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sweetest, nicest and most fantastic people, I have ever had to work with and probably 

ever will, was an experience that I could never forget. 

To all those, who were patient, tolerant and just so helpful towards me and to those 

who have become my friends, I give thanks with all my heart. 

Thank you! 

Sue 
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Title of Ph.D thesis: Analytical studies on channel forming proteins. 

Sue M. Ennaceur 

Abstract. Antimicrobial peptides have shown great potential as pharmaceutical 

agents, they are being considered for their ability to fight bacterial and fungal 

infections and even to destroy cancerous cells by disrupting the cell membranes of 

their targets. A clear understanding of the mechanism behind their activity and 

how this is related to their structure is therefore essential if these peptides are to be 

considered as precursors for the next generation of a new range of drugs. 

This research project has been involved in the development of a series of 

analogous model amphiphilic cyclic peptides, which were designed to adopt a P­
sheet conformation on inserting into lipid membranes. The model peptides were 

examined using a wide range of analytical techniques; these studies have enabled 

both the propensity of these peptides to adopt transmembrane P-sheet structures to 

be established and to gain some understanding of their behaviour under different 

environments. Circular dichroism and its sister technique linear dichroism have 

shown both the structure and the orientation of the peptide backbone on insertion 

into lipid membranes. Calorimetric studies have demonstrated the extent of the 

cyclic peptide disruption on the phase transition of saturated and unsaturated 

phospholipid membranes and electron microscopy has revealed the ability of one 

of the model peptides to form fibrous structures on precipitation from a solution of 

the fluorinated alcohol, hexafluoroisopropanol (HFIP) in water. 

A natural P-sheet forming protein, the C-terminal domain of the autotransporter 

protein BrKA from Bordetella pertussis was overexpressed to provide a 

comparison for the model P-sheet peptides. Attempts were made to grow highly 

ordered 2D arrays of the protein in phospholipid membranes for structural analysis 

by both transmission electron microscopy and atomic force microscopy. 

The effect of the fluorinated alcohol HFIP, which was used to solubilise the 

amphiphilic peptides, was examined on phospholipid systems. The study was 

considered to afford some understanding towards the integration of small 

molecules into membranes. 
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Chapter I 

I. Ge1111eral Introduction. 

Protection against bacterial infections is widely regarded as a commodity of 

modem life; we rely on antibiotics to give constant respite from a whole host of 

illnesses. 

Over the past decade though, a significant threat to our dominance over bacteria 

has become apparent, as a growing number of pathogenic organisms are 

becoming resistant to conventional antibiotics; amongst which a decreasing 

sensitivity of common bacterial infections, such as Streptococcal pneumoniae, a 

widespread cause of bacterial sinus and ear infection, to the antibiotic 

penicillin. 1.2·3•
4 

A general abuse of established antibiotic drugs is being blamed for the 

emergence of plasmid-hom resistance genes in bacteria and therefore of the 

decreasing efficiency of available antibiotics to fight bacterial infections. The use 

of antibiotics in food producing animals (fluoroquinolones; avoparcin) are 

thought to be responsible for resistant stains of bacteria, such as Salmonella, 

Campylobacter, Enterococci and Escherichia coli, which can be transferred to 

humans through the food chain. 5 

The increasing use of disinfectants in domestic and personal hygiene products 

also reduces , the number of harmless bacteria and increases the number of 

resistant stains. 

Antimicrobial agents find their way, often in high concentrations, to sewage 

effluents and from there, to the water systems. 

The natural consequence of bacterial cell exposure to antimicrobial agents is an 

irreversible resistance to antibiotics. Bacteria have very short generation times 

from minutes to hours, which enable them to adapt rapidly to changes in their 

environment; modifications to bacterial genes allow bacteria to alter the specific 

target that antibiotics recognise and attack. 6 

Resistant strains of bacteria have a high epidemic potential, which is of particular 

concern in the field of hospital infection control, as resistant strains of bacteria 
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are far more expensive to treat and may require drugs that are more toxic than the 

common antibiotics. 

Antibiotic agents have been developed to exploit the significant cellular and 

molecular physiological differences between eukaryotic and prokaryotic cells 

and thus to target exclusively bacterial cells over animal cells; avoiding or 

reducing the risk of toxicity to the host. 

Bacterial cells are enclosed by a wall structure, as well as membranes, with a net 

like arrangement of cross linked sugar chains (N-acetyl glucosamine and N­

acetyl muramic acid), the peptidoglycan layer, which confers rigidity to the 

bacterial cell allowing it to survive in media in which the cytoplasm may be 

hypertonic. 

This cell wall is the target of P-lactam antibiotic drugs (penicillin) and 

glycopeptides (vancomycin), which irreversibly bind the enzyme transpeptidase 

that forms the cross linkage between the polymer chains for the former and the 

enzyme binding site (D-alanyl-D-alanine) on the sugar chains for the latter. Both 

classes of drugs act therefore by crippling the production of bacterial cell wall, 

which protects the cell from the environment. 

Other antibiotic agents interfere with protein synthesis (tetracycline, 

aminoglycosides and macrolides) and metabolic processes such as the synthesis 

of vitamin K that are essential for bacterial survival, as well as inhibiting DNA 

and RNA synthesis (quinolones). 7
•
8
•
9 

The effectiveness of an antibiotic drug relies on its ability to penetrate the 

organism cell and to reach its target site in high enough concentrations and to 

remain in location long enough to kill the organism. Both P-lactams and 

glycopeptides exhibit time dependent killing and activity restricted towards 

specific types of bacteria. 

The complexity of the cell wall and therefore the ease with which an antibacterial 

drug can penetrate the cell varies greatly depending on which of the two broad 

classifications of bacteria are considered; the cell walls of gram negative bacteria 

(Salmonella; Neisseria and Yersinia) have a more complex structure than those 

of gram positive organisms (Bacillus; Staphylococcus and Streptococcus). 
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Gram-negative cells are enclosed by the cytoplasmic or inner membrane, beyond 

which is the periplasmic space and then a thin peptidoglycan layer strongly 

bound to the outer membrane by a lipoprotein. 

The outer membrane of gram-negative bacteria is very distinctive, as it contain 

not only lipids and proteins, but also lipopolysaccharides, LPS, which are 

composed of lipid A and a polysaccharide chain and are located on the out side 

face of the membrane. 

LPS gives gram-negative bacteria a hydrophilic character and protects the cell 

against any hydrophobic molecules that could approach the outer membrane. 

These molecules are also toxic ( endotoxins) to mammals, when released from the 

bacterial membrane on death of the cell. 10 Glycoproteins (e.g. vancomycin) have 

restricted activity against these organisms as they are unable to penetrate the 

outer membrane of gram negative bacteria (Fig. I.l ). 

pe1>tidoglycan 
layer 

Figure ll. Diagram of the gram-negative cell wall. 

Gram-positive bacteria only have a plasma membrane and no outer membrane, 

but their cell wall is much denser than that of gram-negative bacteria; the plasma 
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membrane is protected and supported by peptidoglycan, which can reach up to 

20 layers in thickness and constitute from 60 % to 90 % of the cell wall. 

Interwoven in the cell wall are teichoic acids (polymers of glycerol; phosphates; 

ribitol, a sugar alcohol and depending on the species of bacteria, a lipid anchor). 

The negatively charged teichoic acid network acts, as a barrier for the cell against 

positively charged molecules. The outer surface of the peptidoglycan wall is 

studded with proteins, which can have a variety of functions, depending on the 

species of bacteria 11 

A summary of the properties of gram positive and gram negative cell walls has 

been tabulated bellow. 

Property 

ll 

/Thickness of wall 

/Number of layers in wa 

[PePtidoglycan content 

/Teichoic acid in wall 

rupid and lipoprotein co 

/Protein content 

/Lipopolysaccharide 

/Sensitive to penicliiin 

/Digested by lysozyme 

ntent 

Gram I Gram 
Positive Negative 

I 
f20-80 nm /IOnm 

/1 /2 
/60%-90% /I0-20% 

I+ 1-
/0-3% /58% 

/0% /9% 

lo /13% 
~--~-(less affinity) 
~- /- (less affinity) 

Table 11. Comparison of gram-negative and positive cell walls. 

Bacterial cells eventually develop resistance towards the antibiotic drugs to 

which they are repeatedly exposed and especially towards those that have a slow 

rate of activity, which fail to completely eliminate the organism. These factors 

allow the more resistant bacterial strains to develop and to transmit their genes to 

other bacterial species. Bacterial resistance can manifest itself in a number of 

ways, from modifications to the drug's site of action to generation of enzymes 

that break the antibiotics down. The P-lactam antibiotics are attacked by P­
lactamases, enzymes that hydrolyse the P-lactam ring, which is necessary for 

their activity. 
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Methicillin resistant Staphylococcus aureus (MRSA) or "the super bug" as it is 

more familiarly known, is a term used to describe Staphylococcus aureus 

organisms that have become resistant to an increasing number of common 

antibiotics. A number of modifications have been made to antibiotic drugs to 

stop bacterial resistance such as the inclusion of clavulonic acid in the 

preparation of augmentin which prevents action by lactamases. But it is only a 

matter of time before a bacterial counter attack is developed against all our 

common drugs, as a consequence of their specific mode of action and the speed 

with which they attack; therefore it has become essential to explore alternative 

routes, in order to remain safely ahead of the pathogenic hordes that could 

destroy the protected life we now enjoy. 12
•
13 

1.1. Antimicrobial peptides as pharmacological agents. 

A great variety of biologically active antimicrobial peptides have been 

discovered right across the evolutionary spectrum, from bacteria themselves to 

insects, plants and mammals. 14 The importance of these peptides in host-defence 

mechanisms, against microbial species, has become increasingly evident since 

the 1980s. Host defence peptides, from 15 to 40 amino acids in length, have 

evolved throughout the natural world to contend with invaders, as part of an 

active defence system. In mammals these antibacterial peptides are innate 

immune substances that act as the primary line of defence in the fight against 

invading pathogenic microorganisms?·15 

Interest in antimicrobial peptides appeared as early as 1939, when antibacterial 

compounds, showing biological activity against pneumococcal infection in mice, 

were isolated in soil bacilli. 12 The antimicrobial peptides tyrocidine and 

gramicidin were purified and crystallized from Bacillus brevis only a few years 

later. Tyrocidine was too toxic for use as an antibiotic, but gramicidin actually 

found use as a topical agent, before the availability of Penicillin. 
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Cecropins and defensins were the first antimicrobial peptides from animals, to be 

characterized structurally from 1981 to 1983. 13
•
16 Protegrin-1 (PG-1) was 

discovered in porcine leukocytes and exhibited remarkable antimicrobial activity, 

including the protection of cells from infection by HIV. 1•
30 The peptide melittin 

was isolated from bee venom; the peptide magainin from amphibian skin 

secretions and alamethicin, a small 20 amino acid residue peptide, was found in 

the fungus Trichoderma viride. 17 

The production of antimicrobial peptides and proteins is extremely common in 

bacteria. 15 Bacteria are present everywhere throughout nature and within an 

extensive range of habitats, in water and in soil, on plants, as well as on and 

within mammals. 18 

In order to gain advantage over their competitors, these microorganisms produce 

antibiotic substances that inhibit or kill target cells of competitor organisms, but 

from which they are themselves immune. The most efficient of these substances 

are the Bacteriocins, which are potent antagonists; these are bacterial peptides 

ribosomally made or derived from gene encoded precursors. 

