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Absorption And Dispersion 

In Atomic Vapours: 

Applications To Interferometry 

Graham Thomas Purves 

Abstract 

Continuous wave extended cavity diode lasers are used to measure the absorp­
tive and dispersive properties of the 5 2S1; 2 ---+ 5 2P3; 2 resonance, at 780 nm, 
in Rubidium (Rb) vapour. The Doppler-broadened hyperfine transitions are 
studied both with and without a pump beam. The investigation concentrates 
on three-level A-systems, realized in the presence of a pump beam, exhibiting 
Electromagnetically Induced Transparency (EIT). Electromagnetically Induced 
Absorption (EIA) is also seen. 
The EIT and EIA resonances can be several orders of magnitude narrower than 
the natural line width of the atomic transitions in the absence of the pump 
beam. Further, the EIT resonances are sensitive to applied magnetic fields. 
The narrowest resonances measured in this work have a full-width at half­
maximum of r-.J 80 kHz. This is limited by the transit time of the atoms through 
the probe and pump beams. 
Predictions of theoretical calculations and models are compared to experimental 
results. The theory of beam splitters and interferometers is developed to enable 
the implementation -of a Sagnac interferometer in a novel "biased" alignment. 
This allows the dispersion of atomic resonances to be measured directly. 
The direct measurement of the dispersion of the narrow EIT features in a "bi­
ased" Sagnac interferometer is presented. Such a signal is ideally suited to 
precision measurement applications such as inertial sensing and magnetometry. 
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Chapter 1 

Introduction 

This thesis undertakes an investigation into the absorption and dispersion of 

rubidium (Rb) vapour at room temperature. More specifically, the absorption 

and dispersion of Electromagnetically Induced Transparency (EIT) resonances 

on the 0 2 transition of Rb are investigated using a Sagnac interferometer. 

1.1 Motivation 

Narrow resonances lend themselves to being used as the basis for making very 

sensitive measurements. Electromagnetically Induced Transparency resonances 

can be extremely narrow, hence they are of great interest in the field of metrol­

ogy. 

1.1.1 Applications of EIT 

EIT is the phenomena of reducing the absorption of a probe beam passing 

through a medium, by applying a second pump beam to that medium. The 

spectral width of the reduced absorption, or transparency, can be extremely 

narrow, and is largely limited by the experimental parameters, not fundamental 

atomic line widths, § 3.3 . 

1 



Chapter 1. Introduction 2 

Slow light 

Associated with the modification to the absorption of a medium by EIT there 

is a concomitant modification of the dispersion. This modification of the dis­

persion of the medium can lead to significant changes in the group velocity of 

the medium. In the case of EIT this generally leads to a significant reduction in 

the group velocity of a probe pulse. However making use of Electromagnetically 

Induced Absorption (EIA), § 3.6, superluminal and even negative group veloci­

ties can be achieved. The excellent review article by Milonni, [1], addresses the 

whole field of modification of the group velocity of light. 

Early measurements of "slow light" by Kasapi et al., [2], and Schmidt et al., [3], 

achieved group velocities of c/165 in lead vapour, and c/3000 in caesium vapour 

respectively. 

Hau et al., [4], first observed extremely slow group velocities, 17 ms- 1 , in a 

sodium Bose-Einstein condensate at a temperature of 50 nK. This work was 

closely followed by that of Kash et al., [5], and Budker et al., [6]. Kash measured 

a group velocity of the order of 90 ms-1 in an optically dense 87Rb vapour at 

360 K, on the D1 transition, whilst Budker, [6], achieved group velocities as low 

as 8 ms- 1 in room temperature 85Rb on the D1 transition. 

Lukin and Imamoglu, [7], propose a scheme which utilises the reduced group 

velocity due to EIT to enable one single-photon pulse to "coherently control or 

manipulate the quantum state" of another pulse. This enables the entanglement 

of photon pulses and as such has applications in the field of quantum information 

processing. 

A direct consequence of a reduced group velocity is a reduction in the spatial 

extent of a pulse of light. Light pulses are compressed by the ratio of c/v g where 

cis the velocity of light in a vacuum and Vg is the group velocity of light. This 

in turn means that in the experiments of Hau, Kash and Budker, the length of 

the pulses of light were compressed by a factor of the order of 106-108 , hence 

pulses that are normally several km in length are compressed to the extent that 

they could be wholly contained within a typical vapour cell. 

A recent advance has shown that slow light allows a pulse of light to be de­

flected by a magnetic field. Karpa and Weitz, [8], demonstrate that dark-state 
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polaritons (light pulses stored as atomic excitations), (9], have a non-zero mag­

netic moment, in contrast to photons. A magnetic field is applied along the 

axis of a Rb vapour cell and pump and probe beams. The magnetic field has 

a gradient across the cell perpendicular to the pump and probe beams. The 

probe beam is deflected by an angle proportional to the magnetic field gradient 

and the magnetic moment of the polariton. The estimated magnetic moment 

of the polariton is found to be 5.1 X w-24 J T-1 or 0.55 J.LB . 

Stored light 

The next logical step was to store such optical pulses within the "slow-light" 

medium. This would allow propagating light pulses to be stored as atomic 

excitations within a medium which, in principle, could be retrieved at a later 

time. These atomic excitations are known as "dark-state polaritons", (9], and 

they offer the potential to be used as a quantum memory for photons, (10]. 

The review article by Lukin, (11], thoroughly covers the field of trapping and 

manipulating the states of photons, with particular interest in the application 

to quantum information. 

The storage of light pulses was achieved simultaneously by Liu et al., (12], and 

by Phillips et al., (13]. 

Liu et al. observed the storage of a pulse of light for 1 ms in a cloud of sodium, 

on the D1 transition, at a temperature of 0.9 J.LK. EIT is used to slow a pulse of 

light. When that probe pulse is contained fully within the medium, the pump 

field is turned off. The probe pulse is stored in the medium. At some time 

later (1 ms) the pump field is turned on and the probe pulse is regenerated and 

leaves the medium. 

Phillips et al. performed their measurements of stored light pulses in Rb vapour, 

on the D1 transition, at a temperature of 343-363 K. The medium was prepared 

with a cw pump field. A weak orthogonally polarized pulse is sent into the 

medium. A fraction of the pulse is allowed to propagate through the medium 

before the pump field is turned off over a time of ,....., 3 J.LS. After a time of order 

100 J.LS the pump field is turned back on. The stored portion of the probe pulse 

is then seen to leave the medium. 

More intricate schemes have since been proposed and implemented. One such 
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scheme utilises pump beams propagating both in forward and backward direc­

tion, setting up a standing wave in the medium, [14, 15]. This can allow for 

both storage and regeneration of a probe pulse as well as reflection of the probe 

beam. The difference between this scheme for storing optical pulses and those 

mentioned above is in the way that the pulses are stored in the medium. In 

this case as opposed to the pulse being stored as a dark-state polariton the 

authors argue that it is stored as an optical pulse. The standing wave of the 

pump beams leads to a modulation in the medium's absorption of the probe 

pulse. Bragg reflections off the sharp absorption peaks result in a vanishing 

group velocity for the probe pulse. 

The first implementation of stored light in a solid was carried out by Longdell 

et al., [16]. Using EIT in praseodymium doped Y2Si05 storage times of greater 

than 1 s have been achieved. 

Inertial sensing 

Zimmer and Fleischhauer, [17], have proposed a scheme that takes advantage of 

the slow-light aspect of EIT to increase the sensitivity of Sagnac interferometers. 

Sagnac interferometers are widely used to detect the rotation of a system and 

will be addressed in greater detail in chapter 5. Sagnac interferometers consist of 

two arms counter-propagating around the same path. Shifts in the interference 

pattern at the output are seen when there is a phase shift for one arm relative to 

the other. Hence Sagnac interferometers are frequently used to detect rotations 

- the rotation having the effect of shortening the path length of one arm relative 

to the other. 

Magnetometry 

In the case that the levels within the system exhibiting EIT are magnetically 

sensitive, then a change in magnetic field shifts the frequency of the centre of the 

resonance. The steep change in dispersion associated with EIT at the centre of 

the resonance offers the potential to make sensitive measurements of magnetic 

field. In the narrow range about the centre of the resonance the dispersion 

varies linearly with frequency. For this reason measuring the dispersion offers a 

higher sensitivity as well as information on the direction of the shift, that would 
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not be afforded by measuring the absorption. 

Such a scheme was first proposed by Scully and Fleischhauer, [18], and later 

extended by Lee et al., [19]. This scheme would allow for a potential maximum 

sensitivity of 1 fT in 1 s, [20]. This potential sensitivity is superior to the 

best magnetometers today, both SQUID (superconducting quantum interference 

device) and optical pumping magnetometers, [20]. Measuring the transmission 

of a weak probe through a vapour cell will not directly give information on the 

dispersion of the medium. Scully proposes using a Mach-Zehnder interferometer 

to measure the dispersion of the medium. 

Advances in this field have now led to the development of miniaturized magne­

tometers, 12 mm3 in size, with a sensitivity of 50 pT Hz-~, [21]. 

High efficiency photon detection 

Independently Imamoglu, [22], and James and Kwiat, [23], proposed similar 

methods for high efficiency optical detectors with photon number resolution. 

Imamoglu proposed a scheme involving four levels. Levels lb) and Ia) are con­

nected via a probe field. Levels lc) and Ia) are connected via the pump field and 

together the three levels form a A system. Initially both the probe and pump 

field are turned on. The pump field is turned off adiabatically. The probe field 

is left stored as an atomic excitation in state I c). A detection beam is turned 

on that is resonant with lc) and a fourth state ld). Spontaneous emission from 

ld) to lc) is recorded, revealing the number of atoms in state lc), and hence the 

number of photons stored from the probe. 

The scheme proposed by James and Kwiat also involves four different states. 

A pump field is resonant with lc) and Ia). Spontaneous emission occurs from 

state Ia) to state lb). Once the population has been pumped into lb), the photon 

field (to be measured) is directed into the medium along with a strong pulse. 

The photon field is detuned from the transition lb) to Ia) and the strong pulse 

is detuned from the lc) to Ia) transition in order that a two-photon Raman 

resonance is met between lb) and lc). Lastly a fourth beam is turned on that is 

resonant with the transition from lc) to ld). ld) is such that it can only decay 

spontaneously back to lc), and it does this on a very short time scale. The 

scattered light from the spontaneous emission is detected, this corresponds to 
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the number of atoms in pumped into state lc) via the Raman transition, and 

hence the number of photons in the original incident photon field. 

Isotope discrimination 

Isotope discrimination is another application of EIT. Kasapi, [24], has shown 

that by rendering one isotope opaque while rendering the other transparent 

it is possible to detect an isotope three-thousand times less abundant than 

the prevalent isotope. A system of two isotopes with non-identical spectra is 

considered. Pump and probe beams are applied that are on resonance for one 

isotope, while for the other isotope these beams are slightly off resonance. Hence 

one isotope is rendered maximally transparent to the probe whilst the other is 

not. By careful selection of the strength of the coupling beam it is possible to 

ensure that the second isotope is not only opaque, but is maximally opaque. 

This thesis 

Specific motivation arises from the fact that a Sagnac interferometer can be 

used to measure directly the dispersion of a medium, with an inherent stability 

against vibration greater than a Mach-Zehnder interferometer. Further moti­

vation arises from the proposal that Electromagnetically Induced Transparency 

could enhance the rotational sensitivity of a Sagnac interferometer, [25, 26], to 

produce a hybrid optical-matter-wave Sagnac interferometer, [17]. 

At the outset of this work it is understood that no other research group have 

made measurements of Electromagnetically Induced Transparency using a Sagnac 

interferometer. 
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1.2 Thesis Layout 

1.2.1 Chapters 

Chapter 2 

Chapter 2 addresses the absorption and dispersion of a weak probe beam in a 

two-level atom. Starting with the Liouville equations, the optical-Bloch equa­

tions are derived for the two-level atom. The solutions to the optical-Bloch 

equations are related to the complex susceptibility of the medium, which in 

turn is related to the complex refractive index. From the complex refractive 

index the absorption and dispersion of the medium can be derived. 

As the atomic systems under consideration are at room temperature, Doppler 

broadening of the transition between the two levels is introduced. This in turn 

allows realistic calculations of the absorption profile of the D2 line of Rb to be 

made. 

The experimental apparatus necessary to make such weak probe measurements 

is addressed. Details are given on the construction and use of the Extended Cav­

ity Diode Lasers and the photodiode circuits required to produce and measure 

the transmission of the weak probe respectively. 

Measurements of the absorption are presented and compared to the theoretical 

predictions. 

Finally natural line width spectroscopy is addressed. A second beam is in­

troduced that allows for a significant increase in the resolution of the spectra. 

The experimental set-up required is introduced and the resulting spectra are 

presented. 

Chapter 3 

Chapter 3 expands to consider three-level systems interacting with two fields. 

The theory leading to Coherent Population Trapping (CPT) and Electromag­

netically Induced Transparency (EIT) is presented. 

The optical-Bloch equations are again used, this time to predict the absorption 

and dispersion of a three-level system interacting with a strong pump and a 
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weak probe beam. Mechanisms which lead to the modification, and specifically 

broadening, of the EIT resonances are introduced and their contributions are 

considered. 

Electromagnetically Induced Absorption (EIA) is briefly addressed. This is a 

phenomenon that appears similar to EIT, but relies on the presence of more 

than three levels in the system under investigation. 

Finally group velocity modification due to EIT resonances is addressed. 

Chapter 4 

In chapter 4 the experimental measurements of EIT and EIA transmission 

spectra are presented. The experimental procedures necessary to make such 

measurements are addressed initially. EIT and EIA spectra obtained using a 

double-scan technique are presented. 

Finally more conventional single-scan EIT traces are presented. By carrying 

out fits of theoretical line shapes to the recorded spectra, the variation in width 

of the resonances is investigated for varying pump and probe powers, and for 

sensitivity to magnetic field. 

Chapter 5 

Chapter 5 presents the theory and background of the Sagnac interferometer. 

The chapter begins with a brief review of the development of the Sagnac interfer­

ometer along with its main uses and the different types of Sagnac interferometer. 

The behaviour of beam splitters is then addressed. This is used to calculate the 

output from a Sagnac interferometer in the case that the counter-propagating 

beams experience different susceptibilities of the medium. The case of "biased" 

alignment is considered, and the effect that this will have on the output signals 

is calculated. 

Chapter 6 

In chapter 6 the experimental Sagnac interferometer is studied. The experimen­

tal techniques required to align the interferometer and the photodiode circuit 
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used to measure the output are all addressed. 

The output spectra from the Sagnac interferometer for both double-scan and 

single-scan measurements are presented. The process required to obtain the 

transmission and dispersion spectra from the Sagnac output is outlined. 

The line shape of the EIT resonances is compared to three different theoretical 

models, and the width of the EIT resonances is studied as functions of pump 

and probe power. 

Chapter 7 

The conclusions drawn from the work presented in the preceding chapters is 

presented. Potential routes for future development of this project are also high­

lighted. 

1.2.2 Appendices 

The eight appendices at the end of this thesis provide supplementary informa­

tion to the main contents of the main body of the thesis. 

Appendix A contains Rb data and constants used in this work. 

Appendix B outlines the error analysis used in the work presented in this thesis. 

Appendix C outlines the full derivation of the optical-Bloch equations for both 

the two-level and three-level atom presented in chapters 2 and 3. 

Appendix D contains the derivation of the linear approximation of the Doppler 

effect. 

Appendix E contains the Mathematica code used to calculate weak probe ab­

sorption on the Rb 0 2 line. 

Appendix F shows the circuit diagram for the saw-tooth signal generating cir­

cuit, used to make the double-scan measurements. 

Appendix G explains the principles behind lock-in detection. 

Appendix H shows the relationship between the power in a Gaussian beam and 

the peak and mean intensity. 



Chapter 1. Introduction 10 

1.3 Published Work 

During this PhD three papers have been written. 

• Non-Linear Sagnac Interferometry for Pump-Probe Dispersion Spectroscopy, 

G. Jundt, G. T. Purves, C. S. Adams and I. G. Hughes, 

European Physical Journal D 27, 273-276 (2003). 

• Refractive Index Measurement By Probe-Beam Deflection, 

G. T. Purves, G. Jundt, C. S. Adams and I. G. Hughes, 

European Physical Journal D 29, 433-436 (2004). 

• Sagnac Interferometry in a Slow-Light Medium, 

G. T. Purves, C. S. Adams and I. G. Hughes, 

Physical Review A 74, 023805 (2006). 

Work published in these papers also appears in this thesis, especially, Sagnac 

Interferometry in a Slow-Light Medium, which is largely based on chapter 6, of 

this thesis. 



Chapter 2 

Weak Probe Beam Absorption 

and Dispersion 

It is preferable to record the absorption and dispersion of a medium without 

modifying either of these properties in taking the measurement. To this end a 

weak probe beam is employed. A probe beam can be described as being weak if 

its intensity is sufficiently low that it does not modify the absorption properties 

of the medium under investigation. 

An atom absorbing a photon on a closed transition will subsequently undergo 

spontaneous emission back to the original ground state, from which it can absorb 

another probe-beam photon. However if there is a mechanism whereby the atom 

can spontaneously decay, from the excited state, to a lower state which is off­

resonance with the probe beam, then should this occur that atom will no longer 

absorb probe-beam photons. 

If the probe is sufficiently intense that a significant proportion of the atoms is 

in the excited state, or has decayed to an off-resonant state, then the probe 

absorption will be modified and the beam cannot be considered to be weak. 

An investigation into how the intensity of the probe beam affects the absorption 

of that probe beam is presented in the work of Smith and Hughes, [27]. The 

authors find that it is not sufficient to define the beam as weak if the intensity 

is small (for example I« !sAT,§ 2.2.1). Instead consideration must be taken of 

the transit time of the atoms through the probe beam and how that compares 

to the hyperfine pumping time. If the hyperfine pumping time is comparable to 

11 
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the transit time, the probe beam will pump the medium. Atoms in Rb vapour 

at room temperature will have a transit time, through a beam of diameter 

,...., 2 mm, of,...., 10 J..tS. For beam intensities of I« !sAT, the pumping time will 

be ,...., r x !sAT/ I , where r is the lifetime of the excited state. 

2.1 Weak Probe Theory 

Throughout this chapter, all calculations and theory are based upon a simple 

two-level picture of an atom with a near-resonant laser field, as shown in Fig. 2.1. 

The two levels are Ia), the excited state, and lb), the ground state. The levels are 

separated by an energy !U.uab· The laser field has frequency Wpr with a detuning 

from resonance Ow The strength of the atom-field interaction is given by the 

Rabi frequency Dpr (see appendix C, equation C.6 on page 161). The line width 

of the excited and ground states are given by r a and rb, respectively. 

Figure 2.1: A two-level system. The two levels are linked by one laser field. 

The field has angular frequency Wpr and Rabi frequency f2pr· The field has 

a detuning from resonance of Opr· The excited and ground state have line 

widths, r a and rb, respectively. 

2.1.1 Density Matrix 

Consider an ensemble of particles, all of which may be in a pure state. The 

state of the ensemble of particles will generally be a mixture of those states and 
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therefore not necessarily a pure state itself. In this case the ensemble cannot 

be represented by a wavefunction. Such a system can be described by a density 

operator, p. For a pure state, pis defined as: 

P = I1/J}(1/JI , (2.1) 

where 11/J) is the state under consideration. For an idealised two-level atomic 

system in the state, 

11/J) cal a) + Cblb) , (2.2) 

the density matrix is: 

(2.3) 

Each element in the density matrix is a product of probability amplitudes. The 

terms on the diagonal, Paa and Phb, give the population of the states, whereas 

the off-diagonal terms give the coherences between states. 

For a non-pure, mixed state, the density matrix is defined as: 

(2.4) 

where Pi is the probability of being in state 11/Ji)· 

Liouville Equation 

When dealing with individual pure states the Schrodinger equation describes 

how the states evolve. In principle this can be extended to apply to many parti­

cle systems too. As the number of particles increases, the number of calculations 

necessary to describe how the whole system evolves soon becomes prohibitive. 

An alternative approach should be taken. Consider a state, 11/J(to)), that at 

some time, t, will have evolved to 11/J(t)), such that: 

11/J(t)) = U(t, to) IV;( to)) , (2.5) 

obviously, 

U(t =to, to)= 1. (2.6) 
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Substituting equation 2.5 into the Schrodinger equation, 

we obtain, 

in [ 8U~ to) 11/J(to)) + U(t, to) 811/J~o))] 

.n8U(t, to) 
. . I [)t 

From equations 2.6 and 2.9, 

U(t, t0 ) = e-kYf'(t-to) . 

I1/J(to))£U(t, t0) 

+ U(t, to)£11/J(to)) , 

£U(t,to). 

14 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

If we now consider a variable ~which evolves when the state 11/l(t)) evolves as 

per equation 2.5 then, 

( 1/l( t) 1~11/J( t)) 

and as 

then, 

(1/J(to)IUt~Uiw(to)) , 

(1/l(to)l~olw(to)) , 

utu = 1 
' 

Differentiating with respect to t, 

If~ is in fact the density matrix p, it follows that, 

. i 8p 
p = Ji[p,£] + 8t ' 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.19) 
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where, 

8p 
at= -'YP' 

. i 
===} p = h[p,£']- 'YP. 

15 

(2.20) 

(2.21) 

This is known as the Liouville equation, and it is the density operator equivalent 

of the Schrodinger equation. 

2.2 Optical-Bloch Equations 

The optical-Bloch equations are a useful tool for understanding the interac­

tion of an atomic system with near-resonant monochromatic radiation. The 

evolution of both the coherences and the populations can be derived from the 

Liouville equation, equation 2.21. 

For a two-level atom interacting with near-monochromatic radiation the Hamil­

tonian for the system is given by, 

(2.22) 

The interaction of the atoms with the radiation field is given by, 

(2.23) 

where Epr cos (wprt) is the laser field, and d is the atomic dipole. For the two­

level atom, the dipole is given by, 

d = dba(la)(bl+lb)(al) (2.24) 

The full derivation of the optical-Bloch equations is given in appendix C. In 

the case of a two-level atom with a near-resonant monochromatic field the 

equations of motion for the populations and coherences are given by, equa­

tions C.36, C.37, and C.38, 

_:.__ ( . ;: ) - iOpr ( ) Pab = - lab- lupr Pab + -
2
- Paa- Pbb 

iOpr (- _ ) 
Paa -2- Pab - Pba - r aPaa ' 

iOpr (- _ ) r /Jbb -
2
- Pba - Pab - bPbb + f aPaa , 
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where Pab and Pab are the slow variables, see appendix C . 

The Rabi frequency, Opr , of the dipole interaction is given by equation C.6 , 

n __ dba · Epr 
pr - n 

In the steady state, 

;._ ;._ 

Pab Paa' 
;._ 

Pbb) 

0, 

and in the case that the two-level system is closed, 

rb 

and Paa + Pbb 

0, 

1 . 

In this regime the optical-Bloch equations reduce to, 

r iOpr (- - ) aPaa -
2

- · Pab - Pba 

iOpr 
hab - iOpr) Pab -

2
- · (Paa - Pbb) 

Substituting from equation 2.27 into equation 2.29 leads to, 

iOpr 
Pab = 

2 
( _ .

0 
) · (2Paa ~ 1) . 

l'ab 1 pr 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

Now substituting equation 2.30 and its complex conjugate into equation 2.28, 

allows the solution for Paa to be obtained, 

n~r 
2 ( 2 +O )'/'ab(2Paa-1) 

l'ab pr2 
faPaa (2.31) 

1 n~rl'ab 
2. l'abn~r + r a (l';b + o~,) ) Paa = (2.32) 

As the two-level system under consideration is closed which leads to rb = 0 , 

then from equation C.15 on page 162 , 

l'ab = (2.33) 

Thus it follows that equation 2.32 reduces to, 

1 n~,/2 
Paa = 2 . n~,/2 + (f a/2) 2 + o~, ' (2.34) 
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To find the steady-state solution for the coherence between the two levels, sub­

stitute equation 2.34 into equation 2.30 , 

Pab (2.35) 

Bloch Vector Components 

An alternative representation of the solutions to the optical-Bloch equations is 

in the form of the components of the Bloch vector. The three components of 

the Bloch vector are, 

u Pab + fJha 
2 

(2.36) 
- -Pba- Pab 

(2.37) v 
2i 

and w 
Paa- Pbb (2.38) 

2 

Expressed in this way the solutions have a much more apparent physical signif­

icance. w is half the difference between the populations of Ia) and lb), so, 

1 
w+ 2 = Paa. (2.39) 

To interpret the physical significance of u and v it is instructive to look at the 

expectation value of d. 

(d) Tr(pd) , 

From equation C.22 , 

(d) = dba(Pbaeiwprt + Pabe-iwprt) , 

= 2dba(ucos(wprt)- vsin(wprt)) . 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

Hence u is proportional to the amplitude of the component of (d) in phase with 

the incident laser field, and v is proportional to the amplitude of the component 
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of (d) in quadrature with the incident laser field. Writing (d) in terms of its 

real and imaginary components, 

(d) = dR + idr , (2.44) 

(2.45) 

(2.46) 

The steady state solutions of the Bloch vector equations can be derived by 

substituting equations 2.36, 2.37 and 2.38 into equations 2.35 and 2.34 , 

Ust 

1 
Wst+-

2 
= 

Opr . Opr 

2 o~r + (r a/2)2 + n~r/2 ' 

npr . fa/2 

2 o~r + (r a/2) 2 + n~r/2 ' 

1 n;r/2 
2 . o~r + (r a/2)2 + n~rf2 . 

2.2.1 Saturation of the Transition 

(2.47) 

(2.48) 

(2.49) 

The saturation parameter, S, describes the degree to which a given transition 

is saturated by a field of strength npr, and detuning Opn 

s = npr
2
/2 

o~r + (r a/2)2 • 
(2.50) 

Substituting the saturation parameter, equation 2.50 into the steady-state optical­

Bloch equations 2.47, 2.48 and 2.49, leads to, 

Ust 

Wst = 

Opr S 
npr. 1 + s ' 
fa S 

2npr · 1 + S' 
1 1 

2 1 + s 

(2.51) 

(2.52) 

(2.53) 

The saturation parameter is such that S ---t oo, Wat ---t 0, the transition is satu­

rated and the populations of lb) and Ia) are equal. The on-resonance saturation 

parameter, S0 is given by, 

So 

= 

20~r 
~' a 

I 

fsAT 

(2.54) 

(2.55) 
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!sAT is the saturation intensity for a transition. It can be thought of as the 

photon energy (fie/>.) per unit time (r a) per unit area (absorption cross-section 

"'>..2), 

(2.56) 

In the case of the Rb D2-line then from the spectroscopic data in appendix A, 

!sAT= 1.67 mW cm-2 
. (2.57) 

The on resonance Rabi frequency can be determined for a closed transition 

from, 

(2.58) 

(2.59) 

To expand the expression for the Rabi frequency to include open transitions, 

the transition probability for the open transition relative to the closed transition 

has to be introduced. 

2.3 Line Width of Absorbing Thansitions 

2.3.1 Complex Susceptibility 

The macroscopic polarization, P, for a medium with N oscillators per unit 

volume with a dipole moment d, is given by: 

P=N(d). (2.60) 

From the assumption that P is proportional to the applied electric field E, P 

can be written as, 

1 . t . t 
p = 2EoE(xe-IW + x*eiW ) ' (2.61) 

where x is the complex susceptibility of the medium, [28]. 

From equations 2.42, 2.60 and equation 2.61, 

Ndba (fibaeiwt + Pabe-iwt) = ~EoE (xe-iwt + x*eiwt) (2.62) 
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Taking the dot product of equation 2.62 with dba and substituting from equa­

tion C.6 on page 161 leads to, 

(2.63) 

Equating coefficients of e-iwt leads to, 

Nd~a -
X = -2 t,r. Pab · 

Eo nHpr 
(2.64) 

From equations 2.36 and 2.37, it follows that, 

- . Pab = U- lV. (2.65) 

Substituting equation 2.65 into equation 2.64, and taking the steady state so­

lutions for u and v from equations 2.47 and 2.48, 

Nd~ ( Opr . fa/2 ) ( ) X = - -- 2 - 1 2 , 2.66 
Eoli O~r + (f a/2) + n~rf2 O~r + (f a/2) + n~rf2 

===> XR Nd~a ( Opr ) 
- Eo/i O~r + (f a/2)2 + n~r/2 

(2.67) 

and XI = Nd~a ( fa/2 ) 
Eoli <>~r+(ra/2) 2 +n~rf2 ' 

(2.68) 

where XR and XI are the real and imaginary parts of the complex susceptibility, 

respectively. 

2.3.2 Complex Refractive Index 

From Maxwell's equations, 

p 
V'·E=-, 

Eo 
(2.69) 

where p is the total charge density. This can be broken down into two compo­

nents: the free charge density, Pfreei and the polarization charge density, Ppol· 

Hence, 

V'·E 
Prree + Ppol (2.70) 

Eo 
Pfree- \7 · P 

(2.71) 
Eo 

Prree · (2.72) 
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This can be rewritten in terms of the relative permittivity, t, 

\7 · ( ttoE) = Pfree , 

==> t=1+x. 

21 

(2.73) 

(2.74) 

The refractive index, n, can be related to the relative permittivity t through 

the phase velocity, v, 

v 

and as, 

c 

1 

yfttoi-Lflo ' 
c 

n 

1 

yEoJiO ' 
v'fii . 

(2.75) 

(2.76) 

(2.77) 

(2.78) 

With the exception of ferromagnetic materials, at optical frequencies 11 ~ 1, 

then, 

n = VE' 
n = Jf+X. 

(2. 79) 

(2.80) 

In gaseous media at sufficiently low pressure the index of refraction is close to 

unity, and as, 

n2
- 1 = (n + 1)(n- 1) , 

then it follows that, 

n2
- 1 ~ 2(n- 1) . 

Thus, from equation 2.80 and 2.82, 

n = 1+ ~ 2 . 

(2.81) 

(2.82) 

(2.83) 

The refractive index can be rewritten in terms of the real and imaginary parts, 

nR and n1, respectively, 

where the real and imaginary parts of the refractive index are, 

1 + XR 
2 ' 

XI 
2 

(2.84) 

(2.85) 

(2.86) 
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Kramers-Kronig Relations 

Substituting from equations 2.67 and 2.68 into equations 2.85 and 2.86, 

(2.87) 

(2 .88) 

Plots of the normalized absorption coefficient (nr(t5pr)/nr(t5pr = 0)) and disper­

sion coefficient ((nR(t5pr) - 1)/nr(t5pr = 0)) are shown in Fig. 2.2(i) and (ii) 

respectively. 

-4 -2 0 

8pr/f a 

2 4 

Figure 2.2: The normalized Lorentzian absorption coefficient 

(nr(8pr)/nr(8pr = 0)) and dispersion coefficient ((nR(8pr)- 1)/nr(8pr = 0)) 

for a two level atom, in the case that r a » f2pr, are plotted as a function of 

the detuning from line centre, 8pr· The detuning is in units of the decay rate 

of the excited state, r a· In these units the FWHM of the Lorentzian is 1 . 

Equations 2.87 and 2.88 are specific examples of the Kramers-Kronig relations. 

They relate the absorption and dispersion of a medium through the complex 
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refractive indices. In the case of a two-level atom, the imaginary part of the 

refractive index, and hence the absorption of the medium, is of a Lorentzian 

form. 

The specific case of the Kramers-Kronig relations for a Lorentzian line shape 

can be extended to the more general case, [29], 

1100 w'n1(w') , 
1 +- 12 2 dw , 

1r 0 w -w 
(2.89) 

-- dw w 100 w'nR(w') - 1 1 

7f o w'2- w2 . (2.90) 

2.3.3 Transmission Intensity 

Considering an electromagnetic-wave, E = Eoexp [i(kprZ- Wprt)], passing along 

z through a medium of refractive index n, the frequency remains unchanged 

but the wavevector kpr becomes kn = nkpr. Separating the real and imaginary 

components of the refractive index leads to a field and an intensity given by, 

E 

===> I 

(2.91) 

(2.92) 

Consider a beam propagating a distance z through a medium with absorption 

coefficient a, then the intensity will be given by, 

I(z) = I0e-az . (2.93) 

Comparing equation 2.92 to equation 2.93, it can be seen that the absorption 

coefficient is given by, 

(2.94) 

a( <>pr) gives the absorption line shape which has a Lorentzian form. nR ( <>pr)- no 

gives the dispersion profile, and as n0 ~ 1 in atomic vapours, then nR(<>pr)- 1 

gives the dispersion. 

