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Abstract 

Microtubules (MTs) play important roles in various cellular processes including cell 

division, organelle movement and the determination of cellular morphology. The 

dynamics and organization of microtubules are regulated by microtubule 

associated proteins (MAPs). 

MAP65 bundles microtubules and forms crossbridges between microtubules in 

vitro. MAP65 belongs to a group of phylogenetically divergent proteins which 

includes yeast (S. cerevisiae) Ase1, insect (0. melanogaster) FEO, mammalian (H. 

sapiens) PRC1, and worm (C. elegans) SPD-1. All members of this group 

concentrate in the spindle midzone during anaphase and telophase and are 

important for successful cytokinesis. A gene family encoding nine MAP65-Iike 

proteins has been identified in Arabidopsis thaliana. These proteins have a 

sequence identity from 28% to 79%, suggesting that each protein might play a 

different role in microtubule organization. This study focuses on the MAP65-1 sub­

group of MAP-65 proteins. Members of this sub-group can bind and bundle 

microtubules without affecting their dynamics in vitro and they co-localize with 

subsets of interphase microtubules, the preprophase band, the midzone of the 

anaphase spindle and the phragmoplast. Accumulation of MAP65-1 proteins in the 

anaphase spindle midzone suggests that it might crossbridge anti-parallel 

microtubules. However, the molecular mechanism of the MAP65-1 function is still 

unclear. 

To study the dynamics of the interaction between MAP65-1 and microtubules in 

vivo, GFP: MAP65-1 chimeras were constructed and expressed in tobacco BY2 

and A. thaliana plants. The localization of GFP was then analysed through the cell 

cycle and in different plant tissues. FRAP (fluorescence recovery after 

photobleaching) was used to study the MAP65-1 turnover. The data revealed that 
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MAP65 has a higher turnover than tubulin and that it can associate/dissociate 

randomly along microtubules. The expression of GFP: MAP65-1 in A. thaliana 

showed that MAP65-1 decorates microtubules in most of the tissues. These results 

suggest that the properties of MAP65-1 make it ideal for the maintenance of spatial 

organisation of dynamic microtubules via cross-bridging. 

The location of the microtubule binding domain of MAP65-1 was mapped using 

truncated fragments and mutants. The results of these experiments demonstrate 

that the microtubule-binding domain lies in the C-terminal region of AtMAP65-1, 

whereas the dimerisation domain lies in the N-terminal region. However, a single 

amino acid substitution within the AtMAP65-1 microtubule binding domain (A409D 

and A420V) can significantly decrease the microtubule binding ability of AtMAP65-

1 in vitro. 

The cell cycle-specific binding of MAP65-1 to microtubules suggests that a specific 

mechanism controls this binding. Two possibilities were examined: (i) control of the 

protein level regulated through the cell cycle by specific degradation utilising the 

Destruction box and (ii) cell cycle-specific phosphorylation. Mutation of the 

Destruction box motif did not affect cell division or microtubule organization during 

the cell cycle, nor did it affect plant development. This suggests that MAP65-1 is 

not regulated in this way. However, MAP65-1 is hyperphosphorylated during 

prophase/metaphase and several phosphorylation motifs are predicted in the 

AtMAP65-1 protein. In vivo and in vitro experiments demonstrated that AtMAP65-1 

is regulated by phosphorylation/dephosphorylation during the cell cycle by several 

distinct pathways including CDK and MAPK. Interestingly, over-expression of the 

non-phosphorylatable form of MAP65-1 induced excessive bundling of 

microtubules during mitosis, increased the number of pole-to-pole microtubule 

bundles in the mitotic spindle and caused a delay in mitosis. Therefore, precise 

control of microtubule bundling by MAP65-1 is essential for normal cell division. 
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1 .1 Cytoskeleton 

Chapter1 

Introduction 

Chapter 1 Introduction 

The plant cytoskeleton is a dynamic network composed of microtubules (MTs) 

and actin filaments. It plays important parts in cell division, morphogenesis, 

intracellular transport, signal transduction, and cell wall formation. 

1.2 Microtubules (MTs) 

Microtubules (MTs) play important roles in various cellular processes including 

mitosis, organelle movements and the determination of cellular morphology 

(Hyams and Lloyd, 1993). Microtubules are composed of a heterodimer of a­

and J3-tubulin subunits and the structure of the tubulins shows a high degree of 

conservation across phylogeny (Burns and Surridge, 1994). a- and J3-tubulin 

heterodimers are associated head-to-tail to form a protofilament. In general 13 

protofilaments associate laterally to form a hollow tube, a microtubule, with an 

external diameter of 25 nm. Plant microtubules undergo dynamic reorganization 

through the cell cycle and in response to internal and external stimuli (Nick, 1998, 

Hussey, 2004). Plant microtubules also show different responses to 

anti-microtubule agents compared to mammalian microtubules. For instance, 

plant microtubules are more resistant to breakdown by colchicine. Also, 

anti-mitotic herbicides, dinitroaniline and the phosphorothioamidate have been 
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shown to bind to purified plant tubulin and inhibit plant microtubule assembly in 

vitro, but do not bind to the mammalian tubulins (Anthony and Hussey, 1999a). 

However, the extensive use of dinitroaniline herbicides has caused serious 

agriculture problems. Dinitroaniline and phosphorothioamidate resistant plants 

have been found to exist in natural surroundings (Anthony et a/., 1998; 

Yamamoto eta/., 1998; Zeng and Baird, 1999). Interestingly, this resistance has 

been shown to be the result of a single amino acid substitution in an a-tubulin: 

either Thr239 to lle239 or Met268 to Thr268 (Anthony and Hussey, 1999b). The 

threonine at 239 in a tubulin is positioned at the end of the long central helix 

close to the site of dimer-dimer interaction. The residue at 268, which is a 

methionine in plants and algae, and a proline in metazoans, is buried in the 

centre of the a-tubulin. These data suggest that each mutation causes herbicidal 

resistance through different mechanisms. Also, these mechanisms may involve 

increasing the stability of microtubules against the depolymerizing effects of the 

herbicide, changing the conformation of the a/[3-tubulin dimer so that herbicide 

binding is less effective, or a combination of the two (Hussey eta/., 2004). 

Another two Arabidopsis tubulin mutants, lefty1 and lefty2, show the phenotype 

of left twisted roots and shoots, resulting from a single amino acid substitution at 

the interface of the a and [3 tubulin subunits in either a-tubulin 6 (TUA6) or 

a-tubulin 4 (TUA4) (Hashimoto, 2002; Thitamadee et a/., 2002). Right-handed 

helical cortical microtubule organization in the epidermal cells at the root 

elongation zone has also been shown in these mutants. However, abnormal 

2 
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microtubule organization could not be seen in the mitotic microtubule arrays 

(Thitamadee eta/., 2002). The lefty1/lefty2 double mutant showed helical growth 

in hypocotyls and radial cell expansion in the root elongation zone. The cortical 

microtubules in the lefty double mutant were more fragmented and random in 

orientation. The trichome in the lefty double mutant was less branched than 

wild type (Tatsuya et a/., 2004). The analysis of lefty mutants implies that 

microtubule organization is essential for anisotropic growth in elongating cells. 

1.2.1 Dynamic instability of microtubules 

Individual microtubules have been observed to undergo alternating periods of 

growth and shrinkage along their lengths, a process known as dynamic 

instability (Mitchison and Kirschner, 1984; Horio and Hotani, 1986). 

Microinjection of fluorescent tubulin or expression of MAP4-GFP chimeras in 

plant cells, coupled with measuring fluorescence recovery after photobleaching 

(FRAP) has shown that cortical microtubules demonstrate dynamic instability 

(Hush et a/., 1994; Yuan et a/., 1994; Marc et a/., 1998). Dynamic instability is 

characterized by four parameters: growth rate, shrinkage rate, frequency of 

transition from growth to shrinkage (catastrophe frequency), and frequency of 

transition from shrinkage to growth (rescue frequency) (Mitchison eta/., 1984). 

By altering dynamic instability parameters, cells can rearrange the microtubular 

network and quickly respond to stimuli, regulate cellular morphogenesis, and 

control cell division. Through microinjection studies, dynamic instability of 

microtubules was observed in higher plants (Zhang eta/., 1990). The interphase 

3 
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plant microtubules grow at 5 J.lmlmin, shrink at 20 J.tm/min, and display 

catastrophe and rescue frequencies of 0.02 and 0.08 events/sec respectively, 

exhibiting faster turnover than the mammalian microtubules (Dhonuckshe eta/., 

2003). 

The movement by loss of tubulin dimers from the minus end and addition at the 

plus end is called tread milling (Margolis and Wilson, 1978; Shaw et a/., 2003). 

Treadmilling motility causes microtubule migration and plays a key role in the 

organization of the cortical array (Shaw eta/., 2003) 

Microtubules are polar structures; the favoured assembly end is called the (+) 

end and the end that assembles more slowly is the (-) end. Both a- and 

13-tubulin bind GTP (guanosine 5'-triphosphate) to regulate polymerization. The 

a- tubulin subunit binds one molecule of GTP and does not hydrolyze it, whereas 

the 13- tubulin subunit binds GTP and hydrolyzes it to GOP during or shortly after 

polymerization (Burns and Surridge, 1994). This GTP hydrolysis weakens the 

binding affinity of tubulin for adjacent molecules, thereby favouring 

depolymerization and resulting in the dynamic behaviour of microtubules. 

1.2.2 Microtubule organizing centre (MTOC) 

Most eukaryotic cells possess a specialized organelle, the 

microtubule-organization center (MTOC), which controls microtubule assembly 

and spatial organization. A typical MTOC in animal and algal cells is the 
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centrosome, whereas in fungi the spindle pole body (SPB) plays this role. The 

centrosome is a compound structure composed of a centriole pair embedded in 

an amorphous matrix with astral microtubule radiating from it. The pericentriolar 

material is important in the nucleation of microtubules and in spindle pole 

formation in mitosis. Microtubules always have their minus ends attached at the 

centrosome and their plus ends directed outwards (Heidemann et a/., 1980). 

y-tubulin localization is restricted to the minus ends of microtubules at the 

MTOCs in eukaryotic cells, where it is thought to play an essential role in 

microtubule nucleation (Oakley et a/., 2000). The y-tubulin ring complex 

(y-TuRCs) initiates the nucleation of microtubules and recruits tubulins from the 

cytoplasm to the MTOC (Shiebel eta/, 2000). The smallest complex unit capable 

of microtubule nucleation, the y-tubulin small complex (y-TuSC), was identified in 

yeast and in Drosophila (Knop and Schiebel, 1997; Oegema et at., 1999; 

Gunawardane eta/., 2000). The y-TuSC contains y-tubulin as a nucleator and 

two additional proteins, spindle pole body components Spc98p and Spc97p or 

their homologues. These proteins are essential for the nucleation activity of the 

complex. Spc98p interacts with y-tubulin, and Spc97p interacts with Spc98p. 

Therefore, Spc98p or its homologue can be considered as a marker for 

microtubule nucleation complexes (Martinet at., 1998; Tassin eta/., 1998) 

Unlike other eukaryotic cells, plant cells do not have centrosome-like organelles 

to nucleate microtubules. It is believed that cortical microtubules are nucleated 

at multiple sites dispersed in the cortical layer of cytoplasm (Chan et at., 2003; 
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Dhonukshe and Gadella, 2003; Shaw et a/., 2003), whereas the 

nucleus-associated microtubules may be nucleated at the nuclear surface 

(Stoppin et a/., 1994; Vantard et a/., 1990). However, the mechanism of 

microtubule nucleation in plant cells is still unclear. Therefore, several proteins 

have been used as a marker to study microtubule nucleation in plants (Panteris 

eta/., 2000; Erhardt eta/., 2002; Chan eta/., 2003). 

Plant y-tubulin mainly localizes to the cytoplasm during interphase in the cell 

cycle (Erhardt eta/., 2002), but cortical microtubule array localization has also 

been observed (Panteris eta/., 2000). In dividing cells, y-tubulin localizes at a 

subset of mitotic microtubule arrays and the cytokinetic phragmoplast 

(Dibbayawan et a/., 2001 ). The other marker, SPC98 orthologues have been 

cloned and characterized in rice (Oryza sativa) and Arabidopsis thaliana 

(Erhardt eta/., 2002). AtSpc98p-GFP colocalizes with y-tubulin at the isolated 

tobacco BY-2 nuclear surface and at the cell cortex. Microtubule nucleation at 

the nuclear surface can be inhibited by Spc98p and y-tubulin antibodies. This 

suggests that the Spc98p/y-tubulin-containing complex is required for 

microtubule nucleation in plant cells. However, Spc98p does not co-distribute 

with y-tubulin along microtubule arrays (Erhardt eta/., 2002). This indicates that 

the y-tubulin associated along the microtubules might have an alternative 

function (Erhardt eta/., 2002). Another marker, end-binding protein 1 (EB1 ), is a 

member of a conserved family of microtubule-associated proteins, known to bind 

the plus ends of microtubules and regulate microtubule dynamics (Rogers eta/. 
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2002; Tirnauer et a/. 2002). Arabidopsis AtEB1 a-GFP has been found to 

associate with and dissociate from the cortex (Chan eta/., 2003). This suggests 

that microtubules in the cortical array are formed by nucleation sites dispersed 

along the plasma membrane. 

Interestingly, a "microtubule-dependent microtubule nucleation" model 

(Wasteneys et a/. 1989), in which microtubules themselves participate in the 

deployment of their nucleation sites, has been discovered in plant cells recently 

(Murata et a/. 2005). It has been shown that microtubules are nucleated as 

branches on the existent cortical microtubules in plant cells. y-tubulin locates at 

the branch points, and microtubule nucleation in the cell-free system is 

prevented by inhibiting y-tubulin function with a specific antibody. Therefore, it is 

believed that microtubules nucleated by y-tubulin recruited from the cytosol to 

the sides of previous formed microtubules (Murata et a/., 2005). However, it is 

still unclear if the same microtubule nucleation mechanism can be applied in the 

other three microtubule arrays in plant cells. 

1.2.3 The microtubule arrays 

Although the sequences of a and J3 tubulin are highly conserved, the 

organization of microtubules is different in animal and plant cells. In higher 

plants, microtubules form four distinct arrays through the cell cycle: the 

interphase cortical array, the preprophase band (PPB), the mitotic spindle, and 

the phragmoplast (Figure 1.1) (Goddard eta/., 1994). Besides the spindle, the 
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Figure 1-1. The special features of cytokinesis in a higher plant cell. The division plane 
is established before M phase by a band of microtubules and actin filaments (the preprophase 
band) at the cell cortex. At the beginning of telophase, after the chromosomes have 
segregated, a new cell wall starts to assemble inside the cell at the equator of the old 
spindle. The overlap microtubules of the mitotic spindle remaining at telophase form the 
phragmoplast and guide vesicles derived from the Golgi apparatus toward the center of the 
spindle. The vesicles are filled with cell-wall material and fuse to form the growing new cell 
wall, which grows outward to reach the plasma membrane and original cell wall at the site 
determined earlier by the preprophase band. The plasma membrane and the membrane 
surrounding the new cell wall fuse, completely separating the two daughter cells. 
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other arrays are absent in animal cells. 

1.2.3.1 Interphase cortical microtubule array 

Much research has been done into understanding the function of cortical 

microtubules in plant cells. In the 1960s, Paul Green found that 

colchicine-sensitive proteins of spindle fibre nature would be active in the control 

of wall texture and cell form (Green 1962). These "spindle fibres" were identified 

later as microtubules. In 1963, Ledbetter and Porter described for the first time 

plasma membrane-associated microtubules in transmission electron 

micrographs of plant cells. In tangential sections that cut through wall and 

cytoplasm, the microtubules showed similar orientation with the fibrous wall 

material and it was suggested the "tubules" were strong contenders for the role 

of orienting plant cell wall microfibrils (Ledbetter and Porter 1963). Since then, 

the relationship between cortical microtubules and cellulose microfibril 

orientation has been widely studied and several hypotheses have been 

established. Currently, the most accepted model is the "cellulose synthase 

constraint model" summarized by Giddlings and Staehelin (Giddings & 

Staehelin, 1991 ). According to this theory, microtubules, through their close 

interaction with the plasma membrane, form barriers that constrain the paths of 

cellulose synthase complexes as they deposit cellulose chains in the cell wall. 

However, there are still some doubts about this model. For instance, the close 

relationship between microtubule orientation and the direction of cellulose 

deposition is not always maintained, especially in the transition from primary to 
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secondary wall formation. Nor is it certain that parallelism exists at all in 

helicoidal wall-forming cells (Giddlings and Staehelin 1991; Wasteneys 2004). 

Two temperature-sensitive mutants, rsw-1 and mor1-1, have been used to test 

the cellulose synthase constraint model. The rsw1 mutant of Arabidopsis 

thaliana is mutated in a gene encoding a cellulose synthase catalytic subunit. At 

temperatures above 28°C, cellulose levels are diminished, resulting in 

prominent root swelling (Arioli eta/. 1999). The mor1-1 mutant, identified in a 

screen for aberrant microtubule organization in leaf epidermal cells, is an allele 

of the large microtubule-associated protein of the MAP215 class (Whittington et 

a/. 2001). Like rsw1-1, mor1-1 mutants also undergo a characteristic root tip 

swelling at temperatures above 28°C. In the rsw1-1 mutant, and in wild-type 

roots swelling after treatment with the cellulose synthesis inhibitor 

dichlorobienzonitril (DCB), microfibrils quickly lose parallel order, and eventually 

lose fibrillar appearance even though microtubules are clearly not the primary 

target (Sugimoto eta/. 2001). Moreover, microtubule disruption in the mor1-1 

mutant or after treatment with the microtubule depolymerizing agent oryzalin 

generates radial swelling with no appreciable loss of parallel microfibril 

deposition (Sugimoto et a/. 2003). These results suggest that microfibril 

orientation is correlated with levels of cellulose synthesis and that microtubule 

disorganization or complete depolymerization does not alter the ability for 

cellulose microfibrils to be deposited in parallel order. From the existing 

experimental results, Wasteneys proposes a new hypothesis, stating that 

cortical microtubules are required for the construction of microfibrils of sufficient 
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length to maintain anisotropic mechanical properties of rapidly expanding cell 

walls. The key concept behind the hypothesis is that short microfibrils will allow 

radial expansion through end-to-end separation in the lateral direction, whereas 

microfibrils of essentially unlimited length provide no scope for lateral separation 

and will thus only allow longitudinal wall expansion (Wastneys 2004). 

1.2.3.2 Preprophase band (PPB) 

The preprophase band (PPB) is formed at the end of the S phase and developed 

through the G2 phase. The band becomes thinner as the cell progresses to 

prophase, and it disappears completely before metaphase outset. Observation 

of MAP4-GFP localization during cell cycle progression allowed identification of 

four stages in PPB development: PPB initiation, PPB narrowing, PPB maturation, 

and PPB breakdown (Dhonukshe eta/., 2003). How the microtubules of the PPB 

function is still unclear; one idea is that the coincident localization of the PPB and 

the phragmoplast suggest that the PPB predicts the future cell division plane 

(Mineyuki eta/., 1990; Mineyuki 1999). However, not every somatic cell has a 

PPB, e.g. endosperm cells lack PPB but still form spindles (Smirnova and Bajer 

1994). PPB removed cells can still form spindles, but its cell plate is disoriented 

(Mineyuki eta/., 1999; Murata and Wada 1991). It has also been shown that 

when microtubules of the PPB were depolymerized prior to PPB narrowing, the 

phragmoplast can still accurately target to and contact the former PPB site 

(Marcus eta/., 2005). These data suggest that there might be other factors at the 

PPB sites during the progression of prophase that mark the future sites of the 
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ph rag mop last. 

Interestingly, an actin depleted zone in the midzone of the spindles during 

prometaphase to anaphase is believed to participate in the demarcation of the 

division site at the final stage of cell division in higher plants (Hoshino et a/., 

2003). The PPB, the actin-depleted zone, and the phragmopalst coincidently 

locate in the cell division plane, and hence are believed to play an important role 

in cytokinesis. However, there are a variety of molecules that have been 

detected at the PPB site, such as cyclin-dependent kinases (Stals et a/., 1997), 

y-tubulin (Liu et a/., 1993), some kinases and phosphatases (Mineyuki et 

a/.,1999; Weingartner et a/., 1992), MAF1 (Patel et a/., 2004), kinesin-like 

proteins (Asada et a/., 1997; Bowser and Reddy, 1997), and structural 

microtubule associated proteins such as TANGLED 1 (Smith et a/., 2001 ), 

AtMAP65-3 (Muller eta/., 2004), and MOR1 (Twell eta/., 2002). Their roles in 

cytokinesis still need to be clarified. 

1.2.3.3 Spindle 

Chromosome segregation is mediated by the spindle. Microtubules in the 

spindle have uniform polarity; the minus ends are at or near the poles and the 

plus ends extend toward the chromosomes (Heidemann and Mcintosh, 1980). 

The spindle consists of two sets of microtubules: kinetochore microtubules 

(kMTs), which extend from the spindle pole to the chromosomes (Rieder 1981 ); 

and the interpolar microtubules, which associate with polar microtubules of the 
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opposite hemisphere (Mastronarde eta/., 1993). 

The microtubule-based mitotic spindle is highly dynamic (Mitchison eta/., 1986). 

During metaphase, kMTs display an additional treadmilling-like activity in which 

plus-ends grow at kinetochores while minus-ends disassemble at poles, 

achieving a balance that maintains a constant spindle length. (Mitchison eta/., 

1986). Microtubule flux is a term describing the poleward movement of 

microtubules that is coupled to minus-end disassembly at the spindle pole 

(Maddox eta/., 2003). Flux is an evolutionarily conserved feature of all metazoan 

cells (Khodjakov et a/., 2005). The direct observation of flux suggested that 

chromosome movements may be powered by a "traction fiber", a model 

proposed in the 1950s (Ostergren, 1950). In the current version of this model 

(Figure 1.2), chromosomes are pulled polewards as kMT shorten as a result of 

reductions in the rate of tubulin incorporation at the kinetochore relative to that of 

microtubule depolymerization at the pole. It has been found that 

depolymerization of microtubules produces a force that might be needed for 

chromosome motion (Grishchuk eta/., 2005; Molodtsov eta/., 2005). However, 

Ganem et a/. (2005) found that flux-free human cells do not hinder bipolar 

spindle assembly, chromosome alignment or mitotic progression. This result 

suggests that flux is not essential for spindle formation and chromosome 

movement. Therefore, how chromosomes move to the poles still needs to be 

clarified. 
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Kinetochores are paired, disk-like structures associated with centromeres of 

chromosomes. The paired nature of kinetochores facilitates the attachment of 

each chromosome to microtubules derived from both poles (Compton 2000). All 

microtubules associated with a given kinetochore form a tight bundle referred to 

as a kinetochore fiber (K fiber) (Compton 2000). Two possible mechanisms of 

K-fiber formation have been found: (a) K fibers form as microtubules growing 

from the spindle pole to search and capture kinetochores (Hayden eta/. 1990) (b) 

K fibers self-assemble around chromatin in the absence of centrosomes (Heald 

et a/., 1997). These two mechanisms have been found to operate for the 

formation of the K fibers in animal cells (Rieder 2005). However, plant cells and 

many animal oocytes do not have centrosomes. In these cells, it is believed that 

microtubules nucleate around chromatin and their minus ends are organized 

together in the spindle poles by microtubule-based motor (dynein) (Heald eta/., 

1996; Merdes eta/., 2000). 

Recently, it has been observed that AtEB1 a-GFP is sorted into two polar caps 

perpendicular to the PPB before nuclear envelope break down in Arabidopsis 

thaliana cells (Chan et a/., 2005). These bipolar caps of AtEB1a-GFP then 

transform and locate to the spindle poles after nuclear envelope breakdown 

However, in the cells without PPBs, the bipolar caps are missing and the bipolar 

spindles only emerged clearly after nuclear envelope breakdown (Chan eta/., 

2005). From these observations and the fact that a prophase spindle exists in 

plant cells, this suggests that the search and capture model of K fiber formation 
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might also operate in plant cells (Chan eta/., 2005). 

1.2.3.4 Phragmoplast 

The phragmoplast is initiated during late anaphase. A phragmoplast complex is 

composed of two bundles of anti-parallel microtubules which overlap at their plus 

ends in the centre and actin filaments (Euteneuer et a/., 1982). However, 

recent evidence from electron tomography indicates that the anti-parallel 

microtubules terminate in a cell-plate assembly matrix without overlap of their 

plus ends (Austin et a/., 2005). Golgi-derived vesicles are transported to the 

equator of the phragmoplast by the microtubules (Samuels eta/., 1995). This 

transport might be assisted by microtubule motor proteins that have yet to be 

identified (Asada and Shiboaka 1994). Once cell-plate formation begins in its 

equatorial zone, the phragmoplast changes into a ring-like structure and 

centrifugally expands, maintaining localization of the microtubules at the leading 

edge of the cell plate. To examine how phragmoplast microtubules move 

centrifugally toward the cortex, Yasuhara treated tobacco BY-2 culture cells with 

a microtubule stabilization drug, taxol, during telophase (Yasuhara eta/., 2002). 

As a result, the phragmoplast expansion was inhibited and abnormal thick cell 

plates that result from the increased accumulation of vesicles were formed. The 

requirement for microtubule depolymerization during phragmoplast expansion 

indicates that the supply of tubulins from the pre-existing microtubules on the 

inner side of the phragmoplast forces the lateral expansion of the phragmoplast 

by constructing new microtubules arrays at its outer edge. Thus, the 
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phragmoplast appears to possess an activity that can initiate microtubule 

polymerization at its outer edge. 

1.3 Microtubule associated proteins (MAPs) 

Among the hundreds of proteins that interact with microtubules, there is a group 

of proteins called microtubule-associated proteins (MAPs). Traditionally, a 

protein was considered to be a MAP if it could be co-purified in vitro with 

microtubules as a result of direct binding. Nowadays, the label "MAP" is often 

used generally to describe any protein that is associated with microtubules, for 

instance, proteins that have an indirect or transient interaction with microtubules, 

proteins that have in vivo co-localization with microtubules, or proteins that have 

homology to a known MAP (Sedbrook 2004). So far, several MAPs have been 

isolated in plants (e.g. Wasteneys, 2000; Sedbrook 2004; Ketelaar eta/., 2004; 

Lloyd and Hussey, 2001 ). 

1.3.1 Isolation and characterization of MAP65 protein 

In animal cells, the basic procedure used to purify brain MAPs is by successively 

polymerizing and depolymerizing microtubules. Proteins then co-purified after 

several cycles are defined as microtubule-associated proteins. But in plant cells, 

very low amounts of microtubular proteins are obtained through the same 

procedure because of the vacuoles. Vacuoles contain protease and phenols that 

will affect the protein extraction. To solve this problem, Jiang and Sonobe (1992) 

made protoplasts from tobacco BY-2 suspension cells and removed the 
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vacuoles to generate miniprotoplasts. Plant MAPs could be isolated by cycling 

taxol stabilized microtubules from the miniprotoplasts. Since then, several MAPs 

have been isolated from plants. 

1.3.2 MAP65 family 

The MAP65 family is a group of proteins with approximate molecular weights of 

65KD, which constitutes the most abundant group of proteins in the microtubule 

preparations of tobacco (Jiang and Sonobe 1993) and carrot (Daucus carota) 

(Chan et a/., 1996). Corresponding MAP65 cDNAs have been cloned 

(NtMAP65-1, Smertenko et a/. 2000; DcMAP65-1, Chan et a/. 2003b), and a 

gene family of nine members has been identified in Arabidopsis tha!iana 

(Hussey eta/., 2002). The Arabidopsis MAP65s share 28-79% sequence identity, 

and their predicted molecular masses vary from 54 to 80kDa (Hussey et a/., 

2002). An antibody raised against biochemically purified tobacco MAP65 

decorates all microtubule arrays (Jiang and Sonobe, 1993), while antibodies 

raised to one isotype, recombinant NtMAP65-1, recognizes only a subset of 

interphase microtubules and in particular the anaphase spindle midzone and at 

the midline of the cytokinetic phragmoplast (Smertenko et a/., 2000). The 

localization suggested that MAP65 cross-links antiparallel microtubules 

(Smertenko et a/., 2000). Biochemically purified MAP65 proteins have been 

found to bind and bundle microtubules in vitro (Jiang and Sonobe 1993). 

