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ABSTRACT. 

The aim of this study is to evaluate the use of novel remote observations 

and spatial data analysis to improve the skill of an ocean forecasting 

system for the central Mediterranean Sea. A high-resolution (0.042° by 

0.042°) ocean forecasting system was setup consisting of an atmosphere 

model (NCEP Eta model) that was coupled to an ocean model (Princeton 

Ocean Model). This coupling consisted of the provision of surface 

atmospheric fluxes predicted at 3-hourly intervals to drive forward the 

ocean model. This research study dealt with a variety of aspects to 

improve this forecasting system using an inter-disciplinary approach. 

The main aspect of this thesis is an evaluation of novel, remotely­

sensed data acquired by an orbiting passive microwave sensor as a tool 

to assess and improve ocean forecasting. Thus, SST derived by the 

Tropical Microwave Imager onboard the TRMM satellite was evaluated 

for its potential to define one of the lower boundary conditions of the 

Eta model. The impact was positive, and resulted in an average 

improvement of the skill of the model to predict lower surface marine 

winds by approximately 10%. TMI-data proved extremely useful to 

derive instantaneous turbulent heat fluxes and other surface 

geophysical fields that were needed to diagnose and fine-tune the skill 

of the Eta model to forecast these fields. The TMI SST product also 

proved to be a valuable data source for data assimilation by the ocean 

model. An optimised data assimilation scheme was derived resulting in 

a bias of just -0.05 oc after a 15-day model integration run. 

This thesis shows how spatial data analysis can provide more detailed 

information about the high-resolution forecasts and their quality in 

addition to standard verification tools. Routines that explore the spatial 

data of the forecasts, observations and their relationship were developed 

and applied. Geostatistical analysis was used to model the spatial 

structure of the residual fields of the predictions and observations, and 

to translate the degree of spatial correlation in numerical and graphical 

terms. 
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from the brightness temperature derived from AVHRR scenes 
(inK) acquired on (a) 20.07.99 (b) 21.07.99 (c) 22.07.99 
(d) 23.07.99 and (e) 06.08.99, over the Ionian basin. 

Figure 4.30. Daily integrated precipitable water vapour over 170 
the area of interest during the period 20 July to 7 August 
1999. 

Figure 4. 31. The variability of the total precipitable water 1 72 
vapour profile (in g cm-2 * 0.1) over the area of interest as 
retrieved by the TMI sensor on (A) 20th July at 3:48 UT (B) 21st 
July at 5:41 UT (C) 22nd July at 4:46 UT and (D) 01 st August at 
23:12 UT. 

Figure 5.1. Domains of the limited area, Mediterranean-wide 180 
Eta model. Nested within its integration domain is the high-
resolution Eta model. 

Figure 5.2. Graphical display of initial WAFS lateral boundary 181 
conditions (octant grid 37) for 2nd Feb 1999 at 1800 UT. Data 
relates to geopotential height in mb at z=1000. 

Figure 5.3 Graphical display of the initial WAFS lateral 181 
boundary conditions (octant grid 37) for 2nd Feb 1999 at 1800 
UT. Data relates to relative humidity in% at z= 1000. 

Figure 5.4. Flowchart and interaction between the various 183 

xiv 



~,._. __ ,. 

stages of the two Eta models and input of forecasted air-sea 
surface flux fields into the ocean model. The Data Analysis 
component used image processing, GIS and statistical 
software for model diagnostics. 

Fig 5.5 Use of 3-hourly prognostic fields generated by the 184 
limited area model as the lateral boundary conditions of the 
nested, high-resolution Eta model. 

Figure 5.6 Schematic diagram of the experiment to fine-tune 188 
the Eta viscous sublayer. 

Table 5.1a. Single forecast verification matrix for the nested 189 
model runs during 1999. Validation depends on the 
availability of collocated observations/ derived products. 

Table 5.1 b. Single forecast verification matrix for the nested 190 
model runs during 1999. Validation depends on the 
availability of collocated observations/ derived products. 

Figure 5.7. Flowchart of the spatial similarity analysis between 193 
predicted and observed field and derivation of interrelationship 
between surface fluxes. 

Figure 5.8. Predicted geopotential field at z=1000 in mb on 2nd 199 
Feb 1999 at 2100 UT. Initial conditions were derived from 
WAFS glo hal model. 

Figure 5.9. Predicted specific humidity field at z= 1000 in 199 
kg kg-1 on 2nd Feb 1999 at 2100 UT. Initial conditions were 
derived from WAFS global model. 

Figure 5.10. Predicted 10 m wind field (in m s-1) at z= 1000 on 200 
02nd Feb 1999 at 2100 UT. Initial conditions were derived from 
WAFS global model. 

Figure 5.11. Predicted, contoured 10 m wind magnitude field 201 
(in m s-1) at z=1000 on 02nd Feb 1999 at 2100 UT extracted 
from inset box shown in fig. 4.10. Initial boundary conditions 
for the local area Eta model are derived from WAFS global 
model. 

Figure 5.12. Predicted, contoured 10m wind magnitude 201 
(in m s-1) on 02nd Feb 1999 at 2100 UT derived from the high­
resolution, nested model with a horizontal resolution of 0.04°. 
Initial conditions were derived from the boundary conditions 
provided by the limited area model. 
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Figure 5.13. Predicted sensible heat flux (in W m-2) on 02nd 202 
Feb 1999 at 2100 UT. This field was derived from the nested 
model with a horizontal resolution of 0.04°. Initial conditions 
were derived from the boundary conditions provided by the 
limited area model. 

Figure 5.14 Predicted latent heat flux (in W m-2) on 02nd Feb 202 
1999 at 2100 UT. This field was derived from the local area 
model with a horizontal resolution of 0.04°. Initial conditions 
were derived from the boundary conditions provided by the 
limited area model. 

Figure 5.15. Temporal trend of the predicted monthly average 203 
Eta and TMI-derived integrated precipitable water vapour 
(in g cm-2). 

Figure 5.16. Mean error of Eta forecasted integrated 204 
precipitable water vapour from the observed field (in g cm-2) 

Figure 5.17. Monthly average RMSE between the Eta 204 
forecasted- and TRMM derived-integrated precipitable water 
vapour (in g cm-2). 

Figure 5.18. Temporal forecasting trend of integrated water 205 
vapour when the RMSE values of single-forecasts were 
grouped according to time of statistical comparison. 

Figure 5.19. Mean error between the Eta and TMI-derived 206 
integrated cloud liquid water (in mm). 

Figure 5.20. RMSE between the Eta forecasted- and TMI- 206 
derived integrated cloud liquid water (in mm). 

Figure 5.21. Trend of average Eta forecasted- and NOAA 207 
Pathfinder derived- outgoing long wave radiation over the 
Ionian basin during 1999. 

Figure 5.22. Temporal trend of average Eta forecasted- and 210 
TMI-derived 10m wind magnitude (m s-1). 

Figure 5.23. RMSE between the Eta forecasted- and TMI- 210 
derived 10m wind magnitude (m s-1). 

Figure 5.24. Annual trend of Eta-forecasted 2m air 211 
temperature and quasi-instantaneous derivation of air 
temperature (in °C). 

Figure 5.25. Over-forecasting of the Eta-predicted fields when 212 
compared to SOC climatology over the area of interest. 
Figure 5.26. Temporal annual trend of predicted and observed 213 
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sensible heat flux (W m-2). 

Figure 5. 27. Temporal mean bias between the Eta -predicted 213 
and observed sensible heat flux (W m-2). 

Figure 5.28. Relation between observed sensible heat flux (W 214 
m-2) and 10 m wind magnitude (m s-1) over the area of interest. 

Figure 5.29. Monthly average RMSE between the Eta-predicted 215 
and observed sensible heat flux (W m-2). 

Figure 5.30. Temporal variation of between Eta-predicted and 216 
estimated latent heat flux (W m-2). 

Figure 5.31. Temporal variation of mean monthly error 216 
between Eta-predicted and TMI-derived latent heat flux 
(W m-2). 

Figure 5.32. RMSE between Eta predicted and TMI-derived 217 
latent heat flux (W m-2). 

Figures 5.33 a- b. Linear trends of normalised RMSE (m s-1) 222 
obtained for the four sets of ~ values plotted against increasing 
wind speed ranging from (a) 3.0 to 3.9 m s-1, and (b) 4.0 to 4.9 
m s-1. 

Figures 5.33 c- d. Linear trends of normalised RMSE (m s-1) 223 
obtained for the four sets of~ values plotted against increasing 
wind speed ranging from (c) 6.1 to 6. 9 m s-1, and (d) 7.0 to 
11.9 m s-1 . 

Figure 5.34. Trends of normalised RMSE plotted against the 224 
predicted 10m wind magnitude (m s-1). 

Table 5.2. Optimal~ values for different 10m wind speed 225 
regimes. The value of~ can be dynamically adjusted according 
to modality of the predicted wind speed regime. 

Figure. 5.35. Spatial similarity analysis between collocated, 228 
filtered Eta 15-hr forecasted wind fields and observed, filtered 
10m wind magnitude field on the 2nd of July 1999. The 
observed, contoured 10m wind magnitude field is shown for 
reference. The average forecasted wind field regime is 
3.3 m s- 1. 

Figure 5.36. Spatial similarity analysis between collocated, 229 
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filtered Eta 21-hr forecasted wind fields and observed, filtered 
10 m wind magnitude field on the 2nd of August 1999. The 
observed, contoured 10m wind magnitude field is shown for 
reference. The average forecasted wind field regime is 
4.1 m s- 1. 

Figure 5.37. Spatial similarity analysis between collocated, 230 
filtered Eta 33-hr forecasted wind fields and observed, filtered 
10m wind magnitude field on the 12th July 1999. The 
observed, contoured 10m wind magnitude field is shown for 
reference. The average forecasted wind field regime is 
5.4 m s- 1. 

Figure 5.38. Spatial similarity analysis between collocated, 231 
filtered Eta 30-hr forecasted wind fields and observed, filtered 
10m wind magnitude field on the lOth January 1999. The 
observed, contoured 10m wind magnitude field is shown for 
reference. The average forecasted wind field regime is 
7.9 m s- 1 . 

Figure 5.39. Spatial similarity analysis between collocated, 232 
filtered Eta 18-hr forecasted wind fields and observed, filtered 
10m wind magnitude field on the 09th November 1999. The 
observed, contoured 10m wind magnitude field is shown for 
reference. The average forecasted wind field regime is 
8.7 m s- 1 . 

Figure 6.1. An example of a global wind magnitude profile over 238 
the entire orbital scene during the ascending path of the TMI 
on July 22, 1999. The inset represents the geophysical field 
over the Mediterranean area, not exceeding 40°N. 

Figure 6.2. Schematic diagram of the experimental procedure 239 
to assess the impact of using TMI -derived SST as the surface 
boundary condition of the high-resolution atmosphere model. 

Table 6.1 a. Use of valid TMI -derived SST data for numerical 243 
model initialisation during January- April 1999. The choice of 
forecasting dates depended on criteria listed in sequential 
order. 

Table 6.1 b. Use of valid TMI-derived SST data for numerical 244 
model initialisation during May- September 1999. The choice 
of forecasting dates depended on criteria listed in sequential 
order. 

Table 6.lc. Use of valid TMI-derived SST data for numerical 
model initialisation during October- December 1999. The 
choice of forecasting dates depended on criteria listed in 
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Figure 6.3. GDAS-derived modelled SST data in °C (originally 
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1 o by 1 o horizontal grid resolution) for 22nd July 1999 at 00 
UT over the model integration domain. The data is interpolated 
onto 0.042° grid. 

Figure 6.4. TMI-derived SST data in oc (originally 0.25° by 246 
0.25° horizontal grid resolution) for 22nd July 1999 at 
2.85hrs UT over the model integration domain. The data is 
interpolated onto 0.042° grid. 

Table 6.2. Recoding ofwind magnitude intervals from 2 to 250 
10m s-1. 

Figure 6.5. Semi-variograms through the origin (a) with nugget 253 
effect (b), and with no spatial autocorrelation (c). 

Figure 6.6. Scatterplot of collocated TMI- vs GDAS-derived SST 254 
(in Kelvin). Each point represents the average SST value of 
5002 raster points representing a complete surface field over 
the integration domain of the local area model. 

Figure 6.7. Residual plot tendency ofTMI- minus GDAS- 255 
derived SST (in Kelvin) against TMI-derived SST (in Kelvin). 
Each point represents the average SST value of 5002 raster 
points representing a complete surface field over the 
integration domain of the local area model. 

Figure 6.8. Example of fields produced by the Reference (left) 257 
and Experimental (right) setup, initialised by the GDAS-SST 
and TMI-SST respectively. The predicted geophysical fields 
correspond to the 27th hour fields starting on 27 July 1999, 00 
UT. 

Figure 6.9. Example of fields produced by the Reference (left) 258 
and Experimental (right) setup, initialised by the GDAS-SST 
and TMI -SST respectively. The predicted geophysical fields 
correspond to the 27th hour fields starting on 27 July 1999, 
OOUT. 

Figure 6.10. TMI-derived (a) 10m wind magnitude (m s-1), and 259 
(b) total precipitable water vapour, on the 28th July at 
0200 UT. 

Table 6.3. Basic comparative statistics of 10m wind 261 
magnitude (m s-1) forecasts with observations. 

Table 6.4. Model performance measures in terms of MSE of 263 
10m wind magnitude (m s-1) forecasts for both reference and 
experimental model outputs. 

Figure 6.11. Percentage improvement of the experimental 264 
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relative to the reference setup in terms of improved prediction 
for the entire annual analysis, based on the MSE 

Table 6.5. Raster-based, arithmetic matching between the 268 
forecasted and observed wind magnitude maps. F: forecast; H: 
Hit; 0: Observation; MS: Match Score. 

Figures 6.12 a - b. Overlapping pixels between (a) reference 269 
(MS=0.130) and (b) experimental (MS=0.324) model output of 
10m wind magnitude field against observations respectively 
for July 25th at 03 hrs (see table 5.4.). Nulled, black pixels 
indicate no overlap. The different colours are classed values (in 
m s-1) wind fields. 

Figures 6.13 a-e. Case study 1: January 22nd, 1999: (a) 273 
similarity map between predicted surface wind speed by the 
reference system and observations; (b) similarity map between 
predicted surface wind speed by the experimental system and 
observations; (c) predicted wind speed (in m s-1) by the 
reference system; (d) predicted wind speed (in m s-1) by the 
experimental system; (e) observed wind speed (in m s-1) by the 
tropical microwave imager on 23rd January at 02:08 UT 

Figures 6.14 a-e. Case study 2: January 24th, 1999: (a) 274 
similarity map between predicted surface wind speed by the 
reference system and observations; (b) similarity map between 
predicted surface wind speed by the experimental system and 
observations; (c) predicted wind speed (in m s-1) by the 
reference system; (d) predicted wind speed (in m s-1) by the 
experimental system; (e) observed wind speed (in m s-1) by the 
tropical microwave imager on 25th January at 01:12 UT. 

Figures 6.15 a-e. Case study 3: April 22nd, 1999: (a) similarity 275 
map between predicted surface wind speed by the reference 
system and observations; (b) similarity map between predicted 
surface wind speed by the experimental system and 
observations; (c) predicted wind speed (in m s-1) by the 
reference system; (d) predicted wind speed (in m s-1) by the 
experimental system; (e) observed wind speed (in m s-1) by the 
tropical microwave imager on 23rd April at 03:25 UT. 

Figures 6.16 a-e. Case study 4: December 15th, 1999: (a) 
similarity map between predicted surface wind speed by the 
reference system and observations; (b) similarity map between 
predicted surface wind speed by the experimental system and 
observations; (c) predicted wind speed (in m s-1) by the 
reference system; (d) predicted wind speed (in m s-1) by the 
experimental system; (e) observed wind speed (in m s-1) by the 
tropical microwave imager on 15th December at 22:50 UT. 
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Figures 6.17 a-b. The residual map of the differences between 279 
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the 10 m wind magnitude (m s- 1) forecasted by the (a) 
reference setup and (b) experimental setup, and collocated 
observations derived from the Tropical Microwave Imager on 
July 25 at 2400 UT (or July 26 at 00 UT). 

Figures 6.19 a-b. The residual map of the differences between 280 
the 10m wind magnitude (m s-1) forecasted by the (a) 
reference setup and (b) experimental setup, and collocated 
observations derived from the Tropical Microwave Imager on 
December 15 at 2400 UT. 

Figures 6.20 a-b. Semi-variograms of the residuals obtained 282 
between (a) the reference prediction and (b) experimental 
prediction, with observations retrieved on April 28th 1999 at 
2100 UT. 

Table 6.6. Model fit for isotropic semi-variograms of the 286 
residuals from January through December. 

Figure 6.20a. 2-D representation of the semi-variogram 288 
obtained from the residual of reference forecast and observed 
wind fields on December 15 at 00 UT, revealing least semi-
variance in the 45° direction. 

Figure 6.20b. 2-D representation of the semi-variogram 288 
obtained from the residual of experimental forecast and 
observed wind fields on December 15 at 00 UT, revealing least 
semi-variance in the 45° direction. 

Figure 7. 1. Geographical coverage of the modeling of the 294 
Mediterranean Forecasting System at the regional and shelf 
scale. 

Figure 7.2. Input of 3-hourly atmospheric surface flux fields 296 
into POM as its surface boundary conditions. 

Figure 7.3. The two air-sea flux datasets produced in section 298 
6.4.4. were separately used to initialise the surface boundary 
conditions of the ocean model. 

Figure 7 .4. Scheme representing the entire model integration 299 
process. 

Figure 7.5. Using the POM numerical package, the initial 299 
model fields supplied by the lateral and surface boundary 
conditions are adjusted towards the observed SST data in a 
pre-forecast run. 

Table 7.2. Three experiments were performed to assess the 302 
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effectiveness of the model's data assimilation scheme and its 
optimisation. 

Figure 7.6. RMSE trend between 24-hr predicted SST and 305 
TMI-derived SST for the entire period of model integration, 
with no active data assimilation scheme. 

Figure 7.7. Bias trend between 24-hr predicted SST and TMI- 305 
derived SST throughout the 15-day model integration of POM 
with no data assimilation. 

Figure 7 .8a-c. Bias trend between the SST forecasts produced 307 
by the two competing models using different initial surface 
boundary conditions with different nudging periods as follows: 
(a) 06 hrs, (b) 12 hrs, (c) 24 hrs. 

Figure 7.9a-c. Bias trend between the SST forecasts produced 
by the two competing models with different initial surface 
boundary conditions using a nudging coefficient of 5x10-3 and 
different nudging periods as follows: (a) 06 hrs, (b) 12 hrs, (c) 
24 hrs. 

309 

Figure 7.9d-f. Bias trend between the SST forecasts produced 309 
by the two competing models with different initial surface 
boundary conditions using a nudging coefficient of 5x10-4 and 
different nudging periods as follows: (a) 06 hrs, (b) 12 hrs, (c) 
24 hrs. 

Figure 7. 9g-i. Bias trend between the SST forecasts produced 310 
by the two competing models with different initial surface 
boundary conditions using a nudging coefficient of 5x1o-s and 
different nudging periods as follows: (a) 06 hrs, (b) 12 hrs, (c) 
24 hrs. 

Figure 7.9j-l. Bias trend between the SST forecasts produced 310 
by the two competing models with different initial surface 
boundary conditions using a nudging coefficient of 5x10-6 and 
different nudging periods as follows: (a) 06 hrs, (b) 12 hrs, (c) 
24 hrs. 

Figure 7.10a-d. An overview of some datasets used to 316 
initialise, nudge, and verify the predicted oceanic fields. The 
thermal profiles (a) and (c) were retrieved by the NOAA AVHRR 
sensor on the 22nd and 23rd July 1999. 

Figure 7 .11. (a) Composite consisting of radiances derived 317 
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from NOAA AVHRR channels 1, 4 and 5 showing basin-wide 
circulation in the Ionian region, and (b) Composite consisting 
of radiances derived from NOAA AVHRR channels 1, 3 and 4 
showing evidence of atmospheric aerosols originating from 
north Africa. Images retrieved on 22 July 1999 at 12:53 UT 
(scale 1 em: 130 km) 

Figure 7.12 (a) Composite consisting of radiances derived from 317 
NOAA AVHRR channels 1, 4 and 5 showing evolution of the 
surface thermal signature in the Ionian basin, and (b) 
Composite consisting of radiances derived from NOAA AVHRR 
channels 1, 3 and 4 showing increasing aeolian dust uptake 
that is migrating towards the area of interest. Images retrieved 
on 23 July 1999 at 12:41 UT (scale: 1 em: 130 km). 

Figure 7.13. Forecasted integrated dust load (g m-2) over the 319 
area of interest. Dust originating from the Saharan region is 
predicted to move eastwards every 3 hours starting from 0300 
UT on the 23 July 1999. Superimposed is the resultant wind 
direction and strength. 

Figure 7.14. 36-hour forecast of the 10m wind magnitude (m 321 
s-1) predicted by the nested Eta atmosphere model starting at 
22.07.99 00 UT (equivalent to 23.07.99 at 1200 UT). 

Figure 7.15. 36-hour latent heat flux (W m-2) predicted by the 322 
nested Eta atmosphere model starting at 22.07.99 00 UT 
(equivalent to 23.07.99 at 1200 UT). 

Figure 7.16. 12-hour forecast of the sea surface elevation (m) 322 
predicted by the ocean model (using DA scheme 1; 1=24 hours; 
experimental air-sea fluxes) starting at 22.07.99 00 UT. 

Figure 7.17 a-b. SST features as (a) retrieved by AVHRR on the 323 
23rct July 1999 at 12:41 UT, and (b) contoured, 36-hour 
predicted SST field (using DA scheme 1; 1=24 hours; driven by 
the experimental air-sea fluxes) on 22nd July 1999 (equivalent 
to 23rd July at 1200 UT). 

Figure 7.18. Streamlined surface ocean currents as predicted 324 
at the 36th hour from the start of the model integration on the 
22nd July 1999 at 00 UT. TMI-SST was assimilated with a 
nudging period of 24hrs using DA scheme 1. 

Figure 7.19. Direction and magnitude (em s-1) of the surface 324 
ocean currents as predicted at the 36th hour from the start of 
the model integration on the 22nd of August 1999 at 00 UT. 
TMI -SST was assimilated using scheme 1 with a 't = 24 hrs. 
(Scale arrow is 0.4 em s-1). 

Figure 7.20. Model predicted SST on 6th August at 00 UT using 327 
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the optimal settings identified for DA schemes 1 and 2 using 
TMI-derived SST and the experimental set of air-sea fluxes to 
drive the ocean model. 

Figure 7 .21. Histogram plot of the final forecast SST maps 328 
(in °C) generated by (a) data assimilation scheme 1 using a 
nudging period t equal to 24 hours and (b) data assimilation 
scheme 2 using a coefficient of 5x10-4 . These forecasts were 
equivalent to 06.08.99 at 00 UT. 

Figure 7.22. Vorticity (m-1 s-1) on 06.08.99 at 00 UT as 329 
predicted by the ocean model forced by the experimental set of 
air-sea fluxes and using data assimilation scheme 1 (t=24hrs). 

Figure 7.23. Vorticity (m-1 s-1) on 06.08.99 at 00 UT as 329 
predicted by the ocean model forced by the experimental set of 
air-sea fluxes and using data assimilation scheme 2 
(coefficient= 5x10-3; t=06hrs). 

Figure 7.24. Model predicted SST on 6th August at 00 UT using 330 
the optimal settings identified for DA schemes 1 and 2 using 
GDAS-derived SST and the reference set of air-sea fluxes to 
drive the ocean model. 

Figure 8.1. Scheme representing the main improvements of 345 
the high-resolution, ocean forecasting system for the central 
Mediterranean, resulting from the present study. 

Figure 8.2a-c. A simple example illustrating the benefits of 346 
fusing (a) a high resolution SST map retrieved by the AVHRR 
containing data gaps (due to aerosols or cloud contamination), 
with (b) an all-weather, lower resolution SST map retrieved by 
the Tropical Microwave Imager. Using data interpolation 
techniques, the final, high-resolution field can be used for data 
assimilation, model initialisation and/ or model verification 
purposes. 

Figure 8.3. RMSE values for the predicted 10m wind 349 
magnitude by the regional, local area Eta model and the 
nested Eta model, against collocated measurements derived 
from the orbiting TMI sensor. 

Figure 11.1. (a) log profile ending, and (b) log profile with the 394 
viscous sublayer ending. 

Table 11.1. Definition of domain of the atmosphere model 400 
setup. This information is coded in "all.inc" file. 

Figure III.1. Model integration domain of the atmospheric dust 452 
·model.· 
Table IV.1. Definition of integration domain of the ocean 460 
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model. This information is coded in "latlon.inc" and "gridcom" 
files. 

Figure IV.l. Ocean bathymetry over the integration model 461 
domain in meters. 

Table V.l. Summary statistics for the monthly mean values of 4 70 
the latent heat flux (W m-2) over the area of interest. 

Table V.2. Summary statistics for the monthly mean values for 4 70 
the sensible heat flux (W m-2) over the area of interest. 

Table V.3. Summary statistics of the monthly mean values for 471 
the outgoing longwave radiation (W m-2) over the area of 
interest. 

Table V.4. Summary statistics of the monthly mean values for 4 71 
the wind magnitude (m s-1) overt the area of interest. 

Table V.S. Summary statistics of the monthly mean values for 472 
SST (0 C) over the area of interest. 

Table V.6. Summary statistics of the monthly mean values for 4 72 
the surface air temperature (0 C) over the area of interest. 

Table V.7a. Summary statistics for the derivation and 473 
accuracy assessment of the split-window algorithm as defined 
by Yu and Barton (1994) as per CoastWatch sector. 

Table V.7b. Summary statistics for the derivation and 474 
accuracy assessment of the split-window algorithm as defined 
by Yu and Barton ( 1994) as per CoastW atch sector. 

Table V.7c. Summary statistics for the derivation and 475 
accuracy assessment of the split-window algorithm as defined 
by Yu and Barton ( 1994) as per CoastWatch sector. 

Table V.7d. Summary statistics for the derivation and 476 
accuracy assessment of the split-window algorithm as defined 
by Yu and Barton ( 1994) as per CoastW atch sector. 

Table V.7e. Summary statistics for the derivation and 477 
accuracy assessment of the split-window algorithm as defined 
by Yu and Barton (1994) as per CoastWatch sector. 

Table V. 7f. Summary statistics for the derivation and accuracy 4 78 
assessment of the split-window algorithm as defined by Yu 
and Barton (1994) as per CoastWatch sector. 

Table V. 7g. Summary statistics for the derivation and 479 
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accuracy assessment of the split-window algorithm as defined 
by Yu and Barton (1994) as per CoastWatch sector. 

Table V.7h. Summary statistics for the derivation and 480 
accuracy assessment of the split-window algorithm as defined 
by Yu and Barton ( 1994) as per Coast Watch sector. 

Table V.7i. Summary statistics for the derivation and accuracy 481 
assessment of the split-window algorithm as defined by Yu 
and Barton (1994) as per CoastWatch sector. 

Table VI.1. Summary statistics of the averaged, monthly 482 
predicted and observed integrated precipitable water vapour 
(mm) over the area of interest. 

Table VI.2. Summary statistics of the averaged, monthly 482 
predicted and observed integrated cloud liquid water vapour 
(mm) over the area of interest. 

Table VI.3. Summary statistics of the averaged, monthly 483 
predicted and observed wind magnitude (m s-1) over the area of 
interest. 

Table VI.4. Summary statistics of the averaged, monthly 483 
predicted and observed outgoing longwave radiation (W m-2) 
over the area of interest. 

Table VI.5. Summary statistics of the averaged, monthly 484 
predicted and observed surface air temperature (0 C) over the 
area of interest. 

Table Vl.6. Summary statistics of the averaged, monthly 484 
predicted and observed sensible heat flux (W m-2) over the area 
of interest. 

Table VI. 7. Summary statistics of the averaged, monthly 485 
predicted and observed latent heat flux (W m-2) over the area of 
interest. 

Table VI.8a. Normalised RMSE of predicted surface wind 486 
magnitude when the viscous sublayer depth varies from 0.20 
to 0.80. The data is arranged according to the increasing 
predicted wind speed from 3.0 to 5.0 m s-1. 

Table VI.8b. Normalised RMSE of predicted surface wind 487 
magnitude when the viscous sublayer depth varies from 0.20 
to 0.80. The data is arranged according to the increasing 
predicted wind speed from 5.0 to 12.0 m s-1. 

Table VII.1. Basic statistical and model performance measures 488 
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when no data assimilation scheme is active throughout the 
entire model integration period. The mean value shown 
represents the average value for the entire predicted/ observed 
SST field. 

Table Vll.2. Basic statistical and model performance measures 489 
when Newtonian relaxation was used with a variable nudging 
period. 

Table VII.3. Basic statistical and model performance measures 490 
when data assimilation 2 is active throughout the entire model 
integration period. Coefficient value: 5x1Q-3 with variable pre­
forecast nudging period. 

Table Vll.4. Basic statistical and model performance measures 491 
when data assimilation 2 is active throughout the entire model 
integration period. Coefficient value: 5xl0-4 with variable pre­
forecast nudging period. 

Table VII.5. Basic statistical and model performance measures 492 
when data assimilation 2 is active throughout the entire model 
integration period. Coefficient value: 5x1Q-5 with variable pre­
forecast nudging period. 

Table VII.6. Basic statistical and model performance measures 493 
when data assimilation 2 is active throughout the entire model 
integration period. Coefficient value: 5x1Q-6 with variable pre­
forecast nudging period. 
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Chapter 1 

INTRODUCTION. 

1.1. Operational ocean forecasting. 

Ocean modelling is a relatively young branch of marine science that has 

developed during the past two decades to address a wide range of 

applications (Flemming, 1995). The main thrusts behind the realisation 

of ocean modelling include: 

1. An enhanced skill of ocean numerical models to simulate and predict 

oceanic features. 

2. An acceptable simulation of highly nonlinear dynamical systems. 

3. Enhanced computing power that makes feasible more sophisticated 

computation of numeric simulations of the oceans. 

Operational ocean forecasting constitutes one of the most important 

applications of ocean modelling, and is used to produce predictions of 

the three-dimensional physical sea state and related marme 

biochemical components for a certain time period (Nittis et al., 2001). 

Other uses of ocean modelling include the study of ocean currents, the 

interaction between the atmosphere and ocean, transport of 

biogeochemical materials, climate prediction, assimilation of 

observations to provide dynamically consistent ocean fields, pollution 

dispersal, fisheries and military applications. 

Operational forecasting of the sea state encompasses a technical 

framework that provides a continuous oceanographic service of 

significant socio-economic and environmental importance1. Strong 

interest has been expressed in this particular application and, as a 

1 http:/ I www. born. gov. au/ bmrc/ ocean/ GODAE/ Presentations/ godae_sraph/ 
(accessed on 0 1.11. 04). 
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result, the Global Ocean Observing System (GOOS) has been 

established to promote and coordinate international and national efforts 

for the development of large-scale and regional ocean observing and 

forecasting systems (IOC, 1998). The European initiative of GOOS -

EuroGOOS2, has in the past ten years coordinated activities on ocean 

observation and forecasting to help the advancement of operational 

oceanography on a European level. Its plan is to introduce six regional 

projects to establish operational forecasting systems into the regional 

seas of Europe. 

Vigorous oceanographic research in the 1980s, aimed at developing a 

multiscale Mediterranean circulation model, was accompanied by a new 

era of numerical prediction in the region. Modelling efforts of the general 

circulation and data assimilation, coupled with improvements of model 

dynamics, played a significant role in strengthening ocean modelling in 

the Mediterranean (Robinson et al., 2001). Through the MedGOOS3 

initiative, the Mediterranean Forecasting System4 is the latest, region­

wide test case that is now providing basin-scale, weekly ocean forecasts 

(Pinardi and Flemming, 1998). 

1.2. High-resolution, small-scale ocean forecasting. 

High-resolution ocean forecasting has numerous military and civilian 

applications. Some of these applications include assimilation and 

synthesis of global satellite surface data, anti-submarine warfare and 

surveillance, high resolution ocean forecasting, optimum ship track 

routing, search and rescue, high resolution boundary conditions for 

even higher resolution coastal models, pollution and tracer tracking, 

fisheries, and ocean structure design such as deep-sea oil platforms. 

'-~ http:}/www:eurogoos.org/- (accessed-on-01, 11,04). 
3 which is the Mediterranean component of GOOS. 
4 http:/ I www. bo. ingv. it/ mfstep/ (accessed on 01. 11. 04). 
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These high-resolution models are able to resolve much of the along­

isopycnal mixing, due to eddies and important topographic features, 

than coarse models can. However, the computational cost and 

manpower requirements create several difficulties. First, experiments 

with these models cannot be carried out for very long periods, and so 

their model solutions are not equilibrated and thus not independent of 

the initial conditions. Second, there are serious difficulties in assessing 

the scale of variability produced by these models because of a lack of 

observational data at the appropriate spatial and temporal scales. 

1.3. Ways to improve high-resolution ocean forecasting. 

1.3.1. Need for fine spatio-temporal surface forcing. 

Ocean modelling has to reflect all the processes that determine the 

properties of the ocean, the distribution of heat and chemicals as well 

as its motion. Some of these processes initiate at the sea surface and 

are related to exchanges between the atmosphere and the ocean 

(Charnock, 1994). An essential component for ocean models in relation 

to the distribution of ocean currents, salinity and temperature are the 

air-sea fluxes of momentum, water substance and heat. 

Scientific groups within the global climate prediction community, 

including the World Climate Research Program (WCRP), the Joint 

Working Group on Air-Sea Fluxes (WGASF), the Global Energy Water 

Cycle Experiment GEWEX Radiation Panel, and the US Climate 

Variability and Predictability (CLIVAR) have expressed the need for 

high-quality spatial and temporal air-sea fluxes (Taylor, 2000). 

According to SEAFLUX (1999), such a dataset could assist the 

oceanographic community to address the following tasks: 

1. to better understand the transport budget of heat and freshwater in 
~-- ~ .;c·- "'~-' ·.' -· .-·.:;:- - ~'·...:.•.;:- --- ' • 

the global ocean; 
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2. to diagnose the temporal variation of coupled atmosphere-ocean 

systems and to improve the day-to-day prediction of air-sea energy 

fluxes and their influence on small-scale ocean surface variability; 

3. to provide surface forcing information to help drive ocean models, 

and 

4. to evaluate the accuracy of forecasted rur-sea surface fluxes by 

atmosphere-ocean models. 

Points 3 and 4 above are of direct relevance to this study. 

The spatial and temporal characteristics of air-sea flux datasets vary 

according to the application. For many climatological applications 

relevant to the GEWEX Radiation Panel and the US CLIVAR Committee, 

a 1° spatial resolution, 3- to 6-hourly time resolution and accuracy of 5 

W m-2 for individual components of the surface heat budget are 

required. It is interesting to note that applications requiring fine spatial 

and temporal air-sea fluxes are expanding rapidly as high-resolution 

ocean predictive modelling is becoming more feasible due to advances in 

computer technology. For this reason, the Joint Working group on Air 

Sea Fluxes (Taylor, 2000) states that " .. .for ocean general circulation 

models, high-resolution forcing fields ... 3 hourly winds are required to 

simulate the shear in the mixed layer, and a 50 km resolution is sought 

for the wind stress curt. 

The three major, often inter-dependent, sources of flux estimates are 

shipboard, buoy and satellite observations, and numerical atmosphere 

models. 

1.3.1.1. In situ observations. 

Direct rur-sea flux estimates are scarce, especially m the Southern 

hemisphere. Moreover, these estimates show errors of around 15 to 

25 W m-2 in the annual mean, depending on the field studied (Gleckler 

-ancfweare, 1997f~ancfa:re- -C>rganrsed <-as morithly means, averaged over 
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areas of 1.0° by 1.0° or even coarser. Higher quality turbulent flux 

measurements are available from research ships taken during field 

experiments, and increasingly from "flux-measuring" buoys. 

Nevertheless, the amount of data generated is still small. 

Alternatively, air-sea fluxes can be measured using bulk flux algorithms 

produced by correlating in situ flux measurements with basic 

observational values of sea surface temperature, wind, surface air 

temperature and humidity. A variety of different bulk flux algorithms 

are used, with most recently developed research-quality algorithms 

showing fairly good agreement with observations in conditions of 

moderate wind speed and neutral or unstable conditions (Taylor and 

Yelland, 2001). However, there are still outstanding issues with bulk 

algorithms that lead to inaccuracies in the final estimates including 

conditions of light wind and stable stratification. The influence of sea 

spray, treatment of sea state, appropriate averagmg scales, 

parameterisation of mesoscale gustiness and behaviour of scalar 

sublayer transfer also lead to discrepancies (SEAFLUX, 1999). 

From such sets of observations, climatological air-sea flux data have 

been generated and collected as comprehensive datasets such as the 

Comprehensive Ocean-Atmosphere Data Set - COADS (Woodruff et al., 

1987). The most recent global climatologies (monthly 1.0° by 1.0° grid), 

including a correction from observational biases, have been compiled by 

da Silva et al. (1994a-e) and from Josey et al. (1998). 

1.3.1.2. Satellite observations. 

Most air-sea fluxes are not measured directly from satellite 

observations, and instead are calculated by including remotely sensed 

geophysical fields into sophisticated bulk parameterisations. Remote 

sensing is limited when it comes to the direct measurement of certain 

basic variables needed for the parameterisation, such as near surface 
'--~·-··-·.~:.::: ·. ;-~~:-:,,_-:=-~-=--~,.,...--~"' 

specific humidity and su;f~~~~7Jr'-"t;rri'p~~ature. 
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This is not so for the direct measurement of wind speed and direction, 

which are now a recent addition to the global satellite-direct flux 

database. Wind speed climatologies derived from SSM/I and ERS5 

scatterometer have been available on a weekly basis since July 1991 for 

the case of ERS data (Bentamy et al., 1997). The combination of several 

satellite wind products is promising and the recent NSCAT 

scatterometer has now made the derivation of a global daily wind vector 

field possible (Barnier, 1998). 

Recently, new opportunities are emergmg with the possibility of 

combining information from various sensors. Recent studies to derive 

turbulent heat fluxes using NOAA AVHRR6 (to retrieve Sea Surface 

Temperature- SST) and SSM/F sensors (to estimate surface wind speed 

and indirect surface air humidity) were successful, with an error of 

around 30 W m-2 on instantaneous fluxes and 15 W m-2 for monthly 

averages (Schulz et al., 1997). Jones et al. (1997) describe the 

estimation of ocean latent heat flux from satellite data using a neural 

network approach. In spite of recent improvements, there are still 

significant systematic and random differences between satellite and in 

situ estimations of turbulent air-sea fluxes and these arise primarily 

from uncertainties in the near-surface moisture field. 

Direct satellite estimates of radiative fluxes have also significantly 

improved in recent years as a result of the Surface Radiation Budget 

(SRB) experiment (Darnell et al., 1996). The NASA/GEWEX SRB Project 

has developed a 12-year global dataset of radiative fluxes on 1° by 1 o 

grid. The derived accuracy is estimated to be 10 W m-2 for monthly 

meansB. Comparisons with other sources indicate that there can be an 

overestimation by almost 20 W m-2 (Barnier, 1998). 

s EIJ.roJ?eaiJ J?_esear_chSatellitf:!~" _ J_, _ -~ _. ., 
6 NOAA Advanced Very High Resolution Radiometer. 
7 Special Sensor Microwave Imager. 
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1.3.1.3. Numerical modelling. 

The availability of forecasted (Telenta et al., 1998) and analyses9 

(Barnier, 1998) flux data produced by atmosphere models are becoming 

increasingly important for operational ocean forecasting. Numerical 

Weather Prediction (NWP) models are providing dynamically consistent 

surface fluxes and basic variables that have global, regular, and dense 

coverage in space and time. The availability of 3-hourly forecasted 

momentum fluxes for example, is highly desirable by oceanographers to 

resolve frictional velocity issues. Requirements for the heat and 

freshwater fluxes are not as stringent, and 6-hourly to daily values are 

acceptable (Taylor, 2000). Like other flux products, NWP products have 

biases that are difficult to evaluate since verification procedures 

ultimately have to rely on in situ and satellite-derived observations. 

The best approach m operational, high-resolution ocean-state 

forecasting is to force the ocean model with short- and medium-term 

atmospheric forecasts. In this way, fine-detailed and consistent 

forecasted atmospheric fields and air-sea surface fluxes drive the ocean 

model in a forecasting mode. This particular setup requires the 

availability of initial data for both the ocean and atmosphere models on 

a routine, near real-time (NRT) basis. Primary data sources include 

satellite measurements as well as "first-guess" fields coming from 

diverse sources such as global or regional models. 

While many operational applications still call for simulated air-sea 

fluxes with at least medium spatial (1 ° x 1 °) and temporal (daily to 

monthly mean) resolution, the demand for forecasted, high temporal 

(3-hourly) and fine spatial (less than 50 km) resolution is increasing 

rapidly. These requirements can only be met by numerical models 

having well-developed turbulence schemes which makes them highly 

8 http:/ /www.gewex.org/ srb.html (accessed on 01.11. 04). 
? cATl.aly~es i:S.,_tft£_,resul_~gr-t_ OlJ.tput of the .process. by. which an atmosphere model 
propagates infomiatioii~concemirtg'~illE"'sf&.te ~6Fthe"atmdsphere from data- rich areas to 
data sparse areas. This output, together with observations and forcing fields, can be 
used as initial conditions for a forecasting numerical model. 
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attractive to oceanographers (Fischer and Flemming, 1999). The 

derivation of air-sea surface fluxes using atmosphere models is 

therefore highly relevant for the present study. 

1.3.2. Need for improved initial conditions for atmosphere models 

to derive better air-sea flux products. 

One of the usual shortcomings in numerical modelling is the limited 

accuracy of the initial boundary (i.e. surface and lateral) conditions of 

the model parameters, which can lead to a systematic error in the 

forecast. 

An important initial condition for any atmosphere model setup, 

simulating the atmosphere over water surfaces, is the SST (Robinson 

and Donlon, 2000). Atmospheric numerical forecasters initialise this 

surface condition using coarse, modelled SST, which for uncoupled, 

short to medium-range forecasts remains constant throughout the 

model integration 10. The coarse nature of the SST fields introduces 

uncertainties in the lower model layers that affect and deteriorate the 

simulation of the near-surface atmospheric parameters. It is therefore of 

significant interest to substitute this initial surface condition with more 

accurate observational data. 

The advantage of using remotely sensed sea surface observations is 

attributed to their almost continuous data information over the desired 

geographic area with significant meso-scale resolution. Remotely sensed 

SST data, for example, give an opportunity to initialise the surface 

condition of high-resolution atmosphere models on a continuous and 

quasi-synoptic basis. The assimilation of high-resolution SST data 

within the prognostic equations of dynamic models, such as 

atmosphere models, can profoundly influence the accuracy of derived 

air-sea fluxes (Gill, 1982). 

__ .. ~_-~-_"'·_· · _____ --_-·.-_ .. .:::"_-_-:--.~_-.- . -"--' .:.~- ···'--'· 

10 Such as the case for the SKIRON system: 
http:/ /www.uga.edu/atsc/mmS/HowToDoRealTimeMMS.pdf (accessed on 01.11.04). 
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Meteorological microwave radiometers are now offering an excellent SST 

product, although at a reduced resolution than that offered by infrared 

sensors. The Tropical Microwave Imager (TMI) onboard the Tropical 

Rainfall Measuring Mission (TRMM) 11 satellite is an example of a 

passive microwave sensor designed to provide quantitative atmospheric 

and surface information over a wide swath. By measuring the minute 

amounts of microwave energy emitted by the Earth's atmosphere, 

passive microwave sensors are able to quantify the water vapour, the 

cloud liquid water, and the rainfall intensity in the atmosphere, as well 

as the SST and 10m wind speeds over the oceans (Wentz and Meissner, 

1999). 

Three important features make passive microwave sensors ideal for the 

purpose of model initialisation. These include (1) their ground 

resolution providing data with 0.25° grids, (2) their wide swath 

(approximately 1000 km) on the surface, and (3) their ability to derive 

SST in the presence of cloud cover and aerosols (fig. 1.1). This ability 

gives these sensors a distinct advantage over infrared radiometers in 

providing the necessary initial boundary information to atmosphere 

models. Furthermore, unlike infrared radiometers, microwave sensors 

are insensitive to atmospheric water vapour (Wentz and Meissner, 

1999). The accuracy of SST data derived by the TMI sensor, for 

example, has a bias of -0.08 °C and a standard deviation of 0.57 oc 
when compared to TAQ12 and PIRATA13 buoys, while the AVHRR 

Pathfinder SST has a bias of 0.02 °C and a standard deviation of 

0.53 °C when compared to in situ data (Gentemann et al., 2004). A 

major limitation of microwave sensors are their sensitivity to sea­

surface roughness and precipitation. This implies that their data is not 

reliable in areas exposed to precipitation and extreme wind conditions. 

11 TRMM is an international mission dedicated to measuring tropical and subtropical 
rainfall and is providing long-term data sets of rainfall and energy budget 
measurements which will be used to better understand global climate changes and their 
mechanisms. The orbiting spacecraft was launched in November 1997; 
http:/ /trmm.gsfc.nasa.gov/homepage.html (accessed on 01.11.04). 

_ 12 __ Tropical Atmosphere Ocean Network/ National Data Buoy Center; see 
- htipj I w;;;~~lfr~rr{~'i.j~Jc~rs~ii~n/CJ.aiD:;colOcsli:'htm- (accessed on o 1.11. 04). 
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TMI-derived SST (22.07 .99) in degrees C 
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Figure 1.1. Example of microwave-derived SST (in °C} derived from the 
Tropical Microwave Imager (TMI) at a 0.25° grid resolution. Image covers 
part of the Mediterranean Sea and detail exhibits mesoscale oceanic 
features. 

Apart from direct observations, predicted fields derived from global 

atmosphere models can also offer an excellent source of initial 

conditions for small-scale, high-resolution numerical models. This is a 

standard feature that is adopted by major forecasting centers where a 

global and at least one "limited-area" forecasting system are operated, 

with the latter using the lateral boundary data that is forecasted by the 

former. The approach is to drive a nested, higher resolution model with 

boundary conditions derived from a Limited Area Model (LAM) (fig.1.2). 

13 Pilot Research Moored Array in the Tropical Atlantic; 
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Grid 1: Coarse limited area model 

Figure 1.2. High-resolution grid nested in parent grid of the limited area 
model. The limited area model provides improved initial boundary 
conditions to the higher resolution nested model. 

For example, at the UK Meteorological Office (Staniforth, 2001), model 

domains of the order of 2000 by 2000 km and even smaller are used. In 

contrast, the operational Eta limited-area atmosphere model at the 

National Centre for Environment Prediction (NCEP) is run on a domain 

greater than 11,500 by 8,500 km. This large-scale domain can serve 

both to keep contamination at the lateral boundaries (Laprise et al., 

2000) far away from the region of interest and to improve large-scale 

circulation (Me singer et al., 2002). 

There are currently a very small number of research institutions with 

such a setup in the Mediterranean, such as the Centre for Ocean and 

Marine Prediction and Atmospheric Services (COMPASS) 14 , the 

ALERMOIS and CYCOFOSI6 systems. They are all configured to provide 

high-resolution operational forecasts of air-sea fluxes over selected 

areas in the Mediterranean Sea. A common approach is to collect "first 

guess" initial conditions generated externally by a global prediction 

model with a grid resolution of 1.25° by 1.25° for 10 standard pressure 

levels. The LAM is then run using these initial conditions to provide the 

boundary conditions for a nested, higher resolution atmosphere model. 

In this manner, the best possible temporal and spatial resolution of 

http:/ /www.pmel.noaa.gov/pirata/ (accessed on 01 .11 .04). 
14 http:/ / www.icod.org.mt/modeling/index.htm (accessed on 01.11 .04). 
15 http:/ /www.oc.phys.uoa.gr/dok4.htm (accessed on 01.11.04). 
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boundary conditions in the area of interest is achieved through model 

nesting. 

1.3.3. Use of data assimilation. 

Data assimilation IS the incorporation of observations into a 

mathematical model to improve the initialisation of dynamical models. It 

is a novel, versatile methodology that makes efficient, accurate and 

realistic estimation of initial conditions possible, which might not 

otherwise be feasible or available (Robinson and Lermusiaux, 2001). 

The initial and boundary conditions necessary for integration of the 

equations of an ocean model (i.e. velocity components, pressure, 

density, temperature and salinity) are very often difficult, if not 

impossible, to measure because of high sampling, technical and 

resource requirements. Using model numerics, data assimilation 

adjusts these fields according to their physical relation with the 

independent observations. 

Conventionally, data assimilation consists of schemes that can be 

performed simultaneously. The specific uses of data assimilation 

depend upon the quality of datasets and models, and the desired 

purposes of the field and parameter estimates. Briefly, data assimilation 

schemes include the following processes: 

• Observation analysis to (a) interpolate in space and time the 

observations on a regular network of grid-points and (b) filter out 

small amplitude random and systematic errors; 

• Dynamical forced adjustment of the variables by the aid of 

relationships between different variables utilising cross-correlated 

observed information, and 

• Normal mode initialisation of the parameter fields before insertion of 

the data into numerical forecast models. 

16 http:/ jwww.ucy.ac.cy/cyocean (accessed on 01.11.04). 
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One approach among dynamical forced adjustment methods is known 

as Newtonian relaxation or nudging (Hoke and Anthes, 1976), and is 

widely applied in regional scale models. It consists of replacing forecast 

values by observed ones, at all data points. The a priori hypothesis is 

that the observations are exact. The blending estimate is a scalar linear 

combination of the forecast and data values at all data points, with user 

assigned weights. 

Newtonian relaxation provides field balancing during a full-model pre­

forecast integration. This is done by adding the correction terms in the 

prognostic equations (by means of a nudging coefficient), thus forcing 

the model fields toward the target analysis as defined by the 

observations (Robinson and Lermusiaux, 2001). In addition, this 

dynamic balancing reduces spin-up effects of prognostic fields and 

consequently would not be distorted during initialisation. The final state 

is the result of both model adjustment mechanisms as well as the 

observed information. 

1.3.4. Fine-tuning of numerical schemes. 

Even if the above features do not introduce limits on the ability to 

predict the surface atmospheric and ocean-state, numerical forecasting 

would still be hampered by the imperfect level of the model numerics. 

Hidden within the numerical terms are representations of physical 

processes that are too small in scale and sometimes too complex to be 

completely included in a numerical model (Tribbia, 1997). This 

encourages modellers to introduce into their physical models statistical 

empirical relationship or "parameterisation" schemes to describe these 

processes. These schemes can be further tuned according to the desired 

model application. 

Fine-tuning the numerical scheme responsible for the simulation of air­

sea fluxes can strongly enhance the predictive skill of an ocean 

f~;~,~~,~~i~~· sistem. Because ~f'thi~"~Q"~pif~g -between atmosphere' and 

13 



ocean models, the assessment and improvement of the forecasting 

quality of air-sea fluxes becomes crucial (Mesinger, 2002, personal 

communication). 

1.4. Spatial data analysis in oceanic forecasting. 

From the above description, it is evident that the main approach to 

improve high-resolution ocean forecasting can be condensed into two 

distinct approaches, namely: (1) provision of accurate initial model 

conditions coupled with data assimilation techniques, and (2) the fine­

tuning of model numerics. The outcome of these approaches in turn 

necessitates an objective accuracy assessment of the improved 

forecasting skill. 

The role of remote sensing and spatial exploratory techniques embraces 

the above approaches in their entirety (fig. 1.3). Spatial analysis can be 

used to explore, visualise and model the relations between the 

forecasted and true states of the ocean and the atmosphere derived 

from Earth observations from space, and to assess whether the 

technical goal has been achieved or not. 

Data 
a•aimilation 

Figure 1.3. The role ofremote sensing and spatial analysis is central to the 
aim and objectives ofthis study as tools to improve oceanforecasting. 
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Forecast verification (i.e., the quantitative assessment of forecast 

quality) is an essential component of any ocean forecasting system. 

Information concerning the quality of forecasts is needed by end-users 

to monitor and improve the forecast quality by looking at the 

consistencyl7, qualityiB, and valuel9 of the model forecasts. However, it 

is the forecast quality that is particularly relevant to forecast 

verification, which is dependent on a number of attributes, including 

bias, association, accuracy, skill, resolution and sharpness. 

Yet, forecast verification procedures currently in place are quite 

primitive (from a methodological point of view) and generally fail to meet 

the fundamental needs of the end users in a satisfactory manner. 

Standard verification methods range from simple "eyeball" verification, 

dichotomous (yes/no) verification2o, to histogram plotting of the relative 

·frequencies of forecast and observed categories, exploratory plots2 1 and 

summary scores22 for forecasts of continuous variables. More complex 

verification methods are used for probabilistic forecasts dedicated to 

occurrence of particular meteorological/ oceanic phenomena. 

These traditional procedures translate forecast quality into "scores" by 

essentially comparing a collection of matching pairs of forecast and 

collocated observed values. However, these scores represent the 

accuracy of millions of points and often do not provide sufficient 

information to assess the performance of forecast models. 

On the contrary, diagnostic verification methods delve more deeply into 

the nature of forecast errors. These procedures get away from the 

pairwise smoothing constraint and tend to identify features and 

17 the degree to which the forecast corresponds to the forecaster's best judgment about 
the situation. 
18 the degree to which the forecast corresponds to what actually happened. 
19 the degree to which the forecast helps the decision maker to realise some incremental 
economic and/ or other benefit. 
20 using statistical measures such as threat scores. 
21 using scatter-and-box plots.-
22 mean error, bias, mean absolute error, root mean square error, correlation coefficient, 
skill score. 
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compare the attributes of these features (e.g. size, shape, magnitude 

and position) in an overall perspective23. 

Exploratory spatial data analysis is of particular relevance to the 

validation and diagnosis of numerical models. Techniques such as 

feature matching, spatial similarity, and autocorrelation studies can be 

used to analyse the spatial relationship between the model forecasts 

and collocated observations. These methods, based on image processing 

and data mining techniques, are able to determine in detail the 

performance of a given forecasting system by producing similarity or 

dissimilarity indices that can be easily compared. In spite of their 

relevance, the use of these procedures in ocean modelling is practically 

non-existent. A thorough search of the literature on the subject yields 

very few results, suggesting that the use of exploratory spatial data 

analysis and geostatistics to assess the performance of ocean­

atmosphere models is still in its infancy. 

1.5. Definition and scope of the study. 

Some research programmes in the Mediterranean, such as COMPASS24 

and ALERMO, have adopted a similar operational framework to that 

used by the Regional Ocean Forecasting System (ROFS)25. ROFS is 

based on hydrodynamic, three-dimensional ocean circulation model 

which simulates temperature, salinity, surface elevation, and currents 

for a region off the U.S. East Coast. The model is driven at the ocean 

surface boundary by heat, moisture, and momentum fluxes provided by 

a mesoscale atmospheric forecast model. However, unlike ROFS, the 

modelling system of COMPASS and ALERMO lacks a scheme that 

assimilates daily remotely sensed observations for its operational ocean 

forecasting. This study is intended to supplement the research and 

development work that is currently being carried out in the 

23,,~~~'h ·a~,';~'at::'ai/c()mj)o'sitionmetiibas,canctobject"onented ·methods. 
24 http://www.icod.org.mt/modeling/index.htm (accessed on 01.11.04). 
25 http:/ /polar.wwb.noaa.gov/cfs/ (accessed on 01.11.04). 

16 



Mediterranean by COMPASS. Because of the ongoing plans to 

downscale the current operational model setup to coastal areas, fine­

tuning of the forecasting system reflecting the new spatial conditions is 

highly desirable, pushing further the spatial resolution of ocean 

forecasts to around 4 km and even less. By means of novel, high­

resolution earth observation data, these systems can now be driven to 

produce much more realistic simulations of the atmosphere and oceans. 

This study addresses the above plans by setting up and improving an 

ocean forecasting system to better simulate and forecast the oceanic 

state at high-resolution over the central Mediterranean. 

1.5.1. Physical characteristics of the geographical area. 

The geographical domain selected for this study covers part of the 

Ionian Sea (15.78°E, 33.18°N - 19.18°E, 35.74°N), situated in the 

eastern part of the Mediterranean Sea. The bathymetry of this study 

area (fig. 1.4) varies considerably, from the wide Libyan continental 

shelf (around 500 m) to the basin and troughs of the Central Ionian 

(around 4000 m) and the complex continental margin off the Greek 

coast, with its associated islands and canyons. 

Figure 1. 4. Ocean bathymetry over the integration model 
domain in meters. 
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This Ionian Sea constitutes a suitable test area for studies related to 

air-sea interaction where climatic and Atlantic characteristics drive 

dynamics and dense water formations. The extreme forcings by the local 

north-westerly winds and by the inflow of cool and less saline Atlantic 

waters lead to significant air-sea interactions and subbasin scale 

features Uets and gyres) that eventually affect the basin-wide 

circulation. Important variabilities exist and include (1) shape, position 

and strength of permanent subbasin gyres, mesoscale meanders and 

swirls, (2) meander patterns, bifurcation structure and strength of 

permanent jets, (3) occurrence of transient and aperiodic eddies, jets 

and filaments (Robinson et al., 2001). All these factors are often 

translated in an anti-clockwise gyre in the northern Ionian Sea that 

flows northern into the Adriatic Sea. In addition, the fast thermohaline 

circulation of the Ionian Sea interacts with the cooler, less saline 

Maltese front, causing the front to meander with surface displacements 

of up to 50 km. This jet of Atlantic Water continues to flow through the 

central Levantine all the way to the shores of Israel (Robinson et al., 

2001). 

This thermohaline circulation is coupled to a strong seasonal change 

signal and it provides a good opportunity to gain experience and 

knowledge across the range of relevant dynamical issues involved in 

researching the proposed modelling system. It is interesting to note that 

this area has been excluded from one of the most significant pilot ocean 

forecasting projects in the Mediterranean due to some technical 

limitations 26 and therefore, the choice of this study area becomes even 

more relevant to the advancement of numerical ocean forecasting in the 

Mediterranean. 

Since this study is focussed on the use of remotely sensed data 

retrieved by the TMI sensor, the highest latitude of the geographical 

area does not exceed 40°N (fig. 1.5) because of the low inclination orbit 

of the satellite. 

26 the Mediterranean Forecasting System. 
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TMI Sea Surface Temperature: July 31, 2005 

16 20 24 
degrees Celsius 

26 32 land no data 

Figure 1. 5. Global coverage of the TMI sensor on board the TRMM 
satellite on July 31, 2005, showing maximum latitude of 40°N in the 
northern hemisphere. 

1.5.2. Period of analysis. 

This timing period for this research study is dependent entirely on the 

availability of an annual set of a complex set of data, in particular, to 

the availability of a full dataset of atmospheric and ocean model initial 

and boundary conditions. Other datasets include a suitable annual 

coverage of remotely sensed data for model validation. The extension of 

this time frame to more than one year was omitted due to practical 

reasons related to the substantial amount of model data generated, 

management, archiving and statistical analysis. 

1.5.3. Choice of numerical models. 

The basis of the ocean forecasting system used in this study is a high­

resolution atmosphere model that is coupled to an ocean model. 

The atmosphere model chosen for this study is NCEP's Eta model. It is 

a limited-area hydrostatic model with a comprehensive physical 

package and a variety of features in its numerical formulation that 

makes it unique to operational modeling. Its Arakawa grid computes the 

momentum field (u-wind and v-wind) on different points than the mass 
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field (temperature and moisture). Other unique features of the numerics 

of the model include its step-mountain ('eta') vertical coordinate 

(Mesinger, 1984); its Arakawa-type horizontal momentum advection 

scheme (Janjic, 1984), and its algebraic conservation of energy in 

transformations between the kinetic and potential energy in both space 

and time differencing (Mesinger, 1984). Within the model's physics 

package some of the special features are in the modified Betts-Miller 

convection scheme (Janjic, 1994) and its viscous sub-layer scheme over 

water surfaces (Janjic, 1996b). 

Other reasons for choosing this model include: 

• The Eta model code is written in standard FORTRAN (ANSI 

FORTRAN), and is easy to transfer and install on different 

computers. 

• The model has been used on mainframes produced by all major 

western manufacturers (e.g. IBM, CDC, DEC, Honywell-Bull, 

Cray, Convex) as well as on widely used workstations (e.g. Sun, 

Indigo, Indy, Power Challenge, Indigo2, PC, Cluster parallel 

computer). 

• The model is being upgraded continuously, and special attention 

is being paid to the improvement of the parameterisation of 

physical processes. The Abdus Salam Centre for Theoretical 

Physics in Trieste (Italy), operated jointly by the United Nations 

and the Italian Government, trains scientists on the use of the 

Eta model. 

• The model is used for both research and operational purposes in 

more than 20 meteorological institutions throughout the world. In 

the Mediterranean region it is used for operational weather 

forecasting (Italy, Turkey and Serbia-Montenegro, Algeria, Greece 

and Malta). At the NCEP (formerly NMC) Washington, the model 

has been operational (it is run twice daily) since 1993. 
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• At ICoD (Malta), where the present research study has been 

carried out, the Eta model has been operational for eight years, 

and has been adapted to work on both LINUX and SUN operating 

systems. 

The ocean model chosen for this study is the Princeton Ocean Model 

(POM)27 . POM was developed by Blumberg and Mellor in the late 1970s, 

while others made several subsequent contributions. POM has been 

extensively used to simulate the circulation of the Mediterranean Sea as 

described by Zavatarelli and Mellor ( 1995), Horton et al., ( 1997), 

Drakopolous and Lascaratos ( 1997), and for specific areas such as the 

Adriatic Sea by Zavatarelli and Pinardi ( 1995) and the Levan tine Sea by 

Lascaratos and Nittis (1998). Similarly, as in the case of the Eta model, 

ICoD (Malta) has used the POM model for research and operational 

forecasting of the Mediterranean Sea since 1994, and therefore the use 

of this model for the present research was expected. This model has 

been also adapted to work on SUN and LINUX operating systems. 

POM is a hydrodynamic, s1gma coordinate, free surface, primitive 

equation ocean model, which includes a turbulence sub-model. POM 

has a bottom-following sigma coordinate system in the vertical, a free 

surface and a split mode time step. The horizontal diffusion terms are 

evaluated using the Smagorinsky ( 1963) horizontal diffusion 

formulation. The vertical mixing coefficients are computed according to 

the Mellor-Yamada 2.5 turbulence closure scheme (Mellor and Yamada, 

1982). 

The rum of this thesis is to evaluate the use of novel remote sensing 

observations and spatial data analysis to improve and assess the skill of 

this high-resolution ocean forecasting system. It makes use of the above 

numerical models by coupling them together to produce high spatial 

(4 km) and temporal (3-hourly) predicted atmospheric and oceanic 

forecasts. The atmospheric forecasts assist the underlying ocean model 

27 http:/ I www. aos.princeton. edu/ WWWPUBLIC/ htdocs.pom/ (accessed on 0 1.11. 04). 
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to produce forecasts such as SST, salinity and ocean currents in both 

the horizontal and vertical dimensions. This "one-way coupling" 

(fig. 1.6) presents an interesting research alternative to fully coupled 

ocean -atmosphere forecasting system. 

The main objectives of this thesis can be summarised as follows: 

• Compilation of a suitable database needed to validate the high­

resolution ocean forecasting system. 

• Investigating the potential of using novel remotely sensed data to 

initialise, fine-tune and assimilate the forecasting models. 

• Develop, use and assess the effectiveness of exploratory spatial data 

analysis and geostatistics to verify, diagnose and fine-tune the ocean 

forecasting system. 

Each of these major objectives raises a number of research questions 

that are analysed in detail in chapter 2. 

Figure 1. 6. fllustration showing a one-way coupled atmosphere-ocean 
model system. The system uses the predicted, high spatia-temporal air-sea 
fluxes to force the underlying ocean model to forecast the future oceanic 
state. 
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Chapter 2 

RESEARCH APPROACH. 

2.1. Research goal and objectives. 

The overall goal of this research is to evaluate the use of novel remote­

sensing observations and spatial data analysis to improve and assess 

the skill of a high-resolution ocean forecasting system. 

The first mam aspect of this study is the compilation of a database 

needed to initialise, assimilate, fine-tune and validate the ocean 

forecasting system. Remote sensing is here used to obtain repeated and 

collocated information on atmospheric and oceanic variables derived 

from microwave and infrared sensors over the area of interest. 

Important parameters, such as turbulent heat fluxes that cannot be 

remotely sensed, need to be estimated using bulk parameterisation by 

merging together data from climatological datasets collecting in situ and 

orbiting sensors. 

Another aspect is an investigation of the potential of usmg novel 

remotely sensed data to (1) fine-tune the modelling of the 10 m wind 

speed by the the atmosphere model, and (2) be assimilated by the ocean 

model including an assessment of whether these actions provide a 

better high spatia-temporal description of the ocean surface circulation. 

The third aspect is to develop and make full use of spatial exploratory 

data analysis and geostatistics to validate, diagnose and fine-tune the 

ocean forecasting system. These techniques will provide an insight into 

the basic strength and weakness of the model performance. Since 

forecast quality is a crucial determinant for the success of this study, 

ol:>jective -verification of" the above-mentioned actions is a desirable 

adjunct to the present objectives. 
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The following are the main objectives of this study. 

2.1.1. Compilation of a database to validate the skill of the ocean 

forecasting system. 

The availability of oceanic and atmospheric data that is collocated with 

model forecasted data is mandatory for the present research goals. This 

study therefore addresses the acquisition, processing and archiving of 

suitable remotely-sensed observations and climatological datasets as an 

independent data source to validate the skill of the ocean forecasting 

system. 

High-resolution derived products (such as turbulent heat fluxes) can be 

obtained by fusing together different data types acquired from different 

sources. Data fusion from different remote sensors is by no means a 

new development, but in the past, the research has concentrated on the 

technique of integration through spatial co-registration rather than on 

methodologies to interpret the combined datasets (Justice et al., 1991). 

With the availability of multi-temporal, region-specific datasets, this 

study tries to synergise different data sources over the geographical 

area of interest. In turn, accuracy assessment of the derived products 

against independent climatological datasets becomes another aspect of 

this research. 

In some cases, such datasets are provided in an uncalibrated, raw 

format. This is the case with high resolution, infrared observations of 

the SST, which this study attempts to calibrate in the absence of 

collocated in situ match-up data. Due to the lack of operational in situ 

data in the area of interest, against which satellite brightness 

temperature can be linearly correlated, this approach represents the 

only way to calibrate the high-resolution infrared radiances retrieved 

from this data-scarce area. The calibrated SST scenes over the same 

model integration domain can then be used to validate the ocean 

~octel·s i'orec~sted ssT. 
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The above considerations reqmre the synthesis of an appropriate 

database that can be used to validate the skill of the forecasting system. 

As a result, the following research questions are put forward: 

• Can passive microwave remote sensing be fused with climatological 

data to produce quasi-instantaneous, but accurate air-sea fluxes? 

And if so, can an annual air-sea turbulent flux climatology be 

generated over the area of interest be generated? 

• Is it possible to produce regional-specific, accurate SST maps derived 

from infrared sensors using appropriate calibration algorithms in the 

absence of an in situ match-up database? 

To address these objectives, a number of tasks are performed in 

Chapter 4 as follows: 

1. to acquire, process and reformat multi-annual climatological 

datasets (surface air temperature and SST, latent and sensible heat 

flux, and 10m wind magnitude); 

2. to gather a 1 0-year monthly climatological aerosol optical thickness 

acquired by NOAA AVHRR; 

3. to gather a one-year ( 1999) monthly climatology database of outgoing 

longwave radiation as retrieved by NOAA AVHRR; 

4. to acquire, process and reformat, a one-year (1999) daily TMI-derived 

geophysical fields (total precipitable water vapour, cloud liquid water, 

10m wind magnitude, SST and precipitation rate), and 
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5. to acquire, decode, process and reformat 1.1 km AVHRR (LAC) 

channel 3, 4 and 5 radiances and collocated NLSST28 values over a 

wide oceanic area for a two-year period ( 1998 - 1999). 

The climatological datasets (surface air temperature, SST, latent and 

sensible heat flux, 10 m wind magnitude and outgoing longwave 

radiation) will be used to assess the performance of the atmosphere 

model over a period of one year. The climatological aerosol optical 

thickness is necessary for the interpretation of infrared radiances 

acquired by NOAA AVHRR over the area of interest. The microwave­

derived remotely sensed parameters are used for a number of tasks, 

including estimation of instantaneous air-sea fluxes that are collocated 

with model forecasts, initialisation of the surface boundary condition of 

the atmosphere model, model fine-tuning and data assimilation by the 

ocean model. 

The brightness temperatures acquired from channels 4 and 5 of the 

A VHRR sensor are regressed against collocated NLSST values to derive 

single-line equations for a range of atmospheric conditions defined by 

the relationship between these channels. In addition to this approach, a 

number of currently available AVHRR calibration algorithms that do not 

require a collocated set of in situ data will be evaluated. The aim is to 

use these calibrated AVHRR scenes to assess the forecasting skill of the 

high-resolution ocean model. 

28 No--,;_~linear s~a~surf(;uie'tempefi:Lture; ootained·using the split"window; non-linear·SST 
calibration algorithm based on the correlation between infrared brightness temperature 
and collocated, in situ buoy SST. 
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2.1.2. Improving the skill of the Eta model to forecast air-sea 

fluxes. 

The use of the Eta model to forecast air-sea fluxes is a recent aspect in 

its long history of weather forecasting since 1984 (Mesinger, 2002, 

personal communication). It is therefore appropriate to study the model's 

skill to forecast these fields over a wide range of weather conditions. 

An availabile, continuous, high-resolution, remotely-sensed surface field 

that strongly affects the properties of air-sea fluxes (such as the latent 

and sensible heat fluxes) is the 10 m wind magnitude. This parameter 

can be continuously retrieved using microwave radiometry over the 

Mediterranean Sea and so offers an extremely interesting opportunity to 

assess and fine-tune the skill of a high-resolution, nested Eta model to 

predict such a field. These considerations make it possible to explore 

research questions directed at the improvement of operational 

forecasting of air-sea fluxes, such as: 

• What is the present level of accuracy of the 'standard' Eta model to 

forecast turbulent and radiative fluxes against remotely-sensed and 

climatological observations? 

• Can the use of remotely sensed, high-resolution 10 m wind 

magnitude assist in fine-tuning the Mellor-Yamada level 2 scheme29 

of the Eta model that simulates the air-sea fluxes? 

and, 

• Can exploratory spatial data analysis and geostatistics assist in 

identifying model performance and in the overall tuning of the sub­

model scheme? 

29 Appendix II 
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Global Model 

Assimilated SST 

0.17° by 0 . 17° 
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boundary conditions 
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model oiscous sublayer scheme 

embedded in Eta model 
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• 10 m wind magnitude 
• Outgoing longwave radiation 
• Latent and sensible heat fluxes 
• Integrated total precipitable water vapour 

Figure 2 .1. Required experimental setup to address the second objective of this study - improving the skill of 
the atmosphere model to forecast air-sea fluxes. 28 



These issues are explored in chapter 5, for which an experimental setup 

is required as shown in figure 2.1. A limited area atmosphere model 

with a horizontal resolution of around 0.17° x 0.17° (entire 

Mediterranean region) is driven by a 1-year long dataset consisting of 

lateral and surface boundary conditions forecasted by a global model at 

1.25° by 1.25° horizontal resolution. This local area model consists of 

datasets that are used to drive another Eta model that is nested within 

the model domain of the LAM. The resolution of the nested atmosphere 

model is around 0.04° by 0.04° horizontal resolution. The limited-area 

model provides high mesoscale definition and quasi-geostrophic initial 

conditions for the nested model, which generates short-range forecasted 

geophysical fields (36-hour) every 3 hours. Only a small part of this data 

set, specifically addressing air-sea fluxes, will be considered. 

The general forecasting skill of the high-resolution Eta model to forecast 

turbulent and radiative heat fluxes and other basic variables are 

evaluated against empirical evidence using standard and tailored 

diagnostic verification methods. The latter include new schemes to 

measure similarity f dissimilarity and spatial matching using image 

processing and GIS analysis. Standard geostatistical techniques are 

also used to discern and compare spatial patterns. 

A parallel experiment 1s set up to fine-tune the Eta's Mellor-Yamada 

scheme. This is done by running, in parallel, modified numerical codes 

that predict the 10 m wind magnitude under a range of low to moderate 

wind magnitude conditions, spanning from 3 to 12 m s- 1, during which 

the numerical scheme is active. 
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2.1.3. Assessing the impact of using microwave-derived SST to 

initialise the surface boundary conditions of the atmosphere 

model. 

This is the third objective of this study, namely to assess the 

improvement, if any, of providing the atmosphere model with more 

accurate initial surface boundary conditions. 

As outlined in the introductory description3o, the use of remotely 

sensed, high-resolution SST acting as the surface boundary conditions 

of the Eta model could well improve the forecasting of variables that are 

highly sensitive to this boundary condition, including air-sea fluxes. 

This approach raises a number of questions, which the present study 

attempts to address: 

• Can high-resolution SST data retrieved by orbiting microwave 

sensors be used as the surface boundary condition for the high­

resolution Eta atmosphere model to better predict short-range air­

sea fluxes? 

• Can the direct insertion of SST retrieved by orbiting passive 

microwave sensors into the Eta model result in a better forecasting 

skill when compared with the traditional approach that uses instead 

coarse, modelled-SST fields derived from global models? 

To test the above hypotheses, a number of experimental tasks are 

carried out in chapter 6 as schematised by figure 2.2a. The high 

resolution Eta model is initialised by daily, 1-year long data-set 

consisting of lateral boundary conditions predicted from a global model 

at 00 UT. The SST surface boundary condition at 00 UT is provided 

from two sources: (1) coarse resolution GDAS global model and (2) from 

high-resolution, TMI sensor onboard the TRMM satellite. A TMI-derived 

SST dataset is acquired for an entire year, processed and suitably 

30 Section 1.3.2. 
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formatted to be ingested by the model. A switch is set up to use either 

one of these sources during model initialisation. In this manner, two 

parallel sets of forecasted air-sea fluxes are predicted. The reference set 

denotes those fluxes produced when the model is initialised with SST 

derived from the global model and the experimental set are those 

initialised with remotely-sensed SST. 

The high-resolution atmosphere model produces a wide range of short­

range, forecasted geophysical fields for 36-hour, every 3 hours. Due to 

the huge amount of data generated by the full experiment, only the 

10 m wind magnitude is used to identify the most effective system. 

Validation of the two sets of forecasted fields depends on the availability 

of collocated observations; it makes use of both standard verification 

methods and diagnostic (exploratory spatial data analysis and 

geostatistics) measures. The pair of annual sets of predicted air-sea 

fluxes are later used to drive the ocean model, in a similar parallel 

experimental mode (see fig. 2.2b) as described in section 2.1.4. 

2.1.4. Improving oceanic forcing and prediction. 

The fourth objective of this study is to improve the overall skill of the 

ocean forecasting model using two approaches: ( 1) provision of accurate 

air-sea fluxes as upper boundary conditions, and (2) assimilation of 

remotely sensed SST to dynamically adjust the ocean model fields prior 

to the actual forecast run. 

The provision of a better representation of the a1r-sea fluxes as 

developed in section 2.1.3. could lead to a more realistic prediction of 

the sea-state, such as SST. In addition to this, the fine-tuning of the 

embedded data assimilation scheme could contribute towards a more 

accurate, short-range forecasts of the ocean state. 
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Figure 2.2 a-b. Required experimental setup to address (a) the impacts 
of using TMI-derived SST to initialise the surface boundary conditions of 
the atmosphere model (section 2.1.3.}, and (b) to improve ocean forcing 
and prediction (section 2.1.4.). 
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Newtonian relaxation is a data assimilation scheme that is very 

appropriate for the present study by providing flexibility in the 

adjustment and determination of the best values for the coefficients. 

The value of the nudging coefficient as well as duration of the nudging 

is critical for the success of this data assimilation scheme. The selection 

of an optimal value is based on empirical experience and is fine-tuned 

following an accuracy assessment of the final forecasts against 

collocated remotely sensed observations. 

The above considerations and suggested setup make it possible to 

explore research questions which will be useful for the improvement of 

operational ocean forecasting system, such as: 

• Can a hydrostatic, Princeton Ocean Model (POM) with a horizontal 

resolution of 0.042° be efficient in predicting small-scale ocean basin 

surface features? 

• Can near-real time surface boundary conditions, such as microwave­

derived SST, together with forecasted 36-hour momentum, turbulent 

and radiative heat forcing fields be sufficient for the ocean model to 

accurately predict surface oceanic fields? 

• Can Newtonian relaxation (as a data assimilation scheme) of the 

initial model fields towards remotely sensed SST enhance the 

accuracy of 24-hour surface ocean forecasts? 

The selection of the area of interest is based on the availability of a full 

data coverage, close to the 00 UT SST dataset derived from the TMI 

sensor. These research questions are addressed in chapter 7, and 

require an experimental setup as shown in figure 2.2b. A high­

resolution ocean model is setup with an integration domain and 

horizontal resolution corresponding to the nested Eta model. The ocean 

model uses the pair of datasets that the atmosphere model generates in 

section 2.1.3. as its surface boundary conditions as well as the initial 
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SST condition. Lateral boundary conditions are derived from a 

climatological database as "first guess" fields. 

A switch is set up to use only one source of initial surface conditions at 

a time. The specific SST data dynamically adjusts the initial oceanic 

fields towards the SST information in a pre-run mode. Here the data 

assimilation scheme is fine-tuned to achieve the best adjustment 

towards SST. Following this stage, the actual model integration is run in 

forecasting mode. 

The assessment of the impact of (1) improved short-range, 36-hour 

predicted momentum, turbulent and heat flux forcing fields and (2) 

assimilating TMI -derived SST as compared to the use of modeled SST 

data, on the overall ocean forecast accuracy is performed. This is done 

by validating the accuracy of the two sets of forecasted SST against 

high-resolution 1.1 km SST maps using both basic statistical and image 

processing analysis (fig. 2.2b). 

The main structure and internal linkage of the ocean forecasting system 

used in this study is illustrated by figure 2.3. A comprehensive list of 

the entire datasets required for this study, their sources and usage is 

shown in table 2.1 together with a schematic diagram (fig. 2.4) 

highlighting the inter-linkages of the acquired and estimated data for 

forecast verification, fine-tuning, initialisation and data assimilation off 

the ocean forecasting system. 
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Figure 2.3. An illustration of the main setup and internal linkage of the ocean forecasting system 
used for this study. 
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-----
Advanced Very High 
Resolution radiometer 
(AVHRR) 

Total Ozone Mapping 
Soectrometer ITOMSI 
Tropical Microwave 
lmager(TMI) 

Comprehensive Ocean­
Atmosphere Data Set 
(CO ADS) 

I 

I 

I 

I 

I 

---...--3-- -----
SST 

Outgoing longwave radiation 

Aerosol optical thickness 

Aerosol Index 

SST 

10m wind magnitude 

Precipitation rate 

Cloud liquid water & Total 
Precipitable water vapour 

2m air temperature 

SST 

Southampton Oceanic 10m wind magnitude 

--
• Validation of ocean model SST forecasts 

• Validation of radiative Qackage of atmosQhere model 

• Validation of radiative package of atmosphere model 
• Assisting_ in the calibration of AVHRR radiances 
0 Validity of AVHRR brightness temperature data 

• Initial surface conditions of atmosphere and ocean models 
• Use for data assimilation 
• Reference dataset for the calibration of A VHRR radiances 
0 Validation of ocean model SST forecasts 

• Derivation of turbulent heat fluxes 

• Validation and fine-tuning of the turbulent scheme of the atmosphere 

I model 
• Derivation of turbulent heat fluxes 

• Use to flag and null erroneous collocated pixels of other geophysical fields 

0 Validation of general performance of the convection schemes of the 
atmosphere model 

• Derivation of turbulent heat fluxes 
• Validation of atmospheric forecasted 2m air temperature 

• 

• Validation of monthly average TMI-wind magnitude 

CllmatolodcalAtlas(SOC) ,-----------------------------------------------------------------------------~ 

SST 

Latent & sensible heat flux 

CoastWatch Database NLSST 

Channel 4 & 5 radiances 

0 

• Validation of calculated latent and sensible heat fluxes 

o Reference dataset for the calibration of AVHRR radiances over CoastWatch 
relrion 

• Derivation of solit-window SST algorithm 

Table 2 .1. List of data sources required for the verification, fine-tuning and initialisation of the ocean forecasting 
system. 
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Figure 2.4. Interaction of acquired and derived data for data quality, 
forecast verification, fine-tuning and validating the ocean forecasting 
system. 

Process number: 
1 Provision of initial surface conditions to atmosphere model 
2 Provision of initial surface conditions to the ocean model 
3 Use for data assimilation 
4 Calibration of A VHRR brightness temperature 
5 Validation of ocean model SST forecasts 
6 Derivation of turbulent fluxes 
7 Validation and fine-tuning of the turbulent scheme of the atmosphere model 
8 Validation of the general performance of the convection schemes of the 

atmosphere model 
9 Derivation of turbulent heat fluxes 
1 0 Validation of forecasted surface air temperature 
11 Validation of monthly average TMI SST data 
12 Validation of monthly average TMI wind data 
13 Validation of calculated latent and sensible heat fluxes 
14 Validation of ocean model SST forecasts 
15 Validation of radiative package of the atmosphere model 
16 Validity of A VHRR brightness temperature 
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2.2. Outline of the thesis. 

The structure of the thesis follows a logical path addressing the aim and 

objectives of this study. Chapter 3 gives the background and current 

scientific challenges upon which the research questions posed by this 

study are based. Chapters 4, 5, 6 and 7 present the research work on 

the evaluation of novel remote sensing data to improve high-resolution 

ocean forecasting. 

Thus, chapter 4 addresses the synthesis of a database that is used for 

the diagnostics, fine-tuning and verification of the atmosphere and 

ocean models. The required data quality is stringent and should be of 

high spatia-temporal resolution, often instantaneous geophysical fields 

are needed to verify single-forecasts of the models. In this chapter, 

emphasis is given on assessing the accuracy of the constructed 

database against independent, collocated climatological datasets. 

Alternative calibration techniques of remotely sensed data are also 

addressed in view of the lack of in situ collocated data over the 

geographical area of interest. 

Chapter 5 addresses the setting-up of the atmospheric modeling 

system. This work involves the coupling of limited area, atmosphere 

model within which a high-resolution model is nested. This nesting 

approach ensures better initial conditions to the high-resolution model 

to predict a number of relevant geophysical fields over the ocean 

surface. Research work addresses the current accuracy of the predicted 

fields and fine-tuning of predicted air-sea fluxes against remotely­

sensed observations. The use of novel remotely sensed data and 

geospatial analysis encompasses this work and prepares the way for 

further application of these procedures in subsequent chapters. 

This nested atmosphere model also forms part of the experimental 

framework of chapter 6, in which a set of experiments are carried out to 
- . . . '- . -~ - . -:: 

improve the prediction of surface fluxes by the provision of a high 
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resolution, novel SST dataset derived by an orbiting passive microwave 

sensor. Geostatistical and tailored exploratory spatial data analysis are 

used to qualify and quantify such an impact. 

In chapter 7, a scheme is implemented using the numerics of a high­

resolution primitive-equation ocean model to assimilate novel remotely­

sensed SST as an alternative to conventional, modelled SST data. The 

scope is to dynamically adjust the high-resolution predictions towards 

remotely sensed observations. The validity and sensitivity of the results 

are checked against the high-resolution information included in the 

database. 

Finally, a general discussion and recommendations for further research 

follows. The results are summarised and achievements made by this 

thesis are outlined in relation to work done in the Mediterranean. 

Recommendations for further research are put forward both to extend 

this research as well as to further develop the applied novel techniques. 
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Chapter 3 

REVIEW OF PREVliOUS RESEARCH. 

3.1. Operational ocean forecasting. 

The goal of operational ocean forecasting is to produce predictions of 

the physical sea-state and other related components for a certain time 

period. Today, ocean forecasts are an important component in modern­

day management of ocean ecosystem in view of anthropogenic stress 

and the safety and efficiency of marine industries. The benefits of 

having a continuous forecast of ocean variability at exceptional space­

time resolution are numerous. 

Operational forecasting had its early successes in meteorology during 

the seventies. Since then, the daily to weekly meteorological forecast 

skill has been increased by major Numerical Weather Prediction (NWP) 

centers around the globe, such as the National Centre for 

Environmental Prediction (NCEP), the UK Meteorological Office and the 

European Centre for Medium Range Weather Forecasting (ECMWF). 

The development of ocean forecasting has progressed more slowly than 

its atmospheric counterpart because of the lack of routine and accurate 

measurements needed to both initialise and validate ocean models. 

Predictions of the sea-state raise problems similar to those found in 

atmospheric weather forecasting, since the predictability time scale of 

the oceanic system is practically set by the accuracy with which the 

initial condition is known. Due to scarcity of oceanic observations, 

forecasting of deep ocean currents, for example, are still at the research 

stage such as the Forecasting Ocean Assimilation Model (FOAM) of the 

UK Met Office3o. 

30 http:/ I www. meto.gov. uk/ research/ ocean/ operational/ foam/ (accessed on 0 1.11. 04). 
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In spite of this limitation, ocean forecasting started as soon as 

numerical ocean modelling reached sufficient maturity at the beginning 

of the eighties. Since then, a number of ocean forecasting systems have 

been developed to forecast specific ocean variables, driven by a demand 

for monitoring of coastal flooding and ship routing. A good example of a 

successful operational global system to predict wave and storm-surge 

forecasting (Komen et al., 1994) is the UK Met Office's FOAM. This 

model is made feasible by the availability of highly accurate surface 

wave information, tides and surface atmospheric winds. The UK Met 

Office has run global and regional wave models for many years to 

provide forecasts of sea state, as a support to a range of user 

applications. 

3.1.1. Main limitations due to data requirements. 

The advent of computers opened up a whole new array of mathematical 

models aimed at finding a "solution" to complex geophysical processes. 

However, there is a risk associated with computer simulation done with 

either grid-point or spectral models (Doswell, 2000), since their 

solutions are based on a set of approximations (and simplifications). 

One reason for this approximation is the lack of precise initial 

information at the start of the numerical integration. The current finite 

observational system only provides approximate initial conditions, of 

which details strongly influence a specific final model solution. So far, 

most of the existing ocean models use the wind stress from the 

Hellerman and Rosenstein database, COADS data or some local data 

sets (May, 1982) as a mechanical forcing. In addition. the ocean model's 

SST and salinity fields are nudged towards climatological datasets such 

as Levitus'. However. a serious drawback of using climatic (or "fixed") 

data is that the main variability that they contain is at most seasonal. 

The end result is a modelled ocean current that would grossly resemble 

the present oceanic state, where a "true" equilibrium state can only be 

achieved after thousands o(,years-~ol inodef inte~ation (McWilliams, 
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1998). As a consequence, it is not feasible at present to integrate a 

global ocean general circulation model to reach equilibrium with 

mesoscale (i.e. 50- 100 km) resolution (McWilliams, 1998). This is the 

degree of resolution required to assist in the management of the ocean 

ecosystem. 

3.1.2. Short- to medium-range ocean forecasting. 

Ocean modellers can shorten the costly model computations required to 

reach true equilibrium by forcing the ocean model using forecasted 

atmospheric constituents that directly affect it, giving the model the 

ability to enhance its forecasting skill on a much shorter time scale. 

The ocean receives energy through its air-sea interface in the form of 

kinetic (i.e. the momentum flux) and potential energy (i.e. the turbulent­

and radiative heat and freshwater fluxes). The surface winds blow over 

the ocean and drive not only the clearly visible surface waves, but also 

the large-scale currents in the upper ocean layer. At the same time, the 

temperature of the near surface atmosphere will modulate the SST via 

vertical heat fluxes. The interplay between air temperature, SST and 

their difference makes up a major part of the global air-sea interaction. 

As with temperature, salinity variations are primarily determined by air­

sea fluxes that can change the buoyancy of the fluid. Evaporation 

leaves salt behind and increases the salinity of the surface seawater, 

while precipitation decreases it. Like temperature, salinity has a 

significant effect on the thermohaline circulation. Because of such 

dependencies on air-sea fluxes, short- to medium-range ocean 

forecasting models rely entirely on the provision of an accurate 

representation of these surface boundary conditions in forecast mode. 

Apart from providing valuable initial information, high quality air-sea 

fluxes together with basic meteorological variables are also needed to 

assess the model's forecasting skill. Such estimates must be associated 
>,._";'-·· ~·--;.~-- ---L-• ·-~- -~,C.-c··- .•. _ _.,. --:.:= -.-.-. -~ "---- - •·">· 

with a realistic error assessment and specification of the true resolution 
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of the data. This quality need also be reflected in the resolution of air­

sea fluxes in both temporal and spatial terms. The required spatial 

resolution very often varies according to the application: from coarse 

resolution global scale models running over centuries, to eddy resolving 

models over a few decades. For many global and regional applications in 

the coming years, monthly means on a 1° by 1° grid are sufficient 

(Taylor, 2000). However, the number of applications which have finer 

temporal and spatial requirements is rapidly increasing as ocean model 

resolution increases with available computer power. The demand for 

high-resolution momentum fluxes is most pressing, and in order to 

accurately resolve the wind stress curl (being the primary forcing of 

ocean gyres) a spatial resolution of at least 50 km is required. Heat 

fluxes having a similar resolution would allow a good resolution of the 

gradients across major oceanic currents. 

With regards to temporal resolution, Taylor (2000) recommends the use 

of three-hourly winds as forcing fields for ocean models if short-term 

fluctuations of the wind stress is to be resolved. In the case of heat 

fluxes, six hourly to daily values have been recommended. 

3.2. Data sources for fluxes and related variables. 

The basic set of air-sea fluxes needed to drive ocean forecasting models 

include the net heat input by solar radiation, the non solar heat flux 

(the sum of the sensible, latent and infrared heat fluxes), the wind 

stress vector; the wind stirring, the evaporation rate, the precipitation 

rate, the river runoff and sea ice-melts (when applicable). Additional 

required surface variables are the SST, sea surface salinity, ocean 

albedo, surface wind speed, air temperature and specific humidity at 

specified height, mean sea level pressure, cloud fraction, sea ice 

coverage and growth rate. According to the forcing method used, other 

parameters such as exchange coefficients and all variables entering the 

determination of the stability of the air column may also be required to - _,..,~ - . . . ". ···~, . . ..,._~ 

calculate air-sea fluxes. 
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Air-sea fluxes can be estimated either directly or from bulk 

parameterisation formulae using basic air-sea state variables. 

3.2.1. Direct flux observations. 

The direct estimation of air-sea fluxes reqmres dedicated field 

experiments (Taylor, 2000), and as a consequence has so far led to few 

estimates of large-scale flux fields. Rather, direct estimation is used to 

develop, calibrate and verify alternative estimation methods. 

Direct flux estimates in the Mediterranean sea are scarce. During 

March-April 1998, a significant survey was carried out to measure 

fluxes in a restricted part of the Gulf of Lion (Hauser et al., 2003). As 

part of the Project "Flux, Etat de la Mer, et Teledetection en Conditions 

de fetch3 1 variable" - FETCH, the survey made comparisons between 

buoy and ship turbulent fluxes measurements using different 

approaches. 

3.2.2. Parameterisation of fluxes. 

Air-sea fluxes can also be estimated usmg empirical correlations 

between fluxes and sea- and air-state basic variables. These 

correlations are called bulk formulae and can be used to determine heat 

and momentum fluxes from their relationship with basic variables. The 

same formulae are applicable whether the basic variables have been 

measured in situ, using orbiting sensors or have been calculated by a 

numerical atmosphere model. 

A key Issue of this indirect approach is the validity of the 

parameterisations. The availability of different bulk formulae to 

estimate specific air-sea fluxes result in different estimations. 

Taylor (2000) discusses this discrepancy for the parameterisation of 
. . "" ·-·:~ -~. 

31 http:// dataserv.cetp.ipsl.fr/ FETCH/ HTML/ INFO_DATA/ VAGUES/ FETCH_ VAGUES.html 
(accessed on 01.11.04). 
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turbulent heat fluxes and found clear differences in the standard 

deviations of the variability of the heat fluxes derived using a different 

traditional bulk formulae. 

The parameterisation of the turbulent heat fluxes (i.e. the latent and 

sensible heat fluxes) is based on the relationship between basic 

meteorological variables such as 10 m wind speed, air and sea surface 

temperatures and humidity. Despite years of research, uncertainty still 

exists as to the behaviour of these bulk formulae at wind speeds 

exceeding 10 m s-1 (Taylor, 2000). 

The coefficients used by bulk formulae include the drag coefficient value 

for the calculation of wind stress (Large and Pond, 1981, 1982; or 

Smith, 1980, 1988), and the Stanton and Dalton coefficients CHiom and 

CElOm for the calculation of the sensible and latent heat flux 

respectively. The right value for these coefficients is still debatable; for 

example, a constant Dalton number of 1.32 ± 0.07 was recommended 

on the basis of several turbulence-based datasets where the highest 

wind speed is 4 m s-1. Smith (1989) suggests a constant "consensus" 

value (103 CElOm = 1.2 ± 0.1) for winds between 4 and 14 m s-1. The 

Humidity Exchange Over the Sea (HEXOS) experiment results 

(DeCosmo et al., 1996) suggest a near constant value with (103 CElOm 

= 1.12 ± 0.24) for winds up to 18m s-1. 

Parameterisation formulae that are currently used to obtain the 

radiative heat fluxes are considered to be relatively crude, relying on the 

estimate of cloud cover to characterise the effects of cloud on the fluxes. 

Satellite based estimates use measurements of the top-of-the 

atmosphere radiation, and Radiative Transfer Models (RTMs) to 

estimate the surface value. Atmospheric models use simplified RTM 

schemes for computational efficiency. However, at present the limiting 

factor in most models is the representation of clouds and their radiative 

effects, where low level stratiform clouds are often poorly modelled 

(Taylor, 2000). 
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3.2.2.1. Improved parameterisation using new bulk formulae. 

The limited accuracy of the parameterised fluxes becomes unacceptable 

for the study of the coupling behaviour of the ocean and atmosphere. 

Along with improved instruments and further experimental studies, 

new bulk formulae aimed at incorporating better physical descriptions 

of the transfer process have been developed. 