Bacteriocins have evolved to fit both in size and specificity, the different cell 

wall architectures of the gram-negative and gram-positive bacteria. 

The antimicrobial peptides produced by gram-positive bacteria, lactococcins and 

!antibiotics, are small, less than 10 kDa and have a wider activity range than 

those of gram-negative bacteria; they act through membrane perturbation and 

pore formation. 19 The activity of gram-negative antimicrobial peptides is much 

more specific and needs receptor binding domains for receptor-mediated 

antagonist activity. 

Many conventional antibiotics disable or kill bacteria over a period of days, 

whereas antimicrobial peptides are both fast and lethal, killing almost 

instantaneously (within minutes). Their action is different to that of common 

drugs as it is directed towards the target cell membrane, causing disruption, 

which can result in cell leakage and death. Interest in the development of peptide 

based antibiotics is growing as bacterial resistance is thought unlikely to develop, 

as a result of the short exposure time of the target cells to the antimicrobial 

peptides. 
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However, a significant difficulty that would need to be addressed is that many 

antimicrobial peptides are also highly haemolytic and lack the high selectivity 

required for use as antibiotic drugs. 20 

1.2. The activity and specificity of these peptides. 

A potential antibiotic drug must have the ability to destroy pathogens while 

displaying relative non-toxicity to the host organism and being capable of 

reaching the infection site even when deeply buried within tissue. 

One approach is to custom-design peptides with structural features likely to 

favour peptide insertion or disruption of the lipid bilayer of cell membranes and 

to study these peptide-lipid interactions. This can be achieved through a clear 

understanding of the structural organisation of membrane proteins and the 

complex intermolecular interactions of these proteins with their target cell 

membranes. The antibacterial and haemolytic activities of a peptide or protein 

are closely tied to its structure. Toxicity can be significantly reduced and 

antimicrobial activity improved by adjusting the structural features of the 

peptide. 

1.3. Tille structures and conformations adopted by antimicrobial 
peptides. 

Peptides and proteins that interact with and penetrate the membranes of target 

cells possess membrane compatible amphipathic secondary structures such as a­

helix or P-sheet.21 The formation of these secondary structures enables the 

hydrogen potential of the amide groups in the peptide sequence to be fulfilled 

(Fig. I.2) and to contain any non-saturated hydrogen bonds within a hydrophobic 

unit; avoiding energetically unfavourable exposure of polar groups to the lipid 

bilayer interior. 
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The majority of membrane proteins are located in the cytoplasmic membrane and 

consist of either individual or bundles of transmembrane a-helices, spanning the 

membrane, whereas membrane proteins from the outer membrane of gram­

negative bacteria and a large number of those from mitochondria and chloroplast 

outer membranes, form monomeric, dimeric or trimeric transmembrane P­
barrels. 22.23 

a. 

RH( 
C=O 

I 

RH( 
C=O 

I 

Figure 12. Hydrogen bonding between, (a) antiparallel P-strands 

and (b) parallel P-strands. 

The P-barrel structure forms a stable scaffold of P-sheet strands (Fig. 1.3) in 

which the amino acid residues are connected by main chain hydrogen bonds, 

allowing the protein to remain correctly folded in the harsher external conditions 

of the outer membrane. The a-helical bundles of the cytoplasmic membrane form 

less stable structures as they are only connected via side chain interactions?4 
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A range of P-barrel proteins have been characterised ranging from as few as 8 

strands (OmpA and OmpX porins) and up to 22 strands (Ion transporters FhuA 

and FepA) per barrel; they exist either as single barrel structures or as oligomers 

often in trimer conformations. 25 

Bilayer 
thickness 

-' 
Figure 13. NMR determined structure of the E. coli OmpA porin transmembrane 

domain in dodecyl phosphocholine micelles (P DB entry 1 G90). 

The construction of a P-barrel appears to be governed by a number of rules which 

have been deduced from compiling known P-barrel structures. These could be 

used both to predict P-barrel formation from a protein sequence and provide 

guide lines for engineering these structures. 26 

Secondary structure and structure-function relationships of a whole array of 

antimicrobial peptides have been examined using a wide range of techniques; 

these studies have provided considerable insight into the factors that enable and 

direct specific biological activity. Antibacterial peptides, which have well 

characterised structures and activities, include the P-sheet forming cytotoxin, a­

hemolysin; cyclic gramicidin S and members of the family of defensins as well 

as the a-helical peptides: gramicidin A; magainins; cecropins; melittins and 

alamethicin, which is one of the most extensively examined peptides in peptide­

lipid interaction studies. 

Profile studies on these peptides have revealed a very high diversity in structure 

in relation to activity, which makes prediction or deduction of activity on the 
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basis of characteristics like length, charge or presence of disulphide bridges very 

difficult. 

Peptides like magainins, cecropins and defensins, also have such a rapid response 

against bacterial cytoplasmic membranes that it has not been possible to 

determine whether they have other cellular targets 

1.4. Antimicrobial peptides with P-barrel structures. 

1.4.1. a-Hemolysin. 

The P-barrel structure is also used to form hydrophilic transmembrane channels 

in the membranes of target cells by many bacterial pore-forming toxins. 

The protein a-hemolysin (Figure 1.4) is a cytotoxin secreted by the gram­

positive bacteria, Staphylococcus aureus, which becomes biologically active on 

formation of a membrane-bound polymeric ,8-barrel on the surface of target 

cells.23 

X-ray crystallographic and atomic force microscopic structural studies performed 

on a-hemolysin have shown that the protein adopts a heptameric conformation 

in the presence of lipid and detergent micelles. 
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Polymorphism of the protein oligomer has also been observed by atomic force 

microscopy, where the protein has been clearly shown to form arrays of 

hexamers on supported phospholipid bilayers. 23
).

7 

a. b. 

Figure 14. Ribbon representation of the active form of a- hemolysin. 

View of the stem, head and rim (a) and through the channel (b). 

(P DB entry 7 AHL) 

The protein complex as determined by X-ray crystallography (Fig 1.4) has an 

overall size of about 10 x 10 nm and is shaped like a mushroom with a "head", 

"rim" and "stem" part. The "head" is largely hydrophilic and with the "rim" 

protrudes by 4.8 nm from the membrane surface. The "head" is composed of 

seven fi-sandwiches and amino linkers from each of the individual peptides. The 

"rim" is a 3 stranded fi-sheet and the "stem" a 14 strand (two strands from each 

peptide) anti-parallel fi-barrel with a height of 5.2 nm?8 

The surface of the "rim" domain as well as being in contact with the lipid surface 

has solvent exposed aromatic residues. The peptide is released from the bacteria 

in a water soluble form, which binds to the target membrane causing the local 

concentration of peptide to increase. Once a sufficient level is reached, the toxin 

will fold into an oligomeric conformation and insert spontaneously into the 

membrane, forming channels of 1-2 nm in diameter. 
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The toxin has shown a high selectivity towards sensitive cells, such as Rabbit 

erythrocytes, which suggests that membrane binding may also be a receptor 

mediated process. Many membrane peptides and proteins undergo a 

conformational change upon binding to a target membrane surface. 28
•
29 

1.4.2. Protegrin-1. 

The antimicrobial peptide, Protegrin-1 (PG-1 ), which forms an integral part of 

the porcine innate immune system, adopts a P-sheet structure on binding to target 

membranes. The 18 residue peptide has a roughly cylindrical shape which is 

folded into P-sheets and linked by two disulphide bridges. The peptide has 

demonstrated potential, in vitro as a potent pharmaceutical agent against the 

bacteria, E. coli and Listeria monocytogenes and the fungus Candida a/bicans, as 

well as potentially affording some protection against the HIV infection. 30 

Another P-barrel antimicrobial species, which has been successfully used as a 

topical antibacterial substance, is the cyclic peptide gramicidin S. 

1.4.3. Gramicidin S. 

The cyclic decapeptide, Gramicidin S is one of a series of peptides isolated from 

Bacillus brevis.12
•
31 

Figure 1. 5. Secondary structure of Gramicidin S. 
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Gramicidin S adopts a very stable antiparallel P-sheet conformation with four 

intermolecular hydrogen bonds (Fig. 1.5) and also shows the characteristic 

amphiphilic structure, with the segregation of polar and non polar surfaces, 

which is of prime importance for antimicrobial activity. 

Gramicidin S is thought to bind to the cell membrane surface and penetrate to 

some extent into the bilayer, before the strain which results from this process, 

leads to pore formation and rupturing of the membrane. This antimicrobial 

peptide is a very efficient, but non specific killer, which can not distinguish 

between healthy cells and bacterial organisms; it therefore exhibits significant 

haemolytic activity as well as antimicrobial activity. Gramicidin S has at present 

limited use as a pharmaceutical agent, but the peptide has shown some sensitivity 

towards the lipid composition of membranes and research is being carried out to 

enhance this characteristic in favour of bacterial activity and consequently to 

reduce its toxicity.32 

Other non selective peptides include the family defensins, which are amongst the 

most characterized of the ,8-sheet forming antimicrobial peptides. 

1.4.4. Defensins. 

This family of small cationic antimicrobial peptides, which have sequences 

between 29 to 35 amino acids in length, form part of the mammalian host 

defence system in mucosal surfaces and mammalian phagocytes. 12 They adopt a 

P-sheet conformation with 3 intermolecular disulphide bonds, giving the peptides 

stable cyclic structures. 

The 3D conformations of two closely related defensins HNP-1 and HNP-3 have 

been determined by 2D NMR and X-ray crystallography respectively; these 

peptides form amphiphilic dimers, consisting mostly of antiparallel P-sheets with 

several tight turns. Defensins have a non selective behaviour; their biocidal 

activity is not restricted to microbial targets, but acts against prokaryotic and 

eukaryotic targets alike. 33 
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They have a broad spectrum of activity and are biologically active against both 

gram-negative and positive bacteria as well as yeasts. 34 

Molecular mechanisms work along side these peptides to regulate localised 

production, storage and delivery to microbial targets and subsequent clearance 

from the cell with the help of plasma proteins, which avidly bind and mop up 

human defensins. 

1.5. Antimicrobial peptides with lltelicaD structures. 

The majority of helical antimicrobial peptides are cationic as well as amphipathic 

and posses a broad spectrum of activity. 

1.5.1 Gramicidin A. 

The P-helical antimicrobial peptide is a small linear 15 residue polypeptide with 

alternating L- and D- amino acids, which forms channels in phospholipid 

bilayers specifically for the transport of monovalent cations. 

Gramicidin A, in its most stable conformation, adopts a right handed helical 

structure which traverses the membrane as a dimer, in a head to tail fashion. The 

peptide forms ion channels by association of two monomers through 6 

intermolecular hydrogen bonds; the size of these channels has been estimated to 

a length of 3 to 4 nm and an inner diameter of 0.3-0.4 nm.57 The carbonyl 

oxygens on the polymer backbone are thought to form the ion-conducting 

pathway, as gramicidin A does not contain any polar or hydrophilic residues.' 

The high aromatic content of the peptide, 4 tryptophan residues, is thought to 

stabilise the channels by locating at the membrane interface.35 

Detailed structure-function studies on cecropins and magainins have highlighted 

the role of the helical structural motif and of appropriately positioned cationic 

residues in the activity of these peptides. 
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1.5.2 Magainins. 

This class of antimicrobial peptides (Fig.I.6) were isolated in 1987, from the 

granular gland in the skin of the African claw frog, Xenopus /aevis. Magainins, 

which have between 21 to 26 amino acid residues, have a strongly basic 

character and dissolve readily in aqueous solutions. 

