performed in the physical domain and since no transformation 

is required, the method can be used for complex 3D geometries of any mesh type. 

Mesh types fall into one of two categories: structured finite difference meshes and 

unstructured finite volume meshes. 

2.2.3 Numerical integration techniques 

Time-marching is commonly adopted for high speed compressible flow. The flow 

equations are integrated in time and solved at each time step using either an explicit 

or implicit time-marching scheme. The implicit scheme couples every point of the 

domain simultaneously at each time step. Whilst the solution of a large number of 

linear simultaneous equations may seem undesirable, this method is unconditionally 
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stable and can be used for large time-steps. The simplest of these to implement is 

the explicit scheme, where each point on the mesh is solved in turn at each time 

step. The simplicity of this method therefore arises due to the lack of simultaneous 

equations. However, the scheme is only stable for small time step length, requiring 

large numbers of steps and longer computing times. 

2.3 Advances in unsteady aerodynamic methods 

Numerous schemes for the solution of the Euler or Navier-Stokes equations have been 

developed for calculating steady flow through blade passages or unsteady flow due to 

blade vibration and propagating aerodynamic disturbances from adjacent bladerows 

or unsteady inlet conditions. Steady flow calculations currently provide the basis 

for new turbomachinery designs. However, it is now realised that the calculation of 

unsteady flow is becoming more important to ensure further improvements in aero­

dynamic performance and structural integrity. A great deal of progress has been 

made in the use of numerical methods for the calculation of unsteady flows. U n­

steady CFD schemes can generally be divided into non-linear time-marching schemes 

and time-linearised frequency-domain methods. 

2.3.1 Time-marching methods 

The most popular approach for solving the steady and unsteady non-linear flow 

equations is the time-marching technique, where the equations are discretised on 

a computational grid and marched until all transients have decayed to achieve ei­

ther a steady-state steady solution or a periodic unsteady solution. Computational 

difficulties arise in time-marching solutions due to large size of system equations, 

which can be up to the order of 106 . Additional difficulties arise due to the need 

for a sufficiently small time-step to capture the important flow disturbances as well 

as meeting the stability requirements for explicit schemes. Whilst non-linear time­

marching provides a powerful insight into complex flow phenomena, it is usually too 

time-consuming for routine industrial use. Nevertheless, with increases in comput­

ing resources, many techniques have been made to maximize accuracy and reduce 
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computational requirements. 

The early explicit MacCormack scheme (MacCormack [10]) dominated practi­

cal CFD use until the early 1980's, solving the 2D Euler equations. Jameson [11] 

developed the popular explicit central difference scheme, a method similar to that 

of MacCormack which utilised the finite volume discretisation. Several 2D Euler 

codes have since been developed, such as those used by Fransson and Pandolfi [12]; 

Gerolymos [13]; and He [14] for the calculation of flows around oscilating blades, and 

by Giles [15] for bladerow interaction calculations. However, the use of 2D meth­

ods have been shown to be inadequate for aeroelastic applications (Namba [16]; 

Chi [17] and Hall & Lorence [18], where significant 3D effects have been found to 

be present. The fully-3D calculation of the Euler equations have been reported by 

Gerolymos [19], Hall and Lorence [18] and Marshall and Giles [20] for the use in 

flutter and forced response calculations. Inviscid flow calculations are often used 

in turbomachinery design but are not always suitable for aeroelastic calculations 

for cases with significant viscous effects, such as flow separation, recirculation and 

shock-boundary layer interaction can greatly affect blade response. Under these 

circumstances, a viscous solution is required. The solution of the 3D Navier-Stokes 

equations has been reported by He and Denton [21] for flow around vibrating blades 

and Rai [22] and Chen et al. [23] for bladerow interaction problems. 

The modelling of unsteady flow with temporal and circumferential periodic dis­

turbances has created computational difficulties as multi passage or whole annulus 

solutions are often required. The implementation of phase-shifted boundary condi­

tions reduces computational effort by allowing a whole annulus to be represented by 

a single passage. Erdos [24] was first to implement phase-shifted boundary condi­

tions for the 2D Euler equations by developing the direct store method, which was 

used by Gerolymos [13] in 2D inviscid flutter calculations. The direct store method 

requires vast computer storage and is prone to convergence issues. Rai [25] proposed 

an alternative to periodic boundary conditions by modifying the blade numbers of 

a rotor-stator turbine stage to allow a directly repeating boundary condition in a 

small number of passages. The time-inclined method proposed by Giles [15] imple­

mented phase-shifted boundary conditions by transforming the flow equations into 
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a computational time-domain, but is subject to limitations on the rotor-stator pitch 

ratio and inter-blade phase angle (IBPA). The Fourier shape correction method of 

He [26, 27] allows single passage domains to be used with phase-shifted boundary 

conditions, overcoming problems with storage requirements. However, for complex 

flow and multi-stage calculations, direct periodicity does not exist and multi-passage 

or whole annulus domains must be used. 

2.3.2 Linearised methods 

Compared with the high level of computation associated with non-linear time­

accurate solutions, time-linearised methods provide a highly efficient means of un­

steady flow calculation. This frequency-domain approach eliminates the need for 

high temporal resolution and allows a single passage calculation to be performed 

without the difficulties in implementing phase-shifted boundary conditions, as seen 

in time-accurate methods. In time-linearised methods, unsteady flow is decomposed 

into steady and unsteady parts, where linear harmonic flow perturbations are super­

imposed onto a steady flow solution. Introducing a pseudo-time derivative into the 

time-linearised Euler ro Navier-Stokes equations, the system can be solved using a 

range of well-established time-marching schemes to give the steady-state harmonic 

amplitudes. The harmonic perturbation equation is based on the nonlinear steady 

solution and is solved in the frequency domain independently of the steady part to 

yield the harmonic amplitude of the perturbation. The perturbation equation rep­

resents a single frequency and a more general solution can be obtained by combining 

individual solutions at multiple frequencies. However, forced response analysis usu­

ally only requires a single flow harmonic at the blade natural frequency of interest, 

based on the assumption that all frequencies outside the natural frequency have no 

effect on the steady state vibration amplitude. 

Classicallinearised methods, such as that of Whitehead [28] were based on tables 

of flow data of unloaded flat plate cascades, where flow coefficients could be derived 

for standard geometries for use in analytical flat plate theory. The introduction 

of computers allowed semi-analytical formulations to be solved, normally with the 

assumptions of inviscid, irrotational and incompressible flow. Developments of this 



2.3. Advances in unsteady aerodynamic methods 29 

type were applied to subsonic flow by Whitehead [29], transonic flow by Namba [30] 

and supersonic flow by Verdon and McCune [31]. Whilst these methods could have 

been useful in the aerodynamic design, they are not suitable for practical aero­

dynamic or aeromechanical analysis. These methods do produce accurate results 

for the conditions in which they are intended and provide an invaluable bench­

mark for the validation of modern CFD solvers. An important development of the 

method is the computer program LIN SUB by Whitehead [32], which can calculate 

several important types of unsteady inviscid flow around a fiat plate cascade, such 

as wake/rotor interaction, potential interaction and blade vibration. 

The development of time-linearised potential flow methods, such as those of 

Whitehead [33] and Verdon and Caspar [34], enabled the analysis of real aerofoils, 

where the steady flow is based on the solution of the non-linear potential equations. 

A later development of the potential method by Hall and Verdon [35] includes the 

effects of incoming vertical and entropic disturbances to allow the calculation of 

wake-rotor interaction. The need to capture transonic flow details with higher ac­

curacy led to the time--linearised Euler method of Ni [36]. This approach was later 

developed by Hall and Crawley [37], who solved the linearised unsteady 2D Euler 

equations using shock fitting giving accurate results, but this proved difficult for 

complex three-dimensional shocks. Lindquist and Giles [38] showed that shock cap­

turing schemes could accurately model three-dimensional shocks with greater ease. 

Linearised schemes have subsequently been developed into fully-3D methods by Hall 

et al. [39] and Marshall and Giles [20]. 

The efficient linearised Euler methods were very successful but were limited to 

flow conditions with insignificant viscous effects. Viscous effects can be significant 

in aeroelastic problems which often occur at off-design conditions, for example at 

part-speeds, where viscous flows become important. One of the first time--linearised 

Navier-Stokes solvers was the 2D hybrid viscous-inviscid approach of Cizmas and 

Hall [40]. Holmes et al. [41] were amongst the first to extend the linearised Navier­

Stokes to a fully-3D analysis, but using a turbulence model that limited the scheme 

to flows with a thin attached boundary layer. Clark and Hall [42] produced a 2D 

linearised Navier-Stokes solver using a turbulence model capable of dealing with 
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large flow separations in stall flutter and Sbardalla and Imregun [43] reported a 3D 

viscous linearised method capable of dealing with off-design conditions. Typically 

being of two orders of magnitude faster than the equivalent time-domain solutions, 

time-linearised methods offer a powerful unsteady flow prediction tool for blade 

designers. However, the non-linear effects are neglected, which can reduce accuracy 

for cases with features such as shock oscillation and flow separation. 

2.3.3 Non-linear harmonic method 

Until recently, CFD analysts were limited to the use of expensive non-linear time­

marching methods or efficient, but less accurate linearised methods. Whilst lin­

earised methods were developed as an efficient alternative to time-marching schemes, 

they are limited to linear flow conditions. The non-linear harmonic method relieves 

this limitation, exploiting the efficiency of the linearised frequency-domain methods, 

whilst capturing some important non-linear effects of the time-accurate solutions. 

Giles [44] devised a linearised Euler method that recognised changes in the non­

linear steady flow field due to the linear unsteadiness by introducing quadratic source 

terms to the steady solution. He [45] adopted the idea of updating the steady so­

lution and proposed the non-linear harmonic method. Instead of using the steady 

solution as a base, He included the deterministic stress terms, due to the unsteadi­

ness, to produce the time-averaged solution. Unsteady flow is modelled by superim­

posing the unsteady harmonic perturbations onto the time-averaged flow. The use 

of pseudo-time-marching allows the use of well-established efficient algorithms to 

be used. Non-linear interaction between the time-averaged and flow perturbations 

is included by solving the perturbation equations together with the deterministic 

stress terms to modify the time-averaged flow. Non-linearity between the individ­

ual perturbation harmonics can be included by simultaneously solving the harmonic 

equations in a strongly coupled manner. 

The non-linear capability is further improved by increasing the number of har­

monics of the perturbation equation to give a higher-order representation of the 

flow unsteadiness. A method developed by Hallet al. [46] uses a harmonic balance 

technique, representing the flow variables by a Fourier series in time with spatially 
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varying coefficients, in a similar fashion to the Fourier shape correction method of 

He [26, 27]. The method can be applied to the Euler or Navier-Stokes equations 

and is shown by Hall et al. to provide reasonable predictions for strongly nonlinear 

flow. This approach has been adopted by Vasanthakumar [47] and implemented into 

the non-linear harmonic method to provide a system where both the deterministic 

stress terms of the time-averaged flow and cross-coupling terms of the individual 

harmonics are solved simultaneously with flow perturbation equations. 

The non-linear harmonic method has been extended to the three-dimensional 

solution of the Navier-Stokes equations and used for the accurate prediction of flow 

due to blade vibration (Vasanthakumar et al. [48]) and Stator-Rotor interaction 

(Chen et al [49]). It has been shown to produce results with comparable accuracy to 

three-dimensional viscous non-linear time-marching schemes, but with a consider­

able saving of processing time and storage requirements. Validation of the baseline 

solver against semi-analytical solutions is given by Vasanthakumar et al. [48] for 

inviscid flow through unloaded 2-D and 3-D vibrating flat plate cascades and by 

Chen et al. [49] for wake blade interaction in a uniform steady flow past an un­

loaded flat blade cascade. Chen et al. also verify the non-linear capability of the 

non-linear harmonic method for a single stage compressor by comparing the deter­

ministic stresses with those obtained from non-linear time marching in both 2-D 

and 3-D. Verification on the use of the linear method for bladerow interaction in a 

subsonic turbine stage and a transonic counter-rotating prop fan is provided by Ning 

et al. [50], who showed qualitative and quantitative agreement with test data and 

non-linear time-accurate solutions. The ability of the method to predict bladerow 

interaction is further verified against test data for a transonic turbine stage by Ning 

et al. [51]. 

2.4 Structural Modelling 

Much of the earlier work on turbomachinery structural dynamics focussed purely 

on predicting the natural frequencies of bladed disc assemblies for the intention of 

designing the machines to operate outside resonant conditions. The early pioneer of 
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turbomachinery vibration was Campbell [52], who identified the characteristics of 

vibrational modes of steam turbine bladed discs, and discovered the importance of 

mistuning, resulting from blade-blade variations in material properties and geome­

tries. The first attempts at modelling the dynamic response of bladed discs involved 

the analytical solutions of continuous models. Bishop and Johnson [53] used recep­

tance coupling substructure analysis, modelling the blades with Euler beam theory 

and then coupling them to the disc by combining the frequency responses. Con­

tinuous models were also solved by energy conservation principles, using the well­

established Rayleigh-Ritz method. Whilst these methods have since been replaced 

with discrete modelling, they are often used in the validation of numerical schemes. 

2.4.1 Finite Element Analysis 

The Finite Element (FE) method is a numerical technique for solving a range of phys­

ical problems, where the governing equations are represented by algebraic, differen­

tial or integral equations. Often being the first choice for detailed structural analy­

sis, finite element analysis (FEA) discretises the distribution of a variable through 

a complex geometry by dividing the region into small elements of simple geome­

tries. The elements are interconnected mathematically at the nodes, ensuring that 

the boundary of each element is compatible with its neighbour whilst satisfying the 

global boundary conditions. The simple geometry of the elements allows the distri­

bution of the variable through the element to be defined by a simple shape function 

- usually polynomial or trigonometric. The discretisation of the body allows the 

governing equations for each element to be calculated and assembled into matrix 

form to give the system equations. The manner in which the element equations are 

constructed and the physical variables required in the analysis are dependent on 

the nature of the physical problem, but always involves the specification of nodal 

coordinates material properties and loading conditions. All physical problems are 

broken down into a series of matrix equations, where the governing equations of the 

system take a specific form for the type of problem to be solved. 

Finite element analysis, therefore, breaks down a complex problem into a series 

of coupled equations in matrix form, which are normally solved using general pur-
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pose solvers. Due to fact that most structural properties are linear, most dynamic 

structural calculations are performed in the frequency domain to save computa­

tional effort. Any non-linearities such as friction damping can be incorporated into 

the forcing functions of the right-hand side of the dynamic equations. Frequency 

domain solutions are usually solved using eigenvalue methods, but other approaches 

include the harmonic balance method and the state-space method. Problems incor­

porating high non-linearity or complicated forcing functions can be solved using one 

of the many time-integration schemes available in commercial solvers. Such time­

marching schemes are usually much more time-consuming than frequency-domain 

approaches. The size of FE matrices can easily reach sizes of 106 square, providing 

a large computational task and a number of methods can be adopted for reducing 

the computational effort. 

2.4.2 Reduced Order Modelling 

Various techniques have been adopted in order to reduce computational costs of 

FEA, particularly for dynamic analyses. There are numerous strategies for improv­

ing efficiency, and common techniques approach the problem by either conditioning 

or reducing the element matrices. 

Modal Reduction 

Modal reduction provides a convenient method for solving the coupled dynamic 

equations by expressing the displacements of the masses within a structure as a 

linear combination of normal system modes. The dynamic response to a harmonic 

disturbance of arbitrary frequency is considered to be a combination of the contri­

butions of all modes of the structure in the vicinity of the disturbance frequency. 

Based on the results of a modal analysis, the response of each mode under consider­

ation is calculated individually, to yield the modal amplitudes. During this process, 

the contribution of each individual mode to the disturbance is calculated separately 

before being superimposed to give the total system response. 

It has been previously discussed that the resonant response of a structure to a 

harmonic disturbance at a particular natural frequency is characterised by the mode 
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shape, where the motion of every point on the structure vibrates harmonically and 

in phase at the excitation frequency, and with a specific relative amplitude. The 

motion of the structure is therefore 'locked' into that particular mode, where the 

motion of the entire structure can be defined by a single representative amplitude. 

Analogous to a single-DoF oscillator, the modal reduction technique calculates the 

response of each mode in modal space, governed by a series of single DoF modal equa­

tions. The modal transformation therefore uncouples the large number of coupled 

dynamic equations of the FE model to a series of uncoupled second-order differential 

equations, which are easily solved. 

Since modal reduction is a linear approach, it is suitable for systems where the 

mass and stiffness matrices are constant. The major cost of modal methods is in 

the calculation of the individual modes, so the method is better suited to cases that 

can be modelled using a small number of modes. 

Lumped Mass 

The mass of a standard FE model is consistently defined throughout each element, 

with the mass distribution defined by the element shape function. This results in a 

non-diagonal mass matrix, which is difficult to include in the dynamic solution. A 

common method for obtaining a diagonal mass matrix is to place discrete masses 

at each node, resulting in a diagonal lumped mass matrix. The mass distribution is 

discontinuous through the element and each discrete mass is calculated to preserve 

the total element mass. The lumped mass method used by Ballhaus & Goorjian [141] 

is the most computationally efficient and has been used for aeroelastic calculations 

where reduced computational requirements take priority. In addition to the gain 

in efficiency, it is also recognised that the lumped mass matrix results in higher 

accuracy for the analysis of thin structures such as blade aerofoils. 

Static Condensation 

In many circumstances, some degrees of freedom do not significantly contribute to 

the behaviour of the system and it is not necessary to solve the model using every 

DoF. The process of static condensation simplifies the problem with the selection 
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of 'master' and 'slave' DoF to eliminate the unwanted DoF from the solution. For 

example, the in-plane displacements of a thin aerofoil may be selected as slaves, 

then condensed out of the system using the technique commonly known as Guyan 

reduction (Guyan [55]). The resulting order of the mass and stiffness matrices are 

reduced by the number of slave DoF. 

2.4.3 FEA in Turbomachinery 

Multistage turbomachines consist of several mechanically-coupled bladed disk as­

semblies, subject to various effects of disk dynamics, rotor dynamics, inter-stage 

coupling and bearing effects. Without some sort of model simplification of such 

large systems, the structural analysis alone would give rise to excessively large FE 

models for aeromechanical analysis. Early structural analysis was concerned only 

with predicting the natural frequencies of the blades or bladed disk assemblies to 

allow blade designers to avoid resonant crossing points on the Campbell diagram. 

More recent aeromechanical methods involve a similar approach including the cal­

culation of the blade modeshapes, which are usually prescribed onto the CFD mesh 

based on the assumed modes method. 

Tuned Systems 

The simplest approach to finite element modelling is to model only one blade within 

the bladerow, exploiting the cyclic symmetry of the geometry and neglecting the 

mechanical coupling between blades through the disk structure. A single blade is 

modelled either as a cantilevered aerofoil constrained at the hub, neglecting mechan­

ical coupling between blades or the disk. This method is appropriate for capturing 

flow-structure coupling effects in most turbomachinery problems. 

For cases with significant inter-blade mechanical coupling, such as for shrouded 

bladed discs, it is more common to model the structure using cyclic symmetry, 

reducing the whole bladed disk to a single sector model. Each sector consists of 

one blade, a portion of disk and any shrouds, which is subject to complex boundary 

conditions at the periodic boundaries of the sector-sector interfaces. In aeroelastic 

calculations utilising multi-passage CFD solutions, the cyclic symmetry approach 
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allows the full assembly modal mass to be derived, which can not be done using 

a single blade FE model. An additional consideration is that the modes change 

smoothly between adjacent blades, instead of the step changes would occur between 

blades if the sector modes were expanded from a single blade. 

The tuned approach has been used in decoupled aeroelastic calculations of tuned 

bladed disks by Chiang and Kielb [56], Manwaring and Kirkeng [57], Green and 

Marshall [59], Filsinger et al. [60] and Tran et al. [61] and fully-coupled calculations 

by Gerolymos [62], Marshall [5], Tran et al. [61]. 

Mistuned Systems 

The assumption of cyclic symmetry allows highly detailed FE models of bladed disks 

to be produced using a single blade sector, but this approach implies that all blades 

are identical without the effects of mistuning. Mistuning results from blade-blade 

variations in geometry and material properties caused by manufacturing tolerances 

and in-service wear. The result typically has a detrimental effect in forced response 

cases, where vibration is concentrated to a small number of blades, amplifying stress 

levels beyond those of a tuned system in a phenomenon known as localisation. The 

direct approach to mistuning would be to run several full whole-bladed-disk FE 

models with randomly mistuned blades, but this would be too costly in terms of 

terms of CPU time and storage space. Predicting the effects of mistuning requires 

computationally efficient methods of performing free-vibration and forces response 

calculations of full assembly models. Several methods have been developed to reduce 

the size of large FE models of industrial bladed disk assemblies. 

Early methods using lumped parameter models were reported by Ewins [63], 

Griffin and Hoosac [64], Wei and Pierre [65]. Such models were used in the first inves­

tigations of mistuning, when the implications of mistuning were not well-understood 

and the amplification effect was loosely described in terms of complex modes. The 

mode localisation behaviour was realised by Wei and Pierre using a singe-DoF model 

per blade sector based on modal reduction of the spring-mass system. By represent­

ing the system as an eigenvalue problem, Wei and Pierre also revealed that sensitivity 

to mistuning increases with mode density. 



2.5. Aeroelastic Modelling 37 

The component mode synthesis method of Craig and Bampton [66] reduces the 

number of DoF of the bladed disk, by considering each blade sector as a separate FE 

model, represented by a summation of the sector eigenvalues and eigenvectors using 

modal reduction. Based on the FE solution of a single blade sector, the modes and 

frequencies of each individual sector component are mistuned, then assembled to 

allow the complete mistuned assembly to be analysed. Variation between the prop­

erties of sectors is usually given randomly and a series of reduced-order solutions 

can be analysed statistically. Craig-Bampton approaches have been implemented 

by Irretier [67], Zheng and Wang [68] and Castanier et al. [69]. In a similar manner, 

Yang and Griffin [70] combine the frequency response functions using receptance 

techniques. A further development in the use of the component mode synthesis 

method is by Bladh et al. [71] who investigates the effects of mechanical inter-stage 

coupling between adjacent bladerows on the sensitivity to mistuning. Moyroud et 

al. [72] provide a comparison of the Craig-Bamton method and a modal decompo­

sition of a full assembly against an unreduced full FE analysis of for tuned and 

mistuned cases, including a shrouded transonic fan assembly. Monte-Carlo simula­

tions using statistical methods provide an alternative approach to the modelling of 

mistuning, as described by Myhre et al. [73]. However, whilst various methods have 

been developed to attempt to model mistuning, the mechanisms behind mistuning 

and the implications on blade vibration are not yet fully understood and no reliable 

prediction method is currently available. 

2.5 Aeroelastic Modelling 

Dynamic aeroelastic modelling techniques for forced vibration and flutter calcula­

tions involve the integration of unsteady aerodynamics with structural dynamics. 

Various levels of fluid-structure coupling can be employed, depending on the cou­

pling strategy adopted. The type of coupling approach chosen for a particular 

application is generally determined by the availibility of computing resources, the 

type of fluid solver used and the need to include fluid or structural non-linearities. 

At a fundamental level, aeroelastic methods are divided into decoupled and coupled 
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categories. 

Decoupled approaches are based on an open-loop architecture, where the fluid 

and structure are solved separately with uni-directional transfer of information on 

a linear basis. Whilst decoupled approaches were originally developed for linearised 

aerodynamic methods, the method allows a wide range of aerodynamic solutions 

to be incorporated. The decoupled method is the most common choice for typical 

turbomachinery cases due to its high computing efficiency. 

Fully-coupled schemes are based on closed-loop architecture. The fluid and struc­

ture are normally integrated simultaneously in time, exchanging instantaneous forces 

and displacements at each step in the solution. Modern fully-coupled schemes are 

usually associated with non-linear time-accurate CFD solvers, which are capable 

of intrinsically capturing flow and structural non-linearities. However, the com­

putational costs of time-accurate CFD codes are usually too high for routine use, 

resulting in fully-coupled methods being limited mainly to research and diagnostic 

applications. 

2.5.1 Decoupled Aeroelastic Methods 

Decoupled methods treat the fluid and structure in a linearised manner with a min­

imal degree of interaction between the two domains. The approach is based on 

the assumptions of linear aerodynamic damping and that blade natural frequencies 

and mode shapes are not affected by aerodynamic loading. These assumptions are 

generally valid for turbomachinery blades, which are of high density and stiffness in 

relation to the surrounding fluid and vibrate with low amplitudes. This unidirec­

tional approach allows the aerodynamic calculations to be performed independently 

to the blade dynamics, offering considerable savings in computing requirements. It 

is commonly accepted that mode shapes effectively remain unchanged for lightly 

damped turbomachinery blades, and this assumption has been widely adopted i.e. 

Kielb [9]; Marshall and Imregun [5]). Linear damping has been observed for tran­

sonic fan rotors by Li and He [74] and Schmitt et al. [75]. 

In a decoupled aeroelastic analysis, blade structural dynamics are firstly obtained 

with a free vibration calculation to provide the blade modeshapes and natural fre-
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quencies. The analysis is then done for a single mode at the corresponding natural 

frequency. Traditionally, the decoupled method has been used for flutter prediction 

and has been extended to forced response calculations in more recent years. Flutter 

calculations are concerned with determining the aeroelastic stability of the system, 

indicated by the direction of energy flow resulting from the blade vibrating in the 

fluid. A decoupled flutter prediction therefore involves calculating the vibration­

induced pressures due to blade motion in the specified mode shape. In a forced 

response analysis, the aerodynamic analysis involves the calculation of aerodynamic 

damping for the given mode, in a similar manner to a flutter calculation; and the 

calculation to the aerodynamic forcing terms, providing blade excitation from the 

incoming flow disturbances. 

Flutter 

The flutter phenomenon has been experienced since the advent of the earliest air­

craft soon after the turn of the 20th century, leading to the first aeroelastic prediction 

methods. Some of the first flutter calculations of isolated aerofoils were performed 

by Theodorsen and Garrick [76], who modelled the bending and torsion of an aero­

foil section in incompressible potential flow; and by Goland [77], who applied a 

known aerodynamic load to the differential equation solution of a uniform cantilever 

beam. An important early development in turbomachinery aeroelastic analysis was 

by Lane [78], who provided the general solution for a tuned cascade and showed that 

a linear system of identical blades can be represented by a single equivalent blade, 

where the vibration of all blades are assumed to occur with the same amplitude and 

with a fixed interblade phase angle. 

A significant advance in the prediction of flutter boundaries was the Energy 

Method proposed by Carta [79], which calculates the net energy transfer between a 

vibrating body and the flow-induced pressures of the surrounding fluid. Based on 

the isolated flat plate theory of Theodorsen [80], Carta evaluated the logarithmic 

decrement of a shrouded bladed disc as the ratio of work done by fluid pressures 

to the average kinetic energy of the system. The energy method is based on the 

assumption that the flutter occurs in a single natural mode of vibration, neglecting 
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the effect of mode modification by aerodynamic forces. The energy method was 

further developed by Mikolajczak et al. [81], who generalised Carta's method to 

include mechanical damping and drag force based on fiat plate cascade theories. 

The assumed modes approach provides the basis of all decoupled aeroelastic 

methods for flutter and forced response calculations. The eigensolution approach 

provides a very flexible method of combining a variety of aerodynamic methods with 

structural dynamics using an assumed mode approach, where the simplified struc­

tural representation in the frequency domain allows significant savings in solution 

times. The aerodynamic forces can be obtained from almost any source, either di­

rectly frequency domain or transformed from the time-domain into the frequency 

domain by means of Fourier analysis. The eigensolution method was introduced 

into turbomachinery applications by Bendiksen and Friedmann [82] who combined 

Theosdorsen's model with Lane's assumption to predict the effect of bending and 

torsion on the flutter stability of a tuned cascade. Kaza and Kielb [83] developed 

the method to predict mistuned cascade flutter, and Kielb and Ramsey [84] went 

on to model supersonic fan flutter using fiat plate cascade theory. 

The solution of the 2-D potential equations in decoupled flutter analysis has 

been done by Verdon and Caspar [85], Whitehead [86] and Hall [87]. The solution 

of the Euler equations has been done in 2-D by Takahara et al. [88], and Hall and 

Crawley [37]; and in 3-D by Hall and Lorence [18]. The solution of the Navier-Stokes 

equations in decoupled flutter calculations has been reported for 2D calculations by 

Giles and Haimes [89]; and for 3D calculations by Siden [90], He and Denton [21], 

Clark and Hall [92], and Chassaing and Gerolymos [93]. 

