
Durham E-Theses

An investigation into Quadtree fractal image and

video compression

Halliwell, James

How to cite:

Halliwell, James (2006) An investigation into Quadtree fractal image and video compression, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2673/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2673/
 http://etheses.dur.ac.uk/2673/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


University of Durham 

Department of Computer Science 

An Investigation into Quadtree Fractal Image 
and Video Compression 

By 

James Halliwell 

MSc. 

2006 

The copyright of this thesis rests with the 
author or the university to which It waa 
submitted. No quotation from It, or 

Information derived from It may be published 
without the prior written consent of the author 
or university, and any Information derived 
from It should be acknowledged. 

2 9 NOV 2006 



Abstract 

Digital imaging is the representation of drawings, photographs and pictures in a 

format that can be displayed and manipulated using a conventional computer. 

Digital imaging has enjoyed increasing popularity over recent years, with the 

explosion of digital photography, the Internet and graphics-intensive applications 

and games. 

Digitised images, like other digital media, require a relatively large amount of 

storage space. These storage requirements can become problematic as 

demands for higher resolution images increases and the resolution capabilities of 

digital cameras improve. It is not uncommon for a personal computer user to 

have a collection of thousands of digital images, mainly photographs, whilst the 

Internet's Web pages present a practically infinite source. 

These two factors - image size and abundance - inevitably lead to a storage 

problem. As with other large files, data compression can help reduce these 

storage requirements. Data compression aims to reduce the overall storage 

requirements for a file by minimising redundancy. The most popular image 

compression method, JPEG, can reduce the storage requirements for a 

photographic image by a factor of ten whilst maintaining the appearance of the 

original image - or can deliver much greater levels of compression with a slight 

loss of quality as a trade-off. 



Whilst JPEG's efficiency has made it the definitive image compression algorithm, 

there is always a demand for even greater levels of compression and as a result 

new image compression techniques are constantly being explored. One such 

technique utilises the unique properties of Fractals. 

Fractals are relatively small mathematical formulae that can be used to generate 

abstract and often colourful images with infinite levels of detail. This property is of 

interest in the area of image compression because a detailed, high-resolution 

image can be represented by a few thousand bytes of formulae and coefficients 

rather than the more typical multi-megabyte filesizes. The real challenge 

associated with Fractal image compression is to determine the correct set of 

formulae and coefficients to represent the image a user is trying to compress; it is 

trivial to produce an image from a given formula but it is much, much harder to 

produce a formula from a given image. In theory, Fractal compression can 

outperform JPEG for a given image and quality level, if the appropiate formulae 

can be determined. 

Fractal image compression can also be applied to digital video sequences, which 

are typically represented by a long series of digital images - or 'frames'. 



For my wife Sonia, 

Whose love and support made it all possible. 



Table of Contents 

1.0 Introduction ...................................................................................................... .... 1 

1.1 Objectives .......................................................................................... 2 

1.2 Structure ofThesis ............................................................................. 3 

2.0 Literature Survey ................................................................................................. 5 

2.1 Data Compression .............................................................................. 5 
2.1.1 Generic Compression ............................................................. 5 
2.1.2 Content-Specific Compression .............................................. 6 

2.2 Digital Imaging .................................................................................. 8 
2.2.1 Colour Models and Colourspace ............................................ l 0 
2.2.2 RGB Colour Model. ............................................................... I 0 
2.2.3 Luminance and Chrominance- The YCbCr Colour Model..12 

2.3 Bitmap Image Compression ............................................................... 14 
2.3.1 JPEG Compression ................................................................ 16 

2.4 Fractals ............................................................................................... 21 
2.4.1 Preservation of Complexity ................................................... 22 
2.4.2 Self Similarity ........................................................................ 23 
2.4.3 Iterative Formation ................................................................. 24 
2.4.4 Iterated Function Systems ...................................................... 24 

2.4.4.1 An Example of an IFS and its Construction .............. 25 
2.4.4.2 Algorithms to Plot IFS Attractors .............................. 27 

2.4.4.2.1 Classic Deterministic Algorithm (CDA) .... 28 
2.4.4.2.2 Random Iteration Algorithm (RIA) ............ 29 
2.4.4.2.3 Minimum Plotting Algorithm (MP A) ......... 30 

2.4.4.3 Using IFSs for Image Compression ........................... 31 
2.4.5 The Inverse Problem .............................................................. 32 
2.4.6 Automatic Algorithms to 'Solve' the Inverse Problem ......... 35 

2.4.6.1 Evolutionary Algorithms ........................................... 36 
2.4.6.2 Genetic Algorithms .................................................... 37 
2.4.6.3 Evolutionary Programming ........................................ 37 
2.4.6.4 Comparison ofEvolutionary Algorithms .................. .38 

2.4.7 Using Quadtree Partitioning for Image Compression ............ 39 

2.5 Video Compression ............................................................................ 41 
2.5.1 The Challenges ofDigital Video ........................................... 41 
2.5.2 Spatial and Temporal Compression ....................................... 42 
2.5.3 Motion JPEG .......................................................................... 43 



2.5.4 MPEG Video Compression ................................................... 44 
2.5.4.1 MPEG-1 Compression ............................................... 44 
2.5.4.2 MPEG Frame Types .................................................. 46 

2.5.5 MPEG Performance ............................................................... 48 

2.6 Summary ........................................................................................... 49 

3.0 Fractal Video Compression ................................................................................. 50 

3.1 Introduction ........................................................................................ 50 

3.2 Evaluation Criteria ............................................................................. 51 

3.3 Algorithm Construction ..................................................................... 52 
3.3.1 Fractal Image Compression Technique ................................. 52 
3.3.2 Inter-Frame Redundancy ....................................................... 56 
3 .3 .3 Chrominance Compression and Colour Representation ........ 57 

3.4 Toolkit Requirements ......................................................................... 59 

3.5 Summary ............................................................................................ 62 

4.0 Fractal Image Compression Tool.. ....................................................................... 63 

4.1 Introduction ........................................................................................ 63 

4.2 Summary of Testing Requirements ................................................... 63 

4.3 System Environment Selection .......................................................... 65 
4.3 .1 UNIX I LWUX ...................................................................... 65 

4.3.1.1 Advantages ofUNIX I LWUX .................................. 66 
4.3.1.2 Disadvantages ofUNIX I LWUX ............................. 66 

4.3.2 Microsoft Windows (32-bit) .................................................. 66 
4.3.2.1 Advantages of Windows ............................................ 67 
4.3.2.2 Disadvantages ofWindows ........................................ 67 

4.3.3 Operating System Selection ................................................... 67 

4.4 Tool Development Environment.. ...................................................... 67 
4.4.1 Visual Basic ........................................................................... 68 
4.4.2 Visual C++ ............................................................................. 68 
4.4.3 System and Language Selection ............................................ 69 

4.5 Developed Software Tools and Functionality .................................... 69 
4.5.1 Fractopia Compression Tool.. ................................................ 69 



4.5.2 Fractopia Bitmap Analysis and Render Tool.. ....................... 70 

4.6 Data Structures ................................................................................... 71 

4.7 Computational Performance .............................................................. 73 

4.8 Summary ............................................................................................ 73 

5.0 Evaluation ofQuadtree Image Compression ................................................. 74 

5.1 Trial Images ....................................................................................... 75 
5.1.1 Image 1- 'Jan' ...................................................................... 75 
5.1.2 Image 2- 'Prebend's Bridge' ................................................ 75 
5.1.3 Image 3- 'Snow Trees' ......................................................... 75 
5.1.4 Image 4- 'River Wear' ......................................................... 76 
5.1.5 Image 5- 'Match' .................................................................. 76 
5.1.6 Image 6- 'Sparrow' .............................................................. 76 

5.2 Compression Technique ..................................................................... 77 

5.3 Compression Results at Fitness 30 .................................................... 78 

5.4 Blocksize 'Levels' and Resultant Filesize ......................................... 83 

5.5 Fitness ................................................................................................ 84 
5.5.1 Fitness Issues with Images 2 and 3 ........................................ 85 

5.6 Analysis oflmages at Different Fitness ............................................. 86 
5.6.1 Compression Results at Varying Fitness ............................... 87 
5.6.2 Changes in Blocksize Distribution at Varying Fitness .......... 94 

5.7 Comparison with JPEG ...................................................................... 99 

5.8 Temporal Video Compression ........................................................... l08 

5.9 Summary ............................................................................................ llO 

6.0 Conclusions .................................................................................................... lll 

6.1 Performance Against Thesis Objectives ............................................ Ill 
6.1.1 Evaluate Fractal Image Compression Techniques ................. l12 
6.1.2 Development of a Fractal Compression Software Toolset.. .. 112 
6.1.3 Evaluate Quadtree Image Compression Using Toolset ......... 112 
6.1.4 Comparison ofQuadtree Algorithm to JPEG and MPEG ..... 113 



6.1.5 Image Encoding Computational Performance ....................... 114 

6.2 Further Work ...................................................................................... 115 
6.2.1 Improvements to Toolsets and Algorithms ............................ 115 
6.2.2 Areas for Further Research .................................................... 117 

6.2.2.1 Use ofDifferent Image Partitioning Methods ........... 117 
6.2.2.2 Classification ofDomains .......................................... 117 
6.2.2.3 Optimising the Search with Early Termination ......... 118 
6.2.2.4 Early Evaluation of Quadtree Fitness Success ........... 119 
6.2.2.5 Improvements in Inter-Frame Encoding .................... 120 

6.3 Summary ............................................................................................ 121 



Table of Illustrations 

Figure 2.2.I 
Figure 2.2.2 
Figure 2.2.2.I 
Figure 2.2.2.2 
Figure 2.2.3.I 
Figure 2.2.3.2 
Figure 2.3.1 
Figure 2.3.2 
Figure 2.3.1.I 
Figure 2.3.1.2 
Figure 2.3.1.3 
Figure 2.3.1.4 
Figure 2.3.I.5 
Figure 2.3.I.6 
Figure 2.3.1. 7 
Figure 2.4.1.1 
Figure 2.4.2.1 
Figure 2.4.4.1 
Figure 2.4.4.2 
Figure 2.4.5 .1 
Figure 2.4.5.2 
Figure 2.4.6.4.1 
Figure 2.5.4.1 

Figure 3.3.3.1 
Figure 3.4.1 
Figure 3.4.2 
Figure 3.4.3 

Figure 4.6.1 

Figure 5.1.1 
Figure 5 .1.2 
Figure 5.1.3 
Figure 5.1.4 
Figure 5.1.5 
Figure 5.I.6 
Figure 5.3.1 
Figure 5.3.2 
Figure 5.3.3 
Figure 5.3.4 
Figure 5.3.5 
Figure 5.3.6 
Figure 5.3.7 
Figure 5.3.8 
Figure 5.4.1 
Figure 5.5.I 
Figure 5.5.1.1 
Figure 5.6.1.1 
Figure 5.6.1.2 
Figure 5.6.1.3 
Figure 5.6.1.4 
Figure 5.6.1.5 
Figure 5.6.1.6 

'Higher Pixel Density and Resolution Gives Truer Image Representation' ........... 7 
'Greater Colour Depth Allows More Gradual Colour Transitions' ........................ 7 
'The RGB Colourspace Cube' ................................................................................ II 
'The Greyscale Space Within the RGB Colour Cube' ............................................ 1I 
'Relative Contrast Sensitivity of the Human Eye' .................................................. 13 
'A Colour Bitmap Separated into its YCbCr Component Channels' ...................... 13 
'Drawing ofNotre Dame de Paris' .......................................................................... 15 
'Photograph Showing Large Areas of Similar Colour' ........................................... I6 
'Original 8x8 Block Greyscale Values pre-DCT' ................................................... 17 
'Result of DCT Application to 8x8 Matrix in Figure 2.3.1.I ' ................................ 18 
'Value Distribution Across the Original8x8 Matrix' ............................................. .l9 
'Value Distribution Across DCT Result, with Values Concentrated at Origin' ..... 19 
'An Example of a JPEG Quantization Table' ......................................................... 20 
'Final Quantized DCT Matrix' ................................................................................ 21 
"Zigzag' Read order for Quantized DCT Matrix' .................................................. 22 
'Successive Mandelbrot Magnifications' ................................................................ 22 
'Barnsley Fern Showing Branches as Transformed Replicas' ................................ 23 
'The Sierpinski Gasket' ........................................................................................... 26 
'Step-by-Step Construction of the Sierpinski Gasket' ............................................ 26 
'Weakness of Simple Image-Comparison Metrics for IFS Searches' ..................... 34 
'A Cross-Section of the Searchspace for the Sierpinski Gasket' ............................ 35 
'Comparison ofGA vs EP in the Automatic Solution of the Inverse Problem' ...... 38 
'An Illustration ofthe Differences Between Successive Video Frames' ............... .47 

'Breakdown of a 640x480x24 Image into Six 320x240x8 Images' ........................ 58 
'Software Tool Screenshot I' .................................................................................. 60 
'Software Tool Screenshot 2' .................................................................................. 61 
'Software Tool Screenshot 3' .................................................................................. 62 

'2D Matrix Representation of a Bitmap Image' ...................................................... 72 

'Image I "Jan" (Original) ........................................................................................ 78 
'Image 2 "Prebend's Bridge" (Original... .............................................................. 78 
'Image 3 "SnowTrees" (Original) ........................................................................... 78 
'Image 4 "River Wear" (Original) ........................................................................... 79 
'Image 5 "Match" (Original) ................................................................................... 79 
'Image 6 "Sparrow" (Original) ................................................................................ 79 
'Image I "Jan" with QT Compression Applied (Fitness 30) .................................. 80 
'Image 2 "Prebend's Bridge" with QT Compression Applied (Fitness 30) ............ 81 
'Image 3 "Snow Trees" with QT Compression Applied (Fitness 30) ...................... 8I 
'Image 4 "River Wear" with QT Compression Applied (Fitness 30) ..................... 8I 
'Image 5 "Match" with QT Compression Applied (Fitness 30) .............................. 82 
'Image 6 "Sparrow" with QT Compression Applied (Fitness 30) .......................... 82 
'Table of Filesizes for Each Image when QT Compressed at Fitness 30' .............. 82 
'Filesizes for Each Image Versus the Original Uncompressed Size' ...................... 83 
'The Percentage of Each Image's Construction From Each of 3 Blocksizes' ........ 84 
'Calculated Fitness Across the Six Quadtree Compressed Images' ........................ 85 
'Compression Results for Image 3 at Higher Fitness Levels and 2x2 Only' .......... 86 
'Image 1 's Compression Results at Varying Quad tree Fitness Levels' .................. 87 
'Image 3' s Compression Results at Varying Quad tree Fitness Levels' .................. 88 
'Image 6's Compression Results at Varying Quadtree Fitness Levels' .................. 88 
'Image 1 "Jan" with QT Compression Applied (Fitness 7)' ................................... 89 
'Image I "Jan" with QT Compression Applied (Fitness I5)' ................................. 89 
'Image 1 "Jan" with QT Compression Applied (Fitness 30)' ................................. 89 



Figure 5.6.I. 7 
Figure 5.6.1.8 
Figure 5.6.I.9 
Figure 5.6.1.10 
Figure 5.6.1.1I 
Figure 5.6.1.12 
Figure 5.6.1.13 
Figure 5.6.1.14 
Figure 5.6.I.I5 
Figure 5.6.1.16 
Figure 5.6.1.17 
Figure 5.6.1.18 
Figure 5.6.2.I 
Figure 5.6.2.2 
Figure 5.6.2.3 
Figure 5.6.2.4 
Figure 5.6.2.5 
Figure 5.6.2.6 
Figure 5.7.I 
Figure 5.7.2 
Figure 5.7.3 
Figure 5.7.4 
Figure 5.7.5 
Figure 5.7.6 
Figure 5.7.7 
Figure 5.7.8 
Figure 5.7.9 
Figure 5.7.IO 
Figure 5.7.II 
Figure 5.7.I2 
Figure 5.7.I3 
Figure 5.7.14 
Figure 5.7.I5 
Figure 5. 7.I6 
Figure 5.7.I7 
Figure 5.7.I8 
Figure 5.7.I9 
Figure 5. 7.20 
Figure 5.7.2I 
Figure 5.8.1 

Figure 6.3.I 
Figure 6.3.2 

'Image I "Jan" with QT Compression Applied (Fitness 60)' ................................. 90 
'Image I "Jan" with QT Compression Applied (Fitness I20)' ............................... 90 
'Image 3 "SnowTrees" with QT Compression Applied (Fitness 7)' ...................... 90 
'Image 3 "SnowTrees" with QT Compression Applied (Fitness I5)' .................... 9I 
'Image 3 "Snow Trees" with QT Compression Applied (Fitness 30)' .................... 9I 
'Image 3 "SnowTrees" with QT Compression Applied (Fitness 60)' .................... 9I 
'Image 3 "SnowTrees" with QT Compression Applied (Fitness 120)' .................. 92 
'Image 6 "Sparrow" with QT Compression Applied (Fitness 7)' ........................... 92 
'Image 6 "Sparrow" with QT Compression Applied (Fitness I5)' ......................... 92 
'Image 6 "Sparrow" with QT Compression Applied (Fitness 30)' ......................... 93 
'Image 6 "Sparrow" with QT Compression Applied (Fitness 60)' ......................... 93 
'Image 6 "Sparrow" with QT Compression Applied (Fitness I20)' ....................... 93 
'Construction oflmage I From Each of the 3 Block Sizes at Different Fitness' .... 96 
'Construction oflmage 3 From Each of the 3 Block Sizes at Different Fitness' .... 96 
'Construction oflmage 6 From Each of the 3 Block Sizes at Different Fitness' .... 97 
'Block Distribution at Each Fitness Level for Image I' .......................................... 98 
'Block Distribution at Each Fitness Level for Image 3 ' .......................................... 98 
'Block Distribution at Each Fitness Level for Image 6' .......................................... 99 
'JPEG Compression Results for Image I' ............................................................... I 00 
'JPEG Compression Results for Image 3 ' ............................................................... I 00 
'JPEG Compression Results for Image 6' ............................................................... I 00 
'Comparison of JPEG and QT for Image I' ............................................................ 1 00 
'Comparison of JPEG and QT for Image 3' ............................................................ I01 
'Comparison of JPEG and QT for Image 6' ............................................................ 1 01 
'Image I "Jan" with JPEG Compression Applied (Leveli)' .................................. 103 
'Image 1 "Jan" with JPEG Compression Applied (Level 25)' ................................ 1 04 
'Image 1 "Jan" with JPEG Compression Applied (Level50)' ................................ 104 
'Image 1 "Jan" with JPEG Compression Applied (Level 75)' ................................ 104 
'Image 1 "Jan" with JPEG Compression Applied (Level 1 00)' ............................. .1 05 
'Image 3 "SnowTrees" with JPEG Compression Applied (Level I)' ..................... 1 05 
'Image 3 "SnowTrees" with JPEG Compression Applied (Level25)' ................... 105 
'Image 3 "SnowTrees" with JPEG Compression Applied (Levei50)' ................... I06 
'Image 3 "SnowTrees" with JPEG Compression Applied (Level 75)' ................... 106 
'Image 3 "SnowTrees" with JPEG Compression Applied (LeveiiOO)' ................. I06 
'Image 6 "Sparrow" with JPEG Compression Applied (Level I)' ......................... 107 
'Image 6 "Sparrow" with JPEG Compression Applied (Level 25)' ....................... 107 
'Image 6 "Sparrow" with JPEG Compression Applied (Level 50)' ....................... I 07 
'Image 6 "Sparrow" with JPEG Compression Applied (Level 75)' ....................... I 08 
'Image 6 "Sparrow" with JPEG Compression Applied (Level I 00)' ..................... I 08 
'Percentage Difference for Each Frame Compared to its Precursor' ...................... I 09 

'Portion of Image 6 - "Sparrow" Compressed Output' .......................................... II6 
'Portion oflmage 6- "Sparrow" With Basic Post-Processing' .............................. Il7 



1.0 Introduction 

There are currently a number of techniques being developed within research communities in both 

computer science and mathematics that aim to reduce the storage requirements of both generic 

data objects, bitmap images and digital video sequences. Bitmap compression often borrows 

from generic data compression techniques and interleaves these with content-specific 

compression methods that are only suitable for bitmap image compression; video compression 

tends to borrow heavily from image compression techniques and again applies specific 

algorithms tuned to the characteristics of digital video. 

The desire to compress computer data objects (including binary executable, text documents, 

images, sound and video) originally stemmed from the scarcity of data storage available on 

personal computers - less than 10 years ago, many personal computers relied solely on floppy 

disk media or small ( <500 megabyte) hard disk drives for offline storage. As a result of this, it was 

highly desirable to reduce the storage required by data objects to conserve and minimize usage 

of available storage space. The performance and time penalties involved in compressing and 

subsequently decompressing the data outweighed the expense or inability to store it verbatim. 