Consistent with this observation, NtMAP65-1 a protein was also able to increase 

the turbidity of tubulin solution in vitro (Smertenko eta/., 2000). Recently, it was 
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observed that recombinant AtMAP65-1 does not promote microtubule 

polymerization (Wicker-Peanguant et a/., 2004; Smertenko et a/., 2004). 

Instead, it induces microtubule bundling in vitro and forms 25 nm crossbridges 

between microtubules (Wicker-Peanguant eta/., 2004; Smertenko eta/., 2004). 

In contrast, Mao et a/. (2005) showed that AtMAP65-1 promotes tubulin 

polymerization, enhances microtubule nucleation, and decreases the critical 

concentration for tubulin polymerization (Mao et a/., 2005). The effect of the 

presence of MAP65 on the cold stability of microtubules is also controversial. 

AtMAP65-1 a does not stabilize microtubules against cold-induced microtubule 

depolymerization (Smertenko et a/., 2004), while NtMAP65-1 b confers cold 

stability to microtubules bundle in vitro (Mao eta/., 2005; Wicker-Peanguant eta/. 

2004). Moreover, the bundling effect of NtMAP65-1 b results from the interaction 

of the protein with the C-terminal part of tubulin (Wicker-Pianquart eta/., 2004). 

Chan eta/. (1996) used taxol-stabilised brain microtubules to isolate MAP from 

detergent-extracted cytoskeletons prepared from carrot suspension cells. From 

this preparation, three electrophoretically separable bands of 60kDa, 62kDa, 

68kDa, and two proteins of less than 100 kDa were detected on 1 D SDS gels 

(Chan et a/., 1996). These three polypeptides were found to be antigenically 

related; hence they are referred to be "MAP65 family." Monospecific antibodies 

raised against these three MAP65 bands stained all four microtubule arrays in 

carrot cells, similar with the MAP65 localization in tobacco BY2 cells (Jiang and 

Sonobe, 1933). The single 60 kDa protein was chromatographically purified by 
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Rutten eta/. (1997). This 60 kDa protein stabilizes brain microtubules against 

the depolymerization caused by the cold and calcium treatment, but does not 

bundle microtubules in vitro. Furthermore, it stimulates tubulin polymerization 

only when tubulin is just above the self-polymerization concentration (Rutten et 

a/., 1997). Later on, Chan eta/. (2003b) isolated the 60 kDa, 62 kDa, and 68 kDa 

proteins of MAP65 using sucrose density gradients separation. Only the 62kDa 

band was found to be present in elongating cells containing only cortical 

microtubules, indicating that this isoform of MAP65 is responsible for the 

cross-bridging activity and maintaining the cortical microtubules during cell 

elongation (Chan eta/., 2003b). 

MAP65 has been found to be involved in plant embryo development. Somatic 

embryogenesis of Picea abies (gymnosperm) was used as a model system to 

study the role of the MAP65 in the plant embryo development (Von Arnold eta/., 

2002; Smertenko eta/., 2003). In the normal embryonic cell line, MAP65 has 

been found binding to the cortical microtubules at all stages of embryo 

development analyzed. However, different isoforms of MAP65, 63 kDa and 65 

kDa, have been shown in Picea abies embryos. The 63 kDa isoform was 

prevalent in the normal embryonic cell line, whereas the 65 kDa isoform was the 

main isoform in the development-arrested cell line (Smertenko et a/., 2003). 

These results suggested that a critical quantity of the 63 kDa isoform is essential 

for cell differentiation. 
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The nine AtMAP65 proteins have sequence identity from 28% to 79% (Figure 

1.3) (Hussey eta/., 2002). Each protein might play a different role in microtubule 

organization (Van Damme et a/., 2004). For instance, AtMAP65-1 and 

AtMAP65-6 share 44% sequence identity and act differently in vitro (Mao et a/., 

2005). The AtMAP65-1 protein induces the formation of large microtubule 

bundles by forming cross-bridges between microtubules evenly along the whole 

length of microtubules, whereas the AtMAP65-6 protein only forms cross-bridges 

at regional sites between microtubules. The microtubule network induced by 

AtMAP65-6 forms a mesh-like network and is more resistant to high 

concentrations of NaCI than the bundles induced by AtMAP65-1. AtMAP65-6 

does not enhance microtubule polymerization and nucleation in vitro, and it does 

not stabilize microtubules against cold treatment and dilution. Moreover, the 

localizations of AtMAP65-1, AtMAP65-3, AtMAP65-4, AtMAP65-5, AtMAP65-6, 

and AtMAP65-8 are different during the cell cycle (VanDamme eta/., 2004; Mao 

eta/., 2005). Purified anti-AtMAP65-6 antibodies revealed that AtMAP65-6 was 

associated with mitochondria in Arabidopsis cells (Mao eta/., 2005). 

AtMAP65-3 plays an essential role in cytokinesis and has distinct localization in 

plant cells. From a genetic screen for defects in root morphology and embryo 

morphogenesis a mutant was selected having a phenotype of multinucleated 

cells and incomplete cell walls (Sorensen eta/., 2002; Sellner eta/., 2002; MUller 

eta/., 2002). The mutant was called pleiade (pte) and all identified alleles were 

found to be single amino acid substitution recessive mutations. Some of the 
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mutations result in C-terminal truncations of AtMAP65-3. AtMAP65-3/PLE does 

not co-localize with the interphase microtubules and only localizes to a subset of 

mitotic microtubule arrays. It binds to the preprophase band, the anaphase 

spindle midzone and the phragmoplast midline but not to the prophase, 

metaphase, and early anaphase spindles. In the pie mutants the anaphase 

spindle is normal, and the cytokinetic phragmoplast can form but is distorted; not 

only is it wider, but the midline is also unusually expanded (Muller eta/., 2004). 

Interestingly, AtMAP65-3/PLE is expressed in all organs in the plant, but the 

cytokinesis defect is only observed in root tissues, indicating that there is likely to 

be redundancy in function between members of AtMAP65 gene family in 

different plant organs. 

Expression of GFP chimeras with AtMAP65-1, AtMAP65-3, AtMAP65-5, and 

AtMAP65-8 in tobacco BY-2 cells reveals differential localization of these 

proteins (Van Damme et a/., 2004). AtMAP65-1-GFP shows thick bundles of 

cortical microtubules and concentrated dot-like structures that were attached to 

the end of the microtubules. In the phragmoplast, AtMAP65-1-GFP is excluded 

from the phragmoplast midline and associated along the microtubules. 

AtMAP65-3-GFP shows thin bundles of cortical microtubules and strong 

endocytic microtubule bundles wrapped around the nucleus and formed 

extensions that were connected to the cortical microtubules of the cell poles. 

Similar structures could also be observed in transgenic BY-2 cells transformed 

with other MAP65 constructs; and the GFP-MBD and TUA6-GFP controls. 
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AtMAP65-5 also decorates cortical microtubules, and the labeling pattern 

resembled the cortical array visualised by MBD-GFP. The AtMAP65-5-GFP 

fluorescence signal is much stronger in the phragmoplast than in the PPB and 

the spindle. AtMAP65-5-GFP is concentrated in the mid-zone of the 

phragmoplast. AtMAP65-8 decorates cortical microtubules discontinuously, 

indicating that AtMAP65-8-GFP is associated with a subpopulation of 

microtubules in the cortical array. AtMAP65-8-GFP does not decorate the 

phragmoplast midline, but labels the whole phragmoplast and the outer extreme 

ends of the phragmoplast near the nuclear surface where the microtubule 

minus-ends are located (VanDamme eta/., 2004). 

There are MAP65 homologues in other organisms including PRC1 (mammalian) 

(Mollinari et a/., 2002), Ase1 (Yeast) (Schuyler et a/., 2003), 

Feo(Drosophila)(Fiammetta eta/., 2004) , and SPD-1 (C. elegans) (O'Connell et 

a/., 1998). 

Mammalian PRC1 stabilises the spindle midzone (Jiang eta/., 1998; Mollinari et 

a/., 2002). PRC1 is also a mitotic substrate for cyclin dependant protein kinase 

(CDK) (Jiang eta/., 1998). PRC1 binds and bundles microtubules in vivo and in 

vitro (Jiang et a/., 1998). Overexpression of PRC1 extensively bundles 

interphase microtubules, but does not affect early mitotic spindle organization 

(Mollinari eta/., 2002). PRC1 has two Cdk phosphorylation motifs, and a CDK 

phosphorylation null mutant caused extensive bundling of the prometaphase 
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spindle (Jiang eta/., 1998). Suppression of PRC1 by siRNA causes failure of 

microtubule interdigitation between half spindles and the absence of the spindle 

midzone (Mollinari eta/., 2002). It has been found that the N-terminal region of 

PRC1 is important for localization to the cleavage furrow and to the centre of the 

midbody, whereas the central conserved region is required for microtubule 

binding and bundling activity (Mollinari et a/., 2002). Interestingly, KIF4, a 

member of kinesin-4 family, has been found to interact with PRC1 and restrict 

localization of PRC 1 to a narrow region in the centre of the anaphase spindle 

(Kurasawa., 2004). 

Ase1 p (anaphase spindle elongation 1) was first identified in budding yeast. 

Ase1 p locates at the anaphase spindle midzone, where the microtubules overlap 

(Chan eta/., 1999; Mollinari eta/., 2002; Schuyler eta/., 2003; Verbrugghe and 

White, 2004; Verni eta/., 2004). Ase1 bundles microtubules in vitro. The deletion 

mutant is viable but fails to form overlapping anti-parallel microtubule bundles, 

leading to interphase nuclear positioning defects and premature mitotic spindle 

collapse (Schuyler eta/., 2003; Isabelle eta/., 2005; Akira eta/., 2005). FRAP 

data shows that during interphase Ase1 p is highly dynamic at overlapping 

microtubule minus ends, while during mitosis Ase1 p has a very slow rate of 

turnover at microtubule plus ends at the spindle midzone (Isabelle eta/., 2005; 

Schuyler et a/., 2003). It has also been found that Ase1 acts as a regulatory 

component in the cytokinesis checkpoint that operates to inhibit nuclear division 

when the cytokinesis apparatus is perturbed (Akira eta/., 2005). PRC1 and Ase1 
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share two notable sequence features: a consensus cyclin-dependent kinsae 

phosphorylation site and a sequence that is similar to a mitotic cyclin destruction 

box. However, it has been found that Ase1 is targeted for proteolysis by the 

anaphase-promoting complex (Juang eta/., 1997). 

Drosophila FEO is especially enriched at the central-spindle midzone. The 

deletion of Feo causes aberrant central spindles. In Feo-depleted cells, the 

morphology of prophase, metaphase, or early anaphase are normal, but 

telophases display thin microtubule bundles of uniform width instead of robust 

hourglass-shaped central spindles. The phenotype of Feo-depleted telophases 

suggests that Feo interacts with the plus ends of central spindle microtubules so 

as to maintain their precise interdigitation during the anaphase-telophase 

microtubule elongation and antiparallel sliding (Fiammetta eta/., 2004). 

C. e/egans spd-1(oj5) is a temperature-sensitive maternal-effect 

embryonic-lethal mutation isolated in a screen for cell division mutants 

(O'Connell et a/., 1998). When spd-1(oj5) homozygote hermaphrodites are 

shifted to the restrictive temperature (25°C) at the four cell stage in embryo 

development, they produce 100% dead embryos. The spindles in these embryos 

are bent or broken at anaphase in cell division. In the spd-1(oj5) mutant, the 

microtubules in the spindle mizone are missing, but cytokinesis is completed by 

most of the cells. The spd-1 gene has been cloned and found to be a member of 

the MAP65 protein family. SPD-1 bundles microtubules in vivo and localizes at 
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the spindle midzone (Verbrugghe eta/., 2004). All together, these data suggest 

that SPD-1 plays an important role in spindle midzone assembly (Verbrugghe et 

a/., 2004). 

1.3.3 MAP190 

Tobacco MAP190 was purified by its co-purification with cycling plant 

microtubules and its ability to bind F-actin (Igarashi et a/., 2000). Therefore, 

MAP190 is believed to be involved in the interaction between actin filaments and 

microtubules. MAP190 locates in the nucleus before nuclear envelope 

breakdown, and in the spindle and phragmoplast during cell division. After the 

re-formation of the nuclear membrane, MAP190 is sequestered into the 

daughter nuclei. However, MAP190 does not localize to the cortical 

microtubule array or preprophase band. Hence it is believed that MAP190 is 

regulated through the cell cycle. MAP190 contains a calmodulin-like domain in 

the C-terminus (Hussey et a/., 2002). This conserved motif suggests that 

MAP190 might link microtubules and actin in the plant cells in response to 

calcium ions (Igarashi eta/., 2000; Hussey eta/., 2002). 

1.3.4 MOR1/GEM1 

To identify factors regulating cortical microtubule organization, Whittington eta!. 

(2001) used immunofluorescence microscopy to screen chemically mutagenized 

seedlings of A. thaliana for aberrant microtubule patterns. A mutant, which has 

the phenotype of temperature-sensitive cortical microtubule shortening and 
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disorganization, was found and named as mor1 (microtubule organization1). 

Using ecotype specific markers, MOR1 was identified as a 14 kb gene consisting 

of 53 exons and sharing sequence similarity to the human microtubule 

associated protein TOGp (Charrasse eta/., 1998), Xenopus MAP215 (Gard and 

Kirschner, 1987), Drosophila MSPS (Cullen et a/., 1999), Dictyostelium 

DdCP224 (Graf eta/., 2000), yeast STU2 (Wang and Huffaker, 1997) and Dis1 

(Ohkura eta/., 1988; Garcia eta/., 2001), and C. elegans ZYG-9 protein (Hirsh 

and Vanderslice 1979). From the sequence analysis, at least ten putative HEAT 

repeats were found in MOR1, which represent sites of likely protein-protein 

interaction (Whittington et a/., 2001 ). The mor1 mutant alleles (mor1-1 and 

mor1-2) which contain substitutions in the HEAT repeat nearest to the 

N-terminus show a phenotype of short and disorganized cortical microtubules 

under restrictive temperature conditions (above 28°C) and restoration of parallel 

cortical microtubule after a few minutes of reaching the permissive temperature 

(21°C). Morphological defects including left-handed twisting of organs, isotropic 

cell expansion and impaired root hair polarity have also been found in mor1 

seedlings growing at 31°C. This result indicates that MOR1 is required 

throughout development in all plant organs (Whittington eta/., 2001). The MOR1 

eDNA encoded a protein with a predicted mass of 217 kD. MOR1 protein was 

found to bind microtubules in vivo, localizing to cortical microtubules and to 

areas of overlapping microtubules in the phragmoplast (Whittington eta/. 2002). 

From the RT-PCR analysis, MOR1 is expressed in roots, cotyledons, rosette 

leaves, stems, open flowers and green siliques. However, the microtubule 
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mitotic arrays were not affected in the mor 1 mutants (Whittington eta/., 2002). 

Twell and colleagues identified a cytokinesis-defective mutant gem1, which is 

synonymous to MOR1 (Twell eta/., 2002). The gem1 mutant-alleles gem1-1 and 

gem1-2 homozygotes are lethal and 50% of pollen from the heterozygotes failed 

to form the cell plate during mitosis. The MOR1/GEM1 carboxy-terminal domain, 

which binds to microtubules in vitro, is absent in gem1-1 and gem1-2 mutants 

(Twell eta/, 2002). The result indicates that the C-terminus of MOR1/GEM1 is 

important for phragmoplast organization. The analysis of mor1 and gem1 

mutants indicates that MOR1/GEM1 plays an essential role in both the cortical 

microtubule array and the phragmoplast (Whittington et a/., 2002; Twell et a/., 

2002; Eleftheriou eta/., 2005). 

Two protein homologues of MOR1/GEM1 were isolated and characterized in 

tobacco. TMBP200 was isolated from telophase BY-2 cells (Yasuhara et a/., 

2002), and MAP200 was isolated from mostly interphase BY-2 cells (Hamada et 

a/., 2004). TMBP200 bundles microtubules and forms 1 Onm microtubule 

cross-bridges, whereas MAP200 does not. The different microtubule 

cross-bridge abilities between TMBP200 and MAP200 might be attributable to 

post-translational modification (Hamada eta/., 2004). MAP200 has been found 

to promote tubulin polymerization and increase the number and the length of 

microtubules in vitro (Hamada eta/., 2004). MAP200 and tubulin dimers have 

been found to form a complex in vitro. This complex may accelerate tubulin 

polymerization (Hamada eta/., 2004). Similar complexes have also been found 
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in Xenopus, it is composed of XMAP215 and tubulin dimers and is believed to 

promote tubulin polymerizaion. Therefore, the complex of MAP200 and tubulin 

oligomers might function as microtubule-nucleating complexes. 

In animal cells, the stimulatory effect of XMAP215 is antagonized by the central 

motor kinesin, XKCM1 (Tournebize et at., 2000). According to Hussey and 

Hawkins (2001 ), the N-terminal repeat of MOR1 could negate the effect of a 

destabilizing kinesin, either by binding directly to it or by competing for the 

microtubule binding site. Since XMAP215 has recently been reported to 

anchor nascent minus ends of microtubule asters formed in vitro (Popov eta/., 

2002), a further possibility is that its plant homolog, MOR1, could itself have a 

direct effect on microtubule nucleation by helping to anchor growing ends at the 

cell cortex. 

1.3.5 MAP70 

To identify plant specific MAPs, Korolev et a/. (2005) isolated microtubules by 

inducing the polymerization of endogenous tubulins contained within an extract 

of Arabidopsis protoplasts and identified the proteins attached to microtubules. 

Among these proteins, a 70 kDa protein was identified and named as AtMAP70. 

The AtMAP70 family is composed of five closely related Arabidopsis proteins, 

which have no known homologues in other eukaryotes. The GFP: AtMAP70 

fusion protein decorates all four microtubule arrays in both transiently infected 

Arabidopsis and stably transformed tobacco BY-2 cell lines. However, AtMAP70 
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does not decorate the phragmoplast midline. When a GFP: AtMAP70 expressing 

cell line was treated with the microtubule stabilizing drug taxol, both microtubules 

and MAP70 formed thicker bundles, while treatment with the microtubule 

depolymerization drug oryzalin resulted in disruption of both microtubules and 

GFP: AtMAP70. Interestingly, GFP: AtMAP70 decoration of microtubules was 

not affected by the actin depolymerization drug, cytochalasin D. The drug 

treatment and the fact that AtMAP70 binds to microtubules in vitro suggest that 

AtMAP70 is a microtubule associated protein. AtMAP70-1 contains four 

predicted coiled-coil domains and truncation studies identified a central domain 

that targets the fusion protein to microtubules in vivo (Korolev eta/, 2005). 

1.3.6 SPIRAl1 

The Arabidopsis mutant spiral 1 (spr1) shows right-handed helical growth in 

roots and etiolated hypocotyls (Furutani et al., 2000). These root phenotypes can 

be suppressed by microtubule depolymerization drugs, such as propyzamide, 

oryzalin, and enhanced by cold treatment. The cortical microtubule arrays of 

elongating spr1-1 epidermal root cells have been found to be arranged in helices 

with a left-handed pitch, whereas in the ground tissue of etiolated hypocotyls, a 

mixture of transverse, oblique, and longitudinal arrays are observed (Furutani et 

a/., 2000). Moreover, propyzamide treatment creates right-handed helical 

microtubule arrays in wild type and spr1-1 elongating root cells. These results 

suggest that SPR1 is essential for anisotropic cell expansion by affecting cortical 

microtubule organization. The SPR1 gene encodes a plant-specific 12 kD 
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protein and belongs to a six member gene family in Arabidopsis. SPR 1: green 

fluorescent protein (SPR1-GFP) fusion locates to the cortical microtubules, the 

preprophase band, the mitotic spindle, and the phragmoplast in Arabidopsis 

seedlings (Sedbrook et a/., 2004). SPR1 has a repeated motif at both ends, 

separated by a predicted rod-like domain, suggesting that it may act as an 

intermolecular linker (Sedbrook et a/., 2004). All together, SPR1 is a 

plant-specific microtubule-localized protein that influences directional cell 

expansion (Nakajima eta/., 2004; Sed brook eta/., 2004). 

1.3. 7 SPIRAL2 

spira/2 (spr2) is an Arabidopsis right-handed helical mutant with prominent 

counter-clockwise twisting in leaf petioles and flower petals (Furutani et a/., 

2000), and is allelic to two classic twisting mutants, tortifolia1 (Burger eta/., 1971) 

and convoluta (Relicahova et a/., 1976). The SPR2 gene encodes a 

plant-specific 94 kD protein containing HEAT-repeat motifs that are implicated in 

protein-protein interaction. SPR2 is thought to be a MAP because of its ability to 

bind to microtubules in vivo and in vitro. SPR2-GFP locates to the cortical 

microtubule, the PPB, the spindle, and the phragmoplast in Arabidopsis and 

tobacco cells (Shoji et a/., 2004; Bushmann et a/., 2004). SPR2 is a MAP 

required for proper microtubule function during anisotropic growth of cells. 

1.3.8 Tangled 1 (TAN1) 

tang/ed1 is a recessive mutant of maize with the majority of cells in all leaf tissue 
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layers dividing in abnormal orientations (Smith et a/. 1996). In tangled1 mutant 

cells, the microtubule arrays involved in cell division are formed and appear 

structurally normally, but the orientations of these structures are abnormal. 

Abnormally oriented cell divisions can be attributed to the failure of 

phragmoplast to be guided to the former PPB site (Cleary and Smith, 1998). 

Tan1 gene encodes a microtubule binding protein, TAN1. Antibodies against 

TAN1 preferentially decorate the PPBs, the spindles, and the phragmoplast, but 

not the interphase microtubules. The lack of association of TAN1 proteins with 

microtubules in interphase cells suggests that their interaction is regulated in a 

cycle-dependent manner (Smith et a/. 2001). Therefore, TAN1 protein 

participates in the orientation of cytoskeletal structures in dividing cells through 

the association with microtubules. Moreover, the TAN1 protein distantly relates 

to the basic microtubule-binding domain of vertebrate adenomatous polyposis 

coli (APC) protein (Smith eta/. 2001). APC proteins are activators of a guanine 

nucleotide exhange factor that in turns activates a small GTPase. The discovery 

of TAN shows that small GTPases may play roles in specifying division planes in 

plant cells. 

1.3.9 End-binding MAPs 

1.3.9.1 Microtubule plus-end-tracking proteins (+TIPs) 

In the late 1990s, a new family of MAPs that preferentially accumulate at the plus 

ends of microtubules was identified (Perez et a/., 1999). In this work, the 

movement of a cytoplasmic linker protein 170 (CLIP-170) linked to GFP was 
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observed in living mammalian cells. The fusion protein formed a comet-like 

structure that tracked the plus ends of growing microtubules (Perez eta/., 1999), 

and this property is now the defining characteristic of the group of proteins called 

+TIPs. From the BLAST searches, it has been found that plants might lack 

CLIPs (Sherryl R. et a/., 2004). However, when mammalian CLIP-170 is 

expressed in plant cells, it tracks microtubule plus ends, indicating that the 

pathway that regulates binding of CLIP-170 to microtubules is conserved in 

plants (Dhonukshe and Gadella, 2003). 

1.3.9.2 End-binding protein 1 (EB1) 

End-binding protein 1 (EB1) is a member of a conserved family of MAPs that in 

other eukaryotic cells is known to bind the plus ends of microtubules and 

regulate microtubules dynamics (Rogers eta/. 2002; Tirnauer eta/. 2002). EB1 

was originally identified as a binding partner of the tumor suppressor protein 

adenomatous polyposis coil protein, APC in humans (Su et a/. 1995). In 

Arabidopsis plants three EB1-Iike genes have been identified (Mathur et a/., 

2003). In transgenic Arabidopsis thiliana, the GFP-AtEB1 b fusion protein has 

been found localizing not only to microtubule plus ends but also to motile, 

pleiomorphic tubulovesicular membrane networks that surround other organelles 

and frequently merge with the endoplasmic reticulum. The dual localization 

pattern of AtEB1 suggests links between microtubule plus end dynamics and 

endomembrane organization during polarized growth of plant cells (Mathur eta/., 
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2003; Van eta/., 2004). Through the cell cycle, AtEB1-a and AtEB1-b label the 

microtubule plus end as a comet in the cortical array, mitotic spindle, and 

phragmoplast (Chang eta/. 2003; Van eta/., 2004). However, the microtubule 

minus end labeling of AtEB1a-GFP is controversial. Although EB1 has been 

shown to localize at the plus ends of microtubules in different organisms (Rogers 

et a/., 2002; Timauer et sl., 2002; Chan et a/., 2003; Piehl et a/., 2004), 

AtEB1-GFP could also be found localizing at the minus ends of microtubules in 

the transient infected Arabidopsis thiliana suspension cells (Chan eta/. 2003). 

However, this microtubule minus end localization is missing in the AtEB1-GFP 

expressed tobacco BY2 cell lines (VanDamme eta/., 2004). 

1.3.1 0 Microtubule motor proteins: kinesin a nell kinesin-like 

proteins 

Kinesins are microtubule-based motor proteins with a conserved kinesin motor 

domain. They move along microtubules by using the energy released from ATP 

hydrolysis. In the Arabidopsis genome (Arbidopsis thaliana), there are at least 

61 genes encoding kinesins. Most Arabidopsis kinesins are evolutionarily 

divergent from their counterparts in animals and fungi (Lee et a/., 2004). 

Arabidopsis kinesins form a number of subfamilies. For example, 

BIMC/Kinesin-5 and the NCD/Kinesin-14 subfamilies in Arabidopsis are similar 

to those in fungi and animals, while other kinesins in Arabidopsis are very 

different in plants. Some Arabidopsis kinesins are associated with microtubules, 
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mitochondria, Golgi stacks, or vesicles. Therefore, kenesins contribute directly or 

indirectly to cell division and cell growth. 

Members of the kinesin protein superfamily share a catalytic core domain of 

about 350 amino acids containing an ATP-binding site and a microtubule-binding 

site. The catalytic core is often juxtaposed with an a-helical domain of smaller 

than 50 amino acids, which is called the neck region (Endow, 1999). The 

catalytic core plus the neck form a kinesin motor domain. Kinesins are grouped 

into several subfamilies by phylogenetic analyses of their motor domains 

(Schoch eta/., 2003; Dagenbach and Endow, 2004). 

1.3.10.1 KATA/ATK1 

The Arabidopsis KAT genes encode KATA, KATB, and KATC (Mitsui eta/., 1993) 

proteins. KATA/ATK1 was shown to be a microtubule minus end-directed kinesin 

(Marcus et a/., 2002). In the atk1-1 mutant, male meiotic cells have broad 

spindles, which lack focused poles in metaphase I and II. Consequently, 

chromosome segregation is abnormal and the fertility of the male is reduced 

(Chen eta/., 2002). It has been shown that the atk1 mutant lacks microtubule 

accumulation at the predicted spindle pole during prophase and has reduced 

spindle bipolarity during prometaphase. However, all abnormalities are rectified 

by anaphase and chromosome segregation appears normal. The atk1-1 

phenotype could be caused by the lack of microtubule-bundling activities in the 

spindle. KATA/ATK1 and three other kinesins may contain a 
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microtubule-binding site at their N terminus due to the sequences similarity (Lee 

eta/., 2004). 