Forced Response 

The main difference between a forced response analysis and a flutter analysis is the 

inclusion of the incoming flow disturbances providing blade forced vibration and the 

calculation of resulting blade response. Whereas a flutter analysis is concerned with 

the direction of energy flow between a vibrating blade and the induced fluid forces, 

a forced response analysis involves the calculation of: a) incoming flow disturbances; 

b) aerodynamic damping; and c) blade modal response. The decoupled approach 
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allows the aerodynamic excitation and damping loads to be derived independently 

from a wide range of sources, such as from flow measurements, empirical models or 

CFD calculations. 

Early forced response calculations of fiat plate cascades were based on the frozen 

gust assumption of Whitehead [29], where a vortical inlet disturbance is assumed to 

be convected downstream without being distorted by the flow field. An extension to 

this approach by Goldstein and Atassi [94] introduced a degree of wake distortion for 

an isolated aerofoil in incompressible flow. Aerodynamic damping calculations us­

ing similar fiat plate cascade theory were given for subsonic flow by Whitehead [28], 

transonic flow by Namba [30], and supersonic flow by Verdon and McCune [31]. The 

use of measured wake data to determine incoming flow disturbances is described by 

Manwaring and Fleeter [95] who carried out extensive experimental studies of un­

steady loading of compressor blades under distortions, wakes and potential fields. 

Examples of empirical modes include Mugridge and Morfey [96] and Raj and Lak­

shminarayana [97]. 

Modern decoupled forced response methods are based around CFD calculations, 

usually solving the linearised 3-D Euler equations (Giles [44]; Hall et al. [39]). An 

early example is by Chiang and Kielb [56], who produced a forced response system 

combining both semi-empirical and analytical fluid calculations in order to minimise 

computing costs of the CFD calculations. The incoming inlet flow disturbances 

providing blade excitation were modelled using a semi-empirical rotor wake-vortex 

model, measured data from the inlet distortion and a quasi-3D Euler solver for the 

pressure disturbances. This work demonstrated both the flexibility of the decoupled 

forced response method and the ability to efficiently predict vibration levels on a 

routine basis. 

The use of linearised CFD calculations of both aerodynamic damping and forcing 

terms is described by Kielb [98], who presents a resonant forced vibration analysis of 

an aeroengine fan rotor under inlet distortion subject to aerodynamic and structural 

damping. Manwaring and Kirkeng [57] describe the forced response of a low pressure 

turbine blade due to circumferential pressure distortion involving the 3-D solution 

of the linearised Euler equations. Campobasso and Giles [99] describe an extension 



2.5. Aeroelastic Modelling 42 

of the decoupled method to the analysis of mistuned systems, where the decoupling 

of aerodynamic loads allows a detailed investigation on mistuning effects. 

The use of non-linear time-marching CFD schemes is less popular with the de­

coupled method and a flexible interfacing technique has been reported by Moyroud 

et al. [100]. Additionally, Schmitt et al. [75] use a variation of the decoupled ap­

proach based on the the superposition of aerodynamic forces to evaluate the use of 

both decoupled and fully-coupled forced response methodologies. Rather than the 

traditional consideration of aerodynamic damping as an equivalent viscous damping 

ratio, Schmitt et al. directly apply the vibration-induced pressures to the modal 

equation. 

The decoupled method is particularly suited for resonance tracking schemes, 

where a number of forced response calculations are needed to capture large shifts 

in resonant frequency due to friction dampers. Green and Marshall [59] present 

a method of modelling a rotor acceleration of a high pressure turbine blade with 

under-platform dampers. Aerodynamic forcing and damping terms obtained from 

a linearised 3-D Euler solver are interpolated and scaled over the frequency range, 

before being passed to a non-linear transient dynamics solver. In a similar manner, 

Breard et al. [101], describe a decoupled frequency sweep with friction damping 

using a 3-D viscous time-marching scheme, neglecting aerodynamic damping. 

2.5.2 Fully Coupled Aeroelastic Methods 

Whilst aeroelastic behaviour remains fairly linear under many operating conditions, 

the need to model more complex flow-structure coupling effects with significant non­

linerities has lead to the development of fully coupled methods. With the rise in 

popularity of time-marching CFD schemes in the 1980's, fluid-structure coupling 

methodologies soon emerged that solved the fluid and structural equations simul­

taneously, usually in the time domain. In fully-coupled approaches, the level of 

interaction between the fluid and structural domains can vary from partially in­

tegrated schemes to fully integrated schemes. Partially integrated schemes solve 

the fluid and structural domains separately, exchanging information at each step 

in the solution. Inter-grid interpolation is required at each step and one of several 
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interfacing schemes can be used to transfer data between the fluid and structural 

meshes (i.e. Steger and Benek [104]; Rai [105]; and Moyroud [100]). Fully inte­

grated methods combine the fluid and structural equations into a single numerical 

integration scheme, solving the entire system without the need to transfer informa­

tion between meshes at each step. Whilst fully-coupled methods involve a greater 

degree of computation, they allow the inclusion of most nonlinear effects, with the 

capability of providing less conservative flutter stability boundaries where limit cycle 

behaviour is experienced. A second benefit of the fully-coupled method is that the 

inter-blade phase angle providing the greatest instability automatically comes out 

of the solution, rather than being an input requirement to the decoupled solution. 

Flutter 

The partially-integrated flutter method, developed by BaUhaus and Goorjian [141], 

involves the simultaneous solution of the fluid and structure, each of which are 

considered separately. Structural dynamics are usually based on the free-vibration 

modal properties of the structure, which can be obtained numerically from a finite 

element or analytical model, or from experiment. The modal representation greatly 

reduces computational effort by reducing the structural equations to a small number 

of orthogonal modal equations which can be integrated in time. Alternatively, a full 

finite element model can be integrated in time in parallel with the CFD solver, where 

the fluid pressure distribution at each time step is fed back to the FE package. A wide 

variety of aerodynamic models can therefore be incorporated with little restriction 

on the choice of fluid solver used. 

Early investigations of stall flutter m linear cascades were done by Sisto et 

al. [106] and Abdel-Rahim et al. [107] based on a 20 vortex and boundary layer 

method for incompressible flow. Each 2D blade section was represented by a 2 

DoF spring model, solving the bending and torsion equations of motion. Bakhle et 

al. [108] utilised a similar rigid blade structural model, coupled with a 3D nonlinear 

potential flow model. He [109] performed flutter and rotating stall calculations on 

a cascade in two structural degrees of freedom using a 2D Navier-Stokes solver. A 

number of more sophisticated methods based on 3D Euler and Navier-Stokes solvers, 
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integrated with FE models have been developed by Vahdati and Imregun [110], Mar­

shall [5], Chew et al. [111] and Hwang and Fang [112]. 

Fully integrated methods consider both the fluid and structure as a single con­

tinuum, where the fluid and structural equations are discretised such that they can 

be integrated in time using a single numerical scheme. The method was pioneered 

for flutter by Bendiksen [113], who integrated the Lagrangian-Eulerian formulation 

of the aeroelastic equations in time using a 5-stage Runge-Kutta time-marching 

scheme. The simultaneous solution of the flow and structural equations eliminates 

any possible time lag in the coupling between the two domains, and is claimed to 

predict energy transfer with greater accuracy than partially integrated schemes. 

The disadvantage of fully coupled methods is the high computing costs associated 

with integrating the fluid and structure. One method of reducing computational 

demands is to implement a hybrid approach, such as the method of Gerolymos [19]. 

In this approach, the time-domain solution of the 3D Euler equations is coupled 

with the frequency-domain modal solution of the structural dynamics. Based on a 

free vibration modal analysis, the motion of a blade mode shape and a given inter­

blade phase angle is prescribed onto the CFD mesh and the aerodynamic solution 

is marched for one period. After each period, the blade mode shape is recalculated 

based on the aerodynamic coefficients and the cycle is repeated until convergence 

of the blade mode in the frequency domain is achieved. This method improves the 

computing efficiency over fully coupled methods whilst maintaining the ability to 

model the nonlinear effect of aerodynamic forces on mode shape. 

Forced Response 

The development of fully coupled forced response methods has occurred only fairly 

recently with advances in computing power. Providing the most realistic simula­

tion of fluid-structure coupling effects, fully coupled schemes normally involve the 

time-accurate representation of the viscous compressible flow. Fully-coupled forced 

response analyses usually involve the linear modal solution of the blade dynamics for 

the purpose of reducing computation. Sayama et al. [114] solve the Favre-averaged 

unsteady Navier-Stokes equations by means of non-linear time-marching, where the 
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fluid mesh is deformed at each step according to the structural motion such that 

changes in aerodynamic damping and flow unsteadiness are accommodated. Based 

on a linear modal analysis, structural non-linearities, such as friction dampers are 

included through an iterative modal solution. The application of the scheme for in­

let distortion and bladerow interaction cases for compressor fans and turbine stages 

with the inclusion of friction damping are described by Vahdati et al. [115] and 

Breard et al. [101]. In addition, a similar approach based on linear structural dy­

namics is applied to a counter-rotating prop fan by Schmitt et al. [75] for the purpose 

of evaluating decoupled methodologies. 

2.6 Blade Root Friction Modelling 

Friction is defined as the tangential force opposing the relative motion of two sur­

faces in contact that are subject to a normal pressure. Frictional forces are often 

very difficult to calculate accurately as they depend on many physical properties 

of the surface topography, materials, loading conditions and the presence of any 

contaminants. The evolution of friction models over the last century has yielded 

a variety of approaches that can be placed into two categories: macroslip and mi­

croslip. Macroslip models offer the most simple approach, based on the classical 

Coulomb friction theory and assuming rigid motion of a body over a contact sur­

face. Microslip models offer greater fidelity for conditions with small displacements 

and high pressures, by incorporating the effects of local deformation of the contact 

surfaces on a microscopic scale. 

2.6.1 Macroslip Models 

The most common understanding of friction is Coulomb friction, developed by 

Amontons and Coulomb during the late 17th and 18th centuries, respectively. Coulomb 

friction corresponds to dry, unlubricated surfaces, and states that the whole friction 

surface is either stuck or sliding. The frictional force is determined by either a static 

or dynamic coefficient of friction, relating to the ratio of the tangential frictional 
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force to the normal force, ie, 

(2.1) 

The static coefficient of friction relates to the maximum tangential force the 

contact interface can withstand without relative motion, whilst the dynamic fric­

tion coefficient corresponds to the tangential load sustained during relative motion 

(sliding). In practice, the static friction coefficient is higher than the dynamic co­

efficient due to adhesion (chemical bonding) between the surfaces, which can be 

particularly high for clean surfaces of similar chemical composition. A character­

istic of the Coulomb friction model is that it does not allow sliding to take place 

until the critical tangential force is reached, after which point the frictional force 

remains constant. In terms of displacement, the frictional force is of constant am­

plitude and opposes the motion for any sliding displacement. One of the earlier 

studies of dynamic systems with Coulomb friction was by den Hartog [116], who 

obtained the exact steady-state response of a SDOF system, where friction damping 

was calculated based on a piecewise linear hysteresis curve. 

An extension to this approach is to incorporate a degree of flexibility in the con­

tact surface before slip takes place, to form an elastic Coulomb model, commonly 

known as macroslip. Macroslip assumes the bulk material around the surfaces re­

main rigid when subject to a tangential load, but allows a degree of elastic motion 

of the contact surface before the critical tangential force is reached and sliding takes 

place. Such an approach was implemented by Caughey [117], and Menq and Grif­

fin [118], who added a series damper stiffness to a Coulomb under-platform friction 

element to provide a system with a bilinear hysterestis curve. The application of 

the macroslip model to a bladed disc assembly was reported by Muszynska and 

Jones [119]. Further development of the macroslip model has been done by Menq et 

al. [120], who investigated the effect of varying the normal force on friction damping 

behaviour. 

The popularity of the Coulomb macroslip model is due to the simplicity of the 

method, which is easy to implement and requires only a small amount of empirical 

contact data. The approach is fairly robust and it has been shown by Griffin [121] 

that predictions made by the macroslip approach correlate reasonably well with 
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experimental data. However, the rigid approximation of the macroslip model is not 

valid under conditions of high normal contact pressure or very small amplitudes of 

vibration. Under such conditions, the Coulomb approach predicts sticking behaviour 

with no sliding, resulting in purely elastic tangential motion of the contact surfaces. 

In reality, small regions of localised slip occur at low displacements whilst the rest 

of the surface remains stuck, hence a degree of hysteretic friction damping is always 

encountered. In these cases, a microslip model is required to predict the contact 

behaviour before gross sliding occurs where macroslip models predict lock-up. 

2.6.2 Microslip Models 

Microslip models consider the contact surfaces at a microscopic level, where the 

influence of surface roughness plays a crucial role. Surfaces of apparently flat surfaces 

are represented by a series of asperities of varying geometry. Under a given normal 

pressure, a proportion of the asperities will be in contact, resulting in local contact 

pressures that are much higher than the nominal pressure. Highly loaded asperities 

are either close to or at the plastic yield stress, where further tangential loading 

results in plasic flow, or sliding, immediately. Lightly loaded asperities require higher 

tangential loading to reach the yield stress, where plastic flow occurs with higher 

deformation. Due to the variation in asperity geometry, the load carried by each 

asperity varies and, hence the stick-slip transition occurs at a range of conditions. 

The global effect results in a smooth hysteresis curve, which is representative of 

hysteresis curves measured experimentally for small amplitude and high-pressure 

cases. 

Analytical microslip friction models have been developed since the late 1940's, 

with early methods produced by Mindilin [122] and Courtney-Pratt and Eisner [123]. 

Courtney-Pratt and Eisner explained microslip in terms of elastic and plastic defor­

mation, where high local stresses are encountered from normal loading and friction 

is provided by plastic flow at contact asperity junctions. Multi-asperity contact 

models were pioneered by Greenwood and Williamson [124], who considered as­

perities as being spherical near the summits with constant tip radius and random 

height distribution. FUrther work of Greenwood and Tripp [125], showed that the 
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contact of two surfaces can be represented by a single rough body on a smooth 

surface, thus allowing the simplification of mathematical models. An alternative 

approach to microslip was developed by Burdekin et al. [126], who developed an 

elastic analysis based on prismatic rods of equal stiffness and linear height distri­

bution, analogous to brush bristles. Chang et al. [127], devised an elastic-plastic 

asperity model for normal loading based on volume conservation, in a similar man­

ner to Greenwood and Williamson, but with the conservation of a control volume 

of plastically-deformed asperities. Chang et al. [128], also developed a method of 

calculating the static coefficient of friction, assuming no additional tangential load 

can be carried once asperities reach von Mises yield criterion and plastic flow occurs. 

A theoretical study of microslip based on the random modelling of asperity height 

distribution and asperity deformation was developed by Bjorklund, [129]. 

A very useful publication of an analytical microslip model is by Olofsson [130], 

who extended the spherical asperity model of Hagman [131], to include cyclic dis­

placement under constant normal load. The model is shown to agree well with 

experimental results. The model was subsequently adapted to model the friction of 

ansiotropic materials using ellipsoidal asperities to allow for changes in surface prop­

erties in different orientations, which typically occur in machined materials (Hagman 

and Olofsson [132]. 

In recent years, two-dimensional microslip models for planar oscillating motion 

have emerged. Sanliturk and Ewins [133], developed 2D models for both macroslip 

and microslip, based on the work of Menq et al. [134]. The advanced friction mod­

elling techniques of Petrov and Ewins [135] are now capable of dealing with arbitrary 

variation of normal loads, variation in surface properties and multi-harmonic planar 

motion. 

2.6.3 Application of Friction Models in Turbomachinery 

Friction models are difficult to solve analytically due to the highly non-linear nature 

of friction contact, with the main difficulty caused by the transition from stick to slip. 

An early analytical method produced by den Hartog [116] is based on the piecewise 

linear behaviour of a rigid Coulomb friction model to obtain the analytical solution 
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for steady-state vibration. However, such analytical models become impractical for 

complex problems and have difficulty in predicting resonant responses. Forced re­

sponse calculations incorporating friction are, therefore, usually solved by numerical 

methods in the time or frequency domain. 

The numerical integration of friction models in the time domain provides a sim­

ple, robust approach, where solutions are usually obtained using standard finite 

difference schemes. The major benefit of this approach is that it overcomes the diffi­

culty of dealing with the transition from stick to slip in the macroslip model, where 

the state of the system is determined at every step in time. Additional sources of 

nonlinearity that are readily incorporated into time-integration schemes are multi­

harmonic motion, and time-dependent variation in contact properties and normal 

loading (i.e. Petrov and Ewins [135]). The greatest disadvantage of time integra­

tion is the length in computing time required to reach steady-state solutions after 

initial transients have decayed. This is particularly significant for lightly-damped 

structures, such as turbomachinery blades. It is therefore more common to solve 

friction models in the frequency domain. 

The most popular frequency domain approach is the Harmonic Balance Method 

(HBM), where harmonic friction forces are assumed to result from harmonic motion. 

The friction forces for any given amplitude of vibration are obtained through time­

marching to yield the nonlinear force over one period of oscillation. The force 

is then linearised by taking the Fourier transform to give only the first harmonic 

amplitudes, assuming that the structural response filters out higher order harmonics. 

The fundamental terms in the Fourier series represent the in-phase and out-phase 

forcing components, where the in-phase component effectively represents a spring 

stiffness and the out-phase component represents an equivalent viscous damping 

term. The fundamental Fourier components are often combined in the form of a 

complex stiffness, where the real and imaginary components represent the stiffness 

and damping terms respectively. The fundamental harmonic representation has been 

shown to be valid for a wide range of cases in several studies, for example Menq 

and Griffin [118], Csaba [136], and . As discussed by Griffin [137], special cases 

where the single harmonic assumption becomes invalid are when the the friction 
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interface is stuck for large parts of the cycle or if there is a natural frequency at 

an integer multiple of the excitation frequency. The linearised force corresponds to 

a single amplitude of vibration, which can be applied to the structural model in 

its linearised form. The forced response of the structure is then calculated and the 

friction calculation is repeated at the new amplitude to yield the updated friction 

force. The process is repeated until convergence is reached between the structural 

and friction models. 

An alternative frequency-domain approach to the HBM is Lazan's Method, or the 

Equivalent Energy Balance Method. Lazan's method is used in the same manner 

as the HBM, with the only difference being in the calculation of the equivalent 

linearised hysteresis loop. Also being elliptical in shape, the loop is calculated to 

satisfy two conditions: 1) the area of the ellipse is equal to the area of enclosed 

within the nonlinear hysteresis curve, ensuring consistant energy dissipation; and 2) 

the peak amplitude of both curves are equal. A study by Csaba [136] shows close 

agreement between the two linearised approaches. 

In turbomachinery applications, research into friction modelling has focused on 

applications where friction is intentionally included, such as under-platform dampers 

and blade shrouds, rather than blade root friction itself, which is not intentionally 

designed into blades. In blade design, friction damping analysis is usually performed 

for the optimisation of friction dampers. With the requirement for fast solutions 

within optimiser codes, the integration of various friction models with finite ele­

ment models is usually performed in the frequency domain, employing the HBM 

with the modal superposition technique. Examples of friction damper optimisation 

techniques are given by Csaba [138], Sanliturk et al. [139], and Panning et al. [140]. 

2. 7 Current State-of-Art 

Many advanced time-accurate CFD methods are currently available solving the 3D 

unsteady Euler or Navier-Stokes equations, providing reliable means of predicting 

highly complex flows through turbomachinery blade passages. However, the high 

computing demands of such schemes means that time-accurate flow solvers are gen-
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erally too expensive for routine aeromechanical analysis and are usually used for 

research and diagnostic purposes. Linearised frequency domain approaches offer a 

highly efficient solution of 3D viscous and inviscid unsteady flow for cases with­

out strong non-linearities, providing a popular basis for forced response and flutter 

calculations. Non-linear frequency domain solvers, such as the nonlinear harmonic 

method, exploit the efficiency of linearised methods, whilst retaining the ability to 

include significant non-linear effects. 

Fully-integrated flutter and forced response methods involve the simultaneous 

solution of the fluid and structural domains in the time-domain and are usually 

associated with non-linear time-marching fluid solvers. The structural response is 

often solved in modal space, but the fully integrated solution of a full finite element 

model is quite common, particulary when structural non-linearities are included. 

Decoupled methods are the most common choice for routine forced response and 

flutter analysis due to their high efficiency. Decoupled methods can be used with 

any unsteady flow solution, but are normally used with time-linearised flow solvers 

for reasons of efficiency. Decou pled methods are particularly suited to the majority of 

aeromechanical analysis cases which do not show significant non-linear flow-structure 

coupling effects. 

Blade friction analysis in turbomachinery applications have focused on blade 

damper components for the purposes of optimising damper designs, rather than 

predicting root damping at the blade-disk interface. The development of friction 

methods has provided advanced generic contact models capable of predicting mi­

croslip, multi-directional and multi-harmonic friction forces. In turbomachinery, 

recent research has applied various advanced contact models to complex damper 

geometries and blade finite element models. In terms of aeromechanical analysis, 

optimisation techniques have incorporated less advanced friction mechanics to sim­

plified blade models, subject to decoupled aerodynamic modal forces to evaluate 

damper designs. The application of advanced friction models in turbomachinery 

flutter and forced response analysis is currently immature. 



Chapter 3 

Computational Models and 

Methods 

3.1 Non-linear Harmonic Method 

3.1.1 Description 

The nonlinear harmonic method aims to exploit the CPU efficiency of time-linearised 

frequency-domain approaches, whilst retaining the ability to capture significant non­

linear effects. Solving the fully 3D Navier-Stokes equations, the unsteady flow field 

is modelled by superimposing unsteady harmonic perturbations onto time-averaged 

variables. The system is solved in the frequency-domain using a pseudo-time march­

ing scheme, therefore eliminating the need for temporal resolution, increasing effi­

ciency over time-accurate methods. The use of phase-shifted boundary conditions 

allows each bladerow to be modelled using a single-passage domain, further re­

ducing the computational effort. The rotor-stator interface treatment follows a 

flux-averaged characteristic-based mixing plane approach, resulting in the contin­

uous passing of all flow parameters across the interface. Spatial discretisation is 

performed using a cell-centred finite volume approach and blade deformation is fa­

cilitated by a spring-analogous deforming mesh [48]. 

The deformation of each point within the CFD mesh is specified using a two-stage 

process based on the modal analysis of an FE structural mesh. The first stage is 

52 



3.1. Non-linear Harmonic Method 53 

described in detail later in Chapter 4 and involves interpolating the modal displace­

ments from the surface of the FE mesh to the blade surface boundaries of the CFD 

mesh. Whereas the upper and lower surfaces of the FE mesh correspond to adjacent 

blade passages, the surface displacements of the upper and lower blade boundaries of 

the single-passage CFD mesh are specified based on the periodic boundary condition 

defined later by Equation 3.2. The modal displacements are subsequently scaled to 

provide the displacement amplitudes of the CFD mesh surface nodes about a steady 

mean position for the single harmonic in question. The second stage involves the 

distribution of the displacement amplitudes throughout the CFD mesh. With the 

mesh boundaries at inlet, outlet, hub and casing constrained to having zero displace­

ment, the CFD nodal displacements are distributed throughout the mesh using a 

spring analogy. 

The governing flow equations are the fully 3D Reynolds-averaged N avier-Stokes 

equations applied to a cylindrical coordinate system (x, (), r) in an absolute frame 

of reference. Over a moving finite volume, ~V, the full unsteady flow equation in 

integral form is given by 

:tJ J J ~vVdV+ fJA[(F-Fv)fix+(G-Gv)fio+(H-Hv)fir]dA 

= J J J ~vSdV (3.1) 

where 
p pu- pug 

pu puu + p- puu9 
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puv + p- puv9 puw+ p- puw9 

G= r (pvv- pvv9 ) ' 
H= r (pvw- pvw9 ) 
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(pe + p) v - pev9 (pe + p) w - pew9 
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the continuity, momentum and energy conservation variables are represented by the 

field vector U, the inviscid fluxes in the x, () , and r directions are represented by 

the vectors F, G and H, and the viscous fluxes are represented by the vectors Fv, 

Gv and Hv. The grid velocities u9 , v9 and w9 used in the flux expressions account 

for the motion of the vibrating blade. The viscosity is taken as the sum of the 

laminar and turbulent viscosity. The laminar viscosity is taken from Sutherland's 

Law. Turbulence is accounted for by the turbulence viscosity using the Baldwin­

Lomax [141] mixing length model, assuming that the random effect of turbulence 

can be treated in the same manner as in a steady flow. The coefficient of heat 

conductivity is linked to viscosity by the Prandtl number and the flow equations are 

closed by expressing pressure in terms of an assumed ideal gas. 
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3.1.2 Time-Averaged Equations 

In the non-linear harmonic method, the flow equation is solved assuming that the 

unsteady flow field comprises of a time-averaged flow plus an unsteady perturbation, 

represented by 

U (x, (), r, t) = D (x, (), r) + U' (x, (), r, t) 

In contrast to linear harmonic methods, which superimpose the flow perturbation 

onto the steady solution, the nonlinear harmonic method bases the perturbation 

on a time-averaged flow, which is itself dependent on the unsteadiness. The time­

averaged and unsteady conservative variables are therefore represented by 

p p' 

(pu) (pu)' 

U= r (fYU) and U'= r (fYU )' 

(rrw) (rrw )' 

(pe) (pe)' 

where D is the vector of time-averaged conservative variables and U' is the vector 

of perturbation conservative variables. Similarly, the displacements and velocities 

of the computational mesh are separated into mean and unsteady parts, given by 

and 

Applying the equations to the unsteady nonlinear Navier-Stokes equation results in 

the time-averaged Navier-Stokes equation 

f}A (F- Fv) dA:" + (G- Gv) d}fo" + (H- Hv) dAr+ (F'dA'x) + (G'dA'8) 

+ (H'dA'r)- (F'vdA'x)- (G'vdA'8)- (H'vdA'r) 

= ffiv (SdV + S'dV') 
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where the inviscid and viscous vectors are given by 
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The laminar and turbulent viscosity coefficients are based on the steady flow solution 

and are assumed to remain unchanged by the flow perturbations. This results in 

linear viscous terms in the momentum equations and non-linear terms in the energy 

equation. 

A comparison between the time-averaged and the basic unsteady formulation 

shows that time-averaging produces additional terms in the momentum and energy 

equations due to non-linearity. The additional deterministic stress terms in the 

flux vectors are similar to the turbulence stress terms and are caused by the non­

linear influence of the flow perturbations on the time-averaged flow. The non-linear 

harmonic method features an option to solve the deterministic stress terms in the 

solution, which is not implemented in the forced response calculations included in 

this thesis. The inclusion of the deterministic stress terms offers the basis of incorpo­

rating non-linearity into the analysis, marking the fundamental difference between 
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the non-linear harmonic method and time-linearised approaches. The extra terms 

shown in the time-averaged equation arise from non-linearities due to the movement 

of the computational mesh. Aeroelastic vibration amplitudes are generally of very 

small amplitude, so the additional terms in the time-averaged equation are assumed 

to be of negligible quantity, allowing them to be neglected in the analysis. The 

time-averaged equation is therefore simplified and written in the form 

3.1.3 Harmonic Perturbation Equations 

Unsteady flows of interest in turbomachinery are generally periodic in nature, where 

perturbations can be represented by Fourier series. In aeroelastic applications, only 

the flow harmonic at the respective blade resonant frequency needs to be calculated, 

assuming that flow harmonics outside the resonant frequency have no effect on the 

steady state dynamic response. This allows the flow perturbation to be modelled 

using the fundamental harmonic at the resonant frequency, 

U' = fJeiwt 

Similarly, the mesh moving velocities u9 , v9 and w9 are represented in harmonic 

form 

- - iwt 
Vg = Vg + V9 e , 

where 

il9 = iwx, v9 = iwO, w9 = iwf 

and the mesh is assumed to vibrate harmonically about its steady position 

X= X+ xeiwt, () = iJ + Oeiwt, r = f + feiwt 

The full unsteady perturbation equations are defined by the difference between the 

original full equation and the time-averaged equation . The full perturbation equa­

tions containing high-order derivatives can not easily be solved in the frequency 

domain, therefore the first-order terms are assumed to dominate in order to sim­

plify the calculation. Retaining only the first-order terms of the full unsteady flow 
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equations, the unsteady perturbation equations are given by 

ffA [(F-Fv)dAx + (G- Gv)dAo + (H- Hv)dAr + (F- Fv)dAx 

+ (G- Gv)dAo + (H- Hv)dAr] = Jfiv (SdV + SdV)- iw Jfiv (UdV + UdV) 

where 
(pu) - (pug) 

(pu- pug)u + [(pu)- (pug)] u + ii 
F = r [(pu- pug)v + [(/)U)- (pug)] v] 

(pu- pug)w + [(pu)- (pug)] w 

(pe + p)u +[(,De)+ P1 u- peiig- (,De)ug 

(pv)- (pvg) 

(pv- pvg)u + [(/JV)- (pvg)J u 

G = r [(pv- pvg)v + [(pv)- (pvg)] v + P1 
(pv- pvg)w + [(pv)- (pvg)] w 

(pe + p)v +[(,De)+ P1 v- peiiy- (,De)vg 

(pw)- (pwg) 

(pw- pwg)u + [(pw)- (pwg)] u 

H = r [(pw- pwg)v + [(pw)- (pwg)]v] 

(pw- pwg)w + [(,O:W)- (pwg)] w + p 
(pe + p)w +[(,De)+ P1 w- pewg- (pe)wg 

0 

Fv = rTxo 

u~ + vT;O + wi; + UTxx + VTxB + WTxr - iix 

0 

Gv = rToo 

UTox + viio + wiir + UTox + VToo + WTor - iio 
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0 

Hv = rTre 

UTrx + VTre + WTrr + UTrx + VTre + WTrr - iJr 

0 

0 

S= 0 

[(pv)v + (pv)Vl/r 

0 

3.1.4 Boundary Equations 
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The analysis is performed for a single blade-blade passage, which requires the flow 

conditions to be defined for inlet, outlet, periodic and blade surface boundaries. 