Although PCs now have much greater storage capacity, the advent of the connected world and 

specifically the Internet has once again driven the need for data compression to minimize the 

bandwidth requirements and costs for the transmission of such data objects, rather than the data 

storage requirements of the data itself. 

Digital images and video are common data objects, and are also likely to be relatively large in 

size. A typical digital photograph may occupy 10 megabytes whilst high-quality digital video 

requires substantially more space, with a feature-length film can occupy nearly 1 terabyte. As a 

result, both images and videos are a major focus of data compression efforts. Unlike generic data 

files, such as documents and executables, there are specific compression algorithms that will 



only compress images and also specific algorithms for video. These specific methods are able to 

deliver high levels of data compression for both data and video, though there is a continued 

demand for innovation in this area. 

One specific method of image compression technique is Fractal Image Compression. A fractal is 

iterative function whose output can be used to plot a particular image. The specifications of the 

function being used are generally many times smaller, often just a few hundred bytes, than the 

image that can be depicted by them. As a result, if the function is stored instead of the bitmap 

image that it would produce, then a large level of compression is achieved. 

However, the major issue with this method is that whilst it is easy to take a fractal function and 

produce its associated image, it is not easy to take an arbitrary image and deduce the appropriate 

fractal function that we wish to store. This problem is computationally extremely difficult and there 

have been a number of algorithms and techniques developed to tackle it. 

This thesis aims to research and evaluate this are of compression, including an understanding of 

the issues and challenges that fractal image compression presents and how feasible this method 

of encoding arbitrary images actually is. 

1.1 Objectives 

The following objectives outline the focus of this thesis and the areas of research that are to be 

investigated. 

1. Evaluate Fractal and conventional image compression techniques. This should involve a 

literature survey to cover the factors involved in digital image representation, current 

compression techniques, and previous fractal image compression methodologies. The 

literature survey is presented in chapter 2. 

2 



2. Develop a software toolset that can readily compress images using a quadtree algorithm 

and allow meaningful and measurable performance comparisons to be made. As part of 

this process, there is a requirement to select an appropriate development platform, 

environment and data structures. Specifications and implementation details for the 

software toolset are covered in chapters 3 and 4. 

3. Evaluate the performance of quadtree image compression in terms of image quality and 

levels of compression achieved using the newly developed software tool to investigate 

quadtree compression through the selection of appropriate and varied trial images. A 

detailed analysis of the quadtree implementation is provided in chapter 5. 

4. Compare quadtree compression performance to the industry standard JPEG 

compression system in terms of image quality and the amount of compression actually 

achieved. This should be done using a series of trial images and at various compression 

levels. Results from both compression types are given in chapter 5. 

5. Assess the computational intensity of a fractal compression implementation and 

understand which aspects of the algorithm significantly impact computing performance. 

Performance is discussed in chapter 4, whilst recommend areas for improvement that 

currently reduce the computational performance of the implementation are discussed in 

chapter 6. 

1.2 Structure of Thesis 

The remainder of this thesis details the progress and developments against the above objectives. 

Chapter 2 presents a comprehensive overview of data compression techniques, digital image 

representation, and image compression techniques including JPEG and fractal compression 

3 



methods, including quadtree partitioning. Chapter 3 details the selection of a suitable fractal 

compression method and the construction of a suitable algorithm around this method that can be 

readily implemented. Following on from this is Chapter 4, which covers the implementation of the 

chosen compression method as a software toolset and includes discussion of development 

environments, data representation issues and core functionality for the toolset. Chapter 5 

presents the results achieved using the developed toolset to explore the quadtree compression 

method and how well the various trail images can be represented using the system - both in 

terms of image quality and the level of compression achieved for each. Finally, chapter 6 looks 

back at the objectives presented here and discusses how each have been achieved, together 

with suggestions for improvements and further research and a summary of this work. 

4 



2.1 Data Compression 

A number of techniques have been developed to achieve this compression, and these can be 

categorized as either generic or content-specific compression techniques. 

2.1.1 Generic Compression 

Generic compression systems are designed to be able to take any form of data from any 

application or program and apply their general-purpose compression algorithms. As the 

algorithms have no awareness of the nature of the data being compressed, it is extremely 

important that no data is lost or changed as a result of the compression/decompression 

process and the decompressed data is bit-for-bit identical to the original data. This 

compression technique is known as lossless compression and can be used to compress any 

type of data. Lossless compression is used where any loss of information is unacceptable, for 

example binary executables. [HELD, 1983] 

An example of this class of compression system is PKZip. PKZip can take any binary or 

ASCII file as input and apply lossless generic compression algorithms to the data, producing 

a compressed file that is generally smaller than the original. This output file has to be 

decompressed in order to make the data readable by the original system or application, this 

often introduces a separate step in the file handling process as such compression schemes 

are rarely integrated with end-user applications. 

Generic lossless compression aims to reduce data storage requirements by removing 

redundancy from files, such as repeated byte/bit patterns. Amongst a number of popular 

algorithms for this is Run-Length Encoding, or RLE. This algorithm encodes streams of 

repeated data into a more compressed 'abbreviated' fonn, e.g. the following sequence 

11111280928133320000000000000000000000000000000002730922222222222222 

5 



can be represented as 

1 s28092813~03~7309214 

RLE uses a run-length value to indicate that a value is repeated a number of times in a 

sequence [TANENBAUM, 1996]. Storing the value and run-length instead of the repeated 

sequence gives rise to storage savings and data compression. The original data can be 

recreated by reading the initial values back and recreating the original runs within the 

sequence. However, RLE is a very basic system, and if there is too much variation in the bit 

pattern then the resulting 'compressed' image can actually end up larger than the original, 

known as expansion [FISHER, 1995]. 

Other techniques, such as Lempei-Ziv-Welch [MIANO, 1999] are more advanced. LZW 

encodes a byte sequence by maintaining a dictionary of value sequences so far encountered 

and replacing instances of these value sequences with corresponding codes. Shorter 

dictionary codes are used for sequences which appear more frequently in the original 

sequence, resulting in an overall reduction in data storage requirements. 

Both RLE and LZW rely on data-redundancy to achieve data compression. Indeed, if a byte 

sequence is truly random and does not contain redundant sequences then neither technique 

will be able to achieve any data compression. The most efficient way of encoding truly 

random data is in its original format without applying any compression whatsoever. This 

restriction applies to all compression schemes [WILKINSON]. 

2.1.2 Content-Specific Compression 

Content-specific techniques are designed for the compression or a particular type of data, 

such as bitmap images. As a result, they are unsuitable for the compression of generic data 

sequences. However, such techniques are highly advantageous as they are able to take 

advantage of the characteristics of the data structure itself to maximise the compression 

6 



achieved. In terms of image and multimedia compression, these techniques actually become 

part of a file format for a particular media type, allowing the compression and decompression 

to be applied where appropriate within the application software itself. [MIANO, 1999] 

For example, CompuServe's GIF file format also includes L2.W compression and this 

compression/decompression software is performed transparently by any image manipulation 

or Web-browsing software that handles this file type. 

Aside from the integration and automation of the data compression routines, such content

specific methods, offer major compression advantages over generic techniques, and some 

also optimise the structures they compress. Because such methods are aware of the both the 

data-storage characteristics and, perhaps more importantly, the characteristics of the target 

'audience' that will subsequently view or experience the data, they are able to permanently 

lose selected elements of the original source data without unduly impacting on the 'quality' of 

the data once it has been decompressed. That is, once the original data has been 

compressed and subsequently decompressed, it may not be bit-for-bit identical to the original. 

This compression approach is known as lossy compression as this technique inevitably 

involved the loss of some data. 

However, this loss of data is not as serious as it initially appears. Successful lossy 

compression algorithms are designed to throw away data which has little or no bearing on the 

'quality' of the compressed output for that content type whilst making significant storage 

savings within the algorithm itself. By doing this, lossy algorithms can not only remove run

length and sequence-based redundancy from source data, they can avoid storing portions of 

it at all. Subtle changes in the appearance and perception of the compressed output can often 

be tolerated in returns for the substantial compression gains achieved using lossy techniques. 

Ideally, the errors generated by throwing data away will arranged so that they are very difficult 

to detect, and so the algorithm must understand the perception characteristics of their target 

'audience'. [TANENBAUM] [MIANO, 1999] 

7 



With the demands for data-compression being increasing driven from the data transmission 

rather than storage perspective, lossy compression techniques are increasingly coming to the 

fore. Whilst a lossless compression algorithm cannot guarantee a particular level of 

compression, expressed as a ratio of original data size and compressed data size, lossy 

compression systems can. This ability stems from their ability to throw away less useful data, 

and lossy algorithms can continue to do this for a given data source until a desired 

compression level is reached. This is important in the communications world because the 

traditional leased-line telecom links that form the Internet offer a fixed data throughput rate 

per second. If a compression algorithm can guarantee to remain within this throughput rate by 

virtue of lossy data compression then it becomes possible to send such data in real-time 

without the risk of over-subscribing the telecom link. [TANENBAUM] 

2.2 Digital Imaging 

The most prevalent method for representing images within a computer system is known as a 

bitmap. Images ranging from simple line-drawings to high-resolution colour photographs can 

be represented using a bitmap structure. Bitmaps are also commonly used to represent the 

screen output of a computer system. A bitmap image is composed of number of discrete 

addressable screen/image elements known as pixels, where each pixel has a single, uniform 

colour. These rectangular pixels are arranged in a 2-dimensional array structure. 

Image details and tonal transitions are represented by varying the colour of the bitmap's 

pixels accordingly. A bitmap image can be thought of a digital sample of an analog real-world 

image. As each pixel can only be a single colour, the level of accuracy of the representation in 

comparison to the real-world image, including both detail and colour transition, is determined 

by both the number of pixels used and the range of possible pixel colours. The more densely 

packed pixels are within a given physical screen area, the more smoothly and sharper image 

details can be shown; whilst the greater the number of colours available for the bitmap, the 

more accurately original image tones can be represented. These two factors are illustrated in 

figures 2.2.1 and 2.2.2. 

8 



72ppi 300ppi Original Image 

Figure 2.2.1: Higher pixel density and resolution gives truer representation of original image 

10 levels 2561evels 

Figure 2.2.2: Greater colour depth allows more gradual tonal transitions 

In figure 2.2.1 , it can be seen that increased resolution gives a more detailed and 

aesthetically pleasing representation of the original image. A major issue with low-resolution 

bitmaps is that they suffer from 'jaggies', or aliasing around portions of image detail that 

involve curves and other non-rectangular detailing. In figure 2.2.2, the number of colour levels 

that can be used within a given bitmap is shown to have severe effect when storing images 

with continuous tonal graduations or high-colour detail, such as photographic images. It must 

also be noted that due to each pixel only containing a single colour tone, a low bitmap 

resolution also causes problems with tonal representation , as there may not be enough pixels 

in an area of tonal change to allow for a sufficient number of tones to be deployed in the 

bitmap representation. 

Fortunately, both the resolution (the number of pixels available, expressed as H(orizontal) x 

V(ertica/) pixel array dimensions) and the colour-depth (i.e. the number of discrete colours 

that can be present within a single bitmap image) available on PCs have greatly increased 

9 



over the last few years to a point at which high resolution 1280x1 024 resolution images in 

true-colour can readily be displayed and manipulated. 

2.2.1 Colour Models and Colourspace [MIANO] [TANENBAUM] 

The colour of an individual pixel is represented by a bit-sequence. The number of bits in this 

bit-sequence naturally determines the number of colours that can be present in an image, and 

is known as the colour sampling precision: 

1 bit allows for 21 colours- i.e. black or white only (monochrome} 

4 bits allows for 24 colours- i.e. 16 colours 

8 bits allows for 28 colours- i.e. 256 colours 

24 bits allows for 224 colours- i.e. 16777216 colours (referred to as 'true-colour'} 

There are a number of methods to translate a numerical value to a colour, these methods are 

known as colour models. Colour models are often developed for use with particular physical 

display device: the RGB colour model is used for display with computer monitors based on 

Cathode Ray Tube or Liquid Crystal Display technologies, where each physical display 

screen pixel's colour is produced by varying the physical intensities of Red, Green or Blue 

light. The CMYK colour model is used for output to printing devices, where each colour is 

composed of differing levels of Cyan, Magenta, Yellow and blacK inks. [MIANO, 1999] 

[TANENBAUM, 1996] 

2.2.2 RGB Colour Model 

The RGB colour model is used in display devices such as computer monitors. 24-bit True 

Colour in the RGB colour model uses 8-bits for each of the three primary colours, giving a 

possible 256 levels for each, i.e. 224 = 2563 = 16777216. The range of colours that can be 

repre~ented using a particular colour model and sampling precision is known as the 

colourspace. The RGB colourspace is shown in figure 2.2.2.1. 

10 



Blue 

Figure 2.2.2.1 The RGB colourspace cube 

The RGB colourspace is represented in three dimensions, one axis for each of the primary 

colours. An enormous range of colours can be duly represented with the RGB model - it can 

be seen that red+blue gives magenta, whilst blue+green gives cyan, etc. Within the cube, 

greyscale shades are also represented, and these run in a diagonal line between the black 

and white corners of the RGB cube, where each 'colour' consists of an equal amount of red, 

green and blue. This is illustrated in figure 2.2.2.2. 

Blue 

figure 2.2.2.2 The grayscale range within the RGB colourspace [WILKINSON] 

11 



Greyscales play an important role in digital imaging. Apart from the obvious need to use them 

to represent intermediate tones between the black and white monochromatic extremes, within 

the RGB colour model the individual primary colour components are each represented as 256 

level (or 8-bit) monochrome bitmaps. Each pixel within the grayscale bitmap has a grey level 

and this represents the intensity of that particular primary colour in the final RGB image. 

These primary colour 'sub' bitmaps are called channels. [Miano, 1999] 

2.2.3 Luminance and Chrominance -The YCbCr Colour Model 

RGB and CMYK are not the only colour models in use. In the analog television world, picture 

colour information is also divided up into channels. The PAL system used three colour 

channels. The Luminance channel (Y) represents the intensity of the image, whilst two 

Chrominance channels (U and V) represent the colour information. The Y channel is a 

grayscale version of the colour transmission that would be formed by all three channels and 

this allows 'black and white' televisions to view the colour transmission signal. 

In the digital world, the YCbCr colour model is similar to the PAL model in that it also uses 

three channels, one luminance (Y) and two chrominance channels (Cb and Cr). Again, Y 

represents the intensity of the composite image and is a grayscale representation of the 

composite image, whilst Cb specifies the blueness of the image and Cr specifies the redness. 

The most important property of the YCbCr (and also the PAL) colour model is that the Y 

channel contains much more useful information about the composite image that the Cb and 

Cr channels. Y is the most important channel because the human eye is much more sensitive 

to variations in luminance (intensity) than it is to variations in chrominance (colour) 

[KINGSBURY]. In fact, the maximum Cb chrominance sensitivity of the eye is only one-half of 

the Cr chrominance, which itself is only one-third of the maximum luminance sensitivity, as 

shown in figure 2.2.3.1. 

12 



Contrast Sensitivity of the Human Eye 

"' Qi 
> 
~ 
CD 
:0 
m 10"' > 

Luminance 
·a; 
e 
CD Blue-Yellow Chrominance 
a. 
0 
Q; 10"' 
.0 

Red-Green Chrominance 

E 
:::J z 

10 .. 

10"' 10' 

Spatial Frequency (cycles/degree) 

Figure 2.2.3.1: Relative contrast sensitivity of the human eye 

As with the PAL model , theY channel in the YCbCr model contains more useful information, 

as can be seen in the channel breakdown of a colour photograph in figure 2.2.3.2. 

Figure 2.2.3.2: A colour bitmap separated into its YCbCr component channels 

Given the low chrominance sensitivity of the eye and the heavy weighting of image detail to 

the Y channel within the YCbCr colour model, it would be feasible for a lossy compression 

algorithm to make savings by allowing less information to be recorded from the two 

13 



chrominance channels than from the more important luminance channels. Therefore, it is 

highly advantageous to convert images to the YCbCr colour model to aid in image 

compression. The formulas for conversion between the RGB colour model and the YCbCr 

colour model are as follows: 

Y = 0.299R + 0.587G + 0.1148 

Cb = 0.1687R- 0.3313G + 0.58 + 22412 

Cr = 0.5R- 0.4187G- 0.08138 + 22412 

R = Y + 1.402Cr 

G = Y- 0.34414(Cb- 22412
)- 0.71414(Cr- 22412

) 

8 = Y + 1.722(Cb - 22412
) 

Arguably the most successful lossy image compression system is the JPEG image 

compression standard, frequently used to compress detailed photographic-quality images. 

JPEG exploits the properties of the YCbCr model to achieve extremely high compression 

ratios. [Miano, 1999] [Tanenbaum, 1996] 

2.3 Bitmap Image Compression 

High resolution bitmap images with large colour-depths require a significant amount of 

storage space- a 1280x1024 bitmap with a 16 million colour palette requires 3.75 megabytes 

of storage. i.e.1280 x 1024 x 24 bits= 31457280bits or 3.75megabytes. Higher resolution 

images for publishing and photography can require tens or hundreds of megabytes. Such 

large file sizes have made image compression an important topic and there are a number of 

compression techniques available. 

Bitmap images, by their very nature, conform to a rigid structure- a matrix of h x v pixels, with 

each holding a single colour value. In addition, the target device for a bitmap is always, 

eventually, the human eye. Finally, many bitmap images contain large amounts of 

14 



redundancy in terms of large numbers of contiguous pixels with identical (or very similar) 

colour values. 

Bitmaps that represent drawings typically use 4 or 8-bit colour sampling. Drawings tend to 

have large blocks of solid colour, for example in figure 2.3.1. 

figure 2.3.1 : Drawing of Notre Dame de Paris 

Such simple bitmaps lend themselves well to traditional non-lossy compression methods, 

such as RLE, where long runs of identical pixel values result in high compression ratios. 

However, in the case of 24-bit true colour bitmaps such methods do not necessarily work as 

well. These true colour bitmaps are usually photographs or images requiring large colour 

counts and continuous tonal graduation -hence the usage of such a large colour space. 

Whilst photographs and similar images may still contain large blocks of similar colours, such 

as areas of sky, conventionallossless compression algorithms are less useful because the 

colours in a block are often very similar but not the same. This can be seen in figure 2.3.2. 

15 



figure 2.3.2: Photograph containing large areas of similar colour 

Whereas RLE may obtain a 5:1 compression ratio for figure 2.3.1 , it can only manage a 

1.05:1 ratio for the photograph in figure 2.3.2. The compression of true-colour images, and 

photographs in particular, requires a fundamentally different approach to traditional lossless 

compression - namely lossy content-aware compression techniques. 

2.3.1 JPEG Compression 

The JPEG compression standard [JPEG] [MIANO, 1999] was developed by the Joint 

Photographic Experts Group to improve on conventional compression techniques in the 

compression of digital photographs. It has become one of the most commonly used 

compression methods and, although it is a complex algorithm and compute intensive, it can 

achieve compression rations approaching 20:1 for photographic bitmap images. 

JPEG is a lossy compression algorithm that minimizes the impact of data loss by capitalizing 

on the weakness in human visual abilities. It does this through a series of discrete steps 

which are given below. A 640x480x24bit source image will be assumed. 

Step one of JPEG utilizes the YCbCr colour model to exploit the reduced value of the two 

chrominance channels in comparison to the luminance channel. Once the source image has 

been converted to this colourspace, giving three 640x480 matrices with 8bit values, discrete 

blocks of 2x2 pixels in the chrominance matrices are averaged to reduce the size of each 

16 



matrix to 320x240 pixels. This is clearly a lossy step but the eye's reduce chrominance 

sensitivity means that this is very difficult to detect. The result is that this step compresses the 

data by a factor of two -we have lost% of the chrominance information in two of the three 

matrices. The value 128 is then subtracted from each element in each matrix to place zero as 

the middle value in the range- i.e. matrix elements now range from -128 to +127. 

Finally, each matrix is divided up into 8x8 pixel blocks, the full-size Y matrix having 4800 

blocks and the reduced Cb and Cr matrices having 1200 blocks each. 

Step two involves the application of a discrete cosine transformation (OCT) individually to 

each of the 8x8 pixel blocks. The output of each OCT application is another 8x8 matrix of 

OCT coefficients. 

An example 8x8 block and its associated OCT coefficients presented in [MIANO, 1999] are 

shown in figures 2.3.1.1 and 2.3.1.2 respectively. 