These cationic peptides largely adopt right handed a-helical conformations on 

association with lipid membranes. 

Figure 16. Representation of NMR determined structure of magainin 2 in lipid 

micelles (PDB entry I DUM). 

Magainins show a broad spectrum of antimicrobial activity at low 

concentrations, in the range of 10 to 100 f..lg ml"1
, against bacteria, fungi, and 

protozoa. 36 In contrast, these peptides must be present in high concentrations, in 

excess of 1 mg ml"1 to lyse mammalian cells. Magainins are therefore selectively 

toxic towards micro-organisms and have also been shown to lyse tumour cells 

without killing healthy vertebrate cells. One explanation for this selective 

behaviour relates to the specific binding between the peptide and cholesterol 
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molecules, abundant in eukaryotic, but not in bacterial cells, which could inhibit 

formation by the peptide of the active lytic conformation. 37 

1.5.3. Cecropins. 

Cecropins are a group of very potent antimicrobial peptides, with sequence 

lengths between 35 to 39 residues, which form amphipathic helices without 

cysteines. These peptides were initially discovered in insects, in the pupae of the 

cecropia moth and then in other species, including mammals. The structure of 

cecropin A has two amphipathic helical regions connected by a flexible hinge 

region. 38 One face of the structure has basic residues along its length, whereas 

the other is much more hydrophobic. 

The activity of cecropins is very selective; they do not attack mammalian cells or 

even yeast, but show strong antibiotic activity at micromolar concentrations, 

against both gram-negative and gram-positive bacteria Cecropins interact with 

bacterial cells, through the formation of pores in the membrane bilayers; these 

carry current under a voltage gradient and allow the passage of ions. The 

diameter of the pores, 0.5 to 4 nm, suggests that at least 4 peptide monomers 

could aggregate to form a pore. Cecropins have also shown some indication that 

they could also exhibit anticancer activity.37 

Novel antibiotic polypeptides have been synthesised from cecropin-melittin 

hybrid peptides and have shown a large improvement on the antimicrobial 

activity of the native cecropin. These mixed peptides, composed of one melittin 

and one cecropin domain, adopt the helix-bend-helix conformation of cecropin.37 
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1.5.4. Melittin. 

Melittin is a cationic 26 residue toxin, isolated from the venom of Apis mellifera, 

honey bee, which adopts an extended a-helical conformation with two helical 

domains arranged in a bent configuration with hydrophobic residues located on 

the inside of the bend. The peptide C-terminal segment of 6 residues is highly 

cationic and appears to play an important role for antimicrobial activity, whereas 

the highly hydrophobic N-terminal segment of 20 residues is essential for 

insertion or partitioning of the peptide into membranes. The peptide is thought to 

interact with target membranes by aligning parallel to the normal of the bilayer 

and inserting into the glycerol region of lipid head group. 12
•
14 

Melittin has a monomeric unstructured conformation at low concentrations in 

aqueous media, but will adopt a tetrameric structure with a dimer of dimers type 

conformation in lipid bilayers.39
•
40 

1 •• 5. Alamethicin. 

Alamethicin is a member of a family of membrane active peptides of fungal 

origin, peptaibols, which have linear sequences of 1 0 to 21 residues in length. 

These peptides are characterised by an acetylated N-terminus, a high percentage 

of the "unnatural" a-amino-isobutyrate, AlB residues (Fig. I. 7), which favour the 

formation of a helical structures and a C-terminal amino alcohol instead of a 

carboxylic acid group.2°·37 

CH3 

H I 
-N-C-C0-

1 
CH3 

Figure 1 7. Structure of the a-amino-isobutyrate residue, A/B. 
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Alamethicin, with a sequence of 20 amino acids, is one of the larger members of 

this group and is known to affect the permeability of the membranes by forming 

voltage-dependent channels, even in the absence of an applied voltage. 

Alamethicin is rich in hydrophobic amino acids; it has eight a-amino-isobutric 

acid residues and adopts helical polymeric structures that self assemble in 

membranes. A proline residue at position 14 of the amino acid sequence gives 

the peptide its typical helix-bend-helix conformation.41 

The channels formed by alamethicin (Fig. 1.8) in target membranes are thought to 

be between 0.3 and 1 nm in diameter and to be composed of helical groups of up 

to 8 monomers each. 

Figure l8. Ribbon representation of the helix structure of Alamethicin 

(PDB entry Jamt) . 

Alamethicin is a toxin that exhibits very little selectivity for microbial 

membranes and consequently in its natural non modified form could only have 

limited use as a pharmacological agent. 1
•
37 

At present, several hundreds of natural antimicrobial peptides with linear and 

cyclic structures have been characterized; their interactions with natural and 

model membranes have been studied using an array of physical techniques, with 

the purpose of designing novel peptides or adapting natural peptide sequences for 

use as potential antimicrobial agents. 
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][.6. Lipid membrane composition and peptide-lipid interactions. 

The specificity of antimicrobial peptide activity towards a target cell, which is 

dependant on the complexity of the structure and composition of the membrane 

bilayer, can be enhanced by adapting the peptide structure to provide a greater 

discrimination between prokaryotic and higher eukaryotic membranes. 14
•
49

•
42 

There main differences, between the prokaryotic and eukaryotic membranes are 

in composition and arrangement of their lipids.20 

The outer leaf of mammalian cell membranes is principally composed of 

electrically neutral zwitteronic phospholipids (Fig. 1.9), phosphatidylcholines and 

sphingomyelins, whereas the inner leaf of the bilayer mostly contains 

aminophosphatides. 51 

0 
0 + II H p 

\ ~ _0-R-0~ \~ 
-N- ~ \ ~0 

I -o 
0 

Figure 19. Typical structure of a phosphatidyl choline lipid, 

dimyristoyl phosphatidyl choline, DMPC. 

Eukaryotic cell membranes are also abundant in cholesterols which could afford 

some protection from antimicrobial activity, as they affect the ordering and 

packing and hence the physical state of the bilayer.43
•
44 

The structure and composition of the cell envelope differs considerably in gram­

negative and gram-positive bacteria, though both bacterial strains have 

negatively charged membranes. 
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Gram-negative bacteria have a very distinctive and highly asymmetrical outer 

membrane structure with an outer surface composed of negatively charged 

lipopolysaccharides, LPS and an inner surface, similar in composition to gram 

positive membranes and consisting mainly (70 to 80 %) of unsaturated 

phosphatidyl ethanolamine and to a lesser extent (20 to 30 %) of negatively 

charged phosphatidyl glycerol (Fig.I.IO) and cardiolipin.45 

0 

Figure II 0. Typical structure of a phosphatidyl glycerol lipid 

The teichoic acid molecules interwoven into the fabric of the gram-positive cell 

wall contribute, along with the phosphatidyl glycerol lipids, towards the 

negatively charged surface of this strain of bacteria. 

Synthetic lipid bilayers have been developed to mimic microbial and eukaryotic 

cell membranes. A range of phosphatidyl choline molecules with different 

characteristics, saturated, mono and polyunsaturated lipids with different chain 

lengths, have been used as models for mammalian blood cell membranes, as they 

are abundant in the outer leaf of the outer membrane of eukaryotic cells. 35 

The unsaturated phospholipids, dioleoyl phosphatidylcholine, DOPC and 

negatively charged, dioleoyl phosphatidylglycerol, DOPG are commonly used as 

models for the negatively charged cytoplasmic membranes of bacteria. 

The physical state of the lipid bilayer is also an important factor for peptide-lipid 

interactions and for bilayer integrity. 
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Lipids, at a given temperature, will undergo a phase transition (Fig. I.ll) from an 

ordered gel state, in which the lipid monomers are closely packed to a less 

ordered liquid crystalline state. 

·r 
Ill 

Gel-ordered state Liquid crystalline state 

Figure 111. Representation of lipid phase transition from gel to fluid state. 

The temperature, Tm, at which this happens depends on the composition of the 

lipid, the length and the degree of saturation of the carbon chains (Table !.2.) as 

well as the size of the lipid head group.46
•
47 

The unsaturated phosphatidylcholine lipids are in the fluid state below room 

temperature with transition temperatures that decrease considerably depending 

on the degree of saturation and chain length of the lipid, whereas the fully 

saturated lipids have transition temperatures that increase significantly with chain 

length; the commonly used DMPC and DPPC with chain lengths of 14 and 16 

carbons respectively, have transition temperatures of23 °C and 41 °C. 
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The unsaturated phosphatidyl ethanolamine molecules, found largely in bacterial 

cell membranes, have an unsubstituted quaternary ammonium group and a much 

smaller head groups than the bulky phosphatidylcholine molecules; these 

phosphatidyl ethanolamine lipids display much higher values of Tm, around 

20 °C higher than their phosphatidylcholine counter parts. 46 

Chain length 

Lipid molecules Abbreviation and Tm ('C) 

saturation 

Dimyristoyl phosphatidylcholine DMPC (14:0, 14:0) 23 

Dipalmitoyl phosphatidylcholine DPPC (16:0, 16:0) 41 

Distearoyl phosphatidylcholine DSPC (18:0, 18:0) 54 

Palmitoyl-oleoyl POPC (16:0, 18:1) -7 

phosphatidylcholine 

Dioleoyl phosphatidylcholine DOPC (18:1, 18:1) -20 

Dipalmitoyl phosphatidyl DPPE (16:0, 16:0) 63 

ethanolamine 

Palmitoyl-oleoyl phosphatidyl POPE (16:1, 18:1) 23 

ethanolamine (Trans) 

Table l2. Transition temperatures of different phosphatidylcholine and 

phosphatidyl ethanolamine molecules. 47 

The intrinsic curvature of the membrane is also thought to have an influence on 

antimicrobial activity, with highly curved membrane structures being implicated 

in a number of antimicrobial peptide pore forming mechanisms; the peptides 

themselves on interacting with the membrane, will cause strain on the bilayer, 

which can in tum be counteracted by the curvature of the target membrane.48
•
51 
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Molecules with large polar headgroups like phosphatidyl choline tend to adopt 

structures with positive curvatures, whereas molecules with smaller headgroups, 

like the phosphatidyl ethanolamines found predominately in bacterial 

membranes, preferentially adopt structures with negative curvature (Fig. I.l2). 

Curvature, as well as the charge and physical state of a membrane bilayer, could 

also therefore have a significant role in antibacterial activity. 

a b c 

Figure 112. (a) shows a typical monolayer structure; (b) and (c) show 

respectively positive curvature and negative curvature strain on a membrane 

produced by lipids with bulky (b) and small (c) headgroups. 

I. 7. Antimicrobial activity and mode of action. 

The mechanism behind antimicrobial peptide activity and the rapidity with which 

these peptides can strike a target cell are two factors that make bacterial 

resistance against antimicrobial peptides much less likely. Rapid disruption to the 

cell membrane is a very effective attack against a target cell, as the cell can not 

protect itself against such an unspecific and rapid onslaught. Although the 

molecular mechanism behind this peptide induced cell lysis is still not fully 

understood, several methods have been proposed to explain the activities of a 

range of antimicrobial peptides; these include formation of pores, which would 

span the entire membrane bilayer, detergent like activity towards the membrane 

and creation of defects in the membrane induced by a peptide lying parallel to the 

membrane and covering its surface, in a carpet fashion.49
•
50

•
51

•
52 
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Peptides, with very different sequences and structures, may still follow the same 

mechanism of pore formation or membrane disruption. On the other hand 

peptides with very similar structures and only slight differences in 

hydrophobicity or in the relative size of their hydrophobic domains may display 

very different activities.45 

The relationship between structure and activity has been investigated through 

numerous studies using a whole range of physical techniques including 

calorimetric, spectroscopic, microscopic and diffraction studies. Several common 

antimicrobial peptide structural features have been identified as having a major 

role in antimicrobial activity and to influence the way in which a peptide will 

interact with a cell membrane. 36 

A high degree of hydrophobicity is clearly a requirement for peptide-lipid 

interactions and although peptides can achieve a hydrophobic compatible 

conformation by forming characteristic structures, such as a-helical and P-barrel 

motifs, the primary sequence of the antibacterial peptide must contain a large 

number of hydrophobic residues for rapid peptide partitioning into membranes. 