Conventional steady flow boundary conditions are applied in the time-averaged so­

lution. For the time-averaged equations, the flow variables at the upper and lower 

periodic boundaries are subject to a direct repeating condition, enforcing an identi­

cal time-averaged flow in all passages in the bladerow. The first-order perturbation 

equations are subject to phase-shifted periodic boundary conditions, where identi­

cal flow disturbances are experienced by each passage subject to a phase difference 

defined by the interblade phase angle. For example, a harmonic perturbation on the 

upper boundary, iJ u, is expressed in terms of the perturbation seen on the lower 

boundary, iJ L, by 

(3.2) 

where rJ is the interblade phase angle. For the time-averaged flow, stagnation pres­

sure, stagnation temperature and flow angle are specified at inlet and static pressure 

is defined at outlet. Non-reflecting boundary conditions are defined at inlet and out­

let using either the one-dimensional condition of Giles [142] or the two-dimensional 

condition of Saxer and Giles [143]. Two different conditions can be used for the 

solid wall boundary for inviscid and viscous calculations using either a no slip wall 

boundary or a slip wall boundary treatment. Both approaches apply zero flux across 
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the solid boundary. The no-slip wall condition sets the velocities on the blade sur­

face to zero and the wall shear stress is calculated using the local velocity gradients, 

requiring a fine mesh resolution around the boundary. The slip wall condition ap­

proximates the wall shear stress by the log law formulation of Denton [144]. 

3.1.5 Solution Method 

The unsteady solution is performed by pseudo-time marching the flow equations 

in order to take advantage of the efficient time-marching schemes that have been 

extensively developed for steady flows. A pseudo-time variable, t, is introduced 

into both the time-averaged and first order perturbation equations, in a similar 

manner to conventional steady flow and linearised methods. The time-averaged and 

perturbation equations, therefore become 

and 

:, Jflv (UdV) + ffA [(F- Fv)dAx + (G- Gv)dA0 + (H- Hv)dAr] 

= fflv(SdV) 

:, fflv (UdV) + ffA [(F- Fv )dAx + (G- Gv )dAo + (H- Hv )dAr 

+ (F- Fv)dAx + (G- Gv)dAo + (H- Hv)dAr] 

= Jflv (SdV + SdV)- iw Jflv (UdV + UdV) 

The pseudo-time derivatives disappear after convergence, recovering the original 

time-averaged and perturbation equations. The flow equations are effectively trans­

formed into two steady state equations, allowing standard steady solution accel­

eration techniques to be adopted, such as local time stepping and multiple grid 

techniques. 

The spatial discretisation of the equations is made using the cell-centred finite 

volume method, which is a spatial second-order central difference scheme. A 2nd and 

4th order adaptive smoothing method is implemented in order to reduce numerical 

oscillations and capture shock waves in the time-averaged flow. 

The time-averaged and perturbation equations are solved in a coupled manner 

in order to capture the non-linear interaction between the time-averaged flow and 
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unsteady disturbances. The entire system of equations and are solved simultaneously 

using a 4-stage Runge-Kutta pseudo-time marching scheme. For the solution of 

the time-averaged equations at each fractional step in the Runge-Kutta scheme, 

the deterministic stress terms must be resolved. For periodic unsteady flow, the 

deterministic stress terms are evaluated directly from the phase and amplitude of the 

perturbations, obtained from the complex components of the 1st harmonic velocity 

perturbations. 

3.1.6 The TF3D Flow Solver 

The nonlinear harmonic method is carried out by the 3D CFD code TF3D, which has 

the additional ability to run as a purely time-linearised solver. The TF3D code has 

been developed by the University of Durham and validated for a range of oscillating 

blade and bladerow interaction applications, including: 

• 2D wake/blade interaction in a uniform inviscid steady flow past an unloaded 

flat plate cascade, discussed by Chen et al [49]. The validity of the basic linear 

unsteady perturbation solver is demonstrated with a comparison against the 

results of LINSUB, a widely-used linear inviscid analytic program. 

• 3D oscillating flat plate cascade, proposed by He and Denton [21]. The test 

case consists of a simple linear flat plate cascade, with vibration in the 1st 

torsion mode with uniform subsonic flow a zero incidence. Calculated results 

for unsteady pressure coefficient at 2D radial sections are compared with the 

3D semi-analytical lifting surface method of Namba and Ishikawa [145]. 

• 3D bladerow interaction for the Alstom 2~ stage transonic compressor case, as 

reported by He et al. [146]. The 2~ stage steady viscous solution using mixing 

plane treatment is compared with experimental data. The effects of rotor-rotor 

interaction are investigated with the 3D unsteady multi-stage calculation. 

• Bladerow interaction of the VKI BRITE-EURAM transonic turbine stage, as 

reported by Ning et al. [50]. The unsteady flow in the vane-rotor stage at 



3.1. Non-linear Harmonic Method 63 

normal operating condition is calculated, solving the time-linearised Navier­

Stokes equations. Predicted pressures over the rotor blade surfaces are vali­

dated against test data. 
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3.2 Structural Modelling 

3.2.1 Finite Element Modelling 

As discussed in Section 2.4.1, FEA discretises the distribution of a variable through 

a complex geometry by dividing the region into small elements of simple geome­

tries, interconnected mathematically at the nodes. The governing equations for 

each element are assembled into matrix form to give the system equations. The 

manner in which the element equations are constructed is dependant on the nature 

of the physical problem, which fall into the following three categories for structural 

mechanics: 

(1) Steady-state problems. Steady state or equilibrium problems are the most 

commonly-used aspect of the FE method. In structural mechanics, the elastic analy­

sis of a body under equilibrium provides the static displacements of the body due 

to the applied loads. This is used for stress analysis, where the resulting material 

stresses are derived from the nodal displacements. Such problems are governed by 

a matrix equation of the form 

[K] {X}= {F} 

where [K] is the stiffness matrix, found by summing all the element matrices, {X}is 

the vector of nodal displacements and { F} is the vector of applied nodal forces. 

(2) Dynamic problems. Dynamic problems include the effects of inertial force, 

obeying Newtons 2nd law, introducing a time-dependency into the system equa­

tions. Dynamic problems usually contain dissipative non-conservative forces and 

are represented by the matrix equation 

[M] {X} + [ C] {X} + [ K] {X} = { F( t)} 

where [M] and [C] are the total mass and damping matrices of the structure and 

{X}, {X}, and {X} are the nodal accelerations, velocities and displacements. The 

solution of the system equations yields a time-varying or dynamic response of the 

system. 

(3) Eigenvalue problems. Eigenvalues describe the values of a certain important 

parameter that cause the system to fall into a characteristic type of behaviour. In 
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structural dynamics, the natural frequencies and mode shapes of free vibration are 

given by the solution of the eigenvalue problem in a modal analysis. Here, the 

dynamic equation reduces to 

[M] {X} + [K] {X} = {0} (3.3) 

which is solved to yield the natural frequencies and modeshapes of the system. The 

resulting eigenvectors and eigenfrequencies form the basis for subsequent calculations 

based on Modal Reduction. 

3.2.2 Modal Reduction Method 

As discussed in section 2.4.2, forced vibration at an arbitrary frequency can be 

modelled with the modal superposition technique by superimposing the dynamic 

response of several modes in the relevant frequency range. This approach decouples 

the large system of coupled equations in the FE model to a series of individual modal 

equations. 

The forced response analysis of gas turbine blades is generally concerned with 

resonant vibration at frequencies very close to the natural frequency of interest. It is 

generally accepted that resonant vibration of lightly-damped blades is characterised 

by harmonic motion in the corresponding mode shape with virtually no contribution 

from any other mode. This allows the response to be calculated using the modal 

reduction method in a similar manner to the modal superposition technique, with 

the difference being that only the single mode of interest included in the analysis. 

The modal reduction method is based on the results of the eigenvalue solution 

provided by a FE modal analysis, where the natural frequencies relate to the eigen­

values and the modeshapes are given by the eigenvectors. The analysis is performed 

in modal space, where all FE matrix coefficients and force vectors are converted 

into modal values before being applied to the single-DoF modal equation. The so­

lution of the modal equation yields the modal amplitude which is used to scale the 

eigenvector, providing the physical response amplitudes of all nodes on the FE mesh. 
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Natural Frequencies and Modeshapes 

The basis for the modal reduction technique is a modal analysis performed on the 

FE model, yielding the natural frequencies and modeshapes of free vibration. The 

modal analysis involves the solution of the eigenvalue problem (Equation 3.3) to pro­

vide the natural frequencies (eigenvalues) and modeshapes (eigenvectors). Assuming 

harmonic forcing and motion, the eigensolution is given by the linear equation 

(3.4) 

For a system of n degrees of freedom, Equation 3.4 represents a coupled series 

of n linear homogeneous equations, where both the eigenvalue, wi and eigenvector 

{ ¢i} of any eigensolution, i, are unknown. For any non-zero eigensolution, the 

determinant of the eigenvector coefficient must reduce to zero, i.e. 

IlK- w?MII = {0} 

giving a series of n eigenvalues. If all the eigenvalues are distinct, there exists a non­

trivial solution to Equation 3.4 in { ¢i}. The modeshape eigenvector for any specific 

natural frequency is then given by substituting the frequency into Equation 3.4. 

The resulting eigenvector has an arbitrary amplitude and the modeshape values 

are relative, describing only the shape of vibration for an arbitrary scale. Thus, the 

equation can be solved for the relative modeshape once any one of the displacements 

has been specified at an arbitrary value. It is most convenient to choose a scale such 

that the modal mass is set to unity, given by 

(3.5) 

then the modal stiffness is intrinsically set to a value of ki = wl, where, 

(3.6) 

This mass-normalising of the modeshape greatly simplifies the implementation of 

modal reduction in forced response analysis, where the mass and stiffness variables 

are subsequently eliminated from the modal equation. 
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Modal Superposition 

The eigenvectors are orthogonal with respect to the mass and stiffness matrices, 

thus for any eigenvalue, r, in relation to another eigenvalue, s, the orthogonality 

condition can be shown as 

(3.7) 

The orthogonality of eigenvectors means that the dynamic responses of individual 

modes can be calculated independently, then linearly superimposed. In a forced 

response analysis, the solution of each mode yields the modal amplitude which is 

subsequently used to scale each eigenvector to give the physical modal displacements. 

The modal responses can then be superimposed, providing the total structural re­

sponse. The finite element dynamic equations of the full model are written in the 

form 

[M] { X(t)} + [C] { X(t)} + [K] {X(t)} = {F(t)} (3.8) 

where {X} is the vector of nodal displacements and { F} is the vector of ex­

citation forces. The principle of linear modal superposition allows the structural 

response to be made up of a combination of natural modes, each multiplied by the 

modal amplitude in the form 

{X(t)} = [</>] {q(t)} = Qt(t) {</>h + Q2(t) {</>)h + · · · + Qn(t){<f>}n (3.9) 

where {q} is the vector of the individual modal amplitudes, Qi, and[</>] is the eigen­

vector matrix, the columns of which represent each eigenvector. Substituting 3.9 

into 3.8 and pre-multiplying by [</>]T gives 

[<f>JT [Mj [</>] {ij} + [<f>JT [Cj [</>] {q} + [<f>JT [Kj [</>] {q} = [<f>JT {F} (3.10) 

Both the mass and stiffness matrices are diagonal due to the orthogonality con­

ditions 3. 7, but the damping matrix is not generally diagonal. Considering damping 

in the form of a modal damping ratio, (i , for each mode allows Equation 3.10 to be 

expressed as a series of decoupled scalar modal equations 

i = 1, 2, ... , n 
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with the modal mass of unity and the modal stiffness of wi, defined by Equations 

3.5 and 3.6. The modal force is then obtained from the physical force vector by 

(3.11) 

The modal equations are solved in either the time or frequency domain to give the 

modal amplitudes of all modes included in the analysis. The solution is subsequently 

transformed into physical space using Equation 3.9. 

Single Degree of Freedom Modelling 

As previously discussed, resonant vibration very close to a natural frequency is dom­

inated by the corresponding mode, allowing the influence of all other modes to be 

neglected from the analysis. From the mode orthogonality condition (Equation 3.7), 

the series of decoupled of equations can be further condensed to one single-DoF 

modal equation for that particular mode. To simplify algebraic notation, the sub­

script, i, defining mode number is omitted from the remainder of this text, as the 

following aeromechanical methods consider only one mode during any analysis. The 

format of the modal equation for any given mode is, therefore 

ij(t) + 2(wiq(t) + wiq(t) = f(t) 

where 

q(t) = {</J}T {X(t)}, and f(t) = {</J}T {F(t)}. 

The modal equation can be directly solved in its current form by means of 

numerical integration in the time domain. However, it is more convenient to make 

the assumption of harmonic forcing and motion, 

and expressing the modal equation in terms of complex amplitudes 

(3.12) 

which can be rewritten as 
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(3.13) 

allowing the solution to be solved analytically, or indeed by numerical integration 

techniques. 

The application of aerodynamic forces to the modal equation is described in detail 

in Section 4.3 and is summarised here. The aerodynamic excitation forces from the 

CFD forcing calculation are transformed from the complex force distribution over 

the blade into a single complex modal force using 

n 

j = L {<Pi · ( Fr + iF}1
)} (3.14) 

j=l 

Aerodynamic damping can be considered in terms of an equivalent viscous damp­

ing ration (aero, which is calculated from the work done on the blade by the fluid 

in a CFD damping calculation. Work is calculated in physical terms by integrating 

the aerodynamic damping force distribution, to give 

n 

W cfd _ '""""'(D\:l' ·)cfd 
d - 7r ~ j XJ ' (3.15) 

j=l 

where x1d is the absolute displacement amplitude at a given point on the blade 

surface. The aerodynamic damping ratio is calculated from the work based on the 

principle of equivalent viscous damping, 

wGtd 

(aero = 27r:T ( ;cfd) 2 
(3.16) 
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3.3 Friction Damping Modelling 

3.3.1 Macroslip Models 

Macroslip friction models, commonly known as Coulomb friction models, treat the 

two bodies in contact as perfectly rigid, disallowing any flexibility of the bulk mate­

rial around the contact surfaces. This results in the entire contact surface behaving 

as a solid block, which is either in a state of gross stick or gross slip. The friction 

behaviour of the surface is described by the coefficient of friction, which is defined 

as the force required to initiate or maintain sliding of a friction surface, and is given 

by the ratio of the tangential to the normal force, as 

(3.17) 

The friction coefficient is therefore used to determine the point at which slip 

occurs and the maximum tangential friction force that can be sustained by the con­

tact. In other words, sliding motion can only be achieved after a critical tangential 

force is applied and the maximum friction force is exceeded. Two variations of the 

macroslip friction approach are considered: Rigid Coulomb and Elastic Coulomb. 

Rigid Coulomb is the most commonly-known representation of friction, which ne­

glects the elastic behaviour of the contact surface and permits tangential motion 

only after the critical tangential force is applied. Elastic Coulomb friction, however, 

encompasses the gross elastic deformation of the asperity junctions with the inclu­

sion of an elastic contact stiffness. The elastic model provides a degree of tangential 

displacement before the critical tangential load is applied and gross slip occurs. 

Whilst the rigid Coulomb model offers a simple approximation suitable for dynamic 

problems with large sliding displacements, the Elastic Coulomb model offers a better 

approximation for cases with relatively low tangential motion. 

Rigid Coulomb Friction 

The rigid Coulomb model neglects any elastic tangential deformation of the contact 

surface, permitting gross sliding of the entire surface only after the elastic limit is 

reached. This approach can be visualised by considering a brick on a rough surface, 
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as illustrated in Figure 3.1. The contact surface has friction coefficient, p,, is subject 

to a normal force Fn- If a tangential load, F, of increasing magnitude is gradually 

applied to the brick, it initially remains stuck and does not move until the tangential 

force reaches a critical value. Below the critical value, the contact surface imposes a 

friction shear force on the brick, maintaining equilibrium with the applied force and 

preventing motion. Once the critical tangential force is exceed, the friction force 

reaches a maximum value, given by 

(3.18) 

after which, equilibrium is lost and the brick slides. 

Now considering the brick to be subject to a tangential displacement, it is seen in 

Figure 3.2 that the friction force remains constant for any given sliding displacement, 

with the direction opposing motion. Applying a harmonic tangential displacement 

at the friction surface gives a friction force in the form of a square wave, as shown 

in Figure 3.3. Plotting the friction force against tangential displacement provides 

the hysteresis curve provided in Figure 3.4. The friction work done over one cycle 

is considered as the area enclosed within the hysteresis curve, given by 

(3.19) 

The equivalent viscous damping ratio is obtained in a similar manner to aerody­

namic damping in Equation 4.23, to give 

-w, 
(aero = 2 2 ( )2 · 

7CW xmax 
(3.20) 

A note of caution is given when the friction damping is represented by the viscous 

model. It can be seen in Equation 3.19 that the friction damping work is propor­

tional to the displacement amplitude. However, it is discussed later in Section 4.4 

that viscous damping work is proportional to the square of the displacement ampli­

tude. This means that friction damping can not be accurately represented by the 

viscous model, with the consequence that the equivalent viscous damping ratio cal­

culated at one vibration amplitude is not valid at any other amplitude. This point 
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is illustrated in Figure 3.5, where the equivalent viscous damping ratio is plotted 

against displacement amplitude, to show that the effect of rigid Coulomb damping 

decays with increasing displacement. It is therefore highlighted that a great deal of 

caution must be used when friction is expressed in terms of an equivalent viscous 

damping ratio. 

Elastic Coulomb Friction 

The Elastic Coulomb model is an extension to the rigid model that incorporates 

a linear elastic contact stiffness to represent the elastic deformation of the contact 

asperities before the elastic limit is reached. The Elastic Coulomb model can be 

visualised by considering the contact surface as a brush on a flat surface with uni­

form bristles and rigid body, which is subject to a normal force. As illustrated in 

Figure 3.6, the bristles of the brush deform elastically for a small applied tangential 

load, giving a small amount of tangential defloection of the brush body. If the tan­

gential load is gradually increased, the bristles will deform elastically until a critical 

point, after which gross sliding occurs. This initial elastic motion is representative 

of the elastic deformation experienced by the contact asperities before the yield 

stresses are reached and plastic deformation takes place. 

The Elastic Coulomb model therefore behaves a similar same way to the Rigid 

Coulomb model, with the exception that contact surface deforms elastically during 

gross stick. Considering the contact surface to be subject to an increasing tangential 

displacement, Figure 3. 7 shows the friction force as the surface is displaced from an 

initial position. For tangential loads below the critical value, the contact surface 

deforms with an elastic contact stiffness, kt. Once the elastic limit is reached, the 

friction force remains fixed and gross sliding occurs. Defining the elastic contact 

stiffness as 

(3.21) 

the displacement given by a tangential force under elastic conditions is given by 

(3.22) 

It is known that the maximum friction force, given by Equation 3.18, is achieved at 
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the point of slip. Therefore, the displacement at the elastic limit is given by 

lim J-LFn 
X =---,;;;· (3.23) 

For any tangential displacement less than than the critical value, the friction sur­

face will behave like a spring with purely elastic deformation. Once the elastic limit 

is exceeded, gross sliding will occur as in the Rigid Coulomb Model. The resulting 

hysteresis curves for a range of displacement amplitudes are shown in Figure 3.8. 

The first graph shows the purely elastic behaviour, for small displacements below the 

elastic limit; the second graph shows the hysteresis curve for a displacement slightly 

greater than the elastic limit; whilst the third graph shows the behaviour for very 

large displacements relative to the elastic limit. From these three graphs, it can be 

seen that: a) zero damping is achieved for the purely elastic case with very small 

amplitudes; and b) the elastic model behaves similarly to the rigid model for large 

displacements, where the elastic part of the curve becomes less significant. This 

highlights the limitation of the Elastic Coulomb model for small displacements and 

also explains why the simpler rigid model is used in most engineering applications, 

where sliding displacements are usually far greater than the elastic limit. 

Knowing that the area of a parallelogram is equal to the product of the base and 

height, the work done by the Elastic Coulomb model is therefore equal to 

(3.24) 

where xslip is the slip displacement, which is non-zero when the elastic limit is 

exceeded and is defined by 

(3.25) 

Expressing the friction work in Equation 3.27 in this form gives 

(3.26) 

Substituting the expressions for plim and xlim in Equations 3.18 and 3.23 into 



3.3. Friction Damping Modelling 74 

the above expression defines the Elastic Coulomb friction work as 

(3.27) 

The equivalent viscous damping ratio is gained by substituting the work into Equa­

tion 3.20 giving 

(3.28) 

Figure 3. 9 provides a graphical representation of the Elastic Coulomb friction 

work and equivalent viscous damping ratio as functions of displacement amplitude. 

Here it can be seen that the work is zero for small displacements, but increases lin­

early once the elastic limit is exceeded. The damping ratio remains at zero for small 

displacements, increases to a maximum value soon after as gross slip is achieved, 

then decays towards zero as the displacements are further increased. 

3.3.2 Microslip Model 

Microslip models predict friction due to small-scale displacements with greater ac­

curacy than the Coulomb models by accounting for the contributions of individual 

asperities before gross sliding occurs. Representing asperity geometries as statistical 

distribution allows the population of highly-loaded asperities to deform plastically 

and contribute to damping before gross slip is achieved. This approach does not 

assume a rigid bulk material, thus allowing some regions of the contact surface 

to remain stuck, whilst other parts achieve sliding. The result of this method is 

that a degree of plastic sliding, and therefore hysteretic damping, is achieved before 

gross sliding is predicted by the Coulomb models, thus providing a more realistic 

representation of the physical problem. 

The microslip model implemented in this project was proposed by Hagman [131] 

and applied by Olofsson [130], who provides a detailed description of the model 

with examples. In this thesis, the original friction equations derived by Hagman 

and Olofsson are further extended for use in a linear FE friction model. 
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In the microslip model, the shape of the asperities is assumed to be spherical, 

with equal radii and uniform height distribution. The elastic behaviour of each 

individual asperity is determined by Hertz theory, which states that the compound 

elastic modulus for two spheres under normal loading is given by 

1 1 - v2 1 - v2 
-=--1+ __ 2 
E* E1 E2 

(3.29) 

where E and v are the elastic modulus and Poisson's ratio of each material. Similarly, 

the compound shear modulus is stated as 

1 2 - vi 2 - v~ 
G* = -----a;- + -----a;- (3.30) 

For a contact surface under an applied normal load, the number of asperities in 

contact is assumed to increase linearly with the normal approach of the surfaces. 

The expression 

N=Cz (3.31) 

relates the number of asperity junctions per unit area, N, to the normal approach, 

z, by the surface contact parameter, C. The normal approach is the deformation of 

the bulk material in the normal direction due to an applied normal pressure, and is 

given by the expression 

( 
15P )

0
·
4 

z = 8E*CA0R! 
(3.32) 

The total friction load over the contact surface is taken to be the sum of the forces 

from all asperities in elastic and plastic contact, given by 

(3.33) 

where Fspring is the friction force of each contact asperity under elastic Hertzian 

contact and Fslip is the friction force of each asperity undergoing plastic flow. The 

force during initial loading with an increasing tangential displacement from the 

rest position is shown in Figure 3.10. During the range of microslip from the rest 

position up to the slip limit, xlim, the total frictional load is obtained by integrating 

the contribution of each individual asperity over the whole surface, which is stated 

by Olofsson (130] to be given by 

F1 ~ 
1

8

5
1'CA0E•R! [z!- (z- ~~) ll (3.34) 
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Equation 3.34 is valid up to the slip limit given by 

lim ZJ-LE* 
X =--

4G* 
(3.35) 

After the slip limit is exceeded and gross slip occurs, the friction force is given by 

Equation 3.17 in an identical manner to the Coulomb models. 

The hysteresis curve for cyclic tangential displacement from an initial rest point 

is provided in Figure 3.11. After the peak tangential displacement, xmax, is reached 

after the initial loading, the direction of motion is reversed. The residual slip strain is 

unloaded, before reloading occurs in the opposite direction. The size of the microslip 

region during unloading and reloading is equal to twice the size of the microslip 

displacement of the initial loading condition. The friction force during microslip in 

the reverse part of the cycle, returning from a maximum positive displacement of 

xmax to a maximum negative displacement of -xmax is given by 

F _ pmax 16 CA E*Rl [ 2 ( 2G* (xmax- x)) ~] J- 1 - -J-t o 2 Z 2 - z-
15 J-LE* 

(3.36) 

where pmax is the peak friction force at the maximum positive displacement, xlim. 

If the elastic limit is exceeded on the return stroke and gross slip occurs then the 

friction force is given by - Ffim. 

Similarly, once the maximum negative displacement on the return stroke is 

reached and the forward motion recommences, the signs of pmax and xmax in Equa­

tion 3.36 are reversed and the friction force is given using Equation 3.36. 

The dissipated work done by the friction force over one vibratory cycle is given 

by the area enclosed within the hysteresis curve. The work done within the microslip 

region for displacement amplitudes up to the slip limit, as shown in Figure 3.12, is 

calculated by integrating the microslip force over one cycle. The microslip work is 

stated by Olofsson [130] to be 

(3.37) 

~Equation 3.37 is only valid' within the microslip range for displacement amplitudes 

up to the slip limit, given by Equation 3.35. Figure 3.13 shows graphically the 

work done during both microslip and gross sliding regions when the displacement 
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amplitude exceeds the slip limit. The areas are divided up into a parallelogram of 

equal area to the sliding work, and two microslip regions of combined area equal to 

the microslip work shown in Figure 3.12. The microslip work is equal to value given 

by Equation 3.37 for a displacement amplitude of xmax = xlim at the slip limit. The 

sliding work is calculated in a similar manner to the Elastic Coulomb sliding work 

given in Equation 3.26 to give 

[ 5] 8 I 5 4G*xlim 2 
= -J-LCA0E* R2 z2- (z- ) 

15 J-LE* ' 

(3.38) 

The work calculated by the microslip model for arbitrary displacement amplitude is 

therefore given by 

(3.39) 

Figure 3.14 shows the damping work predicted by the microslip model for a range 

of displacement amplitudes, together with the work contribution due to microslip 

and gross sliding. The graph shows a smooth continuous curve as the displacement 

is increased from the microslip range into gross sliding, giving a much more realis­

tic representation of damping behaviour over such small displacement levels. The 

resulting damping ratios are plotted in Figure 3.15, showing that the damping ratio 

remains finite and continuous over the microslip-gross sliding range. 