58 45 29 27 24 19 17 20 

62 52 42 41 38 30 22 18 

48 47 49 44 40 36 31 25 

59 78 49 32 28 31 24 31 

98 138 116 78 39 24 25 27 

115 160 143 97 48 27 24 21 

99 137 127 84 42 25 24 20 

74 95 82 67 40 25 25 19 

Figure 2.3.1.1: Original 8x8 Block Grayscale Values pre-OCT 

17 



-603 203 11 45 -30 -14 -14 -7 

-108 -93 10 49 27 6 8 2 

-42 -20 -6 16 17 9 3 3 

56 69 7 -25 -10 -5 -2 -2 

-33 -21 17 8 3 -4 -5 -3 

-16 -14 8 2 -4 -2 1 1 

0 -5 -6 -1 2 3 1 1 

8 5 -6 -9 0 3 3 2 

Figure 2.3.1.2: Result of OCT application to 8x8 matrix in figure 2.3.1.1 

Though in theory, the OCT itself is lossless, the matrix presented here consists of integers 

and not floating points and therefore is subject to rounding errors. 

When used with photographic images, where sharp changes in pixel values within a block are 

uncommon, the OCT concentrates the most important coefficients for reproduction of the 

original block in the top-left corner of the output matrix. The coefficient at (0,0) in the OCT 

matrix in nearly three times the next largest at (0, 1). By the time matrix rows/columns 5 

through to 8 are encountered, the coefficients are significantly smaller and therefore have little 

impact on the reconstruction of the original 8x8 block pixel values. An illustration of the 

concentration of value distribution across the original matrix and also after the OCT 

application is given in figures 2.3.1.3 and 2.3.1.4 respectively. 

18 



160 

140 

120 

100 

80 

8 

figure 2.3.1.3: Value distribution across the original 8x8 matrix 

300 

200 

100 

0 

-100 

8 

figure 2.3.1.4: Value distribution across OCT result, with values concentrated at 
origin 

The third JPEG step, quantization, aims to nullify less important OCT coefficients. This step 

utilizes an 8x8 quantization matrix containing variable weights to do this. Although 

quantization is part of the JPEG standard, the values within the table itself are implementation 

specific. An example of a JPEG quantization table is given in figure 2.3.1 .5. 

19 



17 18 24 47 99 99 99 99 

18 21 26 66 99 99 99 99 

24 26 56 99 99 99 99 99 

47 66 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

Figure 2.3.1.5: An example JPEG Quantization Table 

Each element in the OCT matrix is simply divided by its corresponding element in the 

quantization table, before it is rounded to an integer. The quantization table doesn't vary 

according to the nature of a particular source bitmap image and remains constant within a 

specific JPEG implementation. Quantization's main function is to retain data in the top-left of 

the OCT matrix whilst nullifying matrix elements that are more distant from this point. It is 

possible to use different quantization tables for Y blocks than Cb or Cr blocks, though this will 

not be shown here. The result of applying the quantization table in figure 2.3.1.5 to the OCT 

matrix in figure 2.3.1.2, including rounding of the output, is given in figure 2.3.1.6. 

-35 11 0 1 0 0 0 0 

-6 -4 0 1 0 0 0 0 

-2 -1 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

Figure 2.3.1.6: Final Quantized OCT Matrix 

20 



Figure 2.3.1.7: 'Zigzag' read order for quantized OCT Matrix 

It can be seen that after quantization, only 1 0 out of 64 elements of the matrix are non-zero. 

Figure 2.3.1.7 indicates a zigzag order with which to read the elements of the matrix. This 

zigzag, the beginning of step four, aims to return a list of values where the concentration of 

zeros are read consecutively and can therefore be compressed using RLE. This would result 

in '-25, 11, -6, -2, -4, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ... ' 

To decode a JPEG image, the algorithm is simply reversed . Unlike a number of image 

compression algorithms JPEG is roughly symmetric and requires a similar amount of 

computation to decode as it does to encode. 

JPEG is a complicated compression algorithm but gives excellent compression ratios. The 

level of compression applied can be varied by adjusting the weights within the quantization 

table to be more or less aggressive in terms of the loss of OCT coefficients. 

2.4 Fractals 

A fractal is a shape or image that is defined by an iterated mathematical equation, where the 

output from the equation is fed back as the input. [GLEICK, 1988] The fractal is a set within a 

(subset of) space. There are a wide variety of fractal types, each with its own properties and 

applications. Many exhibit the following characteristics, which together provide a better 

definition of the term 'fractal' . 

21 



2.4.1 Preservation of Complexity 

When magnifying part of a fractal image, the resulting image will not have lost any resolution 

or any of its original complexity. Some fractals, such as the Mandelbrot set, allow continuous 

magnification ad infinitum, with new detail and complexity appearing at every level. The 

Mandelbrot set is infinitely complex, with the detail seen in successive magnifications 

appearing through the increased rendering detail. [BARNSLEY, 1988] [FISHER, 1995] An 

example of this property is shown below: 

figure 2.4.1.1- successive Mandelbrot magnifications 

The images in figure 2.4.1.1 illustrate the initial set, and successive enlargements to produce 

the next three images. The image area to be enlarged for the next image is indicated by a 

black rectangle. Further magnification is possible ad infinitum. 

22 



2.4.2 Self-Similarity 

Fractals often appear to be constructed of replicas, or near replicas of themselves, with each 

replica being distorted in certain ways. This is known as the self-similarity property. The 

images of the Mandelbrot set in figures 2.4.1.1 show that at each magnification level the 

image has a similar 'bug'-like black mass. The Mandelbrot set is self-similar in that these 

masses can be found at all levels, but each mass is slightly different in shape and size. A 

variation on this, but not as common, is the self-tiling property. A fractal exhibiting this 

property is constructed entirely of smaller, distorted copies of itself. A classic example of this 

is the Barnsley Fern [BARNSLEY, 1988] 

A 

D 

figure 2.4.2. 1 - Bamsley Fem, and right, showing the branches as transformed replicas 

Figure 2.4.2.1 illustrates the construction of the Barnsley Fern. Each of the green rectangles 

represents a transformation of the image. The leaves are the most obvious example of this, 

and are mapped by transformations B and C. Each leaf is essentially a copy of the upright 

fern that has been reduced in size and rotated to 'attach' the stem. The stem of the fern is 

constructed in the same way, although this is not as immediately obvious as the leaf self-

23 



tiling. In transformation D, stem construction involves mapping the image so that it rotated 

sideways and mapped to give a thin line. As these transformations will only produce a short 

stem and two leaves per iteration, transformation A maps the previous-iteration's generated 

image to form the top of the fern. The Barnsley fern belongs to a class of fractals known as 

Iteration Function Systems (IFS). [BARNSLEY, 1988] 

2.4.3 Iterative formation 

Fractal images are usually produced according to a certain mathematical formula. This 

formula is iterated many times. The formula to generate the Mandelbrot set, as in figure 

2.4.1.1, is as follows: 

(where z and c are complex) 

The above formula is used to generate another type of fractal, known as Julia sets. Varying 

values of z and c give different sets. The Mandelbrot Set is often referred to as the set of all 

Julia sets. [GLEICK, 1988] 

2.4.4 Iterated Function Systems 

A specific class of fractals, known as Iterated Function Systems, have the property that they 

can represent any image. An IFS consists of a set of 20 transformations which specify the 

self-tiling properties of an image, such as the Barnsley Fern. These transformations are 

applied iteratively to form an image constructed of repeated automated tiles of itself. AIIIFSs 

are self-tiling. [BARNSLEY, 1988] 

The IFS function is a group of n sets of 6 coefficients, where n is the number of 

transformations. The image generated by iterated application of the transformations is known 

as the attractor of the IFS. The attractor is reached after a certain number of iterations of the 

generation algorithm. The attractor of an IFS is the image that does not change even if more 

iterations of the formula are performed. Theoretically, the attractor is the fixed image of the 

24 



IFS at an infinite number of iterations. Using a bitmapped computer display and a finite data 

structure means the attractor, at the given resolution, of the IFS can be determined by the 

image remaining fixed at the resolution of the storage I display. The number of iterations 

required to render the image for a given resolution of an IFS is finite, as once the attractor is 

reached then there will be no further change in the rendered image. [FISHER, 1995] 

Apart from the properties of self-tiling and iterative formation, IFSs also exhibit preservation of 

complexity. As the attractor of an IFS is magnified, the user is able to see the self-repetition 

continuing down through the image. The more the attractor is magnified, the more of the 

same transformations are revealed. 

An IFS is specified as a series of contractive mappings. A contractive mapping is a mapping 

of the source image through a series of transformations {such as scaling, translation, 

rotation). These transformations are performed on a metric plane, in the case of a computer 

this usually means the main bitmap display. The mappings are contractive because when the 

transformation is applied, the points on the plane are brought closer together. Such 

transformations are known as 20 affine transformations. An IFS is usually specified using the 

following format: 

This represents the tranformation of a point w(x,y), where (x,y) represents the original point 

and (x',yJ is the position of the newly transformed point. [BARNSLEY, 1988] 

This notation is the same as the expression: w(x',y') = (ax +by+ e, ex+ dy + f) 

2.4.4.1 An Example of an IFS and its Construction [FISHER, 1995] 

A classic example of an IFS is the Sierpinski Gasket. It is widely used to illustrate the basic 

theory of Iterated Function Systems, and its attractor can be calculated manually by hand in a 

few simple steps. The attractor and IFS transformations are given in figure 2.4.4.1. 

25 



w a b 

1 0.5 0 
2 0.5 0 
3 0.5 0 

Figure 2.4.4.1: The Sierpinski Gasket 

c 

0 
0 
0 

d 

0.5 
0.5 
0.5 

e 

0 0 
0.5 0 
0.25 0.5 

As discussed previously, an IFS consists of a series transformations on the plane. There are 

three transformations required to produce the Sierpinski Gasket. The formation of the 

attractor of this IFS can be illustrated by performing the transformations step-by-step, and 

plotting the image generated at each stage. Figure 2.4.4.2 shows the attractor being 

constructed in this fashion. 

Original Image 1 Iteration 21terations 3 Iterations 4 Iterations 5 lnterations A !tractor 

Figure 2.4.4.2 - Step-by-step construction of the Sierpinski Gasket 

26 



The construction method for the gasket could be described in simple English-like steps: 

• Take the input image, scale it by a factor of 0.5 

• Map the resulting image at position 0,0 on the plane 

• Map the image again at position (0,0.5) on the plane 

• Map the image again at position (0.5,0.25) on the plane 

This simple series of iterated steps can produce an image of infinite detail. IFS theory dictates 

that whatever the starting image is, the resulting attractor will be same, as the attractor is only 

mathematically complete after infinite iterations when all the detail of the starting image would 

be infinitely reduced. 

Figure 2.4.4.2 also illustrates another property of IFSs and their attractors. The appearance of 

the attractor of an IFS is not dependent on the appearance of the initial starting image. The 

image of the square and the image of the circle both result in the same attractor. This is due 

to the contractive mappings within the IFS, where points are successively brought closer 

together with each iteration. 

Notice that the images of IFSs presented are monochrome. Colour IFSs [FISHER, 1995] rely 

on colouring the individual pixels according to how much iteration is needed to position them 

within the attractor- or to 'show' themselves on the attractor, but these are beyond the scope 

of this project. 

2.4.4.2 Algorithms to Plot IFS Attractors 

The mathematics of generating IFSs is relatively straightforward. In order to make use of IFS 

within many systems, it must be posible to generate the attractor of the IFS. There are 

numerous algorithms that enable rendering of IFS attractors, each with their own advantages 

27 



and disadvantages. Computers are well suited to the repetitive task of generating IFS 

attractors, which are usually rendered to a two-dimensional array or bitmapped display. 

Whilst IFSs are continuous functions with infinite detail, computer bitmapped displays are not, 

and the rendering algorithm must take account of this in order to render the attractor at the 

display device resolution. This avoids incomplete attractors or wasted iterations trying to add 

detail beyond device resolution, where the IFS output becomes invariant and has reached the 

attractor. The three most common generation algorithms are considered in the following 

sections. 

2.4.4.2.1 Classic Deterministic Algorithm - CDA 

CDA uses the same method as illustrated above in the 'hand-rendering' (figure 3.3.3) of the 

Sierpinski Triangle. Once the IFS reaches its attractor, any further mappings have no effect. 

The algorithm performs the transformations on the original image to reach iteration 1. It then 

takes this 'output' image and feeds it back as the initial image for the algorithm. This 

continues until the attractor of the IFS is reached - i.e. the output is the same as the input. 

CDA is a deterministic algorithm. It is easy to predict the number of iterations required to 

generate the attractor. The fact that the attractor is generated in an ordered fashion is one of 

the main advantages of this algorithm. Unfortunately, it is quite slow and inefficient compared 

to some other IFS rendering algorithms. [BARNSLEY, 1988] 

2.4.4.2.2 Random Iteration Algorithm - RIA 

The Random Iteration Algorithm is stochastic, unlike CDA. The algorithm uses a probability 

assigned to each mapping in the IFS. The probabilities of all the mappings must sum to one, 

and are used to determine how often the mapping should be selected. The algorithm picks a 

point on the attractor and a selected mapping is applied to this point to give a new point on 

the attractor. The mapping used is chosen using the set of probabilities. The algorithm then 

continues in this fashion for a predefined number of iterations. If enough iterations are 

specified by the user then a good approximation of the IFS attractor can be produced. 

[BARNSLEY, 1988] [BARNSLEY, 1993] 

The pseudo-code for the algorithm is given below: 

28 



Select an initial point p on the attractor; 

For i=l to number of iterations; 

Plot p; 

Select a mapping m, using probabilities; 

p=m(p); 

Next i. 

The Random Iteration Algorithm is popular within IFS applications because it provides an 

approximate image of the attractor very quickly. In order to provide a detailed image, though, 

the algorithm must perform a much greater number of iterations, as it will often randomly 

select the same point many times - therefore recalculating and plotting a previously 

determined point, which is wasteful. Dense attractors may require a massive number of 

iterations to render them completely. Because points are plotted by being randomly selected 

and then transformed, it is possible to use the RIA to produce coloured attractors of the IFS. 

[FISHER, 1995] 

Weighted probabilities are used within the algorithm to enable more even point coverage. 

Mappings of high contractivity- mappings with small scaling factors - map points onto a 

relatively small proportion of the overall attractor. Mappings of low contractivity do not usually 

affect the position of the transformed point greatly. If the high contractivity mappings were 

picked in an equal ratio to the small contractivity mappings, then the final attractor would have 

inadequate coverage on the main body of the attractor whilst the area of contractivity would 

be rendered in much more detail. The algorithm would spend a disproportionate amount of 

time rendering this small area. The algorithm selects the mappings according to their 

individual probabilities to avoid this. 

[BARNSLEY and HURD, 1993] propose the following to calculate the probabilities for an IFS: 

29 



deter M; pi ::;: n 

LdeterM 
j=l 

This formula calculates p1 - the approximate probability for mapping i; n is the number of 

contraction mappings comprising the IFS; and deter M1 is the determinant of the matrix M of 

the mapping i. The value of deter M1 corresponds to the factor by which the original area is 

reduced onto the contracted area. It is effectively the level of scaling of the mapping. 

2.4.4.2.3 Minimum Plotting Algorithm - MPA 

This algorithm aims to render a complete image of the attractor by rendering as few pixels as 

possible. The algorithm takes advantage of the property that applying the same contraction 

mapping to the same point will always give the same resulting point. Thus, this does not need 

to be repeated. 

In order to avoid plotting points more than once and not repeating calculations, MPA keeps 

track of the points it has already plotted using a FIFO queue. This ensures that a point is 

never revisited. The algorithm can plot directly to a display or to a 20 array. 

The algorithm renders the attractor by firstly plotting some initial points known to lie on the 

attractor. As points are generated they enter the queue of points to be transformed. This 

takes advantage of the property that transorming a point on the attractor will result in a point 

also on the attractor. The algorithm takes a point from the head of the FIFO queue and 

checks if it has been plotted. If it has it is discarded, otherwise the point is transformed to give 

a new point for the queue and also a new point to be plotted. The algorithm terminates when 

the FIFO queue is empty. [MONRO, 1990] 

Initialise initial points on attractor; 

Plot initial points; 

Store points in FIFO queue Q; 

30 



Repeat; 

Take p from head of Q 

For every mapping m; 

p' = m(p); 

If p' has not been plotted; 

Plot p'; 

Add p' to Q; 

EndiF; 

Next m; 

Until Q empty. 

The MPA is very efficient as it stops redundant calculation being performed. The 

disadvantage of the algorithm is that it needs a FIFO queue to be set up in memory, which 

can be huge and impractical for the generation of large attractors. 

2.4.4.3 Using IFSs for Image Compression 

Fractals have a number of real-world uses. These include modelling chemical reaction 

kinetics, growth patterns in bacterium and other simple organisms, and weather forecasting 

[GLEICK, 1988]. Image compression, however, is perhaps the most important and powerful 

application of fractal techniques. 

It can be seen that highly detailed images can be formed from the iteration of simple 

mathematical formulae. The Barnsley Fern attractor in figure 2.4.2.1 occupies approx 400,000 

bytes in 4-bit greyscale, whereas the coefficients used to produce it require less than 100 

bytes. Storing the coefficients instead of the bitmap results in a high level of 'compression', 

giving rise to the concept of using fractals for image compression: find an IFS that generates 

the original image as its attractor, and thus encode that image as a series of IFS 

transformations. 

31 



2.4.5 The Inverse Problem 

An attractor can be generated from an IFS using a relatively simple process. Barnsley 

[BARNSLEY, 1988] conceived the idea of trying to find the IFS for a given image, as opposed 

to trying to produce the image from a given IFS. The problem of determining the number of 

transformations and their associated coefficients is known as the inverse problem. There 

have been numerous attempts to solve this problem with an automatic solution - in that no 

human interaction/intervention is required to reach the solution. Interactive solutions, which 

are not classed as automatic, use human input to help restrict the search space. The reason 

for the difficulty is the size of the search space. Even if 4 transformations are required per 

image, that still leaves 24 coefficients to test with values between approx. --0.7 and +0. 7 

[BARNSLEY, 1998]. typically calculated to 3 decimal places. This gives a search space of the 

magnitude of -2 x 101932 

In reality, the number of coefficients for a complex real-world image would be much larger as 

is unlikely that such images would display such large and simple amounts of self-similarity. It 

is impractical to explore this searchspace this using trial and error techniques, as even the 

most power computers would take tens of years to explore it. When attempting to find the IFS 

for a given image, there must be a compromise between image quality and compression time 

I amount. This trade-off is similar to that experienced with JPEG compression [TANENBAUM, 

1996]. 

The inverse problem has been solved in theory. The solution is to produce an IFS that 

contains a mapping for every pixel in the image. Each mapping then is a transformation of the 

original image to a pixel. This is clearly an unsatisfactory solution, as the mappings occupy a 

far larger space than the original image, giving expansion rather than compression. The true 

aim of a solution to the inverse problem is to determine the minimum number of mappings 

required to represent the said image (and of course, their associated coefficients), within a 

certain accuracy range. The solution should consider: 

32 



• How can the minimum number of individual mappings required be determined? 

• Are all images suitable for compression using this method, and if not how are they 

distinguished? 

• How can the quality of the approximation of target image be determined? 

The first point is crucial to the problem, and stems from the need to gain compression over 

the map per pixel theory solution. Only by reducing the number of required mappings can 

compression be gained. The second point highlights the fact that different images compress 

with varying degrees of success. Since IFSs exploit the ideas of self-similarity, images 

exhibiting this property, such as the Barnsley Fern, will lend themselves to the techniques 

more than less self-similar images. The final point is important because the algorithm has to 

be able to assess how good the solution it has produced is, and whether it represents an 

acceptable representation of the target image. 

A feature of IFSs, known as the Robustness Property [NETTLETON, 1994], dictates that a 

small change in the coefficients specifying an IFS gives a small change in the final attractor. 

This is a very useful property because it allows for gradual fine-tuning of the match using 

progressively finer adjustments until the desired quality threshold is achieved. There are 

various methods for testing how good a match the IFS attractors in comparison to the original 

image. It is, therefore, essential that a reasonable fitness algorithm be employed in order to 

allow fine-tuning of solutions. The Hausdorff Metric [BARNSLEY, 1988] returns a value that 

gives the 'distance' between two images -that is, how similar they are. This method of 

comparison is very accurate but unfortunately it adds a large level of overhead to the 

exploration of the search space. As a result, simpler but less accurate methods are often 

used. 

The simplest method would be to check each image point-for-point, and return a percentage 

according to the number of correctly placed points. A problem with this method is that if the 

attractor is very close to the solution it may still be at a slight offset to the original image, 

causing a low point-for-point match and the matching algorithm to return a very bad match 

33 



result as the images are not quite aligned. This would not only waste further machine time, 

but could destroy a near-optimal solution. This is illustrated in figure 2.4.5.1 . 

figure 2.4 .5.1 -Weakness of simple image-comparison metrics for IFS searches 

In figure 2.4.5.1 , the trial solution is very close to the target image, i.e. it is near-optimal, with 

a simply x,y transform required to provide a perfect match. However, the yellow pixels in the 

third image are the only correctly-mapped pixels from the point-to-point comparison metric's 

perspective and this trial solution is accordingly assigned a very low fitness value. 