1.3.1 0.2 The calmodulin-binding kinesin: KCBP/ZWI 

Genetic screens of Arabidopsis plant for altered trichome morphogenesis have 

lead to the identification of a mutant, zwichel (zw1) (Hulskamp eta/., 1994). The 

normal wild type trichomes have large, single epidermal cells with a stalk and 

three or four branches, whereas the trichomes in zwichel mutant have a short 

stalk with one or two branches depending on the severity of the allele. The ZW/ 

gene has been identified as a member of the kinesin superfamily of microtubule 

motor proteins and is identical to a kinesin-like calmodulin-binding protein 

(KCBP) (Oppenheimer eta/., 1997; Reddy et a/., 1996). KCBPIZWI is a single 

gene in the Arabidopsis genome that encodes unique calmodulin-binding kinesin 

(Reddy et a/., 2000). 'KCBP contains a C-terminal motor domain and has a 

calmodulin-binding site. KCBP binds microtubules in an ATP-dependent manner 

and exhibits microtubule-stimulated ATPase activity. Calmodulin inhibits binding 

of KCBP to microtubules, and the extent of inhibition is dependent on the 

concentration of calcium and calmodulin (Deavours eta/., 1998). The phenotype 

can be suppressed by the application of a microtubule stabilization agent, taxol, 

which indicates KCBP/ZWI may play a role in stabilizing microtubules (Mathur et 

a/., 2000). Recent studies show that the cotton Gossypium hirsutum kinesin 

(GhKCBP) decorates cortical microtubules and mitotic microtubule arrays in 

cotton fibers, which suggests that KCBP/ZWI may stabilize microtubules in the 
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interphase cell and affect cell division (Preuss eta/., 2003). 

1.3.1 0.3 The Actin-binding KCH kinesins 

GhKCH1 has been identified from cotton (Gossypium hirsutum) fibers as an 

actin-binding kinesin (Preuss ML eta/., 2004). GhKCH1 has a centrally located 

kinesin catalytic core, a signature neck peptide of minus end-directed kinesins, 

and a unique calponin homology (CH) domain at its N terminus. GhKCH1 and 

other CH domain-containing kinesins (KCHs) belong to a distinct branch of the 

minus end-directed kinesin subfamily. So far the KCH kinesins have been found 

only in higher plants. GhKCH1's N-terminal region including the CH domain 

interacted directly with actin microfilaments. In cotton fibers, GhKCH1 decorates 

cortical microtubules in a punctate manner. It has been suggested that GhKCH1 

might play a role in mediating dynamic interaction between microtubules and 

actin microfilaments in cotton fibers. Localization of GhKCH1 on cortical 

microtubules was independent of the integrity of actin microfilaments. Thus, 

GhKCH1 may play a role in organizing the actin network in cooperation with the 

cortical microtubule array. These data also suggest that flowering plants may 

employ unique KCHs to coordinate actin microfilaments and microtubules during 

cell growth. 

1.3.1 0.4 AtPAKRP1 

AtPAKRP1 stands for Arabidopsis thaliana phragmoplast-associated 

kinesin-related protein 1. AtPAKRP1 localizes to the spindle midzone during late 
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anaphase and at the phragmoplast midline during telophase. It is believed to 

have a function in establishing and maintaining the bipolar structure of the 

phragmoplast (Lee eta/., 2000). AtPAKRP2 first appears in a punctuate pattern 

among interzonal microtubules during late anaphase. When the phragmoplast 

microtubule array appears in a mirror pair, AtPAKRP2 becomes more 

concentrated near the division site, and an additional signal can be detected 

elsewhere in the phragmoplast. In contrast, the previously identified AtPAKRP1 

protein is associated specifically with bundles of microtubules in the 

phragmoplast at or near their plus ends. Localization of the tobacco homolog(s) 

of AtPAKRP2 was altered by treatment of brefeldin A in BY-2 cells. AtPAKRP1 

might play a role in establishing and/or maintaining the phragmoplast 

microtubule array, while AtPAKRP2 may contribute to the transport of 

Golgi-derived vesicles in the phragmoplast. 

1.3.1 0.5 KRP125 

TKRP125, tobacco kinesin-related polypeptide of 125kDa, has been purified 

from isolated phragmoplasts of synchronized tobacco BY2 cells (Asada eta/., 

1994) and found to belong to the bimC subfamily. An antibody against a short 

peptide from the motor domain of TKRP125 inhibits the GTP- or AlP-dependent 

translocation of the phragmoplast microtubules in membrane-permeabilized 

BY-2 cells, which suggests a function in the formation and/or maintenance of the 

bipolar structure of the phragmoplast (Asada eta/., 1997). The expression of 

TKRP125 is cell cycle-dependent. TKRP125 is not present in cells at the G1 
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phase, but appears in the S phase and accumulates during the G2 phase and M 

phase. TKRP125 is distributed along cortical microtubules during S phase, PPB 

and perinuclear microtubules in the premitotic cells (Asada et a/., 1997). 

TKRP125 is distributed along spindle microtubules and accumulates at the 

equatorial plane of the spindle as the spindle elongates. In dividing cells, 

TKRP125 colocalizes with phragmoplast microtubules (Asada eta/., 1997). 

The 0-box consensus sequence is R-XX-L-XXXX-N (Giotzer eta/., 1991; King et 

a/., 1996; Fang et a/., 1998) and the KEN-box consensus sequence is 

K-E-N-XX-N/0 where X can be any residue (Pfleger and Kirschner, 2000). The 

destruction box and KEN-box sequences are thought to be recognized by the 

anaphase promoting complex (APC). The anaphase-promoting 

complex/cyclosome (APC/C) is a multisubunit ubiquitin-protein ligase that 

targets for degradation cell-cycle regulatory proteins during exit from mitosis and 

in the G1 phase of the cell cycle. TKRP125 sequences contain a 0-box-like motif 

and a KEN-box-like motif and is found to be regulated by the 

ubiquitin-proteasome degradation pathway during M/G1 transition (Oka et a/., 

2004). TKRP125 carrot homologue, OcKRP120, has been identified and found 

to contain the conserved motor region. The localization of OcKRP120 in plant 

cells is similar to that of TKRP125 (Barroso eta/., 2000). 

1.3.11 Microtubule severing protein: Katanin 

Katanin, a microtubule-severing protein, couples ATP hydrolysis to disassemble 
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microtubules into tubulin subunits. Animal katanin is a heterodimer of 60 kDa 

(P60) and 80 kDa (PBO) subunits and requires ATP hydrolysis for its 

microtubule-severing activity (McNally and Vale, 1993). P60 has been found to 

be a member of the AAA (ATPase associated with various cellular activities) 

protein family, which hydrolyses ATP in a microtubule-dependent manner and is 

sufficient to sever microtubules in vitro (McNally et a/., 2000). In animal cells, 

katanin is thought to be involved in the release of microtubules from 

centromsomes and the regulation of the number of microtubule ends in the 

mitotic spindle (Buster eta/., 2002). 

In Arabidopsis, mutations in katanin P60 have been isolated as fragile fibre2 

(fra2) (Burk eta/., 2001 ), botero1 (bot1)(Bichet eta/., 2001 ), ectopic root hair3 

(erh3) (Webb eta/., 2002), and /ue1 (Bouquin eta/., 2002). These loci encode a 

60k0a microtubule-associated ATPase katanin ortholog is called AtKSS, which 

stands for Arabidopsis thaliana katanin-like protein small subunit (McClinton et 

a/., 2001). AtKSS has been found to sever microtubule in vitro in the presence of 

ATP (Stoppin eta/., 2002). 

fra2 (fragile fibre2) has been identified by screening for Arabidopsis mutants with 

reduced mechanical strength in the inflorescence stem (Burk eta/., 2001 ). The 

mutant shows the phenotype of aberrant cortical microtubule orientation and 

distorted cellulose microfibrils that in turn leads to defects in cell elongation. In 

fra2, the disappearance of perinuclear microtubule array and the establishment 
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of transverse cortical microtubule array in interphase and elongating cells are 

delayed (Burk and Ye., 2002). 

The bot1 (botero1) mutant has shorter and broader cells in the non-tip-growing 

cell types examined (Bichet et a/., 2001). In wild type Arabidopsis, cortical 

microtubules in cells near the division zone of the meristem were loosely 

organized but became more highly aligned in transverse arrays in the elongation 

zone. In bot1, the cortical microtubule arrays failed to reorient after cessation of 

mitosis and remained distorted throughout the elongation zone. The bot1 

phenotype also indicates that there is a link between the orientation of cortical 

microtubule arrays and growth anisotropy (Bichet eta/., 2001). 

erh3 (ectopic root hair3) develop hair cells in non-hair positions, whereas 

non-hair cells form in hair locations (Webb eta/., 2002). From this mutant, it is 

believed that AtKSS is required for a microtubule-dependent cell wall 

biosynthetic process that is involved in the spatial organisaiton of positional 

information in the root. In other words, microtubules are required for the 

orientation of spatial determinant of cell fate in epidermal cells, in which AtKSS is 

required (Webb eta/., 2002). 

/ue1 was isolated in a bio-imaging screen for Arabidopsis mutants exhibiting 

inappropriate feedback regulation of the gibberellin (GA) biosynthetic gene 

(Bouguin eta/., 2003). From this mutant, it is suggested that microtubule function 
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and/or AtKSS activity are involved in feedback control of GA synthesis. Because 

GA treatment increased AtKSS mRNA levels, GA modulation of AtKSS function 

might affect microtubule organization. Moreover, this work also showed that 

AtKSS interacts with a katanin p80 ortholog and with a close FRA1-, kinesin-like 

homolog (Bouguin eta/., 2003). 

1. 4 Protein kinases 

1.4.1 Cyclin-dependent kinases (CDK) 

Cyclin-dependent protein kinases (CDKs) belong to the serine/threonine kinase 

family. The binding of cyclin activates CDKs during the cell cycle. Yeasts have a 

single CDK responsible for cell-cycle control that possesses the sequence 

PSTAIRE (single amino-acid code) within its cyclin-binding domain (Jeffrey et 

a/.,1995; Morgan, 1995). This CDK is conserved in all eukaryotes and is hence 

referred to by its fission yeast name of cdc2. It has been found that CDK can 

phosphorylate peptides containing KSP (Lys-Ser-Pro) sequences, which are 

characterized by two polypeptide motifs, KSPXK and KSPXX (Taranath eta/., 

1993). However, in higher eukaryotes there are multiple additional CDKs that 

have roles at different points in the cell cycle. These CDKs are not conserved 

between animals and plants and have variant sequences in their cyclin-binding 

domain. In Arabidopsis, there are four types of CDK: CDKA, CDKB, CDKC, and 

COKE (Joubes et a/., 2000). CDK is inactive unless bound to an appropriate 

cyclin. Cyclins are a diverse group of proteins with low overall homology that 

share a large, rather poor conserved region responsible for their interaction with 
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the CDK; this region is referred to as the cyclin core. According to the sequence 

similarity to animal cyclins, plant cyclins have been classifed as A-, B-, C-, D-, H-, 

and L-type cyclins (Renaudin eta/, 1996; Yamaguchi eta/., 2000; Barraco eta/., 

2003). An enzyme complex called SCF, named after its three main protein 

subunits, is responsible for the ubiquitylation and destruction of cyclins that 

controlS-phase initiation. In M phase, the anaphase-promoting complex (APC) 

is responsible for the ubiquitylation and proteolysis of cyclins and other 

regulators of mitosis. A and B type cyclins possess a "destruction box" motif that 

is responsible for the degradation of these proteins by the anaphase promoting 

complex (APC) during metaphase. D-type cyclins are conjugated to ubiquitin by 

an SCF complex and then directed to the proteasome degradation pathway 

(Renaudin eta/, 1996; Yamaguchi eta/., 2000; Barraco eta/., 2003). The activity 

of the basic CDK-cyclin module is potentially controlled not only through the 

expression level of cyclins and CDK, but also by activation and inhibitory 

phosphorylation. 

1.4.2 MAPKs (mitogen-activated protein kinases) 

MAP kinase is a serine/threonine protein kinase, which is activated in response 

to cell stimulation by various growth factors. It mediates cellular responses by 

phosphorylating various protein targets including transcription factors that 

regulate expression of important cell-cycle and differentiation specific proteins. 

It is also involved in the regulation of cytoskeletal rearrangements. Most of these 

rearrangements are achieved via MAPK-mediated phosphorylation of target 
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cytoskeleton-associated proteins. On the other hand, both stimulated and 

stressed cells use the cytoskeleton as a sensor for changes during cell division 

or differentiation resulting in the activation of MAPK signaling pathways (lrigoyen 

eta/., 1997; Gachet eta/, 2001). MAPKs are conserved throughout eukaryotes, 

and individual organisms have multiple MAPK cascades. In general, , each 

cascade depends on a MAPK kinase kinase (MAPKKK), which phosphorylates 

and activates a MAPK kinase (MAPKK), which, in turn, activates a MAPK by 

phorphorylation (Chen et a/., 2001). In higher plants, various homologs of 

components that might participate in MAPK cascades have been identified 

(lchimura eta/., 2002) and various stimuli have been shown to activate MAPKs 

(Janak et a/., 2002). MAPK cascades also influence various aspects of cell 

division (Pages eta/., 1993; Minshull eta/., 1994; Wang eta/., 1997; Takenaka et 

a/.1997, 1998; Wright eta/., 1999; Graves eta/., 2000). The studies of MAPKs of 

animals and plants suggest that a MAPK cascade controls cytokinesis. Several 

MAPKs were found activating at late M phase and localizing in the spindle 

midzone and the phagmoplast midline in plant cells or the midbody in animal 

cells (Calderini et a/., 1998; Shapiro et a/., 1998; Zecevic et a/., 1998; Bogre et 

a/., 1999; Nishihama and Machida 2001; Nishihama eta/., 2001,2002; Soyano et 

a/., 2003). Tobacco NPK1 eDNA has been isolated and identified as a homolog 

of MAPKKKs (Nishihama and Machida, 2000). NPK1 consists of two major 

domains: the kinase domain at the amino (N)-terminal, and the regulatory 

domain at the carboxyl (C) half which negatively regulates the kinase activity 

(Nishihama and Machida, 2000). NPK1 has been found to localize in the nuclei 
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at interphase and in the equatorial region of phragmoplast at anaphase 

(Nishihama and Mach ida, 2000; Ishikawa eta/., 2002). NPK1 is activated by the 

interaction with kinesin-like protein, NACK1, at late M phase. This interaction has 

been found necessary for cell plate formation (Ishikawa eta/., 2002). 

1.5 Summary 

This study is focused on the Arabidopsis thaliana microtubule associated protein 

MAP65-1. MAP65-1 has been found to form 25 nm crossbridges between 

microtubules and stabilize microtubules in vitro (Wicker-Peanguant et a/.2004; 

Smertenko eta/., 2004; Mao eta/., 2005). However, the molecular mechanism of 

this protein is still unknown. In this study, a few questions have been asked. 

Does MAP65-1 form polymers? Where does the microtubule binding domain 

locate? How does MAP65 move on the microtubules in vivo? What is the 

turnover rate of MAP65-1 in vivo? Moreover, MAP65-1 binds to a subset of 

microtubule arrays but not to the prometaphase and metaphase spindles. This 

suggests that MAP65 is regulated in the cell cycle manner. What is the 

mechanism to regulate MAP65 through cell cycle? To answer these questions, 

biochemistry and molecular cell biology experiments have been carried out. In 

chapter 3, GFP-MAP65-1 has been expressed in vivo and the dynamic property 

of MAP65-1 has been revealed. In chapter 4, MAP65-1 dimerization domain and 

microtubule binding domain have been identified. The regulation of MAP65-1 

through cell cycle is discussed in chapter5. 
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Chapter 2 

Materials and methods 

2.1 Materials 

2.1.1 E. coli strains 

XL-1 Blue MRF' strain 

Genotype: rec A 1 end A 1 gynA96 thi-1 hsdR19 suoE44 reiA 1 lac[F' proAB lacq 

ZDM15 Tn 1 O(Tef) 

BL21 DE3 

Genotype:F-amp T hsdSa (,S-m8
-) gal dcm(DE3) 

BL21 DE3 plysS 

F- Genotype: amp T hsdS8 (,S-m8
-) gal dcm(DE3) pLysS (CamR) 

BL21 Tuner™ 

Genotype: F-amp T hsdS8 (,S-m8
-) gal dcm lacY1(DE3) 

BL21 DE3 Rosetta 

Genotype: F-amp T hsdS8 (,S-m8
-) gal dcm (DE3) pRARE(CamR) 
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2.1.2 Agrobacterium strains 

LBA4404 

T Genotype: iAch5, rif, pAL4404, spec & strep, (Hoekema eta/., 1983). 

C58C3 

Genotype: This is an industrial strain with the C58 background, specific 

genotype is unknown, resistant to Nalidixic acid and streptomycin. 

2.1.3 Arabidopsis line 

Columbia-0, obtained by LEHLE SEEDS. 

2.1.4 pGreenii-N-GFP vector 

pGreenii-N-GFP vector contains the pGreenll backbone, the nos-Kan (Nptll 

under the nos promoter for kanamycin resistance), the 35S-CaMV promoter, 

theN-terminal EGFP, and the 35S terminator. Target genes were sub-cloned 

downstream of GFP into Sail and Xbal or Xhol and EcoRI sites respectively. 
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2.2 Methods 

2.2.1 Nucleic acids methods 

2.2.1.1 Plasmid miniprep 

E. coli strain cells containing derived plasmid were spread onto a LB agar (Luria­

Bertaki, 10 g/L NaCI, 10 g/L Tryptone, 5 g/L Yeast Extract, 20 g/L Micro 

agarose, pH7.0) plate supplemented with the corresponding selection marker. 

The culture was incubated at 37 oc, overnight. Several colonies from the plate 

were inoculated into separate sterile 13ml tissue culture tubes containing 4 ml 

LB Broth (Luria-Bertaki, 10 g/L NaCI, 10 g/L Tryptone, 5 g/L Yeast Extract, 

pH7.0) with corresponding antibiotics and incubated at 37 oc, shaking at 225-

250 rpm overnight. GenEiute™ Plasmid Miniprep Kit (SIGMA, Cat. No.PLN350) 

was then used to extract plasmid DNA from E.coli according to the 

manufacturer's instructions. 

2.2.1.2 Restriction digests 

To check the identity of the vector and/or specific DNA fragments, a restriction 

digest reaction with specific nucleases was performed. A typical restriction 

digestion was made in a final volume of 201-.11 and the mixture contained 11Jg 

DNA, 2 units of enzyme, 1 x enzyme buffer. The reaction mixture was incubated 

at 37 oc for two hours. 

2.2.1.3 Exchange buffer 

To remove the solution used in the digestion reaction, the following buffer 

exchange method was used. 6001JI of PB buffer (Quiagen) was added to the 

digestion mixture and then loaded onto the GenEiute Miniprep Binding Column 

(SIGMA, Cat. No. G6415). The tube was centrifuged at 14,000 xg for 2minutes. 

Flow-through liquid was discarded, and 7501JI of Column Wash Solution 
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(SIGMA, Cat. No.W3886) was added to the column. Then the column was 

centrifuged at 14,000 xg for 2 minutes. The column was dried by centrifugation 

at 14,000 xg for 1 minute and transferred to a fresh collection tube. DNA was 

eluted with 100 !JI of sterile distilled H20, added to the column and centrifuged 

at 14,000 xg for 2 minutes. 

2.2.1.4 Dephosphorylation of the vector 

After digestion with restriction enzymes, the vector was dephosphorylated if 

required by adding 4U of calf intestinal alkaline phosphatase (Promega,Cat.No. 

M1821) into the digestion mixture at 3rc for 30 minutes. To inactivate the 

phosphatase, 1 OO!JI chloroform was added to the tube containing the reaction 

mixture and vortexed for several seconds. The tube was centrifuged at 14,000 

xg for 5 minutes. The upper layer of the solution containing DNA was collected. 

Then, buffer was exchanged by the method described in 2.2.1.3. 

2.2.1.5 Agarose gel electrophoresis 

DNA samples were separated by size using electrophoresis in submerged 

agarose gels. A typical agarose gel contained 1% (w/v) agarose (Sigma) in 1 x 

TAE buffer (20mM glacial acetic acid, 40mM Tris acetate, 1mM EDTA, pH 7.2) 

and 0.51Jg/ml ethidium bromide. Then the gel was submerged in 1xTAE buffer in 

the electrophoresis tank. DNA size markers and DNA samples were mixed with 

6x loading buffer (0.25% (w/v) Fast orange, 15% (w/v) Ficoll) and loaded into 

the gel. Electrophoresis was at 50-100 V for 20 minutes. The DNA bands were 

then detected and photographed by using a Bio-Rad Gel Doc 1000 imaging 

system. 

2.2.1.6 Gel-purification of DNA 

DNA samples were separated using agarose gels and specific DNA fragments 

were excised from the gel. DNA was recovered from agarose gels using DNA 

Ultrafree-DA column (Milipore) following the manufacturer's instructions. 
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2.2.1.7 Ligation of DNA fragments 

The specific DNA fragments were joined together by a ligation reaction using T 4 

DNA ligase. The relative concentration of vectors and inserts were predicted 

from the agarose gel electrophoresis images. The ratio between DNA vector 

and insert for optimum ligation was varied for different reactions, but typically a 

ratio of 1:2 (vector: insert) was used for most of the ligation mixtures. The 

ligation reaction also contained 2x rapid ligation buffer and 5 units of T4 DNA 

ligase and was incubated for 2 hours at room temperature (22-23°C). 

2.2.1.8 Polymerase chain reaction (PCR) 

DNA fragments were amplified by polymerase chain reaction. The reaction 

mixture contained DNA template (10ng-100ng), specific oligonucleotide forward 

primers 0.5 mM, reverse primer 0.5mM, 2.5mM MgCI2, 0.2mM of dNTP (dATP, 

dGTP, dCTP, and dTTP),1x reaction buffer, 1 unit of BIOTAQ Red DNA 

polymerase (Bioline), and deionized water added to a final volume of 50J..ll. The 

reaction was performed in an HYBAID Omn-E series thermocycler. A typical 

PCR program consisted of 1 cycle at 94°C for 2 minutes, followed by 33 cycles 

of 1 minute at 94°C, 1 minute at 55-60°C, and 1 kb of PCR fragment per minute 

at 72°C. Finally, samples were incubated in the PCR at 72oC for 10 minutes. 

2.2.1.9 Mutagenesis of DNA through PCR 

Point mutations in the DNA sequences were introduced using the QuikChange® 

XL Site-Directed Mutagenesis Kit (Stratagene,Cat. No.200517) following the 

manufacturer's instructions. 
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2.2.2 Preparation of competent cells 

2.2.2.1 Preparation of XL 1-Biue cells: 

XL-Biue cells were cultured in Psi Broth medium supplemented with 12.5mg/ml 

tetracycline at 37 oc with agitation (200-220 rpm) until 00550 reached 0.4-0.5. 

The bacterial culture was chilled on ice for 15 minutes and centrifuged at 5000 

xg for 5 minutes. The pellet was suspended in 40 ml Tfbl (30mM Potassium 

acetate, 1 OOmM Rubidium chloride, 1 OmM Calcium chloride, 50mM Manganese 

chloride, and 15% (v/v) Glycerol, pH5.8) and chilled on ice for 5 minutes, and 

then centrifuged at 5000 xg for 5 minutes. The pellet was suspended with 4 ml 

Tfbll (10mM MOPS, 75mM Calcium chloride, 10mM Rubidium chloride, 15% 

(v/v) Glycerol, pH 6.5) and chilled on ice for 15 minutes. The cells were 

aliquoted and quickly frozen in liquid Nitrogen and stored at -80 oc. Frozen 

competent cells were thawed on ice just before use. 

2.2.2.2 Preparaton of competent E-coli cells of the strains used for protein 

expression 

Tuner™ and BL21 (DE3) were prepared in the same way as XL 1-Biue cells, 

except that no antibiotic was added to the culture medium. 

BL21 (DE3) plyss and Rosetta TM cells were prepared in the same way as XL 1-

Biue cells, except that 35mg/ ml Chloramphenicol was added to the Psi Broth. 

2.2.2.3 Preparation of Agrobacterium tumefaciens competent cells 

Preparation of Agrobacterium Tumefaciens strain C58C3 

Agrobacterium tumefaciens strain C58C3 cells were cultured in 5ml LB Broth 
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medium (1 OO~g/ml streptomycin and 25!-!g/ml nalidixic acid), at 30 oc, overnight. 

A mixture containing100!-!1 of the overnight culture was added to 50 ml of 2YT 

medium supplemented with 1 00!-!g/ml of streptomycin and 25!-!g/ml of nalidixic 

acid and incubated at 30 oc with continuous shaking (200 rpm) until 00600 

reached 0.45. The culture was chilled on ice for 15 minutes. Cells were spun 

down at 4000g for 10 minutes at 4 oc and resuspended in 50 ml of 10% (v/v) 

glycerol. The centrifugation step was repeated, but cells were suspended in 

25m I of 10% (v/v) glycerol. Centrifugation and resuspension steps were 

repeated three times, each time the suspension volume was decreased by half. 

Finally cells were resuspended in 0.5ml of 10% (v/v) glycerol, aliquoted into 

eppendorfs, frozen in liquid nitrogen, and stored at -80 °C. 

Preparation of Agrobacterium tumefaciens strain LBA4404 

Agrobacterium tumefaciens strain LBA4404 competent cells were prepared in 

the same way as in 2.2.2.3, except that 1 00!-!g/ml streptomycin and 1 00!-!g/ml 

rifampicin were added to the culture medium. 

2.2.3 Transformation 

2.2.3.1 Transformation of E-coli competent cells 

5IJI of DNA was transferred into 50IJI of freshly thawed XL 1-Biue cells in an 

eppendorf and incubated on ice for 20 minutes. The eppendorf was incubated in 

a 42°C water bath for 40 seconds and then chilled on ice for 2 minutes. 0.8 ml 

of LB Broth was added to the eppendorf tube and cells were incubated at 3rC 

for 1 hour. The cells were plated on a LB agar plate containing selection 

antibiotics and incubated at 3rC for 18 hours. 
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2.2.3.2 Transformation of Agobacteria strains 

2 1-11 of DNA was added to 40 IJI of thawed Agrobacterium tumefaciens 

competent cells and mixed gently on ice. The cells were transferred to a chilled 

electroporation cuvette and electroporated at 1440 Volts, 1 pulse. 1000 IJI of 

chilled 2YT was added to the cells in the cuvette and transferred into an 

eppendorf. The cells were allowed to recover at 30°C with shaking at 225-250 

rpm for 3 hours, and then the cells were spun down at 5000 xg for 4 minutes. 

The pellet was resuspended in 1001-11 of LB Broth and plated on a LB agar plate 

supplemented with the appropriate selection markers. The plates with 

transfomred bacteria were incubated at 30°C for 48 hours. 

2.2.3.3 Transformation of tobacco BY -2 suspension cells 

4ml of a 3 day old tobacco BY -2 suspension culture was aliquoted into a 9cm 

sterile Petri dish. Then 1001-11 of Agrobacterium Tumefaciens LBA4404 overnight 

culture (ODsso reached 0.45) containing the desired construct was inoculated 

into the Petri dish. BY2 cells and agrobacterium were co-cultured for 42-48 

hours at 26oC in the dark on a flat surface. Then the mixture was transferred 

into a 15ml tissue culture tube. BY-2 cells were washed by gentle pipetting with 

5ml of BY-2 medium. The tissue culture tubes were centrifuged at 4,000 xg for 5 

minutes. The supernatant was discarded and this washing was repeated 5 more 

times. After washing, BY2 cells were resuspended in 10 times cell volume of 

fresh BY2 medium and 1 ml of the suspension was then spread onto a 9 mm 

Petri dish containing solid BY2 medium supplemented with 5001Jg/ml 

carbenicillin and 200 1-lg/ml of kanamycin. The plate was sealed with parafilm 

and incubated for 15-20 days at 26°C in the dark until the colonies appeared. 

The colonies were transferred into a sterile 25 compartment square Petri dish 

containing solid BY2 medium supplemented with 200 1-lg/ml of kanamycin. 
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2.2.3.4 Transformation of Arabidopsis plants 

Arabidopsis thaliana var. Columbia plants were planted in 3.5" pots (6 plants 

per pot) with a plastic mesh placed over the soil. Plants were grown for 4 weeks 

until they were approximately 10-15 em tall and displaying a number of 

immature, unopened buds. Agrobacterium tumefaciens strain C58C3 containing 

the desired construct was grown for 48 hours at 30°C in 200ml LB Broth (OD60o 

reached 0.8) (100j.Jg/ml kanamycin, 25j.Jg/ml nalidixic acid, 100j.Jg/ml 

streptomycin). After centrifugation at 5000 xg for 4 minutes, the bacterial cell 

pellet was resuspended in 1 litre of a freshly made 5% (w/v) sucrose solution. 

