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ABSTRACT.

The aim of this study is to evaluate the use of novel remote observations
and spatial data analysis to improve the skill of an ocean forecasting
system for the central Mediterranean Sea. A high-resolution (0.042°¢ by
0.0429) ocean forecasting system was setup consisting of an atmosphere
model (NCEP Eta model) that was coupled to an ocean model (Princeton
Ocean Model). This coupling consisted of the provision of surface
atmospheric fluxes predicted at 3-hourly intervals to drive forward the
ocean model. This research study dealt with a variety of aspects to

improve this forecasting system using an inter-disciplinary approach.

The main aspect of this thesis is an evaluation of novel, remotely-
sensed data acquired by an orbiting passive microwave sensor as a tool
to assess and improve ocean forecasting. Thus, SST derived by the
Tropical Microwave Imager onboard the TRMM satellite was evaluated
for its potential to define one of the lower boundary conditions of the
Eta model. The impact was positive, and resulted in an average
improvement of the skill of the model to predict lower surface marine
winds by approximately 10%. TMI-data proved extremely useful to
derive instantaneous turbulent heat fluxes and other surface
geophysical fields that were needed to diagnose and fine-tune the skill
of the Eta model to forecast these fields. The TMI SST product also
proved to be a valuable data source for data assimilation by the ocean
model. An optimised data assimilation scheme was derived resulting in

a bias of just -0.05 °C after a 15-day model integration run.

This thesis shows how spatial data analysis can provide more detailed
information about the high-resolution forecasts and their quality in
addition to standard verification tools. Routines that explore the spatial
data of the forecasts, observations and their relationship were developed
and applied. Geostatistical analysis was used to model the spatial
structure of the residual fields of the predictions and observations, and
to translate the degree of spatial correlation in numerical and graphical

terms.
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Figure 5.2. Graphical display of initial WAFS lateral boundary
conditions (octant grid 37) for 2rd Feb 1999 at 1800 UT. Data
relates to geopotential height in mb at z=1000.

Figure 5.3 Graphical display of the initial WAF'S lateral

boundary conditions (octant grid 37) for 2nd Feb 1999 at 1800
UT. Data relates to relative humidity in % at z=1000.

Figure 5.4. Flowchart and interaction between the various
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stages of the two Eta models and input of forecasted air-sea
surface flux fields into the ocean model. The Data Analysis
component used image processing, GIS and statistical
software for model diagnostics.

Fig 5.5 Use of 3-hourly prognostic fields generated by the
limited area model as the lateral boundary conditions of the
nested, high-resolution Eta model.

Figure 5.6 Schematic diagram of the experiment to fine-tune
the Eta viscous sublayer.

Table S.1a. Single forecast verification matrix for the nested
model runs during 1999. Validation depends on the
availability of collocated observations/derived products.

Table 5.1b. Single forecast verification matrix for the nested
model runs during 1999. Validation depends on the
availability of collocated observations/derived products.

Figure 5.7. Flowchart of the spatial similarity analysis between
predicted and observed field and derivation of interrelationship
between surface fluxes.

Figure 5.8. Predicted geopotential field at z=1000 in mb on 2nd
Feb 1999 at 2100 UT. Initial conditions were derived from
WAFS global model.

Figure 5.9. Predicted specific humidity field at z=1000 in
kg kgl on 2md Feb 1999 at 2100 UT. Initial conditions were
derived from WAFS global model.

Figure 5.10. Predicted 10 m wind field (in m s-!) at z=1000 on
02nd Feb 1999 at 2100 UT. Initial conditions were derived from
WAFS global model.

Figure 5.11. Predicted, contoured 10 m wind magnitude field
(in m s°1) at z=1000 on 02rd Feb 1999 at 2100 UT extracted
from inset box shown in fig. 4.10. Initial boundary conditions
for the local area Eta model are derived from WAFS global
model.

Figure 5.12. Predicted, contoured 10 m wind magnitude

(in m s-1) on 02nd Feb 1999 at 2100 UT derived from the high-
resolution, nested model with a horizontal resolution of 0.04°.
Initial conditions were derived from the boundary conditions
provided by the limited area model.
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Figure 5.13. Predicted sensible heat flux (in W m-2) on 02nd
Feb 1999 at 2100 UT. This field was derived from the nested
model with a horizontal resolution of 0.04°, Initial conditions
were derived from the boundary conditions provided by the
limited area model.

Figure 5.14 Predicted latent heat flux (in W m-2) on 027 Feb
1999 at 2100 UT. This field was derived from the local area
model with a horizontal resolution of 0.04°. Initial conditions
were derived from the boundary conditions provided by the
limited area model.

Figure 5.15. Temporal trend of the predicted monthly average
Eta and TMI-derived integrated precipitable water vapour
(in g cm-2).

Figure 5.16. Mean error of Eta forecasted integrated
precipitable water vapour from the observed field (in g cm-2)

Figure 5.17. Monthly average RMSE between the Eta
forecasted- and TRMM derived-integrated precipitable water
vapour (in g cm2).

Figure 5.18. Temporal forecasting trend of integrated water
vapour when the RMSE values of single-forecasts were
grouped according to time of statistical comparison.

Figure 5.19. Mean error between the Eta and TMI-derived
integrated cloud liquid water (in mm).

Figure 5.20. RMSE between the Eta forecasted- and TMI-
derived integrated cloud liquid water (in mm).

Figure 5.21. Trend of average Eta forecasted- and NOAA
Pathfinder derived- outgoing long wave radiation over the
Ionian basin during 1999.

Figure 5.22. Temporal trend of average Eta forecasted- and
TMI-derived 10 m wind magnitude (m s-1).

Figure 5.23. RMSE between the Eta forecasted- and TMI-
derived 10 m wind magnitude (m s-1).

Figure 5.24. Annual trend of Eta-forecasted 2m air
temperature and quasi-instantaneous derivation of air
temperature (in °C).

Figure 5.25. Over-forecasting of the Eta-predicted fields when
compared to SOC climatology over the area of interest.
Figure 5.26. Temporal annual trend of predicted and observed
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sensible heat flux (W m-2).

Figure 5.27. Temporal mean bias between the Eta-predicted 213
and observed sensible heat flux (W m-).

Figure 5.28. Relation between observed sensible heat flux (W 214
m-?) and 10 m wind magnitude (m s'!) over the area of interest.

Figure 5.29. Monthly average RMSE between the Eta-predicted 215
and observed sensible heat flux (W m-2).

Figure 5.30. Temporal variation of between Eta-predicted and 216
estimated latent heat flux (W m-2).

Figure 5.31. Temporal variation of mean monthly error 216
between Eta-predicted and TMI-derived latent heat flux

(W m-—).

Figure 5.32. RMSE between Eta predicted and TMI-derived 217

latent heat flux (W m-2).

Figures 5.33 a — b. Linear trends of normalised RMSE (m s-1) 222
obtained for the four sets of { values plotted against increasing

wind speed ranging from (a) 3.0 to 3.9 m s, and (b) 4.0 to 4.9

m s'1.

Figures 5.33 ¢ - d. Linear trends of normalised RMSE (m s-1) 223
obtained for the four sets of { values plotted against increasing

wind speed ranging from (c) 6.1 to 6.9 m s°!, and (d) 7.0 to
11.9 m sl

Figure 5.34. Trends of normalised RMSE plotted against the 224
predicted 10 m wind magnitude (m s!).

Table 5.2. Optimal { values for different 10 m wind speed 225
regimes. The value of { can be dynamically adjusted according
to modality of the predicted wind speed regime.

Figure. 5.35. Spatial similarity analysis between collocated, 228
filtered Eta 15-hr forecasted wind fields and observed, filtered

10 m wind magnitude field on the 2nd of July 1999. The

observed, contoured 10 m wind magnitude field is shown for
reference. The average forecasted wind field regime is

3.3msL.

Figure 5.36. Spatial sirriiiélrity analysis between collocated, 229
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filtered Eta 21-hr forecasted wind fields and observed, filtered
10 m wind magnitude field on the 2md of August 1999. The
observed, contoured 10 m wind magnitude field is shown for
reference. The average forecasted wind field regime is

4.1 m sl

Figure 5.37. Spatial similarity analysis between collocated,
filtered Eta 33-hr forecasted wind fields and observed, filtered
10 m wind magnitude field on the 12t July 1999. The
observed, contoured 10 m wind magnitude field is shown for
reference. The average forecasted wind field regime is

5.4 m sl

Figure 5.38. Spatial similarity analysis between collocated,
filtered Eta 30-hr forecasted wind fields and observed, filtered
10 m wind magnitude field on the 10t January 1999. The
observed, contoured 10 m wind magnitude field is shown for
reference. The average forecasted wind field regime is

7.9 m sl

Figure 5.39. Spatial similarity analysis between collocated,
filtered Eta 18-hr forecasted wind fields and observed, filtered
10 m wind magnitude field on the 09th November 1999. The
observed, contoured 10 m wind magnitude field is shown for
reference. The average forecasted wind field regime is

8.7 m s1.

Figure 6.1. An example of a global wind magnitude profile over
the entire orbital scene during the ascending path of the TMI
on July 22, 1999. The inset represents the geophysical field
over the Mediterranean area, not exceeding 40°N.

Figure 6.2. Schematic diagram of the experimental procedure
to assess the impact of using TMI-derived SST as the surface
boundary condition of the high-resolution atmosphere model.

Table 6.1a. Use of valid TMI-derived SST data for numerical
model initialisation during January - April 1999. The choice of
forecasting dates depended on criteria listed in sequential
order.

Table 6.1 b. Use of valid TMI-derived SST data for numerical
model initialisation during May - September 1999. The choice
of forecasting dates depended on criteria listed in sequential
order.

Table 6.1c. Use of valid TMI-derived SST data for numerical
model initialisation during October - December 1999. The

~ choice of forecastmg dates depended on criteria listed in
TUseqUENtial Order T e s s s

Figure 6.3. GDAS-derived modelled SST data in °C (orlgmally
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1e by 1° horizontal grid resolution) for 22nd July 1999 at 00
UT over the model integration domain. The data is interpolated
onto 0.042¢ grid.

Figure 6.4. TMI-derived SST data in °C (originally 0.25° by
0.25° horizontal grid resolution) for 22nd July 1999 at
2.85hrs UT over the model integration domain. The data is
interpolated onto 0.042° grid.

Table 6.2. Recoding of wind magnitude intervals from 2 to
10 m s

Figure 6.5. Semi-variograms through the origin (a) with nugget
effect (b), and with no spatial autocorrelation (c).

Figure 6.6. Scatterplot of collocated TMI- vs GDAS-derived SST
(in Kelvin). Each point represents the average SST value of
5002 raster points representing a complete surface field over
the integration domain of the local area model.

Figure 6.7. Residual plot tendency of TMI- minus GDAS-
derived SST (in Kelvin) against TMI-derived SST (in Kelvin).
Each point represents the average SST value of 5002 raster
points representing a complete surface field over the
integration domain of the local area model.

Figure 6.8. Example of fields produced by the Reference (left)
and Experimental (right) setup, initialised by the GDAS-SST
and TMI-SST respectively. The predicted geophysical fields
correspond to the 27th hour fields starting on 27 July 1999, 00
UT.

Figure 6.9. Example of fields produced by the Reference (left)
and Experimental (right) setup, initialised by the GDAS-SST
and TMI-SST respectively. The predicted geophysical fields
correspond to the 27t hour fields starting on 27 July 1999,
00 UT.

Figure 6.10. TMI-derived (a) 10 m wind magnitude (m s-!), and
(b) total precipitable water vapour, on the 28t July at
0200 UT.

Table 6.3. Basic comparative statistics of 10 m wind
magnitude (m s°!) forecasts with observations.

Table 6.4. Model performance measures in terms of MSE of
10 m wind magnitude (m s-!) forecasts for both reference and
experimental model outputs.
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Figure 6.11. Percentage improvement of the e){berimental
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relative to the reference setup in terms of improved prediction
for the entire annual analysis, based on the MSE

Table 6.5. Raster-based, arithmetic matching between the
forecasted and observed wind magnitude maps. F: forecast; H:
Hit; O: Observation; MS: Match Score.

Figures 6.12 a - b. Overlapping pixels between (a) reference
(MS=0.130) and (b) experimental (MS=0.324) model output of
10 m wind magnitude field against observations respectively
for July 25t at 03 hrs (see table 5.4.). Nulled, black pixels
indicate no overlap. The different colours are classed values (in
m s-1) wind fields.

Figures 6.13 a-e. Case study 1: January 22nd, 1999: (a)
similarity map between predicted surface wind speed by the
reference system and observations; (b) similarity map between
predicted surface wind speed by the experimental system and
observations; (c) predicted wind speed (in m s-1) by the
reference system; (d) predicted wind speed (in m s-!) by the
experimental system,; (e) observed wind speed {in m s-!) by the
tropical microwave imager on 2314 January at 02:08 UT

Figures 6.14 a-e. Case study 2: January 24t 1999: (a)
similarity map between predicted surface wind speed by the
reference system and observations; (b) similarity map between
predicted surface wind speed by the experimental system and
observations; (c) predicted wind speed (in m s-1) by the
reference system; (d) predicted wind speed (in m s-!) by the
experimental system,; (e) observed wind speed (in m s-1) by the
tropical microwave imager on 25% January at 01:12 UT.

Figures 6.15 a-e. Case study 3: April 22nd, 1999: (a) similarity
map between predicted surface wind speed by the reference
system and observations; (b) similarity map between predicted
surface wind speed by the experimental system and
observations; (¢) predicted wind speed (in m s-!) by the
reference system; (d) predicted wind speed (in m s°!) by the
experimental system; (€) observed wind speed (in m s-!) by the
tropical microwave imager on 231 April at 03:25 UT.

Figures 6.16 a-e. Case study 4: December 15%, 1999: (a)
similarity map between predicted surface wind speed by the
reference system and observations; (b) similarity map between
predicted surface wind speed by the experimental system and
observations; (c) predicted wind speed (in m s-1) by the
reference system; (d) predicted wind speed (in m s-!) by the
experimental system; (e) observed wind speed (in m s-!) by the
‘troplcal mlcrowave 1mager on 15th December at 22:50 UT.
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Figures 6.17 a-b. The residual map of the d1fferences between
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the 10 m wind magnitude (m s-!) forecasted by the (a)
reference setup and (b) experimental setup, and collocated
observations derived from the Tropical Microwave Imager on
July 25 at 2400 UT (or July 26 at 00 UT).

Figures 6.19 a-b. The residual map of the differences between
the 10 m wind magnitude (m s-!) forecasted by the (a)
reference setup and (b) experimental setup, and collocated
observations derived from the Tropical Microwave Imager on
December 15 at 2400 UT.

Figures 6.20 a-b. Semi-variograms of the residuals obtained
between (a) the reference prediction and (b) experimental
prediction, with observations retrieved on April 28t 1999 at
2100 UT.

Table 6.6. Model fit for isotropic semi-variograms of the
residuals from January through December.

Figure 6.20a. 2-D representation of the semi-variogram
obtained from the residual of reference forecast and observed
wind fields on December 15 at 00 UT, revealing least semi-
variance in the 45° direction.

Figure 6.20b. 2-D representation of the semi-variogram
obtained from the residual of experimental forecast and
observed wind fields on December 15 at 00 UT, revealing least
semi-variance in the 45° direction.

Figure 7.1. Geographical coverage of the modeling of the
Mediterranean Forecasting System at the regional and shelf
scale.

Figure 7.2. Input of 3-hourly atmospheric surface flux fields
into POM as its surface boundary conditions.

Figure 7.3. The two air-sea flux datasets produced in section
6.4.4. were separately used to initialise the surface boundary
conditions of the ocean model.

Figure 7.4. Scheme representing the entire model integration
process.

Figure 7.5. Using the POM numerical package, the initial
model fields supplied by the lateral and surface boundary
conditions are adjusted towards the observed SST data in a
pre-forecast run.
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Table 7.2. Three experiments v&;re performed to assess the
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effectiveness of the model’'s data assimilation scheme and its
optimisation.

Figure 7.6. RMSE trend between 24-hr predicted SST and 305
TMI-derived SST for the entire period of model integration,
with no active data assimilation scheme.

Figure 7.7. Bias trend between 24-hr predicted SST and TMI- 305
derived SST throughout the 15-day model integration of POM
with no data assimilation.

Figure 7.8a-c. Bias trend between the SST forecasts produced 307
by the two competing models using different initial surface
boundary conditions with different nudging periods as follows:
(a) 06 hrs, (b) 12 hrs, (c) 24 hrs.

309
Figure 7.9a-c. Bias trend between the SST forecasts produced
by the two competing models with different initial surface
boundary conditions using a nudging coefficient of 5x10-3 and
different nudging periods as follows: (a) 06 hrs, (b) 12 hrs, (c)
24 hrs.

Figure 7.9d-f. Bias trend between the SST forecasts produced 309
by the two competing models with different initial surface
boundary conditions using a nudging coefficient of 5x10-4 and
different nudging periods as follows: (a) 06 hrs, (b) 12 hrs, (c)

24 hrs.

Figure 7.9g-i. Bias trend between the SST forecasts produced 310
by the two competing models with different initial surface
boundary conditions using a nudging coefficient of 5x10-5 and
different nudging periods as follows: (a) 06 hrs, (b) 12 hrs, (c)

24 hrs.

Figure 7.9j-1. Bias trend between the SST forecasts produced 310
by the two competing models with different initial surface
boundary conditions using a nudging coefficient of 5x10-¢ and
different nudging periods as follows: (a) 06 hrs, (b) 12 hrs, {c)

24 hrs.

Figure 7.10a-d. An overview of some datasets used to 316
initialise, nudge, and verify the predicted oceanic fields. The

thermal profiles (a) and (c) were retrieved by the NOAA AVHRR

sensor on the 22nd and 23rd July 1999.

S B rbeiio o

Figure 7.11. (a) Composite consisting of radiances derived 317
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from NOAA AVHRR channels 1, 4 and 5 showing basin-wide
circulation in the Ionian region, and (b) Composite consisting
of radiances derived from NOAA AVHRR channels 1, 3 and 4
showing evidence of atmospheric aerosols originating from
north Africa. Images retrieved on 22 July 1999 at 12:53 UT
(scale 1 cm:130 km)

Figure 7.12 (a) Composite consisting of radiances derived from
NOAA AVHRR channels 1, 4 and 5 showing evolution of the
surface thermal signature in the Ionian basin, and (b)
Composite consisting of radiances derived from NOAA AVHRR
channels 1, 3 and 4 showing increasing aeolian dust uptake
that is migrating towards the area of interest. Images retrieved
on 23 July 1999 at 12:41 UT (scale:1 cm:130 km).

Figure 7.13. Forecasted integrated dust load (g m-2?) over the
area of interest. Dust originating from the Saharan region is
predicted to move eastwards every 3 hours starting from 0300
UT on the 23 July 1999. Superimposed is the resultant wind
direction and strength.

Figure 7.14. 36-hour forecast of the 10 m wind magnitude (m
s'1) predicted by the nested Eta atmosphere model starting at
22.07.99 00 UT (equivalent to 23.07.99 at 1200 UT).

Figure 7.15. 36-hour latent heat flux (W m) predicted by the
nested Eta atmosphere model starting at 22.07.99 00 UT
(equivalent to 23.07.99 at 1200 UT).

Figure 7.16. 12-hour forecast of the sea surface elevation (m)
predicted by the ocean model (using DA scheme 1; t=24 hours;
experimental air-sea fluxes) starting at 22.07.99 00 UT.

Figure 7.17 a-b. SST features as (a) retrieved by AVHRR on the
23rd July 1999 at 12:41 UT, and (b) contoured, 36-hour
predicted SST field (using DA scheme 1; 1=24 hours; driven by
the experimental air-sea fluxes) on 2204 July 1999 (equivalent
to 23rd July at 1200 UT).

Figure 7.18. Streamlined surface ocean currents as predicted
at the 36t hour from the start of the model integration on the
22nd July 1999 at 00 UT. TMI-SST was assimilated with a
nudging period of 24hrs using DA scheme 1.

Figure 7.19. Direction and magnitude (cm s-!) of the surface
ocean currents as predicted at the 36% hour from the start of
the model integration on the 22nd of August 1999 at 00 UT.
TMI-SST was assimilated using scheme 1 with a T = 24 hrs.
(Scale arrow is 0.4 cm s°1).

Figure 7.20. Model predicted SST on 6t August at 00 UT using
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the optimal settings identified for DA schemes 1 and 2 using
TMI-derived SST and the experimental set of air-sea fluxes to
drive the ocean model.

Figure 7.21. Histogram plot of the final forecast SST maps
(in °C) generated by (a) data assimilation scheme 1 using a
nudging period t equal to 24 hours and (b) data assimilation
scheme 2 using a coefficient of 5x10-4. These forecasts were
equivalent to 06.08.99 at 00 UT.

Figure 7.22. Vorticity (m1 s-1) on 06.08.99 at 00 UT as
predicted by the ocean model forced by the experimental set of
air-sea fluxes and using data assimilation scheme 1 (1=24hrs).

Figure 7.23. Vorticity (m-! s-1) on 06.08.99 at 00 UT as
predicted by the ocean model forced by the experimental set of

air-sea fluxes and using data assimilation scheme 2
(coefficient = 5x10-3; t=06hrs).

Figure 7.24. Model predicted SST on 6t August at 00 UT using
the optimal settings identified for DA schemes 1 and 2 using
GDAS-derived SST and the reference set of air-sea fluxes to
drive the ocean model.

Figure 8.1. Scheme representing the main improvements of
the high-resolution, ocean forecasting system for the central
Mediterranean, resulting from the present study.

Figure 8.2a-c. A simple example illustrating the benefits of
fusing (a) a high resolution SST map retrieved by the AVHRR
containing data gaps (due to aerosols or cloud contamination),
with (b) an all-weather, lower resolution SST map retrieved by
the Tropical Microwave Imager. Using data interpolation
techniques, the final, high-resolution field can be used for data
assimilation, model initialisation and/or model verification
purposes.

Figure 8.3. RMSE values for the predicted 10 m wind
magnitude by the regional, local area Eta model and the
nested Eta model, against collocated measurements derived
from the orbiting TMI sensor.

Figure I1.1. (a) log profile ending, and (b) log profile with the
viscous sublayer ending.

Table II.1. Definition of domain of the atmosphere model
setup. This information is coded in “all.inc” file.

Figure III.1. Model integration domain of the atmospheric dust
‘model.- - - - -~ - . ..
Table IV.1. Definition of integration domain of the ocean
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model. This information is coded in “latlon.inc” and “gridcom”
files.

Figure IV.1. Ocean bathymetry over the integration model
domain in meters.

Table V.1. Summary statistics for the monthly mean values of
the latent heat flux (W m-2) over the area of interest.

Table V.2. Summary statistics for the monthly mean values for
the sensible heat flux (W m-2) over the area of interest.

Table V.3. Summary statistics of the monthly mean values for
the outgoing longwave radiation (W m—) over the area of
interest.

Table V.4. Summary statistics of the monthly mean values for
the wind magnitude (m s-!) overt the area of interest.

Table V.5. Summary statistics of the monthly mean values for
SST (°C) over the area of interest.

Table V.6. Summary statistics of the monthly mean values for
the surface air temperature (°C) over the area of interest.

Table V.7a. Summary statistics for the derivation and
accuracy assessment of the split-window algorithm as defined
by Yu and Barton (1994) as per CoastWatch sector.

Table V.7b. Summary statistics for the derivation and
accuracy assessment of the split-window algorithm as defined
by Yu and Barton (1994) as per CoastWatch sector.

Table V.7c. Summary statistics for the derivation and
accuracy assessment of the split-window algorithm as defined
by Yu and Barton (1994) as per CoastWatch sector.

Table V.7d. Summary statistics for the derivation and
accuracy assessment of the split-window algorithm as defined
by Yu and Barton (1994) as per CoastWatch sector.

Table V.7e. Summary statistics for the derivation and
accuracy assessment of the split-window algorithm as defined
by Yu and Barton (1994) as per CoastWatch sector.

Table V.7f. Summary statistics for the derivation and accuracy

assessment of the split-window algorithm as defined by Yu
and Barton (1994) as per CoastWatch sector.

Table V.7g. Summary statistics for the derivation and
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accuracy assessment of the split-window algorithm as defined
by Yu and Barton (1994) as per CoastWatch sector.

Table V.7h. Summary statistics for the derivation and
accuracy assessment of the split-window algorithm as defined
by Yu and Barton (1994) as per CoastWatch sector.

Table V.7i. Summary statistics for the derivation and accuracy
assessment of the split-window algorithm as defined by Yu
and Barton (1994) as per CoastWatch sector.

Table VI.1. Summary statistics of the averaged, monthly
predicted and observed integrated precipitable water vapour
(mm) over the area of interest.

Table VI.2. Summary statistics of the averaged, monthly
predicted and observed integrated cloud liquid water vapour
(mm) over the area of interest.

Table VI.3. Summary statistics of the averaged, monthly
predicted and observed wind magnitude (m s-1) over the area of
interest.

Table VI.4. Summary statistics of the averaged, monthly
predicted and observed outgoing longwave radiation (W m-2)
over the area of interest.

Table VI.5. Summary statistics of the averaged, monthly
predicted and observed surface air temperature (°C) over the
area of interest.

Table VI.6. Summary statistics of the averaged, monthly
predicted and observed sensible heat flux (W m2) over the area
of interest.

Table VI.7. Summary statistics of the averaged, monthly
predicted and observed latent heat flux (W m-2) over the area of
interest.

Table VI.8a. Normalised RMSE of predicted surface wind
magnitude when the viscous sublayer depth varies from 0.20
to 0.80. The data is arranged according to the increasing
predicted wind speed from 3.0 to 5.0 m s-L.

Table VI.8b. Normalised RMSE of predicted surface wind
magnitude when the viscous sublayer depth varies from 0.20
to 0.80. The data is arranged according to the increasing
predicted wind speed from 5.0 to 12.0 m s1.

Table VII.1. Basic statistical and model performance measures
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when no data assimilation scheme is active throughout the
entire model integration period. The mean value shown

represents the average value for the entire predicted/observed
SST field.

Table VII.2. Basic statistical and model performance measures
when Newtonian relaxation was used with a variable nudging
period.

Table VII.3. Basic statistical and model performance measures
when data assimilation 2 is active throughout the entire model
integration period. Coefficient value: 5x10-3 with variable pre-
forecast nudging period.

Table VII.4. Basic statistical and model performance measures
when data assimilation 2 is active throughout the entire model
integration period. Coefficient value: 5x10-4 with variable pre-
forecast nudging period.

Table VII.S. Basic statistical and model performance measures
when data assimilation 2 is active throughout the entire model
integration period. Coefficient value: 5x10-5 with variable pre-
forecast nudging period.

Table VII.6. Basic statistical and model performance measures
when data assimilation 2 is active throughout the entire model
integration period. Coefficient value: 5x106 with variable pre-
forecast nudging period.
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Chapter 1

INTRODUCTION.

1.1. Operational ocean forecasting.

Ocean modelling is a relatively young branch of marine science that has
developed during the past two decades to address a wide range of
applications (Flemming, 1995). The main thrusts behind the realisation

of ocean modelling include:

1. An enhanced skill of ocean numerical models to simulate and predict
oceanic features.

2. An acceptable simulation of highly nonlinear dynamical systems.

3. Enhanced computing power that makes feasible more sophisticated

computation of numeric simulations of the oceans.

Operational ocean forecasting constitutes one of the most important
applications of ocean modelling, and is used to produce predictions of
the three-dimensional physical sea state and related marine
biochemical components for a certain time period (Nittis et al., 2001).
Other uses of ocean modelling include the study of ocean currents, the
interaction between the atmosphere and ocean, transport of
biogeochemical materials, climate prediction, assimilation of
observations to provide dynamically consistent ocean fields, pollution

dispersal, fisheries and military applications.

Operational forecasting of the sea state encompasses a technical
framework that provides a continuous oceanographic service of
significant socio-economic and environmental importancel!. Strong

interest has been expressed in this particular application and, as a

U http:/ / www.bom.gov.au/bmrc/ ocean/ GODAE/ Presentations/ godae_sraph/
{accessed on 01.11.04).



result, the Global Ocean Observing System (GOOS) has been
established to promote and coordinate international and national efforts
for the development of large-scale and regional ocean observing and
forecasting systems (IOC, 1998). The European initiative of GOOS -
EuroGOOS?, has in the past ten years coordinated activities on ocean
observation and forecasting to help the advancement of operational
oceanography on a European level. Its plan is to introduce six regional
projects to establish operational forecasting systems into the regional

seas of Europe.

Vigorous oceanographic research in the 1980s, aimed at developing a
multiscale Mediterranean circulation model, was accompanied by a new
era of numerical prediction in the region. Modelling efforts of the general
circulation and data assimilation, coupled with improvements of model
dynamics, played a significant role in strengthening ocean modelling in
the Mediterranean (Robinson et al, 2001). Through the MedGOOS3
initiative, the Mediterranean Forecasting System?* is the latest, region-
wide test case that is now providing basin-scale, weekly ocean forecasts

(Pinardi and Flemming, 1998).

1.2. High-resolution, small-scale ocean forecasting.

High-resolution ocean forecasting has numerous military and civilian
applications. Some of these applications include assimilation and
synthesis of global satellite surface data, anti-submarine warfare and
surveillance, high resolution ocean forecasting, optimum ship track
routing, search and rescue, high resolution boundary conditions for
even higher resolution coastal models, pollution and tracer tracking,

fisheries, and ocean structure design such as deep-sea oil platforms.

2 http:/-/www.eurogoos.org/-(accessed-on-01.11.04).
* which is the Mediterranean component of GOOS.
* http://www.bo.ingv.it/ mfstep/ (accessed on 01.11.04).



These high-resolution models are able to resolve much of the along-
isopycnal mixing, due to eddies and important topographic features,
than coarse models can. However, the computational cost and
manpower requirements create several difficulties. First, experiments
with these models cannot be carried out for very long periods, and so
their model solutions are not equilibrated and thus not independent of
the initial conditions. Second, there are serious difficulties in assessing
the scale of variability produced by these models because of a lack of

observational data at the appropriate spatial and temporal scales.

1.3. Ways to improve high-resolution ocean forecasting.
1.3.1. Need for fine spatio-temporal surface forcing.

Ocean modelling has to reflect all the processes that determine the
properties of the ocean, the distribution of heat and chemicals as well
as its motion. Some of these processes initiate at the sea surface and
are related to exchanges between the atmosphere and the ocean
(Charnock, 1994). An essential component for ocean models in relation
to the distribution of ocean currents, salinity and temperature are the

air-sea fluxes of momentum, water substance and heat.

Scientific groups within the global climate prediction community,
including the World Climate Research Program (WCRP), the Joint
Working Group on Air-Sea Fluxes (WGASF), the Global Energy Water
Cycle Experiment GEWEX Radiation Panel, and the US Climate
Variability and Predictability (CLIVAR) have expressed the need for
high-quality spatial and temporal air-sea fluxes (Taylor, 2000).
According to SEAFLUX (1999), such a dataset could assist the

oceanographic community to address the following tasks:

1. to better understand the transport budget of heat and freshwater in

the global ocean;



2. to diagnose the temporal variation of coupled atmosphere-ocean
systems and to improve the day-to-day prediction of air-sea energy
fluxes and their influence on small-scale ocean surface variability;

3. to provide surface forcing information to help drive ocean models,
and

4. to evaluate the accuracy of forecasted air-sea surface fluxes by

atmosphere-ocean models.
Points 3 and 4 above are of direct relevance to this study.

The spatial and temporal characteristics of air-sea flux datasets vary
according to the application. For many climatological applications
relevant to the GEWEX Radiation Panel and the US CLIVAR Committee,
a 1o spatial resolution, 3- to 6-hourly time resolution and accuracy of 5
W m=2 for individual components of the surface heat budget are
required. It is interesting to note that applications requiring fine spatial
and temporal air-sea fluxes are expanding rapidly as high-resolution
ocean predictive modelling is becoming more feasible due to advances in
computer technology. For this reason, the Joint Working group on Air
Sea Fluxes (Taylor, 2000) states that *“...for ocean general circulation
models, high-resolution forcing fields...3 hourly winds are required to
simulate the shear in the mixed layer, and a 50 km resolution is sought

for the wind stress curl’.

The three major, often inter-dependent, sources of flux estimates are
shipboard, buoy and satellite observations, and numerical atmosphere

models.
1.3.1.1. In situ observations.

Direct air-sea flux estimates are scarce, especially in the Southern
hemisphere. Moreover, these estimates show errors of around 15 to
25 W m2 in the annual mean, depending on the field studied (Gleckler

" and Weare, 1997) and “are organised ‘as monthly means, averaged over



areas of 1.0° by 1.0° or even coarser. Higher quality turbulent flux
measurements are available from research ships taken during field
experiments, and increasingly from “flux-measuring” buoys.

Nevertheless, the amount of data generated is still small.

Alternatively, air-sea fluxes can be measured using bulk flux algorithms
produced by correlating in situ flux measurements with basic
observational values of sea surface temperature, wind, surface air
temperature and humidity. A variety of different bulk flux algorithms
are used, with most recently developed research-quality algorithms
showing fairly good agreement with observations in conditions of
moderate wind speed and neutral or unstable conditions (Taylor and
Yelland, 2001). However, there are still outstanding issues with bulk
algorithms that lead to inaccuracies in the final estimates including
conditions of light wind and stable stratification. The influence of sea
spray, treatment of sea state, appropriate averaging scales,
parameterisation of mesoscale gustiness and behaviour of scalar

sublayer transfer also lead to discrepancies (SEAFLUX, 1999).

From such sets of observations, climatological air-sea flux data have
been generated and collected as comprehensive datasets such as the
Comprehensive Ocean-Atmosphere Data Set - COADS (Woodruff et al.,
1987). The most recent global climatologies (monthly 1.0° by 1.0° grid),
including a correction from observational biases, have been compiled by

da Silva et al. (1994a-¢) and from Josey et al. (1998).
1.3.1.2. Satellite observations.

Most air-sea fluxes are not measured directly from satellite
observations, and instead are calculated by including remotely sensed
geophysical fields into sophisticated bulk parameterisations. Remote
sensing is limited when it comes to the direct measurement of certain

basw varlables needed for the parametensatlon such as near surface

i

spemﬁc humldlty and surfétce air temperature



This is not so for the direct measurement of wind speed and direction,
which are now a recent addition to the global satellite-direct flux
database. Wind speed climatologies derived from SSM/I and ERSS
scatterometer have been available on a weekly basis since July 1991 for
the case of ERS data (Bentamy et al., 1997). The combination of several
satellite wind products is promising and the recent NSCAT
scatterometer has now made the derivation of a global daily wind vector

field possible (Barnier, 1998).

Recently, new opportunities are emerging with the possibility of
combining information from various sensors. Recent studies to derive
turbulent heat fluxes using NOAA AVHRR® (to retrieve Sea Surface
Temperature - SST) and SSM/I7 sensors (to estimate surface wind speed
and indirect surface air humidity) were successful, with an error of
around 30 W m-2 on instantaneous fluxes and 15 W m-2 for monthly
averages (Schulz et al, 1997). Jones et al (1997) describe the
estimation of ocean latent heat flux from satellite data using a neural
network approach. In spite of recent improvements, there are still
significant systematic and random differences between satellite and in
situ estimations of turbulent air-sea fluxes and these arise primarily

from uncertainties in the near-surface moisture field.

Direct satellite estimates of radiative fluxes have also significantly
improved in recent years as a result of the Surface Radiation Budget
(SRB) experiment (Darnell et al., 1996). The NASA/GEWEX SRB Project
has developed a 12-year global dataset of radiative fluxes on 1° by 1°
grid. The derived accuracy is estimated to be 10 W m2 for monthly
means®. Comparisons with other sources indicate that there can be an

overestimation by almost 20 W m-2 (Barnier, 1998).

2 European Research Satellite. .. . .. .
6 NOAA Advanced Very High Resolution Radiometer.
7 Special Sensor Microwave Imager.



1.3.1.3. Numerical modelling.

The availability of forecasted (Telenta et al, 1998) and analyses®
(Barnier, 1998) flux data produced by atmosphere models are becoming
increasingly important for operational ocean forecasting. Numerical
Weather Prediction (NWP) models are providing dynamically consistent
surface fluxes and basic variables that have global, regular, and dense
coverage in space and time. The availability of 3-hourly forecasted
momentum fluxes for example, is highly desirable by oceanographers to
resolve frictional velocity issues. Requirements for the heat and
freshwater fluxes are not as stringent, and 6-hourly to daily values are
acceptable (Taylor, 2000). Like other flux products, NWP products have
biases that are difficult to evaluate since verification procedures

ultimately have to rely on in situ and satellite-derived observations.

The best approach in operational, high-resolution ocean-state
forecasting is to force the ocean model with short- and medium-term
atmospheric forecasts. In this way, fine-detailed and consistent
forecasted atmospheric fields and air-sea surface fluxes drive the ocean
model in a forecasting mode. This particular setup requires the
availability of initial data for both the ocean and atmosphere models on
a routine, near real-time (NRT) basis. Primary data sources include
satellite measurements as well as “first-guess” fields coming from

diverse sources such as global or regional models.

While many operational applications still call for simulated air-sea
fluxes with at least medium spatial (1° x 19 and temporal (daily to
monthly mean) resolution, the demand for forecasted, high temporal
(3-hourly) and fine spatial (less than 50 km) resolution is increasing
rapidly. These requirements can only be met by numerical models

having well-developed turbulence schemes which makes them highly

8 http://www.gewex.org/ srb.html (accessed on 01.11.04).
-?.Analyses is_the_resultant output of the process by which an atmosphere model
propagates mformatzon concerning the state of the atmosphere from data-rich areas to
data sparse areas. This output, together with observations and forcing fields, can be
used as initial conditions for a forecasting numerical model.



attractive to oceanographers (Fischer and Flemming, 1999). The
derivation of air-sea surface fluxes using atmosphere models is

therefore highly relevant for the present study.

1.3.2. Need for improved initial conditions for atmosphere models

to derive better air-sea flux products.

One of the usual shortcomings in numerical modelling is the limited
accuracy of the initial boundary (i.e. surface and lateral) conditions of
the model parameters, which can lead to a systematic error in the

forecast.

An important initial condition for any atmosphere model setup,
simulating the atmosphere over water surfaces, is the SST (Robinson
and Donlon, 2000). Atmospheric numerical forecasters initialise this
surface condition using coarse, modelled SST, which for uncoupled,
short to medium-range forecasts remains constant throughout the
model integrationl!0. The coarse nature of the SST fields introduces
uncertainties in the lower model layers that affect and deteriorate the
simulation of the near-surface atmospheric parameters. It is therefore of
significant interest to substitute this initial surface condition with more

accurate observational data.

The advantage of using remotely sensed sea surface observations is
attributed to their almost continuous data information over the desired
geographic area with significant meso-scale resolution. Remotely sensed
SST data, for example, give an opportunity to initialise the surface
condition of high-resolution atmosphere models on a continuous and
quasi-synoptic basis. The assimilation of high-resolution SST data
within the prognostic equations of dynamic models, such as
atmosphere models, can profoundly influence the accuracy of derived

air-sea fluxes (Gill, 1982).

10 Such as the case for the SKIRON system:
http.// www.uga.edu/ atsc/ mmS/ HowToDoRealTimeMMS.pdf (accessed on 01.11.04).
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Meteorological microwave radiometers are now offering an excellent SST
product, although at a reduced resolution than that offered by infrared
sensors. The Tropical Microwave Imager (TMI) onboard the Tropical
Rainfall Measuring Mission (TRMM)!! satellite is an example of a
passive microwave sensor designed to provide quantitative atmospheric
and surface information over a wide swath. By measuring the minute
amounts of microwave energy emitted by the Earth's atmosphere,
passive microwave sensors are able to quantify the water vapour, the
cloud liquid water, and the rainfall intensity in the atmosphere, as well
as the SST and 10 m wind speeds over the oceans (Wentz and Meissner,
1999).

Three important features make passive microwave sensors ideal for the
purpose of model initialisation. These include (1) their ground
resolution providing data with 0.25° grids, (2) their wide swath
(approximately 1000 km) on the surface, and (3) their ability to derive
SST in the presence of cloud cover and aerosols (fig. 1.1). This ability
gives these sensors a distinct advantage over infrared radiometers in
providing the necessary initial boundary information to atmosphere
models. Furthermore, unlike infrared radiometers, microwave sensors
are insensitive to atmospheric water vapour (Wentz and Meissner,
1999). The accuracy of SST data derived by the TMI sensor, for
example, has a bias of -0.08 °C and a standard deviation of 0.57 °C
when compared to TAO!2 and PIRATA!3 buoys, while the AVHRR
Pathfinder SST has a bias of 0.02 °C and a standard deviation of
0.53 °C when compared to in situ data (Gentemann et al, 2004). A
major limitation of microwave sensors are their sensitivity to sea-
surface roughness and precipitation. This implies that their data is not

reliable in areas exposed to precipitation and extreme wind conditions.

11 TRMM is an international mission dedicated to measuring tropical and subtropical
rainfall and is providing long-term data sets of rainfall and energy budget
measurements which will be used to better understand global climate changes and their
mechanisms. The orbiting spacecraft was launched in November 1997;
http:/ /trmm.gsfc.nasa.gov/ homepage.htm! (accessed on 01.11.04).

.12 Tropical Atmosphere Ocean Network/ National Data Buoy Center ; see

http ./ / www.ifremer.fr/ cersat/en/data) ¢6166sb htm {dccessed on 01:11.04).









boundary conditions in the area of interest is achieved through model

nesting.

1.3.3. Use of data assimilation.

Data assimilation is the incorporation of observations into a
mathematical model to improve the initialisation of dynamical models. It
is a novel, versatile methodology that makes efficient, accurate and
realistic estimation of initial conditions possible, which might not
otherwise be feasible or available (Robinson and Lermusiaux, 2001).
The initial and boundary conditions necessary for integration of the
equations of an ocean model (i.e. velocity components, pressure,
density, temperature and salinity) are very often difficult, if not
impossible, to measure because of high sampling, technical and
resource requirements. Using model numerics, data assimilation
adjusts these fields according to their physical relation with the

independent observations.

Conventionally, data assimilation consists of schemes that can be
performed simultaneously. The specific uses of data assimilation
depend upon the quality of datasets and models, and the desired
purposes of the field and parameter estimates. Briefly, data assimilation

schemes include the following processes:

e Observation analysis to (a) interpolate in space and time the
observations on a regular network of grid-points and (b) filter out
small amplitude random and systematic errors;

e Dynamical forced adjustment of the variables by the aid of
relationships between different variables utilising cross-correlated
observed information, and

e Normal mode initialisation of the parameter fields before insertion of

the data into numerical forecast models.

16 http:/ / www.ucy.ac.cy/ cyocean (accessed on 01.11.04).
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One approach among dynamical forced adjustment methods is known
as Newtonian relaxation or nudging (Hoke and Anthes, 1976), and is
widely applied in regional scale models. It consists of replacing forecast
values by observed ones, at all data points. The a priori hypothesis is
that the observations are exact. The blending estimate is a scalar linear
combination of the forecast and data values at all data points, with user

assigned weights.

Newtonian relaxation provides field balancing during a full-model pre-
forecast integration. This is done by adding the correction terms in the
prognostic equations (by means of a nudging coefficient), thus forcing
the model fields toward the target analysis as defined by the
observations (Robinson and Lermusiaux, 2001). In addition, this
dynamic balancing reduces spin-up effects of prognostic fields and
consequently would not be distorted during initialisation. The final state
is the result of both model adjustment mechanisms as well as the

observed information.
1.3.4. Fine-tuning of numerical schemes.

