W Durham
University

AR

Durham E-Theses

An wnvestigation into Quadtree fractal image and
video compression

Halliwell, James

How to cite:

Halliwell, James (2006) An investigation into Quadtree fractal image and video compression, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2673/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2673/
 http://etheses.dur.ac.uk/2673/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

University of Durham

Department of Computer Science

An Investigation into Quadtree Fractal Image
and Video Compression

By
James Halliwell

M.Sc.

2006

The copyright of this thesis rests with the
author or the university to which it was
submitted. No quotation from R, or
information derived from it may be published
without the prior written conaent of the author
or universlity, and any Information derived
from it shouid be acknowledged.

29 NOV 2006

Abstract

Digital imaging is the representation of drawings, photographs and pictures in a
format that can be displayed and manipulated using a conventional computer.
Digital imaging has enjoyed increasing popularity over recent years, with the
explosion of digital photography, the Internet and graphics-intensive applications

and games.

Digitised images, like other digital media, require a relatively large amount of
storage space. These storage requirements can become problematic as
demands for higher resolution images increases and the resolution capabilities of
digital cameras improve. It is not uncommon for a personal computer user to
have a collection of thousands of digital images, mainly photographs, whilst the

Internet's Web pages present a practically infinite source.

These two factors — image size and abundance — inevitably lead to a storage
problem. As with other large files, data compression can help reduce these
storage requirements. Data compression aims to reduce the overall storage
requirements for a file by minimising redundancy. The most popular image
compression method, JPEG, can reduce the storage requirements for a
photographic image by a factor of ten whilst maintaining the appearance of the
original image — or can deliver much greater levels of compression with a slight

loss of quality as a trade-off.

Whilst JPEG’s efficiency has made it the definitive image compression algorithm,
there is always a demand for even greater levels of compression and as a result
new image compressibn techniques are constantly being explored. One such

technique utilises the unique properties of Fractals.

Fractals are relatively small mathematical formulae that can be used to generate
abstract and often colourful images with infinite levels of detail. This property is of
interest in the area of image compression because a detailed, high-resolution
image can be represented by a few thousand bytes of formulae and coefficients
rather than the more typical multi-megabyte filesizes. The real challenge
associated with Fractal image compression is to determine the correct set of
formulae and coefficients to represent the image a user is trying to compress; it is
trivial to produce an image from a given formula but it is much, much harder to
produce a formula from a given image. In theory, Fractal compression can
outperform JPEG for a given image and quality level, if the appropiate formulae

can be determined.

Fractal image compression can also be applied to digital video sequences, which

are typically represented by a long series of digital images — or ‘frames’.

For my wife Sonia,

Whose love and support made it all possible.

Table of Contents

L0 INtrOAUCHION.ouiiiiiitetceie ettt sttt sttt et s sane s e 1
1.1 ObBJECTIVES. ..curirueereieriee et eree et s et e eeerie e st e s e s tessse e seesnaneseneaeas 2
1.2 Structure of ThesiS.......ccovveruiererieniirenieecerer e 3

2.0 LItErature SUIVEYccecovriuirieeiaiirettesuieeensteesieesessesstaaseessesssastessesneeensessesssessessns 5
2.1 Data COMPIESSION.......coccrivrrirceeierieeiereirresteeeeesseesetesrarasesesreesasessnses 5

2.1.1 Generic COMPIESSION.......ccerivvirueririrerietiiniercsiesieeneeisieaes 5
2.1.2 Content-Specific COmPIession..........ccceeveerrerccnrerruerineneencneens 6
2.2 Digital IMaging.....c..cocceceuiriueneriniiinierinereeieeee et eees e 8
2.2.1 Colour Models and Colourspace...........ccccceeeverereererceeseeruennes 10
2.2.2 RGB Colour Model..........ccccorvernienrniencencneniteeceeeeecneeene 10
2.2.3 Luminance and Chrominance — The YCbCr Colour Model..12
2.3 Bitmap Image COMPreSSion.......c.ccoceereeriirceseeeriereeneneeceesesssesnneencs 14
2.3.1 JPEG COMPIESSION....ccceeiuiireereriereeerreeeaestesreeeesstensesseesseens 16
2.4 FractalS.....coocooeicoiciiieeetceee ettt 21
2.4.1 Preservation of Complexity.........ccccourimemirecenenvcneneneriennene 22
2.4.2 Self SImilarity.......cccooeienereeienniciceenecceneeeeeec e 23
2.4.3 Tterative FOrmation..........cc..covoeevieeireenmnene e 24
2.4.4 Tterated Function Systems..........ccceceevorvrreeecserieesseerineneennne 24
2.4.4.1 An Example of an IFS and its Construction.............. 25
2.4.4.2 Algorithms to Plot IFS Attractors........ccccccccoeveeueneen. 27
2.4.4.2.1 Classic Deterministic Algorithm (CDA).... 28
2.4.4.2.2 Random Iteration Algorithm (RIA)............ 29
2.4.4.2.3 Minimum Plotting Algorithm (MPA)......... 30
2.4.4.3 Using IFSs for Image Compression...........c.cceeveneenee. 31
2.4.5 The Inverse Problem.........c.ccccceriviiniiniinnininncniiiiiienennenene 32
2.4.6 Automatic Algorithms to ‘Solve’ the Inverse Problem......... 35
2.4.6.1 Evolutionary Algorithms...........ccccevuvverveenrereneccnnen. 36
2.4.6.2 Genetic Algorithms........c.cceorieiiinicinincnncniinne 37
2.4.6.3 Evolutionary Programming............c.cccccevevrniieninnnnens 37
2.4.6.4 Comparison of Evolutionary Algorithms................... 38
2.4.7 Using Quadtree Partitioning for Image Compression............ 39
2.5 Video COMPIESSION.......cermrrrreerienirereeseresreeesteeasesseesseermeeseesuessnsssseenns 41
2.5.1 The Challenges of Digital Video.........ccc.oeecemerveecrencnnuenncae 41
2.5.2 Spatial and Temporal Compression...........c.cecveeveeevereereernnens 42

2.5.3 MOtON JPEG......cooooiiieiiieeeeeeecnsseseeassneseasssssnsasenanenasennns 43

2.5.4 MPEG Video Compression..........cccceerveeneenvenersveresrereeseeneens 44

2.5.4.1 MPEG-1 COMPIESSION.......c.cereerererririrreereeeceenreennes 44

2.5.4.2 MPEG Frame Types.......ccoeeveverieeniririreeeereeeceene 46

2.5.5 MPEG Performance...........ccouvvecueeeeeeniinieninnssienserereseneesseenns 48

2.6 SUMMALYoiiiiiieiiies crtreerteee e ereeeeiteseee e sereeesabae s s et e seseesessseaesns 49
3.0 Fractal Video COMPIESSION.....c.coccveeevueeireecrierreesereeeereneessersteessesssseseseesssessasees 50
3.1 INEOAUCTION. ...ttt a e s nesenans 50
3.2 Evaluation Criteria...........ccceceeverievieriennrreeteseestesiesesee e s sseeseensenns 51
3.3 Algorithm ConstruCtiON.........ccccvviiveriniieiireeeetecte et seeeresseeseeneeas 52
3.3.1 Fractal Image Compression Technique...........c.cccovvereveuennne. 52