3.3.3 Implementation of Friction Models 

The above friction models are implemented into the forced response analysis based 

on an FE modal approach for compatibility with the blade forced response meth­

ods. The strategy is to incorporate the flexibility of the friction surface into the 

blade mode shape, allowing the consideration of friction damping into the modal 

forced response calculation. For any given modal amplitude, the small-scale sliding 

~"' • -~ --~- ~-~·---displacements· atcthe'i·oot-'slot -inteHace areo"obtl'tined' fro:rilthe" mode~shape:allowirig· ---~~_,,_,_ -,~ -

the damping work to be calculated over one vibratory cycle, which is subsequently 

used to calculate the equivalent viscous damping ratio. 
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The nonlinear force-displacement relationship is approximated in a linear fashion 

to allow the stiffness and damping effects of the friction interface to be separated, 

allowing an effective contact stiffness to be included in the modal analysis. The 

inclusion of contact sliding displacements into the modeshape is based on the as­

sumption that that friction forces do not significantly change the modeshape for 

the light levels of damping commonly observed in practice. The assumption of lin­

ear contact stiffness is a good approximation for small displacements of the Elastic 

Coulomb and Microslip models, as shown in Figures 3.7 and 3.10. For Coulomb fric­

tion, the contact stiffness remains constant up to the slip limit, given by rearranging 

Equation 3.23 to give 

(3.40) 

Normal stiffness is taken as a factor of the tangential stiffness. This relationship has 

been discussed in the friction literature to be fairly reliable, with the stiffness ratio 

typically being around 'J: = 100 for machined metal surfaces. 

For the microslip model, the tangential stiffness varies with sliding displacement 

in a nonlinear manner, as shown in Figure 3.10, where the gradient reduces with 

displacement. The force-displacement curve is linearised by approximating the stiff­

ness to a constant equivalent value. Since the absolute displacements are unknown 

in the modal analysis, the equivalent stiffness is calculated at a specified position 

along the microslip curve, as illustrated in Figure 3.16. The equivalent stiffness is 

therefore given by 

(3.41) 

Here, 1 defines the position along the microslip curve relative to the slip limit (for 

example 1 = 0.5 sets the displacement at half the slip displacement). 

Normal stiffness is calculated based on the normal pressure and normal displace­

ment, given by 

(3.42) 

where z is the normal displacement obtained using Equation 3.32. 

The equivalent normal and tangential contact stiffnesses are applied to the FE 

model by connecting each contact node on the root flank surfaces to ground via 
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three perpendicular spring elements in the planar and normal orientations. The 

modal analysis is then run to yield the contact modeshape over the flexible contact 

surfaces. For any given modal amplitude, the absolute displacement at each contact 

node is obtained by scaling the mode shape by the modal amplitude, allowing the 

friction forces to be determined. 

The friction damping work done at each contact node over one vibratory cycle 

is calculated using Equation 3.19 for the Rigid Coulomb model, Equation 3.27 or 

Equation 3.39 for the microslip model. The work done at each node is summed 

over the blade root surface to give the total friction work and the equivalent viscous 

damping ratio is calculated from 

r Vl'fric 
O.,fric = 2 2 2 · 

'TrW q 
(3.43) 

The damping ratio provides a linearised equivalent of the friction damping effect and 

is only applicable for the modal amplitude given. Due to the nonlinear characteristics 

of friction, the work must be re-evaluated to provide the damping ratio for any 

different vibration amplitude. 

Further discussion and implementation of the root friction modelling approach 

for an industrial compressor blade are provided in Chapter 8. 
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Figure 3.1: Brick representation of Rigid Coulomb friction model 
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Figure 3.5: Variation of Rigid Coulomb friction work and damping ratio with dis­

placement amplitude 

Rest position 

elastic 
deformation 

F\ t--r--r-r-r-,...-r-t 

With tangential loading 

- Figure 3:6:- Brush representation ofElastic "Coulorrd:tfriCtiori'model·~ 



3.4. Figures 

-oi e 
0 -c 
0 :g 
·-= u. 

. .ft.~ ..... ,_, ____________ _ 

Tangential displacement, x 

stick slip 

Figure 3. 7: Elastic Coulomb friction force for increasing displacement 
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Figure 3.8: Elastic Coulomb hysteresis curves for various amplitudes of displacement 
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Figure 3.10: Microslip friction force during initial loading 
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Figure 3.16: Calculation of tangential stiffness using various positions on microslip 
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Chapter 4 

Decoupled Forced Response 

System 

4.1 Overview of Methodology 

Linearised decoupled methods provide a highly efficient frequency domain approach 

for aeroelastic calculations. Fluid-structure interaction is dealt with in a loosely 

coupled linear manner, assuming that mode shapes and natural frequencies of the 

blade are not affected by aerodynamic loading. This assumption is valid for typical 

compressor blades, which are of high density and stiffness and vibrate with low 

amplitude. Efficient forced response methods based on the decoupled approach 

are usually preferred over time-accurate methods due to the relative simplicity of 

implementation, fast solution times and flexibility over choice of aerodynamic and 

structural methods. 

The methodology of the decoupled approach is illustrated in Figure 4.1. This 

represents an open-loop system which requires only a single execution of the fluid 

and structural calculations. The resonant vibration of a single mode is calculated 

to give the steady-state blade vibration amplitude. Blade excitation is provided 

by unsteady aerodynamic forces of the corresponding harmonic and the system is 

__ SJtbj~c_t __ t_o ~:~,~r_QdY-IlJ!·IDiCJ:tpd __ s_tr,ucturaL damping.",.Blad(3_modeshapes,_are obtained __ 

from an FE modal analysis, one of which is selected for analysis and interpolated 

onto the CFD mesh. The CFD analysis is simplified by decomposing the forcing 

89 
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and damping calculations into two separate parts to yield the aerodynamic forcing 

function and the aerodynamic damping ratio. The forced response solution is then 

calculated using a modal approach for the given forcing and damping terms to give 

the resonant vibration amplitudes and stresses. 

Finite Element Modal Analysis 

Mode shapes and natural frequencies are provided by the modal analysis of a finite 

element model of the blade structure. The FE software used in the analysis was 

chosen to be Ansys, a typical commercial general-purpose package. The blade is 

modelled as a single isolated blade, fully constrained at the root and assuming no 

mechanical coupling between blades. Additionally, the method retains the capability 

of modelling a bladed disk based on cyclic symmetry, where the complex modeshape 

of a single blade segment is used. The stress stiffening effect of centrifugal loading 

is accounted for by performing a preliminary static analysis at the specified engine 

speed. Although less significant, steady fluid loading can be included in the static 

analysis if desired by approximating the steady fluid pressures as a small series of 

spanwise equivalent forces on the FE model. The result of the pre-stressing calcu­

lation is a modification to the system stiffness matrix used in the modal analysis. 

The result of the modal analysis is a set of real mode eigenvectors, such that the 

modal response of every point of the blade moves in phase, with relative amplitude 

determined by the mode shape. If the blade is visualised to be repeated around the 

annulus to represent the entire disc, then the modal response of each blade will be 

seen to vibrate with a discrete interblade phase angle between neighbouring blades. 

Whilst this approach is commonly accepted in the literature for unshrouded blades, 

the decoupled approach is also capable of dealing with the analysis of shrouded 

bladed disc assemblies utilising cyclic symmetry in the modal analysis. In this case, 

a set of complex modes for the disc sector mode will result, representing a continuous 

travelling wave of blade motion around the disc. 

A single mode for investigation is selected from the set at the resonant crossing 

point of interest on the Campbell diagram, dictating the mode, frequency and engine 

speed. The modeshape is subsequently interpolated onto the CFD mesh as a distri-
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bution of real modeshape amplitudes over the aerofoil surfaces. The aerodynamic 

boundary conditions are obtained from the performance map of the machine. 

Aerodynamic Forcing 

The unsteady aerodynamic excitation forces are obtained from either a single or 

multi-stage CFD calculation which models the flow disturbances due to inlet distor­

tion or bladerow interaction. The forcing analysis is done with non-vibrating blades 

to yield the unsteady harmonic pressure distribution over the blade surfaces due to 

incoming flow disturbances. The unsteady pressure harmonic at the blade natural 

frequency is integrated over the blade surfaces to provide the complex modal exci­

tation force. Forcing harmonics outside the natural frequency are assumed to have 

an insignificant effect on the steady-state resonant response and are neglected. The 

formulation of the modal excitation force is given later in Section 4.3. 

Aerodynamic Damping 

Aerodynamic damping is calculated based on the assumption that vibration-induced 

pressures increase linearly with vibration amplitude. Whilst linear aerodynamic 

damping behaviour for two transonic fan rotors has been observed by Li and He [74] 

and Schmitt et al. [75], no evidence has yet been reported showing significant non­

linear damping for high frequency forced response cases with small blade deforma­

tion. The CFD damping calculation is performed on an isolated bladerow in clean 

flow with the blade vibrating in the mode at the blade natural frequency. The am­

plitude of vibration is specified at a realistic level and the interblade phase angle is 

determined by the wavelength of the aerodynamic disturbance. The induced har­

monic forces resulting from the blade vibrating in the fluid are calculated to give the 

pressure distribution at the vibration harmonic. The harmonic pressures and blade 

displacements are integrated over the blade surfaces to provide the work done on 

the fluid by the blade over one vibratory cycle. An equivalent aerodynamic modal 

. . . dampingiJ!·t.io is then~G.al~ulat~d_frpm th~ work, Q~~g Ql! theprinG.iple of_~quiva- . _ _ _____ _ 
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lent viscous damping. The formulation for the aerodynamic damping calculation is 

provided in Section 4. 3. 
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Forced Response Solution 

Once the aerodynamic forcing and damping terms are known, the forced response 

is calculated very efficiently using a single DoF equation based on the CFD mesh. 

Linear mechanical damping is included as a prescribed damping ratio, based on 

the principal of equivalent viscous damping. Two methods of obtaining the forced 

response solution are used: 1) the modal equation method; and 2) a new energy 

method. The modal reduction method is the standard approach, involving the trans­

formation of physical variables into modal space before solving the modal equation. 

The resulting modal amplitude is then expanded into physical space to give the 

actual blade response. The energy method provides an alternative forced response 

solution to the modal equation method and performs the calculations directly on the 

CFD mesh using actual vibratory displacements. Here, the mode shape is directly 

scaled to balance destabilising and stabilising work due to forcing and damping to 

provide the blade motion at equilibrium . 

.::: .. ..:...::__.~.---· -· -- . ---- -·-·· . 



4.2. FE-CFD Mesh Interface 93 

4.2 FE-CFD Mesh Interface 

4.2.1 Problem Description 

The modal displacements from the FE modal analysis are interpolated from the FE 

mesh to the CFD mesh to allow the aerodynamic modal forcing to be calculated 

using the fluid pressures on the CFD mesh. The calculation of modal forcing on 

the CFD mesh requires only a single interpolation process for each mode under 

consideration, providing an efficient forced response process. The alternative to this 

approach would be to interpolate fluid pressures onto the FE mesh, where the modal 

forcing would be calculated. The disadvantage of this alternative would be that fluid 

pressures would need to be transferred to the FE mesh every time the CFD solver 

is employed for the forcing and damping calculations. The calculation of modal 

forcing on the CFD mesh is therefore a much simpler approach. 

The FE-CFD interface is a major component of the forced response prediction 

system, which must accurately interpolate the mode shape from the Ansys FE mesh 

to the CFD mesh. The interface must be capable of interpolating with high accuracy, 

whilst being robust enough to deal with the demands of industrial use. A large part 

of the problem is due to the unstructured nature of FE meshes and the need to 

facilitate the use of different structural element shapes. Whereas FE meshes may 

take on the appearance of structured meshes, looking similar to structured CFD 

meshes, the mesh data in Ansys is stored in an unstructured manner. 

Further complications arise due to likelihood of slight variations between the 

mesh geometries, resulting in non-coincident boundary surfaces of the two meshes. 

The primary cause of this issue is due to the blade unrunning of the FE mesh, where 

structural analysts "undo" the effects of centrifugal, static gas and temperature 

loading of the blade to give the cold blade geometry. The cold shape is usually used 

for subsequent structural analysis, leading to a significant difference in geometry 

if the static deformation is not reapplied to the blade shape. The magnitude of 

---· __ -'~~},s}ljJ!~Ee.~ce a~ .1~~ ~~!:' _c~':l21Lqf -'~!~ilaL~~e _ _!.~)~~~~%!~-t~i£~-~~1?~:"' ~e__c~ll~~ry __ --~~"'--'-"--~ 
differences in geometry are due to the planar nature of the element surfaces, which 

do not conform exactly to the curved blade profile. Since the FE and CFD meshes 
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are not identical, the nodes of one mesh will not necessarily intersect the planar 

surfaces of the other mesh. Such differences are relatively small, but the implication 

on interpolation accuracy can be significant for low density meshes. 

4.2.2 Metholology 

A method of interpolation was developed to transfer the mode shape from an un­

structured FE mesh comprising of tetrahedral, hexahedral, prismatic and wedge el­

ements to a CFD structured mesh, based on the assumption of noncoincident mesh 

boundary surfaces. The harmonic amplitudes of the mode shape are transferred to 

the CFD mesh by 2D linear interpolation over the 3D FE mesh surface. For each 

point on the CFD mesh boundary surface, a plane on the FE mesh boundary is 

chosen. The plane is defined by three corner FE nodes on an external element face, 

giving a single plane per triangular face and a selection of four planes per rectangu­

lar face, as shown in Figure 4.2. Forming a triangle, the three nodes are selected to 

provide the closest centroid to the CFD point, thus defining the best interpolation 

plane to provide maximum accuracy. 

Interpolation of the mode shape components is performed at the orthogonal 

projection of the CFD point onto the plane, as shown in Figure 4.3. The mode 

shape data for the CFD point is taken at the projection point in order to minimise 

errors caused by the mesh surfaces not coinciding. Methods of 3D interpolation are 

expected to reduce accuracy by introducing errors for non-coincident surfaces. 

Misalignment of the FE and CFD meshes is common due to differences in coordi­

nate systems, origins and orientation between the two meshes. Axial and rotational 

alignment of the FE mesh to the CFD mesh is incorporated based on the specifi­

cation of reference nodes. The tip leading edge is normally taken as the reference 

point, as it is often the most flexible part of the aerofoil with the highest strain 

gradients, where interpolation accuracy is the most important. 

At positions where the aero point lies close to an element-element boundary, noise 

in the interpolated values can be seen due to the step change in plane orientation 

from one element face to another. This effect is particularly noticeable in low­

density meshes or in areas of high modeshape gradients. The interpolation quality 
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is improved by averaging the interpolated data over the two adjacent elements if the 

interpolation point lies within a specified proximity to an element-element boundary. 

An additional source of error occurs when interpolation planes are not aligned 

with the pressure and suction surfaces, such as the tip, leading and trailing edges 

of typical, blunted FE meshes. Such surfaces lie normal to the desired interpolation 

planes and can cause significant interpolation errors for low density FE meshes 

around these regions. The errors are avoided by specifying the element and face 

numbers on the FE mesh and preventing these surfaces from being used to define 

interpolation planes. Fortunately, this edge effect does not provide concern for high­

density meshes and can be neglected. 

CFD meshes incorporating tip clearance cells require further attention to define 

the blade motion of the clearance cells above the blade tip. Since these cells lie 

outside the FE mesh geometry, the axial and tangential mode shape components 

are set equal to those at the tip. In order to prevent penetration of the blade mesh 

into the casing, radial motion at the tip is linearly reduced through the clearance 

cells to zero at the casing. 

4.2.3 Mathematical Formulation 

Orthogonal Projection onto Surface 

As described above every combination of three adjacent FE mesh nodes is considered 

to define the interpolation points used for each surface CFD grid point. The actual 

three nodes chosen create a triangle with the closest centroid to the CFD point, 

provided that the face is valid for interpolation. With the three points defining a 

plane, 2D interpolation is performed at the orthogonal projection of the CFD point 

on the plane to allow for small deviations of the CFD mesh surface from the FE 

mesh surface. 

Figure 4.4 shows three FE nodes A, Band C, defined relative to a global origin 

by the position vectors a, b and c. The vectors of B and C relative to C are defined 

as AB and AV. A vector ii noriri3J_clo~theABC.plane i~tootaineiftromtlle-cross ----'-'~-~-
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product 

ii=ABxAc ( 4.1) 

The equation of the plane is therefore given by 

(4.2) 

where r is the position vector of an arbitrary point on the plane. The scalar A 

is obtained from 

(4.3) 

Considering a point D positioned outside of the ABC plane, the orthogonal 

projection of the point onto the plane defines a single point, E, such that the vector 

DE is orthogonal to the plane. The parallel alignment of DE with the normal vector 

ii gives the relationship 

(4.4) 

which is rewritten in the form 

(4.5) 

Substituting e into the plane equation ( 4.2) gives 

(4.6) 

which is expanded and rearranged to give 

A- ( J. n) 
t = Iii 12 (4.7) 

Substituting t into Equation 4.5 gives the orthogonal projection of the CFD 

point, D, onto the plane, given by 

____ (A-(d·n)) __ 
e = d + Iii 12 n (4.8) 
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Transformation into Local Coordinate System 

Before interpolation takes place, the four planar points A,B,C and E are transformed 

from the global X,Y,Z axes into a local i,j coordinate system. Figure 4.5 shows the 

four points on the local i,j axis, together with the field variable ¢. The origin is 

taken at point A and the i-axis is aligned with the vector AB, where the the unit 

vector of the i-axis is defined in 30 space by 

~ AB 
'l=---

IABI 
(4.9) 

The j-axis lies orthogonal to both the i-axis and the plane normal defined as 

~ n xi 

J=lfixil (4.10) 

Points C and E are defined in the local 20 axes by taking the projection of each 

point in the direction of each axis. The local 20 coordinates of each of the four 

points is therefore given by 

Interpolation Function 

Aii = (0, 0) 

Bij = (I A:B I, o) 
ni = ((AC · i), (AC · 3)) 

Eii = ((AE · i), (AE · J)) 

(4.11) 

The linear interpolation function is calculated using the shape function of a 20 

simplex triangular finite element based on an identical formulation to the ANSYS 

element, which can be found in the ANSYS literature. The three modeshape OoFs 

are interpolated using three individual interpolation functions where the linear in­

terpolation function for a single field value is given by 

(4.12) 
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the positions of the three FE nodes A, B and C from the expressions 

ct1 = (sAcPA + SBcPB + scc/Jc)/2A 

ct2 = (tAcPA + tBcPB + tcc/Jc)/2A 

ct3 = (uAcfJA + UBcPB + Ucc/Jc)/2A 

where A is the area of the triangle ABC given by 

A= ibjc 
2 

and the coefficients s, t and u are given by 

SA= ~B)c 

Sc = ~A]B- ~B]A 

tB = jc- jA 

tc = jA- jB 

UA = ic- iB 

Uc = ~B- ~A 
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( 4.13) 

( 4.14) 

(4.15) 

Once a 1, a 2 and a 3 are known, the mode shape component ¢ is interpolated at 

position E by solving Equation 4.12. 
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4.3 Modal Equation Method 

The modal equation method is based on the single-DoF modal equation outlined in 

Section 3.2.2, where the forced response is obtained from the analytical solution of 

the modal equation in the frequency domain. 

Modal forcing is calculated on the CFD mesh, which avoids the need to inter­

polate fluid pressures from the CFD mesh to the FE mesh for each modal force 

calculation. The modal force calculation is done using the modal displacements on 

the CFD mesh which are interpolated only once from the FE mesh to the CFD mesh 

in the manner described in Section 4.2. 

The aerodynamic modal force is considered in terms of Lagrangian mechanics to 

be the virtual work done by the fluid integrated over the blade surface. The ampli­

tude of translational displacement for each CFD mesh node on the blade surface is 

defined in the axial, radial and azimuthal directions, which are combined in a single 

vector { Xcfd} to provide all the nodal degrees of freedom of blade displacement. Each 

nodal DoF is denoted by the index, j, giving a total, n, equal to three times the 

number of surface nodes. 

The vector of aerodynamic force amplitudes acting on the nodal DoFs is defined 

as {F}, where the force amplitude acting on each individual DoF is given by 

( 4.16) 

Here, the force acting in the direction of the nodal DoF, j, is the product of the 

fluid pressure, Pi, at the surface position of DoF j and Ai is the projection of the 

effective nodal surface area in the direction of the DoF. The effective nodal surface 

area is a summation of a proportion of the areas of neighboring surface cells. 

The mesh displacements in each DoF are related to the mode shape in the same 

manner as in Equation 3.9 to give 

( 4.17) 

for the single mode in question on the CFD mesh. The aerodynamic modal force 

is then obtained from the summation of the virtual work done by the fluid at each 

nodal DoF on the CFD mesh surface, given by 
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( 4.18) 

Considering the aerodynamic forces in terms of their real and imaginary compo­

nents, the modal force expression is written as 

n 

J = L { (ct>c1d)j (Fr + iFj~)} (4.19) 
j=l 

The aerodynamic damping ratio (aero is calculated from the work done on the 

blade by the fluid, obtained from the CFD damping calculation. Work is calculated 

in physical terms by integrating the aerodynamic damping force distribution and 

blade displacements over one vibratory cycle, using 

n 

wJJd = 1f L (Djxf- Dfx?rfd (4.20) 
j=l 

where D'R and D~ are the complex components of the physical damping force vector 

D and x'R and x~ are the complex components of the blade displacement vector x. 
However, if the blade motion in the damping calculation is specified to be entirely 

real with zero imaginary component, the above work expression is reduced to 

n 

W cfd _ '""" (D~ ·)cfd 
d - 1f L..J j XJ (4.21) 

j=l 

Alternatively, if the modal damping force dis known, the work can be calculated 

in modal space using 

(4.22) 

Values relating to the CFD damping calculation are based on the specified vi­

bration amplitude xcfd, and are denoted by the superscript cfd_ The aerodynamic 

damping ratio is calculated from the work based on the principle of equivalent vis-

cous damping, 
wcJd 

(aero = 21f:; ( ;cfd)2 ( 4.23) 

The modal amplitude of the CFD damping calculation is simply given by the 

-ratio bet~e~ll- the c:FJ5-'-blade motion xcfd and the mass~n~rmalised mode shape, ¢, 

(4.24) 
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Mechanical damping, (mech, can be estimated or calculated separately and is added 

to the aerodynamic damping to give total system damping (tot· 

The modal equation (Equation 3.12) is analytically solved in the frequency do­

main to provide the solution of the modal equation for excitation at arbitrary fre­

quency, w, given by 

lql = III 
J(w?- w2

)
2 + (2(totWiw)

2 
(4.25) 

Since resonant vibration with excitation at the blade natural frequency, w = wi, is 

only considered, the analytical solution to the modal equation reduces to, 

lqfrl = 1{1 
2wi (tot 

(4.26) 

yielding the magnitude of the modal amplitude of the forced response solution. The 

resulting modal amplitude is then used to scale the modeshape by 

(4.27) 

transforming the modal amplitude into the physical response amplitudes of the 

blade. Blade stresses and strains can be obtained in a similar manner, where modal 

values from the FE mesh are scaled by the modal amplitude. 

4.4 Energy Method 

The energy method is a simple approach to obtaining the forced response solution 

that requires less knowledge of structural dynamics than modal reduction method. 

It eliminates the use of modal reduction theory for purely aeroelastic forced response 

calculations. The method is based on an energy balance applied directly on the CFD 

mesh in physical space. The major benefit of this approach is that the scale of the 

mass-normalised mode shape is not required for the CFD calculations, therefore 

eliminating a potential practical issue. Instead, modeshapes can be scaled freely, 

- --disregarding- original modeshape~scales-arid_cunits·,c-allowing-modeshapecfiles-to be­

passed freely between analysts and designers with minimal communication about 

how the modeshapes were created. 

-------.-----·-~ 
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Considering a system undergoing forced vibration in terms of work transfer, 

steady-state vibration occurs at the amplitude where the forcing work ( destabilising) 

applied to the blade per cycle balances the dissipated damping work (stabilising). 

Based on a linear increase of forcing work with vibration amplitude and a quadratic 

increase of damping work, a single point of equilibrium can be found, giving the 

forced response solution, as shown in Figure 4.6. Firstly, forcing work and damping 

work are calculated at a specified amplitude of vibration, then the work values are 

scaled to achieve equilibrium to provide the vibration amplitude at the point of 

steady-state forced vibration. 

The calculation of the damping work is the most straightforward task, knowing 

that the relative phase between the blade motion and damping forces remains con­

stant for a given vibration amplitude. The damping work is simply taken as the 

value given by the CFD damping calculation using Equation 4.21. 

Forcing work is calculated knowing that: 1) aerodynamic excitation forces remain 

fixed and are not affected by blade motion; and 2) the vibration will lag the force 

distribution with the phase providing the maximum destabilising effect. For example, 

the response of a simple spring-mass system undergoing resonant forced vibration 

will lag the excitation force by exactly goo. In other words, the blade motion lags 

the forcing by the angle providing the maximum work to the blade. Similarly, for 

a multi-DoF system undergoing resonance from an excitation force distribution, 

the modeshape lags the forces by the phase angle providing the maximum work. 

However, since individual forces in the distribution may be out of phase with one-­

another, no datum forcing phase is defined, so the response phase can not be defined 

by a goo lag. Instead, the response phase is defined at the angle providing the 

maximum forcing work. As illustrated in Figure 4.7, the forcing work follows a 

sinusoidal variation with vibration phase. A simple iterative approach calculates 

the work done on the blade at discrete angles varying between 0 and 27r to obtain 

the work done for all possible phase angles. The forcing work is simply taken to be 

the maximum value. 

Once the aerodynamic forcing and damping work is known, the point of equilib­

rium at the amplitude of steady-state vibration is found by scaling the linear forcing 
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term and quadratic damping term to yield the forced response solution. Firstly aero­

dynamic forcing work, W 1, and aerodynamic damping work, Wad, over one cycle are 

expressed as functions of modal amplitude, where forcing work is linearly propor­

tional to modal amplitude and damping work is proportional to the square of modal 

amplitude. Representing the relationships using constant coefficients {31 and f3ad for 

the forcing and damping terms respectively, gives 

However, all work calculations are initially based on the scale of the blade motion 

used in the CFD damping calculation, where { xcfd} is the displacement amplitude 

vector of the CFD mesh. Any value corresponding to this vibration scale is denoted 

by the superscript cfd, and the above work expressions are written as 

w.:fd = /3 qcfd. wcfd = /3 (qcfd)2 
f f ' ad ad · 

Secondly, mechanical damping is included as 

where the work is calculated from the structural damping ratio , (mech, at the same 

modal amplitude by 

W cfd _ 2 I" 2 ( cfd)2 
m:l - 1r'-,mech W q · 

If the actual value of qcfd is unknown at this stage, it can be calculated by comparing 

the blade motion of the CFD mesh in the damping calculation to the original mass­

normalised eigenvector for any DoF, j, of the blade using 

cfd 
X· 

q cfd = _J_ 
c/>j . 

The work coefficients, fJJ, f3ad and !3md can be used to determine the work at arbitrary 

vibration amplitude, in particular, the equilibrium amplitude, qeq, of the forced 

response solution; 

wcfd weq wcfd weq w.:fd weq 

/3
- f_ f ,q ad ad/3 md md 

f - qcfd - qeq ' fJad = ( qcfd)2 = ( qeq)2' md = ( qcfd)2 = ( qeq)2 · 
(4.28) 
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The forcing and damping work is then scaled to find the point of equilibrium, 

where destabilising work input equals stabilising work dissipated, given by 

-weq = weq + weq 
f ad md• 

or in terms of vibration amplitude by substituting the relationships from Equa­

tion 4.28, 

Factorising for qeq and substituting f3 terms for the expressions of the known values 

of work (Equation 4.28) gives 

wcfd 
f wad wmd eq ---

( 

cfd cfd ) 

( qcfd)2 + ( qcfd? q ' qcfd 

when rearranged gives 

( 

-wcfd ) eq_ f cfd 
q - wcJd + wcJd q 

ad md 

Expressing the equilibrium blade motion as 

(4.29) 

allows the equilibrium modal amplitude to be eliminated from the above expression, 

where the energy balance equation expressed in terms of work, i.e. 

( 

wcfd ) 
{ Xeq} = - f {xcfd} 

wcJd + wcJd 
ad md 

(4.30) 

Here, the actual blade motion of the CFD mesh used in the damping calculation 

is scaled to yield the harmonic amplitudes of the response solution. If mechanical 

damping is neglected, the calculation requires no knowledge of the eigenvector scale. 

Where mechanical damping is included, the eigenvector scale is needed but the 

method still avoids the use of modal algebra, providing a useful alternative to the 

modal equation method. 
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4.5 Figures 

Figure 4.1: Decou pled forced response system 
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Figure 4.2: Possible interpolation planes for a rectangular FE element face 

FE nodes 

Figure 4.3: 2D interpolation at projection onto FE mesh surface 
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Figure 4.4: Calculation of orthogonal projection point 
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Figure 4.5: Transformation of interpolation points into local 2D geometrical axis 
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Figure 4.6: Equilibrium of forcing and damping work 
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Chapter 5 

Verification of the Decoupled 

System 

5.1 Introduction 

The NASA Rotor 67 transonic fan rotor was used as the preliminary case study 

during the development of the components of the forced response system. The rotor 

provides a relatively simple case to demonstrate the forced response methodologies, 

involving only a single bladerow calculation. Four modes are considered in sepa­

rate forced response analyses to demonstrate the implementation of the decoupled 

method and provide a basis for further investigation of alternative fluid-structure 

coupling strategies. 