Even if the above features do not introduce limits on the ability to
predict the surface atmospheric and ocean-state, numerical forecasting
would still be hampered by the imperfect level of the model numerics.
Hidden within the numerical terms are representations of physical
processes that are too small in scale and sometimes too complex to be
completely included in a numerical model (Tribbia, 1997). This
encourages modellers to introduce into their physical models statistical
empirical relationship or “parameterisation” schemes to describe these
processes. These schemes can be further tuned according to the desired

model application.

Fine-tuning the numerical scheme responsible for the simulation of air-
sea fluxes can strongly enhance the predictive skill of an ocean

forecéstmg system ‘Because of this couphng between atmosphere and
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Forecast verification (i.e., the quantitative assessment of forecast
quality) is an essential component of any ocean forecasting system.
Information concerning the quality of forecasts is needed by end-users
to monitor and improve the forecast quality by looking at the
consistency!’, quality'8, and value!® of the model forecasts. However, it
is the forecast quality that is particularly relevant to forecast
verification, which is dependent on a number of attributes, including

bias, association, accuracy, skill, resolution and sharpness.

Yet, forecast verification procedures currently in place are quite
primitive (from a methodological point of view) and generally fail to meet
the fundamental needs of the end users in a satisfactory manner.
Standard verification methods range from simple “eyeball” verification,
dichotomous (yes/no) verification?0, to histogram plotting of the relative
frequencies of forecast and observed categories, exploratory plots2! and
summary scores?2 for forecasts of continuous variables. More complex
verification methods are used for probabilistic forecasts dedicated to

occurrence of particular meteorological /oceanic phenomena.

These traditional procedures translate forecast quality into “scores” by
essentially comparing a collection of matching pairs of forecast and
collocated observed values. However, these scores represent the
accuracy of millions of points and often do not provide sufficient

information to assess the performance of forecast models.

On the contrary, diagnostic verification methods delve more deeply into
the nature of forecast errors. These procedures get away from the

pairwise smoothing constraint and tend to identify features and

17 the degree to which the forecast corresponds to the forecaster's best judgment about
the situation.

18 the degree to which the forecast corresponds to what actually happened.

19 the degree to which the forecast helps the decision maker to realise some incremental
economic and/ or other benefit .

20 ysing statistical measures such as threat scores.

- 2Lysing:scatter-and-box plots: e

22 mean error, bias, mean absolute error, root mean square error, correlation coefficient,
skill score.
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compare the attributes of these features (e.g. size, shape, magnitude

and position) in an overall perspective23.

Exploratory spatial data analysis is of particular relevance to the
validation and diagnosis of numerical models. Techniques such as
feature matching, spatial similarity, and autocorrelation studies can be
used to analyse the spatial relationship between the model forecasts
and collocated observations. These methods, based on image processing
and data mining techniques, are able to determine in detail the
performance of a given forecasting system by producing similarity or
dissimilarity indices that can be easily compared. In spite of their
relevance, the use of these procedures in ocean modelling is practically
non-existent. A thorough search of the literature on the subject yields
very few results, suggesting that the use of exploratory spatial data
analysis and geostatistics to assess the performance of ocean-

atmosphere models is still in its infancy.

1.5. Definition and scope of the study.

Some research programmes in the Mediterranean, such as COMPASS?4
and ALERMO, have adopted a similar operational framework to that
used by the Regional Ocean Forecasting System (ROFS)25. ROFS is
based on hydrodynamic, three-dimensional ocean circulation model
which simulates temperature, salinity, surface elevation, and currents
for a region off the U.S. East Coast. The model is driven at the ocean
surface boundary by heat, moisture, and momentum fluxes provided by
a mesoscale atmospheric forecast model. However, unlike ROFS, the
modelling system of COMPASS and ALERMO lacks a scheme that
assimilates daily remotely sensed observations for its operational ocean
forecasting. This study is intended to supplement the research and

development work that is currently being carried out in the

" 23 such as scale decomposition inethbds drid dbject-oriented methods.
24 http:// www.icod.org.mt/ modeling/index.htm (accessed on 01.11.04).
25 http://polar.wwb.noaa.gov/cfs/ (accessed on 01.11.04).
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This Ionian Sea constitutes a suitable test area for studies related to
air-sea interaction where climatic and Atlantic characteristics drive
dynamics and dense water formations. The extreme forcings by the local
north-westerly winds and by the inflow of cool and less saline Atlantic
waters lead to significant air-sea interactions and subbasin scale
features (jets and gyres) that eventually affect the basin-wide
circulation. Important variabilities exist and include (1) shape, position
and strength of permanent subbasin gyres, mesoscale meanders and
swirls, (2) meander patterns, bifurcation structure and strength of
permanent jets, (3) occurrence of transient and aperiodic eddies, jets
and filaments (Robinson et al.,, 2001). All these factors are often
translated in an anti-clockwise gyre in the northern lonian Sea that
flows northern into the Adriatic Sea. In addition, the fast thermohaline
circulation of the Ionian Sea interacts with the cooler, less saline
Maltese front, causing the front to meander with surface displacements
of up to 50 km. This jet of Atlantic Water continues to flow through the
central Levantine all the way to the shores of Israel (Robinson et al,
2001).

This thermohaline circulation is coupled to a strong seasonal change
signal and it provides a good opportunity to gain experience and
knowledge across the range of relevant dynamical issues involved in
researching the proposed modelling system. It is interesting to note that
this area has been excluded from one of the most significant pilot ocean
forecasting projects in the Mediterranean due to some technical
limitations 26 and therefore, the choice of this study area becomes even
more relevant to the advancement of numerical ocean forecasting in the

Mediterranean.

Since this study is focussed on the use of remotely sensed data
retrieved by the TMI sensor, the highest latitude of the geographical

area does not exceed 40°N (fig. 1.5) because of the low inclination orbit

% the Mediterranean Forecasting System.
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field (temperature and moisture). Other unique features of the numerics
of the model include its step-mountain (‘eta’) vertical coordinate
(Mesinger, 1984); its Arakawa-type horizontal momentum advection
scheme (Janjic, 1984), and its algebraic conservation of energy in
transformations between the kinetic and potential energy in both space
and time differencing (Mesinger, 1984). Within the model's physics
package some of the special features are in the modified Betts-Miller
convection scheme (Janjic, 1994) and its viscous sub-layer scheme over

water surfaces (Janjic, 1996b).

Other reasons for choosing this model include:

e The Eta model code is written in standard FORTRAN (ANSI
FORTRAN), and is easy to transfer and install on different
computers.

¢ The model has been used on mainframes produced by all major
western manufacturers (e.g. IBM, CDC, DEC, Honywell-Bull,
Cray, Convex) as well as on widely used workstations (e.g. Sun,
Indigo, Indy, Power Challenge, Indigo2, PC, Cluster parallel
computer).

¢ The model is being upgraded continuously, and special attention
is being paid to the improvement of the parameterisation of
physical processes. The Abdus Salam Centre for Theoretical
Physics in Trieste (Italy), operated jointly by the United Nations
and the Italian Government, trains scientists on the use of the
Eta model.

e The model is used for both research and operational purposes in
more than 20 meteorological institutions throughout the world. In
the Mediterranean region it is used for operational weather
forecasting (Italy, Turkey and Serbia-Montenegro, Algeria, Greece
and Malta). At the NCEP (formerly NMC) Washington, the model

has been operational (it is run twice daily) since 1993.
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¢ At ICoD (Malta), where the present research study has been
carried out, the Eta model has been operational for eight years,
and has been adapted to work on both LINUX and SUN operating

systems.

The ocean model chosen for this study is the Princeton Ocean Model
(POM)?7. POM was developed by Blumberg and Mellor in the late 1970s,
while others made several subsequent contributions. POM has been
extensively used to simulate the circulation of the Mediterranean Sea as
described by Zavatarelli and Mellor (1995), Horton et al, (1997),
Drakopolous and Lascaratos (1997), and for specific areas such as the
Adriatic Sea by Zavatarelli and Pinardi (1995) and the Levantine Sea by
Lascaratos and Nittis (1998). Similarly, as in the case of the Eta model,
ICoD (Malta) has used the POM model for research and operational
forecasting of the Mediterranean Sea since 1994, and therefore the use
of this model for the present research was expected. This model has

been also adapted to work on SUN and LINUX operating systems.

POM is a hydrodynamic, sigma coordinate, free surface, primitive
equation ocean model, which includes a turbulence sub-model. POM
has a bottom-following sigma coordinate system in the vertical, a free
surface and a split mode time step. The horizontal diffusion terms are
evaluated wusing the Smagorinsky (1963) horizontal diffusion
formulation. The vertical mixing coefficients are computed according to
the Mellor-Yamada 2.5 turbulence closure scheme (Mellor and Yamada,

1982).

The aim of this thesis is to evaluate the use of novel remote sensing
observations and spatial data analysis to improve and assess the skill of
this high-resolution ocean forecasting system. It makes use of the above
numerical models by coupling them together to produce high spatial
(4 km) and temporal (3-hourly) predicted atmospheric and oceanic

forecasts. The atmospheric forecasts assist the underlying ocean model

27 http:/ / www.aos.princeton.edu/ WWWPUBLIC/ htdocs.pom/ (accessed on 01.11.04).
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Chapter 2

RESEARCH APPROACH.

2.1. Research goal and objectives.

The overall goal of this research is to evaluate the use of novel remote-
sensing observations and spatial data analysis to improve and assess

the skill of a high-resolution ocean forecasting system.

The first main aspect of this study is the compilation of a database
needed to initialise, assimilate, fine-tune and validate the ocean
forecasting system. Remote sensing is here used to obtain repeated and
collocated information on atmospheric and oceanic variables derived
from microwave and infrared sensors over the area of interest.
Important parameters, such as turbulent heat fluxes that cannot be
remotely sensed, need to be estimated using bulk parameterisation by
merging together data from climatological datasets collecting in situ and

orbiting sensors.

Another aspect is an investigation of the potential of using novel
remotely sensed data to (1) fine-tune the modelling of the 10 m wind
speed by the the atmosphere model, and (2) be assimilated by the ocean
model including an assessment of whether these actions provide a

better high spatio-temporal description of the ocean surface circulation.

The third aspect is to develop and make full use of spatial exploratory
data analysis and geostatistics to validate, diagnose and fine-tune the
ocean forecasting system. These techniques will provide an insight into
the basic strength and weakness of the model performance. Since
forecast quality is a crucial determinant for the success of this study,
objective -verification of. the. above-mentioned actions is a desirable

adjunct to the present objectives.
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The following are the main objectives of this study.

2.1.1. Compilation of a database to validate the skill of the ocean

forecasting system.

The availability of oceanic and atmospheric data that is collocated with
model forecasted data is mandatory for the present research goals. This
study therefore addresses the acquisition, processing and archiving of
suitable remotely-sensed observations and climatological datasets as an
independent data source to validate the skill of the ocean forecasting

system.

High-resolution derived products (such as turbulent heat fluxes) can be
obtained by fusing together different data types acquired from different
sources. Data fusion from different remote sensors is by no means a
new development, but in the past, the research has concentrated on the
technique of integration through spatial co-registration rather than on
methodologies to interpret the combined datasets (Justice et al.,, 1991).
With the availability of multi-temporal, region-specific datasets, this
study tries to synergise different data sources over the geographical
area of interest. In turn, accuracy assessment of the derived products
against independent climatological datasets becomes another aspect of

this research.

In some cases, such datasets are provided in an uncalibrated, raw
format. This is the case with high resolution, infrared observations of
the SST, which this study attempts to calibrate in the absence of
collocated in situ match-up data. Due to the lack of operational in situ
data in the area of interest, against which satellite brightness
temperature can be linearly correlated, this approach represents the
only way to calibrate the high-resolution infrared radiances retrieved
from this data-scarce area. The calibrated SST scenes over the same
model integration domain can then be used to validate the ocean

model's forecasted SST
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The above considerations require the synthesis of an appropriate
database that can be used to validate the skill of the forecasting system.

As a result, the following research questions are put forward:

e Can passive microwave remote sensing be fused with climatological
data to produce quasi-instantaneous, but accurate air-sea fluxes?
And if so, can an annual air-sea turbulent flux climatology be

generated over the area of interest be generated?

¢ I[s it possible to produce regional-specific, accurate SST maps derived
from infrared sensors using appropriate calibration algorithms in the

absence of an in situ match-up database?

To address these objectives, a number of tasks are performed in

Chapter 4 as follows:

1. to acquire, process and reformat multi-annual climatological
datasets (surface air temperature and SST, latent and sensible heat

flux, and 10 m wind magnitude);

2. to gather a 10-year monthly climatological aerosol optical thickness
acquired by NOAA AVHRR;

3. to gather a one-year (1999) monthly climatology database of outgoing
longwave radiation as retrieved by NOAA AVHRR;

4. to acquire, process and reformat, a one-year (1999) daily TMI-derived

geophysical fields (total precipitable water vapour, cloud liquid water,

10 m wind magnitude, SST and precipitation rate), and
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5. to acquire, decode, process and reformat 1.1 km AVHRR (LAC)
channel 3, 4 and 5 radiances and collocated NLSST28 values over a

wide oceanic area for a two-year period (1998 — 1999).

The climatological datasets (surface air temperature, SST, latent and
sensible heat flux, 10 m wind magnitude and outgoing longwave
radiation) will be used to assess the performance of the atmosphere
model over a period of one year. The climatological aerosol optical
thickness is necessary for the interpretation of infrared radiances
acquired by NOAA AVHRR over the area of interest. The microwave-
derived remotely sensed parameters are used for a number of tasks,
including estimation of instantaneous air-sea fluxes that are collocated
with model forecasts, initialisation of the surface boundary condition of
the atmosphere model, model fine-tuning and data assimilation by the

ocean model.

The brightness temperatures acquired from channels 4 and 5 of the
AVHRR sensor are regressed against collocated NLSST values to derive
single-line equations for a range of atmospheric conditions defined by
the relationship between these channels. In addition to this approach, a
number of currently available AVHRR calibration algorithms that do not
require a collocated set of in situ data will be evaluated. The aim is to
use these calibrated AVHRR scenes to assess the forecasting skill of the

high-resolution ocean model.

2 Non-linear sea surface témpérature; obtained using the split-window, non-linear SST
calibration algorithm based on the correlation between infrared brightness temperature
and collocated, in situ buoy SST.
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2.1.2. Improving the skill of the Eta model to forecast air-sea

fluxes.

The use of the Eta model to forecast air-sea fluxes is a recent aspect in
its long history of weather forecasting since 1984 (Mesinger, 2002,
personal communication). It is therefore appropriate to study the model’s

skill to forecast these fields over a wide range of weather conditions.

An availabile, continuous, high-resolution, remotely-sensed surface field
that strongly affects the properties of air-sea fluxes (such as the latent
and sensible heat fluxes) is the 10 m wind magnitude. This parameter
can be continuously retrieved using microwave radiometry over the
Mediterranean Sea and so offers an extremely interesting opportunity to
assess and fine-tune the skill of a high-resolution, nested Eta model to
predict such a field. These considerations make it possible to explore
research questions directed at the improvement of operational

forecasting of air-sea fluxes, such as:

e What is the present level of accuracy of the ‘standard’ Eta model to
forecast turbulent and radiative fluxes against remotely-sensed and

climatological observations?

e Can the use of remotely sensed, high-resolution 10 m wind
magnitude assist in fine-tuning the Mellor-Yamada level 2 scheme?29

of the Eta model that simulates the air-sea fluxes?

and,

e Can exploratory spatial data analysis and geostatistics assist in

identifying model performance and in the overall tuning of the sub-

model scheme?

29 Appendix Il
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These issues are explored in chapter 5, for which an experimental setup
is required as shown in figure 2.1. A limited area atmosphere model
with a horizontal resolution of around 0.17° x 0.17° (entire
Mediterranean region) is driven by a l-year long dataset consisting of
lateral and surface boundary conditions forecasted by a global model at
1.25° by 1.25°¢ horizontal resolution. This local area model consists of
datasets that are used to drive another Eta model that is nested within
the model domain of the LAM. The resolution of the nested atmosphere
model is around 0.04° by 0.04° horizontal resolution. The limited-area
model provides high mesoscale definition and quasi-geostrophic initial
conditions for the nested model, which generates short-range forecasted
geophysical fields (36-hour) every 3 hours. Only a small part of this data

set, specifically addressing air-sea fluxes, will be considered.

The general forecasting skill of the high-resolution Eta model to forecast
turbulent and radiative heat fluxes and other basic variables are
evaluated against empirical evidence using standard and tailored
diagnostic verification methods. The latter include new schemes to
measure similarity/dissimilarity and spatial matching using image
processing and GIS analysis. Standard geostatistical techniques are

also used to discern and compare spatial patterns.

A parallel experiment is set up to fine-tune the Eta’'s Mellor-Yamada
scheme. This is done by running, in parallel, modified numerical codes
that predict the 10 m wind magnitude under a range of low to moderate
wind magnitude conditions, spanning from 3 to 12 m s-!, during which

the numerical scheme is active.
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2.1.3. Assessing the impact of using microwave-derived SST to
initialise the surface boundary conditions of the atmosphere

model.

This is the third objective of this study, namely to assess the
improvement, if any, of providing the atmosphere model with more

accurate initial surface boundary conditions.

As outlined in the introductory description3?, the use of remotely
sensed, high-resolution SST acting as the surface boundary conditions
of the Eta model could well improve the forecasting of variables that are
highly sensitive to this boundary condition, including air-sea fluxes.
This approach raises a number of questions, which the present study

attempts to address:

e Can high-resolution SST data retrieved by orbiting microwave
sensors be used as the surface boundary condition for the high-
resolution Eta atmosphere model to better predict short-range air-

sea fluxes?

e Can the direct insertion of SST retrieved by orbiting passive
microwave sensors into the Eta model result in a better forecasting
skill when compared with the traditional approach that uses instead

coarse, modelled-SST fields derived from global models?

To test the above hypotheses, a number of experimental tasks are
carried out in chapter 6 as schematised by figure 2.2a. The high
resolution Eta model is initialised by daily, l-year long data-set
consisting of lateral boundary conditions predicted from a global model
at 00 UT. The SST surface boundary condition at 00 UT is provided
from two sources: (1) coarse resolution GDAS global model and (2) from
high-resolution, TMI sensor onboard the TRMM satellite. A TMI-derived

SST dataset is acquired for an entire year, processed and suitably

30 Section 1.3.2.
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formatted to be ingested by the model. A switch is set up to use either
one of these sources during model initialisation. In this manner, two
parallel sets of forecasted air-sea fluxes are predicted. The reference set
denotes those fluxes produced when the model is initialised with SST
derived from the global model and the experimental set are those

initialised with remotely-sensed SST.

The high-resolution atmosphere model produces a wide range of short-
range, forecasted geophysical fields for 36-hour, every 3 hours. Due to
the huge amount of data generated by the full experiment, only the
10 m wind magnitude is used to identify the most effective system.
Validation of the two sets of forecasted fields depends on the availability
of collocated observations; it makes use of both standard verification
methods and diagnostic (exploratory spatial data analysis and
geostatistics) measures. The pair of annual sets of predicted air-sea
fluxes are later used to drive the ocean model, in a similar parallel

experimental mode (see fig. 2.2b) as described in section 2.1.4.

2.1.4. Improving oceanic forcing and prediction.

The fourth objective of this study is to improve the overall skill of the
ocean forecasting model using two approaches: (1) provision of accurate
air-sea fluxes as upper boundary conditions, and (2) assimilation of
remotely sensed SST to dynamically adjust the ocean model fields prior

to the actual forecast run.

The provision of a better representation of the air-sea fluxes as
developed in section 2.1.3. could lead to a more realistic prediction of
the sea-state, such as SST. In addition to this, the fine-tuning of the
embedded data assimilation scheme could contribute towards a more

accurate, short-range forecasts of the ocean state.
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Newtonian relaxation is a data assimilation scheme that is very
appropriate for the present study by providing flexibility in the
adjustment and determination of the best values for the coefficients.
The value of the nudging coefficient as well as duration of the nudging
is critical for the success of this data assimilation scheme. The selection
of an optimal value is based on empirical experience and is fine-tuned
following an accuracy assessment of the final forecasts against

collocated remotely sensed observations.

The above considerations and suggested setup make it possible to
explore research questions which will be useful for the improvement of

operational ocean forecasting system, such as:

e Can a hydrostatic, Princeton Ocean Model (POM) with a horizontal
resolution of 0.042¢ be efficient in predicting small-scale ocean basin

surface features?

e Can near-real time surface boundary conditions, such as microwave-
derived SST, together with forecasted 36-hour momentum, turbulent
and radiative heat forcing fields be sufficient for the ocean model to

accurately predict surface oceanic fields?

e Can Newtonian relaxation (as a data assimilation scheme) of the
initial model fields towards remotely sensed SST enhance the

accuracy of 24-hour surface ocean forecasts?

The selection of the area of interest is based on the availability of a full
data coverage, close to the 00 UT SST dataset derived from the TMI
sensor. These research questions are addressed in chapter 7, and
require an experimental setup as shown in figure 2.2b. A high-
resolution ocean model is setup with an integration domain and
horizontal resolution corresponding to the nested Eta model. The ocean
model uses the pair of datasets that the atmosphere model generates in

section 2.1.3. as its surface vbounidary conditions as well as the initial
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SST condition. Lateral boundary conditions are derived from a

climatological database as “first guess” fields.

A switch is set up to use only one source of initial surface conditions at
a time. The specific SST data dynamically adjusts the initial oceanic
fields towards the SST information in a pre-run mode. Here the data
assimilation scheme is fine-tuned to achieve the best adjustment
towards SST. Following this stage, the actual model integration is run in

forecasting mode.

The assessment of the impact of (1) improved short-range, 36-hour
predicted momentum, turbulent and heat flux forcing fields and (2)
assimilating TMI-derived SST as compared to the use of modeled SST
data, on the overall ocean forecast accuracy is performed. This is done
by validating the accuracy of the two sets of forecasted SST against
high-resolution 1.1 km SST maps using both basic statistical and image
processing analysis (fig. 2.2b).

The main structure and internal linkage of the ocean forecasting system
used in this study is illustrated by figure 2.3. A comprehensive list of
the entire datasets required for this study, their sources and usage is
shown in table 2.1 together with a schematic diagram (fig. 2.4)
highlighting the inter-linkages of the acquired and estimated data for
forecast verification, fine-tuning, initialisation and data assimilation off

the ocean forecasting system.
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Source

Geophysical field

Use

Advanced Very High
Resolution radiometer
(AVHRR)

SST

Validation of ocean model SST forecasts |

Outgoing longwave radiation

Validation of radiative package of atmosphere model l

[

Aerosol optical thickness e Validation of radiative package of atmosphere model
®  Assisting in the calibration of AVHRR radiances
Total Ozone Mapping Aerosol Index o  Validity of AVHRR brightness temperature data
Spectrometer (TOMS)
Tropical Microwave SST e Initial surface conditions of atmosphere and ocean models
Imager (TMI) e  Use for data assimilation
e Reference dataset for the calibration of AVHRR radiances
e  Validation of ocean model SST forecasts
e Derivation of turbulent heat fluxes

l

10 m wind magnitude

Validation and fine-tuning of the turbulent scheme of the atmosphere
model
Derivation of turbulent heat fluxes

[

Precipitation rate

Use to flag and null erroneous collocated pixels of other geophysical fields |

I

Cloud liquid water & Total
Precipitable water vapour

Validation of general performance of the convection schemes of the
atmosphere model

Comprehensive Ocean-
Atmosphere Data Set

(COADS)

2 m air temperature

Derivation of turbulent heat fluxes
Validation of atmospheric forecasted 2 m air temperature

SST

Validation of monthly average TMI-SST

Southampton Oceanic
Climatological Atlas (SOC)

10 m wind magnitude

Validation of monthly average TMI-wind magnitude

SST

Validation of monthly average TMI-SST I

Latent & sensible heat flux

Validation of calculated latent and sensible heat fluxes |

CoastWatch Database

NLSST

Reference dataset for the calibration of AVHRR radiances over CoastWatch
region

Channel 4 & 5 radiances

Derivation of split-window SST algorithm |

Table 2.1. List of data sources required for the verification, fine-tuning and initialisation of the ocean forecasting

system.
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2.2. Outline of the thesis.

The structure of the thesis follows a logical path addressing the aim and
objectives of this study. Chapter 3 gives the background and current
scientific challenges upon which the research questions posed by this
study are based. Chapters 4, 5, 6 and 7 present the research work on
the evaluation of novel remote sensing data to improve high-resolution

ocean forecasting.

Thus, chapter 4 addresses the synthesis of a database that is used for
the diagnostics, fine-tuning and verification of the atmosphere and
ocean models. The required data quality is stringent and should be of
high spatio-temporal resolution, often instantaneous geophysical fields
are needed to verify single-forecasts of the models. In this chapter,
emphasis is given on assessing the accuracy of the constructed
database against independent, collocated climatological datasets.
Alternative calibration techniques of remotely sensed data are also
addressed in view of the lack of in situ collocated data over the

geographical area of interest.

Chapter 5 addresses the setting-up of the atmospheric modeling
system. This work involves the coupling of limited area, atmosphere
model within which a high-resolution model is nested. This nesting
approach ensures better initial conditions to the high-resolution model
to predict a number of relevant geophysical fields over the ocean
surface. Research work addresses the current accuracy of the predicted
fields and fine-tuning of predicted air-sea fluxes against remotely-
sensed observations. The use of novel remotely sensed data and
geospatial analysis encompasses this work and prepares the way for

further application of these procedures in subsequent chapters.

This nested atmosphere model also forms part of the experimental
framework of chapter 6, in which a set of experiments are carried out to

improve the prediction of surface fluxes by the provision of a high
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resolution, novel SST dataset derived by an orbiting passive microwave
sensor. Geostatistical and tailored exploratory spatial data analysis are

used to qualify and quantify such an impact.

In chapter 7, a scheme is implemented using the numerics of a high-
resolution primitive-equation ocean model to assimilate novel remotely-
sensed SST as an alternative to conventional, modelled SST data. The
scope is to dynamically adjust the high-resolution predictions towards
remotely sensed observations. The validity and sensitivity of the results
are checked against the high-resolution information included in the

database.

Finally, a general discussion and recommendations for further research
follows. The results are summarised and achievements made by this
thesis are outlined in relation to work done in the Mediterranean.
Recommendations for further research are put forward both to extend

this research as well as to further develop the applied novel techniques.
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Chapter 3

REVIEW OF PREVIOUS RESEARCH.

3.1. Operational ocean forecasting.

The goal of operational ocean forecasting is to produce predictions of
the physical sea-state and other related components for a certain time
period. Today, ocean forecasts are an important component in modern-
day management of ocean ecosystem in view of anthropogenic stress
and the safety and efficiency of marine industries. The benefits of
having a continuous forecast of ocean variability at exceptional space-

time resolution are numerous.

Operational forecasting had its early successes in meteorology during
the seventies. Since then, the daily to weekly meteorological forecast
skill has been increased by major Numerical Weather Prediction (NWP)
centers around the globe, such as the National Centre for
Environmental Prediction (NCEP), the UK Meteorological Office and the
European Centre for Medium Range Weather Forecasting (ECMWF).

The development of ocean forecasting has progressed more slowly than
its atmospheric counterpart because of the lack of routine and accurate
measurements needed to both initialise and validate ocean models.
Predictions of the sea-state raise problems similar to those found in
atmospheric weather forecasting, since the predictability time scale of
the oceanic system is practically set by the accuracy with which the
initial condition is known. Due to scarcity of oceanic observations,
forecasting of deep ocean currents, for example, are still at the research
stage such as the Forecasting Ocean Assimilation Model (FOAM) of the
UK Met Office30.

30 http://www.meto.gov.uk/ research/ocean/operational/ foam/ (accessed on 01.11.04).
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In spite of this limitation, ocean forecasting started as soon as
numerical ocean modelling reached sufficient maturity at the beginning
of the eighties. Since then, a number of ocean forecasting systems have
been developed to forecast specific ocean variables, driven by a demand
for monitoring of coastal flooding and ship routing. A good example of a
successful operational global system to predict wave and storm-surge
forecasting (Komen et al.,, 1994) is the UK Met Office’s FOAM. This
model is made feasible by the availability of highly accurate surface
wave information, tides and surface atmospheric winds. The UK Met
Office has run global and regional wave models for many years to
provide forecasts of sea state, as a support to a range of user

applications.

3.1.1. Main limitations due to data requirements.

The advent of computers opened up a whole new array of mathematical
models aimed at finding a “solution” to complex geophysical processes.
However, there is a risk associated with computer simulation done with
either grid-point or spectral models (Doswell, 2000), since their
solutions are based on a set of approximations (and simplifications).
One reason for this approximation is the lack of precise initial
information at the start of the numerical integration. The current finite
observational system only provides approximate initial conditions, of
which details strongly influence a specific final model solution. So far,
most of the existing ocean models use the wind stress from the
Hellerman and Rosenstein database, COADS data or some local data
sets (May, 1982) as a mechanical forcing. In addition, the ocean model’s
SST and salinity fields are nudged towards climatological datasets such
as Levitus’. However, a serious drawback of using climatic (or “fixed”)

data is that the main variability that they contain is at most seasonal.
The end result is a modelled ocean current that would grossly resemble
the present oceanic state, where a “true” equilibrium state can only be

achieved after thousands of years of model integration (McWilliams,
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1998). As a consequence, it is not feasible at present to integrate a
global ocean general circulation model to reach equilibrium with
mesoscale (i.e. 50 — 100 km) resolution (McWilliams, 1998). This is the
degree of resolution required to assist in the management of the ocean

ecosystem.
3.1.2. Short- to medium-range ocean forecasting.

Ocean modellers can shorten the costly model computations required to
reach true equilibrium by forcing the ocean model using forecasted
atmospheric constituents that directly affect it, giving the model the

ability to enhance its forecasting skill on a much shorter time scale.

The ocean receives energy through its air-sea interface in the form of
kinetic (i.e. the momentum flux) and potential energy (i.e. the turbulent-
and radiative heat and freshwater fluxes). The surface winds blow over
the ocean and drive not only the clearly visible surface waves, but also
the large-scale currents in the upper ocean layer. At the same time, the
temperature of the near surface atmosphere will modulate the SST via
vertical heat fluxes. The interplay between air temperature, SST and
their difference makes up a major part of the global air-sea interaction.
As with temperature, salinity variations are primarily determined by air-
sea fluxes that can change the buoyancy of the fluid. Evaporation
leaves salt behind and increases the salinity of the surface seawater,
while precipitation decreases it. Like temperature, salinity has a
significant effect on the thermohaline circulation. Because of such
dependencies on air-sea fluxes, short- to medium-range ocean
forecasting models rely entirely on the provision of an accurate

representation of these surface boundary conditions in forecast mode.

Apart from providing valuable initial information, high quality air-sea
fluxes together with basic meteorological variables are also needed to
assess the model's forecasting skill. Such estimates must be associated

with a realistic error assessment and specification of the true resolution
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of the data. This quality need also be reflected in the resolution of air-
sea fluxes in both temporal and spatial terms. The required spatial
resolution very often varies according to the application: from coarse
resolution global scale models running over centuries, to eddy resolving
models over a few decades. For many global and regional applications in
the coming years, monthly means on a 1° by 1° grid are sufficient
(Taylor, 2000). However, the number of applications which have finer
temporal and spatial requirements is rapidly increasing as ocean model
resolution increases with available computer power. The demand for
high-resolution momentum fluxes is most pressing, and in order to
accurately resolve the wind stress curl (being the primary forcing of
ocean gyres) a spatial resolution of at least 50 km is required. Heat
fluxes having a similar resolution would allow a good resolution of the

gradients across major oceanic currents.

With regards to temporal resolution, Taylor (2000) recommends the use
of three-hourly winds as forcing fields for ocean models if short-term
fluctuations of the wind stress is to be resolved. In the case of heat

fluxes, six hourly to daily values have been recommended.
3.2. Data sources for fluxes and related variables.

The basic set of air-sea fluxes needed to drive ocean forecasting models
include the net heat input by solar radiation, the non solar heat flux
(the sum of the sensible, latent and infrared heat fluxes), the wind
stress vector; the wind stirring, the evaporation rate, the precipitation
rate, the river runoff and sea ice-melts (when applicable). Additional
required surface variables are the SST, sea surface salinity, ocean
albedo, surface wind speed, air temperature and specific humidity at
specified height, mean sea level pressure, cloud fraction, sea ice
coverage and growth rate. According to the forcing method used, other
parameters such as exchange coefficients and all variables entering the
determination of the stability of the air column may also be required to

calculate air-sea fluxes.
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Air-sea fluxes can be estimated either directly or from bulk

parameterisation formulae using basic air-sea state variables.
3.2.1. Direct flux observations.

The direct estimation of air-sea fluxes requires dedicated field
experiments (Taylor, 2000), and as a consequence has so far led to few
estimates of large-scale flux fields. Rather, direct estimation is used to

develop, calibrate and verify alternative estimation methods.

Direct flux estimates in the Mediterranean sea are scarce. During
March-April 1998, a significant survey was carried out to measure
fluxes in a restricted part of the Gulf of Lion (Hauser et al.,, 2003). As
part of the Project “Flux, Etat de la Mer, et Teledetection en Conditions
de fetch3! variable” - FETCH, the survey made comparisons between
buoy and ship turbulent fluxes measurements using different

approaches.

3.2.2. Parameterisation of fluxes.

Air-sea fluxes can also be estimated using empirical correlations
between fluxes and sea- and air-state basic variables. These
correlations are called bulk formulae and can be used to determine heat
and momentum fluxes from their relationship with basic variables. The
same formulae are applicable whether the basic variables have been
measured in situ, using orbiting sensors or have been calculated by a

numerical atmosphere model.

A key issue of this indirect approach is the validity of the
parameterisations. The availability of different bulk formulae to
estimate specific air-sea fluxes result in different estimations.

Taylor (2000) discusses this discrepancy for the parameterisation of

31 http://dataserv.cetp.ipsl.fr/ FETCH/ HTML/INFO_DATA/ VAGUES/FETCH_VAGUES. html
{accessed on 01.11.04).
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turbulent heat fluxes and found clear differences in the standard
deviations of the variability of the heat fluxes derived using a different

traditional bulk formulae.

The parameterisation of the turbulent heat fluxes (i.e. the latent and
sensible heat fluxes) is based on the relationship between basic
meteorological variables such as 10 m wind speed, air and sea surface
temperatures and humidity. Despite years of research, uncertainty still
exists as to the behaviour of these bulk formulae at wind speeds

- exceeding 10 m s'! (Taylor, 2000).

The coefficients used by bulk formulae include the drag coefficient value
for the calculation of wind stress (Large and Pond, 1981, 1982; or
Smith, 1980, 1988), and the Stanton and Dalton coefficients Cuiom and
Ceiom for the calculation of the sensible and latent heat flux
respectively. The right value for these coefficients is still debatable; for
example, a constant Dalton number of 1.32 + 0.07 was recommended
on the basis of several turbulence-based datasets where the highest
wind speed is 4 m s1. Smith (1989) suggests a constant “consensus”
value (103 Cgiom = 1.2 £ 0.1) for winds between 4 and 14 m s-1. The
Humidity Exchange Over the Sea (HEXOS) experiment results
(DeCosmo et al., 1996) suggest a near constant value with (103 Cgiom

=1.12 + 0.24) for winds up to 18 m s-1.

Parameterisation formulae that are currently used to obtain the
radiative heat fluxes are considered to be relatively crude, relying on the
estimate of cloud cover to characterise the effects of cloud on the fluxes.
Satellite based estimates use measurements of the top-of-the
atmosphere radiation, and Radiative Transfer Models (RTMs) to
estimate the surface value. Atmospheric models use simplified RTM
schemes for computational efficiency. However, at present the limiting
factor in most models is the representation of clouds and their radiative
effects, where low level stratiform clouds are often poorly modelled
(Taylor, 2000). T
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3.2.2.1. Improved parameterisation using new bulk formulae.

The limited accuracy of the parameterised fluxes becomes unacceptable
for the study of the coupling behaviour of the ocean and atmosphere.
Along with improved instruments and further experimental studies,
new bulk formulae aimed at incorporating better physical descriptions

of the transfer process have been developed.

These improved bulk formulae differ from the traditional approach in
several ways. Typically, the momentum roughness length z,, (the height
at which the wind velocity extrapolates to zero on the logarithmic wind
profile under neutral conditions), is obtained from a formula that takes
sea state into account. The roughness lengths for temperature and
humidity are in turn calculated from z, by considering the transfer of
heat through the interfacial boundary layers. Generally, the flow over
the ocean is smooth for a 10 m wind speed below about 2 m s-! and
fully rough above 8 m s!; between these limits there is a transition

regime.

Liu et al. (1979) propose the “surface renewal theory” by including the
interfacial sublayer at the air-sea interface. In this interfacial layer, of
the order 1 mm thick, molecular diffusion plays a significant role in the
transport. Across this interfacial layer, small eddies of air transfer heat
randomly and intermittently between the “bulk” turbulent fluid and the
surface itself which therefore warms or cools by conduction from the
eddies. This model approach provides an improved method to account
for physical conditions that are known to affect the air-sea exchanges
by the inclusion of the effect of stability and interfacial conditions in

bulk parameterisation.

The application of traditional bulk formulae has led to a much-

. improved space and time data coverage when compared to the much
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limited coverage provided by direct flux measurements. This is further
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supported by the fact that the determination of basic variables is
generally more accurate than the determination of the fluxes

themselves.
3.2.2.2. Sources of basic geophysical variables for bulk formulae.

Main sources for operational’? sea-state variables include (1) in situ
measurements from buoys and ships, (2) from remote sensing, and (3)

from numerical weather prediction.
(i) In situ operational measurements.

Operational in situ measurement of basic variables is done by Voluntary
Observing Ships (VOS), ocean weather ships and buoys. The quality of
these measurements has changed throughout the years as
improvements have been made to the instrumentation. This is the case

for the measurement of SST and wind (Folland and Parker, 1995).

VOS have offered routine meteorological and sea surface parameters for
decades (CLIVAR, 1996). Sub-surface temperature profiles are obtained
by means of expendable bathythermographs on board commercial
vessels. However, the sampling limitations of ship data are obvious
when compared with the flux coverage generated by Numerical Weather
Prediction (NWP) models (White and da Silva, 1999). VOS
measurements are ideal in generating climatological monthly means,
which have been found to be well correlated with fluxes generated by

NWP models over most of the global oceans.

For the purpose of operational ocean forecasting, such variables need to
be supplied from the areas of interest in a quasi-real time, consistent
mode. For this reason, buoy measurements become the only effective
sources but their cost is prohibitively high for deployment in large

numbers. Most buoy arrays are located near coasts such as the NDBC

47



and AES buoys off North America, and the ODBS off Japan (Taylor
2000). Although primarily established for weather forecasting and
nowcasting purposes, these buoys have also been used for calibration of
remotely sensed data from satellites, such as SST (Reynolds and
Marisco, 1993), altimeter wind speeds and wave heights (Gower, 1996},
scatterometer wind data (Geshelin and Dobson, 1997) and passive
microwave winds (Wentz, 1997). Currently, there is no Mediterranean-
wide operational buoy network, but one such localised network exists in
the Aegean coastal areas. Moored buoys deployed near coasts are of
limited value for ocean model initialisation because of the

characteristically high SST gradients commonly found in such areas.

Operational buoy arrays have also been deployed in the open sea such
as the Tropical Ocean-Global Atmosphere (TOGA) array (McPhaden
et al.,, 1998). However, global coverage of the oceans is still not feasible
given the resources required (McPhaden et al., 1998). “Flux buoys”
which measure all the variables required to estimate the heat,
momentum and radiative fluxes have recently been developed by the
National Science Foundation as part of the World Ocean Circulation
Experiment (WOCE) resulting in the improved IMET system (Weller and
Taylor, 1998). Such buoys are more expensive than conventional ones,
but the deployment of a good number of these buoys is being favourably

considered by the GOOS programme33,

Drifting buoys provide marine data away from shipping lanes and are
used for adjusting the meteorological and oceanic satellite calibration.
The accuracy of buoy data varies, but is usually better than + 0.5 °C,

and is significantly better than ship data (Reynolds, 1999).

(ii) Remotely sensed measurements.

* That is instantaneous collection for model analyses, initialisation and model
diagnostics/ verification. S b

33 http:/ / www.gosic.org/ goos/ Ocean_climate_observations.htm (accessed on

01.11.04).
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Satellite remote sensing provides the most practical means to provide
such datasets. Basic air-sea state variables are being made available by

a number of orbiting satellites, including the:

¢ NOAA series of polar-orbiting satellites;

¢ The Defense Meteorological Satellite Program (DMSP);

e Geostationary meteorological satellites operated by NOAA (GOES),
Japan (GMS) and Eumetsat's METEOSAT;

e The European Space Agency’s ENVISAT;

e RADARSAT-2;

o TOPEX/POSEIDON;

o JASON-1;

e Coriolis/WindSat

e SAGE III/Meteor-3M satellite mission is a joint partnership between
NASA and the Russian Aviation and Space Agency (RASA);

o ORBVIEW 2 / SEAWIFS;

e Nimbus-7, Earth Radiation Budget Instruments;

e TRMM, AQUA and TERRA satellites;

e Earth Radiation Budget Satellites, Earth Radiation budget
experiment;

e Indian Research Satellites IRS;

¢ Sich-2/0kean-O oceanographic research satellite;

e The European Space Agency's past ERS-1 and ERS-2;

e The Japanese Advanced Earth Observing Systems, such as MOS
1/1b (1987-1996; still ongoing), and

e SeaWinds on ADEOS-2.

In general, each orbiting sensor has its own strengths and weaknesses
regarding the volume sampled, frequency of measurement, the
parameter measured, spatial coverage, instrument accuracy and
external (non-meteorological) influences on the measurements. The
most important criterion for flux determination is the required

consistency of flux and/or meteorological basic variable data over time.
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The following is a description of the remotely sensed geophysical

variables that are relevant for the present study.

(i) Sea surface temperature.

Accurate global retrievals of SST from AVHRR have been available on an
operational basis since 1981 (Reynolds, 1999). Walton et al. (1998)
reviewed the accuracy of the various algorithms used to retrieve SST
from AVHRR. Their results showed that the root mean square (RMS)
accuracy, when compared to drifting buoys, has improved from 0.8 °C
in 1989 to 0.5 °C in 1998 with a bias between —0.2°C to +0.4 °C. They
also showed that the sensor calibration is susceptible to changes in
atmospheric transmission effects due to changes in aerosol loading of
volcanic and aeolian origin. However, the main source of error for the
AVHRR is the instrument calibration accuracy, thus requiring

continuous quality control assessment against drifting buoys.

A similar, but overall better performance infrared radiometer, is the
Along Track Scanning Radiometer (ATSR). Barton et al. (1995) described
the validation of the ATSR sensor on board research vessels, quoting an
absolute accuracy of 0.1 °C, and the SST measurement as close to
0.2 °C in accuracy after correction for reflected sky radiation and
surface emissivity. It has been suggested that the ATSR may be used
both as a source of SST data and as a source of calibration data for the
wider swath AVHRR instrument. ATSR has improved sensor stability
and built-in calibration systems, but is also prone to interference

coming from cloudy pixels. Another limitation is its 500 km wide swath.