2.3.4 Doppler Broadening 

Before the advent of the laser, spectroscopy of absorption and emission lines in 

gaseous media was limited to the Doppler width. The mechanism responsible 
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for this, Doppler broadening, is a consequence of the fact that the atoms in 

the medium have a non-zero velocity distribution. Atomic transitions which 

are not resonant with a monochromatic radiation field can still interact with 

that field, if their velocity is such that they are Doppler-shifted into resonance 

with it. Therefore a number of closely spaced atomic transitions can become 

indistinguishable from each other, if their separation is less than the Doppler 

broadening. 

An atom with a resonance in its rest frame at Wab will absorb a photon with 

frequency Wpr, in the laboratory frame. From appendix D, 

(2.95) 

For atoms in a vapour in thermal equilibrium at temperature T, the number 

of atoms per unit volume, in the Ei level, with a velocity in the interval Vz 

to Vz + ovz, is given by the Maxwellian velocity distribution. This velocity 

distribution takes the form: 

Ni (v) dv = __!'!_!__ exp [- (}!_) 2
] dv, 

Vpvl1f Vp 
(2.96) 

vp =/¥is the most probable velocity, m is the mass of the atom and ks is 

the Boltzmann constant. From equation 2.95: 

c 
dv= -dWpr. 

Wab 
(2.97) 

Subsituting equation 2.97 into equation 2.96 gives the number of atoms with 

absorption frequency Wab shifted into the interval Wpr to Wpr + dwpr: 

(2.98) 

The emitted or absorbed radiant power P(w)dwpr, is directly proportional to 

the density of atoms emitting or absorbing, Ni(Wpr)dwpr . Hence the intensity 

profile becomes: 

/(wpr) = Io exp [- (c (wpr- Wab))2] . 
WabVp 

(2.99) 
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Voigt Profile 

If an atom absorbs at a single frequency, Doppler broadening leads to a Gaussian 

absorption profile, equation 2.99. Atoms do not absorb at a single frequency, but 

instead absorb over a spread of frequencies due to the natural line width of the 

transition, given by a Lorentzian function. Thus the Doppler broadening of the 

transitions takes the form of a Gaussian function convolved with a Lorentzian 

function. 

The convolution of a Lorentzian and a Gaussian function is known as a Voigt 

profile. It accurately describes the line shape of Doppler-broadened transitions. 

In the limits that the Lorentzian full-width at half-maximum (FWHM) is much 

greater than the Gaussian FWHM, then the Voigt profile can be well approxi­

mated by a Lorentzian function. In the limit that the Gaussian FWHM is much 

greater than the Lorentzian FWHM, the Voigt profile can be well approximated 

by a Gaussian function1
. 

2.4 Rb D 2 Line 

2.4.1 Vapour Pressure and Number Density 

The vapour pressure, p, for solid Rb is given by the following equation,: [34), 

log10 p = -94.04826 -
196~258 (2.100) 

- 0.03771687 x T + 42.57526 x log10 T , 

T is the absolute temperature, p is the vapour pressure in Torr. From the 

vapour pressure it is trivial to calculate the number density, N. 

N = 133.3 X p 
ksT ' 

(2.101) 

the factor of 133.3 converts the vapour pressure from Torr to Pa and ks is once 

again the Boltzmann constant. As there are two isotopes of Rb the number den­

sity of the separate isotopes should be calculated. The ratio of the abundance 

1 Lorentzian functions decay at a slower rate than Gaussian functions as the detuning from 

line centre increases. It should be noted that for large detunings from line centre the Gaussian 

fit to the Voigt profile will not be as valid as in the region around line centre. 
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(i) 85Rb (ii) 87Rb 
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l
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Figure 2.3: (i) The hyperfine levels involved in the 85Rb D2 transition, [30, 

31]. (ii) The hyperfine levels involved in the 87Rb D2 transition, [32]. The 

wavelength of the transition is taken from the work of Morton, [33]. The 

(linear) frequency hyperfine-intervals are given as well as the wavelength 

(in vacuum) and frequency of the D2 transition in the absence of hyperfine 

structure. The hyperfine levels of the upper term are labelled F' while the 

ground term hyperfine levels are labelled F. 

of the two isotopes 85Rb to 87Rb is 0.72 : 0.28, [32]. So the number densities for 

the two isotopes, N85 and N87 , are given by, 

0 72 
133.3 X p 

. x ksT ' 
133.3 X p 

0.28 x ksT 

2.4.2 Weak Beam Absorption Predictions 

(2.102) 

(2.103) 

To make predictions of the absorption and dispersion based on equations 2.87 

and 2.88, it is necessary to determine dba· AB Rb is not a two-level atom, 

and exhibits fine, hyperfine and Zeeman structure, then the transition matrix 

elements for each of the Zeeman sub-levels involved in one transition must be 

calculated. 
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Initially consider the individual hyperfine transition matrix elements of the 

form, 

(2.104) 

previously referred to as dba· Using the Wigner-Eckart theorem, [35], it is 

possible to uncouple the angular momenta and to rewrite the transition in terms 

of 3- J symbols, 6- J symbols and the reduced matrix element, equation 2.105. 

(Fe, mF. !er!Fg, mF8 ) (2.105) 

xJ(2Fe + 1)(2Fg + 1)(2Je + 1)(2Jg + 1) 

The reduced matrix element is (LelleriiLg), it is the same for every transition 

within the angular momentum manifold. The 6 - J symbols are those terms in 

{} and the 3 - J symbols those in (). I, J, L, S, F and m are the angular mo­

mentum quantum numbers, and q represents the change in m from the ground 

state to the excited state. The reduced dipole matrix element is dependent 

upon the wavelength of the transition and the lifetime of the excited state. 

The susceptibility for each Zeeman level is calculated and multiplied by 1/g, 

where g is the number of Zeeman levels in the ground term (g = 12 for 85Rb 

and g = 8 for 87Rb). This is to take account of the fact that we are assuming 

the population is evenly divided among the ground term Zeeman sub-levels. 

The susceptibility of each hyperfine transition is the sum of the susceptibilities 

for all of the Zeeman transitions within each of the hyperfine manifolds. Inte­

grating over the velocity component along the direction of the beam accounts 

for the Doppler broadening. The absorption coefficient is calculated for each 

hyperfine transition using Mathematica2 • The absorption coefficient for each of 

the hyperfine transitions, on the Rb 0 2 line, is plotted in Fig. 2.4 , at 293 K. 

2The code for this calculation is included in appendix E . 
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The transmission of a weak probe beam is given by, 

I = Ioe-('Ea(T))z ' (2.106) 

where z is the length of the cell, and Ea(T) is the sum of the absorption 

coefficients, each of which is a function of temperature. Using Mathematica 

this calculation has been carried out. 
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Figure 2.4: Plots of the absorption coefficients, at 293 K, for the hy­

perfine transition that make up the D2 line of both 85Rb and 87Rb. The 

blue traces show the coefficients for the transitions 87Rb 5 281; 2 (F 

2) --+ 5 2P3; 2 (F' = 1, 2, 3), the red traces 85Rb 5 281; 2 (F = 
3) --+ 5 2P 3; 2 (F' = 2, 3, 4), green traces 85Rb 5 281; 2 (F = 
2) --+ 5 2P3; 2 (F' = 1, 2, 3) and the orange traces 87Rb 5 281; 2 (F = 

1) --+ 5 2P3; 2 (F' = 0, 1, 2). The solid lines show the coefficients for transi­

tions between hyperfine states F --+ F' = F + 1, dashed lines F --+ F' = F, 

and dotted lines F -+ F' = F - 1. The zero frequency corresponds to the 

weighted centre of the D2 line. 

Fig. 2.5 shows the transmission of a weak probe beam, scanned across the full Rb 

D2 line at 293 K for two different length vapour cells. The hyperfine splitting of 

the excited term is less than the Doppler broadening of each of these transitions 

at 293 K. It is not possible to resolve the excited-term hyperfine structure. The 

ground-term hyperfine splitting is much larger than that of the excited term 

and larger than the Doppler broadening, hence this can be resolved. 
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Figure 2.5: Calculated transmission profile of the Rb D2 line at 293 K. 

Plots for a weak probe propagating through a 5 em vapour cell (red) and an 

8 em long vapour cell (blue) are shown. These are the lengths of vapour cells 

used in tllis work. The zero frequency corresponds to the weighted centre of 

the D2 line. 

2.5 Weak Probe Experiment 

2.5.1 Extended Cavity Diode Lasers 

29 

In this section the set-up and alignment of the laser used in this experimental 

work is addressed. Extended cavity diode lasers (ECDLs), [36, 37, 38, 39] are 

widely used for atomic spectroscopy. ECDLs provide a (relatively) cheap and 

reliable method of generating up to tens of m W of single-mode tuneable laser 

power. 

The lasers used throughout this work were in-house designed ECDLs. The 

cavity is in the Littrow configuration, [39]. The diodes used in this work are 

Sanyo DL7140-201. The diode is housed in a brass block which stands on a 

thermo-electric cooler (TEC), Marlow Industries DT3-2.5. The brass block 

also houses a 100 kD thermistor to provide feedback to the TEC control. This 

allows the temperature of the brass block, and hence the diode, to be controlled. 

The temperature controller used is a Wavelength Electronics MPT- 2500, with 

a quoted stability of 0.008 °C/24hrs. 

The mounting of the laser diode and the external cavity is shown in Fig. 2.6. 
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The output of the diode is collimated using a lens (f = 4.5 mm) mounted in the 

same brass block as the diode. The lens is mounted, such that it is co-axial to 

the diode casing, on a screw thread allowing the lens-diode separation to be var­

ied. The collimated beam reflects off a reflection grating with 1800 linesjmm. 

The zero order reflection is coupled out of the ECDL and into the experimental 

apparatus, whilst the minus first order is reflected back into the diode. The 

frequency of the light determines the angle of the non-zero orders of the reflec­

tion. Fine control of the frequency of light amplified in the cavity is gained from 

control of the cavity length. The light reflected into the diode seeds the gain 

medium, such that the diode will amplify and output light at the frequency of 

that light injected into it. It follows that scanning the length of the cavity will, 

in turn, scan the frequency output of the diode and hence of the ECDL. 

The grating is mounted on a Thorlabs mirror mount, KCl. The mount has been 

modified with the addition of a piezo-electric transducer, Thor labs AE0203D08 

PZT, positioned such that it enables the angle and length of the cavity to be 

scanned. The piezo expands by 6.1 ± 1.5 J.tm/100 V. Applying a varying voltage 

to the piezo scans the frequency output of the ECDL. 

The ECDL does not consist of a single cavity, as both surfaces of the diode are 

also reflecting. This in turn means that the laser does not always operate in a 

single mode at a single frequency, and furthermore the frequency of the ECDL 

cannot be scanned more than"' 2.5 GHz, without discontinuous changes in its 

output - referred to as mode-hops. 

When the laser is set up, care has to be taken to ensure that the laser will 

scan without mode hops across the region of each of the individual Doppler­

broadened resonances. 

The laser power-to-current characteristics are recorded. They provide a useful 

diagnostic tool for how the laser diode is operating and, specifically, whether the 

diode is showing signs of ageing. A typical plot of diode output power against 

current is shown in Fig. 2.7. Ageing of the diode will be shown by an increase 

in the threshold current. The threshold current is defined here as the intercept 

of a straight line fit to the data (see Fig. 2. 7) with the frequency axis. 

The diode current is increased until the output beam is visible on a viewing 

card, Newport F-IRC4. The diode is rotated such that the long axis of the 
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Output 
Beam 

Figure 2.6: Diagram showing the cavity set up of the ECDL. The cavity is 

formed by the rear facet of the diode and the reflection grating. The cavity 

is in the Littrow configuration. The piezo is positioned in the mirror mount 

as shown in the diagram. Changes in length of the piezo change the length 

of the extended cavity. This in turn controls the frequency of the output of 

the ECDL (see the text for further details). 

31 

output beam profile is parallel to the optical bench. The output of the diode 

must next be collimated. The beam is allowed to propagate over as long a 

distance as possible, typically > 4 m. The separation of the lens and diode is 

then adjusted such that the divergence of the beam over the full distance is 

minimal, without there being any beam waists along the beam path. 

With the grating in place, the output of the ECDL is monitored. Generally 

two spots can be seen. The alignment of the grating is adjusted until the spots 

overlap to as high a degree as possible. The current to the diode is reduced 

to just below its lasing threshold value. Using a power meter to monitor the 

output of the ECDL, the vertical alignment of the grating is adjusted until the 

ECDL starts to lase again. This process is repeated until further adjustment of 

the grating cannot start the laser lasing again. The vertical alignment is now 

optimized. 

The laser diode current is set to a value to give the desired power output, 

and the temperature of the diode set at ~ l9°C. A Rb cell is placed in the 

output beam path, and monitored for fluorescence. The horizontal angle of the 

grating mount is adjusted - hence adjusting the length of the cavity - until 

fluorescence can be seen. If fluorescence cannot be found the temperature of the 
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Figure 2.7: Laser diode output power is plotted against the current through 

the diode, shown by red dots. Note that the power increases at a low rate 

until the threshold current is reached, at 30.3 rnA, this is the point at which 

the diode starts to lase. The blue line shows the straight-line least-squares 

fit to the data once the diode has started to lase. The threshold current is 

defined as the point at which the straight-line fit crosses the frequency axis. 
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diode is adjusted by a small amount ( « 1 oc) and the horizontal adjustment 

of the grating varied once more. This process is repeated until fluorescence is 

seen. 

Once fluorescence is seen, the piezo is scanned at a rate of~ 10 Hz over a range 

of rv 10 V. Further adjustment is made to the laser current and the temperature 

of the diode until a full scan of the Doppler-broadened absorption can be made. 

A saturated absorption spectroscopy set-up, § 2.6.1, is used to identify the 

transition. If the absorption in the absence of the pump beam does not agree 

with the predicted absorption § 2.4.2, then either the probe power is too high 

or the laser is not operating in a single mode. Reduction of probe power will 

show if the power is causing the diminished absorption, as with the reduction 

in power the absorption will increase. If this does not happen then the laser 

will not be operating on a single mode. If the laser is not operating in a single 

mode then the process of varying the current and temperature will have to be 

repeated. 

Varying the amplitude of the voltage scan, and also using a smooth scan (sine­

wave as opposed to sawtooth), can have the effect of increasing the scan range. 
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The output-beam profile of the ECDL can be well approximated by an elliptical 

Gaussian function. The long axis, with 1/e radius a, is in the horizontal plane 

and the short axis, with 1/e radius b, is in the vertical plane. In this case the 

the peak intensity of the beam, 10 , is related to the total power in the beam, 

P, by equation H.8 on page 186, 

Io 
p 

1r a b · 

Optical Isolation 

Diode lasers are exceptionally sensitive to feedback, [36], and as such care has to 

be taken to ensure eradication of unwanted feedback into the ECDL. Unfortu­

nately the use of components such as optical fibres almost guarantees that there 

will be sufficient feedback to modify the output of the laser significantly. This 

means that an optical isolator must be used. The isolator used in this work was 

a Gsiinger FI-780. This allows linearly polarized light to pass through in one 

direction but extinguishes light in the other direction to > 30 dB irrespective 

of its polarization. 

2.5.2 Photodiode circuits 

Fig. 2.8 shows a basic reverse-biased photodiode circuit used to measure the 

power of probe beams transmitted through Rb vapour cells. 

o-------4-----------~+9V 

ov 

Output 
>---~t--o 

R 

Figure 2.8: Reverse biased photodiode circuit used for measuring saturation 

spectroscopy. 
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The gain of such an operational amplifier (Op-Amp) circuit is given by the ratio 

of the output voltage Vaut to the input voltage Vin, [40, 41]. 

Vaut -I Z~ut I , (2.107) 
Vin Zm 

~ Yaut I I Vin - Zout . IZml (2.108) 

-IZoutl· lin , (2.109) 

where Zout and Zin are the output and input impedances, and lin is the input 

current, generated by the light incident on the photodiode. In the case that the 

Zout = R it follows that, 

(2.110) 

It follows that the amplifier will not introduce any filtering of different frequency 

components, although the photodiode itself will have a limit on its response 

time. In the case of a BPX--65, the response time is~ 12 ns, though the exact 

value depends on several parameters, [42]. 

Two 9 V cells are used to define the +9 V, 0 V, and -9 V. Cells are preferred to 

a DC supply powered from the mains, as they will not suffer from the potential 

noise fluctuations that could be expected on the mains derived power supply. 

2.5.3 Experimental Weak Probe Measurements 

The ECDL was set up to scan across each of the four Doppler-broadened features 

of the Rb D2 line. A probe beam was passed through the 8 em long Rb vapour 

cell. The beam was then focussed onto a photodiode (BPX-65), mounted in the 

circuit shown in Fig. 2.8. The frequency of the output of the ECDL was scanned 

by applying a sinusoidal control voltage to the piezo. The signal from the 

photodiode was recorded both with and without the ECDL beam blocked (Shack 

and S respectively). To obtain a normalized transmission signal (Snorm) the 

recorded signal (S- Shack) was divided by the off-resonance signal (Soff- Shack)· 

s- shack 
Snorm= ---­

Soff- Shack 
(2.111) 

To determine the frequency scale the piezo-control voltage is recorded. A least 

squares fit of a sinusoidal function is made to the recorded control voltage. A 
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saturation spectroscopy signal is recorded simultaneously, § 2.6.1. The satura­

tion spectroscopy trace is used to calibrate the voltage. The piezo voltage at 

which the natural line width features occur is recorded. A linear-least-squares 

fit is made of the voltage to the known separations (Fig. 2.3) of the the fea­

tures. This linear fit is then used as the frequency scale for the plots, Fig. 2.9 

and Fig. 2.11. 

The four Doppler-broadened resonances are plotted against the ECDL fre­

quency, shown in Fig. 2.9. 

As can be seen from the comparison of Fig. 2.9 (i) and (ii), the ECDL scan is not 

linear over the range of the 87Rb 5 28 1; 2 (F = 2) ~ 5 2P 3; 2 (F' = 1, 2, 3) and 
85Rb 5 28 1; 2 (F = 3) ~ 5 2 P 3; 2 (F' = 2, 3, 4) transitions. A linear calibration 

of the frequency scale using the 87Rb 5 2
8 1; 2 (F = 2) ~ 5 2

P 3; 2 (F' = 1, 2, 3) 

transitions instead of the 85Rb 5 28 1; 2 (F = 3) ~ 5 2P3; 2 (F' = 2, 3, 4) 

transitions shows a discrepancy of 6%. 

It is apparent that the measured depths of the absorptions do not perfectly 

match the predicted depths. Fitting single Gaussian functions to both the ex­

perimental and theoretical transmission allows a simple characterization of the 

absorptions through their amplitude and FWHM, Tables 2.1 and 2.2. Com­

parison of the amplitude and FWHM of the Gaussian fits shows that the 

predicted absorption is greater than the experimentally measured absorption 

for 85Rb 5 2
8 1; 2 (F = 2) ~ 5 2

P3;2 (F' = 1, 2, 3) and 87Rb 5 2
81;2 (F == 

1) ~ 5 2 P 3; 2 (F' = 0, 1, 2). This is not the case for the 87Rb 5 2
8 1; 2 (F = 

2) ~ 5 2P 3; 2 (F' = 1,2,3) and 85Rb 5 2
8 1; 2 (F = 3) ~ 5 2

P3;2 (F' = 2,3,4) 

transitions, where the measured absorption is greater than the predicted in 

Table 2.1 . 

The absorption of the weak probe is highly sensitive to the temperature of the 

Rb vapour. At 293 K a change of 1 K in the temperature of the vapour will lead 

to a change of ,...., 10% in the absorption3 . However this does not explain why 

two of the transitions show more absorption than expected and two show less. 

If the temperature of the vapour was higher than it was believed to be, all four 

Doppler-broadened absorptions would show an increase in absorption whereas 

a lower temperature would lead to reduced absorption on all four absorptions. 

3Hence a normalized absorption of 0.20 at 293 K would be c:o:' 0.22 at 294 K. 
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Transition Experimental Amplitudes Predicted Amplitudes 

87Rb 5 2S1;2 (F = 2) 0.22 0.20 
85Rb 5 2S1;2 (F = 3) 0.49 0.46 
85Rb 5 2S1;2 (F = 2) 0.34 0.37 
87Rb 5 2S1;2 (F = 1) 0.11 0.14 

Table 2.1: Normalized amplitude of experimentally measured and theo­

retically calculated Doppler-broadened hyperfine spectrum. The Doppler­

broadened transitions are denoted by their common ground-term hyperfine 

states. 
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A potential explanation for the discrepancies in the expected and measured 

absorption are that they are due to optical pumping. Optical pumping is the 

redistribution of the population among the different states of the atom due to the 

presence of an optical field. In this case, population accumulates in the upper 

hyperfine levels of the ground term (87Rb 5 2S1;2 (F = 2) and 85Rb 5 2S1; 2 (F = 

3)), due to the presence of closed transitions4 from these hyperfine states to the 

excited hyperfine states (87Rb 5 2S1; 2 (F = 2, mp = ±2) ~ 5 2P3;2 (F' = 
3, mF' = ±3) and 85Rb 5 2S1;2 (F = 3, mp = ±3) ~ 5 2P3;2 (F' = 4, mF' = 
±4)). This in turn leads to more absorption when the probe is resonant with 

transitions from the upper hyperfine states of the ground term, and less when it 

is resonant with transitions from the lower hyperfine states of the ground term 

than would be expected in the absence of optical pumping. 

The FWHM of the Gaussian fits are shown in Table 2.2 . The largest devia­

tion between the experimental and predicted width is in the case of the 87Rb 

5 2S1;2 (F = 2) transition. This deviation is largely due to the non-linearity of 

the ECDL scan. If the frequency scale had been calibrated using the transition 

from the hyperfine state 87Rb 5 2S1;2 (F = 2) instead of the transition from the 

hyperfine state 85Rb 5 2S1;2 (F = 3), the FWHM would be 580 MHz. 

4 When population in a ground state can only be excited to one excited state, and popu­

lation in that excited state can only decay back to the same ground state, that transition is 

said to be closed. 
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Transition Experimental FWHM Predicted FWHM 

(MHz) (MHz) 

87Rb 5 2
81;2 (F = 2) 550 620 

85Rb 5 2
81;2 (F = 3) 560 580 

85Rb 5 2
81;2 (F = 2) 530 550 

87Rb 5 2
81;2 (F = 1) 570 570 

Table 2.2: FWHM of experimentally measured and theoretically calculated 

Doppler-broadened hyperfine spectrum. The Doppler-broadened transitions 

are denoted by their common ground-term hyperfine states. 
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Figure 2.9: Plots of the transmission of a weak probe beam through an 

8 em long Rb vapour cell, at room temperature (293 K), on the four different 

Doppler-broadened resonances of the D2 line. 

(i) Theoretical transmission on the 87Rb 5s1; 2 (F = 2) ~ 5p3; 2 (F' = 1, 2, 3) 

and 85Rb 5s1; 2 (F = 3) ~ 5p3;2 (F' = 2, 3, 4) transitions. 

(ii) Experimental transmission on the 87Rb 5s1; 2 (F = 2) ~ 5p3/2 (F' = 

1,2,3) and 85Rb 5s1; 2 (F = 3) ~ 5p3; 2 (F' = 2,3,4) transitions The fre­

quency scan is defined on the 87Rb 5s1;2 (F = 2) ~ 5P3/2 (F' = 1, 2, 3) 

transition. Comparison of (i) and (ii) shows a non-linearity in the ECDL 

scan across the two Doppler-broadened resonances. This is highlighted by 

the vertical green lines marking the centre of the two Doppler-broadened 

resonances and the maximum in transmission between the two absorptions. 

(iii) Theoretical and experimental traces on the 85Rb 5s1; 2 (F 2) ~ 

5P3/2 (F' = 1, 2, 3) transitions. 

(iv) Theoretical and experimental traces on the 87Rb 5s1; 2 (F 1) ~ 

5p3; 2 (F' = 0, 1, 2) transitions. 
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2.6 Experimental Natural Line Width Spec­

troscopy 

In order to increase the resolution beyond the limit of the Doppler broadening, 

it is necessary to be able to observe a signal made up only of those atoms which 

interact with the radiation close to the resonant frequency of the transition. 

There are a number of schemes that allow this to be done. One of the simplest 

methods is to measure the transmission of a weak probe beam perpendicular to 

a collimated atomic beam. The extent to which the atomic beam is collimated 

will limit the spread in velocity of the atoms in the direction of the laser beam. 

If this spread corresponds to a Doppler width which is less than the natural 

line width then we can essentially eliminate the Doppler broadening in the 

spectroscopy signals. 

Other methods of Doppler-free spectroscopy involve the use of a strong pump 

beam, such as polarization spectroscopy, [43], and hyperfine pumping and sat­

uration spectroscopy, [27, 37, 44]. Hyperfine pumping and saturation spec­

troscopy will be looked at in more depth later in this section. These techniques 

allow for resolution up to the natural line width. The natural line width of a 

transition is the limit on the resolution that can be achieved on a transition 

between two levels through a single photon, § 2.3. 

2.6.1 Hyperfine Pumping and Saturated Absorption Spec­

troscopy 

Hyperfine pumping and saturation spectroscopy utilises a relatively strong pump 

beam to modify the atomic medium that is probed by the weak beam. 

Hyperfine pumping and saturation spectroscopy, [27, 37, 44], allows the natural 

line width of individual hyperfine transitions to be resolved. A basic experi­

mental set-up for this type of spectroscopy is shown in Fig. 2.10. 

The atoms which, due to their velocity, fall into resonance with both the strong 

pump and the weak probe beams at the same laser frequencies, show less ab­

sorption of the weak probe beam than they would in the absence of the strong 

pump beam. This occurs for different finite velocity classes of atoms: zero ve-
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locity atoms with pump and probe on resonance with the same transition; and 

for non-zero velocity atoms with pump and probe on resonance with different 

hyperfine transitions. The latter are known as cross-over resonances. Cross­

over resonances occur at a laser frequency bisecting the frequency of the two 

transitions that the pump and probe are individually resonant with. Hence in 

the case of the Rb D2 line, where each Doppler-broadened feature comprises 

of three Doppler-broadened transitions, six different sub-Doppler features can 

be seen. Three of these features correspond to the transitions and three to the 

cross-over resonances. 

Figure 2.10: The two beams from the laser, separated at the polarizing 

beam splitting cube (PBS), are aligned as close to counter-propagating as 

possible. The frequency of both beams is scanned from the laser. The relative 

strengths of the beams can be set, by adjusting the angle of the half-wave 

plate (A/2) upstream of the polarizing beam splitting cube, to optimize the 

signal. Note that as the beams are not perfectly counter-propagating, then 

there will be a small amount of Doppler broadening of the features, dependent 

upon the angle between the beams. The pump beam is terminated on a beam 

dump (BD) and the probe on a photodiode (PD). 

The saturation spectrum depends upon the relative polarizations of the pump 

and probe beam. Fig. 2.11 shows traces recorded for perpendicular-linear po­

larizations. 

On the Rb D2 line at room temperature the Doppler broadening is such that for 

a single weak-probe beam, transitions from the different hyperfine states of the 

ground term are distinguishable, but transitions from the same hyperfine state 

of the ground term to different hyperfine states of the excited term significantly 

overlap and hence cannot be resolved. Fig. 2.11(i) to (iii) show the full Doppler-
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broadened transitions showing the sub-Doppler features. 

It should be noted that the sub-Doppler features vary in strength (it is not 

possible to resolve all six features in all of the traces). An explanation of this 

is beyond the scope of this thesis. The sub-Doppler features that can be seen 

in Fig. 2.11 are not natural line width limited. The pump and probe peak 

intensities used to record the spectra are rv 4 mW cm-2 and rv 0.2 mW cm-2 

respectively, with beam diameters of rv 1 mm. The probe intensity is an order 

of magnitude less than the saturation intensity, while the pump intensity is 

approximately a factor of 2 greater than the saturation intensity, equation 2.57. 

It can be seen in Fig. 2.11 that the Doppler-broadened transmission of the weak 

probe beam remains largely unmodified by the pump beam. The exception be­

ing in the vicinity of the individual hyperfine and cross-over resonances. Further 

explanation of these spectra is beyond the scope of this work, a detailed expla­

nation of the modification of the weak probe transmission is presented in the 

work of Smith and Hughes, [27]. 
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Figure 2.11: Plots of the transmission of a weak probe beam, through an 

8 em long Rb vapour cell at room temperature (293 K), on the four different 

Doppler-broadened absorptions of the D2 line. The transmission is shown 

both with (blue trace) and without (green trace) a counter-propagating pump 

beam at the same frequency as the probe. The zero of the frequency scale is 

defined as the frequency of the transition in the absence of hyperfine splitting. 

The peak intensities of the pump and probe beam are "' 4 m W cm-2 and 

"'0.2 mW cm-2 respectively. 

(i) A continuous scan across the 87Rb 5 28 1; 2 (F = 2) -+ 5 2P 3; 2 (F' = 
1, 2, 3) and 85Rb 5 28 1; 2 (F = 3) -+ 5 2P 3; 2 (F' = 2, 3, 4). The frequency 

scale is calibrated using the saturation spectroscopy features of the 85Rb 

5 281; 2 (F = 3) -+ 5 2P 3; 2 (F' = 2, 3, 4) Doppler-broadened transition. 

(ii) 85Rb 5 28 1; 2 (F = 2) -+ 5 2P3;2 (F' = 1, 2, 3). 

(iii) 87Rb 5 281; 2 (F = 1) -+ 5 2P3;2 (F' = 0, 1, 2). 
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Chapter 3 

Theory of EIT in an Ideal 

Three-Level System 

3.1 Three-Level Systems 

So far the interaction of a two-level system (or series of two-level systems) with 

a near resonant , monochromatic field has been considered. This leads to the 

Doppler-broadened spectra and saturation spectra as shown in chapter 2 . The 

three-level system interacting with two monochromatic fields offers a vast array 

of new physics to be investigated. It is t he development of monochromatic 

tuneable laser sources that has allowed such investigations t o be undertaken. 

There are essentially three different types of three-level system: A; cascade and 

V. These are shown in Fig. 3.1. 

(i) (ii) (iii) 
ic) 

Ia) ic) 

ic) 

I b) 

Figure 3.1: The three different three-level systems, with the optical tran­

sitions shown by the red arrows. (i) A A system, (ii) a cascade system and 

(iii) a V system. 

43 



Chapter 3. Theory of 3-Level Systems 44 

3.2 Coherent Population '!rapping 

The application of two continuous-wave (cw) fields to a three-level atomic sys­

tem puts the atom into a coherent superposition of states. This superposition 

of states is stable against absorption from the radiation field. Hence this phe­

nomena is referred to as coherent population trapping (CPT). 

The Hamiltonian for a three-level system, as shown in Fig. 3.1, is given by, 

(3.1) 

£o is the bare atom Hamiltonian; V1 is the potential due to the field with Rabi 

frequency fh and angular frequency w1; and V2 is the potential due to the field 

with Rabi frequency 02 and angular frequency w2. The Rabi frequencies are 

assumed to be real. Here, 

£o nwala)(al + ~lb)(bl + nwclc) (cl ' (3.2) 

vl ~Ole-iw,tlb)(al + ~Ole+iw,tla)(bl , (3.3) 

and V2 
n . t n +. t (3.4) -02e-'w2 I c) (a I + -02e 'W2 Ia) (cl . 
2 2 

Considering the interaction of this Hamiltonian with the three-level system 

provides a simple one-atom model of CPT. 