The system is evaluated for a challenging industrial study of a Siemens 3-stage 

transonic test compressor, where the forced response predictions of three high fre­

quency crossing points on the Campbell diagram are compared with strain gauge 

test data. This case offers a good benchmark for the forced response system, provid­

ing many of the difficulties encountered in an industrial environment, whilst allowing 

the validation of predictions against engine test data. This case study has been done 

in cooperation with Siemens, who assisted in the analysis and provided test data. 

108 
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5.2 NASA Rotor 67 Transonic Fan 

5.2.1 Case Description 

The NASA Rotor 67 transonic fan is typical of modern low-aspect ratio transonic 

fan design and consists of 22 unshrouded blades of 93mm chord length at tip. The 

details of the rotor aerodynamics are available in the public domain and there have 

been several published studies on its unsteady aerodynamic and aeromechanical per­

formance. Publications on the aero mechanical analysis of NASA Rotor 67 have in­

cluded the flutter calculations of Marshall and Imregun [5] and Srivastava et al. [147] 

based on time-accurate CFD codes. The fan is designed to produce a total pressure 

ratio of 1.63 for a mass flow rate of 32.25 kg/ sec with a tip inlet relative Mach 

number of 1.38 at the design point of speed 16,043 rpm. 

For each of the four resonant operating conditions investigated, blade excitation 

is provided by hypothetical inlet distortions to simulate inlet flow conditions typi­

cally encountered in inlet distortion and bladerow interaction problems. The number 

of nodal diameters of the distortions are chosen to provide excitation for each mode 

at crossing points close to 100% design speed. The aim is to provide forced response 

calculations for a fairly wide range of resonant conditions from the fundamental 

modes typical of inlet distortion cases, to a high frequency mode typical of bladerow 

interaction problems. The crossing points of the 1st and 2nd bending, 1st torsion 

and the rh modes with the 2nd, 5th, rh and 15th excitation orders, respectively, are 

investigated. To illustrate the physical representation of this case study, the rotor 

geometry with a 2-node inlet flow distortion pattern is shown in Figure 5.1. 

Structural Modelling 

Due to the fact that only aerodynamic data was available, the FE mesh was con­

structed based on the geometry of the CFD mesh, giving a model comprising of 806 

quadratic 20-node brick elements. The FE and CFD meshes can be seen later in this 

. J~~~tiQ!l. inJ~)gw:e 5.4. S_i!lc~t_ll,(l.ge()pi~tu.cPf tll,~ .blag~tf.QQt~W~cno_t!<~o~n,tl!e bla.de~ ~--.c.=.cc..:.,_c . 

was modelled as an aerofoil cantilevered at the hub. The material properties of the 

blade were not known and typical properties for titanium were assumed (density, 
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4110 kgjm3
; Young's modulus of elasticity, 125 CPa, Poisson's ratio, 0.27). 

The stress stiffening effect of the centrifugal loading is incorporated based on a 

static analysis at 100% speed. For simplicity, the influence of steady gas loads on 

the modal solution are assumed to be negligible. The blade static twisting effect did 

not need to be included since the FE mesh already conformed to the hot running 

shape of the CFD mesh. 

CFD Modelling 

The fluid H-mesh consisting of 110x25x29 results in a single-passage 3-D compu­

tational domain of approximately 73k cells, on which the linearised Navier-Stokes 

equations are solved in the frequency domain. A blade-blade view of the mesh can 

be seen in Figure 5.5 and a portion of the mesh over the blade surface is shown in 

Figure 5.4. For reasons of convenience, the blade count is modified from 22 to 21 

in order to verify results against the previous work of Li and He [74]. Since a single 

passage approach is used in the CFD analysis, no computational benefits are gained 

from this change. 

Flow conditions are taken close to the design load and the strength of the inlet 

distortion is specified by perturbing the steady flow solution at the inlet plane. 

Once the steady solution is achieved, a perturbation of the axial velocity at the inlet 

plane is prescribed. Assuming that all other flow conditions remain unchanged, the 

density is adjusted accordingly to ensure constant static pressure at the inlet. The 

strength of the axial velocity perturbation is set such that the relative dynamic 

head perturbation at inlet is at a realistic level of approximately 10%. The forcing 

calculation is performed through a single passage of non-vibrating blades subject to 

the prescribed inlet distortion to yield the resulting unsteady pressure distribution 

over the blade surfaces caused by the incoming flow disturbances. 

The damping calculation is carried out with vibration in the specified modes, 

with the modeshapes scaled to provide a leading edge tip deflection equal to 1% blade 

chord. In each damping calculation, the blade is set to oscillate with fixed amplitude 
_: :;_,_-~_,~ -•~...:.·-"--------- • ~----- •.:_·.~·- -- • e" .··_ =--~""··:.· ' -·-- .___..:::...::.' :::" ",_, ,_:_::.___,~ .. ::::: ____ ;_,;,'-'.,.:2"_=·-: __ ,____:._:_::_- _..:.,;-~---:....:_ "•_:!_..:. :_ ~-;- ·_:::_:_:: -"'_:=-=--.-=.--'- -· .J .-.:--~ .=..: .• :.· '"'- •;o,:_•'-' "--·- -. --·~---=-~- .,_:C--o..;·,~~--

and phase, subject to clean, undisturbed inlet flow. The resulting unsteady pressure 

distribution is integrated over the moving pressure and suction surfaces to provide 
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Mode Frequency (Hz) Description 

1 601.0 1st flap 

2 1307.9 2nd flap 

3 1913.2 1st torsion 

4 2740.6 1st edgewise 

5 3148.6 Combined 

6 3520.0 Combined 

7 4198.4 Combined 

Table 5.1: Natural frequencies and modeshapes 

the work done on the blade. 

5.2.2 Results 

Modal Analysis 

The modal analysis yielded the first seven natural frequencies listed in Table 5.1 and 

four modes of interest are illustrated in Figure 5.2. The predicted frequencies were 

compared to the work of Marshall, 1996, and were found to differ slightly, as shown 

in Figure 5.3. The almost linear difference does not cause concern because many of 

the parameters used by Marshall are unspecified. The quality of the FE mesh was 

confirmed by checking the sensitivity of the natural frequencies to mesh density and 

element type. The results were compared against the frequencies of two additional 

models constructed with 195 and 806 linear 8-node brick elements. The effects of 

mesh refinement were found to be negligible, indicating the fidelity of the mesh. 

The interpolation of the modeshape onto the CFD mesh was verified by super­

imposing the modeshape contour plots of the two meshes using Tecplot. Excellent 

interpolation accuracy was observed, and no visible difference was observed between 

the two meshes. The contour plots of the mode 7 axial component are provided in 

_figu!:~ __ 5.4.lt sho!lld be not~d __ th~t t~ iD.J;em_ola:tiqn __ ~CUJ.:!l-CY- w~ expe~t~dtQ_g~e_ 

very high between the two meshes, since the blade shapes are identical and a high 

proportion of nodes coincide. 
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Mode Nodal Vx Distortion Engine Modal 
No. Diameters Amplitude Speed(%) Force 

1 2 1% 112.4% 13.8 

2 5 5% 97.8% 10.6 

3 7 15% 102.2% 41.6 

7 15 15% 104.7% 15.4 

Table 5.2: Target inlet conditions and solution modal force 

Aerodynamic Forcing 

The first step in the aerodynamic analysis yielded the steady flow solution, on which 

the unsteady calculations were based. A contour plot of the Mach number and 

entropy at 33% span is provided in Figure 5.5. A thick boundary layer can be seen 

due to the relatively low mesh resolution, the effects of which are not a significant 

concern in this case. 

The prescribed "target" inlet conditions for the forcing calculation are given in 

Table 5.2, representing light, but realistic cases. As mentioned in Section 3.1.4, 

only the stagnation pressure, stagnation temperature and flow angle are specified 

at the inlet and it is not possible to prescribe all inlet properties. Target properties 

such as density and velocity are specified as initial conditions at the start of the 

calculation but are subject to change during the course of the solution. Contour plots 

of the 7-node inlet axial velocity and density are shown in Figure 5.6 for the steady 

solution, target inlet conditions and actual inlet conditions achieved at solution. It 

can be seen that the solution inlet profile differs from the desired prescribed inlet 

conditions of 15% axial velocity. Smearing of the velocity and density perturbations 

can be seen towards the tip, together with a reduction in perturbation amplitude. 

In addition, Figure 5. 7 shows that high pressure amplitudes have developed around 

the tip, caused by upstream travelling pressure disturbances. The resulting modal 

excitation force for each distortion case is given in Table 5.2. 
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Mode Frequency Modal Work Damping 
No. (Hz) Amplitude (Jjcycle) Ratio 

1 601.0 1.212 x w-4 -0.00486 0.369% 

2 1307.9 8.657 x w-5 -0.00415 0.130% 

3 1913.2 4.860 x w-5 -0.0119 0.568% 

7 4198.4 4.073 x w-5 -0.0111 0.153% 

Table 5.3: Aerodynamic damping 

Aerodynamic Damping 

The solutions of the damping calculations at the specified modal amplitudes are 

summarised in Table 5.3, where the damping ratio is given by Equation 4.23. It can 

be seen that aerodynamic damping is very dependent on modeshape, with relatively 

high damping of the 1st bending and torsion modes. This behaviour is typical for 

turbomachinery blades and the predicted trend agrees fairly well with Kielb and 

Imregun [9] for an unshrouded damperless blade. Figure 5.8 shows the imaginary 

component of the damping force distribution over the pressure surface induced by 

blade motion in the 1st torsion mode and the work done over one cycle due to motion 

in the axial direction. Negative work represents areas of positive damping. This 

representation of damping forces can provide a useful tool for blade designers who 

wish to fine-tune aerofoil designs to maximise aerodynamic damping for a particular 

mode. 

Forced Response Solution 

The modal equation (4.26) is solved for each crossing point in Table 5.4 using the 

aerodynamic forcing and damping values obtained above. The mode 3 calculation is 

repeated using a mechanical damping ratio of 0.1% for comparison with the energy 

method below. The resulting response of each mode is expressed in terms of modal 

amplitude and tip leading edge amplitude normalised to chord length. 

The solutions of the energy equation ( 4.30) are provided in Table 5.5, where it 

can be seen that the energy method produces identical results to the modal solution 
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Mode 171 (aero (mech qfr Tip L.E. Amp. 
No. (%chord) 

1 13.8 0.369% 0 1.131 x w-4 1.096 

2 10.6 0.130% 0 6.011 x w-5 0.691 

3 41.6 0.568% 0 2.532 x w-5 0.521 

3 41.6 0.568% 0.1% 2.153 x w-5 0.443 

7 15.4 0.153% 0 0.121 x w-5 0.164 

Table 5.4: Forced response solutions using modal method 

Mode (mech 
wcJd 

I 
wcfd 

ad 
wcfit 

md Tip L.E. Amp. 
No. (Jjcycle) (J /cycle) (J /cycle) (%chord) 

1 0% 0.005265 -0.00486 0 1.096 

2 0% 0.02876 -0.00415 0 0.691 

3 0% 0.00635 -0.0122 0 0.521 

3 0.1% 0.00635 -0.0122 -0.00214 0.443 

7 0% 0.00197 -0.00111 0 0.164 

Table 5.5: Forced response solutions using energy method 

shown in Table 5.4. To verify the energy method used with mechanical damping, 

the mode 3 calculation is repeated with an assumed damping ratio of 0.1 %, giving 

full agreement with the modal solution. The energy equation has, therefore, been 

shown to produce identical results to the modal method for resonant vibration cases 

both with and without the effect of mechanical damping. 

5.3 Siemens Three-Stage Transonic Compressor 

5.3.1 Case Description 

The Siemens three-stage transonic test compressor shown in Figure 5.9 is a modern 

·liigh ~performance niooerii-machiiie,~aeliverrlig;c~tliiglicspecifi'E1low witli a: mass flow--~"--·· oc_.='--- ~-- · 

rate of 26.3kg /sec and a pressure ratio of 3:1 at a rotating speed of 18, 650 rpm. 
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Details on the aerodynamic design of the compressor using 3-D design methods 

are provided by Li and Wells [148]. Consisting of an IGV, stage 0,1, and 2, the 

compressor has previously been extensively tested by Siemens on a full-scale rotating 

test rig to evaluate aerodynamic performance and structural integrity. Speed sweeps 

were carried out to map vibration characteristics with strain gauges applied to three 

blades in each row. The gauge is positioned on three blades near the trailing edge 

close to the the hub, as shown in Figure 5.10, and strain readings are averaged 

over the three blades to reduce the small variation due to blade mistuning. In 

this case study, the vibration of the last rotor blade is calculated at three resonant 

crossing points, where excitation of the 8th, gth and lOth modes is provided by the 

wakes of the 32 adjacent upstream stator blades. The forced vibration prediction 

system is verified by comparing predicted aerodynamic performance and blade forced 

vibration levels with the strain gauge test data. 

Structural Modelling 

The structural FE model of the blade includes both the aerofoil and root, is fully 

constrained in space at the upper surfaces of the root flanks and is solved using 

Ansys. The mesh was supplied by Siemens and is built from 1136 20-node brick 

elements as shown in Figure 5.11. The original FE mesh shape conformed to the 

cold, unstressed blade profile so the mesh geometry had to be modified to the hot 

shape prior to the aeromechanical analysis. This was primarily to minimise errors 

in the modeshape interpolation by improving the agreement with the CFD mesh 

profile. This was done by applying the centrifugal loads at 100% speed in a static 

analysis, neglecting temperature effects. Steady gas loads were included in the FE 

model provided by Siemens, which were applied at each radial section at mid-chord. 

Prior to the modal analysis, the mesh was modified by applying the resulting static 

deformations to the mesh nodal coordinates. The static analysis was then repeated 

to give the natural frequencies, modeshapes and prestressing terms, corresponding 

_0_ !~~~~_9t ~l8;de geom~try. _ _ _ _ __ _ _ _ _ "" _c..c- -'--'-'==c. 
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Modeshape Interpolation 

The interpolation of the modeshape onto the CFD mesh poses a challenging problem, 

where the interpolation of high-order modeshapes from a low resolution FE mesh 

raises several issues, including mesh alignment, shape mismatch, low mesh density 

and high modeshape gradients. Axial rotational and translational alignment due to 

differences in the coordinate systems is done by specifying the tip leading edge node 

indices of the both meshes, then bringing the FE reference node into alignment with 

the CFD node. An additional axial offset is specified to account for the blunted 

leading and trailing edges of the FE mesh. Aligning the meshes at the tip leading 

edge ensures the best possible interpolation accuracy around this critical region with 

highly localised blade motion. 

Modeshapes are interpolated onto the tip clearance region of the CFD mesh, 

as outlined in Section 4.2.2. Axial and tangential motion of the clearance cells are 

set equal to blade tip and radial motion is linearly reduced to zero at the casing 

boundary. 

CFD Modelling 

The CFD calculations for the 3-stage compressor were performed by Dr. Wei Ning, 

Siemens, hence only a brief overview of the CFD calculations is provided herein. 

The steady solution is firstly obtained from a multi-stage analysis through the seven 

bladerows of the 3-stage machine, upon which, the unsteady flow is calculated from 

the linearised Navier-Stokes equations. Each blade passage is modelled by about 

200,000 mesh points, giving around 1.5 million mesh points for the complete model. 

The forcing calculation is done through the 7 bladerows to provide the wakes passing 

through the rotor passages, and the damping calculation involves a single bladerow 

analysis. 



5.3. Siemens Three-Stage Transonic Compressor 117 

Mode 8 9 10 

Frequency (Hz) 8556 8823 10100 

Table 5.6: Natural frequencies 

5.3.2 Results 

Modal Analysis 

The calculated natural frequencies of modes 8, 9 and 10 at 100% speed are given in 

Table 5.6. The FE analysis was repeated at zero rotational speed and the Campbell 

diagram shown in Figure 5.12 was constructed around the crossing points of the 

32-E.O. line with the three modes of interest. Here, it can be seen that the 32-

E.O. interference from the upstream stator row intersects blade modes 8,9, and 10 

at between 70% and 105% engine speed. Included in Figure 5.12 are the modal 

frequencies of the strain gauge measurements, where it can be seen that the FE 

modal analysis agrees reasonably well with the test data. As shown in Figure 5.13, 

the three modes are mainly aerofoil-dominated modes with very little motion at the 

hub and root, particularly for mode 9. 

Modeshape Interpolation 

A comparison between the original and interpolated axial component of the mode­

shape data is given in Figure 5.14. The interpolation accuracy is very high for all 

three modes, regardless of a small degree of shape mismatch caused by the 'unload­

ing' and 'reloading' of the FE mesh geometry. Whereas the tip L.E. of both meshes 

are perfectly aligned, the slight difference in blade twist between the meshes causes a 

misalignment at the tip T.E. of approximately half the blade thickness. In addition 

to verifying the interpolation accuracy for a challenging case, this also demonstrates 

that the mesh interface is very robust to differences in mesh shape. 

The steady flow calculations are compared with measurements at 90% and 100% 

design speed in Figure 5.15, showing a good overall level of agreement between 
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Mode 8 Mode 9 Mode 10 

(tot 0.35% 0.17% 0.13% 

(aero 0.11% 0.17% 0.13% 

(mech 0.24% Negligible Negligible 

Table 5. 7: Aerodynamic and mechanical damping ratios 

prediction and measurements, but with a slight under-prediction in efficiency. The 

resulting modal force and damping ratio from the CFD forcing and damping calcu­

lations are provided in Table 5.8. 

To compare aerodynamic with mechanical damping, the total system damping, 

(tot. was obtained from the test data using the half-power rule on the strain gauge 

frequency response. Mechanical damping, (mech, is then taken as the difference 

between system and aerodynamic damping, (aero· The comparison in Table 5. 7 shows 

significant mechanical damping for mode 8 and negligible mechanical damping for 

modes 9 and 10. The mechanical damping for mode 8 is thought to be primarily due 

to friction at the blade root-disk interface, where a greater degree of root motion is 

apparent from the modeshape contours. The very small levels of displacement near 

the root for modes 9 and 10 explain the negligible damping for those modes. 

Forced Response Solution 

The resulting predicted modal force is used together with the predicted aerody­

namic damping and mechanical damping to calculate the resonant displacements 

and strains for each mode. Table 5.8 lists the modal forcing, 171, total modal sys­

tem damping ratios, (tot. and the resulting forced response modal amplitude, qfr. 

The modal solution was verified by checking the results against the energy method 

solution, which gave identical responses. Included in the table is the relative er­

ror between predicted strains at the gauge position and the measured strain gauge 

readings. 

---o_ ------'------·--- ---- - The-m.oae- 8 arid 10 J>reaictiorissnow-verfgood -agreement: -Tlie~greateraisagree=- ~----

ment of mode 9 is believed to be due to the poor positioning of the strain gauge for 
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Mode Modal Force Damping Ratio Modal Amp. Relative Error 
No. (171) ((tot) (qfr) with Test 

8 11.17 0.35% 5.51 x 10-7 8% 

9 5.25 0.17% 5.02 x 10-7 65% 

10 1.79 0.13% 1.11 x 10-7 4% 

Table 5.8: Forced response solutions 

that particular mode (shown in Figure 5.10), raising the question about the accuracy 

of the mode 9 measurement. Originally positioned to capture the low order modes, 

the gauge is positioned over a region of high modeshape gradient, as visible in the 

mode shape contour plots in Figure 5.13. This causes a significant change in strain 

over the area of the gauge, reducing the accuracy of the strain measurement. Ad­

ditionally, the strain gauge sensitivity factor, defined as the percentage of the local 

strain at the gauge location to the maximum strain on the blade, is at a satisfactory 

level of around 25% for mode 8, but is lower than desired for modes 9 and 10 due 

to the low modal displacements towards the blade root. 

5.4 Conclusions 

5.4.1 NASA Rotor 67 Transonic Fan 

A case study of the NASA Rotor 67 transonic fan has been reported, providing 

a detailed demonstration of the complete forced response prediction system, and a 

basis for the validation of the individual system components. The resonant vibration 

of a range of modes is modelled with excitation provided by inlet distortions of low 

and high frequencies to simulate realistic aerodynamic conditions encountered in 

inlet distortion and bladerow interaction problems. 

The FE modal analysis was undertaken with ANSYS using a 20-node brick 

element mesh, constrained as a cantilevered aerofoil. Mode shapes and natural 

frequencies are in reasonable agreement with published FE results and were found 

to be adequately insensitive to mesh resolution. 
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Very high mode shape interpolation accuracy of the FE-CFD interface was ob­

served by comparing the contours of the original mode shapes on the FE mesh with 

interpolated mode shapes on the CFD mesh. 

The CFD steady solution is in agreement with previous work of the research 

group by Li and He [74]. The inlet axial velocity and density distortions show a 

smearing of the target distortion pattern, which is likely to be due to upstream­

travelling pressure waves. Aerodynamic damping calculated with blade motion in 

each of the prescribed modes shows reasonable damping predictions. 

The decoupled forced response solution has been successfully implemented in 

a hypothetical but realistic case study. Forced vibration levels are within the ex­

pected order of magnitude, with the l 8 t bending mode giving a tip deflection of 

approximately 1% chord. 

The energy method is shown to provide identical results to the solution of the 

modal equation when implemented both with and without mechanical damping, 

demonstrating that the energy method provides a simple alternative to the solution 

of the modal equation. 

5.4.2 Siemens Three-Stage Transonic Compressor 

The forced response system was applied to predict the vibration of the last stage 

rotor of the Siemens three-stage transonic test compressor, caused by high frequency 

interference from the upstream stator wakes at three crossing points on the Campbell 

diagram. The system was validated by comparing predictions with aerodynamic 

performance and strain gauge measurements from a full-scale rotating engine test. 

The FE mesh includes the root and originally conformed to the cold, unloaded 

shape. The mesh geometry was modified to match the hot, running shape based 

on a static FE analysis incorporating centrifugal and steady gas loads. Agreement 

in shape with the hot shape of the CFD mesh boundary was significantly improved 

but a visible difference in tip twist remained. Predicted natural frequencies agreed 

_ --~------'- welLwith.the measuredo blade frequencies.~~--- __ , ____ , ---~ _ _ _ _ ____ ---'----"-------~-=c.-

The modeshape interpolation for this industrial case provided a challenging prob-

lem, raising several practical issues, including mesh alignment, shape mismatch, low 
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mesh density and high mode shape gradients. Mode shapes were interpolated with 

very high accuracy, overcoming the above complications. The interpolation method 

was found to be surprisingly robust to mismatching meshes, where a large difference 

in twist at the tip trailing edge caused no reduction in interpolation accuracy. 

The 7-bladerow CFD calculation predicted the compressor performance maps 

with good agreement with measured data, but gave a slight under-prediction of effi­

ciency. Predicted aerodynamic damping compared well with total measured system 

damping, for modes 9 and 10. An under-prediction in damping for mode 9 suggests 

significant mechanical damping due to a greater amount of movement at the root 

providing friction damping at the root-disk interface. 

The forced response strain predictions, calculated using system damping, agreed 

within 10% of strain gauge readings for modes 8 and 10. The mode 9 result gave 

a discrepancy of 65%. However, the mode 9 result is inconclusive due to the poor 

positioning of the strain gauge for that mode. 

It has been demonstrated that the forced response system is capable of predicting 

resonant strains with acceptable accuracy. The high efficiency of the unsteady multi­

stage calculation enables the the system to be used routinely in the blade design 

process to tackle aeromechanical issues, where the turnaround time for each mode 

is a few hours on a single processor workstation. 
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5.5 Figures 

Figure 5.1: NASA Rotor 67 fan rotor geometry with contour plot of 2-node inlet 

distortion 

Figure 5.2: Mode shape axial components 
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Figure 5.3: Comparison of natural frequencies with results of Marshall, 1996 
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Figure 5.4: Comparison of original and interpolated modeshape (axial component) 
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Number 

Figure 5.5: CFD mesh section and steady solution plotted at %span) 
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Steady Solution Density 

Target Density Perturbation 

Solution Density Perturbation 

Figure 5.6: Inlet axial velocity and density distort ion 

RO,a 
1.08792 
1.08056 
1.07319 
1.06583 
1.05846 
1.051 1 
1.04373 
1.03637 
1.029 
1.02164 

RWAKEpert 
0.0168414 
0.0130894 
0.00933752 
0.00558559 
0.00183366 
~.00191826 
~ .00567019 

~ .00942212 

~.013174 
~ .016926 

RO ert 
0.0231283 
0.0178693 
0.0126103 
0.00735126 
0.00209226 
~.00316675 
-0.00842576 
-0.0136848 
-0.0189438 
-0.0242028 



5.5. Figures 

p 
429.601 
326.166 
222.73 
119.295 
15.859 

-87.5766 
-1 91.012 
-294.448 
-397.883 

Figure 5. 7: Inlet total pressure perturbation of solution 
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Figure 5.8: Mode 3, imaginary component of axial force and work in axial direction 
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Figure 5.9: Cross section of Siemens 3-stage transonic compressor 
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Figure 5.10: Strain gauge location on Rotor 2 blade 
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Figure 5.11: FE mesh of compressor blade 

127 



5.5. Figures 

N' 
J: -->-u 
c 
Q) 
::I 
C" 
~ 
LL 

Marks from strain gauge measurements 
70% 

Mode 10 

Mode 9 

ModeS 

SPEED (RPM) 

128 

100% 

32EO 
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Figure 5.13: Axial modeshape components of modes 8,9 and 10 
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FE mesh 

Figure 5.14: Comparison of original and interpolated modeshape for mode 9 axial 

component 
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Chapter 6 

Fully-CoupJled Forced Response 

Methods 

6.1 Introduction 

Two fully-coupled methodologies have been developed with the original intention of 

halving the solution time of the decoupled method by combining the aerodynamic 

forcing and damping calculations into a single solution. The two fully-coupled 

methodologies simultaneously solve the structural and fluid equations within the 

CFD solver to yield the steady-state blade response at the resonant crossing of 

interest. The introduction of a fluid-structure coupling effect in the fully-coupled 

solution creates a significant frequency shift effect, allowing an evaluation on the use 

of both decoupled and fully-coupled methods for forced response calculations. 

Conventional fully-coupled methods involve the time-accurate solution of the 

fluid and structural equations, with the exchange of instantaneous fluid pressures 

and structural displacements taking place in the time domain. Based on the non­

linear harmonic unsteady aerodynamic solution in the frequency domain, two ap­

proaches for flow-structure coupling have been developed based on the solution of 

the modal equation in both the frequency-domain and the time-domain. Both the 

fluid and structural equations are solved numerically, with an exchange of pressure 

and displacement amplitudes passed across the fluid-structure boundary at each step 

in the solution. 

130 
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6.2 Frequency Domain Method 

The frequency domain method solves both the fluid and structural equations si­

multaneously by numerically integrating the equations in pseudo-time. Shown in 

Figure 6.1, the fluid and structural domains are combined into a tightly coupled 

system. An exchange of information after each solution step provides the continu­

ous feedback of aerodynamic loads and blade vibration levels between the fluid and 

structure. A single aerodynamic solution includes the effects of blade vibration, inlet 

distortion and bladerow interaction to provide the combined aerodynamic forcing 

and damping loads. 