The fine tuning of peptide hydrophobicity, through the choice of amino acid 

residues in the peptide sequence, has been observed to have a strong affect on the 

peptide antimicrobial activity; increasing or decreasing the hydrophobicity of a 

peptide by changing amino acid residues has lead to peptide activity becoming 

more selective. 53 

The overall charge of an antimicrobial peptide is another important factor for 

selective binding to anionic bacterial membranes (Fig. 1.13).51 
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Strong basic residues, such as argmme or lysine are important for peptide 

interactions with negatively charged head groups at the surface of bacterial 

membranes, as they are involved in an initial electrostatic attraction to the 

anionic bilayer. 

a-helical peptide 

Lipid bilayer 

Figure 113. Schematic representation of cationic peptide attraction to negatively 

membrane surface. 

Cationic peptides, such as the magamm family of peptides, only become 

biologically active on binding to negatively charged groups on the surface of 

bacterial membranes; some cationic peptides need this electrostatic attraction to 

interact with a membrane because they have such a low degree of hydrophobicity 

that they can not interact in sufficiently high concentrations with a neutral 

zwitteronic membrane to become active. 1 

This attraction serves to increase the local peptide concentration at the membrane 

surface, but the actual disruption of membranes depends on the hydrophobic 

interactions of peptide with lipid regardless of whether the membrane is neutral 

or ionic. Other cationic peptides like the toxin melittin are already highly 

hydrophobic and are therefore non-selective in their behaviour towards 

membranes. 
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Once the peptide monomers interact with the membrane surface in high enough 

concentrations, they will aggregate and penetrate to form anion selective pores . 

. -.'\• '()~ ·. f'( )(i."'("l ~ ·, 
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Figure 114. Model for peptide interaction with the membrane surface. 

The pores structures formed in this manner are thought to be unstable causing the 

peptides to translocate in to the membrane bilayer, disrupting its integrity even 

further. 

' ' 

Figure 115. Representation of a peptide transmembrane channel. 
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The amino acid side chains in the peptide sequence also play a significant role in 

the orientation of a peptide in the membrane. The charged and the polar groups 

prefer to be located on the outside of the membrane, exposed to the aqueous 

medium where they can interact with charged lipid head groups; the positively 

charged residues will favour the cytoplasmic surface of the membrane more than 

the negatively charged residues. The aromatic residues have a preference for the 

lipid carbonyl portion of the bilayer and are thought to help anchor the peptide to 

the membrane. 54
•
55 The hydrophobic aliphatic side chains favour the lipid 

hydrocarbon chains and therefore, any hydrophobic residues exposed to the 

aqueous medium, will provide a driving force for peptide insertion into the 

membrane (Fig. !.16). 56 

These preferences promote amphipathicity, a partitioning of the peptide structure 

into distinct regions: a hydrophilic side facing the aqueous environment either at 

the membrane surface or inside the transmembrane channels and a hydrophobic 

surface facing the acyl chains of the membrane bilayer. 

This partitioning is the mechanism behind pore formation; the peptide monomers 

assemble into large oligomeric structures with their hydrophilic faces oriented 

towards each other, thus creating a hydrophilic water filled pore excluded from 

the hydrophobic surrounding media that allows the passage ofions.37
•
57 

Lipid bilayer 

Figure 1 16. Representation of peptide aggregation and pore formation in the 

lipid bilayer. 
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This is very similar to the mechanism proposed for the activity of P-sheet type 

antimicrobial peptides such as a-hemolysin, in which monomer peptides are 

thought to aggregate on the lipid bilayer, to form oligomeric structures with 3 

distinct regions: a hydrophobic domain inserted into the lipid environment, a rim 

or hinge region in contact with the surface and a hydrophilic domain protruding 

from the bilayer. 27 

The insertion of peptide monomers and polymeric structures into target 

membranes, may induce positive curvature strain in the lipid bilayer by 

expanding the polar head group region and causing irreversible membrane 

disruption. 51 This peptide induced positive curvature strain, would to some extent 

depend on the properties of the target membrane as a membrane with intrinsic 

negative curvature could reduce this effect. 

The stress created in the bilayer by peptides lying parallel to the membrane 

surface in a so called "carpet mechanism" is also the disruptive force behind 

membrane dissolution into micellar structures at critical peptide concentrations.45 

Another constraint that antimicrobial peptides may face, on inserting into a lipid 

membrane, is the hydrophobic mismatch between the length of the membrane 

spanning segments of the protein (Fig. !.17) and the hydrophobic thickness of the 

bilayer. Lipids can modulate the activity of membrane proteins by changing their 

hydrophobic thickness. In the case of a positive mismatch, a protein can be 

induced to form an oligomeric complex to shield any exposed groups from the 

polar environment. The protein backbone and the side chains could also be 

induced to tilt away from the bilayer normal, which would effectively reduce the 

protein length. 56 

A negative mismatch is overcome by peptides like gramicidin A through 

formation of extended structures and by translocation mechanisms; for example 

by formation of a head to head helical dimer. 58
•
57 Protein stretching and 

disordering of the alkyl chains have also been observed with some proteins 

facing a negative mismatch. 56 
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The inside of the helical coil formed by gramicidin A constitutes a polar 

environment through which metabolites can either enter or leak from the cell . 

Figure 11 7. Representation of channel formation by gramicidin A. 

1.7.1 Effect of structure on activity. 

Antimicrobial activity may be induced by a conformational change in the peptide 

structure; peptide monomers may have a non active conformation, such as a 

random coil or even an a-helical structure, which changes to an active structure 

on binding to a target membrane. 38 This change in conformation, which actives 

the antibacterial peptide, could be triggered by a range of different conditions, 

such as an increase in local concentration of the peptide; by a change in pH of the 

surrounding medium, interaction of the peptide with an acidic membrane or by a 

change in salt concentration. 59
•
60

•
61 

A structural design that has important effects on antibacterial activity is whether 

the peptide has a linear or cyclic structure. Cyclic antimicrobial peptides adopt 

mainly amphipathic P-sheet structures and have a higher affinity for antibiotic 

activity than their linear counterparts. 
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Cyclic structures can be achieved through (Fig. 1.18) disulphide bridge formation 

or through backbone cyclisation. 62 

a b 

Figure 118. Schematic representation of cyclic P-sheet peptides with (a) and 

without (b) a disulphide bridge. 

The disulphide cross-links in the cyclic peptides create structural constraints that 

impart a high degree of stability to these structures and help preform the active P­
structure, in both aqueous medium and phospholipid membranes. The cyclic 

structure gives greater conformational rigidity to the peptide than the linear 

structure as the peptide can form intramolecular hydrogen bonds as well as inter 

peptide P-sheets through the aggregation of monomers. The ring size of a cyclic 

peptide may also have a significant effect on the antibiotic activity, with larger 

rings showing broader activity than smaller rings. 63
•
64 
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Figure 119. Cyclic peptides stacking as a continuous P-sheet. 
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The cyclic monomer peptides can associate in a target membrane by stacking to 

form a contiguous P-sheet or tubule structure with partitioning of the 

hydrophobic groups towards the inside of the tubule structure. The backbone 

hydrogen· bonding between the monomer rings gives a major stabilising force to 

the oligomeric structure in the membrane. 

Antibacterial activity is affected by such a large range of factors, that the design 

of simple model systems to study the behaviour of antibacterial peptides with 

target membranes, would be invaluable towards gaining a thorough 

understanding of the relationship between structure and antibacterial activity. 

Well behaved P-barrel forming peptide systems are very important as these 

peptides are difficult to manipulate and tend to aggregate readily. The P-barrel 

conformation is also the most commonly encountered conformation in 

prokaryotic outer membrane proteins which are important targets for drug uptake 

into the cell. 65
•
66 

Synthetic model antibacterial peptides could also incorporate some protection 

against digestion by proteases, by using chemically modified or non natural 

amino acids, such asP-amino acids.67
•
68

•
69 
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Chapter II 

ll.l. The design and preparation of model amphiphillic cyclic 

peptides. 

III.l.l. Design of a pore forming peptide template. 

The development of synthetic peptide chemistry has lead to major advances in 

peptide structural analysis, providing an invaluable tool for studying the 

relationship between peptide structure and biological activity. A clearer 

understanding of this relationship has enabled the production of more active and 

less toxic pharmaceutical agents. 1 

A class of synthetic cyclic P-sheet type peptides was designed with the potential 

to mimic antibacterial activity by forming stable transmembrane pores in lipid 

bilayers. 2 The design was chosen following a bioinformatics exercise performed 

using non-homologous P-barrel membrane proteins from the protein data bank. 

A sequence analysis was carried out on regular P-hairpins with similar structures 

and an analysis of amino acid preference for certain positions of the hairpins was 

performed; four residues: three tyrosine and a leucine residue were found to be 

highly conserved and were subsequently used in the design of the cyclic 

amphiphilic peptides. The sequence of the P-turns was also selected following 

this strategy which provided the asparagine-glycine-asparagine tripeptide turn for 

all our cyclic peptides. 

The remaining residues were chosen so as to give the peptide an overall 

amphipathic structure, which would favour peptide insertion into a lipidic 

environment. 

The cyclic peptide template was designed with a symmetrical sequence in order 

to simplify both the synthesis process and the subsequent study of peptide 

interactions with lipid membranes, as direction of insertion would then not be an 

tssue. 
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The final template sequence contained 34 residues with alternating polar and non 

polar residues, creating an amphipathic partitioning of the amino acid side chains 

with all the polar residues situated along one face of the peptide. 

Figure 111.1 Cyclic peptide template. 