The plants were dipped fully into the bacterial suspension and gently agitated 

for 10-15 seconds. After that the dipped plants were placed into transparent 

bags overnight to maintain the high humidity level. The following day, the plants 

were removed from the bags and placed in the greenhouse to grow. The 

dipping procedure was repeated 7 days after the first dipping. Seed were then 

collected from individual pots, sterilized and germinated on 1/2 MS10 agar with 

an appropriate antibiotic selection. 

2.2.4 Protein analysis method 

2.2.4.1 Extraction and purification of recombinant proteins 

2.2.4.1.1 Expression of His-tagged proteins in E-co/i cells 

DNA fragments encoding the required protein were cloned into the expression 

vector-pET28-a, downstream of the sequence encoding six Histidine residues. 

The final plasmids were then transformed into E-coli BL21 strains and His­

tagged proteins were expressed. The bacterial cells were grown overnight in 

4ml LB broth media supplemented with the appropriate selection markers. The 

following day, the overnight culture was inoculated into the 2 litre culture and 

grown at 3rC with shaking at 200 rpm. When the culture OD6oonm reached 0.45, 
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expression was induced by adding IPTG to 1 mM. The culture was further 

incubated at 3rc with shaking at 200 rpm for two hours. 

2.2.4.1.2 Preparation of the Ni2
+ affinity column 

2m I of Ni2+ -NTA-Agarose chromatography resin was transferred to a column. 

The resin was washed with 3 column volumes of sterile H20 and equilibrated 

with 3 volumes of protein extraction buffer (50 mM NaH2P04, pH8.0, 300 mM 

NaCI, 5 mM J3-mercaptoethanol). 

2.2.4.1.3 Extraction of soluble proteins 

Bacterial cells were pelleted by centrifugation at 5,000 xg for 1 0 minutes. The 

cell pellet was suspended in protein extraction buffer (50 mM NaH2P04, pH8.0, 

300 mM NaCI, 5 mM [3-mercaptoethanol) supplemented with protease inhibitors 

(1 mM PMSF, 10 Jlg/ml of leupeptin and 10 Jlg/ml pepstatin A) and incubated on 

ice for 2 hours. Bacterial cell wall was disrupted by sonication with the Soniprep 

150 (MSF, UK). 10 pulses were given at amplitude of 26 Jlm; the length of each 

pulse was 1 s/ml of extraction buffer). Bacterial lysate was centrifuged at 30,000 

xg or 15 minutes and filtered through 0.2Jlm nitrocellulose membrane. Then 

protein extract was applied to the column containing Ni-NTA agarose resin 

(Quiagen, UK) and mixed with the resin for 15 minutes. The columns were 

washed three times with each 20 mM imidazole; 40mM imidazole; 60mM 

imidazole in the bacterial protein extraction buffer. The specifically bound 

proteins were eluted with 200 mM imidazole and proteins were dialysed against 

MTSB buffer (0.1 M PIPES, pH6.8, 2 mM EGTA, 2 mM MgS04, 2 mM OTT, 50 

mM NaCI and 10% glycerol). 

2.2.4.1.4 Extraction of insoluble proteins 

The procedures were the same as in 2.2.4.1.3 except that 6M urea was added 

into the protein extraction buffer (50 mM NaH2P04, pH8.0, 300 mM NaCI, 5 
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mM f3-mercaptoethanol), 4M urea was added into 20 mM imidazole wash buffer, 

3M urea was added into 40mM imidazole wash buffer, and 2M urea was added 

into 60M imidazole wash buffer, and 2 M urea was added into 200 mM 

imidazole elution buffer. 

2.2.4.1.5 Protein refolding 

Proteins were refolded by dialysis against buffer containing 15mM PIPES, 

pH7.0, 50mM NaCI , 2mM MgCiz, 20% (v/v) glycerol, 5mM DTT, 0.05% (v/v) 

Tween 20 at 4°C, overnight. 

2.2.4.2 Polyacrylamide gel electrophoresis 

2.2.4.2.1 Preparation of 15% (w/v) polyacrylamide gel 

SDS gel contains two parts: the stacking gel (30% (v/v) protogel (30% (w/v) 

acrylamide, 0.8%(w/v) bisacrylamide), 10% (w/v) SDS, 0.25M Tris-HCI, 10% 

(w/v) APS, 1 OJJ.I TEMED, add HzO to 2.5ml), the separation gel (30% (v/v) 

protogel (w/v), 10% (w/v) SDS, 0.75 M Tris-HCI, 10% (w/v) APS, 5JJ.I TEMED, 

add H20 to 7ml). The percentage of gel used depends on the size of the 

protein to be resolved. 

2.2.4.2.2 One dimensional polyacrylamide gel electrophoresis (1 D PAGE) 

The protein samples were mixed 1:1 with two time's concentrated sample 

loading buffer (0.125 M Tris-HCI, 20% (v/v) glycerol, 10% (v/v) f3-

mercaptoethanol). Protein was denatured by heating at 95oc for 3 minutes. 

The SDS gel was placed in the gel electrophoresis chamber and filled with 1 X 

running buffer. Then the protein maker and samples were loaded in the gel 

lanes. The electrophoresis was run at 20 rnA until the dye front reached the 

bottom edge. The protein was visualized by staining gel for 30 minutes at room 
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temperature with Coomassie Brilliant Blue solution (25% (v/v) EtOH, 7% (v/v) 

Acetic acid, 0.25% (w/v) coomassie brilliant blue R-250). The gel was then 

distained in solution containg 25% (v/v) EtOH and 7% (v/v) Acetic acid. 

2.2.4.3 Western blotting 

Protein was transferred from the SDS-PAGE gels onto 20f..lm pore size 

nitrocellulose membrane (BDH Electran) at 20 V electric current onvernight or 

alternatively at SOY for 2 hours using the liquid protein blotting system. The 

transfer buffer contained 38mM Glycine, 48mM Tris, 0.037% (v/v) SDS, 20% 

(v/v) methanol. The efficiency of the transfer was checked by staining the 

membrane with amido black solution (0.01 %( w/v) naphtol blue black in 0.01% 

(v/v) acetic acid). The membrane was destained by washing in distilled water 

and then air dried. 

2.2.4.4 Colloidal silver staining of proteins on nitrocellulose membranes 

Nitrocellulose membrane with proteins was washed intensively in distilled water 

for 30 minutes. Then the membrane was incubated in colloidal silver solution 

containing 2% (w/v) HOC(COONa)(CH2COONa)2.2H20, 0.8% (w/v) FeS04.7H20, 

and 0.2% (w/v) AgN03 for 1-2 minutes. Membrane was washed in distilled 

water and air-dried. To increase the contrast, the membrane was treated with 

photographic fixing solution when required. 

2.2.4.5 Microtubules co-sedimentation assay 

Pig brain tubulin was rapidly defrosted from -Boac to 4 oc using a 42 oc heating 

block. Then it was transferred onto ice immediately. Both tubulin and 

recombinant proteins were centrifuged at 150,000 xg for 15 min at 2°C to 

remove any aggregates. For the assays with non-stabilised microtubules, 

tubulin at a concentration of 20 f.!M was mixed with the specified concentration 
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of recombinant proteins, incubated at 32oC or 1 oc for 15 min and centrifuged at 

100,000 xg for 15 min (Backman TLX ultracentrifuge, rotor TLA 120.1 ). The 

supernatant was collected and the pellet was washed and resuspended in 80S­

PAGE sample buffer. For the experiments with stable microtubules, 

microtubules were polymerised with 10 ~M taxol, mixed with recombinant 

proteins, incubated for 10 min at 32oC and centrifuged at 1 00 000 xg for 15 min 

at 32°C. In all the negative controls, i.e. when the microtubules were not added 

to the proteins, the reaction mixture was supplemented with MTSB buffer 

containing 10 ~M taxol. 

2.2.4.6 Tubulin polymerization assay 

Pig brain tubulin was used at a concentration of 20 ~M in all assays. The blank 

was set up with the cuvette containing tubulin in MTSB alone. Then GTP was 

added up to a final concentration of 1 mM followed by recombinant AtMAP65-1, 

mutants or Fragments 1-4. The turbidity was monitored at 350 nm and at 32°C 

on a Helios beta spectrophotometer equipped with Unicam Peltier temperature 

control unit (Thermospectronic, UK). 

2.2.5 Fixation and microtubule staining in BY2 tissue culture cells 

BY2 suspension culture cells were separated form the tissue culture medium 

using 100 ~m mesh nylon cloth and fixed for 30 min at room temperature with 

4% (v/v) paraformaldehyde in 0.1 M PIPES, pH 6.8, 5 mM EGTA, 2 mM MgCI2, 

and 0.4% (v/v) Triton X-100. The fixative was washed away with PBS buffer and 

cells were treated for 5 min at room temperature with a solution of 0.8% (w/v) 

Macerozyme R-10 and 0.2% (w/v) Pectolyase Y-23 in 0.4 M mannitol, 5 mM 

EGTA, 15 mM MES, pH 5.0, 1 mM PMSF, 10 1-1g/ml leupeptin and 10 ~g/ml 

Pepstatin A. Then the cells were washed in PBS buffer and attached to poly-L­

Iysine coated coverslips. The coverslips were then incubated for 30 min in 1% 
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(w/v) bovine serum albumin in PBS and incubated for 1 hour with primary 

antibody. The primary antibodies used were: rabbit anti-AtMAP65 diluted 1 :500 

and mouse anti-tubulin DM1A diluted 1:200 (Sigma). The specimens were then 

washed 3x1 0 min in PBS and incubated for 1 hour with secondary antibodies: 

goat anti-mouse TRITC conjugates and anti-rabbit FITC conjugates; both 

antibodies were diluted 1 :200. After washing in the PBS buffer, the specimens 

were mounted in Vectashied (Vector Laboratories) mounting medium and 

examined with a Zeiss 510 confocal microscope. 

2.2.6 Laser scanning confocal microscopy (LSCM) 

Time lapse images were obtained by confocal laser scanning microscopy (Zeiss 

510). 

2.2.7 Measurement of the dynamics of NtMAP65-1a using FRAP 

For taking the static NtMAP65-1 a: GFP images, 7 day old Arabidopsis 

seedlings were collected from the agar plates and mounted in distilled water. 

For FRAP or time lapse studies, seedlings were partially immobilised by 

mounting in 1% (w/v) low gelling temperature agarose and observed 

immediately. BY-2 tissue culture cells were mixed with an equal volume of 1% 

(w/v) low gelling point agarose (Sigma, Dorset, UK) solution in BY-2 medium. 

The samples were observed using a Zeiss 510 inverted confocal microscope 

with the Argon/Crypton laser equipped with a 488 nm excitation filter and a 514 

nm emission filter. The laser power was 6% maximum for the samples 

expressing both GFP: NtMAP65-1 a and GFP: AtMAP65-1. The recovery of the 

fluorescence signal was measured during 20 minutes of the sample's lifetime. 

For the statistical analysis of the FRAP data, the background value was 

measured outside the photobleached region and subtracted from the 

experimental FRAP values. The data collected from numerous cells (the 

__::_ . ..: ___ ____:__.:_~-~- ------=-:~--~----- -· 
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number is indicated for each of the experiments) were averaged and normalised 

by division by the mean value. The level of recovery was expressed as 

percentage of the fluorescence before photobleaching. 

To calculate the time of 50% signal recovery, t112. the FRAP curve from each of 

the experiments was fitted to an exponential recovery curve: F (t) = Foo- (Foo-Fo) 

e-1 kOFF (Bulinski et a/., 2001 ), where F0 is the fluorescence after the 

photobleaching, Foo is the fluorescence when the recovery reached the plateau 

stage, t is time and koFF is the first-order rate constant that describes the rate of 

recovery. The curve fit and calculation of koFF was done with Abscissa software 

version 3.2.1 (http://iapf.physik.tu-berlin.de/DZ/bruehl/). The t112 was calculated 

as ln(2)/koFF· 

2.2.8 Maintenance of cell cultures and calli 

Cells of Nicotiana tabacum L. cv. Bright yellow 2 (BY2) were maintained in 

liquid medium (30 g/1 of sucrose, 4.3g/l Murashige and Skoog salts, 1 OOmg/ml 

inositol, 1 mg/1 thiamine, 0.2mg/ml 2,4-dichlorophenoxyacetic acid, 225mg/l 

KH2P04 , pHS) on a shaker at 25°C. Cells were subcultured weekly (1 :80) in to 

new medium. Calli were maintained on solid medium (contain in 0.7% (w/v) 

agarose) at 25°C and subcultured monthly. Transgenic lines had 200J.!glml 

kanamycin added to the medium or agar. 

2.2.9 Arabidopsis seed sterilization 

Arabidopsis seeds were immersed in 10% (v/v) sodium hypochlorite solution for 

1 0 minutes and washed with distilled water three times. 
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2.2.10 Microtubule protein preparation 

Miniprotoplast were prepared as described previously (Sonobe 1990; Jiang et 

a/., 1992) with slight modifications. To prepare protoplast, BY-2 cells of about 

320g were incubated in an enzyme solution (1.5% (w/v) Sumizyme C, 0.15% 

(w/v) Sumizyme AP2 (Shin-Nihonkagaku Industries Ltd., Anjo, Japan), 0.45 M 

mannitol, pH 5.5) at 30 ac for 90 min. To prepare miniprotoplast, protoplasts 

were suspended in 400 ml of Percoll solutoin (30% Percoll (Pharmacia LKB 

Biotechnology AB, Uppsala, Sweden) supplemented with 20 mM MgCI2 and 0. 7 

M mannitol, pH7.0) and centrifuged at 12,000 xg for 45 min. Miniprotoplasts 

were collected from the lower most layer and washed twice with a cold 0.6 M 

mannitol solution. 20g of miniprotoplasts were suspended in 60 ml of an ice­

cold extraction buffer (50 mM PIPES, pH7.0, 20 mM EGTA, 2 mM MgCI2, 25 

f.lg/ml leupeptin, 1 mM PMSF, 2 mM DTT) and homogenized by an ultra sonic 

disrupter (ULTRASONIC DISRUPTER UD-201, Tomy Co. Ltd., Japan) on 

output 4, duty 50. The homogenate was centrifuged twice at 408,000 xg for 15 

min at 2 ac. Resultant supernatant was used as a cytoplasmic extract. To 

polymerize tubulin, 20 f.!M taxol was added to the cytoplasmic extract and 

microtubule proteins were collected by centrifuged at 100, 000 xg for 10 min. 

Microtubule protein were resuspended in a depolymerizing buffer (25 mM 

PIPES, 1 mM CaCI2, 0.4 M KCI, 2 mM GTP, 2 mM DTI, 1 mM PMSF, pH7.0) 

and incubated on ice for 60 min. The suspension was centrifuged at 163,000 xg 

for 15 min. The supernatant containing tubulin and MAPs was dialyzed against 

tubulin dialysis buffer (25 mM PIPES, 5 mM EGTA, 2 mM MgCI2, 50 MM NaCI, 

2mM DTI, 1mM PMSF, 0.1M GTP, pH7.0). 

2.2.11 Phosphorylation assay 

The reaction was started by adding the assay buffer (20 mM Hepes, PH7.5, 

15mM MgCI2 , 5 mM EGTA, 1 mM DTT, 0.5 mg/ml histoneH1 (SIGMA type Ill), 
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and 2 ~Ci of [f32P]ATP). The reaction was incubated at room temperature for 

30 min and was terminated by the addition of 5J.tl of 4x SDS sample buffer. The 

samples were analyzed by SDS-PAGE and subsequent autoradiography. 

60 



Chapter 3 

Chapter 3 

Dynamic interaction of MAP65-1 with microtubules in vivo 

3.1 Introduction 

The MAP65-1 group of proteins belongs to the MAP65-1 protein family (Figure 

1.3) and forms a separate clade in the phylogenetic tree. Tobacco NtMAP65-1a 

decorates microtubules in the interphase cortical array, the preprophase band 

(PPB), the anaphase spindle and the phragmoplast. Interestingly, 

immunostaining data shows that there is specific localization of NtMAP65-1 a to 

the anaphase spindle midzone and the phragmoplast midline (Smertenko eta/., 

2000). Localization data suggests that NtMAP65-1 crosslinks anti-parallel 

microtubules (Smertenko et a/., 2000). However, the dynamics of MAP65 

binding to microtubules and its redistribution during the cell cycle progression 

remains unknown. In this chapter, both GFP: NtMAP65-1 a and GFP: AtMAP65-

1 were constructed and expressed alternatively in tobacco BY -2 cells and 

Arabidopsis thaliana plants to test their functional conservation. The localization 

of GFP: NtMAP65-1a and GFP: AtMAP65-1 was recorded using a confocal 

microscope. Time-lapse images of GFP signal were taken throughout the cell 

cycle in tobacco BY2 cells. Decoration of microtubules was observed in 

Arabidopsis plants. 

Plant microtubules undergo dynamic reorganization through the cell cycle and 

in response to internal and external stimuli (Nick, 1998, Hussey, 2004). The 

dynamics of plant microtubules both in vitro (Moore et a/., 1997) and in vivo 

(Hush eta/., 1994; Shaw eta/., 2003) have been shown to be higher than the 

dynamics of animal microtubules. The major microtubule protein is a 

heterodimer of a~ tubulin and the structure of the tubulins shows a high degree 
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of conservation across phylogeny (Burns and Surridge, 1994). The difference in 

the dynamic properties of plant and animal microtubules in vitro has been 

suggested to arise as a result of small differences in tertiary structure of the 

dimer arising from the small number of residue differences between animal and 

plant tubulins (Moore eta/., 1997). In animals, numerous structural microtubule 

associated proteins (e.g. tau, MAP1, MAP4) that are not present in plants 

modulate dynamics (Kreis and Vale, 1993), but so far no plant structural MAP 

has been shown to affect microtubule dynamics (Lloyd eta/., 2004). 

In this chapter, the interaction of the GFP fused MAP65s with microtubules has 

been studied in vivo using the fluorescence recovery after photobleaching 

(FRAP) method. The turnover of the NtMAP65-1a and the AtMAP65-1 

microtubule interaction is faster than microtubule treadmilling and faster than 

other known structural MAPs from animals. Analysis of the FRAP data suggests 

that MAP65-1 proteins translocate randomly along microtubules. All together, 

these data suggest that the properties of NtMAP65-1 a (AtMAP65-1) make it 

ideal for temporally crossbridging microtubules in dynamic microtubule arrays 

so that their spatial organisation is maintained. 

3.2 Localization of MAP65-1 in tobacco BY2 cells andl 

Arabidopsis plants 

3.2.1 Preparation of GFP fusions with NtMAP65-1 a and 

AtMAP65-1 

Full length red-shifted soluble modified GFP was subcloned into the Not I and 

Xho I sites of the pGreen II vector. A linker (Pro Ala Gin Ala Gin Ala Gin Ala Gin 

Ala Gin Ala Ser) was constructed between the GFP and the insertion 

sequences. Then full length NtMAP65-1 a (Smertenko et a/., 2000) or AtMAP65-

1 (Smertenko et al., 2004) was sub-cloned downstream of GFP into the Sal I 
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and the Xbal or the Xhol and the EcoRI sites respectively (Fig.3.1 ). The 

sequences of GFP and NtMAP65-1 a or AtMAP65-1 chimeras and their linker 

region in the pGreenll vector were confirmed by sequencing. Gene expression 

was under the control of the constitutive cauliflower mosaic virus (CaMV) 35s 

promoter. 

The constructs were co-transformed with pSOUP vector into Agrobacterium 

tumefaciens strain C58C3 for the transformation of Arabidopsis thaliana plants 

and into LBA4404 for the transformation of tobacco BY -2 cells. Arabidopsis 

plants were transformed using the floral dipping method (Clough and Bent, 

1998) and BY-2 cells were transformed by the co-incubation method (Geelen 

and lnze', 2001). The seeds were geminated on 1/2 MS basic salt medium 

supplemented with 7.5% agar and 50 mg/1 of kanamycin at 23 oc and 14 hours 

day/10 hours night light cycle. BY-2 cell transformants were selected on 

medium containing 200 mg/1 of kanamycin and 500mg/l carbenicillin. The 

kanamycin-resistant colonies expressing GFP-NtMAP65-1a were subcultured 

and maintained in liquid medium containing 200 mg/1 of kanamycin. 

3.2.2 Localization of GFP: NtMAP65-1 a and GFP: AtMAP65-1 in 

BY2 cells 

Comparison of the wild type BY2 lines with cell lines expressing GFP: 

NtMAP65-1a or GFP: AtMAP65-1 showed no differences in cell growth and 

morphology. Therefore, overexpression of the GFP: NtMAP65-1a or GFP: 

AtMAP65-1 fusion proteins had no prominent effect on cell growth or 

proliferation. Five kanamycin-resistant lines were checked under the confocal 

microscope. All lines showed GFP signals associated with the microtubule 

cortical array, the preprophase band, the anaphase spindle, and the 

phragmoplast, but not with the metaphase spindle. Intriguingly, NtMAP65-1a 

was found to be concentrated at the anaphase spindle midzone and the 
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Figure 3.1 Schematic diagram of the GFP-NtMAP65-l a 
and GFP-AtMAP65-l constructs. 

Nos·Kan 3 5 SPI'omotel' GFP AtMAP65-l 

(A) Schematic diagram ofGFP-l\tMAP65-1 construct. 
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phragmoplast midline, an area where anti-parallel microtubules overlap, 

suggesting that MAP65 crosslinks these anti-parallel microtubules and 

maintains phragmoplast organization (Fig 3.2). Time-lapse images showed the 

relocation of GFP: NtMAP65-1a through different stages of the cell cycle 

(Fig3.3). Here a cell was imaged from the end of the G2 phase to the end of 

cytokinesis. The preprophase band forms around the nucleus during the G2 

phase and highlights the beginning of mitosis. The preprophase band 

decoration by GFP: NtMAP65-1 a first narrows and later gradually disappears, 

while most of the GFP signal remains mainly cytoplasmic. After nuclear 

envelope breakdown, the GFP signal is localized around condensing 

chromosomes, but still shows no binding to the microtubules of the 

prometaphase/metaphase spindle. However, during anaphase, a very bright 

GFP signal is detected in the midzone of the anaphase spindle and this 

persisted during phragmoplast formation. The signal weakens and then 

completely disappears during phragmoplast development and cell plate 

synthesis. Figure 3.2 0 (82-132 seconds) shows an apparent concentration of 

GFP:NtMAP65-1 a in the midzone at the early stages of phragmoplast formation; 

later the GFP signal is broadly distributed along phragmoplast microtubules 

(Figure 3.20, 224 seconds) and eventually disappears from the cell plate region 

when microtubules disassemble (Figure 3-20, 398 seconds). The cell plate has 

formed by this time and the phragmoplast has started to disassemble. The 

entire GFP signal is now located around the divided daughter nuclei and is 

detectable on the perinuclear microtubule array and on the reappearing 

transverse cortical microtubules. The localization of GFP: NtMAP65-1 during 

cell division is very similar to MAP4: GFP or tubulin: YFP, except that GFP: 

NtMAP65-1 does not decorate the prophase spindle and the metaphase spindle 

and accumulates in the midzone of the anaphase spindle and phragmoplast. 

Five BY2 cell lines transformed with GFP: AtMAP65-1 were selected on 

kanamycin plates. The localization of GFP (see supplementary information 
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Fig 3.2 GFP-NtMAP65-la decorates MT arrays throughout the 
cell cycle. GFP-NtMAP65-l fusion protein was expressed in 
tobacco BY-2 cells under the the control of the 35S promotor. 
(A)Cortical microtubule array in interphase cells 
(B)Preprophase band 
(C)Metaphase mitotic spindle; decoration is absent 
(D)Phragmoplast (Numbers indicate the time in seconds) 
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Figure 3.3 Time -lapse images ofGFP-NtMAP65-la throughout cytokinesis in 
BY-2 cells. The BY2 cell expressed GFP-NtMAP65-Ia (arrow) was recorded from the 02 
phase to the end of M phase. The image at 0 min showed the decoration of preprophase 
band. The PPB was narrowing down to a concentrated band and the signal broke down, 
MAP65-la does not bind to MTs. At 96 min, a very strong GFP signal was observed in the 
middle of the dividing plane, in which the anaphase spindle mid zone was marked. At 104 
min, phragmoplast was formed and expanded centrifugually toward the cell wall. At 128 
min, phragmoplast disassambled and cytokinesis terminated. MAP65 was found around the 
newly formed nuclei. 



Figure 3.4 GFP: AtMAP65-ldecorates MT 
throughout the cell cycle in BY2 cells. 
The GFP: AtMAP65-l construct was cloned into 
pGreen II vector and then trasnformed intoTobacco 
BY-2 cells via Agrobacterium. The fusion protein were 
expressed under the control of the CaMV 35s promotor 
in BY2 cells. (A)lnterphase cortical mictubule array (B) 
Preprophase band (C)Metaphase,GFP: AtMAP65- l 
did not decorate metaphase spindle (D)Anaphase spindle, 
(E)GFP: AtMAP65-l shows a strong singal in the centre 
of the anaphase spindle (F) Phragmoplast, the cell plate 
was fonned in the middle of the phragmoplast. 
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movie 1) in these lines during different stages of the cell cycle was the same as 

GFP: NtMAP65-1 a, except that NtMAP65-1 a decorated a broader region in the 

phragmoplast midzone. The similarity of their localization in BY2 cells also 

suggests that AtMAP65-1 and NtMAP65-1 are functionally conserved. 

3.2.3 Localization of GFP: NtMAP65-1 a and GFP: AtMAP65-1 in 

Arabidopsis seedlings 

Four kanamycin-resistant plant lines for each GFP: NtMAP65-1a and GFP: 

AtMAP65-1 construct were analyzed. The fusion proteins decorated 

microtubules in leaves, hypocotyl cells, lateral roots, root hairs, and root tips in 

seven day old seedlings (Fig 3.6, Fig 3.7). The GFP: NtMAP65-1a and GFP: 

AtMAP65-1 showed a similar decoration of microtubules in the Arabidopsis 

plants. This shows the conservation in their functions again. Interestingly, the 

microtubule arrays, which include the cortical microtubule arrays, the PPB, the 

phragmoplast, can all be observed clearly in the root tips. The development of 

Arabidopsis plants was not affected by the expression of GFP-NtMAP65-1 a 

fusion proteins. The second generation also germinated normally and no 

obvious phenotype was observed (Figure 3.5). Therefore, these plants can be 

used for investigation of MAP65-1 activity in different plant organs and tissues. 

Although the 35S promoter was used to drive the expression of GFP: NtMAP65-

1 a, most of the root cells show no or very weak decoration of cortical 

microtubules in the root elongation zone. For example, in the root extension 

zone, GFP: NtMAP65-1 a did not decorate cortical microtubules, but instead 

formed aggregate in the cells (Figure 3.7E). This suggests that the interaction 

between microtubules and GFP: NtMAP65-1a is very weak or that GFP: 

NtMAP65-1 is degraded in these cells. A similar result has been reported for 

Azuki bean, when MAP65 protein expression and interaction with microtubules 

was found to be higher in the cell with higher growth activity and lower in the 
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Fig 3.5 Comparision of wild type with GFP: AtMAP65-1 and 
and GFP: NtMAP65-la Arabidopsis line. 20 days Arabidopsis plants 
grown on 1/2 MS agar medium (contains I% sucrose). No difference was 
found between wild type, GFP: AtMAP65-l , and GFP: NtMAP65-l a 

lines. 