It is apparent that the eigenstates of £o ( Ia), I b) and I c)) are not eigenstates of 

£. Instead the eigenstates of .Ye are linear combinations of Ia), lb) and lc). In 

the case that the two fields are on resonance, (w1 = Wa- Wb and w2 = Wa- we), 

the three eigenstates of .Ye are, 

IC1) ~ ( -Ia) + yin~~ njlb) + yin~: njlc)) (3.5) 

IC,) ~ (I•) + yin~~ fli I b) + yin~: fli I c)) (3.6) 

INC) 02 lb) - 01 lc) (3 7) 
= Jo~ + o~ Jo~ + o~ · · 

INC) contains no component of Ia) and hence there is no coupling between these 

two states. Thus any population in INC) is trapped in that state. Both IC1) 

and IC2) contain components of Ia) and hence couple to it. 
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Over a period of time, dependent upon the rate of spontaneous emission from 

the excited state, all of the population of the system will build up in INC). 

Hence all of the population becomes coherently trapped in a dark state. 

The first experimental realization of CPT was made by Alzetta et al., [45]. 

In this work the fluorescence of Na atoms was observed. An inhomogeneous 

magnetic field was applied along the axis of the Na cell. At certain points 

along the length of the cell the fluorescence disappeared. These "black lines" 

were due to CPT taking place, in A systems, at positions where the magnetic 

field was such that the CPT resonance was met. A theoretical analysis of the 

coherence phenomena that lead to these effects was presented by Arimondo and 

Orriols, [46]. At the same time and independently Whitley and Stroud Jr., [47], 

produced a theoretical treatment of CPT in a three-level cascade system. 

3.2.1 Applications of CPT 

CPT has many potential areas of application. Ground states are generally 

much longer lived than excited states. Measuring the line width of a ground 

state would potentially increase the resolution of any device, which relied on 

the width of a spectral feature, by several orders of magnitude. Considering the 

interactions of two fields with three atomic levels, it is possible to measure a 

transition with line width orders of magnitude less than the excited state line 

width. The increase in interest in CPT was largely fuelled by applications in 

metrology, [48]. More recently there has been significant interest in the field 

of atomic clocks, [49, 50, 51], where the use of CPT has allowed all optical 

miniaturised atomic clocks to be produced. 

Velocity selective coherent population trapping (VSCPT) is another application 

of CPT. The technique developed by Aspect et al., [52], requires the formation 

of a A system comprising two degenerate Zeeman ground states with counter­

propagating perpendicularly polarized beams. This results in only zero velocity 

atoms being resonant with the two beams, and thus only zero velocity atoms 

become trapped in the dark state. Atoms that are not in the correct velocity 

range for coherent population trapping to take place rely on momentum redis­

tribution, due to optical pumping followed by spontaneous emission, to fall into 

the correct velocity range for the dark state. This cooling mechanism provides 
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for laser cooling to below both the Doppler limit and the single-photon recoil 

energy. 

A number of review articles have been written on the subject, including the com­

prehensive review by Arimondo, [53], and the more recent article by Wynands 

and Nagel, [20]. 

3.3 Electromagnetically Induced Transparency 

Electromagnetically induced transparency (EIT), [54, 55], is the cancellation of 

the absorption of a weak probe field. The cancellation is due to the application 

of a pump field, resonant with one of the levels of the original transition and a 

third level. 

The immediate similarity to CPT is apparent. The difference between EIT and 

CPT being that CPT tends to refer to two fields of approximately equal Rabi 

frequency. EIT refers to the regime where one of the fields (pump) is much 

stronger than the other (probe). In the case of EIT the interest is in how the 

pump modifies the medium experienced by the probe. 

As the only difference between EIT and CPT is the strength of the beams, then 

the brief theoretical treatment of a three-level system presented above can be 

extended to the case where, nl « n2 . 

It follows from equations 3.5 , 3.6 and 3. 7 that the coupling and non-coupling 

states become, 

I C) 
1 1 

J2IC1) + J2IC2) , (3.8) 

n2 
Jn~ + n~lc), (3.9) 

lc) ' (3.10) 

INC) n2 lb) 
Jn~+n~ ' 

(3.11) 

lb) . (3.12) 

Throughout this work the three-level systems under investigation are exclusively 

A-systems. The A-system with pump and probe fields is shown in Fig. 3.2. 

The induced transparency is caused by the interference of coherences in the 
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Figure 3.2: A three-level A-system. The three levels are linked by two fields, 

probe and pump. The two fields have angular frequency Wpr and Wpu and 

R.abi-frequency npr and npu, respectively. The probe field has a detuning 

from resonance of b'p" and the pump field a detuning b'pu· Each of the levels 

Ji) has a line width (FWHM) ri. 
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atomic system. Alongside the modification of the absorption is the concomi­

tant modification of the dispersion, [ 1, 56], encapsulated in the Kramers-Kronig 

relations, § 2.3.2. This is what makes EIT of such interest, the steep dispersion 

is coincident with a transparent window in the medium; normally such steep 

dispersion would be coincident with significant absorption. 

Harris et al., [54], demonstrated theoretically the possibility of rendering a 

medium transparent on a given allowed transition from a ground state to an 

excited state. This required the application of a pump beam resonant with a 

third state and the excited state. The first experimental realization of EIT was 

by Boller et al., [55]. EIT was observed on a A system in strontium vapour. 

The transmission of a probe was increased from e-20 to e-1 . 

Xiao et al., [57], measured the dispersion due to EIT directly. This was accom­

plished using a Mach-Zehnder interferometer. The measurements were carried 

out, on a cascade system, in Rb vapour with the probe resonant with the D2 

transition and the pump resonant with 5P3; 2 ---4 5D5; 2 transition. 

The narrowest recorded EIT resonances in atomic vapours are of "' 30 Hz in 

a medium where the excited state line width is 6 MHz, [58]. This means that 

the transparent window is a factor of 2 x 105 narrower than the Doppler-free 
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transition in the absence of the pump beam. 

In recent years there has been a vast amount of work done in the field of EIT. 

Some of the more important advances and potential applications are presented 

in § 1.1.1 . There are a number of good review articles covering this rapidly 

growing field, [11, 59, 60). 

3.4 EIT via Optical-Bloch Equations 

Consider an idealized three-level A-system as in Fig. 3.2 on the preceding page. 

There are obvious similarities to the idealized two-level system of Fig. 2.1 on 

page 12. In the same way that the complex susceptibility, and hence absorption 

and dispersion, of the two-level medium was calculated in chapter 2, it is pos­

sible to calculate the complex susceptibility of the three-level A-system. The 

Hamiltonian for this system is given by equation C.1, 

The interactions of the atoms with the probe and pump laser fields are given 

by equations C.8 and C.9 , 

~u 

where the rotating wave approximation has been made. 

The Hamiltonian can be rewritten in matrix form, equation C.lO, 

The density matrix for the three-level system is given by equation C.ll , 

p (:= ;:: ;:) 0 

Pea Peb Pee 
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Using the Liouville equation (equation 2.21), 

p = A[p,£]- 'YP, 

the equations of motion for the populations and coherences are derived in ap­

pendix C. The equations for the populations are given by equations C.28, C.29, 

and C.30 on page 163 , 

iOpr (~ ~ ) inpu (~ ~ ) 
Paa = -2- Pab - Pba + -2- Pac - Pea - r aPaa , 

inpu (~ ~ ) fa Pee = -
2

- Pea- Pae - fePee + 2Paa · 

Similarly the equations of motion for the coherences are given by equations C.33, 

C.34, and C.35 on page 164 , 

_.:__ ( . "' ) _ iOpr ( ) Pab = - 'Yab - lupr Pab + -
2
- Paa - Pbb 

iOpu-
- -

2
-Peb, 

Pae ( . ) ~ inpu ( ) - 'Yac- 18pu Pac + -
2

- Paa- Pee 

inpr~ 
- -2-Pbc, 

Peb ( . (8 8 )) - inpr-- 'Yeb - 1 pr - pu Peb + -
2
-Pca 

inpu-
- -

2
-Pab · 

In the steady state the rate of change of the coherences are given by, 

Pab Pac ' 

Peb' (3.13) 

0. 

Likewise the rates of change of populations in this regime are given by, 

= Pee' (3.14) 

0. 
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Furthermore, in the steady state population will be trapped in the non-coupling 

state. In the case of EIT, where npu » npn the dark state, INC) is equivalent 

to the ground state of the probe transition, lb). Hence, 

Paa ~ Pee ' (3.15) 

rv 0' 

Phb ~ 1. (3.16) 

Substituting from equations 3.13, 3.15, and 3.16 into the equations of motion 

for the coherences (equations C.33, C.34, and C.35) leads to 

if2pu-
-

2
-Peb ( . )- if2pr 

- lab - H5pr Pab - -
2

- ' (3.17) 

ir2pr-
- (lac - i&pu) Pac , (3.18) -Poc 

2 

ir2pu-
-

2
-Pab rv ( . ( 8 ) ) _ inpr _ 

- leb- I &pr- pu Peb + -
2
-Pca · (3.19) 

In the case that the populations of two levels is small, then the coherence 

between those two levels will be correspondingly small. This in conjunction 

with the fact that r2pr «: npu, then the term (inpr/2) Pea in equation 3.19 can 

be neglected. 

The absorption and dispersion experienced by a probe beam scanned across 

the transition lb) ~ Ia) is proportional to the imaginary and real components 

of the coherence Pab , as shown in chapter 2. To determine Pab, substitute 

equation 3.17 into equation 3.19 multiplied by ir2pu/2. This leads to, 

- (n;u) 
2 

Pab = (/eb- i (Opr- Opu)) c~pr + bab- iOpr) Pab) '(3.20) 

_ ( (npu/2)
2 

( ·& )) 
Pab _. (J; _ J; ) + lab- I pr 

leb I Upr Upu 

Pab 

_ if2pr 
2 

(3.21) 

(3.22) 

-~ -
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From equation 2.64 on page 20 the complex refractive index of the medium is 

given by 

X (3.23) 

Utilising the Bloch vector notation (equation 2.65 on page 20 and equations 2.85, 

2.86 on page 21 and equation 2.94 on page 23) the absorption coefficient, a, 

and dispersion, nR, can be derived, 

a = (3.24) 

(3.25) 

In this case, 

(3.26) 

{ 
i I (( . ) (flpu/2)

2 

) } = Im -2 . l /ab - lOpr + /cb - i ( Opr - Opu) . (3.27) 

Plots are made of the components of the Bloch vector as given in equations 3.26 

and 3.27. Fig. 3.3 shows v/(Opr/fab) and u/(Oprhab) as a functions of rlpu/!ab 

and 8pr//ab, where /cb//ab = w-6 
, and 8pu = 0 . 

Fig. 3.4 shows v/(Oprhab) and v/(Oprhab) as functions of flpuhab and 8prhab 1 

where /cb//ab = 10-6 
, and 8pu = 0. 

As can be seen clearly from Fig. 3.3 (iii) and (iv), the initial increase in the 

Rabi frequency of the pump field from 0 causes the appearance of the induced 

transparency and with it the concomitant modification to the dispersion profile. 

Fig. 3.3 (i) and (ii) show that the continued escalation of the Rabi frequency 

of the pump beam lead the amplitude of the modification, to both u and v, to 

saturate. As the amplitude increases the width of the resonance does too. Once 

the amplitude has saturated, at v = 0 and u = ±0.5 respectively, continued 

inflation of the Rabi frequency of the pump simply broadens the EIT resonance. 
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(i) (ii) 

(iii) 

I 
npu 

lab 

I 
npu 

lab 

4 

Figure 3.3: Three dimensional plots of the Bloch vector components (i) v 

and (ii) u, as a function of the Rabi frequency of the pump, npu and the 

detuning of the probe field from resonance, 8pr· Both f2pu and 8pr are plotted 

in units of the probe transition coherence decay rate, lab· The ground state 

coherence decay rate, lcb is set to w-6 lab, and the pump beam detuning, 

8pu = 0. (i) and (ii) show the progression of v and u respectively until the 

amplitude of the EIT features saturate at 0 and ±0.5 respectively. Further 

increase in flpu leads solely to broadening of the feature. (iii) and (iv) show 

the initial growth of the EIT feature in the narrow central region of the probe 

transition for small Rabi frequencies of the pump beam. 
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(i) 
0.8 I 

'::..4'0.6 
r\i}> 0.4 

0.2 

Figure 3.4: Three dimensional plots of the Bloch vector components (i) v 

and (ii) u, as a function of the ground state coherence decay rate, 'Ycb and 

the detuning of the probe field from resonance, Dpr· Both 'Ycb and Dpr are 

plotted in units of the probe transition coherence decay rate, 'Yab· The pump 

field has a Rabi frequency, f!pu = 0.3 x 'Yab, and is on resonance, Dpu = 0. As 

can be clearly seen in both plots an increase in the decay rate of the ground 

state coherence leads to significant reduction in the amplitude of the EIT 

resonance, such that when 'Yab :::: f!pu, the EIT signal is indistinguishable 

from the background. 
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Fig. 3.4 (i) and (ii) show v/(Oprhab) and u/(Oprhab) respectively as a function 

of /cb//ab and flprhab, where Opu//ab = 0.3 , and flpu = 0. As is clearly shown 

in the two figures, the EIT feature is at its narrowest and largest amplitude 

when the coherence decay rate between the ground states is minimized. As the 

ground state coherence decay rate approaches the value of the Rabi frequency 

of the pump the EIT signal becomes indistinguishable from the background. 
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3.5 Line Broadening Mechanisms 

It is apparent that in the case of a weak probe, the variables affecting the line 

width and amplitude of the EIT resonance are the Rabi frequency of the pump 

field, the lifetime of the coherences of the probe transition and the lifetime of 

the coherences between the ground states1. It is trivial to control the Rabi 

frequency of the pump simply by adjusting its intensity. The decay rates of the 

coherences have a minimum value derived from the natural line width of the 

ground and excited states, equation C.15. While it is not possible to increase 

the lifetimes of these states beyond the natural line width, it is possible to 

reduce their lifetimes through collisions with atoms and cell walls. 

This section will concentrate on other mechanisms which either modify the 

width or shape of the EIT resonances. These include: the magnetic field; the 

relative directions of propagation of pump and probe beam; the line width of 

the lasers used to provide the pump and probe beam; the finite extent of the 

pump and probe beams and the intensity profile of the pump and probe beams. 

In order to produce a theoretical model of EIT that would reproduce the ex­

perimentally observed spectra further measures have to be taken. EIT on the 

Rb D2 line is not simply two fields interacting with three levels; there are in 

fact 60 different Zeeman sub-levels across both isotopes. A theoretical model 

taking account of all of the levels and the optical pumping between them is 

beyond the scope of this work. Doppler broadening of the hyperfine transitions 

is also relevant as it means that at any detuning of the pump beam within 

the Doppler-broadened hyperfine resonances will lead to the pump beam be­

ing resonant with different hyperfine transitions for different velocity classes of 

atoms. 
1Collisional broadening can lead to broader resonances when it limits the relaxation rate 

of the atoms. This is not a factor in the work presented in this thesis. H the temperature or 

density of the Rb atoms was increased, or if a buffer gas was introduced, collisional broadening 

could become significant. 
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3.5.1 Magnetic Field Sensitivity 

Three-level systems can be between three different hyperfine states or between 

Zeeman sublevels within two hyperfine states. As Zeeman levels are magnet­

ically sensitive, it follows that resonances with Zeeman levels are subject to 

magnetic broadening in an inhomogeneous magnetic field. 

Zeeman Effect 

Every hyperfine state F has 2F + 1 Zeeman sub-levels, denoted mp, where 

-F ~ mp ~ F. These Zeeman sub-levels are given by the projection of the 

total angular momentum F onto an external magnetic field B. 

The energy shift due to the Zeeman effect is /:l.Ez. Fig. 3.5 shows a A system 

with two ground states that are Zeeman sublevels of the same hyperfine state. 

It follows that the energy difference between the Zeeman sub-levels varies with 

B, and in the region of interest, where /:l.Ez « D.EHFs (where D.EHFS is the 

hyperfine splitting), it can be taken to vary linearly with the magnitude of the 

magnetic field, B. The Zeeman shift is 

gF is an effective Lande g-value, given by: 

~ = 

where, 

and, 

F(F + 1) + J(J + 1)- I(I + 1) 
gJ 2F(F + 1) 

,F(F + 1)- J(J + 1) + I(I + 1) 
-g1 2F(F+1) ' 

J(J + 1) + L(L + 1)- S(S + 1) 
2J(J + 1) 

J(J + 1)- L(L + 1) + S(S + 1) 
+ gs 2J(J + 1) ' 

2, 
3J(J + 1)- L(L + 1) + S(S + 1) 

2J(J + 1) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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As gf rv m/ M, where m is the electron mass and M is the proton mass, then 

gf « 9J. Hence, 

9F 
3J(J + 1)- L(L + 1) + 8(8 + 1) 

2J(J + 1) 
F(F + 1) + J(J + 1)- I(I + 1) 

X--'-----''------'----''---__..:_ _ __:_ 
2F(F+1) . 

(3.33) 

The notation used above is following that used in Elementary Atomic Struc­

ture, [61]. 

The values of 9F are calculated for all of the hyperfine states of the D-lines of 
85Rb and 87Rb, and are shown in table 3.1 and 3.2, respectively. There is no 9F 

for F = 0. 

I Term II 
1 

2
81/2 

2 
p1/2 

2
P3/2 -1 

F 

2 

-1/3 

-1/9 

1/9 

3 4 

1/3 

1/9 

7/18 1/2 

Table 3.1: fJF for the hyperfine states of 85Rb. 

I Term II 
1 

2
81/2 -1/2 

2 
p1/2 -1/6 

2
P3/2 2/3 

F 

2 

1/2 

1/6 

2/3 

3 

2/3 

Table 3.2: 9F for the hyperfine states of 87Rb. 

In the following chapters a A system made up of a+ and a_ beams with the 

states lb) and lc) being IF, mp = -1) and IF, mp = +1) will be considered. 

The linear frequency shift in the position of such a resonance is calculated and 

shown in tables 3.3 and 3.4 . 



Chapter 3. Theory of 3-Level Systems 

mF = -1 illF = 0 mF = +1 

Figure 3.5: f::.Ez is the magnitude of the shift of the levels due to the 

Zeeman effect, in the absence of the B-field both a+ and a_ would be on 

resonance with the states shown. 

I Term II 
1 

2
81;2 

2
Pl/2 

2
P3/2 - 1.4 

F 

2 

-0.47 

-0.16 

+0.16 

3 4 

+0.47 

+0.16 

+0.54 +0.7 

Table 3.3: Ratio of the Zeeman shift to mF (MHz/G) for the hyperfine 

states of 85Rb. 

1 

2
81/2 -0.7 

2
Pl/2 -0.23 

2
P3/2 +0.93 

F 

2 

+0.7 

+0.23 

+0.93 

3 

+0.93 

Table 3.4: Ratio of the Zeeman shift to mF (MHz/G) for the hyperfine 

states of 87Rb. 

57 
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Magnetic Field Broadening 

If the levels in an EIT system are magnetically sensitive, then it follows that a 

non-uniform magnetic field can cause position-dependent shifts in the frequency 

of the resonance. 

Specifically, consider the case of a A system where both ground states are dif­

ferent Zeeman sub-levels of the same hyperfine level (see Fig. 3.5). 

Any non-uniformity in magnetic field, ~B along the axis of the pump and 

probe beam, will lead to a broadening of any feature by an amount ~v. From 

equation 3.28, 

(3.34) 

where ~mF is the difference in mF values between the ground states. 

3.5.2 Probe and Pump Beam Crossing Angle 

When pump and probe fields were discussed previously it was in relation to 

saturation spectroscopy, § 2.6.1 on page 39, and counter-propagating beams 

were required. In order to determine the appropriate orientation for pump and 

probe beams for EIT in a A system the following analysis is required. 

Consider a scheme in which a pump and a probe beam propagate at an angle 

() to one another, Fig. 3.6. In addition consider an atom propagating at an 

angle a to the bisector of the pump and probe, with a velocity, v. The atom's 

velocity can be resolved into two components, vii, parallel to the bisector of the 

pump and probe and v _]_, perpendicular to the bisector. This causes a change 

in the detuning of both the probe and pump from the resonances, lb) ~ Ia) 

and I c) ~ Ia), respectively, 

dpr ~ dpr - kpr · V , 

llpu ~ llpu - kpu · V . 

(3.35) 

(3.36) 

Thus the coherence, Pab (equation 3.22) that leads to the probe absorption and 
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dispersion, becomes, 

Pab = 
-i~r 

2 

59 

(3.37) 

( ) 

-1 

. (Opu/2)
2 

X (/ab-l(Opr-kpr·v))+ -·(.> _> +k. -k.) /cb I Upr Upu pu V pr V 

A shift in frequency of the two-photon resonance, Ov, will result. For a A system 

this will take the form, 

Figure 3.6: The diagram shows the crossing angle of the pump and probe 

beams, (). The direction of propagation of the atoms in the medium is given 

by a. The reference coordinates are vii, the bisector of the pump and probe 

beams, and v .l the perpendicular to the bisector of the pump and probe 

beams. 

Ov ( kpu - kpr) · V , 

kpuVCOS (~-a) - kprVCOS (~+a) 

[ kpu (cos ~ cos a + sin ~ sin a) 
- kpr (cos ~ cos a - sin ~ sin a) ] v . 

Re-writing kpu kpr + ok , 

then Ov = [ 2kpr sin~ sin a + ok cos ( ~ - a)] v . 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

For a A system where both ground states are Zeeman sub-levels of the same 

hyperfine state, Jkpr is given by the Zeeman splitting. In the case of the Rb D2 

line, kpr c:= 8 x 106 m-1 . The Zeeman splitting between the two A groundstates 
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in the hyperfine state F = 1 of 87Rb for a magnetic field of 1 G is 1.40 MHz 

(see table 3.4 on page 57) this gives fSk = 29.3 X 10-3 m-l , leading to: 

&k ~ w-9. 
kpr 

(3.42) 

Resolving the velocity of the atom into its two components, vu and v 1_, where, 

VII= lvl COSQ, 

V1_ = lvlsina. 

(3.43) 

(3.44) 

In the case that &k ~ kpr, and by considering the velocity in terms the two 

perpendicular components equation 3.41 reduces to, 

(3.45) 

The single-photon detuning due to the Doppler shift of the probe is given by, 

-kpr · V -kprVCOS (~ + Q) 

Vpr is the component of the atom's velocity parallel to kpr· 

It follows that equation 3.37 can be written, 

Pab = 
- inpr 

2 

(3.46) 

(3.47) 

(3.48) 

( )

-1 

. (Opu/2)
2 

X ('Yab- 1 (6pr- kprVpr)) + _ · (' _ J: + 2k · (0/2) ) 
'Ycb 1 Upr Upu pr S1n V 1_ 

In a vapour celL the velocity distribution of the atoms is homogeneous and 

isotropic and is given by the Maxwellian distribution. From § 2.3.4 and equa­

tion 2.96 on page 24, the Maxwellian velocity distribution is given by, 

N (v,) dv, ~ ,;; · Ji; exp [- ( v,J 2~T ) }v, 

v z is the velocity in one dimension. As the velocity is isotropic in the vapour 

cell, then the distribution of v z is the same as the distribution of v 1_ and Vpr· 

It follows that the absorption coefficient of the medium is given by, 

00 00 

a ex: J J Im {Pab} (vpn v 1_)N (vpr) N (v 1_) dvprdv 1_ . (3.49) 

-00-00 
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Using Mathematica, the absorption of such a medium has been calculated. The 

normalized absorption coefficient is given by, 

a 
anorm = 

a (&pr = 0, Dpu = 0) 
(3.50) 

A plot of the line-centre normalized absorption coefficient is shown in Fig. 3. 7 . 

As can be seen the EIT resonance dies away rapidly as the pump and probe 

move away from copropagating. As the temperature of the atomic ensemble 

increases, so does the rate at which the amplitude of the EIT resonance dies 

away with increasing angle between the pump and probe. 

0.2 0.4 0.6 0.8 

8/rt (10-
3 

Radians) 

Figure 3.7: The normalized absorption coefficient for a A system is plotted 

as a function of angle between the pump and probe beam from () = 0 to 

() = 10-31r. The red line shows the absorption for f2pu = 0, whereas the 

blue line shows the absorption for f2pu = 0.4rab . The velocity distribution 

of the atomic ensemble is that of 87Rb at room temperature, 293 K. For the 

purpose of this plot 8pr = 0, 8pu = 0, and reb = w-6rab· 

An experimental verification of this has been provided by Carvalho et al., [62]. 

Ideally in the three-level A and V type systems, the pump and probe should be 

perfectly co-propagating to cancel the Doppler broadening of the two-photon 

resonance (due to component of the atoms' velocity perpendicular to the bisec­

tor of the pump and probe beams) to as high a degree as possible. 
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3.5.3 Laser Line Width 

Including the line widths of the lasers used in measuring EIT resonances (probe 

and pump) would lead to the increased rate of decay of atomic coherences, [63]. 

This would have the effect of broadening and reducing the amplitude of the EIT 

resonances as seen in Fig. 3.4. 

This effect can be cancelled in a A system if there is a critical cross-correlation 

between the pump and probe, [64]. The critical cross-correlation causes any 

laser jitter to cancel in its effect on the A-system. This is often achieved by 

phase locking the pump and probe laser together, [20]. It is also possible to 

injection lock one laser to another by modulating the current to one laser, [65]. 

This induces sidebands on the output of the first laser. One of these sidebands 

is injected into the second laser. The output of the second laser is phase locked 

to the first and at a frequency separation given by the modulation frequency of 

the laser current. 

An alternative method is to use one laser to provide both pump and probe 

beams. Any frequency offset between the pump and probe field can be provided 

by an optical element such as an acousto-optic modulator. Thus it is possible 

to measure resonances many orders of magnitude narrower than the line width 

of the laser. 

3.5.4 Transit-Time Broadening 

Atoms with a non-zero velocity perpendicular to the direction of propagation 

of the pump and probe beams will traverse the pump and probe beams in a 

finite time. In the atoms's frame of reference this takes the form of the pump 

and probe beams comprising of finite pulses as opposed to continuous wave 

laser beams. Any finite time pulse has a spread in frequency about the mean 

frequency of the continuous wave beam. The shorter the pulse the greater the 

spread in frequency. This leads to broadening of any spectral features, and is 

referred to as transit-time broadening. 

The case in which the EIT resonance is transit time broadened is addressed by 

Thomas and Quivers Jr., [66]. They consider the scheme in which the pump 

and probe beams have a Gaussian intensity profile. When the groundstate 
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lifetime is much longer than the transit time of the atoms through the beams; 

the excited state lifetime is much less than the transit time of the atoms through 

the beam; and where the pump and probe powers are small enough that they 

do not contribute to the broadening, then the expected line shape is a cusp 

function, with a FWHM, fElT, given by, 

r - 2v'2 ln2 v 
EIT- d · (3.51) 

dis the 1/e beam diameter and vis the thermal speed of the atoms, 

(3.52) 

k8 is the Boltzmann constant, T is the temperature of the atoms and m is the 

atomic mass. A cusp function being a back-to-back exponential of the general 

form, 

(3.53) 

where Wt:.. is the 1/e half-width 2 , w is the frequency and w0 is the frequency of 

the centre of the resonance. 

An experimental study of this has been made by Knappe et al., [67]. Knappe et 

al. show that for narrow beam the cusp line shape gives a better fit than the 

standard Lorentzian model. However at line centre the cusp model does not 

fit the data, this is explained as being due to other broadening effects. As the 

width of the beam is increased, the cusp model becomes a less good fit, whilst 

the Lorenzian model accurately describes the resonance line shape. 

3.5.5 Beam Profile Effect on Line Shape 

In the previous subsection the case of transit-time broadening was addressed 

for beams with Gaussian intensity profiles. In the work that is presented in this 

thesis, the profiles of the probe and pump beams can not always be described 

by a Gaussian function. The pump and probe beams are expected to have a 

Gaussian profile when an optical fibre patchcord is used to ensure that they are 

overlapped. In all other cases the profile will not necessarily be uniform, nor 

2For a cusp function the 1/e half width is equal to FWHM/(2 In 2) . 
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Gaussian. This is due to the optical elements that the beams have traversed on 

their way to the vapour cell. 

Takhenachev et al., [68], consider the effect of different beam profiles. The 

regime considered by Ta1chenachev et al. is that in which the relaxation rate 

of the atoms, rL, is much greater than the diffusion rate of the atoms through 

the beams. For a buffer gas cell, 

(3.54) 

and no for no buffer gas, where 

(3.55) 

D is the diffusion constant, v is defined in equation 3.52 , and ro is the 1/e 

radius of the beam. 

The two contrasting beam profiles are of the form, 

where there is the standard Gaussian, 

f (;0) = 

and a step-like profile, 

1, r ~ ro; 

0, r 0 ~ r. 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

The FWHM of the EIT features for Gaussian, ra, and step-like, rsTEP, beams 

are given by, 

rsTEP 

0.86Zo/cb , 

2Zo/cb, 

(3.60) 

(3.61) 

respectively. /cb is the decay rate of coherence between the two lower states of 

the A system, and 

Zo (3.62) 

(3.63) 
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Substituting equation 3.63 into equations 3.60 and 3.61 leads to, 

(3.64) 

fsTEP (3.65) 

The step-like beam profile leads to the standard Lorentzian line shape. The 

Gaussian beam profile leads to a more complicated line shape, Ra, which in 

the limit that, 

is given by 

Zo » 

Ra 

1 , 

1 - - · arctan -~ (Zo) Zo ~ 

(3.66) 

(3.67) 

where ~ is the two-photon detuning normalized to the ground state coherence 

decay rate, (6pr- 6pu)hcb· 

3.5.6 Doppler Broadening Effect on EIT Line Width 

Javan et al., [69], have theoretically studied the effect of Doppler-broadening 

of a medium on the EIT line width. They find an explicit expression for the 

FWHM of an EIT resonance, rEIT, in a Doppler-broadened medium. 

(3.68) 

where, x = (3.69) 

Wo is the FWHM of the Doppler-broadened resonance, f2pu is the Rabi fre­

quency of the pump field, r a is the excited state decay rate, and /cb is the 

decay rate of the groundstate coherence. Note that this is in the regime where 

the probe intensity is vanishingly small. Substituting equation 3.63 into equa­

tion 3.69, for comparison with the beam profile contribution to line shape, leads 

to 

X (3.70) 
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The two extreme limits of the model are for x « 1 and x » 1 . From equa­

tion 3. 70 it follows that the extremes correspond to, 

2')'cb 

« r' a 
X« 1; (3.71) 

X» 1. (3.72) 

In the two extreme limits, this model gives two different functions for the width 

of the EIT resonance, 

rs;;;_n v fa. pu' X« 1; (3.73) 

X» 1. (3.74) 

As the Rabi frequency is proportional to the square root of the beam intensity it 

follows that in the regime where x « 1, the width of the EIT feature increases in 

direct proportion to the square root of the intensity of the pump; in the regime 

where x » 1 the width of the EIT feature is proportional to the intensity of 

the pump. 
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3.6 Electromagnetically Induced Absorption 

Electromagnetically Induced Absorption (EIA), [70, 71), is the increase in ab­

sorption of a probe beam by a medium due to the presence of a pump beam. 

There are four different systems in which EIA has been identified, [72, 73, 74, 75, 

76]. Two mechanisms involve degenerate two-level systems. They rely on the 

transfer of coherence (TOC), [72, 73), and transferofpopulation (TOP), [72, 74), 

to generate the induced absorption. 

EIA due to the transfer of coherence, EIA-TOC, requires that the pump and 

probe have different polarizations. EIA due to transfer of population, EIA-TOP, 

requires that the polarization of pump and probe should be the same. 

The experimental work presented in the following chapters involves the use of 

orthogonally polarized pump and probe beams. Hence any EIA observed will 

be due to the transfer of coherence. 

3.6.1 Transfer of Coherence 

Ta.lchenachev et al., [77], first showed that EIA was due to TOC from the 

excited states to the ground states. No explanation was offered as to why there 

are systems where TOC takes place without resulting in EIA. 

Goren et al., [72, 73], clarified the conditions necessary for TOC to result in 

EIA. This can occur only when the pump and probe lasers have different polar­

izations and there is a significant pump-induced population in the excited state 

(for example one-sixth of the total population, [72]). The excited and ground 

hyperfine states must also meet the following criteria, Fe = Fg + 1 and Fg > 0 . 