These improved bulk formulae differ from the traditional approach in 

several ways. Typically, the momentum roughness length Zo, (the height 

at which the wind velocity extrapolates to zero on the logarithmic wind 

profile under neutral conditions), is obtained from a formula that takes 

sea state into account. The roughness lengths for temperature and 

humidity are in turn calculated from Zo by considering the transfer of 

heat through the interfacial boundary layers. Generally, the flow over 

the ocean is smooth for a 10 m wind speed below about 2 m s-1 and 

fully rough above 8 m s-1; between these limits there is a transition 

regime. 

Liu et al. ( 1979) propose the "surface renewal theory" by including the 

interfacial sublayer at the air-sea interface. In this interfacial layer, of 

the order 1 mm thick, molecular diffusion plays a significant role in the 

transport. Across this interfacial layer, small eddies of air transfer heat 

randomly and intermittently between the "bulk" turbulent fluid and the 

surface itself which therefore warms or cools by conduction from the 

eddies. This model approach provides an improved method to account 

for physical conditions that are known to affect the air-sea exchanges 

by the inclusion of the effect of stability and interfacial conditions in 

bulk parameterisation. 

The application of traditional bulk formulae has led to a much­

~r.npr()yeg , spa_c(! apd 1ime data coverage when compared to the much 
;, " - "- _- • • •- - ·- .,._,, -..;,.>~--~;.:- '"'··- •-~::...',..o·~~------~-='-<--~·~-'-·"-'"•:··- •"-' ;..- . • '-- -- . ""·· • -·-

limited coverage provided by direct flux measurements. This is further 
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supported by the fact that the determination of basic variables is 

generally more accurate than the determination of the fluxes 

themselves. 

3.2.2.2. Sources of basic geophysical variables for bulk formulae. 

Main sources for operational32 sea -state variables include ( 1) in situ 

measurements from buoys and ships, (2) from remote sensing, and (3) 

from numerical weather prediction. 

(i) In situ operational measurements. 

Operational in situ measurement of basic variables is done by Voluntary 

Observing Ships (VOS), ocean weather ships and buoys. The quality of 

these measurements has changed throughout the years as 

improvements have been made to the instrumentation. This is the case 

for the measurement of SST and wind (Folland and Parker, 1995). 

VOS have offered routine meteorological and sea surface parameters for 

decades (CLIVAR, 1996). Sub-surface temperature profiles are obtained 

by means of expendable bathythermographs on board commercial 

vessels. However, the sampling limitations of ship data are obvious 

when compared with the flux coverage generated by Numerical Weather 

Prediction (NWP) models (White and da Silva, 1999). VOS 

measurements are ideal in generating climatological monthly means, 

which have been found to be well correlated with fluxes generated by 

NWP models over most of the global oceans. 

For the purpose of operational ocean forecasting, such variables need to 

be supplied from the areas of interest in a quasi-real time, consistent 

mode. For this reason, buoy measurements become the only effective 

sources but their cost is prohibitively high for deployment in large 

numbers. Most buoy arrays are located near coasts such as the NDBC 

47 



and AES buoys off North America, and the ODBS off Japan (Taylor 

2000). Although primarily established for weather forecasting and 

nowcasting purposes, these buoys have also been used for calibration of 

remotely sensed data from satellites, such as SST (Reynolds and 

Marisco, 1993), altimeter wind speeds and wave heights (Gower, 1996), 

scatterometer wind data (Geshelin and Dobson, 1997) and passive 

microwave winds (Wentz, 1997). Currently, there is no Mediterranean­

wide operational buoy network, but one such localised network exists in 

the Aegean coastal areas. Moored buoys deployed near coasts are of 

limited value for ocean model initialisation because of the 

characteristically high SST gradients commonly found in such areas. 

Operational buoy arrays have also been deployed in the open sea such 

as the Tropical Ocean-Global Atmosphere (TOGA) array (McPhaden 

et al., 1998). However, global coverage of the oceans is still not feasible 

given the resources required (McPhaden et al., 1998). "Flux buoys" 

which measure all the variables required to estimate the heat, 

momentum and radiative fluxes have recently been developed by the 

National Science Foundation as part of the World Ocean Circulation 

Experiment (WOCE) resulting in the improved IMET system (Weller and 

Taylor, 1998). Such buoys are more expensive than conventional ones, 

but the deployment of a good number of these buoys is being favourably 

considered by the GOOS programme33. 

Drifting buoys provide marine data away from shipping lanes and are 

used for adjusting the meteorological and oceanic satellite calibration. 

The accuracy of buoy data varies, but is usually better than ± 0.5 °C, 

and is significantly better than ship data (Reynolds, 1999). 

(ii) Remotely sensed measurements. 

32 _TJ:if;lt js ,_ instat:ttg.ne.oJts follect;io1] /Qr_ T[lqd,el "anqly~~s, initialisatjorJ.. a_nq _model 
diagnostic$! verification. - · ·· ·-- ·· - · ·· ·· - · · · · -
33 http:/ I www.gosic.org/ goos/ Ocean_ climate_ observations. htm (accessed on 
01.11.04). 
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Satellite remote sensing provides the most practical means to provide 

such datasets. Basic air-sea state variables are being made available by 

a number of orbiting satellites, including the: 

• NOAA series of polar-orbiting satellites; 

• The Defense Meteorological Satellite Program (DMSP); 

• Geostationary meteorological satellites operated by NOAA (GOES), 

Japan (GMS) and Eumetsat's METEOSAT; 

• The European Space Agency's ENVISAT; 

• RADARSAT-2; 

• TOPEX/POSEIDON; 

• JASON-1; 

• Coriolis/WindSat 

• SAGE III/Meteor-3M satellite mission is a joint partnership between 

NASA and the Russian Aviation and Space Agency (RASA); 

• ORBVIEW 2 / SEAWIFS; 

• Nimbus-7, Earth Radiation Budget Instruments; 

• TRMM, AQUA and TERRA satellites; 

• Earth Radiation Budget Satellites, Earth Radiation budget 

experiment; 

• Indian Research Satellites IRS; 

• Sich-2/0kean-0 oceanographic research satellite; 

• The European Space Agency's past ERS-1 and ERS-2; 

• The Japanese Advanced Earth Observing Systems, such as MOS 

1/ 1b (1987-1996; still ongoing), and 

• SeaWinds on ADEOS-2. 

In general, each orbiting sensor has its own strengths and weaknesses 

regarding the volume sampled, frequency of measurement, the 

parameter measured, spatial coverage, instrument accuracy and 

external (non-meteorological) influences on the measurements. The 

most important criterion for flux determination is the required 

consistency of flux and/or meteorological basic-variable data over time. 
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The following is a description of the remotely sensed geophysical 

variables that are relevant for the present study. 

(i) Sea surface temperature. 

Accurate global retrievals of SST from AVHRR have been available on an 

operational basis since 1981 (Reynolds, 1999). Walton et al. ( 1998) 

reviewed the accuracy of the various algorithms used to retrieve SST 

from AVHRR. Their results showed that the root mean square (RMS) 

accuracy, when compared to drifting buoys, has improved from 0.8 oc 
in 1989 to 0.5 oc in 1998 with a bias between -0.2°C to +0.4 °C. They 

also showed that the sensor calibration is susceptible to changes in 

atmospheric transmission effects due to changes in aerosol loading of 

volcanic and aeolian origin. However, the main source of error for the 

AVHRR is the instrument calibration accuracy, thus requ1nng 

continuous quality control assessment against drifting buoys. 

A similar, but overall better performance infrared radiometer, is the 

Along Track Scanning Radiometer (ATSR). Barton et al. ( 1995) described 

the validation of the ATSR sensor on board research vessels, quoting an 

absolute accuracy of 0.1 °C, and the SST measurement as close to 

0.2 °C in accuracy after correction for reflected sky radiation and 

surface emissivity. It has been suggested that the ATSR may be used 

both as a source of SST data and as a source of calibration data for the 

wider swath AVHRR instrument. ATSR has improved sensor stability 

and built-in calibration systems, but is also prone to interference 

coming from cloudy pixels. Another limitation is its 500 km wide swath. 

It has long been recognised that passive microwave radiometry offers a 

solution to the above-mentioned cloud and aerosol contamination 

problems. This is because at frequencies below 12 GHz, the surface 

electromagnetic radiation 1s proportional to the SST and since 

microwaves can penetrate clouds with little attenuation, a clear view of 
.:._~·"- :_.:._~ ..:-.::.:...~ ':~ -. - -·- ,. 

the sea surface under all weather condition except rain can be obtained. 
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Remotely sensed SST using passive microwave radiometry is also made 

available by orbiting satellites such as the TRMM spacecraft. It carries 

the TMI sensor that has a full suite of microwave channels ranging from 

10.7 GHz to 85 GHz, with a swath width of 760 km, and pixel resolution 

ranging from 6 to 50 km. TMI is the first in a series of satellite 

microwave radiometers that measures SST under nearly all weather 

conditions. Wentz et al. (2000) describe the accuracy of the TMI­

retrieved SST, showing an RMS difference between the daily averaged 

buoy and satellite SSTs ranging from 0.5 to 0.7 °C. The presence of 

precipitation and high wind speeds negatively affect the accuracy of 

passive microwave radiometry and becomes inadequate under such 

situations. 

(ii) Humidity. 

Various kinds of satellite observations are providing information about 

moisture fields like clouds, precipitation and water vapour. One of the 

most widely used rainfall estimation techniques is the GOES 

Precipitation Index based on the work of Richards and Arkin ( 1981). 

This estimate has the advantage of having a high horizontal resolution 

of about 8 km in mid-latitudes with a temporal resolution of about 

30 minutes. 

Humidity data from the §pecial §ensor Microwave Imager (SSM/I) have 

a spatial resolution ranging from 12.5 to 25 km and temporal resolution 

of twice a day. Their combination with the visible and infrared database 

retrieved by Geostationary Operational Environmental Satellite (GOES) 

provides a better representation of hydrometeorological variables 

(Manobianco et al., 1994). Wentz and Spencer (1998) propose an 

efficient method for the physical retrieval of precipitation rates from 

SSM/I, described as a unified ocean parameter retrieval algorithm that 

also diagnos,~s total int~gr-~ted water vapot:J.r, cloud water and wind 
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speed. The RMS difference between the SSM/I water vapour retrieval 

and radiosondes is about 5 mm for rain rates from 1 to 15 mm h-1. 

Jones et al. ( 1999) used a neural network algorithm to obtain monthly 

averages of humidity. Input to this algorithm were the integrated 

precipitable water vapour and SST extracted from the Surface Marine 

data provided by da Silva et al. (1994a-e) and the monthly averages of 

SSM/I brightness temperatures on a 1° by 1 o grid. The global RMS error 

stated was 0. 77 g kg-1 with smaller errors in the North Atlantic and in 

the North Pacific (0.6 g kg- 1) and larger errors in the southern Indian, 

Pacific and Atlantic Oceans (1.2 g kg-1) reflecting the small observation 

density in the da Silva dataset for these regions. Comparison of these 

methods to independent in situ measurements is however needed to 

evaluate this method more carefully. 

(iii) Marine winds. 

Satellite instruments capable of measuring wind speed and direction 

include scatterometers, altimeters and passive microwave radiometers. 

Wind vector estimates from scatterometers are based on empirical 

relationships relating back-scattered energy to wind speed at 1Om 

under neutral conditions. Scatterometer data are now available from 

numerous sources, each using different model functions. The accuracy 

of scatterometery is relatively excellent compared to errors for winds 

from VOS. Validation of the European Remote Sensing Satellite (ERS) 

scatterometer wind retrievals for example, shows a systematic 

underestimation of nearly 0.75 m s-1 and an RMS error of around 

1.3 m s-1 (Graber et al., 1996). 

The Wentz ( 1997) all weather algorithm is a physical approach to 

retrieve wind speed from passive microwave sensors measurements in 

rain free situations, with an error of 0.5 m s-1 against collocated in situ 
·~ . .• ,,,.:;-;~. __ -.,.,--c· .• - ~· .. ,·o~·--;'· !'-'• ·-, ~-,-- ._- ·-~-·:~:--' '.· .:.-::::. .··;.: --·~:'.-=.:.--=-·":.~-=~------ ·~ ' •J • -

data. 
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(iv) Surface air temperature. 

Currently, there are no means to estimate the surface air temperature 

from satellite measurements, but indirect methods have been 

developed. A very simple method is to assume slightly unstable 

conditions at any location at any time and set T a=T s-1, where T a is the 

surface air temperature and Ts is the SST (Schulz et al., 1997). The 

results of Wells and King-Hele (1990) show that most of the observed 

air-sea temperature differences in the tropical oceans are of the order of 

1 °C. However, if instead of the assumed unstable conditions, stable 

conditions occur, the error in surface air temperature estimation could 

lead to an underestimation of the exchange coefficient for latent heat 

flux (using bulk parameterisation) by around 50% (Schulz et al., 1997). 

Another simple method is to compute T a from the retrieved air specific 

humidity assuming a constant relative humidity of around 80% 

(Liu, 1988) or using a climatological relative humidity. However, this 

might be too rough an estimate to derive the sensible heat flux using 

bulk parameterisation. 

Alternatively, surface air temperature can be measured usmg the 

empirical relationship between the total precipitable water obtained 

from SSMI/1 measurements, the near-surface humidity (Liu, 1986), and 

AVHRR multi-channel SST. Using this approach, the estimated root 

mean square error of satellite-derived air temperature is around 0.53 to 

0.56 °C when compared to TOGA TAO buoys (Jones et al., 2003). 

Jones et al. (1999) described a method to derive monthly means of Ta 

from SSM/I measurements of total precipitable water and SST analysis 

from NCEP using neural network techniques. The network was trained 

with data extracted from the Surface Marine Data provided by da Silva 

etal. (1994a-e). 
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(v) Longwave radiation. 

Global measurements of the outgoing longwave radiation (olwr) at the 

top of the atmosphere is one of the longest series of data retrieved by 

the 10-12 !lm infrared channels onboard the NOAA operational 

satellites (Ohring et al., 1984). However, this dataset has not been 

widely accepted because its estimation is based on theoretical 

calculations rather than direct measurements. It has been noted that 

this estimation technique is prone to systematic errors of the order of 

20 W m-2 or larger in geographical regions characterised by stable 

temperature and moisture profiles over extended time periods (Ellingson 

et al., 1989a; Gruber et al., 1994). Oh (1998) attributes this inaccuracy 

to the geographically restricted air temperature profile on which the 

algorithm has been trained and tuned, and as a consequence 

systematically displays low values in subtropical high-pressure regions 

(such as the Mediterranean basin), and high values over daytime desert 

regions. Ellingson et al. ( 1989b) proposes an olwr estimation technique 

based on radiance measurements from the High Resolution Infrared 

Sounder (HIRS). This technique gives much smaller RMS errors when 

compared to the AVHRR technique, presumably because it uses more 

spectral information than the A VHRR. 

(vi) ~alinit!f. 

Observation of ocean salinity from space has been identified as a high 

priority for the Global Ocean Data Assimilation Experiment (GODAE) 

requirements. Despite its importance, such observations are not yet in 

operation (Taylor, 2000). Yueh et al. (2001) describe how microwave 

remote sensing can be used to derive global maps of surface salinity 

with acceptable precision, but which still represents a challenge to be 

implemented. 

AJJ. ii1t~resting mission is the European Space Agency's Soil Moisture 
- '-. • .. -- - < -· ~ -~. • : ~= -- . _-, ~ . - -- -.,. - ·,_. ·; ., - . . . - . ... . . 

and Ocean Salinity (SMOS) mission, scheduled for launch in early 
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2006. SMOS will be able to observe ocean salinity with an accuracy of 

0.1 psu every 10 days at 200 krn spatial resolution (Berger et al., 2002). 

AQUARIUS is another mission that is being developed by NASA which 

focuses on the provision of global sea surface salinity maps to resolve 

missing physical processes that link the water cycle, the climate, and 

the ocean. 

3.2.3. Climatological datasets. 

The most extensive historical compendium of basic variables and 

related fluxes is the Comprehensive Ocean-Atmosphere Data Set 

(COADS) which, besides having individual observations, also contains 

monthly summaries (Woodruff et al., 1998). This dataset34 also includes 

sets of COADS-derived fluxes (da Silva et al., 1994a-e). 

Another useful climatological reference is the Southampton 

Oceanography Centre surface flux climatology directory (Version 1.1), 

which contains climatological monthly mean values of air-sea fluxes on 

a global grid in netCDF format. The fields have been derived from the 

CO ADS 1 a ( 1980-93) dataset enhanced with additional metadata from 

the WM047 list of ships (WMO, 1993). 

The Global Precipitation Climatology Project (Huffman et al., 1997) 

offers global maps of long-term mean values of flux data collected by in 

situ and satellite observations. Output from numerical weather models 

has also been merged with the data as part of data assimilation 

processes. 

Another climatological database, with a resolution of 2.5° by 2.5° in 

latitude and longitude, covering a 17 -year period from 1979 to 1995 is 

the CPC Merged Analysis of Precipitation (Xie and Arkin, 1997). This 

database consists of monthly precipitation in addition to a variety of 

Sf,l,tellite ~er1sor meas:urements, gauge observations and model 
- - .,.. . -. ... '""" - - ., - -~ 

34 http:/ I www. cdc. noaa.gov/ coads/ coads 1 a. html (accessed on 0 1.11. 04). 
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reanalysis conducted by National Centers for Environmental Prediction 

(NCEP) in collaboration with the National Center for Atmospheric 

Research (NCAR). 

3.2.4. Modelled NWP datasets. 

Three maJor weather and climate centers are involved m producing 

atmospheric reanalysis on the global scale. These are the Goddard 

Space Flight Center (GSFC), the Data Assimilation Office (DAO), NCEP 

in collaboration with NCAR and the European Center for Medium Range 

Weather Forecasts (ECMWF). 

NWP models serve users interested in many different phenomena and 

different forecast lengths. In operational ocean forecasting, the interest 

lies in making available continuous, fine spatia-temporal, short- and 

medium-range forecasts of near surface parameters and fluxes that can 

be used as both initial and driving fields for ocean forecasting models 

(Taylor, 2000). 

The most recent atmospheric models are now very comprehensive and 

contain sophisticated physical parameterisations to predict a large 

number of processes in the atmosphere, such as the exchange of 

radiation at the Earth's surface (Pan, 1999), and air-sea energy fluxes. 

In addition, they also include advanced data assimilation schemes used 

to provide an optimal initial atmospheric state on the basis of previous 

forecasts and real-time (in situ and satellite sensor) observations. It has 

been claimed that when coupled to data assimilation schemes, 

numerical weather prediction models can provide realistic forecasts of 

the air-sea fluxes with an unprecedented temporal and spatial coverage 

of the entire global ocean surface (Atlas et al., 1996). 

There are many advantages when using these numerical atmospheric 

models to deterii1ip.e air-s~a fluxes, the major one being their improved 
- · ;_-., ~ -r' · o' . - --·" ... _. ,. - • - . • - • ·,. . 

schemes to calculate the transfer coefficients during the estimation of 
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the surface fluxes. Their surface parameterisation schemes have been 

modelled on the current knowledge of the characteristics of the lowest 

layer of air near the sea surface. The high vertical resolution offered by 

these atmospheric models, for example, permit the application of the 

Liu et al. ( 1979) surface renewal model based. Unlike bulk formulae 

with constant transfer coefficients, these models are able to include the 

effects of stability and interfacial conditions that are applicable in 

approximately stationary and horizontally homogeneous moderate wind 

speeds. 

3.2.4.1. NCEP's Eta model. 

The Eta model is an operational limited area model with a variety of 

unique features in its numerical formulation. One such feature is the 

viscous sublayer model (Janjic, 1994) that is able to sufficiently resolve 

and improve on the transfer coefficients for the estimation of air-sea 

fluxes. Other unique features include its algebraic conservation of 

energy in transformations between the kinetic and potential energy in 

both space and time differencing (Mesinger, 1984, Janjic et al., 1995), 

and numerical treatment of lateral boundary conditions (Mesinger, 

1977). Special features of the model's comprehensive physical package 

include its modified Betts-Miller convection scheme (Janjic, 1994) and 

Fritsch-Kain scheme (Mesinger et al., 2002); its Mellor-Yamada level 2.5 

turbulence closure (Janjic, 1996a) and its prognostic cloud water/ ice 

scheme (Zhao and Carr, 1997). 

The Eta atmosphere model was originally designed using primitive 

equations based on the hydrostatic approximation. It was used in an 

operational way in June 1993 as the short-range North American 

forecast model at the NCEP (then known as the National Meteorological 

Center). The decision to use this model was based upon extensive 

experimental evidence obtained for validation during the initial stages of 

dev~~opme;pt. (¥esinger __ et 0:1., 1 ~8~t, ~! __ ~ha! tim~, the horizontal _grid 

spacing was 80 km and it had 17 layers in the vertical. The model has 
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been implemented in three geographical regions: North America, Europe 

and the tropical regions of Australia. In 2000, a new non-hydrostatic 

Eta version was released for the NWP community (Mesinger, 2002). 

Consequently, the model can now be applied for high resolution, small­

scale atmospheric prediction of around 1 km or even less. 

Substantial testing, tuning and further development of the model has 

been carried out by NCEP. The model has also been implemented in the 

tropics, over Europe and the Mediterranean basin, as well as in many 

other geographical areas all over the world using varying resolutions 

and integration domain sizes. An interesting feature of the model is that 

little re-tuning is needed when horizontal resolution is changed. Table 

3.1. shows the application of the Eta model by some Mediterranean 

research and weather forecasting agencies. One successful application 

in this region is its use as part of an oil spill early warning system in 

the Mediterranean (RAMSES project) with a 4 km grid spacing35. 

A review of the results of numerical experiments (Black and Janjic, 

1988; Mesinger et al., 1988; Mesinger and Black, 1989; Black and 

Mesinger, 1989; Lazic and Telenta, 1988; Lazic, 1990) suggests that the 

Eta model is competitive with other sophisticated regional models using 

similar resolutions, and requiring about the same computational effort. 

Moreover, these experiments document the ability of this model to 

improve predictions when the grid resolution is increased. At the same 

time, the flexibility of the parameterisations allow further tuning and 

refinements. The Eta model was tested by Papadopoulos et al. ( 1997) to 

assess the surface and radiation parameterisation schemes for different 

model grid resolutions, which was found to be dependent on high 

resolution permanent and semi-permanent datasets. A major 

improvement was the revised Betts-Miller scheme over the oceans and a 

new flexible viscous sublayer scheme, in addition to improving the 

Mellor-Yamada level 2 and level 2.5. (Janjic, 1994). Recent updates 

includ~ the revised land-surface physics and updated cloud package (in 
• -~-~-···· ·- • '·.··· • .< ,'·>':'" ...... _ - ·.; _ _:":_:::. ~- =.o:-"-:.·:.o..'::'".~. -. ~~ . - . ·-· . 

35 http:/ /ramses.esrin.esa.it/ (accessed on 01.11.04). 
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2002) and the inclusion and updating of the Kain-Fritsch scheme (in 

2003). 

Programmes/ NWP model Domain size Sources 
Agencies 
SKIRON Eta NCEP, MM5 Mediterranean University of Athens 

and a nested http: I I forecast. uoa.gr I 
model 

RAMSES Eta NCEP Mediterranean ICoD; ESA/ESRIN; 
and nested SPOT Image 

models over small http:/ framses.esrin.esa.it 
areas 

CYCOFOS Eta NCEP Mediterranean Oceanography Center, 
and a nested DFMR, Nicosia, Cyprus 

model http:/ fwww.ucy.ac.cyfcyo 
cean/Newjindex.php 

DREAM Eta NCEP Mediterranean ICOD 
and nested http:/ fwww.icod.org.mt/ 

models over small modeling/ index.htm 
areas 

REALTIME Eta NCEP Mediterranean Tel Aviv University 
WEATHER http:/ /earth. nasa. proj. ac.i 

PREDICTION 1/ dust/ current/ dust.html 
SYSTEM, 
TEL AVIV 

UNIVERSITY 

Table 3.1. Application of the Eta model by Mediterranean research and 
weather forecasting agencies. 

Additional packages that are applicable to the air-sea surface fluxes 

include the Geophysical Fluid Dynamics Laboratory (GFDL) radiation 

scheme that simulates the radiative atmospheric effects, which include 

interactive random overlap cloud effects. This scheme is relatively 

efficient because it uses extensively, pre-calculated values of various 

parameters (look-up tables) with no effect on accuracy. The model 

contains the entire column of climatological and seasonally varying 

ozone and C02 along with the appropriate absorption coefficients. This 

is being currently updated by a real-time ozone reanalysis derived from 

NCEP (Nickovic 2000, personal communication). Recent changes were 

also made to the scheme reflecting a more precise estimation for the 

total energy entering the atmosphere in order to simulate the aerosol 

effects. 
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Studied phenomena produced by the Eta model (Pielke, 2001) include 

the forecasting performance of quantitative precipitation, moisture 

transport impacts and basin/sub-basin budgets, land surface 

phenomena, in particular vegetation and soil moisture/water transport 

impacts, the effect of topography on the choice of the vertical 

coordinate, tropical cyclones and other studies. However, no studies 

have addressed the accuracy of its modelled air-sea fluxes (Me singer, 

2002 personal communication). 

3.3. Technical approaches in operational ocean forecasting. 

3.3.1. Coupling of atmosphere and ocean models. 

Forcing an ocean model with climatological air-sea flux estimates often 

results in an unrealistic prediction of ocean surface fields, such as the 

SST. For example, the attempt of Rosati and Miyakoda (1988) to drive 

an upper ocean global model with specified climatological wind-stress 

and heat flux showed that the predicted SST could be significantly 

different from the climatological SST used in the calculation of the flux. 

In their analysis, they question the utility of such climatological forcing. 

In addition, the absence of any interaction between their ocean model 

and the atmosphere also accounted for the drift of the model SST. 

A solution to minimise these errors lies in coupling ocean and 

atmosphere models together. This necessitates the use of forecasting 

atmosphere models that generate oceanic surface fluxes to drive the 

ocean model underneath. This setup is termed as "one-way 

atmosphere-ocean coupling" and can be further elaborated by using the 

oceanic model's parameterisation schemes to adjust some of the driving 

forces that have been generated by the atmosphere model. This is 

termed "two-way atmosphere-ocean coupling" or "full coupling". 
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A surface flux-type thermal boundary condition allowing for a one-way 

coupling of an ocean model to a prescribed atmosphere was first 

proposed by Haney (1971). However, in spite of 30 years research, it is 

only recently that some progress has been made in this field. Barnier 

et al. ( 1996) still express the need to understand the dynamics that 

drive the general circulation of the ocean by investigating the response 

of ocean models under the action of a prescribed atmosphere. Holland 

and Bryan ( 1994) for example, emphasised the difficulty of 

parameterising oceanic fluxes and in turn adjusting the resulting heat 

flux through evaporation. 

Recently, the European Union has funded project DEMETER for 

ECMWF to introduce global coupled ocean-atmosphere models36. The 

coupling has had a beneficial impact on the Center's short and medium 

range forecasts and development is still ongoing37. 

An excellent example of a one-way coupled system is the Regional 

Ocean Forecasting System (ROFS, Ver. 3.6)38. This system is based on a 

hydrodynamic ocean circulation model developed jointly by the National 

Weather Service's Environmental Modelling Center, the National Ocean 

Service's Coast Survey Development Lab, Princeton University and the 

US Navy. This three-dimensional model produces 24-hour simulation of 

temperature, salinity, surface elevation and current for a region off the 

East Coast of the United States. The model is driven at the ocean 

surface boundary by heat, moisture and momentum fluxes provided by 

NCEP's Eta atmospheric forecast model. The ocean model is driven 

along its open boundaries by climatological estimates of temperature, 

salinity and transport. The spatial resolution of the model varies from 

approximately 20 km offshore to about 10 km inshore. 

36 http:/ /www.ecmwfint/research/demeter/general/index.html (accessed on 
Ol.Jl .04). "'o,·, 

37 http:/ I www. ecmwf inti about/ special_projects/ bengtsson_ocean-atmosph­
num.expt/ (accessed on 0 1.11. 04). 
38 http:/ I polar. wwb. noaa.gov/ cofs/ Description. html (accessed on 0 1.11. 04). 
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3.3.2. Development of local area, high resolution coupled model 

systems. 

The continuous progress in computer science and technology is 

strongly reducing the computational burden of coupled model systems 

(Warner and Seaman, 1990). The way forward was demonstrated during 

1991 by the European Center for Medium Range Weather Forecasts 

(ECMWF), when it improved its nominal 1.125° by 1.125° horizontal 

resolution model over 19 pressure levels of 1987 to the 60 km 

resolution over 31 levels. This improvement allowed a much better 

representation of orographic and related processes during model 

simulation. 

Small-scale forecasting systems working with grid spacing as small as 

5 km horizontal resolution are much dependent on initial information at 

mesoscale level as to maintain both a high forecasting skill and to allow 

the boundary layer to evolve more realistically. However, the limited 

availability of atmospheric data, necessary to initialise and update the 

atmospheric component of the forecasting system, seems to remain the 

main obstacle that prevents an increase in the grid resolution in 

operational models. Recently, measures have been taken in this 

direction to start implementing Local Area Models (LAMs). These models 

are usually nested inside regional or global forecasting models that 

provide the initial and the predicted boundary conditions for their 

nested LAMs (Buzzi et al., 1994; Paccagnella et al., 1994). 

The existence of a global and of at least one regional, or "limited-area" 

forecasting system is now a current feature in all operational weather 

and oceanic research centers. Yet, the purpose of using a LAM output 

can be radically different (Me singer et al., 2002). For example, LAMs can 

serve both to keep contamination at the lateral boundaries as far away 

from the region of interest as possible (Laprise et al., 2000); and to 

improve prediction of large-scale motion (Mesinger et al., 2002). 
;~-· ;' .,- , .. !''-- -~ .~.: ~-· -. - -,.- ·c ' 
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3.3.3. Temporal and spatial resolution of ocean variability. 

An ocean model with the necessary spatia-temporal resolution can help 

oceanographers understand this spectrum of variability. However, the 

space/time spectra of ocean variability are, in general, poorly known at 

present. The oceanic response to the short temporal atmospheric 

variability for example, is not well documented, but it is common 

knowledge that the diurnal cycle and several-day variability associated 

with synoptic weather systems are considered to be the major sources 

of short time scale variability in the upper ocean (Schott and Leaman, 

1991). 

Basin-scale SST variability, for example, very much depends on the 

scale at which it is observed and/ or forecasted (Price et al., 1986). It 

may have spatial scales set by the atmosphere alone or by a 

combination of atmospheric and oceanic processes. Vertical advection, 

can also give rise to small-scale variability with longer persistence times 

than the variability associated with similar scales in the atmosphere. 

The vertical resolution can also pose problems in the model's 

representation of the boundary layer. Since the model treats the fluid 

within each layer as a homogeneous parcel, the degree of resolution 

determines the effect which physical processes may have on the model 

parameterisations and ultimately on the final representation of the 

boundary layer. In general, the greater the number of layers defining 

the boundary layer, the closer to reality the representation is likely to 

be. 

To date, there are remarkably few published studies on the influence of 

varying the resolution of ocean models on the accuracy of predicted 

fields (McWilliams, 1998). Studies show that a horizontal grid spacing of 

more than 50 km is enough for the simulation of water mass 

distribution, but a resolution of up to at least 10 km becomes 
- "·• ., __ ·. - • -:·. "-?";.·.oc;..''·-·=-0..~.:-::;>·: _ _:_..: ..o.:_~· ~ }" ···•· • •"-~'• • '- ' •"" 

mandatory to simulate mesoscale eddies and intense, narrow currents 
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credibly (i.e. with qualitative similarity to observations). Recently, the 

US Naval Research Laboratory has embarked on a project to provide 

accurate, very high resolution, 4-dimensional descriptions of the coastal 

ocean environment at horizontal resolutions of 10 m to 1 km, vertical 

resolutions of around 1 m, and temporal scales of hours to days39. 

At present, eddy-resolving ocean models can only be used for intervals 

as long as decades and domains as large as basins, whereas coarse­

resolution models are suitable for centennial and millennia! 

fluctuations and the approach to equilibrium in global domains. 

Although growing computer power will narrow this division, it will take 

at least a decade, and perhaps much longer, before eddy-resolving 

models will have a greater role in large-area ocean forecasting 

(McWilliams, 1998). 

Again, a major drawback in the use of small-scale ocean models is the 

lack of high frequency spatial and temporal observations needed to 

verify predicted features at even up to 4 times a day. Such a frequency 

of observations is only obtained from a restricted number of locations 

around the globe. This is certainly not the case for the Mediterranean 

area. 

3.3.4. Approaches in model verification. 

Forecast verification is an essential component of any ocean forecasting 

system, since it is the process by which the degree of correspondence 

between forecasts and observations is assessed (Murphy and Daan, 

1985). It establishes the credibility of forecasting systems, which in turn 

is increasingly required in an era when programme benefits must be 

demonstrated. Brown et al. (2002) argued that the science of verification 

is undergoing major changes and development, as standard methods 

have been found not to meet the needs associated with high-resolution 

gridded forecasts. ~· 

39 http:/ I www7320. nrlssc. navy. mil/ html/ vhr4d/ (accessed on 0 1.11. 04). 
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In practice, traditional forecast verification has generally consisted of (i) 

calculating quantitative measures of one or two aspects of forecasting 

performance such as bias, accuracy or skill and (ii) drawing conclusions 

regarding absolute and/ or relative performance on the basis of 

numerical values of these measures (Murphy, 1997). 

The main element that defines which forecast fields or specific 

numerical schemes can be verified rests on the availability and type of 

collocated observations. The availability of raster-based remotely sensed 

observations partly satisfies this criterion, making comparisons of data 

sets of particular geophysical parameters relatively easy (Murphy and 

Winkler, 1987). 

The evaluation of model accuracy has traditionally been subjective, with 

the forecaster using the experience to develop opinions about the 

model's accuracy. This can be done via simple visual comparisons of 

graphical plots representing the model output and observations. 

However, these comparisons can be misleading since they often contain 

personal biases and impressions, and as models become more complex 

and change more frequently, a more objective means of evaluating 

model performance is required. As a result, model accuracy assessment 

tools have evolved to provide an objective measure of model skill that 

can be used by forecasters. The end product is an objective summary of 

model accuracy and/or related errors that include both systematic and 

random ones. 

The objective assessment of model accuracy is always constrained by 

the limited representation of the model forecasts in relation to the 

corresponding atmospheric and oceanic truth. Specifically, model 

forecasts represent both fluids as a discrete array of area-averaged 

values as opposed to the continuous fields found in the real world, 

which in turn are weakly represented by satellite sensors and/ or in situ 
,, . ; .- - -:- ,,___ -·- ·~--: :·:.:~--~-;~ • .c.-".',;_o__ ._-,:;: o: . . :;.-p • ·-

observations or analyses. No matter how sophisticated these 
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observations and forecasts become, they will never represent the true 

fields perfectly. 

3.3.4.1. Statistical measures and model assessment tools. 

Different statistical measures can be used in model verification by 

assessing the degree of fit between the model output and empirical 

data, the most common ones being the root mean square error, the 

mean absolute error and standard deviation (Alvera-Azcarate et al., 

2004). Additional statistical measures are used by weather forecasters 

to assess the spatial accuracy of their forecasts, including threat score, 

equitable threat score, correlation and anomaly correlation (Glahn 

et al., 1991). These measures are devised to assess the spatial 

occurrence of precipitation against observations derived from rain gauge 

stations. 

Graphical tools are used to assist forecasters to plot, visualise, analyse 

and interpret forecasted data. These tools consist of computer software 

ranging from freeware distributions based on UNIX/LINUX 

environments, such as the Graphical Display Analysis Systems40 to 

well-established commercial GIS products. As Tufte (1983) points out, 

graphics gather their power from content and interpretation beyond the 

immediate display of numbers. Data plotting can work as an error 

detection method by amplifying deviations from an expected pattern. 

However, references to the use of GIS display and analysis in the field of 

oceanic forecasting are almost non-existent. 

3.3.4.2. Exploratory spatial data analysis. 

The above-mentioned statistical measures are limited in their ability to 

assess spatial similarity between forecasts and observations in an 

objective way. This is because common descriptive statistics and 

histograms are unable ~t_().,~aptw:e,.~SP5!t_!§ll. _relatig:g~pip~L ang tend to 

40 http:/ I grads. iges.org/ grads/ head. html# SOFT (accessed on 0 1.11. 04). 
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simplify forecasts that have a large amount of spatial detail that needs 

verification. 

According to Brown et al. (2002), high-resolution models need to be 

given a proper evaluation that measures their operational capabilities. It 

may be necessary to rely more on diagnostic measures such as entity­

based techniques, pattern recognition and other scientific techniques, 

which are more appropriate for finer scales. The latest approaches in 

exploratory spatial data analysis and GIS analysis can be an extremely 

useful to assess the temporal and spatial accuracy of model forecasting 

systems. Understanding the variation of spatial scales as an index of 

forecasting performance presents a challenging and unexplored field in 

ocean forecasting. More specifically, the use of Exploratory §patial Data 

Analysis (ESDA) can describe and visualise spatial distributions, 

identify atypical locations (spatial outliers), discover patterns of spatial 

association (spatial clusters), entity classification usmg pattern 

matching (Brown et al., 2002) to evaluate the displacement between 

forecast and observed entities and to decompose the error into various 

components (e.g., displacement, pattern, volume); and suggest different 

spatial regimes and other forms of spatial instability (Anselin, 1999) in 

the output fields of atmosphere and ocean models. The bottom-line 

approach to be mimicked objectively is visual verification, which is able 

to consider all of the attributes of interest, but unfortunately is labour 

intensive and subjective. These new methods (e.g., event- or object­

based approaches) can provide a more complete picture of forecast 

performance. 

Techniques that can evaluate the spatial similarity between forecasts 

and collocated observations can be a very useful for the forecast 

verification. Holt et al. ( 1998) define spatial similarity as "the spatial 

matching and ranking according to a specific context and scale". It is 

governed by context (function, use, goal), scale (coarse or fine level), 

repository (the application, local domain, site and data specific), 
-~ .•,•c~;:.=· ,• -- o""-''~,o-~•','•,,'~-;..T_o,•oo~--~--- 0 ·~ .- .... ~- •,' 

techniques (the available technology for searching, retrieving and 
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recognising data) and measure and ranking systems. Here, the degree 

of match is the score between the forecast (source) and the observation 

(target), where both can be a pixel, region or coverage. The principles 

that govern spatial similarity are not just the attributes but also the 

relationships between two phenomena. By further developing and 

applying the much-needed tool of spatial similarity in oceanic 

forecasting, this approach can serve as an organising and exploratory 

tool. Here, spatial phenomena are classified and clustered, relationships 

identified and generalisations made from previous experiences or 

knowledge. 

3.3.4.2. Geostatistics. 

Apart from map drawing/ overlaying and doing statistical and GIS 

operations on the spatial information, ESDA requires a third 

component: statistical analysis to compute spatial models. Spatial 

modelling of observations (often in the form of raster information), and 

the continuous, and highly resolved model output fields can be done 

using variogram modelling. Since Curran ( 1988) introduced the 

application of geostatistics techniques in a remote sensing context, the 

variogram is now widely adopted for modelling the spatial variation for 

remote sensing applications, such as soil mapping (Dubayah et al., 

1997), biomass estimation (Atkinson and Curran, 1995), and landscape 

pattern (Turner et al., 1991). According to Treitz (2001), variogram 

analysis offers the advantage of relating some key descriptors to the 

spatial characteristics of the maps or their residuals. Understanding the 

spatial characteristic of maps or residuals constitutes the first step in a 

geostatistical study, which is usually followed by structural analysis 

(determining the spatial correlation or continuity of the data) and 

interpolation (kriging or simulations to predict values at unsampled 

locations). For the purpose of model verification, empirical studies of 

the semi-variogram plots of residuals is often sufficient to analyse the 

variaqility betweep fo:re~asts <lD.4 Qj:?"s~rY~tions. The_ sl).~pe of a S_f:!mi­

variogram, for example, may be fitted with a model, of which the range 
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and sill are two parameters that describe the spatial variation. The 

range generally indicates the extent to which values sampled from 

spatial process are similar. The height of sill relates to the spatial 

variability of images. Variography is another method used to analyse 

spatial variability by improving the visibility of spatial structures on 

variograms of both raw and transformed data. 

Exploratory spatial data analysis is still an unexplored branch of 

applied statistics for the ocean forecasting community. This is clearly 

the case for the Mediterranean Eorecasting .furstem (MFS) where the 

impact of data assimilation techniques and the use of real-time 

observations is being assessed using standard verification measures 

common to the NWP community. These measures include short-term 

prediction misfit (SPM), RMS difference from the reference runs as a 

function of time and from verification data sets. Model errors will be 

tackled using an Ensemble Kalman Filter41. 

3.4. State of ocean forecasting in the Mediterranean. 

Over the past few decades, the Mediterranean basin has been identified 

as a suitable test area for the understanding of processes associated 

with the ocean general circulation. A review of the relevance of the 

Mediterranean physical oceanography in a global context is given by the 

Physical Oceanography of the Eastern Mediterranean (POEM) Group 

(POEM, 1992). These studies have shown that the circulation of the 

Mediterranean is composed of many subbasin-scale features which may 

be relatively permanent, recurrent, or intermittent (Robinson et al., 

1991 ; Millot, 1991). The formation mechanisms for these features are 

complex and can generally be assigned to surface wind stress, surface 

thermohaline fluxes and accompanying water mass formations, 

inflow I outflow through the Strait of Gibraltar, and bathymetric control. 

The surface wind stress is also subject to orographic control <:111d is 
- .. ·._.;•!-::'. ~. --'-~--:~0-- -.-- _:., ., ... --- _, - - ·.. . 

41 http:/ I www. cineca. it/ mfspp/ workpackages/ des_wp4. html (accessed on 0 1.11. 04). 
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strongly modified near the coasts, in straits and near the higher and 

larger islands. Korres et al. (1997) observed that intense atmospheric 

variability over the Mediterranean at seasonal and interannual time 

scales makes the heat and momentum budget at the air-sea interface 

strongly interannual. 

3.4.1. Type of ocean forecasting models. 

A good number of general circulation ocean models have been used to 

study and simulate the circulation of the Mediterranean Sea. Out of 

these, the two most popular and widely used models are the 

Mediterranean Modular Ocean Model and the Princeton Ocean Model. 

3.4.1.1. The Geophysical Fluid Dynamics Laboratory - Modular 

Ocean Model (GFDL-MOM). 

The GFDL-MOM was developed by Pacanowski et al. (1990). It is a 

three-dimension primitive equation model that has been used 

extensively by Korres et al. ( 1997) to simulate oceanic circulation in the 

Mediterranean using a 9-year NCEP monthly mean atmospheric 

analysis fields to drive the model for a hindcast period between 1980-

1988. Detailed analysis of various experiments performed can be found 

in Pinardi et al. ( 1997). 

Pinardi et al. (1997) used a basic formulation of the GFDL-MOM with a 

0.25° by 0.25° horizontal resolution and 31 levels in the vertical 

dimension. The model dynamics were nudged against climatological 

datasets of temperature and salinity. The driving surface forces for the 

ocean model were monthly mean atmospheric parameters, retrieved 

from NCEP analyses and monthly mean cloud cover from COADS. The 

model was initialised with additional climatological data coming from 

the comprehensive historical data set (Brasseur et al., 1996) collected 

for the M~c:literTanean and ir~J(!gr~.t~<tover an 11-year period. 
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Raicich (2004) also used MOM with a higher, 0.125° by 0.125° 

horizontal grid spacing and 31 vertical levels and forced by ECMWF 

6-hr operational analysis to simulate temperature and salinity 

variability in the Mediterranean Sea. 

3.4.1.2. The Princeton Ocean Model (POM). 

This model was developed in the late 1970's by Blumberg and Mellor, 

while several subsequent contributions were made by others. The model 

has been applied to several coastal (Orlic et al., 2004) and estuarine 

regions as well as to open oceans, and sometimes used with an 

embedded ecosystem model structure embedded within the ocean 

model (Chai et al., 1999). 

POM is a three-dimensional hydrodynamic, primitive equation ocean 

model, which includes a turbulence sub-model. It uses curvilinear 

coordinates in the horizontal dimension, while in the vertical dimension 

a terrain following a-coordinate system is used. Parallel to the 

integration of the 3-0 equations, a set of depth integrated 2-D 

equations are solved in order to calculate the free surface variations. 

Temperature, salinity, velocity and surface elevation are the prognostic 

variables. The horizontal diffusion terms are evaluated using the 

Smagorinsky (1963) horizontal diffusion formulation. The vertical 

mixing that this submodel parameterises allows for the formation of a 

fairly realistic, seasonally varying, mixed layer and can, in principle, 

model the formation of relatively saline intermediate water by the 

thermohaline fluxes42. 

Working at fine model domains, POM is able to reproduce eddy 

dynamics that play a major role on the circulation field especially in the 

synoptic time scale. The prognostic variables are the sea level elevation, 

the three components of velocity, temperature and salinity, turbulent 

kinetic energy and turbul~qce Il!a<;rc;>~~ClJ~. fl'he last two parameters are 
- • • • ~ •• •• • • • -"•r .. • • • '"• •• ~ '\',_ 
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part of the turbulence closure scheme that provides realistic 

parameterisation of vertical mixing (Mellor and Yamada, 1982). 

Zavatarelli and Mellor (1995), Horton et al. (1997), Drakopolous and 

Lascaratos ( 1997), Brenner and Rosentraub (2004) are among those 

who have used POM to understand the Mediterranean Sea general 

circulation and its sub-basins. Zavatarelli and Pinardi (1995) used POM 

to simulate the ocean circulation in the Adriatic Sea, while Lascaratos 

and Nittis (1998) and Brenner and Rosentraub (2004) concentrated on 

simulating the circulation of the Levantine Sea, Aegean and part of the 

Ionian basins. The latter's computational grid had a horizontal grid 

spacing of around 5 km and covered the entire area of Levantine Sea. 

Surface forcing consisted of monthly mean climatological wind stress, 

atmospheric pressure and heat fluxes based on the 15-year ECMWF 

reanalysis. Lateral boundary conditions at the open boundaries were 

specified from the eighth year of a climatological simulation with the 

MFSPP full Mediterranean model. 

The POM model is now an integral part of the forecasting systems of the 

RAMSES, COMPASS43, CYCOFOS and POSEIDON. Its integration grid 

spacing ranges from 0.25° by 0.25° to 0.02° by 0.02° in the horizontal 

dimension. The model is being currently combined with biological 

models in the Gulf of Trieste (Adriatic Sea) as part of the MFS 

initiative44. 

3.4.2. Operational ocean forecasting systems. 

In the Mediterranean, a small number of research and development 

centers perform one-way forcing of ocean models to produce and 

disseminate daily ocean forecasts. Operational programmes such as 

SKIRON/POSEIDON of the Marine Research Center of Greece and the 

COMPASS of the Euro-Mediterranean Centre on Insular Coastal 

42 Detailed technical' · ·· ··information ·· on y POM is available · ·af 
http:/ I www. aos.princeton. edu/ WWWPUBLIC/ htdocs.pom (accessed on 0 1.11. 04). 
43 http:/ I www.icod.org.mt/ modeling/index. htm (accessed on 0 1.11. 04). 
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Dynamics each have a one-way coupled, atmosphere-ocean modelling 

system configured to provide high-resolution air-sea surface flux 

forecasts over predefined regions in the Mediterranean basin. In order 

to achieve the best possible temporal resolution in the area of interest, 

the systems usually apply two different forcing model configurations. 

The first simulation is performed by a regional atmosphere model run at 

coarse horizontal resolution (such as 0.25° by 0.25°) and using 

boundary conditions from a global model (Nittis et al., 2001). Its better­

resolved "regional" forecast is then used to provide the initial and 

boundary conditions for the finer nested atmosphere model (such as 

0.10° by 0.10° in horizontal resolution) situated well within the regional 

integration domain. 

The operational ocean forecasting provided by RAMSES incorporates an 

operational forecasting oil slick forecasting system based on COMPASS' 

one-way coupled regional (0.25° by 0.25° grid) and nested (0.042° by 

0.042° grid) atmosphere-ocean model system that provide 5-day, high 

resolution meteorological and marine forecasts of predefined areas to 

predict the movement of potential oil slicks. The RAMSES consortium 

partners involved are ESA/ESRIN, SPOT Image and ICoD. 

The Mediterranean Forecasting System (MFS) is also currently 

providing, on an operational basis, weekly forecasts of surface currents, 

sea surface temperature and salinity45. 

Ongoing development of the operational ocean forecasting at ICoD 

(through Project COMPASS) include the improvement of its atmospheric 

model by using ( 1) input data containing ozone fields up to 1 0 kPa, (2) 

new cloud physics scheme, (3) the full coupling of an aerosol 

atmosphere model as to better resolve attenuation of radiation due to 

aerosols, and (4) full two-way coupling with ocean model (Nickovic, 

personal communication, 2002). 

44 http:/ I www. bo. ingv.it/ adricosm/ bullettin. html (accessed on 0 1.11. 04). 
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Products tailored for ocean forecasters can also be obtained from major 

European weather agencies such as MeteoFrance46 and ECMWF. 

However, their forecasting system can be considered as a "closed" 

system, which delivers products according to defined, customer­

oriented requirements. 

3.5. Challenges in ocean forecasting in the Mediterranean. 

3.5.1. Major technological and information gaps. 

One of the main challenges in the region is the provision of useful 

operational forecasts addressing socio-economic and environmental 

needs47. In this respect, one of the main tasks of EuroGOOS is to speed 

up the process of validating forecasting models and to transfer them to 

operational agencies. Once there, efforts are needed to engineer the 

modelling procedures into a robust, operational form that can cope with 

the data flow and delivery. However, there are many problems still to be 

solved, especially in the area of data assimilation. 

The overall strategic objective of the EuroGOOS that deals with 

numerical ocean forecasting is: 

"To develop, test, implement and upgrade the most efficient 

numerical models for those marine variables and parameters 

which are of highest priority for users of operational forecasts; to 

identify and compare the best modelling systems for different 

variables, regions, and scales; to develop the most efficient data 

assimilation methods for operational ocean modelling and 

forecasting". 

45 http)/www.bo.ingv.it!riL]~t~p/ (a~~~~;~d~n 01.11.7J4). 
46 http:/ I www. meteo.fr/ e_index. html (accessed on 0 1.11. 04). 
47 http:/ /www.eurogoos.org/index.php (accessed on 01.11.04). 

(EuroGOOS, 2004) 
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One of its medium-term objectives is to: 

"Implement operational models zn the Mediterranean ... 

predicting hydrodynamic parameters, chlorophyll, nutrients, water 

quality, primary productivity, suspended sediment load, coastal 

sediment transport, and coastal erosion". 

(EuroGOOS, 2004) 

In 2002, EuroGOOS identified nine main priorities (EuroGOOS, 2003) 

including ( 1) the advancement and implementation of a marine 

monitoring and forecasting system, (2) the establishment of operational 

forecasting suite, (3) the implementation of regional systems based on 

local and regional user requirements, and (4) the technical development 

for marine monitoring, forecasting, nowcasting and hindcasting. These 

priorities are based on the results of the most complete survey and 

analysis so far conducted by EuroGOOS of the full-range of potential 

customers and their preferences for marine operational data (Fisher and 

Flemming, 1999). The aim of the EuroGOOS Requirements Survey 

(ERS) was to identify the classes of applications and uses for 

operational data on the marine environment, to identify what products 

and ocean-state variables are required, and to define the accuracy, 

resolution, space and time scales and forecast periods of these 

products. 

The survey showed that there were not more than 20 physical 

parameters which are most frequently required by users of operational 

data. Out of these, wind, waves, tides, meteorological forcing of the sea 

surface, storm surges, currents, temperature and salinity are being 

requested. There are urgent requirements for biological and 

sedimentological parameters which cannot yet be reliably modelled in 

an operational mode. 

One important result is that 53% of all respondents reques.ted variables 

connected to the sea surface. Out of this proportion, surface current 
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velocity and direction top the list, followed by other surface variables, 

such as SST, wind stress, sea surface salinity, etc. Respondents also 

assigned a specific spatial resolution for each variable chosen. Figure 

3.1 shows a high preference for a spatial resolution of 1 km for many 

different variables. Regarding temporal resolution, figure 3.2 shows that 

almost half of the cases chose a temporal resolution in the dimension of 

6 hours to 1 day for many surface fields variables (6 out of a total list of 

15 variables). 
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Figure 3.1. The required spatial resolution for some important oceanic 
surface variables (frequency of selection in % of requests of that variable). 
Variables requested on a varying spatial resolution, ranging from 
1000 km, 500 km, 100 km, 10 km, 0.5 km to <0.5 km. (Source: Fischer 
and Flemming, 1999). 
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Concerning forecasted periods and accuracy for surface field variables, 

most respondents requested ranges between 10 days to 20 years with a 

preference for shorter periods (fig. 3.3). Around 40% of the respondents 

selected the 1% accuracy level. Of particular relevance are the 

accuracies quoted for variables pertaining to the upper ocean layer. 
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Figure 3.2. The required temporal resolution for some important oceanic 
surface variables (frequency of selection in % of requests of that variable). 
Variables requested on a variable resolution, ranging from > 1 year down 
to 1 hour. (Source: Fischer and Flemming, 1999). 

The EuroGOOS Requirements Survey therefore exposes a pnmary 

economic demand from main European marine activities for improved 

operational marine data. Based on the main findings from this survey, 

together with the specific technological and information gaps in the 

Mediterranean, the component of GOOS for the Mediterranean -

MedGOOS, has launched the setting up of the Mediterranean 

Forecasting System (MFS) in collaboration with Mediterranean coastal 

states. This initiative is driven by the ((strong public demand for 

improved management of water quality in the sea" (Pinardi and 

Flemming, 1998). As a result the MFS is directly involving a large 
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1999). 

number of Mediterranean countries with an exchange of expertise. A 

main objective within MFS is "capacity building of local centers to model 

the shelf areas with state of the art hydrodynamic modelling" (Pinardi 

and Flemming, 1998). One major approach to address such a challenge 

is the: 

((construction of a basin wide ocean circulation nowcast/ forecast 

model and associated data assimilation of the Mediterranean 

Sea ... capable of predicting the currents on the time scales of few 

weeks to months together with nested regional/ coastal/ shelf 

models". 
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Another approach is the 

((construction of coupled atmosphere-ocean regional model over the 

Mediterranean area. Techniques for coupling with extended range 

atmospheric simulations should be assessed". 

3.5.2. Model initialisation and data assimilation using accurate, 

real-time observations. 

In ocean forecasting, the goal of data assimilation is to obtain the best 

possible initial estimate of the changing ocean. This has much in 

common with modern numerical weather forecasting, but because 

observations are much sparser m the ocean and the memory of the 

ocean is much longer than that of the atmosphere, challenges for data 

assimilation and prediction tend to be substantially greater that those 

in the atmosphere. These challenges encompass a rich variety of 

problems including computing and networking, accuracy analysis of 

observations, numerical formulation of partial differential equations, 

statistical analyses and descriptions of the atmosphere and ocean, and 

the interpretation of ocean data. This is particularly true for the 

Mediterranean area, where operational forecasting is still in its infancy. 

During the last decade, a number of investigations gave rise to a more 

accurate initialisation and assimilation of atmosphere and ocean 

models using real-time remotely sensed data. Met-ocean parameters 

such as TMI -derived latent heat (performed by the ECMWF), marine 

winds (Krasnopolsky and Gemmill, 2001), satellite altimeter data 

(Gavart et al., 1999) and moisture fields (such as integrated water 

vapour) retrieved from microwave sensors (Kuo et al., 1993) have been 

assimilated into mesoscale numerical atmosphere and ocean models. 

The MFS initiative is also addressing this challenge by encouraging the 

setting-up and testing of ilear.:::rea:r~otime 'at:quisition and processing of 

remote sensing data serving as prototypes for future implementation of 
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operational ocean forecasting. It recommends the use of near-real time 

remote sensing, such as altimetry, SST and ocean colour data since 

these provide unique data sets for the setting up of such a system. One 

of the main objectives of MFS is the development of an SST product that 

is operationally retrieved from the AVHRR sensor on NOAA satellites. 

The Ocean Circulation and Prediction Team at LEGOS48, Toulouse, has 

been developing data assimilation methods and conducting data 

assimilation experiments in the Mediterranean in order to study and 

help predict the large scales and the mesoscale circulation in the 

region. Observations such as altimeter and temperature profiles are 

being assimilated. Three different assimilation algorithms have been 

developed and tested (1) a reduced-order sequential optimal 

interpolation scheme, (2) an adaptive filter scheme, and (3) an ensemble 

forecasting scheme based on the Monte-Carlo method (De Mey and 

Benkiran, 2002). 

3.5.3. Assimilation of SST in ocean forecasting models. 

Ocean surface temperature is one of the most significant boundary 

conditions for the general circulation of the atmosphere. The ocean 

exchanges vast amounts of heat and energy with the atmosphere and 

these air-sea interactions have a profound influence on the Earth's 

weather and climate patterns. SST is also very sensitive to changes in 

the ocean circulation. 

The surface temperature is also considered an important prognostic 

ocean model field and an ocean model output of primary interest. For 

these reasons, data assimilation schemes that blend SST observations 

with ocean model dynamics have become well established (Bell et al., 

2000). In the case of short-range oceanic forecasts, the initial surface 

boundary condition can be provided from timely remotely-sensed SST, 

which is kept constant·throughout-~the-forecasting peFiod.--However, the 

48 http:/ /www.obs-mip.fr/omp/umr5566/english/index.htm (accessed on 01.11.04). 
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assumption that the observed SST field does not change significantly 

with time is not a reasonable one for medium- to long-range forecasts. 

There are two main sources of SST for data assimilation. The first being 

historical climatological monthly mean analyses such as the CAC 

analysis (Climate Analysis Centre, Washington DC) as used by 

Castellari et al. ( 1998) to assimilate SST in an ocean circulation model. 

This source was obtained from a combination of ship opportunities and 

satellite data (Reynolds, 1982) and is available in two datasets: one for 

the period 1970-1981 on a 2° by 2° grid, the other for the period 1982-

1988 on a 1° by 1° grid. 

The other source is real-time, remotely sensed SST. Horton et al. (1997), 

for example, assimilated night-time 8 km MCSST by nudging the 

dynamic model fields in an optimal interpolation based analysis. The 

accuracy of SST was then stated as being 0. 7-0.8 °C. Assimilation of 

SST derived using a multi-channel sea surface temperature (MCSST) 

algorithm was done at constant depth levels by redefining the 

temperature and interpolating the appropriate model variable from the 

ocean model's sigma levels to levels of constant depth. Once the 

assimilation is performed the new values are interpolated back to the 

depth of the original sigma coordinates. During the assimilation period 

the original model values were replaced by the modified ones at the 

surface, by using the model's embedded surface mixed-layer, and 

propagated down to the base of the mixed layer. The assimilation of 

MCSST for high resolution ocean forecasting presents an interesting 

challenge in order to adapt and optimise this method. 

The MFS project is currently studying the impact of assimilating near 

real-time SST. Daily AVHRR NOAA-14 night data over the western 

Mediterranean Sea are being acquired and computed weekly (median 

value) with a resolution of about 2 km, and then averaged with a 

tesol'utiori of o.-125°. Over,theeasterh-'patt of the sea, AVHRR NOAA-15 

night and morning data are acquired and a daily average is computed 
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with a resolution of 0.125°49. After the two mam datasets are 

normalised, an entire SST dataset is produced every week and a weekly 

mean calculated using data from the previous week. SST is interpolated 

over the whole Mediterranean Sea on the model grid of 0.125° by 0.125° 

using objective interpolation. 

No research is being carried in the Mediterranean addressing the 

potential of using microwave-derived SST as ( 1) a source of initial 

surface boundary conditions for, and (2) to dynamically adjust the fields 

of small-scale, high-resolution ocean and atmosphere models. The 

availability of such data provides an opportunity to study the impact of 

assimilating this dataset on the model predictions of ocean forecasting 

systems. 

3.5.4. Optimising remotely sensed SST observations for oceanic 

forecasting. 

In the last decade there has been an advance in obtaining more precise 

measurements of remotely sensed SST, fundamentally because of its 

great importance in detecting climatic changes (Hamad et al., 2004) and 

operational oceanic forecasting (D'Ortenzio et al., 2000). 

However, research is still underway to develop efficient and accurate 

techniques to accurately measure SST from space. This is mainly driven 

by the high accuracy that is required by researchers studying climate 

change and ocean circulation. The stated accuracy of SST for climatic 

studies, for example, has been reported to be 0.3 K (Barton et al., 1989). 

(i) SST measurement at infrared wavelengths. 

The retrieval of SST from Earth-orbiting infrared radiometers is the 

technique of marine remote sensing which has had the widest impact 

on oceanographic science"(Barton~ -l995)';c-lnfraRed (IR) sensors ·such -as 

49 http:/ /www.cls.fr/html/oceano/projets/mfspp/processing_en.html (accessed on 
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AVHRR, on polar orbiting and geo-stationary meteorological satellites 

have provided routine observations of SST for over two decades. 

A VHRR has proved to be extremely useful in support of meso-scale to 

basin-scale ocean studies. Among the reasons for this include the good 

correlation with in situ data, high resolution and the wide network of 

data retrieval and distribution. 

Various SST retrieval techniques have been proposed. The easiest way 

to accurately retrieve SST from the sensor radiances is by processing 

the data at the different sensor wavelengths. In a review of techniques, 

Barton ( 1995) showed how this differential absorption is exploited by 

SST algorithms for thermal IR radiometers. There are three classes of 

SST algorithms using thermal infrared data: ( 1) the most extensively 

used "split-window" algorithm (McMillan and Crosby, 1984) which uses 

the AVHRR wavelength of channel 4 (with a wavelength at 10.3-11.3 

pm) as the lowest order estimate of SST and the difference channel 4 

minus channel 5 (with a wavelength at 11.5-12.5 pm) brightness 

temperatures to correct for the atmosphere: (2) the "dual-window" 

algorithm, which uses the channel 4 brightness temperature and the 

difference of channel 3 (with a wavelength at 3.55-3.93 pm) minus 

channel 4 brightness temperatures to correct for the atmosphere, and 

(3) the "triple-window" algorithm, using the channel 4 brightness and 

the difference of channel 3 minus channel 5 brightness temperatures to 

correct for the atmosphere. 

The MCSST was NOAA/NESDIS's first operational procedure since the 

early 1980's when data from the A VHRR were first available (McClain 

et al., 1985; McMillan and Crosby, 1984). This most widely used 

(McClain, 1981) and globally routine (McClain et al., 1985) solution is 

obtained from a set of linear equations under the assumption that the 

channel atmospheric or brightness temperatures are equal. The 

relationship between the split-window value and the actual SST is 

derivea by-regression against' a global' set ohnBitu'SST data. 

01.11.04). 
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Minnet (1991) showed that the accuracy of MCSST is around± 0.3 K for 

dry atmospheres and ± 1.0 K for moist atmospheres. The errors are 

due, in part, to satellite calibration and precision, variations in surface 

emissivity (for which the sea is assumed to have an emissivity value of 

1.0), and the linear assumption of the split-window technique. However, 

a number of shortcomings have been documented that limit the 

accuracy of the MCSST algorithm. These are primarily: 

(a) Least-squares fit of "skin" radiances to 'bulk' SST measurements. 

The linear regression coefficients used for the MCSST algorithm are 

derived from a least squares fit of radiance data with in situ SST data 

from ships and drifting buoys. Ship SST values, however, were found to 

have large biases due to the heat in the engine rooms where the 

temperatures were recorded. In an effort to achieve consistency, the 

comparisons with the in situ data were restricted to the use of data from 

drifting buoys only (Strong and McClain, 1984). 

In the case of buoys, SST measurement do not take place within the 

thin radiative 'skin' of the ocean that is viewed by the infrared 

radiometers from space (Grassl, 1976; Schluessel et al., 1990). Instead 

SST values are read from 0.5 m to a few metres below the surface of the 

ocean - referred to as 'bulk' SST. The difference between the 'bulk' and 

'skin' temperatures is evident, arising from the varying interactions 

between the air and sea interface (Robinson et al., 1984). MCSST 

neglects the difference between this bulk and skin SST. The skin SST is 

preferred estimate for the calculation of air-sea fluxes (Schulz et al., 

1997). 

(b) Use of global data sets to derive algorithm coefficients. 

NOAA's split-window coefficientscooare" derived from a global data set 

match-up of buoy-derived SST (McClain et al., 1985). The use of 
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extracted correlation coefficients therefore has to be taken with caution 

when used to retrieve regional (such as Mediterranean) SST data, 

especially under regionally-specific climatic conditions (Coll et al., 1994; 

Shenoi, 1999). When analysed, Llewellyn-Jones et al. (1984) found 

deviations of 0.4 K when the coefficients extracted from a global match­

up datasets were applied to a mid-latitude data set. The author 

concluded that the use of global linear algorithms for regional SST 

retrieval is not recommendable, because a certain degradation of the 

results is expected in small areas, where the coefficients may be 

inadequate and inaccurate. This applies particularly to ocean regions 

where there is a lack of in situ data sets at adequate resolution and 

frequency against which IR brightness temperature data is regressed. 

This is the case for regions such as the central Mediterranean Sea 

where only historical climatological datasets exist, and where buoy 

stations are absent. 

(c Use of a 'first guess' state of atmosphere 

The MCSST algorithm assumes a 'first guess' of the state of the 

atmosphere for which the SST retrievals will be accurate. In this case, 

the atmosphere has a typical vertical arrangement of water vapour and 

temperature. All algorithms will give good SST estimates as long as the 

atmospheric state is equivalent to their first guessso. The improvements 

and success of a global algorithm would then depend on how best it can 

represent the 'average state' of the atmosphere and how much variance 

it can tolerate. Deviations from this first guess could then give errors in 

the estimation of SST (Barton, 1995). 

In areas like the Mediterranean, the atmosphere comes under the 

influence of seasonal winds and its atmosphere is often highly stratified 

in the lowest few kilometers from the surface. Hence, the atmospheric 

state is most likely to be different from the 'first guess atmosphere' and 

is likely to result in errors in SSTsretrieved using global algorithms.-
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Water vapour is a good example of an atmospheric component that is 

not evenly distributed on a regional or global scale. The total water 

vapour content in the vertical column, i.e. the precipitable water W, 

may change from 0.5 g cm-2 for high latitudes to about 6 g cm-2 for the 

equatorial regions (Arbela and Herrera, 1995). 

Ways to refine "split-window" algorithms have been explored by 

different researchers. A good number of alternative algorithms have 

been proposed in the last decade or so (a review is found in Prata et al., 

1995) that provide a correction for the above discrepancies. Recent 

work (Harris and Mason, 1992; Sobrino et al., 1993; Ulivieri et al., 1994; 

Yu and Barton, 1994; Francois and Ottle, 1996) showed that surface 

temperature retrievals may be significantly improved by incorporating 

additional information in the algorithm reflecting realistic regional 

atmospheric and oceanic conditions. Improved algorithms include the 

satellite-measured 'skin' SST (or satellite-measured surface "skin" 

temperature, (SMSST) routine (Schluessel et al., 1987), a water vapour 

sea surface temperature (WVSST) routine (Emery et al., 1994), a non­

linear 'split-window' algorithm (NLSST) and a cross-product sea surface 

temperature algorithm (CPSST) derived by Walton et al. (1998). The 

NLSST algorithm is now the one being used operationally by NOAA. The 

AVHRR Oceans CoastWatch51 and Pathfinder SSTS2 algorithms, for 

example, are based on the NLSST algorithm. 

Both NLSST and MCSST operational algorithms compute their 

coefficients by comparisons with selected buoy SST data. Thus they still 

represent a mix between the radiative 'skin' temperature sensed by the 

IR satellite sensor and the 'bulk' temperature measured by buoys. As a 

result the NOAA algorithms are 'tuned' to convert the satellite 'skin' SST 

observations into estimates of buoy 'bulk' SST. In this case. the selected 

50 http:/ I www. rsmas. miami. edu/ groups/ rrsl/ pathfinder/ Algorithm/ algo_index. html 
(accessed em OJ. tr04). . - . . . . "' .. - ---- . " -~ . -
5I http:/ I coastwatch noaa.gov (accessed on 0 1.11. 04). 
52 http:/ I www. rsmas. miami. edu/ groups/ rrsl/ pathfinder/ Algorithm/ algo_index. html 
(accessed on 01. 11. 04 ). 
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coefficients reduce the root mean square differences between the 

satellite brightness temperatures and the coincident buoy SST values. 

On global scales, the algorithms perform with a scatter of about 0.7 oC 

and a mean bias of about ± 0.1 - 0.3 °C. However, this does not 

guarantee that the algorithms will provide a uniform performance 

everywhere; on regional scales, the error usually exceeds these limits. 

Again, the use of a global set of coefficients, which may be good for one 

geographical area or one season can give poor performance for other 

areas or other seasons. 

(ii) Alternative approaches to traditional SST retrieval algorithms 

from IR radiometers. 

As Hagan ( 1989) points out, the theoretical relation of radiative transfer 

equation with the split-window method shows that the ratio of spatial 

variation in channel 4 and channel 5 brightness temperatures, Rs4 

could be a useful parameter to reduce the errors in SST retrieval. This 

ratio has not been used in previous SST satellite measurement research 

except by Harris and Mason ( 1992) who used this ratio to modify the 

MCSST coefficients. It can be treated as an independent measurement 

because it is a spatial statistical value proportional to the ratio of the 

atmospheric transmittance in the two channels. It only requires the 

brightness temperatures as single-pixel measurements which represent 

the initial surface radiance as well as atmospheric absorption. 

Under this concept an SST retrieval method was developed by Yu and 

Barton (1994) with a similar form to the linear (MCSST) and non-linear 

(CPSST) algorithms, but where the coefficients are not obtained by 

regression with in situ data. Yu and Barton ( 1994) claimed that the 

method has the main advantage of saving a large amount of manpower 

and material resources of collecting in situ data. In addition, they 

showed that this method could give better measurements than the 

MCSST products. However,o they---pointed ~out that-further development 
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is required before a fully operational system uses this approach to 

retrieve SST in areas lacking a match-up database. 

A second approach is the use of a split-window algorithm having 

coefficients that are optimised for the Mediterranean region. The 

optimised algorithm, such as that derived from the CMS Lannion data 

set53 (Coll et al., 1994), can be used to derive regional-specific SST. 

A third approach is to perform regression analysis between IR channels 

centered at 11 and 12 )lm and the atmospheric profiles generated by a 

radiative transfer model. The coefficient of the SST algorithm can then 

be determined synthetically. An alternative approach can be taken by 

using, instead of a model, the differential absorption of the two split­

window channels 4 and 5 due to water vapour (Mathew et al., 2001). In 

this case, the corresponding difference in brightness temperature will 

give a signature of the atmospheric water vapour profile. With the 

availability of calibrated temperature brightness from channels 4 and 5 

and collocated SST estimation, the coefficients can be derived 

empirically at the pixel level. This approach therefore offers the 

advantage of deriving more accurate regression models based on 

regional-specific atmospheric profiles. 

(iii) Other factors to be considered during SST retrieval. 

Of particular concern to the AVHRR-user community are the radiative 

effects of high levels of tropospheric turbidity as would happen when 

Saharan dust cloud is in residence over the north tropical Atlantic and 

central Mediterranean (e.g. Rao, 1992). Dust clouds originating from 

Sahara desert are a prominent feature of the climate of the desert and 

its bordering regions (fig. 3.4). The main reason for this concern is the 

error introduced in the retrieved SSTs by the absorption and emission 

of IR radiation by atmospheric aerosols (Kaufman et al., 1997); in 

addition the -enhanced aiffuse<:l' reflecfiori (jf solar radiation by aerosols 
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causes rejection of valid data during daytime by mimicking clouds in 

the cloud-screening tests used in the retrievals. 

This lowering of retrieved SST on line-of-sight aerosol optical thickness 

as small as 0.1 to 0.5 pm was confirmed by May et al. (1992). They 

based their analysis on near-simultaneous buoy measurements of SST 

and retrieval of SST and aerosol optical thickness from A VHRR 

measurements in the presence of the Saharan dust cloud. 

Figure 3.4. A common significant dust event over the central 
Mediterranean Sea (source: NOAA Operational Significant Event Imagery). 

Using model simulations, Takayama and Takashima (1986) observed 

that as their model atmosphere changed from 'clear' (surface 

meteorological range 23 km) to 'hazy' (surface meteorological range 

5km), the depression of AVHRR channel 4 radiance from the prescribed 

value was enhanced by 0.2 °C due to the increase in atmospheric 

53 The CMS-Lannion, France, data set has been collected over the North Atlantic Ocean 
and the Mediterranean Sea. 
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turbidity. Similarly, Barton et al. (1989) suggest that under 'clear' 

conditions (surface meteorological range: 23 km), maritime aerosols 

could contribute approximately 0.2 °C to the depression of channel 3 

radiance. 

To understand the impact of aerosols, information on their variation 

and the spatial distribution is required, often expressed by the optical 

thickness or mass concentration. At least information should be 

available on the presence of aerosols when infrared radiances are being 

used to derive SST. Additional information on the degree of aerosol 

absorption, scattering properties, vertical profiles, size distributions, 

and compositions can assist image processors to calibrate with more 

certainty AVHRR radiances. However, infrared radiance data during 

extreme events should be discarded and instead, alternative sensors 

that are insensitive to atmospheric aerosols should be used. 

(iv) SST measurement at microwave wavelengths. 

Data from satellite-borne microwave radiometers have become 

extremely useful and important for studying the modelling and 

forecasting skills of ocean and atmosphere models. Their capability to 

simultaneously measure ocean surface wind speed, SST, sea ice cover, 

and vertical profiles of air-temperature and atmospheric water (vapour, 

liquid and ice) makes microwave radiometers unique tools for such 

research purposes. 

The most important feature that makes microwave radiometry so 

attractive is that SST can be measured through clouds, which are 

nearly transparent at 10.7 GHz. This is a distinct advantage over the 

traditional infrared SST observations that require a cloud- and dust 

aerosol free field of view. Ocean areas with persistent cloud coverage 

can now be viewed on a daily basis. Furthermore, microwave retrievals 

ar~ -~~t- crlf~cted. by- a:er~~~~~"-incl ar(t 'insensitive to ·atmospheric· water 

vapour. However, microwave retrievals are sensitive to sea-surface 
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roughness and raindrops of diameter larger than cloud droplets, and as 

a result, SST retrievals are not reliable when rain is present. When rain 

is detected at 37 GHz, the SST retrieval is discarded. 

Retrieval of SST from the microwave radiances requires that the 

influence of atmospheric attenuation and sea surface roughness be 

removed from the observations. A physically based retrieval algorithm is 

used to remove these effects. When rain is not present, the attenuation 

is very small at 10.7 GHz, with 97% of the sea surface radiation 

reaching the top of the atmosphere. Using the higher frequency 

channels (19 to 37 GHz), the algorithm precisely estimates the 3% 

attenuation due to oxygen, water vapour and clouds. The polarisation 

ratio (horizontal versus vertical) of the measurements is used to 

estimate sea surface roughness. 

(a) The Tropical Microwave Imager (TMI). 

In November 1997, the TRMM54 spacecraft was launched. One of the 

payloads was the TMI sensor having a full suite of channels ranging 

from 10.7 GHz to 85 GHz and represents the first satellite sensor that is 

capable of accurately measuring SST through clouds. The capability of 

measuring SST through clouds has long been a goal of microwave 

radiometery. A global SST product unaffected by clouds and aerosols 

would be of great benefit to both the scientific and commercial 

communities. 

TRMM has yielded significant scientific research data over the last 

seven years to users around the globe, offering a global dataset 

consisting of SST, surface wind speeds derived using two different 

radiometer channels, atmospheric water vapour, liquid cloud water and 

precipitation rates. TRMM data has aided NOAA, other government 

agencies, and other users in their operational work of monitoring and 

predicting rainfall and storms;~as~wellas in storm research. In spite of 
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its original 3-year lifetime, NASA has recently announced that it will 

extend its operations until at least 2010. 

The design of TMI is based on the highly successful SSM/I, which 

measures the intensity of radiation at five separate frequencies 10.7, 

19.4, 21.3, 37 and 85.5 GHz. The frequencies are similar to those of the 

SSM/I, except that TMI has the additional 10.7 GHz channel that is 

able to penetrate non-raining clouds with little attenuation, giving a 

clear view of the sea surface under all weather conditions except rain. 

At this frequency, atmospheric aerosols have no effect, making it 

possible to produce a very reliable SST time series for climate studies. 

The other main improvement of TMI over SSM/I is its ground resolution 

as a result of its lower orbiting altitude of 350 km compared to 860 km 

of the SSM/I. TMI has a 780 km-wide swath on the surface. The higher 

resolution of TMI, as well as the additional information supplied by the 

precipitation radar further helped the development of algorithms. 

The empirical retrieval algorithms are derived from a high-quality data 

set that collocates the satellite brightness temperatures with buoy­

and/ or radiosonde-measured geophysical variables in time and space. 

The physically based algorithms use a large amount of such empirical 

data for parameterisations (Wentz, 1997) in order to represent a wide 

range of global meteorological events. High wind speed events have been 

fairly rare in most match-up data sets because wind speeds of gale force 

(> 17 m s- 1) or greater at a given time cover no more that 5% of the 

global ocean surface. 

Gentemann et al. (2004) showed that the accuracy of SST data derived 

by the TMI sensor has a bias of -0.07 oc and standard deviation of 

0.57 °C when compared to in situ buoys. Because the brightness 

temperature may be influenced as much by temperature effects on the 

emissivity as by the variation of black body radiation with temperature, 

the ;;;iati~n~hip between ·ssT-cina bffghtness--temperature,is non;;.linear, 

54 TRMM is a joint programme between NASA and the National Space Development 
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and frequency-dependent. For surface roughness and atmospheric 

effects to be removed, sophisticated algorithms are essential for 

accurate retrieval of SST. 

Previous microwave radiometers were either too poorly calibrated or 

operated at too high of a frequency to provide a reliable estimate of SST. 

In spite of its coarse resolution compared to IR-derived SST, the results 

for the TMI SST retrievals are quite impressive and have led to improved 

analyses in a number of important scientific areas, including ocean 

modelling. In fact, its original three-year long mission has been 

extended by an indefinite number of years until is expected to hit the 

minimum fuel threshold for controlled re-entry. This extension is based 

on the popularity of the TRMM sensors with weather forecasters. A 

major step forward was made in 2002 with the launch of the AQUA55 

satellite (sibling of TERRA) on 4 May 2002. An Advanced Microwave 

Scanning Radiometer (AMSR), having an additional 6.9 GHz channel 

that will enhance SST retrieval, was launched on board the AQUA 

satellite. In 2005, the Conical Microwave Imager Sounder will be a 

primary sensor flying on the National Polar Orbiting Environmental 

Satellite System. Built on the success of the SSM/I and TMI satellites, 

this sounder shall be able to measure the global SST field to an 

accuracy of about 0.2°C at a spatia-temporal resolution of 50 km in 

3 days (Wentz et al., 2000). 

Thanks to the recent suite of orbiting passive microwave sensors, the 

availability of a continuous provision of global SST data can be 

instrumental to test the following research challenges: 

1. provision of initial surface boundary conditions for local area 

atmosphere and ocean models. 

2. nudging of dynamic ocean model fields towards SST fields prior to 

ocean forecasting. 

Agency of Japan (NASDA). http:/ /trmm.gsfc.nasa.gov/ (accessed on 01.11.04). 
55 http:/ I aqua. nasa.gov/ (accessed on 0 1.11. 04). 

93 



3. derivation of air-sea fluxes from bulk formulae in combination with 

other basic variables that are simultaneously derived using the same 

sensor (including 10 m wind speed and humidity profiles). 

3.5.5. Remote sensing to fine-tune and verify ocean forecasting 

systems. 

The design and fine-tuning of physical numerical packages for the 

accurate prediction of air-sea fluxes 1s crucial for the reliability of 

ocean forecasting system. Although these parameterised processes 

occur at small scales, they depend on, and in turn affect, the larger 

scale fields and processes that are explicitly resolved by a numerical 

model. The details of the parameterisations have a profound effect on 

the model forecast, especially at longer time scales, and are therefore 

the subject of very intense ongoing research. 

Studies addressing the forecasting quality of air-sea fluxes by numerical 

weather prediction models (Dekic et al., 1997) as well as the impact 

which model resolution has on the resulting forecast quality (Mesinger 

2002, personal communication) are scarce. Not all NWP models are 

optimised to produce fluxes and the achieved space/time resolution is 

not optimal because their parameterisation formulae used are not 

adequate. Operational NWP groups very often focus on forecast 

performance that is related to atmospheric fields, and operational 

changes in physical parameterisations are often made to improve 

observable atmospheric fields of importance to weather forecasters. 

Their effect on the surface fluxes is not always as carefully assessed, 

partly because of a lack of confidence in independent estimates of the 

surface fluxes. At NCEP, for example, a change in the operational 

analysis/forecast system, while beneficial in many respects, can lead to 

a lack of lower boundary forecasting skill in certain areas (Siefridt et al., 

1999). Complaints from meteo-marine forecasters then usually lead to 

adjushnents' in the parahietefisation'·scheines of sertsible and latent 

heat. 
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A maJor hurdle in the fine-tuning and verification of small-scale 

forecasts is the lack of high frequency spatia-temporal sampling at up 

to 4 times a day. Operational meteorological satellites can now offer 

high-resolution and accurate real time data. With a swath width of 

about 1400 km, orbiting microwave sensors are providing almost global, 

high resolution coverage on a daily basis of geophysical parameters 

notably, ocean surface wind speed, ice features, cloud liquid water, 

integrated water vapour, precipitation over land and water, snow cover 

and sea surface temperature. A single scatterometer of the ERS-AMI 

design for example, provides over 90% coverage of the ocean within 

96 hrs and with high enough resolution to detect mesoscale variability 

of the wind (Zecchetto and Cappa, 200 1). A single scatterometer of the 

NSCAT design provides coverage over 90% of the ocean within 48 hrs. 

The newer SeaWinds design provides over 90% coverage within 24 hrs. 

Ocean surface wind speed data are having the most direct use in 

marine weather analysis and weather forecasting. Wind magnitude data 

derived by the tropical microwave imager are very accurate56 with an 

RMS difference between the sensor and in situ buoys of 0.84 m s-1. 

This availability of global ocean data will allow objective fine-tuning and 

validation of numeric parameterisation schemes. Ocean surface wind 

speed data, for example, is suitable to fine-tune the model prediction of 

air-sea fluxes as well as to generate air-sea fluxes using bulk 

parameterisation. Fine-tuning of other schemes is also possible, such 

as the cumulus parameterisation schemes contained in the latest 

generations of numerical atmosphere models (Gemmill and 

Krasnopolsky, 1998) and to improve storm track and hurricane 

prediction (Brown et al., 2002). 

No studies to fine-tune the prediction of air-sea fluxes generated by the 

Eta atmosphere model have been yet been undertaken by operational 

forecastlng centres iri'tne 'iVIediterranean. 

56 http:/ /www.ssmi.com/tmi/tmi_validation.html#wind (accessed on 01.11.04). 
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3.5.6. Improving model diagnostic verification for ocean 

forecasting. 

Standard verification methods for spatial forecasts can only provide 

limited information about the quality of these forecasts, especially for 

the case of fine-scale models and forecasts. New object- or field-based 

approaches show promise for providing information that is more useful 

to the ocean forecasting community. 

The recent rapid growth in geographic information science has created 

new opportunities to use geometric concepts to explore the performance 

of ocean forecasting systems. The use of spatial representation in ocean 

forecasting by looking for new ways to enlarge its scope and potential is 

challenging. Such diagnostic procedures are able to detect temporal 

errors that may originate from "out-of-phase" initial model boundary 

conditions and model numerics. These errors can be easily confounded 

with other errors, especially systematic ones, when standard 

verification procedures are instead used. On the other hand, diagnostic 

verification is able to characterise such errors from a spatial 

perspective. So far, diagnostic verification has been poorly applied for 

the improvement of ocean forecasting systems. 

Spatial exploratory data considerations such as ( 1) the degree of spatial 

relation or similarity between forecasts and observations (Holt and 

Benwell, 1997) at different scales (Savitsky and Anselin, 1997); (2) 

analysis of error propagation techniques (Hunter et al., 1999) and 

related reliable estimates that can guide forecasters; (3) detection of 

patterns in spatial data and understanding of underlying processes 

(Longley and Batty, 1996), and (4) spatio-temporal correlation for 

multidimensional data (Varma, 1999), are new and exciting challenges 

to diagnose ocean forecasting systems. Further development of these 

approaches snoUld be pursued (Brbwh''ef'al:; 2002).-
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Ocean forecasting generates demands that can justify the use of 

exploratory spatial data analysis with standard commercial 

applications. Diagnostic verification tools for ocean forecasting that take 

into account spatial data analysis could include: 

• the development of spatial similarity indices and texture recognition 

techniques to better analyse the relationship between forecasted and 

collocated observations, 

• improved spatial visualisation and correlative method for oceanic 

surface features, and, 

• improved analysis of spatia-temporal relations as produced by ocean 

forecasting systems. 

3.6. Summary. 

The goal of operational ocean forecasting is to provide prediction of the 

physical sea-state and other related components for a certain time 

period. The benefits of having continuous forecasting of ocean 

variability at unprecedented space-time resolution are numerous. 

In spite of opening up a whole new array of mathematical approaches to 

find a "solution" to complex geophysical fields, numerical models still 

limit their output to either grid points or spectral basis. Another 

limitation is the impact of imprecise information that defines the initial 

conditions of numerical models. This chapter showed how very often, 

existing numerical ocean models use climatological data to 

mechanically force and nudge their numerical fields to produce daily 

forecasts. A serious drawback here is that climatological data does not 

contain any daily variability. 

An important research challenge highlighted by this chapter was the 

much -needed progress . in. the ~'field ·"'of' riu)Ciel' > l.nit:iruisation Using 

accurate, real-time observations. The primary constraint includes a 
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number of technological problems connected with the scarcity of 

oceanic observations as well as to computational and numerical 

limitations. Remote sensing is depicted as being a primary contributor 

to data assimilation and initialisation of atmosphere and ocean models, 

with particular reference to research in the Mediterranean. Research 

gaps exist on the potential use of microwave-derived SST both as a 

source of initial conditions and to dynamically adjust the fields of small­

scale, high-resolution ocean and atmosphere models. 

This chapter discussed the research work related to the forcing of ocean 

models by forecasted atmospheric constituents, which gives them the 

ability to enhance the overall forecasting skill over a short time scale. 

The evolution of the oceanic variability depends on air-sea fluxes and 

thus, short- to medium-range ocean forecasting tends to greatly benefit 

by the provision of accurate fluxes that define the model's surface 

boundary conditions. Apart from providing valuable initial information, 

high quality air-sea fluxes together with basic meteorological variables 

can also be used to assess the model's forecasting skill. 

The basic set of air-sea fluxes as well as other surface variables 

required for operational ocean forecasting were described in some 

detail. Air-sea fluxes can be measured in situ or from bulk 

parameterisation formulae using basic air-sea state variables. Another, 

much used source is from climatological datasets. This chapter 

described the pros and cons of acquiring air-sea flux data by direct 

observation and through parameterisation. In the latter case, the 

acquisition of accurate basic variables is mandatory where the main 

sources for operational57 sea-state basic variables include in situ 

measurements from buoys and ships, from remote sensing and from 

numerical weather prediction. Emphasis was made on the role of 

remote sensing and numerical weather prediction m providing 

instantaneous and forecasted geophysical variables respectively. The 

57 Instantaneous collection for data assimilation, initialisation and model verification. 
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advantages and disadvantages of the three acquisition techniques were 

discussed. 

Unlike bulk formulae, with constant transfer coefficients, numerical 

weather prediction models are able to include the effects of stability and 

interfacial conditions, which in addition to their high vertical resolution, 

make them excellent sources for air-sea flux datasets. Research shows 

that the Eta atmosphere model is a good example of a modern 

numerical atmosphere model that is able to simulate and predict 

weather phenomena even at mesoscale and microscale level. It is well 

tested and tuned at varying resolutions and integration domain sizes 

over most of the globe, including the Mediterranean. The chapter gives 

an appraisal of its major schemes, pointing out that very few studies 

have yet addressed the accuracy of its simulated air-sea fluxes, and the 

need therefore, to pursue such a line of research. 

The technical approaches in operational forecasting were also presented 

in view of their relevance to the present study. The technical 

implications and advantages of coupling together atmosphere and 

ocean models were discussed, and the drawbacks when using 

climatological datasets to force ocean models. Research also shows how 

model coupling can also cater for local-area, high-resolution forecasts 

by using a model nesting concept. 

Studies show that the spatia-temporal resolution of the variability of 

oceanic features dictates an appropriate model resolution for their 

simulation. There have been few studies, however, on the influence of 

ocean model resolution on the accuracy of predicted fields. This chapter 

identified a major limitation to fully use small-scale ocean models due 

to the lack of high spatia-temporal observations needed to verify model 

predictions. 

This chapter highlighted ,cthe- importance of diagnostic verification in 

order to assess the quality of forecasted data and stresses the 
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importance of objective evaluation. It shows how model verification tools 

have evolved to provide an objective measure of model skill. Currently, 

statistical measures and graphical tools used in model verification are 

simple and do not make use of GIS display and analysis. This chapter 

stressed the advantages of using exploratory spatial data analysis to 

assess the temporal and spatial accuracy of model forecasting systems. 

This included techniques such as the analysis of spatial similarity 

between forecasted and collocated observations and related 

geostatistics. Based on the current research, this chapter suggested 

ways to improve diagnostic verification for ocean forecasting and 

identifies an increasing need for more analysis that is exploratory, 

coupled with the use of Earth observation data. New research 

challenges to use descriptive and spatial exploratory analysis were 

identified. Such research has the potential to generate new analytical 

methods embedded in commercial applications. This review listed down 

potentially novel verification tools for ocean forecasting that are based 

on spatial data analysis, some of which will be used in subsequent 

chapters of this thesis. 

The current technical challenges in the field of ocean forecasting in the 

Mediterranean were also mentioned, with an emphasis on major 

technological and information gaps. This chapter described the current 

state of ocean forecasting in the Mediterranean, with particular 

reference to the type of operational forecasting systems used in the 

region. Results were presented defining the requirements identified by 

the ocean forecasting community and end-users of forecasted products. 

Finally, this chapter showed how remote sensing can be an extremely 

useful tool to fine-tune the numerical prediction of air-sea fluxes. 

Studies that verify the skill of the Eta model to forecast air-sea fluxes 

are scarce if non-existent. This chapter provided a review of the 

strength and weakness of using high resolution SST derived from 

infr'areo sensors to verify ocea.if forecasts: Alternative' data calibration 

approaches to retrieve SST from AVHRR were discussed, with the scope 
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of using them to calibrate scenes from geographical areas that lack 

operational, in situ data against which infrared radiances are regressed 

and calibrated. 
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Chapter 4 

COMPILATION OF A DATABASE TO VALIDATE 

THE OCEAN FORECASTING SYSTEM. 

4.1. Construction of a high-resolution database. 

Thanks to the rapid development of information-processing technology, 

numerical modelling of the ocean and atmosphere is becoming more 

powerful and sophisticated, and can now simulate phenomena from the 

micro to the planetary scales. At the same time, such numerical 

modelling requires a comprehensive set of collocated data that is 

required for its validation. 

Remote sensing is especially suited to derive such datasets. While in 

situ measurements are limited to data at one or a few points in time, 

remote sensing allows the collection of information of extensive vertical 

and horizontal domains without disturbing the medium being observed. 

On the negative side, remote sensing techniques cannot always provide 

precise measurements of the desired meteorological and oceanic 

variables. This is the case with some important hydro-meteorological 

data, and this limitation is still preventing the use of remote sensing in 

this area of research. This inability is made up for using other 

alternatives, such as the use of numerical models and bulk 

parameterisation to fuse data coming from different sources and derive 

unknown derivatives. 

4.2. Required geophysical elements. 

The objectives set by the present' study require a set of collocated, 

independent observations to complement the task of validating the high 
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spatia-temporal resolution forecasts. This database must provide 

suitable temporal and geographical information of the oceanic and 

atmospheric variability against which the models' accuracy can be 

assessed objectively. 

Due to the fact that no instantaneous, high-resolution arr-sea fluxes 

over the Ionian basin are available for this study, this database has to 

contain enough information as to generate additional products, 

including air-sea fluxes. By inserting basic geophysical fields such as 

highly resolved collocated wind magnitude and sea surface temperature 

into bulk formulae, instantaneous air-sea fluxes can be derived and 

used to assess the skill of the ocean forecasting system. 

Since the objective verification of the present forecasting system lies on 

the accuracy of this database, it also becomes pertinent to test the 

accuracy of the derived database. Independent collocated datasets can 

be derived from climatological datasets and used for this purpose. 

The required geophysical elements for this database61 are the following: 

(i) Sea surface temperature. 

High spatia-temporal sea surface temperature data are a key variable 

needed for the present study to parameterise turbulent heat fluxes as 

well as to validate the high-resolution SST forecasts produced by the 

ocean model. 

For this work, optical- and microwave-derived SST data will be used 

separately and jointly, each source with its own strengths and 

weaknesses. Whereas high resolution infrared-derived SST is highly 

valuable to validate high-resolution SST forecasts, it poses extensive 

calibration requirements. The lack of collocated in situ SST over the 

area of iritetest implies thaCalferiiative-aigorithms need to be adopted 

61 Table 2.1 lists the use of these geophysical elements for this research study. 
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and used in this study. Microwave-derived SST is provided in calibrated 

form by data dissemination centers. However, it can never reach the 

same spatial scale as infrared-derived SST. 

Monthly climatological SST is used to assess the accuracy of the 

remotely sensed counterpart and to identify anomalies during the study 

period. 

(ii} Oceanic winds. 

Apart from validating forecasted oceanic winds, this geophysical field is 

required to estimate turbulent air-sea fluxes. Wind speed fields can be 

acquired instantaneously from orbiting passive microwave sensors and 

are provided in calibrated form by data dissemination centers. 

(iii} Surface air temperature. 