It has long been recognised that passive microwave radiometry offers a
solution to the above-mentioned cloud and aerosol contamination
problems. This is because at frequencies below 12 GHz, the surface
electromagnetic radiation is proportional to the SST and since
microwaves can penetrate clouds w1th httle attenuatlon a clear v1ew of

the sea surface under all weather cond1t1on except rain can be obtalned
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Remotely sensed SST using passive microwave radiometry is also made
available by orbiting satellites such as the TRMM spacecraft. It carries
the TMI sensor that has a full suite of microwave channels ranging from
10.7 GHz to 85 GHz, with a swath width of 760 km, and pixel resolution
ranging from 6 to 50 km. TMI is the first in a series of satellite
microwave radiometers that measures SST under nearly all weather
conditions. Wentz et al. (2000) describe the accuracy of the TMI-
retrieved SST, showing an RMS difference between the daily averaged
buoy and satellite SSTs ranging from 0.5 to 0.7 °C. The presence of
precipitation and high wind speeds negatively affect the accuracy of
passive microwave radiometry and becomes inadequate under such

situations.
(i) Humidity.

Various kinds of satellite observations are providing information about
moisture fields like clouds, precipitation and water vapour. One of the
most widely used rainfall estimation techniques is the GOES
Precipitation Index based on the work of Richards and Arkin (1981).
This estimate has the advantage of having a high horizontal resolution
of about 8 km in mid-latitudes with a temporal resolution of about

30 minutes.

Humidity data from the Special Sensor Microwave [mager (SSM/I) have
a spatial resolution ranging from 12.5 to 25 km and temporal resolution
of twice a day. Their combination with the visible and infrared database
retrieved by Geostationary Operational Environmental Satellite (GOES)
provides a better representation of hydrometeorological variables
(Manobianco et al.,, 1994). Wentz and Spencer (1998) propose an
efficient method for the physical retrieval of precipitation rates from
SSM/I, described as a unified ocean parameter retrieval algorithm that

also diagnoses total integrated water vapour, cloud water and wind
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speed. The RMS difference between the SSM/I water vapour retrieval

and radiosondes is about 5 mm for rain rates from 1 to 15 mm h-1.

Jones et al. (1999) used a neural network algorithm to obtain monthly
averages of humidity. Input to this algorithm were the integrated
precipitable water vapour and SST extracted from the Surface Marine
data provided by da Silva et al. (1994a-¢) and the monthly averages of
SSM/I brightness temperatures on a 1° by 1° grid. The global RMS error
stated was 0.77 g kg1 with smaller errors in the North Atlantic and in
the North Pacific (0.6 g kg'!) and larger errors in the southern Indian,
Pacific and Atlantic Oceans (1.2 g kg-!) reflecting the small observation
density in the da Silva dataset for these regions. Comparison of these
methods to independent in situ measurements is however needed to

evaluate this method more carefully.
(iii) Marine winds.

Satellite instruments capable of measuring wind speed and direction

include scatterometers, altimeters and passive microwave radiometers.

Wind vector estimates from scatterometers are based on empirical
relationships relating back-scattered energy to wind speed at 10m
under neutral conditions. Scatterometer data are now available from
numerous sources, each using different model functions. The accuracy
of scatterometery is relatively excellent compared to errors for winds
from VOS. Validation of the European Remote Sensing Satellite (ERS)
scatterometer wind retrievals for example, shows a systematic
underestimation of nearly 0.75 m s! and an RMS error of around

1.3 m s'! (Graber et al., 1996).

The Wentz (1997) all weather algorithm is a physical approach to
retrieve wind speed from passive microwave sensors measurements in
rain free situations, with an error of 0.5 m s°! against collocated in situ

data.
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(iv) Surface air temperature.

Currently, there are no means to estimate the surface air temperature
from satellite measurements, but indirect methods have been
developed. A very simple method is to assume slightly unstable
conditions at any location at any time and set Ta=Ts-1, where Ta is the
surface air temperature and Ts is the SST (Schulz et al, 1997). The
results of Wells and King-Hele (1990) show that most of the observed
air-sea temperature differences in the tropical oceans are of the order of
1°C. However, if instead of the assumed unstable conditions, stable
conditions occur, the error in surface air temperature estimation could
lead to an underestimation of the exchange coefficient for latent heat
flux (using bulk parameterisation) by around 50% (Schulz et al., 1997).
Another simple method is to compute Ta from the retrieved air specific
humidity assuming a constant relative humidity of around 80%
(Liu, 1988) or using a climatological relative humidity. However, this
might be too rough an estimate to derive the sensible heat flux using

bulk parameterisation.

Alternatively, surface air temperature can be measured using the
empirical relationship between the total precipitable water obtained
from SSMI/I measurements, the near-surface humidity (Liu, 1986), and
AVHRR multi-channel SST. Using this approach, the estimated root
mean square error of satellite-derived air temperature is around 0.53 to

0.56 °C when compared to TOGA TAO buoys (Jones et al., 2003).

Jones et al. (1999) described a method to derive monthly means of Ta
from SSM/I measurements of total precipitable water and SST analysis
from NCEP using neural network techniques. The network was trained
with data extracted from the Surface Marine Data provided by da Silva
et al. (1994a-¢).
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(v) Longwave radiation.

Global measurements of the outgoing longwave radiation (olwr) at the
top of the atmosphere is one of the longest series of data retrieved by
the 10-12 um infrared channels onboard the NOAA operational
satellites (Ohring et al, 1984). However, this dataset has not been
widely accepted because its estimation is based on theoretical
calculations rather than direct measurements. It has been noted that
this estimation technique is prone to systematic errors of the order of
20 W m= or larger in geographical regions characterised by stable
temperature and moisture profiles over extended time periods (Ellingson
et al.,, 1989a; Gruber et al.,, 1994). Oh (1998) attributes this inaccuracy
to the geographically restricted air temperature profile on which the
algorithm has been trained and tuned, and as a consequence
systematically displays low values in subtropical high-pressure regions
(such as the Mediterranean basin), and high values over daytime desert
regions. Ellingson et al. (1989b) proposes an olwr estimation technique
based on radiance measurements from the High Resolution Infrared
Sounder (HIRS). This technique gives much smaller RMS errors when
compared to the AVHRR technique, presumably because it uses more

spectral information than the AVHRR.
(u) Salinity.

Observation of ocean salinity from space has been identified as a high
priority for the Global Ocean Data Assimilation Experiment (GODAE)
requirements. Despite its importance, such observations are not yet in
operation (Taylor, 2000). Yueh et al. (2001) describe how microwave
remote sensing can be used to derive global maps of surface salinity
with acceptable precision, but which still represents a challenge to be

implemented.

An Interesting mission is the European Space Agency's Soil Moisture

and Ocean Salinity (SMOS) mission, scheduled for launch in early
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2006. SMOS will be able to observe ocean salinity with an accuracy of
0.1 psu every 10 days at 200 km spatial resolution (Berger et al., 2002).
AQUARIUS is another mission that is being developed by NASA which
focuses on the provision of global sea surface salinity maps to resolve
missing physical processes that link the water cycle, the climate, and

the ocean.

3.2.3. Climatological datasets.

The most extensive historical compendium of basic variables and
related fluxes is the Comprehensive Ocean-Atmosphere Data Set
(COADS) which, besides having individual observations, also contains
monthly summaries (Woodruff et al., 1998). This dataset3* also includes
sets of COADS-derived fluxes (da Silva et al., 1994a-€).

Another useful climatological reference is the Southampton
Oceanography Centre surface flux climatology directory (Version 1.1),
which contains climatological monthly mean values of air-sea fluxes on
a global grid in netCDF format. The fields have been derived from the
COADS1a (1980-93) dataset enhanced with additional metadata from
the WMO47 list of ships (WMO, 1993).

The Global Precipitation Climatology Project (Huffman et al.,, 1997)
offers global maps of long-term mean values of flux data collected by in
situ and satellite observations. Output from numerical weather models
has also been merged with the data as part of data assimilation

Processces.

Another climatological database, with a resolution of 2.5° by 2.5° in
latitude and longitude, covering a 17-year period from 1979 to 1995 is
the CPC Merged Analysis of Precipitation (Xie and Arkin, 1997). This
database consists of monthly precipitation in addition to a variety of

satellite sensor measurements, gauge observations and model

3% http://www.cdc.noaa.gov/ coads/ coadsla.html (accessed on 01.11.04).
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reanalysis conducted by National Centers for Environmental Prediction
(NCEP) in collaboration with the National Center for Atmospheric
Research (NCAR).

3.2.4. Modelled NWP datasets.

Three major weather and climate centers are involved in producing
atmospheric reanalysis on the global scale. These are the Goddard
Space Flight Center (GSFC), the Data Assimilation Office (DAO), NCEP
in collaboration with NCAR and the European Center for Medium Range

Weather Forecasts (ECMWF).

NWP models serve users interested in many different phenomena and
different forecast lengths. In operational ocean forecasting, the interest
lies in making available continuous, fine spatio-temporal, short- and
medium-range forecasts of near surface parameters and fluxes that can
be used as both initial and driving fields for ocean forecasting models
(Taylor, 2000).

The most recent atmospheric models are now very comprehensive and
contain sophisticated physical parameterisations to predict a large
number of processes in the atmosphere, such as the exchange of
radiation at the Earth’s surface (Pan, 1999), and air-sea energy fluxes.
In addition, they also include advanced data assimilation schemes used
to provide an optimal initial atmospheric state on the basis of previous
forecasts and real-time (in situ and satellite sensor) observations. It has
been claimed that when coupled to data assimilation schemes,
numerical weather prediction models can provide realistic forecasts of
the air-sea fluxes with an unprecedented temporal and spatial coverage

of the entire global ocean surface (Atlas et al., 1996).

There are many advantages when using these numerical atmospheric
models to determine air-sea fluxes, the major one being their irnproved

schemes to calculate the transfer coefficients during the estimation of
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the surface fluxes. Their surface parameterisation schemes have been
modelled on the current knowledge of the characteristics of the lowest
layer of air near the sea surface. The high vertical resolution offered by
these atmospheric models, for example, permit the application of the
Liu et al. (1979) surface renewal model based. Unlike bulk formulae
with constant transfer coefficients, these models are able to include the
effects of stability and interfacial conditions that are applicable in
approximately stationary and horizontally homogeneous moderate wind

speeds.
3.2.4.1. NCEP’s Eta model.

The Eta model is an operational limited area model with a variety of
unique features in its numerical formulation. One such feature is the
viscous sublayer model (Janjic, 1994) that is able to sufficiently resolve
and improve on the transfer coefficients for the estimation of air-sea
fluxes. Other unique features include its algebraic conservation of
energy in transformations between the kinetic and potential energy in
both space and time differencing (Mesinger, 1984, Janjic et al.,, 1995},
and numerical treatment of lateral boundary conditions (Mesinger,
1977). Special features of the model’s comprehensive physical package
include its modified Betts-Miller convection scheme (Janjic, 1994) and
Fritsch-Kain scheme (Mesinger et al., 2002); its Mellor-Yamada level 2.5
turbulence closure (Janjic, 1996a) and its prognostic cloud water/ice

scheme (Zhao and Carr, 1997).

The Eta atmosphere model was originally designed using primitive
equations based on the hydrostatic approximation. It was used in an
operational way in June 1993 as the short-range North American
forecast model at the NCEP (then known as the National Meteorological
Center). The decision to use this model was based upon extensive
experimental evidence obtained for validation during the initial stages of
development (Mesinger et al, 1988). At that time, the horizontal grid
spacing was 80 km and it had 17 layers in the vertical. The model has
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been implemented in three geographical regions: North America, Europe
and the tropical regions of Australia. In 2000, a new non-hydrostatic
Eta version was released for the NWP community (Mesinger, 2002).
Consequently, the model can now be applied for high resolution, small-

scale atmospheric prediction of around 1 km or even less.

Substantial testing, tuning and further development of the model has
been carried out by NCEP. The model has also been implemented in the
tropics, over Europe and the Mediterranean basin, as well as in many
other geographical areas all over the world using varying resolutions
and integration domain sizes. An interesting feature of the model is that
little re-tuning is needed when horizontal resolution is changed. Table
3.1. shows the application of the Eta model by some Mediterranean
research and weather forecasting agencies. One successful application
in this region is its use as part of an oil spill early warning system in

the Mediterranean (RAMSES project) with a 4 km grid spacing35.

A review of the results of numerical experiments (Black and Janjic,
1988; Mesinger et al.,, 1988; Mesinger and Black, 1989; Black and
Mesinger, 1989; Lazic and Telenta, 1988; Lazic, 1990) suggests that the
Eta model is competitive with other sophisticated regional models using
similar resolutions, and requiring about the same computational effort.
Moreover, these experiments document the ability of this model to
improve predictions when the grid resolution is increased. At the same
time, the flexibility of the parameterisations allow further tuning and
refinements. The Eta model was tested by Papadopoulos et al. (1997) to
assess the surface and radiation parameterisation schemes for different
model grid resolutions, which was found to be dependent on high
resolution permanent and semi-permanent datasets. A major
improvement was the revised Betts-Miller scheme over the oceans and a
new flexible viscous sublayer scheme, in addition to improving the
Mellor-Yamada level 2 and level 2.5. (Janjic, 1994). Recent updates

include the revised land-surface physics and updated cloud package (in

35 http://ramses.esrin.esa.it/ (accessed on 01.11.04).
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2002) and the inclusion and updating of the Kain-Fritsch scheme (in
2003).

Programmes/ NWP model Domain size Sources
Agencies ]
SKIRON Eta NCEP, MM5 Mediterranean University of Athens
and a nested http:/ /forecast.uoa.gr/
model
RAMSES Eta NCEP Mediterranean 1CoD; ESA/ESRIN;
and nested SPOT Image
models over small | http://ramses.esrin.esa.it
areas
CYCOFOS Eta NCEP Mediterranean Oceanography Center,
and a nested DFMR, Nicosia, Cyprus
model http:/ /www.ucy.ac.cy/cyo
cean/New/index.php
DREAM Eta NCEP Mediterranean ICOD
and nested http://www.icod.org.mt/
models over small modeling/index.htm
areas
REAL TIME Eta NCEP Mediterranean Tel Aviv University
WEATHER http:/ /earth.nasa.proj.ac.i
PREDICTION 1/dust/current/dust.html
SYSTEM,
TEL AVIV
UNIVERSITY

Table 3.1. Application of the Eta model by Mediterranean research and
weather forecasting agencies.

Additional packages that are applicable to the air-sea surface fluxes
include the Geophysical Fluid Dynamics Laboratory (GFDL) radiation
scheme that simulates the radiative atmospheric effects, which include
interactive random overlap cloud effects. This scheme is relatively
efficient because it uses extensively, pre-calculated values of various
parameters (look-up tables) with no effect on accuracy. The model
contains the entire column of climatological and seasonally varying
ozone and COz along with the appropriate absorption coefficients. This
is being currently updated by a real-time ozone reanalysis derived from
NCEP (Nickovic 2000, personal communication). Recent changes were
also made to the scheme reflecting a more precise estimation for the
total energy entering the atmosphere in order to simulate the aerosol

effects.
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Studied phenomena produced by the Eta model (Pielke, 2001) include
the forecasting performance of quantitative precipitation, moisture
transport impacts and basin/sub-basin budgets, land surface
phenomena, in particular vegetation and soil moisture/water transport
impacts, the effect of topography on the choice of the vertical
coordinate, tropical cyclones and other studies. However, no studies
have addressed the accuracy of its modelled air-sea fluxes (Mesinger,

2002 personal communication).

3.3. Technical approaches in operational ocean forecasting.

3.3.1. Coupling of atmosphere and ocean models.

Forcing an ocean model with climatological air-sea flux estimates often
results in an unrealistic prediction of ocean surface fields, such as the
SST. For example, the attempt of Rosati and Miyakoda (1988) to drive
an upper ocean global model with specified climatological wind-stress
and heat flux showed that the predicted SST could be significantly
different from the climatological SST used in the calculation of the flux.
In their analysis, they question the utility of such climatological forcing.
In addition, the absence of any interaction between their ocean model

and the atmosphere also accounted for the drift of the model SST.

A solution to minimise these errors lies in coupling ocean and
atmosphere models together. This necessitates the use of forecasting
atmosphere models that generate oceanic surface fluxes to drive the
ocean model underneath. This setup is termed as “one-way
atmosphere-ocean coupling” and can be further elaborated by using the
oceanic model’s parameterisation schemes to adjust some of the driving
forces that have been generated by the atmosphere model. This is

termed “two-way atmosphere-ocean coupling” or “full coupling”.
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A surface flux-type thermal boundary condition allowing for a one-way
coupling of an ocean model to a prescribed atmosphere was first
proposed by Haney (1971). However, in spite of 30 years research, it is
only recently that some progress has been made in this field. Barnier
et al. (1996) still express the need to understand the dynamics that
drive the general circulation of the ocean by investigating the response
of ocean models under the action of a prescribed atmosphere. Holland
and Bryan (1994) for example, emphasised the difficulty of
parameterising oceanic fluxes and in turn adjusting the resulting heat

flux through evaporation.

Recently, the European Union has funded project DEMETER for
ECMWF to introduce global coupled ocean-atmosphere models36. The
coupling has had a beneficial impact on the Center's short and medium

range forecasts and development is still ongoing3’.

An excellent example of a one-way coupled system is the Regional
Ocean Forecasting System (ROFS, Ver. 3.6)38. This system is based on a
hydrodynamic ocean circulation model developed jointly by the National
Weather Service’'s Environmental Modelling Center, the National Ocean
Service’s Coast Survey Development Lab, Princeton University and the
US Navy. This three-dimensional model produces 24-hour simulation of
temperature, salinity, surface elevation and current for a region off the
East Coast of the United States. The model is driven at the ocean
surface boundary by heat, moisture and momentum fluxes provided by
NCEP's Eta atmospheric forecast model. The ocean model is driven
along its open boundaries by climatological estimates of temperature,
salinity and transport. The spatial resolution of the model varies from

approximately 20 km offshore to about 10 km inshore.

36 http:// www.ecmuwf.int/ research/ demeter/ general/index.html (accessed on
01.11.04). - . . D e e L o ,
37 http:/ / www.ecmuwyf.int/ about/ special_projects/ bengtsson_ocean-atmosph-
num.expt/ (accessed on 01.11.04).

38 http://polar.wwb.noaa.gov/ cofs/ Description.html (accessed on 01.11.04).
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3.3.2. Development of local area, high resolution coupled model

systems.

The continuous progress in computer science and technology is
strongly reducing the computational burden of coupled model systems
(Warner and Seaman, 1990). The way forward was demonstrated during
1991 by the European Center for Medium Range Weather Forecasts
(ECMWF), when it improved its nominal 1.125° by 1.125° horizontal
resolution model over 19 pressure levels of 1987 to the 60 km
resolution over 31 levels. This improvement allowed a much better
representation of orographic and related processes during model

simulation.

Small-scale forecasting systems working with grid spacing as small as
S5 km horizontal resolution are much dependent on initial information at
mesoscale level as to maintain both a high forecasting skill and to allow
the boundary layer to evolve more realistically. However, the limited
availability of atmospheric data, necessary to initialise and update the
atmospheric component of the forecasting system, seems to remain the
main obstacle that prevents an increase in the grid resolution in
operational models. Recently, measures have been taken in this
direction to start implementing Local Area Models (LAMs). These models
are usually nested inside regional or global forecasting models that
provide the initial and the predicted boundary conditions for their
nested LAMs (Buzzi et al., 1994; Paccagnella et al., 1994).

The existence of a global and of at least one regional, or “limited-area”
forecasting system is now a current feature in all operational weather
and oceanic research centers. Yet, the purpose of using a LAM output
can be radically different (Mesinger et al., 2002). For example, LAMs can
serve both to keep contamination at the lateral boundaries as far away
from the region of interest as possible (Laprise et al., 2000); and to

improve prediction of large-scale motion (Mesinger et al., 2002).
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3.3.3. Temporal and spatial resolution of ocean variability.

An ocean model with the necessary spatio-temporal resolution can help
oceanographers understand this spectrum of variability. However, the
space/time spectra of ocean variability are, in general, poorly known at
present. The oceanic response to the short temporal atmospheric
variability for example, is not well documented, but it is common
knowledge that the diurnal cycle and several-day variability associated
with synoptic weather systems are considered to be the major sources
of short time scale variability in the upper ocean (Schott and Leaman,
1991).

Basin-scale SST variability, for example, very much depends on the
scale at which it is observed and/or forecasted (Price et al., 1986). It
may have spatial scales set by the atmosphere alone or by a
combination of atmospheric and oceanic processes. Vertical advection,
can also give rise to small-scale variability with longer persistence times

than the variability associated with similar scales in the atmosphere.

The vertical resolution can also pose problems in the model's
representation of the boundary layer. Since the model treats the fluid
within each layer as a homogeneous parcel, the degree of resolution
determines the effect which physical processes may have on the model
parameterisations and ultimately on the final representation of the
boundary layer. In general, the greater the number of layers defining
the boundary layer, the closer to reality the representation is likely to
be.

To date, there are remarkably few published studies on the influence of
varying the resolution of ocean models on the accuracy of predicted
fields (McWilliams, 1998). Studies show that a horizontal grid spacing of
more than 50 km is enough for the simulation of water mass
distribution, but a resolution of up to at least 10 km becomes

mandatory to simulate mesoscale eddies and intense, narrow currents
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credibly (i.e. with qualitative similarity to observations). Recently, the
US Naval Research Laboratory has embarked on a project to provide
accurate, very high resolution, 4-dimensional descriptions of the coastal
ocean environment at horizontal resolutions of 10 m to 1 km, vertical

resolutions of around 1 m, and temporal scales of hours to days3°.

At present, eddy-resolving ocean models can only be used for intervals
as long as decades and domains as large as basins, whereas coarse-
resolution models are suitable for centennial and millennial
fluctuations and the approach to equilibrium in global domains.
Although growing computer power will narrow this division, it will take
at least a decade, and perhaps much longer, before eddy-resolving
models will have a greater role in large-area ocean forecasting
(McWilliams, 1998).

Again, a major drawback in the use of small-scale ocean models is the
lack of high frequency spatial and temporal observations needed to
verify predicted features at even up to 4 times a day. Such a frequency
of observations is only obtained from a restricted number of locations
around the globe. This is certainly not the case for the Mediterranean

arca.

3.3.4. Approaches in model verification.

Forecast verification is an essential component of any ocean forecasting
system, since it is the process by which the degree of correspondence
between forecasts and observations is assessed (Murphy and Daan,
1985). It establishes the credibility of forecasting systems, which in turn
is increasingly required in an era when programme benefits must be
demonstrated. Brown et al. (2002) argued that the science of verification
is undergoing major changes and development, as standard methods
have been found not to meet the needs associated with high-resolution

gridded forecasts. .

39 http:// www7320.nrissc.navy.mil/ html/ vhr4d/ (accessed on 01.11.04).

64



In practice, traditional forecast verification has generally consisted of (i)
calculating quantitative measures of one or two aspects of forecasting
performance such as bias, accuracy or skill and (ii) drawing conclusions
regarding absolute and/or relative performance on the basis of

numerical values of these measures (Murphy, 1997).

The main element that defines which forecast fields or specific
numerical schemes can be verified rests on the availability and type of
collocated observations. The availability of raster-based remotely sensed
observations partly satisfies this criterion, making comparisons of data
sets of particular geophysical parameters relatively easy (Murphy and
Winkler, 1987).

The evaluation of model accuracy has traditionally been subjective, with
the forecaster using the experience to develop opinions about the
model’s accuracy. This can be done via simple visual comparisons of
graphical plots representing the model output and observations.
However, these comparisons can be misleading since they often contain
personal biases and impressions, and as models become more complex
and change more frequently, a more objective means of evaluating
model performance is required. As a result, model accuracy assessment
tools have evolved to provide an objective measure of model skill that
can be used by forecasters. The end product is an objective summary of
model accuracy and/or related errors that include both systematic and

random ones.

The objective assessment of model accuracy is always constrained by
the limited representation of the model forecasts in relation to the
corresponding atmospheric and oceanic truth. Specifically, model
forecasts represent both fluids as a discrete array of area-averaged
values as opposed to the continuous fields found in the real world,
which in turn are weakly represented by satellite sensors and/or in situ

observations or analyses. No matter how sophisticated these
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observations and forecasts become, they will never represent the true

fields perfectly.

3.3.4.1. Statistical measures and model assessment tools.

Different statistical measures can be used in model verification by
assessing the degree of fit between the model output and empirical
data, the most common ones being the root mean square error, the
mean absolute error and standard deviation (Alvera-Azcarate et al.,
2004). Additional statistical measures are used by weather forecasters
to assess the spatial accuracy of their forecasts, including threat score,
equitable threat score, correlation and anomaly correlation (Glahn
et al., 1991). These measures are devised to assess the spatial
occurrence of precipitation against observations derived from rain gauge

stations.

Graphical tools are used to assist forecasters to plot, visualise, analyse
and interpret forecasted data. These tools consist of computer software
ranging from freeware distributions based on UNIX/LINUX
environments, such as the Graphical Display Analysis Systems4C to
well-established commercial GIS products. As Tufte (1983) points out,
graphics gather their power from content and interpretation beyond the
immediate display of numbers. Data plotting can work as an error
detection method by amplifying deviations from an expected pattern.
However, references to the use of GIS display and analysis in the field of

oceanic forecasting are almost non-existent.

3.3.4.2. Exploratory spatial data analysis.

The above-mentioned statistical measures are limited in their ability to
assess spatial similarity between forecasts and observations in an
objective way. This is because common descriptive statistics and

histograms. are unable .to..capture_spatial, relationships and tend to

40 http:/ / grads.iges.org/ grads/ head. html# SOFT (accessed on 01.11.04).
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simplify forecasts that have a large amount of spatial detail that needs

verification.

According to Brown et al. (2002), high-resolution models need to be
given a proper evaluation that measures their operational capabilities. It
may be necessary to rely more on diagnostic measures such as entity-
based techniques, pattern recognition and other scientific techniques,
which are more appropriate for finer scales. The latest approaches in
exploratory spatial data analysis and GIS analysis can be an extremely
useful to assess the temporal and spatial accuracy of model forecasting
systems. Understanding the variation of spatial scales as an index of
forecasting performance presents a challenging and unexplored field in
ocean forecasting. More specifically, the use of Exploratory Spatial Data
Analysis (ESDA) can describe and visualise spatial distributions,
identify atypical locations (spatial outliers), discover patterns of spatial
association (spatial clusters), entity classification using pattern
matching (Brown et al., 2002) to evaluate the displacement between
forecast and observed entities and to decompose the error into various
components (e.g., displacement, pattern, volume); and suggest different
spatial regimes and other forms of spatial instability (Anselin, 1999) in
the output fields of atmosphere and ocean models. The bottom-line
approach to be mimicked objectively is visual verification, which is able
to consider all of the attributes of interest, but unfortunately is labour
intensive and subjective. These new methods (e.g., event- or object-
based approaches) can provide a more complete picture of forecast

performance.

Techniques that can evaluate the spatial similarity between forecasts
and collocated observations can be a very useful for the forecast
verification. Holt et al. (1998) define spatial similarity as “the spatial
matching and ranking according to a specific context and scale”. 1t is
governed by context (function, use, goal), scale (coarse or fine level),
repository (the application, local domain, site and data specific),

techniques (the available technology for searching, retrieving and
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recognising data) and measure and ranking systems. Here, the degree
of match is the score between the forecast (source) and the observation
(target), where both can be a pixel, region or coverage. The principles
that govern spatial similarity are not just the attributes but also the
relationships between two phenomena. By further developing and
applying the much-needed tool of spatial similarity in oceanic
forecasting, this approach can serve as an organising and exploratory
tool. Here, spatial phenomena are classified and clustered, relationships
identified and generalisations made from previous experiences or
knowledge.

3.3.4.2. Geostatistics.

Apart from map drawing/overlaying and doing statistical and GIS
operations on the spatial information, ESDA requires a third
component: statistical analysis to compute spatial models. Spatial
modelling of observations (often in the form of raster information), and
the continuous, and highly resolved model output fields can be done
using variogram modelling. Since Curran (1988) introduced the
application of geostatistics techniques in a remote sensing context, the
variogram is now widely adopted for modelling the spatial variation for
remote sensing applications, such as soil mapping (Dubayah et al,
1997), biomass estimation (Atkinson and Curran, 1995), and landscape
pattern (Turner et al, 1991). According to Treitz (2001), variogram
analysis offers the advantage of relating some key descriptors to the
spatial characteristics of the maps or their residuals. Understanding the
spatial characteristic of maps or residuals constitutes the first step in a
geostatistical study, which is usually followed by structural analysis
(determining the spatial correlation or continuity of the data) and
interpolation (kriging or simulations to predict values at unsampled
locations). For the purpose of model verification, empirical studies of
the semi-variogram plots of residuals is often sufficient to analyse the
variability between forecasts and observations. The shape of a semi-

variogram, for example, may be fitted with a model, of which the range
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and sill are two parameters that describe the spatial variation. The
range generally indicates the extent to which values sampled from
spatial process are similar. The height of sill relates to the spatial
variability of images. Variography is another method used to analyse
spatial variability by improving the visibility of spatial structures on

variograms of both raw and transformed data.

Exploratory spatial data analysis is still an unexplored branch of
applied statistics for the ocean forecasting community. This is clearly
the case for the Mediterranean Forecasting System (MFS) where the
impact of data assimilation techniques and the use of real-time
observations is being assessed using standard verification measures
common to the NWP community. These measures include short-term
prediction misfit (SPM), RMS difference from the reference runs as a
function of time and from verification data sets. Model errors will be

tackled using an Ensemble Kalman Filter41.

3.4. State of ocean forecasting in the Mediterranean.

Over the past few decades, the Mediterranean basin has been identified
as a suitable test area for the understanding of processes associated
with the ocean general circulation. A review of the relevance of the
Mediterranean physical oceanography in a global context is given by the
Physical Oceanography of the Eastern Mediterranean (POEM) Group
(POEM, 1992). These studies have shown that the circulation of the
Mediterranean is composed of many subbasin-scale features which may
be relatively permanent, recurrent, or intermittent (Robinson et al.,
1991; Millot, 1991). The formation mechanisms for these features are
complex and can generally be assigned to surface wind stress, surface
thermohaline fluxes and accompanying water mass formations,
inflow/outflow through the Strait of Gibraltar, and bathymetric control.

The surface wind stress is also subject to orographic control and is

*1 http:// www.cineca.it/ mfspp/ workpackages/ des_wp4.html (accessed on 01.11.04).
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strongly modified near the coasts, in straits and near the higher and
larger islands. Korres et al. (1997) observed that intense atmospheric
variability over the Mediterranean at seasonal and interannual time
scales makes the heat and momentum budget at the air-sea interface

strongly interannual.

3.4.1. Type of ocean forecasting models.

A good number of general circulation ocean models have been used to
study and simulate the circulation of the Mediterranean Sea. Out of
these, the two most popular and widely used models are the

Mediterranean Modular Ocean Model and the Princeton Ocean Model.

3.4.1.1. The Geophysical Fluid Dynamics Laboratory - Modular
Ocean Model (GFDL-MOM).

The GFDL-MOM was developed by Pacanowski et al. (1990). It is a
three-dimension primitive equation model that has been wused
extensively by Korres et al. (1997) to simulate oceanic circulation in the
Mediterranean using a 9-year NCEP monthly mean atmospheric
analysis fields to drive the model for a hindcast period between 1980-
1988. Detailed analysis of various experiments performed can be found
in Pinardi et al. (1997).

Pinardi et al. (1997) used a basic formulation of the GFDL-MOM with a
0.25° by 0.25° horizontal resolution and 31 levels in the vertical
dimension. The model dynamics were nudged against climatological
datasets of temperature and salinity. The driving surface forces for the
ocean model were monthly mean atmospheric parameters, retrieved
from NCEP analyses and monthly mean cloud cover from COADS. The
model was initialised with additional climatological data coming from
the comprehensive historical data set (Brasseur et al.,, 1996) collected

for the Mediterranean and integrated over an 11-year period.
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Raicich (2004) also used MOM with a higher, 0.125° by 0.125°
horizontal grid spacing and 31 vertical levels and forced by ECMWF
6-hr operational analysis to simulate temperature and salinity

variability in the Mediterranean Sea.
3.4.1.2. The Princeton Ocean Model (POM).

This model was developed in the late 1970’s by Blumberg and Mellor,
while several subsequent contributions were made by others. The model
has been applied to several coastal (Orlic et al.,, 2004) and estuarine
regions as well as to open oceans, and sometimes used with an
embedded ecosystem model structure embedded within the ocean

model (Chai et al., 1999).

POM is a three-dimensional hydrodynamic, primitive equation ocean
model, which includes a turbulence sub-model. It uses curvilinear
coordinates in the horizontal dimension, while in the vertical dimension
a terrain following o-coordinate system is used. Parallel to the
integration of the 3-D equations, a set of depth integrated 2-D
equations are solved in order to calculate the free surface variations.
Temperature, salinity, velocity and surface elevation are the prognostic
variables. The horizontal diffusion terms are evaluated using the
Smagorinsky (1963) horizontal diffusion formulation. The vertical
mixing that this submodel parameterises allows for the formation of a
fairly realistic, seasonally varying, mixed layer and can, in principle,
model the formation of relatively saline intermediate water by the

thermohaline fluxes42,

Working at fine model domains, POM is able to reproduce eddy
dynamics that play a major role on the circulation field especially in the
synoptic time scale. The prognostic variables are the sea level elevation,
the three components of velocity, temperature and salinity, turbulent

kinetic energy and turbulence macroscale. The last two parameters are
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part of the turbulence closure scheme that provides realistic

parameterisation of vertical mixing (Mellor and Yamada, 1982).

Zavatarelli and Mellor (1995), Horton et al. (1997), Drakopolous and
Lascaratos (1997), Brenner and Rosentraub (2004) are among those
who have used POM to understand the Mediterranean Sea general
circulation and its sub-basins. Zavatarelli and Pinardi (1995) used POM
to simulate the ocean circulation in the Adriatic Sea, while Lascaratos
and Nittis (1998) and Brenner and Rosentraub (2004) concentrated on
simulating the circulation of the Levantine Sea, Aegean and part of the
Ionian basins. The latter's computational grid had a horizontal grid
spacing of around 5 km and covered the entire area of Levantine Sea.
Surface forcing consisted of monthly mean climatological wind stress,
atmospheric pressure and heat fluxes based on the 15-year ECMWF
reanalysis. Lateral boundary conditions at the open boundaries were
specified from the eighth year of a climatological simulation with the

MFSPP full Mediterranean model.

The POM model is now an integral part of the forecasting systems of the
RAMSES, COMPASS43, CYCOFOS and POSEIDON. Its integration grid
spacing ranges from 0.25° by 0.25° to 0.02° by 0.02° in the horizontal
dimension. The model is being currently combined with biological
models in the Gulf of Trieste (Adriatic Sea) as part of the MFS

initiativet4,

3.4.2. Operational ocean forecasting systems.

In the Mediterranean, a small number of research and development
centers perform one-way forcing of ocean models to produce and
disseminate daily ocean forecasts. Operational programmes such as
SKIRON/POSEIDON of the Marine Research Center of Greece and the
COMPASS of the Euro-Mediterranean Centre on Insular Coastal

42 - Detailed ~ technical~ -~ information” ™~ on~ POM ~ is available ~at

http:/ / www.aos.princeton.edu/ WWWPUBLIC/ htdocs.pom (accessed on 01.11.04).
¥ http://www.icod.org.mt/ modeling/index.htm (accessed on 01.11.04).
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Dynamics each have a one-way coupled, atmosphere-ocean modelling
system configured to provide high-resolution air-sea surface flux
forecasts over predefined regions in the Mediterranean basin. In order
to achieve the best possible temporal resolution in the area of interest,
the systems usually apply two different forcing fnodel configurations.
The first simulation is performed by a regional atmosphere model run at
coarse horizontal resolution (such as 0.25° by 0.25°9 and using
boundary conditions from a global model (Nittis et al., 2001). Its better-
resolved “regional” forecast is then used to provide the initial and
boundary conditions for the finer nested atmosphere model (such as
0.10° by 0.10° in horizontal resolution) situated well within the regional

integration domain.

The operational ocean forecasting provided by RAMSES incorporates an
operational forecasting oil slick forecasting system based on COMPASS’
one-way coupled regional (0.25° by 0.25° grid) and nested (0.042°¢ by
0.042¢ grid) atmosphere-ocean model system that provide 5-day, high
resolution meteorological and marine forecasts of predefined areas to
predict the movement of potential oil slicks. The RAMSES consortium
partners involved are ESA/ESRIN, SPOT Image and ICoD.

The Mediterranean Forecasting System (MFS) is also currently
providing, on an operational basis, weekly forecasts of surface currents,

sea surface temperature and salinity4>.

Ongoing development of the operational ocean forecasting at ICoD
(through Project COMPASS) include the improvement of its atmospheric
model by using (1) input data containing ozone fields up to 10 kPa, (2)
new cloud physics scheme, (3) the full coupling of an aerosol
atmosphere model as to better resolve attenuation of radiation due to
aerosols, and (4) full two-way coupling with ocean model (Nickovic,

personal communication, 2002).

4 http://www.bo.ingv.it/ adricosm/ bullettin. html (accessed on 01.11.04).
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Products tailored for ocean forecasters can also be obtained from major
European weather agencies such as MeteoFrance*® and ECMWEF.
However, their forecasting system can be considered as a “closed”
system, which delivers products according to defined, customer-

oriented requirements.

3.5. Challenges in ocean forecasting in the Mediterranean.

3.5.1. Major technological and information gaps.

One of the main challenges in the region is the provision of useful
operational forecasts addressing socio-economic and environmental
needs*’. In this respect, one of the main tasks of EuroGOOS is to speed
up the process of validating forecasting models and to transfer them to
operational agencies. Once there, efforts are needed to engineer the
modelling procedures into a robust, operational form that can cope with
the data flow and delivery. However, there are many problems still to be

solved, especially in the area of data assimilation.

The overall strategic objective of the EuroGOOS that deals with

numerical ocean forecasting is:

“To develop, test, implement and upgrade the most efficient
numerical models for those marine variables and parameters
which are of highest priority for users of operational forecasts; to
identify and compare the best modelling systems for different
variables, regions, and scales; to develop the most efficient data
assimilation methods for operational ocean modelling and
forecasting”.

(EuroGOOS, 2004)

45 http:// www. bo.ingu.it/ mfstep/ (accessed on 01.11.04).
% http:// www.meteo.fr/ e_index. html (accessed on 01.11.04).
7 http:/ / www.eurogoos.org/index.php (accessed on 01.11.04}.
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One of its medium-term objectives is to:

“Implement operational models in ... the Mediterranean
predicting hydrodynamic parameters, chlorophyll, nutrients, water
quality, primary productivity, suspended sediment load, coastal
sediment transport, and coastal erosion”.

(EuroGOOS, 2004)

In 2002, EuroGOOS identified nine main priorities (EuroGOOS, 2003)
including (1) the advancement and implementation of a marine
monitoring and forecasting system, (2) the establishment of operational
forecasting suite, (3) the implementation of regional systems based on
local and regional user requirements, and (4) the technical development
for marine monitoring, forecasting, nowcasting and hindcasting. These
priorities are based on the results of the most complete survey and
analysis so far conducted by EuroGOOS of the full-range of potential
customers and their preferences for marine operational data (Fisher and
Flemming, 1999). The aim of the EuroGOOS Requirements Survey
(ERS) was to identify the classes of applications and uses for
operational data on the marine environment, to identify what products
and ocean-state variables are required, and to define the accuracy,
resolution, space and time scales and forecast periods of these

products.

The survey showed that there were not more than 20 physical
parameters which are most frequently required by users of operational
data. Out of these, wind, waves, tides, meteorological forcing of the sea
surface, storm surges, currents, temperature and salinity are being
requested. There are wurgent requirements for biological and
sedimentological parameters which cannot yet be reliably modelled in

an operational mode.

One important result is that 53% of all fe‘spori'c{enfs reqﬁesfed variables
connected to the sea surface. Out of this proportion, surface current
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Another approach is the

“construction of coupled atmosphere-ocean regional model over the
Mediterranean area. Techniques for coupling with extended range

atmospheric simulations should be assessed”.

3.5.2. Model initialisation and data assimilation using accurate,

real-time observations.

In ocean forecasting, the goal of data assimilation is to obtain the best
possible initial estimate of the changing ocean. This has much in
common with modern numerical weather forecasting, but because
observations are much sparser in the ocean and the memory of the
ocean is much longer than that of the atmosphere, challenges for data
assimilation and prediction tend to be substantially greater that those
in the atmosphere. These challenges encompass a rich variety of
problems including computing and networking, accuracy analysis of
observations, numerical formulation of partial differential equations,
statistical analyses and descriptions of the atmosphere and ocean, and
the interpretation of ocean data. This is particularly true for the

Mediterranean area, where operational forecasting is still in its infancy.

During the last decade, a number of investigations gave rise to a more
accurate initialisation and assimilation of atmosphere and ocean
models using real-time remotely sensed data. Met-ocean parameters
such as TMI-derived latent heat (performed by the ECMWF), marine
winds (Krasnopolsky and Gemmill, 2001), satellite altimeter data
(Gavart et al.,, 1999) and moisture fields (such as integrated water
vapour) retrieved from microwave sensors (Kuo et al.,, 1993) have been

assimilated into mesoscale numerical atmosphere and ocean models.

The MFS initiative is also addressing this challenge by encouraging the
setting-up and testing of near-real“time acquisition and processing of

remote sensing data serving as prototypes for future implementation of
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operational ocean forecasting. It recommends the use of near-real time
remote sensing, such as altimetry, SST and ocean colour data since
these provide unique data sets for the setting up of such a system. One
of the main objectives of MFS is the development of an SST product that
is operationally retrieved from the AVHRR sensor on NOAA satellites.

The Ocean Circulation and Prediction Team at LEGOS48, Toulouse, has
been developing data assimilation methods and conducting data
assimilation experiments in the Mediterranean in order to study and
help predict the large scales and the mesoscale circulation in the
region. Observations such as altimeter and temperature profiles are
being assimilated. Three different assimilation algorithms have been
developed and tested (1) a reduced-order sequential optimal
interpolation scheme, (2) an adaptive filter scheme, and (3) an ensemble
forecasting scheme based on the Monte-Carlo method (De Mey and

Benkiran, 2002).

3.5.3. Assimilation of SST in ocean forecasting models.

Ocean surface temperature is one of the most significant boundary
conditions for the general circulation of the atmosphere. The ocean
exchanges vast amounts of heat and energy with the atmosphere and
these air-sea interactions have a profound influence on the Earth’s
weather and climate patterns. SST is also very sensitive to changes in

the ocean circulation.

The surface temperature is also considered an important prognostic
ocean model field and an ocean model output of primary interest. For
these reasons, data assimilation schemes that blend SST observations
with ocean model dynamics have become well established (Bell et al.,
2000). In the case of short-range oceanic forecasts, the initial surface
boundary condition can be provided from timely remotely-sensed SST,

which is kept constant throughout-the-forecasting period.-However, the

*® http:// www.obs-mip.fr/ omp/umr5566/ english/index. htm (accessed on 01.11.04).
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assumption that the observed SST field does not change significantly

with time is not a reasonable one for medium- to long-range forecasts.

There are two main sources of SST for data assimilation. The first being
historical climatological monthly mean analyses such as the CAC
analysis (Climate Analysis Centre, Washington DC) as used by
Castellari et al. (1998) to assimilate SST in an ocean circulation model.
This source was obtained from a combination of ship opportunities and
satellite data (Reynolds, 1982) and is available in two datasets: one for
the period 1970-1981 on a 2° by 2° grid, the other for the period 1982-
1988 on a 1° by 1° grid.