Structural modelling is based on modal reduction theory, with the FE modal 

analysis and mode shape interpolation implemented in an identical manner to the 

decoupled method described in Chapter 4. However, the difference in the coupled 

structural solution is the numerical formulation of the modal equation to deal with 

the combined solution of aerodynamic excitation and damping loads. Whereas the 

aerodynamic damping ratio in the decoupled calculation is known before the analyt­

ical solution of the modal equation, the aerodynamic damping loads in the coupled 

solution only become apparent during the course of the solution and must be treated 

as forcing terms on the right-hand side of the modal equation, which is solved nu­

merically. The modal equation is therefore expressed in the form 

ij(t) + 2(mech Wnq(t) + W~q(t) = (j(t) + d(q, t)), (6.1) 

where f(t) + d(q, t) is the combined aerodynamic modal force output from the 

fluid solver. Representing the modal velocity as v = q and assuming harmonic 

motion and forcing gives 

v= veiwt. 
' (6.2) 

d= 

The modal equation ( 6.1) is then represented by the two equations 

V = iwq and (2(mech Wn + iw) V + w~q = (J + d(q)) , (6.3) 

where the complex damping force is a function of the modal amplitude. Letting 
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(6.4) 

and introducing the pseudo-time derivatives Rq = ~ and Rv = ~, into Equa­

tion 6.3 gives 

and (6.5) 

The pseudo-time derivatives for each stage m of step n in the 4-stage Runge­

Kutta solution are expressed as 

fl~n,m> = v<n,m> _ aq~;<n,m) 

R~n,m) = (1 +d) (n) - iivV(n,m) - w~q(n,m) (6.6) 

(n=1,2,3 ... ; m=0,1,2,3} 

The modal displacement and velocity terms at each stage of a Runge-Kutta step 

are given by 
q(n,O) = q<n-1,4) 

V(n,O) = V(n-1,4) 

1 
q(n,l) = q(n,O) + -dT R(n,O) 

2 q 

v<n,l) = v<n,O) + ~dT R(n,O) 
2 v 

1 
q(n,2) = q(n,l) + -dT R(n,l) 

2 q 

v<n,2) = v<n,l) + ~dT R(n,l) 
2 v 

q(n,3) = q(n,2) + dr R~n,2) 

v<n,3) = v<n,2) + dr R(n,z) 
v 

where dr is pseudo-time step size. 

(6.7) 
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The last stage of the current pseudo-time step taken as a combination of the 

previous four stages using 

q(n,4) = q(n,O) + dr{~_R(n,O) + ~_R(n,l) + ~_R(n,2) + ~_R(n,3)} 
6 q 3 q 3 q 6 q 

V(n,4) = V(n,O) + dr{~_R(n,O) + ~_R(n,l) + ~_R(n,2) + ~_R(n,3)} 
6 v 3 v 3 v 6 v 

(6.8) 

After convergence of the pseudo-time marching solution, the R~n,m) and mn,m) 

terms on the left-hand side of Equation 6.6 disappear, recovering the original modal 

equation and definition of velocity given in Equation 6.3. 

6.3 Hybrid Frequency-Time Domain Method 

An alternative hybrid approach is based on the continuous time-domain solution 

of the modal equation with periodic updating of the aerodynamic modal force. 

The fluid calculations are performed in an identical manner to the previous ap­

proach, with the exchange of fluid and structural boundary conditions at each step 

in the fluid solution. The difference from the frequency domain method is the time­

marching of the modal equation. As shown in Figure 6.2, the harmonic modal force 

from the previous fluid step is reconstructed and the modal equation is marched in 

time over one forcing period. A Fourier transform of the response over the period 

is taken to yield the complex modal amplitude for feedback to the fluid solver in 

the frequency-domain. The modal equation experiences continuous time-marching 

over the entire coupled solution with periodic updating of the combined aerody­

namic forcing and damping terms from the fluid solver. This approach is suitable 

for lightly damped cases, where blade transient effects take many periods to decay, 

thus allowing the fluid solver to react sufficiently to the blade dynamics. 

The coupled modal equation (6.1) is solved by direct time integration using the 

4-stage Runge-Kutta scheme. Defining the modal velocity as v = q, the modal 

equation is represented in the time domain by the two equations 

V = Q and V + 2(mech WnV + W~q =(/+d)· (6.9) 
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The displacement and velocity derivatives are taken as 

q=dq=Rq 
dt 

dv 
iJ = dt = Ru. 

134 

(6.10) 

At each each stage of a Runge-Kutta time step, the time derivatives are given 

by 
R(n,m) = v<n,m) 

q 

R~n,m) = (! + d)(n)- 2(mech WnV(n,m) - w~q(n,m) 

leading to the modal displacement and velocity terms at each stage 

q(n,O) = q(n-1,4) 

v(n,O) = v<n-1,4) 

1 
q(n,1) = q(n,O) + -dt R(n,O) 

2 q 

v(n,1) = v(n,O) + !dt R(n,O) 
2 v 

1 
q(n,2) = q(n,1) + 2,dt R~n,1) 

v<n,2) = v<n,1) + !dt R(n,1) 
2 v 

q(n,3) = q(n,2) + dt R~n,2) 

v<n,a) = v<n,2) + dt R(n,2) 
v 

The last stage of the time step is then given by 

q (n,4) = q(n,O) + dt -R(n,O) + -R(n,1) + -R(n,2) + -R(n,3) 
{

1 1 1 1 } 
6 q 3 q 3 q 6 q 

v<n,4) = v<n,O) + dt - R(n,O) + - R(n,l) + - R(n,2) + - R(n,3) 
{

1 1 1 1 } 
6 v 3 v 3 v 6 v 

6.4 Comparison with Decoupled Method 
-- - ~- _. ~----~·- . .__,~-'-..:- "' ~,:-~ _:.:;-:;,_. __ ,-=-Z -· - --. 

(6.11) 

(6.12) 

(6.13) 

The NASA Rotor 67 transonic fan rotor described in Section 5.2 is used as a test 

case to provide a comparison of the coupled methods with the decoupled method. 
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Mode Mode Frequency No. Nodal Vx Distortion 
No. Type (Hz) Diameter Amplitude 

1 1st bend 601.0 2 1% 

2 2nd bend 1307.9 5 5% 

3 1st torsion 1913.2 7 15% 

7 combined 4198.4 15 15% 

Table 6.1: Resonant conditions 

The coupled solutions of the forced response amplitudes are obtained for modes 

1,2,3 and 7 at identical operating conditions to the decoupled calculations, allowing 

an accurate comparison of the methodologies. 

Modes 1, 2, 3 and 7 are chosen to provide forced response studies typical of low 

frequency inlet distortion and high frequency bladerow interaction problems. Blade 

excitation is provided by hypothetical inlet distortions with the number of nodal 

diameters chosen to provide resonant forcing at a frequency close to design speed. 

Inlet flow conditions are based on the steady solution close to design load, where 

the inlet flow perturbation is determined by specifying the amplitude of variation 

in axial velocity, Vx, and applying a variation in density to ensure isentropic inlet 

conditions. A summary of the resonant conditions is provided in Table 6.1 and a 

more detailed description of the case is given in Section 5.2. 

The forced response predictions given by the coupled and decoupled methods at 

the blade natural frequencies without mechanical damping are listed in Table 6.2. 

The solution amplitudes are expressed in terms of the absolute blade vibration 

amplitude at the tip leading edge, normalised by chord length. Whilst a very high 

level of agreement is seen between the two coupled methods, the responses predicted 

by the coupled solutions of all modes were found to be significantly lower than the 

decoupled solutions. By repeating the coupled calculations at frequencies around 

the natural frequency, it can be observed in Figure 6.3 that the resonant peak of 

the coupled solution is subject to a frequency shift. Conversely, the peak of the 

decoupled solution does not show any noticeable frequency shift. 

Whilst the decoupled solution encounters resonance at the natural frequency, 
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Decoupled Coupled (freq. domain) Coupled (hybrid) Response 
Mode No. Tip L.E. Amp. Tip L.E. Amp. Tip L.E. Amp. Drop 

(%Chord) (%Chord) (%Chord) (%) 

1 1.096 0.949 0.949 13.81 

2 0.691 0.628 0.628 8.03 

3 0.521 0.498 0.498 4.37 

7 0.164 0.116 0.116 29.03 

Table 6.2: Decoupled and coupled response predictions at blade natural frequency 

the coupled solution is excited slightly off-resonance at the natural frequency and 

experiences a lower amplitude of vibration. The peak amplitudes given by the 

coupled and decoupled methods at their respective frequencies can be seen to agree 

very closely. It is evident that both methods are capable of predicting peak forced 

vibration levels with a high level of agreement, providing that the coupled calculation 

is performed at the correct frequency. Whereas both methods have been shown to 

be capable of predicting the magnitude of the blade response at the resonant peak, 

it has been demonstrated that the decoupled method accurately predicts the peak 

vibration from a single solution without consideration for frequency shift. However, 

in the coupled solution the resonant frequency is unknown and must be found to 

avoid the risk of under-predicting the response at an off-resonant condition. 

6.5 Resonance Tracking 

The dependency on solution frequency creates an additional DoF into the coupled 

calculation, which can not be obtained directly from the governing equations. As 

discussed later in Section 7.5, the resonant frequency can not be calculated from 

a coupled solution at any one frequency due to the limited information that can 

be obtained from the combined aerodynamic force. Instead, the coupled solution 

must be repeated at a number of discrete frequencies around the resonant peak to 

reveal the frequency response curve, which can be done with an open-loop frequency 

sweep or by implementing a closed-loop resonance tracking algorithm. Whilst the 
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fully-coupled method models the physical system in a more realistic manner, this 

case suggests that a higher degree of modelling is required in the coupled solution 

to include the effects of the additional phenomena captured in the analysis. The 

sources of the frequency shift and the implications on the coupled method are now 

discussed in detail. 

An efficient resonance tracking scheme is implemented to direct the solution 

towards the resonant frequency, hence avoiding the excessive computation of a fre­

quency sweep. Exploiting the fact that the frequency-domain fluid solution can be 

efficiently restarted at a new frequency, the scheme was developed with the inten­

tion of minimising computing time. By approximating portions of the bell-shaped 

frequency response curve by the parabola 

aw2 + bw + c = q (6.14) 

it is possible to accurately predict the resonant frequency with a small number of 

iterations. Starting with the coupled solution at the blade natural frequency, the 

solution is restarted twice to obtain a further two solutions at frequencies close to 

the natural frequency. Fitting a parabolic curve to the three points on the response 

curve enables an estimate of the resonant frequency, as shown in Figure 6.4. De­

pending where the three points lie on the response curve, the quadratic coefficient, 

a, of the parabola will be either positive or negative. Negative values result in an 

upturned parabola approximating the top of the bell-shaped response curve close to 

the resonant peak. This allows the resonant frequency to be estimated by simply 

calculating the stationary point of the curve, giving the frequency corresponding at 

the peak. If desired, the solution can be repeated at the estimated peak to verify 

the resonant frequency. 

Positive values of the quadratic coefficient approximate the lower parts of the 

bell-shaped response curve at frequencies either above or below the resonant peak. 

Here, the stationary point will not correspond to the resonant peak and an iteration 

in solution frequency is required. In this situation, the solution frequency is updated 

by a pre-defined step size. A step increase or decrease is determined by comparing 

response amplitudes of the previous solutions to find whether the current frequency 

is above or below resonance, indicated by the sign of the slope. The coupled solution 
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is restarted at the new frequency and a new parabola is calculated using the latest 

three frequencies. The frequency updating is repeated until a negative parabola 

is achieved and the resonant peak can be calculated at the stationary point. In 

order to speed up convergence, the frequency step size is reduced if oscillation in 

solution frequency is detected. This allows a relatively large initial frequency step be 

specified, which is then automatically reduced in the eventuality that the algorithm 

overshoots the natural frequency. 

The fully-coupled solution with resonance tracking was performed for Mode 3, 

giving a frequency shift of 3.5 Hz and peak amplitude at tip L.E. of 1.098% chord. 

The coupled resonant frequency is in agreement with the analytical calculation 

shown in Table 7.1 which is derived later in Section 7.3.2. Using an initial step 

size of 1.0 Hz and a step reduction factor of 0.4, convergence in frequency was 

achieved after around six solutions, as shown graphically in Figure 6.5. Whilst the 

fluid calculation was performed six times, the restart capability of the frequency do­

main CFD solver resulted in the total computing time being approximately double 

that of a single complete coupled calculation. This results in the total computing 

time of the coupled solution with resonance tracking being roughly equal to the 

decoupled solution. 

6.6 Convergence Behaviour 

In order to avoid instability and excessive solution times in the coupled solution, the 

convergence rate of the modal equation must be similar to that of the fluid equations. 

Whilst the convergence rate of the CFD calculation dominates the solution time, the 

rate of the modal solution must be adjusted to match that of the fluid. Instability 

occurs when the modal equation converges at a faster rate than the fluid, where the 

aerodynamic damping forces cannot respond to the blade motion. Under such con­

ditions, the relatively unresponsive damping force will effectively cause further blade 

excitation and the motion will tend to incorrectly lag the combined aerodynamic 

force by 90° with excessive amplitude, until the flow equations react accordingly. 

In other words, the system will behave in an undamped fashion, wrongly forced by 
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the total aerodynamic loads at the current stage of the aerodynamic solution. A 

high degree of oscillation will occur and the overall solution will diverge. Slowing 

the modal convergence adds stability to the system, but a modal equation that con­

verges much slower than the fluid equations gives a sluggish response, increasing the 

overall solution time. 

For a situation where it is desirable to minimise the coupled solution time, it 

would be necessary to optimise the convergence rate of the modal equation. A 

rate too fast will cause oscillation and increase solution time; and a rate too slow 

will also prolong the converged solution. The methods of controlling the modal 

convergence rate are different for frequency-domain and the hybrid approaches. For 

the frequency-domain approach, the convergence rate is controlled by adjusting the 

pseudo-time step size, which is determined independently to the step size used in the 

flow equations. In the hybrid approach, stability is ensured by averaging the current 

solution modal amplitude over a number of previous values, effectively smoothing the 

structural response that is fed back to the fluid solver. Conversely, convergence can 

be accelerated by increasing the number of periods the modal equation is marched 

per solution step. 

6.7 Summary 

Two fully coupled forced response methods have been developed with the intention 

of increased efficiency over the decoupled method, where the calculation of aero­

dynamic forcing and damping loads are combined into a single calculation. Based 

on the frequency-domain nonlinear harmonic method, the modal equation is fully 

integrated into the flow solver and solved using two approaches: directly in the fre­

quency domain; and by time-marching using a hybrid approach. The coupled and 

decoupled solutions were obtained for three low order modes and one high order 

mode of the NASA Rotor 67 transonic aero fan. Blade excitation is given by hy­

pothetical inlet distortions in order to provide a realistic test case that is typical of 

inlet distortion and bladerow interaction problems. 

The results show that both coupled approaches produce identical results to one 
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another, but are significantly lower than the decoupled solution at the natural fre­

quency. It has been identified that this is due to the coupled solutions being subject 

to a shift in resonant frequency, causing the solution at the natural frequency to be 

moved slightly off-resonance. In contrast, the decoupled solution inherently assumes 

no such shift from the blade natural frequency. 

The coupled calculations always under-predict resonant vibration levels unless 

a frequency sweep or resonance tracking scheme is implemented. The coupled and 

decoupled solutions agree only when the coupled analysis is performed at the reso­

nant frequency, which is found by repeating the coupled calculation for a range of 

frequencies. A novel resonance tracking scheme is implemented, based on parabolic 

curve fitting to the frequency response curve, enabling the resonant frequency of 

the coupled solution to be found with very high efficiency. However, the need for 

resonance tracking increases the overall computational effort of the coupled solution, 

and the gain in efficiency of a single solution over the decoupled approach is lost. 

Therefore a coupled solution will be more time-consuming than a decoupled solution 

for resonant forced response prediction. 

Whereas the coupled solution frequency shift has been clearly demonstrated, 

there are questions regarding the source of the frequency shift and the implications 

on the accuracy on decoupled and fully coupled methods that are yet to be an­

swered. Chapter 7 provides an analytical investigation into the mechanics behind 

the frequency shift to provide an explanation of the cause of the coupling effects and 

the influence on decoupled and fully coupled predictions. 
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Chapter 7 

Fluid-Structure Coupling Effects 

7.1 Introduction 

It was demonstrated in Chapter 6 that decoupled systems can accurately predict 

resonant vibration amplitudes from a single calculation at the blade natural fre­

quency, whilst fully-coupled forced response solutions are subject to a shift in reso­

nant frequency and require multiple solutions. The obvious impact on the coupled 

solution is the additional computational cost of the resonance tracking to avoid 

under-predicting vibration levels if the resonant peak is not sufficiently captured. 

Whilst a single coupled calculation is preferable to multiple calculations, the need for 

resonance tracking is indicated by the level of agreement between a single coupled 

calculation at the natural frequency and the resonant peak. 

This chapter explains the reasons behind the frequency shift with an investigation 

into fluid-structure coupling effects and a detailed look at the way in which fluid­

structure interaction is incorporated into decoupled and fully coupled methods. The 

principles behind the coupling effect are discussed to identify the main source of the 

frequency shift and to provide a basis to evaluate the impact on decoupled and 

coupled methods. 

The decoupled method is adapted to represent the combined aerodynamic forc­

ing and damping loads in a similar manner to coupled methods. This allows the 

analytical breakdown of the mechanics behind the decoupled and coupled solutions, 

providing an understanding of the source of frequency shift. The basic flow-structure 

144 
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coupling effects are then investigated, leading to an evaluation of the use of decou­

pled and fully-coupled forced response methods in practical situations. 

7.2 Added Mass Effect 

The difference in behaviour between the decoupled and fully-coupled methods is 

due to the fluid-structure coupling effect present in the coupled solution resulting 

from the aerodynamic damping forces. For a specific blade motion, the induced 

pressures acting on the blade result in a modal damping force which lags the blade 

motion for forced response cases (modal force will lead the motion for flutter cases), 

as illustrated on the Argand diagrams in Figure 7.1. Here, a complex aerodynamic 

modal damping force is induced by a real modal displacement amplitude. In a 

dynamic situation, the modal amplitude will vary in phase and magnitude and the 

damping force will lag by a fixed relative phase angle with the magnitude increasing 

in a linear manner, based on the assumption of linear aerodynamic damping. In 

the coupled solution, the real and imaginary damping force components have two 

distinct effects on the dynamic response of the system. Damping is provided solely 

by the imaginary (out-phase) force component due to the fact that no work can be 

done by the real (in-phase) component. However, the real component is aligned with 

the blade inertial forces, therefore, causing a variation of the blade dynamic mass. 

The result is an added mass effect, leading to a change in the dynamic resonant 

frequency. In this thesis, the real and imaginary components are referred to as 

inertial and viscous components respectively. The viscous component is named as 

such for the reason that it provides the disspiative aerodynamic damping effect to 

the blade, and is not to be confused with the viscous fluid forces. The viscous and 

inertial components of the complex modal force are determined by the interaction 

of pressure fluctuations with the mode shape and are not directly related to the 

viscous terms of the flow equations. 

The decoupled method considers the damping force as an equivalent viscous 

damping ratio based on the damping work, as shown in Equation 4.23. The inertial 

component of the damping force is subsequently neglected, removing the capability 
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of the decoupled method to include the added mass effect. Since the dynamic mass of 

the system is unchanged, the decoupled solution does not experience any significant 

frequency shift. In contrast, the inertial and viscous components in the coupled 

solution can not be separated due to the fact that excitation and damping forces are 

combined and cannot be identified. The added mass effect is therefore an integral 

part of the coupled solution. 

7.3 Modified Decoupled Method 

7.3.1 Formulation 

An investigation into the coupling effect is carried out using an adapted version of the 

decoupled method to model the added mass effect based on the analytical solution of 

the coupled equation (6.1). The decoupled method considers aerodynamic damping 

as an equivalent viscous damping ratio, where the analytical solution at arbitrary 

excitation frequency given in Equation 4.25 is expressed as 

- f 
q = (w;- W 2 ) + j (2 ((aero+ (mech) WnW). 

(7.1) 

Considering the formulation of the aerodynamic damping ratio given by Equations 

4.22 and 4.23, it can be seen that the real (in-phase) component of the damping 

force is neglected in the decoupled solution. Taking Equations 4.22 and 4.23 into 

account, Equation 7.1 can be re-written in the form 

- j 
q = (w;- w2 ) + i (2(mechWnW- d'fv) 

(7.2) 

illustrating the contribution from the aerodynamic damping force. Here, d'J. rep­

resents the imaginary component of the aerodynamic damping force normalised by 

the modal amplitude used in the damping calculation, where 

(7.3) 

To emulate the coupled solution, both the inertial and viscous components of the 

decoupled damping force are applied to the right-hand side of the coupled modal 
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equation ( 6.1). The normalised damping force provided in Equation 7.3 is scaled by 

the modal amplitude to yield the damping load for any given response, 

d(q) = q (d~ + id~). (7.4) 

Taking the decoupled aerodynamic forcing and damping loads as excitation terms, 

the coupled modal equation is resolved to give the analytical solution, 

- 1 
q = ( 2 2 d!R) . (2~" d~). Wn - W - N + 1 ':,mechWnW - N 

(7.5) 

This equation describes the decoupled solution with added mass, provided by the 

inertial damping force component, and is used in this chapter to resemble the coupled 

solution. This approach is equivalent to the "superposition" method discussed by 

Schmitt et al. [75], which has been shown to closely resemble the coupled solution 

for typical cases without significant non-linear damping characteristics. 

Based on the decoupled aerodynamic forces calculated at the blade natural fre­

quency, the frequency response curve is extrapolated around the resonant peak using 

Equation 7.5 to simulate the forced response solution of a fully-coupled system. The 

coupled response is compared with the decoupled frequency response curve, given 

by Equation 7.1. 

7.3.2 Comparison of Coupling Methodologies 

A comparison of the two decoupled methods is made for the Mode 7 resonant crossing 

point of the NASA Rotor 67 fan case described in Section 5.2. Figure 7.2 shows 

the two frequency response curves around resonance, where the frequency shift of 

the decoupled method with added mass is clearly visible. The extrapolated curves 

are compared with the fully-coupled solutions at a range of frequencies for each 

of the four modes in Figure 7.3. It can be seen that the decoupled solution with 

added mass agrees very well with the coupled method, verifying the ability of the 

decoupled method to predict vibration levels at frequencies slightly different from 

the solution frequency. This is due to the fact that the aerodynamic solutions do not 

vary significantly over such a small frequency range; therefore, variation in vibration 

amplitude is caused primarily by blade structural dynamic effects. 
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Decoupled Resonant Peak Coupled Resonant Peak 

Mode No. Frequency Tip L.E. Amp. Frequency Tip L.E. Amp. 
(Hz) (%Chord) (Hz) (%Chord) 

1 601.0 1.096 602.29 1.099 

2 1307.9 0.691 1307.2 0.688 

3 1913.2 0.521 1909.7 0.511 

7 4198.4 0.164 4192.0 0.164 

Table 7.1: Comparison of decoupled and coupled resonant peaks 

Table 7.1 shows the high level of agreement between the resonant peaks of the 

decoupled and coupled solutions at their respective frequencies. The important point 

to note is that the exclusion of the added mass effect in the decoupled solution makes 

little difference in the height of the resonant peak. This is due to the fact that the 

aerodynamic and structural dynamic behaviour do not vary significantly over such 

a narrow frequency range. Both aerodynamic excitation and damping forces were 

found to be insensitive to frequency within the ranges of the resonant peaks. In 

addition, Srivastava et al. [147] reported that aerodynamic damping varied very 

little within a surprisingly large frequency range for the 1st bending mode of a 

transonic fan. 

In terms of structural dynamics, the resonant response amplitude for a given 

excitation source is determined by the level of total viscous damping, which is equal 

for both approaches. Regardless of whether or not added mass is included, the 

denominators of the forced response solutions in Equations 7.1 and 7.5 reduce to 

i2(mechWiW at resonance. Therefore, for a given damping ratio, the resonant response 

amplitude is inversely proportional to the frequency, which does not significantly 

vary over such a narrow range. 

7.3.3 Impact of Frequency Shift 

For any single DoF forced oscillator, the phase angle at which the response will lag 

the excitation force will be very small for low frequencies and will approach 180° 
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for high frequencies. At resonance, the response will lag the force by goo, when the 

maximum work is applied to the blade. The response phase lag is very sensitive to 

frequency around the resonance and will change very quickly for small deviations 

around the resonant frequency. In Equation 7.5 it can be seen that resonance occurs 

when the denominator is purely imaginary, hence w[- w2
- d%- = 0. This condition 

is only seen with excitation at the resonant frequency, since wi and d%- do not vary 

significantly around the narrow resonant peak. The decoupled method simplifies the 

response solution by neglecting the d%- term, ensuring that the resonant condition 

of goo phase lag always occurs at the blade natural frequency. 

The flow-structure coupling effect can also have a reduced mass effect, resulting 

in a positive frequency shift, such as experienced by Mode 1. In fluid-structure 

coupling applications, added mass is usually considered as a region of fluid attached 

to the moving solid boundary, which requires an inertial force to accelerate the 

attached fluid with the structure (Liu [14g]). It is evident that this interpretation 

does not hold for turbomachinery cases, which involve the high speed flow of low­

density fluids with thin boundary layers and often include shock oscillation. The 

apparent inertial force results from the phase of the complex flow phenomena acting 

on the blade in relation to the mode shape displacements, rather than the physical 

oscillation of an attached region of fluid. However, it is now shown that the vibration­

induced aerodynamic force component which is in phase with the blade motion can 

be considered as an added (or reduced) mass for blade forced response analysis. 

7.4 Decou pled Prediction of Frequency Shift 

In this section, it is shown how a single decoupled solution can be used to accurately 

predict the resonant peak with the option of either including or disabling the blade 

added mass effect. An evaluation of the added mass effect and the implications of 

the frequency shift on the coupled solution are presented, starting with a comparison 

of the frequency shift due to viscous damping and the added mass effect. It is well 
- -- ··------ -- -~ 

known that the damped resonant frequency due to viscous damping wd is given by 

(7.6) 
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The dynamic resonant frequency due to the added mass effect alone is calculated 

by considering the added mass in terms of the inertial damping force component. 

The decoupled modal equation with added mass (Equation 7.5) is written in the 

form 

{ -w
2 

( 1 + ~~) + W~ + i ( 2(mechWnW - d~) } if = J (7.7) 

it is evident that the dynamic mass, m', of the system at resonance can be given 

by the expression 
d'R 

m'=l+ ~· 
w 

(7.8) 

The dynamic natural frequency, wdyn, is therefore given in terms of dynamic 

mass by 

(7.9) 

where w; is the modal stiffness. To avoid the simultaneous solution of Equations 

7.8 and 7.9 at the unknown frequency Wdyn, the excitation frequency, w, in Equa­

tion 7.8 can be substituted for the blade natural frequency, wi, since the frequency 

shift is relatively low. 

Based on the decoupled damping calculation, the frequency shifts due to the vis­

cous damping and added mass effects given by Equations 7.6 and 7.9 are compared 

for each of the four modes of the NASA Rotor 67 case. The calculated frequency 

shifts for the four modes listed in Table 7.2 show that the added mass effect dom-

inates the viscous damping effect by 2-3 orders of magnitude. It can therefore be 

deduced that the frequency shift can be considered to be solely determined by the 

added mass effect. 

7.5 Coupled Prediction of Frequency Shift 

Unlike the decoupled method, a single coupled calculation can not be used to ex­

trapolate the frequency response function, therefore the resonant peak can not be 

identified based on the solution at any one frequency. This is due to the fact that the 

aerodynamic excitation and damping forces are combined and can not be separated, 



7.5. Coupled Prediction of Frequency Shift 151 

Mode Frequency Shift, ~wd(Hz) 

No. Viscous Effect Inertial Effect 

1 -0.0041 +1.31 

2 -0.0011 -0.728 

3 -0.0309 -3.32 

7 -0.00493 -6.383 

Table 7.2: Frequency shift due to viscous and inertial damping force components 

resulting in the need for multiple solutions to find the resonant frequency. The aero­

dynamic modal forces of the Mode 3 solution are plotted on the Argand diagrams 

in Figure 7.4, together with the response phase angles for a range of frequencies 

around resonance. For simplicity, no mechanical damping is present. To clarify the 

terminology, the damping force refers to the total vibration-induced aerodynamic 

force, consisting of the "viscous" out-phase component and the "inertial" in-phase 

component. The excitation force is due to incoming aerodynamic disturbances and 

is independent of blade motion; and the combined force is the sum of the aero­

dynamic damping and excitation forces. It can be seen that the excitation force 

remains constant over the narrow resonant frequency range and the damping force 

lags the blade motion with constant relative phase. An important point to note 

is that the resulting combined aerodynamic force is zero only when solved at the 

natural frequency, at which point the aerodynamic damping force exactly balances 

the excitation force. 