3.3.2 Inter-Frame Redundancy............c.cccoeervrieeivnirecencninesenninnnnns 56

3.3.3 Chrominance Compression and Colour Representation........ 57

3.4 Toolkit ReqUIrements.............ccceceeeirirvrenirerencrienstniseeseesieneecreseens 59
3.5 SUMIMATY ..ottt s e ee s 62
4.0 Fractal Image Compression TOOL..........ccccooeiireinvininnennnrintncee s 63
4.1 INtrOAUCHION.covveiiieieteite ettt 63
42 Summary of Testing Requirements............c.cccevvviurreeerreenvenreereeseennne. 63
4.3 System Environment Selection............ccecoververcererninsiensenienineenienenens 65
4.3.1 UNIX/ LINUX....ooitiiiirertrienterieeeteceeeesetesneseeeeeneeseenes 65

4.3.1.1 Advantages of UNIX / LINUX........cccceerrveervrennnnee 66

4.3.1.2 Disadvantages of UNIX / LINUX..........cccecevevennnnne 66

4.3.2 Microsoft Windows (32-bit).......c..ccceereervienmnrencnnenccesiinnnnns 66

4.3.2.1 Advantages of Windows...........ccceeeuevrervececcrivnveneninne 67

4.3.2.2 Disadvantages of WIndows.........ccccoervecrerencncnnnee. 67

4.3.3 Operating System Selection.............ccccevevevirrnneerecncrennnnene 67

44 Tool Development Environment............ccoccoceeveevensieniensnneenceieeennan. 67
4.4.1 Visual BasiC.....ccccevuiinieniieieniereeiecee sttt ese s 68

442 Visual ot 68

4.4.3 System and Language Selection............cccevvenuerrenrveeveriiennnae 69

4.5 Developed Software Tools and Functionality............ccccccecereerennennane 69

4.5.1 Fractopia Compression ToOL..........ccccovveverviiniiriicenininrininnnns 69

5.0

6.0

4.5.2 Fractopia Bitmap Analysis and Render Tool......................... 70

4.6 Data SIMUCIUTES......ccccoivereeniieeeeieesteeteee et et eeeesae s naeestessnesseneneen 71
4.7 Computational Performance..............ccceeurevreireeiancennerereceeeceeeeee e 73
4.8 SUMMATY ..ottt ettt e eessteese e sesanessaasaeseeeseneessensas 73
Evaluation of Quadtree Image COmMPression............coeerveeeererereeseernneneeens 74
5.1 Trial IMAges.....cccouiiieriiieieeecitte ettt sttt sa e e e 75
5.1 Image 1 —Jan ...t 75
5.1.2 Image 2 — ‘Prebend’s Bridge’......c...ccccocovvevcremnniinennncnnn 75
5.1.3 Image 3 — “Snow Trees’ccccovereenerinrireneieniee e rsenneeene 75
5.1.4 Image 4 — ‘River Wear’.......ccccovveeviirirrrcrciennniencesrenerneseene 76
5.1.5 Image 55— ‘Match ..o 76
5.1.6 Image 6 — ‘Sparrow’..........cccocevirrvnncniinicesec e 76
52 Compression Technique............ccccceeriiivmecienieeiiee e 77
53 Compression Results at Fitness 30.........ccccovvieveeiiniiienceneenieenens 78
5.4 Blocksize ‘Levels’ and Resultant Filesize.............ccccoovvveveevieninnnenee. 83
5.5 FIIESS. c..e ettt ettt et se sttt s st bt e bannnaseens 84
5.5.1 Fitness Issues with Images 2 and 3........ccccoooveievreerrerenenn, 85
5.6 Analysis of Images at Different Fitness........cc.cecoevevvinvivnienenennenen. 86
5.6.1 Compression Results at Varying Fitness.........c..ccceecvevernnnne. 87
5.6.2 Changes in Blocksize Distribution at Varying Fitness.......... 94
5.7 Comparison With JPEG.........ccccoovininininiiiereecctereee e 99
5.8 Temporal Video COMPIESSION.......coorereeesrerrursercrerirernnnseeseeseesnnesees 108
5.9 SUMMALY....cooiiiiiiiiiitec ettt sttt 110
CONCIUSIONS. ...cneiiiierireeieretect et eie et sttt r e ee e st e st e s e e s s snasee st e s sneenseones 111
6.1 Performance Against Thesis Objectives...........cccovercerereercrcienrnnne 111
6.1.1 Evaluate Fractal Image Compression Techniques................. 112
6.1.2 Development of a Fractal Compression Software Toolset.... 112
6.1.3 Evaluate Quadtree Image Compression Using Toolset......... 112

6.1.4 Comparison of Quadtree Algorithm to JPEG and MPEG..... 113

6.1.5 Image Encoding Computational Performance....................... 114

Further Work.......cocoovciiiniiiiiicrcrccne e 115
6.2.1 Improvements to Toolsets and Algorithms............cccceeenenee. 115
6.2.2 Areas for Further Research.............coccoeiiiniininiinnincecnee. 117
6.2.2.1 Use of Different Image Partitioning Methods........... 117
6.2.2.2 Classification of Domains...........ccccoevvereerereneeneennnes 117
6.2.2.3 Optimising the Search with Early Termination......... 118
6.2.2.4 Early Evaluation of Quadtree Fitness Success........... 119
6.2.2.5 Improvements in Inter-Frame Encoding.................... 120

Table of Illustrations

Figure 2.2.1

Figure 2.2.2

Figure 2.2.2.1
Figure 2.2.2.2
Figure 2.2.3.1
Figure 2.2.3.2
Figure 2.3.1

Figure 2.3.2

Figure 2.3.1.1
Figure 2.3.1.2
Figure 2.3.1.3
Figure 2.3.1.4
Figure 2.3.1.5
Figure 2.3.1.6
Figure 2.3.1.7
Figure 2.4.1.1
Figure 2.4.2.1
Figure 2.4.4.1
Figure 2.4.4.2
Figure 2.4.5.1
Figure 2.4.5.2

Figure 2.4.6.4.1

Figure 2.5.4.1

Figure 3.3.3.1
Figure 3.4.1
Figure 3.4.2
Figure 3.4.3

Figure 4.6.1

Figure 5.1.1
Figure 5.1.2
Figure 5.1.3
Figure 5.1.4
Figure 5.1.5
Figure 5.1.6
Figure 5.3.1
Figure 5.3.2
Figure 5.3.3
Figure 5.3.4
Figure 5.3.5
Figure 5.3.6
Figure 5.3.7
Figure 5.3.8
Figure 5.4.1
Figure 5.5.1
Figure 5.5.1.1
Figure 5.6.1.1
Figure 5.6.1.2
Figure 5.6.1.3
Figure 5.6.1.4
Figure 5.6.1.5
Figure 5.6.1.6

‘Higher Pixel Density and Resolution Gives Truer Image Representation’........... 7

‘Greater Colour Depth Allows More Gradual Colour Transitions’...............ccco..... 7