The other source is real-time, remotely sensed SST. Horton et al. (1997),
for example, assimilated night-time 8 km MCSST by nudging the
dynamic model fields in an optimal interpolation based analysis. The
accuracy of SST was then stated as being 0.7-0.8 °C. Assimilation of
SST derived using a multi-channel sea surface temperature (MCSST)
algorithm was done at constant depth levels by redefining the
temperature and interpolating the appropriate model variable from the
ocean model's sigma levels to levels of constant depth. Once the
assimilation is performed the new values are interpolated back to the
depth of the original sigma coordinates. During the assimilation period
the original model values were replaced by the modified ones at the
surface, by using the model's embedded surface mixed-layer, and
propagated down to the base of the mixed layer. The assimilation of
MCSST for high resolution ocean forecasting presents an interesting

challenge in order to adapt and optimise this method.

The MFS project is currently studying the impact of assimilating near
real-time SST. Daily AVHRR NOAA-14 night data over the western
Mediterranean Sea are being acquired and computed weekly (median
value) with a resolution of about 2 km, and then averaged with a
resolution of 0.125°. Over'the eastern-part of the sea, AVHRR - NOAA-15

night and morning data are acquired and a daily average is computed
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with a resolution of 0.125049. After the two main datasets are
normalised, an entire SST dataset is produced every week and a weekly
mean calculated using data from the previous week. SST is interpolated
over the whole Mediterranean Sea on the model grid of 0.125¢ by 0.125°

using objective interpolation.

No research is being carried in the Mediterranean addressing the
potential of using microwave-derived SST as (1) a source of initial
surface boundary conditions for, and (2) to dynamically adjust the fields
of small-scale, high-resolution ocean and atmosphere models. The
availability of such data provides an opportunity to study the impact of
assimilating this dataset on the model predictions of ocean forecasting

systems.

3.5.4. Optimising remotely sensed SST observations for oceanic

forecasting.

In the last decade there has been an advance in obtaining more precise
measurements of remotely sensed SST, fundamentally because of its
great importance in detecting climatic changes (Hamad et al.,, 2004) and

operational oceanic forecasting (D’Ortenzio et al., 2000).

However, research is still underway to develop efficient and accurate
techniques to accurately measure SST from space. This is mainly driven
by the high accuracy that is required by researchers studying climate
change and ocean circulation. The stated accuracy of SST for climatic

studies, for example, has been reported to be 0.3 K (Barton et al., 1989).
(i) SST measurement at infrared wavelengths.
The retrieval of SST from Earth-orbiting infrared radiometers is the

technique of marine remote sensing which has had the widest impact

on oceanographic science-(Barton;-1995)::InfraRed (IR} sensors-such-as

49 http://www.cls.fr/ html/ oceano/ projets/ mfspp/processing_en.html (accessed on
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AVHRR, on polar orbiting and geo-stationary meteorological satellites
have provided routine observations of SST for over two decades.
AVHRR has proved to be extremely useful in support of meso-scale to
basin-scale ocean studies. Among the reasons for this include the good
correlation with in situ data, high resolution and the wide network of

data retrieval and distribution.

Various SST retrieval techniques have been proposed. The easiest way
to accurately retrieve SST from the sensor radiances is by processing
the data at the different sensor wavelengths. In a review of techniques,
Barton (1995) showed how this differential absorption is exploited by
SST algorithms for thermal IR radiometers. There are three classes of
SST algorithms using thermal infrared data: (1) the most extensively
used “split-window” algorithm (McMillan and Crosby, 1984) which uses
the AVHRR wavelength of channel 4 (with a wavelength at 10.3-11.3
pm) as the lowest order estimate of SST and the difference channel 4
minus channel S (with a wavelength at 11.5-12.5 pm) brightness
temperatures to correct for the atmosphere; (2) the “dual-window”
algorithm, which uses the channel 4 brightness temperature and the
difference of channel 3 (with a wavelength at 3.55-3.93 pm) minus
channel 4 brightness temperatures to correct for the atmosphere, and
(3) the “triple-window” algorithm, using the channel 4 brightness and
the difference of channel 3 minus channel 5 brightness temperatures to

correct for the atmosphere.

The MCSST was NOAA/NESDIS’s first operational procedure since the
early 1980’s when data from the AVHRR were first available (McClain
et al., 1985; McMillan and Crosby, 1984). This most widely used
(McClain, 1981) and globally routine (McClain et al., 1985) solution is
obtained from a set of linear equations under the assumption that the
channel atmospheric or brightness temperatures are equal. The
relationship between the split-window value and the actual SST is

derived by regression against a global‘set of in-situ'SST-data.

01.11.04).
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Minnet (1991) showed that the accuracy of MCSST is around + 0.3 K for
dry atmospheres and + 1.0 K for moist atmospheres. The errors are
due, in part, to satellite calibration and precision, variations in surface
emissivity (for which the sea is assumed to have an emissivity value of
1.0), and the linear assumption of the split-window technique. However,
a number of shortcomings have been documented that limit the

accuracy of the MCSST algorithm. These are primarily:

(a) Least-squares fit of “skin’ radiances to ‘bulk’ SST measurements.

The linear regression coefficients used for the MCSST algorithm are
derived from a least squares fit of radiance data with in situ SST data
from ships and drifting buoys. Ship SST values, however, were found to
have large biases due to the heat in the engine rooms where the
temperatures were recorded. In an effort to achieve consistency, the
comparisons with the in situ data were restricted to the use of data from

drifting buoys only (Strong and McClain, 1984).

In the case of buoys, SST measurement do not take place within the
thin radiative ‘skin’ of the ocean that is viewed by the infrared
radiometers from space (Grassl, 1976; Schluessel et al., 1990). Instead
SST values are read from 0.5 m to a few metres below the surface of the
ocean - referred to as ‘bulk’ SST. The difference between the ‘bulk’ and
‘skin’ temperatures is evident, arising from the varying interactions
between the air and sea interface (Robinson et al, 1984). MCSST
neglects the difference between this bulk and skin SST. The skin SST is
preferred estimate for the calculation of air-sea fluxes (Schulz et al.,
1997).

(b) Use of global data sets to derive algorithm coefficients.

NOAA's split-window coefficients~are*~derived from a global data set
match-up of buoy-derived SST (McClain et al., 1985). The use of
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extracted correlation coefficients therefore has to be taken with caution
when used to retrieve regional (such as Mediterranean) SST data,
especially under regionally-specific climatic conditions (Coll et al., 1994;
Shenoi, 1999). When analysed, Llewellyn-Jones et al. (1984) found
deviations of 0.4 K when the coefficients extracted from a global match-
up datasets were applied to a mid-latitude data set. The author
concluded that the use of global linear algorithms for regional SST
retrieval is not recommendable, because a certain degradation of the
results is expected in small areas, where the coefficients may be
inadequate and inaccurate. This applies particularly to ocean regions
where there is a lack of in situ data sets at adequate resolution and
frequency against which IR brightness temperature data is regressed.
This is the case for regions such as the central Mediterranean Sea
where only historical climatological datasets exist, and where buoy

stations are absent.

(c Use of a ‘first guess’ state of atmosphere

The MCSST algorithm assumes a ‘first guess’ of the state of the
atmosphere for which the SST retrievals will be accurate. In this case,
the atmosphere has a typical vertical arrangement of water vapour and
temperature. All algorithms will give good SST estimates as long as the
atmospheric state is equivalent to their first guesss0. The improvements
and success of a global algorithm would then depend on how best it can
represent the ‘average state’ of the atmosphere and how much variance
it can tolerate. Deviations from this first guess could then give errors in

the estimation of SST (Barton, 1995).

In areas like the Mediterranean, the atmosphere comes under the
influence of seasonal winds and its atmosphere is often highly stratified
in the lowest few kilometers from the surface. Hence, the atmospheric
state is most likely to be different from the ‘first guess atmosphere’ and

is likely to result'in errors in SSTs'retrieved using global algorithms:
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Water vapour is a good example of an atmospheric component that is
not evenly distributed on a regional or global scale. The total water
vapour content in the vertical column, i.e. the precipitable water W,
may change from 0.5 g cm for high latitudes to about 6 g cm2 for the

equatorial regions (Arbelo and Herrera, 1995).

Ways to refine “split-window” algorithms have been explored by
different researchers. A good number of alternative algorithms have
been proposed in the last decade or so (a review is found in Prata et al.,
1995) that provide a correction for the above discrepancies. Recent
work (Harris and Mason, 1992; Sobrino et al., 1993; Ulivieri et al., 1994,
Yu and Barton, 1994; Francois and Ottle, 1996) showed that surface
temperature retrievals may be significantly improved by incorporating
additional information in the algorithm reflecting realistic regional
atmospheric and oceanic conditions. Improved algorithms include the
satellite-measured ‘skin’ SST (or satellite-measured surface “skin”
temperature, (SMSST) routine (Schluessel et al.,, 1987), a water vapour
sea surface temperature (WVSST) routine (Emery et al, 1994), a non-
linear ‘split-window’ algorithm (NLSST) and a cross-product sea surface
temperature algorithm (CPSST) derived by Walton et al. (1998). The
NLSST algorithm is now the one being used operationally by NOAA. The
AVHRR Oceans CoastWatch5! and Pathfinder SST52 algorithms, for
example, are based on the NLSST algorithm.

Both NLSST and MCSST operational algorithms compute their
coefficients by comparisons with selected buoy SST data. Thus they still
represent a mix between the radiative ‘skin’ temperature sensed by the
IR satellite sensor and the ‘bulk’ temperature measured by buoys. As a
result the NOAA algorithms are ‘tuned’ to convert the satellite ‘skin’ SST

observations into estimates of buoy ‘bulk’ SST. In this case, the selected

S0 http://www.rsmas.miami.edu/ groups/ rrsl/ pathfinder/ Algorithm/ algo_index. html
(accessed on'01.11.04). ~ =~ oTromo o ' o
! http:/ / coastwatch.noaa.gov (accessed on 01.11.04).

52 http://www.rsmas.miami.edu/ groups/ rrsl/ pathfinder/ Algorithm/ algo_index. html
{accessed on 01.11.04).
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coefficients reduce the root mean square differences between the
satellite brightness temperatures and the coincident buoy SST values.
On global scales, the algorithms perform with a scatter of about 0.7 °C
and a mean bias of about £ 0.1 - 0.3 °C. However, this does not
guarantee that the algorithms will provide a uniform performance
everywhere; on regional scales, the error usually exceeds these limits.
Again, the use of a global set of coefficients, which may be good for one
geographical area or one season can give poor performance for other

areas or other seasons.

(ii) Alternative approaches to traditional SST retrieval algorithms

from IR radiometers.

As Hagan (1989) points out, the theoretical relation of radiative transfer
equation with the split-window method shows that the ratio of spatial
variation in channel 4 and channel 5 brightness temperatures, Rs4
could be a useful parameter to reduce the errors in SST retrieval. This
ratio has not been used in previous SST satellite measurement research
except by Harris and Mason (1992) who used this ratio to modify the
MCSST coefficients. It can be treated as an independent measurement
because it is a spatial statistical value proportional to the ratio of the
atmospheric transmittance in the two channels. It only requires the
brightness temperatures as single-pixel measurements which represent

the initial surface radiance as well as atmospheric absorption.

Under this concept an SST retrieval method was developed by Yu and
Barton (1994) with a similar form to the linear (MCSST) and non-linear
(CPSST) algorithms, but where the coefficients are not obtained by
regression with in situ data. Yu and Barton (1994) claimed that the
method has the main advantage of saving a large amount of manpower
and material resources of collecting in situ data. In addition, they
showed that this method could give better measurements than the

MCSST products. However, they-pointed -out that further development
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is required before a fully operational system uses this approach to

retrieve SST in areas lacking a match-up database.

A second approach is the use of a split-window algorithm having
coefficients that are optimised for the Mediterranean region. The
optimised algorithm, such as that derived from the CMS Lannion data
set>3 (Coll et al., 1994), can be used to derive regional-specific SST.

A third approach is to perform regression analysis between IR channels
centered at 11 and 12 um and the atmospheric profiles generated by a
radiative transfer model. The coefficient of the SST algorithm can then
be determined synthetically. An alternative approach can be taken by
using, instead of a model, the differential absorption of the two split-
window channels 4 and S due to water vapour (Mathew et al., 2001). In
this case, the corresponding difference in brightness temperature will
give a signature of the atmospheric water vapour profile. With the
availability of calibrated temperature brightness from channels 4 and 5
and collocated SST estimation, the coefficients can be derived
empirically at the pixel level. This approach therefore offers the
advantage of deriving more accurate regression models based on

regional-specific atmospheric profiles.
(iii) Other factors to be considered during SST retrieval.

Of particular concern to the AVHRR-user community are the radiative
effects of high levels of tropospheric turbidity as would happen when
Saharan dust cloud is in residence over the north tropical Atlantic and
central Mediterranean (e.g. Rao, 1992). Dust clouds originating from
Sahara desert are a prominent feature of the climate of the desert and
its bordering regions (fig. 3.4). The main reason for this concern is the
error introduced in the retrieved SSTs by the absorption and emission
of IR radiation by atmospheric aerosols (Kaufman et al, 1997); in

addition the enhanced diffused’ réfléction of ‘solar radiation by aerosols
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turbidity. Similarly, Barton et al. (1989) suggest that under ‘clear’
conditions (surface meteorological range: 23 km), maritime aerosols
could contribute approximately 0.2 °C to the depression of channel 3

radiance.

To understand the impact of aerosols, information on their variation
and the spatial distribution is required, often expressed by the optical
thickness or mass concentration. At least information should be
available on the presence of aerosols when infrared radiances are being
used to derive SST. Additional information on the degree of aerosol
absorption, scattering properties, vertical profiles, size distributions,
and compositions can assist image processors to calibrate with more
certainty AVHRR radiances. However, infrared radiance data during
extreme events should be discarded and instead, alternative sensors

that are insensitive to atmospheric aerosols should be used.
(iv) SST measurement at microwave wavelengths.

Data from satellite-borne microwave radiometers have become
extremely useful and important for studying the modelling and
forecasting skills of ocean and atmosphere models. Their capability to
simultaneously measure ocean surface wind speed, SST, sea ice cover,
and vertical profiles of air-temperature and atmospheric water (vapour,
liquid and ice} makes microwave radiometers unique tools for such

research purposes.

The most important feature that makes microwave radiometry so
attractive is that SST can be measured through clouds, which are
nearly transparent at 10.7 GHz. This is a distinct advantage over the
traditional infrared SST observations that require a cloud- and dust
aerosol free field of view. Ocean areas with persistent cloud coverage
_can now be v1ewed on a daily basis. Furthermore, microwave retrievals
ﬁare not affected by aerosols and are insensitive to” dtmospheric- water

vapour. However, microwave retrievals are sensitive to sea-surface
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roughness and raindrops of diameter larger than cloud droplets, and as
a result, SST retrievals are not reliable when rain is present. When rain

is detected at 37 GHz, the SST retrieval is discarded.

Retrieval of SST from the microwave radiances requires that the
influence of atmospheric attenuation and sea surface roughness be
removed from the observations. A physically based retrieval algorithm is
used to remove these effects. When rain is not present, the attenuation
is very small at 10.7 GHz, with 97% of the sea surface radiation
reaching the top of the atmosphere. Using the higher frequency
channels (19 to 37 GHz), the algorithm precisely estimates the 3%
attenuation due to oxygen, water vapour and clouds. The polarisation
ratio (horizontal versus vertical) of the measurements is used to

estimate sea surface roughness.

(a) The Tropical Microwave Imager (TMI).

In November 1997, the TRMM5* spacecraft was launched. One of the
payloads was the TMI sensor having a full suite of channels ranging
from 10.7 GHz to 85 GHz and represents the first satellite sensor that is
capable of accurately measuring SST through clouds. The capability of
measuring SST through clouds has long been a goal of microwave
radiometery. A global SST product unaffected by clouds and aerosols
would be of great benefit to both the scientific and commercial

communities.

TRMM has yielded significant scientific research data over the last
seven years to users around the globe, offering a global dataset
consisting of SST, surface wind speeds derived using two different
radiometer channels, atmospheric water vapour, liquid cloud water and
precipitation rates. TRMM data has aided NOAA, other government
agencies, and other users in their operational work of monitoring and

predicting rainfall and storms;-as-well: as in storm: research. In spite of
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its original 3-year lifetime, NASA has recently announced that it will

extend its operations until at least 2010.

The design of TMI is based on the highly successful SSM/I, which
measures the intensity of radiation at five separate frequencies 10.7,
19.4, 21.3, 37 and 85.5 GHz. The frequencies are similar to those of the
SSM/I, except that TMI has the additional 10.7 GHz channel that is
able to penetrate non-raining clouds with little attenuation, giving a
clear view of the sea surface under all weather conditions except rain.
At this frequency, atmospheric aerosols have no effect, making it
possible to produce a very reliable SST time series for climate studies.
The other main improvement of TMI over SSM/I is its ground resolution
as a result of its lower orbiting altitude of 350 km compared to 860 km
of the SSM/I. TMI has a 780 km-wide swath on the surface. The higher
resolution of TMI, as well as the additional information supplied by the

precipitation radar further helped the development of algorithms.

The empirical retrieval algorithms are derived from a high-quality data
set that collocates the satellite brightness temperatures with buoy-
and/or radiosonde-measured geophysical variables in time and space.
The physically based algorithms use a large amount of such empirical
data for parameterisations (Wentz, 1997) in order to represent a wide
range of global meteorological events. High wind speed events have been
fairly rare in most match-up data sets because wind speeds of gale force
(>17 m s'!) or greater at a given time cover no more that 5% of the

global ocean surface.

Gentemann et al. (2004) showed that the accuracy of SST data derived
by the TMI sensor has a bias of -0.07 °C and standard deviation of
0.57 °C when compared to in situ buoys. Because the brightness
temperature may be influenced as much by temperature effects on the
emissivity as by the variation of black body radiation with temperature,

the re'latlonshlp between SST and biightnéss temperature-is non:linear,

54 TRMM is a joint programme between NASA and the National Space Development
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and frequency-dependent. For surface roughness and atmospheric
effects to be removed, sophisticated algorithms are essential for

accurate retrieval of SST.

Previous microwave radiometers were either too poorly calibrated or
operated at too high of a frequency to provide a reliable estimate of SST.
In spite of its coarse resolution compared to IR-derived SST, the results
for the TMI SST retrievals are quite impressive and have led to improved
analyses in a number of important scientific areas, including ocean
modelling. In fact, its original three-year long mission has been
extended by an indefinite number of years until is expected to hit the
minimum fuel threshold for controlled re-entry. This extension is based
on the popularity of the TRMM sensors with weather forecasters. A
major step forward was made in 2002 with the launch of the AQUASS
satellite (sibling of TERRA) on 4 May 2002. An Advanced Microwave
Scanning Radiometer (AMSR), having an additional 6.9 GHz channel
that will enhance SST retrieval, was launched on board the AQUA
satellite. In 2005, the Conical Microwave Imager Sounder will be a
primary sensor flying on the National Polar Orbiting Environmental
Satellite System. Built on the success of the SSM/I and TMI satellites,
this sounder shall be able to measure the global SST field to an
accuracy of about 0.2°C at a spatio-temporal resolution of S0 km in
3 days (Wentz et al., 2000).

Thanks to the recent suite of orbiting passive microwave sensors, the
availability of a continuous provision of global SST data can be

instrumental to test the following research challenges:

1. provision of initial surface boundary conditions for local area
atmosphere and ocean models.
2. nudging of dynamic ocean model fields towards SST fields prior to

ocean forecasting.

Agency of Japan (NASDA). http://trmm.gsfc.nasa.gov/ (accessed on 01.11.04).
55 http://aqua.nasa.gov/ (accessed on 01.11.04).
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3. derivation of air-sea fluxes from bulk formulae in combination with
other basic variables that are simultaneously derived using the same

sensor (including 10 m wind speed and humidity profiles).

3.5.5. Remote sensing to fine-tune and verify ocean forecasting

systems.

The design and fine-tuning of physical numerical packages for the
accurate prediction of air-sea fluxes is crucial for the reliability of
ocean forecasting system. Although these parameterised processes
occur at small scales, they depend on, and in turn affect, the larger
scale fields and processes that are explicitly resolved by a numerical
model. The details of the parameterisations have a profound effect on
the model forecast, especially at longer time scales, and are therefore

the subject of very intense ongoing research.

Studies addressing the forecasting quality of air-sea fluxes by numerical
weather prediction models (Dekic et al., 1997) as well as the impact
which model resolution has on the resulting forecast quality (Mesinger
2002, personal communication) are scarce. Not all NWP models are
optimised to produce fluxes and the achieved space/time resolution is
not optimal because their parameterisation formulae used are not
adequate. Operational NWP groups very often focus on forecast
performance that is related to atmospheric fields, and operational
changes in physical parameterisations are often made to improve
observable atmospheric fields of importance to weather forecasters.
Their effect on the surface fluxes is not always as carefully assessed,
partly because of a lack of confidence in independent estimates of the
surface fluxes. At NCEP, for example, a change in the operational
analysis/forecast system, while beneficial in many respects, can lead to
a lack of lower boundary forecasting skill in certain areas (Siefridt et al.,
1999). Complaints from meteo-marine forecasters then usually lead to
adjustments” in the pardmeéterisation” schemes of sensible and latent

heat.
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A major hurdle in the fine-tuning and verification of small-scale
forecasts is the lack of high frequency spatio-temporal sampling at up
to 4 times a day. Operational meteorological satellites can now offer
high-resolution and accurate real time data. With a swath width of
about 1400 km, orbiting microwave sensors are providing almost global,
high resolution coverage on a daily basis of geophysical parameters
notably, ocean surface wind speed, ice features, cloud liquid water,
integrated water vapour, precipitation over land and water, snow cover
and sea surface temperature. A single scatterometer of the ERS-AMI
design for example, provides over 90% coverage of the ocean within
96 hrs and with high enough resolution to detect mesoscale variability
of the wind (Zecchetto and Cappa, 2001). A single scatterometer of the
NSCAT design provides coverage over 90% of the ocean within 48 hrs.
The newer SeaWinds design provides over 90% coverage within 24 hrs.
Ocean surface wind speed data are having the most direct use in
marine weather analysis and weather forecasting. Wind magnitude data
derived by the tropical microwave imager are very accurates®¢ with an

RMS difference between the sensor and in situ buoys of 0.84 m s-1.

This availability of global ocean data will allow objective fine-tuning and
validation of numeric parameterisation schemes. Ocean surface wind
speed data, for example, is suitable to fine-tune the model prediction of
air-sea fluxes as well as to generate air-sea fluxes using bulk
parameterisation. Fine-tuning of other schemes is also possible, such
as the cumulus parameterisation schemes contained in the latest
generations of numerical atmosphere models (Gemmill and
Krasnopolsky, 1998) and to improve storm track and hurricane

prediction (Brown et al., 2002).

No studies to fine-tune the prediction of air-sea fluxes generated by the
Eta atmosphere model have been yet been undertaken by operational

forecasting centres in the Mediterraneat.

56 http://www.ssmi.com/ tmi/ tmi_validation. html#wind (accessed on 01.11.04).
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3.5.6. Improving model diagnostic verification for ocean

forecasting.

Standard verification methods for spatial forecasts can only provide
limited information about the quality of these forecasts, especially for
the case of fine-scale models and forecasts. New object- or field-based
approaches show promise for providing information that is more useful

to the ocean forecasting community.

The recent rapid growth in geographic information science has created
new opportunities to use geometric concepts to explore the performance
of ocean forecasting systems. The use of spatial representation in ocean
forecasting by looking for new ways to enlarge its scope and potential is
challenging. Such diagnostic procedures are able to detect temporal
errors that may originate from “out-of-phase” initial model boundary
conditions and model numerics. These errors can be easily confounded
with other errors, especially systematic ones, when standard
verification procedures are instead used. On the other hand, diagnostic
verification is able to characterise such errors from a spatial
perspective. So far, diagnostic verification has been poorly applied for

the improvement of ocean forecasting systems.

Spatial exploratory data considerations such as (1) the degree of spatial
relation or similarity between forecasts and observations (Holt and
Benwell, 1997) at different scales (Savitsky and Anselin, 1997); (2)
analysis of error propagation techniques (Hunter et al, 1999) and
related reliable estimates that can guide forecasters; (3) detection of
patterns in spatial data and understanding of underlying processes
(Longley and Batty, 1996), and (4) spatio-temporal correlation for
multidimensional data (Varma, 1999), are new and exciting challenges
to diagnose ocean forecasting systems. Further development of these

approaches should be pursued (Brown etal:;2002)."
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Ocean forecasting generates demands that can justify the use of
exploratory spatial data analysis with standard commercial
applications. Diagnostic verification tools for ocean forecasting that take

into account spatial data analysis could include:

e the development of spatial similarity indices and texture recognition
techniques to better analyse the relationship between forecasted and
collocated observations,

e improved spatial visualisation and correlative method for oceanic
surface features, and,

e improved analysis of spatio-temporal relations as produced by ocean

forecasting systems.

3.6. Summary.

The goal of operational ocean forecasting is to provide prediction of the
physical sea-state and other related components for a certain time
period. The benefits of having continuous forecasting of ocean

variability at unprecedented space-time resolution are numerous.

In spite of opening up a whole new array of mathematical approaches to
find a “solution” to complex geophysical fields, numerical models still
limit their output to either grid points or spectral basis. Another
limitation is the impact of imprecise information that defines the initial
conditions of numerical models. This chapter showed how very often,
existing numerical ocean models use climatological data to
mechanically force and nudge their numerical fields to produce daily
forecasts. A serious drawback here is that climatological data does not

contain any daily variability.

An important research challenge highlighted by this chapter was the

much-needed progress in the field “of “hodeél ~initialisation tising

accurate, real-time observations. The primary constraint includes a
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number of technological problems connected with the scarcity of
oceanic observations as well as to computational and numerical
limitations. Remote sensing is depicted as being a primary contributor
to data assimilation and initialisation of atmosphere and ocean models,
with particular reference to research in the Mediterranean. Research
gaps exist on the potential use of microwave-derived SST both as a
source of initial conditions and to dynamically adjust the fields of small-

scale, high-resolution ocean and atmosphere models.

This chapter discussed the research work related to the forcing of ocean
models by forecasted atmospheric constituents, which gives them the
ability to enhance the overall forecasting skill over a short time scale.
The evolution of the oceanic variability depends on air-sea fluxes and
thus, short- to medium-range ocean forecasting tends to greatly benefit
by the provision of accurate fluxes that define the model's surface
boundary conditions. Apart from providing valuable initial information,
high quality air-sea fluxes together with basic meteorological variables

can also be used to assess the model’s forecasting skill.

The basic set of air-sea fluxes as well as other surface variables
required for operational ocean forecasting were described in some
detail. Air-sea fluxes can be measured in situ or from bulk
parameterisation formulae using basic air-sea state variables. Another,
much used source is from climatological datasets. This chapter
described the pros and cons of acquiring air-sea flux data by direct
observation and through parameterisation. In the latter case, the
acquisition of accurate basic variables is mandatory where the main
sources for operational5? sea-state basic variables include in situ
measurements from buoys and ships, from remote sensing and from
numerical weather prediction. Emphasis was made on the role of
remote sensing and numerical weather prediction in providing

instantaneous and forecasted geophysical variables respectively. The

57 Instantaneous collection for data assimilation, initialisation and model verification.
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advantages and disadvantages of the three acquisition techniques were

discussed.

Unlike bulk formulae, with constant transfer coefficients, numerical
weather prediction models are able to include the effects of stability and
interfacial conditions, which in addition to their high vertical resolution,
make them excellent sources for air-sea flux datasets. Research shows
that the Eta atmosphere model is a good example of a modern
numerical atmosphere model that is able to simulate and predict
weather phenomena even at mesoscale and microscale level. It is well
tested and tuned at varying resolutions and integration domain sizes
over most of the globe, including the Mediterranean. The chapter gives
an appraisal of its major schemes, pointing out that very few studies
have yet addressed the accuracy of its simulated air-sea fluxes, and the

need therefore, to pursue such a line of research.

The technical approaches in operational forecasting were also presented
in view of their relevance to the present study. The technical
implications and advantages of coupling together atmosphere and
ocean models were discussed, and the drawbacks when using
climatological datasets to force ocean models. Research also shows how
model coupling can also cater for local-area, high-resolution forecasts

by using a model nesting concept.

Studies show that the spatio-temporal resolution of the variability of
oceanic features dictates an appropriate model resolution for their
simulation. There have been few studies, however, on the influence of
ocean model resolution on the accuracy of predicted fields. This chapter
identified a major limitation to fully use small-scale ocean models due
to the lack of high spatio-temporal observations needed to verify model

predictions.

This chapter highlighted "the impértance of diagnostic verification in

order to assess the quality of forecasted data and stresses the
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importance of objective evaluation. It shows how model verification tools
have evolved to provide an objective measure of model skill. Currently,
statistical measures and graphical tools used in model verification are
simple and do not make use of GIS display and analysis. This chapter
stressed the advantages of using exploratory spatial data analysis to
assess the temporal and spatial accuracy of model forecasting systems.
This included techniques such as the analysis of spatial similarity
between forecasted and collocated observations and related
geostatistics. Based on the current research, this chapter suggested
ways to improve diagnostic verification for ocean forecasting and
identifies an increasing need for more analysis that is exploratory,
coupled with the use of Earth observation data. New research
challenges to use descriptive and spatial exploratory analysis were
identified. Such research has the potential to generate new analytical
methods embedded in commercial applications. This review listed down
potentially novel verification tools for ocean forecasting that are based
on spatial data analysis, some of which will be used in subsequent

chapters of this thesis.

The current technical challenges in the field of ocean forecasting in the
Mediterranean were also mentioned, with an emphasis on major
technological and information gaps. This chapter described the current
state of ocean forecasting in the Mediterranean, with particular
reference to the type of operational forecasting systems used in the
region. Results were presented defining the requirements identified by

the ocean forecasting community and end-users of forecasted products.

Finally, this chapter showed how remote sensing can be an extremely
useful tool to fine-tune the numerical prediction of air-sea fluxes.
Studies that verify the skill of the Eta model to forecast air-sea fluxes
are scarce if non-existent. This chapter provided a review of the
strength and weakness of using high resolution SST derived from
infrared sensors to verify oceanforecasts. Alternative’ data calibration

approaches to retrieve SST from AVHRR were discussed, with the scope
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of using them to calibrate scenes from geographical areas that lack
operational, in situ data against which infrared radiances are regressed

and calibrated.
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Chapter 4

COMPILATION OF A DATABASE TO VALIDATE
THE OCEAN FORECASTING SYSTEM.

4.1. Construction of a high-resolution database.

Thanks to the rapid development of information-processing technology,
numerical modelling of the ocean and atmosphere is becoming more
powerful and sophisticated, and can now simulate phenomena from the
micro to the planetary scales. At the same time, such numerical
modelling requires a comprehensive set of collocated data that is

required for its validation.

Remote sensing is especially suited to derive such datasets. While in
situ measurements are limited to data at one or a few points in time,
remote sensing allows the collection of information of extensive vertical
and horizontal domains without disturbing the medium being observed.
On the negative side, remote sensing techniques cannot always provide
precise measurements of the desired meteorological and oceanic
variables. This is the case with some important hydro-meteorological
data, and this limitation is still preventing the use of remote sensing in
this area of research. This inability is made up for using other
alternatives, such as the use of numerical models and bulk
parameterisation to fuse data coming from different sources and derive

unknown derivatives.

4.2. Required geophysical elements.

The objectives set by the present study require a set of collocated,

independent observations to complement the task of validating the high
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spatio-temporal resolution forecasts. This database must provide
suitable temporal and geographical information of the oceanic and
atmospheric variability against which the models’ accuracy can be

assessed objectively.

Due to the fact that no instantaneous, high-resolution air-sea fluxes
over the Ionian basin are available for this study, this database has to
contain enough information as to generate additional products,
including air-sea fluxes. By inserting basic geophysical fields such as
highly resolved collocated wind magnitude and sea surface temperature
into bulk formulae, instantaneous air-sea fluxes can be derived and

used to assess the skill of the ocean forecasting system.

Since the objective verification of the present forecasting system lies on
the accuracy of this database, it also becomes pertinent to test the
accuracy of the derived database. Independent collocated datasets can

be derived from climatological datasets and used for this purpose.

The required geophysical elements for this database®! are the following:

(i) Sea surface temperature.

High spatio-temporal sea surface temperature data are a key variable
needed for the present study to parameterise turbulent heat fluxes as
well as to validate the high-resolution SST forecasts produced by the

ocean model.

For this work, optical- and microwave-derived SST data will be used
separately and jointly, each source with its own strengths and
weaknesses. Whereas high resolution infrared-derived SST is highly
valuable to validate high-resolution SST forecasts, it poses extensive
calibration requirements. The lack of collocated in situ SST over the

area of interest implies that “alternative ‘algorithms need to be adopted

61 Table 2.1 lists the use of these geophysical elements for this research study.
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and used in this study. Microwave-derived SST is provided in calibrated
form by data dissemination centers. However, it can never reach the

same spatial scale as infrared-derived SST.

Monthly climatological SST is used to assess the accuracy of the
remotely sensed counterpart and to identify anomalies during the study

period.
(ii) Oceanic winds.

Apart from validating forecasted oceanic winds, this geophysical field is
required to estimate turbulent air-sea fluxes. Wind speed fields can be
acquired instantaneously from orbiting passive microwave sensors and

are provided in calibrated form by data dissemination centers.
(iii) Surface air temperature.

This parameter is required to calculate the turbulent heat fluxes using
bulk parameterisation formulae and to validate the skill of the

atmosphere model to forecast this geophysical field.

As described in section 3.2.2.2., the acquisition of instantaneous air
temperature poses technical problems. This study will continue on the
work conducted by Schulz et al. (1997) by refining it to reflect the real
climatology of the geographical area under study.

(iv) Humidity profiles.

Parameters such as precipitation rates, the vertically integrated
humidity values of cloud liquid water and precipitable water vapour
provide useful information on the presence of air masses that are

closely related to synoptic scale featurest2. These profiles are used to

52 Liquid water, for example, resides in clouds and is directly related to regions of
precipitation and to active weather systems such as precipitation, storms and fronts
(McMurdie & Katsaros, 1996). A large amount of liquid water is generally associated
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validate collocated convective processes forecasted by the atmosphere

model and to understand the climatology of the area of interest.

The availability of high-resolution, spatio-temporal humidity profiles
also assists in the interpretation of other data residing in the database,
including microwave-derived data, and the differential absorption and
calibration of infrared radiances of the sea surface in the 10 um to

12.5 pm of the electromagnetic spectrum.

(v) Outgoing longwave radiation.

This parameter is required to assess the accuracy of the radiation
package of the atmosphere model. This scheme is computationally-
expensive and is important in the determination of the radiative heat

fluxes.

Section 3.2.2.2. describes the sourcing of this parameter as well as the
strength and weakness of acquisition by remote sensing. Its derivation
is still at the experimental stage (WCRP/GEWEX, 1996) and more work
is needed before reliable estimates of the longwave radiation can be

made available by orbiting satellites (WCRP/GEWEX, 1996).

(vi) Turbulent heat fluxes.

Collocated, high spatio-temporal resolution flux data over the area of
interest are used to validate the same fields forecasted by the
atmosphere model. This high-resolution flux data is estimated by
inserting the basic met-ocean variables collected in the database from
various sources, into bulk formulae. To ensure an objective and sound

verification of the performance of the atmosphere model, these high-

with strong convective activity (cumulus clouds) and turbulent surface weather
conditions, whereas small amounts of liquid water are associated with near neutral or
stable regions (such as stratiform clouds) and constant or steady surface weather
conditions.
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resolution flux products are, in turn, verified against an independent

set of collocated climatological data.

(vii) Aerosol optical thickness.

This information is useful to assess the clarity of the atmosphere over
the area of interest. As described in section 3.5.4., these data are used
to validate model-related performance to forecast the radiative heat flux.
In addition, this data are used to validate the suitability of infrared-

derived SST during episodes of high dust occurrence in the atmosphere.

4.3. Methodology.

4.3.1. Collection of relevant met-ocean datasets and derived

geophysical fields.

4.3.1.1. Instantaneous 10 m wind magnitude, SST and hydro-

meteorological fields.

The Tropical Microwave Imager (TMI) is a well-calibrated sensor and
contains suitable frequency channels for the retrieval of these fields.
Each daily global coverage of the sea surface is organised into seven

ascending and descending datasets as follows:

o Time of data retrieval

e sea surface temperature

e 10 m surface wind speed using 11 GHz
e 10 m surface wind speed using 37 GHz
e integrated precipitable water vapour

e cloud liquid water

e precipitation rate
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(i) Data retrieval.

Daily TMI data covering a full year period (January-December 1999)
was retrieved by ftp from http://www.ssmi.com. TMI data is provided as
binary data and cover a global region extending from 40°S to 40°N.
Each daily data file consisted of fourteen 0.25° x 0.25° grid (1440, 320)
byte maps.

(ii) Data deceding, processing and formatting.

Two fortran codes were written to decode, process and format the TMI
data. The first was the tmi2monthly.f script®3 which read, processed and
re-formatted the binary daily TMI into Grid Analysis and Display
System (GrADS)-format monthly set of sequential daily ascending and

descending data.

Since precipitation induces error in the retrieval of the geophysical
parameters by the TMI sensor (Gentemann et al, 2004), rain pixels
were used to mask off same-area pixels from the other collocated
ascending and descending geophysical field maps. Since valid
geophysical data lay between O and 250, pixels were scaled according to
the calibration information supplied with the data as to obtain

meaningful geophysical fields.

GrADS-formatted TMI monthly datasets using TMI2Zmonthly.f were
visualised to note orbit time and the integrity of the fields over the area
corresponding to the high-resolution domain of the ocean forecasting
system. This enabled the assignment and temporal collocation of the
various remotely-sensed fields to similar field elements that were

predicted by the models.

All fields were arranged into gridded ascii XYZ format. Following the

generation of TM2”mon”cent.gddt filés (whére mon is the month), a set of

63 Appendix I; Section I.1.1.
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gridded ascii XYZ files were produced for all geophysical parameters

retrieved from ascending and descending orbits.

4.3.1.2. Instantaneous very high-resolution SST fields.

This section refers to the calibration of raw AVHRR data in the absence
of collocated in situ SST data. In this study, a restricted choice of
calibration algorithms were considered and evaluated in view of the

constraints presented during this study as described in section 3.5.4.

For this reason, a database was required consisting of high-resolution,
uncalibrated infrared radiances and a collocated SST map. The NOAA
CoastWatch database presents an ideal medium that provides (1) ‘raw’
1.1 km AVHRR temperature brightness data from channels 3, 4 and 5
data and (2) collocated NLSST pixels. This database was extensively
used to compare and derive an optimal calibration algorithm to be

applied over the central Mediterranean.

Figure 4.1 shows a general experimental scheme to assess the
suitability of potential algorithms. Acquisition of suitable data is
described below. The data consists of infrared radiances from AVHRR
channels 3, 4 and 5 together with SST maps derived using the non-
linear SST calibration algorithm. The suitability of calibration
algorithms shown in figure 4.1. is assessed using the final correlation

between the calibrated results and the NLSST maps.

4.3.1.2.1. Data acquisition and archiving.

The following data was acquired and archived:
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(ii) The CoastWatch database.

CoastWatch data covering a period of two years (1998-1999) were
retrieved from the NOAA CoastWatch Active Access System©s for the
South East Coast Node in the United States. This region has been
selected in view of the full availability of data, including in situ buoy
data (NODC) and GOES datasets.

The area of interest extends from (32°N, 73°W) to (37°N, 79°W). The
oceanic area was subdivided into sectors to facilitate data handling and

processing (fig. 4.2).

The CoastWatch database provides NLSST and MCSST products, in
addition to raw AVHRR data. According to the technical documentation
provided by NESDIS%6, the split-window algorithms used by CoastWatch

are as follows:

NLSST = ai1(Ts)+az(T4-Ts)(MCSST)+as(Ts-Ts)(secq-a)-as (3.1)

MCSST=b1(Ta)+ba(T4-Ts)+ba(Ta-Ts)(secq-1)-ba (3.2)

where T4 and Ts are the AVHRR 11 pym and 12 pm channel
temperatures in Kelvin; Secq is the secant of the satellite zenith angle q;
NLSST and MCSST are the non-linear and linear multi-channel SST
respectively, in degrees Celsius; ai-as and bi-bs are constant

coefficients.

85 http:// coastwatch.noaa.gov/ cw_form_cwf.html (accessed on 01.11.04).
56 http://coastwatch.noaa.gov/ poes_sst_algorithms. html {accessed on 01.11.04).
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mage SECTOR
Date D A'BPC’ABCDEFGHIJKLMNOPOQOQRST

1998

Feb_18 | 908

Feb_18 | 910

Feb_18 | 922

Feb_19 | 008

Feb_19 | 012

Feb_20 | 123

Feb_20 | 207

Feb_20 | 211

Feb_20 | 222

Feb_21 | 207

Feb_21 | 211

Feb_21 | 222

Feb_25 | 608

Feb_25 | 611

Mar_14 | 307

Mar_15 | 408

Apr_13 | 308

May_16 | 607

Jun_03 | 407

Aug 23| 507

Sep_05 | 808

Nov_28 | 208

1999

Jan_19 | 1908

Mar_17 | 600

Mar_17 | 607

Mar_23 | 208

Mar_29 | 808

Mar_30 | 900

Apr_l14 | 400

Nov_07 | 100

Nov_07 | 108

Table 4.1. Cloud- and aerosol-free, valid geographical sectors (shaded in
gray) from the South East coast area of the US. Visible and IR data from
these sectors were retrieved during 1998 and 1999.

113



4.3.1.2.2. Assessing the applicability of the Yu & Barton (1994) SST
calibration algorithm.

The mathematical formalism for this algorithm has been developed by
Yu and Barton (1994), hereinafter referred to as YB94. The SST retrieval

algorithm is equivalent to:

To=Tj+ (T:-T) (.1)

Ci—RiG

where T:is channel 4 brightness temperature, T;is channel 5 brightness

temperature and

Ci

= — (4.2)
Ci— RiCi

Y

The coefficient y is a temperature dependent variable. The ratio of the
spatial variation of the brightness temperature in one channel to that in
another channel, R;, is proportional to the ratio of their respective
atmospheric transmittance. This ratio is used to determine the
theoretical coefficient. In order to minimise these effects, a statistical
method was used to determine the ratio as suggested by YB94. The

general approach was as follows:

ATs 3 n*n 715(")—7:5

AL S 1,m)-T,

/N (4.3)

where n*n is the matrix number and S is [g <|Ta(n)-T,

<2D]. D is the

dispersion of each valid pixel value of the 11 pm image from the mean
radiance value of the entire sector, and N is the number of valid pixels.
This selection ensures that the ratio does not include those cases where

Ta(n)-T, is close to zero.
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Coastwatch data with extension *.1c3, *.1c4, *.1c5 and *.1s7 was retrieved
and archived according to date. The software DECCON Version 1.0
(DECompression and CONversion of NESDIS CoastWatch Imagery Files)
was provided by CoastWatch®? and downloaded. The software was
installed and used to decompress, navigate, convert and correct the

above file extensions to the following configuration:

e Raw binary.

e Degrees Celsius.

e O to 31.7 range for channels 3, 4 and 5.
e O to 31.7 range for NLSST.

o Image overlay.

e 255 background colours.

e Graphics embedded.

Using ERMAPPER image processing software (version 5.5), the
uncompressed binary data from each full scene as per ID was imported
into 4 layers consisting of superimposed channel data and NLSST and
saved as a multi-layer *.ers file. The entire geographical area was then
displayed and data from each 1° by 1° sectors were extracted according
to the annotated map shown in figure 4.2. Land pixels were masked
using a formula that was applicable to all 4 layers by assigning a null
value to the range of land pixel values measured. Individual channel
layers and the NLSST layer of sectors with no cloud cover were then
saved as individual *.ers files into separate folders with a 74 by 91 pixel

matrix.