Fig 3.6 Localization of GFP:NtMAP65-1a in Arabidopsis seedlings. GFP:NtMAP65-1a fusion 
proteins were expressed and decorated MTs in 12 day Arabidopsis seedlings. (A) Root tip 
(B) Lateral root (C) Lateral root tip (D) Hypocotyle cells (E) Leaf epidermic cells (F) Trichomes 



Figure 3.7 Localisation ofGFP-AtMAP65-1 in Arabidopsis seedlings. 
(A) Leaf epidermal cells(B) Hypocotyl (C) Hypocotyl 
(D) HypocotyVroot (E) Root (F) Primary root tip 
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cells with lower growth activity (Masahide et a/., 2000). In young proliferating 

cells (leaf epidermal cells, apical cells, primary root tip, and lateral roots), the 

decoration of microtubules by GFP: MAP65 protein was strong, while in other 

tissues e.g. root extension zone, the MAP65 binding to microtubules was weak 

or absent. These results suggest that regulation of MAP65 binding to 

microtubules is tissue specific or that the promoter does not express to the 

same level in each cell type. 

3.3 Interaction of NtMAP65-1 a and AtMAP65-1 with 

microtubules in vivo 

3.3.1 Interaction between NtMAP65-1a and microtubules is 

dynamic 

The Arabidopsis lines expressing GFP: NtMAP65-1a were used to study the 

dynamics of the MAP-65 interaction with microtubules in vivo by fluorescence 

recovery after photobleaching (FRAP). The FRAP method usually involves 

marking the protein of interest with a specific fluorescent group. This can be 

done either with a fluorescent ligand such as FITC or TRITC coupled to the 

protein in vitro and then microinjected into the cell or by expression of a protein 

linked to GFP. The fluorescent group is then bleached in a small area by a laser 

beam, and the time taken for proteins carrying an unbleached ligand or GFP to 

diffuse into the bleached area is measured. Here, GFP: NtMAP65-1 expressing 

tissues were tested. Root, cotyledon and hypocotyl cells were assessed for their 

suitability for these experiments. Hypocotyl epidermal cells were chosen as 

these have a very low level of autofluorescence and because of their large 

flattened shape many microtubules could be observed in a single focal plane. 

Moreover, they are easily immobilized in low gelling temperature agarose. For 

the FRAP experiments, a narrow patch of the cell containing several GFP-
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fluorescing microtubules (Figure 3.8) was bleached with a laser pulse and the 

time required for the recovery of 50% of the signal (h,2) was estimated. This t1,2 

value represents the time taken for half of the GFP: NtMAP65-1 to be replaced 

and therefore a numerical estimation of the protein turnover. The selected area 

(outlined as a white rectangle in Figure 3.8A) was bleached for approximately 

4.8 seconds. Subsequently, images were collected every 3.6 seconds (Figure 

3.8 B) and the intensity of the GFP signal in the selected area was measured 

and plotted against time (Figure 3.8 C). The t112 for the GFP: NtMAP65-1a was 

found to be 8.96 seconds (Number of cells analyzed for this value n=24). 

Considering the fact that tubulin:GFP in similar experiments has a t112 of 58.95 

seconds (Table 3.1), these data demonstrate that the GFP:NtMAP65-1a signal 

recovers faster then GFP: tubulin, hence the exchange of GFP:NtMAP65-1a on 

the microtubule surface must be independent of microtubule treadmilling. As a 

further comparison the t1,2 of another GFP chimera that interacts with 

microtubules in vivo, MAP4: GFP, was determined and found to be 2.91±0.21 

seconds (n=20). 

3.3.2 MAP-65 molecules interchange at any site along the 

length of the microtubule. 

So far our data suggest that the rate of GFP: NtMAP65-1a turnover in its 

association with microtubules is not dependent on microtubule treadmilling (as 

this rate is much faster than microtubule treadmilling). Therefore the signal may 

recover as the result of either active transport of MAP-65 along microtubules or 

the exchange of the MAP-65 molecules randomly along the length of the 

microtubules. To address these possibilities we examined the pattern of GFP: 

NtMAP65-1 a recovery. A total of 18 microtubules were photobleached in 

different cells and their recovery monitored (shown for a representative 

microtubule in Figure 3.9). The microtubule recovers completely in 30 seconds 

after photobleaching (Figure 3.9A and B) indicating that this is sufficient time for 
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Figure 3-8. Recovery ofGFP: NtMAP65-1a signal after photobleaching. 
A, The GFP:NtMAP65-I a signal in the hypocotyl of Arabidopsis 7 day old 
seedlings. The white rectangles outline the photobleached area. B.Time series 
(top to the bottom) of GFP:NtMAP65-I a signal recovery during a FRAP 
experiment within the area indicated by the rectangle in A. The numbers on 
the right hand side indicate the time in seconds when each of the frames was 
collected with 0 corresponding to the image before the photobleaching onset 
and 4.766 just after the photobleaching. C, Fluorescence recovery after 
photobleaching. The first measurement was taken just before the 
photobleaching and corresponds to point 0. The grey sector represents the 
duration of photobleaching, then 14 images were collected and measured at 
approximately 4.14 seconds intervals. The fluorescence signal was measured 
in 24 cells and expressed as the percentage of the signal before photobleaching. 
The error bars indicate standard deviation of the mean. 



Table 3.1. Analysis of the FRAP data. The dissociation constants korr and t112 were 
estimated for GFP fusions in various cell types and at various cell cycle stages. 
'N' column shows the number of cells analysed in each experiment and the' Bound' 
column shows the fraction of NtMAP65-la:GFP initially bound to the microtubules, 
expressed as percentages of total fusion protein. 

Cell type koll 
I t1,, (s) N koll2 Bound(%) 

NtMAP65-la 
Interphase Hypocotyl 0.077 8.96±0.85 24 
Interphase BY-2 0.100 6.95±0.91 23 0.094 80.7 
PPB BY-2 0.117 5.92±0.64 19 0.083 85.8 
Metaphase BY-2 0.960 0.72±0.21 23 nd5 nd5 

Phragmoplast BY-2 0.146 4.83±0.64 20 0.117 75.0 
Oryzalin BY-2 0.402 1.71±0.24 23 

AtMAP65-l 
Interphase BY-2 0.117 5.93±0.86 20 

MBD-GFP 
Interphase Hypocotyl 0.238 2.91±0.21 20 

Tubulin 
Interphase3 Hypocotyl 58.95 
Interphase• Stamen hair 67±3.3 
Metaphase4 Stamen hair 31.4±6.1 
PhragmoElast4 Stamen hair 60.0±8.1 

1karr estimated by single exponential fit; 2karr estimated by double exponential fit; 
3Shaw et al. 2003; 4Hush et al., 1994; 5Not determined due to values being below the 
threshold for diffusion seen in the oryzalin treated control cells. 
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Figure 3.9 Random recovery ofGFP:NtMAP65-la signal over the microtubule length. 
The fluorescence redistribution after photobleaching 27 sections was measured and an 
example is shown in this figure A, The first measurement was taken just before the 
photobleaching and corresponds to point 0 (the image of the microtubule at this time 
point is represented in the part B point 0). The grey sector represents the duration of 
photobleaching then 35 images were collected and measured at approximately 2.5 second 
intervals. The fluorescence signal on the chart is expressed in arbitrary values. 

B, Time series (left to right) of GFP:NtMAP65-I a signal recovery after photobleaching the 
microtubules shown in A. The numbers at the top of each image indicate time in seconds 

when each of the frames was collected with 0 corresponding to the image before the 
photobleaching onset and 12.0 just after the photobleaching. The images shown follow 
the microtubule to complete recovery and this occurred after 34.5 seconds. 

C, The chart showing changes in time (x axes) of the distribution of the fluorescence 
signal (z axes) along the length of the microtubule (y axes) shown in A and B. The signal 
intensity is expressed in arbitrary values. 
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the exchange of most, if not all, of the attached GFP: NtMAP65-1 a molecules. 

Moreover, the intensity of the GFP: NtMAP65-1a signal along the length of the 

microtubule at each time point was measured (Figure 3.9C). The results show 

that the signal recovers randomly suggesting that GFP: NtMAP65-1a is 

exchanged along the microtubule length rather than actively moved along the 

microtubule, possibly by sliding or by another motor driven transport. 

3.3.3 Interaction of MAP65 with microtubules during mitosis. 

In this chapter, the interaction of NtMAP65-1a with the microtubules has been 

analysed during the cell cycle in BY-2 cells using FRAP on the tobacco cell 

lines expressing GFP: NtMAP65-1a (Table 3.1). The t112 was found to be similar 

for interphase microtubules (6.95±0.91 s, n=23) and for microtubules in the 

preprophase band (5.92±0.64 s, n=19). In the phragmoplast midzone the t112 

was slightly faster (4.83±0.64 s, n=23) than for the cortical arrays. In the 

metaphase spindle the t112 was over two fold lower than in all other arrays 

(2.04±0.18 s, n=20). The recovery time has been compared in the metaphase 

spindle with the recovery time in cells where microtubules were depolymerised 

with the anti-microtubular drug oryzalin. No filamentous structures were visible 

in the majority of the cells following a 2 hours treatment with 1 OJ.1.M oryzalin 

(data not shown). Disruption of microtubules should cause MAP65 to become 

cytoplasmic so only free diffusion of GFP: NtMAP65-1 a can occur. Indeed, the 

t112 value in this case was found to be 2.01±0.14 seconds (n=23). This h12 value 

is very similar to that in the metaphase spindle indicating that in this array the 

majority of the NtMAP65-1 a are not bound to microtubules and do not form 

complexes that can slow its mobility. 

3.4 Conclusions 

The over expression of GFP-NtMAP65-1a or GFP-AtMAP65-1 in BY-2 cells/ 

Arabidopsis thaliana plants did not cause any phenotype and showed similar 
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localization. These results indicate the protein function is conserved between 

NtMAP65-1 a and AtMAP65-1. From the confocal images of GFP-MAP65 in 

BY-2 cells, MAP65-1 was showed to decorate the cortical microtubule array, the 

PPB, the anaphase spindle, and the phragmoplast. The GFP signal was very 

strong in the anaphase spindle midzone and the phragmoplast midline where 

cell plate occurs. These results suggest that MAP65-1 might crosslink the 

microtubules in these structures. Interestingly, prophase spindle and metaphase 

spindle decoration was absent. MAP65-1 seemed cytoplasmic in the prophase 

and metaphase spindle area, and then appeared again in the midzone of the 

anaphase spindle and the phragmoplast. This observation suggests that 

MAP65 I microtubule interaction is regulated in a cell-cycle dependent manner. 

Moreover, the GFP-NtMAP65-1a and GFP-AtMAP65-1 BY2 cell lines didn't 

show any phenotype, which makes them a tool to analyze the dynamics of 

MAP65-1 in vivo. 

The GFP: NtMAP65-1a and GFP: AtMAP65-1 Arabidopsis lines grew normally 

and produced normal seedlings. 7 day old seedlings were observed under the 

confocal microscope. The fusion protein was expressed everywhere in the plant, 

decorating microtubules in the root, root hairs, stem, leaves, and trichomes. 

However, in the root extension zone, instead of decorating cortical microtubule 

array, it showed aggregation in the cells. 

From the FRAP result, the turnover of the NtMAP65-1a and the AtMAP65-1 

microtubule interaction has been found to be faster than microtubule 

treadmilling and faster than other known structural MAPs from animals. The 

FRAP data suggests that MAP65-1 proteins translocate randomly along 

microtubules. The t112 has been measured by FRAP and found to be similar for 

interphase microtubules and for microtubules in the preprophase band. In the 

phragmoplast midzone t112 is slightly shorter than for the cortical arrays. In the 

metaphase spindle t1,2 is over twice as short as in all other arrays. 
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Molecular analysis of AtMAP65-1 microtubule bundling activity 

4.1 Introduction 

AtMAP65-1 (At5g55230) encodes a protein that shows 86% similarity to 

tobacco NtMAP65-1 (Smertenko et a/., 2000). The predicted open reading 

frame encodes a 587 amino acid protein of 65.8kDa molecular weight and a pi 

of 4.72. Full length AtMAP65-1 recombinant protein was purified and tested in 

the microtubule co-sedimentation assay and polymerization assay. To identify 

the microtubule binding domains in AtMAP65-1, AtMAP65-1 eDNA was divided 

into four fragments (Fragment 1, amino acids 1-150; Fragment 2, amino acids 

151-339; Fragment 3, amino acids 340-494; Fragment 4, 495-587). 

Recombinant proteins were then purified and their effect on microtubules was 

analysed in the microtubule co-sedimentation and polymerization assay. To 

investigate the interaction of MAP65 with microtubules in vivo, GFP fusions 

were prepared with Fragment 5 (amino acid residues 1-339), Fragment 6 

(residues 340-587), Fragment 7 (residues 1-496), Fragment 8 (residues 

151-587) and Fragment 9 (residues 151-494). The localization of the proteins 

was analyzed in transformed tissue culture cells. 

The Arabidopsis PLEIADE gene is synonymous with AtMAP65-3, a member of 
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the MAP65 gene family (Figure 1.2) (Muller eta/., 2004). The pleiade mutants 

were originally identified in a screen for root morphology defects (Muller eta/., 

2002). The phenotype of these mutants is orchestrated by enlarged 

multinucleated cells with incomplete cross walls indicating that the defect is in 

cytokinesis (Muller et a/., 2002). Sequencing the genomic DNA of allele p/e-4 

revealed a single point mutation, which causes the substitution of conserved 

alanine 421 for valine (Muller eta/., 2004). This residue is conserved in all nine 

AtMAP65 sequences. In this chapter, this conserved alanine at position 420 in 

AtMAP65-1 was substituted for valine. The A420V mutant protein showed a 

reduced capability in binding microtubules and did not induce bundling of 

microtubules in vitro. It suggests that A420/ A421 is essential for AtMAP65 to 

interact with microtubules. 

4.2 AtMAP65-1 bundles microtubules, but does not promote 

microtubule polymerisation 

The effect of AtMAP65-1 on microtubule polymerisation was assessed using a 

turbidimetric assay. AtMAP65-1 was added to a MAP-free porcine brain tubulin 

solution (final concentration 20 J.lM) at an AtMAP65-1 to tubulin dimer molar 

ratio of 1:2. The turbidity of the mixture was monitored at 350 nm. AtMAP65-1 

induced a dramatic increase in the turbidity of the polymerising microtubule 

mixture compared to the control (Figure 4.1A). These data indicate two 

possibilities: AtMAP65-1 could increase the total amount of microtubule polymer 

or it could induce bundling of assembled microtubules. These processes are not 
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Figure 4.1 AtMAP65-1 bundles microtubules. 
(A) Turbidity ofthe 20 11M tubulin solution (diamonds) and 20 11M tubulin solution after 
the addition of 10 11M AtMAP65-l (squares) or 10 JlM taxol (triangles) monitored at 350 
nm and at 32 ° C.(B) Amount of tubulin sedimented at 100 OOOxg in the presence of 
increasing concentration (0-20 J.lM) of AtMAP65-1(circles) ortaxol (squares). Three 
independent experiments were performed and the error bars show the standard deviation. 
The x axis indicates concentration of taxol or AtMAP65- l .(C) Dark field microscopy 
images ofmicrotubules polymerised in a 20 11M tubulin solution in the absence (panel l) 
or presence (panel 2) of 10 11M AtMAP65-l . Bar= 1 0 J..lm. 
(D)Transmission electron microscopy images of samples from the same experiments in (C) 
. Panel 1 microtubules without AtMAP65-I ; Panel 2 microtubules with AtMAP65-I; the 
inset shows a higher magnification image ofthe microtubule bundle formed in the 
presence of AtMAP65-I . Scale bar corresponds to I 00 nm (inset bar+= 20nm). 
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necessarily mutually exclusive as bundling can also stabilise microtubules, 

resulting in an increase of the total amount of microtubule polymer by 

preventing dynamic instability. To distinguish between these two possibilities, 

microtubules were polymerized in the presence of increasing concentrations of 

AtMAP65-1 and the amount of tubulin that cosediments with the AtMAP65-1 

was analyzed. If AtMAP65-1 increases the total amount of microtubule polymer, 

the amount of tubulin in the pellet should increase proportionally to the point of 

saturation. However, the amount of tubulin in the pellet did not change 

significantly across the AtMAP65-1 range of 0 to 20 11M (Figure 4.1 B). Taxol, a 

microtubule stabilising agent and capable promoter of microtubule 

polymerisation, also increases the turbidity of the tubulin solution (Figure 4.1A), 

but in contrast to AtMAP65-1, taxol increased the total amount of tubulin in the 

pellet in a concentration dependent fashion (Figure 4.1 B). This result strongly 

suggests that AtMAP65-1 bundles but does not promote the polymerisation of 

microtubules. This conclusion was further confirmed by an analysis using dark 

field microscopy (Figure 4.1 C). Addition of AtMAP65-1 to dynamic tobacco 

microtubules (shown in panel 1; average length 4.2±1.1 !Jm, n=89) caused the 

formation of long, thick microtubule bundles (panel 2; average length 11.5±4.4 

!Jm, n=62). Examination of these bundles under the electron microscope 

showed that they are composed of parallel microtubules separated by 25 nm 

cross-bridges (Figure 4.1 D). These data suggest that AtMAP65-1 does not 

promote microtubule polymerisation in vitro, but bundles polymerised 

microtubules via the formation of 25 nm cross-bridges. 
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One effect of microtubule bundling can be a reduction in the depolymerisation of 

microtubules, for example, by inhibiting catastrophe. To determine whether 

AtMAP65-1 affects depolymerisation, microtubules were first polymerised at 

32°C for 10 minutes, and then AtMAP65-1 protein was added at a tubulin: 

AtMAP65-1 molar ratio of 2:1. The mixture was diluted with 

microtubule-polymerising buffer pre-warmed to 32°C, incubated for 10 min and 

the microtubules were pelleted at 100,000 xg and analysed on SDS-PAGE gels. 

Taxol at a concentration of 10 )lM was used as a positive control to demonstrate 

the effect of a microtubule stabilising agent on the amount of tubulin polymer 

upon isothermal dilution. The results of three independent experiments are 

presented in Figure 4.2 A. No significant difference in the quantity of tubulin in 

the supernatant with or without AtMAP65-1 was observed: the total amount of 

tubulin polymer decreased five fold with the decrease in final tubulin 

concentration from 20 to 11JM. In contrast the amount of tubulin polymer in the 

presence of taxol decreased by only 10%. 

In order to assess whether AtMAP65-1 changes the stability of microtubules, 

the effect of AtMAP65-1 on the cold-induced depolymerisation of microtubules 

was analyzed. Here, the turbidity of a tubulin solution (20 )lM) was monitored at 

350 nm after addition of GTP. Microtubules were polymerised at 32°C for 20 

min, then AtMAP65-1 was added to a tubulin: AtMAP65-1 molar ratio of 2:1 and 

the reaction was allowed to proceed for another 30 min (Figure 4.28). The 
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Figure 4.2 AtMAP65-l does not affect microtubule dynamics. 
AtMAP65-1 does not stabilize the microtubule depolymerisation 
caused by dilution and cold treatment. (A) Amount oftubulin 
sedimented at I 00,000 xg after dilution of the 20 J.!M tubulin mixture. 
Squares, tubulin only solution, circles,tubulin with I 0 J.!M AtMAP65-I; 
triangles,tubulin with I 0 J.!M taxol. (B) Turbidity of the 20 J.!M tubulin 
solution without, and with, the addition of I 0 J.!M AtMAP65-I (solid 
lines) at 32°C, and after decreasing the temperature. Temperature is 
indicated by the broken line. The arrow indicates the time at which 
AtMAP65-I was added. (C) Coommassie stained SDS-PAGE gel of 
microtubule pellets and supernatants of a 20 J.!M tubulin solution 
incubated at 32°C for I 0 min, a 20 J.!M tubulin solution with I 0 J.!M 
AtMAP65-I incubated at 32°C for I 0 min and then at I oc for I 0 min 
and a 20 J.!M tubulin solution incubated at 32°C for I 0 min and then 
at I °C for I 0 min. The final temperature of the reaction mixtures are 
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addition of AtMAP65-1 induced an increase in the turbidity of the tubulin 

solution compared to the control. Subsequently, the temperature of the reaction 

was decreased to 1 oc, with temperature readings collected every two minutes 

and plotted (shown as the broken line in Figure 4.28). The drop in the 

absorbance indicates cold-induced microtubule depolymerisation and this only 

occurred when the temperature reached 1 oc. However in the microtubule only 

and the microtubule: AtMAP65-1 samples, the minimal absorbance reading 

after microtubule depolymerisation was always above the starting point. This 

would indicate that a small proportion of the microtubules were intrinsically 

resistant to cold induced depolymerisation. To demonstrate this, the samples 

were centrifuged at 1 OOOOOxg and the amount of tubulin in the pellet analyzed. 

The amount of tubulin in the pellet in both samples was similar (but less than in 

samples incubated at 32°C) which indicates that the majority of microtubules 

depolymerised regardless of being bundled by AtMAP65-1 (Figure 4.2C). 

4.3 AtMAP65-1 forms dimers 

Previously it was suggested that the 25-30 nm crossbridges between 

microtubules created using a carrot MAP65 enriched protein preparation were 

unlikely to be generated by monomeric MAP65 molecules (Chan eta/., 1999). 

Therefore, whether the recombinant AtMAP65-1 could form oligomers was 

assessed. Using two different methods here it is shown that AtMAP65-1 can 

form dimers. Firstly, chemical crosslinking of AtMAP65-1 with EDC produces a 

band of approximately 130kDa molecular weight on one dimensional 
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SDS-PAGE (Figure 4.3A). Secondly, in native acrylamide gel electrophoresis 

recombinant AtMAP65-1 runs at a position corresponding to 120-140kDa 

(Figure 4.38). In both experiments the size of the complex indicates an 

AtMAP65-1 dimer. Moreover, the recombinant AtMAP65-1 was immobilized on 

an Ni-NTA resin column which was then loaded with a total cell extract of a 

tobacco BY-2 cell line expressing the HA-epitope tagged tobacco equivalent to 

AtMAP65-1, NtMAP65-1. lmmunoblotting of the eluates from control (resin only) 

and AtMAP65-1 affinity columns with anti-HA antibodies demonstrated that the 

HA-epitope-tagged NtMAP65-1 interacted with AtMAP65-1 on the column 

(Figure 4.3C). 

The affinity column AtMAP65-1 method was used to determine which fragment 

in the AtMAP65-1 was capable for dimer formation. Affinity columns were 

prepared with fragments 1, 2 3, and 4 (see above). The columns were again 

loaded with the BY2 cell extracts expressing the HA-tagged NtMAP65-1, eluted 

with 0.5 M NaCI and the washes immunoblotted with anti-HA. The results show 

that fragment 2 (i.e. amino acids 151-339) had the highest affinity for 

NtMAP65-1 (Figure 4.3 D). These data show that fragment 2 in the N-terminal 

half of the protein, which does not bind microtubules, is involved in dimerization 

of MAP65 (Smertenko eta/. 2004). 
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Figure 4.3 AtMAP65-1 can form dimers. 
(A) AtMAP65-1 control (lane I) and EDC crosslinked AtMAP65-I (lane 2) separated on a SDS-PAGE 
gel and stained with Coomassie. 
(B) AtMAP65-1 run on a non-denaturing acrylarnide gel and stained as in (A) 
(C) lmmunoblot probed with anti-HA epitope. Lane 1, a BY-2 cell total protein extract expressing 
NtMAP65-I :HA epitope tag. Lane 2, 0.5M NaCJ eluate from control Ni-NTA column. Lane 3, 0.5M 
eluate from AtMAP65-I affinity column. 

(D) lmmunoblot probed with anti-HA epitope. Lane 1, a BY-2 cell total protein extract expressing 
NtMAP65-I :HA epitope tag. Lane 2-5, 0.5M NaCI eluates from AtMAP65- I Fragments 1-4 affinity 
colwnns. Lane 6, 0.5M NaCI eluate from control Ni-NTA colwnn. 
The numbers on the left of each gel are molecular weights of markers in kDa. 
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4. 4 Microtubule binding region of AtMAP65-1 

AtMAP65-1 fragments were cloned, expressed and purified in bacteria, and 

then used to assess their microtubule binding capabilities using the 

cosedimentation assay (Figure 4.4 B, C). Fragments 3 and 4, but not 

Fragments 1 and 2, co-sedimented with taxol stabilized microtubules. In 

controls, none of the fragments were detected in the pellet in the absence of 

microtubules. These data indicate that the C-terminal half of AtMAP65-1 

harbours the microtubule-binding region. These four fragments were assessed 

for microtubule-bundling activity using a turbidimetric assay. Figure 4.40 shows 

that none of the fragments were able to increase the turbidity of polymerising 

microtubules significantly compared to full-length AtMAP65-1 (Figure 4.40) and 

dark-field microscopy confirms that no bundling occurs (Figure 4.4E). These 

results show that the microtubule-binding region alone is not sufficient to cause 

microtubule bundling and form the 25 nm crossbridges. 

Taking into account that both fragments 3 and 4 of AtMAP65-1 could bind 

microtubules in vitro, it was hypothesised that the C-terminus (FR3+FR4) 

contained the microtubule -binding region and that it can bind to microtubules in 

vivo. A fragment of AtMAP65-1 consisted of Fragment 3+4 (Fragment 6) was 

linked to GFP and expressed as a fusion protein to test this hypothesis. The 

N-terminal region consisting of Fragment 1 +2 (Fragment 5) (Figure 4.5) was 

used as the negative control in this experiment. 
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Figure 4.4 Identification of the microtubule binding domain of AtMAP65-l. 
(A) Diagram showing the positions of the four AtMAP65-l fragments (FRl, FR2, FR3 and FR4). 
The numbers indicate the positions of the first and the last amino acids of each fragment in the 
AtMAP65-1 full-length sequence. N and C indicate the amino and carboxy termini respectively. 
(B) Cosedimentation of AtMAP65-I and fragments 1-4 with taxol-stabilised microtubules. 
Microtubules on their own or as a mixture with AtMAP65-1 or AtMAP65-1 fragments 1-4 were 
centrifuged at I 00,000 xg, then the supernatants (S) and pellets (P) separated on an SDS-PAGE 
gel and stained with Coomassie. (C) Sedimentation of the same AtMAP65-1 and AtMAP65-1 
fragments 1-4 (as in B) in the absence of microtubules. AtMAP65-l and fragments 1-4 were 
analysed as in B. (D) Effect of AtMAP65-1 and fragments 1-4 (each 20 mM) on the turbidity 
of a 20 mM tubulin solution. The assay was performed at 32 • C and the turbidity was monitored 
at 350 nm. (E) Dark field microscopy images ofmicrotubules polymerised in a 20 11M tubulin 
solution in the absence (panel I) or presence (panel 2) of 10 J..I.M AtMAP65-1 . Bar= 10 J.lm. 
(F) Dark field microsopy images of a 20 mM tubulin solution po1ymerised in the presence of 
10 mM AtMAP65-1 fragments 1-4 (panels 1-4 respectively). Scale bar corresponds to 1 mm. 
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Both fragments 5 and 6 showed a cytosolic localization and an aggregation 

around the nucleus during all cell cycle stages. lmmunostaining with anti-tubulin 

and anti-GFP revealed that these aggregates around the nucleus did not 

co-localize with microtubule (Figure 4.6). These results suggest that the 

microtubule -binding domain of AtMAP65-1 alone is not sufficient for binding to 

microtubules in vivo (Figure 4.6). In contrast, fragments 7 and 8 which 

contained sequences in the N-terminus or C-terminus could interact with 

microtubules in vivo, but the binding was much weaker compared to the full 

length AtMAP65-1 (Figure 4.7). Fragment 9: GFP protein, which includes the 

dimerization region and one microtubule-interaction site, lacked any microtubule 

binding ability in vivo. Fragment 6 did not bind to microtubules in vivo perhaps 

because it did not have a dimerization domain, required for microtubule 

bundling. Fragments 7 and 8 contain both a dimerization domain and a 

microtubule-binding domain, hence they could bind to microtubules in vivo, 

though weaker than the full length AtMAP65-1. Interestingly, a 

microtubule-binding site and dimerization domain are not sufficient for the 

microtubule binding, as Fragment 9 showed no microtubule co-localization. 