EIA-TOC requires at least two degenerate ground levels and at least two degen­

erate excited states -the N-system, Fig. 3.8 . Coherence builds up between the 

degenerate excited states. Spontaneous emission causes a transfer of coherence 

from the degenerate excited states to the degenerate ground states, [77]. It is 

the transfer of coherence that leads to the induced absorption. 

In order for the coherence to build up between the excited states it is necessary 

to have a significant fraction of the population in the excited states. To get 

a significant fraction of the population in the excited states normally requires 
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that one of the pump transitions should be closed. In 85Rb the closed transition 

is 5 281; 2 F = 3, mp = ±3 --+ 5 2P3; 2 F = 4, mp = ±4 and in 87Rb it is 

5 281; 2 F = 2, mp = ±2 --+ 5 2P3; 2 F = 3, mp = ±3. These closed transitions 

correspond to the transition ic) --+ ld) in Fig. 3.8. Similarly the transition 

lb) --+ Ia) in Fig. 3.8 corresponds to 5 281; 2 F = 3, mp = ±3 --+ 5 2P3; 2 F = 
3, mp = ±3 in 85Rb and 5 281; 2 F = 2, mp = ±2 --+ 5 2P3; 2 F = 2, mp = ±2 

in 87Rb. 

Figure 3.8: N system diagram. The two heavy red arrows show the pump 

transitions. The fine red arrow shows the probe transition. The difference in 

pump and probe polarization leads to the pump and probe being resonant 

with different transitions between the four states. 

This normally would preclude open systems from exhibiting EIA, however open 

systems can exhibit EIA, [78]. An explanation of this is presented by Goren et 

al., [72]. In this case EIA only occurs for relatively large pump Rabi frequencies. 

When the Rabi frequency of the pump is increased the excited state population 

increases and hence the excited state coherence is increased too. This leads to 

an increased TOC to the ground state, ultimately resulting in EIA. 

Goren et al., [73], carry out a full theoretical investigation of the N-system, 

varying the degree of TOC, and the strengths of the pump transitions3 . It is 

noted that as the strength of either pump transition is reduced to zero, the 

spectra is consistent with what would be expected in an EIT A or V system. 

Reducing the TOC significantly reduces the predicted EIA, until for zero TOC 

EIT is predicted instead of EIA. 

The behaviour of the N-system with TOC is also seen in the EIA spectra of the 

3In the case that one pump beam is applied to two degenerate transitions, the strength of 

those transitions will not necessarily be the same. This is due to the different Clebsch-Gordan 

coefficients for the different transitions. 
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Hanle4 configuration, as explained by Renzoni et al., [80]. 

The recent work on optical-pumping-assisted EIT by Jiang et al., [81], which 

shows increased transmission due to the application of a second pump field, 

bears many similarities to theN system involved in EIA-TOC. The most striking 

differences are the relative order of the pump and probe within the N system, 

and the significant deviation from degeneracy which prevents TOC. 

3. 7 Group Velocity 

3.7.1 Group Velocity Derivation 

In the case where an electromagnetic field does not have a single frequency, 

interference between the components with different frequencies will lead to a 

beat pattern. The rate at which the envelope of this pattern advances is known 

as the group velocity, v g' and it is given by: 

As, 

dw 
Vg = dk . 

kc 
w=-, 

nR 

then substituting equation 3. 76 into equation 3. 75 leads to, 

Vg = 

k c dnR 
===} v+v-·--

g gn~ dw 

~ + k c d (1/nR) . dnR 
nR dnR dk ' 
c k c dnR dw 

nR - n~ · dw . dk ' 

Substituting equation 3. 76 into equation 3. 78, leads to: 

c 
v =-------

g nR + w (dnR/dw) · 

3.7.2 Lorentzian Line Shape Group Velocity 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

The rate of change of the real part of the refractive index with respect to fre­

quency, dnR/dw, for a Lorentzian line shape can be derived from equation 2.87 

4For an explanation of the Hanle effect see Atomic and Laser Spectroscopy, (79]. 
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on page 22. In turn it is possible to determine the modification of group velocity 

at line centre. In the case that the probe is in the weak regime (r a » Opr) then 

equation 2.87 becomes: 

n _ 1 = _ N d~a . c>pr 
R 2Eofi c)~r + (f a/2) 2 

. 

Differentiating with respect to dpr leads to: 

and as, 

where, 

d(nR- 1) 
d( dpr) 

= 
d(nR- 1) dwpr dnR 

dnR . dOpr . dwpr ' 

dwpr' 

(3.80) 

(3.82) 

(3.83) 

(3.84) 

To find the frequency at which the group velocity is at its lowest, the second 

derivative of nR with respect to Wpr has to be found and set equal to 0. 

= 0' 

0, 

0, 

(3.85) 

(3.86) 

(3.87) 

(3.88) 

(3.89) 

(3.90) 
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On line centre, Opr = 0, 

dnR Nd~a 1 
dWpr = - 2Eofi . (f a/2)2 (3.91) 

Whereas for Opr = ±J3 (r a/2), 

Nd~a. 1 
2Eofi 8 (f a/2)2 (3.92) 

Hence JdnR/dwJ is at its greatest at line centre. 

The line centre absorption can be derived from equations 2.88 and 2.94 on 

page 23. 

2nr(Opr = O)kab , 

2k N d~a ( r a) -I 
ab 2Eofi 2 

Nd~a. 1 
2Eofi (f a/2)2 

Substituting equation 3.93 into 3.92 leads to, 

dnRI 1 
dw 

= -o:(opr = 0)-k r . 
pr Opr=O ab a 

(3.93) 

(3.94) 

Hence the line centre rate of change of the real part of the refractive index is 

directly proportional to the line centre absorption. 

3. 7.3 EIT Group Velocity 

In the regime where the line shape of an EIT or EIA resonance is closely ap­

proximated by a Lorentzian function, then the results of the previous subsection 

can be used to determine the modification of the group velocity due to EIT or 

EIA. If the normalised transmission intensity of the EIT /EIA resonance, JEIT, 

is given by, 

(3.95) 

where I sACK is the intensity transmitted in the absence of the EIT /EIA reso­

nance, it follows that, 

1 IJBACK I O'EIT = - ln -- · 
z IErT 

(3.96) 
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O:EJT is specifically the modification to the absorption coefficient due to the 

EIT /EIA resonance. 

In order to determine the dispersion, and hence the group velocity, concomitant 

with an EIT /EIA resonance at the centre of the that resonance, equation 3.96 

has to be substituted into equation 3.94 . This leads to, 

1 1 I !sACK I c 1 
-; n JEIT • Wab • fElT 1 (3.97) 

c 
(3.98) ===> Vg 

nR + (cjz) In I_!IDL_1
1 I (1/fEIT) ' 
BACK 

where rEIT is the FWHM of the EIT /EIA resonance. 

In the work presented in this thesis the majority of measurements have been 

carried out on the F = 1 ~ F' hyperfine transitions of the 87Rb D2 line. In 

an 8 em long Rb vapour cell at room temperature, as has been used throughout 

this work, this transition will give normalised transmission at the centre of the 

Doppler-broadened resonance of 0.9. Fig. 3.9 shows a plot of the predicted group 

velocity for a range of Lorentzian FWHM, r EIT /27r, of 40 kHz to 250 kHz and 

for normalised EIT amplitudes, JEIT -!sAcK, of 0.01 to 0.045. 

As can be seen in Fig. 3.9 the group velocity for a probe pulse is 0.006 c for an 

EIT resonance with FWHM 250kHz and amplitude 0.01 . The group velocity 

falls to 2 x 10-4 c for a resonance of amplitude 0.045 with a FWHM 40kHz. 
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6 

fElT (kHz) 
21r 

Figure 3.9: Theoretical plot of group velocity for 87Rb vapour at room 

temperature in an 8 em long vapour cell. The normalised transmission in the 

absence of the EIT feature is 0.9. The group velocity is shown for Lorentzian 

EIT features, with normalised amplitude ranging from 0.01 to 0.045 and 

FWHM form 40 kHz to 250 kHz. 



Chapter 4 

Transmission Measurements of 

EIT and EIA 

This chapter is divided into three sections. § 4.1 addresses the experimental 

techniques used to make EIT and EIA transmission measurements; § 4.2 looks 

at the EIT and EIA spectra measured when both the single-photon and two­

photon detuning are simultaneously scanned; and § 4.3 shows variation in width 

and the line shape, measured when the single-photon detuning is fixed and the 

two-photon detuning is scanned. Lock-in detection and control of the magnetic 

field are also presented in § 4.3. 

4.1 Experimental Techniques 

4.1.1 Two Lasers or One Laser? 

As shown in chapter 3, EIT requires two fields: pump and probe. In order to 

measure the line shape and width of the EIT resonance it is necessary to have 

independent control over the frequencies of the pump and probe. The obvious 

method for producing two frequencies is to use two different lasers. Using two 

lasers gives completely independent control over the frequencies of the pump 

and probe beams - allowing any two different transitions to be chosen for the 

EIT system (provided of course that they share one level). In principle, using 

two lasers allows any three-level system to be chosen. It is not desireable to use 

74 
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two free-running or independently locked lasers to produce the pump and probe 

beams, § 3.5.3 . It is almost inevitable that in this case the relative line width 

of the two lasers will provide the dominant contribution to the width of the EIT 

resonance. As a result the line width and shape will only give information on 

the coherence of the two lasers, rather than on the three-level system of interest. 

Phase locking the two lasers significantly reduces the contribution of the co­

herence between the two lasers to the width of the resonance. The methods 

described by Snadden et al., [65], and Schunemann et al., [82], allow two lasers 

to be locked to one another with an offset in frequency between them provided 

by an independent oscillator. Oscillators can be chosen to provide offsets of up 

to 10 GHz. This was not an option in this work due to lack of the necessary 

equipment and funding. There are alternatives to using two separate lasers for 

the pump and probe fields. Using only one laser largely overcomes the problem 

of the relative coherence of the pump and probe. In order to derive two sepa­

rate independently-controllable beams from one laser it is necessary to employ a 

non-linear device. The non-linear device, such as either an acousto-optic mod­

ulator (AOM) or an electro-optic modulator (EOM), modifies the frequency of 

the light from the laser. AOMs typically allow frequency offsets of rv 10 MHz to 

rv 100 MHz relative to the frequency of the input beam. EOMs allow frequency 

differences of ;S 10 GHz to be achieved. 

In the case of the Rubidium D-lines using EOMs or separate pump and probe 

lasers would allow three-level systems connecting the different ground-term hy­

perfine states to be investigated. The use of AOMs would restrict the inves­

tigation to three-level systems between different Zeeman sub-levels within the 

same ground-term hyperfine state, or three-level V-systems connecting excited 

term hyperfine states. 

In the work presented in this thesis AOMs were used to investigate A-systems 

connecting different Zeeman sub-levels within the same hyperfine state of the 

ground term in both 85Rb and 87Rb isotopes. 

4.1.2 Transmission Experimental Set-up 

The experimental set-up used to make transmission measurements of EIT and 

EIA is shown in Fig. 4.1 . 
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Figure 4.1: Experimental set-up for double-scanning EIT /EIA measure­

ments. Black line - light out of ECDL; orange line - pump beam; and 

red line - probe beam. Abbreviations not defined in the text: OI - optical 

isolator; >../2 half-wave plate; >../4 - quarter-wave plate; PBS - polarization 

beam-splitting cube; AP - aperture; Rb VC - Rubidium vapour cell; PD 

- photodiode; GT - Glan-Taylor polarization beam splitter; OF - optical 

fibre; BD - beam dump; SL - solenoid; and J,£MS - J,£-metal shield. 

76 
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The remainder of § 4.1 describes how this set-up is used and how optical ele­

ments within it function. 

4.1.3 Acousto-Optic Modulators 

Acousto-optic modulators (AOMs) allow the frequency of light to be modified 

through a non-linear interaction. The incoming light Bragg-diffracts off acoustic 

waves in a non-linear crystal, Fig. 4.2. 

Single-pass of an AOM 

In the non-linear medium of the AOM crystal, the incoming optical beam has a 

wave vector of magnitude kin = win/ Cn, the diffracted wave has wave vector with 

magnitude kd = wd/cn, and the acoustic wave has wave vector of magnitude 

K = WAc/v, Fig. 4.3. vis the speed of the acoustic wave in the crystal, Cn the 

speed of light (phase velocity) in the medium. From conservation of energy and 

momentum: 

Wd = Win ±WAC, (4.1) 

(4.2) 

respectively, where ±wAc and ±K refer to the plus one and minus one order of 

diffration. 

From equation 4.1 and the relations between the magnitude of the wave vectors 

and frequency. 

(4.3) 

(4.4) 

As wAC/ Win « 1 it follows that kd ~ kin and so the locus of the scattering 

interaction in momentum space is a circle of radius kin· 0, known as the Bragg 

angle, is defined as, 
1 K 

sinO= '2 · k. 
m 

(4.5) 

Hence if the angle of the incident beam varies from 0, the intensity of the 

diffracted light goes to zero (for further details see the work of Gordon and the 
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Figure 4.2: Acousto-optic modulator alignment, the acoustic waves prop­

agate at an angle 0 to the perpendicular to the direction of propagation of 

the incident optical beam. 

work of Crystal Technology, [83, 84]). The above only describes what happens 

to the ±Pt order outputs of the AOM. Similarly there are also higher order 

outputs but with lower efficiencies and they are not made use of in this work. 

Generally the frequency offset of the gth order of diffraction is given by gwAc, 

and the angle is given by, 

Double-pass of an AOM 

. g K 
smOg=-· -k . 

2 in 
(4.6) 

Retrorefiecting the output of the gth order of the AOM (Fig. 4.4) for a second 

pass through the AOM leads to a frequency offset of 2gwAc on the beam counter­

propagating the input to the AOM (Fig. 4.5). The input of the second pass of 

the AOM is -kd· 

(4.7) 

(4.8) 
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(ii) 

Figure 4.3: (i) The wavevector sum for the +1 output order of the AOM, 

k+1, is the diffracted output order of the AOM. (ii) Wavevector sum for 

the -1 output order of the AOM, k_ 1, is the diffracted output order of the 

AOM. 

The angle that the first-order output of the second pass of the AOM makes to 

the first-order output of the first pass of the AOM is (h, where, 

1 K 
sin82 =- ·-. 

2 kd 
(4.9) 

The angle that the output of the ±Pt order of the second pass, of the ±1st 

order of the first pass, makes with the input beam to the AOM, {3, is given by, 

hence 

{3 

K 
and 

2kd 

2 (arcsin ( 2~ ) - arcsin ( 2~d ) ) (4.10) 

K 
(4.11) 

10-6' (4.12) 

{3 ~ 0 . (4.13) 

Thereby changing WAc does not cause any steering of the first-order output of 

the second pass; the output of the second pass counter-propagates with the 

original input beam. Whilst this is desireable, as it allows the frequency to be 

changed without any steering of the output beam, it poses the problem of how 

to separate the path of the output beam from that of the input beam. The 

>..j4 waveplate, shown in Fig. 4.4, causes the second pass of the AOM to be 

orthogonally-linearly polarized with respect to the first pass. This allows the 

beam paths to be separated using a polarizing beam-splitting cube. 
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Figure 4.4: Acousto-optic modulator alignment, AP - aperture; A./ 4 -

quarter-wave plate. The red beams refer to the first pass through the AOM 

(Fig. 4.2), and the green beams refer to the second pass. 

AOM Experimental Details 

80 

An AOM driver supplies the radio frequency (RF) signal to the AOM. This 

electrical signal is converted to an acoustic wave which propagates through the 

crystal at the frequency of the RF signal. It is this acoustic wave that the 

light Bragg-diffracts off. The AOMs used in this work are Crystal Technolo­

gies, AOMO 3080 - 122. The driver of the AOM is made up of three compo­

nents: Minicircuits ZOS-100 Voltage Controlled Oscillator (VCO); Minicircuits 

ZX73- 2500 Voltage Variable Attenuator (VVA); and a Minicircuits ZHL-3A 

Amplifier. 

The VCO is connected to the VVA through a rigid SMA-to-SMA connector and 

the VVA to the amplifier through a SMA to BNC RG174 cable, the amplifier 

is connected to the AOM via a BNC to SMA RG174 cable, Fig. 4.6. The cable 

connecting the amplifier to the AOM is kept as short as possible to minimize 

the chance of any broadcasting, whilst ensuring that the amplifier is separated 

from the VCO to guard against heating from the amplifier affecting the VCO 

frequency. 

The VCO provides a RF sine-wave output in the range of 50 to 100 MHz. The 

frequency of the RF output is determined by an applied control voltage (Fig. 4. 7 

on page 82), and varies approximately linearly with it. The VVA attenuates the 
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Figure 4.5: (i) The wavevector sum for the +1 output order of the second 

pass of the +1 order of the first pass through the AOM. (ii) Wavevector sum 

for the -1 output order of the second pass of the -1 output order from the 

first pass of the AOM. 

+12 VDC +24 VDC 
+5VDC 

Control 
Voltage vco AMP AOM 

Control 
AuxOut Voltage 

Figure 4.6: Schematic diagram showing how the VCO (Minicircuits 

ZOS-100), VVA (Minicircuits ZX73 - 2500) and amplifier (Minicircuits 

ZHL-3A) are connected to the AOM (Crystal Technologies, AOMO 3080-

122). 
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amplitude of the output from the VCO by between 65 dB and 2 dB, the degree 

of attenuation is controlled by varying the applied control voltage to the VVA. 

The amplifier amplifies the output of the VVA by 24 dB, such that the RF 

output signal is sufficient to drive the AOM. The response of the AOM varies 

with the amplitude and frequency of the input RF signal. 
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Figure 4.7: Frequency of the RF output of the probe-beam VCO. Circles 

show measured values and the line gives the straight line fit to the data. The 

straight line fit to the data gives a gradient of 4.847 ±0.003 x 10-3 MHz v- 1 

and a zero voltage offset of 38.38 ± 0.02 x 10-2 MHz. The reduced x2 value 

for the fit is 5.1, which suggests that the variation of frequency with control 

voltage is not simply a linear relationship. The standard error on each data 

point is smaller than the extent of the red dots used to mark the data points 

on the graph. 
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4.1.4 Alignment of Pump and Probe Beams 

As was shown in § 3.5.2 on page 58, it is vital to ensure that the pump and 

probe fields co-propagate to as high a degree as possible. While it is possible 

to align the beams using apertures, practically it is difficult to align the beams 

to better than "' 1 mrad; this will still lead to a broadening of "' 320 kHz 1 

at room temperature. There are somewhat complex schemes which allow for 

extremely high degrees of alignment, [85], using split photodiodes. 

The simplest way to ensure that the beams are co-propagating is to use an 

optical fibre. The pump and probe beams are focussed into the same single­

mode polarization preserving fibre. This has the advantages of ensuring that 

the output beams have matching circularly-symmetric Gaussian profiles and 

that the alignment of the beams before the optical fibre is decoupled from the 

alignment of the beams after the optical fibre. Any misalignment in the beams 

before the fibre will only result in a drop in the power transmitted through 

the fibre. The main disadvantage associated with using optical fibres is loss 

of power, as the fibres will not transmit 100% of the incident beam due to 

imperfect mode matching of the input beams to the fibre. 

It is preferable to record the probe beam signal without a DC offset due to 

the pump beam reaching the photodiode. In order to do this it is necessary 

to separate the pump and probe beams after they have passed through the 

Rb vapour cell. As the pump and probe beams are perfectly co-propagating, 

and are only separated by ;S 100 MHz, the only practical way to separate the 

two fields is to make use of different polarizations. Hence the pump and probe 

beams are chosen to be linearly-perpendicularly polarized to one another. This 

requires that the optical fibre used should be polarization preserving, and that 

the polarization of the input beams should be aligned to the axes of the fibre. To 

separate the pump and probe beam, a polarization beam-splitting cube is used. 

The probe beam is transmitted through the PBS and the pump is reflected 

through 90°. The probe beam is then focussed onto a photodiode while the 

pump beam is terminated by a beam stop. 

1 From combining equation 3.45 on page 60 with the Maxwellian velocity distribution, 

equation 2.96 on page 24. 
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4.1.5 Beat Notes 

Two co-propagating fields with the same polarization will interfere with one­

another. The resulting interference pattern will vary with the difference in 

frequency between the two fields. Consider two electromagnetic fields, E 1 and 

E 2 where the frequency of one field is scanned relative to the frequency of the 

other. The resulting intensity due to the two fields is I, where, 

E1 E1,0 cos ( wt + Jwt) 

E2 E 2,0 cos (wt) , 

I ex: JE1 + E2J2 , 

(4.14) 

(4.15) 

(4.16) 

and Jw is a linear function oft. In the case that the two-fields have the same 

polarization, 

= ho cos2 (wt + Jwt) + h,o cos2 (wt) 

+ J I1,oho cos (wt + Jwt) cos (wt) 

Il 0 I2 0 2 (1 +cos ((w + Jw) t)) + 2 (1 +cos (wt)) 

+ Jh.oi2,o (cos ((2w + Jw) t) +cos (Jwt)) . 

(4.17) 

(4.18) 

(4.19) 

( 4.20) 

In practice when signals are recorded a time averaging is introduced, for example 

due to the response time of a photodiode or the digitization of an oscilloscope. 

This time averaging has the effect of reducing the amplitude of the beat pattern 

as the frequency between the two beams is increased. 

Fig. 4.8 shows a beat note as it would appear on a recorded trace, calculated 

using Mathematica. t = 0 corresponds to zero frequency difference between the 

two fields. E 1 = sin ( (w + Jw)t) and E 2 = 0.1 sin(wt). The time averaging is 

over a period of 0.02 ms. It is obvious that any spectral feature at a frequency 

close to J = 0 will be obscured by the beat signal. In order to minimize the 

effect of the beat signal on the EIT resonance, the pump and probe beams are 
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Figure 4.8: Plot of the calculated time-averaged beat signal for two beams. 

For the trace shown, one beam is scanned in frequency relative to the other, 

over a range of 5 MHz, as a linear function of time. At t = 0 the beams are 

at the same frequency. The scanned beam has an intensity 100 times greater 

than the fixed frequency beam. A time averaging of 2 X w- 5 s represents 

time averaging that is due to the photodiode circuit and digital oscilloscope. 
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perpendicularly polarized to as high a degree as possible to try to ensure that 

only the probe beam reaches the photodiode. Furthermore, applying a magnetic 

field to the Rb vapour cell lifts the degeneracy of the Zeeman sub-levels in the A 

system, and hence moves the two-photon EIT resonance away from the centre 

of the beat signal. 

4.1.6 Photodiode Circuits 

The photodiode circuit used to record EIT and EIA traces presented in this 

chapter is shown in Fig. 4.9. The modification from the basic photodiode circuit 

shown in Fig. 2.8 on page 33, is the introduction of the capacitor in parallel 

with the output resisitor. This capacitor has the effect of introducing a low-pass 

filter to the photodiode circuit. From equation 2.109 on page 34 the response 

of this circuit to different frequencies can be calculated. The output impedance 
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of the circuit is given by, 

1 
(4.21) 

===> IZoutl 
1 

( 4.22) 

R 
1 + (wCR) 2 

(4.23) 

Hence the output voltage of the photodiode circuit is given by, 

\1: _ _ IinR 
out - J1 + (wCR)2 ' 

(4.24) 

where lin is the current generated by the photodiode. The output voltage falls 

to 1/v'2 of its value for DC components at a frequency of w = 1/(RC). 

+9V 
ov 

Output 

R 

c -9V 

Figure 4.9: Circuit diagram for the photodiode circuit used to make trans­

mission measurements for EIT and EIA. The photodioide is a BPX-65, the 

op-amp is either an AD548 or AD648. The values of R and C are either 

100 kn and 47 pF or 1 Mn and 4.7 pF, respectively. 

The output impedance of the two photo diode circuits used in the data presented 

in this chapter is plotted in Fig. 4.10. RC = 4. 7 p,s, R = 1 MO with C = 4. 7 pF 

or R = 100 kO and C = 4 7 pF. 

Without the capacitor in place high frequency signals can lead to "ringing" 

in the photodiode circuit. This amplifies the high frequency beat signals dis­

proportionately to the lower frequency spectral features which are of interest. 

Fig. 4.11 (i) shows the response of the photodiode circuit, without the capacitor, 
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Figure 4.10: The impedance of the photodiode circuit shown in Fig. 4.9 

is plotted as a function of frequency. For both circuits RC = 4.7 J.LS. (i) 

R = 100 kD and C = 47 pF. (ii) R = 1 MD and C = 4.7 pF. As can be seen 

the frequency response for the two sets of parameters are the same, while the 

impedance at a given frequency is proportional to the value of R. 
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to a series of "square" light pulses. Ringing can clearly be seen when the signal 

falls to zero. Fig. 4.11(ii) shows the output from the photodiode circuit with 

the capacitor included (R = 100 kO and C = 47 pF) , as expected the ringing 

is removed. Fig. 4.10 shows t he calculated output impedance IZoutl for the 

photodiode of circuit of Fig. 4.9, with R = 100 kO, C = 47 pF and R = 1 MO, 

C = 4.7 pF for (i) and (ii) respectively. As can be seen the impedance starts to 

fall for frequencies » 100kHz, hence the photodiode circuit response time will 

be rv 10 J.tS. 

The frequency of the beat notes is significantly higher than the rate at which 

the pump and probe fields are scanned - it follows that t he frequency compo­

nents that make up the beat notes are higher than those that make up the EIT 

resonances. Therefore it is possible to filter out, electronically, the higher fre­

quency components of the signal incident on the photodiode, thus reducing the 
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Figure 4.11: This figure shows the ringing introduced on signals due to the 

photodiode circuit (i), and how that ringing can be overcome with the intro­

duction of a capacitor to the photodiode circuit (ii) . (i) Square wave pulses 

measured on the photodiode circuit as shown in Fig. 4.9, with R = 100 kO 

and no capacitor. (ii) Square wave pulses as measured on the photodiode 

circuit with R = 100 kO and C = 4.7 pF. (iii) The "square"-wave control 

voltage supplied to the AOM VVA to provide the optical square-wave train 

to the photodiode circuit. 
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amplitude of the beat notes without significantly affecting the EIT resonances. 
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4.1.7 Pump and Probe Beam Relative Line Width 

To determine the minimum line width that the experimental apparatus will be 

able to resolve, light that has double-passed through two AOMs is beat against 

light that has not been offset in frequency by either of the AOMs. There is a 

resulting constant frequency difference between the two beams of 67kHz Using a 

BPX-65 photodiode in series with a 51 n resistor {which should give a response 

time ~ 12 ns, [42)) the beat pattern is measured and recorded on a Tektronix 

TDS 3014B oscilloscope. The measured pattern is shown in Fig. 4.12. The figure 

shows the central one-hundred data points recorded, to show the oscillation of 

the signal. The timebase on the oscilloscope is chosen to record as large a 

trace as possible, whilst ensuring that the interval between data points is small 

enough to define the individual oscillations (approximately 8 per oscillation in 

this case). 
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Figure 4.12: A plot of the central area of the beat signal recorded over 

20 ms on a Tektronix TDS 3014B digital oscilloscope. The regular oscillatory 

nature of the beat signal can be clearly seen. 

A Fast Fourier Transform (FFT) is then carried out in Excel, on just under half 

of the data (the maximum number of data points that Excel can handle for a 

FFT is 4096, compared to 10000 data points recorded). The amplitude of the 

FFT is then plotted against frequency, the full trace of the FFT is shown in 

Fig. 4.13 - {i) shows the full FFT, while {ii) shows a blow-up of the area of 

interest, along with a Lorentzian least-squares fit to line shape. The width of 

the Lorentzian fit is 1.9 kHz, suggesting that the ultimate limit on the resolution 
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that can be achieved with this system is,....., 1.9 kHz. 

The finite extent of the data train (8.2 ms) would give a FWHM ~ 1.5 kHz 

( ~ ( 47r /8.2 ms)). It is likely that the limited number of data points recorded 

per period of oscillation also contributes to the width of the beat note. 

So the maximum resolution of this system is expected to be ;S 400 Hz ( = 
1.9-1.5 kHz). This is expected to be largely due to the stability of the oscillators 

generating the RF for the AOMs. 
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Figure 4.13: (i) Shows the full FFT trace of an 8.2 ms section of the 

beat signal shown in Fig. 4.12, produced in Excel. Six peaks can be seen, 

discounting the peak at 0 MHz. The three highest frequency peaks are due 

to aliasing of the three lower frequency peaks. The peak at 67 kHz is the 

main FFT peak, the peaks at "' 130 kHz and "' 200 kHz are the second and 

third harmonics of the main frequency peak. (ii) Shows a blow-up of the 

FFT around the main peak at 67 kHz, the red line shows the data and the 

blue line a Lorentzian least-squares fit. The Lorentzian fit has a full-width 

at half-maximum of 1.9 kHz. 
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4.2 Double-Scan EIT /EIA 

Initially, to observe the EIT /EIA features2 , a double-scanning technique was 

used, [86, 87]. The single-photon detuning of the pump, Opu , is scanned over the 

full Doppler-broadened transition of one of the ground-term hyperfine states 

once; at the same time, the two-photon detuning Opr - Opu is scanned m times 

over a range of several hundreds of kHz with the AOM (Fig. 4.14). This leads 

Figure 4.14: 8pu is the single-photon detuning of the pump beam from 

resonance, while 8pr - 8pu is the detuning of the probe beam from the two­

photon resonance. 

to m EIT /EIA features occurring within the range of the Doppler-broadened 

transition. The frequency scale of such a plot is not straight-forward - the 

centres of the different EIT features and the Doppler-broadened resonance are 

defined by a frequency given by the ECDL scan Opu/27r, whilst the width of the 

features is determined by the AOM scan ( Opr- Opu) /27r. In order that on succes­

sive scans of the ECDL frequency the EIT /EIA resonances occur at the same 

single-photon detunings within the Doppler-broadened scan, it was necessary 

to ensure that the VCO control scan and the piezo supply voltage scan were 

locked to one another. This was achieved using a custom built signal generator 

that produced two saw-tooth voltage scans, appendix F . This signal generator 

was built by the Durham University, Physics Department, Electronics Design 

2To make transmission EIT/EIA resonances the experimental set-up shown in Fig. 4.1 on 

page 76 was used. 
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and Development Workshop. The two outputs of the signal generator, 1 and 

2, were scanned at frequencies vP and 20vp respectively, shown in Fig. 4.15(i). 

Output 1 was used to drive the piezo after being passed through a high voltage 

amplifier. Output 2 was used as the control voltage for the VCO in the probe 

arm of the experimental set-up. Fig. 4.15(ii) shows a plot of the two-photon 

detuning ((8pr- Opu)/27r) against the detuning of the pump beam (8pu/27r) . 
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Figure 4.15: (i) Shows how the piezo control voltage (red) and VCO 

control voltage scan (blue) vary with time. The VCO control voltage, as 

shown has a DC offset of~ 7 V. (ii) The calibrated AC component of the 

double-pass AOM frequency scan on the probe beam (two-photon detuning) 

against ECDL frequency (single-photon detuning) . 
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4.2.1 Double-Scan Results 

Fig. 4.16 on page 96 shows double-scan spectra for the Rb D2 line. The four 

panels show the transitions from the four hyperfine ground term levels: (i) 
85Rb F = 2 ~ F'; (ii) 85Rb F = 3 ~ F'; (iii) 87Rb F = 1 ~ F'; and 

(iv) 87Rb F = 2 ~ F'. In each case F' can take anyone of three different 

values. Hence, multiple A systems are probed simultaneously. The red traces 

show the recorded probe beam transmission in the presence of the pump beam. 

The blue traces show the recorded probe beam transmission in the absence 

of the pump beam. Both electromagnetically induced absorption (EIA) and 

electromagnetically induced transparency (EIT) along with optical pumping 

(the offset between the Doppler-broadened backgrounds) can be clearly seen in 

the four panels of the figure. 

In all four panels of Fig. 4.16 there is no applied magnetic field and the probe 

and pump have orthogonal-linear polarizations. 

Fig. 4.16(i) In the presence of the pump beam, where the two-photon resonance 

is met, there are sharp increases in the transmission of the probe beam through 

the medium. These are examples of EIT. Away from the two-photon resonance 

there is still "' 10% more transmission when the pump beam is present. The 

increase in transmission is due to optical pumping by the pump beam. The 

pump beam excites the transition at a rate such that the absorption of the 

probe beam is reduced across the full Doppler-broadened resonance. 