‘“The RGB Colourspace CUDE’.........cocveurnenieererrineninscecssenseeseseteserreeseseesaesaesessesas 11
‘The Greyscale Space Within the RGB Colour Cube’.........cccceeceinivicncccncnnnnecenn. 11
‘Relative Contrast Sensitivity of the Human Eye’........c.cocooiveniivciininnnnccccnen. 13
*A Colour Bitmap Separated into its YCbCr Component Channels’...................... 13
‘Drawing of Notre Dame de Paris’..........cocoveveeriiiiiesinenne e recse e srereeneseenne 15
‘Photograph Showing Large Areas of Similar Colour’..........ccccecevevmnceecnenincennen. 16
‘Original 8x8 Block Greyscale Values pre-DCTcccooovivienvnnninniricniicee 17
‘Result of DCT Application to 8x8 Matrix in Figure 2.3.1.17.ccccocervrinevevrcnnnne. 18
‘Value Distribution Across the Original 8x8 Matrix’.........c.ccvecvrvcvervivnenesinisinaene 19
‘Value Distribution Across DCT Result, with Values Concentrated at Origin’..... 19
‘An Example of a JPEG Quantization Table’...........ccoeerevierecveneneccrnenrernrecesenaen 20
‘Final Quantized DCT MaITIXcoverueeeririesrmreireecraessressesseesssassesssessasessessesssensans 21
‘‘Zigzag’ Read order for Quantized DCT Matrix’........cccovrrernrerenvererccrscnnersenresnen 22
‘Successive Mandelbrot Magnifications’.............cc.oeeerevienrerenrecenresiesesvessneseecsens 22
‘Barnsley Fern Showing Branches as Transformed Replicas’..........cccooevcveviruenennee 23
‘The Sierpinski GasKelc.oooioereirrrrnieresrneerreeseeeesssae s eressessneseesssssaseneessnnees 26
‘Step-by-Step Construction of the Sierpinski Gasket’.........c...cccunmeeererinerceneenennns 26
‘Weakness of Simple Image-Comparison Metrics for IFS Searches'..................... 34
‘A Cross-Section of the Searchspace for the Sierpinski Gasket'.........cceevvveeuencnce. 35
‘Comparison of GA vs EP in the Automatic Solution of the Inverse Problem’......38
An Illustration of the Differences Between Successive Video Frames’................ 47
‘Breakdown of a 640x480x24 Image into Six 320x240x8 Images’.........c..coceveven-e. 58
‘Software Tool Screenshot 17.........c.oovvieiiiecenrireree et cr et anes 60
‘Software Tool ScreenShot 2°.........ceeveieieririrreneeerertrete e seeren e eres st erasseseeaanes 61
‘Software Tool Screenshot 3cocviiririreeic e eereeee e s e ees e nesees 62
‘2D Matrix Representation of a Bitmap Image’...........cocccovreveevrnvcrinininnenecnens 72
‘Image 1 “Jan” (OTIZINAl).......ocooerveeeiniriiieieereee ettt e oo s s esesensn e sesnanes 78
‘Image 2 “Prebend’s Bridge” (Original.........cc.ocuvceereenineieneenrnenreeeesenerseeseseenenes 78
‘Image 3 “SnowTrees” (Original)........c.cecereevieieririecirinrnes ettt evae e 78
‘Image 4 “River Wear” (Original)........c.cccoovciieiimneeinieinriee e reseee e eesnesennene 79
‘Image 5 “Match” (Original)........ccooeeerevennirnenee e sassereens 79
‘Image 6 “Sparrow” (Original).........coovvrveeciinieeriencen et srene e e esenas 79
‘Image 1 “Jan” with QT Compression Applied (Fitness 30)........cccc.ccceermveerervecnens 80
‘Image 2 “Prebend’s Bridge” with QT Compression Applied (Fitness 30)............ 81
‘Image 3 “SnowTrees” with QT Compression Applied (Fitness 30)..........cccoee..... 81
‘Image 4 “River Wear” with QT Compression Applied (Fitness 30)..................... 81
‘Image 5 “Match” with QT Compression Applied (Fitness 30).........ccceeveevecnnee. 82
‘Image 6 “Sparrow” with QT Compression Applied (Fitness 30)......c..c.coceevereeuee 82
‘Table of Filesizes for Each Image when QT Compressed at Fitness 30°.............. 82
‘Filesizes for Each Image Versus the Original Uncompressed Size'...................... 83
‘The Percentage of Each Image’s Construction From Each of 3 Blocksizes’........ 84
‘Calculated Fitness Across the Six Quadtree Compressed Images’........................ 85
‘Compression Results for Image 3 at Higher Fitness Levels and 2x2 Only’.......... 86
‘Image 1’s Compression Results at Varying Quadtree Fitness Levels’.................. 87
‘Image 3’s Compression Results at Varying Quadtree Fitness Levels’.................. 88
‘Image 6’s Compression Results at Varying Quadtree Fitness Levels'.................. 88
‘Image 1 “Jan” with QT Compression Applied (Fitness 7)c.cccoceeiverereeiresuenne 89
‘Image 1 “Jan” with QT Compression Applied (Fitness 15)’.......ccoccovvercenirinennnne 89

‘Image 1 “Jan” with QT Compression Applied (Fitness 30)ccccevevrvrrercrncucnn 89

Figure 5.6.1.7
Figure 5.6.1.8
Figure 5.6.1.9
Figure 5.6.1.10
Figure 5.6.1.11
Figure 5.6.1.12
Figure 5.6.1.13
Figure 5.6.1.14
Figure 5.6.1.15
Figure 5.6.1.16
Figure 5.6.1.17
Figure 5.6.1.18
Figure 5.6.2.1
Figure 5.6.2.2
Figure 5.6.2.3
Figure 5.6.2.4
Figure 5.6.2.5
Figure 5.6.2.6
Figure 5.7.1
Figure 5.7.2
Figure 5.7.3
Figure 5.7.4
Figure 5.7.5
Figure 5.7.6
Figure 5.7.7
Figure 5.7.8
Figure 5.7.9
Figure 5.7.10
Figure 5.7.11
Figure 5.7.12
Figure 5.7.13
Figure 5.7.14
Figure 5.7.15
Figure 5.7.16
Figure 5.7.17
Figure 5.7.18
Figure 5.7.19
Figure 5.7.20
Figure 5.7.21
Figure 5.8.1

Figure 6.3.1
Figure 6.3.2

‘Image 1 “Jan” with QT Compression Applied (Fitness 60)’............cccoocvrrvccnnann. 90
‘Image 1 “Jan” with QT Compression Applied (Fitness 120)’........ccccoocnnnccnnan. 90
‘Image 3 “SnowTrees” with QT Compression Applied (Fitness 7)"........cccceceunne. 90
‘Image 3 “SnowTrees” with QT Compression Applied (Fitness 15).......cccceu.cn... 91
‘Image 3 “SnowTrees” with QT Compression Applied (Fitness 30)’.......cccccocee.. 91
‘Image 3 “SnowTrees” with QT Compression Applied (Fitness 60)'.................... 91
‘Image 3 “SnowTrees” with QT Compression Applied (Fitness 120)".................. 92
‘Image 6 “Sparrow” with QT Compression Applied (Fitness 7)".......cccoverveennene 92
‘Image 6 “Sparrow” with QT Compression Applied (Fitness 15)ccccoevvnnnce 92
‘Image 6 “Sparrow” with QT Compression Applied (Fitness 30)’.....c..cccorvervrrencne 93
‘Image 6 “Sparrow” with QT Compression Applied (Fitness 60)’.......cccccrveerrrrnene 93
‘Image 6 “Sparrow” with QT Compression Applied (Fitness 120)cccecceveuenees 93

‘Construction of Image 1 From Each of the 3 Block Sizes at Different Fitness’....96
‘Construction of Image 3 From Each of the 3 Block Sizes at Different Fitness’....96
‘Construction of Image 6 From Each of the 3 Block Sizes at Different Fitness’....97

‘Block Distribution at Each Fitness Level for Image 1°..........coocoivevenveercnrnienenens 98