The alternating polar residues were all identical, senne residues and the 

hydrophobic residues contained eight P-branched residues, six valine and two 

leucine residues, which are thought to promote p-type conformations in 

peptides.4 

A series of analogous peptides (Table II.l.l) were synthesised using the design 

of the template and only exchanging opposing pairs of tyrosine residues on either 

side of the template by pairs of tryptophan, cysteines or lysine residues. A pair of 

appropriately placed cysteine residues can give extra stability to the peptide 

structure by formation of a disulphide bridge and lysine residues can reduce the 

tendency of a peptide to aggregate, thereby increasing the ease with which the 

peptides can be manipulated and subsequently analysed. 
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Synthetic arnphiphilic peptide structures and names: 

1 

cyclo-Asn-Gly-Asn-Vai-Ser-Leu-Ser-Val-Ser-Tyr-Ser-Tyr-Ser-Val-Ser-Tyr-Ser­
Asn-Gly-Asn-Vai-Ser-Leu-Ser-Val-Ser-Tyr-Ser-Tyr-Ser-Val-Ser-Tyr-Ser 

2 

.-~1~ Iy~y\~~.9;-~~~%~;rc;~~~i;;1 
0 !H 0 ' OH ' OH ' OH '-OH 0 ' OH ' OH 0 ' OH 0 0~ 

~:~~~~~~?-~~~~'!: ~{~\~:;\~{~![~{lr~'ri)"' 
NH; H 1 ~ ~ 0 

~ HO 

cyclo-Asn-Giy-Asn-Vai-Ser-Leu-Ser-Vai-Ser-Tyr-Ser-Tyr-Ser-Val-Ser-Trp-Ser­
Asn-Gly-Asn-Vai-Ser-Leu-Ser-V al-Ser-Tyr-Ser-Tyr-Ser-Vai-Ser-Trp-Ser 

3 

0 l 0 )- 0 fr 0 P: ;:;: y 0 ~~ "~ : 

H,N II '1 ll ~ J(~0~-'lr~0~ ~0~~~0~~~'('~- 1~0~-)-~'(-~ . 1J N 
0 I 0 

' OH 0 ' OH ' Ott ' OH ' OH ' OH ' OH 
0 l 

~ 01 

r~ 0 

I ~~~~~t~~i{r~i!_!)-~{~~~~t,_~{uJ l ~I~ i '"' 
N~ / Pfl ~ 

H,N 

cyclo-Asn-Giy-Asn-Val-Ser-Leu-Ser-Val-Ser-Tyr-Ser-Tyr-Ser-Val-Ser-Lys-Ser­
Asn-Gly-Asn-V al-Ser-Leu-Ser-Vai-Ser-Tyr-Ser-Tyr-Ser-Val-Ser-Lys-Ser 

4 

"'" ~l ~~~-¢~~~~;~~~~~;r ~~~~~7:;~ g I 1r 'OH o ' oH o ' OH o ' OH ' OHr)' ' oH o 'OH o 
~ 0 

t~~ ~~ij!' ~: ~t~~~\~{u,)~t~~~~t,_~{l; ~! (I"' 
N~ ~b 0 ~ 

HO 

cyclo-Asn-Giy-Asn-V ai-Ser-Leu-Ser-V ai-Ser-Cys-Ser-Tyr-Ser-Vai-Ser-Tyr-Ser­
Asn-Gly-Asn-Val-Ser-Leu-Ser-Val-Ser-Cys-Ser-Tyr-Ser-Val-Ser-Tyr-Ser 

Table Ill. I. Series of amphiphilic cyclic peptides synthesised. 

Ref. code 

6Y01 

2W4Y02 

2K4Y03 

2C4Y04 
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11.1.2. Peptide synthesis and purification. 

11.1.2.1. Peptide synthesis. 

The cyclic peptides were synthesised m parallel following the solid phase 

strategy originally developed by Merrifield from 1959 to 1963.3 The synthesis 

was carried out in a fully automated procedure using a programmable peptide 

synthesiser in which the peptide chain was assembled in a step wise process. 

The first amino acid, an a-allyl ester and Fmoc (9-Fluorenylmethoxycarbonyl) a­

amino protected aspartic acid residue was attached to the solid support through 

its side chain and each subsequent residue was added to the growing chain, in a 

head to tail fashion or C to N terminal direction. 

The coupling of the first amino acid was repeated to ensure maximum attachment 

to the resin, as the degree of amino acid anchorage would effect the subsequent 

peptide yield. All amino acids were used in a 5 fold molar excess to again ensure 

a high degree of peptide coupling. 

Figure 111.2. Aspartic acid residue with a-allyl ester 

and Fmoc a-amino protecting groups 

Fmoc chemistry was used to protect the a-amino end of the peptide as it can 

easily be removed under mild basic conditions such as a 20 % by volume 

solution of piperidine in dimethylformamide, DMF at room temperature; 
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these conditions are completely orthogonal to the acidic conditions required for 

the side chain deprotection of tert-butyl and Boc groups as well as the cleavage 

of the peptide chain from the solid support.4
•
5
•
6 

The support used in the peptide synthesis was a modified rink amide resin, 

compatible with Fmoc chemistry, which transfers an amine group to the aspartic 

acid residue attached to the resin during the cleavage process, transforming this 

group into an asparagine residue which forms part of the P-tum in the fmal 

peptide. 

MeO 

Figure Ill. 3. Solid support (tentage/) rink amide resin 

Pseudoproline dipeptides: 5 tyrosine-serine, leucine-serine, tryptophan-serine and 

valine-serine were used to minimize any problems associated with peptide 

aggregation, branching instead of linear synthesis and incomplete coupling. The 

use of dipeptides also reduces considerably the length of the synthesis. 

The serine residue is regenerated from the oxazolidine by trifluoroacetic acid 

deprotection. 

0 

N~ 
HOOC)-1 

Figure !11.4. The Fmoc protected Pseudopro/ine dipeptide Tyrosine(tBu)­

Serine. 
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11.1.2.3. Cyclisation. 

The peptide was cyclised in situ while still attached to the solid support, 

following removal of the a-allyl ester protection to regenerate the a-carboxylic 

group of the first amino acid residue. The a-allyl ester can be removed 

selectively in presence of the Fmoc, Boc and t-butyl-based protection groups, 

with a palladium( D) catalyst, such as Pd (Ph3P)4_1·8 

The peptide was then cyclised by coupling the deprotected a-carboxy group of 

the first amino acid with the deprotected a-amino group of the last amino acid in 

the peptide chain. 

H.1.2.4. Cleavage. 

Side chain deprotection of the Boc and t-butyl-based groups as well as 

regeneration of the serine residues from the oxazolidine are carried out during the 

cleavage of the finished cyclic peptide from the solid support. 

The deprotection and cleavage reactions require a highly acidic solution, 95 % 

TF A, with a range of scavengers to neutralise any reactive cationic species 

generated from the break down of protecting groups such as from the tert-butyl 

groups and the rink amide linkers. Scavengers such as water and 1 ,2-

ethanedithiol {EDT) can provide protection, to electron rich tyrosine and cysteine 

residues, from modification by reactive cations. Trialkylsilanes are also used as 

non-odorous substitutes for EDT and are efficient against stabilized cations 

produced from the rink amide linkers. 

11.1.2.5. Purification. 

The crude peptide was purified by Reverse Phase High Performance Liquid 

Chromatography, RP-HPLC. 

The peptide was dissolved in hexafluoroisopropanol, HFIP and loaded on to a 

pre equilibrated analytical C8 column; the peptide was eluted from the column in 
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a solvent system containing a high proportion of fluorinated alcohols, TFE and 

HFIP. This system was necessary to contend with the highly hydrophobic 

character of the cyclic peptides as they show a very low degree of solubility in 

most common solvents with the exception of fluorinated alcohols. 

The solvent system and running conditions had to be optimised extensively 

because of difficulties with the peptides interacting or "sticking" to the 

hydrophobic stationary phase of the column, as the peptide would flow straight 

through the column. Peptide affinity for different stationary phases was tested by 

using columns with different packing such as C 18 or a diphenyl packing, but the 

peptides did not appeared to adhere to these columns over the range of conditions 

tried. The addition of a small amount of water to the solvent system helped 

increase the amphiphilic cyclic peptide affinity for the analytical C8 column. 

The wavelength selected for monitoring sample elution from the column was 274 

nm as this showed the aromatic side chain absorption from the tyrosine and 

tryptophan residues with minimal interference from both amide and solvent 

absorption. 

1.2 

1 

c 0.8 
0 

~ 0 0.6 
! 
c( 0.4 

0.2 

195 215 235 255 275 295 

Wavelength (nm) 

Figure /11.5. UV absorption of the purified cyclic 6YOJ peptide in TFE. 
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A range of solvent combinations, gradients and flow rates were tried in order to 

maximum peak separation and hence peptide separation and purification from 

other components and by products. The solvent system, which produced the best 

result was a multi solvent system composed of the fluorinated alcohols in which 

the peptides are readily soluble, HFIP and TFE in a 1:9 (v/v) ratio, acetonitrile 

with 0.1 % TF A and a small amount of water (1 0 % v/v) which gave a much 

better peak separation. 

The eluate, corresponding to the area under each peak produced, was carefully 

collected for analysis. 

0.8 2 

a-·; 
3 c s 0.55 c 

.... 
0 

! 
c 0.3 ::I 

~ 
J! :e 
c( 0.05 

6 8 10 12 14 
RetentionTime (nm) 

Figure 111.6. HPLC profile for the cyclic peptide 2K4Y03. 

The analogous amphiphilic cyclic peptides eluted from the column with different 

retention times, which appeared to reflect the hydrophobic character of the 

peptides, with the more hydrophobic of the series interacting with the column 

over a longer period of time; the peptides, which had no charged residues, such 

as the peptides with six tyrosine residues (6Y01) or four tyrosine and two 

tryptophan residues (2W4Y02) eluted from the column much later, at 12.6 

minutes, than the peptide with two lysine and four tyrosine residues (2K4Y03) 

which eluted from the column at only 7.6 minutes. 
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11.1.3. Determination of peptide concentration. 

Peptide concentration was calculated following UV titrations; set volumes of 

peptide in trifluoroethanol were added by increments to a sample cell and the UV 

absorption, which was measured for each increase in peptide volume, was then 

plotted (after taking into account corrections for the change in TFE volume) 

against the change in the volume of peptide solution. 

1.5 

R2 = 0.9969 

! 1 
cc 

I 8 0.5 

0+-~~~~~~~~~~~~~~~~~~~ 

0 20 40 60 80 100 120 

Added Volume of peptide (!JI) 

Figure Ill. 7. Plot ofthe corrected absorption against the volume 

of peptide solution added to the cell. 

A plot which produced a straight line would then validate the direct relationship 

between increase in peptide volume and the corrected absorption for a given 

peptide concentration and could subsequently be used with the Beer Lambert law 

to calculate peptide concentration: 

C = Acorri(E*L) and Acorr = A*(Vo+V)No 

Where C is the cone. of the peptide in solution; A is the peptide absorption at a 

given wavelength; Aco" is the corrected absorption after taking into account the 

change in volume of solution in the cuvette; L is the path length (L= 1 em); B is 

the extinction coefficient of the peptide at a given wavelength and is calculated 

by summing up the number of residues in the peptide that absorb at that given 

wavelength; Vo is the initial volume (in p,l) of solution in the sample cuvette and 

Vis the added volume of peptide solution (in p,l). 9 
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11.1.4. Peptide analysis. 

Mass analysis of the peptide proved to be a difficult as well as a lengthy process 

because of both the low solubility in most solvents and the lack of ionisation 

shown by the cyclic hydrophobic peptides. 10 

The purified peptides were initially processed for mass spectral analysis by 

positive mode electrospray ionisation (ESil mass spectrometry, which is a 

widely used atmospheric pressure ionisation technique for mass measurements of 

proteins and peptides. 11 

Briefly a sample dissolved in a volatile solvent is injected into a capillary; a high 

voltage (3-4 kV) is applied to the tip of the capillary creating a strong electric 

field, which disperses the sample emerging from the capillary into an aerosol of 

highly charged droplets. A gas, usually nitrogen flowing along the out side of the 

capillary tube directs the sample spray towards the mass analyser. A stream of 

warm nitrogen gas helps evaporate the solvents molecules from the sample ions; 

some of which will then pass through the sampling cone and aperture into the 

analyser, where they are separated according to their mass-to-charge (m/z) ratios. 

A detector amplifies the ion current and sends the signal to a data system, which 

out puts the data as spectra of the ion mlz values plotted against their intensities, 

from which the number components, the molecular weight and the relative 

abundance of each component can be obtained. 