Cloud- and aerosol-free same-sector layers (table 4.1) were exported as
ascii BIL files and imported into statistics software where every sectored
1o by 1° data (AVHRR temperature brightness information and NLSST)

was re-scaled, using coefficients published by CoastWatch, as follows:

57 http:/ / coastwatch.noaa.gov/ cw_software.html (accessed on 01.11.04).
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If ith TBjis null then null
else

TBjy = (0.124 + 273.16)
NLSST = NLSSTc «0.124

where TB;j is the brightness temperature from channels 3, 4 and 5, and
NLSSTc is the values of NLSST included in the raw CoastWatch

datasets.

Following re-scaling, pixels that failed through a simple ratio test, a
gross cloud check, night-time medium/high level cloud test, and a
fog/low stratus test as described by Kriebel (1996) were nulled. Next,
the difference between the individual brightness temperature pixels of

channels 4 and 5 and the mean value derived for that entire sector

[Ti(n)-’i‘i] was calculated. The dispersion was calculated for the total
sectoral data for channels 4 and 5. The differences between valid ith TB4
and TBs, TB4 and NLSST were calculated and the sectoral average

noted.

Each sector dataset was further filtered by assigning null values to
individual brightness temperature pixels from channels 4 and 5

showing greater than the given dispersion range. The number of valid
and nulled pixels were noted. The ratio of individual channel 5 [Ti(n)-’i‘i]

to channel 4 [Ti(n)-’i‘i] pixel values was calculated and noted.

The values C4 and Cs were then calculated according to the following

relation (e.g. in the case of NOAA-14):

C4=(1.438833*929.3323/(TBag) * TBau))*
(EXP(1.438833%029.3323/ TBay)/
(EXP(1.438833*929.3323/ TBag)-1))-(2/ TBan))
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Cs= (1.438833*835.1647/(TBa) » TBs))*
(EXP(1.438833*835.1647/ TBs))/
(EXP(1.438833*835.1647/ TBs@)-1))-(2/ TBsqu))

The averages for C4 and Cs for each sector were noted. The value for y

was calculated for each individual ith pixel according to:

If ith variance is null then null
else

Y = Caw/(Cag - ratio * Cs)

The average sectoral y was also noted. The final SST was then derived

using the following relation:

If TBa4g is null then null

else

SST=(—10.6 + 11.27 * ratio) + TBsu + ( ¥ * (TBaw—TBsp) —
273.16)

where the first term in brackets expresses one of the split-window terms
as formulated by YB94. The average, minimum, maximum, standard
deviation and skewness of the range of SST derived from each sector
were calculated and noted. The difference between the ith NLSST and
the theoretically derived ith SST was also calculated and the sectoral

average was calculated to note accuracy.
The following relationships were investigated:
1. derivation of SST using YB94 vs NLSST.

2. derivation of SST and NLSST vs the difference between these two

values.
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3. Statistical relationship between derived Rss ratios and y values,

with NLSST.

To test the validity of this regional algorithm, valid gridded XYZ ascii
brightness temperature data collected as described in section 4.3.1.2.5.
were converted to StatGraphics format and calibrated using the SST
equation above. sea were calibrated. Valid gridded XYZ ascii brightness
temperature data collected from suitable AVHRR scenes over the central
Mediterranean were calibrated as described in section 4.3.1.2.5. using
the YB94 algorithm. The resulting SST was then statistically compared
with collocated TMI-derived SST scenes using basic statistical

measurcs.

4.3.1.2.3. Derivation of multiple regression models based on the

split window method.

The technique developed here is based on the relationship between the
ratio of the variations of the satellite brightness temperatures derived
from AVHRR channels 4 and 5.

From section 4.3.1.2.2., a look-up-table was produced giving the mean
difference between [TB4-TBs]|, the slope [ATB4/ATBs|, the NLSST and the
total number of AVHRR pixels analysed.

Since the range of mean values for [TB4-TBs] and the slope [ATB4/ATBs]
contain information about the instantaneous atmospheric water vapour
profiles, data rows having the same slope values were grouped together
and archived. From such groups, a list of multiple regression models
were produced using StatGraphics Plus Version 3.0, each tagged to a
specific value of [TB4-TBs] and the corresponding [ATB4/ATBs5].

To test the applicability of this approach over the central Mediterranean
region, valid gridded XYZ ascii brightness temperature data were

converted to StatGraphics format and calibrated using equation 4.4
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above. Suitable channel 4 and 5 brightness temperatures were derived
as described in section 4.3.1.2.2. analysed, and their profile in terms of
[TB4-TBs| and [ATB4/ATBs] was extracted. According to the resulting
profile extracted from the data acquired in section 4.3.1.2.5., the
relevant SST multiple regression model was selected. These data were
statistically compared with collocated TMI-derived SST scenes using

basic statistical measures.

4.3.1.2.4. Use of the Coll et al (1994) “regional” split-window
algorithm.

The applicability of the linear mid-latitude algorithm derived by Coll
et al. (1994) using the French CMS-Lannion dataset was assessed. This
dataset is composed of 348 points partly collected over the
Mediterranean Sea (Antoine et al., 1992). The optimised split-window

algorithm for this data is:
SST = TB4 + 2.13*(TB4-TBs) + 0.18 (4.4)

To test the validity of this regional algorithm, valid gridded XYZ ascii
brightness temperature data collected as described in section 4.3.1.2.5.
were converted to StatGraphics format and calibrated using equation
4.4 above. The resulting SST was then statistically compared with

collocated TMI-derived SST scenes using basic statistical measures.

4.3.1.2.5. Calibration of high-resolution, infrared radiances

acquired over the ocean model domain.

Local Area Coverage (LAC) 1.1 km AVHRR imagery for the period July
20th 1999 to August 7th 1999 containing 16-bit channels 3, 4 and 5
radiance data were retrieved from NOAA’s Satellite Active Archive

(SAA)%8 and archived. Raw (uncalibrated) infrared radiances from

8 http:/ / www.saa.noaa.gov {accessed on 01.11.04).
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swaths covering the spatial domain of the ocean forecasting system:

(15.78°E, 33.18¢°N) to (19.18°E, 35.74°N) were extracted and archived.

ERDAS Imagine V8.4 Professional was used to import, calibrate and
process individual data. By using the Import/Export option
(Type: NOAA AVHRR) files were imported from the archive using the

following rectification settings:

e Panoramic Distortion Correction applied.

e Write Transform to Image.

and radiometric and scan angle®? settings:

e Radiometric Calibration applied.

o Sun Angle Correction applied?0.

The Import options were the following:

e Output data compression: none.
¢ Unsigned 16-bit; Block Size: 64.
e Select Layers: 1-3.

e Creation of Pyramid Layers enabled.

The entire archive was imported and checked. Scenes showing extensive

contamination by cloud and dust were discarded (table 4.2).

The rectangle properties of the area of interest (AOI) were defined using
the Viewer option and saved as domain.aoi. The full AVHRR scene was

resampled to within the AOI boundaries to derive a new output

89 Radiometric corrections allowed calibration constants and sun angle data present in
the AVHRR data to be applied to the data. The constants (slope and intercept) and sun
angle data convert the raw pixel values to energy measured by the sensor in units of
~milliwatts per square meter per steradtan per centlmeter m Bands 3, 4, and 5, and
" further into brightness temperature.

70 This allows a basic correction (1 / cosine( {sun angle} ) ) to be applied to the pixel

values.
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consisted of separate channel 3, 4 and 5 brightness temperature data
having an unsigned 16-bit format. Data was instead exported in Surfer
binary grid (*.grd), imported using ERMapper V5.5 and exported in
gridded XYZ ascii.

Using the above three algorithms (i.e. YB94, multiple regression models,
and Coll94), infrared radiances of the sea surface were calibrated and
their accuracy assessed. The final 1.1 km by 1.1 km SST maps were
used to validate the SST forecasts produced by the ocean model.

121



Image Sat/Orbit no. Date Time (UT) Data Integitz over domain
N14/NSS.LHRR.NJD99201.S1415.E1427.B234 LAC/23466 Jul 20 1999 13:15:55 no contamination
N14/NSS.LHRR.NJD99202.51404.E1415.B234 LAC/23480 Jul 21 1999 13:04:29 no contamination
N14/NSS.LHRR.NJD99203.51353.E1404.B234 LAC/23494 Jul 22 1999 12:53:00 no contamination; presence of dust

aerosols over Gulf of Gabbes moving
eastwards
N14/NSS.LHRR.NJD99204.S1352.E1352.B235 LAC/23508 Jul 23 1999 12:41:33 no contamination; presence of dust
aerosols
N14/NSS.LHRR.NJD99205.S1330.E1341.B235 LAC/23522 Jul 24 1999 12:30:10 presence of dust aerosols and cloud
coverage
N14/NSS.LHRR.NJD99206.S1318.E1330.B235 LAC/23536 Jul 25 1999 12:18:40 presence of extensive dust aerosols and
cloud coverage
N14/NSS.LHRR.NJD99207.S1307.E1318.B235 LAC/23550 Jul 26 1999 12:07:25 presence of dust aerosols and cloud
coverage
N14/NSS.LHRR.NJD99208.51255.E1307.B235 LAC/23564 Jul 27 1999 11:55:58 presence of dust aerosols and extensive
cloud coverage
N14/NSS.LHRR.NJD99209.81244.E1255.8235 LAC/23578 Jul 28 1999 11:42:22 presence of extensive cloud coverage
N14/NSS.LHRR.NJD99210.S1455.E1426.B235 LAC/23593 Jul 29 1999 13:15:11 presence of extensive cloud coverage
N14/NSS.LHRR.NJD99211.S1403.E1414.B236 LAC/23607 Jul 30 1999 13:03:29 presence dust aerosols and clouds
N14/NSS.LHRR.NJD99212.S1352.E1403.B236 LAC/23621 Jul 31 1999 12:52:09 presence of cloud coverage
N14/NSS.LHRR.NJD99213.S1340.E1352.B236 LAC/23635 Aug 01 1999 12:40:35 presence of dust aerosols and cloud
coverage
N14/NSS.LHRR.NJD99214.S1329.E1340.B236 LAC/23649 Aug 02 1999 12:29:07 presence of dust aerosols and extensive
‘ cloud coverage
N14/NSS.LHRR.NJD99216.S1306.E1317.B236 LAC/23677 Aug 04 1999 12:06:16 presence of cloud coverage
N14/NSS.LHRR.NJD99217.S1254.E1306.B236 LAC/23691 Aug 05 1999 12:54:53 presence of extensive cloud coverage
N14/NSS.LHRR.NJD99218.51243.E1254.B237 LAC/23705 Aug 06 1999 11:43:31 extensive cloud coverage; partial satellite
coverage over area of interest
N14/NSS.LHRR.NJD99219.S1229.E1236.B237 LAC/23719 Aug 07 1999 11:29:04 no satellite coverage over area of interest

Table 4.2. Details of individual AVHRR LAC scenes, including data integrity, collected over the central
Mediterranean during the period 20 July — 7 August 1999. Source: Satellite Active Archive — NESDIS.
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4.3.1.3. Outgoing longwave radiation.

Monthly values of total, day and night outgoing longwave radiation over
the area of interest were retrieved by ftp from the SAA archive. The
source of this 1999 climatological data is from the NOAA Pathfinder
Programme. The resolution of each pixel within the subset is equivalent
to 1o by 1°o latitude - longitude. From this data the monthly mean

outgoing longwave radiation was derived.

4.3.1.4. Aerosol optical thickness.

Monthly datasets consisting of aerosol optical thickness covering a ten-
year period between 1990 and 2000 were downloaded from the SAA
archive in ascii format. This dataset consisted of physical information
derived from the Pathfinder dataset. Datasets relevant to the area of
interest with a nominal grid resolution of 2.5° by 2.5¢ latitude-longitude,
were downloaded and archived. From this data, a ten-year average

monthly aerosol optical thickness was derived over the area of interest.

4.3.1.5. Climatological fields.

Monthly climatological fields over the Mediterranean region were derived

from two sources:

(a) Naval European Meteorology and Oceanography Centre (NEMOC) in
Rota, Spain?!

The original source for this data is the Comprehensive Ocean and
Atmosphere Data Set (COADS). The data has been smoothed into

sparse regions for continuity using a bicubic interpolation method.

71 https:// www.nemoc.navy.mil/data/unclass/ static/ climo/ med/ (accessed on
01.11.04).
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Air and sea surface temperature were extracted from the original data
and geo-rectified using ERMapper. The exact geographical area
corresponding to the area of interest was specified and monthly air- and
sea surface temperature sets were geo-linked, and individually saved in
*.ers format. Using the look-up-table provided, pixels within the subset

were converted into Kelvin.
Calibrated raster files of air and sea surface temperature were then
overlaid to derive the monthly mean difference. The final map was

converted into ascii BIL format for subsequent statistical analysis.

(b) Southampton Oceanography Centre (SOC) Ocean — Atmosphere

Heat, Momentum and Freshwater Flux Atlas.

The Southampton Oceanography Centre (SOC) Ocean - Atmosphere
Heat, Momentum and Freshwater Flux Atlas was used to derive relevant
datasets of marine meteorological reports spanning the period 1980 -
1993.

This Atlas’2, comprising of air-sea fluxes and meteorological data was
extracted in ascii form. Monthly values of SST, surface air temperature,
latent and sensible heat fluxes were extracted in ascii format with 9
fields to a line. Each line has flux estimates for a 1° by 1° cell centered
on the longitude, latitude values specified in the first two columns; land
is indicated by -999. The grid runs from (84.5°S, 179.5°W) to (84.5°N,
179.5°E) so there are 61,200 cells in total. The fields used are longitude,
latitude, wind speed (m s°!), 10 m air temperature (°C}, 10 m stability
dependent specific humidity (g kg!), sea surface temperature (°C), and
relative humidity. These were extracted separately from the original file
format in ascii xyz and imported into ERMapper. The values falling
within the area of interest (15.78°E, 33.18¢N) to (19.18°E, 35.74°N) were

extracted, gridded, contoured mapped and summary statistics were

72 http:// www.soc.soton.ac.uk/JRD/ MET/ fluxclimatology. html (accessed on 01.11.04).
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calculated to note the maximum, minimum, mean and standard

deviation of each respective field for every season.

4.3.1.6. Derivation of instantaneous turbulent heat fluxes.

The bulk aerodynamic method with stability dependent bulk transfer
coefficients as described by Liu et al. (1979) was used to generate
instantaneous air-sea fluxes. The basic parameters required were air
temperature, SST and 10 m wind magnitude. The SST and wind speed
were obtained from instantaneous, collocated retrievals from the TMI

sensor.

(a) Semi-instantaneous air temperature.

The monthly average sea — air temperature difference over the area of
interest was calculated as follows, which is a modification of the method
used by Schulz et al. (1997), in order to obtain a more realistic estimate

(see section 3.2.2.2.):

Toirr = [Tscoaps — Tacoaps] (4.5)
where Toirr is the monthly difference between the average SST and air
temperature values derived from COADS data over the area of
interest’3. By including the monthly term from the remotely-sensed

SST, a semi-instantaneous air temperature was obtained accordingly:

Ta = [Tst™i - Toirr] (4.6)

(b) Sensible heat flux.

Using the bulk parameterisation, the sensible heat flux is estimated

with transfer coefficients that relate the flux to variables measured, i.e.

73 derived in section 4.3.1.5.

125



Qu = pc,Cyu, (T, - T,) (4.7)

where Qu is the sensible heat flux; Cy is the Stanton number (=0.00125
as provided by Liu et al (1979) for moderate wind speed, slightly
unstable conditions); Ts is the SST in K; Ta is the air temperature in K
(calculated using equation 4.8); p is the density of air (=1.2256 kg m3);
cp is the specific heat of water at constant pressure (=1010 J kg'! K1);

and ua is the 10 m wind speed in m s-1.

(c ) Latent heat flux.

The bulk formula that parameterises the flux mainly as a function of
near-surface wind speed, air humidity and sea surface temperature was

used to derive the latent heat flux as follows:
QE = pLCEua (qs _qa) (48)

where Qg is the latent heat flux; Cg is the Dalton number; gs and ga are
the specific humidity at ocean surface at Z height above sea water; p is
the density of air (=1.2256 kg m-3); ua is the 10 m wind speed in m s-!
and L is the latent heat of vaporisation of water. Cg is the Dalton

number equivalent to 0.00125 (Liu et al.,, 1979).
Gill (1982) defines L by the equation

L(Ta) = 2.5008 x 106 - 2.3 x 103 Ta (4.9)

gs is the saturation specific humidity at Ts

q = 0.622¢ * (T) (4.10)
® P,-0.378e*(T)
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ga is specific humidity at Ta

0.622re * (T,
q, = re” (T) . (4.11)
P, - 0.378¢ *(T,)

e*(Ta) is the vapour pressure (mb) of the air at a height of 10m and P, is
the pressure at z height. e*(Ta) is obtained from the specification of Ta
and relative humidity, r (Brutsaert, 1982). Oberhuber (1988) used

e*(Tx) = 6.11 x 10 (Tx-273.16)/(Tx-35.86)"7.5 (4.12)

for saturation vapour pressure, where Txis the air surface temperature.

The value of relative humidity is equal to the ratio:

r=2a (4.13)

where ea and es are the actual vapour pressure and saturation vapour

pressure at sea surface respectively.

According to Smith et al (1991), ea is calculated from the equation

N =[1— Tk ] ° (4.14)

where Tk is the absolute temperature (=273.16 + Ta) and Tkv is the
virtual temperature?4. For average conditions (i.e. ea in the range of

1-5 kPa and P between 80-100 kPa), Ty can be approximated as

Ty

\'4

= 1.01(T, +273) (4.15)

74 The virtual temperature is the temperature of dry air that would have the same
density and pressure as the moist air.
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The atmospheric pressure P at elevation z (kPa) can be calculated

according to Burman et al. (1987) as

5.26
pP= 101.3( 293 “2(;??0652) (4.16)

assuming that Po = 101.3 kPa at zo= 0, and Tko = 293 K for T = 20 °C.

The saturation vapour pressure was calculated as a function of
temperature using a variation of the integrated form of the Clausius-
Clapeyron equation (see AWIPS technical documentation?s). An
additional linear term is added to this value in order to give a better fit
to the measured relationship of saturation vapour pressure and
temperature in the Smithsonian Meteorological Tables. The equation for

calculating saturation vapour pressure is:

(4.17)

€g = exp(26.66082 -0.009138T - w)

where T is the temperature. The saturation vapour pressure formula is

accurate to one part in a thousand over the range from -25 °C to 35 °C.

4.3.2. Accuracy of the derived database.

A multi-sample comparison analysis was performed to statistically
compare the derived database with independent data derived from the
Southampton Oceanography Centre (SOC) Ocean — Atmosphere Heat,

Momentum and Freshwater Flux Atlas.

75 http:/ / www.meted.ucar.edu/ awips/ validate/ dewpnt.htm {accessed on 01.11.04).
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Summary statistics were calculated by comparing the average 1999
monthly values of the two databases. Statistics included data count,

average, standard deviation, mean difference and mean error.

4.3.3. The database format.

The data was arranged into two main groups as shown in table 4.3. The
first set of data consists of instantaneous fields that are co-temporal
with the models’ predicted fields. Validation of single forecast days for
verification rested on the time of acquisition of the instantaneous

variables/derived products over the area of interest.

The second set of data consisted of monthly climatological means of the

relevant geophysical fields.

Group 1

Instantaneous, high-resolution fields collocated with individual
model forecast fields
Precipitation rate
Absorbing aerosols

10 m wind magnitude

Sea surface temperature

Cloud liquid water vapour

Integrated precipitable water vapour
Turbulent heat fluxes (latent & sensible heat)

Group 2

Climatological, coarse, monthly means over the area of interest
Aerosol optical thickness
Outgoing long wave radiation
Air temperature, Sea Surface Temperature

Table 4.3. The two groups of datasets that constituted the current
database.
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climatology against NCEP/NCAR, ECMWF, UWM/COADS, moored
buoys and against the Hellerman and Rosenstein datasets, concluding
that it is a valuable wind climatology dataset that can be used in

contemporary hydrographic and modelling studies.

Figures 4.5 and 4.6 are examples of rasterised monthly datasets derived
from the SOC and the instantaneous database over the area of interest.
The most noticeable feature is the higher mesoscale definition of the
basic variables and estimated air-sea fluxes, since these are based on
the TMI sensor’s resolution of 0.25° compared with a 1.0° resolution of
the climatological database. However, both sets of data show broad

spatial similarities.
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and maxima during December. The variability of basin average wind
speed amplitudes is larger in winter than in summer due to strong
northerly Mistral component, as has been observed by Castellari et al.,
1998, and this gives rise to increased variability of the field over the

Ionian basin.
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Figure 4.8. Annual trend of the mean and standard deviation of the
remotely sensed wind magnitude (m s!) acquired during 1999 over the
area of interest.

A close inspection of figure 4.9 shows a constant bias of around
1.5 m s'! against COADS data during the first 6 months (January to
June), which then decreases during the remaining 6 months (July to
December). The increased magnitude of the remotely sensed wind data
during the latter half of the year may indicate an irregular trend that
occurred in the region during 1999 as compared to the monthly average
10-year climatology. This trend will be eventually reflected in the
estimated set of instantaneous sensible and latent heat fluxes, since
their estimation is directly proportional to the wind speed retrieved by

the TMI sensor.

As far as the published gl>orba.1‘ éécdracy of the TMI-derived wind data is

concerned, the published RMS is 0.84 m s-! when the retrievals were
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4.4.1.2. Air-sea temperature difference.

The monthly average air-sea temperature difference over the area of
interest is shown in figure 4.10. The mean annual value is -0.61 °C
with a standard deviation of 0.82 °C, a minimum of -1.6 °C during

winter and a maximum of 0.8 °C during summer.
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Figure 4.10. Annual trend of the air-sea temperature difference (in °C)

during 1999 over the area of interest.

The monthly values of surface air surface derived from COADS and SOC
climatology are very similar (fig. 4.11), with the COADS data showing a
slightly higher average temperature profile than the SOC and semi-
instantaneous measurements. The profile derived using the semi-
instantaneous approach described in section 4.3.1.6. shows a close
agreement to both climatological profiles. It has an annual mean air
temperature of 20.8 °C and a standard deviation of + 5.0 °C. The annual
average difference between this and the two climatological datasets (i.e.
SOC and COADS) is + 1.7 °C and + 0.9 °C, respectively. This makes it

closer to the COADS mu-lti-ﬁanﬁuaﬂi ciifﬁéﬁbiégical dataset.
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on a monthly basis since this step lacks data normalisation to account
for diurnal variation. This can contribute to the monthly variability

shown by the semi-instantaneous air-temperature data.

Month | Average time of satellite
overpass (UT)
Jan 04.00
Feb 22.50
Mar 22.75
Apr 24.00
May 19.80
Jun 10.90
Jul 02.00
Aug 18.75
Sep 21.90
Oct 04.00
Nov 17.36
Dec 22.50

Table 4.4. The average time of TRMM satellite overpass during 1999
during which instantaneous geophysical fields were collected and
archived.

4.4.1.3. Sea surface temperature.

Results show a good agreement between the annual trends of the
remotely sensed (mean: 21.3 °C; standard deviation: + 4.6 °C) and
climatological data (mean: 20.2 °C; standard deviation: + 4.1 °C) as
shown in figure 4.12. The mean overall difference from SOC data is
1.1 °C (fig. 4.13).
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the accuracy of TMIl-derived SST, data comparison made during
December 1997 to June 1999 with over 9000 TMI to TAO/NDBC buoy
collocations showed an averaged difference of around 0.15 °C78. The
causes for this error include the accuracy of satellite retrievals, the
spatio-temporal mismatch between the buoy point observation and the
satellite footprint, and the difference between the ocean skin
temperature and the bulk temperature measured at the buoys at 1 to
1.5 m depth.

4.4.1.4. Ocean surface heat flux.

As mentioned in section 3.2.2., the use of bulk formulae presents a
good alternative to the sparse distribution of direct flux measurements.
This approximation can be calculated using basic variables that can be
collected in situ or by remote sensing. Since there is no in situ data
available over the Ionian basin during the study period, and since
climatological data only provide coarse monthly averages, this study
utilised instantaneous fields acquired by the orbiting microwave sensor

over the area of interest to estimate the instantaneous air-sea fluxes.

The estimated sensible heat flux database is in good agreement with the
average SOC climatology data derived over the Ionian basin. Both
datasets exhibit the same temporal trend with the least flux transfer
from the air to the sea occurring during the warm months. Strong
winds and greater air-sea temperature difference drive a larger negative
flux during the colder months as shown in figure 4.14. The monthly

mean variability of the calculated dataset is shown in figure 4.15.

78 http:/ / www.ssmi.com/ tmi/ tmi_validation. html# sst
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show that the latent heat flux reaches a maximum in January (with a
value of around —280 W m?) and a minimum in August (around
—22 W m?). An annual average of around —124 W m-2 is observed for
the whole Mediterranean. The estimated latent heat flux shows a
similar highest minima during August of around —40 W m=2 and a
maxima in December of around —110 W m-=. The discrepancy from both
the observed interannual Mediterranean-wide climatology and SOC data
can be attributed to some local, climatic anomalies that occurred during
the latter part of the study period (1999), such as deviations in the 10
m wind magnitude from normal climatology. This variation (see section
4.4.1.1)) is able to trigger a larger rate of evaporation flux from the sea
into the atmosphere. This can explain the positive trend of the latent
heat flux during the latter half of the year when compared to the

averaged climatology over the same area.
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Figure 4.18. Average monthly variability of the calculated latent heat flux
(W m?) during 1999 over the area of interest.
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Similar approaches to estimate the turbulent heat fluxes using basic
fields derived from remote sensing were also used by a number of
investigators. Schulz et al. (1997) measured latent heat flux at the air-
sea interface using weekly AVHRR-derived SST and SSM/I-derived near
surface wind speed. The boundary layer water vapour content was
retrieved from SSM/I measurements with an accuracy of 0.06 g cm™
from which the near-surface humidity was derived. Their method
revealed a standard error of approximately 30 W m in comparison with
scarce data from merchant ships. However, problems are inherent in
this method because of the use of AVHRR MCSST, since this SST
source is inaccurate in the presence of atmospheric aerosols and clouds
(Reynolds, 1993). ATSR 2 - derived SST has also been used by

Xue et al. (1997) to derive sensible heat flux using bulk formulae.

The method used in this study uses sub-skin SST (at around 500 pm
depth at the water side of the air-sea interface where conductive and
diffusive heat transfer processes dominate) temperature layer where
molecular and viscous heat transfer processes begin to dominate
(Donlon et al., 2002). The use of this sub-skin SST therefore ensures a
better derivation of the turbulent heat fluxes than other remotely-
sensed SST that is calibrated against bulk SST (i.e. buoy data).
Therefore, the present comparison with climatological atlases may be
prone to have differences since these atlases have been derived using
partly, the bulk-SST as one of the variables in the bulk
parameterisation (GEWEX, 1999).

The lengthy approach used in this study to determine the near surface
air humidity stems from the lack of remotely-sensed humidity data at
the sea surface. To remedy this information gap, Liu and Niiler (1984)
and Liu (1986, 1988) used the atmospheric water vapour column
content or the total precipitable water vapour as an approximation for
monthly mean values of surface humidity. However, Taylor (1982)
expresses his doubts on the'ﬁ'se. of the total precipitable water as a good

predictor for the surface humidity stating that the correlation between
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the two is not high enough. This is contested by Schulz et al. (1993)
who have observed a good linear fit of 0.98 between the two parameters.
Following this research path, Schluessel et al. (1995) have slightly
improved this indirect method and managed to reduce the systematic
error. Jones et al. (1997) have defined a new sophisticated method to
derive specific humidity and air temperature from satellite data using a

neural network approach.

The theoretical approach used in the present study is an alternative to
this lack of humidity data. Thus, an approximation in the calculation of
the latent heat flux was made for the determination of the actual vapour
pressure at sea surface (see equation. 4.14), which requires information
on the virtual temperature. This parameter was approximated (see

equation 4.15) by considering average conditions.

The air temperature over the sea surface, for which no instantaneous
values are available from the area of interest during 1999, was
calculated by studying the monthly climatological difference between
the air and the sea temperature from the collocated COADS database.
This mean monthly air-sea temperature difference was then deducted or
added to (depending on the month) the instantaneous TMI-derived SST.
In this manner, the inclusion of climatological, average information in
the bulk formulae was thus minimised, and provided a semi-

instantaneous value for the air temperature.

The values of the Stanton and Dalton numbers were the same as those
used by Liu et al. (1979). They were chosen on the basis that they give
good results for moderate wind speeds and slightly unstable conditions
as is the case for the climatology of the lonian basin. Little research has
been done on the behaviour of these coefficients when wind speeds

become stronger than 12 m s'! (Taylor, 2000).
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The derivation of the outgoing longwave radiation remains experimental
and more work is needed before reliable estimates can be obtained from
satellites (WCRP/GEWEX, 1996). A new, improved formula for
determining the outgoing flux at the ocean surface at mid-high latitudes
has recently been published by Josey et al (2003), which was

embedded in a stochastic atmosphere model.

4.4.1.6. Aerosol optical thickness.

Figure 4.21 shows the monthly variability of the aerosol optical
thickness (AOT) over the area of interest based on a 10-year
climatology. Aerosol optical thickness peaks during the months of June
to August. Minimal values occur in December, during which a value of
around 50 ODU is observed. The monthly spatial variability is shown in
the raster maps (fig. 4.22 a-l).

The monthly AOT maps, which are good indicators to quantify the dust
aerosol radiative forcing, show that atmospheric dust aerosols are a
prominent feature of the climate of the area of interest. This arises from
the close proximity to the northern African coastline, making the area
susceptible for this kind of atmospheric contamination. D’Almeida
(1986) states that tens of millions of tons of terrigenous mineral
particles per year are exported from the Saharan region to nearby
regions and are likely to modify the radiative energy pattern in the
atmosphere (Legrand et al, 1992). Atmospheric dust has been
described as having a screening effect, thus modifying the upward
transfer of radiance emitted by the sea through the dust layer, when the

sea and dust have appreciable different temperatures.
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Figure 4.21. The average monthly variability of the Aerosol optical
thickness (in Optical Depth Units x 100) over the area of interest.

Apart from the climatological dust load information over the lonian
basin, this dataset is also useful to interpret the accuracy of the
radiative heat fluxes, such as OLWR and infrared radiances of the sea
surface as measured from the top of the atmosphere. It is well known
that atmospheric dust particles affect the upwelling infrared radiances
by absorption and scattering in the short-wave regime and by
absorption and emission in the long-wave radiation regime. This
information is required to assess the calibration of infrared scenes
retrieved during July — August (see section 4.4.3.), which happens to
correspond to the highest climatological AOT values over the
geographical area (fig. 4.22 a-1). What is striking about this information
is that this two month period is characterised by a persistent incidence
of high aerosol content that is consistently confined over restricted
geographical areas, such as the area under study, as seen in figs. 4.22

f,g and h.
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4.4.2. Calibration of high resolution, infrared radiances.

This section presents the analysis of the three algorithms that were
studied and adapted for the central Mediterranean, where no
operational in situ data is collected. Infrared radiance data of the sea
surface over part of the Ionian basin were collected for a continuous,
16-day period in view of their use to validate the accuracy of predicted

SST by the ocean forecasting system as presented in chapter 7.
4.4.2.1. The YB94 algorithm.

The gamma factor provided an indication of the efficacy of the YB94
algorithm. The gamma value having the least error obtained by Yu and
Barton (1994) ranges from 4.75 and 4.82, with a bias of 0.01 K and
standard deviation of 0.12 K when compared to the MCSST algorithm.
This is in close agreement with the gamma value retrieved over the
CoastWatch area as shown in figure 4.23. From this relation, the best
gamma value was extracted that gave the least bias from the NLSST

algorithm.

These results also show that the relationship between the ratio Rs4 and
the slope ATB4/ATBs (ratio of the atmospheric transmittance), which
constituted some of the studied parameters (see table V.7 a-i), is
negative (fig. 4.24). The good linear relationship between the two

parameters is reflected by a correlation coefficient of 0.7.

The efficiency of the YB94 algorithm is shown by the good correlation
with the NLSST algorithm, giving a coefficient of 0.82 and strong linear
function passing from the origin (fig. 4.25). A closer inspection of the
relationship between the YB94-derived SST and deviation from
collocated NLSST values (fig. 4.26) indicates that for a typical summer
SST over the Ionian basin (in the region of 22 °C to 28 °C), the

algorithm’s performance underestimates the SST by an average of
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-0.5 °C to -0.7 °C respectively (fig. 4.26). This deviation occurs when the

gamma value ranges between 3.8 and 4.3 (fig. 4.23).

Another useful indicator of the performance of the YB94 algorithm is
the relationship between gamma and the water vapour profile using the
equation derived by Ottle et al. (1997). This relationship shows that an
optimal gamma value is derived when the atmospheric water vapour
profile is around 2 g cm2 (fig. 4.27). The inverted exponential profile
shown in figure 4.30 indicates that a water vapour profile higher than
2 g cm™? can deteriorate the performance of the YB94 algorithm by
deriving a less than optimal value for gamma. This is not so when the
water vapour value is less than 2 g cm2: the change in gamma value
becomes even greater for small reductions in the atmospheric water
vapour profile. According to these results, therefore, gamma is
negatively correlated with the amount of atmospheric water vapour. The
significance of this relationship becomes even more important when the
YB94 algorithm is used in geographical regions characterised by higher

water vapour profiles, such as the central Mediterranean.
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Figure 4.23. Relationship between the gamma value and [SSTnLsst minus
SSTyso4] value {denoted ds eiror’in °C) derived from AVHRR scenes over
the CoastWatch area during 1998-1999.
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Figure 4.24. Relationship between the Rss ratio versus the ratio
ATB4:ATBS derived from AVHRR scenes from the CoastWatch area during
1998-1999.
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Figure 4.25. Relationship between the YB94-derived SST (°C) and
collocated NLSST (°C) derived from the CoastWatch area during 1998-
1999.
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Figure 4.26. Relationship between the YB94 derived SST in °C and
[SSTnisst minus SSTyse4] difference (in °C) derived from the
CoastWatch area during 1998-1999.
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Figure 4.27. Relationship between the gamma value and collocated
total atmospheric water vapour profile derived from the CoastWatch
area during 1998-1999.
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The CoastWatch area was used to test the validity of the YB94
algorithm before applying this calibration procedure for the

Mediterranean region.

Figures 4.28a and 4.28b show examples of brightness temperature data
derived from AVHRR channels 4 and 5 respectively on 23rd August 1998
over sector E (fig. 4.3). The key features noted between the YB94-
retrieved SST data (fig. ¢) and the NLSST map (fig. d) are (1) the similar
statistical results of the area of interest, showing an overall differences
as low as 0.2 °C, and (2) the similar final spatial distribution of the

thermal signature.

The results presented in table V.7 a-I support the use of the YB94
algorithm. This conclusion rests on the assumption that the collocated
NLSST is accurate and reliable enough to serve as a substitute to in situ
match-up data. The use of the NLSST source is supported by the
studies of Li et al. (2001) who observed a maximum error of 0.14 °C

against in situ data80 for the NLSST algorithm.

The use of an in situ match-up data instead of NLSST would have
presented a number of technical problems. These include (1) lack of
operational buoys in open seas; (2) inherent biases related to in situ
measurement8! (3) the different scale of satellite (1.1 km) against buoy

measurement (point data).

80 The satellite sensor SST and buoy SST pairs were matched-up only if they were
coincident within 25 km and 4 hours.
81 Section 3.5.4.
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4.4.2.2. Linear regression modelling using the split-window

technique.

The split-window technique has proved to be the most useful
atmospheric correction method for SST derived by infrared sensors
(Arbelo et al., 2000). This technique uses two different channels within
the 10.5 - 12.5 pm window, which are affected by different absorption
due to the wavelength dependence at water vapour continuum
(McMillin, 1975).

To overcome the limitations mentioned in section 3.5.4., this study
attempted to derive a range of split-window coefficients each reflecting
particular vertical atmospheric water vapour profiles as defined by the

slope [TB4/TBs], ranging from 1.01 to 0.86.

The equations presented in tables 4.7a-b are models derived from the
multiple regression between NLSST, TB4, and the difference between
TB4 and TBs. The dependent variable (NLSST) is linearly correlated to
the independent ones (TB4 and TB4-TBs) throughout the analysis, with
strong R? and mostly similar partial regression coefficients for each of
the independent variables over the entire range of slope [ATB4/ATBs]
values. In his review on SST algorithms retrieved by infrared sensors,
Barton (1995) referred to the same split window formalism where the
partial regression coefficient related to TB4 is close to unity. As is the
case in table 4.7 a-b, this value of coefficient implies that at the lowest
order, the sea surface temperature equals the measured brightness
temperature. The other coefficient related to the differential absorption
between channels 4 and S (or the slope [ATB4/ATBs]) is equivalent to the
transmittance through the atmosphere from the surface to the satellite
and is dependent on both the mass absorption coefficient of the
atmospheric absorbers and the path length (Barton, 1995). The
dependence of this coefficient on the temporal structure of the
atmospheric vertical profile aiwéys induces a degree of variability, as

shown in the present results.

160



Month- Image Coast-Watch No. of Group Regression model Atmospheric R-squared Mean Absolute No. of studentized

Day D Sector pixels transmittance (adjusted for residual Error residuals >2.0
d.f.) %

03-18 408 A 2286 1 NLSST = 21.05 + 0.94*TB, - [ATB4/ATBs] = 1.01 99.03 0.34 645
0.65*TB4-TBs

05-16 607 M 6460 1

05-16 607 Q 202 2 NLSST = -12.42 + 1.05* TB4 + [ATB4/ATBs] = 0.98 99.92 0.09 80
1.36*TB4-TBs

03-15 408 F 6735

11-28 208 L 1195

03-14 307 B 4599 3 NLSST = -3.09 + 1.01*TB4 + [ATB4/ATBs) = 0.97 99.96 0.12 244
1.69*TB4-TBs

09-05 N/a P 1064

11-28 208 o 205

04-13 308 A 5317 4 NLSST = -25.57 + 1.10*TBs - [ATB4/ATBs| = 0.96 93.96 0.29 735
0.83*TB4-TBs

04-13 308 B 5940 S NLSST = -10.22 + 1.04*TB, + [ATB4/ATBs) = 0.95 99.90 0.12 892
1.14*TB4-TBs

04-13 308 c 4972

11.28 208 c 1756

03-15 408 J 5072 6 NLSST = 3.61 + 0.99*TB. + [ATB4/ATBs] = 0.94 99.76 0.16 999
1.56*TB4-TBs

03-18 408 K 792 6

04-13 308 B 4512 6

04-13 308 J 6469 6

05-16 607 B' 6365 6

05-16 607 G 894 6

Table 4.7a. Look up table containing the suite of single line equations valid for different atmospheric
states as defined by their slopes ranging from 1.1 to 0.94. The regression analysis was done over a two-
year period over the CoastWatch area. Regression models are statistically significant at the 1% level (P-
value <0.01).
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Month Image  Coast-Watch No. of Group Regression model Atmospheric R-squared Mean Absolute No. of studentized
D Sector pixels transmittance (adjusted for Error reaiduals >2.0
d.f) %
04-13 308 K 6282 7 NLSST = -17.22 + 1.06*TB4 + [ATB4/ATBs] = 0.93 99.81 0.11 477
1.53*TB4-TBs
11-28 208 B 1277
11.28 208 M 965
04-13 308 A 3559 8 NLSST = -16.00 + 1.06*TB4 + [ATB4/ATBs] = 0.92 99.25 0.25 1123
0.87*TB4-TBs
05-16 607 N 6599 8
06-03 407 A 5533 8
06-03 407 K 1957 8
11-28 208 J 5274 8
11.28 208 K 2849 8
11-28 208 (0] 1987 8
05-16 607 F 1499 9 NLSST = -2.22 + 1.01* TBs+ [ATB4/ATBs] = 0.91 99.70 0.11 281
1.85*TB4-TBs
06-03 407 B' 4009
03-15 408 P 402 10 NLSST = 12.71 + 0.96*TBs+ [ATB4+/ATBs] = 0.90 98.93 0.14 707
1.87*TB4-TBs
06-03 407 A 5417 10
06-03 407 B 1420 10
11-28 208 N 4655 10
11-28 208 P 321 10
03-15 408 o] 3757 11 NLSST = -9.20 + 1.03*TBa4 + [ATB4/ATBs] = 0.89 99.73 0.12 437
1.56*TB4-TBs
05-16 607 [} 636 1
05-16 607 Cc 5460 11
03-15 408 1 4389 12 NLSST = -21.93 + 1.08*TB4 + [ATB+/ATBs] = 0.87 99.39 0.25 432
0.04*TB+-TBs
05-16 607 R 2707 12 l
05-16 607 B 3113 13 NLSST = -10.88 + 1.04*TB, + [ATB4/ATBs] = 0.86 99.62 0.09 117
1.14*TB4-TBs

Table 4.7b. Look up table containing the suite of single line equations valid for different atmospheric
states as defined by their slopes ranging from 0.93 to 0.86. The regression analysis was done over a
two-year period over the CoastWatch area. Regression models are statistically significant at the 1% level
(P-value <0.01). 162



Coll et al. (1994) associated the constant (i.e. - intercept) of the split
window algorithm to the emissivity effect and Barton (1995) showed
that it can range from 28 to -17 for a total of 21 algorithms used to
retrieve SST through subtropical atmospheres. This is also the case for
the resulting models, where each regression equation refers to
particular atmospheric vertical profiles as detected by the two infrared

channels.

Table 4.7 a-b also gives an indication of the magnitude of the residuals
for each group of slopes (mean absolute residual error and number of
Studentized residuals). Further analysis of these residuals may
stabilise even further the regression models. The presence of
undetected, contaminated pixels due to fog, as well as the inherent
inaccuracies of the dependent variable (NLSST), may be giving rise to
such instability. Uncertainties do however exist in these
measurements, which include the accuracy of the original NLSST
dataset, the contamination of unresolved cloud and aerosols and errors

in the satellite calibration.

The dependency and sensitivity of [ATB4/ATBs] on the atmospheric
transmittance shows that it is not proper to use globally-retrieved
coefficients from NESDIS to correct regional SST imagery with enough
accuracy. This was also expressed by Sobrino et al. (1993) following
their observations on the impact of the atmospheric transmittance and

total water vapour content on SST retrieval from AVHRR.

Although the approach used is similar in concept to that developed by
Sobrino et al. (1993), it is technically different and more simple. In their
work, they have simulated channels 4 and 5 of AVHRR/2 of NOAA-11
using a radiative transfer model with a range of atmospheric conditions
and surface temperature that reflected a worldwide variability. The
present study uses instead the empirical knowledge derived from the
NOAA AVHRR readings from channels 4 and 5 and collocated NLSST
pixels to derive the algorithms. Indeed, the slope ATB4/ATBs was
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calculated for each collocated pair of pixels (a total of 203,010 pixels)
and the resulting mean slope for each sector was categorised to
represent the water vapour profile of different atmospheric states during
the 2-year study period. This grouping was necessary to average out the
errors inherent in this method, which may originate from the
inaccuracy of the original NLSST dataset embedded in any split-window
algorithm (an average of + 0.14 °C against in situ data — [Li et al., 2001]),
the contamination of unresolved cloud and aerosols, and errors in the
sensor calibration. Similar errors are also encountered when such line
algorithms are derived by regressing brightness temperature from

channels 4 and 5 against in situ, collocated data.