‘Block Distribution at Each Fitness Level for Image 3”..........ooceneiiiivcececninnns 98

‘Block Distribution at Each Fitness Level for Image 6°..........cccooonernnvcnccnvennnene. 99

‘JPEG Compression Results for Image 17.......cccooveriernininincnincneenecnnceeee 100
‘JPEG Compression Results for Image 3’.........ccccovvvvventrcrenenennenessinninesennessosesnes 100
‘JPEG Compression Results for Image 6°...........cccvvevveiiiiinvcninnnininicenenees 100
‘Comparison of JPEG and QT for Image 1........cccccevmminnnnncninienncsenecsinns 100
‘Comparison of JPEG and QT for Image 3°.......cccovvivmererenieninnnienieserecicssssecenees 101
‘Comparison of JPEG and QT for Image 6’.........cc.ccovcnriincnrnecrenmnccecnieneecennenne 101
‘Image 1 “Jan” with JPEG Compression Applied (Level 1)c.cocooiieeviiennennnns 103
‘Image 1 “Jan” with JPEG Compression Applied (Level 25)......c.cccocevevnvcirovnnns 104
‘Image 1 “Jan” with JPEG Compression Applied (Level 50).........cccoovnenmirnennne. 104
‘Image 1 “Jan” with JPEG Compression Applied (Level 75)......cccvvvmimrceccniinnns 104
‘Image 1 “Jan” with JPEG Compression Applied (Level 100)’..........cccccevvrrrrnnns 105
‘Image 3 “SnowTrees” with JPEG Compression Applied (Level 1)..................... 105
‘Image 3 “SnowTrees” with JPEG Compression Applied (Level 25) 105
‘Image 3 “SnowTrees” with JPEG Compression Applied (Level 50)°................... 106
‘Image 3 “SnowTrees” with JPEG Compression Applied (Level 75)'................... 106
‘Image 3 “SnowTrees” with JPEG Compression Applied (Level 100)................. 106
‘Image 6 “Sparrow” with JPEG Compression Applied (Level 1).......ccccccoeennn. 107
‘Image 6 “Sparrow” with JPEG Compression Applied (Level 25)......c.cccceveeenne 107
‘Image 6 “Sparrow” with JPEG Compression Applied (Level 50)cccccouue. 107
‘Image 6 “Sparrow” with JPEG Compression Applied (Level 75).......cccccceveenne 108
‘Image 6 “Sparrow” with JPEG Compression Applied (Level 100)'..................... 108
‘Percentage Difference for Each Frame Compared to its Precursor..........coccu..... 109
‘Portion of Image 6 — “Sparrow” Compressed Qutput’..........ccccerveeerecrvvreecerinneen 116

‘Portion of Image 6 — “Sparrow” With Basic Post-Processing’...........cccoevevenrcnnes 117

1.0 Introduction

There are currently a number of techniques being developed within research communities in both
computer science and mathematics that aim to reduce the storage requirements of both generic
data objects, bitmap images and digital video sequences. Bitmap compression often borrows
from generic data compression techniques and interleaves these with content-specific
compression methods that are only suitable for bitmap image compression; video compression
tends to borrow heavily from image compression techniques and again applies specific

algorithms tuned to the characteristics of digital video.

The desire to compress computer data objects (including binary executable, text documents,
images, sound and video) originally stemmed from the scarcity of data storage available on
personal computers - less than 10 years ago, many personal computers relied solely on fioppy
disk media or small (<500 megabyte) hard disk drives for offline storage. As a result of this, it was
highly desirable to reduce the storage required by data objects to conserve and minimize usage
of available storage space. The performance and time penalties involved in compressing and

subsequently decompressing the data outweighed the expense or inability to store it verbatim.

Although PCs now have much greater storage capacity, the advent of the connected world and
specifically the Internet has once again driven the need for data compression to minimize the
bandwidth requirements and costs for the transmission of such data objects, rather than the data

storage requirements of the data itself.

Digital images and video are common data objects, and are also likely to be relatively large in
size. A typical digital photograph may occupy 10 megabytes whilst high-quality digital video
requires substantially more space, with a feature-length film can occupy nearly 1 terabyte. As a
result, both images and videos are a major focus of data compression efforts. Unlike generic data

files, such as documents and executables, there are specific compression algorithms that will

only compress images and also specific algorithms for video. These specific methods are able to
deliver high levels of data compression for both data and video, though there is a continued

demand for innovation in this area.

One specific method of image compression technique is Fractal Image Compression. A fractal is
iterative function whose output can be used to plot a particular image. The specifications of the
function being used are generally many times smaller, often just a few hundred bytes, than the
image that can be depicted by them. As a result, if the function is stored instead of the bitmap
image that it would produce, then a large level of compression is achieved.

However, the major issue with this method is that whilst it is easy to take a fractal function and
produce its associated image, it is not easy to take an arbitrary image and deduce the appropriate
fractal function that we wish to store. This problem is computationally extremely difficult and there

have been a number of algorithms and techniques developed to tackle it.

This thesis aims to research and evaluate this are of compression, including an understanding of
the issues and challenges that fractal image compression presents and how feasible this method

of encoding arbitrary images actually is.

1.1 Objectives

The following objectives outline the focus of this thesis and the areas of research that are to be

investigated.

1. Evaluate Fractal and conventional image compression techniques. This should involve a
literature survey to cover the factors involved in digital image representation, current
compression techniques, and previous fractal image compression methodologies. The

literature survey is presented in chapter 2.

1.2

Develop a software toolset that can readily compress images using a quadtree algorithm
and allow meaningful and measurable performance comparisons to be made. As part of
this process, there is a requirement to select an appropriate development platform,
environment and data structures. Specifications and implementation details for the

software toolset are covered in chapters 3 and 4.

Evaluate the performance of quadtree image compression in terms of image quality and
levels of compression achieved using the newly developed software tool to investigate
quadtree compression through the selection of appropriate and varied trial images. A

detailed analysis of the quadtree implementation is provided in chapter 5.

Compare quadtree compression performance to the industry standard JPEG
compression system in terms of image quality and the amount of compression actually
achieved. This should be done using a series of trial images and at various compression

levels. Resulits from both compression types are given in chapter 5.

Assess the computational intensity of a fractal compression implementation and
understand which aspects of the algorithm significantly impact computing performance.
Performance is discussed in chapter 4, whilst recommend areas for improvement that
currently reduce the computational performance of the implementation are discussed in

chapter 6.

Structure of Thesis

The remainder of this thesis details the progress and developments against the above objectives.

Chapter 2 presents a comprehensive overview of data compression techniques, digital image

representation, and image compression techniques including JPEG and fractal compression

methods, including quadtree partitioning. Chapter 3 details the selection of a suitable fractal
compression method and the construction of a suitable algorithm around this method that can be
readily implemented. Following on from this is Chapter 4, which covers the implementation of the
chosen compression method as a software toolset and includes discussion of development
environments, data representation issues and core functionality for the toolset. Chapter 5
presents the results achieved using the developed toolset to explore the quadtree compression
method and how well the various trail images can be represented using the system — both in
terms of image quality and the level of compression achieved for each. Finally, chapter 6 looks
back at the objectives presented here and discusses how each have been achieved, together

with suggestions for improvements and further research and a summary of this work.

21 Data Compression

A number of techniques have been developed to achieve this compression, and these can be

categorized as either generic or content-specific compression techniques.