This parameter is required to calculate the turbulent heat fluxes using 

bulk parameterisation formulae and to validate the skill of the 

atmosphere model to forecast this geophysical field. 

As described in section 3.2.2.2., the acquisition of instantaneous rur 

temperature poses technical problems. This study will continue on the 

work conducted by Schulz et al. (1997) by refining it to reflect the real 

climatology of the geographical area under study. 

(iv} Humidity profiles. 

Parameters such as precipitation rates, the vertically integrated 

humidity values of cloud liquid water and precipitable water vapour 

provide useful information on the presence of air masses that are 

closely related to synoptic scale features62. These profiles are used to 

62 Liquid water, for example, resides in clouds and is directly related to regions of 
precipitation and to active weather systems such as precipitation, storms and fronts 
(McMurdie & Katsaros, 1996). A large amount of liquid water is generally associated 
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validate collocated convective processes forecasted by the atmosphere 

model and to understand the climatology of the area of interest. 

The availability of high-resolution, spatio-temporal humidity profiles 

also assists in the interpretation of other data residing in the database, 

including microwave-derived data, and the differential absorption and 

calibration of infrared radiances of the sea surface in the 10 ~-tm to 

12.5 ~-tm of the electromagnetic spectrum. 

(v) Outgoing longwave radiation. 

This parameter 1s required to assess the accuracy of the radiation 

package of the atmosphere model. This scheme is computationally­

expensive and is important in the determination of the radiative heat 

fluxes. 

Section 3.2.2.2. describes the sourcing of this parameter as well as the 

strength and weakness of acquisition by remote sensing. Its derivation 

is still at the experimental stage (WCRP/GEWEX, 1996) and more work 

is needed before reliable estimates of the longwave radiation can be 

made available by orbiting satellites (WCRP/GEWEX, 1996). 

(vi) Turbulent heat fluxes. 

Collocated, high spatio-temporal resolution flux data over the area of 

interest are used to validate the same fields forecasted by the 

atmosphere model. This high-resolution flux data is estimated by 

inserting the basic met-ocean variables collected in the database from 

various sources, into bulk formulae. To ensure an objective and sound 

verification of the performance of the atmosphere model, these high-

with strong convective acti~ity rdt;~l;;~ ~~o~ds) and iurbulimt suiface weather 
conditions, whereas small amounts of liquid water are associated with near neutral or 
stable regions (such as stratiform clouds) and constant or steady surface weather 
conditions. 
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resolution flux products are, in turn, verified against an independent 

set of collocated climatological data. 

(vii) Aerosol optical thickness. 

This information is useful to assess the clarity of the atmosphere over 

the area of interest. As described in section 3.5.4., these data are used 

to validate model-related performance to forecast the radiative heat flux. 

In addition, this data are used to validate the suitability of infrared­

derived SST during episodes of high dust occurrence in the atmosphere. 

4.3. Methodology. 

4.3.1. Collection of relevant met-ocean datasets and derived 

geophysical fields. 

4.3.1.1. Instantaneous 10 m wind magnitude, SST and hydro­

meteorological fields. 

The Tropical Microwave Imager (TMI) 1s a well-calibrated sensor and 

contains suitable frequency channels for the retrieval of these fields. 

Each daily global coverage of the sea surface is organised into seven 

ascending and descending datasets as follows: 

• Time of data retrieval 

• sea surface temperature 

• 10m surface wind speed using 11 GHz 

• 10m surface wind speed using 37 GHz 

• integrated precipitable water vapour 

• cloud liquid water 

• precipitation rate 
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(i) Data retrieval. 

Daily TMI data covenng a full year period (January-December 1999) 

was retrieved by ftp from http:/ jwww.ssmi.com. TMI data is provided as 

binary data and cover a global region extending from 40°S to 40°N. 

Each daily data file consisted of fourteen 0.25° x 0.25° grid (1440, 320) 

byte maps. 

(ii) Data decoding, processing and formatting. 

Two fortran codes were written to decode, process and format the TMI 

data. The first was the tmi2monthly.f script63 which read, processed and 

re-formatted the binary daily TMI into Grid Analysis and Display 

System (GrADS)-format monthly set of sequential daily ascending and 

descending data. 

Since precipitation induces error in the retrieval of the geophysical 

parameters by the TMI sensor (Gentemann et al., 2004), rain pixels 

were used to mask off same-area pixels from the other collocated 

ascending and descending geophysical field maps. Since valid 

geophysical data lay between 0 and 250, pixels were scaled according to 

the calibration information supplied with the data as to obtain 

meaningful geophysical fields. 

GrADS-formatted TMI monthly datasets using TMI2monthly.f were 

visualised to note orbit time and the integrity of the fields over the area 

corresponding to the high-resolution domain of the ocean forecasting 

system. This enabled the assignment and temporal collocation of the 

various remotely-sensed fields to similar field elements that were 

predicted by the models. 

All fields were arranged into gridded ascii XYZ format. Following the 

generation oft.M~?'''mon'"cent.gaarfileslwliere mon is the month), a set of 

63 Appendix I; Section I.l. 1. 
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gridded ascii XYZ files were produced for all geophysical parameters 

retrieved from ascending and descending orbits. 

4.3.1.2. Instantaneous very high-resolution SST fields. 

This section refers to the calibration of raw AVHRR data in the absence 

of collocated in situ SST data. In this study, a restricted choice of 

calibration algorithms were considered and evaluated in view of the 

constraints presented during this study as described in section 3.5.4. 

For this reason, a database was required consisting of high-resolution, 

uncalibrated infrared radiances and a collocated SST map. The NOAA 

CoastWatch database presents an ideal medium that provides (1) 'raw' 

1.1 krn AVHRR temperature brightness data from channels 3, 4 and 5 

data and (2) collocated NLSST pixels. This database was extensively 

used to compare and derive an optimal calibration algorithm to be 

applied over the central Mediterranean. 

Figure 4.1 shows a general experimental scheme to assess the 

suitability of potential algorithms. Acquisition of suitable data is 

described below. The data consists of infrared radiances from AVHRR 

channels 3, 4 and 5 together with SST maps derived using the non­

linear SST calibration algorithm. The suitability of calibration 

algorithms shown in figure 4 .1. is assessed using the final correlation 

between the calibrated results and the NLSST maps. 

4.3.1.2.1. Data acquisition and archiving. 

The following data was acquired and archived: 
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SST derived from 
passive microwave 

sensor 

Absorbing aerosols detected by 

Proceed if no aerosols 

.------l NOAA COASTWATCH 
cloud free data 

NLSST sector data 
AVHRR radiances from 

sector data 

Suitability of calibration algorithm 

Figure 4.1. Experimental scheme to derive a suitable SST calibration 
algorithm based on CoastWatch data. 

(i) Absorbing aerosols over the Atlantic Ocean. 

Daily data acquired by the Total Ozone Mapping Spectrometer (TOMS) 

satellite was retrieved by ftp64 . The daily maps showed the absorbing 

aerosols over the Atlantic Ocean, which included the south and east 

coast of the United States (inset in fig. 4 .3). Days having traces of 

absorbing aerosols were noted. 

64 http./ I coastwatch noaa. go vi (accessed on 0 1.11. 04). 

109 



(ii) The CoastWatch database. 

Coast Watch data covering a period of two years ( 1998-1999) were 

retrieved from the NOAA CoastWatch Active Access System65 for the 

South East Coast Node in the United States. This region has been 

selected in view of the full availability of data, including in situ buoy 

data (NODC) and GOES datasets. 

The area of interest extends from (32°N, 73°W) to (37°N, 79°W). The 

oceanic area was subdivided into sectors to facilitate data handling and 

processing (fig. 4.2). 

The CoastWatch database provides NLSST and MCSST products, in 

addition to raw AVHRR data. According to the technical documentation 

provided by NESDIS66, the split-window algorithms used by CoastWatch 

are as follows: 

where T 4 and Ts are the A VHRR 11 pm and 12 pm channel 

temperatures in Kelvin; Secq is the secant of the satellite zenith angle q; 

NLSST and MCSST are the non-linear and linear multi-channel SST 

respectively, in degrees Celsius; a1-a4 and b1-b4 are constant 

coefficients. 

65 http:/ /coastwatch.noaa.gov/cwJorm._cwfhtml (accessed on 01.11.04). 
66 http:/ I coastwatch. noaa. go vi poes_sst_algorithms. html (accessed on 0 1.11. 04). 
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Figure 4.2 showing the South East Coast as one of the nodes of 
CoastWatch. The area was subdivided into sectors for the purpose of the 
present investigation. 

Figure 4.3 shows an example of the extraction of AVHRR- and related 

data (NLSST and collocated infrared radiances) from a sector that is free 

from aerosols and clouds. 

During the entire two-year period, a total of 286 sectors were found 

suitable (table 4.1), for which the above data was extracted and 

archived. 
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Earth Probe TOMS 
Absorbing Aerosols for CLAIRE 

August 23, 1998 

Aeorosol 
index 

satellite 
sensor 
channel 
pass_ date 
start_tlme 
pass_type 
projection 
et_amne 

rows 
cols 
origin 

NOAA-14 
AVHRR 
4 
1998/08/23 
07:31 :52 UTC 
night 
mercator 
1469.953191 0 0 -1469.953191 
-8853528.07 4419089.906 
512 
512 
USDOCINOAA/NESDIS CoastWatch 

Figure 4.3. The northwestern coast of the US and its segmentation. 
Selection of valid channel 4 and 5 brightness temperatures (1.1 by 1.1 km 
pixel resolution) from individual sectors depended on the absence of 
clouds (using channel 1 CoastWatch data) and absorbing aerosols as 
detected by TOMS data. 
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SECTOR 
Image 

Date m A' B' C' A B C D E F G H I J K L M N 0 P Q R S T 
1998 

Feb_18 908 

Feb_18 910 e}~· 
...... l ~ ~ i 

Feb_18 922 

Feb_19 008 

Feb_19 012 

Feb_20 123 

Feb_20 207 

Feb_20 211 

Feb_20 222 

Feb_21 207 

Feb_21 211 

Feb_21 222 

Feb_25 608 

Feb_25 611 

Mar_14 307 

Mar_15 408 

Apr_13 308 

May_16 607 

Jun_03 407 

Aug__23 507 

Sep_OS 808 

Nov_28 208 

1999 

Jan_19 1908 _, -~"- i., ·-. -~ 

Mar_17 600 ; __ ;~~ 

Mar_17 607 !~-': ~ ~~'~ 
i/ 
-. 1 -~ 1 ~- -,, ~-::_.': ·- '-- ~ . ' 

-. <-ct ~ .-:_u. __,. .. --

Mar_23 208 

Mar_29 808 

Mar_30 900 

Apr_14 400 

Nov_07 100 

Nov_07 108 

Table 4.1. Cloud- and aerosol-free, valid geographical sectors (shaded in 
gray) from the South East coast area of the US. Visible and IR data from 
these sectors were retrieved during 1998 and 1999. 
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4.3.1.2.2. Assessing the applicability of the Yu & Barton (1994) SST 

calibration algorithm. 

The mathematical formalism for this algorithm has been developed by 

Yu and Barton (1994), hereinafter referred to as YB94. The SST retrieval 

algorithm is equivalent to: 

(4.1) 

where Ti is channel 4 brightness temperature, 1j is channel 5 brightness 

temperature and 

c 
y=--­

Ct-RyCJ 
(4.2) 

The coefficient y is a temperature dependent variable. The ratio of the 

spatial variation of the brightness temperature in one channel to that in 

another channel, Rij, is proportional to the ratio of their respective 

atmospheric transmittance. This ratio is used to determine the 

theoretical coefficient. In order to minimise these effects, a statistical 

method was used to determine the ratio as suggested by YB94. The 

general approach was as follows: 

(4.3) 

where n*n is the matrix number and S is [ ~ ~IT 4(n)- T41 ~ 2D ]. D is the 

dispersion of each valid pixel value of the 11 pm image from the mean 

radiance value of the entire sector, and N is the number of valid pixels. 

This selection ~nsures that the ratio does not include those cases where 
. -- -- . - - - "'""- ~ .. , -· - -- --~ - .. - ':;,.' __ :. ---- -· :7·. --~- , -'. 7"" -

T4(n)- T4 is close to zero. 
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Coastwatch data with extension *.lc3, *.lc4, *.lc5 and *.ls7 was retrieved 

and archived according to date. The software DECCON Version 1.0 

(DECompression and CONversion of NESDIS CoastWatch Imagery Files) 

was provided by CoastWatch67 and downloaded. The software was 

installed and used to decompress, navigate, convert and correct the 

above file extensions to the following configuration: 

• Raw binary. 

• Degrees Celsius. 

• 0 to 31.7 range for channels 3, 4 and 5. 

• 0 to 31.7 range for NLSST. 

• Image overlay. 

• 255 background colours. 

• Graphics embedded. 

Using ERMAPPER image processing software (version 5.5), the 

uncompressed binary data from each full scene as per ID was imported 

into 4 layers consisting of superimposed channel data and NLSST and 

saved as a multi-layer * .ers file. The entire geographical area was then 

displayed and data from each 1° by 1 o sectors were extracted according 

to the annotated map shown in figure 4.2. Land pixels were masked 

using a formula that was applicable to all 4 layers by assigning a null 

value to the range of land pixel values measured. Individual channel 

layers and the NLSST layer of sectors with no cloud cover were then 

saved as individual * .ers files into separate folders with a 7 4 by 91 pixel 

matrix. 

Cloud- and aerosol-free same-sector layers (table 4.1) were exported as 

ascii BIL files and imported into statistics software where every sectored 

1 o by 1 o data (AVHRR temperature brightness information and NLSST) 

was re-scaled, using coefficients published by CoastWatch, as follows: 

6 7 http:/ I coastwatchnoaa.gov/ cw_software.html (accessed on 0 1.11. 04). 
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If ith TBj is null then null 

else 

TBj(iJ = (0.124 + 273.16) 

NLSST = NLSSTc *0.124 

where TBj is the brightness temperature from channels 3, 4 and 5, and 

NLSSTc is the values of NLSST included in the raw CoastWatch 

datasets. 

Following re-scaling, pixels that failed through a simple ratio test, a 

gross cloud check, night-time medium/high level cloud test, and a 

fog/low stratus test as described by Kriebel (1996) were nulled. Next, 

the difference between the individual brightness temperature pixels of 

channels 4 and 5 and the mean value derived for that entire sector 

[Ti(n)- T i] was calculated. The dispersion was calculated for the total 

sectoral data for channels 4 and 5. The differences between valid ith TB4 

and TBs, TB4 and NLSST were calculated and the sectoral average 

noted. 

Each sector dataset was further filtered by assigning null values to 

individual brightness temperature pixels from channels 4 and 5 

showing greater than the given dispersion range. The number of valid 

and nulled pixels were noted. The ratio of individual channel 5 [Ti(n)- T i] 

to channel 4 [Ti(n)- T i] pixel values was calculated and noted. 

The values C4 and Cs were then calculated according to the following 

relation (e.g. in the case of NOAA-14): 

C4= (1.438833*929.3323/(TB4(iJ * TB4!iJ))* 

(lixf>( i. 438833 *929: 332'3/ -fs~(iJ) I 
(EXP(l.438833*929.3323/ TB4(iJ)-1))-(2/ TB4(iJ)) 
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Cs= (1.438833*835.1647 I (TB4(i) * TBs(iJ)}* 

(EXP(l.438833*835.1647 I TBs(iJ)I 

(EXP(l.438833*835.1647 I TBs(iJ)-1))-(21 TBs(iJ)) 

The averages for C4 and Cs for each sector were noted. The value for y 

was calculated for each individual ith pixel according to: 

If ith variance is null then null 

else 

y = C4(iJ/ (C4(il- ratio * Cs(iJ) 

The average sectoral y was also noted. The final SST was then derived 

using the following relation: 

If TB4(il is null then null 

else 

SST=(-10.6 + 11.27 *ratio) + TBs(il + ( y * (TB4!il -TBs(iJ)-

273.16) 

where the first term in brackets expresses one of the split-window terms 

as formulated by YB94. The average, minimum, maximum, standard 

deviation and skewness of the range of SST derived from each sector 

were calculated and noted. The difference between the ith NLSST and 

the theoretically derived ith SST was also calculated and the sectoral 

average was calculated to note accuracy. 

The following relationships were investigated: 

1. derivation of SST using YB94 vs NLSST. 

2. derivation of SST and NLSST vs the difference between these two 

values. 
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3. Statistical relationship between derived Rs4 ratios and y values, 

with NLSST. 

To test the validity of this regional algorithm, valid gridded XYZ ascii 

brightness temperature data collected as described in section 4.3.1.2.5. 

were converted to StatGraphics format and calibrated using the SST 

equation above. sea were calibrated. Valid gridded XYZ ascii brightness 

temperature data collected from suitable AVHRR scenes over the central 

Mediterranean were calibrated as described in section 4.3.1.2.5. using 

the YB94 algorithm. The resulting SST was then statistically compared 

with collocated TMI-derived SST scenes using basic statistical 

measures. 

4.3.1.2.3. Derivation of multiple regression models based on the 

split window method. 

The technique developed here is based on the relationship between the 

ratio of the variations of the satellite brightness temperatures derived 

from AVHRR channels 4 and 5. 

From section 4.3.1.2.2., a look-up-table was produced giving the mean 

difference between [TB4-TBs], the slope [~TB4/ ~TBs], the NLSST and the 

total number of AVHRR pixels analysed. 

Since the range of mean values for [TB4-TBs] and the slope [~TB4/ ~TBs] 

contain information about the instantaneous atmospheric water vapour 

profiles, data rows having the same slope values were grouped together 

and archived. From such groups, a list of multiple regression models 

were produced using StatGraphics Plus Version 3.0, each tagged to a 

specific value of [TB4-TBs] and the corresponding [~TB4/ ~TBs]. 

To test the applicability of this approach over the central Mediterranean 

region, valid grl.dded xvz· ascil.- brightness terriperahire da.fa were 

converted to StatGraphics format and calibrated using equation 4.4 
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above. Suitable channel 4 and 5 brightness temperatures were derived 

as described in section 4.3.1.2.2. analysed, and their profile in terms of 

[TB4-TBs] and [~TB4/ ~TBs] was extracted. According to the resulting 

profile extracted from the data acquired in section 4.3.1.2.5., the 

relevant SST multiple regression model was selected. These data were 

statistically compared with collocated TMI-derived SST scenes using 

basic statistical measures. 

4.3.1.2.4. Use of the Coli et aL (1994) "regional" split-window 

algorithm. 

The applicability of the linear mid-latitude algorithm derived by Coll 

et al. (1994) using the French CMS-Lannion dataset was assessed. This 

dataset is composed of 348 points partly collected over the 

Mediterranean Sea (Antoine et al., 1992). The optimised split-window 

algorithm for this data is: 

SST= TB4 + 2.13*(TB4-TBs) + 0.18 (4.4) 

To test the validity of this regional algorithm, valid gridded XYZ ascii 

brightness temperature data collected as described in section 4.3.1.2.5. 

were converted to StatGraphics format and calibrated using equation 

4.4 above. The resulting SST was then statistically compared with 

collocated TMI-derived SST scenes using basic statistical measures. 

4.3.1.2.5. Calibration of high-resolution, infrared radiances 

acquired over the ocean model domain. 

Local Area Coverage (LAC) 1. 1 krn A VHRR imagery for the period July 

20th 1999 to August 7th 1999 containing 16-bit channels 3, 4 and 5 

radiance data were retrieved from NOAA's Satellite Active Archive 

(SAA)68 and archived. Raw (uncalibrated) infrared radiances from 

68 http:/ /www.saa.noaa.gov (accessed on 01.11.04). 
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swaths covering the spatial domain of the ocean forecasting system: 

(15.78°E, 33.18°N) to (19.18°E, 35.74°N) were extracted and archived. 

ERDAS Imagine V8.4 Professional was used to import, calibrate and 

process individual data. By using the Import/Export option 

(Type: NOAA AVHRR) files were imported from the archive using the 

following rectification settings: 

• Panoramic Distortion Correction applied. 

• Write Transform to Image. 

and radiometric and scan angle69 settings: 

• Radiometric Calibration applied. 

• Sun Angle Correction applied70. 

The Import options were the following: 

• Output data compression: none. 

• Unsigned 16-bit; Block Size: 64. 

• Select Layers: 1-3. 

• Creation of Pyramid Layers enabled. 

The entire archive was imported and checked. Scenes showing extensive 

contamination by cloud and dust were discarded (table 4.2). 

The rectangle properties of the area of interest (AOI) were defined using 

the Viewer option and saved as domain.aoi. The full AVHRR scene was 

resampled to within the AOI boundaries to derive a new output 

69 Radiometric corrections allowed calibration constants and sun angle data present in 
the A VHRR data to be applied to the data. The constants (slope and intercept) and sun 
angle data convert the raw pixel values to energy measured by the sensor in units of 
milliU}atts per square meter per steradian per centimeter i71. Bands 3, 4, and 5, and 
.fiiither into biir/htn-ess 'temJferaiuFe~- -,, -~·-·'·----- ~ -- -· ·" ~ · - ·- · · ··· - · · 
70 This allows a basic correction (1 I cosine( {sun angle} ) ) to be applied to the pixel 
values. 
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consisted of separate channel 3, 4 and 5 brightness temperature data 

having an unsigned 16-bit format. Data was instead exported in Surfer 

binary grid (* .grd), imported using ERMapper VS.S and exported in 

gridded XYZ ascii. 

Using the above three algorithms (i.e. YB94, multiple regression models, 

and Coll94), infrared radiances of the sea surface were calibrated and 

their accuracy assessed. The final 1.1 km by 1 .1 km SST maps were 

used to validate the SST forecasts produced by the ocean model. 
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Image Sat/ Orbit no. Date Time (UTI Data Inteuitv over domain 
N14 /NSS.LHRR.NJD99201.S 1415.E1427.B234 LAC/23466 Jul20 1999 13:15:55 no contamination 
N14/NSS.LHRR.NJD99202.S1404.E1415.B234 LAC/23480 Jul21 1999 13:04:29 no contamination 
N14/NSS.LHRR.NJD99203.S1353.E1404.B234 LAC/23494 Jul22 1999 12:53:00 no contamination; presence of dust 

aerosols over Gulf of Gabbes moving 
eastwards 

N14/NSS.LHRR.NJD99204.S1352.E1352.B235 LAC/23508 Jul23 1999 12:41:33 no contamination; presence of dust 
aerosols 

N 14 /NSS.LHRR.NJD99205.S 1330.E1341.B235 LAC/23522 Jul24 1999 12:30:10 presence of dust aerosols and cloud 
coverage 

N 14 /NSS.LHRR.NJD99206.S 1318.E 1330.8235 LAC/23536 Jul25 1999 12:18:40 presence of extensive dust aerosols and 
cloud coverage 

N14/NSS.LHRR.NJD99207.S1307.E1318.B235 LAC/23550 Jul26 1999 12:07:25 presence of dust aerosols and cloud 
coverage 

N14/NSS.LHRR.NJD99208.S1255.E1307.B235 LAC/23564 Jul27 1999 11:55:58 presence of dust aerosols and extensive 
cloud coverage 

N14/NSS.LHRR.NJD99209.S1244.E1255.B235 LAC/23578 Jul28 1999 11:42:22 presence of extensive cloud coverage 
N 14 /NSS.LHRR.NJD99210.S 1455.E1426.B235 LAC/23593 Jul29 1999 13:15:11 presence of extensive cloud coverage 
N14 /NSS.LHRR.NJD99211.S 1403.E1414.B236 LAC/23607 Jul30 1999 13:03:29 presence dust aerosols and clouds 
N14/NSS.LHRR.NJD99212.S1352.E1403.B236 LAC/23621 Jul31 1999 12:52:09 presence of cloud coverage 

N14 /NSS.LHRR.NJD99213.S 1340.E1352.B236 LAC/23635 Aug 01 1999 12:40:35 presence of dust aerosols and cloud 
coverage 

N14 /NSS.LHRR.NJD99214.S 1329.E1340.B236 LAC/23649 Aug 02 1999 12:29:07 presence of dust aerosols and extensive 
cloud coverage 

N14 /NSS.LHRR.NJD99216.S 1306.E1317.B236 LAC/23677 Aug 04 1999 12:06:16 presence of cloud coverage 
N14 /NSS.LHRR.NJD99217.S 1254.E1306.B236 LAC/23691 Aug OS 1999 12:54:53 presence of extensive cloud coverage 
N14 /NSS.LHRR.NJD99218.S 1243.E1254.B237 LAC/23705 Aug 06 1999 11:43:31 extensive cloud coverage; partial satellite 

coverage over area of interest 
N14 /NSS.LHRR.NJD99219.S 1229.E1236.B237 LAC/23719 Aug 07 1999 11:29:04 no satellite coverage over area of interest 

Table 4.2. Details of individual A VHRR LAC scenes, including data integrity, collected over the central 
Mediterranean during the period 20 July - 7 August 1999. Source: Satellite Active Archive - NESDIS. 
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4.3.1.3. Outgoing longwave radiation. 

Monthly values of total, day and night outgoing longwave radiation over 

the area of interest were retrieved by ftp from the SAA archive. The 

source of this 1999 climatological data is from the NOAA Pathfinder 

Programme. The resolution of each pixel within the subset is equivalent 

to 1 o by 1 o latitude - longitude. From this data the monthly mean 

outgoing longwave radiation was derived. 

4.3.1.4. Aerosol optical thickness. 

Monthly datasets consisting of aerosol optical thickness covering a ten­

year period between 1990 and 2000 were downloaded from the SAA 

archive in ascii format. This dataset consisted of physical information 

derived from the Pathfinder dataset. Datasets relevant to the area of 

interest with a nominal grid resolution of 2.5° by 2.5° latitude-longitude, 

were downloaded and archived. From this data, a ten-year average 

monthly aerosol optical thickness was derived over the area of interest. 

4.3.1.5. Climatological fields. 

Monthly climatological fields over the Mediterranean region were derived 

from two sources: 

(a) Naval European Meteorology and Oceanography Centre (NEMOC) in 

Rota, Spain71 

The original source for this data is the Comprehensive Ocean and 

Atmosphere Data Set (COADS). The data has been smoothed into 

sparse regions for continuity using a bicubic interpolation method. 

71 https:/ I www. nemoc. navy. mil/ data/ unclass/ static/ climo/ med/ (accessed on 
01.11.04). 
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Air and sea surface temperature were extracted from the original data 

and gee-rectified using ERMapper. The exact geographical area 

corresponding to the area of interest was specified and monthly air- and 

sea surface temperature sets were gee-linked, and individually saved in 

*.ers format. Using the look-up-table provided, pixels within the subset 

were converted into Kelvin. 

Calibrated raster files of air and sea surface temperature were then 

overlaid to derive the monthly mean difference. The final map was 

converted into ascii BIL format for subsequent statistical analysis. 

(b) Southampton Oceanography Centre (SOC) Ocean - Atmosphere 

Heat, Momentum and Freshwater Flux Atlas. 

The Southampton Oceanography Centre (SOC) Ocean - Atmosphere 

Heat, Momentum and Freshwater Flux Atlas was used to derive relevant 

datasets of marine meteorological reports spanning the period 1980 -

1993. 

This Atlas72, comprising of air-sea fluxes and meteorological data was 

extracted in ascii form. Monthly values of SST, surface air temperature, 

latent and sensible heat fluxes were extracted in ascii format with 9 

fields to a line. Each line has flux estimates for a 1 o by 1 o cell centered 

on the longitude, latitude values specified in the first two columns; land 

is indicated by -999. The grid runs from (84.5°S, 179.5°W) to (84.5°N, 

179.5° E) so there are 61 ,200 cells in total. The fields used are longitude, 

latitude, wind speed (m s-1), 10 m air temperature (0 C), 10 m stability 

dependent specific humidity (g kg-1), sea surface temperature (0 C), and 

relative humidity. These were extracted separately from the original file 

format in ascii xyz and imported into ERMapper. The values falling 

within the area of interest (15.78°E, 33.18°N) to (19.18°E, 35.74°N) were 

extracted, gridded, contoured mapped and summary statistics were 

72 http:/ I www.soc.soton. ac. uk/ JRD/ MET/ jluxclimatology. html (accessed on 0 1.11. 04). 
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calculated to note the maximum, m1mmum, mean and standard 

deviation of each respective field for every season. 

4.3.1.6. Derivation of instantaneous turbulent heat fluxes. 

The bulk aerodynamic method with stability dependent bulk transfer 

coefficients as described by Liu et al. ( 1979) was used to generate 

instantaneous air-sea fluxes. The basic parameters required were a1r 

temperature, SST and 10 m wind magnitude. The SST and wind speed 

were obtained from instantaneous, collocated retrievals from the TMI 

sensor. 

(a) Semi-instantaneous air temperature. 

The monthly average sea - air temperature difference over the area of 

interest was calculated as follows, which is a modification of the method 

used by Schulz et al. ( 1997), in order to obtain a more realistic estimate 

(see section 3.2.2.2.): 

TmFF = (T sCOADS - T aCOADS] (4.5) 

where TmFF is the monthly difference between the average SST and air 

temperature values derived from COADS data over the area of 

interest73 . By including the monthly term from the remotely-sensed 

SST, a semi-instantaneous air temperature was obtained accordingly: 

Ta = [TsTMI- TmFF] (4.6) 

(b) Sensible heat flux. 

Using the bulk parameterisation, the sensible heat flux is estimated 

with transfer coefficients that relate the· nux to variables measured, i.e. 

73 derived in section 4.3.1.5. 
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(4.7) 

where QH is the sensible heat flux; CHis the Stanton number (=0.00125 

as provided by Liu et al. ( 1979) for moderate wind speed, slightly 

unstable conditions); Ts is the SST in K; TA is the air temperature in K 

(calculated using equation 4.8); p is the density of air (=1.2256 kg m-3); 

Cp is the specific heat of water at constant pressure (= 1010 J kg-1 K-1); 

and Ua is the 10 m wind speed in m s-1. 

(c ) Latent heat flux. 

The bulk formula that parameterises the flux mainly as a function of 

near-surface wind speed, air humidity and sea surface temperature was 

used to derive the latent heat flux as follows: 

(4.8) 

where QE is the latent heat flux; CE is the Dalton number; qs and qa are 

the specific humidity at ocean surface at Z height above sea water; p is 

the density of air (=1.2256 kg m-3); Ua is the 10 m wind speed in m s-1 

and L is the latent heat of vaporisation of water. CE is the Dalton 

number equivalent to 0.00125 (Liu et al., 1979). 

Gill ( 1982) defines L by the equation 

L(TA) = 2.5008 X 106- 2.3 X 103 TA 

qs is the saturation specific humidity at Ts 

0.622e * (T5 ) 

qs = P
5

- 0.378e * (T
5

) 

(4.9) 

(4.10) 

126 



qA is specific humidity at TA 

0.622re * (TA) 

qa = Pz - 0.378e * (TA) 
(4.11) 

e*(TA) is the vapour pressure (mb) of the air at a height of 10m and Pz is 

the pressure at z height. e*(TA) is obtained from the specification of TA 

and relative humidity, r (Brutsaert, 1982). Oberhuber (1988) used 

e*(T x) = 6.11 x 10 (Tx-273.16)/(Tx-35.86)*7.5 (4.12) 

for saturation vapour pressure, where Tx is the air surface temperature. 

The value of relative humidity is equal to the ratio: 

(4.13) 

where eA and es are the actual vapour pressure and saturation vapour 

pressure at sea surface respectively. 

According to Smith et al. (1991), eA is calculated from the equation 

e - 1---
( 

TK J p 
A- TKV 0.378 

(4.14) 

where TK is the absolute temperature (=273.16 + TA) and TKv is the 

virtual temperature74. For average conditions (i.e. eA in the range of 

1-5 kPa and P between 80-100 kPa), TKv can be approximated as 

(4.15) 

74 The virtual temperature is the temperature of dry air that would have the same 
density and pressure as the moist air. 
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The atmospheric pressure P at elevation z (kPa) can be calculated 

according to Burman et al. ( 1987) as 

p = 101.J293- 0.0065z)
5

.
26 

l_ 293 
(4.16) 

assuming that Po= 101.3 kPa at zo = 0, and TKo = 293 K forT= 20 °C. 

The saturation vapour pressure was calculated as a function of 

temperature using a variation of the integrated form of the Clausius­

Clapeyron equation (see AWIPS technical documentation75). An 

additional linear term is added to this value in order to give a better fit 

to the measured relationship of saturation vapour pressure and 

temperature in the Smithsonian Meteorological Tables. The equation for 

calculating saturation vapour pressure is: 

e 5 = exp( 26.66082-0.009138T-
610~396 ) (4.17) 

where Tis the temperature. The saturation vapour pressure formula is 

accurate to one part in a thousand over the range from -25 oc to 35 °C. 

4.3.2. Accuracy of the derived database. 

A multi-sample comparison analysis was performed to statistically 

compare the derived database with independent data derived from the 

Southampton Oceanography Centre (SOC) Ocean - Atmosphere Heat, 

Momentum and Freshwater Flux Atlas. 

75 http:/ I www. meted. ucar. edu/ awips/ validate/ dewpnt. htm (accessed on 0 1.11. 04). 
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Summary statistics were calculated by comparing the average 1999 

monthly values of the two databases. Statistics included data count, 

average, standard deviation, mean difference and mean error. 

4.3.3. The database format. 

The data was arranged into two main groups as shown in table 4.3. The 

first set of data consists of instantaneous fields that are co-temporal 

with the models' predicted fields. Validation of single forecast days for 

verification rested on the time of acquisition of the instantaneous 

variables/ derived products over the area of interest. 

The second set of data consisted of monthly climatological means of the 

relevant geophysical fields. 

Group 1 
Instantaneous, high-resolution fields collocated with individual 

model forecast fields 
Precipitation rate 

Absorbing aerosols 
10 m wind magnitude 

Sea surface temperature 
Cloud liquid water vapour 

Integrated precipitable water vapour 
Turbulent heat fluxes (latent & sensible heat) 

Group 2 
Climatological, coarse, monthly means over the area of interest 

Aerosol optical thickness 
Outgoing long wave radiation 

Air temperature, Sea Surface Temperature 

Table 4.3. The two groups of datasets that constituted the current 
database. 
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4.4. Results and discussion. 

4.4.1. The quality of the database. 

A systematic monthly companson was done on the instantaneous 

acquired/ derived fields against the global SOC climatology data (fig. 4.4) 

to quantify the accuracy of the database76. It is important to note that 

the SOC atlas covers only monthly average fluxes at a horizontal 

resolution of 1 o by 1°, against the 0.25° by 0.25° resolution of the 

acquired instantaneous parameters (10 m wind magnitude, SST, 

surface air temperature, total precipitable water vapour and cloud 

liquid water). 

Figure 4.4. Global distribution of latent heat flux during the month of April 
(mean: 10. 77 W m-2; standard deviation: 5. 54 W m-2; Source: SOC Ocean­
Atmosphere Heat, Momentum and Freshwater Flux Atlas). 

The SOC climatology was developed by the Hadley Centre (UK 

Meteorological Office) and detailed information about the accuracy of 

this dataset is provided by Josey et al. (1999). Josey (2001) and Josey 

et al. (2002) verified the SOC wind stress and surface heat flux 

76 Full statistical data are shown in Appendix V. 
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climatology against NCEP/NCAR, ECMWF, UWM/COADS, moored 

buoys and against the Hellerman and Rosenstein datasets, concluding 

that it is a valuable wind climatology dataset that can be used in 

contemporary hydrographic and modelling studies. 

Figures 4.5 and 4.6 are examples of rasterised monthly datasets derived 

from the SOC and the instantaneous database over the area of interest. 

The most noticeable feature is the higher mesoscale definition of the 

basic variables and estimated air-sea fluxes, since these are based on 

the TMI sensor's resolution of 0.25° compared with a 1.0° resolution of 

the climatological database. However, both sets of data show broad 

spatial similarities. 
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SOC Ocean-Atmosphere 
Heat, Momentum and 
Freshwater Flux Atlas 

Sea surface temperature (DC) 

Surface air temperature (DC) 

10m wind magnitude (m s-1) 

Sensible heat flux (W m-2) 

Database of 
instantaneous basic fields 

and fluxes 

Sea surface temperature (DC) 

Surface air temperature (DC) 

1 0 m wind magnitude (m s·1) 

Sensible heat flux (W m·2) 

Figure 4. 5. Example of monthly averages derived from the SOC 
Atlas (left) and constructed database (right) during the month of 
November 1999. Data covers the area ofinterest (15. 78°E, 33.18°N) 
to (19.18°N, 35. 74°N). Temporal range of monthly mean of the 
acquired, instantaneous fields: 12-23 UT. 
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SOC Ocean-Atmosphere 
Heat, Momentum and 
Freshwater Flux Atlas 

Sea surface temperature (0 C} 

Surface air temperature (0 C} 

10m wind magnitude (m s-1) 

Sensible heat flux (W m-2) 

Database of 
instantaneous basic fields 

and fluxes 

Sea surface temperature (0 C} 

Surface air temperature (0 C) 

1 0 m wind magnitude (m s-1) 

Sensible heat flux (W m-2) 

Figure 4. 6. Example of monthly averages derived from the SOC 
Atlas (left) and constructed database (right) during the month of 
January 1999. Data covers the area of interest (15. 78°E, 33.18°N) 
to (19.18°C, 35. 74°N). Temporal range of monthly mean of the 
acquired, instantaneous fields: 03-09 UT. 
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4.4.1.1. Surface wind magnitude. 

The average monthly 10 m wind magnitude derived by remote sensing 

is in good agreement with the average SOC climatology data (figs . 4 .7 

and 4 .8) over the Ionian basin, with a mean bias of 1.2 m s-1 (fig. 4.9) . 

The monthly trend for the remotely sensed fields concurs with the 

description provided by Castellari et al. (1998) , with a wind field 

maximum in winter due to strong mistral winds (December - February). 
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Figure 4. 7. Average 10 m wind magnitude (m s-1) over the area of interest 
for 1999. The monthly data derived from SOC data shows a generally 
higher magnitude than the data acquired by the tropical microwave 
imager. 

The smaller fluctuation of the SOC climatology data is attributed to its 

larger database, smoothed out by data collected over a 13-year period. 

On the other hand, the TMI data reflects the monthly trend for data 

collected only during 1999, and each monthly value is based on a 

varying number of observation dates depending on the availability of 

satellite overpass. 

The monthly average and standard deviation of the remotely-sensed 

wind magnitude during the study period is shown in figure 4 .8 . It 

shows a normal annual trend, with minima during the month of August 
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and max1ma during December. The variability of basin average wind 

speed amplitudes is larger in winter than in summer due to strong 

northerly Mistral component, as has been observed by Castellari et al., 

1998, and this gives rise to increased variability of the field over the 

Ionian basin. 
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Figure 4.8. Annual trend of the mean and standard deviation of the 
remotely sensed wind magnitude (m s-1) acquired during 1999 over the 
area of interest. 

A close inspection of figure 4.9 shows a constant bias of around 

1.5 m s-1 against COADS data during the first 6 months (January to 

June), which then decreases during the remaining 6 months (July to 

December). The increased magnitude of the remotely sensed wind data 

during the latter half of the year may indicate an irregular trend that 

occurred in the region during 1999 as compared to the monthly average 

10-year climatology. This trend will be eventually reflected in the 

estimated set of instantaneous sensible and latent heat fluxes, since 

their estimation is directly proportional to the wind speed retrieved by 

the TMI sensor. 

As far as the published global accuracy of the TMI-derived wind data is 

concerned, the published RMS is 0.84 m s-1 when the retrievals were 

135 



3 

:Iii 2.5 
1-
' 2 (,) 

0 
1.5 en -co 1 

g 
0.5 

Cll 
u 
c 0 Cll ... 
Cll 

-0.5 ~ 
"C 
c -1 
"' Cll 
:Iii -1.5 

-2 
Jan Feb Mar ~r May Jun July Aug Sept Oct Nov Dec 

Month 

Figure 4. 9. Average mean difference between SOC- and TMI-wind 
magnitude (m s-1) derived during 1999 over the area of interest. A 
decreasing bias is noticeable during the high wind speed months. 

compared with around 20,000 collocated buoys globally during the 

period 1998-200077 . Meissner et al. (200 1) noted that within the 

northern latitudinal band (30°N to 80°N), the high wind speeds 

exhibited during winter lead to strong biases in the calibration 

procedure. This is close to the tendency of the bias between the TMI­

retrieved and the SOC wind speeds seen during November- December. 

Due to their accuracy and high resolution, the use of remotely-sensed 

wind data to calculate the instantaneous turbulent heat fluxes presents 

a better alternative than when using global modelled data. Castellari 

et al. ( 1998) observed that global modelled data very often drift from 

climatological datasets (such as the Hellerman and Rosenstein datasets) 

and May ( 1986) climatological data sets) resulting in an over-estimation 

of the dominant westerly component of the wind stress over the 

Mediterranean basin. 

77 http:/ I www. ssmi. com/ tmi/ tmi_validation. html#wind (accessed on 0 1.11 . 04). 
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4.4.1.2. Air-sea temperature difference. 

The monthly average air-sea temperature difference over the area of 

interest is shown in figure 4.10. The mean annual value is -0.61 oc 
with a standard deviation of 0.82 °C, a minimum of -1.6 oc during 

winter and a maximum of 0.8 °C during summer. 

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

Month 

Figure 4.1 0. Annual trend of the azr-sea temperature difference (in °C} 

during 1999 over the area of interest. 

The monthly values of surface air surface derived from COADS and SOC 

climatology are very similar (fig. 4.11), with the COADS data showing a 

slightly higher average temperature profile than the SOC and semi­

instantaneous measurements. The profile derived using the semi­

instantaneous approach described in section 4.3.1.6. shows a close 

agreement to both climatological profiles. It has an annual mean air 

temperature of 20.8 oc and a standard deviation of± 5.0 °C. The annual 

average difference between this and the two climatological datasets (i.e. 

SOC and COADS) is + 1.7 oc and + 0.9 °C, respectively. This makes it 

closer to the COADS multi-annual climatological dataset. 

137 



30 

25 
6 
0 

-20 
I!? 
:I -I! 15 
G) 
Q, 

E 
10 G) .. ... 

I'll 

5 

0 
Jan 

--+-SOC climatology 
- CO ADS climatology 
_..__ semi-instant. data 

Feb Mar Apr May Jun July Aug Sept Oct Nov Dec 

monthly mean 

Figure 4.11. Domain average trend of surface air surface temperature 
( 0 C}. The quasi-instantaneous data shows a close agreement with the 
two} multi-annual climatological profiles. 

The measurement of air temperature from remote sensing continues to 

be problematic and more research is required (GEWEX, 1999). The 

approach used by this study to the calculation of air surface 

temperature (section 4.3.1.6.) represents a viable alternative that is 

more sophisticated than that followed by Schluessel et al. ( 1995) and 

Schulz et al. ( 1997). These investigators derived the annual profile of the 

air temperature over the sea by subtracting the SST with a constant 

surface air temperature value throughout the year. Castellari et al. 

(1998) slightly improved this treatment by further defining this 

relationship and giving two distinct values for winter and summer. 

A limitation in the present derivation of the air temperature is that no 

correction is given for the diurnal variation, which may lead to surface 

temperature that may range by 1.2 °C (Webster et al. } 1996). Table 4.4 

shows the monthly average time of the TRMM satellite overpass in 1999 

during which instantaneous geophysical fields were collected and 

archived. Some anomalies can arise when these fields are averaged out 
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on a monthly basis since this step lacks data normalisation to account 

for diurnal variation. This can contribute to the monthly variability 

shown by the semi-instantaneous air-temperature data. 

Month Average time of satellite 
overpass (UT) 

Jan 04.00 
Feb 22.50 
Mar 22.75 
Apr 24.00 
May 19.80 
Jun 10.90 
Jul 02.00 
Aug 18.75 
Sep 21.90 
Oct 04.00 
Nov 17.36 
Dec 22.50 

Table 4.4. The average time of TRMM satellite overpass during 1999 
during which instantaneous geophysical fields were collected and 
archived. 

4.4.1.3. Sea surface temperature. 

Results show a good agreement between the annual trends of the 

remotely sensed (mean: 21.3 °C; standard deviation: ± 4.6 °C) and 

climatological data (mean: 20.2 °C; standard deviation: ± 4.1 °C) as 

shown in figure 4.12. The mean overall difference from SOC data is 

1.1 °C (fig. 4.13). 
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Figure 4.12. Annual trends of the SST data (in °C} from the two data 
sources for 1999 over the area of interest. 
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Figure 4.13. Annual trend of the monthly difference (in °C} between the 
two datasets (SSTsoc minus SSTrMI) during 1999. 

This observed bias is partly attributed to the fact that unlike SOC data, 

the remotely-sensed SST is a skin-SST, measured within a thin water 

layer (~500 pm) at the air-sea interface where conductive and diffusive 

heat transfer processes dominate. A strong temperature grad ient is 

characteristically maintained in this thin layer sustained by the 

magnitude and direction of the ocean-atmosphere heat flux . Concerning 
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the accuracy of TMI-derived SST, data companson made during 

December 1997 to June 1999 with over 9000 TMI to TAO/NDBC buoy 

collocations showed an averaged difference of around 0.15 °C78. The 

causes for this error include the accuracy of satellite retrievals, the 

spatia-temporal mismatch between the buoy point observation and the 

satellite footprint, and the difference between the ocean skin 

temperature and the bulk temperature measured at the buoys at 1 to 

1.5 m depth. 

4.4.1.4. Ocean surface heat flux. 

As mentioned in section 3.2.2., the use of bulk formulae presents a 

good alternative to the sparse distribution of direct flux measurements. 

This approximation can be calculated using basic variables that can be 

collected in situ or by remote sensing. Since there is no in situ data 

available over the Ionian basin during the study period, and since 

climatological data only provide coarse monthly averages, this study 

utilised instantaneous fields acquired by the orbiting microwave sensor 

over the area of interest to estimate the instantaneous air-sea fluxes. 

The estimated sensible heat flux database is in good agreement with the 

average SOC climatology data derived over the Ionian basin. Both 

datasets exhibit the same temporal trend with the least flux transfer 

from the air to the sea occurring during the warm months. Strong 

winds and greater air-sea temperature difference drive a larger negative 

flux during the colder months as shown in figure 4.14. The monthly 

mean variability of the calculated dataset is shown in figure 4.15. 

78 http:/ I www. ssmi. com/ tmi/ tmi_ validation. html# sst 
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Figure 4.14. Comparison between the monthly means of the estimated 
heat flux data and SOC climatology (in W m-2) over the area ofinterest. 

The Mediterranean Sea is characterised by a sensible heat flux that 

shows a strong inter-annual variability with maxima during January 

and December, attributed to strong Mistral and lowest air temperature 

in the same period (Castellari et al., 1998). Minimal downward flux for 

the entire Mediterranean basin occur around July and is related to the 

maximum in air temperature. The results from this study show an 

annual average value for the calculated sensible heat flux of 

-5.9 ± 8 .5 W m -2 compared to an annual average value of 

-6.2 ± 5.9 W m -2 given by the SOC data over the same area of interest. 

The mean annual difference is - 0 .3 W m -2, which is considered to be a 

very good estimate against the climatology data (fig. 4.16). The 

constantly low variability during the summer months is particularly 

striking (fig. 4 .15). 
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Figure 4.15. Annual trend of the parameterised, monthly mean sensible 
heat flux (W m-2) over the area of interest. 
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Figure 4.16. Annual average difference between SOC data and the 
parameterised dataset (W m·2) over the area of interest. 
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The pattern of the latent heat flux is primarily determined by a 

combination of the wind speed and the humidity difference between the 

air and the sea. The comparison between the estimated monthly flux 

data and the SOC Atlas is shown in figure 4.17. The two datasets follow 

the same annual trend, with the SOC data showing a generally stronger 

loss except from April till June. The strongest losses, in the order of 

-125 W m-2, occur during the colder months, when the difference 

between the two interfaces becomes prominent. Over the entire period, 

the monthly variability of the calculated heat flux follows that shown by 

the annual trend of the wind speed as retrieved by TMI sensor. This is 

because the bulk parameterisation of the latent heat flux strongly 

depends on the input of the wind speed into the bulk formula. The 

overall trend of the calculated dataset is more or less constant (fig. 4.18) 

with the highest values observed during November and December as in 

the case of the sensible heat flux. 
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Figure 4.17. Comparison of the monthly average latent heat flux (W m·2) 

between the estimated dataset and SOC climatology over the area of 
interest. 

Looking at figure 4.19, the bias [LHsoc minus LHEsTIMATED] is maximum 

during October by around -55 W m -2. The annual mean difference is 

-18.8 W m-2. Interestingly, studies carried out by Castellari et al. (1998) 
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show that the latent heat flux reaches a maximum in January (with a 

value of around -280 W m-2) and a minimum in August (around 

-22 W m-2). An annual average of around -124 W m-2 is observed for 

the whole Mediterranean. The estimated latent heat flux shows a 

similar highest minima during August of around -40 W m-2 and a 

maxima in December of around -110 W m-2. The discrepancy from both 

the observed interannual Mediterranean-wide climatology and SOC data 

can be attributed to some local, climatic anomalies that occurred during 

the latter part of the study period (1999), such as deviations in the 10 

m wind magnitude from normal climatology. This variation (see section 

4.4.1.1.) is able to trigger a larger rate of evaporation flux from the sea 

into the atmosphere. This can explain the positive trend of the latent 

heat flux during the latter half of the year when compared to the 

averaged climatology over the same area. 
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Figure 4.18. Average monthly variability of the calculated latent heat flux 
(W m-2) during 1999 over the area of interest. 
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Figure 4.19. Average mean difference of the latent heat flux between the 
SOC data and the estimated database (W m-2) during 1999 over the area 
of interest. 

The turbulent and radiative heat fluxes constitute together the total 

exchange of heat flux at the sea surface. The exchange of heat and 

moisture across the air-sea interface, particularly that driven by the 

latent heat flux, is able to exert a strong influence on the atmospheric 

and oceanic circulation. 

The estimation of the instantaneous turbulent heat flux database using 

remotely-sensed data derived from passive microwave sensor enabled 

an all-weather parameterisation of the turbulent heat fluxes except for 

pixels contaminated by precipitation. Moreover, errors due to sensor 

variability and co-temporality were removed because the variables used 

were all derived from the same sensor retrieved at the same time with 

the exception of the air surface temperature. This method presents a 

much better approach to derive a high-resolution, instantaneous heat 

flux fields at four times more than the resolution of other databases, 

such as the Hamburg Ocean Atmosphere Parameters and Fluxes from 

Satellite Data (HOAPS) database79. 

79 http:/ I www. hoaps.zmaw. del (accessed on 0 1.11. 04). 
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Similar approaches to estimate the turbulent heat fluxes using basic 

fields derived from remote sensing were also used by a number of 

investigators. Schulz et al. ( 1997) measured latent heat flux at the air­

sea interface using weekly AVHRR-derived SST and SSM/1-derived near 

surface wind speed. The boundary layer water vapour content was 

retrieved from SSM/I measurements with an accuracy of 0.06 g cm-2 

from which the near-surface humidity was derived. Their method 

revealed a standard error of approximately 30 W m-2 in comparison with 

scarce data from merchant ships. However, problems are inherent in 

this method because of the use of AVHRR MCSST, since this SST 

source is inaccurate in the presence of atmospheric aerosols and clouds 

(Reynolds, 1993). ATSR 2 - derived SST has also been used by 

Xue et al. ( 1997) to derive sensible heat flux using bulk formulae. 

The method used in this study uses sub-skin SST (at around 500 pm 

depth at the water side of the air-sea interface where conductive and 

diffusive heat transfer processes dominate) temperature layer where 

molecular and viscous heat transfer processes begin to dominate 

(Donlon et al., 2002). The use of this sub-skin SST therefore ensures a 

better derivation of the turbulent heat fluxes than other remotely­

sensed SST that is calibrated against bulk SST (i.e. buoy data). 

Therefore, the present comparison with climatological atlases may be 

prone to have differences since these atlases have been derived using 

partly, the bulk-SST as one of the variables m the bulk 

parameterisation (GEWEX, 1999). 

The lengthy approach used in this study to determine the near surface 

air humidity stems from the lack of remotely-sensed humidity data at 

the sea surface. To remedy this information gap, Liu and Niiler (1984) 

and Liu ( 1986, 1988) used the atmospheric water vapour column 

content or the total precipitable water vapour as an approximation for 

monthly mean values of surface humidity. However, Taylor ( 1982) 

expresses his doubts on the use of the total precipitable water as a good 

predictor for the surface humidity stating that the correlation between 
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the two is not high enough. This is contested by Schulz et al. ( 1993) 

who have observed a good linear fit of 0.98 between the two parameters. 

Following this research path, Schluessel et al. ( 1995) have slightly 

improved this indirect method and managed to reduce the systematic 

error. Jones et al. ( 1997) have defined a new sophisticated method to 

derive specific humidity and air temperature from satellite data using a 

neural network approach. 

The theoretical approach used in the present study is an alternative to 

this lack of humidity data. Thus, an approximation in the calculation of 

the latent heat flux was made for the determination of the actual vapour 

pressure at sea surface (see equation. 4.14), which requires information 

on the virtual temperature. This parameter was approximated (see 

equation 4.15) by considering average conditions. 

The air temperature over the sea surface, for which no instantaneous 

values are available from the area of interest during 1999, was 

calculated by studying the monthly climatological difference between 

the air and the sea temperature from the collocated COADS database. 

This mean monthly air-sea temperature difference was then deducted or 

added to (depending on the month) the instantaneous TMI-derived SST. 

In this manner, the inclusion of climatological, average information in 

the bulk formulae was thus minimised, and provided a semi­

instantaneous value for the air temperature. 

The values of the Stanton and Dalton numbers were the same as those 

used by Liu et al. ( 1979). They were chosen on the basis that they give 

good results for moderate wind speeds and slightly unstable conditions 

as is the case for the climatology of the Ionian basin. Little research has 

been done on the behaviour of these coefficients when wind speeds 

become stronger than 12 m s- 1 (Taylor, 2000). 
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4.4.1.5. Outgoing longwave radiation. 

The annual variation in the outgoing longwave flux over the area of 

interest is relatively small, ranging from 230 to 288 W m -2 (fig. 4.20). 

This trend reflects the balance between the air and the sea -air 

temperature difference, cloud cover and amount of water vapour. The 

average value is close to that described by Charnock (1994) for the 

zonal average at this latitude. 

The determination of longwave radiation from satellite data involves 

taking measurements at the top of the atmosphere and accounting for 

the effects of the atmosphere using a radiative transfer model. The 

obvious problem is how to account for the effects of clouds, especially 

since the surface radiative flux is dependent on the height of the lowest 

cloud, a quantity that is not easily determined by satellite. According to 

Darnell et al. (1996), the monthly mean bias for remotely sensed 

average data validated over a three-year period against collocated, in 

situ measurements 1s about 5 W m -2 with an RMS difference of 

24 W m -2 . 
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Figure 4.20. The monthly outgoing longwave radiation (W m-2) retrieved 
from NOAA A VHRR over the area of interest. 
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The derivation of the outgoing longwave radiation remains experimental 

and more work is needed before reliable estimates can be obtained from 

satellites (WCRP/GEWEX, 1996). A new, improved formula for 

determining the outgoing flux at the ocean surface at mid-high latitudes 

has recently been published by Josey et al. (2003), which was 

embedded in a stochastic atmosphere model. 

4.4.1.6. Aerosol optical thickness. 

Figure 4.21 shows the monthly variability of the aerosol optical 

thickness (AOT) over the area of interest based on a 1 0-year 

climatology. Aerosol optical thickness peaks during the months of June 

to August. Minimal values occur in December, during which a value of 

around 50 ODU is observed. The monthly spatial variability is shown in 

the raster maps (fig. 4.22 a-1). 

The monthly AOT maps, which are good indicators to quantify the dust 

aerosol radiative forcing, show that atmospheric dust aerosols are a 

prominent feature of the climate of the area of interest. This arises from 

the close proximity to the northern African coastline, making the area 

susceptible for this kind of atmospheric contamination. D'Almeida 

( 1986) states that tens of millions of tons of terrigenous mineral 

particles per year are exported from the Saharan region to nearby 

regions and are likely to modify the radiative energy pattern in the 

atmosphere (Legrand et al., 1992). Atmospheric dust has been 

described as having a screening effect, thus modifying the upward 

transfer of radiance emitted by the sea through the dust layer, when the 

sea and dust have appreciable different temperatures. 
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Figure 4.21. The average monthly variability of the Aerosol optical 
thickness (in Optical Depth Units x 1 00) over the area of interest. 

Apart from the climatological dust load information over the Ionian 

basin, this dataset is also useful to interpret the accuracy of the 

radiative heat fluxes, such as OLWR and infrared radiances of the sea 

surface as measured from the top of the atmosphere. It is well known 

that atmospheric dust particles affect the upwelling infrared radiances 

by absorption and scattering in the short-wave regime and by 

absorption and emission in the long-wave radiation regime. This 

information is required to assess the calibration of infrared scenes 

retrieved during July - August (see section 4.4.3.), which happens to 

correspond to the highest climatological AOT values over the 

geographical area (fig. 4.22 a-1). What is striking about this information 

is that this two month period is characterised by a persistent incidence 

of high aerosol content that is consistently confined over restricted 

geographical areas, such as the area under study, as seen in figs. 4.22 

f, g and h. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 4.22 a - f The 1 0-year monthly averages of the Aerosol Optical Thickness over the area of 
interest: ( 15. 78° E, 33.18° N) to ( 19.18° E, 35. 7 4° N). The data was retrieved from NOAA A VHHR and 
represent raster maps 1° by 1° latitude - longitude for the months of (a) January, (b) February, (c) 
March, (d) April, (e) May, and (f) June. Values are in Optical Depth Units (xl 00). Black pixels are due to 
land masking. 
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(g) (h) (i) 

U) (k) (I) 

Figure 4.22 g - l. The 1 0-year monthly averages of the Aerosol Optical Thickness over the area of 
interest: (15. 78° E, 33.18° N) to (19.18° E, 35. 7 4° N). The data was retrieved from NOAA A VHHR and 
represent raster maps 1 o by 1 o latitude - longitude for the months of (g) July, (h) August, (i) September, 
{j) October, (k) November and (l) December Values are in Optical Depth Units (x1 00). Black pixels are 
due to land masking. 
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4.4.2. Calibration of high resolution, infrared radiances. 

This section presents the analysis of the three algorithms that were 

studied and adapted for the central Mediterranean, where no 

operational in situ data is collected. Infrared radiance data of the sea 

surface over part of the Ionian basin were collected for a continuous, 

16-day period in view of their use to validate the accuracy of predicted 

SST by the ocean forecasting system as presented in chapter 7. 

4.4.2.1. The YB94 algorithm. 

The gamma factor provided an indication of the efficacy of the YB94 

algorithm. The gamma value having the least error obtained by Yu and 

Barton (1994) ranges from 4.75 and 4.82, with a bias of 0.01 K and 

standard deviation of 0.12 K when compared to the MCSST algorithm. 

This is in close agreement with the gamma value retrieved over the 

CoastWatch area as shown in figure 4.23. From this relation, the best 

gamma value was extracted that gave the least bias from the NLSST 

algorithm. 

These results also show that the relationship between the ratio Rs4 and 

the slope ~TB4/ ~TBs (ratio of the atmospheric transmittance), which 

constituted some of the studied parameters (see table V.7 a-i), is 

negative (fig. 4.24). The good linear relationship between the two 

parameters is reflected by a correlation coefficient of 0. 7. 

The efficiency of the YB94 algorithm is shown by the good correlation 

with the NLSST algorithm, giving a coefficient of 0.82 and strong linear 

function passing from the origin (fig. 4.25). A closer inspection of the 

relationship between the YB94-derived SST and deviation from 

collocated NLSST values (fig. 4.26) indicates that for a typical summer 

SST over the Ionian basin (in the region of 22 °C to 28 °C), the 

algorithm's performance u~derestimates ·the SST by an average of 

154 



-0.5 °C to -0.7 °C respectively (fig. 4.26). This deviation occurs when the 

gamma value ranges between 3.8 and 4.3 (fig. 4.23). 

Another useful indicator of the performance of the YB94 algorithm is 

the relationship between gamma and the water vapour profile using the 

equation derived by Ottle et al. ( 1997). This relationship shows that an 

optimal gamma value is derived when the atmospheric water vapour 

profile is around 2 g cm-2 (fig. 4.27). The inverted exponential profile 

shown in figure 4.30 indicates that a water vapour profile higher than 

2 g cm-2 can deteriorate the performance of the YB94 algorithm by 

deriving a less than optimal value for gamma. This is not so when the 

water vapour value is less than 2 g cm-2: the change in gamma value 

becomes even greater for small reductions in the atmospheric water 

vapour profile. According to these results, therefore, gamma is 

negatively correlated with the amount of atmospheric water vapour. The 

significance of this relationship becomes even more important when the 

YB94 algorithm is used in geographical regions characterised by higher 

water vapour profiles, such as the central Mediterranean. 
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Figure 4.23. Relationship between the gamma value and {SSTNLSST minus 
SSTYB94] value {denoted as'etfdr-in '6C)deniJed from AVHRR scenes over 
the CoastWatch area during 1998-1999. 
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Figure 4.24. Relationship between the Rs4 ratio versus the ratio 
!JTB4:!JTBS derived from A VHRR scenes from the Coast Watch area during 
1998-1999. 
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Figure 4.25. Relationship between the YB94-derived SST (DC) and 
collocated NLSST (DC) derived from the CoastWatch area during 1998-
1999. 
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Figure 4.26. Relationship between the YB94 derived SST in oc and 
[SSTNLSST minus SSTYB94] difference (in °C} derived from the 
CoastWatch area during 1998-1999. 
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Figure 4.27. Relationship between the gamma value and collocated 
total atmospheric water vapour profile derived from the CoastWatch 
area during 1998-1999. 
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The CoastWatch area was used to test the validity of the YB94 

algorithm before applying this calibration procedure for the 

Mediterranean region. 

Figures 4.28a and 4.28b show examples of brightness temperature data 

derived from AVHRR channels 4 and 5 respectively on 23rd August 1998 

over sector E (fig. 4.3). The key features noted between the YB94-

retrieved SST data (fig. c) and the NLSST map (fig. d) are (1) the similar 

statistical results of the area of interest, showing an overall differences 

as low as 0.2 °C, and (2) the similar final spatial distribution of the 

thermal signature. 

The results presented in table V.7 a-1 support the use of the YB94 

algorithm. This conclusion rests on the assumption that the collocated 

NLSST is accurate and reliable enough to serve as a substitute to in situ 

match-up data. The use of the NLSST source is supported by the 

studies of Li et al. (2001) who observed a maximum error of 0.14 °C 

against in situ dataBo for the NLSST algorithm. 

The use of an in situ match-up data instead of NLSST would have 

presented a number of technical problems. These include (1) lack of 

operational buoys in open seas; (2) inherent biases related to in situ 

measurement81 (3) the different scale of satellite ( 1.1 km) against buoy 

measurement (point data). 

80 The satellite sensor SST and buoy SST pairs were matched-up only if they were 
coincident within 25 km and 4 hours. 
81 Section 3. 5.4. 
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(c ) (d) 

Figures 4.28 a - d. Brightness temperature data (in Kelvin) derived from 
(a) channel 4 and (b) channel 5 on 2Jrd August 1998 over sector E (see 
fig. 4.3: 77°W-76°~· 34°N-35°N). The YB94-retrieved SST raster data (c) 
shows similar SST scale (in °C) and pattern as the NLSST map (d). 
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4.4.2.2. Linear regression modelling using the split-window 

technique. 

The split-window technique has proved to be the most useful 

atmospheric correction method for SST derived by infrared sensors 

(Arbelo et al., 2000). This technique uses two different channels within 

the 10.5 - 12.5 pm window, which are affected by different absorption 

due to the wavelength dependence at water vapour continuum 

(McMillin, 1975). 

To overcome the limitations mentioned in section 3.5.4., this study 

attempted to derive a range of split-window coefficients each reflecting 

particular vertical atmospheric water vapour profiles as defined by the 

slope [TB4/TBs], ranging from 1.01 to 0.86. 

The equations presented in tables 4.7a-b are models derived from the 

multiple regression between NLSST, TB4, and the difference between 

TB4 and TBs. The dependent variable (NLSST) is linearly correlated to 

the independent ones (TB4 and TB4-TBs) throughout the analysis, with 

strong R2 and mostly similar partial regression coefficients for each of 

the independent variables over the entire range of slope [~TB4/ ~TBs] 

values. In his review on SST algorithms retrieved by infrared sensors, 

Barton ( 1995) referred to the same split window formalism where the 

partial regression coefficient related to TB4 is close to unity. As is the 

case in table 4. 7 a-b, this value of coefficient implies that at the lowest 

order, the sea surface temperature equals the measured brightness 

temperature. The other coefficient related to the differential absorption 

between channels 4 and 5 (or the slope [~TB4/ ~TBs]) is equivalent to the 

transmittance through the atmosphere from the surface to the satellite 

and is dependent on both the mass absorption coefficient of the 

atmospheric absorbers and the path length (Barton, 1995). The 

dependence of this coefficient on the temporal structure of the 

atmospheric vertical profile always induces a degree of variability, as 

shown in the present results. 
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Month· Image Coast-Watch No. of Group Regression model Atmospheric R-squared Mean Absolute No. of studentized 

Day m Sector pixels transmittance (adjusted for realdual Error realduals >2.0 

d.£.)% 

03-15 408 A 2286 1 NLSST- 21.05 + 0.94*TB. • [l>TB•/l>TBs]- 1.01 99.03 0.34 645 

0.65*TB.-TBs 

05-16 607 M 6460 1 

05-16 607 Q 202 2 NLSST = -12.42 + 1.05* T8• + [t>TB./l>TBs] = 0.98 99.92 0.09 80 

1.36*TB.-TBs 

03-15 408 F' 6735 2 

11-28 208 L 1195 2 

03-14 307 B' 4599 3 NLSST = -3.09 + 1.01 *TB• + [t>T8•/ t>TBs] = 0.97 99.96 0.12 244 

1.69*TB.-TBs 

09-05 N/a p !064 3 

11-28 208 c 205 3 

04-13 308 A' 5317 4 NLSST = -25.57 + 1.10*TB.- [l>TB./l>TBs]- 0.96 93.96 0.29 735 

0.83*T8.-TBs 

04-13 308 8' 5940 5 NLSST = -10.22 + 1.04*TB. + [L>TB•/ l>TBs] - 0.95 99.90 0.12 892 

1.14*TB.-TBs 

04-13 308 C' 4972 5 

11-28 208 C' 1756 5 

03-15 408 J 5072 6 NLSST = 3.61 + 0.99*TB• + [L>TB•/ t>TBs] - 0.94 99.76 0.16 999 

1.56*TB.-TBs 

03-15 408 K 792 6 

04-13 308 B 4512 6 

04-13 308 J 6469 6 

05-16 607 8' 6365 6 

05-16 607 G 894 6 

Table 4. 7a. Look up table containing the suite of single line equations valid for different atmospheric 
states as defined by their slopes ranging from 1.1 to 0. 94. The regression analysis was done over a two­
year period over the CoastWatch area. Regression models are statistically significant at the 1% level (P­
value <0.01). 
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Month Image Coast-Watch No. or Group Regression model Atmospheric R-squared Mean Absolute No.ofstudentlzed 

m Sector pixels transmittance (acljusted Cor Error residuals >2.0 

d.C.J% 

04-13 308 K 6282 7 NLSST = -17.22 + 1.06*1'84 + [£\TB4/£\T8s] = 0.93 99.81 0.11 477 

1.53*T84-T8s 

11-28 208 B 1277 7 

11-28 208 M 965 7 

04-13 308 A 3559 8 NLSST = -16.00 + 1.06*1'84 + (£\T8•/£lT8s] = 0.92 99.25 0.25 1123 

0.87*1'84-TBs 

05-16 607 N 6599 8 

06-03 407 A' 5533 8 

06-03 407 K 1957 8 

11·28 208 J 5274 8 

11-28 208 K 2849 8 

11-28 208 0 1987 8 

05-16 607 F 1499 9 NLSST = -2.22 + 1.01* TB•+ [£\TB•/£\TBs] = 0.91 99.70 0.11 281 

1.85*1'84-T8s 

06-03 407 8' 4009 9 

03-15 408 p 402 10 NLSST= 12.71 +0.96*1'8•+ [£\TB•/.lTBs) = 0.90 98.93 0.14 707 

1.87*TB•-TBs 

06-03 407 A 5417 10 

06-03 407 8 1420 10 

11-28 208 N 4655 10 

11-28 208 p 321 10 

03-15 408 0 3757 11 NLSST = -9.20 + 1.03*1'84 + [.lTB./.lTBs) = 0.89 99.73 0.12 437 

1.56*1'8•-TBs 

05-16 607 c 636 11 

05-16 607 C' 5460 11 

03-15 408 1 4389 12 NLSST = -21.93 + 1.08*1'8• + [6T8•/6TBs) = 0.87 99.39 0.25 432 

0.04*TB.-TBs 

05-16 607 R 2707 12 

05-16 607 8 3113 13 NLSST- -10.88 + 1.04*TB• + [.lTB./.lTBs)- 0.86 99.62 0.09 117 

1.14*TB•-TBs 

Table 4. 7b. Look up table containing the suite of single line equations valid for different atmospheric 
states as defined by their slopes ranging from 0. 93 to 0. 86. The regression analysis was done over a 
two-year period over the CoastWatch area. Regression models are statistically significant at the 1% level 
(P-value <0.01). 162 
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Coll et al. ( 1994) associated the constant (i.e. - intercept) of the split 

window algorithm to the emissivity effect and Barton ( 1995) showed 

that it can range from 28 to -17 for a total of 21 algorithms used to 

retrieve SST through subtropical atmospheres. This is also the case for 

the resulting models, where each regression equation refers to 

particular atmospheric vertical profiles as detected by the two infrared 

channels. 

Table 4.7 a-b also gives an indication of the magnitude of the residuals 

for each group of slopes (mean absolute residual error and number of 

Studentized residuals). Further analysis of these residuals may 

stabilise even further the regression models. The presence of 

undetected, contaminated pixels due to fog, as well as the inherent 

inaccuracies of the dependent variable (NLSST), may be giving rise to 

such instability. Uncertainties do however exist in these 

measurements, which include the accuracy of the original NLSST 

dataset, the contamination of unresolved cloud and aerosols and errors 

in the satellite calibration. 

The dependency and sensitivity of [~TB4/ ~TBs] on the atmospheric 

transmittance shows that it is not proper to use globally-retrieved 

coefficients from NESDIS to correct regional SST imagery with enough 

accuracy. This was also expressed by Sobrino et al. (1993) following 

their observations on the impact of the atmospheric transmittance and 

total water vapour content on SST retrieval from AVHRR. 

Although the approach used is similar in concept to that developed by 

So brino et al. ( 1993), it is technically different and more simple. In their 

work, they have simulated channels 4 and 5 of AVHRR/2 of NOAA-11 

using a radiative transfer model with a range of atmospheric conditions 

and surface temperature that reflected a worldwide variability. The 

present study uses instead the empirical knowledge derived from the 

NOAA AVHRR readings from channels 4,. and 5 and collocated NLSST 

pixels to derive the algorithms. Indeed, the slope ~TB4/ ~TBs was 
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calculated for each collocated pair of pixels (a total of 203,010 pixels) 

and the resulting mean slope for each sector was categorised to 

represent the water vapour profile of different atmospheric states during 

the 2-year study period. This grouping was necessary to average out the 

errors inherent in this method, which may originate from the 

inaccuracy of the original NLSST dataset embedded in any split-window 

algorithm (an average of± 0.14 ac against in situ data- [Li etal., 2001]), 

the contamination of unresolved cloud and aerosols, and errors in the 

sensor calibration. Similar errors are also encountered when such line 

algorithms are derived by regressing brightness temperature from 

channels 4 and 5 against in situ, collocated data. 

The approach used in this study provides a powerful tool by providing 

appropriate split-window coefficients that best match the atmospheric 

composition present when individual AVHRR scenes are acquired over 

any area of interest. In this manner a suite of single line equations 

suitable for different atmospheric states are produced as suggested by 

Steyn-Ross et al. (1999). The modelling of the atmospheric composition 

over a two-year period provides to the present study a statistically 

robust approach to calibrate AVHRR scenes over a range of atmospheric 

profiles without the need of collocated in situ SST data. The total 

number of pixels analysed to generate these linear equation is shown in 

tables 4. 7a-b. 

These single-line equations can be fine-tuned and be made geographic­

specific by further sub-grouping relevant pixel ratios extracted from 

additional scenes of geographical areas under investigation. In this 

manner, a finer range of slope variation can be defined from relevant 

imagery. 

The accuracy of this algorithm is tested against an independent set of 

SST data and results are described in section 4.4.3. 
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4.4.3. Calibration of AVHRR scenes over the Ionian basin. 

The performance of the three algorithms - the YB94, the multiple 

regression model (in the form of a look-up-table - LUT) and Coll94 

algorithms were assessed for suitable NOAA AVHRR images acquired 

between 20th July and 7th August 1999 over the Ionian basin. This time 

frame was determined by the ocean forecasting system used in this 

study82 . 

It proved very difficult to obtain valid AVHRR scenes over the area of 

interest during the 16-day time-frame, resulting in only 5 suitable 

AVHRR overpasses (table 4.2). The remaining swaths where strongly 

affected by cloud cover and dust aerosols due to an episode of dust 

uptake from the Sahara desert that started on 22nd of July and reached 

the area of interest on the 26th of July 1999 (information derived from 

an independent run of a dust model83). Table 4.8 gives a summary of 

the performance of the calibration algorithms for the valid AVHRR 

scenes. The use of AVHRR data to validate oceanic forecasts is always 

problematic. Lermusiaux and Robinson (2001) encountered the same 

problem when trying to verify their 16-day model integration run, for 

which only four AVHRR scenes were found to be suitable for 

companson. 

The accuracy assessment is not based on a collocated set of in situ 

match-up data; instead, it is based on an independent set of collocated 

SST derived from the TMI sensor. The assessment was based on the 

average difference of collocated [SSTaigorihtm minus SSTTMI]. Sobrino et al. 

( 1993) used a similar approach to assess the accuracy of their results 

by comparing their algorithms to an independent set of CPSST and 

MCSST data. 

82 See section 7.1. for justification of the selected time frame. 
83 See Appendix III for an overoiew of this simulation. 
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Despite the lack of in situ data, and the use of a small number of 

suitable AVHRR imagery, this study provided some interesting results. 

On the whole, both the regression modelling and Col194 algorithm gave 

Date algorithm SST Field (OC) remarks 

mean maximum minimum Standard 
deviation 

20-Jul-99 YB94 34.80 39.87 31.03 1.43 Rs4=1.02; y=7.12 

Coll94 27.25 30.74 25.56 0.78 

LUT 27.02 30.38 25.39 0.75 6TB4/6TBs =1.1; 
group 2 

TMI 26.23 27.10 24.82 0.44 

mean max min stdev 

21-Jul-99 YB94 31.59 >40.00 26.39 3.88 Rs4=1.94; y=l.16 

Coll94 27.17 30.08 25.82 0.49 

LUT 25.55 27.25 24.23 0.30 6TB4/6TBs =0.8; 
group 22 

TMI 25.92 26.40 24.92 0.25 

mean max min stdev 

22-Jul-99 YB94 31.91 >40.00 26.09 2.91 Rs•=l.80; y=l.98 

Coll94 26.90 28.23 25.42 0.33 

LUT 26.99 28.37 25.56 0.35 6TB4/6TBs =0.7; 
group 23 

TMI 26.20 26.85 25.52 0.30 

mean max min stdev 

01-Aug-99 YB94 28.66 36.04 26.77 0.78 Rs4=0.83; y=3.40 

Coll94 29.51 31.0 27.61 0.67 

LUT 28.43 29.72 26.72 0.61 6TB4/6TBs =1.1; 
group 2 

TMI 27.29 28.92 26.43 0.52 

Table 4.8. Performance of the three algorithms (YB94, the multiple 
regression models look-up-table - LUT, and Coll94) for valid A VHRR 
scenes over the area of interest. 

a very close estimate of SST that are consistent with the SSTTMI, but at 

a much finer resolution. Results indicate that for the selected AVHRR 

imagery, the appropriate model extracted from the look up table fares 

better than the Col194 algorithm. The use of both algorithms is 

encouraging, with the regression modelling approach offering a wider 

range of possible single-line equations depending on particular 

atmospheric conditions, whereas the regional one (i.e. Col194) is not 

flexible at all. As discussed in chapter 3, a degree of inherent difference 

between these two algorithms and the TMI-derived data is always 
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expected due to the fact that their accuracy is based on the bulk SST 

sampled by buoys (in the case of NLSST) and ships (in the case of 

Coll94). On the other hand, TMI-retreived SST is the 1 mm thick sub­

skin SST. 

The Coll94 and LUT display a similar amount of small standard 

deviation, indicating a certain degree of robustness. Table 4.8 indicates 

that regression modelling constitutes the most appropriate approach for 

estimating SST from valid AVHRR data, with the COLL94 ranking 

second. This similarity gives some confidence in using the look-up-table 

approach for the calibration of AVHRR imagery. 

Antoine et al. (1992) g1ves an error estimate of 0.75 K for the Coll94 

algorithm, which can be improved by taking into account scan angle 

effects. Agreeing with Minnett (1990), Collet al. (1994) observed that no 

significant increase in accuracy was achieved when allowance for 

seasonal variation is inserted in the algorithm. This algorithm shows a 

systematic underestimation of about 0.5 K for low values of TB4-TBs 

(< 0.5 K), while an overestimation tendency happens when the 

difference is between 0.7 to 2.5. Greater differences result in gross 

under-estimation. 

The results clearly show that the YB94 algorithm does not perform well 

for the imagery derived over the area of interest. Contrary to those 

obtained when operated over the CoastWatch area, the efficacy of the 

YB94 algorithm was seen to deteriorate when it was applied for the 

Mediterranean region. This could be due to a number of factors. In the 

case of the CoastWatch data, the values of Rs4 range from 0.8 to 0.95. 

The Mediterranean scenes gave a value of Rs4, which in most cases, was 

above unity. This indicates that the derivation of the ratio was below 

optimal, in spite of using an improved statistical approach to determine 

Rs4 as suggested by Yu and Barton ( 1994). Here a test window of 61 by 

82 cloud-free pixels was selected instead of the smaller sO by so pixels 

window used by these authors. 
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Whereas the slope [~TB4/ ~TBs] derived from the Mediterranean AVHRR 

scenes was within range of the linear regression models, giving realistic 

SST fields, the corresponding gamma values were found to be beyond 

the range of accuracy84 previously noted over the CoastWatch area. The 

gamma value is 3.40, which according to figure 4.23 should give an 

over-estimation of around + 1 °C. This is roughly the same error 

observed when the SST field over the central Mediterranean is 

compared to collocated TMI-derived SST fields. 

What could be the cause of such a deterioration of the YB94 algorithm? 

The main factor which affects the accuracy of the Rs4 and ultimately 

that of the gamma value, is the dispersion threshold used in the 

algorithm. The same threshold relationship is used with CoastWatch 

data, but this time the threshold reflected a higher variation that could 

be possibly attributed to the varying attenuation caused by the high 

atmospheric water vapour present over the central Mediterranean 

throughout the study period. Walton et al. (1998) demonstrated that 

this variability not only affects the magnitude of the gamma parameter, 

but also its functional dependence upon the channel temperature 

difference. 

It is interesting to note that the trend of the TMI-derived integrated 

precipitable water vapour over the area of interest during the period of 

20th July to 7th August 1999 (fig. 4.30) increased from 2.2 to around 

3.0 g cm-2 . 

84 Except for the case of August 1st. 
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(a) (b) 

(d) (e) 

(c) 

Figures 4.29 a-e. The presence of a 
mesoscale gyre as seen from the 
brightness temperature derived 
from AVHRR scenes (inK) acquired 
on (a) 20.07.99 (b) 21.07.99 (c) 
22. 07.99 (d) 23. 07.99 and (e) 
06. 08. 99, over the Ionian basin: 
15.94°E-18.27°E;33.39DN- 35.56°N. 
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Figure 4.30. TMI-derived daily integrated precipitable water vapour 
(g cm-2) over the area of interest during the period 20 July to 7 August 
1999. 

The optimal gamma value over the CoastWatch area was found to be 

around 3.5 to 4.0, giving a corresponding atmospheric water vapour as 

calculated by the equation given by Ottle et al. ( 1997) of around 

2.0 g cm-2 and even less - a value that is exceeded during the time 

frame over the Ionian basin. The 3-D profile of the precipitable water 

vapour (fig. 4.31) cannot be considered as homogeneous over the area of 

interest and is attributed to the particular climatological conditions over 

the central Mediterranean. This heterogeneity can adversely influence 

the retrieval of proper Rs4 and gamma values, which according to 

Barton ( 1995) leads to a failure of the algorithm. 

A potential contaminant for all three algorithms is the unresolved cloud 

pixels in the analysis. Walton et al. (1998) for example, refers to the 

need of filtering cloud contaminated pixels to improve the accuracy of 

the YB94. Cloud detection within the area of interest was based on the 

amount of spectral information given for each pixel and a combination 

of spectral channels (near-infrared and thermal infrared) was used in 
----~- •• '. ' ~-- ' - _.- ·.::::., •••• ',·• "· ' ~ -=,. -

this study as described by Kriebel ( 1996). This was done by applying a 

set of threshold tests to each pixel to determine the amount of cloud 
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contained within it. A simple ratio test was also applied to filter out 

contaminated radiances as detected by channels 4 and 5. Pixels were 

set to a null value if the ratio of collocated radiance channel 4 and 5 

exceed 0.5. A gross cloud check was also used, which is a thermal 

infrared threshold test using the brightness temperature calculated 

from channel 5 as a check on cloud contamination. Over the sea, the 

selection of the appropriate threshold temperature was easy to find, and 

valid channel 5 pixels had to exceed the threshold of 288.16 K. Other 

cloud filtering tests - the Thin Cirrus Test and Fog/ Stratus Test 

(Kriebel, 1996) - were also used. This makes use of the temperature 

difference between calibrated channels 3, 4 and 5. The temperature 

difference was used to detect most types of clouds including semi­

transparent cirrus ones because of the different emissivities of cloud at 

the two wavelengths. The thresholds were set according to Kriebel 

(1996); however, the author states that these thresholds do vary for 

particular regions and seasons. 

There is still considerable room for improvement of these algorithms, 

particularly in assessing the confidence of the two most successful 

algorithms: the Col194 and LUT approach. To do this, multi-year 

AVHRR passes over the area of interest need to be calculated, calibrated 

and compared with independent data. 
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Figure 4.31. The variability of the total precipitable water vapour 
profile (in g cm-2 x 1 0) over the area of interest (LAT: 33.24° - 35. 74°N; 
LON: 15.74° - 19.17°E) as retrieved by the TMI sensor on (A) 20th July 
1999 at 3:48 UT (B) 21st July 1999 at 5:41 UT (C) 22nd July 1999 at 
4:46 UT and (D) 01 st August 1999 at 23:12 UT. 
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4.5. Summary. 

This chapter described the work carried out to construct and assess the 

accuracy of a database of observations. The aim of this work was to 

have available an independent set of collocated data with which to 

validate and improve the ocean forecasting system. The database not 

only provided climatological information on relevant geophysical 

parameters over the area of interest, but also high-resolution, 

instantaneous parameters of the surface and vertical climatology of 

atmospheric variables that have been calculated from basic variables 

derived by different remote sensing platforms. 

The accuracy of this database is deemed important for the validation of 

the ocean forecasting system. The database was thoroughly evaluated 

against sets of independent climatological data as discussed in section 

4.4.1. The calculation of instantaneous turbulent air-sea heat fluxes 

from and orbiting passive microwave sensor was outlined in section 

4.4.1.4. 

With regard to the accuracy of the database, the 10 m wind speed data 

showed a mean annual speed of 5.22 ± 1.96 m s-1, giving a bias of just 

1.2 m s-1 against SOC data. There was also good agreement between the 

annual trends of the SST profiles derived from the two datasets, where 

the remotely sensed data showed an annual average value of 21.3 

± 4.6 oc compared to an annual average of 20.2 ± 4.1 oc derived from 

the SOC Atlas. The mean annual bias between the remotely-sensed SST 

and SOC data over the area of interest was 1.1 °C. The semi­

instantaneous surface air temperature dataset was also close to that 

provided by the SOC data, with an annual average value of 20.8 

± 5.0 °C with a mean bias of+ 1.7 oc and+ 0.9 oc against the SOC and 

CO ADS climatologies respectively. 

The estimated instantaneous sensible heat flux data gave an annual 

average value of -5.9 ± 8.5 W m-2 which agreed well with the annual 
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average value of -6.2 ± 5.9 W m-2 provided by the SOC Atlas. The 

estimated annual average latent heat flux was -73.0 ± 18.13 W m-2 

compared to -90.77 ± 32.03 W m-2 given by the SOC dataset. The mean 

annual bias was -18.8 W m-2 indicating an under-estimated annual 

value. 

The accuracy of the other datasets, such as the integrated precipitable 

water vapour, cloud liquid water, aerosol optical thickness and outgoing 

longwave radiation, was not assessed simply because of the lack of 

alternative data. These values were obtained by remote sensing; the 

humidity profiles are obtained by passive microwave remote sensing at 

a high spatial (0.25°) and temporal (less than 24 hrs) resolution. The 

other two are multi-annual climatological datasets with a coarse spatial 

(1 a by 1 °) and temporal (monthly) resolution. 

Section 4.4.2. discussed the results following the calibration of AVHRR 

radiance scenes acquired over the Ionian basin without the use of 

collocated in situ SST data. These calibrated high-resolution scenes will 

be used to verify the high-resolution forecasts of the ocean model 

(Chapter 7). The accuracy of different algorithms was assessed, as was 

their applicability over the Mediterranean. A novel aspect of this study 

was the derivation of a look-up table that consisted of single line 

equations. Each of these equations can be used in the future for specific 

atmospheric conditions with particular water vapour profiles. This 

approach proved to be an efficient way to calibrate AVHRR scenes over 

the central Mediterranean and thus verify the 24-hr SST forecasts 

generated by the high-resolution ocean model. 

The next chapter describes the setting-up of an atmospheric modelling 

system over the Mediterranean Sea with particular emphasis over the 

Ionian basin. Using this database, work is carried out to assess its 

predictive accuracy and to fint::-tune a prominent numerical scheme to 

enhance its skill to predict the atmospheric fluxes over the ocean 

surface. 
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Chapter 5 

ASSESSING AND IMPROVING THE SKILL OF THE 

ETA MODEL TO FORECAST AIR-SEA FLUXES. 

5.1. Introduction. 

Numerical Weather Prediction (NWP) models serve many users 

interested m many weather phenomena at different timescales. In 

operational ocean forecasting the interest of NWP lies in making 

available continuos, fine spatia-temporal forecasts of near surface 

parameters and fluxes (Taylor, 2000) as initial and driving fields for 

ocean models. In this manner, the forecasted atmospheric fields can 

reduce the time scale required for ocean models to attain quasi­

geostrophic conditions in their simulation and to reach a forecasted 

sea-state that is close to observationsB6. 

There are many advantages in usmg modern numerical atmosphere 

models to determine air-sea fluxes, the major one being their improved 

schemes to calculate the transfer coefficients during the estimation of 

the surface fluxes. Their surface parameterisation schemes have been 

modelled on the current knowledge of the characteristics of the lowest 

layer of air near the sea surface. The high vertical resolution offered by 

these atmosphere models, for example, permit the application of the Liu 

et al. (1979) surface renewal model based on the well-established 

Monin-Obukhov similarity theory (Monin and Obukhov, 1954). Unlike 

bulk formulae with constant transfer coefficients, these models are able 

to include the effects of stability and interfacial conditions that are 

applicable in approximately stationary and horizontally homogeneous 

moderate winds. 

86 Section 3.1.2. 
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5.1.1. NCEP's Eta model. 

The Eta model is an operational atmosphere model with a variety of 

unique features in its numerical formulation87. The latest public version 

of the Eta model, known as "Workstation Eta" is now a complete, full 

physics system, and is easy to setup and configure. The code is 

considered very efficient, and is approximately 25-33% faster than MM5 

on 2 CPU, with a 90% performance gain going from 1 to 2 CPU's. It has 

a non-hydrostatic option switch and can be operative in both Eta and 

sigma coordinate options. It also supports shared multi-processor 

platforms. Because of its non-hydrostatic feature, the model can now be 

applied for high resolution, small-scale atmospheric prediction of 

around 1 km or even less. The model is fully supported by the National 

Weather Service of the US and has been distributed to around 60 

national weather forecasting offices nationally. 

5.1.2. Aim of the study. 

At the time of writing, verification of the "viscous sublayer" scheme 

embedded in a nested, high-resolution Eta model has not been done by 

other investigators, and so there is no quantitative knowledge of the 

skill of the Eta model to predict air-sea fluxes (Mesinger, 2002, personal 

communication). A literature search carried out in 2005 to check if there 

has been any progress did not result in any substantial study in this 

regard. 

The primary aim of this chapter is to provide quantitative information 

on the overall skill of the Eta model to forecast air-sea fluxes and 

related surface fields. The observed skill of the Eta viscous sublayer is 

fine-tuned to further improve its predictability. Comparative verification 

measures are applied to determine the quality of forecasts and their 

relative accuracy with collocated observation(s). This approach 

condenses the large amount of data generated from the single forecast 

87 Section 3.2.4.1. 
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experiments into a summary representation of the most important 

variations of the predicted data. These measures include mean, 

standard deviation, bias error and mean square error. This chapter also 

uses concepts of exploratory spatial data analysis to be able to identify 

spatial error drifts and graphically identify the impact of fine-tuning a 

numerical scheme. For this purpose, a routine is designed to assess the 

spatial similarity of predicted field with collocated rasterised 

observations. 

5.2. Methodology. 

5.2.1. Setup and running the local area, and nested Eta atmosphere 

models. 

A Pentium MMX configured with 800MHz and 64MB of RAM was used 

for the two versions of the Eta model working on a LINUX system with 

gnu C and fortran 77 compilers. This computer was connected to a local 

area network with ample space for archiving the data on hard disks and 

external storage material. Each model consisted of appropriate folders 

containing fortran 77 source codes and related executable files that ( 1) 

decoded binary data coming from World Area Forecast System (WAFS), 

Global Data Assimilation (GDAS) System, land cover, and topography 

data and convert it according to model coordinate system; (2) 

constituted the numerical schemes of the model; and (3) calculate the 

output of all relevant forecasted fields and their conversion into 

standard coordinates for displaying. Csh shell scripts unified the 

operation of all these three main groups of codes, as identified by a 

secondary file specifying the location of data files. 

The modelling process was divided into three stages: pre-processing, 

processing and post-processing. The pre-processing phase used 

routines that generated the needed fields from databases. This was 

done by interpolating external data sets to the Eta grid, and generated 
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data sets for 3-D initialisation of the atmosphere model. Model pre­

processing is described in detail Appendix II, section 11.3.1. Two 

atmosphere models were setup: (1) a limited-area, Mediterranean-wide 

model and (2) a model nested within the regional one, located over the 

Ionian basin. Model preprocessing starts with the definition of the 

model boundaries, horizontal and vertical resolutions and model time 

step, followed by the preparation of constant input data such as 

topography and land cover data. The lateral (WAFS) and surface (SST) 

boundary conditions are then decoded and used by the regional Eta 

model to initialise its boundary conditions. Full details of the 

constitution of these datasets and the way how they are used by the 

model are provided in Appendix II.3.1.3. The spatial domains of the 

local area (regional) and the nested model are shown in figure 5. 1. 

Examples of model-generated lateral boundary conditions generated by 

the WAFS and reformatted in GrADS format are shown in figures 5.2 

and 5.3. 

The processing phase involved the numerical calculation of the future 

state of the atmosphere using the numerical schemes embedded in the 

model for a number of pre-defined time steps that eventually lead to a 

short-range atmospheric forecast. This phase is described in Appendix 

II, section II.3.2. The daily integration of the local area (regional) Eta 

model generated mesoscale, 3-hourly lateral boundary conditions for a 

36-hour forecast. These were used to initialised the lateral boundary 

conditions of the nested Eta model. 

In post-processing, computations were made to the raw model output to 

transform it to a format readily usable by forecasters. Diagnostics and 

meteorological parameters were derived from the forecast variables. In 

addition, model variables were interpolated vertically to surfaces used 

by forecasters (isobaric, isentropic, and constant altitude) and 

interpolated horizontally to output grids. Contour plots were also made. 
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The post-processing stage is described in Appendix II section II.3.3. This 

stage consisted of the generation of predicted air-sea surface fluxes by 

the nested Eta model as the new surface boundary conditions to drive 

the ocean modelss. These consisted of 36-hour, 3-hourly forecasts of the 

latent and sensible heat fluxes, outgoing and incoming long- and short­

wave radiation, u- and v-component of momentum flux, moisture heat 

flux, surface air temperature and surface pressure. The final, high 

resolution forecasts were converted in gridded standard format for 

subsequent model verification against collocated observations. 

88 see Chapter 7 
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Figure 5.1. Domains of the limited area, Mediterranean-wide Eta model (LAT: 29.000- 47.500N; LON: -10.000W-
42. OOOE). Nested within its integration domain is the high-resolution Eta model (LAT: 33.24°- 35. 74°N; LON: 15.74° 
-19.17oE). 
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Figure 5.2 Graphical display of initial WAFS lateral 
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Figure 5.3 Graphical display of the initial WAFS lateral 
boundary conditions (octant grid 37) for 2nd Feb 1999 at 
1800 hrs UT. Data relates to relative humidity in % at 
z=1000. 
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These three stages were run using an automated script as shown in 

Appendix II (section 11.3.4.) following the process shown in figure 5.4. By 

defining a series of dates using the "foreach" command, dates and 

integration times and folder names for the output files were created 

automatically. WAFS- and GDAS-derived lateral and surface boundary 

conditions in GRIB format were first copied from the central archive to a 

specific folder from which they were subsequently called and converted 

to GrADS format using grb2grads.JB9 routine. This stage gave the facility 

to display the initial data. Conversion into Eta transformed coordinates 

followed using grads2anec.f routine. The sst routine (see sst.F 90) 

converted the SST from GrADS format into a binary file was used by the 

model to initialise its surface boundary field. 