A variation on the point-for-point method is collage point-coverage, where the image is split 

into subsections, which then each have their points considered in relation to the 

corresponding section on the target image by the point-to-point function and scored 

accordingly. The scores are assessed to give a final score for the image match. Other 

methods range in accuracy and computation up to the Hausdorff metric. Again, a compromise 

must be reached. 

Figure 2.4.5.2 is a cross-section of the search space for the Sierpinski triangle [NETTLETON, 

1994]. The fitness function used is collage point coverage. In order to restrict the cross

section to three dimensions, only 2 of the 18 coefficients are varied (18 = 6 x 3 mappings), 

these being thee and fvalues for the third mapping, giving the x andy axis. The remaining 16 

coefficients are fixed at their optimal values. The z axis gives the fitness of the IFS attractor to 

the target image. 

34 



I 

.,.'*P 
Figure 2.4.5.2 - A cross-section of the search space for the Sierpinski Gasket 

Figure 2.4.5.2 illustrates just how complicated the search space of an IFS is. The largest peak 

with a fitness of -1500 represents the solution. There are, however, many other smaller 

peaks that lead to nothing. An algorithm that searches such a space successfully will need to 

be able to disambiguate between these 'misleading' local maxima in order to find the true or 

best solution. Traditional search techniques, such as hill-climbing algorithms, tend to get stuck 

within these local maxima, and cannot generally be employed to solve the inverse problem -

although they may form part of a theoretical solution. [NETILETON, 1994] 

2.4.6 Automatic Algorithms to 'Solve' the Inverse Problem 

Automatic solutions to the inverse problem aim to achieve a certain accuracy range whilst 

making as few comparisons and explorations as possible. Because these algorithms can 

explore only a tiny fraction of the search space, none can provide an optimal solution for 

every single instance -that is, they do not solve the general case. Most of the techniques 

take advantage of particular properties, which whilst providing optimisation is terms of both 

speed and accuracy, restricts their range of application. 

35 



2.4.6.1 Evolutionary Algorithms 

Evolutionary Algorithms are algorithms that try to mimic the natural process of evolution -

selecting the best solution from a population using natural selection [BEASLEY, 1998]. Such 

algorithms use computational models of some of the well-known processes of natural 

evolution in both their design and implementation. EAs have a population of potential 

solutions within their environment, which evolve through the generations with the hope of 

finding an acceptable solution. Evolution is carried out according to 'survival of the fittest'

the better solutions are evolved, hopefully into better ones, whilst less optimal solutions will be 

dropped. Eventually, there should be a convergence towards the optimal solution. The 

following features are essential to the construction of an EA: 

• Fitness function - Evaluates how good the current solution is in a quantitative manner 

• Retention of quality -There must be a mechanism which allows good solutions to be 

retained into subsequent generations, whilst poor solutions are removed from the pool. 

• Regeneration - In order for the solutions to 'evolve', there must be a mechanism that 

alters the solutions in order to provide the next generation. These are created by applying 

specific operators to the current solutions. In the case of mutation it is typically 

proportional to the fitness of the individual solution. If the solution is reasonable, then it 

would be mutated less than a poor solution. This approach aims to fine tune good 

solutions whilst still varying bad ones in order to find new possibilities. 

EAs can be used as an automatic solution to the inverse problem if the solution to is the IFS 

for the image to be encoded; the environment is the display/memory in which the attractors 

are tested .for fitness, and the elements a group of randomly initialised IFSs. 

Evolutionary Algorithm is an umbrella term used to classify all algorithms of this nature, the 

two main types being Genetic Algorithms and Evolutionary Programming. 

36 



2.4.6.2 Genetic Algorithms 

A Genetic Algorithm derives its behaviour from some of the well-known natural evolution 

mechanisms. The population of solutions emulates the idea of chromosomes, encoded as 

binary strings. GAs rely on a principle known as the Building Block Hypothesis, which states 

that by combining parts from numerous different solutions, the high fitness parts will be 

preserved throughout the evolutionary process and hopefully merge with others towards a 

complete, optimal solution. [HOLLAND 1975] [BEASLEY, 1998] 

The process of merging features of the different solutions into newer child solutions is known 

as crossover. In addition to this, GAs also employ a mutation operator. When applied to an 

individual solution, the mutation operator alters it slightly to produce a new child solution. 

While within GAs the mutation function is invoked very rarely, it is important as it aims to 

prevent the loss of important genetic information, which may be essential to a near-optimal 

solution. 

Mutation essentially ensures that the algorithm doesn't become too focused on performing 

crossover on the current population by allowing it to occasionally introduce new solution 

structures into the set. Because of the method of encoding of the solutions within the 

population, the operators such as crossover and mutation can be implemented using simple 

bit-pattern manipulation operations. Because of the way GAs build their solutions by adding 

blocks from previous parent solutions, they are classified as bottom-up solutions. 

2.4.6.3 Evolutionary Programming 

Whereas GAs use a bottom-up approach, Evolutionary Programming adopts a top-down 

mechanism. EP differs from GAs in that it does not employ a crossover operator, but instead 

makes greater use of the mutation operator. A typical EP will evaluate the performance of 

each of the current set of solutions and attempt to produce improved child solutions by 

performing mutation upon the parent solutions relative to the fitness of the individual solution 

determined by the fitness function. The population experiences a probabilistic removal of 

37 



solutions between the generations, with the lower fitness solutions being most likely to be 

removed. This process ensures that poor performing solutions are unlikely to survive though 

the generations whilst mutation allows for fitness proportional 'tuning' and introduction of 

different solutions into the population. [BEASLEY, 1998] [FOGEL, 1966] 

2.4.6.4 Comparison of Evolutionary Algorithms 

Nettleton showed that Evolutionary Programming performed consistently better than Genetic 

Algorithms when used with the same starting population size and number of generations of 

the algorithms, in fact EP produced near optimal results. The image used to test these 

systems on was a solid black equilateral triangle- extremely simple. From this result, 

Nettleton concluded that a top-down approach to solving the Inverse problem might be the 

best way to tackle it. The results achieved using the attractor and point coverage function as 

fitness are shown below in figure 3.6.1, with a range of generations of 0, 5, 10, 20, 30, 40, 60, 

80 and 100 from top left to bottom right for each EA type: 

Genetic Algorithm Evolu(ionary Program 

~[!][~] ~~ - I 

~[;][;] --~ lJ[!] 
[~~][~] ~IJ[ ~~~ -~1 

F1gure 2.4.6.4.1 - Companson of GA vs. EP 1n the automatic solut1on of the Inverse problem 

Using EAs, and in particular EP has had a degree of success in the automated solution of the 

inverse problem, the main areas of success have been with simple geometric shapes, such 

38 



as the solid equilateral triangle. Less acceptable results have been experienced with more 

complex shapes, such as the Sierpinski Triangle. (Nettleton, 1994] 

2.4.7 Using Quadtree Partitioning for Image Compression 

The IFS method, although offering the potential of fantastic compression ratios and relatively

rapid decode, is crippled by the difficulty of addressing the Inverse Problem and discovering 

the mappings required to represent a target image. These failings illustrate the requirement 

for an image compression algorithm to be deterministic - although it acceptable that it is often 

difficult to predict the compression ratio that will be achieved by an algorithm for a particular 

image, it is very important that we maintain an adequate image quality level and that the 

compression can always deliver this in a reasonable amount of computing time. 

Quadtree-based Fractal image compression aims to address the non-deterministic nature of 

IFS compression techniques, though as a result the compression ratios it achieves are much 

more conservative than the theoretical IFS levels. However, quadtree compression can be 

applied to any image and sophisticated implementations deliver excellent compression ratios. 

As with IFS, these compression techniques still rely on finding a series of contractive 

mappings to represent a target bitmap image. Basic quadtree techniques divide the target 

image, f, up into 16 squares, known as Ranges, and also divides f into 4 squares, known as 

Domains. The algorithm then attempts to cover every range with a domain, using a 

contractive mapping, where the similarity (or fitness) of the range/domain map is maximised. 

If the fitness of this mapping doesn't reach a preset threshold, the algorithm then treats the 

uncovered range as a new image and continues the factor-of-four subdivision. This gives rise 

to a quadtree representation of the image, as shown in figure 2.4. 7. 1. 

39 



Levell -Initial Target Range 
Cannot be adequately covered by available domains 

Level 2 - Target Split into Four Smaller Ranges 
Two Ranges Covered, Two Subdivided 

Level 3 -Two Level 2 Ranges Create Eight at Level 3 
Seven Ranges Covered, One Subdivided 

Levei 4 -
Final Four Ranges Covered 

CJ Uncovered Ranges 

CJ Ranges Covered in Current Level 

CJ Ranges Covered in Previous Levels 

Figure 2.4.7.1 - The quadtree decomposition of an image where larger, less-compressible, 
ranges are sub-divided into smaller ranges at each level of the tree. 

If the required fitness is still not achieved after a present number of subdivisions then the 

optimal fitness map(s) are used to cover that particular range. As each range is covered, the 

mapping used to transform the domain onto it is recorded . [FISHER, 1995] 

40 



Figure 2.4.7.2 illustrates how a relatively small area of sample image (a range) can be 

recreated by mapping a larger area onto it (a domain). As part of this transformation, the 

domain is resized such that its dimensions are halved. Images are compressed in the 

quadtree system by finding suitable domain to range mappings that together cover the entire 

image. 

The pseudo-code for the quadtree compression method is shown below: 

Set a fitness tolerance level, t 

Determine the set of ranges, R, to be covered, according to the 

image size and range dimensions 

Populate the domain pool, D, according to image size and range 

dimensions 

While there are uncovered ranges, Ri, do { 

Search the domain pool, D, to find the domain, Di, where the 

fitness, Fru, is maximized and greater than t (i.e. the best 

domain match is found for the range that meets our quality 

threshold) 

Record the mapping Mi, specifying the Di and Ri 

If no domain adequately covers Ri, divide Ri into 4 new smaller 

ranges and add to R 

41 



Quadtree compressed images also exhibit other fractal properties, specifically the ability to 

render a stored image at a higher resolution than the original and have the rendering 

algorithm 'scale' the image by the production of artificial details. Whilst this scaling technique 

doesn't provide extra data that is true to the original image's scene, e.g. a digital photograph 

will not contain any more real detail, the technique is useful in digital imaging because the 

artificial detail that's produced during this process is more aesthetically pleasing than other 

scaling techniques, such as bilinear interpolation [FISHER, 1995]. A commercial product that 

makes use of quadtree image scaling is www.lizardtech.com's Genuine Fractals. 

2.5 Video Compression 

Digital motion video adds an extra dimension to the image compression problem. In its 

simplest form, ignoring any audio encoding, digital video comprises a sequence of still images 

that when displayed in rapid succession allows the viewer/user to experience fluid motion 

video. The typical frame rate for encoding PAL video signals is 25fps [TANENBAUM, 1996]. 

Resolution of encoded video tends to vary enormously, depending upon the application but 

digital broadcast television and DVD video range between 320x240 and 768x584 pixels in 

true-colour. [TANENBAUM, 1996] 

2.5.1 The Challenges Of Digital Video 

With high resolutions, colour depths and frame rates, it is clear that storing digital video in an 

uncompressed state requires vast amounts of storage, -a DVD-quality video sequence 

would require 768 pixels x 584 pixels x 24 bit colour x 25 frames per second, i.e. just over 32 

megabytes per second. Without the use of image compression, manipulation and storage of 

digital video sequences would require vast amounts of storage and would be impractical for 

distribution and widespread usage. Uncompressed, a 9GB dual-layer DVD disc would only be 

able to store 4.7 minutes of video at this resolution. 

42 



Just as with digital imaging, large file sizes present storage and transmission problems. 

However, due to the added dimension of time, the speed at which digital video can be 

transmitted or accessed from storage is also very important, as the videostream needs to be 

replayed in real-time in order to be acceptable to the viewer. The bandwidth available through 

a transmission medium (either conventional 1/0 or through a transmission network) must be 

taken into account and is often as critical as storage volumes in the field of digital video. 

It is possible to reduce the storage requirements of digital video by simply changing the 

sampling of the original analogue source- reducing the frame-rate, colour-depth or resolution 

will result in a reduction in storage requirements for a given video sequence. However, 

reducing each of these parameters will result in a degradation of image quality- high frame

rates are essential for smooth video; 24-bit colour depth is the standard for any broadcast 

video encoding; resolution needs to be sufficiently high to accurately represent the quality of 

the original source. It is clear that just as we can use specific lossy compression algorithms to 

address the problems of digital imaging, we need to do the same when it comes to digital 

video. 

2.5.2 Spatial and Temporal Compression 

Although there are a wide variety of video compression algorithms, all video compression 

techniques rely on a mixture of temporal and spatial compression. Spatial compression is 

used by JPEG to reduce the amount of spatial redundancy in a picture, for this JPEG employs 

its OCT algorithm. [WATKINSON, 2001] 

Spatial compression refers to the compression of an individual bitmap and is equally valid in 

both image and video compression - this explains why there is often a great deal of overlap 

between image compression and video compression algorithms and techniques. An example 

of a purely spatial video compression technique is Motion-JPEG (M-JPEGIMJPEG) and this 

system is discussed below. 

43 



More sophisticated image compression techniques also employ temporal compression to 

further improve on the compression levels achieved by purely spatial systems. Temporal 

compression involves analyzing and eliminating inter-frame redundancy as well as the intra

frame redundancy work of the spatial algorithm. Temporal compression often compares a 

frame with its precursor and attempts to store only the changes or differences between then 

rather than just storing the whole of the frame using spatial compression. [WATKINSON, 

2001] 

The Motion Pictures Expert Group "1" video compression algorithm (MPEG1) uses both 

spatial and temporal compression and is discussed below. 

2.5.3 Motion-JPEG Video Compression (M-JPEG) 

Modern video compression techniques often borrow extensively from image compression 

algorithms- the M-JPEG video compression algorithm uses the JPEG image compression 

standard and applies it to the long sequences of bitmap elements that make up digital video. 

As such, it is an excellent example of this image compression reuse technique. 

[TANENBAUM, 1996] 

Although M-JPEG only uses spatial compression on the digital video sequence, and therefore 

only achieves similar compression rations to standard JPEG data compression levels, the 

standard is still widely used for video compression as it provides moderate compression 

levels whilst providing the user with relatively fast encode and decode times compared to 

temporal algorithms. [TANENBAUM, 1996] 

M-JPEG remains popular due to the different performance requirements of the two typical 

usage models for digital video- typically, digital video is either being edited, re-sequenced, 

etc., before being finalised for storage; or the video is being viewed/transmitted to the end 

user. These two different usage profiles have very different requirements in terms of 

performance of the compression algorithm used. If a video is constantly being accessed, 

44 



especially with frequent access to differing points in a sequence or moving blocks of video 

within a sequence, then M-JPEG is better suited to than temporal algorithms as each frame is 

encoded independently of the other, allowing random access within the frame-sequence 

without having to refer to previous frames in order to construct the one the editor is interested 

in. If, however, the video is in its final state and ready for viewing/distribution then a higher 

compression temporal algorithm can be used as the main consideration will be the final size 

of the video sequence - random access, apart from relatively small levels of rewind or fast

forwarding, is not a major consideration - and such an algorithm would be preferred to M

JPEG. [WATKINSON, 2001] 

2.5.4 MPEG Video Compression 

The majority of video compression effort and research takes place to satisfy the usage 

characteristics of the viewing/distribution model rather than the editing model. There are a 

number of reasons for this: 

a) Commercial video tends be 'edited once, viewed many' in that once the video, 

typically a television programme or movie, has had its editing completed, it is then 

rarely re-edited by the end user- rather it is simply viewed repeatedly. 

b) Video editors tend to have access to large and high performance storage 

resources whilst the editing takes place. As the emphasis is on maintaining 

quality and access performance rather than saving storage space during this 

process, there is little demand for high compression algorithms in this area. 

c) The distribution of finished commercial video typically uses relatively low capacity 

media (such as CD and DVD) or transmission links. This is due to the economics 

and practicalities of the distribution process: the distribution medium has to be 

low-cost as it is not viable to ship films on high-capacity optical discs or deliver 

1 O-mega bit links to consumers. 

45 



2.5.4.1 MPEG-1 

The first major video compression standard to satisfy these demands was MPEG1 [MPEG, 

1993]. MPEG1 typically encodes video at 352 x 240 resolution and 25/30 frames per second 

using 24bpp and was designed to store 74minutes ofVHS-quality video on a 650MB 

CDROM. Later, MPEG2 was devised to improve on the resolution of MPEG1 and is currently 

used to deliver approx 120mins of video on a 4.7GB Digital Video Disk (DVD). Because 

movies and other video sequences often contain audio as well as video, MPEG1 is also 

capable of compression audio in addition to video -the audio storage technique is the basis 

of the popular MP3 (MPEG layer-3 audio) used to store music on personal computers. 

However, since we are primary focused on video compression, MPEG's audio compression 

techniques will not be discussed further here. 

Due to its original success, MPEG has become the defacto image compression standard in 

terms of support and development. Although MPEG1 and MPEG2 have been largely 

superseded by MPEG4, the original MPEG specification and revised version 2 standard 

radically improved the quality and compression ratios achievable for compressed digital video 

sequences. 

Like M-JPEG, MPEG exploits the JPEG compression engine but also employs spatial 

compression to increase compression rates whilst maintaining visual quality. This spatial 

compression takes advantage of the fact that within movie video-sequences, there is often 

little or no difference between consecutive frames. Even though it is common for movie

makers to 'cut' to a new scene every 3-4 seconds, with a typical frame rate of 25fps, this is 

still a high level of redundancy and allows for significant savings over simply applying JPEG 

compression to each frame in its entirety. [TANENBAUM, 1996] [WATKINSON, 2001] 

For a scene where there is little or no difference between frames, such as when the camera is 

stationary, there will be large amounts of redundancy and this could be found be simply 

comparing two such frames on a pixel by pixel basis. However, if the camera was panning 

46 



slowly rather than stationary, then this technique is less useful as corresponding pixels 

between the two frames may not have the same colour values due to the offset of the 

panning, despite the two images appearing to be very similar. MPEG can handle both of 

these scenarios within a video sequence- this inter-frame compression is the main difference 

between MPEG and JPEG/M-JPEG. [WATKINSON, 2001] 

2.5.4.2 MPEG Frame Types 

MPEG compression output consists of four distinct frame types: 

a) Intra-coded Frames (1-Frames)- these are simply JPEG encoded frames. 

b) Predictive Frames (P-Frames)- these are the difference between the current 

frame and its precursor. 

c) Bidirectional Frames (B-Frames)- these are the differences between the 

current frame and its successor and precursor. 

d) Delta/DC Frames (D-Frames)- These frames are low quality frames that can 

be shown during 'fast-forwarding' of a video sequence. These can be used to 

alleviate the need for the decoder to decode 1/P frames at these higher rates. 

In practice, most implementations do not use B or D frames, as I and P frames are sufficient 

to encode an arbitrary video sequence and retain forwarding and rewinding capabilities. 

1-Frames are needed for a number of reasons- although it is feasible that an MPEG 

sequence could have a single 1-Frame at its start, followed by all P-Frames, this would likely 

have problems in that maintaining image quality would be difficult for the MPEG algorithm due 

to the lack of a pure frame to periodically act as the reference for the calculating inter-frame 

differences, i.e. if lossy P-Frame comparisons were allowed to go on for too long, it is likely 

that the displayed image would lose quality over time. Additionally, and perhaps of more 

practical benefit, periodic 1-Frames are required to allow random access to the video 

sequence- without I-Frames, if viewing started in the middle of the sequence; it would be 

impossible for the decoder to display the initial request frame correctly without having 

47 



calculated all the previous P-Frames from the initiaii-Frame. This also applies to fast

forwarding . Lastly, if the MPEG stream is being broadcast live, should a view not receive the 

initiaii-Frame correctly, they may never be able to view the remainder of the sequence 

correctly. As a result of these issues, !-Frames (also known as key-frames) are inserted into 

the MPEG output at regular intervals. [WATKINSON, 2001] 

P-Frames store the difference of the current frame with its precursor, whether it was an I or P

Frame. These frames consist of macroblocks, which represent a 16 x 16 block of luminance 

information and a 8 x 8 block of chrominance information for a given section of the current 

frame. The encoder searches the previous frame to find a macroblock that is a match with the 

current frame block, within a predefined tolerance. An example frame-sequence is given in 

figure 2.5.4.1, with a static background and moving object between the 3 frames. 