Fig. 4.16(ii) In the case of 85Rb F = 3 ~ F', when the two-photon resonance 

condition is met the transmission is significantly decreased. These are examples 

of EIA. The EIA troughs only show more absorption, than is seen in the absence 

of the pump beam, for ECDL frequency offsets of 0 to 300 MHz. This is due to 

optical pumping of the medium. The region 0 to 300 MHz is where the Doppler­

broadened transmission is dominated by the contribution of the F = 3 ~ F' == 4 

hyperfine transition. It is the closed transition F ~ F' = F + 1 that leads to 

EIA, (§ 3.6). 

Fig. 4.16(iii) 87Rb F = 1 ~ F' exhibits EIT. The sharp increase in trans­

mission at the two-photon resonances are the EIT signals. The amplitude of 

the EIT features is greatest on the low frequency side of the Doppler-broadened 

resonance. This is the region dominated by the F = 1 ~ F' = 0,1 hyper-
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fine transitions. The effect of optical pumping appears to be less significant in 

this Doppler-broadened transition than in the other three Doppler-broadened 

transitions of the Rb D2 line. 

Fig. 4.16(iv) 87Rb F = 2 --t F' exhibits strong EIA. Similar to 85Rb F = 
3 --t F' optical pumping lessens the effect of the increase in absorption on the 

two-photon resonance. The EIA troughs are significantly deeper, increasing the 

absorption beyond that recorded in the absence of the pump beam by a much 

greater amount than in 85Rb. The EIA features are again more significant in 

the region where the hyperfine transition F --t F' = F + 1 makes the dominant 

contribution to the Doppler-broadened transition. 

4.3 Single Frequency Scan 

In order to make quantitative measurements of the widths and line shapes of the 

two-photon resonances, the remainder of the experimental work in this thesis 

will concentrate on the A-systems of the 87Rb F = 1 --t F' transitions of the 

D2 line, using orthogonally-circularly polarized pump and probe beams. 

4.3.1 Lock-In Detection 

Lock-in detection is a widely used method for retrieving signals of interest from 

noisy backgrounds, that obscure the signal of interest. In appendix G a short 

introduction to the working of lock-in amplifiers will be presented. It follows 

that presented in The Art of Electronics, [88]. 

In the results presented later in this chapter a technique equivalent to the large 

square-wave modulation (appendix G) is used. The probe beam is left unmod­

ulated, while the amplitude of the pump beam is modulated (from a maximum 

value to zero) at Vmod by modulating the control voltage to the pump beam 

VVA. The output of the lock-in is proportional to the probe-with-pump signal 

minus the probe-only signal. 

One further complication to consider is the effect that modulating the pump 

beam will have on the EIT resonance. The rate at which the pump beam is 

modulated will lead to a spread in frequency of the pump beam. This spread in 
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frequency is of the order of the modulation frequency. While it is clear that the 

modulation of the pump beam will affect the width of the EIT resonances, it 

is not clear what the exact form of this broadening takes. It seems reasonable 

to assume that it will be of the order of the modulation frequency, as this gives 

the spread in frequency of the pump beam. Further modification to the EIT 

resonances would be expected due to the modification of transit time of the Rb 

atoms through the pump beam. 

In order to make measurements of EIT resonances, at pump and probe powers 

where the EIT signal would normally be lost in the background noise of the 

detection system, an EG&G 7220 DSP lock-in amplifier was used. The lock-in 

detector was used to filter out signals occurring at all other frequencies. The 

use of the lock-in detector resulted in significant improvements in the signal to 

noise ratio, Fig. 4.17 on page 97. 
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Figure 4.16: Plots of normalized transmission through a room temperature, 

8 em long Rb vapour cell, against ECDL frequency (8pu/27r). This gives the 

separation of the successive EIT /EIA features. The width of the EIT /EIA 

features is given by the scan range of the AOM ((8pr- 8pu)/27r); this is such 

that in each of the four plots the AOM scans 11 MHz between next nearest 

features. (i) 85Rb F = 2 ---+ F'. (ii) 85Rb F = 3---+ F'. (iii) 87Rb F = 1 ---+ F'. 

(iv) 87Rb F = 2 ---+ F'. The red traces show the data for both pump and 

probe beam(~ 100 J.LW and~ 5 J.LW respectively, with diameters~ 3 mm, 

with the exception of (i) where the pump power is 180 J.LW), the blue traces 

for probe beam only. The actual scan of the ECDL is over a greater frequency 

than is shown in the figure, hence the two-photon resonance is met less often 

than might be expected in the Doppler-broadened absorption. Beat notes are 

present and coincident with the two-photon resonances. Greater cancellation 

of the pump beam, in the collection of this data, means that the beat notes 

are less significant than in work presented later in this thesis. 
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Figure 4.17: (i) Raw photodiode signal. (ii) Photodiode signal after lock-in 

amplifier. The pump power is 97 J.LW and the probe power is 3 J.LW, with 

beam diameters of ~ 3 mm. The pump beam amplitude is modulated at 

~30kHz, while the duration of the AOM scan is 6 x w- 3 s (~ 170Hz). 

The frequency scale is the difference between the frequency of the probe and 

pump beam, ((Opr- Opu)/27r). 
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4.3.2 Magnetic Sensitivity 

Using Zeeman sub-levels as the two groundstates in the EIT A system means 

that the position of the resonance in frequency space is sensitive to changes 

in magnetic field , as explained in § 3.5.1 on page 55. The Rb vapour cell is 

mounted in a solenoid, itself mounted within a p.-metal shield, as shown in 

Fig. 4.18. 

Nylon 
Spacer 

Current upply 
To olcnoid 

-Metal Shield 

Rb Vapour C ell 

11-Metal Shield 

Figure 4.18: Diagram showing the mounting of the Rb cell and solenoid 

inside the cylindrical J.L-metal shield. 

Solenoid 

The solenoid used in this work was built by Henry Ashworth3 . The solenoid 

was specifically designed to mount up to an 8 em long, 1" diameter, vapour cell 

at its centre and to produce an axial magnetic field constant over the length of 

the cell. The solenoid is 300 mm long, with a diameter of 54 mm, and is wound 

from 0.8 mm diameter enamelled copper wire, capable of carrying a current 

of 1 A. The fluctuation in the on-axis axial magnetic field, over the range of 

the length of the Rb vapour cell, is ;S 0.1 G 4
, when the current through the 

solenoid is 1 A (hence the on-axis axial field at the centre of the solenoid is 

14.5 G, from Fig. 4.19). From§ 3.5.1 on page 58, this will lead to a limit on the 

width of the EIT feature of ;S 9. 7kHz c-1 . The on-axis axial field at the centre 

3 An undergraduate summer student supported by a Nuffield bursary in 2003 . 
4Measured by H. Ashworth. 
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Figure 4.19: Circles show the measured values and the line gives the straight 

line fit to the data. The straight line fit to the data has a gradient of 14.54 ± 
0.01 G A -l with a zero current offset of (5 ± 8) x w-3 G. The reduced x2 

value for the fit is 1.16, and the range of the error bars are smaller than the 

spread of the data point markers. 
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of the solenoid is determined from a straight-line x2 fit to the field , plotted as 

a function of solenoid current, Fig. 4.19. 

~-t-Metal Shield 

The ~-t-metal shield was designed to house the solenoid, and to minimize the 

residual laboratory field at the centre of the solenoid. 

The cylindrical ~-t-metal shield was manufactured by Magnetic Shields Ltd., from 

1 mm thick ~-t-metal - an alloy of nickel, iron and smaller quantities of copper 

and molybdenum. It is 345 mm long and has an internal diameter of 70 mm. 

The combination of the ~-t-metal shield and the solenoid allow the magnetic field 

in the Rb vapour cell to be controlled throughout the experimental work. Axial 

fields up to "" 14 G can be applied both in the direction of the propagation 

of the pump and probe beams, and in the opposite direction too. Any off-axis 

fields due to the laboratory's magnetic field can be cancelled by a factor of 

"" 100. 

Fig. 4.20 on the following page shows the effect of the ~-t-metal shield and 

solenoid. The ~-t-metal shield narrows the resonance as can be seen from Fig. 4.20 

(i) and (ii). In (i) and (ii), where there is no field due to the solenoid, the EIT 
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feature is coincident with the beat note at 0 MHz. The application of the 

solenoid field shifts the EIT resonance to -2 MHz (Fig. 4.20 (iii)) moving it 

away from the beat signal - hence allowing systematic analysis of the width 

and shape of the EIT resonance. Here the levels that make up the magnetically 

9 

7 

5 

3 
,-..._ 

8 > "-" - 6 ro c 4 bO ..... 
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-3 -2 -1 0 1 
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Figure 4.20 : Plots showing the scan of the two-photon detuning, ((wpr -

Wpu)/211'), over the EIT resonance: (i) no J.t-metal shield or solenoid magnetic 

field; (ii) J.t-metal shield in place, no solenoid magnetic field; and (iii) J.t-metal 

shield and axial magnetic field of magnitude ~ 1.5 G. The probe power is 

3 J.LW and the pump power is 97 J.LW, with beam diameters of~ 3 mm and 

a pump modulation frequency of 30 kHz. 

sensitive A system, Fig. 3.5 on page 57 , are given by, 

Ia) = 87Rb 2P 3; 2 F = 0, 1, 2; mF = 0 ; 

lb) 87Rb 281; 2 F = 1; mF = -1; 

lc) 87 Rb 281; 2 F = 1; mF = +1 . 

The probe being close to resonance with lb) - Ia), and the pump with lc) - Ia) . 
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4.3.3 Line Shape 

Using the lock-in detector enables signals to be recorded with a significant im­

provement in the signal-to-noise ratio. Such a high signal-to-noise ratio enables 

theoretical fits of line shapes to be made to the EIT signals. Fig. 4.21 shows 

-400 -200 0 200 400 600 800 

Frequency (kHz) 

Figure 4.21: The blue solid line shows the data recorded using the lock-in 

amplifier, the red dashes show a Lorentzian least squares fit, and the green 

short dashes show a cusp least squares fit to the data. The signal in Volts is 

plotted against the two-photon detuning, ((Dpr-Dpu)/27r). Note that the two­

photon resonance has been shifted by 0.7 MHz from the beat note, using an 

axial magnetic field. The pwnp is modulated at~ 30kHz, the probe power 

is 6 J-LW, the pwnp power is 40 J-LW, and the beam diameters are~ 1 em. 

both Lorentzian and cusp least square fits (cusp fits being appropriate to the 

case in which the dominant contribution to the line width is transit-time broad­

ening) for a typical data set, in this case with a probe power of 6 J-LW, a pump 

power of 40 J-LW and an axial magnetic field of 0.5 G. As can be seen in this 

case the Lorentzian function provides the better fit to the data. 

-.... 
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Measured Position Of Two-Photon EIT Resonance 

To ensure that the calibrations of the frequency of the probe field (due to the 

AOM scan) and the magnetic field due to the solenoid were correct, spectra 

were recorded for different axial magnetic fields. Lorentzian fits were made to 

the EIT line shapes, and the centre of the line shape in each case was recorded. 

The centre of the line shape was then plotted against the magnetic field. Five 

different values of magnetic field were used and for each value five spectra were 

recorded. The resulting plot can be seen in Fig. 4.22. Accompanying the data 

is a least-squares best fit straight line. This has a gradient consistent with the 

theoretical value of 1.40 MHz G-1
, § 3.5.1. 

---
~ ~ 154 ~ 

~ 
~ 

,..._,. 
0 8 153.5 
(]) § ~ 

"E ~ 153 
(]) 0 u r:n 
~ 152.5 

.... ........ 
.... 

.... .,..r 

........ · ........ . .... 
........ .,., ............ 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 
Axial Magnetic Field (G) 

Figure 4.22: Red squares show the measured position centre of EIT reso­

nance. The blue line shows a x2 straight line fit to the data. The gradient 

of the fit is 1.39 ± 0.01 MHz G- 1. The probe power is 2 J.LW and the pump 

power is 90 J.L W. The reduced x2 value for the fit is 2.4 and the error bars 

are smaller than the red squares used as data markers. The vertical scale is 

the frequency offset due to the probe beam AOM. 

This confirms that the independent calibrations of the probe beam frequency 

and the axial magnetic field are consistent with one-another. 

4.3.4 Magnetic Field Broadening 

If the axial magnetic field inside the solenoid is not uniform over the length 

of the Rb cell, then variation in the magnetic field along the length of the 
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Rb vapour cell will lead to the centre frequency of the two-photon resonance 

varying with position along the cell. This will lead to broadening of the feature 

measured in the 8 em long Rb vapour cells, § 3.5.1. 

Data were recorded for different solenoid currents varying from 0.05 A to 0.80 A. 

From the calibration of the solenoid field , Fig. 4.19 on page 99, these currents 

correspond to magnetic fields varying from 0.73 G to 11.6 G. The pump power 

was recorded as 5.7 J.LW and the probe power as 2.2 J.LW. Lorentzian fits are 

made to the traces, and the full-width at half-maximum (FWHM) of these fits 

are plotted against the axial magnetic field. As can be seen in Fig. 4.23, the 

I I 

I I 
I 

2 4 6 8 10 12 
Axial Magnetic Field (G) 

Figure 4.23: FWHM of Lorentzian function fitted to EIT features plotted 

as a function of axial magnetic field. The probe power is 2 J.LW, the pump 

power is 5 J.LW, the beam diameters are ~ 1 em and the pump modulation 

frequency ~ 50 kHz. 

FWHM of the EIT features increases by 28% . The corresponding change in 

frequency of the centre of the two-photon resonance is 15.3 MHz. This takes the 

two-photon resonance out of the range of the VCO frequency calibration shown 

in Fig. 4. 7 on page 82. Calibrations over a wider range of control voltages 

gives a frequency to control voltage conversion factor of 5.12 MHzjV. This 
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would account for a potential increase of 3.4% in the width of the resonances, 

substantially less than the 28% increase in FWHM measured. 

From § 4.3.2 the limit on the EIT line width due to the applied magnetic field 

is ~ 9.7 kHz G- 1. The data presented in Fig. 4.23 is consistent with this 

magnetic field broadening, as the difference between the FWHM at 0. 7 G and 

11.6 G corresponds to 3.1 kHz G-1
. 
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4.3.5 Variation in Width of Two-Photon EIT Resonance 

With Pump and Probe Power. 

In chapter 3 it was shown that the width of the EIT-resonance is strongly 

dependent upon the power of the pump beam, this is in the regime where the 

probe is significantly weaker than the pump. Once they start to become of 

comparable strength then it is obvious that the probe can no longer strictly be 

described as a weak beam and hence it must have an appreciable contribution 

to the width of the resonance. While a more thorough study of the effect of 

probe and pump power upon the width of the resonances is made in § 6.6, initial 

measurements made using the lock-in amplifier will be briefly presented here . 
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Figure 4.24: FWHM of Lorentzian function fitted to EIT features plotted 

as a function of pump power. Red points show data recorded with a probe 

power of 0.5 J.LW and blue points with a probe power of 5 J.LW. The beam 

diameters ~ 1 em and the pump is modulated at ~ 30 kHz. 

As can be seen in Fig. 4.24 the width of the EIT feature decreases with decreas­

ing pump power, until the pump power approaches the probe power, when the 

width reaches a minimum for the probe intensity used. For the probe power 

of 5 J.LW, the minimum width, for this set-up, is ~ 115kHz. Reduction of the 

probe power by a factor of 10 to 0.5 J.LW allows FWHM of< 80kHz. The limita­

tion on measuring narrower resonances is that the EIT feature is not resolvable 

for lower pump powers. 
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4.3.6 Transmission EIT /EIA Conclusions 

Both EIT and EIA has been shown on the Rb D2 line for both isotopes of 

Rb. The amplitude of these features has been shown to vary with detuning 

across the Doppler-broadened single-photon resonances. Reducing the power of 

both pump and probe beams has been shown to reduce the line width of the 

EIT features. Further it has been shown that the position of the two-photon 

resonances depends on the magnitude of the applied axial magnetic field, in 

agreement with theory. Application of such a magnetic field leads to broadening 

of the EIT features, within the limit defined by the uniformity of that field. 



Chapter 5 

Sagnac Interferometer: Theory 

& Background 

5.1 Introduction to Sagnac Interferometers 

5.1.1 Development of Sagnac Interferometers 

Sagnac provided the first demonstration of the feasibility of an optical exper­

iment capable of indicating the state of rotation of a frame of reference, by 

making measurements within that frame, [25, 26]. A schematic diagram of his 

interferometer is shown in Fig. 5.1(i) . 

The fringe pattern recorded at the output of this interferometer is sensitive to 

any phase difference between the two counter-propagating beams. In the case 

that the whole interferometer is rotating in its plane, at an angular frequency, 

llrot, it is possible to follow a simple derivation to obtain the value of the phase 

shift, .6.¢. 

Consider a circular interferometer of radius, r, Fig. 5.1(ii). The time taken for 

the two beams to complete one circuit of the interferometer, t± is given by, 

(5.1) 

where v is the speed of propagation around the Sagnac loop. 

107 
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(i) Mirror 

Figure 5.1: (i) A schematic diagram of Sagnac's original interferometer. 

Light from the light source is split into two beams by the beam splitter. Two 

counter-propagating beams then circulate the interferometer. The beams 

interfere on the beam splitter. There are two output ports of the interferom­

eter, one back towards the light source, the other towards the detector. (ii) 

Shows a circular Sagnac interferometer of radius, r, rotating at an angular 

frequency, Drot· The shifts in path length for the two counter-propagating 

beams, vt±, are shown. 

Thus, 
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(5.2) 
v 

Hence 

t± = 
v =f r !trot 

(5.3) 

It follows that the difference in propagation time for the two counter-propagating 

beams, 8t, is given by, 

ot t+- t_ , 

27rT 27rr 

v - r nrot v + r nrot , 

47rr2 nrot 

v2 - (r nrot)
2 

(5.4) 

(5.5) 

(5.6) 

The area of the interferometer, A, is equal to 1rr2 . The phase difference between 

the two counter-propagating beams, ~¢, is given by (v otj .Ao) . 

In the vast majority of cases, v2 » ( r Drot)
2

, it follows that, 

/:l.</J = 4A · 11rot 
.Aov 

(5.7) 
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Here (A/A) is a unit vector perpendicular to the surface area of the interfer­

ometer. In the case of light v = c, irrespective of a modified group velocity or 

phase velocity, [89]. 

The sensitivity of this interferometer due to rotations depends only on the 

wavelength, and the projection of the rotation onto the area enclosed within 

the interferometer. The centre of rotation and the shape of the loop have no 

bearing on the sensitivity. The sensitivity does however depend on the angle 

between the plane of rotation and the plane of the interferometer. 

The Sagnac effect manifests itself in both Sagnac interferometers and Mach­

Zehnder interferometers. 

5.1.2 Types of Sagnac Interferometers 

Since Sagnac's first measurements of rotation with his interferometer there has 

been a large amount of interest in making ever more sensitive measurements 

using a variety of different implementations of the Sagnac interferometer, [89, 

90, 91]. 

There have been two main lines of development for Sagnac interferometers. 

Optical Sagnac interferometers, [89, 90, 91], aim to increase sensitivity by in­

creasing the path length of the two beams before they are coupled out of the 

interferometer. There are two main schemes for achieving this, ring laser gyros 

and optical fibre gyros. Multiple loops around the same physical area lead to 

an increased gyroscopic area. 

Matter-wave interferometers sensitive to the Sagnac effect are generally re­

stricted to Mach-Zehnder interferometers, [92, 93, 94]. One notable exception 

is the Sagnac interferometer of Arnold et al., [95]. Matter-wave interferometers 

have an intrinsic sensitivity much greater than optical Sagnac interferometers, 

due to the smaller velocity and wavelength of the particles compared to light. 

Matter-wave interferometers lose out to optical interferometers in that their en­

closed area is limited. Where the sensitivity of optical-fibre interferometers is 

very easily scalable, for example by increasing the number of fibre loops, the 

sensitivity of matter-wave interferometers is not. 

Optical ring laser gyros can achieve sensitivities of 1.4 x w- 11 rad s-1 Hz-112 , 
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[96], and atom interferometer gyroscopes can achieve sensitivities of 

6 X 10-10 rad s-1 Hz-112 , [97]. 

5.1.3 Light-Matter-Wave Sagnac Interferometer 

Zimmer and Fleischhauer, [17], have proposed a scheme that combines the scal­

ability of optical Sagnac interferometers with the intrinsic greater sensitivity 

of matter-wave interferometers. The increased sensitivity comes from the slow­

light phenomenon associated with EIT. Reducing the phase or group velocity 

of the light is not sufficient to enhance the Sagnac effect, [89]. If momentum is 

transferred from the slow light to a matter-wave, then this matter-wave compo­

nent will lead to the enhancement of the Sagnac effect. It is likely that for this 

to be realized a low temperature atomic ensemble would be required, cooling to 

at least 103 Tree 1 
. 

5.1.4 Biased Sagnac 

Measurements of the dispersion of the hyperfine structure of Cs were made 

using a Sagnac interferometer by Robins et al., [99]. This required biasing the 

alignment of the interferometer, [100], such that the output arm contains two 

interference fringes. The difference signal between these two fringes gives a 

signal proportional to the dispersion of the medium. 

This method was developed by Jundt et al., [101], and applied to Rb hyperfine 

spectra. Rather than taking the difference between two fringes within one arm of 

the interferometer, the difference between two output arms of the interferometer 

was measured. This was shown to be in excellent agreement with the dispersion 

predicted from the transmission spectra using the Kramers-Kronig relations, 

§ 2.3.2 on page 22 . 

Furthermore, Purves et al., [100], have applied the biased Sagnac interferometer 

to measuring EIT resonances. The basis for this publication is presented in 

chapter 6 of this thesis. 

The theoretical basis showing that the difference signal between the two output 

1Trec = (nkah) 2 /(2mkB), [98], is the recoil temperature which for 87Rb is 180 nK. 
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arms of the interferometer, in the case of biased alignment, is proportional to 

the dispersion is developed in § 5.3 on page 115 . 

The biased Sagnac interferometer as described in § 5.3 on page 115 , provides a 

direct readout of the dispersion of a medium. The dispersion associated with a 

narrow EIT feature provides an ideal error signal which could be used to detect 

any physical effect that causes a shift in the detuning of the EIT resonance. For 

the purpose of making a detector, measuring the dispersion is more appropriate 

than simply measuring the absorption of the medium for two reasons: about 

line centre the rate of change in absorption with detuning is at a minimum, 

where as the rate of change in dispersion is at its maximum; secondly, also 

about line centre, the change in the absorption has the same sign independent 

of the sign of the shift in detuning, whereas the sign of the shift in dispersion 

is dependent upon the sign of the shift in detuning. 

Mach-Zehnder interferometers have been used to measure the dispersion of a 

medium, (102], and specifically to measure the dispersion due to EIT, [3, 57]. 

There are two main advantages in using a Sagnac interferometer over a Mach­

Zehnder: the stability of the interferometer against vibration and the control of 

the absolute difference in the length of the arms of the interferometer. The very 

nature of the Sagnac interferometer ensures that the default is to have no differ­

ence in path length between the two arms (the arms counter-propagate around 

the same loop). In addition to this the fact that both arms in the Sagnac inter­

ferometer interact with the same optical elements ensures a degree of common 

mode rejection in any vibrations that the optical elements experience. 

It is of course possible to measure an error signal similar to that provided by 

the dispersion of a medium, by dithering the frequency of a probe beam while 

measuring the transmission. This has the added disadvantage ofthe dithering 

broadening the resonance, as well as requiring lock-in amplifiers to measure 

the error signal - these are complications not present with the biased Sagnac 

interferometer. 

Measuring EIT in a Sagnac interferometer also paves the way for the realization 

of the optical-matter-wave interferometer of Zimmer and Fleischhauer, (17]. 
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5.2 Beam Splitters 

Following in the style of the analysis presented in The Quantum Theory of Light, 

by Loudon, [103], consider a beam splitter that does not have any losses. If we 

have two input fields, E 1 and E2 and two output fields, E3 and E4, as in the 

diagram below, Fig. 5.2, it follows that the fields will be related by the following 

Beam Splitter 

Figure 5.2: Two fields, E1 and E2, incident on the beam splitter lead to 

two output fields, E3 and E4. 

equations, 

E3 = R31E1 + T32E2, 

E4 = T41E1 + R42E2 . 

(5.8) 

(5.9) 

Here R represents reflection and T represents transmission. R and T are both 

generally complex and vary with optical frequency. We will assume that we are 

dealing with monochromatic radiation. Equations 5.8 and 5.9 can be rewritten 

in matrix form as: 

(5.10) 
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From the conservation of energy it follows that: 

11?11
2 

4- 1~21 2 
' (5.11) 

IR3112I1?1I2 + IT32I
2

I1?2I
2 

4- R31r;2~11?; 

4-RiiT32~~~2 4-IT4II2Ii?II2 4-IR42I 2 I~2I 2 (5.12) 

From equation 5.12 , 

IR3II24-IT4II2 1, 

IT321 2 4-IR4212 ' (5.13) 

R31T;2 4- T41R:2 

or equivalently Ri1 T32 4- T;1 R42 

0 ' 

0. 

The reflection and transmission coefficients can be written, 

R31 I R31l ei<l>at , 

R42 I R42l ei</>42 , 

T32 IT321ei</>32 ' 

T41 IT41Iei</>41 · 

Substituting from equations 5.16 into equation 5.14, gives, 

IR31Iei<l>atiT321e-i<l>a2 4-IT4IIei<I>41 IR421e-i<f>42 

IR31IIT32Iei(</>at-</>32) 

I R3IIIT321ei(</>at +</>42-</>a2-</>4t) 

Equating the imaginary parts of equation 5.17, 

It follows that, 

0, 

-IR42IIT4llei<<t>41 -<t>42) , 

-7r, 0, 4-7r . 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 
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Equating real parts of equation 5.17, 

IR3111T321 > 0 , 

IR4211T411 > 0 , 

hence cos ( ¢31 + ¢42 - ¢32 - ¢41) < 0 . 

Thus from equation 5.19, 

It follows that, 

-1, 

±7r, 

114 

(5.20) 

(5.21) 

(5.22) 

Hence the ratios into which the radiation is split is the same whether it comes 

in from side "1" or side "2". Thus from equations 5.13 and 5.22, 

lTd, 
ITI. 

Taking the beam splitter coefficients to be symmetrical, 

It follows from equations 5.25, 5.26 and 5.21 that, 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 



Chapter 5. Sagnac Interferometer: Theory & Background 115 

Hence, 

R (5.28) 

T (5.29) 

Thus the transmission and reflection is the same, independent of which side of 

the beam splitter the beam is input from. 

5.3 Sagnac Interferometer 

The Sagnac interferometer used to make measurements of EIT features in chap­

ter 6 is shown in Fig. 5.3 on the following page . 

Consider four different paths of the probe beam around the Sagnac interferom­

eter to one of the photodiodes, Fig. 5.4. The beam can propagate around the 

photodiode in one of two directions: clockwise, which will be labelled with the 

subscript "c"; and anticlockwise which will be labelled "a". Both the clockwise 

and anticlockwise beams will have components that will impinge on each of 

the photodiodes. The two photodiodes are labelled "A" and "B", and those 

subscripts will be used to label the components in the derivation. Fig. 5.4 on 

page 117 shows the four possible paths around the interferometer. To determine 

the intensity of light measured at each photodiode it is necessary to first find 

the amplitude of each component that arrives at that photodiode, and then 

take the magnitude of the field squared. It will be necessary to consider the 

phase and amplitude modifications of each field around the interferometer. As 

each field is derived from the same probe beam, then only the changes to the 

fields once they are split into the two oppositely propagating fields needs to be 

considered. For the purpose of this derivation, assume that the beam splitters 

and mirrors are lossless. Also assume that any phase picked up on the mirrors 

is the same for both beams. 



Chapter 5. Sagnac Interferometer: Theory & Background 

Photodiode Photodiode 
BQ QA 

Lens 

A ND A 
I . I 
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agnettc 
Shield 

Figure 5.3: BSl and BS2 are the first and second 50:50 beam splitters 

respectively; ND is the neutral-density filter; PBS is the polarizing beam 

splitter and >./ 4 is a quarter-wave plate. The probe beams are drawn in 

red and the pump beams in orange. The Sagnac interferometer is formed 

by the loop originating and terminating at the second beam splitter (BS2). 

Output arm A propagates towards photodiode A and output arm B towards 

photodiode B. 

116 

It will also be instructive to consider a small misalignment between the two 

beams. This will be done by assuming a small path difference of length !:l.l 

between the clockwise and the anticlockwise propagating beams. Both beams 

pick up the same phase shift due to passing through the first beam splitter. 

This phase is therefore neglected in the following analysis. 

EA,c 
= ITIIITNDI [e-¥ei(kncL+2<hrHND)IT212] , (5.30) 

Elnput 

EA,a 
= ITIIITNol [e-¥ei(k(naL+<ll)+24>2RHNo)IR212]' (5.31) 

Elnput 

Es,c 
= ITdiRd [e-¥ei(kncL+thT+thRHIR)IT211R21] , (5.32) 

Elnput 

Es,a 
= ITdiRd [e-¥ei(k(naL+<ll)+thR+thTHIR)IT211R21]. (5.33) 

Elnput 

To determine the normalized intensity of the fields at both photodiodes sum 
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Figure 5.4: (i) and (il) show the path of the clockwise and anticlockwise 

propagating beam to photodiode A. (iii) and (iv) show the path of the clock­

wise and anticlockwise propagating beam to photodiode B. ND is a neutral 

density filter. 

the amplitudes of the fields at each photodiode and then multiply them by the 

complex conjugate to obtain the modulus squared. 

JA = I EA, c + EA, a 1

2

, 

Ernput 

I 

EB, c + EB, a 1
2 

Ern put 

(5.34) 

(5.35) 

h (ITIIITNnl)2 [e-¥ei(kncL+2<hT)jT212 + e-¥ei(k(naL+Lll)+2<hR) jR212] 

X [e-¥e-i(kncL+2<hT)IT212 + e-¥e-i(k(naL+Lll)+2<hR) IR212], (5.36) 

ITti2ITNnl2 [1T214e-ocL + IR2I 4e-oaL + IT2I2IR2!2e-(oc+oa)i (5.37) 

X ( ei(kncL+2</>2T )-i(k(naL+Lll)+2<f>2R) + ei(k(naL+Lll)+2</>2R)-i(kncL+2t/>2T )) ] . 
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Now writing, 

and also from equation 5.27, (4>R- 4>T = -7f/2) , we can rewrite the intensity 

at photodiode A as, 

h = IT1I 2ITNol2 [IT21 4e-<>cL + IR2I 4e-aaL 

+IT2121R212e-a£ (eikLtJ.n-tJ.l+i1r + e-ik(LtJ.n+tJ.l)-irr)] ' 

IT1I2ITNol 2 [IT21 4e-<>cL + IR2I 4e-aaL 

-IT2I2IR2I2e-a£2cos (k (Ltl.n- tl.l))] , 

IT1I2ITNol2 [IT21 4e-<>cL + IR2I 4e-aaL 

-2IT2I2IR2I 2e-a£ cos (k (Ltl.n- tl.l))] 

Considering the other output arm of the Sagnac interferometer, 

Is = (IT1II R11)2 [ e- ¥ ei(kncL+<hT+<P:m +<PlR) IT2II R2l 

+e-¥ ei(k(naL+tl.l)+<hR+¢2T+¢IR) IR211T21] 

X [ e-¥ e -i(kncL+<hT+<PzR +<PlR) IT211 R21 

(5.38) 

(5.39) 

+e-¥ e-i(k(naL+tl.l)+<hR +<hT+<PlR) IR211T21] (5.40) 

As with the derivation above for h, rewriting the equation for Is in tenns of 

tl.n and a, then we get 

Is = ITII2IR1I 2 [IR2I2IT2I 2e-<>cL + IR2I2IT2I2e-<>aL (5.41) 

+IT2I2IR2I2e-a£ (eik(Ltl.n-tl.l) + e-ik(Ltl.n+tl..l))] , 

ITII21Rd2 [IR2I2IT2I2e-<>cL + IR2I2IT2I 2e-aaL 

+2IT2I2IR2I 2e-a£ cos (k (Ltl.n- tl.l))] , 

ITd2IRII2IT2I2IR21 2 [e-<>cL + e-a,.L 

+2e-a£ cos (k (Ltl.n- tl.l))] . (5.42) 
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From equations 5.39 and 5.42 the sum and the difference signals can be derived, 

h+Is = e-acL (ITd2ITNni2IT214 + IT1121Rd2IT212IR212) 
+e-aaL (ITII2ITNni2IT214 + ITII21Rli2IT212IR212) (5.43) 

+e-aL (ITII2IRII2IT2I2IR2I2 

-ITd2ITNni2IT212IR212) 2 cos (k (Ltln- tll)), 

h-Is e-acL (IT112ITNni2IT214 -ITII2IRII2IT212IR212) 
+e-aaL (ITII2ITNni2IT214 -1Tli21Rd2IT212IR212) (5.44) 

+e-aL ( -ITII21Rli2IT212IR212 

-ITII2ITNni2IT212IR212) 2cos (k (Ltln- tll)). 