211 Generic Compression

Generic compression systems are designed to be able to take any form of data from any
application or program and apply their general-purpose compression algorithms. As the
algorithms have no awareness of the nature of the data being compressed, it is extremely
important that no data is lost or changed as a result of the compression/decompression
process and the decompressed data is bit-for-bit identical to the original data. This
compression technique is known as lossless compression and can be used to compress any
type of data. Lossless compression is used where any loss of information is unacceptable, for

example binary executables. [HELD, 1983]

An example of this class of compression system is PKZip. PKZip can take any binary or
ASCII file as input and apply lossless generic compression algorithms to the data, producing
a compressed file that is generally smaller than the original. This output file has to be
decompressed in order to make the data readable by the original system or application, this
often introduces a separate step in the file handling process as such compression schemes

are rarely integrated with end-user applications.

Generic lossless compression aims to reduce data storage requirements by removing
redundancy from files, such as repeated byte/bit patterns. Amongst a number of popular
algorithms for this is Run-Length Encoding, or RLE. This algorithm encodes streams of

repeated data into a more compressed ‘abbreviated’ form, e.g. the following sequence

11111280928133320000000000000000000000000000000002730922222222222222

can be represented as

1528092813520332730924,

RLE uses a run-length value to indicate that a value is repeated a number of times in a
sequence [TANENBAUM, 1996]. Storing the value and run-length instead of the repeated
sequence gives rise to storage savings and data compression. The original data can be
recreated by reading the initial values back and recreating the original runs within the
sequence. However, RLE is a very basic system, and if there is too much variation in the bit
pattern then the resulting ‘compressed’ image can actually end up larger than the original,

known as expansion [FISHER, 1995].

Other techniques, such as Lempel-Ziv-Welch [MIANO, 1999] are more advanced. LZW
encodes a byte sequence by maintaining a dictionary of value sequences so far encountered
and replacing instances of these value sequences with corresponding codes. Shorter
dictionary codes are used for sequences which appear more frequently in the original

sequence, resulting in an overall reduction in data storage requirements.

Both RLE and LZW rely on data-redundancy to achieve data compression. Indeed, if a byte
sequence is truly random and does not contain redundant sequences then neither technique
will be able to achieve any data compression. The most efficient way of encoding truly
random data is in its original format without applying any compression whatsoever. This

restriction applies to all compression schemes [WILKINSON].

2.1.2 Content-Specific Compression

Content-specific techniques are designed for the compression or a particular type of data,
such as bitmap images. As a result, they are unsuitable for the compression of generic data
sequences. However, such techniques are highly advantageous as they are able to take

advantage of the characteristics of the data structure itself to maximise the compression

achieved. In terms of image and multimedia compression, these techniques actually become
part of a file format for a particular media type, allowing the compression and decompression

to be applied where appropriate within the application software itself. [MIANO, 1999]

For example, CompuServe’s GIF file format also includes LZW compression and this
compression/decompression software is performed transparently by any image manipulation

or Web-browsing software that handles this file type.

Aside from the integration and automation of the data compression routines, such content-
specific methods, offer major compression advantages over generic techniques, and some
also optimise the structures they compress. Because such methods are aware of the both the
data-storage characteristics and, perhaps more importantly, the characteristics of the target
‘audience’ that will subsequently view or experience the data, they are able to permanently
lose selected elements of the original source data without unduly impacting on the ‘quality’ of
the data once it has been decompressed. That is, once the original data has been
compressed and subsequently decompressed, it may not be bit-for-bit identical to the original.
This compression approach is known as lossy compression as this technique inevitably

involved the loss of some data.

However, this loss of data is not as serious as it initially appears. Successful lossy
compression algorithms are designed to throw away data which has little or no bearing on the
‘quality’ of the compressed output for that content type whilst making significant storage
savings within the algorithm itself. By doing this, lossy algorithms can not only remove run-
length and sequence-based redundancy from source data, they can avoid storing portions of
it at all. Subtle changes in the appearance and perception of the compressed output can often
be tolerated in returns for the substantial compression gains achieved using lossy techniques.
Ideally, the errors generated by throwing data away will arranged so that they are very difficult
to detect, and so the algorithm must understand the perception characteristics of their target

‘audience’. [TANENBAUM] [MIANO, 1999]

With the demands for data-compression being increasing driven from the data transmission
rather than storage perspective, lossy compression techniques are increasingly coming to the
fore. Whilst a lossless compression algorithm cannot guarantee a particular level of
compréssion, expressed as a ratio of original data size and compressed data size, lossy
compression systems can. This ability stems from their ability to throw away less useful data,
and lossy algorithms can continue to do this for a given data source until a desired
compression level is reached. This is important in the communications world because the
traditional leased-line telecom links that form the Internet offer a fixed data throughput rate
per second. If a compression algorithm can guarantee to remain within this throughput rate by
virtue of lossy data compression then it becomes possible to send such data in real-time

without the risk of over-subscribing the telecom link. [TANENBAUM)]

2.2 Digital Imaging

The most prevalent method for representing images within a computer system is known as a
bitmap. Images ranging from simple line-drawings to high-resolution colour photographs can
be represented using a bitmap structure. Bitmaps are also commonly used to represent the
screen output of a computer system. A bitmap image is composed of number of discrete
addressable screen/image elements known as pixels, where each pixel has a single, uniform

colour. These rectangular pixels are arranged in a 2-dimensional array structure.

Image details and tonal transitions are represented by varying the colour of the bitmap’s
pixels accordingly. A bitmap image can be thought of a digital sample of an analog real-world
image. As each pixel can only be a single colour, the level of accuracy of the representation in
comparison to the real-world image, including both detail and colour transition, is determined
by both the number of pixels used and the range of possible pixel colours. The more densely
packed pixels are within a given physical screen area, the more smoothly and sharper image
details can be shown; whilst the greater the number of colours available for the bitmap, the
more accurately original image tones can be represented. These two-factors are illustrated. in

figures 2.2.1 and 2.2.2.

over the last few years to a point at which high resolution 1280x1024 resolution images in

true-colour can readily be displayed and manipulated.

2.2.1 Colour Models and Colourspace [MIANO] [TANENBAUM]

The colour of an individual pixel is represented by a bit-sequence. The number of bits in this
bit-sequence naturally determines the number of colours that can be present in an image, and

is known as the colour sampling precision:

1 bit allows for 2" colours — i.e. black or white only (monochrome)
4 bits allows for 2* colours — i.e. 16 colours
8 bits allows for 28 colours —i.e. 256 colours

24 bits allows for 2%* colours — i.e. 16777216 colours (referred to as ‘true-colour’)

There are a number of methods to translate a numerical value to a colour, these methods are
known as colour models. Colour models are often developed for use with particular physical
display device: the RGB colour model is used for display with computer monitors based on
Cathode Ray Tube or Liquid Crystal Display technologies, where each physical display
screen pixel's colour is produced by varying the physical intensities of Red, Green or Blue
light. The CMYK colour model is used for output to printing devices, where each colour is
composed of differing levels of Cyan, Magenta, Yellow and blacK inks. [MIANO, 1999]
[TANENBAUM, 1996]

2.2.2 RGB Colour Model

The RGB colour model is used in display devices such as computer monitors. 24-bit True
Colour in the RGB colour model uses 8-bits for each of the three primary colours, giving a
possible 256 levels for each, i.e. 2% = 256° = 16777216. The range of colours that can be
represented using a particular colour model and sampling. precision is known as the

colourspace. The RGB colourspace is shown in figure 2.2.2.1.