Figure 2.5.4.1: An illustration of differences between successive video sequence frames 

The three images above show how the background remains constant whilst the car's position 

changes between the frames. The macroblocks that contain portions of the background scene 

will match exactly, whilst those that represent the car will be offset between the frames and 

will need to be found . However, the MPEG standard itself does not specify how such 

searches should be done, rather it just specifies the concepts for the various frame types and 

how then should be subsequently decoded into a representative video sequence. It is up to 

the encoder to decide how far to search, the macroblock similarity thresholds required to 

constitute a match between respective frames. a simple implementation could be to search 

like-positioned macroblocks for the current and preceding frame and if they match a given 

tolerance, t, then mark them matched - otherwise encode the whole macroblock of the 

current frame anew. [WATKINSON, 2001] 

48 



Once a macroblock match is found, it is then encoded by taking the difference between the 

block's value in the current frame and its value in the previous frame. This is then subject to 

JPEG encoding. Likewise, an unmatched macroblock gets treated to JPEG encoding directly, 

just as it would be in an 1-Frame. [TANENBAUM, 1996] 

2.5.5 MPEG Performance 

MPEG is incredibly flexible and powerful in the freedom it gives the encoder in the 

macroblock search process whilst still allowing any standard MPEG decoder to decode and 

display the results. This allows implementations to use enhanced search techniques to 

optimise the MPEG output, but it also gives the flexibility of producing an MPEG videostream 

that fits a particular bitrate for transmission purposes (such that the MPEG stream can be 

played in real-time down a particular link bandwidth) or that a particular media-size could hold 

a predetermined duration of digital video. This deterministic ability makes MPEG well-suited 

to these applications. 

Largely as a result of the macroblock searching process, MPEG is a highly asymmetric 

compression algorithm in that compression of a video sequence takes much more 

computation than its subsequent decompression. As the macroblock search engine increases 

in sophistication and complexity, the more asymmetric the implementation becomes. Although 

this makes MPEG1 unsuitable for real-time video editing and videoconferencing, it still makes 

it well suited for video distribution as the encoding step can be centralised where dedicated 

hardware can be employed to reduce encoding times. [TANENBAUM, 1996] 

Although encoding MPEG is much more intensive than simply decoding it, the playback of 

MPEG1 streams wasn't practical for software-only implementation until the advent of the 

Pentium Pro I Pentium-11 line of 80x86 CPUs -the decoder requirements were simply too 

great for lesser-specified machines. 

49 



Finally, MPEG1 is capable of taking a 472MB/sec video stream and producing VHS-quality 

video at the same resolution in just 1.2MB/sec. Although it cannot produce broadcast-quality 

video at this bitrate and resolution, its successor, MPEG2, is capable of broadcast-quality 

video at HDTV resolutions of 1920x1080. MPEG2 has other subtle improvements on MPEG1 

and remains backwards compatible with the original standard. 

2.5 Summary 

There are numerous data compression approaches but these can generally be categorised as 

generic or lossless content-specific or lossy content-specific. There are applications for each 

of these types, though lossy compression only works in practice where the algorithm has 

knowledge of the type of content being encoded and thus understands the types of data loss 

that can be tolerated by an application. 

Digital imaging and video are extremely demanding in terms of both storage space and also 

the bandwidth needed for their transmission, making them ideal candidates for data 

compression in order to alleviate these issues. Both images and video are presented to a 

viewer for perception using analogue methods, such as the human eye, and therefore also 

lend themselves well to content-specific lossy compression. Indeed, the challenges 

associated with both these forms of digital media necessitate more sophisticated content

specific techniques to minimise their impact. 

Both JPEG and MPEG are well-established lossy compression schemes in the fields of 

imaging and video, respectively, with MPEG drawing on the image-compression abilities of 

JPEG as part of its approach to video compression. Fractal methods, such as quadtree and 

IFS compression, have also been used to compress images and hold the possibilities of 

significant gains over more conventional lossy algorithms. Just as MPEG borrows from JPEG, 

it is certainly conceivable that video compression could be readily achieved using an 

algorithm that borrows from a fractal-based image compression method. 

50 



3.0 Fractal Video Compression 

3.1 Introduction 

There are a number of algorithms and techniques available to compress both still bitmap images 

and the sequences of such images that represent motion video. Many of the techniques used in 

the compression of single bitmap images -frames in terms of a digital video sequence - equally 

apply to the compression of motion video. 

Many modern video compression techniques take a 'two-step' approach to tackling the video 

compression problem: firstly, compress each frame using a high performance (in terms of both 

quality and storage reduction) image compression algorithm; secondly, exploit inter-frame 

similarities often inherent in motion video sequences to further increase the compression results. 

MPEG is the de-facto image compression technique being widely supported, innovative and 

highly efficient. MPEG builds heavily on the JPEG image compression standard and is perhaps 

the pioneering example of the two-step approach. Using a sequence of P-Frames (inter-frame 

differences with JPEG compression applied) with regularly interspersed 1-Frames (straightforward 

JPEG compressed frames), MPEG can achieve compression ratios of 100:1 whilst still delivering 

VHS-quality video performance. 

MJPEG (Motion-JPEG) however, is a much-simplified scheme that simply JPEG compresses 

each frame of the video sequence. The MPEG and JPEG algorithms together demonstrate both 

the usefulness of building upon existing image compression techniques and exploiting video's 

unique properties. Because MJPEG does not examine the inter-frame relationship, it clearly 

cannot deliver anywhere near the performance of MPEG, as each subsequent frame is subject to 

full JPEG compression on its entire contents. 

51 



3.2 Evaluation Criteria 

The focus of the research concerns the performance of industry-standard MPEG compression 

implementations compared to Fractal video compression techniques, specifically video 

compression techniques based on the quadtree Fractal image compression approach. 

Assessment criteria for this comparison include: 

i) Compression ratios: Theoretically the most crucial factor- the relative reduction in 

storage requirements for a standard frame-sequence whilst still delivering to a set visual 

quality threshold. 

ii) Encode and decode performance: The amount of computing time required to deliver a 

compressed encoded sequence (again, to a specific quality threshold) and similarly the 

computing time required to subsequently decode the compressed data and obtain the 

'original' video sequence. This should also include a comparison of how asymmetric the 

encode/decode functions are for each implementation of the algorithms. 

iii) Accuracy of the retrieved video sequence: the most powerful video compression 

algorithms, including MPEG, are lossy but aim to throw away the least useful data such 

that the quality of the resulting video sequence remains relatively low for the level of 

compression achieved. The fractal compression method will need to be assessed to 

determine how well it maintains image quality and integrity through the compression 

process 

iv) All comparisons with MPEG will naturally need to take place at the same resolution; this 

should be the native 320x240 resolution of MPEG1. 

All of the above factors will be affected by the computing time available for each method, i.e. 

increasing the complexity of the P-frame search method employed by the MPEG algorithm or the 

52 



depth of quadtree searching using the Fractal compression technique will increase the amount of 

processor time required to encode a given sequence. The visual accuracy thresholds for each 

algorithm will also affect compression ratios and encode performance - as the threshold for a 

search match increases, it becomes more likely that more fruitless searches/comparisons will 

take place per frame. This will potentially lead to increased storage requirements as more detail 

needs to be encoded to attain the threshold's requirements. 

Whilst MPEG also includes a method to compress the audio (MP3 - MPEG layer 3 audio 

[MPEG.COM]) that often accompanies a video sequence, i.e. in a film, etc., audio compression is 

a separate media compression research area and will not be handled as part of the fractal 

algorithm or this research. 

3.3 Algorithm Construction 

To aid in the comparison of Fractal video compression versus MPEG compression, it is 

necessary to devise an algorithm that uses a suitable Fractal image compression for its base 

whilst borrowing established video compression techniques from MPEG and others. The 

elements of the algorithm are as follows: 

3.3.1 Fractal Image Compression Technique 

The chosen Fractal image compression algorithm will form the core of the frame compression 

function. There are two principle Fractal compression techniques that could be employed here

quadtree-based compression or Iterated Function System (IFS) compression. However, the 

issues surrounding the Inverse Problem and the problems in the practical implementation of a 

suitably accurate metric makes IFS-based image compression difficult. Quadtree compression, 

however, is easy to implement and has a number of attractive properties, such as: 

53 



i) Finite Search Space - quadtree divides each target image into a series of squares 

(ranges) and attempts to map other square image sections (domains- these are 

twice the dimension of the ranges) onto these. The domain-pool is the collection of all 

domains that can map to a range -this pool is finite as each domain must be larger 

than a range (where a range contains 1 or more pixels); the domains can only map to 

a specific range through rotation and offset transformation together with fixed levels 

of brightness/contrast adjustments. 

The size of the transform search space (T) for a given range can therefore be 

calculated according to the following, where R is maximum number of ranges, D is 

the maximum number of domains, Q is a positive integer denoting the maximum 

depth of quadtree exploration and B & C are the maximum number of Contrast and 

Brightness changes that can be applied to a transformation. 

i. R = 4Q 

ii. D=(R/4) 

iii. T=DRBC 

As there is a maximum depth to which the quadtree can be explored and the number 

of ranges is finite for a finite image resolution, the search space is also finite and the 

algorithm is deterministic. 

ii) Storage efficiency - large image area can be covered in a single transformation whilst 

allowing other areas to be covered with a larger number of transforms in order to 

preserve visual detail. Transform mappings can be stored as follows for a given 

range: 

54 



a) Source Domain - either indexed from left to right throughout the image if a 

fixed size domain pool is employed or described by an x and y offset in the 

image 

b) Orientation- describes one of 4 possible rotations of a source domain (turns 

0°, 90°, 180°, 270°) 

c) Brightness/Contrast -describes the amount that each source domain has it's 

brightness/contrast increased or decreased by to fit a range 

d) Offset - The co-ordinates for the top left-hand pixel of a target range 

e) Depth -The depth of a range within the tree (and therefore the its 

dimensions) 

iii) Image rendering at a larger scale - the contractive nature of each transform (i.e. that 

each domain is twice the size of each range) give quadtree's their fractal properties 

and allows images to be arbitrarily scaled through the introduction of artificial fractal 

detail. The effect produced by such scaling is sometimes considered visually 

preferable to bilinear interpolation. 

iv) Metric - quadtree can use a variety of metrics, with the simplest implementation 

being a metric that, for every pixel in a target matrix, compares each pixel for the 

proposed mapping to that of the target pixel. The mapping with the lowest difference 

across all pixels has the best solution 'fitness'. Such a simple metric would not 

provide sufficient accuracy or relative distance to the true mapping solution to be 

useful in an IFS-based implementation. 

55 



Although it has drawbacks, basic quadtree fractal compression is a sensible choice to provide the 

image compression element of the algorithm as it is relatively easy to understand and implement. 

3.3.2 Inter-frame redundancy 

To compete with the successful and established MPEG standard, any new video compression 

algorithm needs to be able to calculate inter-frame redundancy and effectively eliminate the need 

to store this. Inter-frame redundancy and image compression are the two most important 

elements in digital video compression. 

The algorithm will borrow heavily from MPEG in that inter-frame redundancy will be calculated 

using separate process to that of the image compression, i.e. the fractal compression technique 

will not in itself be used to remove this redundancy and instead the system will follow MPEG's 

two-step approach to video compression. There is a possibility that a fractal compression 

algorithm could be used to carry out both of these vital two steps, this could be achieved by 

allowing contractive fractal mapping between two consecutive frames, that is inter-frame as well 

as intra-frame mappings. However this is outside of the scope of this study. 

The above inter-frame method should also retain the 1-Frames and P-Frames of MPEG, with 1-

Frames being subject to complete fractal compression and occurring at a predefined frame 

interval to both preserve the quality of the sequence by providing a complete verbatim 'baseline' 

frame periodically; to allow for rapid 'fast-forwarding' within the compressed sequence without 

incurring a large performance penalty in the decode element; to allow the sequence to be 

resumed at any point whilst being able to rebuild the select frame at that point accurately via the 

preceding 1-Frame. The frequency of 1-Frames is a compromise between the benefits that they 

offer- i.e. a quality reference frame that is only subject to image compression for both sequence 

quality integrity and also random access to the sequence itself- and to the fact that I-frames 

require more storage than P-Frames due to the fact that they do not exploit inter-frame 

56 



redundancy and therefore reduce the overall compression of the video sequence. 1-Frames are 

typically used at intervals of 0.5 or 1 seconds within an MPEG sequence and a 0.5 second 

frequency will be used for the fractal compression algorithm. 

It is intended that the inter-frame redundancy will be calculated by comparing the same 'domain' 

from two consecutive frames and then applying the same metric as used by the quadtree 

algorithm in order to determine whether that portion of the initial frame needs to be recorded in its 

successor. This will certainly allow for code re-use within the implementation and is the basis of 

MPEG's approach to this particular challenge, where the domains within quadtree compression 

are akin to the macroblocks in MPEG compression. 

3.3.3 Chrominance Compression and Colour Representation 

Both JPEG and MPEG exploit the human eye's higher response to luminance than chrominance, 

allowing them to achieve a 50% reduction in image data during this stage of the JPEG algorithm. 

The compression achieved during this discrete step within the JPEG algorithm would not only 

allow the fractal compression algorithm the same initial compression gains as seen in the MPEG 

implementation, it can also be used to allow the algorithm to compress colour images. 

To exploit the chrominance compression possible with YCbCr, JPEG averages blocks of 4 pixels 

in the 'Cb' and 'Cr' chrominance matrices to reduce them to 25% of their original size. When 

JPEG breaks up all three matrices (including the original size 'Y') into 8x8 matrices, there are 

50% less blocks to be compressed by the rest of the algorithm. The fractal compression algorithm 

must also take advantage of the matrix averaging step of JPEG but needs to ensure that this 

compression gain is not lost or reduced within the remainder of the algorithm. 

These gains can be retained by allowing the algorithm to compress matrices that are 25% of the 

target image size- i.e. the algorithm accepts the reduced size chrominance matrices natively and 

57 



the larger luminance matrix 'Y' itself is split into 4 matrices, each of which are the same size as 

their chrominance partners. This means that for a 640x480 resolution source image, the system 

would break this down into 6 320x240 matrices and compress each of these individually. This is 

shown in figure 3.3.3.1. 

480 

480 

Original Image (YCbCr) 
640 

Luminance (Y) 

640 

Chrominance (Cb) 

320 

320 

Chrominance (Cr) 

240 

240 

Figure 3.3.3.1: Breakdown of a 640x480x24 image into six 320x240x8 images 

The above approach has a number of benefits for quadtree compression: 

58 



i) It allows a full 24-bit 'true colour' image to be compressed using a series of 8-bit 

grayscale images, with the 50% data reduction being preserved due to the use of 6 

320x240 matrices rather than set of 12 

ii) The grayscale images themselves are easy to assess for fitness, as an 8-bit value 

assigned to a pixel directly corresponds to a grey value between 0 (black) and 255 

(white). For example, a pixel within a domain that is only 2 values (and accordingly, 

shades) away from that of the range will have a good fitness whilst if it was 46 shades 

away it would have a much poorer fitness. 

iii) The matrices that result from this process are sufficiently large to give a good sized 

domain pool, as an image's resolution decreases there are fewer domains available 

given a constant domain size. Statistically, more domains will help in finding better 

matches during the quadtree search process and quadtree performs much better when 

this is the case. 

3.4 Toolkit Requirements 

The implementation of the above algorithm will involve a number of tools, each performing a 

single element of the video compression algorithm. It is not the intention to produce a fully 

functioning 'black box' codec that simply from a raw video sequence to a fractal compressed 

sequence and vice-versa, rather each stage of the compression will be performed separately by 

the manual feed of one tool's results to another as input thus performing all the steps of the 

algorithm outlined above. As well as simplifying the implementation of the various steps involved, 

this approach also allows each step to be analysed independently. Parameters for fitness, 

range/domain sizes, etc., can be adjusted as appropriate. 

59 



Implementation of certain elements of the algorithm, such as the representation of colour through 

6 grayscale chrominance/luminance matrices, is not required ; rather the outlined theory can be 

demonstrated as a manual process using a 3rd -party photo processing package such as Adobe 

Photoshop. The most critical stages will be the two-step video compression process, and in 

particular the quadtree compression of both 1-Frames and P-Frames. 

Screenshots of the tools are shown in figures 3.4.1 - 3.4.3: 

.., Bot map Analysos Tool (Fractopoa) ~ 

!leta fr arne 1 goociJiock: • 
Frame943.1lrl1l !lela frame1 goociJiock: xro- vro-Frame944.1lrl1l !lela fr arne 1 goodblock: 

ReadB~map 

W~eB~map 

Read Secondary 

Figure 3.4.1: 

Frame945.brT1l !lela frame 1 00 goodbloo 

Rr-Frame946brT1J !lela frame1 00 goodbloo 
Frame947.1lrl1l !lela frame200 goodbloo 

Gr-Frame94B.bmp !lela frame300 goodbloo 

I 
Frame949.bfr1l deka frame400 

Br-Wr~eMal!ix Frame950.1lrl1l !lela frame500 good)loo 
Frame951.brT1J !lela frame600 good)loo 

I Frame952.brT1J deka frame700 good)loo Fiename: 
Read Matrix Set\41 0 llput !leta frameBOO good)loo 1Frame954 

II! ~e !I 
!lela fr~ goodbloo 
Frame 1 00. mat .=J 

Blocks used from Matrix 

E~ 

Save Blocks 

T olal Pixel Dl ferences T olallmage Blocks 

11 495096 

Quality Tlveshold Frnal Blocks from Ptinary 

1670 

Blocksize Fml Blocks from Secondar.l' 

1530 

dialog allowing conversion between standard uncompressed Windows .bmp files 
and the matrix files readable by the quadtree compression tool, and vice versa . 

60 



. ./. Untitlrd · Fralonlp ~~-, 

Edt- Ma1r1x ~ 

.. 
SnowTreesfJW .mat 
test.mat 

I pteben<h!J\o/. mat 

Ready l fii'l l .<! 

Figure 3.4.2: dialog showing matrix files being opened and read into fractal compression tool 

61 



Quadtrel! Compression ' 

Overolf'rogr:_ea: ____ _ 

Ready r--~ r ~ 

Figure 3.4.3: selected matrix undergoing compression within the tool itself. 

3.5 Summary 

The aim of this research is to understand how an algorithm to compress video using a fractal 

image compression technique can be implemented. This should involve the consideration of how 

to adapt other best-practice elements of established video compression algorithms to fit with this 

image compression method and how the resultant compression method compares in 

perfonnance, both in terms of quality and speed, to benchmark compression standards such as 

MPEG. In addition, some of the unique features enabled by fractal image compression , such as 

image scaling and the artificial detail creation involved in such a process can be examined to 

understand how well these behave in a video implementation. 

62 



4.0 Fractal Image Compression Tool 

4.1 Introduction 

This chapter covers the construction and acquisition of the two main software tools that have 

been used to investigate both the Fractal and conventional compression techniques 

researched during this work. It is intended to cover the development environments used for 

each software tool and the functionality of each of the tools and how these meet the testing 

requirements. 

4.2 Summary of Testing Requirements 

In order to evaluate the performance of fractal image compression techniques, and 

specifically quadtree-based covering techniques, when applied to video compression, the 

base requirement necessitates that a number of tools be developed, which together allow the 

compression of a 20-Matrix with an appropriate range of values for each element- e.g. 256 

levels of colour/luminance. These tools should also be able to cope with differing parameter 

sets to adjust the level of compression applied to an image (and generally, therefore, adjust 

the quality of the result). 

A summary of requirements is given below: 

i) Conversion of a standard picture format file (e.g. Windows Bitmap) to a 

matrix representation that can be handled by the rest of the toolset. The file 

format used should be itself be compression-free to avoid introducing other 

variables in the testing process. 

ii) Conversion of a matrix representation of an image to a standard file format. 

63 



iii) A tool that allows a user to open a matrix representing an image and apply 

fractal-based compression techniques to it. This tool should be able to save 

the results of these fractal transformations on the original image into the 

same matrix file format. In addition, the tool should also record the fractal 

transform set (as per fractal compression technique applied) that would be 

required to recreate the compression results -this set is effectively the 

compressed version of the original image. 

iv) A tool that allows the user to view a matrix representation for comparison 

between uncompressed and compressed images. 

v) A tool that allows the user to take the fractal compression set that has been 

generated as a result of the application of a particular fractal algorithm to an 

image and use this set to generate (i.e. render) an approximation of the 

original base image. This allows validation of the image compression tool's 

output and results. 

vi) The compression tool will need to be able to cope with a number of 

parameters being of a variable nature, such that different compression 

scenarios using the same base algorithm can be examined. These should 

include parameters such as the depth/size of a quadtree, or the dimensions 

of the tiles used to cover and image. 

vii) In a similar way to vi) above, the tools must also be able to feedback success 

factors for a compression run on an image. This should simply be the return 

of the best match/similarity value seen during the exploration of the fractal 

search space. This value will be calculated by the metric used to evaluate the 

level of similarity between source and target matrices/images. 

64 



viii) A number of the compression and other operations are likely to be compute

intensive. Development should be optimized and use a platform that can 

deliver the best performance and experience, especially given the large 

number of operations that will be required for meaningful analysis and 

comparison. 