Figure 7.5 shows the variation of the combined excitation and damping aerody­

namic force with solution frequency for Mode 3 when mechanical damping is both 

included and excluded. At the natural frequency, the combined aerodynamic force 

is equal and opposite to any mechanical damping force. For solutions outside the 

natural frequency (including the resonant frequency), the resulting combined aero-­

dynamic force is always non-zero and in phase with the blade motion, and hence 

this resultant force does not do any work. The only unique feature to be observed 

at resonance is the exactly 90° phase lag of the blade motion behind the excitation 

force. An important point to note is that this exact phase relation is assumed by 
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the decoupled method at the natural frequency. Since only the combined force is 

available, the phase of the excitation force can not be determined, hence, the re­

sponse phase remains unknown. Outside the natural frequency, no deductions can 

be made from the combined force, which is non-zero in magnitude and always in 

phase with blade motion. Therefore, due to the lack of knowledge of the individ­

ual damping and excitation forces, a single coupled solution at a given excitation 

frequency can not be used to predict the response for any other frequency. Hence, 

multiple solutions in the form of a frequency sweep or a frequency tracking routine 

are needed to predict the peak response of the coupled solution due to the existance 

of the frequency shift. 

7.6 Sensitivity to Frequency Shift 

When choosing between a coupled or decoupled forced response analysis for a par­

ticular case, a consideration is the sensitivity to the added mass effect, which will 

determine the level of agreement between the coupled solutions at the blade natural 

frequency and the resonant peak. A coupled solution at the natural frequency will 

provide a vibration amplitude close to the resonant peak for cases that are insen­

sitive to frequency shift, whilst the more sensitive cases require resonance tracking. 

Whilst it has previously been shown that the frequency shift is caused by the in­

ertial aerodynamic damping component, the sensitivity of the coupled solution to 

frequency shift depends on the sharpness of the resonant peak, which is determined 

by the overall system damping. 

A generalised approach is presented to evaluate the accuracy in which a single 

coupled solution at the blade natural frequency approximates the resonant peak for 

cases subject to aerodynamic and mechanical damping. As shown in Equation 7.5, 

the coupled solution can be emulated by considering both the inertial and viscous 

terms of the decoupled aerodynamic damping force, where the magnitude of the 

coupled solution is given by 

lticptl = Ill . J (w~- w2
- d~) 2 + (2(totWnw)

2 
(7.10) 
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Similarly, the magnitude of the decoupled solution from Equation 7.2 is given by 

(7.11) 

The validity of representing the resonant peak amplitude by the decoupled solu­

tion at the natural frequency was shown in Table 7.1. With forcing at the natural 

frequency, an expression for the accuracy of the coupled solution is given by the 

ratio of the coupled and decoupled solutions, 

qcpl 2(mechW~ - d1Jt 

qdec J ( d1Jt) 2 + ( 2(mechw; - d1Jt) 2 
(7.12) 

Representing the aerodynamic damping force components in terms of phase lag 

behind the modal displacement as d1ft = dN cos(O) and d'fv = dN sin(O), and taking 

r as the ratio of mechanical to aerodynamic damping 

(mech 
r=--

(aero 
(7.13) 

results in an expression for the accuracy of the coupled solution at the blade 

natural frequency in terms of the phase lag, -0, of the aerodynamic damping force: 

qcpl (r + 1) sin( -0) 

qdec J[cos( -0)] 2 + [(r + 1) sin( -0)] 2 
(7.14) 

Shown in Figure 7.6 is an indication of the sensitivity of the fully coupled solution 

at the blade natural frequency to the coupling effect. Plotted on the graph is the 

agreement between the coupled solution and the decoupled resonant peak given by 

Equation 7.14, against the phase lag -0 of the aerodynamic damping force. The 

magnitude of the aerodynamic damping force remains fixed and the phase lag is 

varied. The !!.£E!:.. ratio is plotted for values of r = 0, 1, and 2 to show the influence 
Qdec 

of mechanical damping. 

Included on the graph are the coupled solutions of the four modes, repeated 

with varying levels of mechanical damping. The coupled solution is insensitive to 

-thecfrequency-shift for cases with' a dampirig- force "phase lag close tO goo- \vlier(r'Uie'­

inertial damping force component is small, but such cases are not common in reality. 

Cases with a higher inertial component become more sensitive due to the increase 
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in frequency shift. Mechanical damping plays an important role in the sensitivity 

to frequency shift by influencing the sharpness of the resonant peak. For cases 

subject to very low mechanical damping, the sensitivity is high, and the inclusion 

of mechanical damping can dramatically reduce the sensitivity of the system. 

It is shown that the coupled solution at the natural frequency can predict the 

resonant peak with reasonable accuracy for cases with significantly high mechanical 

damping or when the aerodynamic damping force phase lag is known to be close 

to goo. For example, the coupled solutions for the four modes predict the resonant 

peak with gs% accuracy when the mechanical damping ratio is set to be twice that 

of the aerodynamic damping. However, it has been shown that the phase of the 

aerodynamic damping force can vary significantly for each individual mode and the 

position any particular case on the graph can not be determined without knowing 

the aerodynamic damping forces. Therefore, it can be dangerous to assume that 

a single coupled solution will accurately predict the resonant peak for cases where 

mechanical damping does not dominate. 

Whilst mechanical damping prediction methods are immature, the work of Ning 

et al [51], indicates that mechanical damping of typical compressor blades without 

friction dampers is greatly reduced for high-order modes, where blade motion is 

concentrated within the aerofoil. It can therefore be deduced that the sensitivity 

to frequency shift is likely to be high for bladerow interaction problems, where 

high-order modes result in low mechanical damping. It has been shown that the 

aerodynamic damping forces induced by high-order modes can produce high inertial 

components, which further highlights the potential for high sensitivity in such cases. 

It has been demonstrated that the coupled method can significantly under­

predict the resonant peak when solved only at one frequency for any lightly-damped 

blade, with a particular emphasis on high-frequency bladerow interaction problems. 

The decoupled method correctly assumes a goo phase lag of the modal response 

behind the modal excitation force and has been shown to be insensitive to solution 

frequency for a range of frequency shifts that are likely to be encountered. 
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7.7 Summary 

In the previous chapter, it was shown that decoupled systems can accurately pre­

dict resonant vibration amplitudes from a single calculation at the blade natural 

frequency, whilst fully-coupled forced response solutions are subject to a shift in 

resonant frequency, thus requiring multiple solutions. This chapter investigates the 

mechanics behind the flow-structure coupling effect, providing an explanation of the 

cause of frequency shift and an evaluation on the implications of frequency shift for 

decoupled and fully coupled methods. 

The decoupled method is modified in order to simulate the coupled solution, 

providing an analytical solution to the coupled frequency response curve from a 

single decoupled solution. A study into the fluid-structural coupling effect identified 

the source of the frequency shift in the coupled solution to be due to the inertial 

effect of the aerodynamic damping force causing a change in the blade dynamic mass. 

Conversely, the decoupled method simplifies the solution by neglecting the inertial 

damping force component, thus eliminating the cause of the frequency shift. Any 

shift in frequency caused by the effect of viscous damping is shown to be negligible. 

It is not possible to predict resonance from a single coupled solution at any 

frequency; hence coupled methods must rely on multiple solutions to find the res­

onant peak. A investigation into the sensitivity of coupled solutions to frequency 

shift shows that the need for resonance tracking with coupled methods is especially 

important for high-frequency bladerow interaction problems, where low mechanical 

damping and strong fluid-structure coupling effects are likely to be encountered. 

The decoupled method is identified as the preferred approach to bladerow interac­

tion problems due to the ability to accurately predict the resonant peak with high 

efficiency from a single solution. 
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Chapter 8 

Friction Damping Analysis 

8.1 Introduction 

A new approach to friction modelling for use with the finite element method was in­

troduced in Section 3.3 which was developed to provide the maximum compatibility 

with the existing methods and models used in the aeromechanical forced response 

analysis. As for the forced response system, the friction damping methodology has 

been developed with industrial blade designers in mind. The friction damping pre­

diction tool was therefore subject to the following wish list: 

• low solution times 

• minimal modification of existing FE models 

• compatibility with modal solution of the aeromechanical forced response sys­

tem 

• low user interaction 

• decoupled friction calculation from FE solution 

• ability to deal with the range of vibration amplitudes typical of turbomachin­

ery blade forced response 
.~ --- •:... ~ ~-=---· '=---

The intention of the friction damping analysis is to model the friction behaviour 

of an FE model using a modal approach to linearise the friction damping, allowing 

161 
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ease of use with the existing modal forced response system. The displacements 

of the contact surfaces are incorporated into the blade modes by linearising the 3D 

contact flexibility of the root-slot interface. An initial static analysis is performed to 

establish the regions of the blade root under compressive contact load due to static 

centrifugal and fluid loading, together with the compressive contact pressures. A 

modal analysis is performed to yield the modal displacements of the friction surfaces. 

The absolute tangential contact displacements for a single mode are then obtained 

at a specified modal amplitude, from which the friction forces are derived using 

three distinct friction models: a) a Rigid Coulomb model; b) an Elastic Coulomb 

model; and c) an advanced Microslip model. The friction forces are integrated over 

one vibratory cycle to give the damping work per cycle, which is used to calculate 

an equivalent viscous damping ratio for the specified modal amplitude. 

8.1.1 Conventional FE approach 

Conventional friction modelling approaches in FE analysis are based on non-linear 

time-marching to deal with the non-linear nature of the contact mechanics. The 

standard FE modelling approach within ANSYS is to represent the friction surfaces 

as two separate bodies, connected by tetrahedral contact elements. Contact is estab­

lished by a non-structural contact element, where the base is connected to one body 

and the tip is connected to the second body. Contact occurs when the surfaces of the 

bodies penetrate, causing the tip of the tetrahedron to penetrate its base, effectively 

turning the element inside-out. When this condition is reached, the contact forces 

are applied by the element to the connecting nodes on the bodies. This procedure 

is repeated for each time step in the solution. A friction damping analysis in the 

time-domain can possibly be done in one of two ways. The first possible approach 

is to set an initial deformation of the blade in the mode shape of interest, then start 

the transient analysis from the point when the blade is released. The rate of decay 

of the blade motion over the relevant vibration amplitude can be used to derive the 

. _ -~ ____ C-:".modaL.damping.ratio. The,second,possibility.-isto introduce .friction-ccontactJoads~ _ 

into a full time-accurate aeroelastic forced response solution. Based on the existing 

frequency domain CFD solver, the harmonic fluid excitation and damping forces are 
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reconstructed on a FE model at each time step of the solution to be considered with 

the friction forces to forcing terms in the structural equations. The aerodynamic 

damping forces are continually updated and the solution is run to a steady state, 

yielding the forced response solution. 

The conventional approach to FE friction modelling, however, does not meet up 

very well to the requirements listed in the bullets above. The need for time-marching 

significantly increases the computational time of the solution. This is not only due 

to the need to solve the model at a large number of discrete time steps, but the 

time-accurate results gained for one particular condition are not easily transferred 

to a different condition. This suggests that a separate time accurate solution will 

be required for each mode, which is likely to be computationally expensive. Con­

ventional contact approaches involve the complexities of including a second body 

connected by an interface mesh of contact nodes, which is not desirable to a designer 

whose primary interest is blade aeromechanics rather than root friction. Such an 

approach may be time-consuming, and automated mesh generation may be difficult 

to program. The solution of the FE model in the time-domain does not fit in with 

the existing strategy of solving the aeromechanical analysis in the frequency do­

main. It is desirable to keep to one frequency-domain approach in order to maintain 

continuity in the analytical models and to avoid possible complexities when pass­

ing information between the friction and aeroelastic calculations. A full transient 

forced response analysis with aerodynamics seems pointless when an analytical so­

lution can be achieved in the frequency-domain. The current capability of ANSYS 

is to model Coulomb friction only and the inclusion of a microslip model may not be 

easily achievable using standard ANSYS capabilities. The new method introduced 

in Chapter 3 overcomes the problems outlined above for a standard friction analy­

sis by providing a CPU-efficient alternative, based in the frequency domain that is 

implemented with a high level of automation. 

8.1.2 Overview of Adaptive Constraint Method 

A new method of friction damping prediction, the Adaptive Constraint Method, is 

therefore proposed that uses the existing linear static and modal solvers of ANSYS 
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to model the non-linear behaviour of the friction surfaces. The Adaptive Constraint 

Method is named as such since it models the non-linear contact mechanics using the 

linear solvers in an iterative manner by adapting the model constraints to match the 

non-linear characteristics of the contact regions for the relevant displacement levels. 

Contact is modelled using a series of linear springs attached to ground, the stiffnesses 

of which are adjusted to account for contact/non-contact, normal contact stiffness, 

tangential contact stiffness and tangential friction forces. The analysis is based on 

an initial static analysis to determine the regions of the root in compressive contact 

resulting from blade centrifugal and steady fluid loads. A subsequent modal analysis 

provides the mode shape at the friction surfaces, taking the non-linear tangential 

properties into account. The contact modeshape and modal amplitude define the 

contact displacements, allowing the modal damping ratio to be calculated. The 

method allows either the Coulomb or microslip friction models to be implemented 

within ANSYS for a given blade vibration amplitude to provide a friction damping 

ratio independently to the forced response calculation. 

8.2 Methodology 

8.2.1 Integration with decoupled forced response system 

The Adaptive Constraint Method calculates the normal contact pressures and modal 

contact displacements on a linearised FE model, which are used in the friction 

damping calculation to provide the damping at the specified level of blade vibration. 

Friction damping is calculated based on a detailed modal analysis of the blade root, 

in a separate analysis to the modal analysis used for the blade aeroelastic forced 

response calculation. It is assumed that the root friction forces at the root do not 

significantly affect the mode shapes and frequencies of the aerofoil due to the high 

relative stiffness of the blade structure. 

Due to the non-linear variation of friction damping with vibration amplitude as 

discussed in- Section 3;3, the damping "ratio must,·bwcalculated simultaneously-with­

the forced response solution. In other words, a degree of coupling is always required 

between the calculation of the forced response amplitude and the friction damping 
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ratio. Figure 8.1 illustrates how the friction calculation is intended to be incor­

porated into the existing decoupled forced response method. The forced response 

solution is firstly calculated using the decoupled aerodynamic forcing and damping 

terms without mechanical damping or using an assumed value. The resulting modal 

amplitude is subsequently passed to the Adaptive Constraint Method, which returns 

the friction damping ratio. 

8.2.2 Finite Element representation of friction contact 

Friction contact is modelled on the ANSYS FE mesh by a series of linear springs 

connecting the blade root to ground to represent the 3-D contact stiffness of the 

root-slot interface. The friction contact is modelled at each node on the interface, 

as shown in Figure 8.2. Three perpendicular springs are attached to each node on 

the root flank surfaces to represent the contact with the slot in the manner shown 

in Figure 8.3. The spring endpoint nodes are fully restrained, effectively neglecting 

the flexibility of the disk material. The two springs aligned on the surface plane 

represent the tangential stiffness acting on the node in the friction plane, whilst 

the spring normal to the surface represents the normal contact stiffness under a 

compressive normal load. The spring elements are applied to all nodes on the root 

surface that are likely to be in contact with the slot. The actual root surface nodes 

in contact due to the applied static load are identified as part of the static solution. 

The normal and tangential contact stiffness of the springs are derived from the 

semi-analytical microslip model given by Olofsson [130]. The stiffness values are 

varied in the solution to account for the effect of static loading on the friction in­

terface. Contact stiffness is dependent on the compressive load transmitted through 

the contact interfaces. Consequently, the static load distribution over the contact 

surfaces is affected by the normal stiffness of the contact regions. 

An important property of the contact interface is the inability to transmit tensile 

loads. Any contact nodes on the root surface that result in tensile contact loads are 

jdentified,to_be~out ,oLcontact and,subsequently have the contact spring elements 

disabled. An iterative approach is therefore adopted to identify the contact nodes 

and resolve the contact parameters. 
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8.2.3 Adaptive Constraint Method 

The solution of the FE model is performed using ANSYS in two stages: an iterative 

static analysis and a single modal analysis, as shown in Figure 8.4. 

Static analysis 

The static analysis identifies the areas of the blade root transmitting the compressive 

reactions to the centrifugal and steady fluid loading, and determines the contact 

stiffness values based on the normal contact pressures. When setting up the FE 

model, it is not valid to simply assume that the entire upper surfaces of the root 

flanks remain in contact and transmit a compressive contact load, whilst the lower 

and side surfaces of the flanks remain out of contact. Due to the fluid shear and 

moment loading of the blade and the deformation of the flanks from centrifugal 

loading, complex reaction load distributions result over the upper, side and lower 

surfaces of the root flanks. Based on the current linear representation of the contact 

mechanics, it is not possible to determine which regions transmit reaction loads 

using a single static analysis. The static analysis is therefore performed iteratively to 

identify the nodes under compressive normal loading and to determine the pressure­

dependant normal pressures and tangential contact stiffness values used in the modal 

analysis and friction models. 

The static analysis assumes a dither effect, where all reaction loads are transmit­

ted in the normal direction to the contact surfaces with no tangential contribution. 

This assumption is based on the relatively high normal stiffness, which is typically 

2 orders of magnitude greater than the tangential stiffness. The dither condition is 

ensured by reducing the stiffness of all tangential springs to a very small value for 

the static analysis. 

The first iteration is done using estimated values of normal spring stiffness values 

based on an estimated average contact pressure. The details for determining the 

spring stiffness values are dependant on the particular friction approach chosen and 

·are,discussed,,later"'iwSection"8.3;2,·-The,'rotational'velocityandc'steady-=fluid'loads' 

on the blade are applied and the ANSYS static structural solver is executed. The 

static contact loads are given by the reactions at the endpoint nodes of the normal 
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spring elements. The normal contact pressures are then given by the product of each 

reaction force and the effective nodal area of the surface node, which is intrinsically 

calculated by ANSYS. 

The resulting sign of the normal pressure determines whether the node is in 

contact with the disk. Nodes with negative normal pressure correspond to contact 

loads in tension, and can not be sustained. Such nodes are flagged to be out of 

contact and subsequently have the adjoining spring elements set to a very small 

value, thus eliminating the tensile contact. The reason a small value is used, rather 

than zero is to maintain the ability to detect contact pressures in the subsequent 

iterations, and to avoid numerical problems with the FE matrices. 

Nodes associated with positive normal pressures are in compressive contact and 

have the normal spring stiffness maintained. Such contact nodes are flagged as 

active. Normal contact stiffness is calculated as a function of the normal load, and 

the normal stiffness values of the active normal springs are updated accordingly. 

The static solution is redone using the updated spring properties and the process 

of activating and deactivating the contact nodes is repeated until convergence is 

achieved. The result of the static analysis is the compressive normal pressures of all 

active contact nodes. 

Modal analysis 

The modal analysis is clone after the converged static solution. The rotational 

velocity and steady fluid loads are removed and the prestressing terms from the 

static solution are enabled. Tangential spring stiffness is now applied to the active 

contact nodes in addition to the existing normal stiffness. The values of tangential 

stiffness are calculated based on the normal pressures. Surface nodes identified as 

inactive, non-contact nodes have the normal and tangential spring stiffness values 

set very small. A single execution of the modal solver yields the modeshapes of the 

blade at the active contact nodes. 



8.3. Implementation 168 

8.2.4 Friction damping calculation 

Whereas the FE modelling of the contact mechanics is based on a linearisation 

of the contact flexibility, the friction damping calculation considers the non-linear 

displacement-force behaviour. The friction damping coefficient is therefore calcu­

lated for a given modal amplitude of a particular mode, based on the normal pres­

sures and friction modeshape from the FE analysis. For each node, the local fric­

tion work is calculated over one vibratory cycle using either of the Coulomb or 

microslip friction models outlined in Section 3.3, which give the friction work in 

Equations 3.19, 3.27 and 3.39. The work contribution of each node is then summed 

to give the total friction work done on the blade. The modal friction damping ratio 

is given by Equation 3.20 based on the principle of equivalent viscous damping. 

8.3 Implementation 

8.3.1 Case description 

The friction calculation is performed on the Siemens transonic compressor blade 

described in Section 5.3. A detailed view of the FE mesh blade root is given in 

Figure 8.2, which shows the four flanks providing the radial location in the disk 

slot. The normal and tangential constraint of the flank surfaces is done by spring 

elements connecting the root to ground using the Adaptive Constraint Method. 

Axial location is provided by the lip on the front edge of the fir tree section, which 

is fully constrained on the FE model. The FE mesh, originally constructed from 

Solid95 quadratic elements, is converted to Solid45 linear elements to eliminate the 

mid-side nodes of the Solid95 elements, which are not suitable for contact analysis. 

The shape functions of the quadratic Solid95 elements result in negative stiffness 

values being associated with the mid-side nodes, giving incorrect contact pressures. 

The friction damping ratios are evaluated for Modes 8, 9 and 10 at the measured 

forced vibration amplitudes. This allows the predicted friction damping ratios to be 
•--·- c,:, ""._'_!._, __ - - • ·:;:_, ----•7 - .....,;:_~ ---~·.o.:__ -~- ~·--J-. ,:__._:;, • ·--· -~~--· -·~ - "'___!~--::= : - - •• 

compared with the values implied by the forced response results, thus providing an 

initial verification of the friction model. 
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8.3.2 Calculation of contact stiffness 

The values of normal and tangential contact stiffness are derived from the microslip 

friction model reported by Olofsson [130]. Two approaches to implementing the 

Adaptive Constraint Method are presented, which represent the friction behaviour 

in terms of the Coulomb and microslip models. 

Coulomb friction analysis 

The Coulomb friction model adopts constant values of normal and tangential spring 

stiffness to represent the average contact properties over the whole contact area. 

This approach demonstrates how the contact stiffness parameters can be be derived 

either from experimental data or from a simple empirical or semi-analytical model. 

The average contact pressure of the Siemens blade is calculated from the blade 

centrifugal reaction load and the estimated contact area to give an estimated normal 

contact pressure of Pn = 160M Pa. The tangential stiffness has been derived from 

experimental data by Olofsson [130] and is obtained from the displacement-friction 

load graph in Figure 9 of Olofsson [130]. This graph is based on the model described 

in Section 3.3.2 and refers to stainless steel on stainless steel at a normal pressure of 

125M Pa with contact parameters of C = 1.0 x 1010 contactsjm2 jm, R = lO.OJ.Lm 

and J.L = 0.122. These values represent contact properties typical of unlubricated 

engineering surfaces, and the case corresponds well with the conditions of the blade 

root interface in terms of pressure and materials. Figure 8.5 shows how the tangential 

stiffness is calculated from the graph of Olofsson. The stiffness is taken as the 

gradient of the graph for the initial linear part of the microslip curve, giving a 

tangential stiffness of 2.09 x 1012Njm3 • 

Normal stiffness is taken as a factor of the tangential stiffness. It is discussed in 

the friction literature that the ratio of normal to tangential stiffness is commonly 

around 100 for machined metal surfaces. A value of }f,- = 100 is therefore used to 
t 

define the normal stiffness. 

, - ~- ~- ~-~ The· influence· ofthe~contact~parameters -on~the Elastic Coulomb damping~pre-- -~ -

dictions is investigated by repeating the calculations using a range of values in a 

parametric study. The calculations are repeated with the following variations: 
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P.' Contact stiffness (constant }if) P; = 2.09 x 1011 N/m3 , 2.09 x 1013N/m3 

t 

P.' Normal contact stiffness }it = 10, 1000 
t 

Friction coefficient jJ, = 0.2 

The influence of the vibration amplitude on the predicted damping is also investi­

gated by repeating the Elastic Coulomb calculation at a range of modal amplitudes. 

Microslip friction analysis 

The microslip analysis uses the semi-analytical solution of Olofsson [130], to deter­

mine the normal and tangential contact stiffness as functions of normal pressure, 

thus removing the assumption of constant stiffness properties made in the Coulomb 

analysis. The microslip model uses the same parameters used to produce the graph 

used in the above Coulomb friction approach, corresponding to Figure 9 of Olofsson. 

A summary of the microslip parameters is given as 

Surface contact parameter C = 1.0 x 1010 

Spherical asperity radius R = 10JJ,m 

Friction coefficient jJ, = 0.122 

Young's modulus of elasticity E = 210GPa 

Shear modulus G = 81G Pa 

Poisson's ratio v = 0.3 

The initial static analysis is performed using an average normal contact stiffness 

in an identical manner to the Coulomb approach discussed previously. The stiffness 

of each normal contact spring element in compression is then calculated at each 

subsequent step, given by 

(8.1) 

Here, z is the normal deflection of the surface node, given by Equation 3.32, under 

the-tesulting""notmal pressure, P.:t; and A0 is the effective nodal 'area of the -sur:: 

face node calculated by ANSYS. The stiffness values of the compressive springs are 

updated and the tensile springs are deactivated before the static solution is repeated. 
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Once the static analysis has reached convergence, the tangential stiffness proper­

ties are calculated for use in the modal analysis. The tangential stiffness is calculated 

for each point in contact using the static normal pressure. Due to the non-linear 

variation of friction force with tangential displacement, an equivalent linear stiffness 

is derived for each active contact node. As shown in Figure 3.16, the equivalent 

tangential stiffness is calculated at a defined position along the microslip curve. The 

equivalent tangential stiffness is therefore given by the expression 

(8.2) 

where F1 is the microslip friction force given by Equation 3.34 at the specified 

tangential displacement, x. The tangential displacement is specified as a fraction 

of the of the slip displacement, xlim, which is given by Equation 3.35. A value of 

xl~m = 0.5 is used as the datum value in the following friction calculations. In a 

second analysis, the values of xl~m are varied for the Mode 8 calculation to assess 

the influence on the predicted friction. 

8.4 Results 

8.4.1 Implied friction damping from forced response analy-
. 

SIS 

In Section 5.3.2, the expected friction damping ratios of the three modes were calcu­

lated by subtracting the predicted aerodynamic damping from the measured system 

damping. The expected friction damping ratios are listed in Table 5.7, showing 

a value of 0.24% for Mode 8, whilst Modes 9 and 10 provide little or no friction 

damping. This expected behaviour is characterised by the mode shape plots in Fig­

ure 5.13, where a significant level of root motion can be seen for Mode 8, whereas 

the root motion of Modes 9 and 10 is much lower. 
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8.4.2 Coulomb friction results 

Static results 

The convergence of the static contact analysis was reached in four steps, yielding the 

compressive contact pressures for the contact nodes identified as active. Figure 8.6 

plots the nodal reaction loads of each ANSYS static solution at each of the four 

steps in the solution. The x-axis on each graph represents the node number of 

each contact node, the ordering of which is arbitrary. The y-axis represents the 

contact pressures, with negative values being compressive. It can be seen that the 

normal stiffness for nodes in tensile contact are deactivated at the end of each step, 

thus changing the distribution of the contact loads, and causing a small amount of 

oscillation in the overall solution. Starting with normal stiffness applied to all 430 

nodes around the root flanks, the number of active nodes at the end of the static 

analysis is reduced to 204. The static contact analysis was repeated from a different 

starting point, with only the nodes on the upper surfaces of the root flanks being 

activated. The second analysis produced an identical end result, demonstrating that 

the convergence is independent of starting point. 

Modal result 

Tangential spring stiffness is then applied to the springs of the active contact nodes 

for the modal analysis. The resulting first 15 natural frequencies of the modal analy­

sis are plotted in Figure 8.7, together with the frequencies of the fully-constrained 

root model used to provide the aerofoil modes in the forced response calculation. 

The results of an additional analysis are included, where the modal analysis is done 

without tangential stiffness to demonstrate the behaviour of freely-sliding contact. 

Figure 8.8 compares the mode shape contours of three models. The comparison of 

the elastic contact model with the original fixed root model shows that the natural 

frequencies of the high-order modes vary a small amount with the change in root 

constraints. However, the frequencies of the freely-sliding root model show signifi-

~--~'~"~'-- ~·-- c~nt -cfiffe~eil~es. The larg~st difference is the ·apparent addition of~ new lOth -mo,de, 

characterised by the longitudinal vibration of the root along the slot due to the lack 
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Modal Expected Rigid Coulomb Elastic Coulomb 
Mode Amplitude (jric (jric (jric 

8 5.519 x 10-7 0.24% 22% 0.0027% 

9 5.70 x 10-7 0.03% 5.9% 0.0000% 

10 1.713 x 10-7 nil 40% 0.0001% 

Table 8.1: Rigid and Elastic Coulomb friction damping predictions 

of tangential constraint at the flank surfaces. This high level of mode shape sensi­

tivity demonstrates the importance of modelling the root contact mechanics with 

the greatest possible accuracy. 

The tangential displacement amplitudes at the contact surfaces for the three 

modes at the forced response solution modal amplitudes are shown in Figure 8.9. 

Here, it can be seen that the contact motion of Mode 8 is an order of magnitude 

higher than Modes 9 and 10, agreeing well with the expected behaviour. 