The subsequent processing prepared the boundary conditions over the 

domain area of the regional model run, including the preparation of 

seasonal/monthly initial conditions for the aerosols, ozone, radiation, 

etc., using the GFDL package. 

Following the processing stage, the routine outnest.f converted the 3-

hourly output data into standard latitude and longitude coordinate files 

and wrote the transformed data into GrADS format to be graphically 

displayed. This routine also prepared prognostic 3-hourly fields that 

were used as the new mesoscale lateral boundary conditions for the 

nested model (fig. 5.5). 

89 Appendix II; Section II2.1. 
90 Appendix II; Section I/.2.3. 
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DOMAIN DEFINITION 
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PREPARATION OF CONSTANT INPUT DATA 
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(USGS/EROS database) (USGS/EROS database) 
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Figure 5. 4. Flowchart and interaction between the various stages of the 
two Eta models and input of forecasted air-sea surface flux fields into 
the ocean model. The Data Analysis component used image 
processing, GIS. and.sicitistical software· for model diagnostics. (LAM= 
Limited Area Model). 
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Figure 5. 5 Use of 3-hourly predicted mesoscale fields generated by the 
limited area model to intialise the lateral boundary conditions of the 
nested, high-resolution Eta model. 

A second script file was run for the nested Eta model with the horizontal 

resolution of 0.041666° and utilising 24 standard pressure levels (1000, 

980, 960, 940, 920, 900, 870, 850, 820, 770, 730, 700, 650, 600, 550, 

500, 450, 400, 350, 300, 250, 200, 150 and 100 hPa). Model integration 

followed exactly the same pre-processing, processing and post­

processing stages of the limited area model, except that 3-hourly 

mesoscale lateral boundary conditions produced by the local area model 

were instead used to initialise the nested model. The subsequent pre-, 

processing and post-processing stages were identical to those of the 

regional model. Automated archiving of data was done according to the 

integration date and time. 

5.2.2. Validated atmospheric parameters. 

5.2.2.1. 10 m wind magnitude. 

Forecasted wind magnitude was calculated as the resultant of the 10m 

wind vectors in the x(u) and y(v) dimension, or 

184 



where uw and v1o are the 10 m wind components. Pixel to pixel 

validation of Eta-generated 10 m wind magnitude fields was performed 

against collocated TMI-derived 10m wind magnitude fields91. Data was 

filtered as to exclude contamination due to low variable winds 

(< 3 m s-1) and high winds (> 12 m s-1). 

5.2.2.2. Turbulent heat fluxes. 

SST and wind magnitude fields extracted from the TMI sensor were 

used to calculate the sensible and latent heat fluxes. Values of 10 m 

wind magnitude in the region of< 3 m s-1 and > 12 m s-1 were not used 

in the calculation of the heat fluxes. 

Pixel-to-pixel validation of Eta-generated sensible and latent heat fluxes 

was done against collocated flux fields derived from the database92. 

5.2.2.3. Radiative heat flux. 

The outgoing longwave radiation (OLWR) is the only radiative heat flux 

parameter used to assess the radiative package of the Eta model as 

compared to the monthly average observation collected by NOAA 

pathfinder during 199993. 

Validation of Eta-generated outgoing longwave radiation was performed 

using statistical software by comparing mean values against monthly 

fields derived from the database. 

5.2.2.4. Columnar cloud liquid water. 

This parameter is related to the degree of condensation of atmospheric 

water vapour. The integrated cloud liquid water is an important 

91 Section 4.3.1.1. 
92 Section 4. 3.1. 6. 
93 Section 4.3.1.3. 
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parameter for determining both the initiation and amount of 

precipitation from cloud systems. Pixel-to-pixel comparison between Eta 

forecasted integrated cloud liquid water and remotely sensed 

observations94 gave an indication of the accuracy of the model's 

convection parameterisation scheme to predict such events. 

5.2.2.5. Total columnar precipitable water vapour. 

The accurate prediction of this parameter by atmosphere models can be 

highly beneficial for both the oceanographic and atmospheric 

community. This parameter indicates the amount of water vapour in the 

column and is a function of the atmospheric temperature profile. Sinks 

of this water vapour are clouds or condensation on surfaces. 

Pixel-to-pixel validation of Eta-generated total precipitable water vapour 

against similar collocated fields (derived from the database) was 

performed using statistical software. 

5.2.2.6. Near surface air temperature. 

Validation of Eta-generated 2 m air temperature was done usmg 

statistical software by comparing predicted mean monthly values 

against collocated fields extracted from the database95. 

5.3. Fine-tuning of the Eta model viscous sublayer depth. 

The viscous sublayer model embedded in the Eta model IS a 

sophisticated scheme that calculates amongst other fluxes, the 10 m 

wind. The research questions presented in section 2.1.2. require an 

experimental setup that performs a number of Eta model simulations 

over water surface as to fine-tune equations 5.1596. This is based upon 

94 Section 4.3.1.1. 
95 Section 4. 3.1. 6. 
96 Appendix II; Section II. 1 
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verification of forecasts against the 10 m wind magnitude observations 

derived from the database. 

A schematic diagram of the experiment is shown in figure 5.6. The fine­

tuning is focused on the scheme embedded in the nested Eta model. 

High-resolution model runs were repeated using a value for the 

parameter that defines the depth of the viscous sublayer, S, of 0.20, 

0.35, 0.70 and 0.80. 

A substantial number of forecasted output fields generated by the 

parallel experimental runs were validated against satellite observations. 

The total number of single-forecast verification analyses (see table 5.1 a­

b), amount to 524. The selection of these single-forecast dates were 

defined by: 

1. the availability and integrity of initial surface and lateral boundary 

conditions, and, 

2. the availability and integrity of collocated observation data. 

The scalar and spatial accuracy of the 4 sets of forecasted 10 m wind 

speed was assessed on the basis of objective correspondence between 

forecasts and collocated 10m remotely sensed observations. 

Statistical measures including bias and root mean square error were 

used97 . The sets of single forecasted dates validated against remotely 

sensed wind speed observations were grouped together according to the 

average Eta-model predicted wind speed as follows: 3.0 - 3.9 m s-1; 

4.0 - 4.9 m s-1; 5.0 - 5.9 m s-1; 6.0- 6.9 m s-1, and 7.0- 11.0 m s-1. For 

each category, the respective RMSE values for the 4 sets of data were 

normalised and plotted against increasing wind speed. 

Exploratory spatial data analyses was also applied98. 

97 Section 5. 4. 

98 Section 5.4.3. 
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Global forecasted 
lateral boundary 

conditions 

Statistical forecast 
accuracy assessment 

Regional Eta model 
0.166° by 0.166° 

Improved mesoscale boundary 
lateral conditions 

l 
Nested Eta model 
0.042° by 0 .042° 

I;= 0.20, 0.35, 0.70, 
0.80 

l 
I Forecasted 10-m wind magnitude I 

Microwave remote sensing data 
~----------~L-----~----- climatological data 

derived products 

Figure 5. 6 Schematic diagram of the experiment to fine-tune the Eta viscous 
sub layer. The nested model was run four times, each run using a different s 
value embedded in the viscous sublayer scheme. Subsequent model 
verification is described in section 5.4. 

5.4. Model output accuracy assessment. 

The accuracy of the forecasting system was assessed on the basis of the 

objective correspondence between the forecasts and collocated data 

extracted from the database99 (Glahn et al., 1991; Murphy, 1997). 

The database used in the verification processes had a space-time 

correspondence with all forecasts validated at the pixel level (tables 5.1 

a - b). Two classes of statistical verification methods were applied: ( 1) 

the basic forecast distributions and their summary measures, (2) 

99 Section 4.3.1. 
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Month: JANUARY 
Dates 9 10 II 12 IS 17 28 29 

TMI pass close to 3 hr interval over .; .; .; .; .; .; .; .; 
33.5•Nj17.5•E 
Valid TMI data to calculate heat fluxes .; .; .; .; .; .; .; .; 

Ascending or Descending D A A 
D 

A D A A A 

Month: February 
Dates 2 6 7 8 13 16 2S 26 27 28 

TMl pass close to 3 hr interval over .; .; .; .; .; .; .; .; .; .; 
33 .S•N /17 .S•E 
Valid TMI data to calculate heat fluxes .; .; .; .; .; .; .; .; .; .; 

Ascending or Descending D D D D D A D A A A 

Month: March 
Dates 2 3 9 10 13 20 21 22 26 28 

TMl pass close to 3 hr interval over .; .; .; .; .; .; .; .; .; .; 
33.5•N/17.5•E 
Valid TMI data to calculate heat fluxes .; .; .; .; .; .; .; .; .; .; 

Ascending or Descending D D A D D D D A D A 
D 

Month: April 
Dates I 2 6 7 8 9 12 13 14 20 23 2S 26 

TMI pass close to 3 hr interval over .; .; .; .; .; .; .; .; .; .; .; .; .; 
33.5•Nj17.5•E 
Valid TMI data to calculate heat fluxes .; .; .; .; .; .; .; .; .; .; .; .; .; 

Ascending or Descending A A D D A A 0 A A A D A D 
D D 

Month: May 
Dates I 7 16 18 29 

TMl pass close to 3 hr interval over .; .; .; .; .; 
33.5•N/17.5•E 
Valid TMI data to calculate heat fluxes .; .; .; .; .; 

Ascending or Descending A A 0 A D 

Month: June 
Dates 2 4 9 10 12 13 14 IS 16 17 18 19 21 22 26 27 

TMl pass close to 3 hr interval over .; .; .; .; .; .; .; .; .; .; .; .; .; .; .; .; 
33.5•N I 17 .S•E 
Valid TMI data to calculate heat fluxes .; .; .; .; .; .; .; .; .; .; .; .; .; .; .; .; 

Ascending or Descending A A A D 0 A A D A A A A A D A D 
0 

Month: July 
Dates I 2 4 8 9 10 13 14 1S 16 20 21 22 2S 26 27 

TMI pass close to 3 hr interval over .; .; .; .; .; .; .; .; .; .; .; .; .; .; .; .; 
33.5•N/17.5•E 
Valid TMI data to calculate heat fluxes .; .; .; .; .; .; .; .; .; .; .; .; .; .; .; .; 

Ascending or Descending D D A 0 A A 0 A A A 0 A A A D D 
D 

Month: August 
Dates 01 02 07 08 09 12 14 20 22 26 

TMl pass close to 3 hr interval over .; .; .; .; .; .; .; .; .; .; 
33.5•N/17.5•E 
Valid TMI data to calculate heat fluxes .; .; .; .; .; .; .; .; .; .; 

Ascending or Descending A A A D D A 0 A 0 A 
D D 

Table 5.1 a. Single forecast verification matrix for the nested model runs during 
1999. Validation depends on the availability of collocated observations/ derived 
products. When available, forecasts at 12, 15, 18, 21, 24, 27, 30 and 33 hrsfrom 
the start of the model run were validated against objective data. 
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Month: September 
Dates 05 06 07 09 11 17 20 21 22 23 

TMI pass close to 3 hr interval over ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; 
33.5•N/17.5•E 
Valid TMI data to calculate heat fluxes ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; 

Ascending or Descending A A A D A A D D A A 

Month: October 
Dates 14 15 16 17 20 21 26 27 31 

TMI pass close to 3 hr interval over ..; ..; ..; ..; ..; ..; ..; ..; ..; 
33.5•N/17.5•E 
Valid TMI data to calculate heat fluxes ..; ..; ..; ..; ..; ..; ..; ..; ..; 

Ascending or Descending A D A A D A D D D 
D 

Month: November 
Dates 06 07 08 09 11 12 13 15 17 18 19 23 24 25 

TMI pass close to 3 hr interval over ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; 
33.5•N/17.5•E 
Valid TMl data to calculate heat fluxes ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; 

Ascending or Descending D D A A D D A A D D A D D A 

Month: December 
Dates 05 08 II 12 13 17 18 19 24 25 

TMI pass close to 3 hr interval over ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; 
33.5•NJ17.5•E 
Valid TMI data to calculate heat fluxes ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; 

Ascending or Descending D A A D A D A A A A 

Table 5.1 b. Single forecast verification matrix for the nested model runs 
during 1999. Validation depends on the availability of collocated 
observations/ derived products. When available, forecasts at 12, 15, 18, 
21, 24, 2 7, 30 and 33hrs from the start of the model run were validated 
against objective data. 

performance measures of the forecasts and their decompositions. This 

was done in order to describe the characteristics of the forecasts, the 

corresponding observations, and the relationship between the forecasts 

and observations. 

5.4.1. Basic forecast distributions and their summary measures. 

A multi-sample comparison analysis was performed to compare the sets 

of data (i.e. model forecasts and observations). Summary statistics were 

collected to display statistical information about the center, spread, and 

shape of the data. The data count, the average, covariance, standard 

deviation, correlation, mean difference and mean error were calculated. 
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5.4.2. Performance measures of the forecasts. 

A number of different characteristics of forecasting performance were 

identified which represented various aspects of the quality of the 

forecasts. In addition to the basic characteristics, other features of 

interest were studied involving the marginal distributions of the 

forecasts and observations. Statistical analysis was performed on a 

pixel-to-pixel basis. These measures were the following: 

Bias: This is a simple difference of forecast (f) minus observation (o) and 

equals the error between scalar quantities 

- 1 N 
b=-:Lf -o 

Ni=l 
1 1 

which can be arithmetically averaged in area and time. The difference 

(error) field provides a quick look at model's forecast performance or 

bias. Bias or tendency was measured to identify magnitude of 

systematic tendencies to under- or over-forecast a particular variable 

with forecasting time. 

Forecast accuracy: This referred to the accuracy of the model 

forecasts. 

RMSE: The Root Mean Square Error is defined as the positive square 

root of the mean square error 

RMSE= ( ( ~ ,, L, p{f, x)(f - x)' r 
RMSE depends on the range of atmospheric variability and on the 

atmospheric flow. It typically increases with forecast time since the 

predictive skill of the model drifts away with time. It provided a useable 
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statistic to verify model forecasts and is applicable to a large number of 

analysis and forecast elements and model types. 

5.4.3. Spatial data analysis. 

Spatial analysis was performed (1) to analyse the relationship between 

Eta forecasted fields and observations, (2) to identify spatial properties 

of and (3) to understand the inter-relationship between surface fields. 

5.4.3.1. Spatial similarity and feature matching analysis. 

Similar approaches to spatial problems have been used. Jones and 

Roydhouse (1994), for example, examined weather patterns and Holt 

and Benwell ( 1999) modelled the natural forest environment. Their 

studies support the use of spatial similarity to answer questions 

concerning the presence of similar, user-defined spatial phenomena 

within different subsets. The concept of spatial similarity analysis 

developed by Cobb et al. (1998) was formalised in this study. This 

consisted of the combination of fields and their associated inherent 

knowledge as to determine the position of similar clusters between 

observed and Eta forecasted fields. Each feature is considered as a set 

of attribute-value pairs and from this representation, a degree of 

matching similarity was determined. 

A windows-based ERMAPPER 5.5 algorithm with raster display features 

was written to recode the raster information between observed and 

predicted fields into a set of normalised class values that assisted the 

calculation of spatial similarity. By using proximity analysis, the 

observation field was assigned as a reference while the forecasted field 

as the source to measure degree of similarity. These two recoded fields 

were then overlayed and the difference between the coinciding classes 

was related to the similarity between them. An ISOCLASS, unsupervised 

classification processed the resulting raster field and generated a 

classified map consisting of a single band, byte raster dataset, with 
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each data point holding an integer value that corresponded to the class 

number (or degree of similarity) for that point. The ERMAPPER 

algorithm also defined results to be displayed as a look-up-table 

indicating the degree of spatial similarity through a matching and two­

way ranking measure (fig. 5.7). 

The analysed predicted and observed fields were consistent with the 

model grid resolution. The result was the synthesis of a map indicating 

the levels of similarity based on constraints as defined by the algorithm. 

O bser ved field 

D Fields recoded 
according to a defined 

1·ange ofvalues 
Predicted field 

Flagging of 
null values 

and conversion 
to raster 

1 
Density slice/ 
classification 

of s imila1ity map 

OBScoded­
PREDcoded 

overlay, 
proximity and 

CToss tabulation 
analysis 

Recoded obse1ved field 

Recoded predicted field 

l 

Exact field overlay 

+ I 
\"isual and smnmmy s tatis tics 

of similmity map 

Figure 5. 7. Flowchart of the spatial similarity analysis between 
predicted and observed field and derivation of interrelationship 
between surface fields. 
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5.5. Results and discussion. 

5.5.1. The experimental approach. 

The following points were considered in the setting up of the 

atmospheric modelling system: 

1. software and operating systems: The Eta model code is written 

in fortran and c language, and has been ported and tested on 

different machines, including HP, SGI, DEC, IBM and LINUX 

workstations. LINUX is growing in popularity; it is freely available 

and its compatibility with personal computers as well as free 

source compilers such as Fortran 77 that run on LINUX operating 

system made it an ideal choice for the present study. The 

formatting of forecast data in gridded ascii provided flexibility for 

further analysis using different operating systems such as 

Windows platform, on which statistical and GIS-related analysis 

together with the required image processing was performed. 

2. domain size: the choice of the domain size impacted on the 

model execution time, the influence of the boundary conditions, 

development of computational grid-scale forcing and forecasting 

skill and value. The choice of the domain size for the limited area 

model domain (0.17°) rested on the balance between the provision 

of coarse, modelled lateral boundary conditions from the global 

model (1.25° resolution) and the requirements of the nested model 

running at 0.042° resolution. The small-scale nested domain is 

still at the research phase for NWP in the Mediterranean, and so 

is considered as a challenge for the present study. This high­

resolution model provided forecasted data at unprecedented 

temporal and spatial scales. In addition to the actual forecasts per 

se, these products were used to force an underlying ocean model 

running at 0.042° resolution - a scale that also sets an 
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experimental limit for sub-basin ocean forecasting m the 

Mediterranean. 

3. model nesting: The scope of model nesting 1s to ensure the 

provision of much better resolved and more balanced initial fields 

than if the nested model was directly initialised by the WAFS 

dataset. As explained in Appendix 11.2, the LAM was first used to 

prepare 3-hourly forecasts of the main prognostic variables which 

were consecutively used to initialise the boundary conditions of 

the nested model. This was done in two steps; first, sets of 3-

hourly forecasts were produced after the region-wide model was 

run for each designated date throughout 1999. Second, the 

region-wide forecasts were made available as boundary conditions 

of the nested, high resolution modellOo, to produce, in turn, high 

resolution, 3-hourly forecasts over the Ionian sea. To this affect, 

changes were made to the pre-processing (e.g. model ingestion of 

initial data; model integration domain, horizontal resolution) and 

post-processing phases (e.g. calculation of the air-sea fluxes and 

extraction of forecasted data for model validation) of the model. 

The processing phase of the two models was exactly the same. 

As well illustrated by Me singer ( 1 977), the limited area model 

helps the performance of the nested model by allowing it to 

develop small scale motion, consistent with the local area model. 

However, dynamical inconsistencies can still arise based on 

different vertical resolutions between the two models. Weather 

features can be affected by "refraction" and "redirection" 

processes of atmospheric waves when they are introduced at the 

nested model's lateral boundaries, causing drifts even at the 

initialisation phase. Such fields may include precipitation, 

temperature, vertical motion, etc. This is also relevant when the 

regional model is initialised with the boundary conditions 

supplied by the global model: -

100 A description of this process is given in Appendix 11.2.5 
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4. model execution time: The total integration period was designed 

to produce short-range, 36-hourly forecasts with a high temporal 

resolution (3 hours). It is well known that the downward trend in 

the forecasting skill of any atmosphere model originates from the 

chaotic nature of the real atmosphere. Far from providing 

accurate, high-resolution forecasts, the only useful long-range 

prediction will consist of just the larger scales of predicted 

motion. At the other end of the forecasting spectrum, the skill of 

atmosphere models tend to deteriorate only slowly in the early, 

short-range part of the forecast owing both to their good 

representation of larger scales which parallels the 'perfect' 

solution as well as accurate initial conditions. 

In addition to their higher skill, short-range forecasts are highly 

sensitive to any fine-tuning adjustments made to the model's 

algorithms. The present approach proved to be very convenient, 

since it restricts the generation of large amounts of data requiring 

analyses and validation. The assumption is that ultimately the 

improved skill will be propagated forward in time to the benefit of 

the final accuracy of the longer, medium-range forecasts. 

Another reason for the choice of a short integration time is that 

the accuracy of highly variable parameters, such as turbulent 

heat fluxes, can only be captured using a short-range predictive 

mode. Moreover, the present model system uses a constant SST 

throughout its integration time as its lower surface boundary 

condition 101. It is well understood that SST has a diurnal cycle of 

as much as 3 °C in near-calm conditions and if not reflected in 

the model, this variation can cause the models to underestimate 

daytime ocea:p-surface evaporation. 

lOI This is similar to all NCEP NWP models. These models prescribe that the SST remain 
fixed (i.e. retain their initial value} throughout the forecast period. 
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5. phenomena of interest: the list of fields that can be predicted by 

the Eta model is wide ranging. The objectives of this study 

restricted this list to a number of geophysical fields that enabled 

the analysis and fine-tuning the skill of the current Eta model to 

enhance its predictability of air-sea fluxes. 

6. displaying and conversion of initial and forecasted data: a 

prerequisite of the forecasting system was an interactive desktop 

tool for easy access, processing and visualization of 4-dimensional 

gridded, initial and forecasted binary data. The grids were of 

variable resolution and analysis of fields required a variety of 

graphical techniques, including smoothed contours, shaded 

contours, streamlines, wind vectors, grid boxes and shaded grid. 

Their output into image formats was also required. The Graphical 

Analysis and Display System (GrADS) proved very useful for such 

purposes, where the displaying and processing were executed 

using FORTRAN-like expressions at the command line. GrADS 

was run in batch mode, and the scripting language facilitated its 

use to perform long overnight batch jobs. This software is 

available for free and versions are available for both LINUX and 

Windows operating systems. 

However, GrADS falls short from being able to analyse the model 

data from a GIS point of view. ERMapper was used as a GIS 

program for the visualization, processing and enhancement of the 

geographic data. Using this software, model forecasts and 

collocated observations were loaded into different layers, 

superimposed and processed for comparative and spatial 

analysis. ERMapper also provided GIS tools for contouring and 

vector overlay. Its data export facility was conveniently used to 

convert the raster data into gridded xyz format that was later 

analysed by statistical packages such as Microsoft Excel (for basic 

statistical analysis) and StatGraphics (for multiple regression 

model analysis). 
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5.5.2. The forecasts. 

Figures 5.8 to 5.14 represent a case study of the short-range, mam 

geophysical fields predicted by the limited area model and high­

resolution nested Eta models on the 2nd February 1999 at 2100 UT. 

Figure 5.12 gives an indication of the enhanced small-scale information 

of the 1 0 m wind speed forecasted by the nested Eta model. This is also 

the case for the sensible and latent heat flux maps in figures 5.13 and 

5.14. 

5.5.3. A climatological analysis of the model accuracy. 

A summary of the analysis (forecasted versus observations and derived 

products) for the period January 1999 - December 1999 is given in this 

section 102 . A total of 131 single forecasts were analysed throughout this 

period. This is considered to be a good analytical sample and is 

comparable to similar verification studies of the Eta model. In this 

section, reference is principally made to a small number of measures, 

namely average, standard deviation, bias and RMSE that assist the 

comparison between forecasted fields and climatological datasets, and 

hence, its accuracy. This section is not intended to analyse in detail the 

climatological behaviour of the various geophysical fields, rather it is 

aimed at testing the accuracy of the forecasts against collocate 

observations. The general climatic tendencies of these fields are been 

described in chapter 4. 

10 2 Full statistical results are shown in Appendix VI. 
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90 120 150 180 210 2.40 270 300 330 

Figure 5. 8. Predicted geopotentialfield at 1 000 mb on 2nd Feb 1999 at 
2100 UT. Initial conditions were derived from WAFS global model. 
Notice improved spatial resolution of fields after model integration at 
0.17° horizontal resolution compared to fig . 5.2. 

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 

Figure 5. 9. Predicted specific humidity field at 1 000 mb in kg kg-1 on 
2nd Feb 1999 at 21 00 UT. Initial conditions were derived from WAFS 
global model. Notice improved definition of fields after model 
integration at 0.17° horizontal resolution compared to fig. 5.3. 
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3 4 5 6 7 8 9 10 11 12 

Figure 5.1 0. Predicted 1 0 m wind field (in m s -1) at 1 000 mb on 2nd Feb 
1999 at 2100 UT. Initial conditions were derived from WAFS global 
model. Notice mesoscale definition of fields after model integration at 
0.17° horizontal resolution. Red box marks the model integration domain 
of the nested Eta model. 
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Figure 5.11. Predicted, contoured 1 0 m wind magnitude field (in m s -1) 
on 2nd Feb 1999 at 2100 UT extracted from inset box (in red) shown in 
fig 5.10. Coordinates are: LAT: 33.24° - 35.74°N; LON: 15.74° -
19.17°E. Initial boundary conditions for the local area Eta model are 
derived from WAFS global model. 

Figure 5.12. Predicted, contoured 1 0 m wind magnitude field (in m s -1) 
on 2nd Feb 1999 at 2100 UT derived from the high-resolution, nested 
model with a horizontal resolution of 0. 04°. Coordinates are: LA T: 
33.24° - 35.74°N; LON: 15.74° - 19.17°E. Initial conditions were 
derived from the boundary conditions provided by the limited area 
mnnPl. 
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Figure 5.13. Predicted sensible heat flux (in W m-2) on 2nd Feb 1999 
at 21 OOUT. This field was derived from the nested model with a 
horizontal resolution of 0.04°. Coordinates are: LAT: 33.24°- 35. 74°N; 
LON: 15.74° - 19.17°E. Initial conditions were derived from the 
boundary conditions provided by the limited area model. 

Figure 5.14 Predicted latent heat flux (in W m-2) on 2nd Feb 1999 at 
21 OOUT. This field was derived from the nested model with a horizontal 
resolution of 0.04°. Coordinates are: LAT: 33.24°-35. 74°N; LON: 15.74°-
19.17°E. Initial conditions were derived from the boundary conditions 
provided by the limited area model. 
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5.5.3.1. Integrated precipitable water vapour. 

The predicted monthly average integrated precipitable water vapour over 

the integration domain was 2.06 ± 0.14 g cm-2 compared to the 

observed value of 2.11 ± 0 .18 g cm-2 . Results show a balanced mean 

error in the Eta prediction, with an under-forecasting phase during the 

high levels of spring and summer followed by an over-forecasting trend 

during autumn and winter (fig. 5.15). The mean bias shown by the Eta 

model is around -0.05 g cm-2 , which is considered to be small. 

The mean error and RMSE show an over-forecasting trend that reaches 

its peak in July, after which it decreases to minimal levels (figs. 5 .16 

and 5.17). Another interesting aspect is the increasing RMSE drift 

between 12 hrs to 33 hrs (fig. 5.18). The low trend value observed at 24 

hours is probably due to small sample analysed, thus giving an 

unrealistic RMSE value. Fields that are forecasted before 12 hours were 

discarded since these may contain unbalanced geostrophic fields due to 

'spin-off effects following initialisation at 00 UT. 
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Figure 5.15. Temporal trend of the predicted monthly average Eta and 
TMI-derived integrated precipitable water vapour (g cm-2). 
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Figure 5.16. Mean error of Eta forecasted integrated precipitable water 
vapour from the observed field (in g cm-2). 
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Figure 5.17. Monthly average RMSE between the Eta-forecasted and TMI­
derived integrated precipitable water vapour (in g cm-2). 
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Figure 5.18. Temporal forecasting trend of integrated water vapour when 
the RMSE values of single-forecasts were grouped according to time 
of statistical comparison. 

5.5.3.2. Integrated cloud liquid water vapour. 

The predicted annual integrated cloud liquid water was 0.06 ± 0.07 mm 

compared to an observed value of 0.03 ± 0.01 mm. An increasing trend 

of the Eta model to over-forecast this parameter during the colder 

months is seen in figure 5.19, which is confirmed by a higher RMSE 

during the same months (fig. 5.20). This indicates a small degree of 

inaccuracy of Eta to closely predict cloud liquid water during this time. 

This parameter, which is the amount of liquid water per unit volume of 

air, varies greatly from cloud to cloud and for an average typical cloud, 

it may vary from 0.05 to 3 mm. More studies are required to identify the 

reasons for this inaccuracy and to further fine-tune the physical 

package that calculates the hydro-meteorological variables. In spite of 

the improvements made to the Eta model in 1996 to the cloud 

prediction scheme, more work is needed in this respect, especially 
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concerning fine-mesh atmospheric prediction. TMI -derived cloud liquid 

water can greatly assist in the fine-tuning of this numerical scheme. 
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Figure 5.19. Mean error between the Eta and TMI-derived integrated 
cloud liquid water (mm). 
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Figure 5.20. RMSE between the Eta forecasted- and TMI-derived 
integrated cloud liquid water (mm). 
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5.5.3.3. Outgoing longwave radiation. 

The annual trend of the Eta-predicted radiative flux is very close to the 

observations. However, results show that the model tends to over­

forecast this parameter by an annual value of around 17 4 W m-2 

(fig. 5.21). Even if the stated systematic error of the observations is 

included (a maximum of 40 W m -2)103, these results still point to the 

model's poor performance. 
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Figure 5.21. Trend of average Eta forecasted- and NOAA Pathfinder 
derived- outgoing long wave radiation over the Ionian basin during 
1999. (NOAA POES: Polar Orbiting Environmental Satellite). 

In spite of the recent improvement made to the radiative physical 

package of the Eta model, a number of approximations are still 

embedded that limits the prediction of the radiative fluxes (Nickovic, 

2002, personal communication). 

One important aspect of the radiation package is the exclusion of the 

impact of dust aerosols from this scheme. The presence of dust is very 

significant especially in areas close to potential sources such as the 

Sahara desert. The lack of dust transport schemes and their radiative 

!OJ Section 4.4.1.5 . 
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effects on the overall total heat flux tends to over-estimate fluxes such 

as the outgoing longwave radiation by not taking into account the 

resultant longwave attenuation by dust. 

As shown by the annual dust profile in figures 4.22 a - 1, the annual 

AOT over the area of interest ranges between 50 to 270 (ODU xlOO). 

This thickness, which is principally caused by stratospheric dust 

particles, should lead to a diminution in the outgoing longwave 

radiation due to longwave absorption and scattering. This lack of 

physical treatment of the modelled radiation explains the overall higher 

predicted value for this parameter. 

Apart from the lack of radiative forcing due to dust, the radiative 

package also lacks a fine database of important variable atmospheric 

components (such as C02 and 03) as well as terrestrial components (soil 

type, albedo function, etc). This can therefore limit a realistic simulation 

of the radiative processes and their interaction with other model 

components. 

Papadopolous et al. ( 1997) describe sensitivity studies of the radiation 

parameterisation schemes of the Eta model. They noticed that over 

land, an improved description of the underlying surface 1mproves 

significantly the model performance. In the case of water surface, there 

is little description that is required to characterise it; however, the 

vertical description becomes extremely important. The Eta radiation 

package searches its internal database, such as C02 and 03, to 

characterise its vertical profile. The presence of the various phases of 

cloud water, including clouds become also a determining factor in the 

proper forecasting of the radiation fluxes. This study gives a good 

indication of the Eta's skill to predict these hydrometeorological 

parameters. 

To date, there is no study available in . .the literature on the performance 

of the radiation parameterisation scheme of the Eta model over the 
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oceans. Papadopolous et al. ( 1997) have tested the Eta scheme but over 

land surfaces using different model resolution grids. 

Another possible source of error is the prescribed SST throughout the 

model integration. By keeping the SST constant, the small changes that 

can in reality affect the atmosphere over the course of the numerical 

forecast are blocked. This restriction on the surface energy budget can 

also be an important factor that leads to model errors in the calculation 

and prediction of the radiative fluxes. 

5.5.3.4. Surface wind magnitude. 

A predicted annual 10 m speed magnitude over the area of interest is 

6.1 ± 1.9 m s-1 as compared to 5.3 ± 2.0 m s-1 given by remotely sensed 

observations. Figure 5.22 shows that both profiles follow closely the 

same trend, with prevalent low wind speeds during summer and 

stronger ones during winter. The variability shown by the the temporal 

trend in RMSE also follows the same pattern (fig. 5.23). Considering the 

error inherent in the TMI sensor's measurement of wind (± 1.0 m s-1 

against buoy data; -1.2 m s-1 against SOC data)104, an annual RMSE of 

1.48 m s-1 and mean bias of 0. 76 indicates a high Eta model skill. This 

value is lower than that obtained by a similar high-resolution (0.1 o by 

0.1 o domain) Eta model working over the Aegean basin (Nittis et al., 

2001). 

104 Section 4. 4.1.1. 
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Figure 5.22. Temporal trend of average Eta forecasted- and TMI­
derived 10m wind magnitude (m s-1). 
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Figure 5.23. RMSE between the Eta forecasted- and TMI- derived 
10m wind magnitude (m s -1 ). 
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5.5.3.5. Surface air temperature. 

The forecasted 2 m surface air temperature shows an annual value of 

20.9 ± 5.3 oc compared to the quasi-instantaneous estimation of 

20.8 ± 5 .0 °C (fig. 5.24). Therefore, results show a close agreement 

between the two sets of data. The mean annual bias is only 0.15 °C, 

indicating a slight over-estimation from the database (fig. 5 .25), 

particularly during May and August. The high-resolution Eta model 

used by Nittis et al. (2001) also shows a slight over-estimation over in 

situ buoy measurements. 

In the case of May, the monthly average is based on a small number of 

samples and is not representative of the climatic trend for this month. 

This is not the case for the August peak, which may indicate an 

anomaly from the climatological mean, on which the databaselOS is 

partly based. 
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Figure 5.24. Annual trend of Eta- forecasted 2m air temperature and 
quasi-instantaneous derivation of air temperature (0 C}. 

ws Section 4.4. 1.2. 
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Fig. 5.25. Over-forecasting of the Eta-predicted fields when compared to 
the SOC climatology over the area of interest. This trend is not as 
significant when predicted fields are compared with the quasi­
instantaneous (estimated) fields derived from the database. 

5.5.3.6. Sensible heat flux. 

Results show an annual mean predicted sensible heat flux of -15.3 

± 5.1 W m-2 compared to an observed mean of -5.9 ± 1.2 W m-2. A 

strong seasonality trend was observed with minima occurring during 

winter (January and December) and maxima during summer (fig. 5.26). 

The deviation of the forecasted field from the TMI-derived heat flux is 

evident by the mean error between the two fields (fig. 5.27). The over­

forecasting trend of the Eta model starts to increase from July to reach 

a maximum in December. This general seasonal variability follows that 

of the wind magnitude; the low wind magnitude values during summer 

forces close to positive values of sensible heat flux. This is clearly shown 

by the scatterplot between the predicted Eta- sensible heat flux and 

10m wind magnitude (fig. 5.28). 
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Figure 5.26. Temporal annual trend of predicted and estimated sensible 
heat flux (W m-2) . 
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Figure 5.27. Temporal mean bias between the Eta-predicted and 
estimated sensible heat flux (W m-2) . 
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Figure 5.28. Relation between estimated sensible heat flux (W m-2) and 
1 0 m wind magnitude (m s-1) over the area of interest. 

As expected, the monthly mean RMSE trend between the predicted and 

observed fluxes increases during the same period of time (i.e. July­

December). The pattern of the overall RMSE (with an annual mean of 

14.5 W m-2) also shows a low RMSE during the summer which 

increases during the winter (fig. 5.29). This is similar to the overall 

RMSE pattern obtained when observed and predicted wind magnitude 

fields are compared (fig. 5.23). 
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Figure 5.29. Monthly average RMSE between the Eta-predicted and 
estimated sensible heat flux (W m-2). 

5.5.3. 7. Latent heat flux. 

The predicted mean annual value of the latent heat flux is -89.5 ± 

19.07 W m -2 as compared to an observed value of -72.4 ± 11.0 W m -2 

(fig. 5.30). The annual trends of the mean error (fig. 5.31) and RMSE 

(fig. 5.32) are similar to the ones shown for the sensible heat flux. 

These results point to an over-forecasting tendency by the model for the 

latent heat flux from June onwards, with a parallel decrease in its 

performance as deduced from the RMSE (fig. 5.33 .). 
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Figure 5.30. Temporal variation between Eta-predicted and estimated 
latent heat flux (W m-2). 
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Figure 5.31 . Temporal variation of mean monthly error between Eta­
predicted and estimated latent heat flux (W m·2). 
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Figure 5.32. RMSE between Eta-predicted and estimated latent heat flux 
(Wm-2). 

5.5.4. Overview of the predictive skill of the nested Eta atmosphere 

model. 

The identification of the Eta's strengths and weaknesses helps to better 

interpret its output and adjust model biases. This information becomes 

extremely useful for the overall assessment of the predictive skill of the 

ocean forecasting system. In the case of the nested Eta model used in 

this study, the identified biases may be partially removed, but may not 

be entirely corrected or eliminated. Inherent in these biases are also 

errors originating from the collocated database. Model biases can be 

further analysed using exploratory spatial data analysis to identify 

model error drifts. 
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A general observation on the overall, climatological performance of the 

Eta nested model can still be made. Relative to the observations and 

derived products, the Eta model is accurate enough to predict surface 

air temperature and integrated precipitable water vapour. The model is 

also able to predict latent heat and sensible heat fluxes, the latter to a 

slightly lesser extent. Beljaars (200 1) shows how very often the errors in 

air-sea flux prediction are mainly due to systematic biases in the near 

surface humidity and temperature and less to the air-sea transfer 

formulation itself. 

The same results show that the Eta radiation package is limited in its 

ability to forecast the outgoing longwave radiation. NCEP states that the 

overall clear-sky radiation calculations of the Eta are accurate to within 

5%, at least when compared to detailed "line-by-line" radiation 

calculationsi06. This numerical package is highly depended on the 

accuracy of simulated cloud content, for which this study identified a 

slight over-forecasting of integrated cloud liquid water vapour, which is 

a good indicator of the vertical profile of the cloud content. NCEP 

however comments that the linkage between the simulated cloud 

content and radiation is rather crude, and may result in errors. 

Additionally, the horizontal and vertical errors in cloud location may 

also have a significant impact on the longwave radiation and associated 

heating and cooling rates at the model surface and upper layers. 

The nested Eta model used by this study contained limited information 

concerning the diurnal heating cycle and its influence on temperature, 

moisture, and wind fields. The sea surface temperature was supplied as 

fixed, initial information that did not change during the model's 

integration period, therefore providing no information on the diurnal 

heating. 

The skill of the Eta model to forecast 10 m wind magnitude deserves 

special attention since this variable significantly influences the 

prediction of the air-sea fluxes. Section 5.5.5 details the fine-tuning of 

106 http://www.meted.ucar.edu/nwp/pcu2/etarad1.htm (accessed on 01.11.04). 
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the Eta viscous sublayer scheme that assists the parameterisation of 

air-sea transfer of fluxes, including momentum fluxes. 

Atmospheric modellers tend to stay away from presenting a list of biases 

for models that are evolving continuously. Very often, only generic 

presentations of the model's ability to forecast major events is provided 

to the public, while detailed analysis is left for internal assessment and 

model improvement. Detailed model verification information is never 

issued by the major ocean and weather forecasting systems working in 

the Mediterranean, such as SKIRON. ECMWF issues only generic data 

either seasonal or yearly for major variables, such as geopotential over 

large areas. The Mediterranean Forecasting System is still at the initial 

stages of verifying the various air-sea surface flux packages that can be 

used for its basin-scale ocean models. An inter-comparison study 

between the present results and other similar forecasting systems was 

therefore impossible. 

The single forecast performance results presented by this study provide 

distinctive information on the performance of the Eta model to forecast 

especially air-sea surface fluxes and related geophysical fields over the 

ocean surface. The numerical schemes validated by this study are the 

same as those found in the model version released at the end of 2002. 

This implies that the present results can be used to understand and 

fine-tune such schemes. 

5.5.5. Fine-tuning the Eta model viscous sublayer depth. 

Section 5.5.5. describes the results related to the fine-tuning of the Eta 

viscous sublayer scheme. The air-sea transfer formulation in the Eta 

model consists of three elements: (i) roughness length formulations for 

momentum, heat and moisture, (ii) Monin-Obukhov similarity functions 

to account for stability effects and (iii) a boundary layer similarity based 

gustiness parameterisationi07. The fine::-tui?Jpg of the_ formulation of the 

107 Appendix II; Section IL 1 
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viscous sublayer depth can result in a more accurate air-sea transfer 

including the prediction of momentum fluxes at the ocean surface. 

Here, the sublayer depth is studied and refined according to specific 

wind categories that would lead to different air-sea transfer conditions 

within the viscous sublayer scheme. It is important to note that the 

distributed version of the Eta model is provided with a single value for 

the viscous sublayer depth. The relation between the normalised RMSE 

and the respective wind speed magnitude are shown in figures 5.33 a 

to d. The entire experimental data is tables VI.8 a-b as shown in 

Appendix VI. 

Figures 5.33 a to b show the normalised indices obtained for the four 

sets of ~ values plotted against increasing wind speed ranging from (a) 

3.0 to 3.9 m s-1, and (b) 4.0 to 4.9 m s-1. These results show that a 

value of ~ = 0. 7 gives the lowest RMSE for a low wind speed regime 

calculated by the model (3.0 - 4.0 m s-1), which is seen to slightly 

deteriorate with increasing wind speed. The next best value for~ is 0.8. 

The most accurate prediction for the viscous sublayer model under a 

wind speed regime that ranges from 4.0 - 5.0 m s-1 is provided by ~ = 

0.2. The next best values are 0.35 and 0.7 in decreasing order 

respectively. 

Figure 5.33 c indicates that a ~ value of 0.2 continues to give 

consistently low RMSE when the model wind speed ranges from 6.1 -

6.9 m s-1. Figure 5.35 d shows that the optimal ~value for the highest 

wind speed regime is 0.8. 

Figure 5.33 d ·points to an interesting aspect of the viscous sublayer 

model. The drop in the normalised index for all four ~ values suggest an 

inability of ~ to be effective. At wind speeds higher than 8.0 m s-1, the 

viscous sublayer model is likely to become ineffective and the other 

scheme- the turbulent model scheme of Mellor-Yamada becomes active 

~due to the turbulent pro'cesses o~~~;riilg ~~t .these higher wind speeds. 

The common tapering of the normalised RMSE to the lowest levels at 
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the higher wind speed spectrum indicates that the entire range of wind 

speed used in this experiment addresses the full functionality of the 

viscous sublayer model. 

These results are condensed in figure 5.34 which provides an overall 

relation between the normalised RMSE and calculated wind speed for 

the four values of ~· Whereas a ~ value of 0.2 gives the best overall 

result when the model wind speed ranges between 4.4 and 8.1 m s- 1, 

the lowest wind speed regime seems to be best predicted when ~ equals 

to 0.7. At the highest range of wind speed (i.e. > 8.1 m s- 1), a value of 

0.8 provides an overall better performance of the viscous sublayer 

model to predict the model's lowest surface wind speed. 
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Figures 5.33 a - b. Linear trends of 
normalised RMSE (m s-1) obtained for the four 
sets of ( values plotted against increasing 
wind speed, ranging from (a) 3.0 to 3.9 m s-1, 

and (b) 4.0 to 4.9 m s-1. 
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Figure 5.34. Trends of normalised RMSE plotted against the predicted 
1 0 m wind magnitude (m s ·1 ). 

( = 0.80 
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( = 0.35 
( = 0.20 

Table 5.2 summarises the optimisation of the viscous sublayer depth 

according to the 10 m wind speed as modeled by Eta. The observed 

relation between ~and the wind speed can be embedded in the viscous 

sublayer scheme of the Eta model. A code can then be used to 

dynamically tune the scheme according to evolving surface wind 

conditions that are being simulated by the model. 
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Predicted 10 m wind speed regime (m s·1) Optimal value of' 

3.0- 3.9 0.70 

4.0-6.9 0.20 

7.0- 12.0 0.80 

Table 5.2. Optimal (values for different 10 m wind speed regimes. The 
value of ( can be dynamically adjusted according to modality of the 
predicted wind speed regime. 

5.5.6. Exploratory spatial data analysis. 

The impact of fine-tuning the viscous sublayer on the final quality of the 

10 m wind speed forecasts was assessed spatially. This was done using 

GIS and spatial overlaying of the 10 m wind forecasts with collocated 

observations and subsequent analysis of their similarity. Spatial 

analysis was able to identify the resulting relationship of class 

attributes as well as model drift errors. 

5.5.6.1. Spatial similarity and feature matching analysis. 

Because of the extensive nature of this spatial analysis, five case 

studies are presented that best describe the results of the fine-tuning of 

the model scheme at different wind speed regimes. 

(i) Single-forecast spatial similarity analysis for 2nd July at 1500 

UT. 

Figures 5.35 a to c represent an analysis of the spatial similarity 

between forecasted and observed fields. Black pixels represent nulled 

pixels that are below 3.0 m s- 1. The average forecasted wind speed for 

this case study was an average of 3.3 m s- 1. These maps show that the 

number of valid pixels is higher when the value of~ is 0. 7. 
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In addition, figure 5.35b shows that a I; value of 0. 7 results in a higher 

degree of similarity between the predictions and observations than does 

figure 5.35a. A closer inspection of the contoured TMI-observed wind 

field (fig. 5.35c) suggests that pixel categories attributed to a wind speed 

range of 3.0 to 5.0 m s-1 are being more efficiently predicted when the 

viscous scheme used a I; value of 0. 7. Spatial similarity analysis 

therefore supports the results obtained by the standard verification. 

(ii) Single-forecast spatial similarity analysis for 2nd August at 2100 

UT. 

For this case study, the average forecasted wind field is 4.1 m s-1. 

Spatial similarity analysis shows that a I; value of 0.7 is also optimal, 

and this I; value leads to a larger number of valid pixels. 

What is more important is that a 1; value of 0.7 gives a larger portion of 

pixel classes that are most similar to observations. The contoured TMI­

observed wind field (fig. 5.36c) again suggests that the choice of this 

value leads to better prediction when the predicted wind speed regime is 

between 3.0 to 5.0 m s-1. These results further support the use of 

I;= 0.7 for low wind speed regimes. 

(iii) Single-forecast spatial similarity analysis for 12th July at 3300 

hrs (i.e. at 13.07.99@ 0900 UT}. 

The benefit of using a I; value of 0.2 for higher wind speeds (an average 

of 5.4 m s-1) is shown by this case study. Both spatial similarity maps 

(figs. 5.37a and 5.37b) have similar valid pixels indicating close 

complimentary; however, a I; value of 0. 7 gives a larger area of 'least 

similar' pixels, especially in categories that are attributed to wind 

speeds that are greater than 5.0 m s-1. This is easily observed when the 

spatial similarity maps are compared to the contoured TMI-derived wind 

field (fig. 5.37c). This ~technique gives results that complement the 

standard verification measures. 
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(iv) Single-forecast spatial similarity analysis for lOth January at 

3000 UT (i.e. at 11.01.99 at 0600 UT). 

This is the best case study showing the most significant fine-tuning of 

the viscous sublayer scheme. When the average predicted wind speed is 

8.0 m s- 1, the use of a ~value of 0.8 is accompanied by a high degree of 

similarity between the resulting forecasts and collocated observations 

(fig. 5.38d). What is also noticeable is that identical similarity maps are 

obtained when the~ value equals 0.2, 0.35 and 0.7, indicating again108 , 

the ineffectiveness of using these values for this range of wind speed. 

(v) Single-forecast spatial similarity analysis for 09th November at 

1800 UT. 

Both figures 5.39a and 5.39b show similar spatial patterns. However, a 

~ value of 0.2 clearly gives a larger proportion of 'most similar' pixel 

classes. In this case, spatial similarity analysis suggests that the use of 

a ~ value 0. 7 leads to a model error drift, especially when strong 

gradients of wind speed categories between 7.5 and 9.5 m s- 1 are 

present. On the contrary, these gradients are better resolved and 

predicted when the ~value is 0.2. These results again complement the 

ones obtained in section 5.5.4. 

The design and use of a spatial similarity procedure therefore proved 

extremely useful to identify spatial attributes that assessed the fine­

tuning of the viscous sublayer model of the Eta model. The routine that 

defined the spatial exploratory procedure 109 proved to be sensitive 

enough for the present objectives, i.e. to identify the relationship of 

class attributes between the optimally forecasted and observed wind 

fields, as well as exposing model drift error. This assessment enabled 

the fine-tuning of the viscous sublayer depth ~· 

JOB As)r:t s~_ction 5.5.4. 
109 Section 5.4.3.1. 
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(a) l;;= 0.2 (b) l;;= 0.7 

LEGEnD FOR SIMLARITi M!I.P 

- NULL 

"-

. - (c) TMI-observed wind field 

Figure. 5. 35. Spatial similarity analysis between collocated, filtered Eta 15-hr forecasted wind fields and 
observed, filtered 1 0 m wind magnitude field on the 2nd of July 1999. The observed, contoured 1 0 m 
wind magnitude field is shown for reference. The average forecasted wind field regime is 3. 3 m s-1• The 
black area represents nulled pixels that are below 3. 0 m s-1• 
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(a) l;= 0.2 (b) l;= 0.7 

LEGEnD FOB SIMLABI1Y MU> 

- NULL 

~ 

(c ) TMI-observed wind field 

Figure 5.36. Spatial similarity analysis between collocated, filtered Eta 21-hr forecasted wind fields and 
observed, filtered 1 0 m wind magnitude field on the 2nd of August 1999. The observed, contoured 10 m 
wind magnitude field is shownfor reference. The average forecasted windfield regime is 4.1 m s -1. 
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(a) (,= 0.2 (b) (,= 0.7 

LI!XiEHD FOR SIMLARITY :M!.P 

-NULL 

. ~ 

(c) TMI-observed wind field 

Figure 5. 3 7. Spatial similarity analysis between collocated, filtered Eta 33-hr forecasted wind fields and 
observed, filtered 10 m wind magnitude field on the 12th July 1999. The observed, contoured 10 m wind 
magnitude field is shownfor reference. The average forecasted windfield regime is 5.4 m s -1. 
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(a) s; 0.2 (b) s; o.as (c) s; 0.70 (d) s; o.s 

LEGEnD FOR SIMLARITY MU> 

- NULL 

\'1 ~ ~ 

. - (e ) TMI-observed wind field 

Figure 5.38. Spatial similarity analysis between collocated, filtered Eta 30-hr forecasted wind fields and 
observed, filtered 10 m wind magnitude field on the 1Oth January 1999. The observed, contoured 1 0 m 
wind magnitude field is shown for reference. The average forecasted wind field regime is 7. 9 m s-1• 
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(a) s= 0.2 (b) s= o.7 

LBGEND FOR SIMLARI'IY MU> 

- NULL 

1.'1 ' -

(c ) TMI-observed wind field 

Figure 5.39. Spatial similarity analysis between collocated, filtered Eta 18-hr forecasted wind fields and 
observed, filtered 1 0 m wind magnitude field on the 9th November 1999. The observed, contoured 1 0 m 
wind magnitude field is shown for reference. The average forecasted wind field regime is 8. 7 m s -1 . 
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Exploratory spatial data analysis demonstrated that it complements the 

standard verification procedures used to validate the performance of the 

scheme. However, spatial analysis, in particular spatial similarity, 

enabled the identification of model error drifts and the characterisation 

of spatial improvements following adjustment of the viscous sublayer 

depth. Beljaars (200 1) show how further tuning of this scheme can be 

brought about by including ocean skin temperature effects (warm layer 

and cool skin), and the effect of salinity on the saturation water vapour 

pressure at the ocean surface. 

5.6. Summary. 

This chapter provided a detailed study on the predictive skill of the Eta 

model to provide suitable met-ocean parameters over a wide range of 

climatic regimes. Section 5.2.1. described the setup and initialisation of 

the limited area model using boundary conditions derived from a global 

model. This section described how these fields were smoothed, balanced 

and improved as the initial boundary conditions for the nested 

atmosphere model. 

By means of the high-resolution database developed in chapter 4, the 

research questions put forward in section 2.1.2. were addressed. The 

level of scalar and spatial accuracy of the nested, high resolution Eta 

model was identified using a novel objective approach as described in 

section 5.4.3. 

Section 5.5.3. discussed the current forecasting skill of the Eta model to 

predict air-sea fluxes and related basic variables. The annual 

forecasting trends of the Eta model were also discussed. Compared to 

collocated observations taken from the database, the ~ta model showed 

a very good skill to predict the integrated precipitable water vapour 

(mean bias of -0.05 g cm-2), surface wind magnitude (mean bias of 

0.78 m s- 1), surface air temperature (mean bias of 0.15 oq, latent heat 
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flux (mean bias of -17.1 W m-2) and sensible heat flux (mean bias of 

-9.2 W m-2). Eta model produced a bias of 174.4 W m-2 when its 

predicted outgoing longwave radiation was compared to satellite 

estimations. 

Apart from summarising the general forecasting skill of the Eta model, 

this chapter demonstrated the efficacy of remote sensing to assess and 

rate the performance of the modelling system used in the present study. 

Section 5.5.4. discussed the fine-tuning of the Mellor-Yamada 

turbulence closure scheme. The results of this experiment and 

suggestions for their operational have been discussed. A novel, 

exploratory spatial similarity analysis was presented and used to 

explore the spatial accuracy of this modularity as described in section 

5.5.5. 

The next chapter addresses the impact of initialising this nested 

atmosphere model with high-resolution SST data derived by and 

orbiting passive microwave sensor. Special emphasis is given to the use 

of exploratory and geostatistical analysis to study the resulting impact 

on the accuracy of the model predictions. 
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Chapter 6 

IMPACT OF USING MICROWAVE-DERIVED SEA 

SURFACE TEMPERATURE TO INITIALISE THE 

LOWER BOUNDARY CONDITION 

OF THE ETA MODEL. 

6.1. Introduction. 

The sea surface temperature (SST) plays a crucial role in the coupling of 

the atmosphere and ocean (Tsintikidis & Zhang, 1998). It is a 

controlling factor in the exchange of heat and moisture (evaporation), 

thus determining the marine boundary layer stability. The sea surface 

temperature also interacts with the atmosphere leading to convective 

processes that in turn affect the thermohaline conditions of the oceans 

(Tsintikidis & Zhang, 1998). 

In numerical weather prediction, this surface variable plays a crucial 

component in deriving a true representation of the surface processes at 

the marine boundary layer of numerical models. Hence, an unrealistic 

representation of the ocean surface leads to errors in the model 

forecast, in particular to fine-resolution numerical modelling110 . The 

need for improved representation of the actual SST conditions is 

extremely important and becomes therefore mandatory. 

6.2. The experiment. 

This chapter presents an evaluation of novel remotely-sensed datasets 

u~ed to initialise and hopefully improve the ocean forecasting system. 

110 

http:/ I www. met. tamu. edu/ personnel/ faculty/ fzhang/ ATM0689/ Lecture19/ Lecture 19. 
doc (accessed on 0 1.11. 04). 
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The rum is to test the suitability of data from orbiting Tropical 

Microwave Imager (TMI) to improve the forecast of air-sea fluxes that are 

used to force the underlying ocean model. The impact of using this 

alternative source of SST is assessed on the basis of the skill of the 

model to forecast near surface geophysical parameters that are sensitive 

to the prescribed initial conditions. Any improvement in forecasting 

capability would very much benefit application in areas such as oil spill 

warning systems (e.g. RAMSES), and for warning of extreme events in 

the Mediterranean region (e.g. COMPASS). 

The study area covers an open ocean domain over the Ionian basin 

(fig. 5.2). Two parallel and identical numerical atmosphere models are 

used to produce a series of forecasts. The lower surface boundary 

condition of one of the models is initialised using remotely sensed SST 

retrieved by the TMI sensor during the period January to December 

1999. The initialisation of the atmosphere model using TMI data was 

denoted as 'experimental and compared with a 'twin' setup using SST 

data derived from the Global Data Assimilation System of the National 

Centre for Environment Prediction (NCEP) in Washington. The latter 

dataset is routinely used by operational NWP agencies to initialise their 

local area atmosphere models to produce daily atmospheric forecasts 111 . 

The Eta model used is the nested high-resolution version described in 

section 5.2.1. The experimental work was carried out during the first 

quarter of 2000 as soon as a full-year, global, high-resolution SST data 

derived from the orbiting microwave sensor was available for public use. 

During 1999, the TMI sensor was the only orbiting instrument able to 

retrieve SST data usmg passive microwave radiometry. Other 

geophysical fields were simultaneously collected from the same sensor, 

including 10 m wind magnitude to assess the forecasting quality of the 

experimental setup. 

111 e.g. by the Euro-Mediterranean Centre in Insular Coastal Dynamics and by the 
RAMSES oil spill modelling system. 
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The field of view of the TMI sensor is limited to around 40°S and 40°N, 

since a low inclination orbit was chosen for the satellite to provide 

continuous monitoring of tropical latitudes. In this context, the 

geographical coverage of the TMI data also defined the local area 

domain over the central Mediterranean, which did not exceed 40°N in 

latitude (fig. 6.1). 

A schematic diagram of the experimental procedure is shown in figure 

6.2. The main experimental point is the "switching" of SST sources used 

to initialise the same atmosphere model. The intialisation of the lower 

boundary conditions is the only variable used in the experiment while 

all other parameters remain constant. This includes the definition of the 

lateral boundary conditions of the model. 

6.3. New approaches in model validation. 

Model verification measures are applied to determine the quality of 

forecasts and their relative accuracy with collocated observation(s). For 

the present objectives, it is convenient to divide model diagnosis into 

two main areas: descriptive and inferential statistics. Descriptive 

statistics relate to the statistical summaries of the forecasted and 

remotely-sensed data. This approach condenses the large amount of 

data that is generated from the experiment into an appropriate 

summary representation of the most important variations of the 

predicted data. These measures include mean, standard deviation, bias 

error and mean square error. 

Inferential statistics consists of methods and procedures used to draw 

conclusions regarding the underlying processes and quality of the 

generated results. Aspatial methods are used to quantify the skill score 

of each model system to f6recasf' the· geophyskal field. Most current 

statistical tools used to assess the skill of NWP models use classical 

aspatial methods. A classical example is the approach taken by the 
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Figure 6.1. An example of a global wind magnitude profile derived by the TMI sensor onboard the Tropical Microwave 
Mission (TRMM) satellite during its ascending path on July 22, 1999. The inset represents the geophysical field over 
the Mediterranean area, not exceeding 400 N. 
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Figure 6.2. Schematic diagram of the experimental procedure to assess the impact when TMI-derived 
remotely-sensed (RS) SST that is used to initialise the surface boundary condition of the high-resolution 
atmosphere model. 
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NOAA Forecast System Laboratory to validate their AWIPS forecast 

preparation system. 

This chapter attempts to approach model validation from a new angle 

by using the concepts of exploratory spatial data analysis and geo­

statistics. This approach is somewhat unique to numerical weather 

prediction community, since exploratory spatial data analysis is much 

more familiar to geologists and soil scientists than to meteorologists. In 

doing so, the present study used special techniques to detect and 

assess spatial patterns and their modelling based on the data 

attributes. 

To address these novel approaches in numerical weather prediction, a 

match score analysis is here developed to assess the impact, in spatial 

terms, of introducing a better representation of the SST on the 

modelling system. Apart from impact assessment, additional spatial 

techniques are applied to better understand the strengths and 

weaknesses of the atmosphere model. These include a measure of 

spatial similarity to highlight the spatial accuracy of the forecasts, and 

semi-variance and variographic analysis to denote the spatial structure 

or 'signature' of forecasted and observed fields, as well as the variability 

of the two set of forecasts. Variography is used to understand the 

spatial structure of the forecasted variables and to explore the scaling 

properties of the modelling system. This surface analysis is applied to 

understand the spatial relationship between the fields predicted by the 

reference and experimental model systems and collocated, remotely 

sensed observations. The method provided a quantitative measure that 

indicates how well the pairs of spatial data sets compare with 

observations 
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6.4. Methodology. 

6.4.1. Remotely sensed SST and wind magnitude. 

The process of retrieving and formatting the SST and 10 m wind 

magnitude data from the TMI sensor onboard the Tropical Rainfall 

Microwave Mission (TRMM) Satellite is described in section 4.3.1.1. 

The TMI daily dataset were studied to note orbit time and the integrity 

of the SST data field over the area corresponding to the high-resolution 

Eta domain. This enabled the selection of the appropriate sets of SST 

data to initialise the Eta model at 00 UTC. 

The source code used to organise and format these data is 

TMI2monthlyORB.f by specifying 00 (i.e. ascending) or 12 (i.e. 

descending): 

TMI2monthlyORB 19990722TM 0 

For example, in the script file below: 

foreach dd ( 22 23 24 25 26 27 28 29 30 31) 

cp bdatjJulyj199907"$dd"TM.GZ . 

gzip -d 199907"$dd"TM.GZ . 

TMI2monthlyORB 199907"$dd"TM 0 

rm -f 199907"$dd"TM 

end 

only geophysical parameters from the ascending orbits are selected, 

decoded, processed and sequentially written in GrADS format. The 

resulting tm2JULcentORB.gdat was read using the 

tm2JULcentORB. ct[l12. 

112 Appendix I; Section I. 1. 1. 
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6.4.2. Quality control. 

Special attention has been gtven to the quality control and model 

initialisation aspects that allow a strict quality control of the data. This 

check ensures the insertion of good quality initial SST fields in the 

numerical model (tables 6.1 a-c). This included: 

1. time of retrieval± 3 hours from OOhrs UT initialisation time. 

2. no data gaps due to precipitation. 

3. wind speeds over model domain higher than 2 m s-1 but not 

exceeding 12 m s-1. 

4. spatial auto-correlation (Moran's Index I) of SST raster fields 

exceeding 0.76. 

5. full-data integrity over the area of interest in the Ionian basin. 

6.4.3. Initialisation of the lower surface boundary condition of the 

Eta model. 

Details concerning data analysis and selection of valid dates for model 

initialisation using TMI-derived SST are given in tables 6.1 a - c. The 

selection of dates for which the model was initialised with this SST data 

also depended on the availability of both GDAS-derived SST (i.e. the 

data source for the reference setup) and WAFS lateral boundary 

conditions. Selection also rested on the availability of 10 m wind 

magnitude observations which ideally had to coincide with the 21st -, 

24th -, or 27th-hour forecasted fields, since this interval represents 

sufficient enough time for the atmosphere model to remove any "spin­

up" effect originating from the start of the model integration run. 

The experimental work consisted of a parallel series of high resolution, 

_bind-cast model simulations. The reference model setup used GDAS­

SST model analyses as the initial lower surface boundary data at 00 UT 

(see fig. 6.3. for an example of a GDAS-derived SST field) together with 

WAFS data as the initial lateral atmospheric boundary conditions at 
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Month: JANUARY 
Dates 18 19 20 21 22 23 24 25 26 27 28 

SST swath close to 00± 3hrs UT over domain ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

TMI SST with no rain pixels ~ ~ ~ ~ 

TMI data for model verification ~ ~ ~ ~ ~ ~ ~ ~ ~ 

Availability of GDAS-SST data* ~ ~ ~ ~ ~ ~ ~ ~ ~ 

Availability of lateral boundary conditions1 
~ ~ ~ ~ ~ ~ ~ ~ ~ 

Valid TMI SST to initialise lower boundary ~ ~ ~ 

MONTH: FEBRUARY 
Dates 2 4 5 17 24 25 26 27 

SST swath close to 00± 3hrs UT over domain ~ ~ ~ ~ ~ ~ ~ ~ 

TMI SST with no rain pixels ~ ~ ~ ~ ~ ~ ~ ~ 

TMI data for model verification ~ ~ ~ ~ ~ ~ 

Availability of GDAS-SST data* ~ ~ ~ ~ ~ ~ 

Availability of lateral boundary conditions! ~ ~ ~ ~ ~ ~ ~ ~ 

Valid TMI SST to initialise lower boundary 

MONTH: MARCH 
Dates 5 6 7 8 9 10 11 12 14 

SST swath close to 00± 3hrs UT over domain ~ ~ ~ ~ ~ ~ ~ ~ ~ 

TMI SST with no rain pixels ~ ~ ~ ~ ~ ~ ~ ~ ~ 

TMI data for model verification ~ ~ ~ ~ ~ ~ ~ 

Availability of GDAS-SST data* ~ ~ ~ ~ ~ ~ ~ 

Availability of lateral boundary conditions1 
~ ~ ~ ~ ~ ~ ~ 

Valid TMI SST to initialise lower boundary ~ ~ ~ ~ ~ 

MONTH: APRIL 
Dates 21 22 23 25 26 27 28 30 

SST swath close to 00± 3hrs UT over domain ~ ~ ~ ~ ~ ~ ~ ~ 

TMI SST with no rain pixels ~ ~ ~ ~ ~ ~ ~ ~ 

TMI data for model verification ~ ~ ~ ~ ~ ~ ~ ~ 

Availability of GDAS-SST data* ~ ~ ~ ~ ~ ~ ~ 

Availability of lateral boundary conditions! ~ ~ ~ ~ ~ ~ ~ 

Valid TMI SST to initialise lower boundary ~ ~ ~ ~ ~ ~ 

Table 6.1 a. Use of valid TMI-derived SST data for numerical model 
initialisation from January - April 1999. The choice of forecasting dates 
depended on criteria listed in sequential order. 

1 Lateral boundary conditions produced by WAFS consists of 6-hourly modelled data. Data 
unavailability was due to connectivity problems with WAFS server. 

*GDAS-SST data consists of OOhrs modelled surface boundary conditions for the 
atmosphere model. Data unavailability was due to connectivity problems with GDAS 
server. 
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Month: MAY 
Dates 2 3 4 5 6 15 16 17 18 

SST swath close to 00± 3hrs UT over domain Ill Ill Ill Ill Ill Ill Ill Ill Ill 
TMI SST with no rain pixels Ill Ill Ill Ill 
TMI data for model verification Ill Ill Ill Ill Ill Ill Ill Ill Ill 
Availability of GDAS-SST data* Ill Ill Ill Ill Ill "' Ill Ill 
Availability of lateral boundary conditions1 

Ill "' Ill Ill Ill "' "' Ill 
Valid TMI SST to initialise lower boundary "' Ill 
Valid TMI SST to initialise lower boundary 

Month: JULY 
Dates 22 23 24 25 26 27 28 29 30 31 

SST swath close to 00± 3hrs UT over domain Ill Ill Ill Ill Ill Ill "' "' Ill Ill 
TMI SST with no rain pixels Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill 
TMI data for model verification Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill 
Availability of GDAS-SST data* Ill Ill Ill Ill Ill Ill Ill Ill "' Ill 
Availability of lateral boundary conditions1 

Ill Ill Ill Ill Ill Ill Ill Ill "' Ill 
Valid TMI SST to initialise lower boundary Ill Ill Ill Ill "' Ill Ill "' Ill Ill 

Month: AUGUST 
Dates 2 3 4 5 6 

SST swath close to 00± 3hrs UT over domain Ill Ill Ill Ill "' Ill 
TMI SST with no rain pixels Ill Ill Ill Ill Ill Ill 
TMI data for model verification Ill Ill Ill Ill Ill Ill 
Availability of GDAS-SST data* Ill Ill Ill Ill "' Ill 
Availability of lateral boundary conditions1 

Ill Ill Ill Ill Ill Ill 
Valid TMI SST to initialise lower boundary "' Ill Ill Ill Ill Ill 

Month: SEPTEMBER 
Dates 9 11 12 13 14 16 17 18 19 20 21 

SST swath close to 00± 3hrs UT over domain Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill 
TMI SST with no rain pixels Ill Ill Ill Ill Ill 
TMI data for model verification Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill 
Availability of GDAS-SST data* Ill Ill "' Ill "' Ill Ill Ill Ill Ill 
Availability of lateral boundary conditions! Ill Ill "' Ill Ill Ill "' Ill Ill Ill 
Valid TMI SST to initialise lower boundary "' Ill Ill Ill 

Table 6.1 b. Use of valid TMI-derived SST data for numerical model 
initialisation from May - September 1999. The choice of forecasting dates 
depended on criteria listed in sequential order. 

1Lateral boundary conditions produced by WAFS consists of 6-hourly modelled data. Data 
unavailability was due to connectivity problems with WAFS server. 

*GDAS-SST data consists of OOhrs modelled surface boundary conditions for the 
atmosphere model. Data unavailability was due to connectivity problems with GDAS 
server. 
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Month: OCTOBER 
Dates 22 23 24 26 27 28 29 30 31 

SST swath close to 00± 3hrs UT over domain ..; ..; ..; ..; ..; ..; ..; ..; ..; 
TMI SST with no rain pixels ..; ..; ..; ..; ..; ..; ..; ..; 
TMI data for model verification ..; ..; ..; ..; ..; ..; ..; ..; 
Availability of GDAS-SST data* ..; ..; ..; ..; ..; ..; ..; 
Availability of lateral boundary conditions' ..; ..; ..; ..; ..; ..; ..; ..; ..; 
Valid TMI SST to initialise lower boundary ..; ..; ..; ..; ..; ..; 

Month: NOVEMBER 
Dates 1 2 3 4 5 

SST swath close to 00± 3hrs UT over domain ..; ..; ..; ..; ..; 
TMI SST with no rain pixels ..; ..; ..; ..; ..; 
TMI data for model verification ..; ..; ..; ..; ..; 
Availability of GDAS-SST data* ..; ..; 
Availability of lateral boundary conditions' ..; ..; ..; 
Valid TMI SST to initialise lower boundary 

Month: DECEMBER 

Dates 9 10 12 13 14 15 16 17 18 19 20 21 

SST swath close to 00± 3hrs UT over domain ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; 

TMI SST with no rain pixels ..; ..; ..; ..; ..; ..; ..; ..; ..; 
TMI data for model verification ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; 

Availability of GDAS-SST data* ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; 

Availability of lateral boundary conditions' ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; 

Valid TMI SST to initialise lower boundary ..; ..; ..; ..; ..; ..; ..; ..; 

Table 6.1 c. Use of valid TMI-derived SST data for numerical model 
initialisation from October- December 1999. The choice of forecasting dates 
depended on criteria listed in sequential order. 

/Lateral boundary conditions produced by WAFS consists of 6-hourly modelled data. Data 
unavailability was due to connectivity problems with WAFS server. 

*GDAS-SST data consists of OOhrs modelled surface boundary conditions for the 
atmosphere model. Data unavailability was due to connectivity problems with GDAS 
server. 
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Figure 6.3. GDAS-derived modelled SST data in °C (originally 1° by 1° 
horizontal grid resolution) for 22nd July 1999 at 00 UT over the model 
integration domain. The data is interpolated onto 0.042° grid. 
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Figure 6.4. TMI-derived SST data in oc (originally 0.25° by 0.25° 
horizontal grid resolution) for 22nd July 1999 at 2.85 UT over the 
model integration domain. The data is interpolated onto 0.042° grid. 
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00 UT respectively and constant input data 113. The model output was 

referred to as the "Reference forecast". 

An identical experimental model setup was set up with exactly the same 

numerics as the reference model but using, instead of GDAS-SST data, 

the denser grid of SST observations collected by the TMI sensor (see fig. 

6.4. for an example of a TMI-derived SST field). The model output was 

referred to as the "Experimental forecast". 

The switching between the two sources of SST data was done by making 

available and accessing the appropriate temporal SST dataset, using 

sst.f whereby it calls TMI-SST according to user-defined date (datetohr) 

from the 'tm2JULcentORB.gdaf data file. The subroutine RGRADS 

call RGRADS (id7, 1, 999, 0, IME, JME, 1, 0., WW, NLRET) 

browses the 'tm2JULcentORB.gdat' file until it finds the SST field with 

the specific code of 999 and defines the SST value as WW. The script 

then re-interpolates the 0.25° by 0.25° latitude-longitude grid SST onto 

the respective Eta model domain resolution. In this experiment, the 

switching between the two SST sources was the only difference made to 

the entire model processing as described in section 5.2.1. 

6.4.4. Generation of high-resolution, forecasted air-sea fluxes. 

In total, 92 forecast runs were processed 114, each taking around 6 

hours to complete. The 36-hr forecasted air-sea surface fluxes for both 

the reference and experimental models were produced using fortran 

code fluxes.f us and visualised 116. These fluxes were then extracted into 

gridded ascii XYZ format using fortran code grads2xyz.f1 17, for further 

analysis 6.4.5. Model validation. 

113 Section 5.2.1. 
114 Section 5.2.1. 
11s Appendix II; Section II.2. 7. 
116 Section 5.2.1. 
117 Appendix II; Section 1!.2.2. 
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6.4.5. Model validation. 

6.4.5.1. Basic statistical distributions and summary measures. 

The mean bias showed how much, on average, the forecasts differ from 

the observations. The standard deviation is a measure of scatter in the 

results; it is zero when the bias is non-zero, if all the forecasted values 

are the same. 

6.4.5.2. Model performance measures. 

The Mean Square Error combines the effects of bias and scatter; it 

would be equal to the bias if the standard deviation were zero. 

A skill score (SS) was used to reflect the average accuracy of the 

experimental forecasts in the sample relative to that produced by the 

reference setup (Murphy, 1997). SS was based on the mean square 

error, defined as: 

SS= 1-(MSEexp/MSEref) 

where MSEexp is the mean square error of the experimental forecasts 

and MSEref is that of the reference forecasts. 

6.4.5.3. Spatial Exploratory Data Analysis. 

ESDA was performed using three independent approaches to analyse 

the performance of the competing models in spatial terms. These were 

(1) Spatial Match Score Analysis, (2) Spatial similarity and feature 

matching analysis and (3) Residual semi-variogram analysis. 
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6.4.5.3.1. Spatial Match Score Analysis. 

A spatial measurement was developed to assess any improvement in the 

spatial accuracy of the experimental over the reference model forecasts. 

This procedure highlighted (in graphic form) the exact geographical 

placement of the forecasted and observed collocated and quasi co­

temporal10 m wind magnitude. 

This is a measure of the correct placement and timing of a forecast for a 

particular event (Glahn et al., 1991). A match in terms of the exact 

overlap between forecast (f) and observation (o) for an occurrence is 

represented as a hit (h). Statistical match score compares the number 

of correct placed forecasted pixels to the total area where the event was 

observed. Match score is calculated according to: 

Match Score = h/ (f + o - h) 

MS values ranged from 0.0 to 1.0, where a score of 1 represents a 

perfect match with the observations and a score of 0 indicates no skill. 

To facilitate calculation of the score, discrete parameter values in both 

forecasted and observed fields were categorised, and the resulting 

classes matched for exact overlap. 

The calculation of the spatial match score consisted of a sequential 

series of GIS-analysis procedures on a grid cell or raster approach. This 

approach was useful for a number of reasons, such as (1) continuous 

nature of the real (i.e. floating point) data in space (2) easy integration of 

digital remotely sensed imagery with the numerical model output of the 

two forecasting systems and (3) each information type can be stored as 

a separate data layer for eventual spatial statistical analyses. The 

analysis was as follows: 
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1. Three datasets (in ascii XYZ real values) from each single forecast 

date were prepared equivalent to the Reference, Experimental and co­

located observations. These were imported into ERMapper118 using 

ASCII BIL option with a 61 by 82 grid. 

2. Each dataset was filtered and recoded according to predefined 10 m 

wind magnitude intervals as shown in table 6.2. 

Class number 10m wind magnitude interval 

1 2.0- 3.0 

2 3.1-4.0 

3 4.1-5.0 

4 5.1-6.0 

5 6.1-7.0 

6 7.1-8.0 

7 8.1-9.0 

8 9.1- 10.0 

9 10.1-11.0 

10 11.1-12.0 

Table 6.2. Recoding of wind magnitude intervals from 2 to 10m s-1• 

3. Following step (2), each dataset was saved as "classified". 

4. Both the classified reference and experimental raster sets were 

overlayed over collocated observations and a new dataset was 

created consisting of two overlayed sets: experimental plus 

observation and reference plus observation. 

5. Each overlayed dataset was then cross-tabulated and colour 

indexed according to the Jqnction. seen below: 

118 http:/ I www. ermapper. com/ (accessed on 0 1.11. 04). 
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if (INPUTI = 1) and i2= 1 then 250 else 

if (INPUT I = 2) and i2=2 then 240 else 

if (INPUT I = 3) and i2=3 then 230 else 

if (INPUT I = 4) and i2=4 then 220 else 

if (INPUT I = 5) and i2=5 then 21 0 else 

if (INPUT I = 6) and i2=6 then 200 else 

if (INPUT 1 = 7) and i2= 7 then 190 else 

if (INPUT I = 8) and i2=8 then 180 else 

if (INPUT I = 9) and i2=8 then 170 else 

if (INPUTI = 1 0) and i2=8 then 160 else null 

No weighting was given to any class. 

6. The resulting two datasets were saved as "combined & classified". 

Area statistics were calculated for each dataset to extract union 

(pixel) scoring. 

7. Match Score was calculated and tabulated. 

6.4.5.3.2. Spatial similarity and feature matching analysis. 

Spatial similarity was performed to analyse the spatial relationship 

between the two sets of forecasts and observations. This study uses the 

same algorithm as described in section 5.4.3.1. This consisted of the 

combination of fields and their associated inherent knowledge to 

determine the position of similar clusters between the pair of forecasted 

fields and the collocated observations. 

6.4.5.4.3. Residual semi-variogram analysis. 

Semi-variance analysis was performed on raster maps produced from 

the residuals between the for~~asted 10 m- wind magnitude fields 

(originating from the reference and experimental setup) and collocated 

observations. Residual maps were generated by subtracting the 
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individual forecasted ascii datasets from co-temporal observations 

(archived in ascii xyz). This dataset was imported into ERMapper format 

for 3-dimensional analysis. 

GS+ was used for variogram modelling of these residualsll9. GS+ is a 

geostatistical programme that measures and illustrates spatial 

relationships in gee-referenced data. It analyses spatial data for 

autocorrelation and then uses this information to make optimal, 

statistically rigorous maps of the area sampled. GS+ provides three 

types of spatial autocorrelation analysis. The one used for the present 

study is the semi-variance analysis, which produced a variogram and 

five types of variogram models. 

The individual gee-referenced residual datasets were imported as text 

files in GS+ to perform semi-variogram analysis at the full resolution of 

the residual map. Five types of isotropic models were produced for each 

residual map, each of which described according to three parameters, 

namely Nugget Variance- they-intercept of the model, Sill- the model 

asymptote and Range - the distance over which spatial dependence is 

apparent. The Range parameter was used to define the best-fit line and 

the best model fit was selected. The ranges of models considered were 

spherical, exponential, linear, linear to sill and Gaussian. In addition to 

the three model parameters nugget, sill, and range, the software 

provided statistics to aid the interpretation of model output. An 

important statistic was the Reduced Sums of Squares, which provided 

an exact measure of how well the model fits the variogram data; the 

lower the reduced sums of squares, the better the model fits. 

These semi-variograms translated the texture information according to 

the idealised relationships (see fig. 6.5) in the form N (nugget variance), 

C (sill minus the nugget), R (range) and h (distance). 

119 GS+ {ver. 1989-1999): geostatistics for the environmental sciences is produced by 
Gamma Design; www.gammadesign.com (accessed on 01.11.04). 
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Figure 6. 5 Semi-variograms through the origin (a) with nugget effect 
(b), and with no spatial autocorrelation (c). 

C - spatial independent structural variance. It is given by sill minus 

nugget variance; 

h- lag - distance and direction in 2 or more directions between pairs 

S - sill - maximum level of y(h) 

R - range - lag value at which y(h) no longer increases 

N- nugget variance - value resulted by backwards extrapolation of the 2 first 

semi-variance values. 

Analyses proceeded with the calculation of the anisotropic semi­

variance surface or variogram map for each residual dataset. This map 

provided a visual picture of semi-variance in every compass direction as 

to find the most appropriate principal axis that defines the anisotropic 

variogram model. The center of the map corresponds to the origin of the 

variogram g(h) = 0 for every direction. 

6.5. Results and Discussion. 

6.5.1. Relationship between the two annual SST data sets. 

As illustrated by figures 6.3 and 6.4, the TMI-derived SST map exhibits 

considerable mesoscale information. During model integration, this fine 

detail is interpreted by the model as its initial lower boundary 

conditions and used to compute the lower geophysical fields in 

particular. 

In spite of the difference in the spatial information, the relationship 

between the datasets is very linear throughout the year, with a high 
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coefficient of 0.98. This relation is valid for the entire climatological 

range of SST over the central Mediterranean (fig. 6.6). 

A closer inspection at this relationship shows that TMI-derived SST data 

tends to be higher by not more than 0.5 K when the temperature ranges 

between 289 K (15.8 °C} and 299 K (25.8 °C}. Above 299 K, the variation 

becomes very close to zero and the tendency is reversed at higher 

temperatures as shown by the linear trend in figure 6. 7. Considering 

the high accuracy of TMI-derived SST (with a bias of just -0.07 °C} 

against in situ datai20, the same can be said of the GDAS-derived SST. A 

higher correlation would have probably been found if the TMI-SST was 

retrieved at exactly 00 UT. As detailed in section 6.4.2. above, TMI-SST 

data was valid if its orbital coverage resided within ± 3 hours from 

00 UT. 
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Figure 6. 6. Scatterplot of collocated TMI- vs GDAS-derived SST (in Kelvin). 
Each point represents the average SST value of 5002 raster points 
representing a complete surface field over the integration domain of the 
local area model. 

120 Section 3.5.4.1.2. 
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Figure 6. 7. Residual plot tendency of TMI- minus GDAS-derived SST (in 
Kelvin) against TMI-derived SST (in Kelvin). Each point represents the 
average SST value of 5002 raster points representing a complete surface 
field over the integration domain of the local area model. 

6.5.2. The numerical experiments. 

The statistical measures shown under this section were generated by 

co-temporal comparisons between the forecasts generated by the two 

model systems and observations. This kind of "single-forecast" analysis 

is ideal to address both (1) the accuracy of model initialisation of both 

forecasting systems as well as (2) the resulting forecast performance. 

Some examples of the forecasted geophysical fields derived by the 

reference and experimental setup are shown in figures 6.8 and 6.9. The 

most significant observations derived from these two sets of output is 

that the different initial SST lower boundary conditions lead to different 

outputs. This shows the influence of SST on the prediction of these 

fields. This difference is particularly striking for the surface geophysical 

fields. The spatial pattern of the two sets of the lower atmospheric fields 

are different, especially for the 2 m air temperature and total heat flux. 

Figures 6.10 a-b show the 10 m wind magnitude and total precipitable 

water vapour as derived by the TMI-sensor on July 28th at 0200 UT. The 
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10 m wind magnitude field shows the presence of two main fields of 

high (maximum: 7 m s- 1) and low intensity (minimum: 1.5 m s-1) 

separated by an intermediate field of with a constant gradient from the 

lower to the higher intensity. This simple spatial arrangement is closer 

to that predicted by the experimental setup in comparison to the field 

obtained by the reference setup (fig. 6.8). The latter also shows two 

main fields (maximum: 7 m s-1; minimum: 1.5 m s-1) but with the lower 

intensity area containing a significantly large, isolated higher-intensity 

cell (approximately at 16.2°E; 37.4°N in fig. 6.8). This is not the case for 

the same field produced by the experimental setup. 

The observed integrated precipitable water vapour consists of two main 

areas containing an average precipitable water vapour of 26.5 mm, and 

connected together by a gradient of 25 mm. A slightly lower intensity 

field of around 24 mm separates these two fields on each side of the 

entire model domain on the north and south. The two model output 

fields shown in figure 6.9 show two main, higher intensity fields of 

around 28 mm. However, the field produced by the reference setup 

shows a higher overall intensity, and the output showed a bias toward 

the higher intensity field. The two fields are joined together by the 

25.5 mm field. The same field predicted by the experimental setup, on 

the other hand, shows an overall field that is more shifted towards the 

observation, with two main higher intensity fields, separated by a green 

field corresponding to 24 mm. A minimum of 20.5 mm is shown by the 

field starting at the bottom right of the area which extends more 

towards the centre than what is produced by the reference setup. 
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Figure 6.8. Example of fields produced by the Reference (left) and 
Experimental (right) setup, initialised by the GDAS-SST and TMI-SST 
respectively. The predicted geophysical fields correspond to the 27th hour 
fields starting on 2 7 Jul 1 999, 00 UT. 
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Figure 6. 9. Example of fields produced by the Reference (left) and 
Experimental (right) setup, initialised by the GDAS-SST and TMI-SST 
respectively. The predicted geophysical fields correspond to the 2 7th hour 
fields starting on 2 7 Jul1999, 00 UT. 
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(a) (b) 

Figure 6.1 0. TMI-derived (a) 10 m wind magnitude (m s-1 }, and (b) total 
precipitable water vapour (in g cm-2 x 1 Q-1 }, on the 28th July at 0200 UT. 

A look at the basic statistical measures of the two forecasting systems 

in relation to observations (table 6.3) shows that both systems produce 

very similar 10 m wind magnitude fields. These statistics summarise 

the overall quality of the forecasts against the observations. The 

standard deviation measures the random model forecast error for each 

case study, while the bias is a measure of fit of the model to the real 

atmospheric state by measuring the correspondence between the 

average forecast and the average observed value of the predictand. Bias, 

as shown in table 6.3, gives an estimate of the systematic model 

forecast error. 

The small difference between model-generated fields and observations is 

indicative of a high accuracy of both systems to predict the surface 

wind speed at forecasting steps ranging between the 21st and 27th hour 

after model initialisation. However, closer inspection at the relative 

biases of the two model setup shows that the experimental setup 

outperforms the reference one throughout the year without any 

seasonal trend. Although a trend has been identified in the difference 

between GDAS- and TMI-derived SST (fig. 6. 7), it seems that the model 

is not sensitive to this change. 
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It is also important to note that wind magnitude forecasts were verified 

only when the wind speed observations, valid at the time of the forecast, 

was greater than or equal to 2 m s- 1. This prevented wind magnitude 

forecasts associated with light and variable winds from degrading 

verification scores. The same approach is taken by major numerical 

weather prediction centers such as NOAA for its NGM-based model 

output statistics wind guidance over the US territory12 1• 

121 http:/ /www.nws.noaa.gov/om/tpb/akwind.htm (accessed on 01.11.04). 
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Month Verification Wind speed Average Standard Bias 
time range (m s·1) deviation 

REF EXP REF EXP REF EXP 

January 18:27 _19(D) 3 to 10 B-12 8.14 0.44 0.42 -0.69 -0.68 

22:27 _23(D) 2 to 10 4.46 4.51 1.13 1.12 -0.20 -0.15 

24:24_25(D) 2 to 10 5.21 5.13 1.02 0.99 0.30 0.23 

March 07:24_08(A) 3 to 10 5.21 5.24 1.07 1.15 -1.01 -0.97 
08:27 _09(D) 4 to 10 5.33 5.34 0.73 0.72 0.70 0.71 
10:24_ll(D) 4 to 10 5.32 5.36 0.75 0.72 0.88 0.93 
11:24_12(D) 3 to 10 4.45 4.44 0.95 0.91 -0.04 -0.05 
14:21_14(A) 3 to 10 5.59 5.69 1.27 1.28 1.03 1.14 
17:21_17(D) 3 to 10 5.39 5.62 1.31 1.33 -0.53 -0.31 

April 21:24_22(A) 3 to 10 6.09 6.18 1.17 1.20 0.43 0.51 

22:27 _23(D) 3 to 10 6.50 6.02 2.16 2.18 1.73 1.25 
23:27 _24(D) 2 to 10 4.07 3.84 1.35 1.26 0.55 0.33 
26:24_27(D) 2 to 10 3.39 3.38 0.82 0.81 0.57 0.56 
27:24_28(D) 2 to 10 6.27 6.32 0.97 0.99 1.77 1.81 
28:21_28(A) 2 to 10 5.33 5.76 1.81 1.67 -0.03 0.39 

May 03:21_03(D) 3 to 12 8.65 8.74 2.52 2.43 -3.20 -3.11 

July 22:27 _23(A) 3 to 10 3.48 3.51 0.36 0.35 0.00 0.03 
23:27 _24(D) 3 to 10 4.48 4.23 0.84 0.97 0.30 0.05 
24:27 _25(D) 3 to 10 5.76 5.33 1.39 1.19 0.71 0.28 
25:24_26(A) 4 to 10 6.24 6.31 1.31 1.34 1.44 1.50 
26:27 _27(D) 3 to 10 5.36 5.39 0.73 0.81 -1.75 -1.72 

27:27 _28(D) 4 to 10 5.26 5.62 0.94 0.92 -0.29 0.07 
28:27 _29(D) 4 to 10 4.39 4.41 0.26 0.30 0.14 0.15 
29:24_30(D) 4 to 10 7.20 6.93 0.44 0.40 1.04 0.77 
30:24_3l(D) 4 to 10 6.81 6.72 0.67 0.63 1.26 1.17 
31:24_3l(A) 3 to 10 3.41 3.44 0.42 0.41 -0.22 -0.19 

August 01:2l_Ol(A) 4 to 10 5.39 5.35 1.01 1.00 0.50 0.46 
02:21_02(D) 3 to 10 4.48 4.49 0.87 0.95 0.09 0.11 
03:21_03(D) 3 to 10 4.51 4.58 0.89 0.93 0.05 0.12 
04:21_04(D) 4 to 10 5.34 5.34 0.72 0.73 0.76 0.75 
05:21_05(D) 3 to 10 4.53 4.54 0.73 0.74 0.42 0.43 
06:18_06(A) 2 to 10 3.11 3.13 0.58 0.55 0.44 0.47 

September 16:21_17(A) 4 to 10 6.80 6.71 0.98 0.91 0.60 0.51 
18:21_18(A) 4 to 10 4.97 4.71 0.43 0.37 -0.91 -1.17 

20:21_20(D) 3 to 10 9.44 9.38 0.39 0.39 0.81 0.75 
21:21_2l(D) 3 to 10 5.61 5.78 1.27 1.43 0.55 0.73 

October 22:27 _23(A) 4 to 10 4.35 4.34 0.26 0.26 -1.63 -1.64 

23:27 _24(A) 4 to 10 4.97 5.01 0.52 0.57 -1.08 -1.04 

28:27 _29(D) 3 to 10 8.73 8.80 0.79 0.82 0.40 0.47 

29:27 _30(D) 4 to 10 5.67 5.64 1.16 1.10 0.68 0.65 

December 13:21_13(A) 3 to 12 9.66 9.61 0.64 0.59 -1.28 -1.32 
14:21_14(A) 3 to 10 7.06 7.09 1.06 1.06 -1.32 -1.29 
15:24_15(A) 3 to 14 10.36 10.44 0.68 0.69 -0.41 -0.33 
16:21_16(A) 3 to 12 8.44 8.42 1.31 1.37 -0.92 -0.94 
17:21_18(A) 3 to 12 6.14 6.23 1.01 1.04 -2.28 -2.19 
19:21_19(A) 3 to 12 7.26 7.43 0.87 0.88 -2.37 -2.20 

Table 6.3. Basic comparative statistics of 10 m wind magnitude (m s·1) 

forecasts with observations. The date format is: model DAY NUMBER : 
FORECASTED HOUR satellite DAY NUMBER (DESCENDING or 
ASCENDING orbital swath). REF: reference model wind magnitude 
forecast; EXP: experimental model wind magnitude forecast). 
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6.5.3. Performance measures. 

The mean square error (MSE) is the average squared difference between 

collocated pairs of forecasts and observations. For this reason, large 

discrepancies between forecasts and observations give large positive 

values. This performance measure gives a clear picture of the 

performance between the two model setup, showing an overall 

improvement when TMI-derived SST is used to initialise the lower 

boundary conditions at the start of the model run (table 6.4). 

Normalisation of the MSE shows a clear improvement reached by the 

experimental over the reference setup by an average of 10% in the 

forecast accuracy of the 10m wind magnitude (fig. 6.11). 

The use of average skill scores for the entire annual analysis give a 

weak picture of this improvement, and can not be considered as a good 

index to detect such improvement. Results show that highest scores are 

observed during the spring and summer seasons, although this period 

shows the greatest variability in terms of standard errors. Lesser 

variability accompanied by lower skill scores occurs during the colder 

months, when the wind magnitude is more intense. 
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Month Verification Wind speed MSE SKILL 
time range (m s·l) SCORE 

REF EXP 

January 18:27 _19(D) 3 to 10 1.08 1.04 0.04 

22:27 _23(D) 2 to 10 1.93 1.81 0.06 

24:24_25(D) 2 to 10 2.01 1.64 0.18 

March 07:24_08(A) 3 to 10 4.49 4.63 -0.03 

08:27 _09(D) 4 to 10 2.39 2.37 0.01 

10:24_11(D) 4 to 10 3.13 3.14 0.00 

11:24_12(D) 3 to 10 0.70 0.61 0.13 

14:21_14(A) 3 to 10 1.45 1.78 -0.23 

17:21_17(D) 3 to 10 5.58 4.80 0.14 

AprD 21:24_22(A) 3 to 10 2.20 2.16 0.02 

22:27 _23(D) 3 to 10 10.67 8.32 0.22 

23:27 _24(D) 2 to 10 2.91 3.15 -0.08 

26:24_27(D) 2 to 10 1.66 1.62 0.02 

27:24_28(D) 2 to 10 3.76 3.87 -0.03 

28:21_28(A) 2 to 10 2.01 1.33 0.33 

May 03:21_03(D) 3 to 12 0.39 0.30 0.24 

July 22:27 _23(A) 3 to 10 0.27 0.29 -0.10 

23:27 _24(D) 3 to 10 1.48 0.74 0.50 
24:27 _25(D) 3 to 10 1.43 0.51 0.64 

25:24_26(A) 4 to 10 2.07 2.26 -0.09 

26:27 _27(D) 3 to 10 5.23 5.30 -0.01 

27:27 _28(D) 4 to 10 0.85 1.14 -0.34 

28:27 _29(D) 4 to 10 0.44 0.26 0.40 
29:24_30(D) 4 to 10 1.51 0.94 0.38 

30:24_31(D) 4 to 10 2.70 2.36 0.13 
31:24_31(A) 3 to 10 1.46 1.33 0.08 

August 01:21_01(A) 4 to 10 0.49 0.52 -0.06 

02:21_02(D) 3 to 10 0.27 0.24 0.11 

03:21_03(D) 3 to 10 0.51 0.65 -0.29 

04:21_04(D) 4 to 10 1.35 1.35 0.01 

05:21_05(D) 3 to 10 0.94 0.91 0.03 
06: 18_06(A) 2 to 10 0.78 0.65 0.17 

September 16:21_17(A) 4 to 10 1.91 1.56 0.18 

18:21_18(A) 4 to 10 3.39 3.09 0.09 

20:21_20(D) 3 to 10 1.77 1.54 0.13 

21:21_2l(D) 3 to 10 2.64 2.76 -0.04 

October 22:27 _23(A) 4 to 10 7.24 6.60 0.09 

23:27 _24(A) 4 to 10 1.40 1.42 -0.01 

28:27 _29(D) 3 to 10 0.78 0.81 -0.04 

29:27 _30(D) 4 to 10 2.21 2.12 0.04 

December 13:21_13(A) 3 to 12 4.30 4.34 -0.01 

14:21_14(A) 3 to 10 2.70 2.53 0.06 

15:24_15(A) 3 to 14 0.52 0.45 0.14 

16:21_16(A) 3 to 12 1.09 1.19 -0.09 

17:21_18(A) 3 to 12 13.10 13.12 0.00 

19:21_19(A) 3 to 12 5.91 5.10 0.14 

Table 6. 4 Model performance measures in terms of MSE of 1 0 m wind 
magnitude (m s-1} forecasts for both reference and experimental model outputs. 
The verification time format is: model DAY NUMBER : FORECASTED HOUR _ 
satellite DAY NUMBER (DESCENDING or ASCENDING orbital swath). REF: 
reference model wind magnitude forecast; EXP: experimental model wind 
magnitude forecast). 
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Figure 6.11. Percentage improvement of the experimental relative to the 
reference setup in terms of improved prediction for the entire annual 
analysis, based on the MSE. 