4.3 System Environment Selection 

The first decision point in the project is to decide which operating system and which 

development system should be used to implement the system. The two main environment 

choices are UNIX/LINUX and 32-bit Windows (Windows 2000 I XP). However, since the vast 

majority of the development and computational work will be done on an Intel PC, it is likely 

that the choice will be between LINUX and WIN32. 

4.3.1 UNIX I LINUX 

UNIX has been around for a long time now, and as a result is very well supported. Despite the 

number of different incarnations available, essential features remain the same, making for a 

relatively consistent programming environment. Most of the university's high-end 

multiprocessor machines use this OS. 

The main problem with UNIX is the lack of fully integrated development environments (IDEs), 

which are essential for developing applications (especially image manipulation) for a 

windowing system. If such an IDE is not employed, there is a steep learning curve in terms of 

the development libraries for X-Windows programming. Apart from this, the lack of such 

programming tools makes it difficult to interactively debug the system, which would certainly 

be required with a system with a number of complex and recursive algorithms. A major 

advantage that UNIX does have is that it does provide a wide range of software tools, 

together with much more robust control of memory and processing resources that the 

Microsoft Windows line of OSs. This may be prove significant when a large number of large 

matrices are being stored and accessed during the use of these tools. 

65 



4.3.1.1 Advantages of UNIX I LINUX: 

i) Wide range of software tools 

ii) Robust Memory management 

iii) Access to multiprocessing machines 

4.3.1.2 Disadvantages of UNIX I LINUX: 

i) Limited development tools -fewer IDEs 

ii) Steep learning curve with X-Windows programming 

iii) Personal access to the university UNIX systems requires network connection 

4.3.2 Microsoft Windows (32-bit) 

The Microsoft Windows series of operating systems are the most popular operating systems 

for IBM compatible PCs. The family has been around since the mid-1980s, and has gained a 

large level of hardware and software support. 

There are a number of excellent programming environments available that are suited to the 

task of producing Windows based programs in an interactive 'visual' environment. Systems 

such as The Microsoft Visual Studio family of products offer visual programming in both C++ 

and structured basic languages. Visual C++ offers a full IDE with many software tools and 

supporting libraries. This environment has proved itself to be stable and has been widely 

accepted as an industry standard. There is also a level of consistency with Windows 

66 



programs, they all look and feel very similar- this is a big advantage when trying to make a 

system user friendly. 

4.3.2.1 Advantages of Windows 

i) Excellent development environments and tools, with good graphics handling routines 

ii) Widely used and supported 

iii) Consistency of user-interface approach 

4.3.2.2 Disadvantages of Windows 

i) Windows systems can be more unreliable than their UNIX/LINUX equivalents 

ii) Windows systems are generally less powerful than large UNIX machines 

4.3.3 Operating System Selection 

Despite the more mature and bullet-proof memory management ofthe UNIX environment, 

Windows has been used to develop the toolset for this investigation due to the consistency 

and maturity of the user interface and the quality of the Visual development environments. 

4.4 Tool Development Environment 

Whilst Windows supports a wide range of languages, it is really only sensible to consider the 

integrated visual systems as the tools used to within these investigations need to be able to 

display images and give on-screen feedback in order to meet the requirements set out above. 

A GUI for each tool will greatly aid its usability both in terms of carrying out various testing 

67 



operations and also for evaluating the relative success of these tests. The most widely 

available and adopted systems for Visual programming under WIN32 are Microsoft Visual 

Basic and Microsoft Visual C++. 

4.4.1 Visual Basic (VB) 

Visual Basic is a system for developing 32-bit Windows applications that are written in a 

BASIC style language, with various adaptations to use the various Windows features and 

functionality. Visual Basic is a popular development language and environment, mostly with 

beginners to Windows programming. It offers ease of use and rapid application development 

with reasonable tool support, including simple debug facilities. A big advantage of VB is the 

level of support for imaging operations and the availability of libraries that allow the developer 

to examine a bitmap at the pixel level. VB's major disadvantages are that it has relatively slow 

instruction execution speed, inflexible memory handling and severely limits the developer 

using more advanced features of the Windows system. 

4.4.2 Visual C++ (VC++) 

Visual C++ is a system for developing powerful 32-bit Windows applications. It includes a full 

featured yet easy to use IDE. It is based upon the standard C++ language, with Windows 

support automated by the Microsoft Foundation Class libraries (MFC). Visual C++'s high-end 

features include fast execution speed, dedicated processor support for the various 80x86 

instruction sets, an excellent toolset and extremely powerful interactive debug, full WIN32 API 

support and the ease of MFC based Windows development. 

With Visual C++ being supporting ANSI C++, any massively processor intensive code can be 

developed under UNIX on C++ where greater computer power is available in order to fully 

develop and optimize algorithms. Once the code is running at a reasonable speed then it can 

be ported back to VC and a standalone PC and integrated into the system. The major 

disadvantages of Visual C++ are that it is generally more complex than other visual 

68 



environments and it can be difficult to integrate external ActiveX and other modules into the 

environment. 

4.4.3 System and Language Selection 

Visual C++ is the obvious choice for building a software tool that runs compute-intensive 

algorithms and needs to work on large data structures, as necessitated by image processing 

and the large matrices required to store and contrast the various images used during the 

compression processes. Fast execution is crucial to a system that performs a great deal of 

repetitive processing whilst the excellent low-level functionality and environment will not 

restrict development or final functionality. The excellent debugging facilities will be crucial to 

developing a system that aims to explore the boundaries of such an abstract concept. 

However, Visual C++ suffers in the its support for bitmap images - specifically in terms of 

reading these into a data structure where they can be processed rather than just displayed. 

To resolve this issue, two software tools have been constructed- the first dealing primarily 

with the image processing tasks and generation of a simplified matrix for subsequent 

processing -this tool has been developed in Visual Basic. The second tool will take the 

matrix output from the first tool and perform the compression and analysis on it. This second 

tool, which is the primary computational tool, has been developed using Visual C++. 

4.5 Developed Software Tools and Functionality 

Two software tools have been developed to support this project: 

4.5.1 Fractopia Compression Tool (FCT) 

FCT is the primary investigative tool and performs the actual compression functions and 

results to the user. The tool is GUI based and is built in Visual C++ using both MFC and 

custom-built classes, supporting the following features: 

69 



i) Matrix support for 320 x 240 images using 256 distinct levels, thus allowing an 

8bit grayscale quarter-VGA image to be processed. 

ii) User load/save of Fractopia Matrix format image matrices (*.mat files) into the 

system via Windows file browser. 

iii) GUI driver queries on matrix content, including value interrogation at (x, y); value 

change/set at (x, y); randomization of matrix content; sum of all matrix elements. 

iv) A simplified image-comparison metric implementation based on gray-level 

comparison for each matrix element. 

v) Quadtree compression of current matrix state results in quadtree representation 

of matrix, matrix output of that representation and output of the metric of similarity 

between quadtree-generated and original images (*.fmf files). 

vi) IFS compression using Evolutionary Programming techniques. The function 

simply returns the metric from the comparison between the original image and 

best IFS EP solution. 

4.5.2 Fractopia Bitmap Analysis and Render Tool (FBART) 

FBART allows QVGA 8-bit standard bitmap images (Windows Bitmap files) to be converted to 

an ASCII matrix representation for processing by the FCT. This tool is GUI based and has 

been built in Visual Basic to take advantage of the image manipulation libraries available. 

FBART supports the following features: 

i) Viewing of Windows Bitmap (.bmp) files 

70 



ii) Viewing of Fractopia Matrix files (.mat) files 

iii) Bi-directional conversion between .mat and .bmp file formats 

iv) RGB value interrogation of both file formats 

v) Quadtree render of a Fractopia compressed image (.fmf) file to the screen 

4.6 Data Structures 

The primary data object employed by the Fractopia Compression Tool is an 8-bits per pixel 

bitmap image. A bitmap is simply a matrix, where the value of each element holds a colour 

(from a predefined palette) or luminance value (in the case of a grayscale image, which is the 

image type used by FCT). 

Arrays are the most commonly used data structure to store matrices and bitmap images 

[AHO, 1987], specifically in a bitmap where the [x,y] position of an array element exactly 

corresponds to the relative {x,y) screen position of a pixel -each element of the matrix 

represents a pixel (picture element). The luminance value held at the specified array location, 

therefore, is the value for the corresponding pixel. Allowing 8 bits of storage as an integer 

[LIPPMAN, 1991] per array element allows for 28 = 256 distinct luminance values to be 

stored. This concept is demonstrated in figure 4.6.1, where the matrix representation of a 

bitmapped image has the corresponding grayscales overlaid in accordance with each 

element's value: 

71 



o I o 
~ 0 

0 0 64 

0 64 64 

0 0 64 

0 

0 

0 0 0 0 64 
_l 1 _.___._ _ _J__ 

Figure 4.6.1 - 20 matrix representation of a bitmap image 

In this instance, an 8x8x8 (8x8 pixels, 8 bits per pixel) bitmap image is being stored. Whilst it 

is possible to store the bitmap matrix using a linked-list, this would only be beneficial if it had a 

large proportion of zero-elements within the matrix. As each element of the list data structure 

would need to store four values- the luminance value; the x coordinate; they coordinate; and 

finally the pointer to the next list element, the potential for memory savings using the linked-

list model would soon evaporate. A 2-dimensional array's inherent matrix structure negates 

the need to store x andy coordinates for a pixel. 

An array also lends itself to representing a bitmap because: 

i) Read/update operations on the matrix- since the matrix elements directly relate 

to the image elements, the functions that read and write these elements do not 

have to traverse a list or perform any algorithmic work to map the data structure 

to the real-world object. 

ii) Data structure definition -with the FCT tool, it is known from the outset that there 

is a need to handle a 320x240x8bit bitmap image. Therefore, it is possible to 

define the array at the outset in the knowledge that the size of this data-structure 

does not need to change. 

72 



4. 7 Computational Performance 

An important factor in compression algorithm performance is the amount of computation time 

required to encode an image into the compressed state. Compression time is significant for a 

number of reasons. If a compression method required significantly more computational time 

than other, established, methods then it is less likely to gain mainstream acceptance. If a 

compression method is computationally intensive then the number of devices that are able to 

use it will be reduced- e.g. low power embedded devices may not have sufficient computing 

performance to implement the algorithm. 

The developed quadtree compression tools can routinely compress an image in 

approximately 5 minutes on a 2.8GHz Intel P4 computer and uses less that 5 megabytes of 

RAM including the GUI. Whilst a reasonable performance in terms of fractal compression, it's 

important to bear in mind that the equivalent JPEG routine will take less than 2 seconds on 

the same hardware. Improvements to the performance of the algorithm as part of a future 

development strategy will be explore in chapter 6. 

4.8 Summary 

Two software tools are to be developed under the Win32 environment to handle all aspects of 

image format conversion, fractal compression/decompression and subsequent analysis. The 

fractal compression aspect is likely to be the most computationally intensive and as such will 

be written in Visual C++, whilst internal image representation will utilize an 2-dimensional 

array. 

Two tools will be developed- the Fractopia Compression Tool will handle the compression of 

bitmap images using the quadtree algorithm, whilst the Fractopia Bitmap Analysis and Render 

Tool will allow for image compression and analysis of fitness of compresses images 

compared with the originals. 

73 



5.0 Evaluation of Quadtree Image Compression 

The performance of the quadtree image compression element of the system under evaluation is 

critical, as this stage is responsible for the removal of spatial redundancy. The following section 

presents the results of applying the quadtree compression to a selection of six non-sequential 

images, selected according to their differing characteristics. The performance of the quadtree 

algorithm is evaluated according to the following criteria: 

i) Perceived Image Quality- How similar is the compressed image to the original target 

image? 

ii) Calculated Pixel Shading Difference- a total of the difference in greyscale value for each 

pixel in the compressed image when compared to the original target pixel in the source 

image. The greater the difference between a source pixel and the corresponding pixel on 

the compressed image then the poorer the match and visual appearance. The image is 

judged on the total of the difference for each and every pixel. 

iii) Storage Size and Compression Ratio - how much storage space is required to store the 

compressed image and the ratio of this space compared to that required for the original 

image. A single greyscale 320 x 200 image occupies 64kilobytes uncompressed. 

iv) JPEG Comparison -how well do the quadtree images compare to a JPEG compression 

of the original source image, taking the storage requirements and compression ratio of 

each into account. 

Subsequently, the compression characteristics of three of these six images are subject to further 

analysis in terms of the relationship between the quality of the compressed image and the level of 

compression achieved. 

74 



5.1 Trial Images 

The following set of digital images was used as they each highlight certain aspects of fractal 

compression and the associated challenges. 

5.1.1 Image 1- "Jan" 

Figure 5.1.1 is a grayscale image of a Spaniel dog against a background of strewn fallen leaves. 

The compression characteristics of this image are that it appears to have a large degree of self

similarity - the fur of the dog is of a very regular texture as is the collage of leaves that forms the 

background. The image does, however, have a relatively high level of detail in the foreground 

subject as well as exhibiting high levels of contrast on areas that are similarly textured in 

appearance. 

5.1.2 Image 2 - "Prebend's Bridge" 

Figure 5.1.2 is a grayscale image of Prebend's Bridge in Durham. The image has trees that 

partially obscure the view and also a large amount of white sky. This has resulted in an image 

with very high levels of contrast, with the trees rendered as very dark levels and the sky as 

practically white level greyscales. The bridge itself is present as mid-tone grayscale. 

5.1.3 Image 3 - "Snow Trees" 

Figure 5.1.3 is a grayscale image of a winter snow scene. Unlike the previous two images, the 

image doesn't present highly contrasting areas but does instead exhibit a larger amount of mid

tone grayscale together with lots of fine details in the branches of the trees. However, there is 

also a degree of self-similarity present in both the clear sky and foreground areas of the image. 

75 



5.1.4 Image 4 - "River Wear'' 

Figure 5.1.4 is a greyscale image of the River Wear in Durham. The image shows moderate 

levels of detail in the trees along the river's banks but these aren't as great as those shown in 

Image 3. However, this image is notable for being comprised almost entirely of mid-tones and 

that these are distributed in four horizontal 'stripes'. 

5.1.5 Image 5 - "Match" 

Figure 5.1.5 is a grayscale image of an igniting match. Contrast levels here are very high, with the 

black background and white foreground flame burst, making it almost monochromatic. The image 

is interesting in that such a large proportion of it is comprised of black, as such it could be 

expected that this image would compress well using RLE-type compression schemes. 

5.1.6 Image 6 - "Sparrow" 

Figure 5.1.6 is a grayscale image of a common sparrow perched upon a fence. The image itself is 

very sharp in that it has excellent edge definition and the background of the image has been 

blurred, causing the subject to stand out. Both the foreground and background of this image are 

interesting - the background is devoid of any focus and does instead have a number of gradients 

from dark to light spread across it; the foreground sparrow has a lot of detail on its head and 

breast, with much of this detail being regular. The fence railing also has good regularised 

texturing. Although this image is highly detailed, there is a lot of self-similarity in the detailed 

areas of the image. 

76 



5.2 Compression Technique 

Each of the six images has undergone quadtree compression using the developed software, with 

initial 8x8 pixel blocks at the root of the tree, and being allowed to descend to 4x4 pixel blocks 

and finally 2x2 pixel blocks. At each level of the quadtree, the number of successful NxN covers 

was recorded. The fitness function allows a total margin of error to exist within a given block and 

this error is defined as the total of a block's individual pixel's (in the compressed image) variation 

from the equivalent pixel in the original image. In other words, if a 2x2 pixel block comprising 4 

pixels total has an fitness error of 17 then, on average, each pixel in that block is just 4.25 linear 

greyscale shades away from their original image values. In order to make fitness error levels 

comparable across differing matrix sizes, the basic fitness value applies to a standard 2x2 block 

and is extrapolated when dealing with larger sizes- e.g. effectively 120 error level are allowed in 

a 4x4 block because it compromised 4 discreet 2x2 blocks (with an allowance of 30 each). The 

higher the fitness error value, the more tolerant of image quality loss the fitness evaluation 

function becomes. 

77 



Figure 5.1.1 : Image 1 "Jan" (Original) 

Figure 5.1.2: Image 2 "Prebend's Bridge" (Original) 

/ 

Figure 5.1.3: Image 3 "Snowtrees" (Original) 

78 



Figure 5.1.4: Image 4 "River Wear" (Original) 

Figure 5.1.5: Image 5 "Match" (Original) 

79 



5.3 Compression Results at Fitness 30 

Figures 5.3.1 -5.3.6 contain all six trial images when a fitness level of 30 has been applied to the 

quadtree compression, these should be compared with the original six images shown in figures 

5.1.1-5.1 .6. A fitness level of 30 means that in each 8x8 block, the sum of all the pixel value 

errors must not exceed 30 at a given level of the quadtree. This level was picked as initial results 

indicated it offered a good balance of image quality and compression level for a direct 

comparison with other compression techniques - results presented later in this chapter include 

images compressed with fitness levels between 7 and 120. Clearly a higher fitness 

level/tolerance is more forgiving of image errors whilst conversely with a lower tolerance. The 

filesize results obtained from the compression are shown in figures 5.3.7 and 5.3.8. 

Figure 5.3.1 : Image 1 "Jan" with QT compression applied (fitness 30) 

80 



Figure 5.3.2: Image 2 "Prebend's Bridge" with QT compression applied (fitness 30) 

Trial Version 

............. 
Figure 5.3.3: Image 3 "Snowtrees" with QT compression applied (fitness 30) 

Figure 5.3.4: Image 4 "River Weir" " with QT compression applied (fitness 30) 

81 



Figure 5.3.5: Image 5 "Match" with QT compression applied (fitness 30) 

Image 
1 
2 
3 
4 
5 
6 

Filesize (Kilobytes) 
32.53 
26.96 
27.92 
11.86 
6.27 
7.82 

Figure 5.3.7: Table of filesizes for each image when QT compressed at fitness 30 

82 



60.00 

50.00 

• 40.00 

i 
.2 
ii 30.00 

20.00 

10.00 

0 .00 
Imagel Image2 

Fileslzes @ 30 Fitness 

Image3 Image4 ImageS Image6 

• Compressed 

• original 

Figure 5.3.8: Filesizes for each image versus the original uncompressed size 

5.4 Blocksize 'Levels' and Resultant Filesize 

It can be seen that there is a large degree of variation in the quadtree compression 

characteristics and the resultant filesizes for the six selected images. Given an initial filesize for 

each (uncompressed) of 64 kilobytes, the least compression for the static fitness is shown in 

image 1, with just under 2:1 compression achieved, whilst the best is displayed in image 6, with 

just over 10:1 compression. There is also a large difference in terms of the construction of the six 

images from blocks at each of the 3 layers of the quadtree. Image 5, at this fitness level, can be 

almost completely represented at the top layer of the tree - 8x8 pixel blocks - whilst image 1 

hardly contains any of these 8x8 pixel blocks. 

In quadtree compression, the resultant compressed image is stored as a series of transforms. If 

an image can be adequately represented using larger blocks of pixels per transform, then fewer 

transforms are required to store the entire image and this results in a smaller filesize. With 

reference to figure 5.4.1, this can clearly be seen with image 5, where we see that most of the 

83 



image is using the largest blocksize allowed - 8x8. Conversely, image 1 requires smaller block 

sizes to match the fitness criteria and therefore requires many more transforms to store all the 

2x2 block mappings, resulting in significantly less compression. 

Comparing the figures 5.3.7 (filesize) and 5.4.1 (block construction) side-by-side shows the 

expected correlation between a compressed image's quadtree blocksize distribution and the 

resultant filesize. However, in images 2 and 3 it can be seen that although image 3 uses more 

8x8 blocks in its compressed representation that image 2, it has a larger compressed filesize. 

This is clearly because image 2 comprises a larger number of 4x4 blocks that image 3. Image 3 

relies on the largest number of 2x2 blocks of any of the images to represent some of its finer 

details and this has more than offset the levels of BxB blocks present. 

Block Construction of Images 0 30 Fitness 

100% 

90% 
!! 
0 
~ • 80% ! 
~ ... 
I 70% 

i ... 
60% 0 

1'1 

0 
• 50% 
"i 
M 
ii: .. 40% 
ca • E .. 

30% .. c • j! 
i 20% 
c 
8 

10% 

0% 
Image1 Image2 Image3 Image4 ImageS 

Image 
Image6 

2x2 Blocks 
• 4x4 Blocks 
• axa Blocks 

Figure 5.4.1: The percentage of each image's construction from each of the 3 block sizes used 

84 



5.5 Fitness 

Although it is extremely useful to compare the original and compressed variants of an image by 

trying to observe differences - indeed passing this test sufficiently well is the final aim of an 

image compression method - it is also useful to perform a more structured and less subjective 

fitness analysis. 