The approach used in this study provides a powerful tool by providing
appropriate split-window coefficients that best match the atmospheric
composition present when individual AVHRR scenes are acquired over
any area of interest. In this manner a suite of single line equations
suitable for different atmospheric states are produced as suggested by
Steyn-Ross et al. (1999). The modelling of the atmospheric composition
over a two-year period provides to the present study a statistically
robust approach to calibrate AVHRR scenes over a range of atmospheric
profiles without the need of collocated in situ SST data. The total
number of pixels analysed to generate these linear equation is shown in
tables 4.7a-b.

These single-line equations can be fine-tuned and be made geographic-
specific by further sub-grouping relevant pixel ratios extracted from
additional scenes of geographical areas under investigation. In this
manner, a finer range of slope variation can be defined from relevant

imagery.

The accuracy of this algorithm is tested against an independent set of

SST data and results are described in section 4.4.3.

164



4.4.3. Calibration of AVHRR scenes over the Ionian basin.

The performance of the three algorithms - the YB94, the multiple
regression model (in the form of a look-up-table - LUT) and Coll94
algorithms were assessed for suitable NOAA AVHRR images acquired
between 20t July and 7t August 1999 over the lonian basin. This time
frame was determined by the ocean forecasting system used in this

study?®2.

It proved very difficult to obtain valid AVHRR scenes over the area of
interest during the 16-day time-frame, resulting in only S suitable
AVHRR overpasses (table 4.2). The remaining swaths where strongly
affected by cloud cover and dust aerosols due to an episode of dust
uptake from the Sahara desert that started on 2204 of July and reached
the area of interest on the 26% of July 1999 (information derived from
an independent run of a dust model®3). Table 4.8 gives a summary of
the performance of the calibration algorithms for the valid AVHRR
scenes. The use of AVHRR data to validate oceanic forecasts is always
problematic. Lermusiaux and Robinson (2001) encountered the same
problem when trying to verify their 16-day model integration run, for
which only four AVHRR scenes were found to be suitable for

comparison.

The accuracy assessment is not based on a collocated set of in situ
match-up data; instead, it is based on an independent set of collocated
SST derived from the TMI sensor. The assessment was based on the
average difference of collocated [SSTaigorihtm minus SSTtmi]. Sobrino et al.
(1993) used a similar approach to assess the accuracy of their results
by comparing their algorithms to an independent set of CPSST and
MCSST data.

82 See section 7.1. for justification of the selected time frame.
83 See Appendix Il for an overview of this simulation.
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Despite the lack of in situ data, and the use of a small number of
suitable AVHRR imagery, this study provided some interesting results.

On the whole, both the regression modelling and Coll94 algorithm gave

Date algorithm SST Field (*C) remarks
mean maximum minimum Standard
deviation
20-Jul-99 YB94 34.80 39.87 31.03 1.43 Rsq4=1.02; y=7.12
Coll94 27.25 30.74 25.56 0.78
LUT 27.02 30.38 25.39 0.75 ATB4/ATBs =1.1;
group 2
TMI 26.23 27.10 24 .82 0.44
mean max min stdev
21-Jul-99 YB94 31.59 >40.00 26.39 3.88 Rs4=1.94;y=1.16
Coll94 27.17 30.08 25.82 0.49
LUT 25.55 27.25 24.23 0.30 ATB4/ATBs =0.8;
group 22
TMI 25.92 26.40 24.92 0.25
mean max min stdev
22-Jul-99 YB94 31.91 >40.00 26.09 291 Rs4=1.80; y=1.98
Coll94 26.90 28.23 25.42 0.33
LuUT 26.99 28.37 25.56 0.35 ATB4/ATBs =0.7;
group 23
TMI 26.20 26.85 25.52 0.30
mean max min stdev
01-Aug-99 YB94 28.66 36.04 26.77 0.78 Rs4=0.83; y=3.40
Coll94 29.51 31.0 27.61 0.67
LUT 28.43 29.72 26.72 0.61 ATB4/ATBs =1.1;
group 2
TMI 27.29 28.92 26.43 0.52

Table 4.8. Performance of the three algorithms (YB94, the multiple
regression models look-up-table — LUT, and Coll94) for valid AVHRR
scenes over the area of interest.

a very close estimate of SST that are consistent with the SSTm, but at
a much finer resolution. Results indicate that for the selected AVHRR
imagery, the appropriate model extracted from the look up table fares
better than the Coll94 algorithm. The use of both algorithms is
encouraging, with the regression modelling approach offering a wider
range of possible single-line equations depending on particular
atmospheric conditions, whereas the regional one (i.e. Coll94) is not
flexible at all. As discussed in chapter 3, a degree of inherent difference

between these two algorithms and the TMI-derived data is always
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expected due to the fact that their accuracy is based on the bulk SST
sampled by buoys (in the case of NLSST) and ships (in the case of
Coll94). On the other hand, TMI-retreived SST is the 1 mm thick sub-
skin SST.

The Coll94 and LUT display a similar amount of small standard
deviation, indicating a certain degree of robustness. Table 4.8 indicates
that regression modelling constitutes the most appropriate approach for
estimating SST from valid AVHRR data, with the COLL94 ranking
second. This similarity gives some confidence in using the look-up-table

approach for the calibration of AVHRR imagery.

Antoine et al. (1992) gives an error estimate of 0.75 K for the Coll94
algorithm, which can be improved by taking into account scan angle
effects. Agreeing with Minnett (1990), Coll et al. (1994) observed that no
significant increase in accuracy was achieved when allowance for
seasonal variation is inserted in the algorithm. This algorithm shows a
systematic underestimation of about 0.5 K for low values of TB4-TBs
(< 0.5 K), while an overestimation tendency happens when the
difference is between 0.7 to 2.5. Greater differences result in gross

under-estimation.

The results clearly show that the YB94 algorithm does not perform well
for the imagery derived over the area of interest. Contrary to those
obtained when operated over the CoastWatch area, the efficacy of the
YB94 algorithm was seen to deteriorate when it was applied for the
Mediterranean region. This could be due to a number of factors. In the
case of the CoastWatch data, the values of Rs4 range from 0.8 to 0.95.
The Mediterranean scenes gave a value of Rs4, which in most cases, was
above unity. This indicates that the derivation of the ratio was below
optimal, in spite of using an improved statistical approach to determine
Rs4 as suggested by Yu and Barton (1994). Here a test window of 61 by
82 cloud-free pixels was selected instead of the smaller 50 by 50 pixels

window used by these authors.
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Whereas the slope [ATB4/ATBs] derived from the Mediterranean AVHRR
scenes was within range of the linear regression models, giving realistic
SST fields, the corresponding gamma values were found to be beyond
the range of accuracy8* previously noted over the CoastWatch area. The
gamma value is 3.40, which according to figure 4.23 should give an
over-estimation of around +1 °C. This is roughly the same error
observed when the SST field over the central Mediterranean is

compared to collocated TMI-derived SST fields.

What could be the cause of such a deterioration of the YB94 algorithm?
The main factor which affects the accuracy of the Rs4 and ultimately
that of the gamma value, is the dispersion threshold used in the
algorithm. The same threshold relationship is used with CoastWatch
data, but this time the threshold reflected a higher variation that could
be possibly attributed to the varying attenuation caused by the high
atmospheric water vapour present over the central Mediterranean
throughout the study period. Walton et al. (1998) demonstrated that
this variability not only affects the magnitude of the gamma parameter,
but also its functional dependence upon the channel temperature

difference.

It is interesting to note that the trend of the TMI-derived integrated
precipitable water vapour over the area of interest during the period of
20th July to 7t August 1999 (fig. 4.30) increased from 2.2 to around
3.0 gcm™.

8% Except for the case of August 1%,
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Figure 4.30. TMI-derived daily integrated precipitable water vapour
(g cm?) over the area of interest during the period 20 July to 7 August
1999.

The optimal gamma value over the CoastWatch area was found to be
around 3.5 to 4.0, giving a corresponding atmospheric water vapour as
calculated by the equation given by Ottle et al. (1997) of around
2.0 g cm? and even less — a value that is exceeded during the time
frame over the Ionian basin. The 3-D profile of the precipitable water
vapour (fig. 4.31) cannot be considered as homogeneous over the area of
interest and is attributed to the particular climatological conditions over
the central Mediterranean. This heterogeneity can adversely influence
the retrieval of proper Rss and gamma values, which according to

Barton (1995) leads to a failure of the algorithm.

A potential contaminant for all three algorithms is the unresolved cloud
pixels in the analysis. Walton et al. (1998) for example, refers to the
need of filtering cloud contaminated pixels to improve the accuracy of
the YB94. Cloud detection within the area of interest was based on the
amount of spectral information given for each pixel and a combination
of spectral channels (near- 1nfrared and thermal 1nfrared) was used in
this study as described by Krlebel (1996) ThlS was done by applying a

set of threshold tests to each pixel to determine the amount of cloud
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contained within it. A simple ratio test was also applied to filter out
contaminated radiances as detected by channels 4 and 5. Pixels were
set to a null value if the ratio of collocated radiance channel 4 and 5
exceed 0.5. A gross cloud check was also used, which is a thermal
infrared threshold test using the brightness temperature calculated
from channel 5 as a check on cloud contamination. Over the sea, the
selection of the appropriate threshold temperature was easy to find, and
valid channel 5 pixels had to exceed the threshold of 288.16 K. Other
cloud filtering tests - the Thin Cirrus Test and Fog/Stratus Test
(Kriebel, 1996) — were also used. This makes use of the temperature
difference between calibrated channels 3, 4 and 5. The temperature
difference was used to detect most types of clouds including semi-
transparent cirrus ones because of the different emissivities of cloud at
the two wavelengths. The thresholds were set according to Kriebel
(1996); however, the author states that these thresholds do vary for

particular regions and seasons.

There is still considerable room for improvement of these algorithms,
particularly in assessing the confidence of the two most successful
algorithms: the Coll94 and LUT approach. To do this, multi-year
AVHRR passes over the area of interest need to be calculated, calibrated

and compared with independent data.
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4.5. Summary.

This chapter described the work carried out to construct and assess the
accuracy of a database of observations. The aim of this work was to
have available an independent set of collocated data with which to
validate and improve the ocean forecasting system. The database not
only provided climatological information on relevant geophysical
parameters over the area of interest, but also high-resolution,
instantaneous parameters of the surface and vertical climatology of
atmospheric variables that have been calculated from basic variables

derived by different remote sensing platforms.

The accuracy of this database is deemed important for the validation of
the ocean forecasting system. The database was thoroughly evaluated
against sets of independent climatological data as discussed in section
4.4.1. The calculation of instantaneous turbulent air-sea heat fluxes
from and orbiting passive microwave sensor was outlined in section
4.4.1.4.

With regard to the accuracy of the database, the 10 m wind speed data
showed a mean annual speed of 5.22 + 1.96 m s°1, giving a bias of just
1.2 m s'1 against SOC data. There was also good agreement between the
annual trends of the SST profiles derived from the two datasets, where
the remotely sensed data showed an annual average value of 21.3
* 4.6 °C compared to an annual average of 20.2 t+ 4.1 °C derived from
the SOC Atlas. The mean annual bias between the remotely-sensed SST
and SOC data over the area of interest was 1.1 °C. The semi-
instantaneous surface air temperature dataset was also close to that
provided by the SOC data, with an annual average value of 20.8
1+ 5.0 °C with a mean bias of + 1.7 °C and + 0.9 °C against the SOC and
COADS climatologies respectively.

The estimated instantaneous sensible heat flux data gave an annual

average value of -5.9 + 8.5 W m which agreed well with the annual

173



average value of -6.2 + 5.9 W m= provided by the SOC Atlas. The
estimated annual average latent heat flux was -73.0 £ 18.13 W m™
compared to -90.77 + 32.03 W m= given by the SOC dataset. The mean
annual bias was -18.8 W m=2 indicating an under-estimated annual

value.

The accuracy of the other datasets, such as the integrated precipitable
water vapour, cloud liquid water, aerosol optical thickness and outgoing
longwave radiation, was not assessed simply because of the lack of
alternative data. These values were obtained by remote sensing; the
humidity profiles are obtained by passive microwave remote sensing at
a high spatial (0.25°) and temporal (less than 24 hrs) resolution. The
other two are multi-annual climatological datasets with a coarse spatial

(1° by 1°) and temporal (monthly) resolution.

Section 4.4.2. discussed the results following the calibration of AVHRR
radiance scenes acquired over the Ionian basin without the use of
collocated in situ SST data. These calibrated high-resolution scenes will
be used to verify the high-resolution forecasts of the ocean model
(Chapter 7). The accuracy of different algorithms was assessed, as was
their applicability over the Mediterranean. A novel aspect of this study
was the derivation of a look-up table that consisted of single line
equations. Each of these equations can be used in the future for specific
atmospheric conditions with particular water vapour profiles. This
approach proved to be an efficient way to calibrate AVHRR scenes over
the central Mediterranean and thus verify the 24-hr SST forecasts

generated by the high-resolution ocean model.

The next chapter describes the setting-up of an atmospheric modelling
system over the Mediterranean Sea with particular emphasis over the
Ionian basin. Using this database, work is carried out to assess its
predictive accuracy and to fine-tune a prominent numerical scheme to
enhance its skill to predict the atmospheric fluxes over the ocean

surface.

174



Chapter 5

ASSESSING AND IMPROVING THE SKILL OF THE
ETA MODEL TO FORECAST AIR-SEA FLUXES.

5.1. Introduction.

Numerical Weather Prediction (NWP) models serve many users
interested in many weather phenomena at different timescales. In
operational ocean forecasting the interest of NWP lies in making
available continuos, fine spatio-temporal forecasts of near surface
parameters and fluxes (Taylor, 2000) as initial and driving fields for
ocean models. In this manner, the forecasted atmospheric fields can
reduce the time scale required for ocean models to attain quasi-
geostrophic conditions in their simulation and to reach a forecasted

sea-state that is close to observations8®.

There are many advantages in using modern numerical atmosphere
models to determine air-sea fluxes, the major one being their improved
schemes to calculate the transfer coefficients during the estimation of
the surface fluxes. Their surface parameterisation schemes have been
modelled on the current knowledge of the characteristics of the lowest
layer of air near the sea surface. The high vertical resolution offered by
these atmosphere models, for example, permit the application of the Liu
et al. (1979) surface renewal model based on the well-established
Monin-Obukhov similarity theory (Monin and Obukhov, 1954). Unlike
bulk formulae with constant transfer coefficients, these models are able
to include the effects of stability and interfacial conditions that are
applicable in approximately stationary and horizontally homogeneous

moderate winds.

86 Section 3.1.2.

175



5.1.1. NCEP’s Eta model.

The Eta model is an operational atmosphere model with a variety of
unique features in its numerical formulation8’. The latest public version
of the Eta model, known as “Workstation Eta” is now a complete, full
physics system, and is easy to setup and configure. The code is
considered very efficient, and is approximately 25-33% faster than MM5
on 2 CPU, with a 90% performance gain going from 1 to 2 CPU’s. It has
a non-hydrostatic option switch and can be operative in both Eta and
sigma coordinate options. It also supports shared multi-processor
platforms. Because of its non-hydrostatic feature, the model can now be
applied for high resolution, small-scale atmospheric prediction of
around 1 km or even less. The model is fully supported by the National
Weather Service of the US and has been distributed to around 60

national weather forecasting offices nationally.
5.1.2. Aim of the study.

At the time of writing, verification of the “viscous sublayer” scheme
embedded in a nested, high-resolution Eta model has not been done by
other investigators, and so there is no quantitative knowledge of the
skill of the Eta model to predict air-sea fluxes (Mesinger, 2002, personal
communication). A literature search carried out in 2005 to check if there
has been any progress did not result in any substantial study in this

regard.

The primary aim of this chapter is to provide quantitative information
on the overall skill of the Eta model to forecast air-sea fluxes and
related surface fields. The observed skill of the Eta viscous sublayer is
fine-tuned to further improve its predictability. Comparative verification
measures are applied to determine the quality of forecasts and their
relative accuracy with collocated observation(s). This approach

condenses the large amount of data generated from the single forecast

87 Section 3.2.4.1.
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experiments into a summary representation of the most important
variations of the predicted data. These measures include mean,
standard deviation, bias error and mean square error. This chapter also
uses concepts of exploratory spatial data analysis to be able to identify
spatial error drifts and graphically identify the impact of fine-tuning a
numerical scheme. For this purpose, a routine is designed to assess the
spatial similarity of predicted field with collocated rasterised

observations.

5.2. Methodology.

5.2.1. Setup and running the local area, and nested Eta atmosphere

models.

A Pentium MMX configured with 800MHz and 64MB of RAM was used
for the two versions of the Eta model working on a LINUX system with
gnu C and fortran 77 compilers. This computer was connected to a local
area network with ample space for archiving the data on hard disks and
external storage material. Each model consisted of appropriate folders
containing fortran 77 source codes and related executable files that (1)
decoded binary data coming from World Area Forecast System (WAFS),
Global Data Assimilation (GDAS) System, land cover, and topography
data and convert it according to model coordinate system; (2)
constituted the numerical schemes of the model; and (3) calculate the
output of all relevant forecasted fields and their conversion into
standard coordinates for displaying. Csh shell scripts unified the
operation of all these three main groups of codes, as identified by a

secondary file specifying the location of data files.

The modelling process was divided into three stages: pre-processing,
processing and post-processing. The pre-processing phase used
routines that generated the needed fields from databases. This was

done by interpolating external data sets to the Eta grid, and generated
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data sets for 3-D initialisation of the atmosphere model. Model pre-
processing is described in detail Appendix II, section II.3.1. Two
atmosphere models were setup: (1) a limited-area, Mediterranean-wide
model and (2) a model nested within the regional one, located over the
Ionian basin. Model preprocessing starts with the definition of the
model boundaries, horizontal and vertical resolutions and model time
step, followed by the preparation of constant input data such as
topography and land cover data. The lateral (WAFS) and surface (SST)
boundary conditions are then decoded and used by the regional Eta
model to initialise its boundary conditions. Full details of the
constitution of these datasets and the way how they are used by the
model are provided in Appendix I1.3.1.3. The spatial domains of the
local area (regional) and the nested model are shown in figure 5.1.
Examples of model-generated lateral boundary conditions generated by
the WAFS and reformatted in GrADS format are shown in figures 5.2
and 5.3.

The processing phase involved the numerical calculation of the future
state of the atmosphere using the numerical schemes embedded in the
model for a number of pre-defined time steps that eventually lead to a
short-range atmospheric forecast. This phase is described in Appendix
II, section I1.3.2. The daily integration of the local area (regional) Eta
model generated mesoscale, 3-hourly lateral boundary conditions for a
36-hour forecast. These were used to initialised the lateral boundary

conditions of the nested Eta model.

In post-processing, computations were made to the raw model output to
transform it to a format readily usable by forecasters. Diagnostics and
meteorological parameters were derived from the forecast variables. In
addition, model variables were interpolated vertically to surfaces used
by forecasters (isobaric, isentropic, and constant altitude) and

interpolated horizontally to output grids. Contour plots were also made.
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The post-processing stage is described in Appendix II section I1.3.3. This
stage consisted of the generation of predicted air-sea surface fluxes by
the nested Eta model as the new surface boundary conditions to drive
the ocean model®8, These consisted of 36-hour, 3-hourly forecasts of the
latent and sensible heat fluxes, outgoing and incoming long- and short-
wave radiation, u- and v-component of momentum flux, moisture heat
flux, surface air temperature and surface pressure. The final, high
resolution forecasts were converted in gridded standard format for

subsequent model verification against collocated observations.

% see Chapter 7
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These three stages were run using an automated script as shown in
Appendix II (section I1.3.4.) following the process shown in figure 5.4. By
defining a series of dates using the “foreach” command, dates and
integration times and folder names for the output files were created
automatically. WAFS- and GDAS-derived lateral and surface boundary
conditions in GRIB format were first copied from the central archive to a
specific folder from which they were subsequently called and converted
to GrADS format using grb2grads.f8° routine. This stage gave the facility
to display the initial data. Conversion into Eta transformed coordinates
followed using grads2anec.f routine. The sst routine (see sst.F %)
converted the SST from GrADS format into a binary file was used by the

model to initialise its surface boundary field.

The subsequent processing prepared the boundary conditions over the
domain area of the regional model run, including the preparation of
seasonal/monthly initial conditions for the aerosols, ozone, radiation,

etc., using the GFDL package.

Following the processing stage, the routine outnest.f converted the 3-
hourly output data into standard latitude and longitude coordinate files
and wrote the transformed data into GrADS format to be graphically
displayed. This routine also prepared prognostic 3-hourly fields that
were used as the new mesoscale lateral boundary conditions for the

nested model (fig. 5.5).

89 Appendix II; Section I1.2.1.
90 Appendix II; Section I1.2.3.
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Figure 5.4. Flowchart and interaction between the various stages of the
two Eta models and input of forecasted air-sea surface flux fields into
the ocean model. The Data Analysis component used image
processing, GIS and statistical software for model diagnostics. (LAM=
Limited Area Model).
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where ujo and vio are the 10 m wind components. Pixel to pixel
validation of Eta-generated 10 m wind magnitude fields was performed
against collocated TMI-derived 10m wind magnitude fields®!. Data was
filtered as to exclude contamination due to low variable winds

(< 3 m s'!) and high winds (> 12 m s°1).
5.2.2.2. Turbulent heat fluxes.

SST and wind magnitude fields extracted from the TMI sensor were
used to calculate the sensible and latent heat fluxes. Values of 10 m
wind magnitude in the region of < 3 m s'! and > 12 m s'! were not used

in the calculation of the heat fluxes.

Pixel-to-pixel validation of Eta-generated sensible and latent heat fluxes

was done against collocated flux fields derived from the database92,
5.2.2.3. Radiative heat flux.

The outgoing longwave radiation (OLWR) is the only radiative heat flux
parameter used to assess the radiative package of the Eta model as
compared to the monthly average observation collected by NOAA
pathfinder during 199993,

Validation of Eta-generated outgoing longwave radiation was performed
using statistical software by comparing mean values against monthly
fields derived from the database.

5.2.2.4. Columnar cloud liquid water.

This parameter is related to the degree of condensation of atmospheric

water vapour. The integrated cloud liquid water is an important

91 Section 4.3.1.1.
92 Section 4.3.1.6.
93 Section 4.3.1.3.
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parameter for determining both the initiation and amount of
precipitation from cloud systems. Pixel-to-pixel comparison between Eta
forecasted integrated cloud liquid water and remotely sensed
observations? gave an indication of the accuracy of the model’'s

convection parameterisation scheme to predict such events.

5.2.2.5. Total columnar precipitable water vapour.

The accurate prediction of this parameter by atmosphere models can be
highly beneficial for both the oceanographic and atmospheric
community. This parameter indicates the amount of water vapour in the
column and is a function of the atmospheric temperature profile. Sinks

of this water vapour are clouds or condensation on surfaces.

Pixel-to-pixel validation of Eta-generated total precipitable water vapour
against similar collocated fields (derived from the database) was

performed using statistical software.

5.2.2.6. Near surface air temperature.

Validation of Eta-generated 2 m air temperature was done using
statistical software by comparing predicted mean monthly values

against collocated fields extracted from the database®.

5.3. Fine-tuning of the Eta model viscous sublayer depth.

The viscous sublayer model embedded in the Eta model is a
sophisticated scheme that calculates amongst other fluxes, the 10 m
wind. The research questions presented in section 2.1.2. require an
experimental setup that performs a number of Eta model simulations

over water surface as to fine-tune equations 5.15%. This is based upon

94 Section 4.3.1.1.
95 Section 4.3.1.6.
96 Appendix II; Section II.1
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verification of forecasts against the 10 m wind magnitude observations

derived from the database.

A schematic diagram of the experiment is shown in figure 5.6. The fine-
tuning is focused on the scheme embedded in the nested Eta model.
High-resolution model runs were repeated using a value for the

parameter that defines the depth of the viscous sublayer, ;, of 0.20,
0.35, 0.70 and 0.80.

A substantial number of forecasted output fields generated by the
parallel experimental runs were validated against satellite observations.
The total number of single-forecast verification analyses (see table 5.1 a-
b), amount to 524. The selection of these single-forecast dates were
defined by:

1. the availability and integrity of initial surface and lateral boundary
conditions, and,

2. the availability and integrity of collocated observation data.

The scalar and spatial accuracy of the 4 sets of forecasted 10 m wind
speed was assessed on the basis of objective correspondence between

forecasts and collocated 10 m remotely sensed observations.

Statistical measures including bias and root mean square error were
used?’. The sets of single forecasted dates validated against remotely
sensed wind speed observations were grouped together according to the
average Eta-model predicted wind speed as follows: 3.0 - 3.9 m s}
40-49ms!;50-59ms!;6.0-69ms! and7.0-11.0m s!. For
each category, the respective RMSE values for the 4 sets of data were

normalised and plotted against increasing wind speed.

Exploratory spatial data analyses was also applied9s.

97 Section 5.4.

98 Section 5.4.3.
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Figure 5.6 Schematic diagram of the experiment to fine-tune the Eta viscous
sublayer. The nested model was run four times, each run using a different
value embedded in the viscous sublayer scheme. Subsequent model
verification is described in section 5.4.

5.4. Model output accuracy assessment.

The accuracy of the forecasting system was assessed on the basis of the
objective correspondence between the forecasts and collocated data

extracted from the database?? (Glahn et al., 1991; Murphy, 1997).

The database used in the verification processes had a space-time
correspondence with all forecasts validated at the pixel level (tables 5.1
a - b). Two classes of statistical verification methods were applied: (1)

the basic forecast distributions and their summary measures, (2)

99 Section 4.3.1.
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5.4.2. Performance measures of the forecasts.

A number of different characteristics of forecasting performance were
identified which represented various aspects of the quality of the
forecasts. In addition to the basic characteristics, other features of
interest were studied involving the marginal distributions of the
forecasts and observations. Statistical analysis was performed on a

pixel-to-pixel basis. These measures were the following:

Bias: This is a simple difference of forecast (f) minus observation (0) and

equals the error between scalar quantities
— 1N
b= szlfl -0

which can be arithmetically averaged in area and time. The difference
(error) field provides a quick look at model's forecast performance or
bias. Bias or tendency was measured to identify magnitude of
systematic tendencies to under- or over-forecast a particular variable

with forecasting time.

Forecast accuracy: This referred to the accuracy of the model

forecasts.

RMSE: The Root Mean Square Error is defined as the positive square

root of the mean square error

1 1/2
RMSE= [(ﬁ)zf ¥, plf, x)(f - x)z}

RMSE depends on the range of atmospheric variability and on the
atmospheric flow. It typically increases with forecast time since the

predictive skill of the model drifts away with timé. It provided a useable
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statistic to verify model forecasts and is applicable to a large number of

analysis and forecast elements and model types.

5.4.3. Spatial data analysis.

Spatial analysis was performed (1) to analyse the relationship between
Eta forecasted fields and observations, (2) to identify spatial properties

of and (3) to understand the inter-relationship between surface fields.

5.4.3.1. Spatial similarity and feature matching analysis.

Similar approaches to spatial problems have been used. Jones and
Roydhouse (1994), for example, examined weather patterns and Holt
and Benwell (1999) modelled the natural forest environment. Their
studies support the use of spatial similarity to answer questions
concerning the presence of similar, user-defined spatial phenomena
within different subsets. The concept of spatial similarity analysis
developed by Cobb et al. (1998) was formalised in this study. This
consisted of the combination of fields and their associated inherent
knowledge as to determine the position of similar clusters between
observed and Eta forecasted fields. Each feature is considered as a set
of attribute-value pairs and from this representation, a degree of

matching similarity was determined.

A windows-based ERMAPPER 5.5 algorithm with raster display features
was written to recode the raster information between observed and
predicted fields into a set of normalised class values that assisted the
calculation of spatial similarity. By using proximity analysis, the
observation field was assigned as a reference while the forecasted field
as the source to measure degree of similarity. These two recoded fields
were then overlayed and the difference between the coinciding classes
was related to the similarity between them. An ISOCLASS, unsupervised
classification processed the resulting raster field and generated a

classified map consisting of a single band, byte raster dataset, with
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5.5. Results and discussion.

5.5.1. The experimental approach.

The following points were considered in the setting up of the

atmospheric modelling system:

1. software and operating systems: The Eta model code is written
in fortran and c language, and has been ported and tested on
different machines, including HP, SGI, DEC, IBM and LINUX
workstations. LINUX is growing in popularity; it is freely available
and its compatibility with personal computers as well as free
source compilers such as Fortran 77 that run on LINUX operating
system made it an ideal choice for the present study. The
formatting of forecast data in gridded ascii provided flexibility for
further analysis using different operating systems such as
Windows platform, on which statistical and GIS-related analysis

together with the required image processing was performed.

2. domain size: the choice of the domain size impacted on the
model execution time, the influence of the boundary conditions,
development of computational grid-scale forcing and forecasting
skill and value. The choice of the domain size for the limited area
model domain (0.179) rested on the balance between the provision
of coarse, modelled lateral boundary conditions from the global
model (1.25° resolution) and the requirements of the nested model
running at 0.042¢ resolution. The small-scale nested domain is
still at the research phase for NWP in the Mediterranean, and so
is considered as a challenge for the present study. This high-
resolution model provided forecasted data at unprecedented
temporal and spatial scales. In addition to the actual forecasts per
se, these products were used to force an underlying ocean model

running at 0.042° resolution — a scale that also sets an
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experimental limit for sub-basin ocean forecasting in the

Mediterranean.

. model nesting: The scope of model nesting is to ensure the
provision of much better resolved and more balanced initial fields
than if the nested model was directly initialised by the WAFS
dataset. As explained in Appendix II.2, the LAM was first used to
prepare 3-hourly forecasts of the main prognostic variables which
were consecutively used to initialise the boundary conditions of
the nested model. This was done in two steps; first, sets of 3-
hourly forecasts were produced after the region-wide model was
run for each designated date throughout 1999. Second, the
region-wide forecasts were made available as boundary conditions
of the nested, high resolution model!%, to produce, in turn, high
resolution, 3-hourly forecasts over the Ionian sea. To this affect,
changes were made to the pre-processing (e.g. model ingestion of
initial data; model integration domain, horizontal resolution) and
post-processing phases (e.g. calculation of the air-sea fluxes and
extraction of forecasted data for model validation) of the model.

The processing phase of the two models was exactly the same.

As well illustrated by Mesinger (1977), the limited area model
helps the performance of the nested model by allowing it to
develop small scale motion, consistent with the local area model.
However, dynamical inconsistencies can still arise based on
different vertical resolutions between the two models. Weather
features can be affected by “refraction” and “redirection”
processes of atmospheric waves when they are introduced at the
nested model's lateral boundaries, causing drifts even at the
initialisation phase. Such fields may include precipitation,
temperature, vertical motion, etc. This is also relevant when the
regional model is initialised with the boundary conditions

“supplied by the global model. -

100 A description of this process is given in Appendix I1.2.5
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4. model execution time: The total integration period was designed
to produce short-range, 36-hourly forecasts with a high temporal
resolution (3 hours). It is well known that the downward trend in
the forecasting skill of any atmosphere model originates from the
chaotic nature of the real atmosphere. Far from providing
accurate, high-resolution forecasts, the only useful long-range
prediction will consist of just the larger scales of predicted
motion. At the other end of the forecasting spectrum, the skill of
atmosphere models tend to deteriorate only slowly in the early,
short-range part of the forecast owing both to their good
representation of larger scales which parallels the ‘perfect’

solution as well as accurate initial conditions.

In addition to their higher skill, short-range forecasts are highly
sensitive to any fine-tuning adjustments made to the model's
algorithms. The present approach proved to be very convenient,
since it restricts the generation of large amounts of data requiring
analyses and validation. The assumption is that ultimately the
improved skill will be propagated forward in time to the benefit of

the final accuracy of the longer, medium-range forecasts.

Another reason for the choice of a short integration time is that
the accuracy of highly variable parameters, such as turbulent
heat fluxes, can only be captured using a short-range predictive
mode. Moreover, the present model system uses a constant SST
throughout its integration time as its lower surface boundary
condition!0!, It is well understood that SST has a diurnal cycle of
as much as 3 °C in near-calm conditions and if not reflected in
the model, this variation can cause the models to underestimate

daytime ocean-surface evaporation.

101 This is similar to all NCEP NWP models. These models prescribe that the SST remain
fixed (i.e. retain their initial value) throughout the forecast period.
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5. phenomena of interest: the list of fields that can be predicted by
the Eta model is wide ranging. The objectives of this study
restricted this list to a number of geophysical fields that enabled
the analysis and fine-tuning the skill of the current Eta model to

enhance its predictability of air-sea fluxes.

6. displaying and conversion of initial and forecasted data: a
prerequisite of the forecasting system was an interactive desktop
tool for easy access, processing and visualization of 4-dimensional
gridded, initial and forecasted binary data. The grids were of
variable resolution and analysis of fields required a variety of
graphical techniques, including smoothed contours, shaded
contours, streamlines, wind vectors, grid boxes and shaded grid.
Their output into image formats was also required. The Graphical
Analysis and Display System (GrADS) proved very useful for such
purposes, where the displaying and processing were executed
using FORTRAN-like expressions at the command line. GrADS
was run in batch mode, and the scripting language facilitated its
use to perform long overnight batch jobs. This software is
available for free and versions are available for both LINUX and

Windows operating systems.

However, GrADS falls short from being able to analyse the model
data from a GIS point of view. ERMapper was used as a GIS
program for the visualization, processing and enhancement of the
geographic data. Using this software, model forecasts and
collocated observations were loaded into different layers,
superimposed and processed for comparative and spatial
analysis. ERMapper also provided GIS tools for contouring and
vector overlay. Its data export facility was conveniently used to
convert the raster data into gridded xyz format that was later
analysed by statistical packages such as Microsoft Excel (for basic
statistical analysis) and StatGraphics (for multiple regression

model analysis).
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5.5.2. The forecasts.

Figures 5.8 to 5.14 represent a case study of the short-range, main
geophysical fields predicted by the limited area model and high-
resolution nested Eta models on the 2r February 1999 at 2100 UT.
Figure 5.12 gives an indication of the enhanced small-scale information
of the 10 m wind speed forecasted by the nested Eta model. This is also
the case for the sensible and latent heat flux maps in figures 5.13 and
5.14.

5.5.3. A climatological analysis of the model accuracy.

A summary of the analysis (forecasted versus observations and derived
products) for the period January 1999 — December 1999 is given in this
section!92, A total of 131 single forecasts were analysed throughout this
period. This is considered to be a good analytical sample and is
comparable to similar verification studies of the Eta model. In this
section, reference is principally made to a small number of measures,
namely average, standard deviation, bias and RMSE that assist the
comparison between forecasted fields and climatological datasets, and
hence, its accuracy. This section is not intended to analyse in detail the
climatological behaviour of the various geophysical fields, rather it is
aimed at testing the accuracy of the forecasts against collocate
observations. The general climatic tendencies of these fields are been

described in chapter 4.

102 Fyll statistical results are shown in Appendix VI,
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Figure 5.16. Mean error of Eta forecasted integrated precipitable water
vapour from the observed field (in g cm=).
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Figure 5.17. Monthly average RMSE between the Eta-forecasted and TMI-
derived integrated precipitable water vapour (in g cm?).
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concerning fine-mesh atmospheric prediction. TMI-derived cloud liquid

water can greatly assist in the fine-tuning of this numerical scheme.
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Figure 5.19. Mean error between the Eta and TMI-derived integrated
cloud liquid water (mm).
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Figure 5.20. RMSE between the Eta forecasted- and TMI-derived
integrated cloud liquid water (mm).
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effects on the overall total heat flux tends to over-estimate fluxes such
as the outgoing longwave radiation by not taking into account the

resultant longwave attenuation by dust.

As shown by the annual dust profile in figures 4.22 a - 1, the annual
AOT over the area of interest ranges between 50 to 270 (ODU x100).
This thickness, which is principally caused by stratospheric dust
particles, should lead to a diminution in the outgoing longwave
radiation due to longwave absorption and scattering. This lack of
physical treatment of the modelled radiation explains the overall higher

predicted value for this parameter.

Apart from the lack of radiative forcing due to dust, the radiative
package also lacks a fine database of important variable atmospheric
components (such as COz and Os) as well as terrestrial components (soil
type, albedo function, etc). This can therefore limit a realistic simulation
of the radiative processes and their interaction with other model

components.

Papadopolous et al. (1997) describe sensitivity studies of the radiation
parameterisation schemes of the Eta model. They noticed that over
land, an improved description of the underlying surface improves
significantly the model performance. In the case of water surface, there
is little description that is required to characterise it; however, the
vertical description becomes extremely important. The Eta radiation
package searches its internal database, such as CO2 and Oj, to
characterise its vertical profile. The presence of the various phases of
cloud water, including clouds become also a determining factor in the
proper forecasting of the radiation fluxes. This study gives a good
indication of the Eta's skill to predict these hydrometeorological

parameters.

To date, there is no study available in_the literature on the performance

of the radiation parameterisation scheme of the Eta model over the
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oceans. Papadopolous et al. (1997) have tested the Eta scheme but over

land surfaces using different model resolution grids.

Another possible source of error is the prescribed SST throughout the
model integration. By keeping the SST constant, the small changes that
can in reality affect the atmosphere over the course of the numerical
forecast are blocked. This restriction on the surface energy budget can
also be an important factor that leads to model errors in the calculation

and prediction of the radiative fluxes.

5.5.3.4. Surface wind magnitude.

A predicted annual 10 m speed magnitude over the area of interest is
6.1 £ 1.9 m s! as compared to 5.3 + 2.0 m s'! given by remotely sensed
observations. Figure 5.22 shows that both profiles follow closely the
same trend, with prevalent low wind speeds during summer and
stronger ones during winter. The variability shown by the the temporal
trend in RMSE also follows the same pattern (fig. 5.23). Considering the
error inherent in the TMI sensor’s measurement of wind (+ 1.0 m s-!
against buoy data; —1.2 m s'! against SOC data)1%4, an annual RMSE of
1.48 m s'! and mean bias of 0.76 indicates a high Eta model skill. This
value is lower than that obtained by a similar high-resolution (0.1° by
0.1° domain) Eta model working over the Aegean basin (Nittis et al.,
2001).

104 Section 4.4.1.1.
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Fig. 5.25. Over-forecasting of the Eta-predicted fields when compared to
the SOC climatology over the area of interest. This trend is not as
significant when predicted fields are compared with the quasi-
instantaneous (estimated) fields derived from the database.

5.5.3.6. Sensible heat flux.

Results show an annual mean predicted sensible heat flux of -15.3
+ 5.1 W m2 compared to an observed mean of -5.9 + 1.2 W m=2. A
strong seasonality trend was observed with minima occurring during

winter (January and December) and maxima during summer (fig. 5.26).

The deviation of the forecasted field from the TMI-derived heat flux is
evident by the mean error between the two fields (fig. 5.27). The over-
forecasting trend of the Eta model starts to increase from July to reach
a maximum in December. This general seasonal variability follows that
of the wind magnitude; the low wind magnitude values during summer
forces close to positive values of sensible heat flux. This is clearly shown
by the scatterplot between the predicted Eta- sensible heat flux -and
10 m wind magnitude (fig. 5.28).
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Figure 5.28. Relation between estimated sensible heat flux (W m=) and
10 m wind magnitude (m s1) over the area of interest.

As expected, the monthly mean RMSE trend between the predicted and
observed fluxes increases during the same period of time (i.e. July-
December). The pattern of the overall RMSE (with an annual mean of
14.5 W m?) also shows a low RMSE during the summer which
increases during the winter (fig. 5.29). This is similar to the overall
RMSE pattern obtained when observed and predicted wind magnitude

fields are compared (fig. 5.23).
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Figure 5.32. RMSE between Eta-predicted and estimated latent heat flux
(W m=),

5.5.4. Overview of the predictive skill of the nested Eta atmosphere

model.

The identification of the Eta’s strengths and weaknesses helps to better
interpret its output and adjust model biases. This information becomes
extremely useful for the overall assessment of the predictive skill of the
ocean forecasting system. In the case of the nested Eta model used in
this study, the identified biases may be partially removed, but may not
be entirely corrected or eliminated. Inherent in these biases are also
errors originating from the collocated database. Model biases can be
further analysed using exploratory spatial data analysis to identify

model error drifts.
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A general observation on the overall, climatological performance of the
Eta nested model can still be made. Relative to the observations and
derived products, the Eta model is accurate enough to predict surface
air temperature and integrated precipitable water vapour. The model is
also able to predict latent heat and sensible heat fluxes, the latter to a
slightly lesser extent. Beljaars (2001) shows how very often the errors in
air-sea flux prediction are mainly due to systematic biases in the near
surface humidity and temperature and less to the air-sea transfer

formulation itself.

The same results show that the Eta radiation package is limited in its
ability to forecast the outgoing longwave radiation. NCEP states that the
overall clear-sky radiation calculations of the Eta are accurate to within
5%, at least when compared to detailed "line-by-line" radiation
calculations!06. This numerical package is highly depended on the
accuracy of simulated cloud content, for which this study identified a
slight over-forecasting of integrated cloud liquid water vapour, which is
a good indicator of the vertical profile of the cloud content. NCEP
however comments that the linkage between the simulated cloud
content and radiation is rather crude, and may result in errors.
Additionally, the horizontal and vertical errors in cloud location may
also have a significant impact on the longwave radiation and associated

heating and cooling rates at the model surface and upper layers.

The nested Eta model used by this study contained limited information
concerning the diurnal heating cycle and its influence on temperature,
moisture, and wind fields. The sea surface temperature was supplied as
fixed, initial information that did not change during the model's
integration period, therefore providing no information on the diurnal

heating.

The skill of the Eta model to forecast 10 m wind magnitude deserves
special attention since this variable significantly influences the

prediction of the air-sea fluxes. Section 5.5.5 details the fine-tuning of

106 http:// www.meted.ucar.edu/ nwp/pcu2/etaradl.htm (accessed on 01.11.04).
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the Eta viscous sublayer scheme that assists the parameterisation of

air-sea transfer of fluxes, including momentum fluxes.

Atmospheric modellers tend to stay away from presenting a list of biases
for models that are evolving continuously. Very often, only generic
presentations of the model’s ability to forecast major events is provided
to the public, while detailed analysis is left for internal assessment and
model improvement. Detailed model verification information is never
issued by the major ocean and weather forecasting systems working in
the Mediterranean, such as SKIRON. ECMWF issues only generic data
either seasonal or yearly for major variables, such as geopotential over
large areas. The Mediterranean Forecasting System is still at the initial
stages of verifying the various air-sea surface flux packages that can be
used for its basin-scale ocean models. An inter-comparison study
between the present results and other similar forecasting systems was

therefore impossible.

The single forecast performance results presented by this study provide
distinctive information on the performance of the Eta model to forecast
especially air-sea surface fluxes and related geophysical fields over the
ocean surface. The numerical schemes validated by this study are the
same as those found in the model version released at the end of 2002.
This implies that the present results can be used to understand and

fine-tune such schemes.

5.5.5. Fine-tuning the Eta model viscous sublayer depth.

Section 5.5.5. describes the results related to the fine-tuning of the Eta
viscous sublayer scheme. The air-sea transfer formulation in the Eta
model consists of three elements: (i) roughness length formulations for
momentum, heat and moisture, (ii) Monin-Obukhov similarity functions
to account for stability effects and (iii) a boundary layer similarity based

gustiness parameterisation!97. The fine-tuning of the formulation of the

107 Appendix II; Section II. 1
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viscous sublayer depth can result in a more accurate air-sea transfer
including the prediction of momentum fluxes at the ocean surface.
Here, the sublayer depth is studied and refined according to specific
wind categories that would lead to different air-sea transfer conditions
within the viscous sublayer scheme. It is important to note that the
distributed version of the Eta model is provided with a single value for
the viscous sublayer depth. The relation between the normalised RMSE
and the respective wind speed magnitude are shown in figures 5.33 a
to d. The entire experimental data is tables VI.8 a-b as shown in

Appendix VI.