Electrospray analysis can be quite difficult to interpret as peptides with 

molecular weights greater than 1 kDa may give rise to multiple charged 

molecular related ions such as (M+nHt, which produce a whole series of ions 

each differing by a single charge from its neighbours: 12
•
13 

mlz =M+nH+ 

n 

Where mlz are measured mass to charge ratios; n is the integer number of 

charges on the ion, IT is the mass of a proton and M is the molecular ion. 
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The ion may also form adducts with several different cations and compounds 

such as TF A, which is included in low concentrations to help the ionisation 

process; the combinations of nNa+ ions and nK + ions as well as any other 

adducts can be quite daunting to interpret. Fragmentation of sample ions also 

occurs, resulting in very complex and difficult spectra. Further more plasticizers 

frequently leach from sample vial lids and eppendorf tubes, contaminating the 

sample solution and producing strong signals, which mask the sample signal. 

Positive electrospray ionisation, performed on the amphiphilic cyclic peptide 

(6Y01), produced a weak, but consistent signal showing a series of multi charged 

ions from 5 Na+ to 9 Na+ ions giving the correct mass (3590 g mor1
) for the 

peptide. 

The sampling cone voltage ( 40 to 1 00 V) can also be optimised for each sample, 

but a balance has to be maintained between low voltage with the lower energy 

producing less fragmentation in the sample and an increase in voltage with the 

higher energy enhancing protonation and hence producing a stronger signal. 

Changing the cone voltage did not enhance the signal for the cyclic peptide, but 

increased the extent of fragmentation. 

Calibration and test measurements were carried out usmg a commercially 

available cyclic peptide, Valinomycin, which is less hydrophobic than the 

template cyclic peptides. 16 

Analysis of very hydrophobic peptides is difficult due to their very low solubility 

in solvents other than fluorinated alcohols, like TFE and especially HFIP. The 

fluoride ion was initially suspected of interfering with the ionisation and 

detection process of the mass spectrometer; therefore to eliminate this possibility, 

a soluble protein, human serum albumin (HSA) was dissolved in both methanol 

and HFIP before being submitted for electrospray analysis; the spectra of both 

samples gave comparable results. 
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11.1.4.1. Solvent carrier system. 

The choice of mass spectroscopy solvent carrier systems was also given a great 

deal of consideration. 11
'
14 The polar solvent systems, methanol, acetonitrile and 

water, routinely used in the process are not suitable for very hydrophobic 

peptides, as these tend to aggregate and precipitate out of solution. 

The solvent system had to be adapted to suit the hydrophobic character of the 

cyclic peptides; a range of solvents in various ratios, such as TFE, HFIP, 

chloroform and the addition of different concentrations of formic acid and TF A, 

were examined for compatibility as carrier solutions. Systems with a high 

proportion of HFIP produced better signals, although the less noxious solvent 

TFE was generally preferred 

11.1.4.2. Derivatives. 

Several other solutions were proposed for addressing the problem of low 

solubility, such as derivatisation of the peptides with a quaternary ammonium ion 

(Figure II.l.8), and although the modified peptides were readily soluble in 

aqueous solvents, they gave complex mass spectrum signals with extensive 

fragmentation, which could not be interpreted unambiguously. 15 

1- + ~ 
(CH3)3N~~I 

N 
H 

Figure Ill. 8. The quaternary ammonium ion, 

[2 -(acetyl amino )ethyl] trimethylammonium iodide. 
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11.1.4.3. Detergents 

The efficiency of low concentrations of detergents, such as sodium dodecyl 

sulphate (SDS), Triton X-100 and 3-(3-cholamidopropyl)dimethylammonio-2-

hydroxy-1-propanesulphide (CHAPS) in solubilising the cyclic hydrophobic 

peptides was examined using a range of detergent concentrations, from 0.3 %to 

1 % (w/v) and of solvents, including water, methanol, ethanol and fluorinated 

solvents, but all the detergent solutions were found to interfere quite severely 

with the ion formation in ESt mass spectrometry. Although another widely used 

mass spectrometry technique, Matrix-Assisted Laser Desorption Ionisation 

(MALDI), is more tolerant of the presence of detergents and electrolytes in 

sample solutions,12
•
16

•
17

•
18

•
19

•
20 no signal was produced for the cyclic peptide in 

detergent solutions by either mass spectral techniques used, ESMS or MALDI 

MS. 

1[,1.4.4. Matrix-Assisted Laser Desorption Ionisation (MALDI). 

MALDI mass spectroscopy has proven to be a very efficient tool for analysing 

hydrophobic peptides and proteins and has scope and versatility for optimisation 

of sample preparation methods?1
•
22

,2
3

'
24 A sample is pre-mixed with a low 

molecular weight, UV absorbing matrix before being bombarded with a pulsed 

laser beam CN2: A. 337 nm) to induce sample ionisation. The matrix, which is in 

vast excess effectively transforms the laser light into excitation energy to ionise 

the sample, as direct ionisation would cause the sample to fragment or 

decompose. 
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Ions from both the sample and matrix molecules are sputtered from the surface of 

the mixture (Fig. II.l .9) and accelerated with the same electrical potential 

difference (in a stationary electric field) towards a detector. Ions allowed to drift 

in the electric field, separate according to their mass-to-charge ratio with lighter 

ions drifting more quickly than heavier ions. 

Ionisation 

Energy tr <msfer from nMJtix 
to s.llllJ)Ie 

) 

Figure 111.9. Diagram showing the ionisation process in MALDI MS. 

The time of flight taken for a molecule of mass, m and charge, z to drift towards 

the detector is proportional to the square root of the mass of the ion: too (rn/z) 112
; 

hence the signal output can be converted to a typical mass spectrum of mass-to­

charge ratio versus intensity. 

An extensive range of matrices is available for use with a whole range of 

molecules; Sinapinic acid; 2-(4-hydroxy-phenylazo)-benzoic acid (HABA); a­

cyano-4-hydroxycinnamic acid, (aCHCA) and 2,5-dihydroxybenzoic acid (DHB) 

matrices are in general suitable for use with peptides and proteins, but their 

effectiveness depends on the individual characteristics of the sample to be 

analysed. A range of conditions, matrices, peptide-matrix ratios and solvents 

were examined for the cyclic hydrophobic peptide mass measurements by 

MALD I mass spectroscopy 

The best results were obtained with the HABA matrix and to a lesser extent with 

the sinapinic acid matrix. 
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Both the peptide and the matrix had to be dissolved in HFIP with 0.1 % TF A, 

before premixing and spotting onto the MALDI sample plate to dry.25 When 

either the sample or the matrix were dissolved in any of the other solvents tried, 

including TFE, the signal was broader and of a much lower intensity. As the ratio 

of matrix to protein can also severely affect the signal resolution, a range of 

ratios were investigated for both HABA and sinapinic acid matrices with the 

hydrophobic samples; a range of molecular ratio from 1: 140 to 1: 14,000 were 

tested; the best results were obtained for matrix to peptide molecular ratios from 

1:1400 to 1:3000. 

The MALDI spectra of the cyclic amphiphilic peptides showed peaks with the 

correct mass for the linear versions of the peptides with allyl ester protection 

group still attached. The same increase in mass was observed for all analogue 

peptides in the series; peptides 2W4Y02 and 2K4Y03 for which two of the 

original tyrosine (Y) groups had been replaced by two tryptophan (W) and two 

lysine (K) groups respectively. 
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Figure 111.10. MALDI mass spectrum of the 6Y01 peptide with a major peak 

corresponding to the linear peptide with allyl ester protection group and a minor 

peak showingfragmentation of the peptide with loss of the .final dipeptide, 

valine-serine. 
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The synthesis process for the peptides was re-examined and the reactivity of the 

catalyst was found to be at fault; a fresh batch of catalyst was synthesised and 

particular care was taken in storing the compound, to prolong its shelf life?6 

Following allyl ester deprotection and cyclisation, performed with fresh reagents, 

MALDI MS gave the correct mass for the cyclic 2K4Y03 peptide, but only 

produced a board and low intensity signal for the more hydrophobic peptides. 

The 2K4Y03 peptide with the two charged lysine residues was more soluble and 

behaved better in solution than its more hydrophobic analogues?7
•
28

•
29 

o --!Willi~~~lllllliiiiiiiiiiiiiWI.A••-
2000 2500 3000 3500 4000 

Mass (m/z) 

Figure 111.11. MALDI mass spectrum showing a major peak for the 2K 4 Y03 

cyclic hydrophobic peptide (Mr: 3520) and a minor peak indicative of peptide 

fragmentation with loss of the final dipeptide valine-serine. 

Analysis by MALDI mass spectroscopy of the amphiphilic cyclic peptides needs 

to be further optimised, especially for the more hydrophobic cyclic peptides by 

exploring other solvent mixtures including the use of high concentrations of 
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formic acid (70 % ), which has given good results with integral membrane 

proteins?5 

A wider range of matrix to protein ratios could also be tried as well as other 

methods such as the use of a temperature leap system in which the sample and 

matrix are maintained at 4 °C overnight and then heated to 3 7 °C for an hour 

before analysis. This method has been quite successful for keeping hydrophobic 

proteins in solution and producing well resolved spectra. 30 
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H.2 The analysis of amplniphilic cyclic peptide interactions with 
phospholipid membranes. 

A range of analytical techniques including spectroscopy, calorimetry and 

microscopy were employed in order to gain comprehensive structural 

information on the amphiphilic cyclic peptides as well as some understanding of 

their interactions and behaviour in different environments, aqueous and lipidic. 

U.2.1. Circunar dichroism spectroscopy. 

11.2.1 1. Introduction to the technique. 

Circular dichroism (CD) spectroscopy has become a well established and very 

useful tool in protein and peptide structural studies, providing qualitative 

information about peptide and protein secondary structure and the structural 

relationship with the immediate environment. A signal is produced in circular 

dichroism spectroscopy from the difference in absorption, A, of a molecule 

between left and right circularly polarized light: CD = I!J.A = (At - Ar). 

left Ri')ht Un01ienteol 
pol.ltized pol.ltized chit.ll 

li')ht li')ht molecule + 

CD= [00-00]+® ~ 
w.welen•jth 

Figure 112.1. Diagram showing the generation of a CD spectrum. 
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Light, as electromagnetic radiation has two components, an electric and a 

magnetic field that oscillate at right angles to each other and to the direction of 

propagation of the radiation. When a beam of light is circularly polarized, the 

electric field component traces out a helix along the axis of propagation of the 

beam. 

" - ('., " n , ~ n ~ "'~ ~~~ , , " " " ~~ 

~ ~ K. 
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.,~ ~~ N 1#4'1 
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Figure 112.2. Circularly polarized light, where K is the propagation direction. 

Chiral molecules are asymmetrical, they have no reflection plane and their 

elections will adopt a helical motion in circularly polarized light, interacting to 

different extents with the left and right-handed photons of the circularly polarized 

light. The helical motions of the electrons in a chiral molecule can be related 

through this difference in absorption, which produces the CD signal, to the 

arrangement within the molecule of atoms and bonds in space.31 

All common proteinogenic amino acids are chiral molecules; they show the same 

handedness (L configuration), with the exception of glycine. The amino acid 

building blocks transmit this handedness to the protein structure along the protein 

backbone, giving chirality to the whole protein. The CD spectrum of a protein or 

peptide is thus directly related to its secondary structure, which has enabled 

considerable structural information to be obtained using a quite straight forward 

technique. 
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The CD signal is produced in units of ellipticity, 9, in millidegrees, versus 

wavelength (nm) A., rather than difference in absorption, (M versus A.) and is 

expressed as the mean molar epillipticy. 