10

Greyscales play an important role in digital imaging. Apart from the obvioué need to use them
to represent intermediate tones between the black and white monochromatic extremes, within
the RGB colour model the individual primary colour components are each represented as 256
level (or 8-bit) monochrome bitmaps. Each pixel within the greyscale bitmap has a grey level
and this represents the intensity of that particular primary colour in the final RGB image.

These primary colour ‘sub’ bitmaps are called channels. [Miano, 1999]

2.2.3 Luminance and Chrominance — The YCbCr Colour Model

RGB and CMYK are not the only colour models in use. In the analog television world, picture
colour information is also divided up into channels. The PAL system used three colour
channels. The Luminance channel (Y) represents the intensity of the image, whilst two
Chrominance channels (U and V) represent the colour information. The Y channel is a
greyscale version of the colour transmission that would be formed by all three channels and

this allows ‘black and white’ televisions to view the colour transmission signal.

In the digital world, the YCbCr colour model is similar to the PAL model in that it also uses
three channels, one luminance (Y) and two chrominance channels (Cb and Cr). Again, Y
represents the intensity of the composite image and is a greyscale representation of the
composite image, whilst Cb specifies the blueness of the image and Cr specifies the redness.
The most important property of the YCbCr (and also the PAL) colour model is that the Y
channel contains much more useful information about the composite image that the Cb and
Cr channels. Y is the most important channel because the human eye is much more sensitive
to variations in luminance (intensity) than it is to variations in chrominance (colour)
[KINGSBURY]. In fact, the maximum Cb chrominance sensitivity of the eye is only one-half of
the Cr chrominance, which itself is only one-third of the maximum luminance sensitivity, as

shown in figure 2.2.3.1.

12

chrominance channels than from the more important luminance channels. Therefore, it is
highly advantageous to convert images to the YCbCr colour model to aid in image
compression. The formulas for conversion between the RGB colour model and the YCbCr

colour model are as follows:

Y =0.299R + 0.587G + 0.114B
Cb = 0.1687R — 0.3313G + 0.5B + 2°*?

Cr=0.5R — 0.4187G — 0.0813B + 22?2

R=Y +1.402Cr
G =Y — 0.34414(Cb - 2°*?) — 0.71414(Cr - 2**?)

B =Y + 1.722(Cb - 2%*?)

Arguably the most successful lossy image compression system is the JPEG image
compression standard, frequently used to compress detailed photographic-quality images.
JPEG exploits the properties of the YCbCr model to achieve extremely high compression

ratios. [Miano, 1999] [Tanenbaum, 1996]

23 Bitmap Image Compression

High resolution bitmap images with large colour-depths require a significant amount of
storage space — a 1280x1024 bitmap with a 16 million colour palette requires 3.75 megabytes
of storage. i.e.1280 x 1024 x 24 bits = 31457280bits or 3.75megabytes. Higher resolution
images for publishing and photography can require tens or hundreds of megabytes. Such
large file sizes have made image compression an important topic and there are a number of

compression techniques available.
Bitmap images, by their very nature, conform to a rigid structure — a matrix of h x v pixels, with

each holding a single colour value. In addition, the target device for a bitmap is always,

eventually, the human eye. Finally, many bitmap images contain large amounts of

14

matrix to 320x240 pixels. This is clearly a lossy step but the eye’s reduce chrominance
sensitivity means that this is very difficult to detect. The result is that this step compresses the
data by a factor of two — we have lost % of the chrominance information in two of the three
matrices. The value 128 is then subtracted from each element in each matrix to place zero as
the middle value in the range — i.e. matrix elements now range from -128 to +127.

Finally, each matrix is divided up into 8x8 pixel blocks, the full-size Y matrix having 4800

blocks and the reduced Cb and Cr matrices having 1200 blocks each.

Step two involves the application of a discrete cosine transformation (DCT) individually to
each of the 8x8 pixel blocks. The output of each DCT application is another 8x8 matrix of

DCT coefficients.

An example 8x8 block and its associated DCT coefficients presented in [MIANO, 1999] are

shown in figures 2.3.1.1 and 2.3.1.2 respectively.

58 45 29 27 24 19 17 20
62 52 42 41 38 30 22 18
48 47 49 44 40 36 31 25
59 78 49 32 28 31 24 31
98 138 116 78 39 24 25 27
115 160 143 97 48 27 24 21
99 137 127 84 42 25 24 20
74 95 82 67 40 25 25 19

Figure 2.3.1.1: Original 8x8 Block Grayscale Values pre-DCT

17

-603 203 11 45 -30 -14 -14

1
~N

-108 -93 10 49 27 6 8 2
-42 -20 -6 16 17 9 3 3
56 69 7 -25 -10 -5 -2 -2
-33 -21 17 8 3 -4 -5 -3
-16 -14 8 2 -4 -2 1 1
0 -5 -6 -1 2 3 1 1
8 5 -6 9 0 3 3 2

Figure 2.3.1.2: Result of DCT application to 8x8 matrix in figure 2.3.1.1

Though in theory, the DCT itself is lossless, the matrix presented here consists of integers
and not floating points and therefore is subject to rounding errors.

When used with photographic images, where sharp changes in pixel values within a block are
uncommon, the DCT concentrates the most important coefficients for reproduction of the
original block in the top-left corner of the output matrix. The coefficient at (0,0} in the DCT
matrix in nearly three times the next largest at (0,1). By the time matrix rows/columns 5
through to 8 are encountered, the coefficients are significantly smaller and therefore have little
impact on the reconstruction of the original 8x8 block pixel values. An illustration of the
concentration of value distribution across the original matrix and also after the DCT

application is given in figures 2.3.1.3 and 2.3.1.4 respectively.

18

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

Figure 2.3.1.5: An example JPEG Quantization Table

Each element in the DCT matrix is simply divided by its corresponding element in the
quantization table, before it is rounded to an integer. The quantization table doesn’t vary
according to the nature of a particular source bitmap image and remains constant within a
specific JPEG implementation. Quantization’s main function is to retain data in the top-left of
the DCT matrix whilst nullifying matrix elements that are more distant from this point. It is
possible to use different quantization tables for Y blocks than Cb or Cr blocks, though this will
not be shown here. The result of applying the quantization table in figure 2.3.1.5 to the DCT

matrix in figure 2.3.1.2, including rounding of the output, is given in figure 2.3.1.6.