Figures 5.33 a to b show the normalised indices obtained for the four
sets of { values plotted against increasing wind speed ranging from (a)
3.0 to 3.9 m s, and (b) 4.0 to 4.9 m s'!. These results show that a
value of { = 0.7 gives the lowest RMSE for a low wind speed regime
calculated by the model (3.0 - 4.0 m s'!), which is seen to slightly
deteriorate with increasing wind speed. The next best value for { is 0.8.
The most accurate prediction for the viscous sublayer model under a
wind speed regime that ranges from 4.0 — 5.0 m s'! is provided by { =
0.2. The next best values are 0.35 and 0.7 in decreasing order

respectively.

Figure 5.33 c¢ indicates that a { value of 0.2 continues to give
consistently low RMSE when the model wind speed ranges from 6.1 -
6.9 m s'1. Figure 5.35 d shows that the optimal { value for the highest

wind speed regime is 0.8.

Figure 5.33 d points to an interesting aspect of the viscous sublayer
model. The drop in the normalised index for all four { values suggest an
inability of { to be effective. At wind speeds higher than 8.0 m s°!, the
viscous sublayer model is likely to become ineffective and the other
scheme - the turbulent model scheme of Mellor Yamada becomes active
-due to the tufbulent processes ocCurrlng at these hlgher wind speeds.

The common tapering of the normalised RMSE to the lowest levels at
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the higher wind speed spectrum indicates that the entire range of wind
speed used in this experiment addresses the full functionality of the

viscous sublayer model.

These results are condensed in figure 5.34 which provides an overall
relation between the normalised RMSE and calculated wind speed for
the four values of {. Whereas a { value of 0.2 gives the best overall
result when the model wind speed ranges between 4.4 and 8.1 m s’1,
the lowest wind speed regime seems to be best predicted when { equals
to 0.7. At the highest range of wind speed (i.e. > 8.1 m s'!), a value of
0.8 provides an overall better performance of the viscous sublayer

model to predict the model’s lowest surface wind speed.
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Predicted 10 m wind speed regime (m s'!) | Optimal value of {
3.0-3.9 0.70
4.0-6.9 0.20
7.0-12.0 0.80

Table 5.2. Optimal { values for different 10 m wind speed regimes. The
value of { can be dynamically adjusted according to modality of the
predicted wind speed regime.

5.5.6. Exploratory spatial data analysis.

The impact of fine-tuning the viscous sublayer on the final quality of the
10 m wind speed forecasts was assessed spatially. This was done using
GIS and spatial overlaying of the 10 m wind forecasts with collocated
observations and subsequent analysis of their similarity. Spatial
analysis was able to identify the resulting relationship of class

attributes as well as model drift errors.

5.5.6.1. Spatial similarity and feature matching analysis.

Because of the extensive nature of this spatial analysis, five case
studies are presented that best describe the results of the fine-tuning of

the model scheme at different wind speed regimes.

(i) Single-forecast spatial similarity analysis for 27d¢ July at 1500
UT.

Figures 5.35 a to c represent an analysis of the spatial similarity
between forecasted and observed fields. Black pixels represent nulled
pixels that are below 3.0 m s'1. The average forecasted wind speed for
this case study was an average of 3.3 m s-!. These maps show that the

number of valid pixels is higher when the value of { is 0.7.
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In addition, figure 5.35b shows that a { value of 0.7 results in a higher
degree of similarity between the predictions and observations than does
figure 5.35a. A closer inspection of the contoured TMI-observed wind
field (fig. 5.35¢c) suggests that pixel categories attributed to a wind speed
range of 3.0 to 5.0 m s'! are being more efficiently predicted when the
viscous scheme used a { value of 0.7. Spatial similarity analysis

therefore supports the results obtained by the standard verification.

(ii) Single-forecast spatial similarity analysis for 274 August at 2100
UT.

For this case study, the average forecasted wind field is 4.1 m s-1.
Spatial similarity analysis shows that a { value of 0.7 is also optimal,

and this { value leads to a larger number of valid pixels.

What is more important is that a { value of 0.7 gives a larger portion of
pixel classes that are most similar to observations. The contoured TMI-
observed wind field (fig. 5.36¢) again suggests that the choice of this
value leads to better prediction when the predicted wind speed regime is
between 3.0 to 5.0 m s'l. These results further support the use of

€ = 0.7 for low wind speed regimes.

(iii) Single-forecast spatial similarity analysis for 12tk July at 3300
hrs (i.e. at 13.07.99 @ 0900 UT).

The benefit of using a { value of 0.2 for higher wind speeds (an average
of 5.4 m s'!) is shown by this case study. Both spatial similarity maps
(figs. 5.37a and 5.37b) have similar valid pixels indicating close
complimentary; however, a { value of 0.7 gives a larger area of ‘least
similar’ pixels, especially in categories that are attributed to wind
speeds that are greater than 5.0 m s-1. This is easily observed when the
'spatial similarity maps are compared to the contoured TMI-derived wind
h Aﬁié‘ld (fig. 5.37¢). Th1s :Vt.éch'niqu'e gi{rés results that complement the

standard verification measures.
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(iv) Single-forecast spatial similarity amalysis for 10t January at
3000 UT (i.e. at 11.01.99 at 0600 UT).

This is the best case study showing the most significant fine-tuning of
the viscous sublayer scheme. When the average predicted wind speed is
8.0 m s-1, the use of a { value of 0.8 is accompanied by a high degree of
similarity between the resulting forecasts and collocated observations
(fig. 5.38d). What is also noticeable is that identical similarity maps are
obtained when the { value equals 0.2, 0.35 and 0.7, indicating againl08,

the ineffectiveness of using these values for this range of wind speed.

(v) Single-forecast spatial similarity analysis for 09t November at
1800 UT.

Both figures 5.39a and 5.39b show similar spatial patterns. However, a
€ value of 0.2 clearly gives a larger proportion of ‘most similar’ pixel
classes. In this case, spatial similarity analysis suggests that the use of
a { value 0.7 leads to a model error drift, especially when strong
gradients of wind speed categories between 7.5 and 9.5 m s'! are
present. On the contrary, these gradients are better resolved and
predicted when the { value is 0.2. These results again complement the

ones obtained in section 5.5.4.

The design and use of a spatial similarity procedure therefore proved
extremely useful to identify spatial attributes that assessed the fine-
tuning of the viscous sublayer model of the Eta model. The routine that
defined the spatial exploratory procedure!®® proved to be sensitive
enough for the present objectives, i.e. to identify the relationship of
class attributes between the optimally forecasted and observed wind
fields, as well as exposing model drift error. This assessment enabled

the fine-tuning of the viscous sublayer depth C.

108 As.in section 5.5.4.
109 Section 5.4.3.1.
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Exploratory spatial data analysis demonstrated that it complements the
standard verification procedures used to validate the performance of the
scheme. However, spatial analysis, in particular spatial similarity,
enabled the identification of model error drifts and the characterisation
of spatial improvements following adjustment of the viscous sublayer
depth. Beljaars (2001) show how further tuning of this scheme can be
brought about by including ocean skin temperature effects (warm layer
and cool skin), and the effect of salinity on the saturation water vapour

pressure at the ocean surface.

5.6. Summary.

This chapter provided a detailed study on the predictive skill of the Eta
model to provide suitable met-ocean parameters over a wide range of
climatic regimes. Section 5.2.1. described the setup and initialisation of
the limited area model using boundary conditions derived from a global
model. This section described how these fields were smoothed, balanced
and improved as the initial boundary conditions for the nested

atmosphere model.

By means of the high-resolution database developed in chapter 4, the
research questions put forward in section 2.1.2. were addressed. The
level of scalar and spatial accuracy of the nested, high resolution Eta
model was identified using a novel objective approach as described in

section 5.4.3.

Section 5.5.3. discussed the current forecasting skill of the Eta model to
predict air-sea fluxes and related basic variables. The annual
forecasting trends of the Eta model were also discussed. Compared to
collocated observations taken from th¢ database, the Eta model showed
a very good skill to pfédict 'tlr_'ler ingégfafed precipitable water vapour
(mean bias of —0.05 g cm™?), surface wind magnitude (mean bias of

0.78 m s°1), surface air temperature (mean bias of 0.15 °C), latent heat
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flux (mean bias of —-17.1 W m?) and sensible heat flux (mean bias of
-9.2 W m?). Eta model produced a bias of 174.4 W m=2 when its
predicted outgoing longwave radiation was compared to satellite

estimations.

Apart from summarising the general forecasting skill of the Eta model,
this chapter demonstrated the efficacy of remote sensing to assess and

rate the performance of the modelling system used in the present study.

Section 5.5.4. discussed the fine-tuning of the Mellor-Yamada
turbulence closure scheme. The results of this experiment and
suggestions for their operational have been discussed. A novel,
exploratory spatial similarity analysis was presented and used to
explore the spatial accuracy of this modularity as described in section
5.5.5.

The next chapter addresses the impact of initialising this nested
atmosphere model with high-resolution SST data derived by and
orbiting passive microwave sensor. Special emphasis is given to the use
of exploratory and geostatistical analysis to study the resulting impact

on the accuracy of the model predictions.
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Chapter 6

IMPACT OF USING MICROWAVE-DERIVED SEA
SURFACE TEMPERATURE TO INITIALISE THE
LOWER BOUNDARY CONDITION
OF THE ETA MODEL.

6.1. Introduction.

The sea surface temperature (SST) plays a crucial role in the coupling of
the atmosphere and ocean (Tsintikidis & Zhang, 1998). It is a
controlling factor in the exchange of heat and moisture (evaporation),
thus determining the marine boundary layer stability. The sea surface
temperature also interacts with the atmosphere leading to convective
processes that in turn affect the thermohaline conditions of the oceans

(Tsintikidis & Zhang, 1998).

In numerical weather prediction, this surface variable plays a crucial
component in deriving a true representation of the surface processes at
the marine boundary layer of numerical models. Hence, an unrealistic
representation of the ocean surface leads to errors in the model
forecast, in particular to fine-resolution numerical modelling!10. The
need for improved representation of the actual SST conditions is

extremely important and becomes therefore mandatory.

6.2. The experiment.

This chapter presents an evaluation of novel remotely-sensed datasets

used to initialise and hopefully improve the ocean forecasting system.

110

http:/ / www.met.tamu.edu/ personnel/ faculty/ fzhang/ ATMOG689/ Lecture19/ Lecture19.
doc (accessed on 01.11.04).
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The aim is to test the suitability of data from orbiting Tropical
Microwave Imager (TMI) to improve the forecast of air-sea fluxes that are
used to force the underlying ocean model. The impact of using this
alternative source of SST is assessed on the basis of the skill of the
model to forecast near surface geophysical parameters that are sensitive
to the prescribed initial conditions. Any improvement in forecasting
capability would very much benefit application in areas such as oil spill
warning systems (e.g. RAMSES), and for warning of extreme events in

the Mediterranean region (e.g. COMPASS).

The study area covers an open ocean domain over the lonian basin
(fig. 5.2). Two parallel and identical numerical atmosphere models are
used to produce a series of forecasts. The lower surface boundary
condition of one of the models is initialised using remotely sensed SST
retrieved by the TMI sensor during the period January to December
1999. The initialisation of the atmosphere model using TMI data was
denoted as ‘experimental and compared with a ‘twin’ setup using SST
data derived from the Global Data Assimilation System of the National
Centre for Environment Prediction (NCEP) in Washington. The latter
dataset is routinely used by operational NWP agencies to initialise their

local area atmosphere models to produce daily atmospheric forecasts!!!.

The Eta model used is the nested high-resolution version described in
section 5.2.1. The experimental work was carried out during the first
quarter of 2000 as soon as a full-year, global, high-resolution SST data
derived from the orbiting microwave sensor was available for public use.
During 1999, the TMI sensor was the only orbiting instrument able to
retrieve SST data wusing passive microwave radiometry. Other
geophysical fields were simultaneously collected from the same sensor,
including 10 m wind magnitude to assess the forecasting quality of the

experimental setup.

1 e.g. by the Euro-Mediterranean Centre in Insular Coastal Dynamics and by the
RAMSES oil spill modelling system.
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The field of view of the TMI sensor is limited to around 40°S and 40°N,
since a low inclination orbit was chosen for the satellite to provide
continuous monitoring of tropical latitudes. In this context, the
geographical coverage of the TMI data also defined the local area
domain over the central Mediterranean, which did not exceed 40°N in

latitude (fig. 6.1).

A schematic diagram of the experimental procedure is shown in figure
6.2. The main experimental point is the “switching” of SST sources used
to initialise the same atmosphere model. The intialisation of the lower
boundary conditions is the only variable used in the experiment while
all other parameters remain constant. This includes the definition of the

lateral boundary conditions of the model.

6.3. New approaches in model validation.

Model verification measures are applied to determine the quality of
forecasts and their relative accuracy with collocated observation(s). For
the present objectives, it is convenient to divide model diagnosis into
two main areas: descriptive and inferential statistics. Descriptive
statistics relate to the statistical summaries of the forecasted and
remotely-sensed data. This approach condenses the large amount of
data that is generated from the experiment into an appropriate
summary representation of the most important variations of the
predicted data. These measures include mean, standard deviation, bias

error and mean square error.

Inferential statistics consists of methods and procedures used to draw
conclusions regarding the underlying processes and quality of the
generated results. Aspatial methods are used to quantify the skill score
of ‘each model system to forecast thie geophysical field. Most current
statistical tools used to assess the skill of NWP models use classical

aspatial methods. A classical example is the approach taken by the
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NOAA Forecast System Laboratory to validate their AWIPS forecast

preparation system.

This chapter attempts to approach model validation from a new angle
by using the concepts of exploratory spatial data analysis and geo-
statistics. This approach is somewhat unique to numerical weather
prediction community, since exploratory spatial data analysis is much
more familiar to geologists and soil scientists than to meteorologists. In
doing so, the present study used special techniques to detect and
assess spatial patterns and their modelling based on the data

attributes.

To address these novel approaches in numerical weather prediction, a
match score analysis is here developed to assess the impact, in spatial
terms, of introducing a better representation of the SST on the
modelling system. Apart from impact assessment, additional spatial
techniques are applied to better understand the strengths and
weaknesses of the atmosphere model. These include a measure of
spatial similarity to highlight the spatial accuracy of the forecasts, and
semi-variance and variographic analysis to denote the spatial structure
or ‘signature’ of forecasted and observed fields, as well as the variability
of the two set of forecasts. Variography is used to understand the
spatial structure of the forecasted variables and to explore the scaling
properties of the modelling system. This surface analysis is applied to
understand the spatial relationship between the fields predicted by the
reference and experimental model systems and collocated, remotely
sensed observations. The method provided a quantitative measure that
indicates how well the pairs of spatial data sets compare with

observations
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6.4. Methodology.

6.4.1. Remotely sensed SST and wind magnitude.

The process of retrieving and formatting the SST and 10 m wind
magnitude data from the TMI sensor onboard the Tropical Rainfall

Microwave Mission (TRMM) Satellite is described in section 4.3.1.1.

The TMI daily dataset were studied to note orbit time and the integrity
of the SST data field over the area corresponding to the high-resolution
Eta domain. This enabled the selection of the appropriate sets of SST
data to initialise the Eta model at 00 UTC.

The source code used to organise and format these data is
TMI2ZmonthlyORB.f by specifying 00 (i.e. ascending) or 12 (i.e.
descending):

TMIZmonthlyORB 19990722TM O

For example, in the script file below:

foreach dd ( 22 23 24 25 26 27 28 29 30 31)
cp bdat/July/199907"$dd"TM.GZ .

gzip -d 199907"$dd"TM.GZ .
TMI2monthlyORB 199907"$dd"TM O

rm -f 199907"$dd"TM

end

only geophysical parameters from the ascending orbits are selected,
decoded, processed and sequentially written in GrADS format. The
resulting tm2JULcentORB.gdat was read using the
tm2JULcentORB.ctl112,

12 Appendix I; Section I.1.1.
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6.4.2. Quality control.

Special attention has been given to the quality control and model
initialisation aspects that allow a strict quality control of the data. This
check ensures the insertion of good quality initial SST fields in the

numerical model (tables 6.1 a-c). This included:

1. time of retrieval + 3 hours from OOhrs UT initialisation time.

2. no data gaps due to precipitation.

3. wind speeds over model domain higher than 2 m s'! but not
exceeding 12 m s-1.

4. spatial auto-correlation (Moran's Index 1) of SST raster fields
exceeding 0.76.

5. full-data integrity over the area of interest in the lonian basin.

6.4.3. Initialisation of the lower surface boundary condition of the
Eta model.

Details concerning data analysis and selection of valid dates for model
initialisation using TMI-derived SST are given in tables 6.1 a - c. The
selection of dates for which the model was initialised with this SST data
also depended on the availability of both GDAS-derived SST (i.e. the
data source for the reference setup) and WAFS lateral boundary
conditions. Selection also rested on the availability of 10 m wind
magnitude observations which ideally had to coincide with the 21st -
24th - or 27th-hour forecasted fields, since this interval represents
sufficient enough time for the atmosphere model to remove any “spin-

up” effect originating from the start of the model integration run.

The experimental work consisted of a parallel series of high resolution,
_hind-cast model simulations. The- reference model setup used GDAS-
SST model analyses as the initial lower surface boundary data at 00 UT
(see fig. 6.3. for an example of a GDAS-derived SST field) together with
WAFS data as the initial lateral atmospheric boundary conditions at
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00 UT respectively and constant input datal!l3. The model output was

referred to as the “Reference forecast”.

An identical experimental model setup was set up with exactly the same
numerics as the reference model but using, instead of GDAS-SST data,
the denser grid of SST observations collected by the TMI sensor (see fig.
6.4. for an example of a TMI-derived SST field). The model output was

referred to as the “Experimental forecast”.

The switching between the two sources of SST data was done by making
available and accessing the appropriate temporal SST dataset, using
sst.f whereby it calls TMI-SST according to user-defined date (datetohr)
from the ‘tm2JULcentORB.gdat data file. The subroutine RGRADS

call RGRADS (id7, 1, 999, O, IME, JME, 1, 0., WW , NLRET)

browses the ‘tm2JULcentORB.gdat’ file until it finds the SST field with
the specific code of 999 and defines the SST value as WW. The script
then re-interpolates the 0.25° by 0.25¢ latitude-longitude grid SST onto
the respective Eta model domain resolution. In this experiment, the
switching between the two SST sources was the only difference made to

the entire model processing as described in section 5.2.1.

6.4.4. Generation of high-resolution, forecasted air-sea fluxes.

In total, 92 forecast runs were processed!!4 each taking around 6
hours to complete. The 36-hr forecasted air-sea surface fluxes for both
the reference and experimental models were produced using fortran
code fluxes.f 115 and visualised!16. These fluxes were then extracted into
gridded ascii XYZ format using fortran code grads2xyz.fl17, for further

analysis 6.4.5. Model validation.

113 Section 5.2.1.
114 Section 5.2.1.
115 Appendix II; Section I1.2.7.
116 Section 5.2.1.
17 Appendix II; Section I1.2.2.
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6.4.5. Model validation.
6.4.5.1. Basic statistical distributions and summary measures.

The mean bias showed how much, on average, the forecasts differ from
the observations. The standard deviation is a measure of scatter in the
results; it is zero when the bias is non-zero, if all the forecasted values

are the same.
6.4.5.2. Model performance measures.

The Mean Square Error combines the effects of bias and scatter; it

would be equal to the bias if the standard deviation were zero.

A skill score (SS) was used to reflect the average accuracy of the
experimental forecasts in the sample relative to that produced by the
reference setup (Murphy, 1997). SS was based on the mean square

error, defined as:
SS= 1—'(MSEexp/MSEref)

where MSEexp is the mean square error of the experimental forecasts

and MSEe is that of the reference forecasts.

6.4.5.3. Spatial Exploratory Data Analysis.

ESDA was performed using three independent approaches to analyse
the performance of the competing models in spatial terms. These were

(1) Spatial Match Score Analysis, (2) Spatial similarity and feature

matching analysis and (3) Residual semi-variogram analysis.
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6.4.5.3.1. Spatial Match Score Analysis.

A spatial measurement was developed to assess any improvement in the
spatial accuracy of the experimental over the reference model forecasts.
This procedure highlighted (in graphic form) the exact geographical
placement of the forecasted and observed collocated and quasi co-

temporal 10 m wind magnitude.

This is a measure of the correct placement and timing of a forecast for a
particular event (Glahn et al.,, 1991). A match in terms of the exact
overlap between forecast (f) and observation (o) for an occurrence is
represented as a hit (h). Statistical match score compares the number
of correct placed forecasted pixels to the total area where the event was

observed. Match score is calculated according to:
Match Score = h/(f + o — h)

MS values ranged from 0.0 to 1.0, where a score of 1 represents a
perfect match with the observations and a score of O indicates no skill.
To facilitate calculation of the score, discrete parameter values in both
forecasted and observed fields were categorised, and the resulting

classes matched for exact overlap.

The calculation of the spatial match score consisted of a sequential
series of GIS-analysis procedures on a grid cell or raster approach. This
approach was useful for a number of reasons, such as (1) continuous
nature of the real (i.e. floating point) data in space (2) easy integration of
digital remotely sensed imagery with the numerical model output of the
two forecasting systems and (3) each information type can be stored as
a separate data layer for eventruAal_r spatial statistical analyses. The

anélyéis was as follows:
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1. Three datasets (in ascii XYZ real values) from each single forecast

date were prepared equivalent to the Reference, Experimental and co-

located observations. These were imported into ERMapper!l8 using

ASCII BIL option with a 61 by 82 grid.

2. Each dataset was filtered and recoded according to predefined 10 m

wind magnitude intervals as shown in table 6.2.

Class number | 10 m wind magnitude interval
1 2.0-3.0
2 3.1-4.0
3 4.1-5.0
4 5.1-6.0
5 6.1-7.0
6 7.1-8.0
7 8.1-9.0
8 9.1 -10.0
9 10.1-11.0
10 11.1-12.0

Table 6.2. Recoding of wind magnitude intervals from 2 to 10 m s’1.

3. Following step (2), each dataset was saved as “classified”.

4. Both the classified reference and experimental raster sets were

overlayed over collocated observations and a new dataset was

created consisting of two overlayed sets:

observation and reference plus observation.

experimental plus

5. Each overlayed dataset was then cross-tabulated and colour

indexed according to the function seen below:

118 http:/ / www.ermapper.com/ (accessed on 01.11.04).
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if (INPUT1 = 1) and i2=1 then 250 else
if (INPUT1 = 2) and i2=2 then 240 else
if (INPUT1 = 3) and i2=3 then 230 else
if (INPUT1 = 4) and i2=4 then 220 else
if (INPUT1 = 5) and i2=5 then 210 else
if (INPUT1 = 6) and i2=6 then 200 else
if (INPUT1 = 7) and i2=7 then 190 else
if (INPUT1 = 8) and i2=8 then 180 else
if (INPUT1 = 9) and i2=8 then 170 else
if (INPUT1 = 10) and i2=8 then 160 else null

No weighting was given to any class.

6. The resulting two datasets were saved as “combined & classified”.
Area statistics were calculated for each dataset to extract uniom

(pixel) scoring.
7. Match Score was calculated and tabulated.
6.4.5.3.2. Spatial similarity and feature matching analysis.

Spatial similarity was performed to analyse the spatial relationship
between the two sets of forecasts and observations. This study uses the
same algorithm as described in section 5.4.3.1. This consisted of the
combination of fields and their associated inherent knowledge to
determine the position of similar clusters between the pair of forecasted

fields and the collocated observations.
6.4.5.4.3. Residual semi-variogram analysis.

Semi-variance analysis was performed on raster maps produced from
the residuals between the forecasted 10 m wind magnitude fields
(originating from the reference and experimental setup) and collocated

observations. Residual maps were generated by subtracting the
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individual forecasted ascii datasets from co-temporal observations
(archived in ascii xyz). This dataset was imported into ERMapper format

for 3-dimensional analysis.

GS+ was used for variogram modelling of these residuals!!9. GS+ is a
geostatistical programme that measures and illustrates spatial
relationships in geo-referenced data. It analyses spatial data for
autocorrelation and then wuses this information to make optimal,
statistically rigorous maps of the area sampled. GS+ provides three
types of spatial autocorrelation analysis. The one used for the present
study is the semi-variance analysis, which produced a variogram and

five types of variogram models.

The individual geo-referenced residual datasets were imported as text
files in GS+ to perform semi-variogram analysis at the full resolution of
the residual map. Five types of isotropic models were produced for each
residual map, each of which described according to three parameters,
namely Nugget Variance — the y-intercept of the model, Sill - the model
asymptote and Range — the distance over which spatial dependence is
apparent. The Range parameter was used to define the best-fit line and
the best model fit was selected. The ranges of models considered were
spherical, exponential, linear, linear to sill and Gaussian. In addition to
the three model parameters nugget, sill, and range, the software
provided statistics to aid the interpretation of model output. An
important statistic was the Reduced Sums of Squares, which provided
an exact measure of how well the model fits the variogram data; the

lower the reduced sums of squares, the better the model fits.

These semi-variograms translated the texture information according to
the idealised relationships (see fig. 6.5) in the form N (nugget variance),

C (sill minus the nugget), R (range) and h (distance}).

19 GS+ (ver. 1989-1999): geostatistics for the environmental sciences is produced by
Gamma Design;, www.gammadesign.com (accessed on 01.11.04).
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Figure 6.5 Semi-variograms through the origin (a) with nugget effect
(b), and with no spatial autocorrelation (c).

C — spatial independent structural variance. It is given by sill minus
nugget variance;

h- lag — distance and direction in 2 or more directions between pairs

S — sill — maximum level of y(h)

R — range — lag value at which y(h) no longer increases

N- nugget variance — value resulted by backwards extrapolation of the 2 first

semi-variance values.

Analyses proceeded with the calculation of the anisotropic semi-
variance surface or variogram map for each residual dataset. This map
provided a visual picture of semi-variance in every compass direction as
to find the most appropriate principal axis that defines the anisotropic
variogram model. The center of the map corresponds to the origin of the

variogram g(h) = O for every direction.

6.5. Results and Discussion.

6.5.1. Relationship between the two annual SST data sets.

As illustrated by figures 6.3 and 6.4, the TMI-derived SST map exhibits
considerable mesoscale information. During model integration, this fine
detail is interpreted by the model as its initial lower boundary
conditions and used to compute the lower geophysical fields in

particular. o

In spite of the difference in the spatial information, the relationship
between the datasets is very linear throughout the year, with a high
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coefficient of 0.98. This relation is valid for the entire climatological

range of SST over the central Mediterranean (fig. 6.6).

A closer inspection at this relationship shows that TMI-derived SST data
tends to be higher by not more than 0.5 K when the temperature ranges
between 289 K (15.8 °C) and 299 K (25.8 °C). Above 299 K, the variation
becomes very close to zero and the tendency is reversed at higher
temperatures as shown by the linear trend in figure 6.7. Considering
the high accuracy of TMI-derived SST (with a bias of just —0.07 °C)
against in situ datal?0, the same can be said of the GDAS-derived SST. A
higher correlation would have probably been found if the TMI-SST was
retrieved at exactly 00 UT. As detailed in section 6.4.2. above, TMI-SST
data was valid if its orbital coverage resided within + 3 hours from

00 UT.
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Figure 6.6. Scatterplot of collocated TMI- vs GDAS-derived SST (in Kelvin).
Each point represents the average SST value of 5002 raster points
representing a complete surface field over the integration domain of the
local area model.

120 Section 3.5.4.1.2.
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Figure 6.7. Residual plot tendency of TMI- minus GDAS-derived SST (in
Kelvin) against TMI-derived SST (in Kelvin). Each point represents the
average SST value of 5002 raster points representing a complete surface
field over the integration domain of the local area model.

6.5.2. The numerical experiments.

The statistical measures shown under this section were generated by
co-temporal comparisons between the forecasts generated by the two
model systems and observations. This kind of “single-forecast” analysis
is ideal to address both (1) the accuracy of model initialisation of both

forecasting systems as well as (2) the resulting forecast performance.

Some examples of the forecasted geophysical fields derived by the
reference and experimental setup are shown in figures 6.8 and 6.9. The
most significant observations derived from these two sets of output is
that the different initial SST lower boundary conditions lead to different
outputs. This shows the influence of SST on the prediction of these
fields. This difference is particularly striking for the surface geophysical
fields. The spatial pattern of the two sets of the lower atmospheric fields

are different, especially for the 2 m air temperature and total heat flux.

Figures 6.10 a-b show the 10 m wind magnitude and total precipitable
water vapour as derived by the TMI-sensor on July 28t at 0200 UT. The
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10 m wind magnitude field shows the presence of two main fields of
high (maximum: 7 m s'!) and low intensity {minimum: 1.5 m s’})
separated by an intermediate field of with a constant gradient from the
lower to the higher intensity. This simple spatial arrangement is closer
to that predicted by the experimental setup in comparison to the field
obtained by the reference setup (fig. 6.8). The latter also shows two
main fields (maximum: 7 m s'!; minimum: 1.5 m s'1) but with the lower
intensity area containing a significantly large, isolated higher-intensity
cell (approximately at 16.2°E; 37.4°N in fig. 6.8). This is not the case for

the same field produced by the experimental setup.

The observed integrated precipitable water vapour consists of two main
areas containing an average precipitable water vapour of 26.5 mm, and
connected together by a gradient of 25 mm. A slightly lower intensity
field of around 24 mm separates these two fields on each side of the
entire model domain on the north and south. The two model output
fields shown in figure 6.9 show two main, higher intensity fields of
around 28 mm. However, the field produced by the reference setup
shows a higher overall intensity, and the output showed a bias toward
the higher intensity field. The two fields are joined together by the
25.5 mm field. The same field predicted by the experimental setup, on
the other hand, shows an overall field that is more shifted towards the
observation, with two main higher intensity fields, separated by a green
field corresponding to 24 mm. A minimum of 20.5 mm is shown by the
field starting at the bottom right of the area which extends more

towards the centre than what is produced by the reference setup.
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It is also important to note that wind magnitude forecasts were verified
only when the wind speed observations, valid at the time of the forecast,
was greater than or equal to 2 m s-l. This prevented wind magnitude
forecasts associated with light and variable winds from degrading
verification scores. The same approach is taken by major numerical
weather prediction centers such as NOAA for its NGM-based model

output statistics wind guidance over the US territoryl21,

121 http:/ / www.nws.noaa.gov/ om/ tpb/ akwind. htm (accessed on 01.11.04).
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Month Verification Wind speed Average Standard Bias
time range (m s-!) deviation

REF EXP REF EXP REF EXP
January 18:27_19(D) 3to 10 8.12 8.14 0.44 0.42 -0.69 -0.68
22:27_23(D) 2to 10 4.46 4.51 1.13 1.12 -0.20 -0.15
24:24_25(D) 2to 10 5.21 5.13 1.02 0.99 0.30 0.23
March 07:24_08(A) 3to 10 5.21 5.24 1.07 1.15 -1.01 -0.97
08:27_09(D) 4to 10 5.33 5.34 0.73 0.72 0.70 0.71
10:24_11(D) 4to 10 5.32 5.36 0.75 0.72 0.88 0.93
11:24_12(D) 3to 10 4.45 4.44 0.95 0.91 -0.04 -0.05
14:21_14(A) 3to 10 5.59 5.69 1.27 1.28 1.03 1.14
17:21_17(D) 3to 10 5.39 5.62 1.31 1.33 -0.53 -0.31
April 21:24_22(A) 3t010 6.09 6.18 1.17 1.20 0.43 0.51
22:27_23(D) 31010 6.50 6.02 2.16 2.18 1.73 1.25
23:27_24(D) 210 10 4.07 3.84 1.35 1.26 0.55 0.33
26:24_27(D) 2to 10 3.39 3.38 0.82 0.81 0.57 0.56
27:24_28(D) 2to 10 6.27 6.32 0.97 0.99 1.77 1.81
28:21_28(A) 2to 10 5.33 5.76 1.81 1.67 -0.03 0.39
May 03:21_03(D) 3to 12 8.65 8.74 2.52 2.43 -3.20 -3.11
July 22:27_23(A) 3t0 10 3.48 3.51 0.36 0.35 0.00 0.03
23:27_24(D) 3to 10 4.48 4.23 0.84 0.97 0.30 0.05
24:27_25(D) 3t0 10 5.76 5.33 1.39 1.19 0.71 0.28
25:24_26(A) 4t0 10 6.24 6.31 1.31 1.34 1.44 1.50
26:27_27(D) 3to 10 5.36 5.39 0.73 0.81 -1.75 -1.72
27:27_28(D) 4 t0 10 5.26 5.62 0.94 0.92 -0.29 0.07
28:27_29(D) 4 to 10 4.39 4.41 0.26 0.30 0.14 0.15
29:24_30(D) 4 to 10 7.20 6.93 0.44 0.40 1.04 0.77
30:24_31(D) 4 to 10 6.81 6.72 0.67 0.63 1.26 1.17
31:24_31(A) 3to 10 3.41 3.44 0.42 0.41 -0.22 -0.19
August 01:21_01(A) 4to 10 5.39 5:35 1.01 1.00 0.50 0.46
02:21_02(D) 3t0 10 4.48 4.49 0.87 0.95 0.09 0.11
03:21_03(D) 3t0 10 4.51 4.58 0.89 0.93 0.05 0.12
04:21_04{D) 41010 5.34 5.34 0.72 0.73 0.76 0.75
05:21_05(D) 31010 4.53 4.54 0.73 0.74 0.42 0.43
06:18_06(A) 21010 3.11 3.13 0.58 0.55 0.44 0.47
September 16:21_17(A) 41010 6.80 6.71 0.98 0.91 0.60 0.51
18:21_18(A) 410 10 4.97 4.71 0.43 0.37 -0.91 -1.17
20:21_20{D) 3to 10 9.44 9.38 0.39 0.39 0.81 0.75
21:21_21(D) 3to 10 5.61 5.78 1.27 1.43 0.55 0.73
October 22:27_23(A) 4t0 10 4.35 4.34 0.26 0.26 -1.63 -1.64
23:27_24(A) 4to 10 4.97 5.01 0.52 0.57 -1.08 -1.04
28:27_29(D) 3to 10 8.73 8.80 0.79 0.82 0.40 0.47
29:27_30(D) 4to0 10 5.67 5.64 1.16 1.10 0.68 0.65
December  13:21_13(A) 3to 12 9.66 9.61 0.64 0.59 -1.28 -1.32
14:21_14(A) 3to 10 7.06 7.09 1.06 1.06 -1.32 -1.29
15:24_15(A) 3to 14 10.36 10.44 0.68 0.69 -0.41 -0.33
16:21_16(A) 3to 12 8.44 8.42 1.31 1.37 -0.92 -0.94
17:21_18(A) 3to 12 6.14 6.23 1.01 1.04 -2.28 -2.19
19:21_19(A) 3to 12 7.26 7.43 0.87 0.88 -2.37 -2.20

Table 6.3. Basic comparative statistics of 10 m wind magnitude (m s’
forecasts with observations. The date format is: model DAY NUMBER :
FORECASTED HOUR _ satellite DAY NUMBER (DESCENDING or

ASCENDING orbital swath). REF: reference model wind magnitude
forecast; EXP: experimental model wind magnitude forecast).
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6.5.3. Performance measures.

The mean square error (MSE) is the average squared difference between
collocated pairs of forecasts and observations. For this reason, large
discrepancies between forecasts and observations give large positive
values. This performance measure gives a clear picture of the
performance between the two model setup, showing an overall
improvement when TMI-derived SST is used to initialise the lower
boundary conditions at the start of the model run (table 6.4).
Normalisation of the MSE shows a clear improvement reached by the
experimental over the reference setup by an average of 10% in the

forecast accuracy of the 10 m wind magnitude (fig. 6.11).

The use of average skill scores for the entire annual analysis give a
weak picture of this improvement, and can not be considered as a good
index to detect such improvement. Results show that highest scores are
observed during the spring and summer seasons, although this period
shows the greatest variability in terms of standard errors. Lesser
variability accompanied by lower skill scores occurs during the colder

months, when the wind magnitude is more intense.
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Month Verification Wind speed MSE SKILL
time range (m s?) SCORE
REF EXP
January 18:27_19(D) 3to 10 1.08 1.04 0.04
22:27_23(D) 2to 10 1.93 1.81 0.06
24:24_25(D) 210 10 2.01 1.64 0.18
March 07:24_08(A) 3to 10 4.49 4.63 -0.03
08:27_09(D) 4to010 2.39 2.37 0.01
10:24_11(D) 4t010 3.13 3.14 0.00
11:24_12(D) 3to10 0.70 0.61 0.13
14:21 14(A) 3to 10 1.45 1.78 -0.23
17:21_17(D) 3to 10 5.58 4.80 0.14
April 21:24_22(A) 3t0 10 2.20 2.16 0.02
22:27_23(D) 3to 10 10.67 8.32 0.22
23:27_24(D) 2to 10 291 3.15 -0.08
26:24_27(D) 2to 10 1.66 1.62 0.02
27:24_28(D) 2to 10 3.76 3.87 -0.03
28:21_28(A) 2to 10 2.01 1.33 0.33
May 03:21_03(D) 3to 12 0.39 0.30 0.24
July 22:27_23(A) 3to 10 0.27 0.29 -0.10
23:27_24(D) 3to 10 1.48 0.74 0.50
24:27_25(D) 3to 10 1.43 0.51 0.64
25:24_26(A) 4 to 10 2.07 2.26 -0.09
26:27_27(D) 3to 10 5.23 5.30 -0.01
27:27_28(D) 4to 10 0.85 1.14 -0.34
28:27_29(D) 4to 10 0.44 0.26 0.40
29:24_30(D) 4to 10 1.51 0.94 0.38
30:24_31(D) 4to 10 2.70 2.36 0.13
31:24_31(A) 3to 10 1.46 1.33 0.08
August 01:21_01(A) 41010 0.49 0.52 -0.06
02:21_02(D) 3to 10 0.27 0.24 0.11
03:21_03(D) 3to 10 0.51 0.65 -0.29
04:21_04(D) 4to0 10 1.35 1.35 0.01
05:21_05(D) 3to 10 0.94 0.91 0.03
06:18_06(A) 2to 10 0.78 0.65 0.17
September 16:21_17(A) 4to0 10 1.91 1.56 0.18
18:21_18(A) 4t010 3.39 3.09 0.09
20:21_20(D) 3to 10 1.77 1.54 0.13
21:21_21(D) 3to 10 2.64 2.76 -0.04
October 22:27_23(A) 41010 7.24 6.60 0.09
23:27_24(A) 4t0 10 1.40 1.42 -0.01
28:27_29(D) 3to 10 0.78 0.81 -0.04
29:27_30(D) 4to 10 2.21 2.12 0.04
December 13:21_13(A) 3to 12 4.30 4.34 -0.01
14:21_14(A) 3to 10 2.70 2.53 0.06
15:24_15(A) 3to 14 0.52 0.45 0.14
16:21_16(A) 3to 12 1.09 1.19 -0.09
17:21_18(A) 3to 12 13.10 13.12 0.00
19:21_19(A) 3to12 5.91 5.10 0.14

Table 6.4 Model performance measures in terms of MSE of 10 m wind
magnitude (m s1) forecasts for both reference and experimental model outputs.
The verification time format is: model DAY NUMBER : FORECASTED HOUR _
satellite DAY NUMBER (DESCENDING or ASCENDING orbital swath). REF:
reference model wind magnitude forecast; EXP: experimental model wind
magnitude forecast).
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6.5.4. Exploratory spatial data analysis.

The GIS-based spatial analysis is used to assemble, process and display
the spatial relationship between the forecasts produced by the two
model setup and remotely-sensed fields. This whole analysis was
possible using a range of software functionality ranging, amongst

others, 2D and 3D geo-statistical mapping and image processing.
6.5.4.1. Match score analysis.

This spatial method is derived from a well-used scalar approach by
meteorologists (Glahn et al, 1991). Generally referred to as
“Precipitation Scores”, this method is used as a guide to assess the
overall Eta performance and in deciding on model changes (Fritsch et
al., 1998).

The higher average match score given by the experimental setup
(table 6.5) is indicative of a better spatial forecasting skill of the wind
magnitude intervals selected for the analysis. The improved match score
shown by the experimental setup provides evidence of the superiority of

this modelling setup over the other.

In the present study, match score analysis measures the spatial model
forecast accuracy (correct timing and placement) of predicted categories
of the wind field against similar observed categories. The exact
placement of individual categories belonging to a particular class of
wind magnitude value is treated as a complete hit. Obviously, the
grouping of pixels from the entire forecasted field is an approach that
degrades the forecasted information into a set of wind fields isotherms.
However, in the case of numerical model verification, the absolute
verification of pixel-to-pixel placement between the forecasted and
_.observed field- is unrealistic ‘due to inaccuracies of both the prédictand

and observation. Rather, the assessment of model performance is
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always based on the improved forecasting of categorical classes that are

spatio-temporally correct with independent observations.

Similar categorisation is followed by NWP modellers when assessing the
scoring of their models against rainfall data, by classifying their
predicted fields according to the precipitation intensity as: rain/no-rain,
light rain, moderate rain and heavy rain. The resolution of such a
categorization would of course depend on the type and spatial
resolution of the predictand. For the present study, the generation of
high resolution predicted wind magnitude fields made possible a highly
sensitive analysis at 1 m s! resolution. This can be considered an

achievement in the area of high-resolution model verification.

Categorising any predicted field into separate classes can offer
advantages to the modeller by providing information on the weakness of
the numerical model to predict the correct placement of such classes. A
case in point is the prediction of weak, variable wind that is below
3 m s-1, which is considered to be a characteristic value over the areas
of interest during the summer months. Changing class categories will
not affect the analysis as long as the observations are degraded into the

same intervals.

Apart from hits, this approach can be further elaborated to generate
contingency tables of misses and false ‘alarms’. Hypothesis testing can
also be included. For example, if attempting to test the hypothesis that
the mean error of the two forecasting system for a particular single-
forecast verification are identical, under the null hypothesis the
samples from the two populations should be interchangeable. Random
groupings may then be repeatedly selected with replacement from the
pooled samples to build a distribution of error differences consistent
with the null hypothesis. The observed difference is then compared to

this.
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Spatial overlay is also used to stack the selected geo-referenced layers,
in the form of maps, so that questions concerning the degree of
matching (figs. 6.12 a-b) of the two systems with the observations are
asked. Here spatial overlays are used to model this arithmetic

relationship. New map layers are built as a result of the operators used.

A limitation in the present study is the restricted availability of valid
observations, which varied from one month to another. The sample
statistic for the case of May, for example, shows an extremely efficient
Experimental setup over the Reference one; however this is based on
only one sample statistic because of the lack of suitable observation
data. On the other hand, the match score statistic for the month of July
is supported by a much larger number of case studies. Ideally, match
score statistics are to be derived for each day of the month for a number
of years in order to assess the intra- and inter-annual variability of
providing remotely-sensed microwave lower surface boundary
conditions as opposed to the initialisation data used for the reference
setup. In this way, there would be no bias for particular months of the
year that may show a higher degree of variability over other, much
calmer periods. However, due to the extensive analysis required, the

present analysis was restricted to a period of one year.