Consider the particular case where the intensity of an incoming beam is split 

equally into two components each of which has 50% of the incoming intensity. 

Also the ND filter will transmit only 50 % of the incident intensity. 

Therefore, 

ITll IT21, 
ITNnl, 
IRll) (5.45) 

= IR21) 
1 

J2. 

Then, from equations 5.43, 5.44 and 5.45, 

(5.46) 

(5.47) 

In practice any misalignment of the Sagnac will lead to there being a range of 

t::..l across the finite profile of the output beams. As the whole beam is generally 

focussed onto a photodiode then what will be recorded is an average over a 

range of tll of h and Is. In order to determine what is recorded, it is necessary 

to integrate h and Is over a range of t::..l. From equations 5.39 and 5.42 this 
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leads to, 

ITII2ITNol 2 [(IT21 4e-acL + IR2! 4e-aaL) !:ll 

-2IT2I 2IR2! 2e-aL ( ~) sin (k (L!:ln- !:ll))] ::~ ,(5.48) 

IT1I2ITNol 2 [(IT214e-acL + IR2! 4e-aaL) (/:ll2- !:lli) 

-21T2I2IR2! 2e-aL ( ~) [sin (k (L!:ln- lll2)) (5.49) 

-sin (k (L!:ln- lllt))]]. 

but, sina-sin,B = 2sin(a;,B)cos(a;,B), (5.50) 

Using the fact that, 

sin (k (L!:ln- lllt)) (5.51) 

(
k (llll - !:ll2)) ( k ) 2 sin 

2 
cos kL!:ln- '2 (lll2 + lllt) . 

cos (0 ± ¢) 

for ¢ 

cos (} cos ¢ =t= sin (} sin ¢ , 
7r 

2' 

(5.52) 

then, cos (e- ~) sin(} . (5.53) 

To measure small changes in the refractive index directly, it is desirable to have 

sine terms as opposed to cosine terms, with an argument proportional to !:ln, 

in the output of both arms of the Sagnac. In the limits of the arguments being 

small, sine terms can be approximated as being equal to the argument. 

This requires, 

k 71" 
(5.54) 2 (!:ll2 + llll) 2' 

and if, klllt 0, (5.55) 

then, k!:ll2 71". (5.56) 

Thus, 

sin(k(L!:ln-lll2)) - sin(k(L!:ln-lllt)) 

= 2 sin (-~)sin (kL!:ln), 

= -2sin (kL!:ln). (5.57) 



Chapter 5. Sagnac Interferometer: Theory €9 Background 

Substituting equation 5.57 into equation 5.49, 

Similarly for Is, 

jTd21Rlj2jT2j2jR2j2 [ (e-acL + e-aaL) (~) 

-te-"Lsin(kL~n)] . 

Therefore the sum and difference signals are given by, 

in the case that equation 5.45 applies. 

.!!_ (e-<>cL + e-aaL) 
8k 

:_,.L 

e 
2

k sin (kL~n) 
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(5.58) 

(5.59) 

(5.60) 

(5.61) 

From equations 5.60 and 5.61, the sum, Ss, and difference, So signals can be 

determined, 

(5.62) 

(5.63) 

Hence the sum signal is proportional to the sum of the transmission of the two 

counter-propagating probes. The difference signal is proportional to the sine of 

the difference in refractive index between the two directions of propagation. In 

the case that kL~n « 1 it follows that, 

(5.64) 

Thus for a Sagnac interferometer, as described in this chapter, comprising two 

50:50 beam splitters, the difference signal between the two output ports will be 

proportional to the difference in the real part of the refractive index between 

the two counter-propagating arms. 



Chapter 6 

Experimental Sagnac 

Interferometer 

6.1 Experimental Set-Up 

The experimental set-up of the Sagnac interferometer is identical to that used 

to make transmission measurements (Fig. 4.1 on page 76) up to the optical 

fibre. After the pump and probe beams have left the optical fibre, the set-up is 

significantly modified to form the Sagnac interferometer, Fig. 5.3 on page 116. 

The optical fibre ensures that the pump and probe beams co-propagate. 

The Sagnac interferometer is formed by the loop originating at the second beam 

splitter (BS2). Probe beams propagate in both directions around the loop, 

while the pump beams are coupled out of the loop by the polarizing beam 

splitting cube; only the clockwise propagating pump beam passes through the 

Rb vapour cell. After completing the loop of the interferometer the two probe 

beams interfere on BS2. 50% of the interference propagates towards photodiode 

A and 50% towards the first beam splitter (BS1). A neutral density filter (ND) 

ensures that only 25% of the output form the interferometer is incident upon 

photodiode A. On BS1 the output of the interferometer is divided again such 

that 25% of the output of the interferometer is incident upon photodiode B. 

In practice the beam splitters do not perform as perfect 50 : 50 beam splitters. 

This leads to a small difference in the obtained signals from those predicted in 

equations 5.62 and 5.63 on the preceding page. This is overcome by making 

122 
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small adjustments to the mechanical slits. 

In order to ensure that the two arms of the interferometer counter-propagate, a 

Watec high resolution CCD camera (WAT-902B) with a Computar 25 mm lens 

was used to monitor the degree of overlap of the beams on the mirrors within 

the interferometer. An iterative process - monitoring the overlap on mirror A, 

while adjusting mirror B, then monitoring mirror B whilst adjusting mirror A ­

allows the beams to be brought very close to counter-propagating. Monitoring 

the beams in the two output arms of the interferometer allows the counter­

propagating arms within the interferometer to be brought to be "perfectly" 

counter-propagating. When the beams are perfectly counter-propagating and 

there is no absorbing medium present in the interferometer output arm B will be 

bright, while arm A will be dark - encapsulated in equation 5.42 and equation 

5.39, and shown in Fig. 6.1(upper) . 

"Perfect" 
Alignment 

"Biased" 
Alignment 

Arm A ArmB 

Figure 6.1: The output beam profiles for the two arms of the Sagnac inter­

ferometer, for the case of perfectly counter-propagating beams and for the 

biased alignment that leads to the dispersion signals. Arm A profiles are 

shown on the left and Arm B on the right . The grey rectangles show the 

position of the mechanical slits. 

A change in the refractive index of the medium for one direction of propagation 

shifts the fringe pattern. However the sensitivity is minimal, as the shift is about 

a maximum or minimum of the interference pattern , where the rate of change of 
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(i) 

(ii) 

I 

(iii) 

Figure 6.2: The output beam profiles of the Sagnac interferometer, as 

recorded on the Watec CCD camera, for the biased alignment. Arm A is 

on the left-hand side while arm B is on the right-hand side. (i) Shows the 

profiles before the slits. (ii) The beam profiles as viewed on the slits. (iii) 

The beam profiles of the light transmitted through the slits. 
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intensity with displacement is lowest. To enhance the sensitivity we "bias" the 

interferometer by introducing a small angle between the counter-propagating 

beams, [99, 101], such that both light and dark fringes appear in the interference 

pattern at both outputs, Fig. 6.1(lower) and Fig. 6.2(i). Two mechanical slits 

aperture the fringe pattern, such that only the region between the light and 

dark fringe is focussed onto the photodiode, Figs. 6.1(lower), 6.2(ii) and (iii). 

This biasing technique enables one to obtain maximal sensitivity to changes in 

the refractive index and a signal that is directly proportional to the refractive 

index difference between the two counter-propagating probes, § 5.3. For all 
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traces recorded with both the pump and probe propagating through the vapour 

cell, traces were also recorded with the pump beam blocked before the Sagnac 

interferometer. This alignment procedure was adopted so that the probe-only 

signal could be subtracted from the pump-and-probe signal - hence allowing 

any features in the scan across the resonance that are not due to the presence 

of the pump beam to be removed from the spectra. 

6.1.1 Photodiode Circuit 

In work presented in chapter 4 of this thesis, lock-in amplifiers have been used 

to detect the EIT resonances. Concern was raised that the lock-in amplifier 

may be limiting the line shape of the transmission resonances, [104]. In order 

to avoid the use of a lock-in amplifier, and yet still be able to measure the 

EIT resonances it was necessary to use a photodiode circuit with lower noise 

levels than that which had previously been used. The photodiode circuit used 

o-----~~---------o+9V 

o-.... - ...... 1------o 0 v 

Figure 6.3: The photodiode circuit used to measure the output from the 

Sagnac interferometer. The op-amp used is either an AD548 or an AD648, 

the photodiode is a BPX-65. R is 10 MQ and Cis 4.7 pF. 

throughout this chapter is shown in Fig. 6.3. The main difference between this 

circuit and those used in experiments in previous work in this thesis, is that in 

this case the photodiode is not biased. This leads to two main advantages over 

the previous circuits, a lesser influence from dark currents, and a wider range 

over which the photocurrent is linear with radiant intensity, [40, 41, 105]. The 

improvement in signal to noise ratio of this photodiode circuit, over that used 

in earlier work in this thesis, was investigated by J. Gaffney1 . 

1This work was carried out dm·ing a Nuffield funded summer project. 
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The output voltage of this photodiode circuit has the same form of temporal 

filtering as the photodiode circuits used in chapter 4, shown in Fig. 4.9 on 

page 86. However with a different value of R = 10 Mn, the output voltage will 

be a factor of 10 higher and will have a frequency cut-off as shown in Fig. 6.4. 

With the impedance decreasing significantly over angular frequencies~ 10kHz, 

it follows that changes in signal on a time scale« 100 f-LS will be heavily filtered. 

0.1 1 10 100 
Angular Frequency (kHz) 

Figure 6.4: The output voltage of the photodiode circuit is directly pro­

portional to the output impedance. The calculated output impedance of the 

photodiode circuit as a function of angular frequency is shown above, for 

R = 10 Mn and C = 4. 7 pF. 

6.2 Sagnac Interferometer Experimental Results 

6.2.1 Beam Profiles 

The profile of the pump and probe beams has a direct affect upon the line shape 

and width of the EIT features, [68]. In order to determine the beam profiles the 

Rb cell was removed from the interferometer and replaced with a 0.25 rum wide 

slit. The slit was mounted on a micrometer-driven translation stage, allowing 

the slit to be translated perpendicular to the direction of propagation of the 

beams. After the beam has passed through the slit it is focussed onto a photo­

diode. The signal recorded on the photodiode is plotted against the position of 

the centre of the slit. Typical data for both clockwise and anticlockwise bearns 
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are shown in Fig. 6.5. Both pump and probe beams have circularly-symmetric 

1 

";j 
0.8 

~ 
bO ·-r:/J 0.6 

"C) 
(1) 
N ·-- 0.4 C';S 

§ 
0 z 0.2 

0 

-3 -2 -1 2 3 

Displacement from Centre of Beam (mrn) 

Figure 6.5: The red plots show a typical beam profile for the clockwise 

beams: experimental measurements (circles) and Gaussian fit (line) with a 

1/e full-width of (1.890 ± 0.007) mm. The blue plots show a typical beam 

profile for the anti clockwise beams: experimental measurements (circles) and 

Gaussian fit (line) with a 1/e full-width of (3.177 ± 0.003) mm. 

Gaussian profiles, as expected from the circular core of the optical fibre, [106], 

in agreement with perpendicular sets of beam profile measurements. The an­

ticlockwise beams travel a distance of 2.2 m from the output of the optical 

fibre to the slit, whereas the clockwise beams propagate 0.7 m from the fibre 

output to the slit. The clockwise pump and probe fields have a 1/e full-width 

of 1.890 ± 0.007 mm. The anticlockwise probe beam has a 1/e full-width of 

3.177 ± 0.003 mm. The difference in beam size is as expected due to the differ­

ent path lengths of the two beams around the interferometer to the point where 

the beam profile was measured. 
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6.3 Double Scan 

As in the work presented in § 4.2, both the pump and probe beams are derived 

from the same Extended Cavity Diode Laser (ECDL) and double-pass through 

separate Acousto-Optic Modulators. The pump and probe have orhtogonal­

circular polarizations. The ECDL is scanned about Opu = 0 and the probe 

AOM is scanned about Opr - Opu = 0, Fig. 4.14 on page 91. Fig. 4.15 on 

page 92(i) shows the control voltages to the ECDL piezo and the probe VCO. 

Fig. 4.15 on page 92(ii) shows the plot of (Opr- Opu)/27r against Opu/27r. The 

1.65 1.175 

1.6 1.125 

1.55 
1.075 

1.5 
~ 

Gl.45 1.025 

] 1.8 ....... +-ti-+-+-o-+-o ....... ++-+-t-+-+-o-+1 
bJ) 

c;5 1.75 1.55 

1.7 
1.5 

1.65 
1.45 

1.6 

1.4 

-750 -500 -250 0 250 500 -750 -500 -250 0 250 500 

ECDL Frequency (MHz) 

Figure 6.6: (i) and (ii) are the probe-only output signals of arm A and 

B respectively. (iii) and (iv) are the probe-and-pump output signals of arms 

A and B respectively. The plots show both the raw photodiode signals (red) 

and a Gaussian fit to the signal (blue) . The power of the clockwise pump 

and probe beams are 26 Jl.W and 4.2 Jl.W. 

interferometer outputs are plotted in Fig. 6.6, along with Gaussian least-square 
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fits of the form, 

( 
v-vo )2 

Av+B -ce- w 
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(6.1) 

A and B provide the fit to the off resonance transmission background. A is the 

gradient of the linear offset, B is the zero frequency offset, C is the amplitude of 

the Gaussian absorption, v is the frequency of the light, v0 is the frequency of the 

centre of the Gaussian and w is the 1/ e full-width of the Gaussian. The Gaussian 

fit is subtracted from the photodiode signal for each of the four traces shown 

in Fig. 6.6 on the previous page. The probe-only signal is subtracted from the 

pump-and-probe signal, the resulting traces show only the non-linear features, 

with the Gaussian backgrounds subtracted, see Fig. 6. 7 on the following page. 

The signals are normalized by dividing them by the off-resonancee probe-only 

sum signal. For the purpose of this normalization the off-resonance signal is 

taken to be Avo+ B minus the recorded signal for both pump and probe beams 

blocked. 

Summing the normalized signal for arm A and arm B leads to the signal pro­

portional to the absorption. This is shown in Fig. 6.7(i). The difference signal 

between arms A and B is shown in Fig. 6. 7(ii) . This is proportional to the 

dispersion. 

The double-scanning technique leads to m EIT features occurring within the 

range of the Doppler-broadened transition, Fig. 6. 7 on the next page. The 

frequency scale of such a plot is not straight forward since the centres of the 

different EIT features are separated by a frequency given by the ECDL scan, 

Opu, whilst the width of the individual features is determined by the AOM scan, 

(Opr- Opu)· 
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Figure 6. 7: Difference between pump-and-probe and probe-only signals 

with the Gaussian fits subtracted, for output arm A, (i), and output arm 

B (ii). The residual signals plotted above show the modification in the two 

output arms due to the two-photon resonance condition being met. 

130 

As can be seen in Fig. 6.8, there is still a residual background. In order to 

be able to characterize the variation of amplitude of EIT feature with single­

photon detuning, this background has to be removed. This is done by fitting 

a Gaussian envelope to the off-two-photon resonance background, Fig. 6.9(i). 

This fit is subtracted from the signal and a Gaussian function can then be fitted 

to the amplitudes of the EIT features, Fig. 6.9(ii). 

Scanning two counter-propagating beams at the same frequency across the 

Doppler-broadened resonance leads to the occurrence of saturation spectroscopy 

resonances, [27, 37]. The features most prominent in Fig. 6.9(ii) occur at fre­

quencies of approximately 0 MHz, -80 MHz and -160 MHz, corresponding 

to F = 1 ---+ F' = 2, F = 1 ---+ F' = 1, 2 cross-over resonance, and 

F = 1 ---+ F' = 1 respectively. 
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Figure 6.8: (i) Sum of arm A and arm B signals as presented in Fig. 6.7. 

This shows the array of EIT transmission signals due to the two-photon reso­

nance condition being met at a number of different single-photon detunings. 

(ii) Difference between arm A and arm B signals as presented in Fig. 6.7. 

This plot shows the array of dispersive features due to the EIT two-resonance 

condition being met at a number of different single-photon detunings. The 

unsmoothed data is shown (red) along with a twenty-point moving average 

(blue). The twenty-point moving average involves taking the mean of twenty 

consecutive data points and plotting this mean value at the centre frequency 

of the set of twenty data points. 
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Figure 6.9: (i) moving average of the sum signal from Fig. 6.8(i) (red), with 

a least square Gaussian fit to the background (blue). (ii) Sum signal data 

minus the Gaussian fit to the background (red) is shown with a Gaussian fit 

to the amplitude of the EIT transmission features (blue). This is to show that 

the variation in amplitude of the EIT features as a function of single-photon 

detuning, can be represented by a single Gaussian function, with width of 

the same order as the Doppler-broadened resonance. 
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The amplitude of the EIT signals are determined by a Gaussian envelope of 

FWHM 560 MHz, this compares to the FWHM of 620 MHz of the Gaussian fit 

to the Doppler-broadened resonance. The uncertainty on the fit to the peaks 

of the transmission signals is likely to be far higher than the uncertainty on 

the fit to the Doppler-broadened resonances. While it is expected that the two 

Gaussians would be similar it is not the case that they should be the same. The 

Doppler-broadened absorption is the sum of three Gaussians, § 2.4 on page 25, 

each of which corresponds to a different hyperfine transition, which in turn will 

contribute a different amount to the EIT signals, though exactly to what extent 

this is the case is beyond the scope of this PhD. 

For the intensities of the fields used in this case the maximum amplitude of the 

transmission EIT signals is 2% of the transmitted light. 

6.4 Single Scan 

In order to characterize both the transmission and dispersion of the EIT feature, 

the ECDL was tuned to the frequency at which the amplitude of the EIT 

features is at its maximum, between -100 and -200 MHz in Fig. 6.9. The 

probe alone was then scanned across the two-photon resonance. The signals 

from the two output arms, A and B, were recorded, both with and without the 

pump field. Plots of the two individual arms of a typical signal can be seen in 

Fig. 6.10(i) arm A and (ii) arm B, both with (red) and without pump beams 

(blue). 

The frequency scale of Fig. 6.10 (and of subsequent spectra shown in this chap­

ter) is given by (8pr- 8pu)/27f, the detuning of the probe beam from the two­

photon resonance. Note the presence of the beat note in the pump-and-probe 

traces at ~ 1.6 MHz. The traces shown in Fig. 6.10, all have arbitrary DC 

offsets. The DC offsets are provided using the DC Bias Boxes Fig. 6.11 and 

Fig. 6.12. The bias boxes allow for a DC offset of between ±9 V to be added to 

the photodiode signal. This allows the voltage scale on the oscilloscope to be set 

to maximise the resolution of the EIT signals, whilst still being able to record 

all of the data of interest. For each data set recorded with the arbitrary DC 

offset, scans across the full Doppler-broadened transitions were also recorded so 
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that the data could be normalized if required. 

The probe-only signal is subtracted from the pump-and-probe signal. The re­

sulting traces are shown in Fig. 6.13 (i) and (ii), arms A and B respectively. 

Along with the EIT traces from the two output arms (red), are linear least 

square fits to the off-resonant background signal (blue). The linear fit is sub­

tracted from the EIT signal in each case, and the remaining signal is normalized, 

in the same way as in § 6.3 on page 128. The resulting normalized traces for 

arms A and Bare plotted in Fig. 6.13 (iii) and (iv) respectively. 
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Figure 6.10: (i) and (ii) show the raw probe-only (blue) and raw probe­

with-pump (red) signals, for output arms A and B respectively. The clockwise 

pump and probe powers are 28 ~-tW and 3 ~-tW, respectively. 
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Input 

Figure 6.11: Switch S1 turns the DC bias on or off. Switch S2 can be in 

either of two positions, position 1 (as shown in the figure) or position 2. This 

determines whether the bias is positive or negative, Fig. 6.12. R is a 5 kn 
potentiometer, adjusting this potentiometer varies the magnitude of the DC 

offset from 0 V to 9 V. 

(i) (ii) 

Input 
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~I yl 
R 

Output 
R 

Output 9V 9V 

Input 

Figure 6.12: (i) Switch S2 in position 1 as shown in Fig. 6.11 gives a 

negative DC offset. (ii) Switch S2 in position 2, leading to a positive DC 

offset on the output. 
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Figure 6.13: (i) and (ii) show the difference between the pwnp-and-probe 

and probe-only signals (red) along with a linear fit to the background (blue), 

for output arms A and B respectively. (iii) and (iv) show the normalized 

traces for arms A and B respectively. 

105 



Chapter 6. Experimental Sagnac Interferometer 138 

The two normalized traces of Fig. 6.13 (iii) and (iv) are summed to give the 

signal proportional to the EIT transmission signal, Fig. 6.14(i). The difference 

signal, proportional to the difference in refractive index between the two arms, 

and hence proportional to the dispersion due to the EIT resonance, is plotted 

in Fig. 6.14(ii). 
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Figure 6.14: (i) Sum signal of output arms A and B, with (blue) and with­

out (red) twenty-point running average, showing a typical EIT transmission 

signal. (ii) Difference signal between output arms A and B, showing a signal 

proportional to the dispersion of the medium around the EIT two-photon 

resonance. 

6.5 Sagnac Interferometer Output Beam Align­

ment 

With the counter-propagating arms of the Sagnac interferometer aligned as 

described at the beginning of this chapter, in the "biased" alignment , no aper­

turing of the output beams leads to a difference signal as shown in Fig. 6.15. 



Chapter 6. Experimental Sagnac Interferometer 139 

Fig. 6.16 shows the difference signals for the aperture positions shown in Fig. 6.17, 

-300 -150 0 150 300 

Frequency (kHz) 

Figure 6.15: Difference signal recorded for no slits in the output arm fringe 

patterns. The clockwise probe power is 3 p,W and the pump power is 10 p,W. 

As is clearly shown in the figure, the spectrum in the absence of the output 

arm apertures is not of the form of a dispersion spectrum. 

(i) and (ii) have the aperture positions in each of the two output arms being on 

the same side of the beams, while (iii) and (iv) have the apertures on opposite 

sides of the output beams. 
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Figure 6.16: (i) Standard aperture position. (ii) Both slits on the opposite 

side of beams. (i) and (ii) show that provided both slits are set to the correct 

width and that they are both on the same sides of the two beams, a signal 

proportional to the dispersion of the medium will be obtained. (iii) Slit A 

on standard side of beam, slit B on opposite side of beam. (iv) Slit A on 

opposite side of beam, slit B on standard side of beam. (iii) and (iv) show 

that if the slits are on opposite sides of the two different beams, the signals 

will not be proportional to the dispersion. The clockwise probe and pump 

powers are 2 J.LW and 10 J.LW. 

140 
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AnnA ArrnB AnnA ArrnB 
(ii) 

(iii) (iv) 

Figure 6.17: The aperture positions shown in this figure are those used to 

record the traces in Fig. 6.16. Each of the four different combinations shown 

in this figure corresponds to the same plot in Fig. 6.16. 

141 
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6.6 EIT Line Width 

Details of theoretical line shapes are given in chapter 3. If the signals are 

(i) (ii) (iii) 
20 

16 

Frequency (kHz) 

Figure 6.18: This figure compares three different predicted line shapes to 

the measured EIT transmission signals. In (i), (ii) and (iii), the experimental 

data is plotted (red), with the theoretical line shape fit (blue). (i) Lorentzian 

fit; (ii) arctan fit; and (iii) cusp fit. (iv) Experimental data minus Lorentzian 

fit; (v) experimental data minus arctan fit; and (vi) experimental data minus 

cusp fit. The clockwise probe power is 3 11-W and the pump power is 28 JJ-W. 

power broadened, the beam profile affects the line shape and width of the reso­

nance, (68]: a step-like beam profile leads to a Lorentzian line shape and a Gaus-
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sian beam profile to an arctan line shape. The cusp function gives the expected 

line shape for transit-time dominated broadening, [66], and is virtually indistin­

guishable from the arctan fit, [68]. Fig. 6.18(i), (ii) and (iii) all show the twenty­

point moving average transmission EIT feature with weighted least square fits 

of the Lorentzian, arctan and cusp functions respectively. Fig. 6.18(iv), (v), and 

(vi) show the residual signal- data minus theoretical fit- for Lorentzian, arc­

tan and cusp functions respectively. It can be seen that away from the centre 

of the two-photon resonance (detuning greater than ±200 kHz), the residuals 

are essentially the same for the three different fits. Only in the central region 

( detuning less than ±200 kHz) is there any significant difference between any 

of the residual traces. The arctan and cusp fits are very similar. Either side 

of the centre of the resonance, the amplitude of the experimental line shape is 

larger than that of the fit, but on the centre of the resonance ( detuning less 

than ±50 kHz), the fit value exceeds the data by approximately 10%. The 

Lorentzian fit has a higher value than the data either side of the resonance, but 

in the region around the centre of the resonance (detuning less than ±30kHz), 

the fit is approximately 5% less than the experimental data. 

The reduced x2 values for each of the three functions suggest that none of 

the models truly fit the data. Across the two-photon detuning of -300 kHz to 

+300 kHz the reduced x2 values are 5.59, 9.26, and 5.63, for Lorentzian, arctan, 

and cusp fits respectively. Over the wider detuning of ±900 kHz, the reduced x2 

values are 6.29, 7.15, and 5.74. Hence away from resonance the cusp fit gives the 

better fit whilst in the region of the resonance the Lorentzian fit is marginally 

the best fit. Were any of the functions an accurate fit, then a reduced x2 value 

of between one and two would be expected. In order to quantify the FWHM 

and amplitude of the EIT resonances for different pump and probe powers, the 

Lorentzian model was used. Rather than fitting the Lorentzian to the sum 

signal, the Lorentzian dispersion is fitted to the difference signal between the 

two arms. The Lorentzian dispersion line shape takes the form of equation 3.80 

on page 70, 
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6.6.1 EIT Line Shape Dependance on Pump and Probe 

Power 

EIT resonance spectra are recorded for three different regimes of pump and 

probe power, Ppu and Ppr respectively. 

• Ppr fixed and Ppu varied in the region, 2Ppr :S Ppu :S 20Ppr . 

• Ppu fixed and Ppr varied in the region, Ppu/40 :S Ppr :S 0.8Ppu . 

• Ppr = Ppu , and both are varied. 

Dependence on Pump Power 

Variation in amplitude and FWHM of the two-photon EIT resonance, with 

increasing pump beam power, is plotted in Fig. 6.19(i) and (ii) respectively. 

The amplitude of the features increases with pump power until it starts to 

32 
,-.., (i) 

> 27 8 
'-" 
v 22 "0 I ~ -·-- 17 • 0.. 

~ 12 

,-.., 
N 

260 :5 
'-" 

~ 220 

~ 
180 

0 10 20 30 40 50 60 70 
Pump Power (!J. W) 

Figu re 6 .19: (i) P lot of the amplitude of the EIT features as a function 

of pump power. (ii) P lot of the FWHM of a Lorentzian dispersion fit to the 

difference signal for a range of pump powers. The probe power is 4 JJ-W. 

saturate at around 20 JJ-W, Fig. 6.19(i). 
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Reducing the intensity of the pump reduces the width of the resonances, as can 

be seen in Fig. 6.19(ii). Extrapolating the linear fit of Fig. 6.19(ii) , shows that 

reducing the pump power to zero will lead to a FWHM of 170 kHz, where the 

pro be power is 4 J.L W. 

Dependence on Probe Power 
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Figure 6.20: (i) Plot of the amplitude of the EIT signal against probe 

power. (ii) Plot of the FWHM of a Lorentzian dispersion fit to the difference 

signal for a range of pump powers. The pump power is 10 p,W. 

Fig. 6.20(i) shows that the amplitude of the EIT signal increases linearly with 

probe power (with a constant offset). This is to be expected in the case that 

the probe does not effect the amplitude of the absorption coefficient. The linear 

increase in the measured amplitude is due to the linear increase in the power of 

the incident beam. There is one notable exception, the data point at~ 6.5 J.LW 

falls noticeably below the linear line of best fit. The most likely explanation for 

this is that the detuning of the pump beam, Opu, had drifted from the centre of 

the Doppler-broadened resonance. This would result in a reduction of the EIT 

resonance amplitude, (Fig. 6.9 on page 132) . 
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Fig. 6.20(ii) shows the variation of FWHM of the EIT features with probe power. 

As can be seen the width of the resonance increases approximately linearly with 

probe power hence this data is not in the regime of a weak probe. In the weak 

probe regime the probe power would not effect the EIT resonance. This is to 

be expected, as with a pump power of 10 J1.W, the probe powers of"' 1 fJ.W 

to 8 Jl.W are a significant fraction of the pump power, and as such can not be 

described as being in the weak probe regime. 

Dependence on Simultaneous Variation of Probe & Pump Power 
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Figure 6.21: (i) Plots of amplitude of EIT signals against the beam power. 

(ii) Plots of the FWHM of the EIT resonances against the beam power. 

By definition when the pump power is equal to the probe power, the weak probe 

regime cannot apply. 

Fig. 6.21(i) shows that the amplitude of the feature increases at a rate greater 

than linear. There will be two mechanisms leading to the increase in amplitude. 

Increasing probe power will lead to a linear increase in amplitude, as seen in 

Fig. 6.20(i) . Secondly increasing pump power will lead to an increase in the 
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transmission of the medium, Fig. 6.19(i). As the probe and pump power are 

equal then both will contribute equally to the "pumping" of the medium. 

Fig. 6.21(ii) shows the variation in FWHM with beam power. It is apparent 

that the data point corresponding to a beam power of~ 0.5 J-LW is not plotted. 

This is due to the fact that the signal to noise ratio was such that whilst the 

amplitude could be fitted to an acceptable degree of precision, the FWHM could 

not. The data suggests that the increase in FWHM is at an order greater than 

linear. 

6.6.2 Comparison of EIT Lineshape to Theory 

For the system under investigation, 87Rb 5 2S1; 2 F = 1 ---+ 5 2P 3; 2 F' = 
0, 1, 2 , the Doppler-broadened resonances have a significant overlap, Fig. 2.4 on 

page 28 . Thus it is not possible to consider the experimental EIT resonances 

as being due to a single A system. The resonances are due to three differ­

ent A systems, with the lower states IF = 1; mF = ±1) and excited states, 

IF'= 0, 1,2; ffiF' = 0). 

The single photon transitions in each of the three A systems have different 

transition strengths. Thus for the same beam intensities the Rabi frequencies 

differ by the ratio of the square root of the transition strengths, the ratio of 

the dipole matrix elements. The dipole matrix element ratio is 2 : J5 : 1 , for 

F' = 0, 1, 2 respectively2, [32]. Across the full range of the Doppler-broadened 

resonance, the amplitude of the contribution of each different A system varies 

with frequency due to the frequency separation between the excited hyperfine 

states and due to the Rabi frequency varying with detuning. 

Thus it is not trivial to account for the line widths of the measured EIT reso­

nances using the theoretical models presented in chapter 3 . 