Either only the C-terminus or the N-terminus was necessary for the interaction 

to be detectable. These data suggest that binding of MAP65 to microtubule 

depends on the protein's tertiary structure. 
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Fig 4.6 Localization of FRS and FR6 in BY2 cells 
(A) GFP-FR5 and GFP-FR6 fusion proteins expressed in BY2 cells. 
GFP signals was co-localized in the cytoplasm and no binding to MTs was 
observed. (B) Cells expreesing GFP-FR5 and GFP-FR6 anaphase cells 
were stainedwith anti-tubulin (green) and anti-GFP (red) anibody. 
No co-localization oftubulin and GFP was found. 
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Figure 4.7 Comparision ofGFP: FR7, GFP: FRS, and GFP: AtMAP65-1 
localization in tobacco BY2 cells. GFP: FR 7 and GFP: FRS decorated MTs 
during interphase (A,B,C) and prophase (D,E,F), however did not concentrated 
at the division midzone (G,H, 1). 
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4.5 Ala 420/421 is essential for AtMAP65 interaction with 

microtubules. 

A recessive Arabidopsis mutant was isolated that is allelic to the published 

pleiade alleles p/e-1, p/e-5 and p/e-6 (Sorensen eta/., 2002; Sollner eta/., 2002; 

MUller eta/., 2002). This mutant was named p/e-4 (Figure 4.8 A, 8). Sequencing 

the genomic DNA at the pleiade loci revealed a single point mutation, which 

causes the substitution of alanine 421 for valine (Figure 4.8C). This residue is 

conserved in all nine AtMAP65 sequences and lies in Fragment 3 of AtMAP65-1 

(Figure 4.8D). To mimick the ple4 mutation in the AtMAP65-1 protein, the 

corresponding conserved alanine 420 was substituted for the hydrophobic 

valine by PCR using the QuikChange® XL Site-Directed Mutagenesis Kit 

(Stratagene,Cat. No.200517). The Ala 420 to Valine mutation was confirmed by 

DNA sequencing. The mutant was then cloned into Ndei/Xhol digested pET28a 

vectors (Novagen) and expressed in E-coli. The mutated protein was included in 

the microtubule co-sedimentation assay. The results show that A420V mutant 

protein has a reduced capability in binding microtubules (Figure 4. 7E) and did 

not induce bundling of microtubules in vitro. This hydrophobic substitution must 

have caused some conformational change in the protein. There is another 

conserved alanine residue at position 409 but this is substituted by a 

hydrophobic valine in AtMAP65-8. This residue was selected for substitution to 

a charged amino acid, an aspartic acid. Again, the mutated protein did not bind 

and bundle microtubules. Competition binding studies using short synthetic 

peptides have been used to identify interaction sites between numerous 
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Figure 4.8 Ala409 and Ala420 are essential for AtMAP65-1 binding to microtubules. 
(A) Arabidopsis wild type (WT) and pleiade-4 (ple-4) mutant allele. 
(B) Nuclei in the roots ofWT and ple-4 seven day old seedlings visualised with the 
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AtMAP65-1/A420V mutant proteins are also shown. (E) Microtubule co-sedimentation 
assay using AtMAP65-l and AtMAP65-1/A409D and A420V mutants. 
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proteins. 

4.6 Conclusion 

In this chapter, it is has been shown that a recombinant Arabidopsis MAP65, 

AtMAP65-1, can bind and bundle microtubules. However, it does not promote 

microtubule polymerisation or stabilise microtubules against cold-induced 

depolymerisation. AtMAP65-1 bundles the microtubules into a regular lattice 

structure and forms crossbridges of 25 nm. Fragmentation of AtMAP65-1 and 

analysis of mutants reveals that the microtubule-binding region is in the 

C-terminal half and that alanine residues at positions 409 and 420 play key 

roles. Moreover, the AtMAP65-1 dimerization region has been found in the 

N-terminal half. When the GFP-AtMAP65-1 fragments are expressed in BY2 

cells, the binding domain alone is not sufficient to bind microtubules in vivo. 
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Chapter 5 

Regulation of MAP65-1 protein through the cell cycle 

5.1 Introduction 

MAP65-1 expresses throughout the cell cycle, but the protein only binds 

subsets of the microtubule arrays in a cell cycle-dependent manner, indicating 

that regulated activation and inactivation, instead of periodic proteolysis, is the 

dominant mode of MAP65-1 regulation. However, the MAP65-1 gene contains a 

destruction box (D-box) motif in the C-terminus. The D-box consensus 

sequence is R-XX-L-XXXX-N where X can be any residue (Hussey eta/., 2002). 

It has been found that mutation of the two D-box conserved residues, arginine 

and leucine, results in the production of proteins resistant to degradation (Juang 

eta/., 1997). To knock out the D-box of MAP65-1, arginine-529 and leucine-532 

were substituted by mutation to alanine. A BY2 cell line over-expressing 

NtMAP65-1 a with a knocked out D-box was established and analyzed in this 

chapter. In addition, NtMAP65-1a R529NL532A was cloned downstream of 

green fluorescent protein (GFP) in the pGreenll plant transformation vector and 

expressed in tobacco BY-2 cells. The localization of GFP: NtMAP65-1a 

R529NL532A was observed throughout the cell cycle. 

Phophorylation/dephosphorylation is an important mechanism which regulates 
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protein activities in cells. In animal cells, for example, the phosphorylation of 

microtubule associated proteins, MAP2, MAP4, and Tau affects their binding to 

microtubules (Alexa eta/., 2002; Shiina eta/., 1998). The MAP65 homologue 

PRC 1 in mammalian cells has two Cdk phosphorylation motifs; mutation of 

these two sites causes extensive bundling of the metaphase spindle 

microtubules (Mollinari et a/., 2002). In this chapter, the level of MAP65 

phosphorylation was analyzed during the cell cycle and was found to be 

dependent on the cell cycle stage. Several protein kinases, including CDKs and 

MAPKs, were found to be involved in the phosphorylation of MAP65-1 in vitro 

and in vivo (Smertenko eta/., 2006). 

To identify phosphorylation motifs in AtMAP65-1, the protein was divided into 

four fragments (Fragment 1, amino acids 1-150; Fragment 2, amino acids 

151-339; Fragment 3, amino acids 340-494; Fragment 4, 495-587). Only 

Fragment 4 could be phosphorylated in vitro. Bioinformatics predictions 

revealed nine potential phosphorylation motifs in Fragment 4 of AtMAP65-1. 

The mutation of Ser or Thr within the phosphorylation motifs to aspartic acid 

diminished the phosphorylation level of AtMAP65-1 to the interphase level in 

vitro and decreased its microtubule binding ability in vivo. It suggests that the 

microtubule bundling ability of MAP65-1 is regulated by phosphorylation. 

Subsequently, substitution of the phosphorylatable residues in MAP65-1 for 

alanine resulted in the excessive bundling of microtubules through cell division, 

a delayed mitotic progression, and increased numbers of pole-to-pole 
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microtubules in the metaphase spindles. Altogether, these data suggest that 

MAP65-1 is regulated by phosphorylation/dephosphorylation during the cell 

cycle and that MAP65-1 binds microtubules weaker when phosphorylated by 

different protein kinases. 

5.2 Effect of D-box knockout on MAP65 function 

From the bioinformatics search, it was predicted that MAP65-1 contains a 

D-box motif (Figure 5.2A). To knock out the D-box motif of NtMAP65-1 

arginine-529 and leucine-532 were substituted for alanine (Figure 5.1 ). BY2 cell 

lines expressing NtMAP65-1 aR529
AIL

532
A mutant protein containing an 

HA-epitope on the C-terminus were established and the expression level of the 

transgene was analyzed by western blotting using anti-HA (Figure 5.28). The 

level of mutant protein expression was about 2.3 times higher than the level of 

wild type NtMAP65-1a. The increased expression level of the mutant protein 

could result either from the fact that expression was driven by 35S promoter or 

from inhibition of MAP65-1 degradation via D-box dependent pathway or both. 

However, the growth rate of the cell line expressing mutant protein was normal 

(Figure 5.2C). The immunostaining data also showed that none of the 

microtubule arrays were affected by the overexpression of the D-box deficient 

NtMAP65-1a (Figure 5.3). Moreover, GFP-NtMAP65-1a also showed normal 

localization in BY2 cells (Figure 5.4). All these data suggested that mutations 

R529A/L532A in the D-box motif of NtMAP65-1a didn't affect either the 

microtubule arrays or cell division and that NtMAP65-1 a is unlikely to be 

82 



NtMAP65-Ia 

1miLI I lA cpitope uud rel'.triction sit~s 
in NtMAP65-lo by PCR 

Sallf-
1 

-----N-tM_A_P_6_5--I-a-----,~,-H-:-lT 

1 mutagenesis fmrn Aluniu at pD:sition 5~9 unLI 532 
toR uuJ L 

Sallf-
1 

____ N_t_M_A_P_6-5--I-a ---,~~-HA--txT 
R519 unLI L.532 mutation 1 do"' the ""'" '"'' Into p<l o.~ n II ,. ecw t 

~1 Apal 
)(bal ~1 Sac 1 Bg12 

RB 
Nos-Kan 35SPromoter 3 SStenninator 

Figure 5.1 Schematic diagmm of NtMAP65-I-HA D-box mutant construct 



A 

c 

NtMAP65-1a 
AtMAP65-1 
BnCYC1 
BnCYC2 
Adiantum CycA 
Arbacia CycB 
Strong. purp. CycB 
Frog CycB2 
FrogCycB1 
Human CycA 
ClamCycB 
Cdc13 
Fly CycA 
Starfish CycB 
Clam CycA 
Fly CycA 
Frog CycA 
Human CycA 
YeastAse1 

NtMAP65-1 a0 

2.5 

2 

t 1.5 

t 
I 1 

0.5 

0 

0 

RLSLNSHQ~ RLSLNANQN 
RAVLGD I SN 
RAPLGNITN 
RAALANLTN 
RAALGN IS 
RAALGNIS 
RAALGEIGN 
RTALGDIGN 
RTALGDIGN 
RNTLGDIDN 
RHALDDVSN 
RAALGDLQN 
RGALENISN 
RAALGVIT 
RSILGVIQS 
RTVLGVIGD 
RA AVLKS 

QLFPIPLD 

ALSANSHQN 

2 4 

l1me (days) 

B 

Wf R529AILS32A 

• 
B 

2.3times 
overexpression 

6 8 

Figure 5.2 D-box mutant R529AIL532A BY2 lines shows normal growth 
curve. 
(A) Alignment of several MAP65-Iike proteins from different organisms 
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mutant line expressed 2.3 times more protein than wild type BY2 cells. 
(C)The net weight of the BY2 cells from wild type and D-box mutant 
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between these two lines. Dark square represents R539AIL532A mutant. 
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Tubulin Anti-HA epitope Overlay 

Figure 5.3 0-box mutation does not affect microtubule organization 
in BY2 cells. BY2 cell lines expressing NtMAP65-1a R529A/L532A mutant 
protein linked to HA-epitope on the C-terminus were stained with anti-HA­
(red channel) and anti-tubulin (Green channel) (A,E,I) shows the cell is in 
the S/G2 transition preprophase band (B,F,J) metaphase spindle (C,G,K), 
and phragmoplast (D,H,L). 



Figure 5.4 Localization of GFP: NtMAP65-1 a R529AIL532A mutant protein 
in BY2 cells. Localization of GFP: NTMAP65-1a R529AIL532A protein 
was analyzed in tobacco BY2 cells throughout the cell cycle. R529A/L532A 
decorates the cortical microtubule array (A), the preprophase band (B), the 
anaphase spindle (D)(E), and the phragmoplast midzone (F)(G); but does not 
decorate the metaphase spindle (C). 



regulated by cell cycle specific degradation. 

5.3 MAP65-1 is regulated by phosphorylation/ 

dephosphorylation during the cell cycle 

Chapter 5 

From section 5.2, the results suggested that MAP65-1 is not regulated through 

ubiquitin-mediated degradation. Therefore, MAP65-1 must be regulated by 

another mechanism. It is known that protein phosphorylation plays an important 

role in the execution and regulation of many cellular functions including the cell 

cycle. To check if MAP65 is regulated by phosphorylation, the phosphorylation 

of MAP65 was analyzed in a synchronized cell culture. BY2 cells were 

synchronized using aphidicoline and propyzamide treatment (Nagata T. and 

Kumagai F., 1999). Amphidicolin inhibit DNA synthesis; hence block the cells 

in the G1 phase of the cell cycle. Propyzamide is a microtubule depolymerizing 

agent which can be used to synchronize the cells in the M phase of the cell cycle. 

Sampling points 0-2 were collected after aphidicolin was washed off; points 3-5 

were collected during propyzamide treatment and points 6-10 were collected 

after propyzamide was washed off (Figure 5.5A). Total protein extracts were 

prepared from sampling points 0-10 and used as a kinase in AtMAP65-1 

phosphorylation assays. Phosphorylation assay was carried out by adding the 

protein samples intra the assay buffer (20 mM Hepes, PH7.5, 15mM MgCb , 5 

mM EGTA, 1 mM DTT, 0.5 mg/ml histoneH1 (SIGMA type Ill), and 2 1-1Ci of 

[f32P]ATP) and incubated at room temperature for 30 min. The reaction was 

terminated by the addition of 5J.!I of 4x SDS sample buffer. The samples were 
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Figure 5.5 MAP-b5 is phosphorylated in a ceu cycle dependent manner. 
A. Frequency of metaphases, anaphases and telophases in cell cycle synchronised 
cell population. Sampling points 0-2 were collected after aphidicolin was washed off, 
points 3-5 were collected during propyzamide treatment and points 6-10 were collected 
after propyzamide was washed off. B. Autoradiogram showing phosphorylation of 
AtMAP65-1 by the total protein extract from cells collected at sampling points 0- 10 
described in A. Extract from the sampling point 4 or AtMAP65- l alone were used as 
negative controls (labeled as Kinase and AtMAP65-1 ). C. Western blotting with anti 

MAP-65 of total protein extract from interphase cells (sampling point 0), metaphase 
cells (sampling point 4) and metaphase cell protein extract treated with phosphatase. 
Proteins were separated by two dimensional SDS-PAGE, only MAP-65 area of the 
membrane is shown. 
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then analyzed by SDS-PAGE and subsequent autoradiography. The 

autoradiogram shows the different phosphorylation levels of AtMAP65-1 

through the cell cycle (Figure 5.58). The signal increased from point 0 to 4 as 

cells entered into mitosis as confirmed from the mitotic index and then 

decreased from 4 to 10, which suggests that AtMAP65-1 is phosphorylated 

through all stages of the cell cycle and highly phosphorylated during metaphase. 

Protein extracts from interphase (sampling point 0) and metaphase (sampling 

point 4) BY-2 cells were fractionated using two-dimensional SDS-PAGE and 

probed with anti-AtMAP65-1. Figure 5.5C shows that the heterogeneity of 

AtMAP65-1 increases during metaphase. When the metaphase protein extract 

was treated with phosphatase, the number of AtMAP65-1 isoforms dramatically 

decreased, suggesting that the increase in AtMAP65-1 heterogeneity resulted 

from extensive phosphorylation. 

5.3.1 Phosphorylation regulates the interaction of MAP-65 with 

microtubules 

As AtMAP65-1 recombinant protein was found to be hyper-phosphorylated 

during prometaphase/metaphase, it was important to check if phosphorylation 

can be responsible for the regulation of the MAP65 interaction with 

microtubules. To identify the kinase pathways responsible for the 

phosphorylation of MAP65, protein kinase inhibitors were used in the 

phosphorylation assays. General kinase inhibitors used in the phorphorylatoin 

assay includes K252-a and Staurosporine. K252a, an indrocarbazole 
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derivative, inhibits PKA (Protein kinase-A), PKG (protein kinase G), MLCK 

(myosin light-chain kinase), PKC (protein kinase C), CaMK 

(Ca2+/calmodulin-dependent protein kinase), phosphorylase kinase, MAP 

kinase, the trk family of receptor tyrosine kinases, and numerous other kinases 

by acting as a competitive inhibitor with respect to ATP (Angeles eta/., 1998). 

Staurosporine inhibits PKA, PKG, MLCK, PKC, CaMK, tyrosine kinases and 

phosphorylase kinase. Inhibition is via interaction with the ATP binding site 

(Meggio et a/., 1995). Specific protein inhibitor used includes Olomoucine and 

DMAP. Olomoucine, a purine derivative, found to be a highly specific inhibitor of 

cyclin-dependent kinases. Olomoucine behaves as a competitive inhibitor for 

ATP and as a non-competitive inhibitor for histone H1 binding in CDKs kinases 

(Havlicek eta/., 1997). 6-dimethylaminopurine (6-DMAP) inhibits protein kinase 

by rephosphorylation on tyrosine of the p34cdc2 homolog, the M-phase 

promoting factor (MPF) catalytic subunit (Neant eta/., 1988). 

In the control reaction, recombinant AtMAP65-1 was phophorylated by the 

protein extracted from metaphase BY2 cell (Figure 5.6A, lane 1 ). General 

kinase inhibitors, K252-a and Staurosporine, abolished AtMAP65-1 

phosphorylation. Whereas DMAP and Olomoucine only partially inhibited kinase 

activity (Figure 5.6A). These data confirm that several kinases can 

phosphorylate AtMAP65-1. Furthermore, immunoprecipitated protein kinases of 

different classes were able to phosphorylate AtMAP65-1 in vitro. The radiograph 
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Figure 5.6 Phosphorylation regulates interaction of MAP-65 with microtubules. 
A. Effect of protein kinase inhibitors on MAP-65 phsophorylation. Recombinant 
AtMAP65-l was phosphorylated by metaphase protein extract (sampling point 4 
as in Figure 1) without inhibitor (lane Control) or in the presence of DMAP, 
K252-a, Staurosporine, and OlomoucineB. Phosphorylation of AtMAP65-l by 
cyclin dependent kinases precipitated by pSuc 1 bound beads, anti-cdc2a and 
anti-cdc2b antibodies; and by MAP kinases precipitated with anti-MPK4 and 
anti-MPK6. The activity of precipitated protein kinases was checked with their 
know substrates (Histone for cycling dependent kinases and MBD for MAP kinases) 
.C. MAP-65 can be phosphorylated by a kinase that interacts with microtubules. 
\Colloidal silver staining of metaphase protein extract from BY2 cells (lane 1) and 
microtubule proteins (lane 2). Autoradiogram shows MAP65-1 kinase activity of 
both extracts D. Localisation pattern ofGFP:AtMAP65-1 chimera after treatment 
with DMAP protein kinase inhibitor ininterphase cells (panel 1 ),metaphase or 

anaphase spindles (panels 2 and 3) and phragmoplast (panel 4).E. Effect of 
olomoucine on GFP:AtMAP65-l chimera localisation in prometaphase cells (panel] 
), metaphase cells (panels 2 and 3).F. Time laps series of two cells treated with 
okadeic acid. The frames were collected 5, 16 and 22 minutes after the drug 
application as indicated on each frame. 
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in Figure 5.68, shows that AtMAP65-1 can be phosphorylated by CDKs 

precipitated by pSuc1 beads and by anti cdc1 a, cdc2a and MPKs precipitated 

with anti MPK4/MPK6 antibodies. Interestingly, a microtubule protein 

preparation (the details of microtubule protein preparation procedure described 

in 2.2.1 0) from BY2 cells can also phosphorylate AtMAP65-1. This result 

indicates that kinases regulating MAP65 can be associated with microtubules 

(Figure 5.6C). It has been reported that both CDKs and MAP kinases can be 

associated with microtubules (Weingartner eta/., 2001; Nishihama and Mach ida, 

2001). 

Moreover, protein kinase inhibitors (DMAP and Olomoucine) and phosphatase 

inhibitor (Okadeic acid) were applied to the BY2 cell line expressing GFP: 

AtMAP65-1. Okadeic acid inhibits the serine/threonine phosphatase by binding 

to its catalytic subunit and inhibiting its enzymatic activity. Treatment with 

protein kinase inhibitors induced binding of the GFP: AtMAP65-1 to the 

microtubules of the prophase and metaphase spindles after 15 min application 

(Figure 5.60). AtMAP65-1 bound microtubules in the metaphase spindle and 

appeared there as thick bundles. The microtubules of the anaphase spindle and 

phragmoplast were curved and extremely bundled. Treatment with olomoucine, 

also induced binding of AtMAP65-1 to microtubules during prophase and 

metaphase, but the effect was less dramatic compared to DMAP (Figure 5.6 E). 

Moreover, treatment of the BY2 line expressing GFP: AtMAP65-1 with okadeic 

acid caused a fading of the phragmoplast midzone signal (Figure 5.6F). 
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Therefore, phosphorylation inhibitors affect the binding of AtMAP65-1 to 

microtubules during prophase and metaphase. 

5.3.2 MAP-65 phosphorylation sites are located within 

C-terminal coiled coil domain 

To identify phosphorylation sites in AtMAP65-1, the protein was divided into four 

fragments. These fragments (Fragment 1, amino acids 1-150; Fragment 2, 

amino acids 151-339; Fragment 3, amino acids 340-494; Fragment 4, 495-587) 

of AtMAP65-1 were expressed in E.coli as recombinant proteins and purified by 

Ni2+ affinity chromatography. Metaphase protein extract from metaphase BY2 

cell (sampling point 4 showed in figure 5.5A) was mixed with each of these four 

fragments of AtMAP65-1 in phosphorylation assays. Figure 5.7A lanes 1-5 

shows that out of four fragments, only fragment 4 was phosphorylated. 

Olomoucine inhibited phosphorylation of Fragment 4 by the metaphase protein 

extract (lane 10. figure 5. 7 A). Moreover, both purified cdc2a and a microtubule 

protein preparation (2.2.10) only caused phosphorylation of Fragment 4 (Figure 

5. 78 C). These data suggest that all residues that are phosphorylated in 

AtMAP65-1 during metaphase are located within the C-terminal region 

conresponding to Fragment 4. Several synthetic peptides were made 

corresponding to the regions of Fragment 4 that contain putative 

phosphorylation motives. These peptides were phosphorylated by metaphase 

protein extract, transferred onto phosphocellulose p81 paper and the efficiency 
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Therefore, phosphorylation inhibitors affect the binding of AtMAP65-1 to 

microtubules during prophase and metaphase. 

5.3.2 MAP-65 phosphorylation sites are located within 

C-terminal coiled coil domain 

To identify phosphorylation sites in AtMAP65-1, the protein was divided into four 

fragments. These fragments (Fragment 1, amino acids 1-150; Fragment 2, 

amino acids 151-339; Fragment 3, amino acids 340-494; Fragment 4, 495-587) 

of AtMAP65-1 were expressed in E.coli as recombinant proteins and purified by 

Ni2+ affinity chromatography. Metaphase protein extract from metaphase BY2 

cell (sampling point 4 showed in figure 5.5A) was mixed with each of these four 

fragments of AtMAP65-1 in phosphorylation assays. Figure 5.7A lanes 1-5 

shows that out of four fragments, only fragment 4 was phosphorylated. 

Olomoucine inhibited phosphorylation of Fragment 4 by the metaphase protein 

extract (lane 10. figure 5.7A). Moreover, both purified cdc2a and a microtubule 

protein preparation (2.2.1 0) only caused phosphorylation of Fragment 4 (Figure 

5.78 C). These data suggest that all residues that are phosphorylated in 

AtMAP65-1during metaphase are located within the C-terminal region 

conresponding to Fragment 4. Several synthetic peptides were made 

corresponding to the regions of Fragment 4 that contain putative 

phosphorylation motives. These peptides were phosphorylated by metaphase 

protein extract, transferred onto phosphocellulose p81 paper and the efficiency 
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Figure 5.7 MAP-65 phosphorylation sites are located within C-terminal coiled 
coil domain. 
A. Phosphorylation of four AtMAP65-1 fragments with metaphase protein extract alone or 
with mitotic protein extract supplemented with olomoucine. Metaphase protein extract 
without substrate was used as negative control (lane Kinase). B. Phosphorylation of 
AtMAP65-1 fragments with cdc2a.C. Phosphorylation of AtMAP65-1 fragments 
with microtubule proteins preparation.D. Phosphorylation of peptides designed for 
putative phosphorylation sites in Fragment 4 by metaphase protein extract. The 
inset shows total counts per minute (CPM) in the reaction mixture. E. Bioinfomatics 
analysis of putative phosphorylation sites within phosphorylated peptides. The 
phosphorylating SIT residue is highlited in bold within each peptide sequence. 
CDK - cyclin dependent protein kinase; PKA- protein kinase A; PKC - protein 
kinase C; cAMK- cAMP dependent protein kinase; cGMK- cGMP dependent 
protein kinase; CK1 -casein kinase 1; CK2- casein kinase 2; Erk1 - Extracellular 
signal-regulated kinase 1. Prosite- http://www.expasy.org/prosite/; Scansite­
http://scansite.mit.edu/; Disphos - http://core.ist.temple.edu/pred/; PhosphoELM­
http://phospho.elm.eu.org/pictures/phospho.logo.png. 
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of phosphorylation was measured using counts for each of the peptides (figure 

5.70). Peptides nine, four and five showed high phosphorylation levels, while 

peptides one, three, six and eight showed medium phosphorylation levels. 

However, peptides two and seven showed low phosphorylation levels. 

Combining these data together with the prediction of phosphorylation sites 

using a bioinformatics search, several phosphorylation motives for known 

protein kinases were predicted (Figure 5.7 E). Several different kinases 

including CDK, CK1, CK2, PKA, PKC, Aurora B, cAMK, cGMK, Erk1 had 

phosphorylation activities within these peptides. (Kennelly and Krebs, 1991; 

Chang eta/., 2003; Prosite- http://www.expasy.org/prosite/; 

Scansite -.http://scansite.mit.edu/; Disphos-http://core.ist.temple.edu/pred/; 

PhosphoELM- http://phospho.elm.eu.org/pictures/phospho.logo.png;). 

5.3.3 Phosphorylation regulates interaction between AtMAP65-1 

and microtubules 

5.3.3.1 Effect of AtMAP65-1 phoshporylation on the protein 

activity in vitro 

From section 5.3.1, it has been shown that CDK specific inhibitors can only 

partially inhibit MAP65 phosphorylation. Together with the bioinformatics 

predictions of AtMAP65-1a phophorylation sites from section 5.3.2, it is more 
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likely that the regulation of MAP65 is through several phosphorylation sites 

instead of one single site. To knock out all the possible sites, four mutants were 

generated where 2, 4, 7 or 9 phosphorylation residues were substituted for 

aspartic acid, a known mimic of phosphorylation: AtMAP65-1 20
· 
40

• 
70

· 
90 (table 

5.1 ). The recombinant proteins were expressed in E. coli and used in the tubulin 

turbidimetric assay and the microtubule co-sedimentation assay. All 

phosphorylation sites of AtMAP65-1 which control its activity were therefore 

knocked out in AtMAP65-1 90
. Figure 5.8A shows the autoradiogram of wild type 

AtMAP65-1 and AtMAP65-1 90 mutant recombinant proteins phosphorylated by 

the metaphase or interphase protein extract. These results showed that during 

S phase the phosphorylation levels were the same between the wild type and 

mutant protein, whereas during metaphase the phosphorylation level of 

AtMAP65-1 90 mutant was obviously lower than wild type protein. The results of 

co-sedimentation assay showed that there were less AtMAP65-1 90 proteins 

binding with polymerized microtubule (Figure 5.8 B, C). The turbidimetric assay 

results showed that lower signals and therefore less microtubule bundling 

occurred when AtMAP65-1 90 protein was added to the reaction comparing to 

the wild type protein (figure 5.80). All together, these data suggest that 

phosphorylation inhibits the microtubule binding and bundling ability of 

AtMAP65-1 in vitro. 
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Peptide Sequence Residue Protein kinase Reference 

I IQESAFSTRPSPA S503 CDK,PKA,PKC I, Scansite 
3 ANGTHN T526 CDK Scansite 
4 NRRLSLNA S532 PKA,AuroraB, cAMK,cGMK Scansite, Prosite 
5 NGSRSTA S540 CKI Prosite 

T543 CK2,PKC Pro site 
6 RRETLNR T552 r.AMK,cGMK.PKA, PKC, Prosite,Scansite 

AuroraB 
8 AASSPVSGA S573 CDK, Erkl 2, Disphos, PhosphoELM 

S576 tKI I 
9 QVPASP S586 ~DK 2, Disphos, PhosphoELM 

B 

Fragment 4 of AtMAP65-1 

Mutants 

20 

40 

70 

90 

KVQEQPHVEQESAFSTRP 5 PARPVSAKKTVGPRANNGGANG THNRRL S LNANQNG 5 RS TAKEAGRRE TLNRPAAPTNYVAISKEEAAS S PV S GAADHQVPA 5 PLIVV 
- 6. - 6. .o,. - 6:0. 6. -- 6.6. - 6. 