Using our quadtree method, the 2x2 block stage is the final stage to represent areas that could 

not be covered adequately by the previous 8x8 and 4x4 stages. Therefore, the fitness 

assessment function has not been used at this final stage to assess whether that stage's best 

coverage solution for an area is good enough. It is useful, therefore, to compare the fitness of an 

entire compressed image to that of the original and use this to help us determine how successful 

the compression has been on each of the six trial images. The table in figure 5.5.1 shows the 

fitness result for each of the six images compressed using fitness 30. 

Image Total Pixel Shade Errors Mean Error Shade I Pixel 
1 531175 8.30 
2 1471045 22.99 
3 1253921 19.59 
4 439122 6.86 
5 366536 5.73 
6 403473 6.30 

Figure 5.5.1 - Calculated fitness across the six quadtree-compressed images 

The table shows that, at fitness 30, we see relatively consistent performance for four of our six 

images, and that the similarity compared to their originals is high -on average, each pixel differs 

by just 6 linear greyscales when compared to the original. However, images 2 and 3 show 

significantly higher levels of error when compared to the originals. This could be for a number of 

reasons: 

i) Referring back to figure 5.4.1, neither image 2 nor image 3 are using 2x2 blocks (the 

last stage of the quadtree) for greater than 50% of their construction. It is possible, 

85 



therefore, that there is an issue with the fitness function that is stopping problem 

areas within the image being passed down to lower levels of the quadtree. 

ii) That the images are not exhibiting sufficient levels of self-similarity to perform well in 

the quadtree compression algorithm. This would mean that although problem areas 

are being passed to lower levels of the quadtree, even the 2x2 block level cannot 

represent these areas sufficiently well to result in a high fitness result. 

5.5.1 Fitness Issues with Images 2 and 3 

If it were the case that problem (i) was the cause of the poor results with images 2 and 3 then it 

would be reasonable to expect that an image compressed using just the 2x2 level of the quadtree 

would also give a poor result. It would also be reasonable to expect that when the images were 

compressed with a more stringent intra-level frtness value would also exhibit these consistently 

poor results. It is worth noting that the mean error per pixel rate for both images is higher than 

that permitted by a fitness level of 30 in that the quadtree fitness function. Such a fitness level 

would only allow a total of 30 pixel errors across a 2x2 block, or approx 7.5 per pixel. This 

suggests that problem areas within both of these images are indeed reaching the lowest 2x2 

block levels of the quadtree but even then are exhibiting low-fitness representation and therefore 

points to the cause being problem (ii). Once compressed using more stringent fitness levels of 15 

and 7, together with using a 2x2 block pattern exclusively, image 3 gives the results in figure 

5.5.1.1. 

QT Fitness Total Pixel Shade Errors Avg. Error Shade I Pixel 
30 1253921 19.59 
15 1251683 19.56 

7 1250310 19.54 
N/A (2x2 only) 1216246 19.00 
Figure 5.5.1.1 - compression results for image 3 at higher fitness levels and 2x2 only 

86 



It can be seen that the quality of the compressed image 3 does not improve at more stringent 

fitness levels and when compressed solely at the 2x2 block layer there is not significant reduction 

in the level of average pixel error. This suggests that, using this implementation at least, images 2 

and 3 do not compress favourably using the quadtree process. 

5.6 Analysis of Images at Different Fitness 

Although we have examined all six trial images at a fitness level of 30, it is important to 

investigate how image quality and the level of compression achieved varies with more and less 

stringent fitness levels in the quadtree compression. For this investigation, rather than examine all 

six images, images 1, 3 and 6 have been selected. Image 1 is interesting because, at a fitness 

level of 30, hardly any 8x8 blocks are used in its construction {see figure 5.4.1), suggesting that 

image quality would fall off markedly should a larger proportion of 8x8 blocks be used in its 

construction. Image 3 is interesting due to the discussion above- it is one of two images from the 

six originals that do not appear to perform well at fitness 30 and below. Finally, image 6 can be 

seen to be a highly detailed image yet delivers a very high level of compression at fitness level 30 

and manages to use a large proportion of 8x8 blocks in its construction. 

5.6.1 Compression Results at Varying Fitness 

Figures 5.6.1.1 - 5.6.1.3 give the statistical results for images 1,3 and 6 at five fitness levels- 7, 

15, 30, 60 and 120. Figures 5.6.1.4-5.6.1.18 illustrate images 1 ,3 and 6 at these compression 

levels and also include the original image for reference. 

Threshold 
7 
15 
30 
60 
120 

Filesize 
52.1 
49.25 
32.53 
10.21 
5.12 

Ratio 
1.23 
1.30 
1.97 
6.27 
12.50 

Error /Pixel 
6.48 
6.68 
8.30 
17.02 
23.86 

Figure 5.6.1.1 - Image 1 's compression results at varying quadtree fitness levels 

87 



Thresh oDd Filesize Ratio Error/Pixel 
7 35.82 1.79 19.54 
15 34.35 1.86 19.56 
30 27.92 2.29 19.59 
60 12.55 5.10 19.74 
120 5.34 11.99 20.16 

Figure 5.6.1.2 -Image 3's compression results at varying quadtree fitness levels 

Threshold 
7 
15 
30 
60 
120 

Filesize 
17.51 
14.48 
7.82 
5.13 
5.12 

Ratio 
3.66 
4.42 
8.18 
12.48 
12.50 

Figure 5.6.1.3 - Image 6's compression results at varying quadtree fitness levels 

Error/Pixel 
5.18 
5.39 
6.30 
7.59 
8.14 

The results show that image 1 has the lowest compression levels at 30 fitness, although these do 

improve to match those of image 3 at fitness levels greater than 30, though this comes at the 

expense of fitness compared to the original image. Image 6 exhibits excellent compression levels 

at all fitness levels, together with consistently low fitness scores. 

In addition to the above results, generated by application of a fitness function to the compressed 

image in comparison to the original, it is obviously important that a compressed image, when 

viewed by the human eye, appears as close to the original image as possible. Whilst this is 

clearly a subjective test, a lossy compression algorithm aims to maximise compression whilst 

minimising the impact to the perceived image quality- as shown previously, this is often at the 

expense of technical accuracy as minor variations in the image are difficult to detect. The 

compression results for images 1, 3 and 6 that complement those in the tables in figure 5.6.1.1 -

5.6.1.3 are given in figures 5.6.1.4 - 5.6.1.18. 

88 



Figure 5.6.1.4: Image 1 "Jan" with QT compression applied (fitness 7) 

Figure 5.6.1.5: Image 1 "Jan" with QT compression applied (fitness 15) 

Figure 5.6.1.6: Image 1 "Jan" with QT compression applied (fitness 30) 

89 



Figure 5.6.1.7: Image 1 "Jan" with QT compression applied (fitness 60) 

Figure 5.6.1.8: Image 1 "Jan" with QT compression applied (fitness 120) 

Figure 5.6.1.9: Image 3 "Snowtrees" with QT compression applied (fitness 7) 

90 



Figure 5.6.1.1 0: Image 3 "Snowtrees" with QT compression applied (fitness 15) 

Figure 5.6.1.11 : Image 3 "Snowtrees" with QT compression applied (fitness 30) 

Figure 5.6.1.12: Image 3 "Snowtrees" with QT compression applied (fitness 60) 

91 



Figure 5.6.1.13: Image 3 "Snowtrees" with QT compression applied (fitness 120) 

92 



Figure 5.6.1.17: Image 6 "Sparrow" with QT compression applied (fitness 60) 

Figure 5.6.1.18: Image 6 "Sparrow" with QT compression applied 

93 



Image 1 's results for fitness levels 7 and 15 compare very favourable with the original bitmap -

there seems to good preservation of detail and toning. At fitness level 30, it is clear that there is a 

slight loss of detail around both the dog's fur and on the leaves in the background. There is also a 

slight compression in tonal representation, especially in the darker areas of the image. Fitness 

level 60, therefore, leads to a further drop in visual quality and areas of the dog are starting to get 

lost amongst the background. At fitness level120, the quadtree compression has resulted a 

mosaic-like approach due to the prevalence of 8x8 blocks within the image and it is just about 

possible to make out the image subject. 

With fitness level 7 for image 3, the one thing that is noticeable when compared to the original 

image is the tonal compression in both the sky and the foreground snow areas - it is possible to 

see the tonal steps in these areas rather than the continuous tone appearance of the original. 

Apart from this, fitness level 7 offers a very good representation of the original. The same tonal 

compression appears in fitness level 15 but again, this image is otherwise visually very similar to 

the original. Fitness level 30, as with image 1 above, is when we start to see deterioration in the 

detail within the compressed image. Some of the branches that hang down from the tree in the 

top of the frame are omitted and the area immediately below the fence has lost detail. Although 

the rendering of the trees continues to be good, the left-hand trees are beginning to show 

blockiness in their branch details. Fitness level 60 has exacerbated the issues seen with fitness 

level 30 both in terms of detail loss and visible blocks appearing in the tree branch areas of the 

image. Finally, fitness level 120 has even less detail and more blockiness, though it is possible to 

make out the nature of the image itself. 

In terms of compression results for image 6, fitness level 7 has again deliver a very good quality 

image, albeit with compressed tonal representation in areas with gradients. It is notable that the 

image doesn't appear as sharp and well defined as the original although it remains a very good 

likeness. Once again, there is little to separate fitness level15 from 7. Fitness level 30 sees the 

introduction of the trademark blocks in the breast of the sparrow, though these aren't too severe. 

94 



Fitness level 60 is just sufficiently good to identify the nature of the subject through the increased 

blockiness whilst fitness level 120 offers quite a poor rendition of the original image. 

Overall, the quality of the quadtree compressed images is reasonable, with frtness levels 7 and 

15 offering good image quality at the expense of compression; fitness levels 60 and 120 offering 

higher compression but much reduced image quality and fitness level 30 being an compromise 

between the two extremes. It is also interesting to observe that, despite the higher pixel shading 

error counts seen in image 3, the visual appearance when compared to the original image is 

extremely favourable. 

5.6.2 Changes in Blocksize Distribution at Different Fitness Levels 

In the original assessment of all six of the trial images, figure 5.4.1 showed the construction of 

each of the compressed images in terms of the 3 block sizes /levels of the quadtree. Figures 

5.6.2.1 - 5.6.2.3 show the quadtree construction (by number of pixels represented by particular 

block sizes) for image 1, 3 and 6 respectively. 

These three charts illustrate a marked difference in characteristics between the three images. 

Image 1 makes heavy use of 2x2 blocks for all but fitness levels 60 and 120, and makes good 

use of 4x4 blocks at the expense of some 2x2 blocks at fitness levels 30 and 60. Image 3 uses 

less 2x2 blocks that image, apart from in the cases of fitness levels 60 and 120, where image 1 

actually uses less. Image 6 makes very heavy use of 8x8 blocks, even at fitness level 7 nearly 

75% of pixels in the compressed image are represented in this way. In some ways, Image 3 

behaves as a happy medium between images 1 and 6, although it is important to remember that 

image 3's pixel error levels remain high throughout. 

95 



10.0% 

90% 

80% 

• 70% 

~ 
A. 60% • II' • E 50% .. 
~ • ;! 40% 
iii c 
0 
u 30% 

20% 

10% 

0% 

Block Construction of Image 1 at Various Thresholds 

7 .5 15 30 60 

Fitness Threshold 

120 

2x2 Blocks 
• 4x4 Blocks 
• 8xB Blocks 

Figure 5.6.2.1: Construction of Image 1 from each of the 3 block sizes at different fitness levels 

100% 

90% 

80% 

• 70% 
li 
I( 

a: 
• 60% 

r 
E 

50% .. .. 
c • 
~ 40% 
~ c 
0 
u 30% 

20% 

10% 

0% 
7 .5 

Block Construction of Image 3 at Various Thresholds 

15 30 60 

Fitness Threshold 

120 

2x2 Blocks 
• 4x4 Blocks 
• 8x8 Blocks 

Figure 5.6.2.2: Construction of Image 3 from each of the 3 block sizes at different fitness levels 

96 



• 'i 
)( 

ii .. 
r 
E ... .. c • B 
i c 
0 u 

100% 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

0% 
7 .5 

Block Construction of Image 6 at Various Thresholds 

15 30 60 

Fitness Threshold 

120 

2x2 Blocks 
• 4x4 Blocks 

• sxs Blocks 

Figure 5.6.2.3: Construction of Image 6 from each of the 3 block sizes at different fitness 
levels 

Image 6's domination by 8x8 blocks, and the fact that both fitness levels 60 and 120 produce 

effectively the same result in terms of quadtree block distribution, suggests that this image would 

benefit from a large blocksize being available as the root of the quadtree- perhaps 16x16 and 

possibly 32x32 pixel blocks. 

It is also interesting to note that, as fitness tolerance to error increases, the usage of 4x4 blocks 

by the three images at first increases and then decreases, whilst the usage of 2x2 blocks 

decreases continually, as does the usage of 8x8 blocks. The likely reasoning for this is that at 

first, the fitness level demanded is very high and as such the majority of pixels are likely to use 

2x2 blocks -those that do not may well represent block colour areas and as such 8x8 blocks will 

still produce good results. However, as the fitness criteria become more tolerant of pixel error, 

more blocks that used to be only satisfied at the 2x2 block level can be represented by 4x4 blocks 

more efficiently, hence the redistribution towards the middle level of the tree. Finally, when the 

fitness criteria become highly tolerant of error, nearly all blocks can be presented by the root 8x8 

97 



block level and as such relatively few areas require either 2x2 or 4x4 block representation. This 

can be seen in the block distribution charts for images 1,3 and 6 shown in figures 5.6.2.4-

5.6.2.6. 

Image 1 - Block Type vs Fitness Threshold 

18000 

16000 

14000 

12000 

ll 10000 -+- 8x8 Blocks 
u 
.S! --- 4x4 Blocks 
Ill 8000 2x2 Blocks 

6000 

4000 

2000 

0 
7.5 15 30 60 120 

Fitness Threshold 

Figure 5.6.2.4: Block distribution at each fitness level for Image 1 

Click here to add Image 3 - Block Type vs Fitness Thresholdtltle 

12000 

10000 

8000 

• .>1 -+- 8x8 Blocks 
u 6000 0 --- 4x4 Blocks 
ii 2x2 Blocks 

4000 

2000 

0 
7.5 15 30 60 120 

Fitness Threshold 

Figure 5.6.2.5: Block distribution at each fitness level for Image 3 

98 



4500 

4000 

3500 

3000 

~ 2500 
u 
0 

ii 2000 

1500 

1000 

500 

0 
7 .5 

Image 6 - Block Type vs Fitness Threshold 

• ..... 

15 30 60 

Fitness Threshold 

• 

120 

-- 8x8 Blocks 
..... 4x4Biocks 

2x2 Blocks 

Figure 5.6.2.6: Block distribution at each fitness level for Image 6 

5.7 Comparison with JPEG 

In order to allow comparison between the popular and established JPEG compression standard 

and the quadtree algorithm, images 1, 3 and 6 were also compressed using JPEG at different 

quality/fitness levels. Although these fitness levels aren't directly comparable to those used during 

the quadtree process, they do serve to show the spectrum of quality versus compression levels 

achievable with a standard JPEG implementation. Just as with the fitness levels for quadtree, 

high JPEG fitness levels increase the tolerance of the lossy compression system and deliver 

lower image quality as a result. Figures 5.7.1 - 5.7.3 contain the results in terms of fitness and 

filesize for different levels of JPEG compression applied to Images 1, 3 and 6. Comparisons in 

the performance in terms of image quality (fitness) and compression levels (filesize) between 

JPEG and quadtree for all three images are given in the charts in figures 5.7.4 - 5.7.6. When 

analysing the charts, it should be noted that smaller values represent higher algorithm 

performance for both fitness and filesize. 

99 



40 

20 

10 

0 

JPEG Level 
1 
25 
50 
75 
100 

Filesize 
56 
20 
12 
8 
4 

Total Pixel Errors 
17222 
392076 
524107 
666168 
1558717 

Errors I Pixel 
0.26 
6.12 
8.18 
10.40 
24.35 

Figure 5.7.1 JPEG Compression Results for Image 1 

JPEG Level 
1 
25 
50 
75 
100 

Filesize 
40 
16 
12 
8 
4 

Total Pixel Errors 
5892 
277896 
458284 
599279 
1303789 

Errors I Pixel 
0.09 
4.34 
7.16 
9.36 
20.37 

Figure 5.7.2 JPEG Compression Results for Image 3 

JPEG Level 
1 
25 
50 
75 
100 

Filesize 
28 
8 
8 
4 
4 

Total Pixel Errors 
15098 
114629 
156376 
221002 
819249 

Errors/Pixel 
0.23 
1.79 
2.44 
3.45 
12.80 

Figure 5.7.3 JPEG Compression Results for Image 6 

Comparison of JPEG and QT for Image 1 

• JPEG Fitness 
• Quadtree Fitness 

----------1 JPEG Filesize 

• Quadtree Filesize 

JPEG 1 vs QT 7 JPEG 25 VS QT 15 JPEG 50 vs QT 30 JPEG 75 vs QT 60 JPEG 100 vs QT 120 

Figure 5.7.4: Comparison of JPEG and QT for Image 1 

100 



40 

35 

30 

= 25 

1 
ii: 20 

15 

10 

5 

0 
JPEG 1 vs QT 7 

JPEG 1 vs QT 7 

Comparison of lPEG and QT for Image 3 

JPEG 25 vs QT 15 JPEG 50 vs QT 30 JPEG 75 vs QT 60 JPEG 100 vs QT 120 

Figure 5.7.5: Comparison of JPEG and QT for Image 3 

Comparison of lPEG and QT for Image 6 

JPEG 25 vs QT 15 JPEG 50 vs QT 30 JPEG 75 vs QT 60 JPEG 100 VS QT 120 

Figure 5.7.6: Comparison of JPEG and QT for Image 6 

101 

• JPEG Fitness 

• Quad tree Fitness 
JPEG Filesize 

• Quad tree Filesize 

• JPEG Fitness 
• Quad tree Fitness 

JPEG Filesize 

• Quad tree Filesize 



Both the tables of results for the JPEG compression of the three images, together with the charts, 

generally show that JPEG gives better compression for a given image quality and similarly, 

smaller filesizes for a given image quality. The JPEG compressed images used to generate the 

JPEG results from each of the 3 images are presented in figures 5.7.4- 5.7.21. 

Although JPEG compression is superior to quadtree here, at least according to the fitness 

function, it is important that we attempt to compare the images to see if this is borne out visually. 

For image 1, JPEG fitness level1 is superior to that of quadtree fitness level 7, as suggested by 

the associated chart. However, JPEG fitness level 25 and quadtree fitness level 15 prove a very 

equal match visually, as also suggested by the chart. This trend continues through to JPEG 

fitness level 50 and quadtree fitness level 30. Quadtree fitness level 60 does lose out to JPEG 

fitness level 75 but the final images from quadtree 120 and JPEG 1 00 show that the quadtree 

example at this level is superior to a much greater extent than is suggested by the chart. 

Image 3's visual results show that whilst, as shown previously, the quadtree fitness level 7 

compression results in tonal compression in the sky and foreground, the JPEG fitness level 1 

image avoids this and as a result is visually superior. However, whilst the chart for image 3 

suggests a similar result for the next fitness step, quadtree at fitness level 15 appears to deliver a 

more visually appealing result than JPEG fitness level 25 as a result of the JPEG's artefacts and 

loss of detail within the branches of the trees. This theme continues for the quadtree fitness level 

30 and JPEG fitness level 50, though JPEG does have a slight edge at quadtree fitness level 60 

and JPEG fitness level 75 before quadtree 120 delivers a significantly better image than JPEG 

100. 

With image 6, it is clear that JPEG delivers a superior image to quadtree in each comparison, 

with the exception of quadtree 120 I JPEG 100. The background of the sparrow once again 

suffers due to the quadtree tonal compression. The only consolation for the quadtree result is that 

102 



it continues to maintain a good degree of edge sharpness as this tails off slightly in the JPEG 

versions. 

On each of the three images, JPEG level 1 gives a compressed image that is virtually 

indistinguishable from that of the originals. Unlike quadtree, JPEG doesn't exhibit tonal 

compression at large filesizes. It is also interesting that given their very similar filesizes, JPEG 

1 00 always results in a lower image quality than quadtree with a 120 fitness level. This result is 

borne out when the results are compared visually. 

From the above comparisons, it should be clear that JPEG is producing results superior to those 

of the quadtree implementation, although it is interesting to see the relative performance of the 

quadtree improves as lower filesizes are required. 