The choice of single dates for verification throughout the entire analysis 

corresponded to the availability of observations to both initialise and 

validate the experimental model setup. Lack of matching observations to 

verify the forecasts during February and June led to the omission of 

these two months in the analysis. As for those months that were 

analysed, the single-date verification does not reflect the average 

behaviour of the model for the entire month and therefore the 

verification tends to become more sensitive to model errors with respect 

to the general monthly weather systems. Since the availability of 

appropriate observations was very much restricted in space and time, 

intensive model performance analysis such as model error drift with 

time, were impossible to study. 
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6.5.4. Exploratory spatial data analysis. 

The GIS-based spatial analysis is used to assemble, process and display 

the spatial relationship between the forecasts produced by the two 

model setup and remotely-sensed fields. This whole analysis was 

possible using a range of software functionality ranging, amongst 

others, 2D and 3D geo-statistical mapping and image processing. 

6.5.4.1. Match score analysis. 

This spatial method is derived from a well-used scalar approach by 

meteorologists (Glahn et al., 1991). Generally referred to as 

"Precipitation Scores", this method is used as a guide to assess the 

overall Eta performance and in deciding on model changes (Fritsch et 

al., 1998). 

The higher average match score giVen by the experimental setup 

(table 6.5) is indicative of a better spatial forecasting skill of the wind 

magnitude intervals selected for the analysis. The improved match score 

shown by the experimental setup provides evidence of the superiority of 

this modelling setup over the other. 

In the present study, match score analysis measures the spatial model 

forecast accuracy (correct timing and placement) of predicted categories 

of the wind field against similar observed categories. The exact 

placement of individual categories belonging to a particular class of 

wind magnitude value is treated as a complete hit. Obviously, the 

grouping of pixels from the entire forecasted field is an approach that 

degrades the forecasted information into a set of wind fields isotherms. 

However, in the case of numerical model verification, the absolute 

verification of pixel-to-pixel placement between the forecasted and 

o- -observed field is unrealistic due to inaccuracies of both the predictand 

and observation. Rather, the assessment of model performance is 
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always based on the improved forecasting of categorical classes that are 

spatia-temporally correct with independent observations. 

Similar categorisation is followed by NWP modellers when assessing the 

scoring of their models against rainfall data, by classifying their 

predicted fields according to the precipitation intensity as: rainjno-rain, 

light rain, moderate rain and heavy rain. The resolution of such a 

categorization would of course depend on the type and spatial 

resolution of the predictand. For the present study, the generation of 

high resolution predicted wind magnitude fields made possible a highly 

sensitive analysis at 1 m s- 1 resolution. This can be considered an 

achievement in the area of high-resolution model verification. 

Categorising any predicted field into separate classes can offer 

advantages to the modeller by providing information on the weakness of 

the numerical model to predict the correct placement of such classes. A 

case in point is the prediction of weak, variable wind that is below 

3 m s-1, which is considered to be a characteristic value over the areas 

of interest during the summer months. Changing class categories will 

not affect the analysis as long as the observations are degraded into the 

same intervals. 

Apart from hits, this approach can be further elaborated to generate 

contingency tables of misses and false 'alarms'. Hypothesis testing can 

also be included. For example, if attempting to test the hypothesis that 

the mean error of the two forecasting system for a particular single­

forecast verification are identical, under the null hypothesis the 

samples from the two populations should be interchangeable. Random 

groupings may then be repeatedly selected with replacement from the 

pooled samples to build a distribution of error differences consistent 

with the null hypothesis. The observed difference is then compared to 

this. 
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Spatial overlay is also used to stack the selected geo-referenced layers, 

in the form of maps, so that questions concerning the degree of 

matching (figs. 6.12 a-b) of the two systems with the observations are 

asked. Here spatial overlays are used to model this arithmetic 

relationship. New map layers are built as a result of the operators used. 

A limitation in the present study is the restricted availability of valid 

observations, which varied from one month to another. The sample 

statistic for the case of May, for example, shows an extremely efficient 

Experimental setup over the Reference one; however this is based on 

only one sample statistic because of the lack of suitable observation 

data. On the other hand, the match score statistic for the month of July 

is supported by a much larger number of case studies. Ideally, match 

score statistics are to be derived for each day of the month for a number 

of years in order to assess the intra- and inter-annual variability of 

providing remotely-sensed microwave lower surface boundary 

conditions as opposed to the initialisation data used for the reference 

setup. In this way, there would be no bias for particular months of the 

year that may show a higher degree of variability over other, much 

calmer periods. However, due to the extensive analysis required, the 

present analysis was restricted to a period of one year. 

For the above reasons, formal hypothesis testing of the competing 

forecast models has been left out. However, from a semi-quantitative 

point of view, match score analysis does show that in spatial terms, the 

Experimental setup fares better than the reference one. 
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Month Verification Reference setup Experimental setup 
time 

F H 0 MS F H 0 MS 
Jan 18:27_19(0) 4836 675 4081 0.082 4843 669 4081 0.081 

22:27 _23(0) 4147 1266 4385 0.174 3987 1089 4385 0.150 
24:24 25(0) 4809 1059 4742 0.125 4825 1184 4742 0.141 

Mar 07:24_08(A) 4713 628 4934 0.070 4697 698 4934 0.078 
08:27 _09(0) 3911 0 1189 0.000 3971 0 1189 0.000 
10:24_11(0) 4300 0 1006 0.000 4300 0 1006 0.000 
11:24_12(0) 3539 1152 3385 0.200 3606 1231 3385 0.214 
14:21_14(A) 4080 1402 4356 0.199 4182 1189 4356 0.162 
17:21 17(0) 4004 498 3901 0.067 4168 493 3901 0.065 

Apr 21:24_22(A) 4332 1514 4927 0.195 4352 1342 4927 0.169 
22:27 _23(0) 2652 128 4587 0.018 2878 106 4587 0.014 
23:27 _24(0) 4301 1019 4148 0.137 4286 1008 4148 0. 136 
26:24_27(0) 3446 194 1441 0.041 3442 185 1441 0.039 
27:24_28(0) 4816 61 4613 0.007 4816 31 4613 0.003 
28:21 28(A) 4790 1914 4772 0.250 4800 1358 4772 0.165 

May 03:21 03(0) 4218 0 325 0.000 4086 0 325 0.000 
Jul 22:27 _23(0) 4537 2680 3605 0.491 4254 2549 3605 0.480 

23:27 _24(0) 4587 146 1780 0.023 3354 444 1780 0.095 
24:27 _25(0) 4780 1048 4299 0.130 4335 2112 4299 0.324 
25:24_26(A) 4677 1391 4863 0.171 4486 1238 4863 0.153 
26:27 _27(0) 4386 45 4589 0.005 4112 44 4589 0.005 
27:27 _28(0) 2963 1005 2362 0.233 2981 728 2362 0.158 
28:27 _29(0) 105 92 330 0.268 123 104 330 0.298 
29:24_30(0) 4961 924 4834 0.104 4974 1935 4834 0.246 
30:24_31(0) 4785 462 4972 0.050 4942 516 4972 0.055 
31:21 31(A) 1306 890 3376 0.235 1507 1119 3376 0.297 

Aug 01:21_01(A) 2245 1115 2562 0.302 2254 1127 2562 0.306 
02:21_02(0) 2614 1811 3201 0.452 2776 1822 3201 0.439 
03:21_03(0) 3502 1469 3326 0.274 3863 1411 3326 0.244 
04:21_04(0) 1621 251 1305 0.094 1718 324 1305 0.120 
05:21_05(0) 2951 749 2125 0.173 3063 752 2125 0.170 
06:18 06(A) 3644 711 2438 0.132 3812 848 2438 0.157 

Sept 16:21_17(A) 4542 1373 4974 0.169 4564 1387 4974 0.170 
18:21_18(A) 3556 1079 4683 0.151 3902 844 4683 0.109 
20:21_20(0) 2539 248 4184 0.038 2049 530 4184 0.093 
21:21 21(0) 4192 725 3487 0.104 4160 664 3487 0.095 

Oct 22:27 _23(A) 1117 240 3276 0.058 1981 288 3276 0.058 
23:27 _24(A) 4559 823 2962 0.123 4582 768 2962 0.113 
28:27 _29(D) 4523 1975 4922 0.264 4531 1996 4922 0.268 
29:27 30(D) 3980 529 1778 0.101 4070 459 1778 0.085 

Dec 13:21_13(A) 3606 37 311 0.010 3813 38 311 0.009 
14:21_14(A) 4803 294 4428 0.033 4814 310 4428 0.035 
15:24_15(A) 1581 775 1156 0.395 1544 825 1156 0.440 
16:21_16(A) 4468 1018 3104 0.155 4352 876 3104 0.133 
17:21_18(A) 4427 751 3891 0.099 4371 764 3891 0.102 
19:21 19(A) 4815 0 3158 0.000 4807 32 3158 0.004 

Mean 0.139 Mean 0.145 
Min 0.000 Min 0.000 
Max 0.491 Max 0.480 
Skew 1.095 Skew 1.063 

Table 6. 5. Raster-based, arithmetic matching between the forecasted and 
observed wind magnitude maps. F: forecast; H: Hit; 0: Observation; MS: Match 
Score. The verification time format is: model DAY NUMBER : FORECASTED 
HOUR_ satellite DAY NUMBER (DESCENDING or ASCENDING orbital swath). 
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Figures 6.12 a - b. Overlapping pixels between (a) reference (MS=0.130) 
and (b) experimental (MS=0.324) model output of 10 m wind magnitude 
field against observations respectively for July 25th at 3 hrs (see table 
5.4.). Nulled, black pixels indicate no overlap. The different colours are 
classed values (in m s-1) w ind fields. 
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6.5.4.2. Spatial similarity. 

As in section 5.5.5., the Spatial Similarity index is used to assess the 

degree of shared attributes between the two model systems and the 

remotely-sensed observations. In order to best illustrate the spatial 

analysis, four case studies are presented that best describe the results 

covenng a representative range of wind regimes over the area of 

interest. 

6.5.4.2.1. Case study 1: 22nd January 1999. 

The first case study analyses a wind speed regime that is typical for 

January. Figure 6.13e shows relatively moderate winds reaching a 

maximum of 6.5 m s- 1 within the area of interest. A more or less 

constant gradient is observed starting with moderate wind gradients of 

about 7 m s- 1 to very light wind conditions towards the East, reaching a 

minimum of 2 m s- 1 . Black areas represent nulled pixels that are below 

2.0 m s- 1. Small circular contours with central black pixels coincide 

with precipitation and are therefore nulled. 

A close inspection of the similarity maps) shows that the experimental 

(fig. 6.13b) setup gives an overall higher similarity index than the 

reference setup (fig. 6.13a). 

The individual forecasted wind fields show that the wind gradients 

generated by the experimental setup (fig. 6.13d) are closer in pattern to 

the observed wind fields than the reference ones. This is especially true 

for the wind magnitude range of 4.5 to 5.0 m s- 1, which bulges out 

towards the north in the reference forecast as opposed to a calmer 

condition given by both the experimental forecast and observation. 

Minor dissimilarity between the referetfce setup and observations is also 

shown by the low intensity wind fields of around 2.4 m s- 1. The patterns 
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of such fields produced by the reference setup do not agree with those 

observed, unlike the fields produced by the experimental one. 

The contoured predicted fields show an overall higher wind magnitude 

than the observed field, which is in line with the slight over-forecasting 

skill of the nested Eta model as seen in section 5.5.3.4. 

6.5.4.2.2. Case study 2: 24th January 1999. 

The closer similarity obtained by the experimental setup in figure 6.15b 

is again demonstrated. Dissimilarity of the reference forecast (fig. 6.15a) 

is mainly concentrated in the lower middle part of the map which is 

caused by the higher wind magnitude located in this area as observed 

in the wind magnitude field area of figure 6.14c. Its value of 5.5 m s- 1 is 

higher than the wind intensity over the same area in figure 6.14d. 

However, one should note a similar wind magnitude pattern produced 

by both the reference and experimental setup. 

The relatively higher wind magnitude field situated at the lower, right 

portion of figure 6.14c, showing a northward protrusion, also causes 

dissimilarity. The same pattern is observed in figure 6.14d but in this 

case the pattern of the experimental forecast is closer to the collocated 

observed field. 

6.5.4.2.3. Case study 3: 22nd Apri11999. 

In this case study, similarity mapping indicates that the experimental 

setup can also provide a better representation of the lower magnitude 

fields in the region of 3.0 to 3.5 m s- 1 (fig. 6.15b). This is represented by 

the larger area of the island in the middle left portion of the map. The 

rest of the map shows a more or less similar degree of predictability (in 

terms of both field pattern and values) when compared to the observed 

field. 
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6.5.4.2.4. Case study 4: 15th December 1999. 

The similarity maps obtained for this forecast date agam provide 

important information that is otherwise difficult to detect in the 

individual (predicted and observed) wind field maps. 

A close inspection of the similarity maps (figs. 6.16a) suggests that the 

experimental setup (fig. 6.16b) is able to better predict wind fields 

patterns in the region of 10.0 to 11.0 m s- 1• This is shown by the areas 

of higher similarity in the lower central and upper right portions of 

similarity map 6.16b. These predicted high intensity wind magnitude 

field shown in figure 6.16d is being restricted to the right portion of the 

area, giving a pattern that is closer to the observation. On the other 

hand, the high intensity wind field produced by the reference setup is 

more shifted towards the centre. This again shows that the experimental 

setup shows a better performance even with high intensity winds. It 

also shows that the use of the TMI-derived SST to initialise the Eta 

surface boundary condition also leads to an overall improvement in the 

spatial forecast of the 10 m wind fields. 
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Figures 6.1 3 a-e. Case study 1: January 22nd 1999: (a) similarity map between predicted surface wind speed by the 
reference system and observations; (b) similarity map between predicted surface wind speed by the experimental system 
and observations; (c) predicted wind speed (in m s-1) by the reference system; (d) predicted wind speed (in m s-1) by the 
experimental system; (e) observed wind speed (in m s-1) by the tropical microwave imager on 23rd January at.02:08 UT. 
Black pixels represent nulled pixels that are below 2. 0 m s -1. Small circular contours with central black pixels coincide with 
precipitation and are nulled. 
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Figures 6. 14 a-e. Case study 2: January 24th]999: (a) similarity map between predicted surface wind speed by the 
reference system and observations; (b) similarity map between predicted surface wind speed by the experimental system 
and observations; (c) predicted wind speed (in m s-1) by the reference system; (d) predicted wind speed (in m s-1) by the 
experimental system; (e) observed wind speed (in m s-1) by the tropical microwave imager on 25th January at.01:12 UT. 
Black pixels represent nulled pixels that are below 2. 0 m s -1• Small circular contours with central black pixels coincide with 
precipitation and are nulled. 
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Figures 6. 15 a-e. Case study 3: April22nd 1999: (a) similarity map betweenpredicted surface wind speed by the reference 
system and observations; (b) similarity map between predicted surface wind speed by the experimental system and 
observations; (c) predicted wind speed (in m s -1) by the reference system; (d) predicted wind speed (in m s -1) by the 
experimental system; (e) observed wind speed (in m s -1 ) by the tropical microwave imager on 23rd April at 03:25 UT. Black 
pixels represent nulled pixels that are below 2. 0 m s-1. Small circular contours with central black pixels coincide with 
precipitation and are nulled. 
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Figures 6.16 a-e. Case study 4: December JSth 1999: (a) similarity map between predicted surface wind speed by the 
reference system and observations; (b) similarity map between predicted surface wind speed by the experimental system 
and observations; (c) predicted wind speed (in m s-1) by the reference system; (d) predicted wind speed (in m s-1) by the 
experimental system; (e) observed wind speed (in m s-1) by the tropical microwave imager on 15th December at 22:50 UT. 
Black pixels represent nulled pixels that are below 2.0 m s-1. Small circular contours with central black pixels coincide with 
vrecivitation and are nulled. 
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Spatial similarity of individual classes of wind magnitude, rather than 

the individual pixel values, proved to be a more convenient and realistic 

way of assessing the tendency of the spatia-temporal attributes of the 

predicted fields. These results bring out the usefulness of relational 

spatial similarity rather than the total scalar comparison between the 

two datasets for ocean forecasting systems. 

A big benefit of using the spatial similarity technique is the ease with 

which the user can define particular adjustments. The system allows 

results to be displayed that indicate the degree of similarity through a 

matching and ranking measure. This facility allows the user to search 

for a set of textural and spatial parameters to derive the similarity 

between the background information and the new parameters entered 

into the analysis. This study shows how similarity assessment can be a 

useful concept for retrieving and analysing spatial information as it may 

help numerical modelers describe and explore their forecasts, their 

immediate environment and relationships to observations. 

6.5.4.3. Geostatistical analysis. 

In this study, geostatistics complemented the application of the other 

statistical measures so far discussed. The motive behind using 

geostatistical analysis is to model the spatial structure of the residual 

fields of the predictions and observations and translate the degree of 

spatial correlation between these two datasets in numerical and 

graphical terms. In doing so, residual variography provides an analysis 

of the spatial variation on the differences between the model output and 

collocated observations. The sensitivity of this tool focuses on the 

variation between the competing models with collocated observations. 

Figures 6.17 and 6.18 provide an example of residual maps consisting 

of the differences between the forecastecr 'fo rri wind magnitude (m s- 1) 

generated by the reference and experimental models, and collocated 

observations derived from the Tropical Microwave Imager on July 25 
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and September 20 1999. Only those residual pixel groups ranging from 

-0.5 to 0.5 are shown in colour; the remaining gradients are shown by 

means of contours. A greater range of pixels showing minimal difference 

occurs in figures (b). Areas shown in white correspond to nulled filtered 

pixels due to either low variable, or high wind speeds. 
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Figures 6.1 7 a - b. The residual map of the differences between the 1 0 m 
wind magnitude (m s-1) forecasted by the (a) reference setup and (b) 
experimental setup, and collocated observations derived from the Tropical 
Microwave Imager on July 25 at 2400 UT (or July 26th at 00 UT). 
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(b) 

Figures 6.18 a - b showing the residual map of the differences between the 
1 0 m wind magnitude (m s -1) forecasted by the (a) reference setup and (b) 
experimental setup, and collocated observations derived from the Tropical 
Microwave Imager on December 15 at 2400 UT. 
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For comparative purposes, only those residual pixels having a value 

ranging from -0.5 to 0.5 are shown in colour. The remaining pixels are 

shown in black with contoured gradients. Areas shown in white 

correspond to nulled filtered pixels due to either low variable, or high 

wind speedsl22. 

The residual spatial structure between the two sets of data (i.e. forecast 

and observation) were modelled on the basis of autocorrelation. Pixel 

values corresponding to the matrix of the geophysical field (in this case 

the 10 m wind magnitude) that have similar spatial attributes are 

considered more similar than pixel values further apart. This was used 

to model the structure of the residual data, i.e. its variability as a 

function of space by means of variography. The sem1-vanograms 

displayed the relation between the semi-variance and the spatial 

separation (lag distances), and is a quantitative descriptive statistic that 

can be graphically represented in a manner which characterises the 

spatial continuity (i.e. roughness) of the residual data sets. 

Figure 6.19a - b is an example of the semi-variograms of the residuals 

obtained between (a) the reference prediction and observation, and (b) 

the experimental prediction and observation for April 28th 1999 at 2100 

UT. What is easily noticeable is a classic gaussian model fit for both 

isotropic semi-variograms as well as a lower semi-variance for case (b). 

122 See section 6.4.2. 
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Figure 6.20 a - b. Semi-variograms of the residuals obtained between (a) the reference prediction and (b) 
experimental prediction, with observations retrieved on April 28th 1999 at 2100 UT. The best value for the 
reduced sums of squares defined the gaussian model as the best fit for the isotropic semi-variograms. Note 
the different slope, accompanied by lower values for the nugget and sill for the residual semi-variogram 
shown in (b). Variograms indicate the presence of anisotropy in both residuals. 
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Table 6.5 shows the results of the semi-variograms for all the residuals 

studied. In almost all cases, results show that the gaussian model 

exhibited the best overall fit for the isotropic semi-variogram plots 

derived for the entire residual dataset. The gaussian model is 

formulated as: 

y(h) = N + C[1-exp(-3(h/R)2)] 

where N is the nugget, C is the sill minus the nugget, R is related to the 

range, and h the distance. The use of this linear model through the 

entire analysis ensured a common qualitative and quantitative analysis 

for the datasets. The following general observations can be made: 

1. The gaussian mode has behaviour similar to a parabola near the 

origin and is indicative of an extremely continuous process. 

2. The linear behaviour at small lag distances suggests that as the lag 

and semi-variance values increase, the variogram of the experimental 

forecasts approaches the sill asymptotically, suggesting the 

incorporation of the gaussian model into the theoretical variogram 

model. 

3. These gaussian vanograms suggest that in the most significant 

portion of the semi-variogram model, a single, long-range process 

dominates. This preference towards the gaussian behaviour was 

probably due to the way the particular geophysical field behaves, 

giving a general smooth description of wind field gradients. 

4. The semi-variogram models exhibit a strong spatial dependence with 

very limited random variation. In most cases, the value for the 

nugget is always low except on fe~ oc.casions when 'extreme events' 

occurred, such as extensive precipitation or during strong wind 

events (e.g. January 24th, March 17th, and December 13th). The 

presence of random variability included in the numerical forecasts is 
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therefore extremely low and that most of the variation observed can 

be attributed to the nature of the geophysical data. 

5. The tabulated results (table 6.6) show that out of a total of 46 

residual analysis, there were 26 occurrences where the experimental 

model achieves a lower sill than the other competing residuals. The 

differences in the range also provides an indication of the degree of 

correlation between the data points, which is positively shifted 

towards the experimental model. Results also show a close 

relationship between the semi-variogram analysis and the standard 

verification procedure using skill score. This tests both the 

sensitivity and complimentarity of geostatistics to assess the spatial 

relationship of model predictions. 

Geostatistical analysis provided this study with additional structural 

information on the behaviour of the two competing models. The results 

for the anisotropic semi-variogram analysis, for example, very often 

indicated the existence of directional trends. The cause of anisotropy 

may be due to the prevailing variability in the 10 m wind direction over 

the area of interest, and if so, this could mean that the residuals show a 

certain degree of dependence on the climatology of the area. 

6.5.4.3.1. Spatial variography. 

A representation in 20 and 3D space of the behaviour of the variogram 

was made by drawing a map of the iso-variogram lines as a function of 

the vector h. This was also an excellent way to check for anisotropy by 

means of a contour plot of semi-variogram values by direction. 

The majority of the case studies showed that the iso-variogram lines 

were approximated by minor ellipses defined along a set of 

perpendicular main axes of anisotropy. This indicates a small degree of 

directional drift in the residual wind magnitude, possibly brought about 

by systematic weaknesses of both forecasting systems to predict the 1 0 
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m wind magnitude over the ocean. The cause of this may be due to the 

model's predictive skill to forecast better categories of wind scales as 

was highlighted by the spatial similarity analysis when the viscous 

sublayer model scheme was fine-tuned for events when strong surface 

winds are prevalent. Similar characterisation is required. The spatial 

similarity analysis for January 22nd (section 6.5.4.2.1.) and December 

15th (section 6.5.4.2.4.) for example, revealed a better prediction of 

stronger wind field gradients by the experimental model. On the other 

hand, dissimilarity is observed when wind fields tend to get weaker as 

supported by the collocated surface wind field maps. 
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Month Verification Reference Experimental Skill 
time 

Model Sill Range Nugget Model Sill Range Nugget score 
Jan 18:27 _19(0) gau 1.36 2.99 0.19 gau 1.25 2.67 0.16 0.04 

22:27 _23(0) gau 5.23 4.34 0.11 gau 5.23 4.34 0.11 0.06 
24:24 25(0) gau 2.12 1.09 0.31 gau 1.90 1.47 0.35 0.18 

Mar 07:24_08(A) gau 1.90 1.47 0.35 gau 6.51 2.90 0.01 -0.03 
08:27 _09(0) gau 0.06 1.16 0.004 gau 0.06 1.15 0.006 0.01 
10:24_11(0) gau 0.13 0.93 0.0001 gau 0.13 0.94 0.0001 0.00 
11:24_12(0) gau 2 3.8 0.03 gau 2.13 4.25 0.011 0.13 
14:21_14(A) gau 0.55 1.52 0.001 gau 0.59 1.61 0.001 -0.23 
17:21 17(0) gau 6.19 3.96 1.38 gau 4.13 2.31 1.05 0.14 

Apr 21 :24_22(A) gau 2.34 3.51 0.19 gau 2.35 3.38 0.17 0.02 
22:27 _23(0) gau 8.62 1.61 0.01 gau 12.4 2.20 0.01 0.22 
23:27 _24(0) gau 3.02 1.88 0.13 gau 3.36 1.71 0.48 -0.08 
26:24_27(0) gau 0.42 1.50 0.001 gau 0.38 1.50 0.001 0.02 
27:24_28(0) gau 0.35 4.42 0.07 gau 0.20 2.18 0.04 -0.03 
28:21 28(A) gau 4.00 3.99 0.49 gau 2.68 3.71 0.14 0.33 

May 03:21 03(0) gau 1.60 2.0 0.09 gau 0.23 0.24 0.02 0.24 
Jul 22:27 _23(0) gau 0.27 1.35 0.03 gau 0.26 1.26 0.02 -0.10 

23:27 _24(0) gau 0.99 5.53 0.06 gau 0.17 0.61 0.0001 0.50 
24:27 _25(0) gau 0.66 1.10 0.02 gau 0.45 1.21 0.03 0.64 
25:24_26(A) gau 3.33 3.58 0.16 gau 5.13 4.28 0.06 -0.09 

. 26:27 _27(0) gau 0.82 1.16 0.14 gau 0.64 1.05 0.15 -0.01 
27:27 _28(0) gau 0.56 1.04 0.16 gau 1.33 1.21 0.001 -0.34 
28:27 _29(0) gau 0.06 0.20 0.00 gau 0.06 0.17 0.00 0.40 
29:24_30(0) gau 2.13 6.7 0.06 gau 1.39 7.00 0.13 0.38 
30:24_31(0) gau 1.81 2.58 0.05 gau 1.67 2.66 0.05 0.13 
31:21 31(A) gau 2.03 4.57 0.001 gau 1.49 5.11 0.08 0.08 

Aug 01:21_01(A) gau 0.47 1.35 0.001 gau 0.51 1.42 0.001 -0.06 
02:21_02(0) gau 0.32 4.26 0.05 gau 0.25 1.64 0.01 0.11 
03:21_03(0) gau 0.77 1.95 0.001 gau 1.13 2.44 0.005 -0.29 
04:21_04(0) gau 0.59 2.97 0.02 gau 1.08 3.12 0.001 0.01 
05:21_05(0) gau 0.83 2.36 0.03 gau 0.65 2.08 0.02 0.03 
06:18 06(A) gau 0.64 3.30 0.05 gau 0.34 1.91 0.04 0.17 

Sept 16:21 _17(A) gau 1.73 2.17 0.07 gau 1.53 2.27 0.06 0.18 
18:21 _18(A) gau 1.78 2.17 0.13 gau 1.53 1.71 0.04 0.09 
20:21_20(0) gau 2.01 7.01 0.06 gau 0.47 1.17 0.001 0.13 
21:21 21(0) gau 3.56 3.6 0.07 gau 4.07 3.85 0.03 -0.04 

Oct 22:27 _23(A) gau 0.88 1.4 0.008 gau 4.03 3.03 0.01 0.09 
23:27 _24(A) gau 1.03 1.76 0.001 gau 0.91 1.68 0.008 -0.01 
28:27 _29(0) gau 0.60 1.73 0.005 gau 0.54 1.64 0.011 -0.04 
29:27 30(0) gau 1.87 1.67 0.001 gau 1.44 1.61 0.001 0.04 

Dec 13:21_13(A) gau 2.59 0.62 0.34 gau 2.56 0.61 0.28 -0.01 
14:21_14(A) gau 0.75 2.33 0.03 gau 0.66 2.35 0.03 0.06 
15:24_15(A) gau 0.83 3.95 0.06 gau 0.63 2.80 0.05 0.14 
16:21_16(A) gau 0.35 0.03 1.57 gau 0.46 1.86 0.04 -0.09 
17:21_18(A) gau 21.0 4.75 0.01 gau 32.0 4.68 0.01 0.00 
19:21 19(A) gau 0.67 4.02 0.07 gau 0.54 3.43 0.05 0.14 

Table 6. 6. Model fit for isotropic semi-variograms of the residuals from 
January through December. These were best described by the Gaussian 
(gau) model. An additional column shows the skill score derived following 
the verification of each single forecast as described in section 6.5.3. 
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Residual analysis however, proved to be quite insensitive to catch the 

above-mentioned subtleties, which were easy to capture using spatial 

match scoring and similarity. A case in point is the single forecast 

analysis for December 15th. Figures 6.20a- bare 2-D representations of 

the semi-variograms obtained from the residuals of December 15th. 

Visual inspection of the two spatial variograms indicate no significant 

differences and both reveal least semi-variance in the 45° direction. A 

similar relationship was observed for January 22nd, January 24th, and 

April 22nd. 

No quantitative analysis of the degree of geometric anisotropy was 

performed since this was beyond the scope of this study. The same 

holds for the characterisation of the anisotropy in terms of its 

dependence on lag distances. 

This approach has never been applied to verify improvements made on 

numerical atmosphere models. On the other hand, geostatistics is a 

fairly common approach to study and derive the distribution, spatial 

patterns and texture analysis of natural phenomena ranging form insect 

population (Liebhold et al., 1996), ozone (Liu and Rossini, 1997), forests 

(Treitz, 2001), mineral resources (e.g. Reis et al., 2003), remotely sensed 

images (Atkinson and Lewis, 2000; Curran, 1988), down to microbial 

patterns (Franklin and Mills, 2003). S. AmaraP 23 applied variogram 

analyses to identify best filtering methods to filter RADARSAT images to 

evaluate resulting spatial variability which was otherwise not visually 

distinguishable. It is interesting to note that analysis of residual 

variograms has been done by Holdaway (1996) for the modelling and 

interpolation of monthly temperature and Aranuvachapun and Maskell 

( 1997) to study temperature frontal fields. 

123 http:/ /www.dpi.inpe.br/ -silvana/PAPER/amaral-ger97.pdf(accessed on 01.11.04). 
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Figure 6.20a. 2-D representation of the semi-variogram obtained from the 
residual of reference forecast and observed wind fields on December 15th at 
00 UT, revealing least semi-variance in the 45° direction. 

(b) 
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Figure 6.20b. 2-D representation of the semi-variogram obtained from the 
residual of experimental forecast and observed wind fields on December 15th 
at 00 UT, revealing least semi-variance in the 45° direction. 

288 



6.5.5. Limitations of the verification analysis. 

The objective assessment of model accuracy is constrained by the 

limitations of the model forecasts and by the limited representation of 

the true atmospheric state. Specifically, model forecasts represent the 

atmosphere as a discrete array of area-averaged values as opposed to 

the continuous fields found in real situations. On the other hand, the 

true atmospheric state against which forecasts are being compared is 

represented by empirical observations of the atmosphere. Similarly, no 

matter how sophisticated these observations are, they too will never 

describe the three dimensional complexity of the atmosphere perfectly. 

Since the model output is depicted by values at discrete grid points that 

represent a gridded average rather than a value at a specific forecast 

point, care was taken when comparing forecasts against observations 

that originally had dissimilar area-averaged data (i.e. different grids). 

Care was taken to carefully interpolate the observations onto an 0.042° 

by 0.042° grid that exactly matched the model output fields. The post­

processing grid was the same as the domain grid of the numerical 

model and so there was no degradation in the model's computation 

resolution. If this was not the case, then this would have led to incorrect 

interpretation of the total forecast performance, especially for low-level 

parameters, such as the 10 m wind magnitude above sea level. 

Observation grid points that potentially contain inaccurate data due to 

the presence of precipitation or characterised by extreme wind 

conditions were flagged as null. However, calibration of neighbouring 

valid, rain-free pixels was still affected by rainy pixels and so a certain 

degree of error is introduced in rain-contaminated scenes. This 

inaccuracy may have impacted on the final accuracy of the verification 

analysis, resulting in localised inconsistencies. 

Overall, this study has successfully demonstrated the application of 

spatial statistical methods to verify the output of weather forecasting 
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models. The geostatistical analysis of residuals was used as a 

convenient tool to assess the improved skill of the atmosphere model 

that was initialised using realistic surface boundary conditions (i.e. 

remotely-sensed SST). This method complemented the results obtained 

by both standard statistical routines (average, standard deviation, bias, 

means square error and skill score) and the exploratory spatial data 

analysis (Match score analysis and spatial similarity), in that the use of 

microwave-derived SST as the initial surface boundary condition for the 

Eta model leads to an overall improved skill. 

6.6. Summary. 

The work described in this chapter addressed the two mam research 

questions as defined in section 2.1.3. It showed how SST derived from 

the tropical microwave imager (TMI) usmg passive microwave 

technology can be used to define the surface boundary condition for a 

high-resolution model. 

Section 6.5.3. described the analysis of the impact of introducing high­

resolution SST conditions into the model as compared to a reference, 

method. The impact on the predicted surface wind magnitude at 10 m 

above sea level was used as the key index to evaluate model 

performance. The range of statistical measures described show an 

overall improvement of 10% when TMI-derived SST was used to 

initialise the lower boundary conditions at the start of the model run. 

Section 6.5.4. described the use of spatial exploratory analysis and geo­

statistical methods to identify and study the model's spatial 

performance. The use of spatial data analysis with image processing 

and GIS analysis showed an enhanced spatial similarity between the 

experimental forecasts and collocated observations, especially for 

specific magnitudes of the surface winds. This was demonstrated in 
. . 

. sections 6.5.4.1. and 6.5.4.2. by means of the spatial match score and 

spatial similarity indices developed by this study. The advantage of 

using this new remotely-sensed product was presented and discussed. 
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The use of geo-statistical methods to quantify the spatial variation of 

the residual component between the forecasts and observations was 

described in section 6.5.4.3. Semi-variogram analysis identified closer 

spatial correspondence between the experimental forecasts and 

observations, characterised by a gaussian relationship and low nugget 

variance. Variography proved inadequate to catch spatial subtleties 

which were otherwise easily captured using spatial match scoring and 

similarity. 

From a semi-quantitative point of view, exploratory spatial data analysis 

showed that the experimental model fares better than the reference one. 

It can therefore be concluded that the use of remotely-sensed SST to 

initialise the lower boundary conditions of a high-resolution Eta model 

can favourably improve the accuracy of short-range, 10 m wind 

magnitude forecasts. Clearly, more developmental work Is needed if 

hypothesis testing and more complex or computationally expensive 

tests are required. 

This work is closely linked with the next chapter in which the improved 

set of air-sea fluxes are used to initialise the surface boundary 

conditions of the high-resolution ocean model. Moreover, the evaluation 

of TMI-derived SST to improve the forecasting skill of the ocean model is 

assessed on the basis of improved initialisation and data assimilation 

schemes. The high-resolution SST observations are used to adjust the 

ocean model fields towards observations. 
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Chapter 7 

IMPROVING THE FORCING AND PREDICTION OF 

THE OCEAN MODEL. 

7 .1. Introduction. 

The progress of ocean modelling is still hindered by a number of 

constraints. Chassignet et al. (2004) identifies these as being due to the 

dynamical approximations of the fundamental fluid mechanics, the 

parameterisation of essential processes that occur at high spatial and 

temporal scales, the boundary and initial conditions and the domain 

geometry. 

One of the constraints that affects eddy-resolving, high-resolution ocean 

models is the availability of atmospheric forcing to drive ocean models. 

Theoretical progress over the past years significantly enhanced the 

understanding of the dependence of the thermohaline circulation to the 

parameterisation of the air-sea interaction, in particular that of air-sea 

exchanges of heat. Consequently, this has created a demand for simple 

yet accurate parameterisations of air-sea fluxes to satisfy the need for 

ocean model studies. 

Scientific progress in ocean data assimilation is still at an early stage of 

development, but its eventual success will be important to the ocean 

modelling community in general. According to the World Ocean 

Circulation Experiment (WOCE) 124, technical gaps still exist in data 

assimilation, including lack of skill in the underlying model (arising 

from both poor initial data and dynamical deficiencies), poor knowledge 

of the statistics of forcing errors and parameterisation errors, lack of 

model grid resolution and lack of manpower. 

124 http:/ I sam. ucsd.edu/ smwg/ smwg_assimilation. html# v 1 (accessed 0 1.11. 04). 
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Another important constraint is the objective verification of ocean 

models. This issue already poses a difficulty for coarse resolution 

models, which are usually compared to hydrographic estimates of a 

mean state of the ocean. The validation problem is far more significant 

(mainly at mid and high latitudes) even for seasonal temporal scales of 

variability because of the lack of appropriate data. The problem is 

especially severe for eddy-resolving models because of a lack of 

appropriate data with high enough spatia-temporal variability. 

Free surface, sigma coordinate ocean models, such as POM, are now 

being used for a variety of applications, ranging from small-scale 

process studies and coastal and estuarine modelling and prediction to 

basin-scale ocean circulation and climate change modelling (Ezer, 

2000). POM was selected by the MedNet125 project as one of the main 

ocean circulation models to be used for the study of the Mediterranean 

Sea126. A study is therefore appropriate both to evaluate its sensitivity 

as well as to enhance its predictive capability. 

In this study, POM is used to forecast the ocean circulation over part of 

the Ionian basin, situated in the central Mediterranean Sea. The 

numerous ocean -atmospheric processes that are active in this region 

provide a unique opportunity for observational and modelling studies 

(Robinson et al., 2001). The model domain corresponds exactly to that 

of the nested Eta model, with the intent of assessing the impact of the 

improved high-resolution air-sea flux products on the forcing of the 

ocean model. The selection of this test area is made on the basis of the 

availability of a full fifteen-day, close to the daily initialisation time of 

the POM model (i.e.- 00 UT) SST dataset derived from the TMI sensor 

that is used for both model initialisation and data assimilation. 

Another part of this study attempts to improve the prediction of the 

POM model using data assimilation. Experiments are performed on a 

125 MedNET was a project to provide oceanographic modelling software for the 
Mediterranean Sea funded by the European Union Marine Science and Technology 
programme (MAST). 
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comparative basis, assimilating SST derived from (1) GDAS modelled 

data and (2) the TMI -sensor. The resulting model output is compared 

with collocated observations. The scope of these experiments is to 

assess the effectiveness of assimilating passive microwave remote 

sensmg to improve high resolution ocean forecasting. These 

experiments also evaluate the benefit of optimising a Newtonian 

nudging scheme as an efficient data assimilation scheme for POM. 

The work related to the calibration of NOAA AVHRR imagery, as 

developed in chapter 4, is here used to analyse the spatial accuracy of 

the forecasted model fields. The aim is to test the robustness of the 

improved ocean forecasting system at fine horizontal scales. The 

geographical scope of this study addresses some of the technical gaps 

presently faced by the Mediterranean Forecasting System, whose 

forecasting boundaries are almost entirely outside this region (fig. 7.1). 

regional models 

Figure 7.1. Geographical coverage of the modelling of the Mediterranean 
Forecasting System at the regional and shelf scale. Note the lack of 
coverage over the central Ionian basin denoted by the red box, which 
corresponds to the integration domain of the high resolution forecasting 
used in this study (with courtesy of the Mediterranean Forecasting 
System). 

126 http:/ I www. met. ed. ac. uk/ mednet/ overview. html (accessed on 0 1.11. 04). 
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7.2. Methodology. 

7 .2.1. Setup and running the POM model. 

A Pentium MMX configured with 800MHz and 64MB of RAM was used 

for the POM model working on LINUX system with C and Fortran 77 

compilers. The use of the model was simpler than the Eta atmosphere 

model, and consisted of folders containing Fortran 77 source codes and 

related executable files that ( 1) decoded the binary data constituting the 

lateral boundary conditions obtained from the seasonal Mediterranean 

Ocean Database (MODB), surface boundary conditions (SST and air-sea 

heat fluxes), and bottom topography, and convert it according to model 

a-coordinate system; (2) constituted the numerical schemes of the 

model (POM97 _oper.f), and (3) calculated the output of all relevant 

forecasted fields and their conversiOn into standard levels for 

displaying. Csh shell scripts unified the operation of all these three 

main groups of codes. The modelling process was divided into three 

stages: pre-processing, processing and post-processing. The logic of this 

setup is similar to that of the atmosphere model. 

Pre-processing is described in Appendix IV, section IV.3.1. It consisted 

of model domain definition, preparation of lateral and surface boundary 

conditions, data decoding, formatting and data interpolation. 

The processing stage is described in Appendix IV, section IV.3.2. The 

daily integration of the high-resolution POM model generated 

mesoscale, 3-hourly 3-D oceanic forecasts for a 24-hour forecast. 

Model processing consisted of two steps: (1) a pre-forecast run that 

adjusted the model fields towards the SST conditions, and (2) a forecast 

run using SST to initialise the adjusted model fields at the surface. 

The post-processing -stage fs described in Appendix IV, section IV.3.3. 

This stage consisted of the generation of predicted oceanic fields. It also 

generated gridded forecasted variables in ascii xyz format for 
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subsequent standard and diagnostic model verification against the 

collocated, 1.1 km pixel resolution SST observations. 

These three stages were run usmg an automated script as shown in 

Appendix IV, section IV.3.4 . By defining a series of dates using the 

"foreach" command, dates and integration times and folder names for 

the output files were created automatically. MODB-derived lateral 

boundary conditions in binary format were first copied from the central 

archive to a specific folder from which they were subsequently called 

and converted to GrADS format . This stage gave the facility to display 

the initial data. Conversion into POM sigma coordinates followed using 

the grid.oper routine. The surface boundary conditions generated by the 

nested Eta model were ingested and interpolated onto the model's 

domain to initialise its surface boundary field. Figure 7.2. shows the 

interaction between the nested Eta model and the ocean model. A 

routine was called to read the SST information in GrADS format and 

initialise the surface boundary condition of POM. Automated archiving 

of data was done according to the integration date and time. 

OCEAN/ATMOSPHERIC RUN CYCLE 

12 18 24 30 36 t t t t t Nested Eta model + + + + input of3-hourly predicted surftcejluxes 
12 18 24 30 36 

POMmodel 

forcing by ftuxes 

Figure 7.2. Input of 3-hourly atmospheric surface flux fields into POM 
as its surface boundary conditions. 
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7 .2.2. Impact of using the improved set of surface forcing 

conditions. 

The two high spatia-temporal air-sea flux datasets produced by the Eta 

model for the period 22nd July - 5th August 1999 were used to analyse 

their value as surface drivers for the ocean model. Two parallel hind 

cast experiments were carried out for this period using these two 

datasets separately (fig. 7 .3). The ocean model was initialised starting 

on the 22nd July 1999 using the M-RESTART file produced by the hind 

cast sequence of simulations between 1st-21st July 1999 (fig. 7.4). 

The flowchart represented by figure 7.5 shows the setup of the POM 

model when lateral and surface boundary conditions are supplied to the 

model, followed by field adjustment and proper forecast runs to produce 

3-hourly forecasted ocean fields. 
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reference set 
of forecasted 
air-sea fluxes 

(surface boundary condition - SST) 

tmJi SST 
I 

lateral 
boundary 

conditions from 
global atmospheric 

model 

experimental set 
of forecasted 
air-sea fluxes 

Figure 7.3. The two air-sea flux datasets produced in section 6.4.4. 
were separately used to initialise the surface boundary conditions of 
the ocean model. A comparative analysis of the final oceanic forecasts 
was then performed. 
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Figure 7. 4. Scheme representing the entire model integration process. 

forecasted 
air-sea fluxes 

Data assimilation 

Adjusted initial 
model fields 

(pre-forecast run) 

24-hr, @ 3-hourly forecasted 
vertical profiles of: 
•Temperature 
•Salinity 
•Sea currents 

Figure 7. 5. Using the POM 
numerical package, the 
initial model fields supplied 
by the lateral and surface 
boundary conditions were 
adjusted towards the 
observed SST data in a pre­
forecast run. 

Following this adjustment, 
the proper forecast run was 
activated to produce 3-
hourly forecasted ocean 
fields for 24 hours. The 24th 
hour fields provided the 
initial conditions for the next 
model run. 
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7.2.3. Fine-tuning of the data assimilation scheme. 

In order to identify the best nudging conditionsl27 of the ocean model, 

three nudging schemes were tested for each of the 2 parallel runs 

described above. 

The pre-forecast, data assimilation runs started from the initial, 3-

hourly ocean fields previously forecasted by the ocean model on day 

(n-1) (included in the M_RESTRT data). The model fields were then 

"relaxed" towards the SST target field by using the prognostic equation 

with the correction term of the form: 

a model 
_q __ + A + K ( n~xlel _ observations) = O at q q q" q" 

(7 .1) 

where qmodel is the model variable; qobservation is the target analysis; Aq is 

one of the model terms in the dynamical equations such as advection 

and diffusion and Kq is the relaxation coefficient. The time level t, is the 

value at which model predictions and observation are made. 

Equation 7.1 represents the difference between the model solution and 

the corresponding observation. The subscript n indicates the time level 

at which model predictions and observations are made. The tendency of 

the model prognostic variable a qmodel provides the q;:lDdel at the next 

time level (n+ 1). The equation is modified by introducing the relaxation 

term Kq (qmodel - qobservation) that nudges the predicted variable qmodel to 

the observed value on the relaxation time scale. Kq, the relaxation 

function (in x,y,z,t), which in this study is kept constant throughout the 

pre-forecast run. The role of transferring the assimilated information in 

the vertical and horizontal is performed by the model itself in a pre­

forecast run, acting as a dynamical interpolator I extrapolator. 

Three data assimilation (DA) experiments were performed: 

127 Appendix W; Section W.3.2. 
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1. To assess the effectiveness of data assimilation, model processmg 

was run with no DA scheme; 

2. To assess the effectiveness of varying the time period during which 

the model fields are dynamically nudged towards the SST 

observations, the model was run with an active DA scheme (scheme 

1 in table 7.2). Three nudging periods (or relaxation time scale) were 

tested: 06, 12 and 24 hours, and 

3. To assess the effectiveness of (1) varying the nudging period and (2) 

including a second forcing, nudging coefficient, to dynamically nudge 

the model fields towards the SST observations, model processing was 

run with an active DA scheme (scheme 2 in table 7.2). Four nudging 

coefficients were tested Sxl Q-3, Sxl Q-4, Sxl o-s and Sxl Q-6 for each of 

three nudging periods. 

The pre-, processmg and post-processing stages of the experimental 

setup were the same as described in sections 7.2.2. and 7.2.3. above as 

follows: 

1. Use of two sets of surface forcing conditions, and 

2. Fine-tuning of the nudging period and coefficient for data 

assimilation. 

Sections 7.2.2. and 7.2.3. were carried out in tandem. 
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DAscheme 

No scheme No nudging 

1 Fields nudged for a 
period t towards t= 06 hrs t= 12 hrs t= 24 hrs 

observed SST 

2 Fields nudged for a 
period t towards -r= 06, 12, 24 hrs -r= 06, 12, 24 hrs -r= 06, 12, 24 hrs -r= 06, 12, 24 hrs 

observed SST 
+ 

use of a nudging 5 X 10-3 5 X 10-4 5 X 10-5 5 X 10-6 

coefficient 

Table 7.2. Three experiments were performed to assess the effectiveness of the model's data 
assimilation scheme and its optimisation. 
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7.2.4. Model validation and diagnostics. 

The forecasting performancel28 of the ocean model was analysed using 

basic statistical performance measures such as mean, standard 

deviation, bias and RMSE. 

7 .2.4.1. Spatial analysis of small-scale surface oceanic features. 

Surface analysis was performed to outline and compare forecasted fields 

with high-resolution information of the ocean surface derived by remote 

sensing. 

128 Section 5.4.2. 
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7.3. Results and discussion. 

7.3.1. ~ffectiveness of data assimilation on the forecasting quality 

of the ocean model. 

The direct insertion method (i.e. Newtonian relaxation scheme) used in 

this study consisted of nudging forecast values at all data points 

towards the observed data, which are assumed to be exact. The 

blending estimate is a scalar linear combination, with an assigned 

weight (rand coefficients, separately and in tandem), of the forecast and 

data values at all model grid points. The coefficients used in the 

relaxation scheme were related to dynamical scales and a priori 

estimates of model and data errors used to assimilate GDAS-SST into 

the ocean model (Telenta, 1999, personal communication). 

7.3.1.1. No data assimilation scheme. 

Figure 7.6. shows the results when the ocean model did not use a data 

assimilation schemel29. The increasing RMSE index, based on the 

comparison between the forecasted SST field and collocated SST derived 

by the passive microwave sensor, reached a plateau after the 1 P 11 day of 

integration, to give a more or less stable RMSE of 3°C. 

A lower RMSE is obtained when the experimental mr-sea fluxes are 

used to initialise the model throughout the experimental run relative o 

the other system. An increased standard error with time is shown by 

the bias index (fig. 7. 7) for both runs. A maximum under-forecasted SST 

value of more than 3°C is reached after the full model integration run 

(fig. 7.7). 

129 Statistical results are shown in Appendix VII. 
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4 .--------------------------------------------------, 

• GDAS-SST + reference air-sea fluxes 

3 • TMI-SST + experimental air fluxes 
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Figure 7. 6. RMSE trend between 24-hr predicted SST and TMI-derived 
SST for the entire period of model integration, with no active data 
assimilation scheme. 
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Figure 7. 7. Bias trend between 24-hr predicted SST and collocated 
observed SST throughout the 15-day model integration of POM with no 
data assimilation. 
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The results show the importance of data assimilation, the absence of 

which leads to a significant model error drift and propagation of misfits 

in the forecasted SST. 

7.3.1.2. Newtonian relaxation towards SST with varying nudging 

periods (scheme 1). 

The use of both the experimental and reference datasets lead to a 

consistent decrease in the bias value with time (figs. 7.8 a-c) with the 

former giving a lower overall bias and amplitude130. This result is 

consistent throughout the entire run. Minimal bias is achieved after 

24 hrs of pre-forecast nudging. 

Horton et al. (1997) applied a similar DA scheme for their ocean 

forecasting system by nudging their model towards interpolation based 

analysis (Daley, 1991) of AVHRR MCSST. The new SST values were 

assimilated by the model using a nudging period of only 4 hrs. 

According to Horton et al. ( 1997) a low value of the nudging period was 

chosen so as to minimise model instability resulting from the sudden 

insertion of new temperature values. In contrast, these results show 

that only by increasing the nudging period to 24hrs can the best 24-hr 

predicted SST field be achieved. 

130 Statistical results are shown in Appendix VII. 
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7.3.1.3. Newtonian relaxation towards SST with variable nudging 

periods and coefficients (scheme 2). 

Results are presented in figures 7.9 a-1 in the form of linear trends of 

the resulting biases between the 24-hr forecasted SST fields against 

collocated observations. What is most apparent in these series of graphs 

is the smaller, and more stable bias of the forecasting system using 

TMI-SST and the experimental air sea fluxes as the initial surface 

conditions for the full model integration run. This pattern holds for all 

the different nudging periods and coefficients except when the value of 

the coefficient is 5x10-6 . In both cases, the bias tendency is always 

negative, implying the presence of model error drift with time, showing a 

slope that that is much less pronounced by the experimental system 

than the reference onel31. However, the different tendencies of the 

slopes produced by both sets of air-sea fluxes indicates that the two 

sets of initial conditions lead to two different sets of SST predictions. 

The small amplitude and stable tendency produced by the experimental 

set of air sea fluxes suggests a more stable setting. 

The overall result show that the best tuning for the data assimilation 

scheme occurs when the nudging period is set to 24 hrs and the value 

of the coefficient is 5 x 10-3. A similar pattern is observed when the 

value of the coefficient is changed to 5x10-4 (fig. 7.9 d-f). A different 

pattern in the bias trend is observed when the value of the nudging 

coefficient is changed to 5x10-5, in particular when the nudging period 

is set to be 06 and 12 hrs (figs. 7.9 g-h). However, this trend is improved 

when the nudging period is extended to 24 hrs, suggesting that with a 

weaker coefficient of 5x10-5, effective data assimilation can only be 

achieved if the nudging period is increased to a maximum of 24 hours. 

A nudging coefficient of 5x10-6 is too weak to adjust the ocean fields 

towards the observations (figs. 7.9 j-1). The duration of the nudging 

131 Statistical results are shown in Appendix VII. 
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period is also insufficient for such a weak adjustment. The end result is 

a final 15-day prediction of an SST field with an overall bias of around 

1 ac when a nudging period of 24 hrs is used. 

Despite the small period of evaluation, some general remarks can be 

made. What is evident from this study is that an active data 

assimilation scheme tends to dampen the fluctuating bias tendency 

rapidly. The fluctuation in the bias trend is caused by the model's 

attempt to equilibrate the model dynamics towards the prognostic SST 

values. However, its degree of damping is seen to be dependent on the 

two factors that regulate the extent of this fluctuation: the relaxation 

a model 

time qat and nudging coefficient Kq. 

Following the adjustment of the data assimilation scheme, it can be 

concluded that the best overall setup is the DA scheme 1 using a 

nudging period of 24 hrs but without including a nudging coefficient. 

With this setting, the mean bias over the entire 15-day model 

integration is only -0.05 °C. The second best option is achieved when a 

nudging coefficient of 5x10-4 is used with a 12-hr nudging period. With 

such a setting, this scheme gives the highest correlation between the 

model's 24-hr predicted SST field and collocated observations, with a 

mean bias of -0.07 °C. 

In both cases, better results are produced when the experimental air­

sea fluxes are used as the surface boundary conditions of the ocean 

model. The less accurate result achieved when the reference initial 

dataset was used may be attributed to its poorer spatial information 

(attributed to GDAS-SST) as well as less realistic reference set of air-sea 

flux values generated by the Eta model. In spite of this difference, both 

datasets lead to a better model performance than other ocean 

forecasting systems in the, region. Nittis et al. (200 1) for example, 

obtained a bias of 0.1 to 0.8 ac when their 24-hour POM-forecasted SST 

was compared to collocated in situ buoy measurements. 
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The difference exhibited by means of the standard verification is 

however very small. Having a high-resolution forecasting system that is 

able to provide a final bias of -0.05 ac after 15-days of integration is still 

a very commendable one. If one were to extrapolate the forecasting 

trend of the ocean model, a highly accurate forecast would, in the end 

be achieved. But the most important factor in high-resolution forecasts 

is not the scalar accuracy but the spatial accuracy, for which modelers 

and end-users show a keener interest. Spatial analysis of the final SST 

forecast, in fact do expose a marked difference between these two 

schemes (section 7.3.4.). 

The improved one-way atmosphere-ocean coupling offers distinct 

advantages over current basin-wide forecasting systems and is a novel 

aspect for operational forecasting for the Ionian region. For example, 

forecasting models working in the Mediterranean utilise bulk formulae 

to compute the surface boundary conditions of the ocean models 

(Lascaratos and Nittis, 1998). Atmospheric variables, such as wind field, 

air temperature and relative humidity are derived from coarse, monthly 

averages of 12-hr NCEP analyses for the period 1980-1988. Similarly, 

using the POM model, Horton et al. (1997) forecasted the Mediterranean 

circulation using wind stress and air-sea fluxes derived from NORAPS 

fields available at 12-hr intervals. The horizontal resolution of these 

fields was 45 km and the air-sea fluxes were calculated from these 

fields using bulk formulae. The systems also use weak relaxation to 

climatological temperature to prevent climatic-model drifts. Onken et al. 

(2003), for example, used 6-hourly momentum fluxes provided by 

ECMWF to force their high resolution model over the Straits of Sicily. 

Castellari et al. (1998) go even as far as assimilating monthly mean SST 

derived from global models (such as from the Climate Analysis Centre, 

Washington DC). These authors comment on their limited information 

provided by their initial fields ·and-·-,suggest the need to setup an 

operational high-resolution, nested atmosphere model from which to 

derive the required initial conditions more accurately. 
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One drawback in the present chapter is the short initialisation time of 

the ocean model that starts with zero velocity. Ideally, this should start 

a number of years before the actual experiment to allow the model to 

achieve quasi-geostrophyl32 (in reality geostrophic conditions can only 

be achieved after a couple of thousand years of model integration and is 

not feasible for this kind of study). 

It is interesting to note that the Mediterranean Forecasting System 

lacks an operational system whereby high-resolution, real-time 

atmospheric forcing is fully used to drive its full complement of 

regional- and shelf-ocean models. Comparative studies are still pending 

to analyse the impact of using different sources of atmospheric fluxes 

extracted either directly from its Mediterranean-wide atmosphere model 

or alternatively, by parameterisation using basic forecasted geophysical 

variablesl33. 

The Cyprus Coastal Ocean Modell34 (Zodiatis et al., 2002 a,b,c) is a 

version of the POM that is being used to provide high resolution ocean 

forecasts around Cyprus and the Levantine Basin for the Mediterranean 

Forecasting System. Unlike the present model setup, the Cypriot ocean 

model is forced using 6-hourly ECMWF atmospheric analysis and 

forecast provided by Meteo-France at a much coarser resolution (0.5° by 

0.5° latitude x longitude). These forecasts consist of air and dew point 

temperature, mean sea level pressure, clouds and 10 m winds. Air-sea 

fluxes are parameterised using climatological data (Zodiatis, 2003). 

Taking into account the modelling of the rur-sea fluxes by the 

sophisticated numerical scheme embedded in the Eta modell35, their 

132 Wu and Haines (1996) ran a version of POM for 100 years as to reach a well­
maintained statistically steady thermohaline and equilibrated system at all model levels 
in t_~ water column, along with budgets of'heat andfreshufatef and their seasonal 
variabilities. 
133 http:/ I forecast. uoa.gr/ mfstep/ mfstep_ 6. htm (accessed on 0 1.11. 04). 
134 of the Oceanography Centre, Department of Fisheries & Marine Research, Nicosia, 
Cyprus; http:/ /www.ucy.ac.cy/cyocean/ (accessed on 01.11.04). 
135 Appendix II; Section II. 1. 
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higher spatia-temporal resolution and accuracyl36, the forecasting 

system setup for the present study presents much greater potential. 

7.3.4. Spatial analysis of the forecasted fields. 

The validation of the high-resolution forecasts required the availability 

of comparable observations that capture the small-scale variability of 

the ocean-state during the integration period of the ocean model. 137 . 

This section presents the validation of the ability of POM to correctly 

represent ocean variability over fine spatial scales. 

An example of some of the datasets used to initialise, assimilate and 

verify the predicted oceanic fields is given in figures 7.10a-d. Starting 

with the calibrated AVHRR data 138, scenes retrieved on the 22nd and 

23rd July 1999 show very interesting thermal patterns. These very high­

resolution datasets ( 1. 1 km pixel resolution) 139 were an optimal source 

for comparative analysis of the spatial accuracy of the forecasted SST 

fields (- 4 km grid spacing). 

The SST derived from the NOAA AVHRR infrared sensor during these 

two days reveals a surface variability that can be associated with major 

oceanic currents in the Ionian basin (figs 7.11 a-band 7.12 a-b). 

Associated with these ocean fronts are features such as filaments and 

jets with scales of tens of km down to 5 km similar to the ones 

described by Gascard ( 1978). Figure 7.11 a shows a calibrated Image 

retrieved by the NOAA AVHRR sensor on the 22nd of July 1999, 

exhibiting an interesting thermal feature that is evolving in the area of 

interest. This feature forms part of the transient but recurrent gyre 

136 Section 5. 5. 3. 
137 see Chapter 4. 
138 Section 4.4.3. 
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I39 The acquisition and calibration relevant AVHRR scenes over the ocean model domain 
is provided in section 4.3.1.2. 5. 
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(a) 

(c) 

Calibrated 
NOAA-14 AVHRR 
Subset: 
15.94°E - J8.27°E 
33.39°N - 35.56°N 

22.07.99 at 12:53 UT 
Min. Temp: 
Max. Temp: 
Mean Temp: 
Std. Dev.: 

Calibrated 

25.48°C 
28.4SoC 
26.92°C 
0 .38 

NOAA -14 AVHRR 
Subset: 
15.94°E - 18.27°E 
33.39oN - 35.56oN 

23.07.99 at 12:41 UT 
Min. Temp: 25.38°C 
Max. Temp: 27.77°C 
Mean Temp: 26.56°C 
Std. Dev.: 0.31 

(b) 

(d) 

Calibrated 
TMI SST data 
Subset: 
15.94°E - 18.27°E 
33.39oN - 35.56oN 

22.07.99 at 02:48 UT 
Min. Temp: 25.65°C 
Max. Temp: 26.84°C 
Mean Temp: 26.20°C 
Std. Dev. : 0.22 

Calibrated 
TMISSTdata 
Subset: 
15.94oE - 18.27°E 
33.39°N - 35.56oN 

23.07.99 at 02:23 UT 
Min. Temp: 25.37°C 
Max. Temp: 27.00oC 
Mean Temp: 26.2SoC 
Std. Dev.: 0.31 

Figures 7.1 Oa-d. An overview of some datasets used to initialise, nudge, and verify the predicted oceanic fields. 
The thermal profiles (a) and (c) were retrieved by the NOAA A VHRR sensor on the 22nd and 2Jrd July 1999. 
(Blue denotes colder and yellow denotes warmer surface water). The thermal profiles (b) and (d) were retrieved 
by the passive microwave TMI sensor. In spite of the coarser detail identified by the TMI sensor, the thermal 
signature is still evident (aided by contours), including major filaments originating from the cold core. 
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(a) 

(b) 

Figure 7.11 (a) Composite consisting of radiances derived from NOAA 
A VHRR channels 1, 4 and 5 showing basin-wide circulation in the 
Ionian region, and (b) Composite consisting of radiances derived from 
NOAA A VHRR channels 1, 3 and 4 showing evidence of atmospheric 
aerosols originating from north Africa. Images retrieved on 22 July 
1999 at 12:53 UT(scale 1 cm:130 km) 

Figure 7.12 (a) Composite consisting ofradiances derivedfrom NOAA 
A VHRR channels 1, 4 and 5 showing evolution of the surface thermal 
signature in the Ionian basin, and (b) Composite consisting of 
radiances derived from NOAA A VHRR channels 1, 3 and 4 showing 
increasing aeolian dust uptake that is migrating towards the area of 
interest. Images retrieved on 23 July 1999 at 12:41 UT (scale: 

(a) 

(b) 

1 em: 130 km). 3 17 



described by Robinson and Golnaraghi (1994), having considerable fine 

detail of the intense curling and filamentous jets extruding from the 

main path of the cold water inflow that is migrating to the north­

western part of the integration domain. 

In the Ionian basin, this Atlantic Water has an intense looping 

northward which tends to decrease in amplitude during winter 

(Robin son et al., 1991). Tzi perman and Malanotte-Rizzoli ( 1991), using 

a climatological data set, concluded that the path of the mid-Atlantic 

water upon entering the Ionian Sea tends to be northward during the 

summer and southward during the remainder of the year. This western 

Ionian cyclone is a recurrent feature of the Ionian circulation. During 

the summer period it appears to be more restricted to the west due to 

the development of an anticyclonic pattern in the eastern Ionian area 

(Horton et al., 1997). 

The dust plume shown in figure 7.13 was observed to be an evolving 

feature that would ultimately affect the integrity of subsequent AVHRR 

scenes over the area of interest. The maps represent the predicted dust 

load over the model integration period during 23 July 1999140. The 

corresponding dust load predicted at 1500 UT, for example, is closely 

related to the dust plume made visible by the AVHRR, that from Libyan­

Tunisian region in North Africa. Subsequent forecasts of this dust 

plume shows that the amount of dust load increased and affects the 

entire area of interest. This corresponded with the lack of suitable 

AVHRR scenes from the 24 July until 7 August 1999. 

140 A full description of the atmospheric dust model used for this study is given in 
Appendix III. 
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Figure 7.13. Forecasted integrated 
dust load (g m·2) over the area of 
interest. Dust originating from the 
Saharan region is predicted to move 
eastwards every 3 hours starting 
from 0300 UT on the 23 July 1999. 
Superimposed is the resultant wind 
direction and strength. 
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Figure 7.11 b shows an SST map derived by the lower-resolution TMI 

sensor some ten hours earlier than the same-day A VHRR image 

(fig. 7.11 a). In spite of its coarser detail, the fine thermal signature is still 

very evident, including major filaments originating from the cold core. 

Recognition of the main thermal feature is aided by contour lines to 

delineate the major gradients of the SST profile. The spatial offset of the 

surface feature is probably explained by the 11-hour difference between 

the TMI and AVHRR swaths. 

Similarly, figures 7.11c and d compliment each other both 

quantitatively and qualitatively. The eddy's slight decrease in intensity 

from the 22nd to the 23rd of July is also detectable by the TMI sensor. 

Figures 7.11a-d suggests that this gyre is evolving and moving north­

westerly. 

The modelled data generated by this study shows that this thermal 

pattern is set by a balance of atmospheric 141 and oceanic dynamic 

processes142, including wind-driven momentum (fig. 7 .14), atmospheric 

heating and cooling (fig. 7 .14), and horizontal and vertical advection in 

the ocean (figs. 7.15 and 7.16). The connection between the predicted 

10 m wind magnitude on the 23rd of July and the surface temperature 

field are somewhat striking. Because of their duration, strength and 

orientation, the corresponding winds have a tendency to strengthen 

both the structure and migration of the thermal feature (fig. 7.11). A 

closer inspection of figure 7.14 shows that the surface wind is slower 

over the cooler parts of the water surface, and speeds up over warmer 

water. The divergence of the wind stress field is shown to increase with 

the gradient of the temperature field and the coupling is strongest when 

the wind blows at right angles to the isotherms. Studies over the North 

Atlantic sea show a coupling between the sea surface temperature and 

atmospheric forcing, which tend to reinforce each other to create 

anomalous conditions. The mechanisms thought to be responsible for 

this behaviour are the surface wind drift, wind mixing and the 

141 provided by the high resolution, nested Eta model. 
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Figure 7.14. 36-hour forecast of the 10 m wind magnitude (m s-1) 

predicted by the nested Eta atmosphere model starting at 22.07.99 
00 UT (equivalent to 23.07.99 at 1200 UT). A stronger wind magnitude 
is evident on the western and northern borders, which is reinforcing the 
observed anticyclonic pattern of the collocated SST map retrieved by 
NOAA A VHRR. (Scale arrow is 6 m s-1 ). 

interchange of heat between the ocean and the atmosphere. Correlation 

studies conducted by Day (2000) show that such coupling between wind 

and changes in SST can occur over very short time periods, such as 

three days. 

The close similarity between the SST maps derived from the two orbiting 

sensors demonstrate the potential of using the all-weather TMI-derived 

SST to initialise the boundary conditions of the ocean model and to 

dynamically adjust the model fields. The continuous availability of TMI­

retrieved SST during the model integration period also facilitated the 

analysis of the forecasting skill of the ocean model to forecast SST fields 

(around 4 krn grid spacing) in the absence of in situ data from the area 

of interestl43. 

142 provided by the high resolution POM. 
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Figure 7.15. 36-hour latent heat flux (W m-2) predicted by the nested Eta 
atmosphere model starting at 22. 07.99 00 UT (equivalent to 23. 07.99 at 
1200 UT). The central, low flux pattern is related to the calmer, region 
corresponding to the anticyclonic gyre as retrieved by the NOAA A VHRR 
sensor. (Scale arrow is 6 m s-1 ). 
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Figure 7. 16. 12-hour forecast of the sea surface elevation (m) predicted 
by the ocean model (using DA scheme 1; r=24 hours; experimental air­
sea fluxes) starting at 22.07.99 00 UT. Centra l thermal f eature is 
characterised by a stable, slightly elevated sea surface. Central tongue 
feature (T) is characterised by the higher wind magnitude moving 
westwards into the gyre. 

143 Section 7. 3 .1. 
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Figures 7.17 illustrates the observed and predicted 24-hour SST field 

respectively within the area of interest following the initialisation of the 

ocean model on the 22nd July. The 24-hour forecasted SST field, which 

is equivalent to 23rd July at 1200 UT is shown (fig. 7.17b). Main 

features can be noticed that are complimentary to the thermal pattern 

defined by the microwave SST retrieved on 23rd of July at 02:23 UT that 

was used to initialise the model run, but with a higher structural 

definition than the TMI SST field. This high definition closely matches 

the AVHRR image shown in figure 7.17 a. Features such as the cool 

vortex A, the cool filament at B, the warmer pool C and the sharp 

temperature gradient at E, are easily traceable. Model data (figs. 7.18 

and 7 .19) indicates that the direction and magnitude of the predicted 

ocean surface currents are strongly linked to this vortex, showing 

minimal translational energy within the cooler pools that form the 

interior of the anti-cyclonic eddy. Moreover, results show that these 

small-scale features are coupled to mesoscale atmospheric forcing as 

noted in figure 7.14. The highly resolved, surface currents predicted by 

the ocean model give further support to the ability of the ocean model to 

resolve oceanic circulation at a very high resolution. 

25.0 26.0 27.0 28.0 

Sea surface temperature (deg. C) Sea surface temperature (deg. C) 

(a) (b) 
Figure 7.17 a - b. SST features as retrieved by (a) A VHRR on the 23rd July 
1999 at 12:41 UT (mean: 26.6 oC; standard deviation: 0.31 °C} and (b) 
contoured, 36-hour predicted SST field (mean: 26.8 oC; standard deviation: 
0.31 °C} (using DA scheme 1; r=24 hours; driven by the experimental air-sea 
fluxes) on 22nd July 1999 (equivalent to 23rd July at 1200 UT). A=cool vortex; 
B=cool filament; C=warmer pool; D & E=sharp temperature gradient. 323 
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Figure 7.18. Streamlined surface ocean currents as predicted at the 
36th hour from the start of the model integration on the 22nd of July 
1999 at 00 UT. TMI-SST was assimilated using scheme 1 with r = 24 
hrs. 

Figure 7.19. Direction and magnitude (em s-1) of the surface ocean 
currents as predicted at the 36th hour from the start of the model 
integration on the 22nd of August 1999 at 00 UT. TMI-SST was 
assimilated using scheme 1 with a r = 24 hrs. (Scale arrow is 
0.4 em s-1). 
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7.3.5. Spatial analysis of the final forecasted SST field. 

This section focuses on the spatial accuracy of the surface temperature 

fields predicted at the end of the 15-day forecast run. This analysis is 

based on SST observations available from passive microwave remote 

sensing. No profiles were studied in the vertical dimension because data 

was lacking144. The availability of vertical profiles of temperature and 

salinity would have assisted the analysis of the error projection in the 

vertical dimension. It would also have been useful to assess how the 

data assimilation affects the dynamics of the underlying variables, with 

a resultant effect on the surface temperature. 

The top SST map in figure 7.20 represents the final SST field used to 

nudge the model fields starting on 05.08.99 at 1200 UT. This field was 

retrieved on 04.08.99 at 21.7 UT by the TMI sensor. The 00 UT 

predicted SST field using the experimental air-sea flux dataset and 

assimilating TMI -derived SST using schemes 1 and 2 are shown on the 

lower left and right of figure 7.20 respectively. To better resolve the 

predicted spatial structure, a 5x5 edge preserving smoothing kernel 

plus an additional low-pass 5x5 kernel were used to enhance the 

forecasted thermal pattern. 

The lower central image represents the SST retrieved by the TMI sensor 

on 06.08.99 at 2100 UT. A cold tongue is evident, which is also seen in 

the forecasted fields; however, DA scheme 1 produces a much more 

defined feature than scheme 2. The forecasted cold feature is seen to be 

located further south; this offset may be due to a three-hour difference 

between the forecasted and remotely sensed field. 

The histogram maps of the final forecasted SST are shown in figure 

7.21. The frequency plot of DA scheme 1 is evidently more focused 

around a narrow temperature range than the one obtained by DA 

144 The XBT CTD access server of the Mediterranean Forecasting System starts from the 
month of September 1999 for a selected number of sampling stations in the Ionian 
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scheme 2. This is in line with the spatial texture of the final forecasted 

SST fields. 

The unfiltered forecasted SST maps produced using DA scheme 2 show 

enhanced "noise" patterns with a consequential loss of a well-defined, 

final SST map. This behaviour by the model suggests that this scheme 

propagates errors within the model dynamics leading to model fields 

that are not equilibrated at the grid-point scale, giving rise to grid-scale 

high and low values of SST within the overall field. Such noise is not so 

evident in the forecasted fields produced by the DA scheme 1, where 

major SST fronts are more compact, easily recognisable and comparable 

to the observed SST field. This correspondence is also supported by the 

scalar validation given in section 7.3.1. 

basin. http:/ /vosdata.santateresa.enea.it:54321/mfs/xcsa/response.php (accessed on 
01.11.04). 
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Figure 7.20. Model predicted SST on 6th August at 00 UT using the optimal settings identified for DA schemes 1 and 2 
using TMI-derived SST and the experimental set of air-sea fluxes to drive the ocean model. 
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Figure 7.21. Histogram plot of the final forecasted SST maps (in °C} 
generated by (a) data assimilation scheme 1 using a nudging period r 
equal to 24 hours and (b) data assimilation scheme 2 using a coefficient 
of Sx1 0-4 . These forecasts were equivalent to 06. 08.99 at 00 UT. 

The same result is observed when the surface vorticity fields are 

analysed. Surface vorticity is a good indicator of the stability of the 

surface fields of the ocean model. In fact, less noise is evident in the 

surface vorticity field predicted by the DA scheme 1 (fig. 7.22) when 

compared to that produced using DA scheme 2 (fig. 7 .23) . 

The final forecasted SST maps when DA schemes 1 and 2 are applied 

using the reference air-sea flux dataset and assimilating GDAS-derived 

SST are shown in figure 7.24. In this case, the only difference from 

figure 7.20 is the substitution of the lower left and right SST maps 

produced by the parallel setup using the reference set of air-sea fluxes. 

The lack of mesoscale information provided by the SST data as well as 

the inaccuracy of the reference air-sea flux dataset that forced the 

ocean model is evident from the spatial inaccuracy of the final 

forecasted SST. The forecasted SST map using DA scheme 2 is 

increasingly granular, making comparison very difficult. 
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Figure 7.22. Vorticity (m-1 s -1) on 06.08.99 at 00 UT as predicted by the 
ocean model forced by the experimental set of air-sea fluxes and using 
data assimilation scheme 1 fr= 24 hours). 
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Figure 7.23. Vorticity (m-1 s -1) on 06. 08.99 at 00 UT as predicted by the 
ocean model forced by the experimental set of air-sea fluxes and using 
data assimilation scheme 2 (r = 06 hrs; nudging coefficient = Sxl 0-3). 
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Figure 7.24. Model predicted SST on 6th August at 00 UT using the optimal settings identified for DA schemes 1 and 2 
using GDAS-derived SST and the reference set of air-sea fluxes to drive the ocean model. 330 



7.3.6. Limitations of the verification analysis. 

It should be noted that the initial remotely-sensed SST fields used for 

assimilation throughout the entire 15-day period had an orbital time of 

± 3 hours close to 00 UT. Errors arising from this lack of co-temporality 

with the initialisation time at 12 UT need therefore be taken into 

account. This also stands for the validation of the model predicted SST 

fields, which were out of phase with the TMI data by a maximum of 

± 3 hours. No additional, collocated SST observations were available 

and therefore this error cannot be quantified. Henceforth, the present 

performance measures are based on a general, relative bias and RMSE 

rather than on the absolute value of the forecasts. Similar problems in 

data assimilation and model verification are always expressed, such as 

the case of Gavart et al. (1999) TOPEX/POSEIDON data assimilation 

for ocean modelling and verification purposes. 

Another limitation of this study is the short, 15-day model integration 

period. This limit was defined by the availability of integral TMI orbital 

swaths over the area of interest, which was needed to continuously 

initialise the surface boundary conditions of the POM model. It is 

interesting to note that similar, short-scale studies are not uncommon 

in the case of ocean modelling studies. Onken et al. (2003) for example, 

studied the synoptic circulation and transport in the Tunisia-Sardinia­

Sicily region using a model initialisation period of 12 days. 

7.4. Summary. 

The chapter implemented novel satellite SST assimilation into a high­

resolution primitive-equation ocean model and verified the forecasted 

output. The aim was to achieve an improved dynamical tool capable of 

simulating the surface ocean processes linked to the rur-sea 

interactions at sub-mesoscale level. 

331 



Section 7.2.1. described the setting-up of a high-resolution ocean model 

over the Ionian basin to provide short-range forecasts of the ocean 

state. The initialisation of this model using the high-resolution spatia­

temporal air-sea fluxes generated by the nested atmosphere model was 

described in section 6.4.4. 

In addition to these forcing fields, an assimilation scheme using TMI­

derived SST data was optimised to improve the forecasting skill of the 

ocean model. Section 7.3. described the results of this optimisation 

following validation against a set of high-resolution AVHRR dataset. 

This entire work was performed over a 15-day model integration 

window. Section 7.2.3.1. detailed how the ocean model was initialised 

with zero velocity on July 1st with a climatological mass field. Following 

this date, the ocean model was driven by the predicted, same-day air­

sea fluxes, SST and lateral boundary conditions derived from the 

previous run. This daily model integration was repeated for 15 days up 

to 5th August. Section 7 .2.5.1. described how the final daily 24-hour 

predicted ocean fields are generated. 

The first data assimilation scheme described in section 7.3.2. presented 

the most accurate predictions of SST. In this case, the best nudging 

period for this scheme was found to be 24 hours. With this setting, the 

mean bias over the entire 15-day model integration was only -0.05 °C. 

Section 7.3.3. showed how the inclusion of an additional coefficient in 

the equation lead to strong nudging towards the initial observations. 

The optimal nudging coefficient was found to be 5x10-4 for 12 hours, 

giving a mean bias of -0.07 °C. For both data assimilation schemes, 

model integrations that were initialised using TMI-derived SST and the 

experimental air-sea fluxes produced a better prediction than the 

competing traditional system. This demonstrated the potential of using 

passive microwave remote sensing to improve the ocean forecasting 

system. 
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The data assimilation results showed that Newtonian relaxation can 

provide a better estimate of the ocean state than if assimilation is 

excluded from the model simulation. This study ensured that the model 

used for the assimilation was of sufficiently high resolution and 

accuracy to prevent aliasing the assimilation result towards a model 

state that is wrong. Model error estimation was based on statistical 

comparison with observations. 

Sections 7.3.4. and 7.3.5. described how AVHRR SST data was used to 

provide a reliable description of mesoscale gyres in the area under 

study. The high-resolution sea surface thermal signature observed by 

AVHRR confirmed the ability of the improved ocean model to predict 

sub-basin surface circulation. These sections also demonstrated the 

high complementarity of infrared and passive microwave satellite 

sensors to provide information on SST thermodynamics over the Ionian 

basin. The applicability of using the calibration algorithm for validation 

purposes as developed in chapter 4 was also demonstrated. 
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Chapter 8 

GENERAL DISCUSSION. 

8.1. Introduction. 

The research presented by this inter-disciplinary study dealt with a 

variety of aspects that seek to evaluate the use of novel remote 

observations and spatial data analysis to improve and assess the skill of 

an ocean forecasting system for the central Mediterranean Sea. The 

technical details and experimental approaches varied somewhat from 

one study to another and were presented in separate chapters. In this 

chapter, the main conclusions that can be drawn from the preceding 

chapters will be integrated and summarised. 

The purposes of this study will be revisited and briefly checked against 

the research presented. Finally some directions for future research are 

giVen. 

8.2. Aims of the study. 

Chapter 2 presented several key aims which are discussed below: 

8.2.1. Identification of research gaps, technical challenges, and 

optimisation of approaches addressing a wide variety of aims in 

numerical ocean forecasting research. 

The main requisites and existing technical gaps in the field of numerical 

oceanic and atmospheric prediction have been identified based on a 

thorough literature search, particularly as they apply to the 

Mediterranean region. From this information, a range of optimisation 

approaches were formulated. Chapter 3 consisted of a review of present 
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research encompassmg the current challenges in numerical weather 

and oceanic prediction, ranging from the main data requisites that drive 

forward, stabilize and diagnose these models, to the methodological 

approaches in objective model verification. The chapter introduced some 

criteria on the best approach to calibrate AVHRR data in the absence of 

collocated in situ match up SST data. These criteria were subsequently 

formulated in chapter 4 to produce a set of multiple regression 

algorithms that were optimised for the central Mediterranean region. 

The potential use of exploratory spatial data analysis to assist in 

diagnostic verification of the ocean forecasting models was also 

introduced in chapter 3. Such analysis was subsequently formulated, 

used and evaluated in chapters 5, 6 and 7. 

8.2.2. Compilation of a database to validate the skill of the ocean 

forecasting system. 

Chapter 4 described the construction of a database that consists of a 

high-resolution time-series of observations acquired by passive 

microwave remote sensing. The database was central to the process of 

verifiying the predictions made by the ocean forecasting system in an 

objective way. This contrasts strongly with other forecasting systems in 

the Mediterranean region which often give a higher priority to technical 

improvements, such as data initialisation and assimilation activities, 

rather than to model verification. 

From the basic, remotely sensed variables archived in this database, the 

latent and sensible heat fluxes were calculated using bulk 

parameterisation. The criteria discussed in chapter 3 for the calculation 

of the turbulent heat fluxes, such as the use of suitable coefficients and 

approximations, were formulated in chapter 4. This study presents a 

substantive improvement in the methodology used to derive high­

resolution, instantaneous rur-"sea flux -products from novel remotely 

sensed variables such as sea surface temperature and 10 m wind 

magnitude. These data represent an improved source of information 
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against which high-resolution model forecasts were verified. This is in 

stark contrast to the use of coarser, monthly climatological values used 

by many other forecasting systems worldwide. 

The criterion presented in chapter 3 for the calculation of the surface 

air temperature was formulated and applied in chapter 4, which took 

into account the monthly variability derived from climatological data of 

the area under study. This method represented another methodological 

improvement over current approaches to derive this value for the 

parameterisation of the turbulent air-sea fluxes as described in section 

4.4.1.2. 

The approach taken in processing and parameterising these data 

produced a unique, detailed database of the climatology of the area 

under study at exceptional spatial and temporal resolution. These 

data sets were used in chapters 5, 6 and 7 to verify the skill of the Eta 

and POM models to predict 10 m wind magnitude, cloud liquid water, 

precipitable water vapour, surface air temperature, turbulent air-sea 

heat fluxes (the sensible and latent heat fluxes), radiative air-sea heat 

flux (outgoing longwave radiation), and sea surface temperature. This 

database contained additional climatological information, which 

included a 1 0-year record of climatological aerosol optical thickness, 

absorbing aerosols and precipitation rates. The principles of verifying 

such databases introduced in chapter 3 were addressed by verifying the 

present database against the Southampton Oceanographic Centre Air­

Sea Flux Atlas and the Comprehensive Ocean Atmosphere Data Set. 

The high accuracy and benefits of the present database were presented 

in detail in chapter 4. 

The inclusion of sea surface temperature data in this database was 

given particular emphasis. Microwave remote sensing provided an all­

weather data availability over the centralMediterranean arid was able to 

show extensive mesoscale features. The strength of thermal infrared 

remote sensing to validate the high-resolution ocean model, was applied 
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by this study, taking into account the constraints presented by 

calibration algorithms, in particular by those applied in the absence of 

collocated, in situ data. Tailored algorithms were derived to calibrate 

radiance scenes acquired over the central Mediterranean Sea (chapter 4) 

and used to evaluate the improvements in model skill (chapter 7). 

Special care was taken for the detection, simulation and potential 

impact of atmospheric dust on the final SST product. Climatological 

information came from a 1 0-year long measurements of the aerosol 

optical thickness, which provided a statistically robust pattern of the 

aerosol content over the area of interest. In chapter 7, the dust plume 

which originated from North Africa on the 20th of July was modelled to 

delineate the extent of the resulting impact on the thermal radiances 

retrieved by the AVHRR. In this manner, this study presented an inter­

disciplinary approach to evaluate and calibrate AVHRR data for the 

purpose of model verification. 

8.2.3. Improving the skill of the Eta model to forecast air-sea 

fluxes. 

One of the main achievements of this thesis is the accuracy assessment 

of the forecasting skill of a nested, high-resolution Eta atmosphere 

model against novel remote sensing observations and their derivatives, 

with special reference to the predictability of surface fluxes over the 

ocean. The air-sea fluxes are a direct measure of the physical 

interaction between the atmosphere and ocean and are well-suited to 

diagnose the model's parameterisations of the boundary layer, radiation 

and cloudiness. Validation and improvement of these data, especially 

the wind stress, form an essential part of the process for the coupling of 

the atmosphere and ocean models (chapter 7). The results presented by 

this study can be used to further fine-tune the post-processing of the 

Eta model as to provide more accurate short- to medium-range, high­

resolution forecasts. The forecasting,tendencies of-the Eta model were 

quantified using standard statistical measures and their 

decompositions. 
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The high accuracy of the monthly predictions of the 10 m wind 

magnitude and surface air temperature data, was followed by that of the 

hydro-meteorological variables in decreasing order. The RMSE values 

obtained for the predicted surface wind magnitude were better than 

those obtained by the Eta-32 mesoscale version published by NCEP145, 

the latter showing an average RMSE value of 3.0 m s- 1 for the 12-hourly 

predicted wind field on the 28th October 2004. The present results, 

however, show a significant over-forecasting trend for the predicted 

outgoing longwave radiation and a correction to Eta's GFDL radiation 

package that takes into account a realistic aerosol database for the 

central Mediterranean is a strong recommendation of this study. This is 

in line with the recent plans to improve the Eta forecast system at 

NCEP, by including modifications in the cloud microphysics and the use 

of a new radiation package for Eta (Ferrier et al., 2003). 

Chapter 5 also evaluated the use of novel remotely sensed data to fine­

tune the viscous sublayer depth, which is a determinant value in the 

forecasting of the air-sea fluxes under viscous conditions. This study 

proposes to dynamically adjust the sublayer depth value according to 

the prevailing surface wind conditions modelled by the Eta model. This 

approach presented an improved method to fine-tune a numerical 

scheme of an atmosphere model, based on an objective verification 

against high spatia-temporal observations derived by an orbiting 
. . 

passiVe microwave sensor. 

As in any scientific experiment, forecast verification is an essential 

component of numerical modeling to assess the success, or otherwise, 

of the improvement made to the system. In this study, forecast 

verification was used to address three important reasons, namely ( 1) the 

monitoring of the forecast quality of the full climatic range over the area 

of interest, (2) the assessment of the improvement of the forecast quality 

145 

http:/ I www. at mos. washington. edu/-bnewkirk/ new_ web page/ plotl2/ STATSBET A. txt 
(accessed on 01.11.04). 
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following fine-tuning, initialisation and data assimilation experiments, 

and (3) the comparison of the forecasting quality of competing 

forecasting systems. In this context, the verification of predicted, 

continuous variables was done to see how the values of the forecasts 

differ from the values of the observations. For such an assessment, 

standard verification methods were used such as scatterplots, mean 

error, bias, root mean square, and skill score. 

Diagnostic verification methods were also used in this study. These 

methods are more complex than the standard ones. Their development 

is still in its infancy, and therefore, is a research area where new 

methods can be promoted. Thus, the criteria introduced in chapter 3 on 

the potential use of exploratory spatial data analysis for diagnostic 

verification were formulated and evaluated in chapters 5 and 6. Three 

routines that assisted in the interpretation of the skill of the Eta model 

in spatial terms were performed to understand the inter-relationship 

between predicted and observed surface fields. 

Match score analysis, being the first of the three exploratory spatial 

data analysis, has been here developed on the basis of the threat score 

methodology (Glahn et al., 1991; Goeber and Milton, 2002) used by 

atmospheric modellers to assess the correct placement and timing of 

particular, forecasted categories. The present study re-formulated this 

approach by giving it a fully spatial perspective using GIS and image 

classification. This spatial match score analysis thus measured the 

accuracy of the forecast in spatial terms, of whether the event from a 

category was forecasted or not and whether it was observed or not. Most 

of the research done on model verification uses the threat score method 

to analyse and compare the ability of different atmosphere models to 

accurately locate precipitation events above a certain threshold 

(Mesinger, 1996). So far, this adaptation of the threat score analysis has 

never been applied to assess the ability of the Eta model to accurately 

forecast surface events over oceanic surfaces. 
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Spatial match score, however, only provides an absolute relation 

between the predictions and observation on the basis of the exact 

placing and timing of the event under investigation. The second 

diagnostic verification method, termed spatial similarity, provided a 

value-added spatial representation that was indexed according to the 

degree of similarity. This approach was selected because it takes into 

account the inherent errors in model verification, namely the limited 

spatial representativeness and accuracy of the highly variable 

measurements (such as surface winds over the oceans), thus providing 

a more realistic assessment of the skill of the Eta model in spatial 

terms. In addition, spatial similarity assisted model verification by 

employing a similarity measure that was able to separate out feature 

clusters. By finding image categories, the similarity index was able to (1) 

calculate which categories are close to each other in space, and 

(2) explain why two representations of image segments were similar in 

the context of numerical predictability. In a nutshell, the focus of the 

spatial similarity routine was both on how the overall prediction is 

similar to the observation, and equally on how each of their subparts 

are similar. A thorough literature search on the subject matter shows a 

complete lack of this approach in atmospheric modelling. Spatial 

similarity has been used to measure similarity between remotely sensed 

images for pattern recognition (Jain and Hoffmann, 1988), and to 

retrieve images from image databases using query-by-sketch operations 

(Ago uris et al., 1 99 7). 

The use of geostatistics constituted the third approach to evaluate the 

predictive skill of the Eta model. This was done in the context of 

understanding the impact, on spatial terms, of improving the initial 

surface boundary conditions of the atmosphere model, as described in 

chapter 6 (see section 8.2.4. below). 

The development of analytical routines to assess the skill of the Eta 

model in spatial terms was another substantive achievement of this 
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study. Chapter 5 evaluated how this analysis can be instrumental to 

identify model errors in a spatial context. 

8.2.4. Assessing the impact of using microwave-derived SST to 

initialise the surface boundary conditions of the atmosphere 

model. 

The optimisation criterion identified in section 2.1.3. for the 

improvement of the surface boundary description of the Eta model was 

formulated and tested in chapter 6. In this context, the use of a novel 

SST dataset derived by the Tropical Microwave Imager was evaluated 

against a conventional method, using model-analysed SST dataset. 

While keeping all conditions the same, the remotely sensed product led 

to a yearly average of around 10% improvement in the prediction of the 

10 m wind speed. This improvement was another methodological 

achievement of this study. Thiebaux et al. (2001) described a similar 

approach to initialise the NCEP Weather Analysis and Forecasting suite 

of models by using 50 km SST derived from the most recent 24-hours of 

in situ and satellite-derived surface temperature data. This approach 

was implemented on 30 January 2001, and now provides the sea 

surface temperature fields for the Meso Eta Model, formerly provided by 

the NESDIS 50 km satellite-only sea surface temperature analysis. They 

report that this new SST analysis provides a more accurate lower 

temperature boundary over water for the Eta and this has improved the 

marine boundary layer evolution. However no objective statistical 

analysis has been reported by the group. 

Throughout chapter 6, the diagnostic verification routines developed 

were applied to evaluate the spatial context of the improved model 

predictions. Both the spatial match score (that measures the precise 

spatial hit of wind speed categories) and the spatial similarity index, 

highlighted the superiority of the microwave data to initialise the 

surface boundary condition of the Eta model. Case studies covering the 
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mam climatic regimes of the area of interest were discussed m this 

study. 

A novelty in the field of atmosphere model verification is the use of 

semi-variance analysis to model the spatial structure of the residual 

fields between predictions and observations, and to translate the degree 

of spatial correlation in numerical and graphical form. This approach 

supported the results shown by the standard and diagnostic 

verification, providing further evidence of the improved correspondence 

between the experimental forecasts and collocated observations. 

Geostatistics described a prevalent gaussian model for the residuals for 

both the reference and experimental setup that were characterised by 

low noise, and having mild degree of anisotropy in the 45° direction. 

However, variography proved to be a less sensitive tool than the spatial 

match score for the purpose of identifying the degree of spatial 

correspondence. 

In summary, the experimental model setup performed better than the 

conventional, reference one both in quantitative and spatial terms. The 

extent of the improvement was consistent throughout the study period 

and it is evident that the mesoscale spatial information offered by the 

novel remotely sensed dataset is the main cause for such an 

improvement. Chapter 6 discusses the major constraints of the 

verification analysis which was based on a single-verification date 

approach. The choice of specific dates throughout the entire annual 

analysis depended on the availability of observations to both initialise 

and validate the two competing models. 