For the above reasons, formal hypothesis testing of the competing
forecast models has been left out. However, from a semi-quantitative
point of view, match score analysis does show that in spatial terms, the

Experimental setup fares better than the reference one.
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Month Verification Reference setup Experimental setup
time
F H o MS F H O MS

Jan 18:27_19(D) 4836 675 4081 0.082 4843 669 4081 0.081
22:27_23(D) 4147 1266 4385 0.174 3987 1089 4385 0.150
24:24_25(D) 4809 1059 4742 0.125 4825 1184 4742 0.141

Mar 07:24_08(A) 4713 628 4934 0.070 4697 698 4934 0.078
08:27_09(D) 3911 0 1189 0.000 3971 0 1189 0.000
10:24_11(D) 4300 0 1006 0.000 4300 0 1006 0.000

11:24_12(D) 3539 1152 3385 0.200 3606 1231 3385 0.214
14:21_14(A) 4080 1402 4356 0.199 4182 1189 4356 0.162

17:21_17(D) 4004 498 3901 0.067 4168 493 3901 0.065
Apr  21:24_22(A) 4332 1514 4927 0.195 4352 1342 4927 0.169
22:27_23(D) 2652 128 4587 0.018 2878 106 4587 0.014
23:27_24(D) 4301 1019 4148 0.137 4286 1008 4148 0.136
26:24_27(D) 3446 194 1441 0.041 3442 185 1441 0.039
27:24_28(D}) 4816 61 4613 0.007 4816 31 4613 0.003
28:21_28(A) 4790 1914 4772 0.250 4800 1358 4772 0.165
May 03:21_03(D} 4218 0 325 0.000 4086 0 325 0.000

Jul  22:27_23(D) 4537 2680 3605 0.491 4254 2549 3605 0.480
23:27_24(D) 4587 146 1780 0.023 3354 444 1780 0.095
24:27_25(D) 4780 1048 4299 0.130 4335 2112 4299 0.324
25:24_26(A) 4677 1391 4863 0.171 4486 1238 4863 0.153

26:27_27(D) 4386 45 4589 0.005 4112 44 4589 0.005
27:27_28(D) 2963 1005 2362 0.233 2981 728 2362 0.158
28:27_29(D) 105 92 330 0.268 123 104 330 0.298
29:24_30(D) 4961 924 4834 0.104 4974 1935 4834 0.246
30:24_31(D) 4785 462 4972 0.050 4942 516 4972 0.055

31:21_31(A) 1306 890 3376 0.235 1507 1119 3376 0.297

Aug 01:21_01(A) 2245 1115 2562 0.302 2254 1127 2562 0.306
02:21_02(D) 2614 1811 3201 0.452 2776 1822 3201 0.439
03:21_03(D) 3502 1469 3326 0.274 3863 1411 3326 0.244

04:21_04(D) 1621 251 1305 0.094 1718 324 1305 0.120
05:21_05(D) 2951 749 2125 0.173 3063 752 2125 0.170
06:18_06(A) 3644 711 2438 0.132 3812 848 2438 0.157

Sept 16:21_17(A) 4542 1373 4974 0.169 4564 1387 4974 0.170
18:21_18(A) 3556 1079 4683 0.151 3902 844 4683 0.109
20:21_20(D) 2539 248 4184 0.038 2049 530 4184 0.093
21:21_21(D) 4192 725 3487 0.104 4160 664 3487 0.095

Oct 22:27_23(A) 1117 240 3276 0.058 1081 288 3276 0.058
23:27_24(A) 4559 823 2962 0.123 4582 768 2962 0.113
28:27_29(D) 4523 1975 4922 0.264 4531 1996 4922 0.268
29:27_30(D) 3980 529 1778 0.101 4070 459 1778 0.085

Dec 13:21_13(A) 3606 37 311 0.010 3813 38 311 0.009
14:21_14(A) 4803 294 4428 0.033 4814 310 4428 0.035
15:24_15(A) 1581 775 1156 0.395 1544 825 1156 0.440
16:21_16(A) 4468 1018 3104 0.155 4352 876 3104 0.133
17:21_18(A) 4427 751 3891 0.099 4371 764 3891 0.102
19:21_19(A) 4815 0 3158 0.000 4807 32 3158 0.004

Mean 0.139 Mean 0.145

Min 0.000 Min 0.000

Max 0.491 Max 0.480

Skew 1.095 Skew 1.063

Table 6.5. Raster-based, arithmetic matching between the forecasted and
observed wind magnitude maps. F: forecast; H: Hit; O: Observation; MS: Match
Score. The verification time format is: model DAY NUMBER : FORECASTED
HOUR _ satellite DAY NUMBER (DESCENDING or ASCENDING orbital swath).
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6.5.4.2, Spatial similarity.

As in section 5.5.5., the Spatial Similarity index is used to assess the
degree of shared attributes between the two model systems and the
remotely-sensed observations. In order to best illustrate the spatial
analysis, four case studies are presented that best describe the results
covering a representative range of wind regimes over the area of

interest.

6.5.4.2.1. Case study 1: 2274 January 1999.

The first case study analyses a wind speed regime that is typical for
January. Figure 6.13e shows relatively moderate winds reaching a
maximum of 6.5 m s! within the area of interest. A more or less
constant gradient is observed starting with moderate wind gradients of
about 7 m s-! to very light wind conditions towards the East, reaching a
minimum of 2 m s-1. Black areas represent nulled pixels that are below
2.0 m s°l. Small circular contours with central black pixels coincide

with precipitation and are therefore nulled.

A close inspection of the similarity maps) shows that the experimental
(fig. 6.13b) setup gives an overall higher similarity index than the

reference setup (fig. 6.13a).

The individual forecasted wind fields show that the wind gradients
generated by the experimental setup (fig. 6.13d) are closer in pattern to
the observed wind fields than the reference ones. This is especially true
for the wind magnitude range of 4.5 to 5.0 m s'!, which bulges out
towards the north in the reference forecast as opposed to a calmer

condition given by both the experimental forecast and observation.

Minor dissimilarity between the refefence setup and observations is also

shown by the low intensity wind fields of around 2.4 m s-1. The patterns

270



of such fields produced by the reference setup do not agree with those

observed, unlike the fields produced by the experimental one.

The contoured predicted fields show an overall higher wind magnitude
than the observed field, which is in line with the slight over-forecasting

skill of the nested Eta model as seen in section 5.5.3.4.
6.5.4.2.2. Case study 2: 24tk January 1999.

The closer similarity obtained by the experimental setup in figure 6.15b
is again demonstrated. Dissimilarity of the reference forecast (fig. 6.15a)
is mainly concentrated in the lower middle part of the map which is
caused by the higher wind magnitude located in this area as observed
in the wind magnitude field area of figure 6.14c. Its value of 5.5 m s! is
higher than the wind intensity over the same area in figure 6.14d.
However, one should note a similar wind magnitude pattern produced

by both the reference and experimental setup.

The relatively higher wind magnitude field situated at the lower, right
portion of figure 6.14c, showing a northward protrusion, also causes
dissimilarity. The same pattern is observed in figure 6.14d but in this
case the pattern of the experimental forecast is closer to the collocated
observed field.

6.5.4.2.3. Case study 3: 22nd April 1999.

In this case study, similarity mapping indicates that the experimental
setup can also provide a better representation of the lower magnitude
fields in the region of 3.0 to 3.5 m s°! (fig. 6.15b). This is represented by
the larger area of the island in the middle left portion of the map. The
rest of the map shows a more or less similar degree of predictability (in
terms. of both field pattern and values) wheh compared to the observed
field.
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6.5.4.2.4. Case study 4: 15tk December 1999.

The similarity maps obtained for this forecast date again provide
important information that is otherwise difficult to detect in the

individual (predicted and observed) wind field maps.

A close inspection of the similarity maps (figs. 6.16a) suggests that the
experimental setup (fig. 6.16b) is able to better predict wind fields
patterns in the region of 10.0 to 11.0 m s'1. This is shown by the areas
of higher similarity in the lower central and upper right portions of
similarity map 6.16b. These predicted high intensity wind magnitude
field shown in figure 6.16d is being restricted to the right portion of the
area, giving a pattern that is closer to the observation. On the other
hand, the high intensity wind field produced by the reference setup is
more shifted towards the centre. This again shows that the experimental
setup shows a better performance even with high intensity winds. It
also shows that the use of the TMI-derived SST to initialise the Eta
surface boundary condition also leads to an overall improvement in the

spatial forecast of the 10 m wind fields.
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Spatial similarity of individual classes of wind magnitude, rather than
the individual pixel values, proved to be a more convenient and realistic
way of assessing the tendency of the spatio-temporal attributes of the
predicted fields. These results bring out the usefulness of relational
spatial similarity rather than the total scalar comparison between the

two datasets for ocean forecasting systems.

A big benefit of using the spatial similarity technique is the ease with
which the user can define particular adjustments. The system allows
results to be displayed that indicate the degree of similarity through a
matching and ranking measure. This facility allows the user to search
for a set of textural and spatial parameters to derive the similarity
between the background information and the new parameters entered
into the analysis. This study shows how similarity assessment can be a
useful concept for retrieving and analysing spatial information as it may
help numerical modelers describe and explore their forecasts, their

immediate environment and relationships to observations.

6.5.4.3. Geostatistical analysis.

In this study, geostatistics complemented the application of the other
statistical measures so far discussed. The motive behind using
geostatistical analysis is to model the spatial structure of the residual
fields of the predictions and observations and translate the degree of
spatial correlation between these two datasets in numerical and
graphical terms. In doing so, residual variography provides an analysis
of the spatial variation on the differences between the model output and
collocated observations. The sensitivity of this tool focuses on the

variation between the competing models with collocated observations.

Figures 6.17 and 6.18 provide an example of residual maps consisting
of the differences between the forecasted 10 m wind magnitude (m s-})
generated by the reference and experimental models, and collocated

observations derived from the Tropical Microwave Imager on July 25
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and September 20 1999. Only those residual pixel groups ranging from
-0.5 to 0.5 are shown in colour; the remaining gradients are shown by
means of contours. A greater range of pixels showing minimal difference
occurs in figures (b). Areas shown in white correspond to nulled filtered

pixels due to either low variable, or high wind speeds.

278









For comparative purposes, only those residual pixels having a value
ranging from -0.5 to 0.5 are shown in colour. The remaining pixels are
shown in black with contoured gradients. Areas shown in white
correspond to nulled filtered pixels due to either low variable, or high

wind speeds!?2,

The residual spatial structure between the two sets of data (i.e. forecast
and observation) were modelled on the basis of autocorrelation. Pixel
values corresponding to the matrix of the geophysical field (in this case
the 10 m wind magnitude) that have similar spatial attributes are
considered more similar than pixel values further apart. This was used
to model the structure of the residual data, i.e. its variability as a
function of space by means of variography. The semi-variograms
displayed the relation between the semi-variance and the spatial
separation (lag distances), and is a quantitative descriptive statistic that
can be graphically represented in a manner which characterises the

spatial continuity (i.e. roughness) of the residual data sets.

Figure 6.19a — b is an example of the semi-variograms of the residuals
obtained between (a) the reference prediction and observation, and (b)
the experimental prediction and observation for April 28% 1999 at 2100
UT. What is easily noticeable is a classic gaussian model fit for both

isotropic semi-variograms as well as a lower semi-variance for case (b).

122 See section 6.4.2.
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Figure 6.20 a - b. Semi-variograms of the residuals obtained between (a) the reference prediction and (b)
experimental prediction, with observations retrieved on April 28t 1999 at 2100 UT. The best value for the
reduced sums of squares defined the gaussian model as the best fit for the isotropic semi-variograms. Note
the different slope, accompanied by lower values for the nugget and sill for the residual semi-variogram
shown in (b). Variograms indicate the presence of anisotropy in both residuals.
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Table 6.5 shows the results of the semi-variograms for all the residuals
studied. In almost all cases, results show that the gaussian model
exhibited the best overall fit for the isotropic semi-variogram plots
derived for the entire residual dataset. The gaussian model is

formulated as:
y(h) = N + C[1-exp(-3(h/R)?)]

where N is the nugget, C is the sill minus the nugget, R is related to the
range, and h the distance. The use of this linear model through the
entire analysis ensured a common qualitative and quantitative analysis

for the datasets. The following general observations can be made:

1. The gaussian mode has behaviour similar to a parabola near the

origin and is indicative of an extremely continuous process.

2. The linear behaviour at small lag distances suggests that as the lag
and semi-variance values increase, the variogram of the experimental
forecasts approaches the sill asymptotically, suggesting the
incorporation of the gaussian model into the theoretical variogram

model.

3. These gaussian variograms suggest that in the most significant
portion of the semi-variogram model, a single, long-range process
dominates. This preference towards the gaussian behaviour was
probably due to the way the particular geophysical field behaves,

giving a general smooth description of wind field gradients.

4. The semi-variogram models exhibit a strong spatial dependence with
very limited random variation. In most cases, the value for the
nugget is always low except on few occasions when ‘extreme events’
occﬁrred, such as extensive ﬁi’ecipi£étion or during strong wind
events (e.g. January 24t March 17t and December 13%). The

presence of random variability included in the numerical forecasts is
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therefore extremely low and that most of the variation observed can

be attributed to the nature of the geophysical data.

S. The tabulated results (table 6.6) show that out of a total of 46
residual analysis, there were 26 occurrences where the experimental
model achieves a lower sill than the other competing residuals. The
differences in the range also provides an indication of the degree of
correlation between the data points, which is positively shifted
towards the experimental model. Results also show a close
relationship between the semi-variogram analysis and the standard
verification procedure using skill score. This tests both the
sensitivity and complimentarity of geostatistics to assess the spatial

relationship of model predictions.

Geostatistical analysis provided this study with additional structural
information on the behaviour of the two competing models. The results
for the anisotropic semi-variogram analysis, for example, very often
indicated the existence of directional trends. The cause of anisotropy
may be due to the prevailing variability in the 10 m wind direction over
the area of interest, and if so, this could mean that the residuals show a

certain degree of dependence on the climatology of the area.
6.5.4.3.1. Spatial variography.

A representation in 2D and 3D space of the behaviour of the variogram
was made by drawing a map of the iso-variogram lines as a function of
the vector h. This was also an excellent way to check for anisotropy by

means of a contour plot of semi-variogram values by direction.

The majority of the case studies showed that the iso-variogram lines
were approximated by minor ellipses defined along a set of
perpendicular main axes of anisotropy. “This indicates a small degree of
directional drift in the residual wind magnitude, possibly brought about

by systematic weaknesses of both forecasting systems to predict the 10
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m wind magnitude over the ocean. The cause of this may be due to the
model’'s predictive skill to forecast better categories of wind scales as
was highlighted by the spatial similarity analysis when the viscous
sublayer model scheme was fine-tuned for events when strong surface
winds are prevalent. Similar characterisation is required. The spatial
similarity analysis for January 224 (section 6.5.4.2.1.) and December
15t (section 6.5.4.2.4.) for example, revealed a better prediction of
stronger wind field gradients by the experimental model. On the other
hand, dissimilarity is observed when wind fields tend to get weaker as

supported by the collocated surface wind field maps.
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Month Verification Reference Experimental Skill
time

Model Sill Range Nugget| Model Sill Range Nugget|score

Jan  18:27_19(D} gau 1.36 299 0.19 gau 1.25 2.67 0.16 | 0.04
22:27_23(D) gau 5.23 434 0.11 gau 5.23 4.34 0.11 | 0.06
24:24 25(D) | gau 2.12 1.09 0.31 gau 190 147 0.35 ]0.18

Mar 07:24_08(A) gau 1.90 147 0.35 gau 6.51 290 0.01 |-0.03
08:27_09(D) gau 0.06 1.16 0.004 gau 0.06 1.15 0.006 | 0.01
10:24_11(D) gau 0.13 0.93 0.0001 gau 0.13 0.94 0.0001] 0.00
11:24_12(D) gau 2 3.8 0.03 gau 2.13 4.25 0.011]0.13
14:21_14(A) gau 0.55 1.52 0.001 gau 0.59 161 0.001|-0.23
17:21_17(D) gau 6.19 3.96 1.38 gau 4.13 231 1.05 | 0.14

Apr  21:24_22(A) gau 2.34 3.51 0.19 gau 2.35 3.38 0.17 | 0.02
22:27_23(D) gau 8.62 1.61 0.01 gau 12.4 2.20 0.01 | 0.22
23:27_24(D) gau 3.02 188 0.13 gau 3.36 1.71 0.48 |-0.08
26:24_27(D) gau 0.42 1.50 0.001 gau 0.38 1.50 0.001 ] 0.02
27:24_28(D) gau 0.35 442 0.07 gau 0.20 2.18 0.04 |-0.03
28:21_28(A) gau 4.00 399 0.49 gau 2.68 3.71 0.14 | 0.33

May 03:21_03(D) gau 1.60 2.0 0.09 gau 0.23 0.24 0.02 | 0.24
Jul  22:27_23(D) gau 0.27 1.35 0.03 gau 0.26 126 0.02 |-0.10
23:27_24(D) gau 0.99 5.53 0.06 gau 0.17 0.61 0.0001]| 0.50
24:27_25(D) gau 0.66 1.10 0.02 gau 0.45 1.21 0.03 | 0.64
25:24_26(A) gau 3.33 3.58 0.16 gau 5.13 4.28 0.06 |-0.09
.26:27_27(D) gau 0.82 1.16 0.14 gau 0.64 1.05 0.15 |-0.01
27:27_28(D) gau 0.56 1.04 0.16 gau 1.33 1.21 0.001 |-0.34
28:27_29(D) gau 0.06 0.20 0.00 gau 0.06 0.17 0.00 | 0.40
29:24_30(D) gau 2.13 6.7 0.06 gau 1.39 7.00 0.13 | 0.38
30:24_31(D) gau 1.81 2.58 0.05 gau 1.67 266 0.05 | 0.13
31:21 31(A) gau 2.03 4.57 0.001 gau 1.49 5.11 0.08 | 0.08

Aug 01:21_01(A) gau 0.47 1.35 0.001 gau 0.51 1.42 0.001 |-0.06
02:21_02(D) gau 0.32 426 0.05 gau 0.25 1.64 0.01 |O0.11
03:21_03(D} gau 0.77 1.95 0.001 gau 1.13 2.44 0.005 |-0.29
04:21_04(D) gau 0.59 297 0.02 gau 1.08 3.12 0.001 | 0.01
05:21_05(D) gau 0.83 236 0.03 gau 0.65 2.08 0.02 | 0.03
06:18_06(A) gau 0.64 3.30 0.05 gau 0.34 191 0.04 | 0.17

Sept 16:21_17(A) gau 1.73 2.17 0.07 gau 1.53 2.27 0.06 | 0.18
18:21_18(A) gau 1.78 2.17 0.13 gau 1.53 1.71 0.04 | 0.09
20:21_20(D) gau 2.01 7.01 0.06 gau 0.47 1.17 0.001 ] 0.13
21:21_21(D) gau 3.56 36 0.07 gau 4.07 3.85 0.03 |-0.04

Oct  22:27_23(A) gau 0.88 14 0.008 gau 4.03 3.03 0.01 | 0.09
23:27_24(A) gau 1.03 1.76 0.001 gau 0.91 1.68 0.008 |-0.01
28:27_29(D) gau 0.60 1.73 0.005 gau 0.54 1.64 0.011 |-0.04
29:27_30(D) gau 1.87 1.67 0.001 gau 1.44 1.61 0.001 | 0.04

Dec  13:21_13(A) gau 2.59 062 0.34 gau 2.56 061 0.28 |-0.01
14:21_14(A) gau 0.75 2.33 0.03 gau 0.66 2.35 0.03 | 0.06
15:24_15(A) gau 0.83 395 0.06 gau 0.63 2.80 0.05 |0.14
16:21_16(A) gau 0.35 0.03 1.57 gau 046 186 0.04 |-0.09
17:21_18(A) gau 21.0 475 0.01 gau 32.0 468 0.01 | 0.00
19:21_19(A) gau 0.67 4.02 0.07 gau 0.54 3.43 0.05 | 0.14

Table 6.6. Model fit for isotropic semi-variograms of the residuals from
January through December. These were best described by the Gaussian
(gau) model. An additional column shows the skill score derived following
the verification of each single forecast as described in section 6.5.3.
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Residual analysis however, proved to be quite insensitive to catch the
above-mentioned subtleties, which were easy to capture using spatial
match scoring and similarity. A case in point is the single forecast
analysis for December 15%, Figures 6.20a — b are 2-D representations of
the semi-variograms obtained from the residuals of December 15th.
Visual inspection of the two spatial variograms indicate no significant
differences and both reveal least semi-variance in the 45° direction. A
similar relationship was observed for January 22nd, January 24%, and
April 22nd,

No quantitative analysis of the degree of geometric anisotropy was
performed since this was beyond the scope of this study. The same
holds for the characterisation of the anisotropy in terms of its

dependence on lag distances.

This approach has never been applied to verify improvements made on
numerical atmosphere models. On the other hand, geostatistics is a
fairly common approach to study and derive the distribution, spatial
patterns and texture analysis of natural phenomena ranging form insect
population (Liebhold et al., 1996), ozone (Liu and Rossini, 1997), forests
(Treitz, 2001), mineral resources (e.g. Reis et al.,, 2003), remotely sensed
images (Atkinson and Lewis, 2000; Curran, 1988), down to microbial
patterns (Franklin and Mills, 2003). S. Amarall?3 applied variogram
analyses to identify best filtering methods to filter RADARSAT images to
evaluate resulting spatial variability which was otherwise not visually
distinguishable. It is interesting to note that analysis of residual
variograms has been done by Holdaway (1996) for the modelling and
interpolation of monthly temperature and Aranuvachapun and Maskell

(1997) to study temperature frontal fields.

123 http:// www.dpi.inpe.br/ ~silvana/ PAPER/ amaral-ger97.pdf (accessed on 01.11.04).
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6.5.5. Limitations of the verification analysis.

The objective assessment of model accuracy is constrained by the
limitations of the model forecasts and by the limited representation of
the true atmospheric state. Specifically, model forecasts represent the
atmosphere as a discrete array of area-averaged values as opposed to
the continuous fields found in real situations. On the other hand, the
true atmospheric state against which forecasts are being compared is
represented by empirical observations of the atmosphere. Similarly, no
matter how sophisticated these observations are, they too will never

describe the three dimensional complexity of the atmosphere perfectly.

Since the model output is depicted by values at discrete grid points that
represent a gridded average rather than a value at a specific forecast
point, care was taken when comparing forecasts against observations
that originally had dissimilar area-averaged data (i.e. different grids).
Care was taken to carefully interpolate the observations onto an 0.042¢
by 0.042¢ grid that exactly matched the model output fields. The post-
processing grid was the same as the domain grid of the numerical
model and so there was no degradation in the model's computation
resolution. If this was not the case, then this would have led to incorrect
interpretation of the total forecast performance, especially for low-level

parameters, such as the 10 m wind magnitude above sea level.

Observation grid points that potentially contain inaccurate data due to
the presence of precipitation or characterised by extreme wind
conditions were flagged as null. However, calibration of neighbouring
valid, rain-free pixels was still affected by rainy pixels and so a certain
degree of error is introduced in rain-contaminated scenes. This
inaccuracy may have impacted on the final accuracy of the verification

analysis, resulting in localised inconsistencies.

Overall, this study has successfully demonstrated the application of

spatial statistical methods to verify the output of weather forecasting
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models. The geostatistical analysis of residuals was used as a
convenient tool to assess the improved skill of the atmosphere model
that was initialised using realistic surface boundary conditions (i.e.
remotely-sensed SST). This method complemented the results obtained
by both standard statistical routines (average, standard deviation, bias,
means square error and skill score) and the exploratory spatial data
analysis (Match score analysis and spatial similarity), in that the use of
microwave-derived SST as the initial surface boundary condition for the

Eta model leads to an overall improved skill.
6.6. Summary.

The work described in this chapter addressed the two main research
questions as defined in section 2.1.3. It showed how SST derived from
the tropical microwave imager (TMI) wusing passive microwave
technology can be used to define the surface boundary condition for a

high-resolution model.

Section 6.5.3. described the analysis of the impact of introducing high-
resolution SST conditions into the model as compared to a reference,
method. The impact on the predicted surface wind magnitude at 10 m
above sea level was used as the key index to evaluate model
performance. The range of statistical measures described show an
overall improvement of 10% when TMI-derived SST was used to
initialise the lower boundary conditions at the start of the model run.
Section 6.5.4. described the use of spatial exploratory analysis and geo-
statistical methods to identify and study the model's spatial
performance. The use of spatial data analysis with image processing
and GIS analysis showed an enhanced spatial similarity between the
experimental forecasts and collocated observations, especially for
specific magnitudes of the surface winds. This was demonstrated in
- sections 6.5.4.1. and 6.5.4.2. by means of the spatial match score and
spatial similarity indices developed by this study. The advantage of

using this new remotely-sensed product was presented and discussed.
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The use of geo-statistical methods to quantify the spatial variation of
the residual component between the forecasts and observations was
described in section 6.5.4.3. Semi-variogram analysis identified closer
spatial correspondence between the experimental forecasts and
observations, characterised by a gaussian relationship and low nugget
variance. Variography proved inadequate to catch spatial subtleties
which were otherwise easily captured using spatial match scoring and

similarity.

From a semi-quantitative point of view, exploratory spatial data analysis
showed that the experimental model fares better than the reference one.
It can therefore be concluded that the use of remotely-sensed SST to
initialise the lower boundary conditions of a high-resolution Eta model
can favourably improve the accuracy of short-range, 10 m wind
magnitude forecasts. Clearly, more developmental work is needed if
hypothesis testing and more complex or computationally expensive

tests are required.

This work is closely linked with the next chapter in which the improved
set of air-sea fluxes are used to initialise the surface boundary
conditions of the high-resolution ocean model. Moreover, the evaluation
of TMI-derived SST to improve the forecasting skill of the ocean model is
assessed on the basis of improved initialisation and data assimilation
schemes. The high-resolution SST observations are used to adjust the

ocean model fields towards observations.

291



Chapter 7

IMPROVING THE FORCING AND PREDICTION OF
THE OCEAN MODEL.

7.1. Introduction.

The progress of ocean modelling is still hindered by a number of
constraints. Chassignet et al. (2004) identifies these as being due to the
dynamical approximations of the fundamental fluid mechanics, the
parameterisation of essential processes that occur at high spatial and
temporal scales, the boundary and initial conditions and the domain

geometry.

One of the constraints that affects eddy-resolving, high-resolution ocean
models is the availability of atmospheric forcing to drive ocean models.
Theoretical progress over the past years significantly enhanced the
understanding of the dependence of the thermohaline circulation to the
parameterisation of the air-sea interaction, in particular that of air-sea
exchanges of heat. Consequently, this has created a demand for simple
yet accurate parameterisations of air-sea fluxes to satisfy the need for

ocean model studies.

Scientific progress in ocean data assimilation is still at an early stage of
development, but its eventual success will be important to the ocean
modelling community in general. According to the World Ocean
Circulation Experiment (WOCE)!24, technical gaps still exist in data
assimilation, including lack of skill in the underlying model (arising
from both poor initial data and dynamical deficiencies), poor knowledge
of the statistics of forcing errors and parameterisation errors, lack of

model grid resolution and lack of manpower.

124 http:// sam.ucsd.edu/ smwg/ smwg_assimilation. html#v1 (accessed 01.11.04).
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Another important constraint is the objective verification of ocean
models. This issue already poses a difficulty for coarse resolution
models, which are usually compared to hydrographic estimates of a
mean state of the ocean. The validation problem is far more significant
(mainly at mid and high latitudes) even for seasonal temporal scales of
variability because of the lack of appropriate data. The problem is
especially severe for eddy-resolving models because of a lack of

appropriate data with high enough spatio-temporal variability.

Free surface, sigma coordinate ocean models, such as POM, are now
being used for a variety of applications, ranging from small-scale
process studies and coastal and estuarine modelling and prediction to
basin-scale ocean circulation and climate change modelling (Ezer,
2000). POM was selected by the MedNet125 project as one of the main
ocean circulation models to be used for the study of the Mediterranean
Seal%.v A study is therefore appropriate both to evaluate its sensitivity

as well as to enhance its predictive capability.

In this study, POM is used to forecast the ocean circulation over part of
the Ionian basin, situated in the central Mediterranean Sea. The
numerous ocean-atmospheric processes that are active in this region
provide a unique opportunity for observational and modelling studies
(Robinson et al.,, 2001). The model domain corresponds exactly to that
of the nested Eta model, with the intent of assessing the impact of the
improved high-resolution air-sea flux products on the forcing of the
ocean model. The selection of this test area is made on the basis of the
availability of a full fifteen-day, close to the daily initialisation time of
the POM model (i.e.- 00 UT) SST dataset derived from the TMI sensor

that is used for both model initialisation and data assimilation.

Another part of this study attempts to improve the prediction of the

POM model using data assimilation. Experiments are performed on a

125 MedNET was a project to provide oceanographic modelling software for the
Mediterranean Sea funded by the European Union Marine Science and Technology
programme (MAST).
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7.2. Methodology.

7.2.1. Setup and running the POM model.

A Pentium MMX configured with 800MHz and 64MB of RAM was used
for the POM model working on LINUX system with C and Fortran 77
compilers. The use of the model was simpler than the Eta atmosphere
model, and consisted of folders containing Fortran 77 source codes and
related executable files that (1) decoded the binary data constituting the
lateral boundary conditions obtained from the seasonal Mediterranean
Ocean Database (MODB), surface boundary conditions (SST and air-sea
heat fluxes), and bottom topography, and convert it according to model
o-coordinate system; (2) constituted the numerical schemes of the
model (POM97_oper.f), and (3) calculated the output of all relevant
forecasted fields and their conversion into standard levels for
displaying. Csh shell scripts unified the operation of all these three
main groups of codes. The modelling process was divided into three
stages: pre-processing, processing and post-processing. The logic of this

setup is similar to that of the atmosphere model.

Pre-processing is described in Appendix IV, section IV.3.1. It consisted
of model domain definition, preparation of lateral and surface boundary

conditions, data decoding, formatting and data interpolation.

The processing stage is described in Appendix IV, section IV.3.2. The
daily integration of the high-resolution POM model generated
mesoscale, 3-hourly 3-D oceanic forecasts for a 24-hour forecast.
Model processing consisted of two steps: (1) a pre-forecast run that
adjusted the model fields towards the SST conditions, and (2) a forecast

run using SST to initialise the adjusted model fields at the surface.

' The post-processing stage is described in Appendix IV, section IV.3.3.
This stage consisted of the generation of predicted oceanic fields. It also

generated gridded forecasted variables in ascii xyz format for
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7.2.2. Impact of using the improved set of surface forcing

conditions.

The two high spatio-temporal air-sea flux datasets produced by the Eta
model for the period 2274 July — 5% August 1999 were used to analyse
their value as surface drivers for the ocean model. Two parallel hind
cast experiments were carried out for this period using these two
datasets separately (fig. 7.3). The ocean model was initialised starting
on the 22nd July 1999 using the M-RESTART file produced by the hind

cast sequence of simulations between 1st— 21st July 1999 (fig. 7.4).

The flowchart represented by figure 7.5 shows the setup of the POM
model when lateral and surface boundary conditions are supplied to the
model, followed by field adjustment and proper forecast runs to produce

3-hourly forecasted ocean fields.
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7.2.3. Fine-tuning of the data assimilation scheme.

In order to identify the best nudging conditions!27 of the ocean model,
three nudging schemes were tested for each of the 2 parallel runs

described above.

The pre-forecast, data assimilation runs started from the initial, 3-
hourly ocean fields previously forecasted by the ocean model on day
(n-1) (included in the M_RESTRT data). The model fields were then
“relaxed” towards the SST target field by using the prognostic equation
with the correction term of the form:

model
aq ubservalionS) — 0 (7 . ]_ )

n

+4,+K,(g" ~q

where qmedel i the model variable; qobservation jg the target analysis; Agq is
one of the model terms in the dynamical equations such as advection
and diffusion and Kj is the relaxation coefficient. The time level ¢, is the

value at which model predictions and observation are made.

Equation 7.1 represents the difference between the model solution and
the corresponding observation. The subscript n indicates the time level

at which model predictions and observations are made. The tendency of

model
n

the model prognostic variable dqmedel provides the g at the next

time level (n+1). The equation is modified by introducing the relaxation
term Kq (qmodel — gobservation) that nudges the predicted variable gmedel to
the observed value on the relaxation time scale. Kq, the relaxation
function (in x,y,z,t), which in this study is kept constant throughout the
pre-forecast run. The role of transferring the assimilated information in
the vertical and horizontal is performed by the model itself in a pre-

forecast run, acting as a dynamical interpolator/extrapolator.

Three data assimilation (DA) experiments were performed:

127 Appendix IV; Section [V.3.2.
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1. To assess the effectiveness of data assimilation, model processing

was run with no DA scheme;

2. To assess the effectiveness of varying the time period during which
the model fields are dynamically nudged towards the SST
observations, the model was run with an active DA scheme (scheme
1 in table 7.2). Three nudging periods (or relaxation time scale) were

tested: 06, 12 and 24 hours, and

3. To assess the effectiveness of (1) varying the nudging period and (2)
including a second forcing, nudging coefficient, to dynamically nudge
the model fields towards the SST observations, model processing was
run with an active DA scheme (scheme 2 in table 7.2). Four nudging
coefficients were tested 5x103, 5x104, 5x10° and 5x10¢ for each of

three nudging periods.
The pre-, processing and post-processing stages of the experimental
setup were the same as described in sections 7.2.2. and 7.2.3. above as
follows:
1. Use of two sets of surface forcing conditions, and
2. Fine-tuning of the nudging period and coefficient for data

assimilation.

Sections 7.2.2. and 7.2.3. were carried out in tandem.
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DA scheme

No scheme

No nudging

1 Fields nudged for a
period T towards 7= 06 hrs 1= 12 hrs 1= 24 hrs
observed SST
2 Fields nudged for a

period t towards

observed SST
+

use of a nudging

coefficient

7= 06, 12, 24 hrs

5x 103

1= 06, 12, 24 hrs

5x 104

1= 06, 12, 24 hrs

5x 105

7= 06, 12, 24 hrs

5x 106

Table 7.2. Three experiments were performed to assess the effectiveness of the model’s data
assimilation scheme and its optimisation.

302



7.2.4. Model validation and diagnostics.

The forecasting performancel?® of the ocean model was analysed using
basic statistical performance measures such as mean, standard

deviation, bias and RMSE.

7.2.4.1. Spatial analysis of small-scale surface oceanic features.

Surface analysis was performed to outline and compare forecasted fields

with high-resolution information of the ocean surface derived by remote

sensing.

128 Section 5.4.2.
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7.3. Results and discussion.

7.3.1. Effectiveness of data assimilation on the forecasting quality

of the ocean model.

The direct insertion method (i.e. Newtonian relaxation scheme) used in
this study consisted of nudging forecast values at all data points
towards the observed data, which are assumed to be exact. The
blending estimate is a scalar linear combination, with an assigned
weight (r and coefficients, separately and in tandem), of the forecast and
data values at all model grid points. The coefficients used in the
relaxation scheme were related to dynamical scales and a priori
estimates of model and data errors used to assimilate GDAS-SST into

the ocean model (Telenta, 1999, personal communication).

7.3.1.1. No data assimilation scheme.

Figure 7.6. shows the results when the ocean model did not use a data
assimilation scheme!?9. The increasing RMSE index, based on the
comparison between the forecasted SST field and collocated SST derived
by the passive microwave sensor, reached a plateau after the 11t day of

integration, to give a more or less stable RMSE of 3°C.

A lower RMSE is obtained when the experimental air-sea fluxes are
used to initialise the model throughout the experimental run relative o
the other system. An increased standard error with time is shown by
the bias index (fig. 7.7) for both runs. A maximum under-forecasted SST
value of more than 3°C is reached after the full model integration run

(fig. 7.7).

129 Statistical results are shown in Appendix VII.
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The results show the importance of data assimilation, the absence of
which leads to a significant model error drift and propagation of misfits

in the forecasted SST.

7.3.1.2. Newtonian relaxation towards SST with varying nudging

periods (scheme 1).

The use of both the experimental and reference datasets lead to a
consistent decrease in the bias value with time (figs. 7.8 a-c) with the
former giving a lower overall bias and amplitudel30. This result is
consistent throughout the entire run. Minimal bias is achieved after

24 hrs of pre-forecast nudging.

Horton et al. (1997) applied a similar DA scheme for their ocean
forecasting system by nudging their model towards interpolation based
analysis (Daley, 1991) of AVHRR MCSST. The new SST values were
assimilated by the model using a nudging period of only 4 hrs.
According to Horton et al. (1997) a low value of the nudging period was
chosen so as to minimise model instability resulting from the sudden
insertion of new temperature values. In contrast, these results show
that only by increasing the nudging period to 24hrs can the best 24-hr
predicted SST field be achieved.

130 Statistical results are shown in Appendix VII.
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7.3.1.3. Newtonian relaxation towards SST with variable nudging

periods and coefficients (scheme 2).

Results are presented in figures 7.9 a-l in the form of linear trends of
the resulting biases between the 24-hr forecasted SST fields against
collocated observations. What is most apparent in these series of graphs
is the smaller, and more stable bias of the forecasting system using
TMI-SST and the experimental air sea fluxes as the initial surface
conditions for the full model integration run. This pattern holds for all
the different nudging periods and coefficients except when the value of
the coefficient is 5x106. In both cases, the bias tendency is always
negative, implying the presence of model error drift with time, showing a
slope that that is much less pronounced by the experimental system
than the reference onel!3l, However, the different tendencies of the
slopes produced by both sets of air-sea fluxes indicates that the two
sets of initial conditions lead to two different sets of SST predictions.
The small amplitude and stable tendency produced by the experimental

set of air sea fluxes suggests a more stable setting.

The overall result show that the best tuning for the data assimilation
scheme occurs when the nudging period is set to 24 hrs and the value
of the coefficient is 5 x 10-3. A similar pattern is observed when the
value of the coefficient is changed to 5x104 (fig. 7.9 d-f). A different
pattern in the bias trend is observed when the value of the nudging
coefficient is changed to 5x10-5, in particular when the nudging period
is set to be 06 and 12 hrs (figs. 7.9 g-h). However, this trend is improved
when the nudging period is extended to 24 hrs, suggesting that with a
weaker coefficient of 5x10-5, effective data assimilation can only be
achieved if the nudging period is increased to a maximum of 24 hours.
A nudging coefficient of 5x10-° is too weak to adjust the ocean fields

towards the observations (figs. 7.9 j-1). The duration of the nudging

131 Statistical results are shown in Appendix VIL
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period is also insufficient for such a weak adjustment. The end result is
a final 15-day prediction of an SST field with an overall bias of around

1 °C when a nudging period of 24 hrs is used.

Despite the small period of evaluation, some general remarks can be
made. What is evident from this study is that an active data
assimilation scheme tends to dampen the fluctuating bias tendency
rapidly. The fluctuation in the bias trend is caused by the model’'s
attempt to equilibrate the model dynamics towards the prognostic SST
values. However, its degree of damping is seen to be dependent on the

two factors that regulate the extent of this fluctuation: the relaxation

mod el

dq

time and nudging coefficient Kq.

Following the adjustment of the data assimilation scheme, it can be
concluded that the best overall setup is the DA scheme 1 using a
nudging period of 24 hrs but without including a nudging coefficient.
With this setting, the mean bias over the entire 15-day model
integration is only —0.05 °C. The second best option is achieved when a
nudging coefficient of 5x10-4 is used with a 12-hr nudging period. With
such a setting, this scheme gives the highest correlation between the
model’s 24-hr predicted SST field and collocated observations, with a

mean bias of -0.07 °C.

In both cases, better results are produced when the experimental air-
sea fluxes are used as the surface boundary conditions of the ocean
model. The less accurate result achieved when the reference initial
dataset was used may be attributed to its poorer spatial information
(attributed to GDAS-SST) as well as less realistic reference set of air-sea
flux values generated by the Eta model. In spite of this difference, both
datasets lead to a better model performance than other ocean
forecasting systems in the. region. Nittis et al. (2001) for example,
obtained a bias of 0.1 to 0.8 °C when their 24-hour POM-forecasted SST

was compared to collocated in situ buoy measurements.

311



The difference exhibited by means of the standard verification is
however very small. Having a high-resolution forecasting system that is
able to provide a final bias of —0.05 °C after 15-days of integration is still
a very commendable one. If one were to extrapolate the forecasting
trend of the ocean model, a highly accurate forecast would, in the end
be achieved. But the most important factor in high-resolution forecasts
is not the scalar accuracy but the spatial accuracy, for which modelers
and end-users show a keener interest. Spatial analysis of the final SST
forecast, in fact do expose a marked difference between these two

schemes (section 7.3.4.).

The improved one-way atmosphere-ocean coupling offers distinct
advantages over current basin-wide forecasting systems and is a novel
aspect for operational forecasting for the Ionian region. For example,
forecasting models working in the Mediterranean utilise bulk formulae
to compute the surface boundary conditions of the ocean models
(Lascaratos and Nittis, 1998). Atmospheric variables, such as wind field,
air temperature and relative humidity are derived from coarse, monthly
averages of 12-hr NCEP analyses for the period 1980-1988. Similarly,
using the POM model, Horton et al. (1997) forecasted the Mediterranean
circulation using wind stress and air-sea fluxes derived from NORAPS
fields available at 12-hr intervals. The horizontal resolution of these
fields was 45 km and the air-sea fluxes were calculated from these
fields using bulk formulae. The systems also use weak relaxation to
climatological temperature to prevent climatic-model drifts. Onken et al.
(2003), for example, used 6-hourly momentum fluxes provided by

ECMWEF to force their high resolution model over the Straits of Sicily.

Castellari et al. (1998) go even as far as assimilating monthly mean SST
derived from global models (such as from the Climate Analysis Centre,
Washington DC). These authors comment on their limited information
provided by their initial fields and-—suggest the need to setup an
operational high-resolution, nested atmosphere model from which to

derive the required initial conditions more accurately.
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One drawback in the present chapter is the short initialisation time of
the ocean model that starts with zero velocity. Ideally, this should start
a number of years before the actual experiment to allow the model to
achieve quasi-geostrophy!3? (in reality geostrophic conditions can only
be achieved after a couple of thousand years of model integration and is

not feasible for this kind of study).

It is interesting to note that the Mediterranean Forecasting System
lacks an operational system whereby high-resolution, real-time
atmospheric forcing is fully used to drive its full complement of
regional- and shelf-ocean models. Comparative studies are still pending
to analyse the impact of using different sources of atmospheric fluxes
extracted either directly from its Mediterranean-wide atmosphere model
or alternatively, by parameterisation using basic forecasted geophysical

variables133,

The Cyprus Coastal Ocean Modell34 (Zodiatis et al, 2002 a,b,c) is a
version of the POM that is being used to provide high resolution ocean
forecasts around Cyprus and the Levantine Basin for the Mediterranean
Forecasting System. Unlike the present model setup, the Cypriot ocean
model is forced using 6-hourly ECMWF atmospheric analysis and
forecast provided by Meteo-France at a much coarser resolution (0.5° by
0.5° latitude x longitude). These forecasts consist of air and dew point
temperature, mean sea level pressure, clouds and 10 m winds. Air-sea
fluxes are parameterised using climatological data (Zodiatis, 2003).
Taking into account the modelling of the air-sea fluxes by the

sophisticated numerical scheme embedded in the Eta modell35, their

132 Wu and Haines (1996) ran a version of POM for 100 years as to reach a well-
maintained statistically steady thermohaline and equilibrated system at all model levels
in the water column, along with budgets-of *heat ‘and- freshwater and their seasonal
variabilities.

133 http:// forecast.uoa.gr/ mfstep/ mfstep_6.htm (accessed on 01.11.04).

134 of the Oceanography Centre, Department of Fisheries & Marine Research, Nicosia,
Cyprus; http:// www.ucy.ac.cy/cyocean/ {accessed on 01.11.04).

135 Appendix II; Section II. 1.
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higher spatio-temporal resolution and accuracy!3¢, the forecasting

system setup for th