Magnetic Broadening 

An axial magnetic field of ~ 1 G is applied to shift the EIT resonances away 

from the beat note. This field will lead to broadening of the EIT resonance as 

20n this scale the closed transition, IF = 2; mF = +2) ----> IF' = 3; mF' = +3) has a 

transition strength of 2J3 . 
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the field is not constant along the length of the vapour cell. From § 4.3.4 on 

page 102, the broadening of the resonances can be approximated by~ 3kHz 

G-1. 

Hence the contribution, of magnetic broadening, to the width of the EIT reso­

nances presented in this chapter will be~ 3kHz. 

Transit Time 

The cusp line shape predicted for transit time broadening only applies in the 

regime where the pump and probe power do not contribute to the broadening 

of the resonance, § 3.5.4 on page 62. As can clearly be seen from Figs. 6.19, 

6.20 and 6.21 , the pump and probe powers do contribute to the width of the 

resonances. Hence the expected line shape is not that predicted in § 3.5.4 . 

However it will still be instructive to consider the contribution of transit time 

broadening to the measured line widths. From equation 3.51 , 

fElT = J2ln 2 V 

r 
r being the intensity 1/e beam radius, and v the velocity given by equation 3.52 

on page 63. Thus rEIT = 39.1 X 27T kHz, at room temperature, 293 K, for 87Rb. 

Beam Profile 

In order for the line shape to be determined by the pump and probe beam 

profiles, the relaxation rate of the atoms, f L, must be much less than the inverse 

of the transit time of the atoms through the beam, equation 3.55 . 

However the relaxation rate of the atoms is limited by the transit time of the 

atoms though the cell. The transit time through the cell is not significantly 

greater than the transit time of the atoms through the beams. Hence the 

measurements presented in this chapter do not fall into the regime where the 

beam profile determines the line shape. 

Doppler-Broadened Limit 

In the case that a single-photon resonance is Doppler broadened, it follows that 

an EIT resonance can be narrowed by the same Doppler-broadening mechanism, 
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§ 3.5.6 on page 65. 

In the presence of Doppler broadening, the FWHM of the EIT resonance, rErT, 

is given by equation 3.68 on page 65, 

2 rebn~u ( ) ( r EIT = ---r:- · 1 + X 1 + 4x ) 
1+ (1+x)2 . 

x is the dimensionless variable given by equation 3.69 on page 65 , 

ra npu 
( )

2 

x = 2reb. Wo · 

The Doppler-broadened width can be taken from table 2.2 on page 37, hence, 

Wo = 570 X 27r MHz and ra = 6.065 X 27r MHz. 

The ground state coherence decay rate could be limited by any of the following 

three mechanisms: 

• collisions of atoms with cell walls; 

• collisions of atoms with other atoms; 

• and atoms leaving the beam. 

As the cell diameter is"' 10 times larger than the beam diameter, and the cell 

length is 4 times the cell diameter, then the rate at which atoms will leave the 

beams will dominate over the rate at which they collide with cell walls. 

The mean free path of the atoms, l, is the mean distance they travel between 

collisions with other atoms. This is given by, 

1 
l = aN' (6.2) 

N is the total number density, and a is the cross section for Rb-Rb collisions. 

At room temperature (293 K), N = 5.65 x 1015 m-3
, equation 2.101 , and 

a~ 2 x w- 18 m-2, [107], hence the mean free path, l ~ 90 m. As l is "'5000 

times larger than the diameter of the the cell, this will not limit reb· 

Thus the dominant mechanism in determining the ground state coherence decay 

rate, reb is transit time of the atoms through the beam. Hence, 

reb 

where v 

r 

v 

J2~T. 

(6.3) 
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Thus, l'cb = 39.6 x 27r kHz at room temperature, 293 K, and with the beam 

diameter 1.89 mm, from § 6.2.1 . 

The Rabi frequencies for the three different transitions, nF'=O, nF'=b and nF'=2 

are given by, 

flF'=O 
1 

(6.4) -·!1 
J3 

nF'=l = ~.n ' (6.5) 

nF'=2 
1 

(6.6) -·!1 
JI2 

where n is the Rabi frequency for the closed transition on the 87Rb D2 line, 

given by equation 2.59 on page 19, 

n = ra JI 
y'2. vI;;;. 

In order to make predictions of r EIT the intensity, I' is taken to be the mean 

intensity over an area encompassing a fraction Z of the power, P, in the beam, 

§ H.2. Therefore the intensity is taken to be, 7 z by equation H.16, 

ZP 
Iz = 1rr5 ln l1~z I ' 

where r 0 is the 1/e intensity radius. 

With all of the above it is now possible to calculate r EIT for the three different 

A systems. Plots of rEIT against pump power up to 100 J-LW are shown in 

Fig. 6.22, where Z is taken to be 0.95. 

In the case of the regime shown in Fig. 6.22, where x « 1 , the width of the 

EIT resonance can be well approximated by equation 3. 73 on page 66, 

fElT = fl~. 
As l'cb and n can only be approximated then there is scope for a systematic 

error in the predictions presented in Fig. 6.22 . 

Resultant Line Width 

The development of a theoretical model, accurately taking account of all broad­

ening mechanisms and optical pumping, is beyond the scope of this experimental 
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Figure 6.22: The solid red line shows the prediction for the A system with 

upper state IF'= O,mp' = 0), the dashed blue line shows the prediction for 

the A system with upper state IF'= 1, mp' = 0), and the dotted green line 

shows the prediction for the A system with upper state IF'= 2, mp' = 0) . 
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thesis. In order to make an approximation to the resultant expected line width, 

due to the contributions of all of the broadening mechanisms presented so far, 

the widths due to each contribution have been summed3 . Here the probe beam 

is assumed to make the same contribution to the width that a pump beam of 

the same power would. 

The resultant widths are plotted in Fig. 6.23 alongside the experimental mea­

surements for a constant probe power (of 4 J.L W) and varying pump, as plotted 

in Fig. 6.19. 

The theoretical curves underestimate the extent of the broadening for pump 

powers up to "' 20 J.LW. For pump powers in the range of "' 20 J.LW to "' 

80 J.LW the rate of change of width and the absolute values appear to be in good 

agreement with the theoretical values. 

A potential explanation for the discrepancy in theoretical and experimental line 

widths up to pump powers of"' 20 J.LW would be that the constant contributions 

to the line width have been underestimated. In order for this to be the case and 

yet still to have agreement at higher pump powers, it would follow that the rate 

of increase in width attributable to the pump power has been overestimated. 

Further experiments varying the beam diameters would be instructive in re-

3The convolution of two Lorentzian functions of width r 1 and r 2 is a Lorentzian function 

of width r3 = rl +r2 0 
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Figure 6.23: The solid red line shows the prediction for the A system with 

upper state IF' = 0, mF' = 0), the dashed blue line shows the prediction for 

the A system with upper state IF'= 1, mF' = 0), and the dotted green line 

shows the prediction for the A system with upper state IF' = 2, mF' = 0) . 

The pump broadening is taken to be that shown in Fig. 6.22. The probe, 

magnetic and transit time broadening contributions are those described in 

the text. The experimentally measured values along with the standard error 

are plotted with the black data points. 
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solving this discrepancy. This would allow for investigation of the transit time 

effect as well as further investigation of the intensity of the pump and probe 

fields. 

6.6.3 Dependance on Beam Diameter 

Ideally EIT resonances would have been recorded in the Sagnac interferometer 

for a range of beam diameters. This would have allowed experimental evaluation 

of the effect of varying the transit time on the EIT line width. 

Preliminary measurements were made of EIT resonances, in transmission only, 

where a reduction in line width by a factor of 2.2 was seen for a magnification 

of the probe and pump beams of 3.1. These measurements were made keeping 

all other variables constant. 

Maintaining constant beam power but increasing the diameter does lead to a 

reduction in intensity. However, comparison of the reduction in intensity, by a 

factor of 9.6 (= 3.12) , with any of the experimental plots of line width against 

power (Figs. 6.19 , 6.20 and 6.21) show that this is not sufficient to lead to a 
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reduction in EIT resonance FWHM of 2.2 . Magnifying the beams by a factor 

of 3.1 also has the effect of increasing the transit time of the atoms through the 

beam by the same factor. Thus transit time broadening would be expected to 

be reduced by the factor of 3.1 . 

It should be noted that these measurements were made without the benefit of 

an optical fibre in the experimental set up and as a result the beam profiles 

will have been far from Gaussian, due to the numerous optical elements in the 

beam path. 

Beam diameter in Sagnac interferometer 

Several telescopes, of different magnification, were introduced to the Sagnac 

interferometer. The aberrations to the wave fronts of the beams due to the lenses 

were such that, the interference patterns at the output of the interferometer were 

not well enough defined to allow measurements of the dispersion to be made. 

6.6.4 Group Velocity 

From equation 3.98 on page 72 the group velocity can be calculated at the 

frequency of the two-photon resonance. To do this the FWHM of the two-photon 

resonance, the normalized transmission in the absence of the EIT signal, the 

normalized signal of the peak of the EIT signal and the length of Rb vapour cell 

must be known. In the absence of the EIT signal, the normalized transmitted 

signal is 0.9. Taking the data presented in Fig. 6.18, from the Lorentzian fit the 

FWHM is 230 kHz. The amplitude of the EIT sum signal is 18.5 x 10-3 and from 

equation 5.62 on page 121, assuming that the clockwise and anti clockwise signals 

are the same size in the absence of the EIT feature, it follows that at the centre 

of the resonance, the transmission EIT signal is 0.90 + 2 x 18.5 x 10-3 = 0.937. 

This gives a group velocity of c/650 . 
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Conclusions & Outlook 

Weak probe absorption on the D2 line in both 85Rb and 87Rb was measured 

and a model predicting this absorption was realized. Application of a counter­

propagating pump beam, at the same frequency as the probe beam, resulted in 

the Doppler-free hyperfine pumping and saturated absorption spectra. 

Co-propagating probe and pump beams, scanned independently of each other, 

lead to the realization of three-level A systems and four-level N systems. The 

systems investigated comprised two lower states that are different Zeeman sub­

levels of the same hyperfine state, of the 5281; 2 ground term. When the lower 

levels were within the upper hyperfine state of the ground term, EIA was ob­

served. When the lower levels were within the lower hyperfine state of the 

ground term, EIT was seen. 

The theory demonstrating that it is possible to measure directly the dispersion 

of an EIT or EIA resonance in a "biased" 8agnac interferometer was introduced. 

EIT resonances, two orders of magnitude narrower than the natural line width 

of the excited state, were measured in a "biased" 8agnac interferometer. The 

line width of these resonances was limited by the ground state coherence decay 

rate. This in turn was limited by the transit time of the atoms through the 

pump and probe beams. 

Narrower resonances could be measured if the beam diameters were increased. 

It would also prove beneficial to change from the D2 line to the D1 line, between 

the terms 5281; 2 and 52P 1; 2 at 795 nm. The hyperfine splitting of the 52P 1; 2 

term is much greater than the splitting in the 52P3; 2 term. As a result, at room 

154 
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temperature, Doppler-broadened hyperfine transitions can be resolved on the 

D1 line. Thus on the D1 line, EIT or EIA signals observed on the Doppler­

broadened background can be attributable to a single A system. 

Using a vapour cell containing an inert buffer gas such as Neon would fur­

ther increase the transit time of the Rb atoms through the probe and pump 

beams, [58, 108]. The disadvantage of introducing a buffer gas is that collisions 

between the atoms and the buffer gas can lead to a loss of coherence within the 

atom, [107]. These two competing mechanisms result in a minimum line width 

at a specific buffer gas partial pressure, [108]. This pressure is dependent upon 

the system under investigation. 

To take full advantage of the buffer gas it is likely that it would be necessary 

to use a A system in which the lower states are Zeeman sub-levels of different 

hyperfine states. 

Using the biasing technique, Sagnac interferometry provides a modulation-free 

method of producing a signal with potential applications in magnetometry and 

inertial sensing. Further, measuring EIT in a Sagnac interferometer paves the 

path toward realizing an optical-matter-wave interferometer. 



Appendix A 

Rubidium Spectroscopic Data & 

Physical Constants 

Atomic Number 37 

Relative Natural Abundance 27.83% [109] 

Atomic Mass 86.909 u [109] 

Nuclear Spin 3/2 

Table A.l: 87Rb atomic data. 

Atomic Number 37 

Relative Nat ural Abundance 72.17% [109] 

Atomic Mass 84.91 u [109] 

Nuclear Spin 5/2 

Table A.2: 85Rb atomic data. 

Frequency w 27r x 384.23 THz [110] 

Wavelength (vacuum) .X 780.24 nm [32] 

Wavelength (air) .X air 780.03 nm [32] 

Lifetime r 26.24 ns [32] 

Decay Rate / FWHM r 27r x 6.065 MHz [32] 

Table A.3: 85Rb and 87Rb D2 line spectroscopic data. 
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Speed of light in vacuum c 299 792 458 ms-1 [111] 

Planck constant, reduced h 1.054 572 66(63) X 10-34 Js [111] 

Unified atomic mass unit u 1.660 540 2(10) x w-27 kg [111] 

Boltzmann constant kB 1.330 658(12) x w-23 JK-1 [111] 

Bohr magneton /JB 5.788 382 63(49) X w-n MeV T-1 [111] 

1.399 624 18 MHz c-1 

Permittivity of free space Eo 8.854 187 817 ... X w-12 F m-1 [111] 

Table A.4: Physical constants used in this thesis. 



Appendix B 

Error Analysis 

This appendix provides an outline of the statistical methods used in fitting 

functions to the data taken throughout the course of this work1
. For more 

detail and for derivations see Data Reduction and Error Analysis for the Physical 

Sciences, [112]. 

Mean and Uncertainty in Mean 

Consider a data set (xi, Yi,k), then the mean value for the ith value will be, 

1 
Yi = N L-yi,k · (B.1) 

The mean for the parent population, J.L is given by, 

(B.2) 

The standard deviation of the parent population, a-, is given by, 

(B.3) 

The standard deviation, s, of the sample population is given by, 

(B.4) 

1The Durham University, Dept. of Physics Undergraduate Error Handbook by I. G. Hughes 

and T. P. A. Hase provided much of the inspiration for this appendix. 
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It would be instructive to find the error in the estimation of the mean. This is 

referred to as the standard error, it is given by, 

(B.5) 

s 
(B.6) 

1 
N(N _ 1) 2:(Yi,k- Yi)

2 
· (B.7) 

Where data points are plotted, in the work presented in this thesis, the data 

point itself is the mean and the error bars, where shown, are the standard error, 

i.e. the error in the mean. 

x2 is a statistic characterizing both the deviation of an estimated function from 

the parent function and the deviations between the data sample and the parent 

function. 

(B.8) 

Reduced x2 , x~, is a potentially more useful statistic than x2
. x~ is given by, 

(B.9) 

where v is the number of degrees of freedom. For fitting N data points using 

m parameters, the numbers of degrees of freedom is given by, 

v = N-m. (B.10) 

Throughout this thesis, where theoretical models are fitted to experimental 

data, fits are carried out by minimizing the value of x2
• In order to determine 

the quality of the fit the value of x~ has to be considered. If x~ is of the order 

of 1 , then it is possible to say that the model is consistent with the data. 
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Appendix C 

Derivation of Optical-Bloch 

Equations 

In this appendix the optical-Bloch equations that give the populations and 

coherences for an idealized three-level A system, Fig. 3.2 on page 47, will be 

derived from the Liouville equation. The three-level atom has states Ia), lb), 

and lc). The two fields, probe and pump, are close to resonance with the 

transitions lb) -t Ia) and lc) -t Ia), respectively. The optical-Bloch equations 

for the three-level system can then be applied to the idealized two-level system, 

Fig. 2.1 on page 12, by making small adjustments to the equations. 

The Hamiltonian for the three-level system with two fields is, 

(C.l) 

The interactions of the atoms with the probe and pump laser fields are given 

by, 

-d · Epr COS (wprt) , 

-d · Epu COS (wput) . 

Rotating Wave Approximation 

(C.2) 

(C.3) 

For a transition between states lm) and In) the atomic dipole, d, is given by, 

d = dmn(ln)(ml + lm)(nl) . (C.4) 
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In) (ml is the raising operator and acting on state lm) raises the atom to state 

In), lm)(nl is the lowering operator and acting on state In) lowers the atom to 

state lm). 

The interaction of the atom with the probe laser field can be rewritten in terms 

of the raising and lowering operators, 

-d · Epr cos(wprt) = 

where, 

(bldla) . 

(C.5) 

(C.6) 

(C.7) 

Opr is the Rabi frequency, this represents the coupling between the laser field 

and the atomic dipole. 

The term e-iwprt, in equation C.6, is associated with absorption of a photon, 

whereas eiwprt is associated with the emission of a photon. For the rest of 

this derivation the terms where photons are absorbed and the atom falls from 

Ia) to lb) and where photons are emitted and the atom is raised from lb) to 

Ia), will be neglected. This is known as the rotating-wave approximation. The 

neglected terms are not nearly as significant as the resonant terms, for a detailed 

justification see Atom Photon Intemctions, [113]. 

Therefore making the rotating-wave approximation, 

Vpr M!pr (la)(bleiwprt + lb)(ale-iwprt) 
2 

Vpu = ~pu (la)(cleiwput + lc)(ale-iwput) 

The resulting Hamiltonian can be rewritten in matrix form, 

(lif!pu/20) e-iWput ) 

fiwe 

The density matrix for the three-level system is, 

p= (::~:;:) 
Pea Peb Pee 

(C.8) 

(C.9) 

. (C.lO) 

(C.ll) 
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From the Liouville equation (equation 2.21), 

i 
/i[p,£]- IP, 

i 
h[p, £]mn- (!p)mn 

where, 

[p,£]mn 

and (lp)mn lmnPmn' 

where, 

lmn = 

Hence the equations of motion for the coherences are, 

i0 e-iwprt 
Pab = - (i (wa- %) +lab) Pab + pr 

2 
(Paa- Phb) 

iOpue-iwput 

2 Peb' 

i0 e-iwput 
- (i (wa- We) +lac) Pae + pu 

2 
(Paa- Pee) 

iOpre-iwprt 

2 
Pbe, 

Peb 
i0 e-iwprt 

= - (i (we - %) + leb) Peb + pr 
2 

Pea 

iOpue+iwput 

2 Pab · 

Similarly the equations of motion for the populations are, 

inpu ( +' t . t) r a = __ p e IWpu _ p e-IWpu _ r p + -p 
2 

ea ac e ee 
2 

aa 
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(C.12) 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

(C.17) 

(C.18) 

(C.19) 

(C.20) 

(C.21) 
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Now introduce the "slow" variables, 

Pab 

Pa.c 

Peb 

Pabe-iwprt ' 

Pa.ce-iwput , 

P
- e-i(Wpr-Wpu)t 

eb · 
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(C.22) 

(C.23) 

(C.24) 

Substituting equations C.22, C.23, and C.24 into the equations of motion for 

the coherences, equations C.l6, C.l7, and C.18 leads to, 

_:_ (. ( ) ) _ if2pr ( ) 
Pab = - 1 Wa - Wb - Wpr + 'Yab Pab + -

2
- Paa - Pbb (C.25) 

if2pu-
- -

2
-Peb' 

Pae (. ( ) ) - if2pu ( ) 
- 1 Wa - We - Wpu + 'Ya.c Pae + -

2
- Paa - Pee (C.26) 

if2pr-
- -2-Pbc' 

Peb (. ( ) ) - inpr-= - 1 We - Wb - Wpr + Wpu + 'Yeb Peb + -
2
-Pca (C.27) 

if2pu-
- -

2
-Pab · 

Similarly for the populations, substituting equations C.22, C.23, and C.24 into 

equations C.l9, C.20, and C.21 leads to, 

if!pr (- - ) if2pu (- - ) 
Paa = -2- Pab - Pba + -2- Pa.c - Pea - r aPaa ' (C.28) 

(C.29) 

(C.30) 

The detuning from resonance of the probe and pump field, bpr and bpu, is defined 

as, 

Wpr- Wa +%, (C.31) 

(C.32) 
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It follows that, 

Pab ( . ) - if!pr ( ) - /'ab- lOpr Pab + -
2
- Paa- Pbb (C.33) 

inpu-
- -

2
-Pcb' 

Pac ( .0 ) _ inpu ( ) 
- /'ac - l pu Pac + -

2
- Paa - Pee (C.34) 

if!pr-
- -

2
-Pbc' 

Pcb ( . (o o ) ) - ir!pr -- /'cb - l pr ~ pu Pcb + -
2

-Pca (C.35) 

if!pu-
- -

2
-Pab · 

This is the form of the optical-Bloch equations, for the three-level A system, 

that will be used to make predictions of the absorption and dispersion of the 

probe beam in chapter 3 . 

Two-level atom 

In the case of the two-level atom, with states lb) and Ia) , equations C.28, C.29 

and C.33 apply but with, npu = 0. Also Ia) only decays to lb) through sponta­

neous emission, so the term + (f /2) Paa is replaced by +f Paa . Hence for the 

two-level atom, 

Pab ( . ) - if!pr ( ) = - /'ab- lOpr Pab + -
2
- Paa- Pbb (C.36) 

if!pr (- - ) -
2

- Pab - Pba - f aPaa , (C.37) 

ir!pr (- - ) r Phb = -
2
- Pba - Pab - f bPbb + aPaa . (C.38) 

These equations will form the basis of the predictions of the absorption and 

dispersion for a two-level atom in chapter 2 . 
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Appendix D 

Linear Doppler Effect 

Approximation 

Suppose that in the laboratory frame of reference an atom moves at a velocity, 

v, and is in the state, lb), with energy,%' and with momentum Pb'· The atom 

absorbs a photon with momentum fikpr , where kpr makes an angle () with v . 

The atom is excited to a state Ia), with energy 17wa' and momentum Pa'· 

Rest frame of the atom 

In the rest frame of the atom before the absorption of the photon, the atom 

has initial momentum Pb = 0 , the photon has momentum fikpr'· After the 

absorption, but in the same frame of reference, the atom has momentum Pa 

and is in the energy state 17wa . 

From the conservation of momentum, 

fikpr' Pa ' (D.l) 

and from the conservation of energy, 

2 

= nw+.!l 
a 2m. {D.2) 

Squaring equation D.l and substituting into equation 0.2 leads to, 

(0.3) 
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As Wa- Wb = Wab, and kr>r' = Wpr' lc, it follows that, 

Wpr' = nw;r' 
Wab+-2 2. me 
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(D.4) 

Of interest is the relationship between the frequency of the photon in the lab 

frame, Wpr , and the frequency of the atomic resonance in its rest frame, Wab . 

Thus the relationship between Wpr and Wpr' must be found. 

Consider an electromagnetic wave in the lab frame, cos ( Wprt - kprX), an ob­

server in the rest frame of the atom would see a wave given by, cos ( Wprd' - kpr' x'). 

From the Lorentz transformations, 

x' 

and t' 

x- j3c cosO t 

J1- j32 

t- j3 cosO xlc 

J1- j32 

(D.5) 

(D.6) 

where, f3 =vic. 

Thus, 

( 
t - f3 coso x 1 c _ k x - f3c coso t) (D 7) 

COS Wpr' ~ pr' ~ ' · 
yl-/32 y1-j32 

(

Wpr' + kpr' j3c cos 0 kpr' + (/3Wpr' I c) cos 0 ) 
COS ~ t- ~ X , 

yl-/32 y1-j32 

(D.8) 

Hence the frequency of the photon in the rest frame of the atom, wpr', is given 

by, 

Wpr' + kpr' j3c COS 0 

J1- f32 

1 + f3cos0 
~Wpr'· v .L- fJ2 

Now substituting equation D.4 into equation D.lO leads to, 

1 + j3cos0 
--===-·W J1- j32 pr ( 

1 + /3 cos 0) 2 nw;r 
·Wb+--

~ a 2 2' y .L- fJ- me 

(D.9) 

(D.lO) 

(D.ll) 
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•.. )·Wpr= 

( 1 + {3 COS () + ~
2 

+ ~
3 

COS() + .. .) 
2 

· Wab 

(0.12) 

First order approximation 

In the regime that {3 « 1 , 

( 
{32 {33 ) 

1 + {3cos() + 
2 

+ 2cos() + ... ~ (1+{3cos0). (0.13) 

Further in the case that the energy of the photon is much less than the rest 

mass energy of the atom, 

(0.14) 

It follows that, 

Wpr = (1 + {3cos0) · Wab, (0.15) 

and when the atom and the photon are co-propagating, 

Wpr = ( 1 + ;) · Wab · (0.16) 

This is the result that is used throughout this thesis to calculate the effect of 

the Doppler effect. 



Appendix E 

Weak Probe Absorption Code 

The code used to calculate the weak probe beam absorption, presented in chap­

ter 2 , is shown on the following pages. 
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Absorption and dispersion of a weak 

probe beam in a thermal Rb vapour on 
the D-2 line. 

Graham Purves, 14 ii 06. 

I would appreciate any feedback anyone has on the following code. whether it be on the code itself or the anotations. 

Thanks, 
Graham 

Mathematlca Set-up 

Off[Generalto "apell " ] 
Off[General oo•apelll " ] 
Off[ClebschGordano: "phy" ] 
Off[ClebschGordan o o"tri "] 
Off[Rintegrateoo "inua• ] 

L =.; Pu87 =. ; .6p87 •.; .6p85 =.; Lc =. ; u87 z. ; u85 =.; P =.; 

Directory[] 

169 

To set the directory that you wish to have any plots or data saved to. please amend the following line and remove the(* 
*). 

SetDirectory["/Users/Grabaa/Docuaents/Work_Misc/Matbeaatica_ Stuff/Weak_Probe" ] 

Physical Constants 

IJ ~ 1. 05457266 X 10"" I 

8 o = 8.854187817 X 10"" I 

C • 2 • 99792&58 X 10° I 

aau = 1. 6605&02 X 10"27 I 

kb z 1. 380658 X 10"" I 
Do :z 1; 
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Conditions of vapour cell 

• Cell Length 

The cell length is entered attbe very end of the code and the variable is labelled Lc 

• Temperature of Cell and RMS velocity of atoms, u 

The velocity of the atoms for the two different isotopes is calulated as a function of temperature. 

• Rb-87 

u87 [T_] = 

• Rb-85 

u85[T_] = 

2 xkb xT 

87 xamu 

2 xkb xT 

85xamu 

• Vapour Pressure in Cell 

p. = -94.048261 
P• • 1961.2581 
Pc = -0.037716871 
p 4 = 42.575261 

P[T_] E lQ{Pa-~+Pcd+P.,IlLog(lO,I']); 

• Number Density in Cell 

P[T] x 133.3 
11Rb850[T J ::0.72x-----

- kb x'l' 

P[T] X 133.3 
11Rb870[T ]::0.28x_,:.....:.... __ _ 

- kb xT 

11Rb870[293] + 11Rb850[293] 

• Maxwell Boltzman Velocity distribution 

• Rb-87 

• Rb-85 

11Rb870[T] xe·(..,~.,,) 
H

07 
[v_, T_] • ----:-'.....:... ___ _ 

-{'; xu87 [T] 

11Rb850 [T] x e- ( .. :,,,, ) 
H85 [v_, T_] = -------­

-{'; xuBS[T] 
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Definitions of the properties of the medium and probe beam 

• Probe beam 

Wavelength A and wavevector k of the probe beam . 

..\,...- c 7 80 X 10-0 I 

2x,.. 
kprot.. --· A,.... .. 

k-
.. p~=--1 

c 

Polarisation 1r corresponds to q=O, a-• to q=+ I and u- to q=-1 

Qprobe = 0; 

• Properties of Medium 

• Rb-87 

171 

r is the decay rate of the relevant state, for groundstates, this decay rate is taken as 0, as we are assuming any collisional 

decay rate is negligible. 

r87 1 = O; 
r87 2 • 2 XJI'X 6.065 X 105

; 

r87, so~ 
r87 1 + re7, 

y87, = --=-.,.2--=-

re7 1 + r87 3 y87" • _......:...,.2 __ 

21ig
11 

is the dipole matrix element for the probe transition. As with the Rabi frequency for the pump beam, this dipole 
matrix element has been normalised such that it only needs to be multiplied by the transition strength for each transition 
to gel l11e correct dipole matrix element for that transition. 

--.fl 
g87 21 a -

2
- X 

• Rb-85 

3 xAp.,...' xr87, 
4 xn:a xllxc 

~ 
)("~; 

r is the decay rate of the relevant state, for groundstates, th.is decay rate is taken as 0, as we are assuming any collisional 
decay rate is negligible. 

res, • o1 
res,. 2x,..x6.06Sxl06 1 

res, c o1 
res,+ res, 

yes,. = ---2--

res,+ res, 
yes,. • ---=--2---=-

21ig,1 is the dipole matrix element for the probe transition . As with the Rabi frequency for the pump beam, this dipole 
matrix element has been normalised such that it only needs to be multiplied by the transition strength for each transition 

to get the correct dipole matrix element for that transition. 

--.fl 
9es,. = - 2- x 

3 XA,....bo 
3 

X res, 
4x,.., x.llxc 

~ 
x'J~I 
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Complex Susceptibility, Absorption and Dispersion Coefficients 

• Rb-87 

• Susceptibility 

The susceptibility for each of the different allowed hyperfine transitions is calculated below; Fg=I to Fe=O,I,2 and then 
Fg=2 to Fe=l,2,3 . The byperfine detunings of both the ground and excited states is included for each of the different 
transitions. The factor of 1/8 at the front of each of the sums is to take account of the fact that there are 8 different 
grouodstate hyperfine levels. From the suceptibility it is then possible to calculate the absorption and dispersion 
co-efficients. 

1 • 
lt87P'10[A_, v_, T_] 2 

8 
x .L; (g87

21
2 x4x.llxPr87[[n, 1, 1]] 2 xixR., [v, T]) I ... 

(e0 x (y87 21 -i (lx,.xA+k-.. xv+2x,.x (-4271x10') -2x,.x (-301.4) x106 )))1 

1 • 
ltB7Pll[A_, v_, T_] • 

8 
x L: (g87 21

2 x4xllxPrB7[[n, 2, 1]] 2 xixR17 [v, T]) I ... 
(eo x (y87 21 - i (l x,. x A+ k_ .. x v + 2 x "'" (-4271 x 106

) - 2 x "'" (-229. 2) x 10'))) 1 

1 • 
lt87F12[A_, v_, T_]• 8x.L:(g8721

2 x4xllxPr87[[n, 3, 1]] 2 xixN.,[v, T]) I ... 
(e0 x (y87 21 -i (2x,.xA+k-.. xv+2x,.x (-4271x10') -2x,.x (-72.2) x106 )))1 

1 • 
lt87P21(A_, v_, T_] • 

8 
x .L; (g87

21
2 x 4xllxPr87 [ [n, 2, 2]] 2 xixN011 [v, T]) I ... 

(eo X (y87 21 - i (2 X,.XA + k,.-obo XV+ 2 X"'X 2563 X 106 -2 X,.X (-229.2) X 106
))) I 

1 • 
lt87F22(A_, ..,_, T_]• 8x.L: (g8721

2 x4xllxPr87([n, 3, 2]] 2 xixRo,[v, T]) I ... 
(eo X (y87 21 - i (2 X,.XA +~boX V + 2 X,.X2563 X 106 -2 X,.X (-72.2) X 106

))) I 

1 • 
lt87P23[A_, ..,_, T_]• 8x.L:(g8721

2 x4xllxPr87((n, 4, 2]] 2 xixN.,[v, T]) I ... 
(e0 X (y87 21 - i (2 X,.XA +k-bo XV+ 2 X,.X2563 X 10'- 2 X,.X 194.4X 106

))) 1 

• Absorption coefficients 

a87P10[A_, v_, T_] • k.,..... ><Do xla[lt87P'l0[A, v, T]]1 

a87Pll[A_, v_, T_] • k.., .. xno xla[lt87Pll[A, v, T]]l 

a87P12(A_, v_, T_]•k.,.....xnoxia[lt87Pl2[A, v, T]]l 
a87P21[A_, ..,_, T_]•k.,.....xnoxia[lt87P21[A, ..,, T]]l 

a87P22 [A_, ..,_, T_] • k.,..... X 11o X Ia[lt87P22 [A, .., , T]]l 
a87P23 [A_, ..,_, T_] • k.,..... x no x Ia[lt87P23 [A, ..,, T]]l 

• Dispersion coefficients 

11o x Re [lt87P10 [A, v, T]] 
1J87P10[A_, v_, T_] • 

2 
11o xRe[lt87Pll[A, v, T]] 

1J87P'11[A_, v_, '!_] • 
2 

11o x Re (lt87P12 [A, v, T]] 
1J87Fl2 [A_, v _, T_] • l 

noxRe(lt87P21[A, v, T]] 
1J87P21 [A_, v_, T_] • l 

no xRe[Z87P22[A, v, T]] 
1J87F22 [A_, v _, T_] • 

2 

1J87F23 [A_, v_, T_] 
11o x Re (Z87P23 (A, v, T]] 

l 



Appendix E. Weak Probe Absorption Code 173 

• Rb-85 

• Susceptibility 

The susceptibility for each of the different allowed hyperfine transitions is calculated below;Fg=2 to Fe= I ,2,3 and then 
Fg=3 to Fe=2,3,4. The hyperfine detuniogs of both the ground and excited states is included for each of the different 
traositions.The factor of 1112 at the front of each of the sums is to take account of the fact that there are 12 different 
grouodstate hyperfine levels. From the suceptibility it is then possible to calculate the absorption and dispersion 

co-efficients. 