8.2.5. Improving oceanic forcing and prediction. 

The final goal of this study was presented in chapter 7. The 

improvements achieved by the . previous ·chapters were ultimately 

transferred to the ocean model in the form of improved surface 

boundary conditions to initialise the 15-day ocean model run. The 
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benefit of having these improved conditions was evaluated by comparing 

ocean model predictions against a similar model setup that was 

initialised by the conditions provided by the reference model described 

in chapter 6. The improved surface boundary conditions resulting from 

the fine-tuning of the Eta model, coupled to its initialisation using 

remotely-sensed data acquired by the Tropical Microwave Imager is a 

novel achievement both for the technical progress of the POM model as 

well as for its application in the Mediterranean region. 

Another technical achievement shown by this study was the successful 

assimilation of microwave-derived SST into the ocean model. The goals 

identified in section 2.1.4. were formulated and tested out in chapter 7. 

This resulted in the optimisation of a data assimilation scheme able to 

achieve a final forecast for the sea surface temperature that was 

accurate in both quantitative as well as in spatial terms. The mean bias 

over the entire 15-day model integration accounted to only -0.05 °C. 

These results show an improvement over other ocean forecasting 

systems in the region (e.g. Nittis et al., 200 1) that show a bias of 0.1 to 

0.8 °C when the 24-hour POM-forecasted SST is compared to collocated 

in situ buoy measurements. 

The creators of POM attempted to measure the benefits of assimilating 

AVHRR-SST into POM (Ezer and Mellor, 1997), but their validation 

methods was based simply on the visual observation of the predicted 

Gulf Stream against observations. Assimilation of SST also led to an 

effective error reduction in the upper layers of the ocean model (above 

lOOm). The authors recommend the combined use of sea surface 

temperature and sea surface height (obtained by orbiting altimeters) to 

improve the model skill at lower depths. 

The sub-mesoscale spatial information provided by the remotely-sensed, 

high~resolution thermal ocean maps "was equally well-simulated as a 

result of the most efficient data assimilation scheme identified by this 

study. The predicted information on the surface water circulation 
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produced by the present study was much more detailed than that 

obtained by Horton et al. ( 1997) using a ten-day POM integration over 

the Ionian basin. 

The resulting setup of the improved, high-resolution, ocean forecasting 

system is illustrated in figure 8.1. The data derived by the orbiting 

microwave sensor onboard the TRMM satellite is central to (1) the 

provision of initial SST data for both the atmosphere and ocean model, 

and (2) model verification. The optimal adjustment of the viscous 

sublayer depth plays an important role in the provision of accurate 

surface fluxes, whilst the use a 24-hour nudging period to assimilate 

SST in POM adjusts the model fields towards the remote sensing 

observations. 

8.3. Future research directions. 

The purpose of this section is to address a number of possible research 

directions that might follow on from this study. 

8.3.1. Fine-tuning the multiple regression models for AVHRR 

calibration. 

The look-up table shown in section 4.4.2.2. can be further fine-tuned to 

reflect the atmospheric variability of the central Mediterranean. This 

can be done by collocating accurate SST data (derived by in situ 

buoysl 46, onboard measurements, or microwave remote sensing) with 

thermal radiance scenes acquired over the area. An ideal dataset is the 

World Ocean Atlas from which historical in situ data for the 

Mediterranean regiOn can be extracted and collocated with archived 

infrared radiances acquired by A VHRR. 

146 for which a correction would be needed to convert the bulk-SST into a skin-SST. 
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Figure 8.1. Scheme representing the main improvements of the high-resolution, ocean forecasting 
system for the central Mediterranean resulting from the present study. 
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8.3.2. Need for new generation of satellite SST. 

This thesis points towards the need for a new generation of satellite SST 

product based on merged multi-sensor array that can simultaneously 

derive infrared and microwave SST. The challenge is to develop a new 

generation of SST data products that capitalise on the exceptional 

benefits of synergistic use of both infrared and microwave sensors to 

determine SST, as demonstrated by this thesis. Apart from highlighting 

the systematic differences between the two data sets that, in part is due 

to the operation of the sensor (i.e. skin and subskin), the all-weather 

microwave sensor can provide a source of calibration for the finer 

spatial resolution infrared sensor (e.g. fig. 8.2). Merging these data can 

also lead to the understanding of the diurnal dependence of the bulk, 

subskin and skin SST that is required for the initialisation of numerical 

weather prediction models. 

+ 

(a) (b) (c) 

Figure 8.2a-c. A simple example illustrating the benefits of fusing (a) a 
high-resolution SST map retrieved by the Advanced Very High 
Resolution Radiometer containing data gaps (due to aerosols or cloud 
contamination)} with (b) an all-weather} lower resolution SST map 
retrieved by the Tropical Microwave Imager. Using data interpolation 
techniques} the final} high-resolution field can be used for data 
assimilation} model initialisation and/ or model verification purposes. 

The future of microwave-derived SST, with its provision of accurate, all­

weather global coverage would soon be complimented by a wider 

research on its applicability. This thesis can be viewed as one of the 
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first research efforts that utilises this data source to improve the 

predictive capability of ocean forecasting systems. Apart from the 

orbiting TRMM satellite, the recently launched AMSR series of 

instruments on AQUA (launched May 2003) and ADEOS-11 (launched 

December 2003) are now providing even more accurate retrievals of sea 

surface temperature data. This availability is leading to the generation 

of fused SST products as part of the GODAE High-Resolution SST Pilot 

Project (GHRSST-PP), consisting of twice-daily, global SST fields 

originally derived from the TMI and AMSR-E orbiting sensors147 . Near 

future sources of accurate SST data will include the Spinning Enhanced 

Visible and Infrared Imager (SEVIRI) and the Infrared Atmospheric 

Sounding Interferometer (IASI) instruments on the MSG and METOP 

missions respectively. 

The proposed synergy will be very challenging g1ven the number and 

diversity of inputs. As argued by Merchant (2003), the provision of a 

merged final product with optimal quality requires various strategies 

addressing the issues of retrieval and inter-calibration, scale, timing 

and location of observation, data interpolation and fusion. 

8.3.3. Need for more observations for model initialisation and 

verification. 

This thesis would have greatly benefited if an enhanced frequency of 

observations were available for model initialisation and verification. The 

global microwave-derived SST is now much more extensive thanks to 

the recent launching of the AQUA and ADEOS-11 satellites, making this 

data more feasible to use for daily initialisation of atmosphere and 

ocean models. An enhanced sampling rate would further support model 

verification, and plans are already available for the launching of a 

cluster of orbiting small radiometer satellites flown in constellation 

configuration to provide the necessar-y dh1rnal sampling needed to force 

and verify meteorological models (Kummerow et al., 2000). In particular, 

147 http:/ I www. remss. com/ conf/ gentemann/ Blended%20SST3.doc (accessed on 

347 



the availability of air-sea fluxes at high spatia-temporal resolution can 

be instrumental to fine-tune their simulation and prediction by 

atmosphere models. At the same time, observational uncertainty still 

limits the precise measurement of the forecast quality; ideally 

observational uncertainty should be taken into account in verification 

studies, but this objective is very difficult to actually accomplish and 

should be a subject of future research. 

This study recommends that it is necessary to verify high-resolution 

forecasts using remotely sensed data and to develop in the future, 

ocean forecasting models that are able to represent their forecasts in 

the same way as the observations, including scaling and data 

formatting. It also recommends that a more refined approach is used 

when comparing forecasts and observations that have different spatial 

scales. Translating them both to the same scale is not always the best 

approach. One possibility would be to "ramp down" the scales to allow 

comparison. Other approaches for moving between scales - such as 

wavelet transforms - might be more appropriate than simple 

interpolation to produce finer observation grids. However, this area still 

requires further research and testing. 

8.3.4. Impact of model resolution. 

Further studies on the impact of increasing the model resolution on its 

predictive quality are needed. Preliminary results of this study showed 

that the 10 m wind magnitude forecasted by a nested, high-resolution 

(0.042° by 0.042°) Eta model shows a reduction in the RMSE compared 

to the same model working at 0.17° by 0.17° (fig. 8.3). Moreover, these 

results suggest that the higher accuracy may be coming from improved 

boundary conditions of the nested Eta model, which better define the 

conditions during the first 12 hours of model integration run. This 

study recommends- further research .tooexamine the sensitivity of a high­

resolution Eta model to capture small-scale, non-linear variability, and 

30.10.04}. 
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whether this would limit the skill of high-resolution atmosphere and 

ocean models. 

3.00 

2.50 

w 2.00 
Local-area, regional Eta 

t/) 
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Q:: 1.50 
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Figure 8.3. RMSE values for the predicted 10 m wind magnitude by the 
regional, local area Eta model (working at a resolution of 0.17° by 0.17°), 
and the nested Eta model (working at a resolution of 0.04° by 0.04°), 
against collocated measurements derived from the orbiting TMI sensor. 
X-axis relates to the forecasted date during January and nth hours in UT 
in the form dd_hr. 

A fully objective study of this kind is very difficult to conduct as long as 

collocated observations at the same pixel resolution are not available. A 

feasibility study can be helpful to define the current limits of high­

resolution modelling and to propose new Earth-observation missions to 

address this issue. 

8.3.5. Closing the cycle to a fully-coupled ocean forecasting 

system. 

With the provision of high spatia-temporal SST coverage by orbiting 

microwave sensors, coupled to the improved predictive capability of the 

POM model, the one-way coupling of the ocean forecasting system can 

now be transformed into a full, two-way coupled system. The final link 

is the provision of predicted SST fields by the POM model serving as the 

349 



initial surface boundary condition of the Eta model. The inclusion of the 

diurnal variability of the SST, linked to a 3-hourly updating frequency of 

the lower boundary condition of the POM model, can result in an 

accurate and extended medium- to longer-range prediction. However, 

coupling of atmosphere-ocean models requ1res a thorough 

understanding of the long-term dependence and coupling of small-scale 

atmospheric and ocean circulation and is a subject of future research. 

8.3.6. Refined exploratory spatial data analysis for ocean 

forecasting systems. 

Higher-resolution models need to be given a proper evaluation that 

measures well their predictive capabilities. When fine detail becomes 

one of the primary goals of a predictive model, new approaches need to 

be developed to characterise the observed and forecast fields. This 

thesis has shown how spatial analysis can provide users with more 

detailed information about the high-resolution forecasts and their 

quality. 

This study recommends that verification of fine-scale modelling should 

rely more on entity-based techniques, pattern recognition, and 

exploratory spatial data analysis techniques. At the same time, 

computing environments for spatial data analysis are undergoing rapid 

change and are now able to address new theoretical questions leading 

to ever more sophisticated spatial analysis tools. This thesis showed the 

ease of geocoding modelled and observed data and the feasibility of 

analysing spatially the features of both forecasts and observation, and 

their relationships. 

It is likely that the incorporation of spatial analysis as a standard 

routine for model verification will generate a demand for dedicated 

software tools, either in isolation, or in _conj11nction with existing GIS or 

statistical software. Based on the experience gained by this study, a 

number of recommendations are put forward in this respect. First, new 
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spatial analysis tools need to be modular, allowing the incorporation of 

reusable components to address the specific analytical requirements of 

numerical modelers. Secondly, new software tools will need to be able to 

read and manipulate spatial data which have different formats, 

independently whether they are obtained from satellite remote sensing 

platforms or numerical models. This is likely to be accomplished by 

specialised scripts that translate various formats into a common 

structure. Thirdly, the potential in terms of added functionality that 

could result from the fostering of a large community of developers in an 

"open source" context, should be taken into account. 
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Appendix I 

DATA PROCESSING AND REFORMATTING OF 
GEOPHYSICAL DATA DERIVED FROM THE 

TROPICAL MICROWAVE IMAGER. 

Appendix I describes the computer codes used to calibrate the 
geophysical fields derived from the Tropical Microwave Imager. 
Following such processing, additional codes are used to convert the 
data in a number of different formats, including ascii x,y,z format (for 
statistical model verification), GrADS format (for 2-D visualisation), and 
software-specific formats, including ERMapper and ERDAS Imagine. 

1.1 Data processing and reformatting of geophysical data derived 
from the Tropical Microwave Imager. 

1.1.1. Data calibration, format and conversion of geophysical fields 
derived by the Tropical Microwave Imager into GrADS format. 

The TMI-derived remotely sensed fields are converted into GrADS 
format data using TMI2monthlyORB.f This formats the ascending and 
descending swaths using TMI2cent0RB.ctl. 

c***************************************************** 

c Reading SSM! 'binary' data (www.ssmi.com) 
c and converting into GrADs; 
c by Pejanovic and Galdies 
c !Cod 2000. 
c***************************************************** 
c***************************************************** 

parameter (IM= 1440,JM=320) 
character *1 a1,aw(IM,JM),aw1(IM,JM) 
character * 1 aw2(IM,JM), aw3(IM,JM), aw4(IM,JM), awS(IM,JM) 

character *1 aw6(IM,JM) 
dimension id7(7),ar7(7) 
integer *2 i2 
character * 1 c1 
dimension r(im,jm) 
dimension r 1 (im,jm) 
dimension r2(im,jm) 
dimension r3(im,jm) 
dimension r4(im,jm) 

dimension rS(im,jm) 
dimension r6(im,jm) 

character * 1 00 fname 
equivalence ( a1,i2) 

c equivalence ( c1,iteroutside) 
c ---------------------------------------------

data id7 /0,0,0,0,0,0,0/ 
data ar7 /0,14,40,p.)~S,Q,2_5,3?0,;39.875,0.25/ 

c ---------------------------------------------
call getarg(l,Jname) 
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call getarg{2, c1) 
nb = index ([name, ' ') -1 
iteroutside = ichar(cl )-48 
print *, ' iteroutside= ', iteroutside 

c call system ('cp bdatl '/I fname(l :nb)l I,,..') 
c ---------------------------------------------

read ( fname(l :4), '(i4)') id7(1) 
read ( fname(5:6), '(i2)') id7(2) 
read ( fname(7:8), '(i2)') id7(3) 

c ---------------------------------------------
c call system ('gzip -d '/ lfname(l:nb)) 
c ---------------------------------------------

id7 ( 4) = 0 
c if(index(fname,'am') .gt.O) id7(4) = 6 
c ---------------------------------------------

open( 1 O,file=fname(l :nb)Jorm ='unformatted', 
,. status= 'old', access= 'direct',RECL= IM*JM) 

c ---------------------------------------------

n= 0 
c-------------------------------------

do 500 iter=O, 1 
c------------------------------------
c id7(4) = iter 

n =iter*? 
if (iter. ne. iteroutside) go to 500 

read (1 0, rec= 1 +n) aw 
read (10,rec=2+n) awl 
read (10,rec=3+n) aw2 
read {10,rec=4+n) aw3 
read (10,rec=5+n) aw4 

read (1 O,rec=6+n) aw5 
read (1 O,rec=7+n) aw6 

doj=l,JM 
do i=l, IM 
r {i,j) = ichar(aw{i,j)) 
r 1 {i,j) = ichar(aw 1 {i,j)) 
r2{i,j) = ichar(aw2{i,j)) 
r3{i,j) = ichar(aw3{i,j)) 
r4(i,j) = ichar(aw4{i,j)) 

c time 

r5(i,j) = ichar(aw5{i,j)) 
r6{i,j) = ichar(aw6{i,j)) 

if ( r {i,j).gt.250) then 
r {i,j) = -1 

else 
r{i,j) = r{i,j) ,. 61 60. 

end if 
cSST 

if ( r1 {i,j).gt.250) then 
rl{i,j) = -1 

else 
r1 (i,j) = (rl (i,j) ,. 0.15 - 3.) + 273.16 

endif 
c winds Z 
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if ( r2(i,j).gt.250) then 
r2(i,j) = -1 
r2(i,j) = 0 

else 
r2(i,j) = r2(i,j) * 0.15 

end if 

c winds Wr 
if ( r3(i,j).gt.250) then 

r3(i,j) = -1 
r3(i,j) = 0 

else 
r3(i,j) = r3(i,j) * 0.15 

end if 

c water vapour 
if ( r4(i,j).gt.250) then 

r4(i,j) = -1 
r4(i,j) = 0 

else 
r4(i,j) = r4(i,j) * 0. 3 

endif 

c cloud liquid water 
if ( r5(i,j).gt.250) then 

r5(i,j) = -1 
r5(i,j) = 0 

else 
r5(i,j) = r 5(i,j) * 0. 01 

end if 

c rain 
if ( r6(i,j).gt.250) then 

r6(i,j) = -1 
r6(i,j) = 0 

else 
r6(i,j) = r6(i,j) * 0.1 

endif 

c r 1 (i,j) = ichar(aw 1 (i)) 
c r2(i,j) = ichar(aw2(i)) 

enddo 
end do 

DUPE= 0 

print*,' id7=',id7 
print *,' ar7= ', ar7 
print *,' IM,JM =',IM,JM 

CGRADS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
isat = 999 

c---------------------------------------~----------------------

CALL WGRADS (id7,9 ,O,O,ISAT,O,ar7,im,jm,1,0.,r ,DUPE) 
CALL WGRADS (id7, 1 ,O,O,ISAT,O,ar7,im,jm, 1,0.,r1,DUPE) 
CALL WGRADS (id7,2 ,O,O,ISAT,O,ar7,im,jm,1,0.,r2,DUPE) 
CALL WGRADS (id7,3 ,O,O,ISAT,O,ar7,im,jm, 1,0.,r3,DUPE) 
CALL WGRADS (id7,4 ,O,O,ISAT,O,ar7,im,jm,1,0.,r4,DUPE) 

CALL WGRADS(id7,5;D,'O;ISAT,O;ar7,im,jm,1,0.,r5,DUPE) 
CALL WGRADS (id7,6 ,O,O,ISAT,O,ar7,im,jm,1,0.,r6,DUPE) 
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c-------------------------------------------------------------
500 continue 
c call system ('nn '/ /fname(l:nb)/ /'*') 

end 

The TMI2cent.ctl file writes TMI-derived data into GrADS format using 
the following "* .ctl" file: 

dset I usr I local/ TMI/ grads/ tm2SEP. gdat 
undef -1 
title mqfull model 
*xdef 1440 linear 0.125 0.25 
*ydef 320 linear -39.875 0.25 
xdef 145linear 0.125 0.25 
ydef 41 linear 30.0 0.25 
tdef 60 linear OOZOlsep1999 12hr 
zdef 1 levels 1 000 
vars 7 
time 0 9, 1, 0 Time 
sst 0 1, 1, 0 Sea Surface Temperature 
z 0 2, 1, 0 1Om surface wind speed using 1 GHz 
w 0 3,1,0 10m surface wind speed using 370Hz 
wv 0 4, 1, 0 water vapour 
clw 0 5, 1, 0 cloud liquid water 
p 0 6, 1, 0 precipitation rate 
endvars 

This dataset conists of twice daily sets of geophysical fields. The fields 
are visualized and their integrity noted together with the orbital 
overpass derived from the time t. Once suitable orbital swaths over the 
central Mediterranean sea are identified and selected, the following .csh 
script, is used to create a composite file (for example swath coverage 
during July and August) defining the right orbital passage (i.e. - either 
ascending [OJ or descending [1]). 

#/bin/csh 

cp -f activectl.LST.monthlyORB activectl.LST 

foreach dd ( 22 23 24 25 26 27 28 29 30 31) 
cp bdat/ July/ 199907"$dd"TM. GZ . 
gzip -d 199907"$dd"TM. GZ . 
TMI2monthlyORB 199907"$dd"TM 0 
nn -f 199907"$dd"TM 
end 

foreach dd (0 1) 
cp bdat/ August/ 199908"$dd"TM.GZ . 
gzip -d 199908"$dd"TM.GZ . 
TMI2monthlyORB 199908"$dd"TM 1 
nn -f 199908"$dd"TM 
end 
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foreach dd (02) 
cp bdat/ August/ 199908"$dd"TM.GZ . 
gzip -d 199908"$dd"TM. GZ . 
TMI2monthlyORB 199908"$dd"TM 0 
rm -f 199908"$dd"TM 
end 

foreach dd (03) 
cp bdat/ August/ 199908"$dd"TM.GZ . 
gzip -d 199908"$dd"TM.GZ . 
TMI2monthlyORB 199908"$dd"TM 1 
rm -f 199908"$dd"TM 
end 

foreach dd (04) 
cp bdat/ August/ 199908"$dd"TM. GZ . 
gzip -d 199908"$dd"TM. GZ . 
TMI2monthlyORB 199908"$dd"TM 0 
rm -f 199908"$dd"TM 
end 

foreach dd (05) 
cp bdat/ August/ 199908"$dd"TM.GZ . 
gzip -d 199908"$dd"TM.GZ . 
TMI2monthlyORB 199908"$dd"TM 1 
rm -f 199908"$dd"TM 
end 

foreach dd (06 07) 
cp bdat/ August/ 199908"$dd"TM.GZ . 
gzip -d 199908"$dd"TM.GZ . 
TMI2monthlyORB 199908"$dd"TM 0 
rm -f 199908"$dd"TM 
end 

The resulting GrADS file containing TMI-derived SST with the right 
orbital elements is then made available for subsequent Eta and POM 
model initialization. 
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Appendix II 

DESCRIPTION OF THE SURFACE LAYER 
PARAMETERISATION SCHEME AND IMPORTANT 

NUMERICAL CODES OF ETA ATMOSPHERIC 
MODEL 

Appendix II is divided into three main sections. The first section 
includes a description of the Monin-Obukhov surface layer 
parameterisation scheme of the Eta model, which is fully treated and 
fine-tuned by the present model. Reference is made to this description 
in the main text of this thesis. 

The second part of this Appendix describes a number of important 
numeric codes of the atmospheric model. The selection is done in view 
of their importance for model initialisation of the lateral and surface 
boundary conditions, for the calculation of surface air-sea fluxes, 
translation of predicted fields from model-grid to standard-grid format 
at standard pressure levels, formatting of predicted air-sea flux fields to 
drive an underlying ocean model, and conversion of forecasted fields 
into GrADS format and ascii xyz for visualisation and verification. 

The third part of this Appendix describes the pre-, processing and post­
processing stages of the local-area regional, and nested Eta model. 

11.1 The Monin-Obukhov-based surface layer parameterisation 
scheme of the Eta model. 

The physical package of the Eta model is based on several sophisticated 
parameterisation schemes. Vertical turbulent mixing between levels in 
the free atmosphere is performed by using mixing coefficients of the 
Mellor-Yamada 2. 5 level turbulence (Mellor & Yamada 197 4, 1982; 
Janjic, 1990). 

Of particular importance to the numerical forecasting of the surface 
fluxes is the Monin-Obukhov based surface layer parameterisation 
scheme that provides the lower boundary conditions for the Level 2.5 
turbulence model. This model assigns a logarithmic form to the profiles 
of the atmospheric variables as they approach the lower boundary. This 
log profile ends at some small, but finite height zo above the surface and 
the variable considered takes on its lower boundary value at this height. 
The assumption is that the values of the relevant variables in this thin 
layer of the air adjacent to the surface take on the surface values. This 
situation is schematically represented in figure 11.1. The height zo is 
called the roughness height, and is associated with the roughness of 
the underlying surface. According to the similarity theory, the variation 
of Zo can significantly affect tfie calctilatiori of the rur-sea fluxes. 
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The model extends the log curve beyond its range of validity (dashed 
line in figure ILl b to obtain an effective zo at the intersection of the 
extended log curve and the z-axis. Since the log curve defines the 
magnitude of the flux, the remaining problem is to define the effective zo 
as a function of the flow regime. 

z 

s 
(a) 

z 
Actual 
profile 

z, , E.xplicit 
l VISCOUS 
i sublayi!T 

s. s, 

(b) 

s 

Fig II.l (a) log profile ending, and (b) log profile with the viscous 
sublayer ending. (SOURCE: Kallas et. al., 1997). 

The situation near the surface is rather complex (fig. 11.1 b). Within the 
thin layer near the surface, there is not enough space for turbulent 
eddies to develop, and instead molecular transports dominate this 
layer. This layer is often called the viscous layer. The work carried out 
by a number of investigators (e.g. Janjic, 1994) indicates that molecular 
processes can significantly affect the accuracy of the surface fluxes and 
consequently the evolution of the planetary boundary layer, such as for 
example, moist convection. 

In the case of water surfaces (Janjic, 1994), the log curve is matched by 
a separate sublayer profile as to specify the height and the value of the 
considered variable at the matching point. By doing so, the lower 
boundary values for the turbulent layers would be defined. Following 
the surface renewal theory proposed by Liu et. al. (1979), Janjic (1994) 
makes the following relation for the values of the parameters at the two 
levels 0 and S: 

(2 .1) 
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Here the subscript S denotes the surface values; the subscript 0 (for the 
time being) indicates the values at a height z above the surface where 
the molecular diffusivities are dominant; D1, D2 and D3 are parameters 
dependent on the Prandtl and Schmidt number and a constant; U* is 
the frictional velocity; v, X and A are the molecular diffusivities for 
momentum, heat and water vapour, respectively; and Fu, F0 and Fq are 
the turbulent fluxes of momentum, heat and water vapour respectively 
above the viscous sublayer. 

For a small argument s of the exponential functions in the equations 
above, 

Zull• _ z0u. _ zqu* _ r 
---------., 
D1v D2X D/t. 

(2.2) 

(2.3) 

so that using these two equations, the above three equations can be 
approximated by: 

(2.4) 

when, the heights zu, Zo and Zq are defined by (2.2), that is: 

sxD, 
Ze =--- (2.5) 

u. 

At this point, the following simplifying assumptions are made: 

There are two distinct layers: (i) a thin viscous sublayer immediately 
above the surface, where the vertical transports are determined entirely 
by the molecular diffusion, and (ii) a turbulent layer above it, where the 
vertical transports are defined entirely by the turbulent fluxes. 

The depths of the viscous sublayers for the respective physical variables 
are defined by the above three equations for a chosen fixed value of S . 
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With the definitions of the depths of the viscous sublayers 2.5, the 
values of the relevant physical quantities at the interfaces of the viscous 
and the turbulent layers are those denoted by the subscripts 0 in 
equations 2.4. 

Using the bulk momentum and heat exchange coefficients KMsrc and 
KHsrc respectively, the turbulent fluxes in the surface layer above the 
viscous sublayer are represented by: 

F. =(KMifc)ru -u) 
U /).z \: lm 0 

e 

F =(Kusfc Jre -e ) e /).z \!1m o 
e 

(2.6) 

Here the subscript lm denotes the variables at the lowest model level, 
b.Ze is either the equivalent height of the lowest model level that takes 
into account the presence of the "dynamical turbulence layer" at the 
bottom of the surface layer or simply Z~m-Zo. In the shallow dynamical 
turbulence layer, the ratio of the height z and the Monin-Obukhov 
length scale (Monin & Obukhov, 1954) is small so that the logarithmic 
profiles are used. 

Substituting equations 2.6 into 2.4, one obtains: 

( ~ Ju, -U,):( :;~ Ju,. -u,) 

( ~ Jo, -D.,)~(:;~, Jo,. -o,) (2.7) 

Note that equation 2.7 reflect the requirement for the continuity of the 
finite-difference fluxes across the interfaces between the two layers. 
Solving equation 2.7 for·the·variables With·'the~subscript 0, one obtains: 
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(2.8) 

Thus the required lower boundary conditions for the turbulent layer are 
expressed as weighted means of the values at the surface and at the 
lowest model level. Note that equation 2.8 together with equation 2.5 
represent a closed system provided the parameters 01, D2, D3 and ~are 
known. 

The viscous sublayer over the oceans is assumed to operate m three 
different regimes: 

1. smooth and transitional, 
2. rough, and 
3. rough with spray. 

Depending on the roughness Reynolds number: 

R- = ZoU• 
e v 

(2.9) 
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Here 

O.llv O.OlBu! 
zo=--+--- (2.10) 

u. g 

and 

KMsji [ 1
1/2 

u. = ( 6z, )<u,., -u,) (2.11) 

Janjic (1994) gives the roughness length zo as a function of U*. When 
the Reynolds number exceeds a prescribed value Rr, the flow ceases to 
be smooth and the rough regime is entered. In the rough regime the 
momentum is transported also by pressure forces on the roughness 
elements so that equation 2.11 looses validity. Consequently, the 
viscous sublayer for momentum is turned off. However, for heat and 
moisture, the viscous sublayer is still operating until the rough regime 
with spray is reached at a critical value Rrs when the viscous sublayer 
collapses completely. In the rough regime, the breaking waves and the 
spray are assumed to provide much more efficient way of exchange of 
heat and moisture between the ocean and the air than can be 
accomplished by the molecular viscosity. 

For the parameters D1, D2 and D3, Liu et al. (1979) proposed the 
following relationship: 

(2 .12) 

(2.13) 

(2.14) 

where Pr=v jx is the Prandtl number; Sc= v jt.. is the Schmidt number 
and M is a constant, but different for different regimes. With these 
definitions, the new equation takes the form: 
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(2.15) 

For the smooth regime a value of M close to 30 is used. When the flow 
ceases to be smooth a value of 10 has been suggested which best fits 
the data. These two values are also applied. At the present level of 
approximation, the Prandtl number and the Schmidt were assumed to 
be the same - i.e. Pr =Sc = 0. 71 and the molecular viscosity for 
momentum is 1.5x10-5. The molecular diffusion coefficients for heat and 
moisture, X and A., are determined by v, Pr and Sc. 

The threshold velocities at which the transition between the different 
flow regimes occur are u\=0.025m s-1 and u\=0.70m s-1. These values 
qualitatively agree in the order of magnitude with the laboratory 
measurements. The parameter that defines the depth of the viscous 
sublayer ~.is given a default value of 0.35. 

In the practical implementation within Eta model, U* for the current 
time step is calculated by equation 2.11 using KMsfc and Uo from the 
previous time step. Thus obtained, U* is then used by equation 2.10 to 
update zo. With the depths zu, Zt and Zq being calculated from the above 
equations, the lower boundary conditions for the surface layer Uo, So 
and qo can now be obtained by equation 2.8 using KMsfc and KHsfc from 
the previous time step. However, in order to prevent the two-grid 
interval oscillation in time, the average values of Uo, So and qo from the 
present and the previous time steps are actually used. 
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11.2 Important numeric codes related to the atmospheric model. 

11.2.1. Conversion of GRIB Files to GrADS format. 

The grb2grads.f code called grib GDAS-derived SST file according to the 
day number "dd", extracted it and converted the data format into 
GrADS format according to the instructions defined by a specific "* .ctl" 
file as shown below: 

#!/bin/csh 
cp activectl.LST.monthly activectl.LST 
foreach dd ( 22 23 24 25 26 27 28 29 30 31 ) 
cp Julyj"$dd"_07 /* grib 
grb2grads 
end 
exit 

The "*.ctl" file writes the data according to the instructions below, and 
puts them in a "* .gdat" file: 

dset jusrjlocal/GDAS/gradsjgdasjul.gdat 
undef 0 
xdef 313 linear -10.0 0.1666667 
ydef 112 linear 29.0 0.1666667 
tdef 31 linear OOZ22jul1999 24hr 
zdef 1 levels 1 000 
vars 1 
sst 0 11,1 ,0 Sea Surface Temperature 
endvars 

Regional Eta 
model 

Center of domain: 
TLMOD 13.0° 
TPHOD 39.0° 

Domain parameters: 
West boundary -23.3 

South boundary -12.2 
Horizontal resolution: 

DLMD 1/6° 
DPHD 1/6° 

Time step (DTB): 75 
Vertical number of layers: 32 

Nested Eta 
model 

17.5° 
34.5° 

-1.5 
-1.375 

1/24° 
1/24° 

18 
24 

Table II.l Definition of domain of the atmospheric model setup. This 
information is coded in "all. inc" file. 
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The domain of Eta model is defined in the file all. inc 

C-----------------------------------------------------------------
C Center of domain : 

PARAMETER 
&{TLMOD= 17. 5, TPHOD=34. 5) 

C-----------------------------------------------------------------
C Domain parameters 

PARAMETER 
&{WBD=-1. 5, SBD=-1. 375 
&,DLMD= 1./ 24. ,DPHD= 1./ 24. ,DTB= 18. 
&,LM=24) 

C---------------------------------------------------------------
c LM=vertical number of layers -

The above script is for the nested Eta model. 

The code grb2.grads.J converts grib files (such as the lateral boundary 
conditions of the regional Eta model, derived from the WAFS global 
model) into grads format for visualization: 

c---------------------------
parameter {im=69,jm=29,lm=11) 
dimension geop(im,jm, lm), temp(im,jm, lm), rh(im,jm, lm) 
dimension usl{im,jm, lm), vsl{im,jm, lm) 
dimension PSL {lm) 

c---------------------------
include 'tograds. inc' 
parameter {MXRECN=20000) 

c---------------------------
character "' 8 Cdate8 

c---------------------------
character "' 150 dim 
character "' 620 str 
character "' 5 c5 
character "' 2 c2 
dimension id7(7), ar7(7) 
dimension IPDS{120), IBMS{130}, GDS{150) 
dimension ALL {120) 
dimension NPOS {MXRECN}, VAL {400"'200) 
data psl I 70., 1 00,, 150.,200.,250.,300.,400.,500., 700.,850., 1000./ 

call getarg {1, Cdate8) 

NCOUNT= 0 
print "', Cdate8 
read {Cdate8{1:2),'{i2)') id7{1) 
read (Cdate8{3:4), '{i2)') id7{2) 
read {Cdate8{5:6), '{i2)') id7{3) 
read {Cdate8{7:8), '{i2)') id7{4) 
RLEV= 0 
id7{5) = 0 
id7(6) = 0 
id7{7) = 0 
do k= 1, MXRECN 
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NPOS (k) = 0 
end do 

c open (99Jile='sst.datll',form='unformatted') 
c ------------------------------------------------

call getctls (1, id 7) 
call mklist (NF) 
if (NF.eq. 0) call fmess('NF=OJ 

c ------------------------------------------------
open (12,file='L.out',status='old') 
call system ('rm S. out') 

1 0 call clears (dim) 
read (12,'(a)',end=99) dim 

c ------------------------------------------------
nb =index (dim,' ')- 1 
print *,dim(l:nb) 

c ------------------------------------------------
call system 

+{'/ usr I local/ grads/ bin/ gribscan -gv -gd -ig '/I dim(l :nb }/I' » S. 
+out') 

c ------------------------------------------------
goto 10 

c ------------------------------------------------
99 continue 

rewind (12) 
c ------------------------------------------------
c ------------------------------------------------
c ------------------------------------------------

open (25,file='S.out') 
c ------------------------------------------------

!FILE= 0 
c ------------------------------------------------
20 call clears(str) 
c write (33, *) '*******************************' 

read (25, '(a)',end=88) str 
c ------------------------------------------------

ips= 1 
call s2iass ( str, ips, 'PDS # ', IRE C) 

c ------------------------------------------------
c nefile! 

if (IREC. eq. 1) then 
!FILE = !FILE + 1 
call clears (dim) 
read {12, '(a)') dim 
NB = index (dim, ' ') - 1 

print *,NB,' DIRN:',dim(l:NB) 
end if 

c ------------------------------------------------
call s2i ( str, ips, !GRID) 
call s2i ( str, ips, IPX) 
call s2i ( str, ips, ITL) 
call s2i ( str, ips, IL) 
call s2i ( str, ips, !61) 
call s2i ( str, ips, !62) 
call s2i ( str, ips, !63) 
call s2iass ( str, ips, 'BMSFL', IBMDUM) 
call s2i ( str, ips, ID7(1)) 
call s2i ( str, ips, ID7(2)) 
call s2i ( str, ips, . ID.7(3)) 
call s2i ( str, ips, ID7(4)) 
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call s2i ( str, ips, IBMDUM) 
call s2i ( str, ips, IBMDUM) 
call s2i ( str, ips, IP1 ) 
call s2i ( str, ips, IP2 ) 
call s2i ( str, ips, IACC ) 

c call s2i ( str, ips, IACC ) 
if ( IACC . ne. 1 OJ then 

ID7(5) = IP2 
else 
ID7(5) = IP1 

endif 
call s2iass ( str, ips, 'GDS ·, IBMDUM) 
call s2i ( str, ips, NX) 
call s2i ( str, ips, NY) 
call s2r ( str, ips, WB) 
call s2r ( str, ips, EB) 
call s2r ( str, ips, DLM) 
call s2r ( str, ips, SB) 
call s2r ( str, ips, RNB) 
call s2r ( str, ips, DPH) 

c print*, IGRIDLL, NX, WB,EB,DLM 
c print *, IGRIDLL, Ny, SB,RNB,DPH 

IGRIDLL = 0 
c gauss-case! 

if ( DLM.eq. 937. OJ then 
DLM= 0.9375 
DPH=DLM 
EB = -DLM 
IGRIDLL = -1 

end if 
c----------------------------------------------------

IYREV= 0 
NSFLAG = 0 

c thinned-case! 
if( IGRID.ge.37.and.IGRID.le.44) IGRIDLL = -2 
if ( IGRIDLL.eq.-2) then 

NX=NY 
DLM=DPH 

END IF 
c ----------------------------------

if ( EB.lt. WB) EB = EB + 360. 
c ----------------------------------

if ( RNB.lt. SB) then 
HLP= SB 
SB=RNB 
RNB=HLP 
IYREV= 1 

end if 
if(SB.lt.O) NSFLAG = -1 

c ----------------------------------
goto 1000 

c ----------------------------------
600 continue 
c gaussian! 

1 000 c o n t i n u e 
ar7(1) = 0 ! warning! 
ar'7(2) = NX 
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ar7(3) = WB 
ar7(4) = DLM 
ar7(5) =NY 
ar7(6) = SB 
ar7(7) = DPH 

cwafs 
RLEV=il 
if ( itl.ne.1 00) RLEV = 0 

c print *,NCTL, ip,itl,il,' ** ', id7,ar7 
c stop 
c----------------------------------------

do 33 J=1, NCTL 
NXO = NX_CTL{J) 
NYO = NY_CTL{J) 
NXNY = NX_ CTL(J)*NY_ CTL(J) 
EBCTL = XO_CTL{J) + (NX_CTLUJ-1)*XI_CTL(j) 
RNBCTL = YO_CTL(J) + (NY_CTL(j)-1)*YI_CTL(j} 

c--------------------------------------------------------------
if ( EB.le.XO_ CTL(J)) goto 33 
if ( WB.ge.EBCTL} goto 33 
if( RNB.le. YO_CTL{J)) goto 33 
if ( SB.ge.RNBCTL) goto 33 

c print *,'ctl:',J, NX, NY, WB,SB,EB,RNB 
c print *,'ctl:',J, NX_CTL(j),NY_CTL{J}, XO_CTLUJ, YO_CTL(j) 
c + ,EBCTL, RNBCTL 
34 continue 
c--------------------------------------------------------------

call getrec(J,id7,RLEV,1,IPX,O,itl,il,NR1,NR2,NTP) 
c--------------------------------------------------------------

if( NR1.le.O) goto 33 
c------------------------------------------------------------­
c--------------------------------------------------------------

i9 = ar7(2) 
}9 = ar7(5) 

c--------------------------------------------------------------
D=O 
do 555 i=1, NR1 
ir 1 = IREC 1_ CTL (i) 

c ir2 = IREC2_ CTL (i) 
if( IR 1.le. 0) go to 555 

c wgrib! 
c-----------------------------------------------------------------

if (ar7(1 ). ne. 0.) then 

end if 

print *,'STOP- ONLY LL-grids are in use!' 
stop 

write (cS, '(iS)') IREC 

call system 
+('/usr/local/grads/bin/wgrib -v '/ /dim{l:nb}/ /' -d '/ /cS/ /' >1.0 
+J 
if (IGRIDLL.eq.-2) then 

call MW3FT33x(iret, NSFLAG, val) 
else if (IGRIDLL. ge. -1) then 

call readdump (IYREV, I9,J9, val) 
else 
print *, ' NO grid defining!' 
STOP 
end if 
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c if ( iret. eq. -1) goto 555 
READ (91+J,rec=irl,err=777) (valll(m),m=l,NXNY) 

777 continue 
if ( IGRIDLL.eq.-1) then 
callllg2ll (omn,omx,ar7, O,J, i9,j9, val, D) 
else 
callll2ll (omn,omx,ar7,0,J,i9,j9,val,D) 
end if 
NPOS(irl) = NPOS(irl) + NPOI_CTL 
write (91 +J, rec=ir 1) (vall] (m}, m = 1, NXNY) 

c-----------------------------------------------------------------
IYY = ID7{1)- 1900 
NCOUNT =NCOUNT + 1 
write{*,67) J ,IYY,{id7(m),m=2,5) 

+ ,ipX, itl,il,irl 
+, omn, omx 

c if (NCOUNT.gt.80) STOP 
555 c o n t i n u e 
c-----------------------------------------------------------------
67 format(' t=',i2, 'f=',5i2,' p=',i3, 'l=',i3,i3 

+,' r=',i4,' ou=',2f7.1) 
c67 format(' t=',i2,i3,'f=',a13,' p=',i3, 'l=',i3,i3 
33 c o n t i n u e ! new ctl! 
c----------------------------------------

goto 20 
c----------------------------------------
88 continue 
e----------------------------------------

stop 
c----------------------------------------

do 205 ihr = 0, 60,6 
write (c2, '(i2)') ihr 
if (c2(1:1).eq.' ') c2(1:1) = '0' 
id7 (5) = ihr 
call RGRADS (id7, 07,100,0,im,jm,lm,psl, GEOP, NLRET) 
if( NLRET.ne.LM) goto 205 
call RGRADS (id7, 11, lOO,O,im,jm,lm,psl, TEMP, NLRET) 
if ( NLRET. ne.LM) go to 205 
call RGRADS (id7, 52,100,0,im,jm,lm,psl, RH , NLRET) 
if( NLRET.ne.6) goto 205 
call RGRADS (id7, 33, 100, 0, im,jm, lm,psl, USL , NLRET) 
if ( NLRET.ne.LM) goto 205 
call RGRADS (id7, 34, 100, 0, im,jm, lm,psl, VSL , NLRET) 
if ( NLRET.ne.LM) goto 205 
print *,' . . . . Writing!' 

c-----------
open (55,Jile= ' .. /grads/ wafs'/ I c2/ I·. dat',form ='unformatted') 
write (55) (id7(m},m=1,5},GEOP,USL, VSL, TEMP, RH 
close (55) 

c-----------
c writing! 
205 continue 

end 
c---------------------------

subroutine mklist (NF) 
include 'tograds. inc' 

c--------------------------
character. * 15 0 str 
jl = 1 
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)2 = index (indset, ' ') -1 
if (j2.lt.j 1) call fmess (file name!') 
if (indset{j2:j2). ne. '/ ') then 

)2 = )2 +1 
indset{j2:j2)='/' 

end if 
print *,' indset=',indset{j1:j2) 
call system ('ls -l '/ /indset{j1:j2}/ /' > L.outJ 
NF= 0 
open (12,file='L.out',status='old',err=299) 
open (22,file='L.outl ',status='unknown') 

10 call clears (str) 
read (12, '(a}',end=99) str 
if ( index(str,':').eq. 0) goto 10 
NF=NF+ 1 
i2 = 150 
do while (str(i2:i2).eq.' ') 
i2=i2-1 
enddo 
i1 = i2 
do while (str(il :il ). ne.' ') 
i1 = i1 - 1 
enddo 
write (22, '(a)') indset{j1.j2}/ I str(i1 + 1 :i2) 
goto 10 

99 continue 
close (12) 
close (22) 
call system('mv L.out1 L.out') 

299 return 
end 

The lateral boundary conditions for the regional area model are 
visualised using the script "wafs.ctl", with the following format: 

dset I usr/ local/ ETA/ ETA.1. a. test/ grads/ wafs.gdat 
*indset I usr/ local/ ETA/ ETA.1. a. test/ input_grib 
undef 9. 999e+20 
title A VN model 
xdef 73 linear -30.0 1.25 
ydef 73 linear 0.0 1.25 
tdef 9linear OOZ28apr1999 6hr 
zdef 10 levels 100 150 200 250 300 400 500 700 850 1000 
vars 11 
u1 0 0 33, 105, 10 Geopotential Height 
v 1 0 0 34, 1 05, 10 Geopotential Height 
acp 0 61, 1, 0 Geopotential Height 
t2 0 11, 1 05, 2 Geopotential Height 
rh2 0 52,105,2 Geopotential Height 
seag 0 2, 1 02,0 Geopotential Height 
z 1 0 7, 1 00 Geopotential Height 
t 10 11, 100 TEMP 
u 10 33,100 U Winds 
v 10 34,100 V Winds 
rh 10 52,100 RH 
endvars 
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11.2.2. Conversion of GrADS files into ascii xyz format. 

The script grads2xyz.f converts GrADS-formatted data into ascii xyz. 
This data format facilitated data import into statistical software for 
model diagnostics and verification. The following is the grads2xyz.f 
script: 

include 'tograds. inc' 
parameter (NXNY=80000) 

C---------------------------------------------------------------------
eLL 

dimension VAR(NXNY}, varh{NXNY) 

character *8 cdate8 
character *7 Cpam, Cpar, Clevt, Clev 
logical run 
dimension id 7 (7) 
data id7 199,01,01,00,00,00,001 

c -----------------------------------------------------------
wctln(1:1) = '' 

print *,' ARGMENTS:yymmddss RDA Ys' 
call getarg {1, Cdate8) 
call getarg {2, Cpam ) 
call getarg {3, Cpar ) 
call getarg {4, Clevt) 
call getarg {5, clev ) 

c -----------------------------------
call cdate2id7 ( cdate8,id7) 
read (Cpar, *)!PAR 
read (Clevt, *) ILEVT 
read (Clev , *) ILEV 
RLEV= !LEV 

c -----------------------------------
print *,id7,' ** ',IPAR,ILEVT,ILEV 

c call RGRADS (id7, 7, 100,500, NXNY, 1, 1., O.,varh, NLRET) 
call RGRADS (id7, IPAR,ILEVT,ILEV, NXNY, 1, 1, RLEV, VAR, NLRET) 
IM=RNX_CTL 
JM=RNY_CTL 
IMJM=IM*JM 

c ---------------------------------------------------------
print *, 'IM,JM ',IM,JM,' IMxJM=',IM*JM,' file size=',IM*JM*23 
call RGRADS (id7, IPAR,ILEVT,ILEV, IMJM, 1, 1, RLEV, VAR, NLRET) 
if(NLRET.eq.O) goto 1000 

nc = index(Cpam, ' ') -1 
nl = index(Clev , ' ') -1 
open {SO,file= 

+' .. I . ./ XYZI '/I Cpam(l:nc)l I'_ 'I I Clev(l :nl)l I'_ 'I I Cdate81 I '.xyz') 
n=O 
tmin = 10000 
tmax = -1 0000 
do 50)=1, JM 
rlat = RYO_CTL + lj-1)*RYI_CTL 
do 50 i=1, IM 
rlon = RXO_CTL + (i-1)*RXI_CTL 
1J. = n +1 
if(VAR(n).ne.-999) then 
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tmax= max(tmax, VAR(n)) 
tmin= min(tmin, VAR(n)) 
end if 
write (50, 999) rlon, rlat, VAR (n) 

50 continue 
print *, ' tmin - tmax: ·, tmin, tmax 
stop 

1000 continue 
print *,' No data avaiable!' 

c 
999 format(2f8.3,2x,f8.2) 
c-------------------------------------------------------------
c 

end 

11.2.3. Preparation of SST data from GrADS format to be ingested 
by the Eta model. 

The subroutine sst.f prepares the sst file for the Eta model. For the 
case of remotely-sensed SST, this file reads the information embedded 
in GrADS file using the WGRADS command. This subroutine was 
included in the Eta package, but which was modified to accommodate 
the inclusion of TMI-derived SST into the model. 

~ ******************************************************************* 

c * * 
C * PROGRAM PREPARES THE SST DATA FROM GDAS and TMI DATA SET * 
c * * 
c ******************************************************************* 

c 
C-----------------------------------------------------------------------
#include "large. inc" 
#include "tmi. inc" 
#include "tograds.inc" 
C----------------------------------------------------------------------
c PARAMETER 
c &(BOWEST=-180.,BOSOUT=-
90.,BOEAST= 180.,BONORT=90.,DELON= 1.,DELA T= 1. 
c &,IME=(BOEAST-BOWEST}/ DELON ,JME={BONORT-BOSOUT)/ DELAT+ 1) 
C-----------------------------------------------------------------------

c 

CHARACTER CARG 1 *2 
CHARACTER *8 cdateB 

DIMENSION 
& COH{3,IMJM},INH{4,IMJM},JNH{4,IMJM) 
&, COV{3,IMJM},INV{4,IMJM},JNV{4,IMJM) 

&, WFB(IMJM), WFB1(IMJM1) 

&, SST(IMJM}, SST2(IMT,JMT) 

&, WW(IME,JME) 
&,ALMD(IMJM},APHD(IMJM) 
&,PUS(IMJM1 },PVS(IMJM 1) 
&, TPUS(IMJM1J;TPVS(IMJM1) '· 
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c 

c 

DIMENSION 
& SSTF(IME,JME) 
+,id7(7) 

INCLUDE " .. / . ./decoding/ src/ decoding_nl. nml" 
INCLUDE "preproc_nl. nml" 

C-----------------------------------------------------------------------
OPEN (UNIT=11,FILE=' . ./ .. /namelistsjname.list',FORM='FORMAITED') 
READ(11,DECODING_NL) 
READ(11,PREPROC_NL) 
CLOSE(11) 

C--Check the command's input 
IF (IARGC().LT.1) THEN 

c print*, 'Usage: climsst MONTH' 
print*, 'Usage: sst YYMMDDHH' 
stop 

ELSE 
CALL GETARG {l,Cdate8) 
READ(CARG 1, '(I2)')IMONTH 
END IF 

C---- End command's input 
c 

write{*, *)'IMJM,LDM,IMT,JMT,IM,JM,IMT,JMT' 
write{*,*) IMJM,LDM,IMT,JMT,IM,JM,IMT,JMT 
write(*, *)'IME*JME = ',IME*JME, IME,JME 

C-----------------------------------------------------------------------
C 

CALL ECETA(COH,INH,JNH, COV,INV,JNV, CTPHO, STPHO,ALMD,APHD) 
c 
C-----------------------------------------------------------------------

call cdate2id7 ( Cdate8,id7) 
wctln(l: 1) = ' ' 

idat(1) = id7(3) 
idat(2) = id7(2) 
idat(3) = id7(1) 
IHRST = id7(4) 
KDIM = IMJMLL *LDM 

c -----------------------------------------------------------
call datetohr(id7(3}, id7(2}, id7(1 }, id 7(4}, id7(5},IHRS) 
do 500 IHR = IHRS, IHRS- 10*24, -12 
call hrtodate 
+ (IHR, id7(4}, 0, id7(3),id7(2},id7(1}, id7(5)) 
call RGRADS (id7, 1, 999, 0, !ME, JME, 1, 0., WW, NLRET) 
if( NLRET.ne.O) goto 410 

500 continue 
print *,'No SST data avaiable' 
SWP 

41 0 continue 

c 
c 
c 

print *, ' read sst:', WW 

print*,' IMJM=',IMJM 
print *,' WW = ', WW 

CALL BILINB(COH,INH,JNH,IMJM,IME,JME, WW, WFB) 
DO 411 IN=1,IMJM 

411 
c 

SST(IN}= WFB(IN) 

CALL CONH12(SST,SST2) c - ' .--.·.c. 
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ISST=47 
OPEN {UNIT=ISST,FILE=FN_SST 
& , STATUS='UNKNOWN',FORM='UNFORMA TTED') 
WRITE (!SST) SST2 
PRINT*,' WRITE TO FILE: ',FN_SST 
CLOSE (!SST) 

c print*, 'sst2=',sst2 
e-----------------------------------------------------------------------

c 

STOP 
END 

SUBROUTINE BILINB(COB,INB,JNB,KB,IME,JME, WW, WFBC) 
c 
c 
c 
c 
c 
c 

********************************************** 

* * 
* ROUTINE FOR BILINEAR INTERPOLATION 
* * 
********************************************** 

* 

DIMENSION COB{3,KB),INB{4,KB),JNB{4,KB), WW(IME,JME), WFBC(KB) 
c 
c 

c 

c 

c 

c 

c 

DO lOK=l,KB 

100= INB(l ,K) 
11 O=INB{2,K) 
!Ol=INB(3,K) 
Ill =INB{4,K) 

JOO=JNB{l,K) 
Jl O=JNB{2,K) 
JO 1 =JNB{3,K) 
Jll=JNB{4,K) 

P= COB(2,K) 
Q= COB{3,K) 
PQ=COB(l,K) 

Z= WW(IOO,JOO)+P*(WW(ll O,Jl 0)- WW(IOO,JOO)) 
* +Q*(WW(IOl,JOl)-WW(IOO,JOO)) 
* +PQ*(WW(IOO,JOO)-WW(llO,JlO)-WW(IOl,JOl)+WW(lll,Jll)) 

10 WFBC(K)=Z 
RETURN 
END 

c 
C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

SUBROUTINE CONH12(H2,H3) 
****************************************************************** 

* * 
c 
c 
c * ROUTINE FOR REORDERING THIBUE-HEIGHT-POINT-1-DIMENSIONAL 
* 
c 
c 
c 

* MATRICES FOR 2-DIMENSIONAL INDEXING 
* * 
****************************************************************** 

#include "large. inc" 
C-----------------------------------------------------------------------

DIMENSION 
& H3 (IMT,JMT),H2 .· (IMJM). 

C----------------------------------------------------------------------

* 
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K=O 
C-----------------------------------------------------------------------

DO 100 J=1,JMT 
DO 110 I=1,IMT,2 

K=K+1 
110 H3(I,J)=H2(K) 
c 

IF(J.EQ.JMT) GO TO 100 
c 

DO 120 I=2,IMT,2 
K=K+1 

120 H3(I,J)=H2(K) 
c 
100 CONTINUE 

C----------------------------------------------------------------------­
C----------------------------------------------------------------------

RETURN 
END 

C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
SUBROUTINE ECETA{COH,INH,JNH, COV,INV,JNV, CTPHO, STPHO,ALD,APD) 

#include "tmi. inc" 
#include "large. inc" 
C #include "ecmwfinc" 
c PARAMETER 
c &(BOWEST=-180.,BOSOUT=-
90.,BOEAST= 180.,BONORT=90.,DELON= 1.,DELAT= 1. 
c &,IME=(BOEAST-BOWEST}/ DELON+ 1 ,JME=(BONORT-BOSOUT)/ DELAT+ 1) 
c 

DIMENSION 
& COH{3,IMJM),INH{4,IMJM),JNH(4,IMJM) 
&, COV(3,IMJM),INV(4,IMJM),JNV(4,IMJM) 
&,ALD(IMJM),APD(IMJM) 

DIMENSION 
& KHLO(JM),KVLO(JM),KHHO(JM),KVHO(JM) 

PRINT*, 'IM=',IM, 'JM=',JM, 'IM= ',IM, 'JM=',JM 
PRINT*, 'ECMWF DIMENSIONS IME,JME',IME,JME 

C--------------- HIBU MODEL CONTS ---------------------------------­
C 

c 
DO 99J=1,JM 

KHLO(J)=IM*(J-1)-(J-1}/2+ 1 
KVLO(J)=IM*(J-1) - J/2+ 1 
KHHO(J)=IM* J - J/2 

99 KVHO(J)=IM*J -(J+1)/2 
c 

ANBDC=BOSOUT+ DELA T*(JME-1) 
EBDC=BOWEST+DELON*(IME-1) 

C--------------- DEGREE TO RADIAN CONVERSION ----------------------­
C--------------- HIBU 

WB=WBD*DTR 
SB=SBD*DTR 
TPHO=TPHOD*DTR 
TLMO=TLMOD*DTR 
CTPHO=COS(TPHO) 
STPHO=SIN(TPHO) 
DLM;;,iJLMD*DTk -
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DPH=DPHD*DTR 
TDLM=DLM+DLM 

C--------------- ECMWF 
WBC=BOWEST*DTR 
SBC=BOSOUT*DTR 
ANBC=ANBDC*DTR 
EBC=EBDC*DTR 
DLMC=DELON*DTR 
DPHC=DELAT*DTR 

C-------------- ENTRY TO THE HillU LJ LOOP ------------------------
C NEIGHBOUR ECMWF INDEX IDENTIFICATION 
C ECMWF DATA DEFINED IN LL SYSTEM 
C------------------------------------------------------------------
C HillU HEIGHT PTS 
C------------------------------------------------------------------

TPH=SB-DPH 
c 

DO 110 J=1,JM 
c 

KHL=KHLO(J) 
KHH=KHHO(J) 

c 
TPH=TPH+DPH 

c 
DO 110 K=KHL,KHH 

c 
TLM= WB+TDLM*(K-KHL)*MOD(J,2)+MOD(J+ 1 ,2)*(DLM+(K-KHL)*TDLM) 

C-------~----- TLL TO LL CONVERSION------------------------------
CALL RTLL(TLM, TPH, TLMOD,DTR, CTPHO,STPHO,ALMD,APHD) 

C--------------CHECK IF HIBU PT IS OUT OF ECMWF DOMAIN -----------
IF(ALMD .LT. BOWEST) GO TO 200 
IF(APHD . GT. ANBDC) GO TO 200 
IF(APHD . GE. BOSOUT) GO TO 201 
IF(ALMD .LE. EBDC) GO TO 200 
STOP 

201 IF(ALMD . GT. EBDC) GO TO 200 
c 

c 

c 

X=ALMD-BOWEST 
Y=APHD-BOSOUT 

INDEC=X/ DELON+ 1 
JNDEC=Y/DELAT+1 

X=X-(INDEC-1 )*DELON 
Y= Y-(JNDEC-1 )*DELAT 

C-----------------------------------------------------------------
COH{2,K}=X/ DELON 
COH{3,K)= Y I DELAT 
COH(l ,K)=COH(2,K)*COH{3,K) 

C-----------------------------------------------------------------

c 

INH{1,K}=INDEC 
INH(2,K)=INDEC+ 1 
INH{3,K)=INDEC 
INH{4,K}=INDEC+ 1 

JNH{l,K)=JNDEC 
JNH{2,K)=JNDEC 
JNH{3,K]':=JNDEC,+ 1 
JNH{4,K)=JNDEC+ 1 
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c 
GOT0111 

c 
200 PRINT *, 'HIBUPT VI SINE 
OBLASTI',APHD,ALMD,ANBDC,EBDC 

STOP 
111 CONTINUE 
110 CONTINUE 

C----------------------------------------------------------------------
C WIND POINTS 
C----------------------------------------------------------------------
C 

c 

c 

c 

c 

c 

TPH=SB-DPH 

DO 210 J=1,JM 

KVL=KVLO(J) 
KVH=KVHO(J) 

TPH=TPH+DPH 
DO 210 K=KVL,KVH 

TLM= WB+DLM*MOD(J,2)+(K-KVL}*TDLM 

C--------------------- TLL TOLL CONVERSION---------------------------

K=',K,'JE 

CALL RTLL{TLM, TPH, TLMOD,DTR, CTPHO, STPHO,ALMD,APHD) 
C--------------------- CHECK IF HIBU PT IS OUT OF ECMWF DOMAIN --------

IF(ALMD .LT. BOWEST) GO TO 300 
IF(APHD . GT. ANBDC) GO TO 300 
IF(APHD .GE. BOSOUT) GO TO 301 
IF(ALMD .LE. EBDC) GO TO 300 
STOP 

301 IF(ALMD . GT. EBDC) GO TO 300 
c 

c 

c 

c 

ALD(K)=ALMD 
APD(K)=APHD 

X=ALMD-BOWEST 
Y=APHD-BOSOUT 

INDEC=X/ DELON+ 1 
JNDEC= Y I DELAT+ 1 

X=X-(INDEC-1 )*DELON 
Y= Y-(JNDEC-1 )*DELAT 

C-----------------------------------------------------------------
COV(2,K)=X/ DELON 
COV(3,K}=Y/DELAT 
COV(1,K)=COV(2,K)*COV(3,K) 

C-----------------------------------------------------~----------------

c 

INV(l,K}=INDEC 
INV(2,K}=INDEC+ 1 
INV(3,K)=INDEC 
INV{4,K}=INDEC+ 1 

JNV(1,K)=JNDEC 
JNV(2,K)=JNDEC 
JNV(3,K}=JNDEC+ 1 
JNV(4,X)'=JNDEC+ 1 

VAN 
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c 
GO T0210 

c 
300 print *, 'HIBUPT 

OBLASTI',APHD,ALMD,ANBDC,EBDC 
21 0 CONTINUE 

RETURN 
END 

BRZINE 

C----------------------------------------------------------------------

K=',K,'JE 

SUBROUTINE RTLL(TLM, TPH, TLMOD,DTR, CTPHO, STPHO,ALMD,APHD) 
c 

c 

c 

c 

STPH=SIN(TPH) 
CTPH=COS(TPH) 
CTLM=COS(TLM) 
STLM=SIN(TLM) 

APH=ASIN(STPHO*CTPH*CTLM+CTPHO*STPH) 
CPH=COS(APH) 

ALMD=TLMOD+ASIN(STLM*CTPH/ CPH}/ DTR 
APHD=APH/ DTR 

RETURN 
END 

subroutine vfinit 
character*] vc, vcscr(0:63) 
common/ vform/ vc(O: 63) 
data vcscr/'0', '1 ', '2', '3', '4', '5', '6', '7', '8', '9' 
+ , 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', T, 'J' 
+ , 'K', 'L', 'M', 'N', '0', 'P', 'Q', 'R', 'S', 'T 
+ , 'U', 'V', 'W, 'X', 'Y', 'Z', 'a', 'b', 'c', 'd' 
+ , 'e','f, 'g', 'h', 'i','j', 'k', 'l', 'm', 'n' 
+ , 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x' 
+ , 'y', 'z', '{,,I'/ 

do 10 n=0,63 
vc(n)= vcscr(n) 

10 continue 

return 
end 

subroutine vfirec(iunit, a, n, type) 
character* 1 vc 
character*(*) type 
common/ vform/ vc(0:63) 
character line*80, cs*l 
dimension a(*) 

if(vc(O).ne. '0') call vfinit 

ichO=ichar(' 0 ') 
ich9=ichar(' 9 ') 
ichcz=ichar('Z') 
ichlz=jchqr('z') 
ichca =ichar('A ;J 
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ichla =ichar('a ') 

read(iunit, 1 O)nn, nbits, bias ,fact 
10 format(2i8,2e20.1 0) 

if(nn.ne.n) then 
print*,' Word count mismatch on vfirec record ' 
print*,' Words on record- ',nn 
print*,' Words expected - ',n 
stop 'vfirec' 

end if 

nvalline=(78*6)/ nbits 
nchs=nbits/ 6 
do 20 i=1,n,nvalline 

read(iunit, '(a 78)') line 
ic=O 
do 30 ii=i,i+nvalline-1 

isval=O 
if(ii.gt.n) go to 20 
do 40 iii=1,nchs 

ic=ic+ 1 
cs=line(ic:ic) 
ics=ichar(cs) 
if(ics.le. ich9 )then 

nc=ics-ichO 
elseif(ics.le.ichcz) then 

nc=ics-ichca+ 10 
else 

nc=ics-ichla+36 
end if 
isval=intor(intlshft(nc, 6*(nchs-iii)), is val) 

40 continue 
a(ii)=isval 

30 continue 
20 continue 

facti= 1./ fact 
if(type.eq. 'LIN') then 

do 48 i=1,n 
a(i)=a(i)*facti-bias 

48 continue 
elseif(type.eq. 'LOG') then 

scfct=2. **(nbits-1) 
do 55 i=1,n 

a(i)=sign(l., a(i)-scfct) 
+ *(1 0. **(abs(20. *(a(i)/ scfct-1.))-1 0.)) 

55 continue 

c 

end if 

return 
end 

FUNCTION INTOR(IWORD1,IWORD2) 

C This function performs a bit-by-bit OR between IWORD 1 and 
C IWORD2. 
c 

INTOR=IOR(IWORD 1,IWORD2) 
RETURN 
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END 
FUNCTION INTLSHFT(IWORD,NSHFT) 

c 
C This function shifts !WORD to the left NSHFT bits in a 
C circular manner. 
c 

INTLSHFT=ISHFT(IWORD, NSHFT) 
RETURN 
END 

11.2.4. Conversion of model predicted surface fluxes into GrADS 
format. 

The surface geophysical fields, including the derived air-sea fluxes are 
calculated and converted into GrADS format for visualisation. The 
SFC.ctl contains the information necessary to write the predicted fields 
into GrADS format. 

dset I usr I local/ ETA/ ETA.1. a. test/ grads/ SFC. gdat 
*undef 1. e30 
undefO 
title eta model 
tdef 12 linear OOZ24jul1999 3hr 
xdef 82 linear 15. 8 0. 041666 
ydef 61 linear 33.24 0. 041666 
zdef 1 levels 1 000 
vars 33 
smb 0 81,105,0 Sea Land Mask 
sp 0 02, 1 02, 0 Sea Level Pressure 
tp 0 61,105,0 Total Precipitation 
ummf 0 125, 1 05, 1 0 U Momentum Flux 
vmmf 0 126, 1 05, 1 0 V Momentum Flux 
wtsurf 0 130, 1 05,0 Total Heat Flux 
swrad 0 117, 1 05, 0 Short Wave Radiation 
ts 0 11,105,0 Surface Temperature 
t2 0 11,105,2 2m Temperature 
sfcl 0 121,105,0 Latent Heat Flux 
sfcs 0 122, 105, 0 Sensible Heat Flux 
akhl 0 131, 1 OS, 0 Surface Mixing Coefficient (heat) 
akml 0 132, 1 OS, 0 Surface Mixing Coefficient (momentum) 
u1 0 33, 1 OS, 1 0 1 0 Meter U Wind 
v1 0 34,10S,10 10 Meter V Wind 
uhl 0 133, 1 OS, 1 0 Lowest Model Level U Wind (h points) 
vhl 0 134, 1 OS, 10 Lowest Model Level V Wind (h points) 
uzOhl 0 136, 1 OS, 0 U Wind at zO (h points) 
vzOhl 0 137,10S,O V Wind at zO (hpoints) 
ustr 0 13S, 1 OS, 0 Friction Velocity 
zOl 0 138, 10S, 0 zO 
thzOl 0 139, 1 OS, 0 Potential Temperature at zO 
qzOl 0 140, 1 OS, 0 Specific Humidity at zO 
qfc 0 141, 1 OS, 0 Moisture Flux 
um 0 142,1 OS, 10 Lowest Model Level u Wind 
vm 0 143, 1 OS, 10 Lowest Model Level v Wind 
czl 0 144, 1 OS, 0 Cloudness M 
czm 0 14S, 1 OS, 0 Cloud ness L 
cc 0 71, 1 OS, 0 Cloudness 

'rlwi . 0 20S, 1 OS, 0 . Long wave'radiation-incbfning 
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rswi 0 204, 105,0 Short wave radiation incoming 
rlwo 0 212, 105,0 Long wave radiation outcoming 
rswo 0 211, 105,0 Short wave radiation outcoming 
endvars 

11.2.5. Preparation of predicted boundary conditions for the nested, 
high-resolution Eta model. 

The subroutine that writes the predicted geopotential, specific humidity 
and wind components generated by the regional is outnest.f The output 
files from this code is read by the nested model as its boundary 
conditions. 

SUBROUTINE OUTNEST 
(; ****************************************************************** 

c * * 
C * ROUTINE FOR WRITING DOWN GEOPOTENTIAL, SPECIFIC HUMIDITY 
AND* 
C * WIND COMPONENTS FOR NESTING PURPOSES 
c * .. 
(; ****************************************************************** 

C-----------------------------------------------------------------------
C INCLUDE/ SET PARAMETERS. 

INCLUDE "parmeta" 
INCLUDE "parm. tbl" 
INCLUDE "parmsoil" 

C-----------------------------------------------------------------------
PARAMETER (NSOIL=NSOLD) 
PARAMETER (LSLN=24) 

PARAMETER 
& (D50=.5EO,H1 = 1.EO,H2=2.EO,H4=4.EO,DOO=O.EO 
&, Hl000=1000.EO,H1M5=1.E-5,D125=.125EO 
&, HlOOOO= 1 OOOO.EO 

* 

&, D608=0. 608EO,D05=. 05EO,D0065=0. 0065EO,ROG=287. 04EO/ 9. BEO 
&, OVERRC= 1. 75EO,AD05=0VERRC*D05, CFTO=OVERRC-H1,NRLX= 15 
&, CAPA=0.28589641 
&, RGC=287.04EO,FFIS=1.E0/20000.EO,D61=.61EO,HSMTH=5000.) 

C-----------------------------------------------------------------------
PARAMETER 

C*"'"'WARNING"'**IF LM.GT.16 THEN SET LDA=LM+9 
& (LDA=LM+9,LA=13) 

c 
PARAMETER 

& (IMJM=IM"'JM-JM/2,JMP1=JM+1,JAM=6+2*(JM-10},LB=2*IM+JM-3 
&, LM1 =LM-1,LP1 =LM+ 1,L3=LDA +LM+ 1,L4=LDA+2"'LM+ 1,L 7=L4+3 
&, LSCRCH=4"'LM+1+LA+1 
&, IMT=2"'IM-1) 

C-----------------------------------------------------------------------
LOG/CAL 

& RUN,FIRST,RESTRT,SIGMA, STDRD,MESO, ONHOUR,NEST,PRINT_INIT 
&,PRINT_FIELDS, PRINT_ GROUND 

LOGICAL 
& STDRD, OLDRD, SIGMA 

C-----------------------------------------------------------------------
C 
C INCLUDE COMMON BLOCKS. 
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c 
C-----------------------------------------------------------------------

INCLUDE "CTLBLK" 
INCLUDE "LOOPS" 
INCLUDE "MASKS" 
INCLUDE "DYNAMD" 
INCLUDE "PHYS2" 
INCLUDE "MAPOT" 
INCLUDE "VRBLS" 
INCLUDE "PVRBLS" 
INCLUDE "BOCO" 
INCLUDE ''INDX" 
INCLUDE "SOIL" 
INCLUDE "ACMRDS" 
INCLUDE "ACMRDL" 
INCLUDE "FOG" 
INCLUDE "CONTIN" 
INCLUDE "ACMPRE" 
INCLUDE "SRFDSP" 
INCLUDE "CLDWTR" 
INCLUDE "TCOEF" 
INCLUDE "FPREPC. COM" 

C-----------------------------------------------------------------------
DIMENSION 

& PBI (IM,JM},PTI (IM,JM) 
&,PTSL (IM,JM},PFSL (IM,JM}, TSL (IM,JM},FSL (IM,JM) 
&,PSLP (IM,JM},SLP (IM,JM),SPRC (IM,JM) 
&,ALP (IM,JM,LP1},FI (IM,JM,LP1) 
&, TTV(IM,JM},IMNT(IMJM,LM},JMNT(IMJM,LM},KMNTM(LM) 
&,GEOP (IM,JM,LSLN}, TEMP (IM,JM,LSLN}, SEAG (IM,JM) 
&,USL (IM,JM,LSLN}, VSL (IM,JM,LSLN}, PDVP1 (IM,JM) 
&,PQSL (IM,JM) , QQSL (IM,JM) , SPHM (IM,JM,LSLN) 

C-----------------------------------------------------------------------
DIMENSION 

& ZETA(LP 1 },PETA(IM,JM,LM) 
C-----------------------------------------------------------------------

DIMENSION SPLN(LSLN) 
C---------------------------------------------------------------------

CHARACTER CARG 1 *3 
CHARACTER CDAT*3 

C-----------------------------------------------------------------------
CHARACTER*256 INFN, OUTFN 

C-----------------------------------------------------------------------
DATA 

& SPLN/ 
& 10000., 15000.,20000.,25000.,30000., 35000., 
& 40000.,45000.,50000.,55000.,60000.,65000., 
& 70000., 73000., 77000.,82000.,85000.,87000., 
& 90000., 92000., 94000., 96000., 98000., 100000./ 

C----------------------------------------------------------------------

c 
INCLUDE "model2d_nl.nml" 

SIGMA=.FALSE. 
IHR=NTSD/TSPH+.5 

C-----------------------------------------------------------------------
WRITE(CDAT(l :3}, '(I3.3)')IHR 

Cekpatp 
print *, "IHR=",CDAT 
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C-----------------------------------------------------------------------
OPEN (UNIT= 11, FILE=' . ./ . ./ name lists/ name.list', FORM= 'FORMATTED') 
READ(11 ,MODEL2D_NL) 
CLOSE(11) 

C-----------------------------------------------------------------------
OUTFN=FN_NOUT(1:(INDEX(FN_NOUT,' '))-1}/ /CDAT/ /'.dat' 
print*,' Output file: ', OUTFN(1 :INDEX(OUTFN,' ')) 

C--------------------------------~--------------------------------------

c 

DO I=1,LM 
DETA(I)=ETA(I+ 1)-ETA{I) 
AETA(I)=O. 5*(ETA(I+ 1 )+ ETA{I)) 

END DO 

C CALCULATE THE I-INDEX EAST-WEST INCREMENTS 
c 

DOJ=1,JM 
IHE(J)=MOD(J+ 1,2) 
IHW(J)= IHE(J)-1 

END DO 
C--------------INTERFACE GEOPOTENTIALS AND LN P VALUES-----------------­

DO 100 J= 1,JM 
DO 100 I=1,IM 

PDSL(I,J)=RES(I,J)*PD(I,J) 
PBI(I,J)=PD{I,J)+ PT 
FI{I,J,LP 1)=FIS(I,J) 

100 ALP(I,J,LP 1 )=ALOG(PBI(I,J)) 
DO 110 WI=1,LM 
L=LP1-IVI 

DO 110 J=1,JM 
DO 110 I=1,IM 

PTI(I,J)=PDSL(I,J)*ETA(L)+PT 
FI{I,J,L)=HTM(I,J,L)*(Q(I,J,L)*D61 +H1)*T(I,J,L) 

2 I (PBI(I,J)+PTI(I,J))*PDSL(I,J)*DETA(L)*RGC*H2+FI(I,J,L+ 1) 
peta{I,J, l)=(PBI(I,J)+PTI(I,J))*. 5 
PBI(I,J)=PTI(I,J) 

11 0 ALP(I,J,L)=ALOG(PBI(I,J)) 
C--------------VRTCL INTRPLTION, STRTING BY THE UPPRMOST ST. PRESS. L VL. 

c 
DO 120 L=1,LSLN 

ALSL(L) = LOG(SPLN(L)) 
TRF=H2*ALSL(L) 

DO 130J=1,JM 
DO 130 I=1,IM 

LMA =LMH(I,J) 
LMAP1=LMA+ 1 
PPDSL=PDSL(I,J) 
INTZO=O 

DO 140 IL=2,LMAP1 
IF((ALSL(L)-ALP(I,J,IL)). GT.DOO) GO TO 140 
NL1=IL 
GO TO 150 

140 CONTINUE 

c 

NL1=LMAP1 
INTZ0=1 

150 IF((TRF-ALP(I,J,NL1)-ALP(I,J,NL1-1)).LE.DOO) 
c 

PNL1=PDSL{I,J)*ETA(NL1)+PT 
c - " • - ::'_<·.<0- •• - -··· -·---. 

NL1=NL1-1 
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c 

IF(NL1.EQ.1) THEN 
B=T(I,J, 1) 
BQ=Q(I,J, 1) 
FAC=H2*ALOG(PT+PDSL(I,J)*AETA(1)) 
AHF=(T(I,J,2)-B)/ (ALP(I,J,3)-ALP(I,J, 1)) 
AHFQ=(Q(I,J,2)-BQ)/ (ALP(I,J,3)-ALP(I,J, 1)) 

ELSE IF(NL1.EQ.LMAP1) THEN 
B=T(I,J,LMA) 
BQ=Q(I,J,LMA) 
FAC=H2*ALOG(PT+PDSL(I,J)*AETA(LMA)) 
AHF=(B-T(I,J,LMA-1))/(ALP(I,J,LMAP1)-ALP(I,J,LMA-1)) 
AHFQ=(BQ-Q(I,J,LMA-1})/{ALP(I,J,LMAP1)-ALP(I,J,LMA-1)) 

ELSE 
B=T(I,J,NL1) 
BQ=Q(I,J,NL1) 
FAC= H2 *ALOG(PT+ PDSL(I,J) *AETA(NL 1 )) 
AHF=(B-T(I,J,NL1-1))/ (ALP(I,J,NLl + 1)-ALP(I,J,NL1-1)) 
AHFQ=(BQ-Q(I,J,NL1-1))/ (ALP(I,J,NL1 + 1)-ALP(I,J,NL1-1)) 

END IF 

PTSL(I,J)=B+AHF*(TRF-FAC) 
PQSL(I,J)=BQ+AHFQ*(TRF-FAC) 
PFSL(I,J)=(PNL1-SPLN(L))/ (SPLN(L)+ PNL1) 

2 *((ALSL(L)+ALP(I,J,NL1)-FAC)*AHF+B)*RGC*H2 
3 +FI(I,J,NL1) 

130 CONTINUE 
C------------------SMOOTHING ABOVE HIGH TOPOGRAPHY---------------------­

DO 190 J=1,JM 
DO 190 I=1,IM 

FSL(I,J)=PFSL(I,J) 
QQSL(I,J)= PQSL(I, J) 

190 TSL(I,J)=PTSL(I,J) 
C-----------------------------------------------------------------------

DO 410 KS=1,4 
DO 200 J=2,JM-1 

DO 200 I=2-modlj+ 1,2),IM-1 
IF (FSL(I,J)-FIS(I,J). GT.1 0000.) GO TO 200 
IF (FIS(I,J). GT.1 0000.) GO TO 400 
IF (ABS(FIS(I+IHW(J),J-1)-FIS(I,J)).GT.HSMTH) GO TO 400 
IF (ABS(FIS(I+IHE(J),J-1)-FIS(I,J)).GT.HSMTH) GO TO 400 
IF (ABS(FIS(I+IHW(J),J+ 1)-FIS(I,J)).GT.HSMTH) GO TO 400 
IF (ABS(FIS(I+IHE(J),J+ 1)-FIS{I,J)).GT.HSMTH) GO TO 400 
IF (FSL(I+IHW(J),J-1)-FIS(I+IHW(J),J-1).LT.DOO) GO TO 400 
IF (FSL(I+IHE(J),J-1)-FIS(I+IHE(J),J-1).LT.DOO) GO TO 400 
IF (FSL(I,J )-FIS(I,J ).LT.DOO) GO TO 400 
IF (FSL(I+IHW(J),J+ 1)-FIS(I+IHW(J),J+ 1).LT.DOO) GO TO 400 
IF (FSL(I+IHE(J),J+ 1)-FIS(I+IHE(J),J+ 1).LT.DOO) GO TO 400 

GOT0200 
400 FSL{I,J)= D 12 S*(PFSL(I+ IHW(J), J-1 )+ PFSL(I+ IHE(J),J-1) 

1 +PFSL(I+IHW(J),J+ 1)+PFSL(I+IHE(J),J+ 1) 
2 +H4*PFSL(I,J)) 
QQSL(I,J)=D 125*(PQSL(I+ IHW(J),J-1 )+ PQSL(I+ IHE(J),J-1) 
1 +PQSL(I+IHW(J),J+ 1)+PQSL(I+IHE(J),J+ 1) 
2 +H4*PQSL{I,J)) 
TSL(I,J)=D 125*(PTSL(I+ IHW(J),J-1 )+PTSL(I+ IHE(J),J-1) 
1 +PTSL(I+IHW(J),J+ 1)+PTSL(I+IHE(J),J+ 1) 
2 +H4*PTSL(I,J)) 

C-----------------------------------------------------------------------
200 CONTINUE ,- ~ 
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DO 410 J=1,JM 
DO 410 I=1,IM 

PFSL(I,J)= FSL(I,J) 
PQSL(I,J)=QQSL(I,J) 
PTSL(I,J)=TSL(I,J) 

C-----------------------------------------------------------------------
GEOP(I,J,L)=FSL(I,J)! 9. 8 
TEMP{I,J,L)=TSL(I,J) 
SPHM(I,J,L)=QQSL(I,J) 

410 CONTINUE 
C-----------------------------------------------------------------------
C*** 
C*** CALCULATE AVERAGE PRESSURE DIFFERENCE BETWEEN ETA=1 AND 
ETA=O 
C*** AT VELOCITY POINTS (PDVP1) USING THE VALUES ALREADY KNOWN AT 
C*** HEIGHT POINTS (PDSL). 
C*** 

DO 1800J=2,JM-1 
DO 1800 I=2,IM-1 
PDVP1(I,J)=0.25EO*(PDSL(I,J)+PDSL(I+1,J)+PDSL(I,J+1)+PDSL{I,J-1)) 

1800 CONTINUE 
DO 1810 I=1,IM-1 
PDVP1(I, 1)=0.5EO*(PDSL{I, 1)+PDSL(I+ 1, 1)) 
PDVP 1 (I,JM)=O. SEO*(PDSL{I,JM)+PDSL(I+ 1 ,JM)) 

181 0 CONTINUE 
DO 1820J=1,JM-1 
PDVP1{1,J)=0.5EO*(PDSL(l,J)+PDSL{1,J+ 1)) 
PDVP1(IM,J)=0.5EO*(PDSL(IM,J)+PDSL(IM,J+ 1)) 

1820 CONTINUE 
Cdule 

PDVP 1 (IM,JM)=O. 
Cdule 
C*** 
C*** INTERPOLATE WIND COMPONENTS FROM ETA TO PRESSURE. 
C*** 

DO 2900 J=1,JM 
DO 2900 I=1,IM 
LMB=LMV(I,J) 
DO 21 00 IL=2,LMB 
PETAL=PT+PDVP1 (I,J)*ETA(IL) 
PETAU=PT+PDVP1 (I,J)*ETA(IL-1) 
ALPETL=ALOG(PETAL) 
ALPETU=ALOG(PETAU) 
ALPET2=SQRT(0.5EO*(ALPETL*ALPETL+ALPETU*ALPETU)) 

C*** 
C*** SEARCH FOR HIGHEST DASHED ETA SURFACE (NOT SUBMERGED) THAT 
IS 
C*** BELOW THE GWEN STANDARD PRESSURE LEVEL. 
C*** 

IF(ALSL(L).LT.ALPET2. OR.IL.EQ.LMB)THEN 
NL1=IL-1 
GO T02150 

END IF 
21 00 CONTINUE 
2150ALPETL=ALPETU 

ULO=U(I,J,NL1) 
VLO=V{I,J,NL1) 
IF(NL1. GT.1 )THEN 

PETAU=PT+PDVPl (l,J)*ETA(NLl-1)-
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UHI=U(I,J,NL1-1) 
VHI=V{I,J,NL1-1) 

ELSE 
PETAU=PT 
UHI=ULO 
VHI=VLO 

END IF 
ALPETU=ALOG(PETAU) 
ALPET1 =SQRT(O. SEO*(ALPETL *ALPETL+ALPETU*ALPETU)) 
DIFALP=ALPET2-ALPET1 

C*** 
C*** ALPET2 IS DASHED ETA SURFACE JUST BELOW STANDARD PRESSURE 
LEVEL 
C*** AND ALPET1 IS DASHED ETA SURFACE JUST ABOVE. 
C*** NOTE THAT IF THE STANDARD PRESSURE SURFACE IS SUBMERGED, 
THEN 
C*** ALPET2 AND ALPETl ARE THE LOWEST AND 2ND LOWEST DASHED ETA 
C*** SURFACES ABOVE THE TOPOGRAPHY. 
C*** 
csd IF(NL1. GT.1 )THEN 

IF(NL1.GT.1.and.DIFALP.ne.O.)THEN 
FACT={ALPET2-ALSL(L))/ (ALPET2-ALPET1) 

ELSE 
FACT=DOO 

END IF 
USL(I,J,L)=ULO+(UHI-ULO)*FACT 
VSL(I,J,L)= VLO+(VHI- VLO)*FACT 

2900 CONTINUE 
c 

c 

c 

DO 2999 J=2,JM-1 
DO 2999 !=2,/M-1 

IF(PD(I,J )+PT. LT. SPLN(L). OR.PD(I-1,J )+PT. LT. SPLN(L). OR. 
& PD(I,J+ 1)+PT.LT.SPLN(L).OR.PD(I,J-1)+PT.LT.SPLN(L) ) THEN 
USL(I,J,L)=O. 
VSL(I,J,L)=O. 

END IF 
2999 CONTINUE 

C-----------------------------------------------------------------------
120 CONTINUE 

C-----------------------------------------------------------------------
C--------------SEA LEVEL PRESSURE---------------------------------------
C HAVE SRDRD .FALSE. TO DO THE RELAXATION TEMPERATURE 
REDUCTION 
C OR THE OLD ETA/ SIGMA GRAD/NET (WEIGHTED FOR ETA) REDUCTION 
C HAVE OLDRD . TRUE. TO DO THE "OLD" (WEIGHTED) ETA REDUCTION 

c 

STDRD=.FALSE. 
OLDRD=.FALSE. 
IF(SIGMA) STDRD=. TRUE. 

IF (.NOT.STDRD .AND .. NOT.OLDRD) GO TO 700 
DO 210 J=1,JM 
DO 210 !=1,/M 

IF(FIS(I,J).LT.H 1 )THEN 
PSLP(I,J)=PD(I,J)+PT 

ELSE 
IMA. =LMI-i{i,JJ 
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ALPP1=ALOG(PDSL(I,J)*ETA(LMA+ 1)+PT) 
IF(OLDRD) THEN 

SLOP=(T(I,J,LMA)-T(I,J,LMA-1)) 
1 /{ALPP1-ALOG(PDSL(I,J)*ETA(LMA-l)+PT))*H2 

ELSE 
SLOP=D0065*ROG*T(I,J,LMA) 

END IF 
IF(SLOP.LT.D50)THEN 

SLPP=ALPP1 +FIS(I,J)/ (RGC*T(I,J,LMA)) 
ELSE 

TTT=-(ALOG(PDSL(I,J)*ETA(LMA)+PT)+ALPP1)*SLOP*D50+T(I,J,LMA) 
SLPP=(-TTT+SQRT(TTT*TTT+H2*SLOP 

1 *(FIS(I,J)/ RGC+(TTT+D50*SLOP*ALPP1)*ALPP1)))/ SLOP 
END IF 
PSLP(I,J)=EXP(SLPP) 

END IF 
210 CONTINUE 

IF(.NOT.SIGMA .AND. OLDRD)THEN 
DO 215 J=1,JM 
DO 215 I=1,IM 
FCFIS=FFIS*FIS(I,J) 
PSLP(I,J)=(PSLP(I,J)+(PDSL(I,J)+PT)*FCFIS)/ (H1 +FCFIS) 

215 CONTINUE 
END IF 

GO TO 715 
c 
C------- ETA SLP REDUCTION BASED ON RELAXATION TEMPERATURE-------------
C FIND THE HIGHEST LAYER CONTAINING MOUNTAINS 
700 DO 702 WI=1,LM 

L=LPl-WI 
DO 701 J=1,JM 
DO 701 I=l,IM 

IF(HTM(I,J,L).EQ.DOO) GO TO 702 
701 CONTINUE 

LHMNT=L+1 
GO TO 703 

702 CONTINUE 
C NOW GATHER THE ADDRESSES OF ALL THE UNDERGROUND POINT 
703 DO 705 L=LHMNT,LM 

KMN=1 
DO 704 J=3,JM-2 
DO 704 I=2,IM-1 

IF(HTM(I,J,L).EQ.H1) GO TO 704 
IMNT(KMN,L)=I 
JMNT(KMN,L)=J 
KMN=KMN+1 

704 CONTINUE 
KMNTM(L)=KMN-1 

705 CONTINUE 
C AS THE FIRST GUESS, SET THE UNDERGROUND TEMPERATURE EQUAL 
TO 
C THE VALUE OWING PD/ ETAS+PT AS SEA LEVEL PRESSURE 

KMM=KMNTM(LM) 
DO 706 KM=1,KMM !!!POPRAVLJENO 

I=IMNT(KM,LM) 
J=JMNT(KM,LM) 
TGSS=FIS{I,J)/ (RGC*ALOG((PDSL(I,J)+PT}/ (PD(I,J)+PT))) 

LMAP 1 =LMH(I,J)+ 1 
DO 706L'=LMAP1,LM"--
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706 T(I,J,L)=TGSS 
C CREATE A TEMPORARY TV ARRAY, AND FOLLOW BY SEQUENTIAL 
C OVERRELAXATION, DOINGNRLX PASSES 

DO 711 L=LHMNT,LM 
DO 707 J=1,JM 
DO 707 I=1,IM 

707 TTV{I,J)=T(I,J,L)"(H1 +D608"'Q(I,J,L)) 
KMM=KMNTM(L) 

DO 711 N=1,NRLX 
DO 708 KM=1,KMM 

I=IMNT(KM,L) 
J=JMNT(KM,L) 

708 TTV(I,J)=AD05*(H4 *(TTV(I+ IHW(J},J-1 }+TTV(I+ IHE(J},J-1) 
1 +TTV(I+IHW(J),J+ 1)+TTV(I+IHE(J),J+ 1)) 
2 +TTV(I-1,J)+TTV(I+ 1,J}+TTV{I,J+2)+TTV(I,J-2)) 
3 -CFTO*TTV{I,J) 

IF(N.EQ.NRLX) THEN 
DO 710KM=1,KMM 
I=IMNT(KM,L) 
J=JMNT(KM,L) 

710 T(I,J,L)=TTV(I,J) 
END IF 

711 CONTINUE 
C FINALLY, CALCULATE THE SEA LEVEL PRESSURE 

DO 712 J=1,JM 
DO 712 I=1,IM 

712 PSLP(I,J)=PD(I,J)+PT 
DO 714 KM=1,KMM 
I=IMNT(KM,LM) 
J=JMNT(KM,LM) 

LMAP1=LMH(I,J)+ 1 
SLPP=ALOG(PD(I,J)+PT) 
DO 713 L=LMAP1,LM 

713 SLPP=SLPP+(DFL(L)-DFL(L+ 1))/ (RGC"'T(I,J,L}) 
714 PSLP(I,J)=EXP(SLPP) 
c 
C--------------SMOOTH SEA LEVEL PRESSURE -------------------------------
715 D0220J=1,JM 

DO 220 I= 1,IM 
220 SLP(I,J)=PSLP(I,J) 

C-----------------------------------------------------------------------
DO 460 KS= 1,2 

DO 201 J=2,JM-1 
DO 201 I=2,IM-1 

201 SLP(I,J)=D 12 5 *(PSLP(I+ IHW(J},J-1 )+ PSLP(I+ IHE(J},J-1) 
1 +PSLP(I+IHW(J},J+ 1)+PSLP(I+IHE(J),J+ 1) 
2 +H4*PSLP(I,J)) 

C-----------------------------------------------------------------------
DO 460 J=1,JM 
DO 460 I=1,IM 

PSLP(I,J)=SLP(I,J) 
SEAG(I,J)=PSLP(I,J)*. 01 

460 CONTINUE 
C-----------------------------------------------------------------------
C-----------WRITING SLP,H, T, U & V FOR GRAPHICS-----------------------

OPEN(UNIT=31 ,FILE=OUTFN 
~ ,STATUS='UNKNOWN',ACCESS='SEQUENTIAL',FORM='UNFORMATTED') 
WRiTE(3'1)IDAT,IHRST,iHi?;GEOP,SPHM,tlSL, VSL,SEAG 
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CLOSE(31) 

WRITE {*,9807)/DAT,IHRST,IHR 
9807 FORMAT{'Output: ',3(I2, '.'),'at ',I2,'UTC + ',I2,'h') 

print*}'*****************************' 
C-----------------------------------------------------------------------

RETURN 
END 

11.2.6. Preparation of predicted surface fluxes to drive high 
resolution, POM model. 

The atmospheric surface fields produced by the nested model are 
required to drive the ocean model. These fields are produced by the 
subroutine flux.f A number of fields are calculated and written, 
including the surface latent and sensible heat flux, the surface moisture 
flux, the u- and v-components of the momentum flux, the surface 
incoming and outgoing short wave radiation flux, the surface incoming 
and outgoing longwave radiation flux, the cloud cover ratio, the lowest 
model level wind points, and the potential temperature at the lowest 
model level. Two sets of output files are written, the surfce_pom files 
and GrADS files using the information embedded in the SFC.ctl script. 

PROGRAM FLUX 
C-----------------------------------------------------------------------
C Program for preparing atmospheric surface fields in LL grid 
C-----------------------------------------------------------------------
#include "parmeta.inc" 
#include "latlon. inc" 
C----------------------------------------------------------------------

c 

c 

c 

PARAMETER 
+(IMJM=IM*JM-JM/ 2,KNE=IM,KNW=IM-1,NINC=2*IM-1) 

PARAMETER 
& (PQ0=379. 90516,A 1 =61 0. 78,A2= 17.2693882,A3=273.16,A4=35. 86 
&, TRESH=. 95EO) 

DIMENSION 
& IDAT(3) 
&, SEAG(IM,JM), U1 O(IM,JM), V1 O(IM,JM},ACPREC(IM,JM) 
&, CUPREC{IM,JM) 
&, T2M(IM,JM), TSURFCE(IM,JM), CCR(IM,JM,LM), CCRT(IM,JM) 
&, SSHFLX(IM,JM), SLHFLX(IM,JM), RSWIN(IM,JM) 
&,RSWOUT(IM,JM),RLWIN(IM,JM),RLWOUT{IM,JM),RFLUX(IM,JM) 
&, USTAR(IM,JM}, ummflx(im,jm), vmmflx(im,jm),qlhflx{IM,JM) 
&, UHLM(IM,JM), VHLM{IM,JM), UZOHC{IM,JM), VZOHC(IM,JM) 
&,ZO(IM,JM), QZO(IM,JM}, THZO(IM,JM),AKHS(IM,JM),AKMS(IM,JM) 
&, SM(IM,JM), CCZL{IM,JM), CCZM(IM,JM) 

DIMENSION 
& U1 OK(IMJM), V1 OK(IMJM) 
&, T2MK(IMJM}, TSFCK(IMJM), SEAGK(IMJM),ACPRECK(IMJM) 
&, CCJ?_T,K(IMJM),RFt_UXK(I!vf.JM{ ~ 

0
'" , , x _. " _ .. _. 