Figure 5.7.7: Image 1 "Jan" with JPEG compression applied (level1) 

103 



Figure 5.7.8: Image 1 "Jan" with JPEG compression applied (level25) 

Figure 5.7.9: Image 1 "Jan" with JPEG compression applied 

Figure 5.7.10: Image 1 "Jan" with JPEG compression applied 

104 



Figure 5.7.11: Image 1 "Jan" with JPEG compression applied (level100) 

Figure 5.7.12: Image 3 "Snowtrees" with JPEG compression applied (level1) 

Figure 5. 7.13: Image 3 "Snowtrees" with JPEG compression applied (level 25) 

105 



Figure 5.7.14: Image 3 "Snowtrees" with JPEG compression applied (level 50) 

Figure 5. 7.15: Image 3 "Snowtrees" with JPEG compression applied (level 75) 

Figure 5. 7.16: Image 3 "Snowtrees" with JPEG compression applied (level 1 00) 

106 



Figure 5.7.19: Image 6 "Sparrow'' with JPEG compression applied (level 50) 

107 



Figure 5.7.21: Image 6 "Sparrow" with JPEG compression applied (level 1 00) 

5.8 Temporal Video Compression 

Although the quadtree compression is able to handle still image compression, modern video 

compression requires the exploitation of temporal (inter-frame similarities) compression in 

addition. For the quadtree algorithm to be able to compress the i-frames associated with this, they 

must first be generated by minimising temporal redundancy. A 900-frame video sequence of 

movie footage, containing numerous scene-changes and panning motions in addition to periods 

of high temporal redundancy, was processed to generate i-frames for compression . The levels of 

108 



redundancy removed are shown in the chart in figure 5.8.1, where, for each frame, the % of 

change from the preceding frame is graphed. 

100 

90 -

80 1-

Cll 70 c 
Ci c • 60 I: "--
u 
• Jt. 
u 50 0 1-
ii 
Ill 
IC 40 
Ill ... 
0 

I 30 r\ 
20 

10 r-

0 

% Difference of Each Frame Compared to its Precursor 

-

r- r--- ·- -

f-- - f-- -

f-- 1---- r- -- r-

t-- - ' flA -

~ """"" . 'VI~ ' f't 

~ ~ ~j ~ "" ,, ."' ,__, · .. A~ 
~~ ~ 

51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 

Frame 

Figure 5.8.1: Percentage Difference of Each Frame Compared to its Precursor 

..., 

As the frames progress, the amount of temporal redundancy varies dependent on the nature of 

the video and the relationship between the current and previous frames. The complete angle and 

scene changes within the sequence are represented by the high peaks in the 80-100% region, 

whilst the 300-450 frame range values represent panning action across the scene and the last 

125 frames also have lower redundancy due to large amounts of on screen movement. 

The mean average temporal redundancy for this particular sequence is 89.78%. On average, only 

10.22% of the 8x8 blocks within frame changes compared to its precursor. Exploitation of this 

would be maximised if the relatively regular scene-changes could be detected and stored as i-

frames rather than p-frames within compressed output. A sample of 1 0 non-sequential frames 

(frames 100- 1000 at 1 DO-frame intervals) shows that the average QT compression level for a 

fitness threshold of 30 is a consistent 6.5:1 . 

109 



It is, of course, possible to remove less or more inter-frame differences from this same sequence 

- removing less simply reduces the level of temporal compression achieved, whilst removing 

more can lead to visually important but subtle inter-frame changes being discarded. When 

applied to this sequence this was seen to lead to erratic movement in scenes with large levels of 

motion within a particular area of the frame and was quite distracting. The erratic movement and 

artefacts are caused by i-frames that contain too little information about inter-frame changes 

being overlaid on the previous frame -this results in misalignment and visual duplication 

occurring in the areas of rapid movement. 

Assuming that the algorithm can deliver an approximate 6.5:1 compression rate in terms of 

temporal redundancy, and a further 10:1 through quadtree spatial redundancy fori-frame 

compression, this suggests a video compression performance of approximately 65:1 whilst 

maintaining reasonable image quality (quadtree frtness level 30 is assumed, since this gives an 

intermediate quality level). 

5.9 Summary 

In order to test the performance of the quadtree implementation across a wide range of images, 

the six images selected each exhibited different characteristics and challenges. Of these initial six 

images, three were subjected to further levels of quadtree compression. For each of these three 

images, at each level of prescribed fitness, an evaluation of the compression performance in 

terms of both visual quality and filesize was carried out, together with subsequent comparison to 

JPEG at similar filesizes. Finally, the individual construction of the compressed images was 

examined with a view to understanding how the various blocksizes used was impacted as 

compression levels increased and reduced. 

110 



6.0 Conclusion 

This chapter contains an assessment of the quadtree compression system, the results obtained 

and what has been learnt during the development of the system. With reflection on these, further 

enhancements and future areas of research are also highlighted. 

A major problem with digital imaging is the amount of storage required for images, especially 

high-resolution photographs. Whilst generic data compression can go some way to reducing the 

sizes of images whilst they are stored or transmitted, they amount of compression achieved is 

quite low. Content-specific algorithms, such as JPEG, are able to achieve a much higher level of 

compression through the use of lossy techniques -these algorithms 'throw away' data from the 

original image in such a way that it isn't apparent to a human viewer. 

A fractal is commonly understood to be a complex, colourful image, which is generated by the 

repeated iteration of a small, simplistic formula. The challenge of fractal image compression is 

that whilst it is easy to generate an image from a fractal formula, it is very difficult to generate the 

appropriate fractal formula for a given arbitrary image. The quadtree compression algorithm 

presented and evaluated in this thesis is an attempt to automate the search for a 'solution' to this 

problem. 

6.1 Performance Against Thesis Objectives 

The original objectives of this thesis were set out in chapter 1, with the intention that the 

remainder of this thesis would subsequently satisfy each objective. A review of these objectives, 

including the relative success that can be attributed to each, is given in 6.1.1 - 6.1.5. 

Ill 



6.1.1 Evaluate Fractal Image Compression Techniques 

A thorough discussion of existing image compression techniques has been presented in chapter 

2 of this thesis. This survey encompasses a wide range of image compression methods, from 

traditionallossless RLE encoding through lossy JPEG compression to developments in fractal 

image compression techniques. 

6.1.2 Development of a Fractal Compression Software Toolset 

Chapters 3 and 4 give details of the toolset developed to explore the capabilities of Fractal image 

compression, and quadtree-based Fractal image compression in particular. The toolset itself can 

compress arbitrary images using a basic quadtree implementation whilst allowing for the various 

quadtree compression characteristics and fitness target levels to be adjusted. The tools also 

allow decompression of these images and fitness evaluation between two arbitrary images using 

the same fitness function as the quadtree encoder. 

6.1.3 Evaluate Quadtree Image Compression Using Developed Toolset 

The developed toolset allows the compression characteristics of the quadtree algorithm to be 

evaluated in a number of ways. Using a standard image across compression trials, it has been 

possible to investigate how increasing or decreasing the fitness tolerance thresholds changes the 

level of compression achieved. Similarly, it is possible to see how the quality of the image 

increases as the compressed image is allowed to occupy more space, and whether the returns 

are diminishing or are simply linear, etc. 

The toolset also offers insight into the quadtree construction used to represent an image at 

various compression levels - i.e. it is possible to observe how the blocksize distribution changes 

dependent on both the image being compressed and the level of fitness specified. It can also be 

112 



seen that some images compress much more readily than others, even when the fitness levels 

are changed to favour the less-compressible image. 

These investigations have illustrated that whilst the quadtree scheme presented in this thesis can 

compress an arbitrary image quite successfully, there is scope for significant improvement

potentially including a move to a more flexible and dynamic partitioning scheme than quadtree as 

a basis for a fractal compression system -this is discussed further in 6.2. 

6.1.4 Comparison of Quadtree Algorithm to JPEG and MPEG 

One of the principal aims of this work was to develop a quadtree compression scheme and 

compare its performance, for both image and video-compression, to established compression 

systems. JPEG and MPEG, as discussed previously, are ideally suited as performance 

benchmarks, especially since the latter (MPEG) makes heavy use of the fonner (JPEG) in its 

approach. 

The results presented in Chapter 5 show that, in the majority of instances, JPEG's performance is 

significantly superior to the quadtree algorithm for a given filesize/quality threshold. Whilst the 

quadtree implementation presented here cannot be regarded as superior to JPEG, its 

perfonnance, given the relatively short development period, is still reasonable and certainly offers 

a solid platform to build upon as well as giving a taste of what might be possible with further 

development. 

Although it is not yet capable of delivering results that can better JPEG for a given filesize in the 

general case, the results given in Chapter 5 indicate that this algorithm can in fact surpass JPEG 

as lower filesizes are required by a user I application. This suggests that quadtree compression 

could have an impact in low datarate image and video applications, such as video streaming 

across mobile telephone networks and the Internet. Indeed, whilst MPEG is widely accepted as 

113 



the de facto baseline video compression standard, other compression technologies, such as the 

proprietary ReaiNetworks video formats and the upcoming H.264 standard [HTTP:I/MPEG.ORG], 

continue to dominate the video streaming market. 

6.1.5 Image Encoding Computational Performance 

Using the current algorithm to encode an image, whether a p-frame or an i-frame, can take in 

excess of 20 minutes on an Intel Pentium-4 2.8GHz machine. The vast majority of computing 

time is spent in the domain I range comparison search function, with the amount of processing 

time required being dependent on a number of factors: 

1) The initial blocksize of the quadtree affects the computation time in a number of 

ways. If a small initial blocksize is selected, then the domain/range search function's 

initial domain set is larger than that where a larger initial blocksize is selected. This 

means that areas of an image that had the potential to be covered by much larger 

blocks instead need to be covered by a number of smaller blocks and therefore 

require additional domain searches. However, if the fitness tolerance for a 

compression attempt is extremely demanding then it's possible that selecting a large 

initial blocksize would increase the overall processing time through its attempts to 

achieve the required fitness in the earlier stages of the quadtree. 

2) The selection of permutations available for domain to range mappings can also 

greatly affect the image encoding time. For example, if the domain to range mapping 

search only attempts rotational mapping then the search will take less time than if the 

mapping search attempted to additionally vary the contrast and brightness to achieve 

a more optimal result. Whilst there are a number of transforms that can be performed 

on a domain in order to allow it to better cover a range, these come at the expense of 

114 



encoding time. Including additional transforms on the domain increase the likelihood 

of finding a more optimal domain to range mapping. 

3} Given its extensive utilisation during the domain I range comparison search, the 

complexity of the fitness function greatly influences the overall performance of the 

quadtree implementation. The current fitness function is simplistic, and though more 

sophisticated metrics could be employed to aid in more accurate domain to range 

mapping, this would significantly increase encoding times. 

In comparison to JPEG, the current encode performance of the quadtree algorithm is slow. 

Considering that the Fractal video compression requires that sequences using 25 

frames/second can be compressed then it is essential that the computational efficiency of the 

algorithm be improved. Suggestions for improvements are covered in section 6.4. 

6.2 Further Work 

The development and testing of the quadtree toolset and its compression performance has 

highlighted that whilst the current implementation gives reasonable image compression 

performance, there are a number of areas which could be improved. 

6.2.1 Improvements to the Toolset and Algorithms 

Although the developed toolset allows for basic quadtree image/video encoding and decoding, 

there are a number of areas that could be improved to increase the efficiency of the compression 

achieved and the appearance of the compressed results: 

115 



a) The current toolset only allows for a limited quadtree size in that the initial blocksize is 

relatively small. This should be addressed so that the initial blocksize is the resolution of 

the target image itself. 

b) Whilst the current fitness metric performs well , if greater compression results need to be 

achieved with this current implementation, even at the expense of a vast uplift in 

computation time, then other, more accurate metrics could be implemented. If efficiencies 

are made in other areas of the range I domain comparison routine then this could be a 

worthwhile and feasible improvement. 

c) There is currently no post-processing of the encoded/decoded image, as such this can 

lead to visible blockiness where the neighbouring edges of neighbouring image blocks do 

not share a similar pixel shading. In figure 6.3.1, the section of the sparrow enlarged from 

image 6 shows how larger blocks have clearly visible edges as they attempt to recreate 

the detail in the bird's feathers. Post-processing can improve the appearance of images 

compressed using the quadtree method, as shown in figure 6.3.2: 

116 



Figure 6.3.2: Portion of Image 6- "Sparrow" as in figure 6.3.1 but with basic post-processing 
manually applied. 

6.2.2 Areas for Further Research 

Although there are improvements that can be made to the tool itself, this investigation has 

highlighted other areas outside of the original scope that merit further analysis and investigation. 

6.2.2.1 Use of Different Fractal Image Partitioning Methods 

Quadtree is the simplest form of image partitioning in the field of fractal compression and 

relatively straightforward to implement. It is possible that using other schemes, such as those 

employing rectangles or triangles to partition images, may produce more optimal results as 

neither of these shapes have the geometric constraints that are imposed by the use of a square. 

6.2.2.2 Classification of Domains 

Since the domain I range comparison step of the image encoding process is so computationally 

expensive (see 6.1), one method to reduce the encoding time is to classify domains within the 

initial domain pool to be used for the search. Just as with partitioning methods, there are 

numerous schemes for classifying domains; for example it is possible to sort the domains 

according to whether they contain edge detail, textured details or are flat, solid regions. Once 

117 



sorted, when the search algorithm is trying to find a match for a particular range it is able to 

classify the range and then select the similarly classified domain set and thus avoiding repeatedly 

searching those domains that have been pre-classified as structurally dissimilar to the range 

itself. 

Although it is likely to be reasonably computationally expensive in itself, domain classification only 

need to happen once for each level of the quadtree or for each domain pool, rather than for each 

range cover search, and is therefore a fixed compute cost that can be saved by reducing the size 

of the domain pool in an intelligent fashion when the algorithm attempts to cover a range. 

Adoption of classified domains allows for more intelligent search schemes than pure brute-force 

comparison. 

6.2.2.3 Optimising the Search with Early Termination 

The quadtree algorithm allows for a domain to be mapped to a range in a number of ways- the 

domain can be rotated through 0, 90, 180 and 270 degrees; have its contrast increased or 

reduced by a number of levels; have the brightness of each pixel increased or decreased; etc. 

The search algorithm itself will try every permutation of the above domain to range mappings to 

find the optimal domain to cover a particular range. Once this comparison is complete, the 

algorithm will evaluate how well the domain covers the range and, depending on whether a 

specified fitness level has been achieved, the candidate will be recorded as a mapping to cover 

the range or the range will be split into four smaller ranges and added to the quadtree range 

queue. In this guise, the algorithm doesn't attempt to terminate the computational expensive 

search function early if a suitably accurate domain to range cover has been found. The fitness 

evaluation is already carried out and therefore the computation needed to determine this has 

already taken place. The only loss in the case of early search termination would be that it's 

118 



possible a more optimal domain to range cover would not be encountered and subsequently 

recorded. However, terminating early could save significant computation during this step. 

Additionally, initial results from the implementation of this particular quadtree algorithm suggest 

that some of these permutations tend to deliver better domain to range mappings than others -

that is, for example, the computational effort behind adjusting domain brightness during the 

mapping search may statistically deliver more favourable results than the similar effort required to 

rotate the domain in order to match the domain. If this example was borne out in tests on a 

variety of images, it becomes possible to profile the performance of each domain transformation 

type involved in the search and to try statistically higher performing transformation types earlier in 

the search function. 

If a fitness-based early search termination method was combined with an optimisation of the 

order in which the various transforms are applied to a domain, then it is likely that, with a suitable 

realistic fitness factor, significant savings could be made in encode time for the domain to range 

search. 

6.2.2.4 Early Evaluation of Quadtree Fitness Success 

In the previous section the concept of terminating the computationally intensive search as soon 

as a sufficiently good (but not necessarily optimal) domain is encountered allows for a reduction 

in encode time due to the early success of the search. Conversely, it could also be possible to 

terminate a search in a particular quadtree level early if an initial proportion of the search does 

not find a domain that covers a range with a fitness that represents a particular percentage of the 

fitness that the algorithm is attempting to achieve for a particular range at a particular level of 

quadtree. This would mean that hard to cover ranges, where, for example, after search 25% of 

the domain pool the algorithm did not find a domain that could cover the range with a fitness level 

of 50% of the target fitness level then it might be reasonable to assume that the other 75% of the 

119 



domain pool would be likely to fair little better and therefore may not be worth exploring due to the 

computational expense. In such a case, the algorithm would abandon the range it was trying to 

cover and would instead subdivide it for the next level of the quadtree. There are, as with early 

termination due to an early solution, pitfalls with not exploring the full domain pool in that it is 

possible that a suitable domain does exist to cover the range and therefore potential compression 

performance would be lost. 

Just as in the previous section, early termination here would likely benefit from some prior 

analysis of domains and their likely success in covering a range. If domain classification were to 

be accurately employed, then this early termination method could be enhanced to ensure that 

only promising (from a classification perspective) domains were in the first 25% searched. 

6.2.2.5 Improvements in Inter-Frame Encoding 

In addition to improve the compression and encoding performance of the image compression 

engine, there are a number of improvements that could be made to the inter-frame encoding 

algorithm. The main area of focus for future investigations should be to move away from a square 

block-by-block analysis of the current frame with elements in the previous frame. Although this is 

clearly a very effective compression technique for removing redundancy between successive 

frames, it is not very intelligent nor content aware. 

In this video compression implementation, the quadtree partitioning method (or image partitioning 

method) and the i-frame calculation method are closely related - both methods use square 

blocks, the i-frame process outputs a image of blocks that differ significantly to those of the 

preceding frame and these are then handled by the quadtree compression which partitions this 

image into blocks. A more modern approach to dealing simply with blocks for inter-frame 

redundancy removal is to identify actual elements or objects within a scene and track the 

mappings of these objects as the video proceeds. Thus, instead of describing a scene as regular 

120 



square blocks, it can be described as irregular, non-square objects that change positions, are 

transformed, can be reused, may overlap, etc. Newer video standards such as MPEG4 [MPEG] 

have shown that this technique can improve upon simpler block-oriented techniques. However, if 

the strong relationship between the partitioning method and the i-frame calculation method is to 

be maintained, a more flexible partitioning scheme than quadtree may need to be employed to 

handle the more irregular objects that could result. This adds to the benefits of more sophisticated 

partitioning schemes presented in 6.2.2.1. 

6.3 Summary 

The images presented in chapter 5 show that a working quadtree compression solution has been 

produced, though its current performance does not generally compete with JPEG. However, as 

discussed earlier in chapter 6, there are a number of improvements that can be made that would 

reduce the amount of computation required to compress an image whilst increasing the quality 

and level of compression achieved - these improvements to the base partitioning method are key 

to making fractal compression competitive in practical applications. 

Fractal, rather than quadtree compression specifically, still offers the promise of increases in 

compression ratios that are an order of magnitude beyond those offered by JPEG, though the 

challenge of how to actually achieve these for arbitrary image sets has yet to be met. Quadtree 

and other partitioning schemes offer the potential for a compromise solution between the two 

methods and with further work and development it is possible that they will form part of the 

solution in compressing large digital media for storage and transmission. 

121 



7.0 References 

AHO, A eta/. Data Structures and Algorithms. Addison-Wesley (1987) 

BARNSLEY, M.F. Fractals Everywhere, p5-105. Academic Press (1988) 

BARNSLEY, M.F. Fractals Everywhere (2"d Edn.), p210-405. Academic Press (1993) 

BARNSLEY, M. Methods and Apparatus for Image Compression Using IFSs. US 

PATENT #4941193 

BARNSLEY, M. & HURD, L. P. Fractal Image Compression, p70-105. Wellesley, Mass., AK 

Peters (1993) 

BEASLEY, D. Hitch-Hiker's Guide to Evolutionary Computation, part 2. comp.ai.genetic. 

Joint Cardiff Computing Service (1998) 

FISHER, Y. Fractal/mage Compression. Springer (1995) 

FOGEL, Let a/. Artificial Intelligence Through Simulated Evolution. Wiley (1966) 

GLEICK, J. CHAOS- Making a New Science. Minerva (1988) 

HELD, G. Data Compression: Techniques and Applications. Wiley (1983) 

HOLLAND, J.H. Adaptation in Natural and Artificial Systems. University of Michigan Press 

(1975) 

MANDELBROT, B. Fractals: Form, Chance and Dimension. W.H. Freeman (1977) 

MIANO, J. Compressed Image File Formats. Addison Wesley (1999) 

MONRO, D. & DUDBRIDGE, F. Rendering Algorithms for Deterministic Fractals, p30-43. 

IEEE Computer Graphics and Applications (Jan 1995) 

NETTLETON, D.J. Iterated Function Systems and Shape Representation. PhD Thesis, 

p63-111, Chapter 5. University of Durham (1994) 

NETTLETON, D. J. Representation and Generation of Graphs using Iterated Function 

Systems. Pergamon Applied Mathematics Letters (1996) 

122 



TANENBAUM, A.S. Computer Networks (3rd Edn.), p723-756. Prentice Hall (1996) 

WATKINSON, J. The MPEG Handbook. Focal Press (2001) 

123 