1 1 

X85P21[6 ,v .~] =-x"\'(g85,1 'x4xl>xPr85([n, 1, 1]]'xixR15 [v,~])l - - - 12 LJ ... 
(e0 X (y85,. -i (2X,..X6+kprobo XV+2XKX (-1771x106

) -2XKX (-113.2) x106 )))1 

1 1 

X85P22[6, v, ~ ]• -x"\' (g85,1 'x4xl>xPr85[[n, 2, 1]]'xix1fos[v, ~])I 
- - - 12 LJ ... 

(eo X (y85,. - i (2 X l'fX 6 + kprobo XV+ 2 X l'fX (-1771 X 10°) - 2 X KX ( -84 .0) X 106
))) I 

1 1 

X85P23[6, v, ~] = -xL:(gB5,.'x4xl>xPr85([n, 3, 1]]'xixll15 [v, ~])I 
- - - 12 ... 

(eo X (y85,. - i (2 X KX 6 + kpn>bo XV+ 2 X KX ( -1771 X 10°) - 2 X >rX ( -20. 6) X 10°))) I 

1 1 

XB5P32 [6 , v , ~ ] •- x "\' (gBs,,' x4xl>xPr85[ [n, 2, 2]]' xixllos [v, ~])I 
- - - 12 LJ ... 

(flo x (yB5,. -i (2x>rx6+k,.,., .. XV+2x>rx1265xl06 -2x>rx (-84 . 0) x106
))) 1 

1 1 

XB5P33[6, v, ~] = -x"\' (gBs,,'x4xl>xPr85[[n, 3, 2]]'xixlles[v, T]) I 
- - - 12 LJ ... 

(flo X (y85,. - i (2X,..X6+kprobo XV+2x>rx1265x10° -2x>rx (-20.6) xl0°))); 

1 1 

:r85P34[6, v, ~] s -x"" (gBs,,'x4xl>xPr85[[n, 4, 2]]'xixR85 [v, T]) I 
- - - 12 LJ ... 

(flo X (y85,.- i (2 X,..X6 + kp~bo XV+ 2 Xl'fX 1265x 10°-2 Xl'fX 100.4x 10°))) I 

• Absorption coefficients 

a85P2l[A_, v_, T_] =k.,....xnoxia[X85P21[A, v, ~]]; 

a85P22 [A_, V _, ~-] z kpoobo X Do X Ia [X85P22 [A, V, ~]]; 
a85P23 [A_, v_, ~-] = kprobo X Do X Ia[X85P23 [A, v, ~]]; 

a85P32[6_, v_, T_]•k.,....xnoxia[X85P32[6, v, ~]]I 
a85P33 [6_, v_, T_] • kprobo X Do X Ia[X85P33 [A, v, T]]; 

a85P34 [A_, V _, T_] • kprobo X Do x Ia [X85P34 [A, v, T]]; 

• Dispersion coefficients 

Do x lte [X85P21 [A, v, T]] 
/185P21 [6_, v_, T_] = 

2 
Do x tte [X85P22 [A, v, ~]] 

IIB5P22[A_, v_, ~-] • _: __ :.._ __ 
2

__:c....:._;_;.:..:.. 

Do X lte [X85P23 [A, V, 'r]] 
/185P23 [A_, v_, T_] • 

2 
Do x tte [X85P32 [A, v, T]] 

1185P32 [A_, v _, T_] • 
2 

Do X lte [X85P33 [A, V, 'r]] 
IIB5P33 [A_, v_, ~-] • 

2 
Do X lte [X85P34 [A, v, 'r]] 

1185P34[6_, v_, ~-] • 
2 

--
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Integration Over Velocity Distribution 

The absorption and dispersion co-efficients arer now integrnted over the Maxwell-Boltzmann velocity distribution, in 
order that we can calculate the absorption and dispersion or the media at different detunings and temperntures. 

• Rb-87 

• Absorption 

a87Pl0v[A_ , T_ ] • Nlnt.egrat.e[Bvaluat.e[a87Pl0[A, v, T]], 
{v, -600, 600}, HinRecursion-t 5, KazRecursion -t20] 1 

a87Pllv[A_ , T_] =Blnt.egrat.e[Bvaluat.e[a87Pll[A, v, T]], 
{v, - 600, 600}, HinRecursion-+5, KaxRecursion-t20]; 

a87Pllv[A_ , T_ ] = Blnt.egrat.e[Bvaluat.e[a87Pl2 [A, v, T]], 
{v, -600, 600}, KinRecursion .... 5, HazRecursion -+20] 1 

a87Pllv[A_, T_] • Blnt.egrat.e[Bvaluat.e[a87Pll [A, v, T]], 
{v, -600 , 600), MinRecursion-+ 5, MaxRecursion-+ 20]1 

a87P22v[A_ , T_ ] = Blnt.egrat.e[Bvaluat.e[a87P2l [A, v, T)), 
{v, - 600, 600), HioRecursion ... 5, HaxRecursion-+ 20)1 

a87Pl3v[A_ , T_ ] • Blnt.egrat.e[Bvaluat.e[a87Pl3[A, v, T)], 
{v, -600, 600), KinRecursion-+ 5 , MaxRecuraion-+ 20]1 

• Dispersion 

,887Pl0V[A_ , T_ ] • Blnt.egrat.e[Bvaluat.e[,887Pl0[A, v, T]], 
{v, -600, 600}, NinRecursion ... 5, MazRecursion-+ 20]; 

,887Pllv[A_ , T_ ] • Blnt.egrat.e[Bvaluat.e [,887Pll [A, v, T]], 
{v, - 600, 600}, MinRecursion-+ 5, MazRecursion ... 20]; 

,887PUv[A_ , T_]•Blnt.egrat.e[Bvaluat.e[,887Pl2[A, v, T]], 
{v, -600, 600), KinJtecursion-+ 5, MaxRecursion-+ 20]1 

,887Pllv[A_, T_ ] • Blnt.egrat.e[Bvaluat.e[,887Pll [A, v, T]], 
{v, - 600, 600), MinRecursion-+ 5, MaxRecursion -+ 20]1 

,887Pllv[A_, T_] • Blnt.egrat.e[Bvaluat.e[,887P22 [A, v, T]], 
{v, -600, 600}, HinRecursion ... 5, HallRecuraion .... 20]; 

,887Pl3v[A_, T_] • Blnt.egrat.e[Bvaluat.e [,887Pl3 [A , v, T]], 
{v, - 600, 600), MinRecursion-+ 5, MaxRecursion -+ 20]1 
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• Rb-85 

a Absorption 

a85F2lv [&_, 'r_] =&Integrate [Bvaluate [a85F21 [&, v, 'r]], 
{v, -600, 600}, HinRecursion .. 5, HaxRecursioa .. 20]1 

a85F22v[t._, 'r_] = Rintegrate[Bvaluate[a85F22 [&, v, T]], 
{v, -600, 600}, HiDRecursion .. 5, MaxReoursion .. 20]; 

a85F23v [&_, T_] = &Integrate [Bvaluate [a85F23 [&, v, 'r]] , 
{v, -600, 600}, KinRecursion .. S, HaxRecursion .. 20]1 

a85F32v [&_, 'r_] = &Integrate [Bvaluate [a85F32 [&, v, 'r]] , 
{v, -600, 600}, KiaRecursion .. 5, HaaRecursioa _. 2011 

a85F33v [&_, T_] = Riategrste [Bvaluate [a85F33 [&, v, T]] , 
{v, -600, 600}, HiDRecursion .. 5, HazRecursion .. 20]1 

a85F34v [&_, 'r_] = &Integrate [Bvaluate [a85F34 [&, v, 'r]] , 
{v, -600, 600}, KinRecursion .. 5, lllaltRecursioa .. 20]; 

a Dispersion 

ji85F2lv(&_, 'r_] = Rintegrate[Bvaluate[j18SF2l[t., v, 'r]], 
{v, -600, 600}, KinRecursion .. 5, Ha"Recursioa .. 20]1 

ji85F22v (&_, T_] = &Integrate [Bvaluate [ji85F22 [&, v, 'r]] , 
{v, -600, 600}, HinRecursion .. 5, Ha"Recursioa-+ 20]1 

ji85F23v (&_, 'r_] = &Integrate [Bvaluate [j185F23 [&, v, 'r]] , 
{v, -600, 600}, KinRecursion-+5, Ha"Recursioa-+20]; 

ji85F32v [&_, T_] = &Integrate [Bvaluate [j185F32 [&, v, T]] , 
{v, -600, 600}, KiaRecursion .. 5, HazRecursioa-+20]1 

ji85F33v [&_, T_] = &Integrate [Bvaluate [ji85F33 [&, v, 'r]] , 
{v, -600, 600}, KiaRecursion-+5, Ha"Recursioa-+20]1 

ji85F34v (&_, T_] = &Integrate [Bvaluate [j185F34 [&, v, 'r]] , 
{v, -600, 600}, KiaRecursion-+ 5, Ka"Recursion-+ 20) 1 
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Absorption and Dispersion - calculations and plots 

• Calculation of Absorption 

Note that in this section plots are made of the absorption coefficients for transit ions from each groundslate byperfine 
state to each excited hyperfine state. The coefficients are of the form a87FI0fd. ,T j, where the transition in question is in 
Rb-87 from the F=l ground hyperfine state to the F=O excited hyperfine state. The absorption is a function of both 
detuning (d.) and temperature (T). 

• Rb-87 

• Rb-85 

SetOptiona[Plot, PlotRallge-> {0, 4}, 
rr...e .... True, rr...eLabel-> {"Frequency (Ba) •, • Absorption• }, 
Teatstyle .... {PontSiae-+ 16, rontraaily-+ Helvetica}, Pr,...Ticks-+ Aut,..tic]; 

P87Al m Plot (&valuate (a87Pl0v [A, 293))' {A, -8 X 10'' 5 X 10'}' 
Plotstyle-+ {Thickness [0.003J, cxrt(Color[1, 1, o, OJ), DisplayPunction-> Identity) I 

P87A2 • Plot(Bvaluate(a87Pllv[A, 293)), {A, -8x10', SxlO'}, 
PlotStyle .. {Thickness (0.003J, cxrt(Color[O, 1, 1, OJ}, DisplayPunction-+ Identity]; 

P87A3 ~Plot (&valuate (a87P12v [A, 293JJ, {A, -8 x 10', 5 x 101
}, 

PlotStyle-+ {Thickness [0.003), CKIKColor[1, 0, 1, OJ}, DisplayPunction-> Identity); 

P87A'. Plot[Bva1uate[a87P21v[A, 293)), {A, -BxlO', 5x101
}, 

Plotstyle-+ {Thickness[0.003), cxrt(Color[l, o, 0, OJ}, DisplayPunction-+ Identity); 

P87A5:Plot[Bvaluate[a87P22v[A, 293)), {A, -Bx10', 5x109
}, 

Plotstyle-+ {Thickness [0.003J, CKIKColor[O, 1, 0, OJ}, DisplayPunction-+ Identity]; 

P87A6 R Plot [&valuate [a87P23v [A, 293JJ, {A, -8 x 10', 5 x 101
}, 

PlotStyle .... {Thickness[0.003], cxrt(Color[O, 0, 0, 1)}, DisplayPunction-> Identity]; 

Show[P87A1, P87A2, P87A3, P87A,, P87A5, P87A6, 
DiBplayPunction-+ $DiBp1ayPunction, I-geSiae-+ BOO) 

SetOptions[P1ot, PlotRange-+ {0, 8}, 
rra.e -+ True, rra.eLabal-+ {"Frequency {Bz) • , • Absorption•), 
TeatStyle-+ {PontSiae ... 16, rontPaaily-+ Helvetica}, Pr...eTicks-+ Aut..-tic]l 

P85A1 • Plot [Bvaluate[a85P21v[A, 293)), {A, -5 X 10°, 5 X 10'}, 
PlotStyle .. {Thickneu [0.003), CKIKCo1or[1, 1, 0, OJ}, DisplayPunction-+ Identity]; 

P85A2 • Plot [&valuate [a85P22v[A, 293)), {A, -5 x 10', 5 x 10'} , 
PlotStyle-+ {Thickneas[0.003), cxrt(Color[O, 1, 1, OJ}, DisplayPunction-+ Identity); 

P85A3 • Plot[Bvaluate[a85P23v[A, 293)), {A, -5xlO', 5x10° }, 
PlotStyle-+ {Thickness(0.003], CKIKCo1or[1, 0, 1, OJ}, DisplayPunotion ... Identity); 

P85A' R Plot[l:valuate[a85P32v(A, 293)), {A, -5x10', 5x109
}, 

PlotStyle ... {Thickness(0.003), CKIKColor[1, o, o, OJ}, DiaplayPunction ... Identity); 

P85A5 R Plot[l:valuate(a85P33v[A, 293J], {A, - 5x10', 5x10'}, 
PlotStyle .... {Thiokness[0 . 003), CKIKColor(O, 1, o, OJ}, DisplayPunction-+ Identity); 

P85A6 R Plot[Bvaluate[a85P34v[A, 293)), {A, -5x10', 5x10°}, 
PlotStyle-+ {Thickneas(0.003), CKIKColor[O, 0, 0, 1)}, Displayrunction -+ Identity]; 

Show(P85A1, P85A2, P85A3, P85A4, P85A5, P85A6, 
Displayrunction-+ $Displayrunction, I-geSiaa-+ 800) 
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• Calculation of Dispersion 

Note that in this section plots are made of the dispersion coefficients for transitions from each groundstate hyperfine state 
to each excited hyperfine state. The coefficients are of the form p87FIO[A,TI. where the transition in question is in 
Rb-87 from the F=l ground hyperfine state to the F=O excited hyperfine state. The dispersion is a function of both 
detuning (A) and temperature (T). 

• Rl>-87 

• Rl>-85 

Setoptions [Plot, PlotRange .. { -1 x 10· ', 1 x 10·' }, 
Frll88-+True, Fr..-Label-+ {"Frequency {Ba) " , "Absorption" }, 
Textstyle .. {FontSbe .. 16, FontFaaily .. Helvetica}, Fra.eTicks .. Autcaatic)l 

P87D1 c Plot[Bvaluate [/l87F10v[A, 293)), {A, -1.5 x 1010
, 5 x 109

}, 

PlotStyle .. {Thickness[0.003), CKYitColor[1, 1, 0, OJ}, DisplayFunction-+ Identity]! 

P87D2 • Plot (89aluate (/l87Fllv [A, 293)) , {A, -1 . 5 x 1010
, 5 X 109

}, 

Plotstyle .. {Thickness [0.003), CHrltColor[O, 1, 1, OJ}, DisplayFunction-+ Identity] I 

P87D3 • Plot [&valuate [/l87F12v [A, 293]) , {A, -1.5 x 1010
, 5 x 109

}, 

PlotStyle .. {Thickness [0. 003) , CMYitColor [ 1, 0, 1, OJ } , DisplayFunction .. Identity] I 

P87D4•Plot[8Yaluete[/l87F21v[A, 293]), {A, -1 . 5x1010
, 5x109

}, 

PlotStyle .. {Thickness[0.003), CMYKColor[1, 0, 0, OJ}, DisplayFunotion-+ Identity] I 

P87D5 = Plot (89aluate(/l87F22v [A, 293)), {A, -1.5 X 1010
, 5 X 109

}, 

Plotstrle .. {Thiokness[0.003), CKYKColor[O, 1, 0, OJ}, DisplayFunotion -+ Identity] I 

P87D6 • Plot [B•aluate [/l87F23v [A, 293)), {A, - 1.5 x 1010
, 5 x 10'}, 

Plotstyle .. {Thiokness[0.003), CKYKColor[O, 0, 0, 1)}, DisplayFunction .. Identity] I 

Shav[P87D1, P87D2, P87D3, P87Dt, P87D5, P87D6, 
DisplayFunction .. $DiaplayFunotion, IaageShe -+ 800) 

SetOptions [Plot, PlotRange-+ Aut.,... tic, 
Fr....,-+ True, FraaeLabel-+ { " Frequency (Ba) • , • Absorption"}, 
TextStyle-+ {FontShe .. 16, FontFaaily-+ Bel•etioa}, Fr....,Tioks-+ Aut.,.,.tio]l 

P85D1 • Plot[89aluate[/l85F21v[A, 293]], {A, - 7.5x10°, 5x10°}, 
PlotStyle .. {Thickness [0.003], CKYKColor[l, 1, 0, OJ), DisplayFunotion-+ Identity] I 

P85D2 • Plot(S..aluate(/l85F22v[A, 293)], {A, -7.5 X 10°, 5 X 109
}, 

Plotstyle .. {Thiokness[0 . 003], CMYitColor[O, 1, 1, OJ}, DisplayFunotion-+ Identity) I 

P85D3 c Plot (8valuate(/l85F23v [A, 293)], {A, - 7.5 X 10° , 5 X 109
}, 

PlotStyle-+ {Tbickness[0.003), CKYKColor[l, 0, 1, OJ}, DisplayFunotion .. Identity] I 

P85D( • Plot (8valuate(ji85F32v [A, 293)), {A, - 7.5 X 10°, 5 X 109
}, 

Plotstrle-+ {Thiokness[0.003), CMYKColor[1, 0, 0, OJ}, DisplayFunotion ... Identity] I 

P85D5 • Plot[Bvaluate[/l85F33v[A, 293]), {A, - 7.5x109
, 5x109

} , 

PlotStyle -+ {Thickness [0 . 003), CKYKColor[O, 1, 0, OJ}, DiaplayFunotion-+ Identity] I 

P85D6 • Plot[avaluate[/l85F3&v[A, 293)], {A, - 7 . 5 x 10', 5 x 10°}, 
PlotStyle .. {Thiokness[0.003), CHrltColor[O, 0, 0 , 1)}, DisplayPunotion-+ Identity) I 

8how[P85D1, P85D2, P85D3, P85D4, P85D5, P85D6, 
DisplayFunotion-+ $DisplayFunotion, IaageSiae-+ 800) 
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• Plots of Absorption and Dispersion Profiles Against Probe Beam Detuning 

Here the absorption and dispersion profiles are plotted. Note that the curves for the two isotopes are plotted on the same 
axes and the zero of the frequency scale is chosen to be the position we would expect the transition to be without any 
hypertine structure. The curves are plotted as functions of: detuning (Hz) · A; temperature (K) · T; cell length (in m) -
Lc. 

• Rb-85 and Rb-87 

AbsorptionProfileRb(A_, T_, Lc_] = 
- CS..l-t.(a8SP2l'f' (&,'!) )+h"al-t.(.SSPJh (&,!')I •h'•l-t•(ct1J5P2l'f'(&,'!l I 

.-..t .. te(a85Uh (A , '!) 1 thal-t.e J••!!lrlS.(&,'rJJ•Snl-te(al!irl••l&,'!ll 
+hel-te(a llPlOY (& , '1')) • h'•l-t.e(a•7r11• (&,'I')) tlrYalu.at•(•81F12'r (A,'I') I 

e +s...l-te(a tlF21•(& , t') )+h"•l-t•Ja8lF22Y (&,'!)) •h"•l-te(a87P:U•f&,'!))) llLC i 

SetOptions(Plot, PlotRange-t (0.5, l.l5}, P'rame-tTrua, 
FrameLabel-+ { "P'requency(Hz) ", "Transmission Signal"}, 
TextStyle., {P'ontSi:ze-+ 16, P'ontP'amily-+ Times}, P'rameTicks., Automatic]; 

P8 c Plot(Bva1uate (AbsorptionProfileRb(A, l93, 0 .08]], {A, -4 >< 10', 6 >< 10'}, Plot8ty1e .. 
{Thickness(0.003], CHn:Color(O, 0, 1, 0.1]}, Disp1ayP'unction., Identity]; 

P10 = Plot(Bvaluate(AbsorptionProfileRb(A, 292, 0.08]], {A, -4 >< 10', 6 >< 10'}, 
PlotSty1e., {Thickness [0.003], CH"fKColor(l, 0, 0, OJ}, Disp1ayP'unction., Identity]; 

Pll = Plot(Bvaluate (AbsorptionProfileRb(A, l94, 0.08]], {A, -4 >< 10', 6 >< 10'}, 
PlotSty1a .. {Thickness [0.003], CH"fKColor[O, 0, 0, 1]}, DisplayP'unction-+ Identity]; 

DispersionProfileRb85(A_, T_, Lc_] = 
- c.-..1-t• r-asrtl•f&, '!J 1 •&Y•l-t. r,.sr.az.r (4, 2') 1 • ..._.l_t.e 1~,.,., f& , YJ 1 

+h'a.l-te !18SP32Y (&,2'1 1 +in'a.l-te h185PJ.lY (&,2'1 1 +h'al-te(of85PlfY (&,YI J 
+SYal••tefWPlO..(&,~I J .... d~Yt:e (of81PllY (& , '!'1 l+h'a1-te(J87P12Y (& , 2') I 

e +s-1-t.e (J87P21Y(4,~IJ +h•1-te(J87F22Y {& , '!'1)+ .... 1-te ( .. 87PJSY(A,t')))JCLo J 

SetOptions(Plot, PlotRange-+ {0.5, 1.25}, P'rame-+True, 
P'rameLabe1-+ { "Prequency(Hz) •, "Tranlllllission Signal"}, 
TeztStyle -t {P'ontSise -t 16, P'ontP'ami.ly -t Times}, P'rame%icka-+ Automatic]; 

P9 • Plot(Bva1uate(DispersionProfileRb85(A, l93, 0.08]], (A, -4 >< 10', 6 >< 10'), 
PlotSty1e., {Thickness [0.003], CH"fKColor[O, 1, 0, 0.1]}, DisplayP'unction., Identity]; 

Shov ( PS, P9, P10, Pll, DisplayP'unction ., $DisplayP'unction, ImageBize ., 800] 
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Absorption and Data for Export 

The code below writes a table of the absorption coefficients for each of the 12 hyperfine trasnitions on the D2 1ine. The 
detuning is written as being in GHz. A CSV file is then exported to the directory set at the beginning of the code and 
shown below, to change this directory see§ Mathematica setup. 

(•Delta:=Table(SxdxlO-',{d, - 800,1000}] //N 
AbsCo8534::Table(Abs(Bvaluate[a85F34v(5xl06 xd,293]]],{d,-800,1000}) 

AbsCo8533::Table(Abs(Bvaluate(a85F33v(5xl06 xd,293]]],{d,-800,1000}] //R 
AbsCo8532:=Tab1e(Abs(Bvaluate(a85F32v[5x106 xd,293]]],{d,-800,1000}] //R 

AbsCo8523: aTab1e(Abs[Bva1uate(a85F23v(5x106 xd,293]]],{d,-800,1000}] //R 
AbsCo8522: aTab1e(Abs(Bva1uate(a85F22v[5x106 xd,293]]],{d, - 800,1000}] //R 

AbsCo8521: : Tab1e(Abs(Bva1uate[a85F21v(5x106 xd,293]]],{d,-800,1000}] //N 
AbsCo8723: =Tab1e(Abs(Bva1uate(a87F23v(5x106 xd,293]]],{d,-800,1000}] //R 

AbsCo8722:=Tab1e(Abs(Bvaluate[a87F22v(5x106 xd,293]]],{d, - 800,1000}] //R 
AbsCo8721: aTable(Abs(Bva1uate(a87F21v(5x106 xd,293]]],{d, - 800,1000}] //N 

AbsCo8712:=Tab1e(Abs[Bva1uate(a87F12v[5x10' xd,293]]],{d, - 800,1000}] //N 
AbsCo8711 : = 

Table(Abs(Bvaluate(a87F11v[5x10'xd,293]]],{d,-800,1000}] //R 
AbsCo8710:cTab1e(Abs[Bva1uate[a87FlOv(5x106 xd,293]]], 

{d, - 800 , 1000}] /IN•) 

(•AbsCoeff: = 
Transpose(Partition(Join[Delta,AbsCo8534,AbsCo8533,AbsCo8532,AbsCo8523,AbsCo8522, 

AbsCo8521 , AbsCo8723,AbsCo8722,AbsCo8721,AbsCo8712,AbsCo8711,AbsCo8710],1801]]*) 

(•Bxport[ "AbsCoeff.csv" ,AbsCoeff]•) 

(•AbsPro£8:= 
Tab1e(Abs(Bva1uate(AbsorptionProfi1eRb[5x10'xd,293,0.08]]],{d, - 800,1000}] 
AbsPro£5::Table(Abs(Bva1uate(AbsorptionProfi1eRb(5x10'xd,293,0.05]]], 

{d, -800,1000} l *) 

(•AbsProfile:=Transpose(Partition(Join[De1ta,AbsPro£5,AbsProf8],1801]]*) 

(•Bxport["AbsProfi1e . csv", AbsProfile] • ) 

(•Tab1eFora(Partition(Join[De1ta,AbsProf5,AbsProf8],1801]]•) 



Appendix F 

Saw-Tooth Wave Generating 

Circuit 

The circuit shown on the following page was used to produce the phase-locked 

saw-tooth signals used to scan the ECDL and AOM to produce the double­

scan EIT and EIA traces presented in Fig. 4.16 on page 96 , and in §. 6.3 on 

page 128. 
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Figure F .1: Circuit diagram of phase locked saw-tooth wave generating 

circuit. The circuit was designed and manufactured by Tom Jackson in the 

departmental Electronics Design and Development Workshop. 
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Appendix G 

Principles of Lock-In Detection 

Phase Detectors 

Lock-in amplifiers are based upon phase detectors. A phase detector comprises 

two basic sections, a linear amplifier and a low-pass filter. The gain of the linear 

amplifier can be reversed using a square-wave reference signal which controls a 

FET switch, see Fig. G .1. 

I ' Reference 
Inputoo----------------~ 

Figure G.l: Phase detector circuit diagram. Rand C make up the low-pass 

filter, a square-wave reference signal controls the FET switch and the two R1 

resistors ensure unity gain on the amplifier. 

In the case that a signal V..ig cos ( ( w + ~w) t + ¢) is applied to a phase detector, 

with a square wave reference signal with period 27r / w, and zero-crossings at 

n(21rjw), (where n is an integer), and the low-pass filter on the output of the 

phase detector has a time constant, 

271" 
T=RC~-, 

w 
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(G.l) 
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then the output of the phase detector is, 

1

1r/W 
Vout = (Vsig cos ( (w + ~w)t + </>)) 

0 

- (Vsig cos ( (w + ~w )t + </>)) 1
2
1r/w , 

tr/w 
(G.2) 

- 2~~~ ( t cos ((w + ~)t + ~)dt 

-h': cos ((w + ~w)t + ~)dt) , (G.3) 

= - Vsig . ~ / (3 sin ( ~w 1r + <t>) + sin <t>) . ( G .4) 
27r 1 + w w w 

When ~w =0, 
-2\/;;ig . 

Vout = -- · sm¢ . 
7r 

(G.5) 

Thus the output of the phase detector is proportional to the sine of the phase 

between the signal and the reference wave and to the amplitude of the signal. 

In the case that ~w < 1/r, the output of the phase detector will be largely un­

modified, but in the case that ~w > 1/r, the signal will be heavily attenuated. 

Principles of Lock-in Detection 

In the case of lock-in detection a weak-signal is modulated at a frequency, Vmod· 

The output of the experiment, the weak signal on a noisy background, is then 

amplified and phase detected. Note that the frequency of modulation must be 

much higher than the frequency of any features in the scan which provides the 

signal. The phase difference between the reference and the signal should be set 

to maximise the output signal. In practice this is achieved by minimizing the 

output signal, sin¢= 0, and then offsetting the phase by 1rj2, sin¢= ±1. The 

low pass filter should be set to optimize the signal-to-noise ratio on the output, 

whilst ensuring that it is not set to such a narrow bandwidth that it cannot 

respond fast enough to changes in the signal. 

There are two methods of modulating the signal for lock-in detection, one lead­

ing to an output signal proportional to the weak signal being phase detected 

and the second producing an output signal proportional to the derivative of the 

signal being phase detected. 
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A small sinusoidal modulation of the frequency leads to an output proportional 

to the derivative of the input. This is due to the fact that the modulation moves 

the frequency a small amount relative to the size of the measured features. Small 

sinusoidal modulation is often used for laser locking techniques as it provides a 

derivative of the input signal at the output. 

Large square-wave modulation produces an output signal proportional to the 

input signal. In this case the principle is that the square wave has an amplitude 

large enough to move the signal away from the area of interest, to a portion 

of the signal that is at a constant background level. Hence the output signal, 

in the case of large square-wave modulation, is proportional to the signal of 

interest minus the constant background. 



Appendix H 

Intensity and Power of Gaussian 

Beams 

H.l Peak Intensity 

In order to determine the peak intensity of a beam from the total power in that 

beam, consider a elliptical Gaussian beam with an intensity profile given by, 

where, a is the long axis and b is the short axis. 

Make the substitutions 

X 
u=­

a 

du= du 
a 

The total power in the beam, P, is given by, 

00 00 

p = I I I dx dy' 
0 0 
00 00 

y 
v = b' 

d = dv 
b . 

I I 10 a b e-(u
2
+v

2
)du dv . 

0 0 

(H.l) 

(H.2) 

(H.3) 

(H.4) 

(H.5) 

In order to integrate equation H.5 , make the substitution r 2 = u 2 + v 2 and 

switch to circular co-ordinates. 
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Thus, 

p 

211" 00 

lo a b J J e-r
2 
r dr dO , 

0 0 

2nl0ab[-c~T. 

Hence the peak intensity is related to the power within the beam by, 

H.2 

p 
Io =--b. 

1fa 

Mean Intensity 

186 

(H.6) 

(H.7) 

(H.8) 

In some circumstances it will be useful to consider a mean intensity, I, as 

opposed to the peak intensity, !0 . As Gaussian beams have an infinite extent 

obviously some limit on the extent of the beam will have to be considered. 

Suppose that the mean is calculated such that a fraction Z of the total power 

is taken into account, this will give an approximation to the mean, I, of lz. 

Hence, 

lz 
Pz 

7r Xz Yz 
(H.9) 

For the purposes of this calculation consider a circularly symmetric beam such 

that, a= b = r0 , and Xz = Yz = rz. 

Then, 

Pz 

211" rz 

lo J J e-(r/ro)
2 
r dr dO , 

0 0 

where rz is the radius encompassing the power Pz. 

It follows that, 

Pz 

(H.lO) 

(H.ll) 

(H.l2) 
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But Pz = Z P, 

Pz 1rr5 Io · Z , 

z 1 - e-(rz/ro)
2 

187 

(H.13) 

(H.14) 

Thus it follows that the beam radius encompassing a fraction, Z, of the total 

beam power is given by, 

2 2 I 1 I rz = r0 In-- . 
1-Z 

(H.15) 

Now substituting equation H.15 back into equation H.9, allows the mean inten­

sity to be determined in terms of either the peak intensity or the total power. 

lz 
ZP 

(H.16) ==} 

1rr~ In l1~z I ' 
lz 

Z Io 
(H.17) = 

In l1~z I 

Thus the mean intensity depends only on the peak intensity and the fraction of 

total power in the beam over which the mean is to be calculated. 
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