-:35 11 O 1 0 0 o0 O

o o0 0o o O o0 00

o 0 0 o O o0 o0 O

Figure 2.3.1.6: Final Quantized DCT Matrix

20

tiling. In transformation D, stem construction involves mapping the image so that it rotated

sideways and mapped to give a thin line. As these transformations will only produce a short
stem and two leaves per iteration, transformation A maps the previous-iteration’s generated
image to form the top of the fern. The Barnsley fern belongs to a class of fractals known as

lteration Function Systems (IFS). [BARNSLEY, 1988]

2.4.3 lterative formation

Fractal images are usually produced according to a certain mathematical formula. This
formula is iterated many times. The formula to generate the Mandelbrot set, as in figure
2.4.1.1,is as follows:

z> P+ (where z and ¢ are complex)

The above formula is used to generate another type of fractal, known as Julia sets. Varying
values of z and c give different sets. The Mandelbrot Set is often referred to as the set of all

Julia sets. [GLEICK, 1988]

2.4.4 Iterated Function Systems

A specific class of fractals, known as Iterated Function Systems, have the property that they
can represent any image. An IFS consists of a set of 2D transformations which specify the
self-tiling properties of an image, such as the Barnsley Fern. These transformations are
applied iteratively to form an image constructed of repeated automated tiles of itself. All IFSs

are self-tiling. [BARNSLEY, 1988]

The IFS function is a group of n sets of 6 coefficients, where n is the number of

transformations. The image generated by iterated application of the transformations is known
as the attractor of the IFS. The attractor is reached after a certain number of iterations of the
generation algorithm. The attractor of an IFS is the image that does not change even if more

iterations of the formula are performed. Theoretically, the attractor is the fixed image of the

24

IFS at an infinite number of iterations. Using a bitmapped computer display and a finite data
structure means the attractor, at the given resolution, of the IFS can be determined by the
image remaining fixed at the resolution of the storage / display. The number of iterations
required to render the image for a given resolution of an IFS is finite, as once the attractor is

reached then there will be no further change in the rendered image. [FISHER, 1995]

Apart from the properties of self-tiling and iterative formation, IFSs also exhibit preservation of
complexity. As the attractor of an IFS is magnified, the user is able to see the self-repetition
continuing down through the image. The more the attractor is magnified, the more of the

same transformations are revealed.

An IFS is specified as a series of contractive mappings. A contractive mapping is a mapping
of the source image through a series of transformations (such as scaling, translation,
rotation). These transformations are performed on a metric plane, in the case of a computer
this usually means the main bitmap display. The mappings are contractive because when the
transformation is applied, the points on the plane are brought closer together. Such
transformations are known as 2D affine transformations. An IFS is usually specified using the

following format:

x
y

ab

cd +

R

x] _
y,

This represents the tranformation of a point w(x,y), where (x,y) represents the original point

and (x’,y’) is the position of the newly transformed point. [BARNSLEY, 1988]

This notation is the same as the expression: w(x’,y’) = (ax + by + e, cx +dy +)

2.4.41 An Example of an IFS and its Construction [FISHER, 1995]

A classic example of an IFS is the Sierpinski Gasket. It is widely used to illustrate the basic

theory of lterated Function Systems, and its attractor can be calculated manually by hand in a

few simple steps. The attractor and IFS transformations are given in figure 2.4.4.1.

25

The construction method for the gasket could be described in simple English-like steps:

* Take the input image, scale it by a factor of 0.5
* Map the resulting image at position 0,0 on the plane
* Map the image again at position (0,0.5) on the plane

* Map the image again at position (0.5,0.25) on the plane

This simple series of iterated steps can produce an image of infinite detail. IFS theory dictates
that whatever the starting image is, the resulting attractor will be same, as the attractor is only
mathematically complete after infinite iterations when all the detail of the starting image would

be infinitely reduced.

Figure 2.4.4.2 also illustrates another property of IFSs and their attractors. The appearance of
the attractor of an IFS is not dependent on the appearance of the initial starting image. The
image of the square and the image of the circle both result in the same attractor. This is due
to the contractive mappings within the IFS, where points are successively brought closer

together with each iteration.

Notice that the images of IFSs presented are monochrome. Colour IFSs [FISHER, 1995] rely
on colouring the individual pixels according to how much iteration is needed to position them
within the attractor — or to ‘show’ themselves on the attractor, but these are beyond the scope

of this project.

2.4.4.2 Algorithms to Plot IFS Attractors

The mathematics of generating IFSs is relatively straightforward. In order to make use of IFS

within many systems, it must be posible to generate the attractor of the IFS. There are

numerous algorithms that enable rendering of IFS attractors, each with their own advantages

27

and disadvantages. Computers are well suited to the repetitive task of generating IFS
attractors, which are usually rendered to a two-dimensional array or bitmapped display.
Whilst IFSs are continuous functions with infinite detail, computer bitmapped displays are not,
and the rendering algorithm must take account of this in order to render the attractor at the
display device resolution. This avoids incomplete attractors or wasted iterations trying to add
detail beyond device resolution, where the IFS output becomes invariant and has reached the
attractor. The three most common generation algorithms are considered in the following

sections.

24421 Classic Deterministic Algorithm — CDA

CDA uses the same method as illustrated above in the ‘hand-rendering’ (figure 3.3.3) of the
Sierpinski Triangle. Once the IFS reaches its attractor, any further mappings have no effect.
The algorithm performs the transformations on the original image to reach iteration 1. It then
takes this ‘output’ image and feeds it back as the initial image for the algorithm. This
continues until the attractor of the IFS is reached — i.e. the output is the same as the input.
CDA is a deterministic algorithm. It is easy to predict the number of iterations required to
generate the attractor. The fact that the attractor is generated in an ordered fashion is one of
the main advantages of this algorithm. Unfortunately, it is quite slow and inefficient compared

to some other IFS rendering algorithms. [BARNSLEY, 1988]

24422 Random Iteration Algorithm — RIA

The Random lteration Algorithm is stochastic, unlike CDA. The algorithm uses a probability
assigned to each mapping in the IFS. The probabilities of all the mappings must sum to one,
and are used to determine how often the mapping should be selected. The algorithm picks a
point on the attractor and a selected mapping is applied to this point to give a new point on
the attractor. The mapping used is chosen using the set of probabilities. The algorithm then
continues in this fashion for a predefined number of iterations. If enough iterations are
specified by the user then a good approximation of the IFS attractor can be produced.
[BARNSLEY, 1988] [BARNSLEY, 1993]

The pseudo-code for the algorithm is given below:

28

Select an initial point p on the attractor;
For i=1 to number of iterations;
Plot p:;
Select a mapping m, using probabilities;
p=m(p);

Next 4.

The Random iteration Algorithm is popular within IFS applications because it provides an
approximate image of the attractor very quickly. In order to provide a detailed image, though,
the algorithm must perform a much greater number of iterations, as it will often randomly
select the same point many times — therefore recalculating and plotting a previously
determined point, which is wasteful. Dense attractors may require a massive number of
iterations to render them completely. Because points are plotted by being randomly selected
and then transformed, it is possible to use the RIA to produce coloured attractors of the IFS.

[FISHER, 1995]

Weighted probabilities are used within the algorithm to enable more even point coverage.
Mappings of high contractivity — mappings with small scaling factors — map points onto a
relatively small proportion of the overall attractor. Mappings of low contractivity do not usually
affect the position of the transformed point greatly. If the high contractivity mappings were
picked in an equal ratio to the small contractivity mappings, then the final attractor would have
inadequate coverage on the main body of the attractor whilst the area of contractivity would
be rendered in much more detail. The algorithm would spend a disproportionate amount of
time rendering this small area. The algorithm selects the mappings according to their

individual probabilities to avoid this.

[BARNSLEY and HURD, 1993] propose the following to calculate the probabilities for an IFS:

29

deter M,

i® o

Z deter M

71
This formula calculates p; - the approximate probability for mapping i; n is the number of
contraction mappings comprising the IFS; and deter M; is the determinant of the matrix M of
the mapping Ji. The value of deter M; corresponds to the factor by which the original area is

reduced onto the contracted area. It is effectively the level of scaling of the mapping.
24423 Minimum Plotting Algorithm — MPA

This algorithm aims to render a complete image of the attractor by rendering as few pixels as
possible. The algorithm takes advantage of the property that applying the same contraction
mapping to the same point will always give the same resulting point. Thus, this does not need

to be repeated.