&, SSHFLXK(IMJM), SLHFLXK(IMJM}, USTARK(IMJM) 
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c 

c 

c 

&, ummjlxk(imjm), vmmflxk(imjm), qlhflxk(imjm) 
&,ZOK(IMJM),AKHSK(IMJM),AKMSK(IMJM), SMK(IMJM) 
&, THZOK(IMJM), QZOK(IMJM), CCZLK(IMJM), CCZMK(IMJM) 
&, UZOHK(IMJM), VZOHK(IMJM), UHLMK(IMJM), VHLMK(IMJM) 
&,RLWINK(IMJM),RLWOUTK(IMJM),RSWINK(IMJM),RSWOUTK(IMJM) 

&, Ul (IMLL,JMLL), Vl (IMLL,JMLL) 
&, TM(IMLL,JMLL), T2(IMLL,JMLL), TS(IMLL,JMLL), SP(IMLL,JMLL) 
&, TP(IMLL,JMLL),RH(IMLL,JMLL),RF(IMLL,JMLL), SFCL(IMLL,JMLL) 
&, SFCS(IMLL,JMLL), CC(IMLL,JMLL), USTR(IMLL,JMLL) 
&, ummf(imll,jmll), vmmf(imll,jmll), CZL(imll,jmll) 
&, CZM(imll,jmll) 
&, WINSU(IMLL,JMLL), WINSV(IMLL,JMLL), WTSURF(IMLL,JMLL) 
&, SWRAD(IMLL,JMLL), qfc(imll,jmll), uhl(imll,jmll), vhl(imll,jmll) 
&, akhl(imll,jmll), akml(imll,jmll), zOl(imll,jm ll) 
&, thzOl(imll,jmll),qzOl(imll,jmll) 
&, uzOhl(imll,jmll), vzOhl(imll,jmll) 
&, rlwi(imll,jmll), rlwo(imll,jmll), rswi(imll,jmll), rswo(imll,jmll) 
&,ALON(IMLL,JMLL),ALA T(IMLL,JMLL) 

&, SMB(IMLL,JMLL), SMBB(IMJMLL) 

C-----------------------------------------------------------------------
dimension id7(7), ar7(7), vrta(l 00) 

c-------------------------------
CHARACTER CARG 1*3 
CHARACTER CDAT*3 
CHARACTER CDT*6 
CHARACTER *8 CDATEB 
CHARACTER FFNAMES*256 

C----------------------------------------------------------------------------
INCLUDE " . ./ .. /model/ src/ model2d_nl. nml" 

C-----------------------------------------------------------------------
BLN{P,Q,X1,X2,X3,X4)=X1+P*(X2-X1)+Q*(X3-X1)+P*Q*(X1-X2-X3+X4) 

C----------------------------------------------------------------------------
OPEN (UNIT= 1l,FILE= ' . ./ . ./name lists/ name.list',FORM='FORMA TTED') 
READ(l1,MODEL2D_NL) 
CLOSE(l1) 

C----------------------------------~------------------------------------

c orv = l.e+30 
CPEJA 990226!!!! 

orv = 0 
C---------------------------------------------------------------------

c 

c 

IF (IARGC().LE.O) THEN 

STOP 
END IF 

print*,' Usage: compass ihr' 

CALL GETARG(l,CARG1) 
READ(CARG 1, '(I3niHR 
WRITE(CDAT(1: 3), '(!3. 3niHR 

print *, "IHR=",CDAT 
C=============================================================== 
c 

FFNAMES=FN_SOUT(l:(INDEX(FN_SOUT,' '))-1)/ /CDAT/ /'.dat' 
print*, 'im = ', im, jm = ',jm, 'imjm = ', imjm 
print*, 'imll= ', imll, 'jmll= ',jmll, 'imjmll= ', imjmll 
iJnnt*, 'wbdlF=', wliau, ;siialt=",sbau- ·. 

426 



c-------------------------------------------------------

c 

OPEN(UNIT=33, 
&FILE=' . ./ .. / output/ maskll_ 4km. dat', 
& STATUS='UNKNOWN',ACCESS='SEQUENTIAL',FORM='UNFORMATTED') 
READ(33)SMBB 
CLOSE(33) 

C-------------------------------------------------------
C 

IF(MOD(IHR, 3). eq. O)THEN 
OPEN(UNIT=31 ,FILE=' . ./ . ./ output/ msl'/ I CDAT I I'. dat' 

& ,STATUS='UNKNOWN',ACCESS='SEQUENTIAL',FORM='UNFORMATTED') 
C----------------------------------

READ (31)IDAT,IHRST,IHRR,SEAG 
print*, 'IDAT= ',IDA T 
print*, 'IHRR= ',IHRR 
CLOSE(31) 
END IF 

c-----------------------------------

C 
OPEN(UNIT=32,FILE=FFNAMES 

& 
,STATUS='UNKNOWN',ACCESS='SEQUENTIAL',FORM='UNFORMATTED') 
C-----------------------------------------------------------------------
C SSHFLX - surface sensible heat flux 
C SLHFLX - surface latent heat flux 
C qlhflx - surface moisture flux 
C ummflx - u momentum flux 
C vmmflx - v momentum flux 
C RSWIN - surface incoming short wave radiation flux 
C RSWOUT- surface outcoming short wave radiation flux 
C RL WIN - surface incoming longwave radiation flux 
C RL WOUT - surface outcoming longwave radiation flux 
C CCR - cloud cover ratio 
C UHLM, VHLM- last model level winds (at H points) 
C UZOHC, VZOHC - wind at ZO in H points 
C QZO, THZO - at ZO in H points 
C-----------------------------------------------------------------------

READ (32)IDAT,IHRST,IHR 
READ (32)SSHFLX 
READ (32)SLHFLX 
READ (32)ummflx 
READ (32)vmmflx 
READ (32)qlhflx 
READ (32)RSWIN 
READ (32)RSWOUT 
READ (32)RL WIN 
READ (32)RL WOUT 
READ (32)T2M !TSHLTR 
READ (32)TSURFCE 
READ (32)Ul 0 
READ (32)Vl 0 
READ (32)UHLM 
READ (32)VHLM 
READ (32)ACPREC 
READ (32)CUPREC 
READ (32)USTAR 
READ(32)ZO 
READ (32)UZOHC 
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READ (32)VZOHC 
READ (32)QZO 
READ (32)THZO 
READ (32)AKHS 
READ (32)AKMS 
READ (32)SM 
READ (32)CCR 
READ (32)CCZL,CCZM 

!! READ (32)IDAT,1HRST,1HR, TLMOD, TPHOD, WBD, SBD,DLMD,DPHD,DTB,LM 
print*, 'IHR=',IHR,FFNAMES 

CLOSE(32) 
C=============================================================== 

OPEN(UNIT=33, FILE=' .. / . ./ output/ datum. dat' 
& ,STATUS='UNKNOWN',ACCESS='SEQUENTIAL',FORM='UNFORMATTED') 
write(33)idat, ihrst, ihr 
close (33) 

C=============================================================== 
if (1HR.eq. 0) then 
OPEN(UNIT=33,FILE= ' . ./ . ./output/ datum. YYMMDDHH' 

& , STATUS='UNKNOWN',ACCESS= 'SEQUENTIAL') 
write (CDATE8(1 :2), '(12.2)') idat(3) 
write (CDATE8(3:4), '(12.2)') idat(2) 
write (CDATE8(5:6), '(12.2)') idat(l) 
write (CDATE8(7:8), '(12.2)') IHRST 
write(33, '(a)') CDATEB 
close (33) 
end if 

C=============================================================== 
c-----conversion to 1 dim indx 
c-----------------------------------------------------------------

c 

c 

c 

c 

c 

k=O 
doj=1,jm 
do i=1,im- mod(j+ 1,2) 

k=k+1 

T2MK (K)=T2M (I,J) 
TSFCK(K)=TSURFCE (I,J) 
ACPRECK(K)=ACPREC(I,J) 
USTARK(K)=USTAR{1,J) 
CCZLK(K)=CCZL(I,J) 
CCZMK(K)=CCZM(I,J) 

ummjlxk(k)=ummjlx{i,j) 
vmmjlxk(k)=vmmjlx(i,j) 

U1 OK(k)=U1 O{i,j) 
V1 OK(k)= V1 O{i,j) 

SEAGK(K)=SEAG(I,J) 

enddo 
end do 

!-273.15 
!-273.15 

c------------------------------------------------------------------

c 

DO 1=1,IM 
DOJ=1,JM 
RFLUX(I,J)=O. 
CCRT(I,J)=O. 

END DO 
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c 
c 

END DO 
DO 1=1,/M 
DOJ=1,JM 
RFLUX(I,J)= RL WIN(I,J)-RL WOUT(I,J)+ RSWIN(I,J)-RSWOUT(I,J) 
END DO 
END DO 

DOL=1,LM 
DO 1=1,/M 
DOJ=1,JM 
CCRT(I,J)=CCRT(I,J)+CCR(I,J,L) 
END DO 
END DO 
END DO 

C---------------------------------------
CGRADSGRADSGRADSGRADS 
c------------------------

ar7 (1} = 2. 
ar7 (2) = TLMOD 
ar7 (3) = WBD 
ar7 (4) = DLMD 
ar7 (S) = TPHOD 
ar7 (6) = SBD 
ar7 (7) = DPHD 

c-----------------------
print *, im,jm,LSL,LSM 
id7 (1) = idat(3) 
id7 (2) = idat(2) 
id7 (3) = idat(l) 
id7 (4) = ihrst 
id7 (S) = ihr 
id7 (6) = 00 
id7 (7) = 00 
print *,' ar7:',ar7, id7 
D= 0. 

c------------------------
CALL WGRADS(id7, 02, 0, 0,102, O,ar7,im,jm,1,0.,SEAG,D) 
CALL WGRADS(id7, 33,34, 1,10S,10,ar7,im,jm,1,0.,u10, v10) 
CALL WGRADS(id7,122, 0, 0,10S, 0, ar7,im,jm,1,0.,sshjlx, D ) 
CALL WGRADS(id7,121, 0, 0,10S, 0, ar7,im,jm,1,0.,slhflx, D ) 
CALL WGRADS(id7, 12S, 126, 1, 10S, 10, ar7,im,jm, 1, 0., ummflx, vmmjlx) 
CALL WGRADS (id7, 61, 0, 0,10S, O,ar7,im,jm,1,0.,ACPREC,D) 
CALL WGRADS (id7, 11, 0, 0, 10S, O,ar7,im,jm, 1, 0., TSURFCE,D) 
CALL WGRADS (id7, 11, 0, 0,1 OS, 2,ar7,im,jm, 1, 0., T2M,D) 

c-------------------------------------------------------------------
CALL WGRADS (id7,141, 0, 0,10S, O,ar7,im,jm,1,0.,qlhflx,D) 
CALL WGRADS(id7,117, 0, 0,10S, O,ar7,im,jm,1,0.,rjlux,D) 
CALL WGRADS (id7,138, 0, 0,10S, O,ar7,im,jm,1,0.,ZO ,D) 
CALL WGRADS (id7,13S, 0, 0,10S, O,ar7,im,jm,1,0.,ustar,D) 
CALL WGRADS (id7, 71, 0, 0,10S, O,ar7,im,jm,1,0.,ccrt,D) 
CALL WGRADS (id7,131, 0, 0,10S, O,ar7,im,jm,1,0.,akhs,D) 
CALL WGRADS (id7,132, 0, 0,10S, O,ar7,im,jm,1,0.,akms,D) 
CALL WGRADS(id7,139, 0, 0,10S, O,ar7,im,jm,1,0.,thz0,D) 
CALL WGRADS (id7,140, 0, 0,10S, O,ar7,im,jm,1,0.,qz0,D) 
CALL WGRADS (id 7, 133, 134, 1, 1 OS, 1 0, ar7, im,jm, 1, 0., uhlm, vhlm) 
CALL WGRADS (id 7, 136, 13 7, 1, 1 OS, 0, ar7, im,jm, 1, 0., uzOhc, vzOhc ) 
CALL WGRADS(id7,142, 0, 0,10S, O,ar7,im,jm,l,O.,cczl,D) 
CALL WGRADS'(id7, 143;-o,'~O,o WS; O,cir7,im,jin, l,O:,cczm,D) 
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c--------------------
CALL WGRADS(id7,204, 0, 0,105, O,ar7,im,jm,1,0.,rswin,D) 
CALL WGRADS(id7,211, 0, 0,105, O,ar7,im,jm,1,0.,rswout,D) 
CALL WGRADS(id7,205, 0, 0,105, O,ar7,im,jm,1,0.,rlwin,D) 
CALL WGRADS(id7,212, 0, 0,105, O,ar7,im,jm,1,0.,rlwout,D) 

c--------------------
print *, 'ENDOFGRADSENDOFGRADSENDOFGRADS' 

C--------------------------------------------------------------------

c 

c 

k=O 
doj=1,jm 
do i=1,im- modlj+ 1,2} 

k=k+1 
RFLUXK(K}=RFLUX(I,J) 
RL WINK(K}=RL WIN(l,J) 
RSWINK(K)=RSWIN(l,J) 
RL WOUTK(K}=RLWOUT(l,J} 
RSWOUTK(K)=RSWOUT(l,J) 
SLHFLXK(K}=SLHFLX(I,J) 
SSHFLXK(K}=SSHFLX(I,J) 
qlhjlxk(K}=qlhflx(l,J) 
CCRTK(K)=CCRT(l,J) 
ZOK(K)=ZO(l,J) 
UZOHK(K)=UZOHC(l,J) 
VZOHK(K)= VZOHC(I,J) 
QZOK(K)=QZO(I,J) 
THZOK(K)=THZO(I,J) 
AKHSK(K)=AKHS(I,J) 
AKMSK(K)=AKMS(I,J) 
SMK(K)=SM(l,J) 

end do 
end do 

C=============================================================== 
C-----CALCULATION OF CONSTANTS 

P/=3.141592654 
DTR=PI/ 180. 
TPHO=TPHOD*DTR 
STPHO=SIN(TPHO) 
CTPHO=COS(TPHO) 

C---------------------------------------------------------------
k=O 
DOJ=1,JMLL 
DO 1=1,/MLL 

k=k+l 
SMB{i,j)=SMBB(k) 

end do 
end do 

C---------------------------------------------------------------

c 

c 

doj=1,jmll 
clat =sbdll+lj-1)*dphdll 
do i=1,imll 

clan =wbdll+(i-1)*dlmdll 

call TLLC(clon, clat, TLMOD,DTR, CTPHO, STPHO, TLM, TPH) 

if ( tlm.lt.wbd+dlmd) goto 55 
if ( tlm.gt.-wbd::dlmdfgotcr55" 

430 



c 

c 

if ( tph.lt.sbd+dphd) goto 55 
if ( tph.gt.-sbd-dphd) goto 55 

call gcoef (tlm,tph, kh,ph,qh, kv,pv,qv) 

55 continue 
c----------------------------------

KH1 = kh 
KH2 = kh + kne 
KH3 = kh + knw 
KH4 = kh +nine 

KV1 = kv 
KV2 = kv + kne 
KV3 = kv + knw 
KV4 = kv +nine 

c----------------------------------

c 

81 = SMK(kh1) 
S2 = SMK(kh2) 
S3 = SMK(kh3) 
S4 = SMK(kh4) 

SL1 = 1 - S1 
SL2 = 1- S2 
SL3 = 1- S3 
SL4 = 1- S4 

c----------------------------------

3) 

S3) 

S3) 

if ( SMB(i,j).eq.1) then 
TS(i,j) = blu(O., 

+ ph,qh, TSFCK(kh1)*S1, TSFCK(kh2)*S2, TSFCK(kh4)*S4, TSFCK(kh3)*S3) 
T2(i,j) = blu(O., 

+ ph,qh, T2MK(kh1)*S1, T2MK(kh2)*S2, T2MK(kh4)*S4, T2MK(kh3)*S3) 
SFCL{i,j) = blu(O.,ph,qh, 

+ 

+ 

+ 

+ 

SLHFLXK(kh1)*S1,SLHFLXK(kh2)*S2,SLHFLXK(kh4)*S4,SLHFLXK(kh3)*S 

SFCS(i,j) = blu(O.,ph,qh, 

SSHFLXK(kh1 )*S1, SSHFLXK(kh2)*S2, SSHFLXK(kh4)*S4, SSHFLXK(kh3)* 

QFC (i,j) = blu(O.,ph,qh, 

QLHFLXK(kh1 )*S1, QLHFLXK(kh2)*S2, QLHFLXK(kh4)*S4, QLHFLXK(kh3)* 

UMMF (i,j) = blu(O.,ph,qh, 

3)*S3) 
UMMFLXK(kh1)*S1,UMMFLXK(kh2)*S2,UMMFLXK(kh4)*S4,UMMFLXK(kh 

VMMF (i,j) = blu(O.,ph,qh, 
+ 

VMMFLXK(kh1)*S1, VMMFLXK(kh2)*S2, VMMFLXK(kh4)*S4, VMMFLXK(kh 
3)*S3) 

U1 (i,j) = blu(O.,ph,qh, 
+ U10K(kh1)*S1,U10K(kh2)*S2,U10K(kh4)*S4,U10K(kh3)*S3) 

V1 (i,j) = blu(O.,ph,qh, 
+ V10K(kh1)*S1, V10K(kh2)*S2, V10K(kh4)*S4, V10K(kh3)*S3) 

RLWI (i,j) = blu(O.,ph,qh, 
+ RLWINK(kh1)*S1,RLWINK(kh2)*S2,RLWINK(kh4)*S4,RLWINK(kh3)*S3) 

RSWI (i,j) ·,; blti(O~~ph,qh;' "- -- " --- -
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+ RSWINK(kh1)*S1,RSWINK(kh2)*S2,RSWINK(kh4)*S4,RSWINK(kh3)*S3) 
RL WO (i,j) = blu(O.,ph,qh, 

+ 

3)*S3) 

+ 

RLWOUTK(kh1)*S1,RLWOUTK(kh2)*S2,RLWOUTK(kh4)*S4,RLWOUTK(kh 

RSWO (i,j) = blu(O.,ph,qh, 

RSWOUTK(kh1)*S1,RSWOUTK(kh2)*S2,RSWOUTK(kh4)*S4,RSWOUTK(kh 
3)*S3) 

else 
TS{i,j) = blu(O., 

+ph,qh, TSFCK(kh1)*SL1, TSFCK(kh2)*SL2, TSFCK(kh4)*SL4, TSFCK(kh3)*SL3) 
T2(i,j) = blu(O., 

+ph,qh, T2MK(kh1)*SL1, T2MK(kh2)*SL2, T2MK(kh4)*SL4, T2MK(kh3)*SL3) 
SFCL(i,j) = blu(O.,ph,qh, 

+SLHFLXK(kh1)*SL1,SLHFLXK(kh2)*SL2 
+ , SLHFLXK(kh4)*SL4, SLHFLXK(kh3)*SL3) 

SFCS{i,j) = blu(O.,ph,qh, 
+SSHFLXK(kh1)*SL1,SSHFLXK(kh2)*SL2 
+ , SSHFLXK(kh4)*SL4, SSHFLXK(kh3)*SL3) 

QFC {i,j) = blu(O.,ph,qh, 
+QLHFLXK(kh1)*SL1,QLHFLXK(kh2)*SL2, 
+ QLHFLXK(kh4)*SL4, QLHFLXK(kh3)*SL3) 

UMMF (i,j) = blu(O.,ph,qh, 
+UMMFLXK(kh1)*SL1,UMMFLXK(kh2)*SL2 
+ , UMMFLXK(kh4)*SL4, UMMFLXK(kh3)*SL3) 

VMMF (i,j) = blu(O.,ph,qh, 
+ VMMFLXK(kh1)*SL1, VMMFLXK(kh2)*SL2, 
+ VMMFLXK(kh4)*SL4, VMMFLXK(kh3)*SL3) 

U1 (i,j) = blu(O.,ph,qh, 
+U1 OK(kh1)*SL1, U1 OK(kh2)*SL2, U1 OK(kh4)*SL4, U1 OK(kh3)*SL3) 

V1 (i,j) = blu(O.,ph,qh, 
+ V1 OK(kh1)*SL1, V1 OK(kh2)*SL2, V1 OK(kh4)*SL4, V1 OK(kh3)*SL3) 

RLWI (i,j) = blu(O.,ph,qh, 
+ RL WINK(kh1 )*SL1,RL WINK(kh2)*SL2,RL WINK(kh4)*SL4,RL WINK(kh3)*SL3) 

RSWI (i,j) = blu(O.,ph,qh, 
+RSWINK(kh1)*SL1,RSWINK(kh2)*SL2,RSWINK(kh4)*SL4,RSWINK(kh3)*SL3) 

RLWO (i,j) = blu(O.,ph,qh, 
+ RL WOUTK(kh1)*SL1,RL WOUTK(kh2)*SL2, 
+ RL WOUTK(kh4)*SL4,RLWOUTK(kh3)*SL3) 

RSWO (i,j) = blu(O.,ph,qh, 
+RSWOUTK(kh1)*SL1,RSWOUTK(kh2)*SL2 
+ ,RSWOUTK{kh4)*SL4,RSWOUTK(kh3)*SL3) 

end if 

SP(i,j) = blu(SMK(kh), 
+ ph,qh, SEAGK(kh1 ), SEAGK(kh2), SEAGK(kh4), SEAGK(kh3)) 

TP(i,j) = 0. 00001 + blu( 12345. , 
+ ph,qh,ACPRECK(kh1},ACPRECK(kh2},ACPRECK(kh4},ACPRECK(kh3)) 

RF(i,j) = blu(SMK(kh}, 
+ ph,qh,RFLUXK(kh1},RFLUXK(kh2),RFLUXK(kh4),RFLUXK(kh3)) 

CC(i,j) = blu(SMK(kh), 
+ ph,qh, CCRTK(kh1 }, CCRTK(kh2}, CCRTK(kh4}, CCRTK(kh3)) 

USTR{i,j) = blu(SMK(kh}, 
+ph, qh, USTARK(kh1 }, USTARK(kh2}, USTARK(kh4), USTARK(kh3)) 

UHL{i,j) = blu(SMK(kh), 
+ ph,qh, UHLMK(kh1}, UHLMK(kh2}, UHLMK(kh4}, UHLMK(kh3)) 

VHL(i,j) = blu(SMK(kh}, 
+·ph,qh, VHLMK(kh1),VHLMK(kh2tVHLMK(kh4);VHLMK(kh3)) 
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AKHL(i,j) = blu(SMK(kh), 
+ ph,qh,AKHSK(khl),AKHSK(kh2),AKHSK(kh4),AKHSK(kh3)) 

AKML(i,j) = blu(SMK(kh), 
+ ph,qh,AKMSK(khl),AKMSK(kh2),AKMSK(kh4),AKMSK(kh3)) 

ZOL(i,j) = blu(SMK(kh), 
+ ph, qh,ZOK(khl ),ZOK(kh2 ),ZOK(kh4 ),ZOK(kh3)) 

THZOL(i,j) = blu(SMK(kh), 
+ ph,qh, THZOK(khl), THZOK(kh2), THZOK(kh4), THZOK(kh3)) 

QZOL(i,j) = blu(SMK(kh), 
+ ph,qh, QZOK(khl ), QZOK(kh2), QZOK(kh4), QZOK(kh3)) 

UZOHL(i,j) = blu(SMK(kh), 
+ ph,qh, UZOHK(khl ), UZOHK(kh2), UZOHK(kh4), UZOHK(kh3)) 

VZOHL(i,j) = blu(SMK(kh), 
+ ph,qh, VZOHK(khl), VZOHK(kh2), VZOHK(kh4), VZOHK(kh3)) 

CZL(i,j) = blu(SMK(kh), 
+ ph,qh,CCZLK(khl),CCZLK(kh2),CCZLK(kh4),CCZLK(kh3)) 

CZM(i,j) = blu(SMK(kh), 
+ ph,qh,CCZMK(khl),CCZMK(kh2),CCZMK(kh4),CCZMK(kh3)) 

c----------------------------------
C 

enddo 
end do 

C=============================================================== 

c 

c 

c 

c 

do j=l,jmll 
clat =sbdll +(j-1 )*dphdll 
do i=l,imll 

clan =wbdll+(i-l)*dlmdll 

TPUS=Ul (I,J) 
TPVS= Vl (I,J) 

CALL RLTL W(CLON, CLA T, TPUS, TPVS, TLMOD,DTR, CTPHO, STPHO 
& ,PUS,PVS) 

Ul (i,j)=PUS 
Vl (i,j)=PVS 

C--------------------------------------------------------------

c 

c 

c 

c 

c 

TPUS=ummf(i,j) 
TPVS=vmmf(i,j) 

CALL RLTL W(CLON, CLA T, TPUS, TPVS, TLMOD,DTR, CTPHO, STPHO 
& ,PUS,PVS) 

ummf(i,j)=PUS 
vmmf(i,j)= PVS 

TPUS=UHL(i,j) 
TPVS= VHL(i,j) 

CALL RLTL W(CLON, CLA T, TPUS, TPVS, TLMOD,DTR, CTPHO, STPHO 
& ,PUS,PVS) 

UHL(i,j)=PUS 
VHL(i,j)=PVS 

TPUS=UZOHL(i,j) 
TPVS= VZOHL(i,j) 

CALL RLTLW(CLON, CLA,T,TPUS;~TPVS,TLMOD,DTR, CTPHO, STPHO 
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& ,PUS,PVS) 
UZOHL{i,j)=PUS 

VZOHL{i,j)= PVS 
enddo 
enddo 

C=============================================================== 
C calculation of wind stress = rho *ustar**2 
C direction of wind stress is the opposite of the rezultant wind 
C=============================================================== 

c 

doj=l,jmll 
do i=l,imll 
DIR= WDIR(Ul {i,j), Vl {i,j)) 

WINSU(I,J)=-ustr(i,j)**2*cos(dir) 
WINSV(I,J)=-ustr{i,j)**2*sin(dir) 

C total latent and sensible heat flux 
WfSURF(i,j)=SFCL{i,j)+SFCS(i,j)+ RL WI{i,j) 

! WfSURF{i,j)=SFCL{i,j)+SFCS{i,j) 
C total short- and long-wave radiation 
CCC SWRAD(I,J)=RF(I,J) 

c 

SWRAD(I,J)=RSWI(I,J) !short wave radiation incoming flux 
end do 
end do 

C=============================================================== 
C record of sea surface fields for POM model 
C=============================================================== 

c 

WRITE(CDT(l :2), '(I2)')IDAT(l) 
WRITE(CDT(3:4), '(I2)')IDAT(2) 
WRITE(CDT(S:6), '(I2)')IDAT(3) 

do m=l,6 
if(CDT(m:m).eq.' ')CDT(m:m)='O' 
enddo 

C-------------------------------------------------------------------------
OPEN(UNIT=35,FILE=' .. / .. /output/surfce_pom/ /CDT/ /cdat/ /'.dat' 

& ,STATUS='UNKNOWN',ACCESS='SEQUENTIAL',FORM='UNFORMATTED') 
c 

WRITE(3S)IDA T, IHRST, IHR 
&, WfSURF, ummf, vmmf, SWRAD,qfc, tp,sp 
&,SFCL,SFCS,RLWI,RLWO,RSWI,RSWO,ummf,vmmf,qfc,tp,sp 
print*, 'idat, ihrst, ihr===== ', idat,' ', ihrst,' ', ihr 

C-------------------------------------------------------------------
k=O 
DOJ=l,JMLL 
DO I=l,IMLL 

k=k+l 
SMB{i,j)=SMBB(k) 

end do 
enddo 

C=============================================================== 
k=O 
DOJ=l,JMLL 
DO I=l,IMLL 

k=k+l 
SMB{i,j)=SMBB(k) 

if (SMB{i,j). ne. 1. )then 
smb{i,j)=orv 

end if 
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enddo 
enddo 

C=============================================================== 
777 continue 

C=============================================================== 
C Conversion fields into one dimension due to graphics 
C-----------------------------------------------------------------------
C=============================================================== 
c-------------------------------------------------------------------

ar7 (1) = 0. 
ar7 (2) = IMll 
ar7 (3) = wbdll 
ar7 (4) = dlmdll 
ar7 (5) = JMll 
ar7 (6) = sbdll 
ar7 (7) = dphdll 
id7 (1) = idat(3) 
id7 (2) = idat(2) 
id7 (3) = idat(l) 
id7 (4) = IHRST! time start= ihrst 
id7 (5) = ihr 
id7 (6) = 00 ! minf 
id7 (7) = 00 ! secf 

cgrads 
C=============================================================== 
CGRADSGRADSGRADSGRADS 

DUPE= -9999 

c 
print*,' GRADSGRADS!', id7(5),' lev:',vrta 

CALL WGRADS (id7,81 ,0,9,105,0,ar7,imll,jmll,1,0.,smb,DUPE) 
CALL WGRADS (id7,02 ,0,9,102,0,ar7,imll,jmll,1,0.,sp,DUPE) 
CALL WGRADS (id7,61 ,0,9,105,0,ar7,imll,jmll,1,0.,tp,DUPE) 
CALL WGRADS (id 7, 12 5, 0, 9, 1 05, 1 0, ar7, imll,jmll, 1, 0., ummf, DUPE) 
CALL WGRADS (id7, 126, 0, 9, 1 05, 1 0, ar7, imll,jmll, 1, 0., vmmf,DUPE) 
CALL WGRADS (id 7, 130, 0, 9, 1 05, 0, ar7, imll,jmll, 1, 0., wtsurf,DUPE) 
CALL WGRADS (id7, 117,0,9, 1 05,0,ar7,imll,jmll, 1,0.,swrad,DUPE) 
CALL WGRADS (id7,11 ,0,9,105,0,ar7,imll,jmll,1,0.,ts,DUPE) 
CALL WGRADS (id7,11 ,0,9,105,2,ar7,imll,jmll,1,0.,t2,DUPE) 
CALL WGRADS (id7,121 ,0,9,105,0,ar7,imll,jmll,1,0.,sfcl,DUPE) 
CALL WGRADS (id7,122 ,0,9,105,0,ar7,imll,jmll,1,0.,sfcs,DUPE) 
CALL WGRADS (id 7, 131 , 0, 9, 1 05, 0, ar7, imll,jmll, 1, 0., akhl,DUPE) 
CALL WGRADS (id 7, 132 , 0, 9, 1 05, 0, ar7, imll,jmll, 1, 0., akml,DUPE) 
CALL WGRADS (id7, 33,0 ,9,105,10,ar7,imll,jmll,1,0.,u1,DUPE) 
CALL WGRADS (id7, 34,0, 9, 105, 10, ar7,imll,jmll, 1, 0., v 1,DUPE) 
CALL WGRADS (id7, 133, 0, 9,1 05, 1 O,ar7, imll,jmll, 1, 0., uhl,DUPE) 
CALL WGRADS (id7, 134 , 0, 9, 1 05, 1 0, ar7, imll,jmll, 1, 0., vhl,DUPE) 
CALL WGRADS (id7,136, 0,9, 105,0,ar7,imll,jmll,1,0.,uz0hl,DUPE) 
CALL WGRADS (id 7, 13 7, 0, 9, 1 05, 0, ar7, imll,jmll, 1, 0., vzOhl,DUPE) 
CALL WGRADS (id7,135 ,0,9,105,0,ar7,imll,jmll,1,0.,ustr,DUPE) 
CALL WGRADS (id7, 138 , 0, 9, 1 05, 0, ar7, imll,jmll, 1, O.,zOl,DUPE) 
CALL WGRADS (id 7, 13 9 , 0, 9, 1 05, 0, ar7, imll,jmll, 1, 0., thzOl,DUPE) 
CALL WGRADS (id7, 140, 0, 9,1 05, O,ar7,imll,jmll, 1, O.,qzOl,DUPE) 
CALL WGRADS (id 7, 141 , 0, 9, 1 05, 0, ar7, imll,jmll, 1, 0., qfc,DUPE) 
CALL WGRADS (id7, 142, 0,9, 105, 10,ar7,imll,jmll, 1,0.,um,DUPE) 
CALL WGRADS (id 7, 143 , 0, 9, 1 05, 10, ar7, imll,jmll, 1, 0., vm,DUPE) 
CALL WGRADS (id 7, 71 , 0, 9, 1 05, 0, ar7, imll,jmll, 1, 0., cc,DUPE) 
CALL WGRADS (id 7, 144 , 0, 9, 1 05, 0, ar7, imll,jmll, 1, 0., czl,DUPE) 
CALL WGRADS (id 7, 145 , 0, 9, .1 05, 0, ar7, imll,jmll, 1, 0., czm,DUPE) 
CALL WGRADS (id 7,205 , 0, 9,105;.0, ar7; imll,jmll, 1, O,; rlwi,DUPE) 
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CALL WGRADS (id 7, 204 , 0, 9, 1 05, 0, ar7, imll,jmll, 1, 0., rswi, DUPE) 
CALL WGRADS (id7,211 ,0,9, 105,0,ar7,imll,jmll,1,0.,rswo,DUPE) 
CALL WGRADS (id 7, 212 , 0, 9, 1 05, 0, ar7, imll,jmll, 1, 0., rlwo,DUPE) 
print *,' END_GRADSGRADS!', id7(5),' ar7:',ar7 

CENDCGRADSGRADSGRADSEND 
C=============================================================== 
c 

STOP 
END 

C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
SUBROUTINE RTLL(TLM, TPH, TLMOD,DTR, CTPHO, STPHO,ALMD,APHD) 

00028580 
c 

c 

c 

c 

STPH=SIN(TPH) 
CTPH=COS(TPH) 
CTLM=COS(TLM) 
STLM=SIN(TLM) 

00028590 
00028600 
00028610 
00028620 

00028630 
00028640 

APH=ASIN(STPHO*CTPH*CTLM+CTPHO*STPH) 
CPH=COS(APH) 00028660 

00028670 
ALMD=TLMOD+ASIN(STLM*CTPH/ CPH)/ DTR 
APHD=APH/ DTR 00028690 

00028700 
RETURN 00028710 
END 00028720 

00028650 

00028680 

C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
SUBROUTINE RLTL W(ALMD,APHD, TPUS, TPVS, TLMOD,DTR, CTPHO, STPHO 

& ,PUS,PVS) 
C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
c 

c 

c 

c 

c 

RELM=(ALMD-TLMOD)*DTR 
SRLM=SIN(RELM) 
CRLM=COS(RELM) 

APH=APHD*DTR 
SPH=SIN(APH) 
CPH=COS(APH) 

CC=CPH*CRLM 
TPH=ASIN(CTPHO*SPH-STPHO*CC) 

RCTPH= 1./ COS(TPH) 
CRA Y=STPHO*SRLM*RCTPH 
DRA Y=(CTPHO*CPH+STPHO*SPH*CRLM)*RCTPH 
DC=DRA Y*DRA Y+CRA Y*CRA Y 
PUS=(DRA Y*TPUS+CRA Y*TPVS)/ DC 
PVS=(DRA Y*TPVS-CRA Y*TPUS)/ DC 

RETURN 
END 

C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
SUBROUTINE CONV21 (V2, V1 B) 

c 
c 
c 
... 

c 
c 

****************************************************************** 
... * 
"' ROUTINE FOR REORDERING THIBUE- VELOCITY-POINT-3-DIMENSIONAL 

* MATRICES FOR 2-DIMENSIONAL INDEXING * 
... .,. 
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c ****************************************************************** 
#include "largeOCT.inc" 
C-----------------------------------------------------------------------

D/MENS/ON 
& V2 (IMT,JMT), V1B (IMJM) 

C-----------------------------------------------------------------------
c DO 200 L=1,LM 

K=O 
C-----------------------------------------------------------------------

DO 100 J=1,JMT 
DO 110 1=2,IMT,2 
K=K+1 

110 V1B(K)=V2(I,J) 
c 

IF(J.EQ.JMT) 
c 

DO 120 1=1,IMT,2 
K=K+1 

120 V1B(K)=V2(I,J) 
c 

100 CONTINUE 

GO TO 100 

C-----------------------------------------------------------------------
c200 CONTINUE 
C-----------------------------------------------------------------------

RETURN 
END 

C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
SUBROUTINE CONH12(Hll,HI2) 

****************************************************************** 

* * 
c 
c 
c * ROUTINE FOR REORDERING THIBUE-HEIGHT-POINT-1-DIMENSIONAL 
* 
c 
c 
c 

* MATRICES FOR 2-DIMENSIONAL INDEXING 
* * 
****************************************************************** 

#include "large OCT. inc" 
C----------------------------------------------------------------------

D/MENS/ON 
& H/2 (IM,JM),Hll (IMJM) 

C-----------------------------------------------------------------------
K=O 

DO 100J=1,JM 
DO 100 1=1,IM-l+MOD(J,2) 

K=K+1 
100 HI2(I,J)=Hll (K) 

DO 101 J=2,JM-1,2 
101 HI2(IM,J)=HI2(IM-l,J) 

C-----------------------------------------------------------------------
RETURN 

* 

END 
C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

SUBROUTINE CONV12(V1B, V2) 
c 
c 
c 
* 
c 
c 
c 

****************************************************************** 

* * 
* ROUTINE FOR REORDERING THIBUE- VELOCITY-POINT-1-DIMENSIONAL 

* MATRICES FOR 2-DIMENSIONAL INDEXING * 
* * 
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#include "large OCT. inc" 
C-----------------------------------------------------------------------

D/MENS/ON 
& V2 (IM,JM),V1B (IMJM) 

C-----------------------------------------------------------------------
K=O 

DO 100J=1,JM 
DO 100 I=1,IM-MOD(J,2} 

K=K+1 
100 V2(I,J)= V1 B(K) 

DO 101 J=1,JM,2 
101 V2(IM,J)=V2(IM-1,J) 

C-----------------------------------------------------------------------
RETURN 
END 

C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
SUBROUTINE CONH21 (H2,H1 B) 

~ ****************************************************************** 

c * * 
C *ROUTINE FOR REORDERING THIBUE-HEIGHT-POINT-TWO-
DIMENSIONAL * 
C * MATRICES FOR ONE-DIMENIONAL INDEXING * 
c .. .. 
(; ****************************************************************** 

#include "largeOCT.inc" 
C-----------------------------------------------------------------------

D/MENS/ON 
& H2 (IMT,JMT),H1B (IMJM) 

C-----------------------------------------------------------------------
K=O 

DO 100J=1,JMT 
DO 110 I= 1,IMT,2 

K=K+1 
110 H1B(K)=H2(I,J) 
c 

IF(J.EQ.JMT) GO TO 100 
c 

DO 120 I=2,IMT,2 
K=K+1 

120 H1B(K)=H2{I,J) 
c 
100 CONTINUE 

C-----------------------------------------------------------------------
RETURN 
END 

C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
C=============================================================== 

subroutine gcoef (tlm,tph, kh,ph,qh, kv,pv,qv) 
C-----------------------------------------------------------------
#include "all.inc" 
C-----------------------------------------------------------------

c 

parameter 
+(im= -wbd/dlmd +1.5,jm=2*(-sbd/dphd)+l.S, imjm=im*jm-jm/2 
+, im1 = im-1, riml=im-1) 

X=(TLM-WBD}/DLMD 
Y=(TPH-SBD}/ DPHD 
X1=0.S*(X+Y) ··· 
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Y1 =0. 5*(-X + Y)+ RIM1 
Il=INT(X1) 
J1=INT(Y1) 

PH=X1-Il 
QH=Y1-J1 

JR=J1-IM1 
I2=Il-JR 
J2=Il+JR 

KH=J2*IM-J2/ 2+(I2+2}/ 2 
C-----

XV1=X1-.5 
YV1=Y1-.5 
Il=INT(XV1) 
J1=INT(YV1) 

PV=XV1-Il 
QV=YV1-J1 

JR=J1-IM1 
I2=Il-JR 
J2=Il+JR 

KV=(J2+ 1)*IM-(J2+ 1}/2+(I2+ 1}/2 
C-----

retum 
end 

C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
SUBROUTINE TLLC(ALMD,APHD, TLMOD,DTR, CTPHO,STPHO, TLM, TPH) 

C---------------------------------------------------------------------

c 

c 

RELM=(ALMD-TLMOD)*DTR 
SRLM=SIN(RELM) 
CRLM=COS(RELM} 

APH=APHD*DTR 
SPH=SIN(APH) 
CPH=COS(APH) 

CC=CPH*CRLM 
ANUM=CPH*SRLM 
DENOM=CTPHO*CC+STPHO*SPH 

C-----------------------------------------------------------------------
TLM=ATAN2(ANUM,DENOM)/ DTR 
TPH=ASIN(CTPHO*SPH-STPHO*CC}/ DTR 

C-----------------------------------------------------------------------

c 

RETURN 
END 

c----------------------------------------------------------------------
c 
C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

FUNCTION WDIR(X, Y) 
C-----------------------------------------------------------------------
C calculates wind direction (in degrees) from the (u, v) wind 
C components 
C-----------------------------------------------------------------------

RDIR=270.-DIR(x,y) 
IF(RDIR.LT. O.)RDIR=RDIR+360. 
IF(RDIR.GE.360.)RDIR=RDIR-360. 
WDIR=RDIR 
RETURN 
END 

C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
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SUBROUTINE VTOH {K,L, SPEED,DIR) 
C----------------------------------------------------------------------
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Calculates H-point wind speed & direction by interpolating them 
between neighbouring V-points 

INPUT PARAMETERS: 
K is a nuber of a desired gridpoint (H-point) 

It should not lay at a domain boundary 
L is a model level index 

OUTPUT PARAMETERS: 
SPEED is a wind speed 
DIR is a wind direction (degrees) 

C-----------------------------------------------------------------------
#include "panneta. inc" 
C----------------------------------------------------------------------

PARAMETER 
& (IMJM=IM*JM-JMI2, KHN=IM-l,KHS=-IM) 

C-----------------------------------------------------------------------
C 0 M M 0 N I VRBLSI 

& PD(IMJM}, RES(IMJM},FIS(IMJM) 
&, U(IMJM,LM}, V(IMJM,LM}, T(IMJM,LM}, Q(IMJM,LM) 

C----------------------------------------------------------------------
UL={U(K + KHS,L)+U(K-l,L)+U{K,L)+U(K + KHN,L))*0.2 5 
VL=(V(K +KHS,L)+ V(K-l,L)+ V(K,L)+ V(K +KHN,L))*0.25 
SPEED=SQRT(UL**2+VL**2) 
DIR= WDIR(UL, VL) 
RETURN 
END 

C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
FUNCTION DIR(X, Y) 

C----------------------------------------------------------------------
C calculates vector direction (in degrees) from the {u, v) wind 
C components 
C----------------------------------------------------------------------

IF(X.EQ. 0. O)THEN 
IF(Y. GT. 0. O)THEN 

DIR=90. 
ELSEIF(X.EQ. 0. O)THEN 

DIR=O. 
ELSE 

DIR=270. 
END IF 

ELSE 
DIR=ATAN(Y I X)* 180./3.14159 
IF(X.LT. 0. O}THEN 

DIR=DIR+ 180. 
END IF 
IF(DIR.LT. 0. O)THEN 

DIR=DIR+360. 
END IF 

END IF 
RETURN 
END 

c-----------------------------------------
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11.3. Setup and running of the local area (regional) and nested Eta 
atmospheric models. 

The setup is divided into three stages: pre-processing, processing and 
post -processing. 

11.3.1. Pre-processing stage. 

11.3.1.1. Definition of model domains. 

Two atmospheric models were setup: (1) a limited-area, Mediterranean­
wide model and (2) a nested model within, localised over the Ionian 
basin. 

The preprocessing stage for the atmospheric model started with the 
definition of the following settings (table 5.1): 

• defmition of central geographic points 
• definition of west and south boundaries from central points 
• definition of horizontal resolution in degrees 
• definition of model time step 
• definition of vertical resolution in terms of number of model 

layers 

11.3.1.2. Preparation of constant input data. 

Land topography was re-interpolated to the model grid points of the 
geographical domain and resolutions in both vertical and horizontal 
domain. The relevant topography datasets were obtained from USGS 1. 

The re-interpolation of the land topography (mount.13) and sea-land 
mask file (maskll30s) files were created using gt30mount.F and 
smaskll30s.F respectively as provided in the Eta pre-processing source 
code. In the case of the nested model, the integration domain was 
entirely over water. 

Soil texture information for the regional Eta model was created by re­
interpolating the data to the regional model's grtd points from the full 
FAOSOIL.DAT dataset obtained from NQAA2. Similarly, the vegetation 
cover for the regional model setup was derived from the full 1 0" by 1 0" 
vegetation dataset derived from the USGS/EROS database. 

11.3.1.3. Definition of lateral and surface boundary conditions. 

Daily World Area Forecast System (WAFS) data were used to initialise 
the lateral boundary conditions of the regional model. WAFS forecasts 
are primarily designed for aviation use and are produced by the 

1 http:// eflqlaac. usgs.govj gtpp_o_30/,gtopo30. html 
2 htip./1 www. ngdc. rwaa.go~/ seg/ecolcdromslgedu_a/ datasets/ al6/ fao. htm 
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aviation/medium-range forecast model at NCEP3. The data contains 
1.25° by 1.25° latitude-longitude gridded forecasts of many 
meteorological parameters, including air temperature, u- and v­
component wind, relative humidity and pressure at standard 
atmospheric levels. Forecasts of each of the meteorological parameters 
are available for up to 72 hours in advance of the time they are issued. 
These parameters are then used as 72-hour atmospheric "first-guess" 
fields for the numerical weather prediction community. 

To reduce the size of the data files, data is made available in files 
covering one eight of the globe. Additionally, the data is stored in a 
highly compressed form known as GRIB which is a standard format for 
transmission of meteorological gridded data. 

WAFS pertaining to octant grid 37 (I) were downloaded from the United 
States National Weather Service gateway ftp server. The necessary 
lateral and surface boundary conditions for all days during 1999 were 
downloaded and archived from NCEP as large-scale GRIB products with 
6-hr time resolution. Daily WAFS forecasts are made available for 24 
hours to the public and are substituted by forecasts of the subsequent 
day. 

The retrieved forecasted WAFS data contained synoptic forecasted 
atmospheric conditions at 00, 06, 12, 18, 24, 30 and 36 hrs. The 
boundary field variables contained pressure at 11 mandatory levels 
(1000-70 mb), relative humidity at 1000-300 mb, vertical velocity at 
850-300 mb, 1000 mb temperature, wind components, 2-m 
temperature and 10 m winds, precipitation, mean sea level pressure, 
and relative humidity. These variables are archived in standard grid 
binary (GRIB) format. 

The Grid Analysis and Display System (GrADS) was used to display and 
convert gribbed data into an accessible 4-dimensional file format for 
eventual ingestion by the Eta model as defmed by the date of model 
integration. The GrADS-formatted WAFS gribbed files included 11 
variables: 

u10 0 33, 105, 10 Geopotential Height 
v10 0 34, 105, 10 Geopotential Height 
acp 0 61, 1, 0 Geopotential Height 
t2 0 11, 105, 2 Geopotential Height 
rh2 0 52, 105, 2 Geopotential Height 
seag 0 2, 102, 0 Geopotential Height 
z 10 7, 100 Geopotential Height 
t 10 11, 100 TEMP 
u 10 33, 100 U Winds 
v 10 34, 100 VWinds 

rh 10 52, 100 RH 

3 http:/ I www. meted. ucar.edu/nwp/pcu2/ aVinfro. htm (accessed on o 1.11. 04). 
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where u1 0(33) and v 1 0(34) are the 10-m vector winds, acp(61) is the 
accumulative precipitation with geopotential height, t2{11 1 1 051 2) is the 
air temperature at 2-m height from the surface, rh2(52) is the relative 
humidity with geopotential height, seag(2) is the air pressure with 
geopotential height, z(7) is 10-m vertical velocity, t{11 1 100) is the surface 
temperature, u(341 1 00) and v(341 1 00) are the vertical velocity with 
geopotential height, and rh(l OJ 52) is the 10-m relative humidity. 

A fortran code grb2grads.f was written that called each successive 36-
hour synoptic grib file and re-arranged it into pre-defined "wafs.gdat" 
file using a GrADS "wafs.ctt script code. In this way, the WAFS grtbbed 
data was formatted for subsequent display and ingestion by the regional 
Eta model as requested by the starting date string of the model 
integration. 

The ingestion of the WAFS initial lateral boundary conditions by the 
model defined the inflow boundary points, while at outflow points, the 
velocity components tangential to the inflow boundary were 
extrapolated from the interior of the integration domain. The values of 
the second outermost row were blended with those along the boundary 
and those in the third row which were part of the true integration 
domain. The calculation of the value of variables for the boundaries h­
points was carried out separately for the outer rows and columns and 
separately for the second outer rows and columns. Further details 
concerning the calculation in the outer, buffer and internal zone of the 
domain can be found in Kallos et al.} ( 1997). 

11.3.1.4. Surface boundary conditions. 

One of the operational systems of NCEP is the Global Data Assimilation 
System - (GDAS) which uses the spectral Medium Range Forecast 
model (MRF). Details of the GDAS are described by Kanamitsu ( 1989), 
and Parrish & Derber (1992). The GDAS is the final run in the series of 
NCEP operational model runs and includes late arriving conventional 
and satellite data (Petersen & Stackpole, 1989). It is run 4 times a day, 
i.e., at 00, 06, 12, and 18 UTC. Model output is for the analysis time 
and a 6-hour forecast, and consists of 1° latitude-longitude (360 by 
181) grids in mandatory pressure levels. The data are written to the 
NOAA Information Center ftp server (nic.fb4.noaa.gov) in GRidded 
Binary (GRIB) format. This set of forecasted synoptic data is made 
available for the numerical weather prediction community. 

In total, GDAS makes available eighteen, 6-hour intervals meteo­
oceanic output parameters4 starting at OOhrs UT. Datasets containing 
surface temperature in Kelvin (Code U4) were extracted for the 
European domain area covering the period Jan 1st 1999 till December 
31st 1999 and archived. 

4 http:/ I wwwt. em c. ncep. noaa.gov/ gmb/ gdas/(accessed on 0 1.11. 04). 
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The Grid Analysis and Display furstem (GrADS) was used to convert 
gribbed data into an accessible 4-dimensional file format for eventual 
display and ingestion by the Eta models as defined by date of model 
integration. 

The fortran code grb2grads.f calls each successive grib file pertaining to 
the specified date and time and re-arranging it into pre-defined 
'gdas.gdat' file using a GrADS 'gdas.ctr script code. This code formatted 
GDAS-SST data (code 11) according to a matrix consisting of x- (313 
grid points starting from -10°E) and y- (112 grid points starting from 
latitude 29°N) definition and interpolated on a 0.17° by 0.17° grid. 
Ingestion of this 'gdas"mon".gdat' file by the Eta model was 
subsequently done during the pre-processing as defined by the starting 
'date string' of the model integration: 

call cdate2id7 ( Cdate8,id7) 
wctln(1: 1) = ' ' 

idat(1) = id7(3) 
idat(2) = id7(2) 
idat(3) = id7(1) 
IHRST = id7(4) 
KDIM = IMJMLL*LDM 

c -----------------------------------------------------------
call datetohr(id7(3),id7(2},id7( 1},id7(4) ,id7(5),IHRS) 
do 500 IHR = IHRS, IHRS- 10*24, -12 
call hrtodate 
+ (IHR,id7(4),0,id7(3),id7(2),id7( 1},id7(5)) 
call RGRADS (id7, 1, 11, 0, IME, JME, 1, 0., WW, NLRET) 
if ( NLRET.ne.O) goto 410 

500 continue 
print*,' No SST data avaiable' 

STOP 
410 continue 

print*,' read sst:',WW 
CALL 

BILINB(COH,INH ,JNH,IMJM,IME,JME, WW, WFB) 

The above set of instructions forms part of the sst.f file whereby it calls 
GDAS-SST according to user-defined date (datetohr) from the 
'gdas"mon" .gdat' data file. The subroutine RGRADS 

call RGRADS (id7, 1, 11, 0, IME, JME, 1, 0., WW, NLRET) 

browses the 'gdas.gdat' file until it finds the SST field with the specific 
code of 11 and defmes the SST value as WW. The script then re­
interpolates the 1 o by 1 o latitude-longitude grid SST onto the grid-points 
of the respective Eta model domain resolution. 
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11.3.1.5. Decoding, formatting and data interpolation. 

After being initialised, the Eta model was executed for a 36-hour 
forecast period, with a 3-hourly output of atmospheric fields as defined 
by the fcstdata file: 

$FCSTDATA 
TSTART=OO.O,TEND=36.0,TCP=99.0,RESTRT=.FALSE.,SUBPOST=.FALSE., 
NMAP=5,TSHDE=00.0,06.0, 12.0, 18.0,24.0,30.0,36.0,42.0,48.0,54.0, 

60.0,66.0,72.0,99.0,99.0,99.0,99.0,99.0,99.0,99.0, 
SPL=10000.,15000.,20000.,25000.,30000.,40000.,50000., 

70000.,85000., 100000., 
NPHS=4,NCNVC=2,NRADSH= 1 ,NRADLH= 1, 
TPREC=90.0,THEAT=90.0,TCLOD=90.0, 
TRDSW=1.0,TRDLW=l.O,TSRFC=1.0, 
HOUT=3., PRINT_INIT=.T., 
PRINT_FIELDS=.F., PRFIELDS=25., 
PRINT_GROUND=.F., PRGROUND=25., 
PRINT_DUST=.T., PRDUST=3., 
ZOcontant=.T., FL_SLOPES=.F.,UPDATE_SM=.F., 
PROUT= I. 
$END 

where TSTART is the starting time of model integration in UT; TEND is 
the full forecasting period for each model run and HOUT defines the 
hourly output of forecasted fields. TSHDE defines time of initialisation 
of lateral boundary conditions of the model every 6 hours. 

11.3.2. Processing stage. 

The version of the Eta model used had the following characteristics: 

• Dependent variables: Temperature, horizontal wind components, 
surface pressure, specific humidity and turbulent kinetic energy. 
Prognostic soil and water models are incorporated. 

• Independent variables: Longitude, Latitude, Eta coordinates, Time. 

• Basic equations: primitive. 

• Diagnostic variables: geopotential height and {Eta vertical velocity'; 
precipitation, vertical velocity and turbulent exchange coefficients. 

• Integration domain: regional and nested versions as defined by 
TLMOD and TPHOD. 

• Vertical coordinate: Eta coordinate with step-like terrain 
representation. 
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o Grid; Arakawa E-grid on a transformed latitude/ longitude grid 
centered at TLMOD and TPHOD. 

• Resolution; According to values defined by DLMD and DPHD, with 
LM Eta levels in the vertical. 

• Time integration; Split explicit adjustment scheme, Euler backward 
advection scheme; basic time step is DTB. 

Physical parameterisation schemes; 

• Mellor-Yamada level 2 turbulence closure model for the ocean 
surface layer, which includes the viscous sublayer model. 

• Fourth-order non-linear lateral diffusion. 
• Modified Betts-Miller scheme for deep and shallow convection. 
• GFDL radiation scheme. 
• Ground surface processes and surface hydrology. 
• Large-scale precipitation. 
• Model-predicted cloud cover. 
• Soil model. 

11.3.2.1. Generation of mesoscale lateral boundary conditions for 
the nested Eta model. 

The prognostic mesoscale output fields from the limited-area Eta model 
were used as the 36-hr lateral boundary conditions for the nested 
model. These fields were generated by the regional model using the code 
outnest.f s, of which the main routine is: 

C:--------------------------------------------------------------------
OPEN(UNIT=37 ,FILE=OUTFNN 

& ,STATUS='unknown' ,AC:C:ESS='SEQUENTIAL' ,FORM='UNFORMATTED') 
print*,' Output file for nesting: ',OUTFNN 
WRITE(37)IDAT,IHRST,IHR 

&,{((GP(I,J,K),I= 1 ,IMLL),J= l,JMLL),K=LSL, 1,-1) 
&,({(US(I,J,K),I= 1,IMLL),J= 1 ,JMLL),K=LSL, 1 ,-1) 
&,({(VS(I,J,K),I= 1 ,IMLL),J= 1 ,JMLL),K=LSL, 1 ,-1) 
&,(((SPH(I,J,K),I= 1,IMLL),J= 1 ,JMLL),K=LSL, 1 ,-1) 

C:LOSE(37) 
C:--------------------------------------------------------------------

s Appendix II 
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11.3.3. Post-processing stage. 

11.3.3.1. Predicted met-ocean surface fluxes as surface boundary 
conditions for the ocean model. 

Output fields were produced in binary format containing the full 36-
hour, 3-hourly forecasted fields for latent and sensible heat fluxes, 
outgoing and incoming long- and short-wave radiation, u- and v­
component of momentum flux, moisture heat flux, surface air 
temperature and surface pressure. These values were derived from 
calculations using the forecasted prognostic parameters produced by 
the model and converted from model levels to standard pressure levels 
and surface layers at 10 m and 2 m height above sea level. 

OPEN(UNIT=35,FILE=' .. / .. joutputjsurfce_pom'/ /COT/ jcdat/ /'.dat' 
& 

,STATUS='UNKNOWN',ACCESS='SEQUENTIAL',FORM='UNFORMATTED') 
WRITE(35)IDAT ,IHRST ,IHR 
&,SFCL,SFCS,RLWI,RLWO ,RSWI,RSWO, ummf, vmmf,qfc, tp,sp 
print* ,'idat,ihrst,ihr=====' ,idat,' ',ihrst,' ',ihr 

11.3.3.2. Visualisation and preparation of gridded forecasted 
variables for statistical and spatial analysis. 

The Linux-version of the GrADS was used to visualise model data 
during the post-processing stage. 

A number of scripts were written to display graphics using GrADS' own 
scripting .language. One main post-processing scripting file was 
prepared and used (SFC.ctl) to produce a GrADS-formatted SFC.gdat 
containing the predicted 4-dimensional geophysical variables. Using the 
GrADS terminal, these fields were displayed. Below is the list of relevant 
forecasted parameters produced by the limited-area Eta model: 

• Total precipitation 
• Total heat flux 
• Sea surface temperature 
• 2m air-temperature 
• Latent heat flux 
• Sensible heat flux 
• 10m U wind 
• 10m V wind 
• Moisture flux 
• Total precipitable water vapour 
• Cloud liquid water 
• Incoming and outgoing longwave radiation 
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The script file initial information defined the structure of the Eta pre­
projected model results (unstaggered). This included the spatial 
dimension of the variables, the number of model forecast times, the 
number of variables, etc. When these projected grids are opened into 
GrADS, bilinear interpolation constants are calculated and all data is 
displayed on an intemal GrADS latitude and longitude grid defined by 
the xdef and ydef information in the data description ".ctl" file. The 
resolution defined in the script file in corresponds to the nested 1 f 24° 
integration domain. The SFC.gdat was produced by relating the derived, 
forecasted fields to the ones defined in the SFC.ctl file. 

11.3.3.3. Extraction of gridded ascii model results. 

Following the generation of SFC.gdat file at the end of the model's 36-hr 
forecast, a set of gridded ascii XYZ files were produced for all relevant 
parameters at three-hourly intervals. These ascii files were generated in 
batch mode using an executable grads2xyz.f code as shown below (for 
the case of just three variables). 

foreach hh (00 03 06 09 12 15 18 21 24 27 30 33 36) 
grads2xyz 990722"$hh" u 10 33 105 10 
grads2xyz 990722"$hh" v10 34 105 10 
grads2xyz 990722"$hh" ts 11 105 0 

end 

In the case of the surface temperature ts, grads2xyz 990722''$hh" ts 11 105 o 
called subroutine RGRADS in grads2xyz to read values from the '.gdat' 
file, such as IPAR, IMJM, ILEV and VAR: 

call RGRADS (id7, IPAR,ILEVT,ILEV, IMJM, 1, 1, RLEV,VAR, NLRET) 

where !PAR is the parameter code, !LEV and RLEV represent a 
particular standard pressure level, and VAR is the parameter value. The 
XYZ ascii file was then generated following the instruction: 

write ( 50,999) rlon, rlat, VAR (n) 

which wrote the parameter value alongside with its X (rlon) and Y(rlat) 
coordinates. The value of X andY were extracted from IMJM. 

11.3.3.4. Automated model integration. 

An example of script that integrates the Eta model using boundary 
conditions representing the 18th, 22nd and 24th January 1999. 

#!/bin/csh 
foreach dd ( 18 22 24 ) 
cd /usr/local/wafs 
cp . ./ETA/input_ data/ 01/ "$dd"/ 00/ wafs" grib 
rm -f /usr/local/wafs/grads/wafs.gdat 
im -f/Iisr/ local/ ETA!ETA1.a~test/grads/wafs.gdat 
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cd I usr I local/ wafs 
grb2grads 9901 "$dd" 
cd grads 
cp wafs.gdat . ./ . ./ETA/ETA.1.a.test/grads 
ll I usr/ local/ ETA/ ETA.1. a. test/ grads/*. gdat 
***************************************************** 

cd /usr/local/ ETA/ ETA.1.a.test/ output 
nn -f decoding* 
nn -fw_ * s_ * msl* preproc* 
nn -f contam * p_ *surf* v_ * 
nn -f . ./input_grib/* 
cd I usr I local/ ETA/ ETA.1. a. test/ grads 
nn -f SFC.gdat CSFC.gdat DUST.gdat 
nn -f MS.gdat wlO.gdat 
cd I usr/ local/ ETA/ ETA.1. a. test/ prep roc/ exe 
nn -f I usr/ local/ ETA/ ETA.1. a. test/ input_grib/ * 
# --------------
cp .. / .. / . ./input_data/01/"$dd"/OO/wafs* .. / .. /input_grib 
# --------------
ll . ./ . ./ input_grib 
cd /usr/local/ ETA/ ETA.1.a.test/preproc/ exe 
grb2grads 9901 "$dd" 
grads2anec 9901 "$dd" 
sst 9901 "$dd" 
# --------------
echo "xxxxxxxxxxxxxxxanecOCTsoil" 
anecOCTsoil 000 
echo "xxxxxxxxxxxxxxxptetaOCTsoil" 
ptetaOCT 000 
# -------------­
# --------------
foreach hh ( 06 12 18 24 30 36) 
decodmiss $hh 
echo "xxxxxxxxxxxxxxxanecOCTsoil" 
anecOCTsoil $hh 
echo "xx.xxxxxxxxxxxxptetaOCTsoil" 
ptetaOCT $hh 
end 
# --------------

echo "xxxxxxxxxxxxxxconstOCTsoil" 
constOCT_dustsoil 
echo "xxxxxxxxxxxxxxdstart 
d_start 
# --------------
echo "xxxxxxxxxxxxxxdboco 
foreach hh ( 1 2 3 4 5 6 ) 
dbocoOCT $hh 
end 
# --------------

################ 
cd . ./. ./ rad_gfdl/ exe 
gfdlco2 
################ 
cd .. / .. /model/exe 
etaDUST.1 
foreach hh ( 00 03 06 09 12 15 18 21 24 27\ 

30 33 36) 
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outnew $hh 
end 
cd .. / .. / postproc/ exe 
foreach hh ( 00 03 06 09 12 1S 18 21 24 27\ 

30 33 36) 
compass $hh 
end 
################ 

cd I usr/ local/ ETA/ ETA.1. a. test/ postproc/ exe 
rm -f .. / .. /XYZ/* 
cd .. / .. /model/exe 
foreach hh ( 00 03 06 09 12 1S 18 21 24 27\ 

30 33 36) 
grads2xyz 9901 "$dd""$hh" qload 202 1 0 
end 
cd .. / .. / postproc/ exe 
foreach hh ( 00 03 06 09 12 1S 18 21 24 27\ 

30 33 36) 
grads2xyz 9901 "$dd""$hh" u 1 0 33 1 OS 1 0 
grads2xyz 9901 "$dd""$hh" v 1 0 34 1 OS 1 0 
grads2xyz 9901"$dd""$hh" sshjlx 122 10S 0 
grads2xyz 990 l"$dd""$hh" slhflx 121 1 OS 0 
grads2xyz 9901"$dd""$hh" acprec 61 10S 0 
grads2xyz 9901 "$dd""$hh" rjlux 117 1 OS 0 
grads2xyz 9901 "$dd'"'$hh" ccrt 71 1 OS 0 
grads2xyz 9901"$dd""$hh" uzOhc 136 10S 0 
grads2xyz 9901"$dd""$hh" vzOhc 137 10S 0 
grads2xyz 9901 "$dd""$hh" rswin 204 1 OS 0 
grads2xyz 9901 "$dd""$hh" rswout 211 1 05 0 
grads2xyz 9901 "$dd""$hh" rlwin 20S 1 OS 0 
grads2xyz 9901 "$dd""$hh" rlwout 212 1 OS 0 
grads2xyz 9901"$dd""$hh" ummjlx 12S 10S 10 
grads2xyz 9901 "$dd""$hh" vmmjlx 126 1 OS 1 0 
grads2xyz 9901 "$dd""$hh" ts 11 1 OS 0 
grads2xyz 9901 "$dd""$hh" t2 11 1 OS 2 
grads2xyz 9901 "$dd""$hh" ustar 13S 1 OS 0 
grads2xyz 9901 "$dd""$hh" thzO 139 1 OS 0 
grads2xyz 9901"$dd""$hh" qhzO 140 10S 0 
grads2xyz 9901"$dd""$hh" ummf 12S 10S 10 
grads2xyz 9901"$dd""$hh" vmmf 126 1 OS 10 
grads2xyz 9901"$dd""$hh" akhl131 10S 0 
grads2xyz 9901 "$dd""$hh" akml132 10S 0 
grads2xyz 9901"$dd""$hh" qfc 141 10S 0 
end 
*********************************** 

cd I usr I Results 
mkdir 9901 "$dd" 
cd 9901"$dd" 
mkdir gdat XYZ 
cdXYZ 
mkdir model 
cd I usr/ local/ ETA/ ETA.1. a. test/ grads 
cp * /usr/ Results/ 990 1"$dd"/ gdat/ 
cd .. /XYZ 
cp * /usr/Results/9901"$dd"/XYZ/model/ 
end 
exit 
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Appendix III 

PREDICTION OF THE DUST AEROSOLS OVER THE 
AREA OF INTEREST. 

Appendix III describes in brief, the setting up and execution of an Eta­
based atmospheric dust model. Full description of this model is beyond 
the scope of this study. This model is used to forecast dust events over 
the model integration domain used for this study during the period 22 
July - 6 August, which exactly corresponds to the integration run of the 
ocean model. 

The scope of using this dust model is to simulate and provide 
information on the evolution of dust aerosols that would in tum affect 
the calibration of NOAA-14 infrared scenes derived from NOAA AVHRR. 
These scenes are used for model verification of the high-resolution SST 
forecasts generated by the ocean model. 

Results showing the evolution of dust aerosols during a specified time 
period are included in this Appendix. 

111.1. Setup of the atmospheric dust model. 

The integration domain of the Eta model covered the region as shown in 
figure III.1. The domain settings were as follows: 

(:-----------------------------------------------------------------
(: C:enter of domain : 

PARAMETER 
&(TLMOD= 15. ,TPHOD=30.) 

(:-----------------------------------------------------------------
(: Domain parameters 

PARAMETER 
&(WBD=-25.,SBD=-10.0 
&,DLMD=l./ 12.,DPHD=l./ 12.,DTB=30. 
&,LM=24) 

(:-----------------------------------------------------------------
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Figure III. I. Model integration domain of the atmospheric dust 
model. 

111.2. Integration routine of the atmospheric dust model. 

The script file used to run the dust model is as follows: 

#1/bin/sh 
#set -x 
################################################################ 
IHRST=OO 
nn /usr/ local/ ETA/ CAPEVERDE.l.a/ output/ decoding*llspl* 
nn /usr/local/ETA/input_data/wafsc* 
nn /usr/ local/ ETA/ CAPEVERDE.l.a/ grads/ *.gdat 
RUNHOME=/ usr/ local/ ETA/ CAPEVERDE.l.a 
SCRIPTS=$RUNHOME/ SCRIPTS 
cd I usr/ local/ ETA/ input_ data/ 07 I 20/00 
cp wafs* /usr/local/ETA/input_data 
DATADIR=/usr/local/ETA/input_data 
echo 'Running run12' 
################################################################ 
# 
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day_ of_ month() 
{ 

case "$month" in 
02 I 2 J 

day=28 
.. 
" 
04 1 4 1 o6 1 6 1 09 1 9 1 11 J 

day=30 
.. 
" 
01 I 03 I os I 07 I 08 I 10 I 12 I 1 I 3 I s I 7 I 8) 

day=31 
.. 
" esac 

} 
################### 
day= 'date '+ %d'' 
month='date '+ %m" 
month= 'expr $month - 1 · 
month= 'expr $month + 1 ' 
year= 'date '+ %y" 
day='expr $day- 0' 
################### 
if { $day -eq 0 }; then 

month= 'expr $month - 1 · 
if { $month -eq 2 }; then 

day=28 
fi 

################### 
if {$month -eq 0 }; then 

year= 'expr $year - 1 · 
month=12 

ft 
day_of_month 
################### 

year19= 'expr $year+ 2000' 
pyear= 'expr $year 1 9 I 4' 
pyear= 'expr $pyear \ * 4 · 
if { $pyear -eq $year 19 }; then 

if [ $month -eq 2 }; then 
day=29 

fi 
ft 

fi 
########################################################### 
hr='date '+ %H'' 
hr= 'expr $hr ' 
echo 'hr='$hr 
################### 

if [ $hr -le 19 }; then 
day='date '+ %d" 
day= 'expr $day - 1 · 
######### 
if [ $day -eq 0 }; then 

month= 'expr $month - 1 · 
if [ $month -eq 2 }; then 

day=28 

ft 
################### 

if [ $month -eq 0 }; Jhen 
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year= 'expr $year - 1 · 
month=12 

fi 
day_of_month 
################### 

year19='expr $year+ 2000' 
pyear= 'expr $year 1 9 I 4 · 
pyear= 'expr $pyear \ * 4 · 
if { $pyear -eq $year 19 }; then 

if [ $month -eq 2 }; then 
day=29 

fi 
fi 

fi 
######### 

fi 
############################################################# 
cd $DATADIR 
############################################# 

if [ -s wafscOO -a \ 
-s wafsc06 -a \ 
-s wafscl2 -a \ 
-s wafsc18 -a \ 
-s wafsc24 }; 

then 
ls -l com. wafs * 
echo "All files are copied" 

else 
echo "Not all files are copied ! !!" 
cd $SCRIPTS 

fi 

day=20 
month=? 
year=99 
carg= prinif "%.2d%.2d%.2d" $day $month $year' 

#################### before arch######################### 
#echo before arch : $IHRST 0 
#cd $RUNHOME/ archive/ exe 
#./ arch_wafs $IHRST 0 
#echo " after arch " 
#################### afterarch######################### 

cd $RUNHOME/ decoding/ exe 
pwd 
./ decodOCTlinux $carg $IHRST 00 $DATADIR/ wafscOO 
./ decodOCTlinux $carg $IHRST 06 $DATADIR! wafsc06 
./decodOCTlinux $carg $IHRST 12 $DATADIR/wafsc12 
./decodOCTlinux $carg $IHRST 18 $DATADIR/wafsc18 
./decodOCTlinux $carg $IHRST 24 $DATADIR/wafsc24 

i=O 
while test $i -le 12 
do 

arg= 'expr $i \ * 6 · 
./ decodmiss $arg 

i= 'expr $i + r ' ·. . ' "' - - .. 
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done 

cd $RUNHOME/ preproc/ exe 
i=O 
while test $i -le 12 
do 

arg='expr $i \ * 6' 
arg_dboco=$i 

echo "=============== IHR = "$arg" ================" 

if test $i -eq 0; then 
echo " climsst " 

# ./ncepsst 
./ climsst $month 

Ji 

echo " anecOCTsoil \t" $arg 
./ anecOCTsoil $arg 

echo "ptetaOCT \t" $arg 
./ ptetaOCT $arg 

iftest $i -eq 0; then 

Ji 

echo "constOCT_dustsoil \t" 
./ constOCT_ dusts oil 

echo "d_start \t" 
./d_start 

if test $i -gt 0 ; then 

Ji 

echo " dbocoOCT \t" $arg_dboco 
./ dbocoOCT $arg_dboco 

i='expr $i + 1' 
done 
################ 
cd $RUN HOME/ rad_gfdl/ exe 
./gfdlco2 

################ 
cd $RUNHOME/model/exe 
*cp -J activectl.LST.Station activectl.LST 
date 
./ etaDUST.1 
date 
echo "===============ETA finished successfuly ================" 
# --------------------------------------------------------
cd I usr/ local/ ETA/ CAPEVERDE.1. a/ output 
#mv decoding.llspl* Yesterday/. 
#rm preproc* 
# --------------------------------------------------------
date 
# --------------------------------------------------------
carg1="prinif "%.2d%.2d%.2d%.2d" $year $month $day $IHRST 
echo "carg 1 =$carg 1" 

date 
# --------------------------------------------------------

. cd $RUNHOME/ model/ exe 
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cp -f activectl.LST.outnew activectl.LST 
./outnew 0 
./outnew 3 
./outnew 6 
./outnew 9 
./outnew 12 
./outnew 15 
./outnew 18 
./outnew 21 
./outnew 24 
cd $RUN HOME/ postproc/ exe 
./dust 0 
./dust 3 
./dust 6 
./dust 9 
./dust 12 
./dust 15 
./dust 18 
./dust 21 
./dust 24 

date 
exit 

The ./dust command calls a number of subroutines, including the one 
which converts the model dust fields into standard atmospheric 
pressure levels. This data is then converted into Grads format to be 
visualized using dust. ctl as shown below: 

dset I usr I local/ ETA/ charlesdustETA.1. a/ grads/ MS. gdat 
undef 1.e30 
title eta model 
xdef 619 linear -1 0. 8 0. 0833333 
ydef 229 linear 17. 5 0. 0833333 
tdef 12 linear OOZ20jul1999 3hr 
zdef 1 levels 1 000 
vars 4 
cload 0 203, 1, 0 CLOAD 
dload 0 204, 1, 0 DLOAD 
endvars 

where dload is the dust load and cload is the concentration of the dust 
load. 
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Appendix IV 

DESCRIPTION OF THE NUMERICAL PACKAGE 
AND IMPORTANT NUMERICAL CODES OF 

PRINCETON OCEAN MODEL 

Appendix IV is divided into two main sections: the first one being a 
description of the numerical package of the Princeton Ocean Model. 

The second part of this Appendix describes the pre-processing, 
processing and post-processing stages of the ocean model. 

IV.l The numerical package of the Princeton Ocean Model 

The principal attributes of the Princeton Oceam Model (POM) are: 

1. An embedded second moment turbulence closure sub-model to 
provide vertical mixing coefficients for accurate simulation of the 
surface and bottom mixed layers, assuming sufficient vertical 
resolution is provided. 

2. A a-coordinate system in that the vertical coordinate is scaled on the 
water column depth. 

3. A horizontal grid using curvilinear orthogonal coordinates and an 
"Arakawa C" differencing scheme. 

4. An explicit horizontal time differencing and an implicit vertical 
differencing. The latter eliminates time constraints for the vertical 
coordinate and permits the use of fine vertical resolution in the 
surface and bottom boundary layers. 

5. A free surface and a split time step is included. The extemal mode 
portion of the model is two-dimensional and uses a short time step. 
The intemal mode is three-dimensional and uses a long time step. 

6. Complete hydrodynamics is implemented. 

The a-coordinate system is an important attribute in dealing with 
topographical variability such as that encountered over continental 
shelf breaks and slopes. Together with the turbulence sub-model, the 
model produces realistic bottom boundary layers which are important 
in coastal waters (Mellor, 1985). It has been found that the bottom 
boundary layers are important for deep water formation processes 
(Zavatarelli & Mellor, 1995, Baringer & Price, 1996) and possibly, for 
the maintenance of the baroclinicity of oceans basins (Mellor & Wang, 
1996).· 
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The POM model version used by this study had the following 
characteristics: 

• Dependent variables: Potential temperature, salinity, velocity and 
surface elevation are prognostic variables. 

• Independent variables: Longitude, Latitude, Sigma, Time. 

• Basic equations: primitive. 

• Diagnostic variables: Temperature, salinity, currents. 

• Integration domain: 15.8°-19.1 °E; 33.2 o -35.8°N. 

• Vertical coordinate: Bottom-following sigma coordinate system. 
The number of vertical levels in the water column is the same 
everywhere in the domain irrespective of the depth of the water 
column. It has 24 sigma levels in the vertical, which follow a 
logarithmic distribution near the surface in order to resolve the 
dynamics of the surface mixed layer. 

• Grid: Arakawa E-grid (61 by 82 grid cells) on a transformed 
latitude/longitude grid centered at 17.5°E and 34.5°N. 

• Resolution: 0.042° horizontally, with 24 sigma levels m the 
vertical. 

The basic equations follow the sigma coordinate system (Blumberg & 
Mellor 1980, 1987). The basic equations (in horizontal Cartesian 
coordinates) are given in detail by Mellor ( 1998) in his Users guide of the 
Princeton Ocean Model6. 

IV.2 Important subroutines of the POM model. 

The script Comblk97.h contains common block definitions, which is 
"include"d in each subroutine. No modifications were made to this 
script. 

REAL KM,KH,KQ,L 
c INCLUDE 'IMJMKB' 

INCLUDE 'gridcom' 
c PARAMETER (IM=65,JM=49,KB=21) 
C PARAMETER (IM= 1 OO,JM=40,KB= 15) 

PARAMETER (IMM1 =IM-1,JMM1 =JM-1,KBM1 =KB-1) 
PARAMETER (IMM2=IM-2,JMM2=JM-2,KBM2=KB-2) 
PARAMETER (LIJ=IM*JM,LIJ2=LIJ*2,LIJK=LIJ*KB,LIJKM2=LIJ*KBM2) 
PARAMETER (LIJM1 =IM*(JM-1 },LIJKM1 =LIJ*KBM1) 
COMMON/ BLKCONF - ' - , ,~~> -- - ---

6 http://www.pd.infn.it/ AOD/immagini_models/POM_manual.pdf 
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1 IINT,IPRINT,DTE,DTI, TPRNI, UMOL, 
2 GRA V, TIME, RAMP, TBIAS, SBIAS, 
3 RFE,RFW,RFN,RFS 

C---------------- 1-D ARRAYS -------------------------------------­
COMMON/BLK1D/ 

1 Z(KB),ZZ(KB),DZ(KB),DZZ(KB) 
C---------------- 2-D ARRAYS --------------------------------------

COMMON/ BLK2D/ H(IM,JM),DX(IM,JM),DY{IM,JM},D(IM,JM),DT(IM,JM), 
1 ART(IM,JM),ARU(IM,JM),ARV(IM,JM), CBC(IM,JM), 
2 ALON(IM,JM),ALAT(IM,JM), 
3 DUM(IM,JM),DVM{IM,JM),FSM(IM,JM), COR(IM,JM), 
4 WUSURF(IM,JM), WVSURF(IM,JM), WUBOT(IM,JM), WVBOT(IM,JM), 
5 WTSURF(IM,JM), WSSURF{IM,JM), TPS(IM,JM),AAM2D(IM,JM), 
6 UAF(IM,JM),UA(IM,JM),UAB(IM,JM), VAF(IM,JM), VA(IM,JM), 
7 VAB(IM,JM),ELF(IM,JM),EL(IM,JM),ELB(IM,JM),PSI(IM,JM), 
8 ETF(IM,JM),ET{IM,JM),ETB(IM,JM),FLUXUA(IM,JM),FLUXVA(IM,JM), 
9 EGF(IM,JM),EGB(IM,JM) 

C---------------- 3-D ARRAYS -------------------------------------­
COMMON/ BLK3D/ 
1 A{IM,JM,KB), C(IM,JM,KB),EE(IM,JM,KB), GG(IM,JM,KB), 
1 UF(IM,JM,KB), VF(IM,JM,KB), 
2 KM{IM,JM,KB),KH{IM,JM,KB),KQ(IM,JM,KB),L(IM,JM,KB), 
3 Q2(IM,JM,KB), Q2B(IM,JM,KB),AAM(IM,JM,KB), 
4 Q2L(IM,JM,KB),Q2LB(IM,JM,KB), 
5 U(IM,JM,KB), UB(IM,JM,KB), W(IM,JM,KB), 
6 V(IM,JM,KB), VB(IM,JM,KB), 
7 T(IM,JM,KB), TB(IM,JM,KB), 
8 S(IM,JM,KB), SB(IM,JM,KB), 
9 RHO(IM,JM,KB),DTEF(IM,JM,KB),RMEAN(IM,JM,KB) 

C----------- 1 AND 2-D BOUNDARY VALUE ARRAYS-----------------------­
COMMON/BDRY/ 
1 TBE(JM,KB), TBN(IM,KB), TBS(IM,KB), TBW(JM,KB), 
2 SBN{IM,KB), SBE(JM,KB), SBS{IM,KB), SBW(JM,KB), 
3 UBE(JM,KB), UBW(JM,KB), VBN(IM,KB), VBS(IM,KB), 
4 UABE(JM), UABW(JM), VABN(IM), VABS(IM), 
5 ELN(IM),ELE(JM),ELS(IM),EL W(JM) 

A subroutine named grid_oper.fgenerates horizontal and vertical grids 
onto which the bottom topography is interpolated (using its embedded 
subroutine BATH). Tempertaure and salinity fields are also read and 
interpolated (using an embedded subroutine TAND). grid_oper.fwrites 
grid and initial conditions for the model using its WRITE(40) subroutine. 
It needs paremeter fiels gridborder, gridcom and mapcom. 

IV.3. Setup and running of the POM model. 

IV.3.1. Pre-processing stage. 

The main routine grid_oper.fwas used to prepare the initial information 
described below in the correct grid format for the processing of the 
ocean model. The integration date and time was specified as follows: 
./grid_oper DDMMYY. 
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IV.3.1.1. Definition of the ocean model domain. 

This stage consisted of: 

a) Setting-up of the ocean model; 
b) Defining the model's lateral boundary conditions; 
c) Defining the model's surface forcing fields. 

The ocean model domain is identical to that of the nested Eta 
atmospheric model which starts from 15.8°E and 33.24°N (table IV.l). 
The grid consists of 82 grid points in the east-west direction, and 61 
grid points in the north-south direction. The grid spacing in degrees is 
0.042° with 24 sigma levels in the vertical. In order to resolve the mixed 
layer better, the vertical resolution of the model is highest in the upper 
100 m. The domain area covering the experimental oceanic area is 
characterised by a maximum depth of 4000 m. The intemal Rossby 
radius of deformation is 10-14 km for the eastem Mediterranean 
(Robinson et al, 1987), and since mesoscale eddies have a typical size 
few times larger than this radius, the model can resolve mesoscale and 
sub-mesoscale eddies. 

Common pre-processing definitions were included in the comblk97.h7 . 

Ocean model 
Domain parameters: 

West boundary (WBDLL) 15.8°E 
South boundary (SBDLL) 33.24°N 

East boundary (EBDLL) 19.17°E 
North boundary (NBDLL) 35.74°N 

Horizontal resolution: 
DLMD 1/24° 
DPHD 1/24° 

Table W.l. Definition of integration domain of the ocean model. This 
information is coded in "latlon.inc" and "gridcom" file. 

The script latlon. inc defines the geographical boundaries of the ocean 
model. 

C-----------------------------------------------------------
C boundaries of the lat - lon area for 2deta outputs 
C-----------------------------------------------------------

PARAMETER 
+(wbdll=15.8, sbdll=33.24,dlmdll=1./24., dphdll=1./24. 
+,ebdll=19.175,mbdll= 35.74 
+,imll=(ebdll-wbdll}/ dlmdll+ 1.5 
+, jmll=(mbdll-sbdll)/ dphdll+ 1. 5 
+, imjmll=imll*jmll) 

C-------------C--~--;:.:_.::: ___ :_ ____ :::. _____ ~:: __ c:. ____ c _____ c:.:_ 

7 Section W.2. 
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The resolution and borders of the POM model is defined by the script 
Gridcom. It calculates the number of points of the integration domain of 
the ocean model. 

C-------------------------------------------------------------------
C resolution and borders of the POM model 
C-------------------------------------------------------------------
C number of points of the integration domain for the POM model 
C-------------------------------------------------------------------
C--rectangular integration domain-------­

PARAMETER 
$ (POMWE=15.80,POMES=19.175,POMS0=33.24,POMN0=35. 74 
& ,PDL0=1 ./ 24.,PDLA=1 ./24. 

[;***************************************************************** 

C gridcom 
C----------

$,IM=(POMES-POMWE}/ PDLO+ 1. S,JM=(POMNO-POMSO)/ PDLA + 1. S, KB= 14) 
c & ,im=120,jm=39,kb=14) 

PARAMETER ( ISKP=S , JSKP=2 ) 
(;***************************************************************** 

The re-interpolation of land/ sea mask was based on the model grid 
points in the horizontal and vertical dimension was done from the 
GTOP030 original file8 . The entire integration domain covered the sea 
surface. 

The model bathymetry was re-interpolated to model grid points from a 
subset of the original US Navy Digital Bathymetric Base (with a nominal 
resolution of 0.083° by 0.083°) using bilinear interpolation. 

700J--o5-n- II 07 

Figure IV.l. Ocean bathymetry over the integration model 
domain in meters. 

8 http:/ I edcdaac. usgs.gov/ gtopo30/ gtopo30. html (accessed on 0 1.11 . 04). 

461 



IV.3.1.2. Definition of the lateral boundary conditions 

The lateral boundary conditions consisted of seasonal temperature, 
salinity, and ocean currents (u- and v-components) at standard depth 
levels as archived in the Mediterranean Ocean Data Base - MODB 
MED49 . The dataset consists of >34,000 hydrographic stations in the 
Mediterranean Sea taken from the U.S. National Oceanographic data 
Center (NODC) and the Bureau des Donnees Oceanographiques (BNDO) 
historical data banks (Brasseur et al., 1996). 

For each season, initial fields at 36 depths levels were retrieved and 
read by the model and interpolated onto the 24-level a-coordinate model 
sigma levels using the routine ZTOSIG. The MODB MED4 seasonal data 
sets with a horizontal resolution of 0.25°, were. 

The extreme westem and southem points for the retrieval of the 
seasonal data was defined as follows: 

C western/ south boundaries in MODB/ med4 
wlon=-9.5 + smdb 
slat=30. + smdb 

C-------------------------------------------------------------------

The selection of the summer lateral boundary conditions was done 
manually by selecting the data accordingly: 

OPEN (UNIT=91,FILE= 
& '/ usr/ local/ ETA/ input_data/ modb/ med4/ summedoo. TEM' 
&,STATUS='UNKNOWN',FORM='FORMATTEDJ 
OPEN (UNJT=92,FILE= 
& '/I usr/ local/ ETA/ input_data/ modb/ med4/ summedoo. SAL' 
&,STATUS='UNKNOWN',FORM='FORMATTED') 
OPEN (UNIT=93,FILE= 
& '/ usr I local/ ETA/ input_ data/ modb/ med4 I summedoo. U' 
&,STATUS='UNKNOWN',FORM='FORMATTED') 
OPEN (UNIT=94,FILE= 
& '/ usr I local/ ETA/input_ data/ modb/ med4/ summedoo. V' 
&, STATUS='UNKNOWN',FORM='FORMA TTED') 

and reading the temperature TTB, salinity SSB, u- (UUB) and v- (VVB) 
component of the ocean currents: 

C-----------------------temperature---------------------------------­
CALL READMODB (91, TTB,IS,JS,KS) 
CLOSE (91) 

C-----------------------salinity-------------------------------------
CALL READMODB (92, SSB,IS,JS,KS) 

'· CLO-SE(92t·· ,,,,~, ·-·~ ~-··<· ·····-

9 http:/ I modb. ace. ulg. ac. bel medmex/ ss_st. html (accessed on 0 1.11. 04). 
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C-----------------------u -current------------------------------------
CALL READMODB (93, UUB,IS,JS,KS) 
CLOSE (93) 

C-----------------------v-cu rren t- -----------------------------------
CALL READMODB (94, VVB,IS,JS,KS) 
CLOSE (94) 

C--------------------------------------------------------------------

using the READMODB subroutine. 

IV.3.1.3. Definition of the surface forcing fields. 

The main routine grid_oper.Jl0routine was called in order to prepare the 
initial information described below in the correct grid format for the 
processing of the ocean model. The integration date and time was 
specified as follows: ./grid_oper DDMMYY. 

The routine grid_oper.f accessed the archived surface fields 11 generated 
by the Eta modeP2. 

FILENAME= 
&' .. / . ./../990722/COMPASS/surfce_pom'/ /CDT/ /cdat/ /'.dat' 

OPEN(UNIT=35,FILE=FILENAME 
& 

,STATUS='UNKNOWN',ACCESS='SEQUENTJAL',FORM='UNFORMATTED') 
READ(35)IDA T,IHRST,IHR 
&, sfcl, sfcs, rlwi, rlwo, rswi, rswo, ummf, vmmf, qflux, tprec, sfpr 
print *, '+++cdat,ihrst, ihr========', idat,' ', ihrst,' ', ihr 

where sfcl is the surface latent heat flux; sfcs is the surface sensible 
heat flux; rlwi is the incoming longwave radiation; rlwo is the outgoing 
longwave radiation, rswi is the incoming shortwave radiation; rswo is 
outgoing shortwave radiation; ummf and vmmf are the u- and v­
components of the momentum flux; qflux is the net surface heat flux; 
tprec is the total precipitation and sfpr is the surface pressure. 

Sea surface temperature data was read from a GrADS-formatted *.gdat 
file containing GDAS-derived SST data. This file was previously 
produced using the same GDAS.ctl file 13 using grb2grads.f After 
visualising and checking the integrity of the data, the file was converted 
to binary format using readgrads.f code, which reads the GrADS­
formatted SST data 

call RGRADS (id7, 1, 11, 0, imll, jmll, 1, O.,sst, NLRET) 

w Section W.2. 
11 The relevant set of daily, 3-hourly surface fields were copied from archive to a new 
directory from ·which· they were~read. and variables extracted to be interpreted on the 
model grid points. 
12 Appendix II; Section II. 3. 3.1. 
13 Appendix II; Section II.2.1. 
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and produces date-specific binary file 

open (unit= 11, 
+file='/ usr/ local/ Charles/ POM/ model/ tmp/ sst'/ I cdate8(1 :6)/ I' 12' 

+,status= 'unknown ',form= 'unformatted') 

This data was then used to initialise and force the ocean model. 

IV.3.1.4. Visualisation of initial lateral and surface boundary 
conditions. 

The Linux-version of the Grid Analysis and Display System (GrADS) was 
used to visualise model data during the post-processing stage. 

Scripts were written to display graphics using GrADS' own scripting 
language. One main post-processing scripting file was prepared and 
used (WG.ctQ to produce a GrADS-formatted WG.gdat containing the 4-
dimensional initial geophysical variables1 4 . Using the GrADS terminal, 
these fields were displayed. 

The script file information defined the format and projection of the 
initial boundary conditions. This included the spatial dimension of the 
variables, the number of model forecast times, the number of vertical 
levels (14), the number of variables, etc. When these projected grids are 
opened into GrADS, bilinear interpolation constants are calculated and 
data was displayed on an intemal GrADS latitude and longitude grid 
defined by the xdef and ydef information in the data description ".ctl" 
file. 

The WG.gdat was produced by grid_oper.f by relating the initial fields to 
the ones defined in the WG.ctl file. 

The initial boundary conditions of the POM model is visualised by 
converting the data into GrADS format. The script file to produce the 
GrADS-structured fields is WG.ctl 

dset I usr I local/ Charles/ grads/ WG. gdat 
undefO 
title eta model 
xdef 82 linear 15. 8 0. 041666 
ydef 61 linear 33.24 0. 041666 
tdef 12 linear 12Z06aug1999 3hr 
zdef 14 levels 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 
vars 13 
fsm 0 81,105,00 mask 
h 0 7, 105,00 Height 
wts 0 129, 1 05, 00 Wusurf 
wus 0 127,105,00 Wusurf 
wvs 0 128, 105!00- ~~S,lfrf 

14 i.e. u and v components of the ocean currents, salinity and temperture. 
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swrp 0 204, 1 05, 00 rswinc 
dum 0 205, 1 05, 00 ssalinfi 
dvm 0 206, 1 05, 00 ssalinfltend 
sl Om 0 207, 105,00 freshwater 
t 14 11,107,00 TEMP 
s 14 51,107,00 salt. 
u 14 49,107,00 Ucurrent 
v 14 50,107,00 V current 
endvars 

IV.3.2. Processing stage. 

IV.3.2.1. Starting of POM model with zero velocity. 

A hind-cast forecasting sequence was started on 1st July with zero 
velocity and continued for an additional 20 days. The initial 
climatological fields were obtained using the Mediterranean Ocean Data 
Base (MODB-MED4) Initial velocities were set to zero. 

During this 21-day period, the 3-D oceanic fields were dynamically 
adjusted to a constant SST field derived from the TMI sensor on the 
22nd of July 1999 at approximately OOUT to nudge the fields as much as 
possible to the oceanic-state of the 22nd July 1999. 

Model integration was done using a batch script file. By defining a 
series of dates using the "foreach" command, dates and integration 
times and folder names for the output files were created 15 . 

Model integration started at 1200 hrs every integration day. This 
initiation time meant that the first 00-, 03-, 06-, and 09-hr Eta 
forecasted surface boundary conditions were discarded so that 
inaccurate flux values are not included. Such values may result from 
'spin-up' errors produced during the initial stages of the Eta model 
integration. For this reason, the total forecasting period for the ocean 
model was 24 hours. 

One main inclusion was made to the main program pom97_oper.f to 
dynamically initialise and propagate an imposed SST down to the 
vertical model prognostic fields. This information is introduced into the 
model in a 'pre-forecast' mode. First this pre-forecast nudging period 
HNDG was defined as the integration period during which the 
prognostic fields are re-adjusted and equilibrated according to the 
applied SST field. 

HOUT=03. 
HRST=48. 
HNDG=l2. !06. !24. !nudging period in hours 
DTSURF=3. 
JTSURF=DTSURF*3600/ INT(DTI) 
fHOUT=HOUT*3600/ INT(DTI). ____ _ 
IRST=HRST*3600/INT(DTI) 

15 Section W. 3. 4. 
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INDG=HNDG*3600/ INT(DTI) !!!with sst-nudging and forcing 
IF(HNDG.eq.O.) INDG=l 
DAYS= 1. + HNDG/ 24 
IEND=DA YS*24*3600! DTI 

C============================================================= 
do i=l,im 
doj=l,jm 

frew(i,j)=O. 
enddo 
end do 

C============================================================= 
cnudg=S.E-5 

The assigned value of HNDG was 06, 12 and 24. 