Friction calculation 

The friction damping ratio of each mode is calculated using the Rigid Coulomb and 

Elastic Coulomb models, based on 11 = 0.122, ~ = 100 and Pf = 2.09 x 1012
. 

t 

The actual tangential displacements of each mode are gained from the product of 

the contact surface mode shape and the modal amplitude of the forced response 

solution. A summary of the friction results is given in Table 8.1, where the Rigid 

and Elastic calculations can be seen to give remarkably different predictions. The 

Rigid coulomb model predicts unrealistically high damping - especially for Mode 

10, where a 40% damping ratio is predicted instead of the expected 0%. Conversely, 

the Elastic Coulomb model predicts virtually no damping for all three modes. 

Figure 8.10 shows the tangential displacement of each active friction contact 

node, normalised to the elastic limit of the Elastic Coulomb model. Here, it can be 

seen that only two nodes of a possible 204 active nodes achieve slip in the elastic 

calculation.--. The Elastic- Coulomb dampingeoequation-{Equation 3;-281- states·- that 

damping work can only be done by nodes in slip, therefore neglecting the contri­

butions from the 99% of active contact nodes that remain within the elastic limit. 
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However, it is observed in practical applications that contact regions that do not 

achieve gross sliding still contribute to friction damping due to microslip. It is 

therefore apparent that the root contact displacements are generally too small to be 

effectively modelled using the Elastic Coulomb approach. 

The rigid model takes the opposite extreme by assuming that the all the tangen­

tial motion from every active node provides the maximum contribution to damping 

for a given friction damping ratio. This approach vastly overestimates the contri­

butions from the regions with small-scale displacements, which make up the bulk of 

the contact surfaces. 

The behaviour of the Coulomb models for small displacements was illustrated 

previously in Figures 3.5 and 3.9 for a simple 1 DoF case. Figure 3.5 shows that 

very high damping ratios are predicted by the Rigid Coulomb model for very small 

displacements. Whilst the Rigid Coulomb work increases linearly with displacement 

amplitude, Equation 3.20 dictates that the damping ratio increases inversely propor­

tionally with the square of displacement amplitude. For very small displacements, 

the squared term in the denominator dominates and the damping ratio becomes 

very large, as seen in the case above. For the Elastic calculation, Figure 3.9 shows 

that the damping work, and hence damping ratio is zero for displacements within 

the elastic limit. Since 99% of the nodes in the above elastic calculation remain 

within the elastic limit, the resulting damping ratio is very small. 

Sensitivity to contact parameters 

A parametric study was performed in order to investigate the sensitivity of the 

friction predictions to the input friction contact parameters. The variation in the 

predicted modal damping ratios with the contact stiffness is given in Table 8.2, 

where the ratio of normal-tangential contact stiffness is held constant. Whilst the 

friction is underpredicted, it can be seen that the stiffer contact stiffness gives higher 

damping values. The higher tangential stiffness results in a reduced elastic limit, 

allowing more nodes to achieve slip ~~dcontribute,to dampii1g: 

Table 8.3 shows the variation of predicted damping with normal stiffness, which 

is specified by varying the normal-tangential stiffness ratio, ~, for a constant P:. 
t 
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Mode Expected (mech Predicted (mech 

No. P! = 2.09 X 1011 P! = 2.09 X 1012 P! = 2.09 X 1013 

8 0.24% 0% 0.0027% 0.0082% 

9 0.03% 0% 0% 0% 

10 0% 0% 0.0001% 0.050% 

Table 8.2: Variation of predicted Elastic Coulomb friction damping with contact 

stiffness 

Mode Expected (mech Predicted (mech 

No. .!:4- = 10 p ~ = 100 Pf .!:4- = 1000 p 

8 0.24% 0.037% 0.0027% 0% 

9 0.03% 0% 0% 0% 

10 0% 0.02% 0.0001% 0% 

Table 8.3: Variation of predicted Elastic Coulomb friction damping with normal 

contact stiffness 

This shows that the damping is slightly increased with reduced normal stiffness. 

This is caused by a more uniform distribution of normal pressure over the contact 

surfaces due to the higher contact flexibility. The increased pressure acting on the 

lightly loaded nodes brings more nodes into slip by reducing the elastic limits. 

The dependence on friction coefficient is shown in Table 8.4, where the calculation 

is repeated using a value of J.t = 0.2. The increase in J.t allows a higher tangential 

force to be sustained elastically, causing the elastic limit to be increased above 

the displacements of all nodes. The elimination of all nodes in slip results in zero 

damping. 

The graph in Figure 8.11 shows the variation in damping ratio with modal am­

plitude for Mode 8 as the response amplitude is increased from zero to an order of 

magnitude above the forced response amplitude. Marked on the graph are a series of 

vertical lines,- whieh repi'esent the transition- point when an individual contact node 

changes from stick to slip. These slip transition markers can be compared with the 

normalised node displacements shown in Figure 8.10. At the forced response am-
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Mode Expected (mech Predicted (mech 

No. J-l = 0.122 J-l = 0.2 

8 0.24% 0.0027% 0% 

9 0.03% 0% 0% 

10 0% 0.0001% 0% 

Table 8.4: Variation of predicted Elastic Coulomb friction damping with friction 

coefficient 

plitude, denoted by the dashed vertical line, it can be seen that the only two nodes 

are in slip. An increase in displacement of around 20% brings a third node into slip, 

whilst a small cluster of nodes start to slip when the amplitude is doubled. It is also 

apparent that approximately only 10% of the nodes reach slip when the displace­

ments are magnified by a factor of 10, with the result that the damping values are 

still very low. The sensitivity study of the elastic Coulomb model therefore shows 

that the model will significantly under-predict friction damping for a wide range of 

input parameters and vibration amplitudes. 

Discussion 

The Rigid and Elastic Coulomb calculations in the above case provide little assis­

tance in the prediction of friction damping - either quantitatively or qualitatively 

due to the limitations of the Coulomb model for dealing with small-scale displace­

ments. The Rigid Coulomb model vastly over-predicts the friction damping, whilst 

the Elastic Coulomb model greatly under-predicts damping. The case does, how­

ever, demonstrate the need to investigate the microslip behaviour for the majority 

of nodes that remain within the elastic limit. 

An investigation into the influence of contact stiffness, friction damping ratio 

and modal amplitude on the predicted damping ratio has shown that the under­

prediction by the Elastic Coulomb model is not caused by the choice of input para­

meters. The limitatioil~ofthe 'Elastic· Coulomb method is due to the large proportion 

of contact nodes remaining in stick and the inability of the approach to include the 

effects of such non-sliding nodes. 
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Modal Expected Microslip (J-L = 0.122) Microslip (J-L = 0.2) 
Mode Amplitude (Jric (Jric (Jric 

8 5.519 X 10-7 0.24% 0.11% 0.066% 

9 5.70 X 10-7 0.03% 0% 0% 

10 1.713 X 10-7 0% 0.01% 0.007% 

Table 8.5: Rigid and Elastic Coulomb friction damping predictions 

8.4.3 Microslip friction analysis 

Results 

The microslip model is verified by reproducing the force-displacement curve given 

in Figure 9 of Olofsson [130], using the microslip parameters outlined above. Fig­

ure 8.12 shows a superposition of the original graph of Olofsson with the solution 

reproduced using a spreadsheet. The excellent agreement between the analytical 

solution of the microslip model with the original verifies that the calculation is done 

correctly. 

The resulting microslip damping predictions for the three modes using the datum 

values outlined above in Section 8.3.2 are given in Table 8.5. It can be seen that the 

microslip calculation agrees fairly well with the expected friction damping, where 

only Mode 8 provides a significant amount of damping. Whilst the Mode 8 damping 

ratio is under-predicted by 50%, this result captures the dependance of friction on 

modeshape very well. 

Sensitivity to input parameters 

Included in Table 8.5 is the predicted damping ratios calculated using a different 

friction coefficient of J-t = 0.2. Here, it can be seen that an increase in friction 

coefficient reduces the damping ratio, whilst the trend of mode shape dependence 

is maintained. Equation 3.35 states that the slip limit is proportional to friction 

coefficient, giving an increased slip limit with ~n ~~c~ease in friction coefficient. 

For a given displacement, the contact motion will be reduced in relation to the 

microslip curve, giving less damping. Conversely, the increased slip limit gives a 
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reduced effective tangential contact stiffness, resulting in an increased amount of 

contact motion in the modes. The overall effect is highly non-linear, as shown by 

the damping ratio-displacement curve in Figure 3.15. The result in this case is 

reduced damping with increased friction coefficient. 

A major simplification in the microslip approach is the assumption that the 

effective tangential stiffness does not vary with the tangential displacement. The 

approximation of the tangential stiffness of each node in the above calculations is 

done using the microslip friction force at half the slip displacement. The sensitivity of 

damping predictions to the choice of position along the microslip curve is assessed by 

repeating the Mode 8 calculation using a range of positions. The resulting damping 

ratios plotted in Figure 8.13 shows a reasonable variation in damping due to the 

change in effective tangential stiffness. Calculating the tangential stiffness at very 

small displacements gives the highest stiffness and lowest damping ratios, whereas 

calculating the stiffness at the slip limit results in lower stiffness and higher damping. 

The variation of predicted microslip damping with blade vibration levels is as­

sessed by repeating the Mode 8 calculation at a range of modal amplitudes above 

and below the forced response solution. Figure 8.14 shows an almost linear increase 

of damping ratio with an increase in response, where all nodes contribute to damp­

ing before they reach gross slip, preventing the sudden changes seen in the Elastic 

Coulomb results presented earlier. The damping behaviour of this multi-DoF prob­

lem can be compared to the graph of the single-DoF system provided in Figure 3.15. 

Both microslip systems are seen to provide an almost linear increase of damping ra­

tio with response amplitude for the very low contact displacements seen at the blade 

root. 

Discussion 

The microslip damping predictions agree very well with the expected values for 

all three modes. The dependence on mode shape is well-captured, with Mode 8 

providing a significant amount of damping and Modes 9 and 10 providing almost no 
·---·~··__:· __ ;.._,_:-=:o""'·:.._:._""·ro,: .7;:..•:.,,;:_.-•· " -·"··· _, ,:_- _;_· <-'·-~0 -- .:.-; .• •• •• -~--~" •• • -~--~~ ;',,.,_- • -~ -~ o'. 

damping. The Mode 8 damping was predicted within around 50% of the expected 

value using published input parameters that have been verified for the same materials 
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under similar contact conditions. 

The friction behaviour does not show a high sensitivity to the input parameters, 

displaying a smooth variation in damping as the parameters are varied. Similarly, 

the method of calculating the effective tangential stiffness does not cause a large 

variation in results. 

The microslip calculation predicts an almost linear increase of damping ratio 

with modal amplitude around the range of the forced response solution. This is 

due to the fact that the large majority of nodes in compressive contact are subject 

to very small tangential displacements that are much lower than the elastic limits. 

The near-linear behaviour for small displacements is also seen in the solution of a 

simple single-DoF microslip system, shown in Figure 3.15. However, experimental 

measurements of mechanical damping of fixed root blades can often suggest that 

damping remains fairly constant over typical ranges of blade vibration. Whereas the 

predicted blade microslip damping shows a similar linear characteristic to a simple 

1-D brick-type object undergoing pure microslip, the comparison with experimental 

behaviour suggests that either a) more complex physical mechanisms are present; 

or b) the linearisation process is not capturing some important non-linear effects. 

8.5 Conclusions 

A new Adaptive Constraint Method for modelling blade root friction has been de­

veloped and successfully implemented for an industrial compressor blade. Based on 

an advanced microslip model, the friction predictions agree with the damping values 

derived from test data. 

The new method meets many of the requirements for use in industry. The 

frequency-domain solution allows the modal friction damping ratios to be calculated 

based on a single FE analysis with high computing efficiency. User interaction is 

very low, with a high level of automation provided by a series of ANSYS macros to 

modify the existing FE model and perform the analysis. The only area of significant 

user effort is in the identification of nodes on the root surface, resulting in an overall 

effort that is much less demanding than a standard time-accurate ANSYS contact 
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analysis. 

It has been demonstrated that the Rigid and Elastic Coulomb friction models 

are not suitable for the prediction of friction damping at the blade root due to their 

inability to deal with the very low displacements. The Elastic Coulomb analysis of 

Mode 8, shows that only 2 nodes out of the 204 nodes in contact actually reach slip, 

with the result that the damping contributions of the remaining 99% of the contact 

nodes are neglected and the friction damping is vastly under-predicted. Conversely, 

the Rigid model greatly over-predicts damping by assuming that the entire friction 

surface achieves gross sliding. 

Whilst the friction behaviour predicted by the Coulomb approaches has been 

shown to be sensitive to the model parameters, the microslip model is much more 

robust and does not show any sudden changes with contact parameters or response 

amplitude. An additional observation is the linear increase of damping ratio with 

response amplitude predicted by the microslip model. An area of question is the 

method of calculating the effective tangential stiffness using the microslip model, 

where stiffness is calculated using a fixed point on the microslip curve. A variation 

in the assumed displacement produces a change in damping, hence an area for 

improvement could be to calculate the effective tangential stiffness as a function of 

actual displacement. 
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Figure 8.1: Application of friction calculation into decoupled forced response system 
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Figure 8.2: Friction contact nodes on surfaces of root flanks 

Figure 8.3: Spring representation of 3-D contact stiffness at each contact node 
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8.6. Figures 

Root constraint method 
· · · · · · ··· · freely sliding 
----·elastic 

rigid 

ModeS Mode9 

185 

Mode 10 

Figure 8.8: Comparison of mode shapes for various methods of root constraint 

600 !Jm 441Jm 

ModeS Mode9 Mode 10 

Figure 8.9: Tangential contact displacements at modal forced response solutions 



8.6. Figures 186 

1.40 ~--------------------------------------------------~ 

c 1.20 +------------------------------f 
Q) 

E 
Q) 

SLIP 

~ 1 .oo ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

a. 
en 
'6 

STICK 

Q) 0 .80 +---------------------------~ 
'0 
0 
c 

al 0.60 +----------------------------­
.!!! 
(ij 
E 0 0.40 +---------------------------
c 

I a. 
U5 0.20 +--------------------------

0.00 _t_ ______ _ ___________ ... 

Ranked Nodes 

Figure 8.10: Mode 8 tangential contact displacements normalised to elastic limit 

0.030 

- 0.025 
eft 
-;- 0.020 
iii 
'; 0.015 
c 

·~ 0.010 
\U 

Q 0.005 

0.000 

Solution 
Amplitude 

{ 
!---" 

I 

DAMPING RATIO Vs. DISPLACEMENT 
(with slip transition markers) 

I ----
I 

v 
I 

O.OOE+OO 1.00E-06 2.00E-06 3.00E-06 4.00E-06 5.00E-06 6.00E-06 ?.OOE-06 

Modal Amp 

Figure 8.11: Variation of damping ratio with response amplitude for mode 8, showing 

individual node stick-slip transit ion points 



8.6. Figures 

-- Microslip (Moffatt) 
- - Microslip (Oiofsson) 
.......-vv Experiment (Oiofsson) 

0~--~~--~-----L----~----L---~~--~--
0 5 10 

Displacement (~ m) 
15 

187 
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Figure 8.14: Variation of predicted damping with response amplitude for Mode 8 



Chapter 9 

Conclusions and 

Recommendations 

9.1 Conclusions 

The objective of this project was to develop an efficient and accurate aeromechanical 

analysis tool capable of providing reliable resonant forced response predictions for 

turbomachinery blade designers under the commercial restraints of solution times 

and computing resources. Both decoupled and fully-coupled approaches for the mod­

elling of flow-structure interaction have been developed and the capabilities of such 

methods to capture important coupling effects have been evaluated. In addition, a 

method of predicting the friction damping of fir-tree type blade root attachments 

has been developed, leading to an evaluation of the mode shape dependence and the 

importance of microslip behaviour. 

9.1.1 Decoupled forced response system 

The decoupled method represents an open loop system, requiring only a single execu­

tion of the flow and structural equations. Blade mode shapes and natural frequencies 

are assumed to remain unchanged by aerodynamic loads due to the high relative 

densfty ana' stiffness of turbomachlnery blades. The -FE- modal analysis is evaluated 

independently to the fluid calculations, where blade mode shapes are accurately 

189 
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translated onto the CFD mesh to enable a forced response solution in modal space 

based on the CFD mesh. 

A method for interpolating the modeshapes from the FE to CFD mesh has been 

produced, based on 2D linear interpolation over the blade surface. The capabilities 

of the method are demonstrated with an industrial case, where difficulties of mesh 

alignment, non-coincident mesh surfaces, low mesh resolution and high mode shape 

gradients are overcome and excellent accuracy of mode shape interpolation is seen. 

Flow is modelled by the nonlinear harmonic method, solving the unsteady Navier­

Stokes equations in the frequency-domain using a single-passage approach, whilst 

maintaining the ability to include important non-linear effects. With single degree­

of-freedom structural modelling based on modal reduction, the system can predict 

resonant vibration levels 30-100 times faster than direct time-domain schemes. 

Fluid-structure interaction is modelled on a linear basis, assuming that aerody­

namic damping loads increase linearly with vibration amplitude. This allows the 

calculation of aerodynamic forcing and damping to be done separately from one­

another, and independently to the forced response solution. 

The decoupled forced response solution is calculated using conventional modal 

reduction theory, reducing the structural FE model to a single degree-of~freedom 

modal equation. In addition, a new energy method provides an alternative to the 

solution of the modal equation, which solves the response directly on the CFD mesh 

without the knowledge of original modeshape scaling. Both methods are shown to 

give identical results. 

9.1.2 Verification Cases 

A detailed demonstration of the forced response system and an initial verification 

of the individual system components has been done using a case study of the NASA 

Rotor 67 transonic aero engine fan. The resonant excitation of three low order 

modes and one high order mode is given by hypothetical inlet distortions, to pro­

vide a realistic test case that is typical of inlet distortion and bladerow interaction 

problems. 

Validation of the forced response system has been done against the Siemens 3-
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stage transonic industrial compressor, where predicted resonant strains and damp­

ing levels are compared with measured strain gauge data from a full-scale rotating 

test. The vibration of three high-order modes of the last rotor stage is predicted, 

with excitation caused by interference from the upstream stator wakes. The damp­

ing calculations have shown that aerodynamic damping is strongly influenced by 

modeshape and a comparison with strain gauge data also indicates a strong corre­

lation between mechanical damping and modeshape. Predicted resonant strains for 

the three crossing points compare reasonably well with strain gauge measurements, 

demonstrating the ability of the method to predict resonant vibration levels. The 

high efficiency of the unsteady multi-stage calculation also demonstrates the system 

can be used routinely in the blade design process to tackle aeromechanical issues, 

where the 3D unsteady viscous CFD analysis of the 3-stage compressor was achieved 

in under a week on a single CPU. 

9.1.3 Fully-coupled forced response systems 

Two fluid-structure fully-coupled forced response methods have been developed with 

the intention of increasing computational efficiency over the decoupled method by 

combining the calculation of aerodynamic excitation and damping forces into a single 

calculation. The modal equation is fully integrated into the flow solver and solved 

either directly in the frequency domain or by time-marching using a hybrid approach. 

The frequency-domain method simultaneously solves the fluid and modal equa­

tions by pseudo-time integration using the 4-stage Runge-Kutta scheme, where aero­

dynamic forcing and blade displacement amplitudes are exchanged at each step. 

The hybrid approach solves the fluid equations in the frequency domain, but 

marches the modal equation in time with periodic updating of the reconstructed 

aerodynamic modal force. A Fourier transform of the continuous time trace of the 

modal displacement is taken after each forcing period to give the response modal 

amplitude. The resulting blade displacement amplitudes are then fed back into the 

< fluid, equations to close theJeedbackJoop. Both,Jully-coupled systems are shown 

produce identical results, serving a cross-checking purpose. 
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9.1.4 Fluid-structure coupling effects 

An investigation into the characteristics of decoupled and fully-coupled methods 

was undertaken using the four modes of the NASA Rotor 67 transonic fan case. It 

was shown that decoupled systems can accurately predict resonant vibration ampli­

tudes from a single calculation at the blade natural frequency, whilst fully-coupled 

forced response solutions are subject to a shift in resonant frequency, thus requiring 

multiple solutions. A novel closed-loop resonance tracking algorithm was incorpo­

rated into the coupled solution to adjust the solution frequency and obtain the peak 

vibration amplitude at the new resonant condition. Due to the need for multiple 

solutions, the computational efficiency of the coupled solution showed no gain over 

the decoupled method. In contrast, the decoupled method is shown to be insensi­

tive to frequency shift, maintaining resonance at the blade natural frequency and 

capturing the resonant peak with one solution. 

A study into the fluid-structural coupling effect identified the source of the fre­

quency shift in the coupled solution to be due to the added mass effect of the 

vibration-induced aerodynamic damping forces. A single coupled solution at any 

frequency can not be used to predict resonance; hence coupled methods must rely 

on multiple solutions to find the resonant peak. The need for resonance tracking 

with coupled methods is especially important for high-order modes, which are often 

associated with low mechanical damping and strong fluid-structure coupling effects. 

The decoupled method is identified as the preferred approach to bladerow inter­

action problems due to the ability to accurately predict the resonant peak with high 

efficiency from a single solution. 

9.1.5 Friction Modelling 

A new Adaptive Constraint Method for predicting blade root friction has been de­

veloped and implemented for the Siemens industrial compressor blade. The model 

is based entirely in the frequency domain using a FE modal approach to maximise 

coiiiputing efficiency and maintain high c6nipatib1lity with the existing forced re­

sponse system. 
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Contact mechanics are represented using traditional Coulomb friction models and 

an advanced semi-analytical microslip model. Normal and tangential contact loads 

are linearised on an FE blade model by a series of spring elements. Non-linearity 

in the contact mechanics is incorporated by performing the FE static analysis in 

an iterative manner, where the stiffness values are updated at each step. A modal 

analysis is performed to provide the mode shape over the contact surfaces, allowing 

the friction damping calculation to be done separately. 

The Coulomb and microslip contact behaviour is derived from a published mi­

croslip model, where input parameters were fitted to test data for similar contact 

conditions. The predicted damping ratios are compared with the mechanical damp­

ing values derived from test data. 

It was found that the damping predictions of the Rigid and Elastic Coulomb 

friction models were very inaccurate due to their inability to deal with the very low 

displacements involved. Neither Coulomb approach predicted the trend with mode 

shape, with the Rigid model vastly over-predicting damping and the Elastic model 

predicting almost no damping. The under-prediction of the Elastic approach is due 

to the very small proportion of contact nodes reaching slip, where the contributions 

from 99% of all contact nodes are neglected. The very high prediction by the Rigid 

model is due to the assumption that the entire contact surface achieves gross slip. 

The Coulomb predictions are very sensitive to variations in contact parameters due 

to the small proportion of nodes reaching slip, where the contribution from a single 

node reaching slip causes a sudden change in the overall behaviour. 

The microslip damping predictions showed good agreement with the expected 

behaviour, where the dependence on mode shape was captured well and the damping 

levels were predicted within 50%. The microslip model is well suited to small dis­

placement applications where very little gross slip is achieved. The method includes 

the contribution of each individual contact node, based on the knowledge that a de­

gree of damping is always encountered before gross slip takes place. The microslip 

model is much more robust than the Coulomb models and does not produce sudden 

changes in damping with variations in contact parameters or vibration amplitude. 

The Adaptive Constraint Method has achieved the original objective of providing 
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a qualitative prediction of friction damping for the three modes of the Siemens 

compressor case, together with a quantitative indication of the damping levels. The 

scheme meets many of the requirements for routine use in an industrial environment, 

allowing the efficient prediction of all modes with a single analysis. User interaction 

is low due to the high level of automation using ANSYS macros, greatly reducing 

the manual processing time needed for conventional time-domain solutions. 

9.2 Recommendations for Future Research 

9.2.1 Forced response system 

Further Evaluation 

It is recognised that further evaluation of the forced response system using realistic 

test cases is necessary for full validation of the methodology. Whilst the aerodynamic 

solver has been validated for a number of academic and industrial cases, further 

assessment of the complete forced response system against detailed strain gauge 

measurements in full-scale rotating engine tests would be beneficial. 

Modal Interaction 

Further research could look at the effects of increasing the number modes used in 

the forced vibration analysis. The current system uses only a single flow harmonic 

applied to a single mode for the crossing point in question, based on the assumption 

that all frequencies outside resonance have a negligible effect on vibration ampli­

tudes. This assumption is generally adequate for cases where the modal frequencies 

are placed sufficiently far from one another, such that the effects of modal coupling 

can be ignored. It is possible that a forced response approach that accounts for 

modal coupling could provide greater accuracy in predictions for modes 8 and 9 of 

the Siemens compressor case study given in Section 5.3. 

For cases where two modes are placed close to a resonant frequency, modal 

coupling may have a significant effect on both the dynamics and forced response of 

the system. The close proximity of two modes introduces a coupling effect, where 
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the modal properties of the two individual modes begin to share characteristics as 

they come closer in frequency. Consider a blade where the 2nd flap mode (F2 ) lies 

close to the 1st torsion mode ( T1). The flap mode will display a degree of twist in 

the tip and the torsion mode will contain an amount of F2 mode shape. A result 

of this modal coupling is that the presence of the T1 mode shape in the F2 mode 

causes the F2 mode to be influenced by any forcing distribution similar to the T1 

modal force. Similarly, the T1 mode will be influenced by the F2 forcing. Therefore, 

any blade motion caused by the the forced response in one mode will contribute to 

the motion from the other mode, with the subsequent increase in modal strains. 

It may be possible to provide a simple two-mode evaluation using the decoupled 

method with a frequency sweep. For each of the two modes, the decoupled responses 

are calculated individually at a single frequency, with a linear superposition of the 

resulting modal displacements and strains. The process is repeated around the two 

natural frequencies to find the peak responses. Using the coupled approach, the two 

modal equations are solved simultaneously by the frequency-domain CFD solver, 

subject to unsteady pressures calculated at the solution frequency. 

9.2.2 Root Friction Modelling 

Whilst the friction prediction method shows very promising results, the develop­

ment of the Adaptive Constraint Method is relatively immature and further work is 

required to improve the methodology and provide further validation. 

Full FE transient analysis 

At this stage, it is important to have a benchmark friction prediction method ca­

pable of producing reliable results, thus providing a comparison for the results of 

new methodologies. A suggestion for the benchmark method would be an ANSYS 

transient analysis, where the friction forces are resolved in the time-domain and the 

linearisation of contact loads is avoided. Such an approach would be useful for eval-

0 uating the general behaviour of the Adaptive Constraint Method in both Coulomb 

and microslip applications for varying levels of displacement amplitudes. The pro­

cedure for Coulomb friction calculations is standardised and is well documented. 
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The microslip model given by Olofsson [130] implemented in this work has previ­

ously been incorporated into ANSYS by the developers of the model, as discussed 

by Sellgren and Olofsson [150]. This time-accurate microslip model integrated into 

the FE solver would provide a good ground for further evaluation of the Adaptive 

Constraint Method. 

Simple test case 

Preliminary test cases do not need to include the complexities of a blade fir-tree root 

and simplified models may provide a useful insight into the underlying characteristics 

of the methods. A good starting point may be the analysis of a flexible brick­

type structure of low mesh density on a rigid, flat friction surface. Subject to a 

simple static loading condition, the friction damping can be calculated for a range of 

conditions to isolate individual characteristics of the solution methods. For example 

a variation in the tangential displacement amplitude or normal pressure distribution 

will provide an evaluation of the limiting boundaries of the Coulomb and microslip 

models. A simplified model will also allow the assessment of input parameters 

against any published test data. 

Linearisation of tangential stiffness 

A possible area for future investigation is in the calculation of effective tangential 

stiffness in the microslip analysis. The tangential stiffness remains fairly constant 

from zero to around 50% of the gross slip limit. After this, the effective stiffness is 

reduced as the surface starts to slip. In order to model the tangential stiffness with 

the greatest possible fidelity within the linear framework could be to incorporate 

an iterative modal analysis, to linearise the effective stiffness for a given modal 

amplitude. The inclusion of the response modal amplitude in modal analysis would 

therefore allow each tangential stiffness to be calculated as a function of absolute 

displacement. The modification of the tangential stiffness will be incorporated in the 

ana,Jy~is by performjng the modal analysis in an iterativ~ manqer in a silllilar ~ay _to 

the static analysis. An area of concern with this method is the convergence stability 

of the modal analysis due to the updating of the effective tangential stiffness. Whilst 
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the normal stiffness is increased with increasing pressure (and normal deflection), 

the effective tangential stiffness is reduced with displacement, as the force curve 

levels off. The implications of this softening effect are currently unknown. 
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