CD = M = (A,-Ar) 

= 41t 9 (degrees) I 180 lnlO 

= 9 (millidegrees) I 32,982 

11.2.1.2. Evaluation of secondary structure content of a peptide 

CD spectral data do not always lend themselves easily to interpretation and often 

distinguishing the extent to which one structural motif is present in a 

macromolecule over that of another can be quite daunting. Bands produced in the 

CD spectrum by certain structural motifs such as ,8-sheet and ,8-turn motifs tend 

to overlap, producing a more difficult or complex spectrum to interpret.41 

A number of algorithms have been written to deconvolute CD spectra, which 

have been very useful for identifying and quantify the percentage of the major 

structural motifs present within the overall peptide or protein structure.32 

Secondary structural motifs from numerous peptides and proteins for which the 

structure has been determined by other reliable methods such as X-ray 

crystallographic and solution NMR techniques, have been well documented and 

are used as reference libraries to help interpret CD spectra. 33
•
34

•
35

•
37 
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CD spectroscopy is mostly used in peptide research, as a means of monitoring 

changes in peptide conformation, as peptides are exposed to different 

environments, such as an aqueous media with a range of additives or lipidic and 

detergent micelles, both of which are thought to mimic membrane bilayers. 

>. 
.=: 120000 (.) - 80000 =-·---Q) 40000 Q) -- 0 -= ·-m -40000 ... 
c 
~ -80000 Q) 

E 190 200 210 220 230 

wavelength (nm) 

240 

- helix 

- sheet 

turn 
- coil 

Figure 112.3 Diagram showing typical CD spectra for different types of protein 

secondary structure. 31 

Often interpretation of spectra from a peptide, because of the limited sequence 

size (from a few residues to several tens of residues) can be achieved through 

comparison of the spectrum with reference spectra for the different typical 

structural motifs, as these are characteristic for each motif type. 

The CD spectrum of a random coil or unordered structure shows a single strong 

minimum below 200 nm. The general characteristics of a fJ-sheet motif are those 

of a negative band between 210 and 215 nm as well as a positive band between 

195 and 200 nm, whereas the a-helix typically exhibits a large positive band near 

200 nm and double minima of similar magnitude at 208 nm and 222 nm. 

These typical spectra are then complicated by the particular structural content of 

a peptide in a given environment. 

Peptides with high fJ-sheet content have been reported to show double minima, 

similar to an a-helix except in the relative magnitude of the peaks, with a band 
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around 210 nm and another around 220 nm; however in peptides with moderate 

fJ-sheet content the second band at about 220 nm is reduced relative to the band 

around 210 nm.37
•
34 

A number of other factors can also affect the CD spectrum of a peptide, adding 

further to the level of difficulty of structural determination: aggregation of 

peptide monomers is thought to produce a marked reduction in ellipticy of 

spectral data; twists in the fJ-strand have been observed to induce a red-shift in 

the CD spectra and the relative number of aromatic side-chains in a peptide is 

also thought to affect the strength of any negative bands around 200 nm.35
•
36 

Aromatic side chains produce a CD signal in the near UV region of the spectra 

the intensity of this signal is very much dependent on the immediate environment 

of the aromatic residues and therefore the signal will also be affected by a change 

in solvent and other solutes. 

11.2.1.3. The dependence of the peptide structure on its environment. 

A number of solvents are known to have stabilizing effects on the secondary 

structure for which the peptide has a propensity. The fluorinated alcohols, 

trifluoroethanol, TFE and hexafluoroisopropanol, HFIP have the strongest 

structure promoting effect, though other solvents such as methanol, ethanol and 

acetonitrile are also thought to have weaker structure stabilizing effects.37
•
38

•
39

•
40 

The stabilizing effect mediated by fluorinated alcohols like TFE and HFIP is 

thought to be an entropically driven process that arises from interaction between 

the hydrophobic portion of the alcohol with the hydrophobic groups present in 

the peptide and the consequent displacement of the shell of water molecules from 

around the peptide.37 

Linear peptides like cecropins and magainins, which are unordered in aqueous 

media, are reported to adopt a helical structure in the presence of both HFIP and 

TFE.4t,42 

The structure adopted by a peptide in one environment may be different from that 

assumed in another; some peptides, which have helical structures in presence of 

stabilizing solvents and under aqueous conditions, adopt a IJ-sheet conformation 
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in presence of lipid vesicles or detergent micelles.37 Detergents, like Sodium 

Dodecyl Sulphate, SDS are used, below their critical micellar concentration to 

mimic the hydrophobic core of membranes and lipid vesicles are commonly used 

as substitute models for biological membranes.40
•
43

•
44 

11.2.1.4. Circular dichroism study of amphiphilic synthetic peptides. 

Circular dichroism, CD was used to investigate the secondary structure adopted 

by the synthetic amphiphilic peptides under different environmental conditions 

and over a range of peptide concentrations. The peptides were designed to 

contain a basic structure for pore forming P-barrel peptides and therefore to have 

a propensity for P-sheet type structures in membranes. 

The question then arises as to whether the peptide would have an ordered 

structure in aqueous media or would only adopt a stable structured conformation 

in a lipidic environment. 
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11.2.1.5. Conformation of the template amphiphilic peptide in aqueous 

solution. 

The structure of the template amphiphilic peptide were first monitored in a 4 % 

TFE/water solution over a range of peptide concentrations from 30 to 50 J.l.M. 
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Figure 112.4. CD spectra of the template peptide 6YOJ in a 4% TFE solution 

of pure water. 

The CD spectra clearly showed the peptide to have an unstructured conformation 

in the 4 % TFE pure water solution over the range of peptide concentrations 

studied. This result isn't surprising considering the highly hydrophobic nature of 

the peptides and the fact that peptides with fJ-sheet type structure assume less 

readily native conformations than their more hydrophilic counterparts which 

have a predisposition towards a-helical structures. 
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ll.2.1.6. Conformation of the template amphiphilic peptide in a buffer-salt 

solution. 

The peptide conformation was then study over a range of concentrations in a 10 

mM Tris-150 mM NaCl buffer containing 4 % TFE (at pH 7.4); the resulting 

spectra were no longer indicative of typical unordered structures but showed the 

emergence of maxima between 200 run and 215 run. 
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Figure Il2.5. CD spectra of the peptide 6Y01 measured over arrange of 

concentrations from 40 to 60 pM in a 10 mM Tris-150 mM NaC/ solution 

with 4 % TFE at pH 7. 4. 

Following an increase in peptide concentration from 40 to 60 J.LM, a net reduction 

in the intensity of the negative band arising at 195 to 200 run and an increase in 

the positive band above 200 run, were measured in the CD spectra. These 

changes are indicative of a concentration dependence effect on peptide 

conformation. The sharp change in ellipticity for the peptides at 60 J.LM is 

strongly indicative of the occurrence of peptide self assembly, which may further 

complicate determination of the peptide conformation. 45 
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After monitoring the peptide behaviour for indication of aggregation over a range 

of peptide concentrations from 1 0 to 80 J.lM, the circular dichroism study was 

further pursued using a peptide concentration of 50 J.lM that gave both a strong 

signal and did not appear to show signs of peptide aggregation. 

11.2.1.7. Conformation of the template amphiphilic peptide in a TFE butTer 

soDution. 

Various amounts of TFE, from 15 % to 75 % (v/v) of the total sample solution, 

are reported to induce ordered secondary structure in peptides; the effect of TFE, 

in promoting a structured conformation in the amphiphilic peptide, was 

investigated by increasing the initial volume of 4% to 15% (v/v) TFE. 
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Figure /12.6. CD spectra of peptide 6Y01 at a concentration of 50 pM 

in 10 mMTris-150 mM NaC/ buffer with 15% TFE (v/v) at pH 7.4. 
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The CD spectra for the peptide changed considerably on addition of 15 % TFE to 

the sample buffer, which strongly suggests that TFE in relatively low 

concentrations can induce the amphiphilic peptide to adopt a conformation 

comparable to that of an anti parallel P-sheet with a maximum centred on 200 nm 

and two minima of lower magnitude around 208 and 220 nm.47 

An increase in the TFE concentration from 15% to 30% (v/v) appears to further 

stabilize an antiparallel P-sheet conformation in the amphiphilic peptide, 

suggesting that it has a strong propensity for this conformation (Fig.II.2. 7). 
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Figure 112.7 CD spectrum of the peptide 6Y01 at 50 pM concentration in a 

10 mM Tris-150 mM NaCl buffer with 30% TFE (v/v) at pH 7.4. 

The concentration of TFE was further increased to 50 % (v/v) which did not 

show any significant change in the peptide structure. 
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11.2.1.8. Conformation of the amphiphilic peptides in unilamellar lipid 

vesicles. 

In order to determine the conformation that the peptides would adopt in a lipid 

membrane the structure of the amphiphilic peptides was monitored in the 

presence of a 1 mM concentration of unilamellar vesicles ( 1 00 nm in diameter) 

composed of egg phosphatidyl choline, EPC, a mixture of phospholipids 

commonly used as models for biological membranes. 

The CD spectra of the amphiphilic peptides were recorded, over a range of 

concentrations from 30 JlM to 50 JlM, in an EPC lipid-buffer solution with 4 % 

TFE. 
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Figure /12.8. CD spectrum of the peptide 6YOJ at 50 pM in EPC (1 mM) 

and Tris (10 mM)-NaC/ (150 mM). 

The CD spectrum of the 6Y01 peptides in EPC solution exhibited a typical P­
sheet pattern with a maximum at 200 nm and a minimum between 205 and 210 

nm. The second minimum from 225 to 240 nm may be attributed to the aromatic 

side chains of the peptide tyrosine residues. 46
•
47 
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The conformation of the analogous peptides 2W4Y02 and 2K4Y03, in which two 

of the original tyrosine residues had been replaced by two tryptophan and two 

lysine residues respectively, was also analysed by circular dichroism in an EPC 

lipid vesicle and buffer solution. 

10 

":' 5 
0 
E 
"C 

N 0 5 1 210 215 220 
i' 
~ -5 .. 
0 -)( .... 
.!. -10 Wavelength (nm) 

-15 

Figure Il2.9. CD spectrum of the peptide 2W4Y02 at 50 pM in EPC (1 mM) 

and Tris (10 mM)-NaC/ (150 mM) with 4% TFE. 

The CD spectrum of the 2W4Y02 peptide in lipid environment exhibited a P­
sheet pattern with a maximum at 200 nm and a shallow minimum from 215 nm 

to 220 nm, which then extended into another stronger minimum from 225 nm to 

240 nm. This second minimum may as in the case of the 6Y01 cyclic peptide be 

attributed to the aromatic tryptophan and tyrosine side chains of the peptide.46
•
47 
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The 2K4Y03 peptide produced a CD spectrum in EPC lipid bilayers that was 

again characteristic of a P-sheet structure with a maximum just below 200 nm 

and a minimum from 205 nm to 210 nm. The second minimum from 225 nm to 

240 nm. which was quite significant in the spectra of both the 6YO 1 and 

2W4Y02 peptides. had only a week presence in the CD spectrum of the 2K4Y03 

peptide; the decrease in ellipticity of the second minima could be due to a 

reduction in the number of aromatic side chains in this peptide. 
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Figure 112.10. CD spectrum of the peptide 2K4Y03 at 50 pM in EPC (1 mM) 

and Tris (1 0 mM)-NaCI (150 mM) with 4 % TFE. 