5503 T526 S532 5540 T543 T552 S573 5576 S586 

I 

1•: I 

8 aspartic acid substitution 

Table 5.1 Prediction of phosphorylation sites in the peptides of Fragment 4 which were phosphorylated by metaphase cell extract and description of AtMAP65-1 
phosphomimetics AtMAP65-120 (20), AtMAP65-140 (40), AtMAP65-170 (70), AtMAP65-190(90).(A)The phosphorylating SfT residue is highlighted in bold within 
each peptide sequence.Abbreviations: COK - cyclin dependent protein kinase; PKA- protein kinase A; PKC - protein kinase C; cAMK - cAMP dependent protein kinase; 
cGMK- cGMP dependent protein kinase; CK1 -casein kinase 1; CK2- casein kinase 2; Erk1 -Extracellular signal-regulated kinase 1. 
References: Prosite- http://www.expasy.org/prosite/; Scansite - http://scansite.mit.edu/; Oisphos- http://core.ist.temple.edu/pred/; 
PhosphoELM- http://phospho.elm.eu.org/pictures/phospho.logo.png.1Kennelly&Krebs, 1991; 2Chang et al., 2003. 
(B)Sheme presenting AtMAP65-1 phosphomimetics AtMAP65-120 (20), AtMAP65-140 (40), AtMAP65-170 (70), AtMAP65-190(90) mutants. 
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Figure 5.8 Phosphorylation regulates interaction between MAP-65 and 
microtu buies. 
A. Autoradiogram (Autorad) of wild type AtMAP65-1 (WT) and AtMAP65-19D 
mutant (90) recombinant proteins phosphorylated with metaphase (M-phase) 
or interphase (S-phase, sampling point 0) protein extract. Corresponding nitrocellulose 
membrane was stained with Amido Black die (Amidoblack).B,C, Cosedimentation 
assay of AtMAP65-1 wild type (WT), AtMAP65-12D (20), AtMAP65-14D(4D), 
AtMAP65-17D(7D), AtMAP65-19D(90) recombinant proteins with microtubules 
. Quantification of recombinant MAP-65 protein (grey bars) and tubulin (white 
bars) in the pellet is shown in B. Coomassie Brilliant Blue stained SDS-PAGE 
gel of supernatants (lanes 1 and 3) and pellets (lanes 2 and 4) of recombinant 
MAP-65 proteins mixed with microtubules (lanes 1 and 2) or on their own (lane 

s 3 and 4) is shown in C.D. Turbidimetric analysis of 1.4 mg/ml tubulin solution 
and tubulin solution mixed at equimolar ratio with wild type AtMAP65-1 or 
AtMAP65-19D mutant.E. Ratio between midzone and cytoplasmic signal of 
AtMAP65-1 wild type (WT), AtMAP65-14D( 40), AtMAP65-17D(7D) and 
AtMAP65-19D(9D) GFP fusion proteins.F. A typical localisation pattern of 
AtMAP65-14D( 40), AtMAP65-170(7D), AtMAP65-19D(9D) GFP fusion 
proteins in interphase and anaphase cells. 
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5.3.3.2 Effect of phosphorylationon on the activity of 

AtMAP65-1 in vivo 

Next, the phosphorylation mutant proteins of AtMAP65-1 were linked to GFP 

and the localization of GFP fusion proteins was analyzed through the cell cycle. 

Figure 5.8 F shows the localization of 40, 70, 90 proteins in the interphase 

cortical microtubule array and anaphase spindles. The binding of AtMAP65-1 to 

microtubules in both arrays decreased according to the number of mutated 

amino acids. The anaphase spindle midzone decoration was absent in the 90 

mutant, 70 had weak decoration, and 40 had stronger decoration. The 

measurement of the ratio between GFP signal in the midzone and the 

anaphase spindle showed a gradual decrease of GFP: AtMAP65-1 localization 

in the midzone according to the number of mutated phosphorylation sites 

(Figure 5.8E). 

To knock out phosphorylation sites and create non-phosphorylatable constantly 

active protein, all phosphorylation sites in AtMAP65-1 were changed to alanine. 

This protein (GFP: AtMAP65-1 9
A) was linked to GFP and transformed into BY2 

cells. The localization of GFP: AtMAP65-1 9
A mutant protein was different to 

GFP: AtMAP65-1 90
. The decoration of microtubules did not disappear during 

PPB disassembly, but persisted during prophase and metaphase 

(supplementary information movie 2, Figure5.1 OA). The microtubules decorated 

with GFP: AtMAP65-1 9
A appeared as thick bundles. lmmunostaining showed 

that the 9A mutant protein indeed induced excessive bundling of prometaphase 
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and metaphase spindle microtubules (Figure 5.9 A, C, E), which is not the case 

in the cells expressing wild type GFP: AtMAP65-1 (Figure 5.9 8, D, F). Although 

the total number of microtubule bundles in the metaphase spindle was similar to 

the control, the number of pole-to-pole microtubules increased significantly 

(Figure 5.9G). The time required for the cell to proceed from prophase to 

telophase was about two times longer in the cells expressing AtMAP65-1 9A (70 

minutes compared to 37 minutes) (Figure 5.1 OA). Quantification of the signal in 

the cell division midzone in both wild type and GFP: AtMAP65-1 9Ashowed that 

GFP: AtMAP65-1 9A persists in the cell division midzone and delayed the 

progression of the cell division (Figure 5.1 08) comparing to the wild type. 

Therefore, inhibition of AtMAP65-1 phosphorylation results in constant 

association of AtMAP65-1 and microtubules, inducing extra bundling of 

microtubules. The extra bundling of microtubule in GFP: AtMAP65-1 9A cell line 

delays cell division. 

5.3.3.3 Interaction between microtubules and AtMAP65-1 

phosphorylation site mutants in vivo 

Substitution of phosphorylation residues for aspartic acid or alanine had the 

opposite affect on the dynamics of the AtMAP65-1 microtubule interaction in 

vivo as determined using FRAP. While turnover of GFP: AtMAP65-1 90 was 

faster than turnover of wild-type protein and the binding to phragmoplast 

microtubules was reduced by 40% (Table 5.2), the turnover of GFP: 

AtMAP65-1 9A was slightly slower than wild-type in all arrays, except the 
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Figure 5.9 Disruption of phosphorylation de-regulates interaction 
between AtMAP65-1 and microtubules during metaphase. 
lmmunostaining oftubulin (red channel), AtMAP65-J 9

A (A,C,E) or 
GFP:AtMAP65-1 (B,D,F; green channel) and DNA (blue channel) in 
prometaphase (A,B), metaphase (C,D) and anaphase (E,F) cells. 
(G)Immunostaining oftubulin shows increase in the number of pole to pole 
microtubule bundles in the AtMAP65-19

A mutant comparing to the wild type. 
(H) The number of all microtubules bundles (blank bar) and the number of 
pole to pole bundles in metaphase spindles (grey bar) in cells expressing wild 
type AtMAP65- l or AtMAP65-1 9

A mutant. 
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Figure 5.10 Non-phosphorylatable AtMAP65-1 affects metaphase 
spindle organisation and cell division. A. Localisation of wild type 
AtMAP65-l (WT) and AtMAP65-19A (9A) GFP fusions during mitosis. 
The wild type protein becomes associated with microtubules only in 
anaphase, while the mutant bins to microtubules at every stage of 
mitosis. Numbers in the top right comer indicate timing of each frame.B. 
Quantification ofthe signal in the cell division midzone of AtMAP65-l wild 
type (closed circles) and AtMAP65-19A (open circles). 



Table 5.2 Analysis ofthe MAP65:GFP FRAP data in BY-2 
cells. 
The dissociation constants koff and t112 were estimated for 
GFP fusions in 
various cell types and at various cell cycle stages. 'N' 

column shows the 
number of cells analysed in each experiment and the 'Bound' 
column shows 
the fraction ofMAP65:GFP initially bound to the 
microtubules, expressed 
as percentages of total fusion protein. 

kotr 
NtMAP65-la 
Interphase3 0.100 
PPB3 0.117 
Metaphase3 0.960 
Phragmoplase 0.146 
Oryzalin3 0.402 

AtMAP65-I 
Interphase3 0.117 

AtMAP65-19
D 

Phragmoplast 0.195 

AtMAP65-19
A 

Interphase 0.082 
PPB 0.069 
Metaphase 0.179 
Phragmoplast 0.085 

t112 (s) N kotr 

6.95±0.91 23 0.094 
5.92±0.64 19 0.083 
0.72±0.21 23 Nd6 

4.83±0.64 20 0.117 
1.71±0.24 23 

5.93±0.86 20 0.081 

3.55 18 0.081 

8.45±0.83 14 0.065 
10.05±0.42 17 0.073 
3.87±0.53 15 0.147 
8.16±0.76 17 0.069 

Bound(%) 

80.7 
85.8 
Nd4 

75.0 

67.4 

44.6 

78.5 
100.0 
73.8 
80.1 

1k.,ff estimated by single exponential fit; 2k.,ff estimated by 
double 
exponential fit; 3Chang et al., 2005; ~ot determined due to values 
being 
below the threshold for diffusion seen in the oryzalin treated 

control cells. 
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metaphase spindle where Kott decreased by 5 times. The proportion of GFP: 

AtMAP65-1 9
A bound to microtubules in metaphase was about 73.8% compared 

to 0% in wild type. These data indicate that interaction of AtMAP65-1 with 

microtubules through the cell cycle is regulated by phosphorylation. 

5.4 Discussion 

MAP65 contains a conserved destruction box motif in the C terminus (Hussey 

et a/., 2002). To knock out this motif, arginine-529 and leucine-532 were 

substituted for alanine. Both immunostaining and GFP localization data show 

normal localization of the AtMAP65-1 D-box mutant and cell division is 

unaffected. These results suggest that MAP65-1 is not regulated through the 

cyclin D-box dependent degradation pathway. 

Analysis of the AtMAP65-1 phosphorylation status during the cell cycle shows 

that the protein is phosphorylated at all stages of the cell cycle but 

hyperphosphorylated at prophase and metaphase. When a BY2 cell line 

expressing GFP: AtMAP65-1 was treated with the general protein kinase 

inhibitor, DMAP and the CDK specific inhibitor-olomoucine, GFP: AtMAP65-1 

was bound to the metaphase spindle. Treatment with the phosphatase inhibitor 

okadeic acid caused progressive loss of the GFP signal in the phragmoplast 

midzone. These results suggest that the microtubule binding activity of 

MAP65-1 is regulated by phosphorylation. Kinase activity was found in the 

microtubule protein preparation, indicating that these kinases are associated 
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with microtubules. Interestingly, both CDK and MAP kinase have been found to 

associate with microtubules (Weingartner eta/., 2001; Nishihama and Machida, 

2001), and both kinases can phosphorylate AtMAP65-1 in vitro. These data 

indicate that several protein kinase pathways are involved in the control of 

MAP65-1 binding to microtubules and their cooperative activity is required for 

this control. 

Nine potential phosphorylation motifs were predicted in AtMAP65-1 Fragment 4: 

CDKs (S503, T526, S586), MAPK Erk1 (S543), Aurora B/cyclic nucleotide 

dependant kinase (S532, T552) and casein kinase 1 and 11/PKC (S539, T573, 

S576). Mutation of these residues for non-phosphorylatable residues diminished 

the phosphorylation level of AtMAP65-1 to the interphase level, suggesting that 

these nine sites control activity of MAP65 during mitosis. 

Phosphomimetics of AtMAP65-1 were produced in which potential 

phosphorylation residues were substituted for aspartic acid. These substitutions 

caused the decrease of microtubule binding activity. The FRAP data showed 

that the turnover of GFP: AtMAP65-1 90 is faster than wild-type and the amount 

of protein bound to microtubules in vivo was reduced by 40%, while decoration 

of the anaphase spindle midzone was almost abolished. It suggests that 

dephosphorylation of MAP65-1 is necessary for its activity. Moreover, these 

nine potential phosphorylation residues were then substituted for 

non-phosphorylatable alanine. GFP: AtMAP65-1 9Awas found to be bound to the 
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midzone of the metaphase spindle, causing an increase in pole-to-pole 

microtubule bundles and delayed mitosis. Altogether, the data suggest that 

AtMAP65-1 is regulated by phosphorylation/dephosphorylation through the cell 

cycle. 
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Chapter 6 

Discussion 

6.1 The interaction of MAP65 with microtubules in vivo 

MAP65 only interacts with polymerized microtubules and not with tubulin. GFP: 

MAP65-1 decorates microtubules in the cortical array, the PPB, the anaphase 

spindle, and the phragmoplast. The turnover rate of MAP65 as assessed by 

FRAP is high in vivo and MAP65 can associate/disassociate randomly along the 

microtubule length. Moreover, the MAP65/ microtubule interaction is regulated 

in a cell-cycle dependent manner. 

6.1.1 Localisation of MAP65-1 in vivo 

GFP: MAP65-1 decorated microtubules arrays through the cell cycle, confirming 

the previously published immunostaining data (Smertenko et at., 2000). 

Interestingly, MAP65-1 did not decorate the metaphase spindle but was 

scattered around in the nuclear area. After metaphase, the GFP: MAP65-1 

signal dramatically concentrated and decorated the anaphase spindle midzone. 

During the anaphase spindle to phragmoplast transition, GFP: MAP65-1 

decorated the phragmoplast microtubules concentrating at the midline. The 

midline decoration of the phragmoplast then disappeared gradually. Following 

phragmoplast expansion and cell plate formation, the interphase cortical 
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microtubule array started to form. In cortical microtubule arrays, the MAP65-1 

signal was associated with thick bundles of microtubules. 

The metaphase spindle is a very dynamic structure and relies on microtubules 

for its normal function. Two types of microtubule in the mitotic spindle are known: 

polar microtubules, which are associated with spindle pole and kinetochore; 

kinetochore microtubules, which are associated with kinetochore of the 

chromosome. The chromosomes are connected with the kinetochore 

microtubules. Each set of chromosomes will segregate after passing metaphase. 

Therefore, the correct spindle structure is very important for chromosome 

segregation and cell division. The maintenance of the dynamic spindle structure 

requires tight control of microtubule dynamics and bundling. Excessive 

microtubule bundles might disturb the progress of cell division. This could be 

why MAP65-1, which bundles microtubules, has to be inactivated during 

metaphase. The other interesting observation is the midzone decoration of 

MAP65-1 in anaphase spindle and phragmoplast. The localization of MAP65-1 

suggests that it could cross-link anti-parallel microtubules in these structures and 

stabilise them. Recently, there is some debate about whether or not anti-parallel 

microtubules can be observed in the cell-plate assembly matrix. From electron 

tomography observations, the phragmoplast microtubules do not interdigitate at 

the cell-plate midline during somatic-type cytokinesis (Austin et a/., 2005). 

However, from our observations of tobacco BY2 cells, GFP-MAP65 

concentrates in the midline of the newly formed phragmoplast and the edge of 
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the expended phragmoplast. This midline decoration then disappears when the 

phragmoplast reaches the mother cell wall. It is possible that the anti-parallel 

microtubules formation in the phragmoplast is transient and only on the edge, 

where the cell-plate assembly matrix has not fully formed. This might explain 

why the anti-parallel microtubules in the phragmoplast might not easily be 

observed by electron tomography. MAP65, in the phragmoplast midline, holds 

the two halves of the phragmoplast together by cross-bridging these anti-parallel 

microtubules transiently. However, once the cell-plate assembly matrix is 

formed, MAP65 retreats from the midline of the phragmoplast and leaves a gap 

between the two halves of the phragmoplast. 

The cell plate materials are transported to the midline of the phragmoplast by 

kinesin and other associated proteins. Therefore, keeping the intact 

phragmoplast structure is important for cell plate formation. It has been reported 

that mutation of MAP65 protein AtMAP65-3 results in abnormal cytokinesis 

causing the formation of multinucleating root cells with incomplete cell walls. The 

phragmoplast in the mutant has an abnormally expanded midzone. MAP65-1, 

although it has different localization from MAP65-3 is also located in the 

phragmopalst midline. The midline localization implies that both proteins might 

play a similar role in this area. However, the real function of this midline 

localization of MAP65-1 still needs to be clarified. 
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There was no phenotype found in Arabidopsis seedlings expressing GFP: 

AtMAP65-1, and the GFP signal can be detected on cytoplasmic microtubules in 

most of the tissues. In some tissues (e.g. petals, stigmas and stamens) the GFP 

signal was not detectable due to the auto-fluorescence of these tissues. 

Interestingly, GFP: AtMAP65-1 does not decorate microtubules in the cells of the 

root extension zone, suggesting that the interaction of AtMAP65-1 with 

microtubules is regulated in a tissue specific manner. However, GFP: 

AtMAP65-1 decorates microtubule arrays in the dividing cells of the root tips, 

including the cortical microtubule, the PPB, and the phragmoplast. Furthermore, 

the decoration in trichomes and root hairs makes this cell line an interesting 

model for investigating the microtubules' organisation in vivo. 

6.1.2 MAP65 is ideal for bundling and crossbridging plant microtubules 

during microtubule array formation and reorganisation 

The rate of GFP: NtMAP65-1a turnover on interphase cortical microtubules was 

found to be similar in Arabidopsis hypocotyl epidermal cells and in rapidly 

proliferating tobacco suspension culture cells, indicating that the interaction of 

NtMAP65-1 a is the same in both homologous and heterologous plant cells, and 

that the interaction is similar in differentiated and rapidly dividing tissues. The 

turnover of the GFP: AtMAP65-1 chimeric protein, the Arabidopsis homologue of 

NtMAP65-1a, was found to be very similar to that of GFP: NtMAP65-1a 

suggesting that they share the same mechanism of microtubule interaction. The 

recombinant AtMAP65-1 and NtMAP65-1 b bundle, but neither promote 
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polymerisation nor prevent catastrophes of microtubules in vitro (Smertenko et 

a/., 2004: Wicker-Pianquart eta/., 2004). Also, the turnover of GFP: NtMAP65-1 a 

in all cell types and microtubule arrays examined was found to be at least four 

-fold greater than plant tubulin itself. The high rate of microtubule association 

/dissociation for this MAP65 isotype correlates with it having no impact on 

microtubule dynamics in vitro. Therefore, this MAP will not significantly affect the 

dynamics of microtubule in vivo and is ideally suited for bundling and 

crossbridging of plant microtubules during microtubule array formation and 

reorganisation. So far, nothing is known about the dynamics of interaction 

between other plant MAPs and microtubules. Thus, it will be very interesting to 

investigate if other plant MAPs will have a different turnover on microtubules and 

how this will correlate with their functions. 

6.1.3 Dynamics of the MAP65 microtubule interaction during the cell cycle 

Microtubules have an increased growth and catastrophe rate in the transition 

from interphase to preprophase band formation. However, the shrinkage rate 

and the rescue frequency are not affected. The net result is that during this 

transition microtubules become shorter and more dynamic (Dhonukshe and 

Gadella, 2003). However, in the observation of MAP65 turnover, the turnover 

rate in the preprophase band is similar to that in the interphase cortical array. It 

suggests that changes in microtubule dynamics do not affect the dynamics of the 

MAP65 microtubule interaction. Also, if binding of MAP65 is a prerequisite for 

99 



Chapter 6 Discussion 

microtubule bundling, which is the case in vitro studies, then the same bundling 

mechanism is likely to occur in the two cortical arrays. 

In the metaphase spindle a significant increase in the turnover of GFP: 

NtMAP65-1 a was observed: the t112 value decreased sevenfold. As we have 

shown that NtMAP65-1 a does not interact with tubulin dimers, depolymerisation 

of microtubules with oryzalin will remove the major binding site for this MAP-65 

in the cell. In the absence of microtubules the t112 value was greater than in 

metaphase, indicating that in the metaphase spindle GFP: NtMAP65-1a does 

not bind to any structure and nor does it make any complexes. Its diffusion is 

presumably increased due to the dynamic cytoplasmic flow within mitotic 

spindles. However, there must be some interaction with as yet unknown factors 

that inhibit the ability of NtMAP65-1 a to bind microtubules. This could be, for 

example, the presence of proteins that compete for the same binding site or 

post-translational modification of NtMAP65-1 a that can alter its structure. 

In anaphase and telophase GFP: NtMAP65-1a is observed to concentrate 

mainly in the midzone of the spindle and the phragmoplast as was previously 

shown by antibody staining in tobacco and Arabidopsis tissue culture cells 

(Smertenko eta/., 2000; Smertenko eta/., 2004). However, the video of the GFP 

fluorescence (see supplementary information Movie 3) shows how dramatic this 

concentration proceeding poleward movement of the chromosomes actually is. 

FRAP data shows no significant differences in the turnover of NtMAP65-1a on 
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microtubules in the phragmoplast, the interphase cortical microtubules and the 

preprophase band. These data indicate that either the exchange rate of the 

NtMAP65-1 a or the lifetime of the bridges between microtubules does not 

depend on the stage of the cell cycle. It would appear that the interaction of 

NtMAP65-1a with microtubules is regulated on an "on or off' principle and 

wherever bundling occurs the dynamics are the same. Other proteins known to 

be involved in the control of plant microtubule organisation in vivo such as 

katanin (e.g. Stoppin-Mellet eta/., 2002), MOR1/GEM1 (e.g. Twell eta/., 2002) 

or EB1 (e.g. Chan eta/., 2003) must be able to work in concert with MAP65 to 

regulate the dynamics and spatial pattern of microtubules bundled by MAP-65. 

Interestingly, the turnover of the yeast homologue of MAP-65, Ase1 p, was found 

to be 7.5 minutes (Schuyler eta/., 2003), which is almost 100 times slower than 

NtMAP65-1 a and AtMAP65-1. It is known that Ase1 pis an important component 

of the spindle midzone matrix, responsible for the stabilisation and the 

maintenance of the spindle midzone. In Arabidopsis there are nine MAP65 

genes, and they form a divergent gene family (Hussey eta/., 2002). Moreover, 

the two isoforms AtMAP65-1 (Smertenko eta/., 2004) and AtMAP65-3 (Muller et 

a/., 2004) show differential localisation in the four microtubule arrays, with 

AtMAP65-3 being restricted to only the mitotic arrays. AtMAP65-3 is essential for 

the maintenance of phragmoplast structure (Muller eta/., 2004) and it's tempting 

to speculate that this isoform is more closely related in function to Ase1 p than to 

NtMAP65-1 a. Perhaps it is the case that AtMAP65-3 stabilizes the subsets of 

microtubules responsible for anchoring and maintaining the integrity of the 

101 



Chapter 6 Discussion 

spindle and phragmoplast midzone but that AtMAP65-1 plays a more active role 

in the bundling of dynamic microtubules, helping them retain spatial organisation 

in dynamic microtubule arrays. 

6.1.4 NtMAP65-1 associates and dissociates randomly along microtubules 

Recently, it has been shown that PRC1, the mammalian homologue of MAP65, 

binds several kinesin motor proteins: KIF4, MKLP and CENP-E. In KIF-4 deficient 

cells, the localization of proteins normally residing in the spindle midzone, 

including PRC1, was affected (Kurasawa eta/., 2004). In PRC-1 deficient cells no 

midzone appears and both KIF4 and CENP-E failed to concentrate in the spindle 

midzone. These results suggest that KIF 4 and PRC1 are essential for the 

organisation of the spindle midzone and possibly that KIF4 translocates PRC1 to 

the midzone. The A. thaliana genome has homologues of KIF4 and MKLP. 

However, it is not known whether they interact with MAP65. Moreover, from the 

FRAP analysis, it is obvious that NtMAP65-1 associates and dissociates 

randomly along microtubules rather than being translocated. Therefore, plants 

may have a different mechanism for MAP65 midzone localization during cell 

division. 

In summary, these data show that the interaction of the MAP-65 with 

microtubules is very dynamic, that it occurs randomly along the length of 

microtubules and that it is cell-cycle stage dependent. Taken together with the 

finding that NtMAP65-1 and AtMAP65-1 proteins form crossbridges but have no 
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effect on microtubule dynamics in vitro (Chan et a/.1999: Wicker-Pianquart eta/., 

2004: Smertenko et a/.,2004), it appears that NtMAP65-1a and AtMAP65-1 are 

ideally suited to a role in forming crossbridges between microtubules and 

maintaining spatial organisation in rapidly reorganizing microtubule arrays. 

6.2 The Arabidopsis microtubule associated protein AtMAP65-1: molecular 

analysis of its microtubule bundling activity 

6.2.1 AtMAP65-1 cross-bridges microtubules 

Recombinant AtMAP65-1 bundles microtubules forming crossbridges of 25 nm 

in length but does not increase the total amount of tubulin polymer, suggesting 

that bundling of microtubules does not directly affect the frequency of 

catastrophes or rescues. One can imagine a condition when either the frequency 

of catastrophe and rescue might increase or decrease similarly or that tubulin 

turnover might change for the microtubules bundled by AtMAP65-1. In either 

case the microtubule dynamics might be different but the total amount of tubulin 

polymer under steady state conditions of microtubule polymerization will remain 

the same. Nonetheless, this equilibrium will change when the steady state 

conditions are affected. An increase in the dynamics of microtubules resulting 

from either high rescue and catastrophe frequencies or a rapid tubulin turnover 

will cause a faster rate of microtubule de-polymerization and a decrease in the 

total amount of tubulin polymer when the concentration of tubulin is below the 

critical assembly point. If the dynamics of microtubules are decreased either 
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because of low frequencies of rescue and catastrophe or slow tubulin turnover, 

the total amount of tubulin polymer will be less vulnerable to the decrease of 

tubulin concentration. During the isothermal dilution of microtubules, the total 

amount of tubulin polymer was not affected by bundling with AtMAP65-1 

producing identical curves for samples containing tubulin with or without 

AtMAP65-1. In contrast, when taxol, which promotes microtubule polymerization 

and decreases tubulin turnover, was added we observed a significant increase in 

the amount of tubulin polymer and a decrease in the microtubule 

de-polymerization when the tubulin concentration was below the critical 

assembly point. These data suggest that AtMAP65-1 is unlikely to have a 

significant effect on microtubule dynamics in vitro. 

The fact that bundling does not decrease microtubule dynamics is consistent 

with the rapid recovery by treadmilling of bundled GFP-tubulin-tagged 

microtubules following photobleaching (Shaw eta/., 2003) and the movement of 

AtEB1a:GFP-tagged microtubules within bundles (Chan et a/., 2003a). It 

would therefore seem that the principal role of AtMAP65-1 would be to form a 

lattice network rather than to stabilize the microtubules per se. Of the nine 

AtMAP65 proteins AtMAP65-1 has the greatest sequence identity to NtMAP65-1, 

and falls in the same phylogenetic clade (Hussey eta/., 2002). The biochemical 

activity of AtMAP65-1 corresponds to the in vivo experimental data on 

NtMAP65-1 where the effect of cold on BY-2 cell microtubules was examined. In 

these experiments, microtubules in BY -2 cells were de-polymerized by cold and 
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their reformation was followed as the temperature was increased to 25oC 

(Smertenko et a/., 2000). The recovery of the microtubules occurred 

independently of MAP-65 binding, and MAP65 binding was only observed after 

the microtubules were polymerized, suggesting that NtMAP65-1 was not 

involved in the promotion of microtubule polymerization but in the crossbridging 

of microtubules once formed. These in vivo data from tobacco NtMAP65-1a 

protein correspond with the in vitro data for AtMAP65-1. 