In order to avoid plotting points more than once and not repeating calculations, MPA keeps
track of the points it has already plotted using a FIFO queue. This ensures that a point is

never revisited. The algorithm can plot directly to a display or to a 2D array.

The algorithm renders the attractor by firstly plotting some initial points known to lie on the
attractor. As points are generated they enter the queue of points to be transformed. This
takes advantage of the property that transorming a point on the attractor will result in a point
also on the attractor. The algorithm takes a point from the head of the FIFO queue and
checks if it has been plotted. If it has it is discarded, otherwise the point is transformed to give
a new point for the queue and also a new point to be plotted. The algorithm terminates when

the FIFO queue is empty. [MONRO, 1990]
Initialise initial points on attractor;
Plot initial points;

Store points in FIFO queue Q;

30

Repeat;
Take p from head of Q
For every mapping m;
P’ = m(p);
If p"has not been plotted;
Plot p’;
Add p’ to Q;
EndIF;
Next m;

Until Q empty.

The MPA is very efficient as it stops redundant calculation being performed. The
disadvantage of the algorithm is that it needs a FIFO queue to be set up in memory, which

can be huge and impractical for the generation of large attractors.

2.4.4.3 Using IFSs for Image Compression

Fractals have a number of real-world uses. These include modelling chemical reaction
kinetics, growth patterns in bacterium and other simple organisms, and weather forecasting
[GLEICK, 1988]. Image compression, however, is perhaps the most important and powerful

application of fractal techniques.

It can be seen that highly detailed images can be formed from the iteration of simple
mathematical formulae. The Barnsley Fern attractor in figure 2.4.2.1 occupies approx 400,000
bytes in 4-bit greyscale, whereas the coefficients used to produce it require less than 100
bytes. Storing the coefficients instead of the bitmap results in a high level of ‘compression’,
giving rise to the concept of using fractals for image compression: find an IFS that generates
the original image as its attractor, and thus encode that image as a series of IFS

transformations.

31

245 The Inverse Problem

An attractor can be generated from an IFS using a relatively simple process. Barnsley
[BARNSLEY, 1988] conceived the idea of trying to find the IFS for a given image, as opposed
to trying to produce the image from a given IFS. The problem of determining the number of
transformations and their associated coefficients is known as the inverse problem. There
have been numerous attempts to solve this problem with an automatic solution — in that no
human interaction/intervention is required to reach the solution. Interactive solutions, which
are not classed as automatic, use human input to help restrict the search space. The reason
for the difficulty is the size of the search space. Even if 4 transformations are required per
image, that still leaves 24 coefficients to test with values between approx. —0.7 and +0.7
[BARNSLEY, 1998], typically calculated to 3 decimal places. This gives a search space of the

magnitude of ~2 x 10'%%

in reality, the number of coefficients for a complex real-world image would be much larger as
is unlikely that such images would display such large and simple amounts of self-similarity. It
is impractical to explore this searchspace this using trial and error technigues, as even the
most power computers would take tens of years to explore it. When attempting to find the IFS
for a given image, there must be a compromise between image quality and compression time
/ amount. This trade-off is similar to that experienced with JPEG compression [TANENBAUM,
1996].

The inverse problem has been solved in theory. The solution is to produce an IFS that
contains a mapping for every pixel in the image. Each mapping then is a transformation of the
original image to a pixel. This is clearly an unsatisfactory solution, as the mappings occupy a
far larger space than the original image, giving expansion rather than compression. The true
aim of a solution to the inverse problem is to determine the minimum number of mappings
required to represent the said image (and of course, their associated coefficients), within a

certain accuracy range. The solution should consider:

32

* How can the minimum number of individual mappings required be determined?
* Are all images suitable for compression using this method, and if not how are they
distinguished?

¢ How can the quality of the approximation of target image be determined?

The first point is crucial to the problem, and stems from the need to gain compression over
the map per pixel theory solution. Only by reducing the number of required mappings can
compression be gained. The second point highlights the fact that different images compress
with varying degrees of success. Since IFSs exploit the ideas of self-similarity, images
exhibiting this property, such as the Barnsley Fern, will lend themselves to the techniques
more than less self-similar images. The final point is important because the algorithm has to
be able to assess how good the solution it has produced is, and whether it represents an

acceptable representation of the target image.

A feature of IFSs, known as the Robustness Property [NETTLETON, 1994], dictates that a
small change in the coefficients specifying an IFS gives a small change in the final attractor.
This is a very useful property because it allows for gradual fine-tuning of the match using
progressively finer adjustments until the desired quality threshold is achieved. There are
various methods for testing how good a match the IFS attractors in comparison to the original
image. It is, therefore, essential that a reasonable fitness algorithm be employed in order to
allow fine-tuning of solutions. The Hausdorff Metric [BARNSLEY, 1988] returns a value that
gives the ‘distance’ between two images — that is, how similar they are. This method of
comparison is very accurate but unfortunately it adds a large level of overhead to the
exploration of the search space. As a result, simpler but less accurate methods are often

used.

The simplest method would be to check each image point-for-point, and return a percentage
according to the number of correctly placed points. A problem with this method is that if the
attractor is very close to the solution it may still be at a slight offset to the original image,

causing a low point-for-point match and the matching algorithm to return a very bad match

33

2.4.6.1 Evolutionary Algorithms

Evolutionary Algorithms are algorithms that try to mimic the natural process of evolution —
selecting the best solution from a population using natural selection [BEASLEY, 1998]. Such
algorithms use computational models of some of the well-known processes of natural
evolution in both their design and implementation. EAs have a population of potential
solutions within their environment, which evolve through the generations with the hope of
finding an acceptable solution. Evolution is carried out according to ‘survival of the fittest’ —
the better solutions are evolved, hopefully into better ones, whilst less optimal solutions will be
dropped. Eventually, there should be a convergence towards the optimal solution. The

following features are essential to the construction of an EA:

* Fitness function — Evaluates how good the current solution is in a quantitative manner

* Retention of quality — There must be a mechanism which allows good solutions to be
retained into subsequent generations, whilst poor solutions are removed from the pool.

*« Regeneration — In order for the solutions to ‘evolve’, there must be a mechanism that
alters the solutions in order to provide the next generation. These are created by applying
specific operators to the current solutions. In the case of mutation it is typically
proportional to the fitness of the individual solution. If the solution is reasonable, then it
would be mutated less than a poor solution. This approach aims to fine tune good

solutions whilst still varying bad ones in order to find new possibilities.

EAs can be used as an automatic solution to the inverse problem if the solution to is the IFS
for the image to be encoded; the environment is the display/memory in which the attractors
are tested for fitness, and the elements a group of randomly initialised IFSs.

Evolutionary Algorithm is an umbrella term used to classify all algorithms of this nature, the

two main types being Genetic Algorithms and Evolutionary Programming.

36

2.4.6.2 Genetic Algorithms

A Genetic Algorithm derives its behaviour from some of the well-known naturai evoltution
mechanisms. The population of solutions emulates the idea of chromosomes, encoded as
binary strings. GAs rely on a principle known as the Building Block Hypothesis, which states
that by combining parts from numerous different solutions, the high fitness parts will be
preserved throughout the evolutionary process and hopefully merge with others towards a

complete, optimal solution. [HOLLAND 1975] [BEASLEY, 1998]

The process of merging features of the different solutions into newer child solutions is known
as crossover. In addition to this, GAs also employ a mutation operator. When applied to an
individual solution, the