Another important contributor to this pre-forecast initialisation was the 
inclusion of a variable nudging coefficient cnudg that modulated the 
degree of nudging. 

The effect of initial SST introduced at the first sigma layer influenced 
that other fields at each model grid point such as: 

( 1) the horizon tal velocities: 

UF(I ,J, 1) = UF(I,J, 1)-DTI*CNUDG*(UF(I,J, 1)-TSURF(I ,J)) 

where tsurf(i,j) is 

TSURF(I,J)=SST(I,J)+ZZ( 1 )*H(I,J)*(T(I,J ,2)-T(I,J, 1 )) j ((ZZ(2)-ZZ( 1 ))*H(I,J)) 

cnudg is the nudging coefficient, dti is the internal mode time-step (s), 

(2) the vertical temperature profile: 

T(I,J,K)=T(I,J,K)+. S*SMOTH*(UF(I,J, K)+ TB(I,J,K)-2. *T(I, J,K)) 

where SMOTH is a constant in time smoother to prevent solution 
splitting, and TSURF(I,J)=TB(I,J, 1). 

and (3) the turbulence kinetic energy: 

Q2(I,J ,K)=Q2(1,J ,K)+ .S*SMOTH*(UF(I,J ,K)+Q2B(I,J ,K)-2. *Q2(I,J ,K)) 

where Q2 is twice the turbulence kinetic energy (m2s-2), and 
Q2(1,J ,K)=Q2B(I,J ,K) 

At the end of every 24~-hO.J..li int~g:r_at!9Il tiille, a file called M_INIT or 
M_RESTRT were produced depending on whether the model started 
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from zero velocity (M_INIT)1 6 or from a previously prepared ocean model 
run (M_RESTRT) 17. 

In both cases, these files contained the necessary forecasted ocean 
fields that provided the initial 3-D conditions for the next 24-hr 
forecast. These fields included the momentum fluxes at the bottom, the 
vertical average of the horizontal kinematic viscosity, the vertical mean 
of horizontal velocities, the surface elevation, the sigma coordinate 
vertical velocity, the potential temperature, the density, the vertical 
diffusivity and the turbulence kinetic energy. 

IV.3.3. Post-processing stage. 

Post-processing included: 

a) Visualisation and preparation of gridded forecasted variables for 
geo-statistical analysis. 

b) Extraction of model results in gridded ascii format. 

IV.3.3.1. Visualisation and preparation of gridded forecasted 
variables for model verification. 

The Linux-version of the Grid Analysis and Display System (GrADS) was 
used to visualise model data during the post-processing stage. 

A script was written to display the predicted 4-D geophysical variables 
using GrADS' own scripting language. Using the GrADS terminal, these 
fields were displayed. Below is the list of the relevant forecasted 
parameters produced by the ocean model, with a resolution equivalent 
to the nested, high-reolution Eta model. 

• sea land mask 
• Sea level Height 
• Nudging period 
• Sea Elevation 
• U-component of surface momentum 
• V-component of surface momentum 
• Fresh water 
• Temperature 
• Salinity. 
• U-component of current 
• V-component of current 

The WZ.gdat was produced by pom97_oper.f by relating the derived, 
forecasted fields to the ones defined m the WZ.ctl file.The forecasted 

16 on 1 sl July 1999 
17 from 2211d July- 51h August 1999 
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ocean model fields are converted into GrADS formatted data using 
WZ.ctl. 

dset I usr I local/ Charles/ grads/ WZ. gdat 
undefO 
title eta model 
xdef 82 linear 15.8 0. 041666 
ydef61linear33.24 0.041666 
tdef 13linear 12Z06aug1999 03hr 
zdef 1 levels 0 
vars 12 
fsm 0 81,105,00 mask 
h 0 7, 1 05, 00 Height 
tn 0 1007,105,00 Tnudg 
el 0 77, 1 05, 00 Elevation 
wts 0 121,105,00 Wusurf 
wus 0 123,105,00 Wusurf 
wvs 0 124, 1 05, 00 Wvsurf 
frew 0 1 04 9, 1 05, 00 Fresh water 
t 18 11,160,00 TEMP 
s 18 51,160,00 salt. 
u 18 49, 160,00 U current 
v 18 50, 160,00 V current 
endvars 

IV.3.3.2. Extraction of the model results into gridded ascii format. 

Following the generation of the WZ.gdat file, a set of gridded ascii XYZ 
files were produced for all relevant parameters at three-hourly intervals. 
These ascii files were generated in batch mode using an executable 
grads2xyz.f codel8 as shown below (for the case of temperature) after 
the 'WZ.gdat' file is fully generated at the end of the model's 36-hr 
forecast. 

foreach hh (00 03 06 09 12 1518 21 24 27 30 33 36) 
grads2xyz 990722"$hh" T 11 0 0 
end 

In the case of temperature T, grads2xyz 990721 "$hh" T 11 0 0 called 
subroutine RGRADS in grads2xyz to read values from the 'WZ.gdat' file, 
such as IPAR, IMJM, ILEV and VAR: 

call RGRADS (id7, IPAR,ILEVT,ILEV, IMJM, 1, 1, RLEV, VAR, NLRET) 

where !PAR is the parameter code, !LEV and RLEV represent a 
particular standard pressure level, and VAR is the parameter value. The 
XYZ ascii file was then generated following the instruction: 

write ( 50,999) rlon, rlat, VAR (n} 

which wrote the parameter value alongside with its X (rlon) and Y(rlat) 
coordinates. The value of X and Y were extracted from IMJM. 

IB Appendix II; Section II.2.2. 
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IV.3.4. Automated model integration. 

The automated POM batch script file for the running of the model 
between 22nd and 31st July 1999. The command ./readgrds converts 
SST temperature into model-specific sigma levels. The executable file 
./ grid_oper prepares the lateral boundary conditions of the model as 
read from the m_restrt file and used during the execution of the actual 
model run ./pom97_oper. Following the model integration, the predicted 
model fields are converted into xyz ascii format for statistical analysis. 

#!/bin/csh 
# ---------------------------------------------------------
foreach dd ( 22 23 24 25 26 27 28 29 30 31 ) 
cd I usr I local/ Charles/ wrk/ exe 

./readgrds 9907"$dd" 
cd I usr I local/ Charles/ POM/ prep roc/ exe 
./ grid_oper "$dd"0799 

cd I usr I local/ Charles/ POM/ model! exe/ 
./pom97_oper 

cd /usr/ Results/TMI_POM_surfce/ coeff_e04 
mkdir "$dd"0799 
cd I usr I local/ Charles/ grads 
cp WZ.ctl WZ.gdat /usr/ Results/TMI_POM_surfce/ coeff_e04/ "$dd"0799/ 
cd I usr I local/ Charles/ POM/ model/ tmp 
cp m_restrt* /usr/ Results/TMI_POM_surfce/ coeff_e04/ "$dd"0799/ 
rm sst* 
rm -f I usr I local/ Charles/ XYZ/* 
cd I usr I local/ Charles/ postproc/ exe 
foreach hh ( 00 03 06 0912 1518 21 24 27\ 

30 33 36) 
grads2xyz 9907"$dd""$hh" t 11 160 00 
grads2xyz 9907"$dd""$hh" tn 1007 1 OS 00 
grads2xyz 9907"$dd""$hh" u 49 160 00 
grads2xyz 9907"$dd""$hh" v 50 160 00 
grads2xyz 9907"$dd""$hh" el 77 1 OS 00 
grads2xyz 9907"$dd""$hh" wts 121 105 00 
grads2xyz 9907"$dd""$hh" wus 123 105 00 
grads2xyz 9907"$dd""$hh" wvs 124 105 00 
grads2xyz 9907"$dd""$hh" frew 1049 1 OS 00 
end 
cd /usr/ Results/TMI_POM_surfce/ coeff_e04/ "$dd"0799 
mkdirXYZ 
cdXYZ 
mkdir model 
cd I usr I local! Charles/ XYZ/ 
cp * /usr/ Results/ TMI_POM_surfce/ coeff_e04/ "$dd"0799/ XYZ/model/ 
end 
exit 
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Appendix V 

STATISTICAL RESULTS OF CHAPTER 4. 

This Appendix includes the results of the statistical summary measures 
describing the accuracy of the synthesized database against 
independent climatological data. 

SOC climatology I Quasi-inst. 
I 

BIAS 
calculation 

mean stdev mean stdev 
Jan -116.60 2.06 -72.51 8.64 -44.09 
Feb -92.22 5.19 -86.22 11.36 -6.00 
Mar -78.28 1.63 -60.76 10.13 -17.52 
Apr -56.27 1.13 -69.41 10.03 13.14 
May -41.84 0.40 -59.28 11.15 17.44 
Jun -47.26 1.66 -62.32 11.01 15.06 
July -77.48 6.07 -65.13 9.83 -12.35 
Aug -88.29 4.37 -49.08 4.78 -39.21 
Sept -103.37 1.90 -75.94 11.17 -27.43 
Oct -117.58 4.44 -63.33 10.99 -54.25 
Nov -133.74 2.59 -99.79 18.91 -33.96 
Dec -136.31 4.15 -111.97 14.41 -24.34 

Table V. 1. Summary statistics for the monthly mean values of the 
latent heat flux (W m-2) over the area of interest. 

SOC climatology 
I 

Quasi-inst. 
I 

BIAS 
calculation 

mean stdev mean stdev 
Jan -16.30 0.33 -13.55 1.57 -2.75 
Feb -10.48 1.62 -17.39 2.27 6.91 
Mar -6.08 0.27 -9.29 1.54 3.21 
Apr -0.95 0.28 2.08 0.30 -3.03 
May 1.07 0.98 3.10 0.58 -2.03 
Jun 0.40 0.46 3.15 0.41 -2.75 
July -1.93 0.59 3.29 0.50 -5.22 
Aug -2.72 0.58 0.71 0.07 -3.43 
Sept -4.80 0.17 -3.82 0.55 -0.98 
Oct -6.16 0.46 -6.76 1.17 0.60 
Nov -10.42 0.69 -13.75 2.50 3.33 
Dec -15.66 1.04 -19.11 2.41 3.46 

Tabie' V.i. 'suTr;_;,:,_~ry}-st~ttstics forthe-iiwnthly mean values for the 
sensible heat flux (W m-2) over the area of interest. 
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Min. Max. Mean. Stdev. 
Jan -70.30 -66.30 -68.20 1.32 
Feb -68.20 -66.50 -67.09 0.50 
Mar -66.80 -63.90 -65.37 1.01 
Apr -65.20 -61.10 -62.88 1.27 
May -59.40 -57.50 -58.40 0.56 
Jun -58.60 -57.20 -57.79 0.48 
July -63.20 -59.80 -61.48 1.28 
Aug -61.00 -60.00 -60.16 0.62 
Sept -63.90 -63.90 -63.90 0.00 
Oct -64.90 -62.50 -63.79 0.84 
Nov -67.00 -64.10 -65.59 0.95 
Dec -69.30 -65.90 -67.92 1.05 

Table V.3. Summary statistics of the monthly mean values for the 
outgoing longwave radiation (W m-2) over the area of interest. 

SOC climatology 
I 

Quasi-inst. 
I 

BIAS 
calculation 

mean stdev mean stdev 
Jan 7.89 0.15 5.60 0.90 2.29 
Feb 7.52 0.21 6.92 1.15 0.60 
Mar 7.20 0.19 4.58 1.22 2.62 
Apr 6.66 0.05 5.11 0.97 1.55 
May 5.73 0.11 3.33 1.11 2.41 
Jun 5.08 0.08 3.92 0.94 1.16 
July 5.07 0.26 4.45 0.99 0.62 
Aug 4.73 0.12 2.68 0.58 2.05 
Sept 4.93 0.13 4.35 1.04 0.58 
Oct 6.01 0.10 4.44 1.13 1.57 
Nov 7.16 0.13 7.71 1.59 -0.55 
Dec 8.18 0.09 9.57 1.29 -1.39 

Table V.4. Summary statistics of the monthly mean values for the 
wind magnitude (m s-1) over the area of interest. 
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SOC climatology 
I 

Quasi-inst. 
I 

BIAS 
calculation 

mean stdev mean stdev 
Jan 16.14 0.29 15.74 3.09 0.40 
Feb 15.40 0.25 15.72 0.33 -0.32 
Mar 15.37 0.22 16.01 0.43 -0.64 
Apr 16.39 0.23 16.49 0.60 -0.11 
May 18.46 0.16 20.99 2.08 -2.53 
Jun 21.77 0.13 23.54 0.68 -1.53 
July 24.99 0.13 25.62 0.63 -0.63 
Aug 26.30 0.13 26.93 1.25 -0.63 
Sept 25.59 0.26 27.82 0.42 -2.23 
Oct 23.57 0.20 25.22 0.38 -1.66 
Nov 20.89 0.38 22.76 1.05 -1.87 
Dec 18.06 0.37 19.35 0.75 -1.30 

Table V. 5. Summary statistics of the monthly mean values for SST 
(

0 C} over the area of interest. 

SOC climatology 
I 

Quasi-inst. 
I 

BIAS 
calculation 

mean stdev mean stdev 
Jan 14.61 0.29 12.27 1.52 -2.00 
Feb 14.29 0.40 13.15 0.97 -1.00 
Mar 14.52 0.19 14.81 1.08 0.00 
Apr 16.17 0.30 16.25 0.90 -0.48 
May 18.54 0.27 20.21 0.50 -1.21 
Jun 21.62 0.18 22.70 0.62 -1.08 
July 24.43 0.15 25.18 1.24 -0.87 
Aug 25.77 0.09 26.80 2.76 -0.25 
Sept 24.66 0.26 27.39 0.48 0.00 
Oct 22.52 0.33 24.32 1.40 0.00 
Nov 19.88 0.51 21.61 1.00 -0.05 
Dec 15.51 0.40 17.96 1.16 0.00 

Table V. 6. Summary statistics of the monthly mean values for the 
surface air temperature (0 C} over the area of interest. 
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Date''' Code TB4 TB5 TB4-5 DELTAT41DELTAT5 GAMMA MEAN SWT MAX SWT MIN SWT STDEV MEAN NLSST MAX NLSST MIN NLSST NLSST STDEV NLSST..SWT 

99_01_19 1908 8' 283.83 283.18 0.65 1.06 4.58 12.88 27.13 9.63 2.63 12.01 24.41 9.52 2.33 -0.87 
,, 

F 294.20 293.19 1.01 1.07 3.68 23.04 25.56 15.78 1.64 22.92 25.26 15.99 1.56 -0.12 ;. 
!;' K 294.46 293.37 1.09 1.14 3.20 22.44 24.43 19.62 1.21 23.34 25.26 20.75 1.19 0.90 : 
., 0 293.48 292.41 1.07 1.10 3.79 22.62 25.75 16.90 1.45 22.33 25.26 17.09 135 -0.29 

98_02_18 908 J 286.85 286.04 0.81 1.09 4.19 15.85 25.71 9.66 4.49 15.34 24.06 10.66 4.02 -0.51 

910 J 286.15 285.01 1.14 1.07 5.06 17.53 27.29 10.73 4.63 16.07 24.43 10.79 4.08 -1.46 

K 291.13 289.64 1.49 1 09 5.02 23.86 27.49 12.33 2.30 21.62 24.43 11.90 1.98 -2.24 

Q 291.39 290.02 1.37 1 09 3.53 20.49 23.10 18.30 0.79 21.58 24.18 19.72 0.75 1.09 
1 R 290.55 289.17 1.38 1.12 3.14 18.79 20.79 17.16 0.75 20.68 22.69 19.22 0.77 1.89 
I 922 J 285.65 284.80 0.85 1.12 4.33 14.81 25.26 9.48 4.41 15.16 24.06 11.04 3.74 0.36 

98_02_-19 8 A 280.28 279.80 0.48 0.91 3.36 7.40 10.15 0.19 0.62 8.41 9.18 2.60 0.50 0.98 

0 282.43 281.81 0.63 1.03 4.20 11.17 14.57 9.39 0.59 10.56 12.65 9.80 0.38 -0.61 

ti\ 
E 282.08 281.57 0.51 1.10 4.14 10.22 24.36 6.36 2.70 10.27 22.57 8.43 2.29 -0.01 

J 285.96 285.12 0.85 1.09 4.40 15.41 26.22 7.42 4.35 14.42 23.81 8.56 3.84 -0.98 
.. , p 293.73 292.42 1.31 1 03 3.81 23.69 25.80 18.62 0.81 23.05 24.80 18.48 0.77 -0.65 

" 12 0 281.02 280.20 0.82 0.99 6.53 12.99 16.38 9.03 0.79 10.67 12.65 9.67 0.41 -2.36 ,, 
1: E 281.31 280.40 0.90 1.16 3.94 9.90 23.54 5.57 4.23 11.20 23.44 868 3.73 1.25 
I 

I 282.32 281.37 0.95 1.12 4.19 11.63 ·~: 22.83 8.78 2.41 12.07 21.95 10.17 203 0.45 

K 289.74 287.81 1.93 1.15 4.84 23.76 27.75 9.97 3.10 21.50 24.80 10.79 2.67 -2.26 
p 291.83 289.95 1.88 1.05 5.26 26.80 29.24 22.44 0.93 23.36 25.17 20.09 0.75 -3.44 

,• Q 290.04 288.28 1.76 1.04 4.49 22.69 25.49 18.19 0.83 21.34 23.68 18.10 0.74 -135 

98 02 20 ~23 0 283.11 282.37 0.74 1.00 6.63 14.84 21.70 11.45 1.22 12.21 16.37 11.53 0.61 -3.09 - -(. 

E 282.46 281.65 0.81 1.11 3.94 10.89 24.51 7.88 2.25 11.72 24.06 10.17 1.95 0.77 

I 284.51 283.65 0.86 1.07 4.33 13.91 20.85 10.53 1.21 13.65 19.22 12.15 0.95 -0.32 

J 286.11 285.08 1.03 1.08 5.01 16.99 28.21 11.20 4.73 15.53 24.92 11.28 4.03 -1.46 

Table V_ 7 a. Summary statistics for the derivation and accuracy assessment of the split-window algorithm as defined by Yu 
and "Barton (1994) as per Coast Watch sector. (SWT = split-window technique according to the YB94 algorithm; NLSST = 
Nonlinear SST). 
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Date Code T84 TB5 TB4-5 DELTAT4/DELTAT5 GAMMA MEAN SWT MAX SWT MIN SWT STDEV MEAN NLSST MAX NLSST MIN NLSST NLSST STDEV NLSST-SWT 

98_02_20 207 D 282.51 281.64 0.87 1.17 3.61 9.14 12.24 7.63 0.54 10.96 13.89 10.17 0.42 1.53 

: E 282.34 281.57 0.77 1.09 4.50 11.95 26.04 8.55 2.66 10.79 23.31 8.68 2.31 -1.10 

I 284.20 283.28 0.92 1 06 4.54 14.16 20.87 11.60 1.30 12.77 18.48 11.04 1.15 -1.39 
·; 

:~ J 285.79 284.81 0.98 1.08 4.42 15.74 27.06 6.81 4.50 14.50 24.68 7.94 4.10 -1.24 

?11 A 280.14 279.53 0.61 0.92 3.25 7.31 8.50 5.21 0.39 9.25 9.92 8.43 0.29 1.89 

E 281.85 281.09 0.76 1.07 5.47 12.07 27.29 7.07 2.79 10.93 23.19 8.80 2.23 -1.14 
,; 

G 292.08 290.56 1.51 1.02 3.65 22.13 24.21 20.46 0.64 22.11 23.93 20.58 0.57 -0.02 

I 283.71 282.85 0.86 1.04 4.56 13.34 20.33 8.06 1.34 12.80 18.60 9.30 1.12 -0.54 

J 285.24 284.34 0.90 1.05 5.27 15.96 28.00 3.48 4.55 14.37 24.43 6.08 3.90 -1.60 

p 293.17 291.73 1.45 1.10 3.43 22.37 24.20 16.58 0.93 23.06 25.05 17.73 0.89 0.69 

222 D 282.71 282.00 0.71 0.95 4.55 11.95 16.39 9.21 0.86 11.61 14.51 10.54 0.54 -0.33 

E 282.62 281.87 0.75 1.08 4.30 11.64 25.24 7.98 2.58 11.71 23.44 10.17 2.19 -0 08 I 

I 284.54 283.75 0.79 1.07 4.38 13.71 19.13 10.03 1.09 13.58 17.98 12.03 0.84 -0.34 
,, 

J 285.97 285.11 0.86 106 5.42 16.72 27.95 10.76 4.64 15.00 24.18 11.04 3.94 -1.72 ; 

98_02_21 207 D 282.51 281.64 0.87 1.17 3.61 9.14 12.24 7.63 0.54 10.96 13.89 10.17 0.42 1.53 

E 282.34 281.57 0.77 1 09 4.50 11.95 26.04 8.55 2.66 10.79 23.31 8.68 2.31 -1.10 

,, I 284.20 283.28 0.92 1.06 4.54 14.16 20.87 11.60 1.30 12.77 18.48 11.04 1.15 -1.39 ,, 
J 285.79 284.81 0.98 1.08 4.42 15.74 2706 6.81 4.50 14.50 24.68 7.94 4.10 -1.24 

211 A 280.14 279.53 0.61 0.92 3.25 7.31 8.50 5.21 0.39 9.25 9.92 8.43 0.29 1.89 
., 
!; 

E 281.85 281.09 0.76 1.07 5.47 12.07 27.29 7.07 2.79 10.93 23.19 8.80 2.23 -1.14 

G 292.08 290.56 1.51 1.02 3.65 2213 24.21 20.46 0.64 22.11 23.93 20.58 0.57 -0.02 

-, I 283.71 282.85 0.86 1.04 4.56 13.34 20.33 806 1.34 12.80 18.60 9.30 1.12 -0.54 

J 285.24 284.34 0.90 1.05 5.27 15.96 28.00 3.48 4.55 14.37 24.43 6.08 3.90 -1.60 

p 293.17 291.73 1.45 1.10 3.43 22.37 24.20 16.58 0.93 2306 25.05 17.73 0.89 0.69 

222 D 282.71 282.00 0.71 0.95 4.55 11.95 16.39 9.21 0.86 11.61 14.51 10.54 0.54 -0.33 

' E 282.62 281.87 0.75 1 08 4.30 11.64 25.24 7.98 2.58 11.71 23.44 10.17 2.19 -0.08 

I 284.54 283.75 0.79 1 07 4.38 13.71 19.13 10.03 1.09 13.58 17.98 12.03 0.84 -0.34 

J 285.97 285.11 0.86 1.06 5.42 16.72 27.95 10.76 4.64 15.00 24.18 11.04 3.94 -1.72 
----·-

Table V. 7b. Summary statistics for the derivation and accuracy assessment of the split-window algorithm as defined by Yu 
and Barton (1994) as per CoastWatch sector. (SWT = split-window technique according to the YB94 algorithm; NLSST = 

Nonlinear SST). 
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Date Code TB4 TB5 TB4-5 DELTAT41DELTAT5 GAMMA MEAN SWT MAX SWT MIN SWT STDEV MEAN NLSST MAX NLSST MIN NLSST NLSST STDEV NLSST-SWT 

98_02_25 .. 608 A 279.92 278.79 1.13 1.12 3.75 9.07 21.10 3.86 1.94 9.20 21.08 5.08 1.82 0.13 ·,, 
0 281.91 280.87 1.04 0.99 6.21 14.61 17.55 9.11 1.10 11.00 12.28 9.92 0.35 -4.14 

' E 281.38 280.21 1.16 1 12 4.20 11.45 2509 7.15 2.77 10.80 23.81 9.05 2.61 -1.03 

\ I 284.17 283.14 1.03 1.03 5.28 15.67 21.30 11.58 1.52 13.16 18.48 10.29 1.41 -2.51 
_;, J 285.72 284.51 1.21 1.07 4.54 16.64 25.43 8.69 4.07 15.21 23.19 8.93 3.90 -1.43 

0 289.44 288.10 1.34 1.08 3.02 17.56 21.93 10.25 2.56 19.25 23.93 11.90 2.67 1.69 

' p 291.93 290.30 1.64 1.11 3.69 22.33 26.06 19.23 1.69 22.73 26.66 19.59 1.80 0.40 

;: 611 A 280.84 280.04 080 1 06 4.32 9.94 23.00 7 05 1.94 9.96 21.20 8.43 1.66 0.01 

!l: 0 282.56 281.94 0.62 0.85 10.70 17.16 20.19 11.36 1.06 11.43 12.52 10.17 0.27 -5.73 

•, E 282.31 281.59 0.72 1.04 5.17 12.32 26.25 8.56 2.79 11.33 23.06 9.30 2.39 -0.99 

I 284.56 283.85 0.71 1.02 4.94 14.37 19.58 9.95 1.49 13.42 17.61 10.54 1.27 -0.95 

J 286.56 285.86 0.70 1.03 5.13 16.49 25.67 7.16 4.05 15.33 22.94 8.68 3.55 -1 '16 

0 290.38 289.53 0.84 1.04 4.83 20.52 25.91 12.05 2.93 19.15 23.68 12.28 2.54 -1.37 
i p 293.58 292.58 1.01 1.07 4.30 23.48 27.83 19.67 1.94 22.54 26.41 19.10 1.77 -0.94 11) 

Q 294.31 293.11 1.21 1.00 4.93 26.07 29.08 20.18 1.18 23.73 26.16 18.23 1.02 -2.34 

99_03_17' 600 A 279.75 279.35 0.40 1 06 5.21 8.33 25.10 0.43 3.37 8.33 23.31 1.95 2.90 0.01 

8' 283.13 282.33 0.80 1.06 5.10 13.24 24.41 6.47 3.86 12.35 22.58 7.08 3.47 -0.89 

c 290.82 289.48 1.34 1.06 4.49 21.99 24.76 18.73 1.47 21.61 23.92 18.31 1.39 -0.38 

0 283.30 282.86 0.44 1.05 4.95 11.84 18.47 8.51 1.60 11.81 17.21 10.01 1.37 -005 

E 286.48 285.79 0.70 1.06 5.31 16.31 24.26 8.94 3.99 15.40 22.46 9.89 3.56 -0.93 

G 292.36 291.14 1.22 0.99 5.04 24.27 26.05 20.77 0.78 22.73 24.17 19.89 0.73 -1.57 

H 289.93 288.69 1.25 1.03 5.88 22.14 25.41 19.65 1.31 20.38 23.31 18.31 1.22 -1.79 

I 285.70 285.22 0.48 1.08 2.28 11.01 18.02 6.57 2.85 14.05 19.28 9.89 2.57 3.01 

J 288.30 287.63 0.67 1.06 4.94 17.72 24.64 9.81 3.78 17.20 23.43 10.37 3.38 -0.55 

K 292.04 291 '11 0.93 1.07 4.60 21.97 24.89 16.15 1.65 21.55 24.29 16.60 1.53 -0.46 

' 
L 293. 17 292 06 1.11 1.01 4.08 22.98 24.20 19.76 0.56 23.18 24.41 20.26 0.55 0.16 

-----

Table V. 7c. Summary statistics for the derivation and accuracy assessment of the split-window algorithm as defined by Yu 
and Barton (1994) as per CoastWatch sector. (SWT = split-window technique according to the YB94 algorithm; NLSST = 

Nonlinear SST). 
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Date :cod" TB4 TB5 TB4-5 DELTAT4/DELTAT5 GAMMA MEAN SWT MAX SWT MIN SWT STDEV MEAN NLSST MAX NLSST MIN NLSST NLSST STDEV NLSST-SWT 

99_03_17,· 600 M 291.20 290.02 1.19 1.02 3.77 20.70 22.61 17.87 0.79 21.41 23.31 19 04 0.74 0.67 

Cont'd .I N 289.45 288.21 1.24 0.93 8.76 26.96 32.53 24.22 0.98 19.86 2209 17.21 0.76 -7.13 

'· 0 290.81 290 01 0.80 1.06 4.08 19.69 23.22 12.67 1.19 19.85 23.56 13.67 1.06 0.13 
~ p 24.01 21.82 24.29 19.77 1.01 0.23 292.37 291.44 0.93 1.07 4.12 21.55 19.18 1.01 

Q 293.06 291.94 1.12 0.96 7.38 27.88 3004 25.34 0.78 2308 24.41 21.48 0.63 -4.85 

R 292.32 291.08 1.24 0.90 5.70 25.41 28.67 21.38 0.69 22.67 24.29 16.11 0.65 -2.78 

s 290.43 289.12 1.31 0.92 6.07 24.36 28.56 21.50 1.20 20.93 23.07 16.48 1.01 -3.47 

T 288.93 287.56 1.37 0.84 4.86 21.27 24.33 12.63 0.82 19.60 21.60 10.37 0.80 -1.70 

607 A 279.80 279.04 0.76 1.11 4.32 8.80 25.04 -2.62 3.87 8.56 23.43 1.95 339 -0.24 

A' 283.83 283.18 0.65 1.06 4.58 12.88 27.13 9.63 2.63 12.01 24.41 9.52 2.33 -0.87 

B' 282.99 281.94 1.06 1.10 4.25 12.87 23.43 6.80 3.77 12.12 22.09 7 08 3.37 -0.75 

c 290.82 289.13 1.69 1.08 3.47 20.84 23.17 15.38 1.38 21.36 23.80 15.62 1.47 0.52 
,. D 282.62 281.74 0.87 1.10 4.20 11.86 17.49 8.84 1.51 11.60 16.48 9.40 1.33 -0.26 
~: 

.... E 285.70 284.55 1.15 1.11 4.11 15.75 23.00 8.93 3.80 15.37 22.46 9.76 3.59 -0.45 

G 291.74 289.94 1.80 1.02 5.19 26.38 28.34 22.82 0.86 22.72 24.17 20.02 0.78 -3.65 

J 286.91 285.57 1.34 1.14 3.88 16.87 23.55 8.86 3.58 16.99 23.80 9.76 3.45 012 

K 290.69 288.96 1.73 1.14 3.49 20.82 23.35 15.43 1.65 21.75 24.53 16.23 1.71 0.92 

L 291.98 290.14 1.84 1.01 4.83 2603 27.88 22.75 0.58 23.19 24.53 20.50 0.50 -2.84 
·; M 290.59 288.90 1.69 1.05 4.77 23.77 26.07 19.99 0.79 21.22 23.07 17.45 0.74 -2.55 

i.· 
F N 289.35 287.77 1.58 1.05 3.86 20.01 22.46 16 06 0.79 19.47 21.97 15.26 0.80 -0.55 
~i· 

p 290.50 288.72 1.79 1.08 3.62 21.22 24.24 19.15 1.04 21.85 24.78 19.65 1.08 0.63 

~ Q 291.75 289.93 1.83 1.07 3.24 21.60 23.12 20.02 0.65 23.09 24.90 21.36 0.72 1.49 

R 291.20 289.39 1.80 0.97 4.40 24.06 26.23 11.97 1.03 22.25 24.41 11.59 1.09 -1.81 

99_03_23 208 D 283.39 282.36 1.03 0.97 6.95 17.23 23.54 11.14 1.40 12.01 17.33 8.54 1.32 -5.22 
,, 

E 286.78 285.69 1.09 1 03 5.00 18.12 25.99 8.54 306 15.57 22.58 8.54 2.82 -2.55 

I 286.22 285.17 1.05 1.04 4.98 17.33 23.41 10.37 2.40 14.95 20.14 9.76 2.21 -2.38 

J 288.62 287.44 1.18 1 06 4.62 19.63 24.46 11.85 3.17 17.64 22.09 11.72 2.91 -2.00 

K 292.23 290.78 1.44 1.07 4.54 2402 27.56 17.94 1.97 21.81 24.90 16.11 1.86 -2.21 

L 293.06 291.51 1.55 0.99 4.60 25.37 27.60 22.41 0.84 22.85 24.65 20.63 0.76 -2.52 

0 291.28 289.95 1.32 1.10 3.86 21.20 25.29 15.65 1.88 20.64 24.41 15.38 1.78 -0.56 
-

Table V. 7d. Summary statistics for the derivation and accuracy assessment of the split-window algorithm as defined by Yu 
and Barton (1994) as per CoastWatch sector. (SWT = split-window technique according to the YB94 algorithm; NLSST = 

Nonlinear SST). 
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Date : Code TB4 TB5 TB4-5 DELTAT4/DELTAT5 GAMMA MEAN SWT MAX SWT MIN SWT STDEV MEAN NLSST MAX NLSST MIN NLSST NLSST STDEV NLSST-SWT I 

99 03 29, 808 A 281.06 280.23 0.83 1.06 4.55 10.60 26.94 6.09 3.35 9.56 24.29 7.32 3.08 -1.06 - - \ 

D 284.30 283.51 0.78 1.05 4.63 14.00 17.66 9.35 1.15 12.72 15.87 10.01 0.94 -1.29 
; E 287.81 286.81 1.00 1.06 4.74 18.37 26.89 11.22 3.53 14.66 20.99 9.76 2.85 -3.72 
"' 
;. G 292.00 290.29 1.71 0.92 5.28 26.63 29.31 23.52 0.72 22.53 24.65 20.02 0.62 -4.15 

H 289.67 287.81 1.86 1.02 3.43 20.04 22.46 11.20 1.30 20.52 22.82 11.72 1.36 0.44 

K 293.11 291.78 1.33 1.08 3.67 22.80 25.34 15.13 1.79 22.69 25.14 15.26 1.78 -0.16 
;. 

L 292.74 291.25 1.49 0.94 7.55 30.36 33.91 27.04 0.99 22.69 25.02 21.11 0.88 -7.71 ' 
Q 292.87 291.12 1.74 0.95 5.52 27.95 31.28 24.98 1.16 23.39 25.75 21.11 1.01 -4.61 

99_03_30 900 p 291.89 289.87 203 1 02 5.29 27.51 29.70 23.18 1.44 24.54 26.48 20.14 1.48 -2.96 ., 
Q 290.60 288.45 2.16 1.00 2.29 17.32 19.45 15.85 0.89 23.72 26.36 21.60 1.18 6.40 

98_03_14 307 A 279 65 278.05 1.61 1.04 5.48 14.13 27.06 1.44 3.17 9.73 22.57 1.86 3.01 -4.36 

8' 279.54 277.94 1.60 1.04 4.87 12.55 21.75 7.89 2.95 9.40 17.73 5.83 2.81 -3.15 
i 

E 281.10 279.38 1.72 1.03 5.51 16.33 29.94 1.70 3.38 11.68 24.92 1.74 3.37 -4.58 !;: 
'fi 

Q 291.43 289.31 2.12 1.03 5.39 27.81 31.56 23.29 2.12 23.67 27.16 19.59 2.12 -4.13 ,, 
' 

98_03_1p 408 A 279.68 278.19 1.49 1 09 5.10 12.67 20.80 7.99 1.65 9.54 16.37 6.94 1.41 -3.13 
:r~ D 281.81 280.66 1.15 1.10 4.34 12.30 14.29 5.81 1.08 11.16 13.14 7.44 0.82 -1.22 

E 281.89 280.57 1.32 1.11 4.19 12.44 25.30 7.44 2.70 11.53 24.30 7.56 2.63 -0.90 

I 283.53 282.53 0.99 1.03 5.58 15.26 21 09 8.03 1.27 12.46 16.99 8.68 1.06 -2.82 
'· J 285.10 283.86 1.24 1.12 3.90 14.83 22.53 6.71 3.32 14.67 22.20 7.56 3.23 -0.16 

K 289.58 287.64 1.94 1.16 3.70 20.73 25.20 11.87 3.25 21.19 26.04 12.52 3.41 0.46 

0 288.44 287.07 1.37 1.13 4.02 18.81 26.23 12.07 2.53 18.32 25.54 12.40 2.46 -0.49 
p 289.49 287.88 1.62 1.12 2.90 17.86 22.67 14.94 1.26 20.11 25.79 16.86 1.42 2.25 

Q 290.54 288.59 1.95 1.21 3.24 20.34 23.49 16.86 2.10 22.30 26.04 18.60 2.42 1.97 

99_04_:14 400 A 287.90 287.32 0.57 1.04 6.17 17.41 27.26 8.11 3.70 16.34 24.78 11.23 3.21 -1.18 

8' 283.36 283.07 0.29 1.02 5.85 11.99 26.04 6.74 3.08 11.67 24.29 7.69 2.77 -0.36 

I 289.43 288.71 0.72 1.08 4.73 18.80 24.19 13.26 1.88 18.33 23.19 14.40 1.66 -0.51 

0 292.68 291.69 0.99 1.00 4.80 23.29 26.26 19.53 0.79 22.35 25.02 18.55 0.80 -1.03 

Table V. 7e. Summary statistics for the derivation and accuracy assessment of the split-window algorithm as defined by Yu 
and Barton (1994) as per CoastWatch sector. (SWT = split-window technique according to the YB94 algorithm; NLSST = 

Nonlinear SSTJ. 
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Date Code TB4 TB5 TB4-5 DELTAT410ELTAT5 GAMMA MEAN SWT MAX SWT MIN SWT STDEV MEAN NLSST MAX NLSST MIN NLSST NLSST STDEV NLSST-SWT 

98_04_13 308 A 283.12 282.27 0.85 1.05 4.38 12.62 17.64 3.71 2.14 11.67 16.12 6.70 1.89 -0.96 

;, A' 281.91 281.06 0.84 1.05 4.57 11.68 18.34 6.75 1.45 10.42 15.25 7.44 1.22 -1.26 
; 

D 286.67 285.77 0.90 1.04 4.50 16.53 19.73 6.33 1.70 15.25 17.86 8.68 1.36 -1.38 .. 
E 288.19 287.20 0.99 1.02 5.21 19.49 24.10 7.68 2.02 16.98 20.83 9.92 1.78 -2.56 

:~ 
I 287.73 286.86 0.86 1.02 5.92 19.40 28.75 11.13 0.83 16.21 23.56 10.79 0.60 -3.19 . . J 289.71 288.72 0.99 1.06 4.75 20.26 28.73 5.75 3.14 18.48 26.16 7.69 2.91 -1.77 

··: K 292.71 291.60 1.12 1.08 5.19 24.46 29.68 18.68 3.35 21.85 26.16 17.61 2.99 -2.61 

98_05_16 607 A 286.06 285.22 0.84 1.21 3.57 13.95 25.75 8.64 290 14.86 26.66 11.28 2.74 0.83 

A' 285.18 284.57 0.61 1.21 3.10 11.80 16.23 8.80 1.63 13.62 17.98 11.04 1.53 1.82 

8' 282.44 282.08 0.36 0.96 4.37 10.60 14.92 8.40 0.65 10.55 13.76 8.93 0.43 -0.05 

,. C' 285.35 284.57 0.78 1.12 4.02 13.99 27.50 8.61 5.03 14.07 27.03 9.67 4.59 0.08 

.< D 288.67 287.29 1.38 1.14 3.84 18.87 20.52 15.98 0.61 18.74 20.21 16.49 0.54 -0.13 ,, 
E 288.03 286.55 1.48 1.20 3.45 17.11 25.62 11.46 3.83 18.21 27.16 13.64 4.00 0.99 

; 
G 293.86 292.28 1.58 1.19 2.41 20.64 22.38 17.58 0.91 24.41 26.78 20.58 1.19 3.77 ' 

'i : 
'l'· H 292.56 291.35 1.21 1.23 3.02 20.24 24.11 18.63 1.20 21.97 26.16 20.34 1.30 1.72 ·): 
i" K 293.00 291.01 2.00 1.09 4.37 26.25 28.95 20.03 1.34 24.92 27.53 19.10 1.34 -1.34 
):. 

L 293.79 291.99 1.80 1.16 2.77 22.27 23.87 18.42 1 02 25.04 27.28 20.46 1.29 2.77 

M 291.82 290.66 1.16 1.01 4.82 23.20 28.31 21.54 0.77 21.16 25.42 20.09 0.60 -2.04 
~ 

N 291.96 290.87 1.09 1.03 3.28 20.26 21.81 18.39 0.54 21.06 22.57 18.97 0.53 0.80 
p 294.58 292.64 1.94 1.10 4.81 28.77 30.89 24.21 1.15 26.64 28.40 22.32 1.07 -2.14 

a 294.11 292.36 175 1.16 2.94 22.90 24.59 20.54 0.85 25.40 27.53 22.57 1.03 2.50 

R 292.99 291.52 1.47 1.20 3.12 21.43 24.39 17.94 1.59 23.31 26.54 19.72 1.78 1.87 

! s 291.41 290.29 1 12 0.93 4.27 21.93 2306 18.58 0.39 20.66 21.58 17.73 0.28 -1.27 

Table V. 7f Summary statistics for the derivation and accuracy assessment of the split-window algorithm as defined by Yu 
and J3arton (1994) as per CoastWatch sector. (SWT = split-window technique according to the YB94 algorithm; NLSST = 

Nonlinear SST). 

---
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Date:: Code T84 TB5 TB4-5 DELTAT41DELTAT5 GAMMA MEAN SWT MAX SWT MIN SWT STDEV MEAN NLSST MAX NLSST MIN NLSST NLSST STDEV NLSST-SWT 

98_06_03 407 A 294.50 293.66 0.84 1.16 3.38 22.28 26.61 14.58 1.81 23.31 28.15 16.37 1.77 1 03 

A' 292.21 291.43 0.77 1.09 3.93 20.17 24.77 15.16 1.41 20.83 25.92 16.24 1.43 0.67 

·, B 294.67 292.90 1.78 1.21 2.26 21.10 22.97 17.54 1.51 25.79 28.40 20.83 206 4.70 
j: 

B' 291.61 290.37 1.24 1.29 2.57 17.94 22.81 14.31 2.40 21.30 27.40 17.48 2.84 3.37 

:', D 293.97 292.97 1.01 1.23 3.07 21.33 25.22 15.03 1.82 23.35 28.15 16.99 1.94 2.02 

·, E 295.23 294.12 1.10 1.49 1.94 19.29 21.25 14.54 1.00 24.75 27.78 18.48 1.47 5.47 

G 295.11 293.34 1.76 1.25 2.28 21.25 22.87 19.50 0.93 26.20 28.64 23.81 1.26 4.95 

I 295.75 294.44 1.32 1.24 2.50 22.44 23.72 19.63 0.67 26.33 27.78 22.94 0.62 3.72 

·' J 296.32 294.96 1.36 1.16 3.20 24.88 26.49 21.02 0.70 26.72 28.52 22.44 0.79 1.84 ' ·~Ji 
M 295.23 293.27 1.97 1.23 2.06 21.02 22.42 19.51 0.84 26.84 28.89 24.43 1.22 5.82 

98 08 23 507 A 292.86 290.37 - -' 
2.49 0.78 3.37 24.80 27.41 22.90 0.52 25.87 28.64 23.68 0.64 1.07 

L B 294.29 291.65 2.64 1.20 2.31 22.31 24.24 20.12 0.84 27.75 30.01 24.55 1.10 5.44 

" B' 293.56 291.17 2.40 1.21 2.80 22.80 25.51 20.87 0.73 26.26 29.26 23.81 0.87 3.46 

t~ 
c 295.03 292.14 2.90 0.84 12.61 25.17 26.26 23.53 0.38 26.26 29.26 23.81 0.87 0.87 

E 293.50 291.07 2.43 1.08 3.94 26.86 29.13 23.85 0.81 26.66 28.89 23.44 0.87 -0.19 

F 294.38 291.74 2.64 1.13 3.26 25.97 28.23 22.61 1.28 28.01 30.13 24.18 1.39 2.04 

G 294.85 291.93 2.92 0.77 -7.04 27.06 2807 25.13 0.32 28.01 30.13 24.18 1.39 0.95 
r.: 

H 294.67 291.95 2.73 0.72 5.14 33.40 36.17 30.94 0.63 28.14 29.76 25.92 0.46 -5.26 i 

98 09 05 808 A 294.49 293.24 1.25 1.22 2.62 21.20 23.82 18.63 1.33 23.82 26.78 21.45 1.46 2.54 - -;.; 
A' 294.51 293.33 1.18 1.09 3.50 23.35 26.71 20.39 0.78 23.70 26.91 21.82 0.72 0.26 -'·r 

':I. 
·,r. B 295.66 293.94 1.73 1.07 2.57 23.25 25.37 18.47 1.34 26.26 29.26 20.71 1.60 3.01 

B' 294.98 293.39 1.59 1.35 2.40 21.24 24.41 1806 1.38 25.20 29.14 21.33 1.77 3.96 

C' 295.66 293.85 1.81 1.29 2.49 22.68 25.10 20.53 1.43 26.52 29.51 23.93 1.82 3.84 
,. ,, J 295.15 293.02 2.13 1.02 1.74 19.41 20.60 15.03 0.64 26.47 28.15 20.46 1.00 7.05 

J K 296.62 294.47 2.14 096 3.34 27.69 29.46 24.62 0.89 28.19 29.88 25.05 0.96 0.49 
' 0 296.91 295.09 1.82 1.04 4.49 29.89 32.62 25.81 1.20 27.59 29.88 24.18 1.08 -2.30 

' 
p 296.90 295.16 1.74 1.12 1.99 22.33 24.13 19.54 1.14 27.45 29.51 23.68 1.54 5.12 

,, 
Q 297.95 296.20 1.75 0.99 4.74 31.46 33.26 26.33 0.82 28.57 29.88 24.06 0.63 -2.89 

R 297.02 295.23 1.79 0.87 3.20 26.77 28.30 24.91 0.63 27.89 29.51 2604 0.70 1 12 

s 296.03 294.14 1.89 1.01 10.19 39.10 39.96 35.92 0.79 27.14 29.14 25.17 0.65 -13.00 

Table V. 7g. Summary statistics for the derivation and accuracy assessment of the split-window algorithm as defined by Yu 
and, Barton (1994) as per CoastWatch sector. (SWT = split-window technique according to the YB94 algorithm; NLSST = 

Nonlinear SST). 
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Date Code TB4 TBS TB4-5 DELTAT41DELTAT5 GAMMA MEAN SWT MAX SWT MIN SWT STDEV MEAN NLSST MAX NLSST MIN NLSST NLSST STDEV NLSST-SWT 

98_11.,..28 208 A 288.17 287.10 1.08 1.07 4.51 18.53 27.73 10.41 3.61 17.03 25.17 11.16 3.31 -1.51 

A' 285.85 284.75 1.11 0.97 3.97 15.97 17.74 11.56 0.71 14.65 16.24 11.28 0.65 -1.32 

B' 286.35 285.20 115 1.05 5.02 17.91 28.80 14.65 2.16 15.21 24.80 1302 1.98 -2.70 

c 295.67 293.96 1.71 1.07 3.07 24.87 26.60 21.60 1.31 26.01 27.90 22.44 1.42 1.14 

D 289.31 288.31 1.00 1.05 3.26 17.36 22.21 9.09 1.67 18.07 22.82 11.28 1.60 0.69 

E 291.20 290.10 1 09 1 06 4.99 22.36 30.48 10.04 3.31 20.14 27.28 11.16 3.00 -2.22 

F 295.44 294.04 1.40 1.07 5.12 28.22 31.53 20.74 2.47 25.15 27.90 18.85 2.26 -3.08 

G 295.66 294. 10 1.56 1.07 3.02 24.35 26.25 21 03 0.94 25.68 27.90 22.32 1.01 1.33 
,. ~ 

H 293.46 292.02 1.44 1.00 802 31.50 36.62 28.17 1.21 23.06 26.04 22.07 0.64 -8.44 

I 290.99 289.84 1.16 1 07 3.99 20.75 25.59 9.48 2.41 20.18 24.80 11.16 2.27 -0.60 

J 293.25 292.01 1.24 1.09 4.20 23.64 28.59 4.58 3.06 22.68 27.53 7.32 2.89 -0.96 

K 295.97 294.50 1.48 1.09 3.41 25.37 27.30 22.10 1.04 25.94 27.78 22.69 1.06 0.57 

L 295.30 293.78 1.52 1.00 4.71 27.86 30.40 25.99 0.80 25.24 27.28 23.93 0.77 -2.62 

M 294.78 293.25 1.53 1 01 3.33 24.18 26.07 19.29 0.72 24.67 26.41 19.59 0.72 0.49 
f. 

N 293.46 292.15 1.31 1.06 3.42 22.34 24.41 21.37 0.51 22.84 24.68 21.95 0.45 0.50 

0 294.80 293.28 1.52 1.11 3.79 25.13 28.57 20.25 1.17 24.99 28.27 20.34 1.15 -0.14 

p 296.16 294.46 1.70 1.09 3.11 25.28 26.58 22.64 0.68 26.74 28.15 24.06 0.75 1.46 
,. 

a 295.30 293.61 1.70 1.03 4.14 27.13 28.98 22.85 0.82 25.73 27.40 20.96 0.74 -1.40 

99_11.:_07 100 A 291.85 290.82 1.03 1.10 4.39 21.78 27.13 15.72 2.05 21.32 26.00 16.72 1.88 -0.46 

B 294.62 293.26 1.37 1.12 3.68 24.20 25.99 20.61 0.98 24.92 26.24 21.48 0.94 0.72 
"' 

B' 293.38 292 01 1.37 1.05 3.77 22.96 25.91 17.11 1.55 24.92 26.24 21.48 0.94 1.96 

c 294.38 292.92 1.46 1.02 4.26 25.53 27.09 23.75 0.67 24.95 26.12 23.56 0.62 -0.59 

0 290.69 290.12 0.57 1 09 4.61 19.38 23.81 14.67 1.34 19.21 22.82 15.99 1.05 -0.17 

E 292.21 291.45 077 1.07 5.11 22.23 28.72 17.02 2.51 21.03 26.36 17.45 2.16 -1.21 

I, F 295.39 294.24 1.14 1.08 4.39 25.70 27.74 18.21 2.05 24.97 26.48 18.67 1.84 -0.74 

G 295.12 293.90 1.22 0.96 2.73 22.43 23.63 21.20 0.40 25 01 26.12 23.80 0.42 2.57 
~·~ 

I 291.67 291.12 0.55 1.06 4.97 20.66 26.68 16.58 2.23 20.15 25.39 17.57 1.84 -0.52 

·' J 294.48 293.73 0.75 1.05 5.99 25.53 29.47 17.40 2.89 23.26 26.12 17.21 2.44 -2.28 
·' 

Table V. 7h. Summary statistics for the derivation and accuracy assessment of the split-window algorithm as defined by Yu 
and f3arton (1994) as per CoastWatch sector. (SWT = split-window technique according to the YB94 algorithm; NLSST = 
Nonli.near SSTJ. 
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Date Code TB4 TB5 TB4-5 DELTAT4/DELTAT5 GAMMA MEAN SWT MAX SWT MIN SWT STDEV MEAN NLSST MAX NLSST MIN NLSST NLSST STDEV NLSST-SWT 

99_11-"-07 100 K 296.56 295.60 0.96 0.91 5.10 27.68 29.15 24.46 0.55 25.70 26.48 23.19 0.40 -1.98 

Cont'.d L 296.05 295.02 1.03 1.07 3.88 25.13 26.70 22.87 0.72 25.36 26.36 23.56 0.56 0.22 

M 295.02 293.89 1.14 0.90 3.15 23.49 24.65 22.27 0.38 24.62 25.63 23.56 0.36 1.12 

'f 0 295.96 295.34 0.62 1.01 6.05 26.39 29.08 21.37 1.31 24.54 26.24 20.63 1.14 -1.86 

p ,, 296.76 296.02 0.74 1.05 4.35 25.76 27.37 23.41 0.78 25.57 26.48 23.80 0.62 -0.21 

Q 296.08 295.22 0.86 0.97 6.91 28.79 30.83 25.86 0.89 25.22 26.36 22.82 0.83 -3.57 

108 A 292.57 291.32 1.25 1.12 3.90 22.39 27.63 15.44 2.04 21.72 26.73 15.99 1.91 -0.69 

B 295.17 293.59 1.59 1.14 2.82 23.11 24.81 19.74 0.96 25.15 27.09 21.48 1.05 2.04 
' 

D 290.40 289.34 1 06 1.12 3.53 19.03 23.34 16.66 1.22 19.16 23.19 17.21 1.14 0.13 

E 292.08 290.83 1.25 1.13 3.84 21.76 27.66 15.32 2.65 21.26 26.97 15.99 2.50 -0.50 

F 295.00 293.35 1.65 1.16 3.85 25.83 28.16 19.07 2.06 25.12 27 09 19.04 1.96 -0.73 

I 291.25 290.19 1 06 1.11 4.16 21.00 27.43 13.39 2.33 20.07 25.75 14.89 2.12 -0.95 

J 293.93 292.52 1.41 1.13 4.13 24.71 28.56 16.93 2.87 23.51 27.09 16.60 2.65 -1.22 

K 295.82 294.15 1.67 1.00 3.36 25.70 26.77 24.15 0.50 26.04 27.22 24.41 0.49 0.32 

L 295.33 293.61 1.72 1.10 303 24.30 25.55 22.36 0.59 25.58 26.85 23.56 0.62 1.26 

0 295.54 294.18 1.36 1.00 5.89 29.67 32.33 23.13 1.38 25.07 27.09 19.77 1.23 -4.61 

p 296.38 294.91 1.47 0.94 8.18 34.99 37.93 31.59 1.01 26.19 27.46 24.04 0.75 -8.83 

Q 295.84 294.43 1.41 1.06 3.45 25.40 27.12 22.66 0.81 25.46 27.09 22.94 0.82 0.04 

R 295.28 293.81 1.47 0.86 8.72 34.77 38.45 31.13 0.95 24.98 26.24 23.43 0.37 -9.81 

Table V. 7i. Summary statistics for the derivation and accuracy assessment of the split-window algorithm as defined by Yu 
and Barton (1994) as per CoastWatch sector. (SWT = split-window technique according to the YB94 algorithm; NLSST = 
Nonlznear SST). 
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Appendix VI 

STATISTICAL RESULTS OF CHAPTER 5. 

This Appendix includes the statistical summary measures of the Eta 
model verification against collocated observations. 

Eta forecasts I TMI observations I RMSE BIAS 
mean stdev mean stdev 

Jan 15.48 1.53 13.40 1.96 2.70 2.08 
Feb 14.69 1.10 14.54 1.38 1.58 0.15 
Mar 12.06 0.92 11.47 1.12 2.08 0.59 
Apr 13.94 1.07 14.49 1.46 2.89 -0.56 
May 19.66 1.07 21.34 1.09 2.05 -1.68 
Jun 22.3 1.61 24.20 1.51 3.24 -1.72 
July 24.82 1.89 26.48 2.66 4.28 -1.66 
Aug 28.45 1.22 30.97 2.38 4.04 -2.52 
Sept 30.31 1.98 32.31 2.12 1.45 -2.00 
Oct 25.90 1.56 26.63 2.87 3.69 -0.73 
Nov 23.48 1.75 21.94 2.03 3.00 1.54 
Dec 15.95 1.20 15.00 1.59 2.73 0.95 

Table VI.l Summary statistics of the averaged, monthly predicted and 
observed integrated precipitable water vapour (mm) over the area of 
interest. 

Eta forecasts I TMI observations I RMSE BIAS 
mean stdev mean stdev 

Jan 0.17 0.15 0.03 0.01 0.19 0.15 
Feb 0.05 0.04 0.04 0.01 0.08 0.01 
Mar 0.04 0.06 0.03 0.02 0.06 0.01 
Apr 0.03 0.08 0.02 0.00 0.05 0.01 
May 0.04 0.06 0.02 0.01 0.06 0.02 
Jun 0.02 0.02 0.01 0.01 0.03 0.01 
July 0.01 0.02 0.01 0.01 0.03 -0.01 
Aug 0.00 0.00 0.01 0.01 0.02 -0.01 
Sept 0.05 0.03 0.02 0.01 0.07 0.02 
Oct 0.06 0.08 0.03 0.01 0.08 0.03 
Nov 0.11 0.10 0.04 0.02 0.15 0.07 
Dec 0.13 0.18 0.03 0.01 0.19 0.10 

Table VI.2 Summary statistics of the averaged, monthly predicted and 
observed integrated cloud liquid water vapour (mm) over the area of 
interest. 
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Eta forecasts I TMI observations I RMSE BIAS 
mean stdev mean stdev 

Jan 7.23 2.21 5.86 3.18 1.75 1.37 
Feb 7.68 2.24 6.92 3.16 1.52 0.76 
Mar 6.11 1.80 4.58 1.85 1.82 1.53 
Apr 5.50 1.22 5.47 1.79 0.24 0.03 
May 3.64 2.97 3.40 1.88 0.34 0.07 
Jun 5.43 2.70 3.92 1.64 0.89 1.51 
July 5.05 1.17 4.45 1.54 1.29 0.60 
Aug 4.40 0.66 2.68 1.02 1.28 1.72 
Sept 5.44 1.99 5.00 2.44 1.47 0.44 
Oct 5.11 0.96 4.44 1.15 1.62 0.67 
Nov 7.22 2.15 8.19 2.54 1.98 -0.97 
Dec 8.16 2.33 9.19 2.47 2.06 -1.04 

Table VI.3. Summary statistics of the averaged, monthly predicted and 
observed wind magnitude (m s-1) over the area of interest. 

NOAAOlwr NOAAOlwr Average Average bias 
total night total day NOAA ETA 

Jan 228.56 235.20 231.88 400.63 168.76 
Feb 231.86 240.35 236.10 394.39 158.28 
Mar 235.73 241.34 238.53 395.34 156.81 
Apr 237.39 245.43 241.41 397.65 156.24 
May 251.16 257.68 254.42 414.81 160.40 
Jun 265.20 272.20 268.70 433.09 164.38 
Jul 279.25 286.73 282.99 451.36 168.37 
Aug 281.74 288.40 285.07 462.99 177.92 
Sep 269.26 269.60 269.43 465.48 196.05 
Oct 260.86 264.40 262.63 450.72 188.09 
Nov 224.34 229.64 226.99 438.86 211.87 
Dec 227.83 231.09 229.46 415.02 185.56 

Table VI. 4. Summary statistics of the averaged, monthly predicted and 
observe outgoing longwave radiation (W m-2) over the area of interest. 
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Eta forecasts I observations I BIAS 
mean stdev mean stdev 

Jan 15.45 0.77 14.27 1.52 1.18 
Feb 13.45 0.68 14.15 0.97 -0.69 
Mar 14.31 0.82 14.81 1.08 -0.50 
Apr 15.99 0.71 16.73 0.90 -0.74 
May 26.17 1.41 21.42 0.50 4.74 
Jun 25.52 0.62 24.23 0.74 1.29 
July 24.80 0.48 26.05 1.24 -1.25 
Aug 29.00 0.88 27.05 2.76 1.95 
Sept 26.03 0.69 27.39 0.48 -1.36 
Oct 23.61 0.66 24.32 1.40 -0.71 
Nov 20.45 0.79 21.65 1.00 -1.20 
Dec 16.55 0.72 17.96 1.16 -1.41 

Table VI.S. Summary statistics ofthe averaged, monthly predicted and 
observed surface air temperature (0 C} over the area of interest. 

Eta forecasts I TMI observations I RMSE BIAS 
mean stdev mean stdev 

Jan -17.18 4.18 -13.55 1.57 15.09 -3.62 
Feb -28.95 7.88 -17.39 2.27 16.93 -11.56 
Mar -16.27 5.00 -9.29 1.54 14.36 -6.98 
Apr -3.63 3.60 2.08 0.30 9.52 -5.71 
May -1.77 2.67 3.10 0.58 5.83 -4.87 
Jun -5.45 2.80 2.80 0.60 7.42 -6.20 
July -7.94 3.89 3.29 0.50 12.14 -11.22 
Aug -0.11 1.40 0.71 0.07 4.34 -0.81 
Sept -13.97 6.14 -3.77 0.55 13.45 -10.2 
Oct -13.96 4.37 -6.76 1.17 14.09 -7.20 
Nov -34.06 10.19 -13.22 2.5 30.87 -20.84 
Dec -40.09 9.59 -19.11 2.41 29.36 -20.98 

Table VI. 6. Summary statistics of the averaged, monthly predicted and 
observed sensible heat flux (W m-2) over the area of interest. 
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Eta forecasts I TMI observations I RMSE BIAS 
mean stdev mean stdev 

Jan -89.44 18.20 -72.51 8.64 37.43 -16.93 
Feb -101.24 14.40 -86.22 11.36 31.8 -15.02 
Mar -74.35 14.32 -60.76 10.13 34.44 -13.59 
Apr -46.12 10.35 -69.41 10.03 28.70 23.28 
May -19.14 5.26 -59.28 11.15 41.77 40.15 
Jun -68.42 8.56 -61.82 10.14 42.12 -6.60 
July -89.27 23.20 -65.13 9.83 41.76 -24.14 
Aug -51.37 9.11 -48.82 4.78 37.95 -2.55 
Sept -123.28 36.47 -75.94 11.17 62.18 -47.34 
Oct -98.31 24.58 -63.33 10.99 53.35 -34.98 
Nov -168.29 36.63 -97.43 18.91 85.81 -70.87 
Dec -144.33 27.71 -107.93 14.41 62.37 -36.40 

Table VI. 7. Summary statistics of the averaged, monthly predicted and 
observed latent heat flux (W m-2) over the area of interest. 
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Tables Vl.8a - b represent the summary measures of the fme-tuning 
experiment of the viscous sublayer depth of the Mellor Yamada 
turbulence closure scheme of the Eta model. 

Month Forecast hr: Normalised RMSE 
observation predicted 

wind speed Coefficient value 
(m s-1) 

0.20 0.35 0.70 0.80 
Jul 0215_0212 3-26 1.06 L03 1.00 1.34 
Jul 0412_0400 3.27 1.42 L25 1.06 1.00 
Oct 2627_2712 3.42 1.00 1.00 1.12 1.20 
Oct 1333_1412 3.51 1.20 L14 1.03 1.00 
Oct 1330_1400 3.52 1.11 L06 1.01 1.00 
Sep 0527_0600 3.68 1.17 1.12 1.01 1.00 
Jan 1430_1512 3.71 1.04 L04 1.00 1.00 
Sep 0827_0912 3.72 1.80 1.46 1.00 1.03 
Nov 1118_1112 3.77 1.00 1.00 1.05 1.06 
Sep 0627_0700 3.80 1.02 1.00 1.02 1.05 
Jul 0812_0812 3.87 1.24 1.18 1.03 1.00 
Mar 0230_0312 3.90 1.00 1.08 1.34 1.48 
May 0718_0700 3.93 1.05 1.04 1.02 1.00 
Jan 1130_1200 3.98 1.07 1.06 1.00 1.00 
May 2833_2912 4.07 1.00 1.27 1.98 2.15 
Aug 0221_0200 4.09 1.44 1.32 1.04 1.00 
Aug 0721_0700 4.12 1.00 1.11 1.32 1.37 
Jul 2027_2100 4.17 1.21 1.09 1.00 1.00 
Aug 0718_0712 4.27 1.00 1.00 1.08 1.18 
Jul 1930_2012 4.29 1.00 1.12 1.26 1.20 
Sep 2318_2300 4.40 1.19 1.13 1.01 1.00 
Apr 1927_2000 4.42 1.15 1.08 1.05 1.00 
Mar 2121_2112 4.54 1.08 1.05 1.02 1.00 
Nov 2412_2412 4.56 1.01 1.00 1.00 1.00 
Mar 0924_0900 4.61 1.00 1.03 1.20 1.24 
Jul 0115_0112 4.68 1.02 1.01 1.00 1.00 
Oct 1930_2012 4.74 L01 LOO LOO 1.01 
Sep 0427_0500 4.75 L36 1.24 LOO LOO 
Aug 1218_1212 4.82 LOO L08 L26 L30 
Oct 2027_2100 4.87 1.04 1.01 LOO LOO 
Aug 0121_0100 4.89 1.00 L07 1.46 L53 
Apr 0612 0612 4.96 1.00 1.07 1.24 1.27 

Table VI.Sa. Normalised RMSE of predicted surface wind magnitude 
when the viscous sublayer depth varies from 0.20 to 0.80. The data is 
arranged according to the increasing predicted wind speed from 3. 0 to 
5.0 m s-1• 
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Month Forecast hr: wind speed 0.20 0.35 0.70 0.80 
observation (m s- 1) 

Jul 2127_2200 5.00 1.00 1.02 1.37 1.51 
Sep 2218_2200 5.02 1.00 1.07 1.24 1.29 
Apr 1233_1312 5.02 1.00 1.05 1.15 1.18 
Mar 0927_1012 5.05 1.00 1.07 1.19 1.22 
Apr 1230_1300 5.10 1.00 1.03 1.09 1.11 
Mar 2118_2100 5.18 1.03 1.01 1.01 1.00 
Aug 1118_1112 5.23 1.00 1.00 1.00 1.00 
Nov 1715_1712 5.24 1.00 1.01 1.10 1.13 
Nov 2433_2500 5.32 1.01 1.00 1.02 1.13 
Mar 1324_1312 5.33 1.00 1.10 1.49 1.60 
Mar 2815_2800 5.33 1.00 1.10 1.31 1.32 
Nov 1218_1212 5.35 1.21 1.17 1.02 1.00 
Sep 2121_2112 5.39 1.00 1.04 1.16 1.20 
Apr 2227_2312 5.41 1.00 1.05 1.12 1.12 
Jul 1233_1312 5.44 1.00 1.10 1.36 1.40 
Apr 0115_0112 5.54 1.00 1.04 1.10 1.12 
Oct 1530_1600 5.55 1.01 1.00 1.10 1.10 
Apr 0112_0100 5.65 1.00 1.01 1.02 1.02 
Jul 1530_1600 5.70 1.00 1.09 1.29 1.34 
Jul 2627_2712 5.70 1.12 1.07 1.01 1.00 
Oct 1433_1512 5.74 1.07 1.07 1.00 1.00 
Jul 2527_2612 5.87 1.16 1.10 1.01 1.00 
Aug 0918_0912 5.93 1.00 1.00 1.00 1.00 
Oct 1630_1700 5.95 1.01 1.00 1.00 1.01 
Jul 0833_0900 6.12 1.00 1.41 1.28 1.31 
Mar 2218_2200 6.33 1.00 1.05 1.13 1.15 
Sep 1721_1700 6.37 1.02 1.00 1.00 1.01 
Oct 2527_2612 6.53 1.00 1.03 1.28 1.40 
Nov 1912_1900 6.59 1.00 1.00 1.01 1.01 
Jan 1627_1700 7.11 1.02 1.00 1.01 1.03 
Nov 1815_1812 7.24 1.00 1.01 1.06 1.07 
Apr 1133_1212 7.36 1.01 1.00 1.01 1.02 
Nov 0621_0612 7.49 1.03 1.03 1.01 1.00 
Jul 1430_1500 7.64 1.00 1.01 1.12 1.23 
Jan 0930_1000 7.75 1.00 1.00 1.19 1.25 
Jan 0933_1012 7.90 1.04 1.03 1.00 1.03 
Jan 1030_1100 7.93 2.08 2.08 2.08 1.00 
Nov 0721_0712 8.08 1.01 1.00 1.00 1.00 
Nov 1315_1300 8.13 1.00 1.00 1.02 1.01 
Mar 2618_2612 8.27 1.00 1.00 1.01 1.01 
Mar 0130_0212 8.36 1.00 1.00 1.00 1.00 
May 0121_0100 8.46 1.00 1.00 1.00 1.00 
Apr 0833_0900 8.47 1.04 1.03 1.00 1.00 
Nov 0918_0900 8.66 1.03 1.04 1.00 1.01 
Nov 0818_0800 9.11 1.03 1.01 1.00 1.01 
Sep 2021_2012 9.17 1.00 1.01 1.03 1.03 
May 1812_1800 9.37 1.00 1.00 1.01 1.01 
Jan 2821 2800 11.47 1.00 1.02 1.11 1.13 

Table VI. Bb. Normalised RMSE of predicted surface wind magnitude 
when the viscous sublayer depth varies from 0.2.0 to 0. 80. The data is 
arranged according to the increasing predicted wind speed from 5. 0 to 
12m s-1• 
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Appendix VII 

STATISTICAL RESULTS OF CHAPTER 7. 

This Appendix includes the results of the accuracy of assessment of the 
data assimilation schemes used to improve the forecasting skill of the 
POM model. 

Date GDAS-SST + Reference TMI-SST + TMI 
air-sea fluxes Experimental maps 

air-sea fluxes 
FORECASTED SST (oCI FORECASTED SST (oCI (oC) 

mean stdev Bias RMSE mean stdev Bias RMSE mean 

July 22 25.57 0.92 -0.67 1.10 25.58 0.92 -0.66 1.09 26.24 
23 25.75 0.92 -0.20 1.10 25.76 0.93 -0.18 1.10 25.95 
24 25.61 0.95 -0.68 1.21 25.68 0.94 -0.62 1.18 26.29 
25 25.46 1.12 -0.71 1.34 25.54 1.11 -0.63 1.29 26.17 
26 25.40 1.33 -0.77 1.56 25.47 1.31 -0.70 1.52 26.17 
27 25.40 1.50 -0.41 1.54 25.47 1.48 -0.35 1.53 25.81 
28 25.39 1.67 -0.43 1.70 25.45 1.68 -0.37 1.72 25.83 
29 25.13 2.02 -1.06 2.25 25.18 2.05 -1.00 2.26 26.19 
30 24.79 2.27 -1.41 2.64 24.91 2.26 -1.29 2.59 26.20 
31 24.65 2.37 -1.88 3.04 24.80 2.36 -1.73 2.97 26.53 

August 1 24.69 2.42 -2.45 3.45 24.81 2.43 -2.32 3.38 27.13 
2 24.78 2.46 -2.21 3.30 24.89 2.46 -2.10 3.24 26.99 
3 24.84 2.46 -2.20 3.30 24.93 2.43 -2.10 3.22 27.03 
4 24.83 2.45 -1.83 3.06 24.93 2.44 -1.73 2.99 26.66 
5 24.90 2.49 -1.89 3.14 24.98 2.48 -1.81 3.09 26.79 

Table VII. I. Basic statistical and model performance measures when no 
data assimilation scheme is active throughout the entire model integration 
period. The mean value shown represents the average value for the entire 
predicted/ observed SST field. 
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Nudging Date GDAS-TMI +ref. air-sea TMI-SST + exp. air-sea TMI 
period fluxes fluxes SST 

't FORECASTED SST (DC) FORECASTED SST (DC) (DC) 
mean stdev bias RMSE mean stdev bias RMSE mean 

22 26.79 0.55 0.55 0.83 26.75 0.65 0.51 0.90 26.24 
23 26.31 0.47 0.36 0.78 26.09 0.68 0.14 0.88 25.95 
24 26.59 0.35 0.29 0.56 26.00 0.78 -0.30 1.04 26.29 
25 26.34 0.39 0.17 0.59 26.45 0.79 0.28 0.66 26.17 
26 26.60 0.35 0.42 0.72 26.13 0.56 -0.05 0.66 26.17 

06 27 26.59 0.35 0.78 1.02 26.30 0.77 0.48 0.76 25.81 
28 26.67 0.35 0.84 1.07 25.79 0.64 -0.03 0.57 25.83 
29 26.38 0.37 0.19 0.52 25.97 0.71 -0.22 0.69 26.19 
30 26.51 0.36 0.31 0.60 26.30 0.60 0.10 0.65 26.20 
31 26.38 0.38 -0.15 0.60 26.31 0.63 -0.22 0.59 26.53 
1 26.37 0.37 -0.76 0.90 26.73 0.63 -0.41 0.74 27.13 
2 26.50 0.37 -0.49 0.80 27.39 0.62 0.40 0.90 26.99 
3 26.69 0.37 0.03 0.42 27.21 0.65 0.56 0.84 26.29 
4 26.70 0.36 0.04 0.43 27.22 0.64 0.56 0.84 26.66 
5 26.72 0.35 -0.05 0.35 26.52 0.56 -0.27 0.67 26.79 

22 26.80 0.56 0.55 0.84 26.75 0.65 0.51 0.91 26.24 
23 26.32 0.47 0.38 0.79 26.10 0.67 0.15 0.89 25.95 
24 26.57 0.36 0.28 0.57 25.99 0.80 -0.31 1.06 26.29 
25 26.33 0.40 0.16 0.58 26.47 0.81 0.30 0.68 26.17 
26 26.65 0.37 0.47 0.79 26.15 0.56 -0.02 0.69 26.17 

12 27 26.57 0.35 0.76 1.00 26.30 0.79 0.48 0.78 25.81 
28 26.71 0.37 0.89 1.12 25.82 0.65 -0.01 0.58 25.83 
29 26.34 0.39 0.16 0.52 25.94 0.74 -0.24 0.71 26.19 
30 26.57 0.37 0.37 0.67 26.35 0.60 0.15 0.68 26.20 
31 26.33 0.41 -0.20 0.62 26.28 0.65 -0.25 0.62 26.53 
1 26.44 0.38 -0.70 0.86 26.77 0.66 -0.36 0.75 27.13 
2 26.45 0.39 -0.54 0.82 27.36 0.63 0.37 0.89 26.99 
3 26.41 0.38 -0.63 0.75 26.87 0.81 -0.16 0.87 27.03 
4 26.69 0.38 0.03 0.45 27.22 0.65 0.56 0.85 26.66 
5 26.73 0.36 -0.06 0.35 26.51 0.56 -0.28 0.68 26.79 

22 26.80 0.53 0.56 0.82 26.76 0.63 0.51 0.89 26.24 
23 26.30 0.48 0.35 0.78 26.08 0.68 0.13 0.89 25.95 
24 26.58 0.37 0.29 0.58 25.98 0.80 -0.31 1.07 26.29 
25 26.36 0.42 0.19 0.62 26.48 0.81 0.31 0.70 26.17 
26 26.60 0.39 0.43 0.76 26.11 0.58 -0.06 0.69 26.17 

24 27 26.57 0.39 0.76 1.01 26.29 0.81 0.48 0.79 25.81 
28 26.71 0.41 0.89 1.13 25.79 0.64 -0.03 0.59 25.83 
29 26.35 0.42 0.17 0.54 25.96 0.75 -0.23 0.71 26.19 
30 26.55 0.42 0.35 0.66 26.32 0.63 0.12 0.68 26.20 
31 26.34 0.44 -0.19 0.65 26.29 0.66 -0.24 0.64 26.53 
1 26.40 0.43 -0.73 0.90 26.75 0.67 -0.39 0.75 27.13 
2 26.46 0.43 -0.53 0.83 27.37 0.70 0.38 0.93 26.99 
3 26.40 0.43 -0.63 0.78 26.87 0.85 -0.16 0.90 27.03 
4 26.67 0.46 0.01 0.52 27.20 0.68 0.54 0.86 26.66 
5 26.73 0.46 -0.05 0.44 26.51 0.59 -0.28 0.71 26.79 

Table VII.2. Basic statistical and model performance measures when 
New.tort_iar:t rela.xgtion was used with a variable nudging period . 

. - . ·- . ~- '· -
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Nudging Date GDAS-TMI +ref. air-sea TMI-SST + exp. air-sea TMI 
period fluxes fluxes SST 

't FORECASTED SST (0 C) FORECASTED SST (°C) IOC) 
mean stdev bias RMSE mean stdev bias RMSE mean 

22 26.79 0.55 0.55 0.84 26.75 0.65 0.50 0.90 26.24 
23 26.13 0.65 0.18 0.80 25.98 0.89 0.03 1.03 25.95 
24 26.48 0.78 0.19 0.87 25.85 1.04 -0.44 1.29 26.29 
25 26.04 0.98 -0.13 1.10 26.32 1.17 0.15 1.07 26.17 
26 26.54 1.13 0.37 1.23 25.86 1.21 -0.31 1.36 26.17 

06 27 26.40 1.14 0.59 1.41 26.29 1.40 0.47 1.36 25.81 
28 26.64 1.17 0.81 1.51 25.62 1.28 -0.21 1.34 25.83 
29 26.15 1.21 -0.04 1.28 25.92 1.31 -0.26 1.26 26.19 
30 26.51 1.15 0.31 1.23 26.18 1.21 -0.02 1.24 26.20 
31 26.16 1.20 -0.37 1.33 26.13 1.34 -0.40 1.35 26.53 
1 26.32 1.19 -0.81 1.47 26.60 1.32 -0.53 1.42 27.13 
2 26.27 1.21 -0.72 1.49 27.23 1.28 0.24 1.40 26.99 
3 25.61 0.95 -0.68 1.21 25.68 0.94 -0.62 1.18 26.29 
4 26.54 1.19 -0.12 1.22 27.14 1.32 0.48 1.40 26.66 
5 26.56 1.24 -0.23 1.26 26.27 1.34 -0.52 1.47 26.79 

22 26.79 0.58 0.54 0.85 26.74 0.67 0.50 0.91 26.24 
23 26.08 0.69 0.13 0.81 25.93 0.91 -0.02 1.04 25.95 
24 26.46 0.87 0.16 0.96 25.82 1.06 -0.47 1.33 26.29 
25 26.10 1.01 -0.07 1.10 26.39 1.26 0.22 1.14 26.17 
26 26.65 1.05 0.48 1.21 25.99 1.15 -0.19 1.28 26.17 

12 27 26.38 1.06 0.57 1.33 26.26 1.32 0.45 1.27 25.81 
28 26.69 1.11 0.86 1.51 25.66 1.21 -0.16 1.27 25.83 
29 26.19 1.17 0.00 1.25 25.92 1.30 -0.27 1.27 26.19 
30 26.50 1.15 0.30 1.23 26.20 1.20 0.01 1.25 26.20 
31 26.16 1.20 -0.37 1.32 26.15 1.33 -0.38 1.32 26.53 
1 26.33 1.20 -0.81 1.48 26.59 1.31 -0.54 1.42 27.13 
2 26.31 1.22 -0.68 1.47 27.23 1.33 0.24 1.42 26.99 
3 26.28 1.26 -0.75 1.48 26.66 1.50 -0.38 1.56 27.03 
4 26.53 1.25 -0.13 1.28 27.14 1.34 0.48 1.42 26.66 
5 26.63 1.25 -0.15 1.26 26.28 1.35 -0.50 1.48 26.79 

22 26.76 0.57 0.51 0.82 26.71 0.67 0.47 0.90 26.24 
23 26.03 0.75 0.08 0.87 25.87 0.96 -0.08 1.10 25.95 
24 26.56 0.91 0.27 0.98 25.92 1.02 -0.37 1.24 26.29 
25 26.24 0.93 0.07 1.01 26.49 1.16 0.32 1.07 26.17 
26 26.56 0.99 0.38 1.13 25.94 1.06 -0.23 1.20 26.17 

24 27 26.50 1.03 0.69 1.35 26.30 1.25 0.48 1.21 25.81 
28 26.63 1.10 0.80 1.47 25.66 1.17 -0.17 1.19 25.83 
29 26.21 1.16 0.03 1.22 25.91 1.25 -0.27 1.24 26.19 
30 26.47 1.14 0.27 1.21 26.18 1.19 -0.02 1.21 26.20 
31 26.23 1.15 -0.30 1.26 26.16 1.28 -0.37 1.28 26.53 
1 26.31 1.15 -0.82 1.45 26.63 1.25 -0.50 1.35 27.13 
2 26.36 1.17 -0.63 1.39 27.24 1.28 0.25 1.37 26.99 
3 26.24 1.18 -0.79 1.43 26.73 1.48 -0.30 1.54 27.03 
4 26.59 1.18 -0.07 1.21 27.13 1.35 0.47 1.43 26.66 
5 26.61 1.23 -0.18 1.24 26.37 1.37 -0.42 1.45 26.79 

Table VII.3. Basic statistical and model performance measures when 
data_ assimilatiqn sp(terne 2 is active throughout the entire model 
integration period. Coefficient valui: -Sxl (i3- uiith vand6le pr'e=forecast 
nudging period. 
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Nudging Date GDAS-TMI +ref. air-sea TMI-SST + exp. air-sea TMI 
period fluxes fluxes SST 

T FORECASTED SST (DC) FORECASTED SST (0 C) (DC) 
mean stdev bias RMSE mean stdev bias RMSE mean 

22 26.79 0.54 0.54 0.82 26.74 0.64 0.50 0.89 26.24 
23 26.15 0.63 0.20 0.79 26.00 0.86 0.06 1.01 25.95 
24 26.52 0.73 0.22 0.83 25.88 1.02 -0.42 1.27 26.29 
25 26.07 0.92 -0.10 1.04 26.35 1.13 0.19 1.03 26.17 
26 26.47 1.16 0.29 1.24 25.77 1.21 -0.40 1.38 26.17 
27 26.37 1.24 0.55 1.48 26.25 1.49 0.43 1.43 25.81 
28 26.65 1.23 0.82 1.57 25.65 1.34 -0.17 1.40 25.83 

06 29 26.15 1.26 -0.04 1.32 25.93 1.36 -0.25 1.32 26.19 
30 26.50 1.19 0.30 1.26 26.15 1.24 -0.05 1.27 26.20 
31 26.23 1.21 -0.30 1.32 26.18 1.34 -0.35 1.33 26.53 
1 26.30 1.17 -0.83 1.46 26.60 1.28 -0.54 1.40 27.13 
2 26.31 1.18 -0.68 1.45 27.27 1.28 0.28 1.39 26.99 
3 26.31 1.18 -0.72 1.41 26.61 1.47 -0.42 1.56 27.03 
4 26.56 1.17 -0.10 1.21 27.19 1.28 0.53 1.37 26.66 
5 26.57 1.21 -0.22 1.23 26.27 1.34 -0.52 1.47 26.79 

22 26.79 0.57 0.55 0.85 26.74 0.67 0.50 0.91 26.24 
23 26.11 0.67 0.16 0.80 25.97 0.89 0.02 1.03 25.95 
24 26.46 0.84 0.17 0.93 25.83 1.06 -0.47 1.33 26.29 
25 26.04 1.04 -0.13 1.14 26.33 1.26 0.16 1.15 26.17 
26 26.63 1.13 0.46 1.28 25.95 1.21 -0.23 1.34 26.17 
27 26.40 1.16 0.59 1.42 26.27 1.39 0.45 1.34 25.81 
28 26.64 1.19 0.82 1.55 25.65 1.26 -0.18 1.31 25.83 

12 29 26.18 1.23 0.00 1.30 25.93 1.33 -0.26 1.30 26.19 
30 26.50 1.20 0.30 1.28 26.20 1.27 0.00 1.31 26.20 
31 26.19 1.23 -0.34 1.33 26.14 1.37 -0.40 1.36 26.53 
1 26.30 1.22 -0.83 1.51 26.61 1.33 -0.52 1.45 27.13 
2 26.30 1.22 -0.69 1.45 27.23 1.35 0.24 1.45 26.99 
3 26.29 1.24 -0.74 1.46 26.65 1.54 -0.38 1.60 27.03 
4 26.54 1.25 -0.12 1.28 27.14 1.37 0.48 1.44 26.66 
5 26.58 1.27 -0.21 1.29 26.31 1.38 -0.48 1.50 26.79 

22 26.77 0.56 0.53 0.83 26.73 0.66 0.48 0.90 26.24 
23 26.04 0.74 0.09 0.85 25.88 0.95 -0.07 1.08 25.95 
24 26.52 0.94 0.23 1.01 25.87 1.04 -0.42 1.27 26.29 
25 26.23 0.99 0.06 1.07 26.48 1.22 0.31 1.12 26.17 
26 26.57 1.03 0.40 1.18 25.94 1.12 -0.23 1.25 26.17 
27 26.46 1.05 0.65 1.36 26.29 1.28 0.48 1.23 25.81 
28 26.65 1.11 0.82 1.49 25.63 1.19 -0.19 1.22 25.83 

24 29 26.22 1.18 0.03 1.23 25.93 1.27 -0.26 1.25 26.19 
30 26.47 1.15 0.27 1.22 26.16 1.22 -0.04 1.24 26.20 
31 26.20 1.17 -0.34 1.29 26.19 1.30 -0.34 1.29 26.53 
1 26.34 1.18 -0.80 1.45 26.60 1.29 -0.53 1.40 27.13 
2 26.31 1.19 -0.68 1.44 27.28 1.30 0.29 1.41 26.99 
3 26.31 1.22 -0.73 1.43 26.73 1.47 -0.30 1.52 27.03 
4 26.58 1.23 -0.09 1.26 27.12 1.33 0.45 1.40 26.66 
5 26.59 1.27 -0.20 1.29 26.34 1.36 -0.45 1.46 26.79 

Table VII. 4 Basic statistical and model performance measures when data 
assimilation scheme 2 is active throughout the entire model integration 
period. Coefficient value: Sxl G-4 with variable pre-forecast nudging 
period. 
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Nudging Date GDAS-TMI + ref. air-sea TMI·SST + exp. air-sea TMI 
pe riod fluxes fluxes SST 

< FORECASTED SST (<>CI FORECASTED SST (•Cj (•CI 
mean 

22 125.80 
23 26. 10 
24 26. 11 
25 25.98 
26 25.95 
27 26.00 
28 26.04 

06 29 25.85 
30 25.55 
31 25.37 
1 25.37 
2 25.45 
3 25.51 
4 25.59 
5 25.71 

22 25.73 
23 26.01 
24 25.99 
25 25.87 
26 25.84 
27 25.89 
28 25.94 

12 29 25.80 
30 25.5 1 
31 25.31 
1 25.22 
2 25.24 
3 25.28 
4 25.34 
5 25.48 

22 25.87 
23 26.20 
24 26.22 
25 26.08 
26 26.05 
27 26. 10 
28 26. 14 

24 29 25.90 
30 25.59 
31 25.42 
1 25.51 
2 25.65 
3 25.74 
4 25.85 
5 25.94 

Table VII. 6. Basic 
data assimilation 
integration period. 
nudging period. 

stdev blaa RMSE mean atdev blaa RMSE mean 
0.78 ·0.45 0.88 25.79 0.78 -0.45 0.88 26.24 
0.73 0.16 0.95 26.07 0.73 0.12 0.94 25.95 
0.74 0. 19 0.81 25.98 0.77 -0.31 0.89 26.29 
0.92 -0 . 19 0.97 25.94 0 .94 0.23 0.98 26. 17 
1.02 -0.23 1.15 25.88 1.06 -0.29 1.18 26.17 
I. I 1 0.18 1.16 25.87 1.18 0.06 1.17 25.81 
1.25 0.22 1.29 25.79 1.32 -0 .03 1.30 25.83 
1.48 ·0 .33 1.53 25.57 1.55 -0 .62 1.66 26. 19 
1.74 ·0 .65 1.87 25.30 1.81 ·0 .90 2.02 26.20 
1.95 - 1.16 2.33 25.22 1.91 - 1.31 2.36 26.53 
2.01 - 1.77 2.69 25.35 1.95 - 1.78 2.65 27. 13 
2.04 1.54 2.59 25.64 1.98 1.35 2.4 1 26.99 
2.06 - 1.52 2.57 25.78 2.03 - 1.25 2.40 27.03 
2.09 -1.07 2.37 25.85 2. 11 ·0 .81 2.30 26.66 
2.14 - LOS 2.40 25.83 2. 14 0.96 2.37 26.79 

0.82 0.52 0.94 25.73 0.81 0.52 0.94 26.24 
0.77 0.06 0.96 25.99 0.78 0.04 0.96 25.95 
0.78 -0 .31 0.88 25.92 0.79 -0 .38 0.93 26.29 
0.97 -0 .30 1.03 25.86 0.98 -0.3 1 1.04 26. 17 
1.09 ·0 .34 1.23 25.81 I. 1 1 ·0.37 1.25 26. 17 
1.17 0.08 1.19 25.81 1.22 0.00 1.22 25.81 
1.28 0.12 1.29 25.78 1.3q 0.05 1.32 25.83 
1.48 -0 .38 1.55 25.60 1.55 -0 .58 1.66 26.19 
1.72 ·0.69 1.85 25.30 1.77 0.90 1.98 26.20 
1.87 1.22 2.28 25. 18 1.87 · 1.35 2.34 26.53 
1.96 - 1.91 2.75 25.20 1.94 - 1.93 2.75 27. 13 
2.02 1.75 2.69 25.37 1.98 1.62 2.56 26.99 
2.06 - 1.75 2.71 25.46 2.04 - 1.57 2.58 27.03 
2.08 1.32 2.48 25.53 2.09 1.13 2.40 26.66 
2.08 · 1.31 2.46 25.56 2.11 · 1.23 2.45 26.79 

0.75 -0.38 0.82 25.86 0.74 -0.39 0.82 26.24 
0.69 0.25 0.93 2615 0.69 0.20 0.92 25.95 
0.70 -0.07 0.75 26.05 0.75 ·0.24 0.85 26.29 
0.87 -0.09 0.91 26.03 0.90 0. 14 0.91 26. 17 
0.96 -0. 12 1.08 25.96 1.02 ·0 .22 I. I I 26. 17 
1.05 0.28 1.13 25.93 1.14 0.12 1. 12 25.8 1 
1.22 0.32 1.30 25.81 1.29 -0.02 1.28 25.83 
1.47 -0 .29 1.52 25.54 1.55 0.65 1.66 26. 19 
1.76 -0 .61 1.88 25.30 1.84 -0 .90 2.05 26.20 
2.03 . I. 1 1 2 .38 25.26 1.96 1.27 2.37 26.53 
2.06 1.63 2 .63 25.49 1.95 - 1.64 2.55 27. 13 
2.05 1.34 2.49 25.91 1.98 -1.08 2.27 26.99 
2.06 · 1.29 2.44 26.10 2.01 -0.94 2.22 27.03 
2.10 ·0.82 2.26 26. 18 2.13 -0.49 2.20 26.66 
2.19 -0 .85 2.35 26.11 2. 18 -0.68 2.29 26.79 

statistical and model performance measures when 
scheme 2 is active throughout the entire model 
Coefficient value: Sxl ()-6 with variable pre-forecast 
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Nudging Date GDAS-TMI + ref. air-sea TMI-SST + exp. air-sea TMI 
period fluxes fluxes SST 

't FORECASTED SST (°C) FORECASTED SST (0 C) (OC) 
mean stdev bias RMSE mean stdev bias RMSE mean 

22 26.09 0.53 -0.15 0.54 26.08 0.52 -0.17 0.56 26.24 
23 26.37 0.51 0.42 0.85 26.26 0.53 0.31 0.81 25.95 
24 26.36 0.54 0.07 0.59 26.00 0.67 -0.29 0.83 26.29 
25 26.19 0.69 0.02 0.75 26.10 0.74 -0.07 0.71 26.17 
26 26.19 0.75 0.01 0.90 26.00 0.86 -0.17 0.91 26.17 
27 26.20 0.93 0.39 1.11 25.92 1.02 0.10 0.99 25.81 
28 26.17 1.19 0.35 1.35 25.64 1.25 -0.19 1.27 25.83 

06 29 25.90 1.50 -0.29 1.50 25.41 1.51 -0.77 1.63 26.19 
30 25.80 1.69 -0.40 1.77 25.54 1.63 -0.66 1.76 26.20 
31 25.94 1.72 -0.59 1.86 25.83 1.62 -0.70 1.77 26.53 
1 26.11 1.67 -1.03 1.98 26.22 1.67 -0.92 1.91 27.13 
2 26.19 1.69 -0.80 1.90 26.67 1.72 -0.32 1.75 26.99 
3 26.09 1.75 -0.94 2.00 26.60 1.84 -0.43 1.89 27.03 
4 26.16 1.79 -0.50 1.89 26.62 1.86 -0.04 1.88 26.66 
5 26.27 1.80 -0.51 1.86 26.41 1.88 -0.38 1.92 26.79 

22 26.39 0.42 0.15 0.48 26.36 0.45 0.12 0.53 26.24 
23 26.42 0.54 0.48 0.87 26.30 0.58 0.35 0.85 25.95 
24 26.39 0.56 0.10 0.65 25.90 0.76 -0.39 1.01 26.29 
25 26.17 0.76 0.00 0.85 26.21 0.80 0.04 0.74 26.17 
26 26.22 0.95 0.05 1.05 25.96 0.99 -0.22 1.02 26.17 
27 26.20 1.22 0.39 1.37 25.85 1.33 0.03 1.30 25.81 
28 26.31 1.46 0.48 1.65 25.60 1.52 -0.23 1.54 25.83 

12 29 26.16 1.58 -0.03 1.57 25.72 1.56 -0.46 1.59 26.19 
30 26.26 1.51 0.06 1.53 26.04 1.47 -0.15 1.46 26.20 
31 26.23 1.53 -0.30 1.61 26.13 1.52 -0.40 1.57 26.53 
1 26.19 1.58 -0.95 1.87 26.38 1.61 -0.76 1.77 27.13 
2 26.25 1.60 -0.74 1.80 26.98 1.60 -0.01 1.64 26.99 
3 26.18 1.60 -0.85 1.82 26.70 1.74 -0.34 1.78 27.03 
4 26.37 1.57 -0.30 1.62 26.87 1.65 0.21 1.67 26.66 
5 26.53 1.54 -0.26 1.56 26.45 1.64 -0.34 1.69 26.79 

22 26.67 0.46 0.42 0.68 26.63 0.55 0.38 0.75 26.24 
23 26.28 0.59 0.34 0.81 26.14 0.74 0.19 0.91 25.95 
24 26.40 0.75 0.10 0.85 25.81 0.94 -0.48 1.23 26.29 
25 26.11 1.02 -0.06 1.11 26.27 1.13 0.10 1.05 26.17 
26 26.31 1.29 0.13 1.36 25.84 1.29 -0.34 1.38 26.17 
27 26.43 1.41 0.62 1.62 26.13 1.53 0.32 1.49 25.81 
28 26.56 1.45 0.74 1.71 25.75 1.45 -0.08 1.45 25.83 

24 29 26.22 1.45 0.03 1.48 25.81 1.44 -0.37 1.46 26.19 
30 26.37 1.41 0.17 1.46 26.15 1.41 -0.04 1.42 26.20 
31 26.24 1.40 -0.29 1.47 26.16 1.45 -0.37 1.47 26.53 
1 26.27 1.40 -0.86 1.67 26.54 1.45 -0.60 1.57 27.13 
2 26.30 1.40 -0.69 1.62 27.19 1.52 0.20 1.58 26.99 
3 26.28 1.44 -0.76 1.64 26.71 1.62 -0.33 1.67 27.03 
4 26.53 1.45 -0.13 1.48 27.03 1.55 0.37 1.60 26.66 
5 26.55 1.50 -0.24 1.51 26.45 1.53 -0.34 1.59 26.79 

Table VII. 5. Basic statistical and model performance measures when 
data assimilation scheme 2 is active throughout the entire model 
integration period. Coefficient value: Sxl o-s with variable pre-forecast 
nudging period. 
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