The crossbridging of microtubules by AtMAP65-1 is similar to that observed 

using carrot MAP65 enriched preparations (Chan et a/., 1999). The carrot 

MAP65 preparation contained 3 electrophretically separable bands, minor 

60kDa and 68kDa bands and a predominant (85%) 62kDa band (Chan eta/., 

1999). These protein bands were subsequently analysed by mass spectral 

analysis: the 68kDa and 60kDa were shown to disappear when the carrot 

suspension culture stopped dividing, leaving the 62kDa species as the sole 

detectable MAP65 in elongating cells containing only cortical microtubules 

(Chan et a/., 2003b). Peptide sequencing and sequencing of the eDNA 

(DcMAP65-1) established that carrot MAP62 was more similar to AtMAP65-1 

and NtMAP65-1 than to any other known MAP65 (Chan et a/., 2003b). As 

MAP-62 was biochemically purified it is not known whether it is 

post-translationally modified. From the data presented in this study we can 

conclude that mixtures of MAP65 isoforms are not required to promote bundling, 
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and that the single unmodified gene product of AtMAP65-1 is capable of forming 

the 25nm cross-bridges. 

6.2.2 Microtubule binding and dimerisation regions of AtMAP65-1 

The AtMAP65-1 microtubule binding region is in the C-terminal half of the protein 

and the two amino acids Ala420 and Ala409 are essential structural elements in 

the microtubule: AtMAP65-1 interaction. The C-terminal half of the protein was 

divided into fragments 3 and 4. Fragment 3 harbours the sequence that was 

most conserved in all nine AtMAP65 genes. Fragment 4 contains the most 

divergent sequences across the MAP65 family and is highly charged (pi of 

1 0.47). Both fragments 3 and 4 bound microtubules although it cannot be 

discounted that the high charge of fragment 4 might be responsible for 

non-specific binding. Fragment 3 is not only conserved between plant MAP65 

proteins, but the sequence within this fragment also exhibits strong similarity with 

mammalian PRC 1 and yeast Ase1 p, especially within a 25 amino acid region 

(37.5%; Schuyler eta/., 2003). Mutation of a conserved amino acid within this 

short sequence, Ala 420 Val, diminished MAP-65 microtubule binding. This 

mutation was mimicked in AtMAP65-1 based on the sequence of the cytokinesis 

defective p/e-4 allele. Changing the conserved Alanine to a more hydrophobic 

amino acid disturbs the structure to such an extent that microtubule binding is 

greatly reduced. Mutating a second Alanine, at residue 409, in the conserved 25 

amino acid sequence also diminished microtubule binding. By synthesising a 

peptide covering the whole 25 amino acid conserved motif, competition studies 
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were performed where AtMAP65-1 and the synthetic peptide were allowed to 

compete for the microtubule binding site. These studies demonstrated that the 

AtMAP65-1 microtubule interaction could not be inhibited in this way, which 

strongly suggests that sequences other than this 25 amino acid conserved motif, 

within fragment 3, are structurally important for microtubule binding. It is possible 

that the microtubule binding site depends on several points of contact and 

requires a specific tertiary structure as is known for MAP2/tau. 

The amino terminal half of AtMAP65-1 harbours a dimerisation region and 

dimerisation may be important for 25 nm crossbridge formation. The N-terminal 

half of AtMAP65-1 was divided into two sections and the fragment 

encompassing residues 151 to 339 was found to bind another MAP65. 

Consideration of the structure of the crossbridges between microtubules created 

by carrot MAP65s, and the size of MAP65, led to the suggestion that MAP65 is 

unlikely to crossbridge as a single molecule (Chan et a/., 1999). The fact that 

neither the microtubule-binding region, nor the dimerisation region alone was 

capable of microtubule-bundling strongly suggests that these crossbridges are 

formed by MAP65 dimers with the C-terminal halves binding adjacent 

microtubules and the N-terminal halves being responsible for MAP65: MAP65 

interaction. 

6.2.3 Interaction of MAP65 with microtubules is cell cycle specific 

AtMAP65-1 is expressed constitutively through the cell cycle, but the protein 
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binds only subsets of microtubules in a cell cycle dependent manner. The main 

difference in the localization of AtMAP65-1 in cells compared to AtMAP65-3/PLE 

(Muller eta/., 2004) and its homologues in animals and fungi, is that AtMAP65-1 

(like NtMAP65-1; Smertenko et a/., 2000) also binds interphase cortical 

microtubules (Jiang eta/., 1998, Pellman eta/., 1995). However, mammalian 

PRC1 is capable of binding and bundling microtubules in interphase as 

overexpression causes the disruption of normal microtubule organisation and 

the appearance of circular filaments around the nuclei (Mollinari et a/., 2002). 

Bundling of microtubules in the interphase plant cells is thought to be important 

for the formation of the interphase cortical array (Smith eta/, 2003). As the cells 

enter M-phase AtMAP65-1 does decorate the preprophase band but not the 

metaphase spindle. Thus, it binds microtubules at the midzone of the anaphase 

spindle and in the phragmoplast midzone. In both structures, MAP65 

concentrates in the area where microtubules overlap. 

6.3 Regulation of MAP65 activity through the cell cycle 

6.3.1 Microtubule binding activity of MAP65-1 is regulated by 

phosphorylation/dephosphorylation 

The binding of AtMAP65-1 to microtubules is down regulated during 

prometaphase/meptaphase. The activity of MAP65 homologues SPD-1 (C. 

elegans), and FEO (Drosophila) is also downregulated during metaphase, while 

PRC1 (mammalian) decorates metaphase spindle microtubules (Verbrugghe 
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and White, 2004; Verni eta/., 2004; Jiang et at., 1998). Two mechanisms have 

been suggested to be involved in the regulation of MAP65-Iike protein: through 

APC degradation pathway, or phosphorylation/dephosphorylation. PRC1 and 

Ase1 share two notable sequences features: a consensus cyclin-dependent 

kinase phosphorylation site and a sequence that is similar to a mitotic cyclin 

destruction box. It has been proven that PRC1 is phosphorylated at the 

consensus CDK phosphorylation site by CDK2 (Mollinari eta/., 2002) and that 

Ase1 is targeted to proteolysis by the anaphase-promoting complex (Juang eta/., 

1997). AtMAP65-1 sequences also contain a destruction box and several 

predicted phsophorylation sites (Hussey et a/., 2002). However, the expression 

of D-box knocking out AtMAP65-1 protein in BY-2 cells did not affect the cell 

growth and cell division, indicating that AtMAP65-1 is not regulated by cell cycle 

specific degradation. Instead, phosphorylation/dephosphorylation is involved in 

the control of MAP65 binding to microtubules during the cell cycle. 

Phosphorylation is a common mechanism to control protein activity in a cell 

cycle dependent manner. AtMAP65-1 is phosphorylated at all stages of the cell 

cycle but hyperphosphorylated at prophase and metaphase. When a BY2 cell 

line expressing GFP: AtMAP65-1 was treated with the general protein kinase 

inhibitor, DMAP and the CDK specific inhibitor-olomoucine, GFP: AtMAP65-1 

was bound to the metaphase spindle. Treatment with the phosphatase inhibitor, 

okadeic acid, caused progressive loss of the GFP signal in the phragmoplast 

midzone. These results suggest that the microtubule binding activity of MAP65-1 

is regulated by phosphorylation. Kinase activity was found in the microtubule 
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protein preparation, indicating that these kinases are associated with 

microtubules. Interestingly, both CDK and MAP kinase have been found to 

associate with microtubules (Fellous eta/., 1994; Reszka eta/., 1995), and both 

kinases can phosphorylate AtMAP65-1 in vitro. Thus, several protein kinase 

pathways are involved in the control of MAP65-1 binding to microtubules and 

their cooperative activity is required for this control. 

It has been suggested that the regulation of other plant MAPs activity affects the 

dynamics of microtubules through the cell cycle (Sedbrook., 2004) and several 

of these MAPs also show a cell cycle specific pattern of interaction with 

microtubules. For example a component of the MTOC, AtSpc98p, which is 

involved in the nucleation of microtubules, localizes at the nuclear surface and at 

the cell cortex (Erhardt eta/., 2002), but not on the mitotic microtubule arrays 

(Erhardt eta/., 2002). EB1 binds microtubule at the poles of the mitotic spindle, 

but not to the rest of the spindle microtubules (Chan et a/., 2003; Van et a/., 

2004). MOR1/GEM1 localizes along the cortical microtubules and the 

phragmoplast midline (Twell eta/., 2002) where it might stabilize microtubules 

(Twell eta/., 2002). Moreover, it has been suggested that MOR1/GEM1 may 

interact with a microtubule destabilising kinesin-13 and compete for its binding 

site on the microtubule, preventing depolymerisation of microtubules induced by 

kinesin-13 (Hussey and Hawkins., 2001). 

Besides MAP65 regulation mechanism discussed in this thesis, nothing is known 
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about regulation of other plant MAPs. In animal cells, the phosphorylation of 

MOR1/GEM1 homologue, Xenopus XMAP215, by CDK1 reduces its binding 

ability to microtubules. Although MOR1/GEM1 has several putative CDK 

phosphorylation sites (Hussey and Hawkins., 2001 ), it's still not clear whether 

phosphorylation controls MOR1/GEM1 functions (Whittington et a/., 2001). 

Animal EB1 has been found to interact with the carboxyl terminus of another 

MAP, adenomatous polyposis coli (APC) tumor suppressor protein (Su et a/., 

1995; Wen et a/., 2004). The interaction between EB1 and APC controls 

functions of both proteins and has been implicated in the capturing and 

stabilization of microtubules in vivo (Wen et a/., 2004). Plants also have 

microtubule associated protein which is homologues to APC, TANGLED 1 

(Smith et a/., 1996), and therefore might have a similar mechanism for the 

regulation of microtubule functions. 

6.3.2 Identification of phosphorylation sites in AtMAP65-1 

AtMAP65-1 was subdivided into four fragments (Fragment 1, amino acids 1-150; 

Fragment 2, amino acids 151-339; Fragment 3, amino acids 340-494; Fragment 

4, 495-587). However, only Fragment 4 (residues 494-587) was phosphorylated 

by the mitotic protein extract or by the microtubule protein preparation. Therefore, 

all phosphorylation sites are localized in the C-terminal region of AtMAP65-1. 

The phosphorylation motifs were predicted within Fragment 4 using 

bioinformatics. All together, nine potential phosphorylation motifs were found: 
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CDKs (S503, T526, S586), MAPK Erk1 (S543), Aurora 8/cyclic nucleotide 

dependant kinase (S532, T552) and casein kinase 1 and 11/PKC (S539, T573, 

S576). Mutation of these residues for non-phosphorylatable residues diminished 

the phosphorylation level of AtMAP65-1 to the interphase level, suggesting that 

these nine sites control activity of MAP65 during mitosis. 

6.3.3 Dephosphorylation of MAP65-1 is necessary for microtubule 

binding/bundling 

Phosphomimetics of AtMAP65-1 were produced in which potential 

phosphorylation residues were substituted for aspartic acid. All phosphor­

mimetics except AtMAP65-1 20 had decreased microtubule binding activity, but 

the strongest effect was observed in AtMAP65-1 90 
, where microtubule binding 

and bundling activity was decreased by 40% compared to the wild type. The 

FRAP data showed that the turnover of GFP: AtMAP65-1 90 is faster than 

wild-type and the amount of protein bound to microtubules in vivo was reduced 

by 40%, while decoration of the anaphase spindle midzone was almost 

abolished. All together, it suggests that dephosphorylation of MAP65-1 is 

necessary for its activity. 

The phenotype of the GFP: AtMAP65-1 9
A mutant also emphasizes the role of 

phosphorylation in the regulation of AtMAP65-1 activity. Live cell imaging 

revealed that microtubules in prophase and metaphase were decorated by GFP: 

AtMAP65-1 9
A, alike in cells expressing GFP: AtMAP65-1 after treatment with 
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protein kinase inhibitors. Interestingly, GFP: AtMAP65-1 9Awas bound just to the 

midzone of the metaphase spindle, causing an increase in pole to pole 

microtubule bundles and delayed mitosis. 

6.4Summary 

The results of the work presented in this thesis demonstrate that MAP65 bundles 

microtubules in vitro and in vivo. It forms homodimers through the N-terminal 

domain and binds to microtubules through the C-terminal domain. Full length 

AtMAP65-1 is essential for efficient microtubule binding in vivo, while in vitro two 

distinct parts (Fragment 3: amino acids 340-494,and Fragment 4: 495-587) of 

AtMAP65-1 are able to bind microtubules. The GFP: AtMAP65-1 fusion protein 

expressed in tobacco BY 2 cells localizes to the interphase cortical microtubules, 

the PPB, the anaphase spindle, and the phragmoplast, whereas there is no 

metaphase spindle decoration. Live cell images traced AtMAP65-1 localization 

through the cell cycle and demonstrated a dynamic redistribution of AtMAP65-1 

during the metaphase/anaphase formation and during cytokinesis. The midzone 

decoration of the anaphase spindle and the phragmoplast indicates that 

AtMAP65-1 might play an important role in these areas and that its function is to 

maintain phragmoplast structure. The interaction of AtMAP65-1 with 

microtubules is highly dynamic and is faster than tubulin turnover. Moreover, 

AtMAP65-1 is not translocated along microtubules, but can 

associate/disassociate randomly at any site along microtubules. The dynamics 

of AtMAP65-1 binding to microtubules do not change dramatically during the cell 
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cycle. Except for in metaphase, AtMAP65-1 does not bind to spindle 

microtubules, but diffuses around chromosomes. The highly dynamic binding of 

AtMAP65-1 to microtubules also proves that it is a good candidate for cross 

bridging microtubules as it organizes microtubules without affecting their 

dynamics. The cell cycle specific activity of AtMAP65-1 is not regulated by a 

destruction box, but is controlled by phosphorylation. Phosphorylation of 

AtMAP65-1 reduces binding and bundling of microtubules in vitro and in vivo, 

while expression of a non-phosphorylatable form of AtMAP65-1 induces 

excessive bundling of spindle microtubules and delays mitosis. Moreover, 

several protein kinase pathways including CDK and MAPK have been found to 

control the level of AtMAP65-1 phosphorylation and the combined activity of all 

these kinases is required for regulation of MAP65 activity. 

To conclude, MAP65 cross-bridges microtubules and plays an important role in 

stabilizing the anaphase spindle and phragmoplast structure. In this way, 

MAP65 can provide a matrix for other proteins to localize to the division midzone 

and enable successive cytokinesis. 

6.5 Future work 

During the course of this work, a number of constructs containing GFP fusions 

with wild type AtMAP65-1 and its fragments and mutants were generated. First 

of all, wild type AtMAP65-1 and NtMAP65-1 a are good markers of the cell 

division midzone and can be used to study dynamics of the cell plate formation 

114 



Chapter 6 Discussion 

under normal conditions or after drug treatments. Arabidopsis thaliana plants 

expressing GFP: MAP65 fusion proteins can also be crossed with cell division 

mutants in order to analyze cell plate formation in the mutants. AtMAP65-1 

phosphomimetics and AtMAP65-1 9
A can be expressed in plants under 

constitutive or inducible promoter to analyze their effect on plant development. 

Another prospect is the determination of what other proteins MAP65 interacts 

with. It has been shown that MAP65 homologue mammalian PRC1 interacts with 

a kinesin-4 family member-KIF4 (Kurasawa eta/., 2004). If interactions between 

MAP65 and some other proteins can also be found, this will help to establish 

which protein MAP65 cooperates with in mitosis. 
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Primers for the GFP: AtMAP65-1 construct 

>AtMAP65-1 
ATGGCGGTGACAGATACTGAAAGTCCTCATCTTGGGGAAATTACTTGTGGTACCTTACTTGAGAAGTTGCAGGAAATCTGGGA 
TGAAGTTGGTGAGAGTGATGATGAACGAGACAAACTGCTTCTTCAGATAGAGCAAGAGTGTCTTGACGTTTACAAGAGAAAAG 
TCGAGCAGGCTGCGAAATCCCGAGCTGAGCTTCTTCAAACCTTGTCAGATGCTAATGCTGAACTCTCCAGCCTCACAATGTCT 
CTTGGAGACAAAAGCTTAGTTGGCATTCCGGATAAGTCTTCAGGAACGATTAAAGAACAACTTGCTGCAATAGCACCGGCTCT 
TGAACAACTGTGGCAACAGAAAGAGGAGAGAGTCCGAGAGTTCTCTGATGTACAATCACAGATTCAGAAGATATGTGGAGAGA 
TTGCTGGAGGTTTGAGCAATGAGGTTCCTATAGTCGATGAGTCTGATTTGTCACTGAAGAAATTAGACGATTTCCAGAGCCAA 
CTCCAAGAGCTCCAGAAAGAAAAGAGTGACAGGCTGCGCAAGGTGTTAGAGTTTGTGAGTACTGTTCATGATCTATGTGCTGT 
TCTTGGTTTGGATTTCTTAAGCACCGTCACCGAAGTTCATCCGAGCTTAGATGAAGATACCAGTGTCCAGTCTAAGAGCATTA 
GCAATGAGACTCTTTCAAGGTTGGCTAAAACCGTCTTGACTCTTAAAGATGATAAGAAGCAAAGACTTCAAAAGCTTCAAGAG 
CTGGCTACTCAGCTAATTGACCTGTGGAATCTGATGGATACTCCTGATGAGGAAAGAGAGCTTTTTGATCATGTTACCTGTAA 
CATTTCATCTTCAGTCGATGAGGTCACTGTGCCAGGTGCTCTTGCACGTGATTTGATTGAGCAGGCTGAGGTGGAAGTTGATA 
GGCTTGACCAGCTGAAAGCTAGCCGAATGAAAGAAATTGCGTTCAAGAAGCAATCTGAGCTTGAAGAGATATATGCTCGTGCC 
CATGTAGAAGTTAACCCGGAATCTGCTCGTGAGAGAATCATGTCGCTGATTGATTCTGGAAACGTTGAGCCTACTGAATTATT 
GGCAGACATGGATAGCCAGATATCAAAGGCTAAGGAAGAAGCATTTAGTAGAAAAGATATATTGGACCGAGTCGAGAAATGGA 
TGTCAGCTTGTGAGGAAGAGAGCTGGCTAGAAGACTACAATCGGGATCAGAACAGGTACAGCGCAAGCAGAGGTGCACACTTG 
AATCTCAAGAGAGCTGAGAAAGCTCGGATTCTGGTTAGCAAGATTCCTGCCATGGTTGACACATTAGTTGCCAAGACCCGGGC 
TTGGGAAGAAGAACACAGCATGTCCTTTGCCTACGATGGTGTTCCTCTGCTAGCTATGCTAGACGAGTACGGTATGCTTAGGC 
AAGAACGAGAAGAGGAGAAACGGAGGCTGAGGGAACAAAAGAAGGTTCAAGAACAGCCACATGTAGAGCAAGAATCTGCCTTT 
AGCACCAGGCCAAGCCCTGCAAGACCGGTCAGTGCTAAGAAAACGGTGGGGCCACGAGCTAACAACGGAGGAGCCAATGGAAC 
ACATAACCGGCGTTTATCTTTGAATGCAAACCAGAATGGAAGCAGGTCTACTGCAAAAGAAGCAGGGAGAAGGGAGACTCTCA 
ACAGGCCGGCTGCTCCTACAAACTACGTTGCCATTTCGAAAGAGGAAGCTGCTTCATCTCCAGTTTCTGGTGCTGCAGATCAT 
CAAGTTCCAGCTTCACCATGATTGATAGTTGTA 

Forward primer (At651 GFPf): AA CTCGAG ATGGCGGTGACAG 
Xhol 

Reverse primer (At651 GFPTermR): T GAATTC TCATGGTGAAGCTGG 
EcoRI 

Primers for AtMAP65-1 protein fragments 

Forward primer l(TRl): A CATATG GCG GTGACAGATACTGA 

Reverse primer l(TRlr): TCTCGAGTCAGACTATAGGAACCTCATTGCT 

Forward primer 2 (TR2F): ACATATGAGCAATGAGGTTCCTATAGTC 

Reverse primer 2 (TR2R): TCTCGAGTCACATGATTCTCTCACGAGCAG 

Forward primer 3 (TR3F): ACATATGTCTGCTCGTGAGAGAATCATG 

Reverse primer 3 (TR3R): TCTCGAGTCATTGCTCTACATGTGGCTGTTC 

Forward primer 4 (TR4F): ACATATGGAACAGCCACATGTAGAGCAA 

Reverse primer 4 (TR4R): TCTCGAGTCATGGTGAAGCTQGAACTTG 
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Primers for the AtMAP65-1 mutagenesis PCR 

Original sequences: CAG AAC AGG TAC AGC GCA AGC AGA GGT GCA CAC TTG 
(underline shows the mutation position) 

*Ala 409 to Asp 

Forward primer (At409Af): CAG AAC AGG TAC AGC GAT AGC AGA GGT GCA 
CACTTG 

Reverse primer (At409Ar): CAA GTG TGC ACC TCT GCT ATC GCT GTA CCT GTT 
CTG 

*Ala 420 to Val 

Original sequences: CAC TTG AAT CTC AAG AGA GCT GAG AAA GCT CGG ATT 
CTG 

Forward primer (At420Vf):CAC TTG AAT CTC AAG AGA GTT GAG AAA GCT CGG 
ATTCTG 

Reverse primer (At420Vr): CAG AAT CCG AGC TTT CTC AAC TCT CTT GAG ATT 
CAAGTG 

Primers for the GFP: AtMAP65-1 fragments 

* At651 GFPf: AA CTCGAG ATGGCGGTGACAG 
Xhol 

*TR2f-NGFP: A CTCGAG ATG AGCAATGAGGTTCCTATAGTC 
Xhol 

*TR3r-NGFP: T GAATTCTCATTGCTCTACATGTGGCTG 
EcoRI 

* At651 GFPTermR: T GAATTC TCATGGTGAAGCTGG 
EcoRI 
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Primers for GFP: AtMAP65-1 phosphorylation site multi-mutagenesis 
PCR 

S5030: AGCACCAGGCCAGACCCTGCAAGACCG 

S5420: AACCGGCGTTTAGA TTTGAATGCAAAC 

S5860: CAAGTTCCAGCTGATCCATGAGAATTC 

T5280: CGGAGGAGCCAATGGAGATCATAACCGGCGTTTAGATTTG 

T5520: AAAGAAGCAGGGAGAAGGGAGGATCTCAACAGGC 

0539/543: TGCAAACCAGAATGGAGACAGGTCTGATGCAAAAGAAGCAGGGA 

0573/576: AAGAGGAAGCTGCTTCAGATCCAGTTGATGGTGCTGCAGATCATC 

S503A: AGCACCAGGCCAGCCCCTGCAAGACCG 

S542A: AACCGGCGTTTAGCTTTGAATGCAAAC 

S586A: CAAGTTCCAGCTGCACCATGAGAATTC 

T526A: GGAGCCAATGGAGCACATAACCGGCGTTTATCTTTG 

T552A: AAAGAAGCAGGGAGAAGGGAGGCTCTCAACAGG 

A573/576: AAGCTGCTTCAGCTCCAGTTGCTGGTGCTGCAGATC 

A539/543: TGCAAACCAGAATGGAGCCAGGTCTGCTGCAAAAGAAGCAGGG 
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Primers for the GFP: NtMAP65-1 construct 

>NtMP651 coding sequence only 
ATGGCAGAAGCAGATGCTCAAGCTCCTGTTCTTGACGAAACAACTTGCGGTTCCCTACTACAAAAGCTGCAG 
CAAATTTGGGATGAGGTCGGTGAAACTGATGATGAGCGGGACAATATGCTTCTTCAGATAGACCAAGAGTGC 
CTGGATGTCTACAAGAGAAAGGTTGACCAGGCTGTGAAGTCACGGGCTCACCTTCTTCAGGCATTGGCAGAT 
GCCAAAGTTGAACTCTCCAGGCTGCTATCAGCCCTGGGAGAGAAGACATATGTTGGAATTCCTGAGAAGACT 
TCAGGTACAATCAAGGAACAGCTTGCAGCTATAGCACCAGCACTGGAAAAACTGTGGGAGCAGAAAGATGAT 
AGGATAAAAGAGTTTTTTGATGTGCAATCACAAATTCAGAAGATAAGCAGTGAGATTGCAGGAACTCGCGAG 
CAAGTTGAGAGTCTTACAGTGGACGAATCTGATTTATCTCTTAAAAAGTTGGATGAGTTTCAGGCACAGCTT 
CAAGAGCTCCAAAAAGAGAAGAGTGAGAGACTACAGAAGGTCCTTGAACTTGTGAGTACCGTGCATGACCTT 
TGTGCTGTTCTTGGCATGGACTTCTTCAGTACTGTCACAGAAGTTCACCCAAGCCTGAATGATTCAACTGGT 
GTACAGTCAAAAAGTATTAGCAATGATACTCTGTCAAGTCTGGCTAAAACTGTCTTAGTATTAAAGGAGGAT 
AAGAAGCAGAGATTGCATAAGCTTCAAGAGTTAGCAACTCAGCTAATCGATTTATGGAATTTGATGGATACC 
CCAGAAGAAGAAAGGAGCTTGTTTGACCATGTTACCTGCAACATATCAGCTTCAGTAGATGAAGTGGCCATT 
CCAGGGGCTCTTGCTCTTGATCTGATTGAACAGGCTGAAGTAGAAGTTGAAAGGCTTGATCAACTAAAAGCT 
AGCAAGATGAAGGAGATTGCTTTCAAAAGGCAGGCTGAACTGGAAGACATTTATGCTCGTGCCCACGTAGAG 
ATTGATACGGAGGCTGCTCGAGAAAAAATTATGGCACTGATCGATTCTGGGAATGTTGATCCTGCAGAGTTA 
CTAGCTGACATGGACAATCAGATTGTAAATGCAAAAGAAGAGGCTCATAGCAGGAAAGAAATATTGGATAAA 
GTTGAGAAATGGATGGCAGCTTGTGAAGAAGAGAGCTGGCTTGAAGACTACAACAGGGACGACAACCGATAT 
AATGCAAGTAGAGGAGCACACTTAAATTTGAAGAGGGCTGAAAAGGCTCGGATATTGGTCAACAAAATTCCA 
GCTCTTGTGGACTCCTTGGTTGCAAAAACCAGAGCATGGGAGCAAGAGCGAGACACCACATTCACTTATGAT 
GGCGTTCCACTACTTGCCATGCTAGATGAATATATGATGCTCAGGCACGACAGAGAAGAAGAGAAAAGAAGG 
TTGAGGGACCAGAAGAAGTTCCATGAGCAGATAAGCAAAGAAGAAACAGTATTTGGATCAACGCCAAGCCCT 
GCTCGACCACTTGGTCCAAAGAAGGTAACAGGCCCACGAGCAAATGGCAGTGCCAATGGGCCGACAAGCAGA 
AGGCTGTCACTTAATTCCCACCAAAACGGTTCCAGGTCAACTAATAAAGATGGGAAGAGAGACACCAGACCA 
ATTGCTCCTCTGAACTATGTTGCCATGACAAAGGATGATGCAGCCTCTCACATTTCTGGAAGTGAGCATAGT 
CCTAGCACACCTTAG 

Primers for NtMAP65-1a D-BOX mutagenesis 

Original: CCGACAAGCAGAAGGCTGTCACTTAATTCCCACCAA 

Forward primer (HSY5): 
CCGACAAGCAGAGCGCTGTCAGCTAATTCCCACCAAAACGG 

Reverse primer (HY6): 
CCGTTTTGGTGGGAATTAGCTGACAGCGCTCTGCTTGTCGG 
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SM-GFP sequences 

GGATCCAAGGAGATATAACAATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGT 
TGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCAACA 
TACGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGT 
CACTACTTTCTCTTATGGTGTTCAATGCTTTTCAAGATACCCAGATCATATGAAGCGGCACGACTTCT 
TCAAGAGCGCCATGCCTGAGGGATACGTGCAGGAGAGGACCATCTCTTTCAAGGACGACGGGAACT 
ACAAGACACGTGCTGAAGTCAAGTTTGAGGGAGACACCCTCGTCAACAGGATCGAGCTTAAGGGAA 
TCGATTTCAAGGAGGACGGAAACATCCTCGGCCACAAGTTGGAATACAACTACAACTCCCACAACGT 
ATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAATTAGACACAACATTGA 
AGATGGAAGCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTT 
TTACCAGACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGAGAGACC 
ACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTACACATGGCATGGATGAACTATACAAATA 
AGAGCTC 
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