Circular dichroism is the most common technique for monitoring conformational 

changes in both peptides and proteins. as a consequence of a change brought 

about to the environment of the macromolecule. such as the addition of solutes or 

a change in pH of the solution. The present study was conducted in order to 

establish whether the amphiphilic peptides have a propensity to adopt P-sheet 

structures. by studying their conformation in a range of environments; in aqueous 

solutions. in the structure stabilizing solvent TFE and in an EPC lipid vesicle 

solution. which is commonly used to mimic a membrane environment. 
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The template amphiphilic peptide 6YO 1 was shown to adopt an unordered 

conformation in a solution of 4% TFE (v/v) and pure water, but was clearly no 

longer completely unordered when its CD spectrum was monitored in a 10 mM 

Tris-150 mM NaCl buffer again with 4 % (v/v) TFE, which suggests that the 

peptide had adopted some intermediate non random state in this solution.45 

The concentration of TFE was increased to a level which has been shown to 

provoke conformational changes by inducing the peptide to adopt a preferred or 

most stable conformation in presence of the fluorinated alcohol. The amphiphilic 

peptide clearly revealed a propensity for a P-sheet type structure over the range 

of TFE concentrations used in this study. 

In phosphatidylcholine membranes, all the peptides examined, displayed a 

characteristic P-sheet type structure, which strongly indicates that the main 

driving force behind P-sheet formation could be the interaction with a 

hydrophobic environment and therefore that these analogous amphiphilic 

peptides are predominantly membrane bound. 

A range of synthetic cyclic and linear transmembrane peptides, designed to 

investigate the mechanism of P-sheet formation in lipid membranes, have been 

shown by circular dichroism to successfully adopt P-sheet structures in a 

membrane environment. 

A systematic investigation was carried out on a synthetic hydrophobic 

hexapeptide (acetyl-WLLLLL) to explore contributions from side chain-side 

chain and side chain-membrane interactions, as well as interstrand hydrogen 

bonds on P-sheet formation in phospholipid membranes. The primary structure of 

the hexapeptide was modified by replacing the central leucine residue with one 

of a range of more polar or hydrophobic residues or with residues such as 

glycine, which would give conformational flexibility or proline, which would 

display structure breaking properties in the peptide. These peptides all adopted 

random coil structures in aqueous media and oligomeric antiparallel P-sheets in 

phospholipid membranes, when the central leucine residue was replaced by a 

hydrophobic residue of any size or character. This study demonstrates the 

essential function that the hydrophobicity of the peptide sequence has on P-sheet 

formation in membranes.46 
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A series of cyclic peptide analogues of the antimicrobial peptide gramicidin S 

(GS), which is known to adopt a stable P-hairpin structure with 2 P-tums in 

membranes, were designed with distinct structural and functional characteristics 

in order to assess the effect of varying the hydrophobicity and amphipathicity of 

the peptides on P-sheet formation in membranes. 

The more hydrophobic and amphipathic peptides displayed the strongest affinity 

for phospholipid membranes as well as a tendency to self aggregate. 36 

A dodecyl cyclic peptide { Cyclo-(LLLD )3}. where D is a L -diaminopropionic 

acid, which is thought to play a role in conductance of peptide channels} was 

designed to adopt an amphiphilic planar ring structure in membranes with 

hydrophobic side chains oriented towards the lipidic media and polar residues 

towards the centre of the ring structure to form a hydrophilic channel. Circular 

dichroism demonstrated that the synthetic peptide could form a stable P-sheet 

structure in the absence of a hydrophobic environment and that the peptide could 

adopt a P-sheet structure in both aqueous media as well as in membrane 

mimicking environments such as octanol-methanol.48 

A high level of ring structure stability has been shown to have a major influence 

on P-sheet formation. Hydrophobic peptides, which possess ring structures 

stabilized by several disulphide bonds such as the 18 residue cyclic defensin 

peptide R TD-1, which has 3 intramolecular disulphide bonds, can adopt a P-sheet 

conformation in both aqueous solution and in lipidic environments. 49 
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11.2.2. lLinear dichroism 

11.2.2.1 Introduction to the technique 

Linear dichroism, the sister technique to circular dichroism, has been optimized 

by A. Rodger et a/, 2002,50 to provide useful information on the interactions 

between molecules and the orientation of the molecules relative to one another. 

This technique has revealed itself to be particularly valuable for determining the 

orientation of amphiphilic peptides on interaction with lipid membranes and was 

used in this work to give a measure of the orientation of the template peptide 

6Y01 following interaction with a phospholipid bilayer. 

Linear dichroism, LD is the difference in absorption of light polarized parallel 

and perpendicular to an oriented direction or axis, LD = A 11 - A .L 

P.lltlllel Peapendlcula. oaiented 
pol.lalzed light polaalzed light molecule + CD spectnun 

LD lr\JV-U]+CD ~ 
W;welength 

Figure Il2.11. Diagram showing the generation of a LD spectrum. 

A number of conditions need to be met in order for a molecule or a system, such 

as peptide interacting with a lipid bilayer, to give a LD signal; molecules must 

have a significant absorption in the visible and near UV regions of the spectrum 

as well as the ability to be physically aligned parallel to one of the polarization 

directions of the light. The electronic transitions of the molecules, which interact 

with the incident light, are aligned to ensure that they conserve maximum 

interaction with the polarized or oriented light. 
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The sample molecules can be aligned if they have an intrinsic property such as a 

charge dipole, a naturally elongated shape or the capacity to be deformed during 

the experiment. 

(b) 

Figure 1!2.12. Diagrams of(a) a liposome and (b) a shear deformed liposome. 

In peptide-lipid systems, the liposomes are the component that is oriented as they 

can be physically elongated by sheer deformation in a spinning flow Couette cell. 

Figure Il2.13. Diagram showing the alignment of molecules in solution 

by sheer flow gradient in a Couette cell, which is basically 

a spinning cylinder within a concentric sleeve. 51 

The orientation direction in the peptide-lipid system is defined as the orientation 

of the peptide transition moments relative to the normal of liposome bilayer. 

Normal to lipid bilayer 

! 
Lipid bilayer 

Figure 1!2.14. Showing the orientation direction in the peptide-lipid system. 

99 



The deformed liposome system was modelled as a cylinder by Ardhammer et 

al.52
•
53

•
54 with the LD signal of the system given by: 

Where S is the proportion of liposomes that have oriented parallel to the flow 

direction, and is assumed to be equal to 1 and a; is the angle made by the 

transition moment of the peptide relative to the normal of the lipid bilayer. 

11.2.2.2. The peptide transition moments need to be determined for 

interpretation of the template peptide-lipid LD signal. 

Typical absorbance for proteins and peptides in the UV region are from 180 nm 

to 240 nm and for residues with aromatic side chains from 250 nm to 280 nm55
• 

The n to 1t* transition for which no simplistic modelling can be devised gives a 

series of perpendicular and parallel bands from 210 nm to 230 nm with the 

perpendicular bands appearing at lower energy than the parallel band. The 1t to 

1t* polarization is located along the C=O bond axis with net polarization 

perpendicular to the peptide backbone run at about 190 nm to 200 nm and the 

transition moment for the tyrosine residues gives a signal from 260 nm to 300 

Figure 11.2.15. Showing (a) the orientation of the P-sheet transition moments 

polarizations relative to the peptide backbone and (b) the tyrosine transition 

moment polarizations. 
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The interaction of the template peptide 6YO 1 with egg phosphatidyl choline, EPC 

liposomes was analysed by linear dichroism using a rotating Couette flow cell to 

orient the EPC, liposomes in the sample mixture. 
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Figure 112.16. Linear dichroism spectrum (averaged over 64 scans) of 

amphiphilic cyclic peptide, 6Y01 (0.4 mg mf1 in 1 mg mf1 lipid in H20) 

in EPC liposomes. 
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The LD spectra shows two positive peaks at 200 run and at 230 run 

corresponding to transition polarizations perpendicular to the peptide backbone 

and hence perpendicular to the normal of the lipid bilayer and parallel to the 

bilayer itself. This result shows strong support for the template peptide insertion 

into the lipid bilayer of the EPC liposome with the peptide backbone oriented in 

a more parallel than perpendicular direction relative to the normal of the lipid 

bilayer. 
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Figure 112.17. Diagram showing the peptide backbone orientation relative to the 

lipid bilayer for negative and positive LD signals. 

The absence of a peak at 208 run which is typical of a-helical structures and the 

strong positive peak at 200 run confirm the peptide to have adopted a P-sheet 

type conformation. The tyrosine residues give a negative peak from about 270 to 

280 run and show the aromatic rings to have oriented more in the plane of the 

normal to the lipid bilayer and hence in the same plane as the lipid monomers in 

the bilayer. 

The Linear dichroism study of the cyclic amphiphilic template peptide-EPC 

system has not only provided support for previous evidence from CD, that the 

peptide adopts a P-sheet type conformation in presence of phosphatidyl choline 

bilayers, but also strongly suggests that the peptide inserts in the lipid bilayer 

with the peptide backbone oriented parallel to the normal of the lipid bilayer. 
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Another technique for detecting the orientation of peptides embedded in lipid 

layers is by means of a conventional circular dichroism spectrometer on oriented 

samples (OCD). The cyclic antimicrobial P-sheet peptide rhesus theta defensin, 

RTD-1 was mixed with phosphatidylcholine and phosphatidylglycerollipids in a 

solution of chloroform and TFE, before being spread onto quartz plates. As the 

solvent evaporated the sample self-assembled into multilayers aligned parallel to 

the substrate surface. The orientation of the peptide in the lipid membrane was 

shown by OCD to change as a function of sample hydration, as the relative 

degree of humidity of the sample was increased up to 1 00 %. In fully hydrated 

samples the ring of the peptide backbone appeared to adopt an orientation 

parallel to the plane of the bilayer, which would indicate that the peptide could 

form channels in membranes through stacking of the peptide backbone ring 

structure to form a tubular structure with the hydrophilic residues oriented 

towards the inside ofthe ring.49 

The synthetic amphiphilic cyclic peptide 6YO 1 on the other hand was shown (by 

linear dichroism) to orient with its backbone perpendicular to the plane of the 

phospholipid bilayer and could therefore possibly form a P-barrel type structure 

in phospholipid membrane similarly to those formed by prokaryotic outer 

membrane proteins. 
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11.2.3. Differential scanning calorimetry (DSC). 

11.2.3.1. Introduction to the technique. 

Differential scanning calorimetry is the study of thermodynamic parameters 

associated with thermally induced phase transitions and has proven to be an 

extremely useful tool for the study of the thermotropic phase behaviour of lipids 

in biological and model systems. 56 

Phospholipids spontaneously form concentric multilayered bilayers vesicles 

separated by layers of water, on hydration with aqueous media. 

1 -10 ~·Ill 

Figure 112.18. Multilamellar /iposome. 

The lipid bilayer undergoes a fully reversible phase transition from an ordered 

solid-gel like state to a fluid liquid crystalline state as the temperature of the 

hydrated lipid is increased to above the transition temperature (Tm) of the lipid. 
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Phospholipids show a pre-transition, Tp which is associated with a small 

enthalpy change and a main transition, Tm associated a much larger enthalpy 

change (Fig. 11.2.19). 
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Figure Il2.19. DSC thermogram of fully hydrated dimyristoyl phosphatidyl 

choline, DMPC, showing the lipid pre-transition, Tp centred on 12 °C and the 

main transition, Tm on 23 °C. 

The phospholipid bilayers adopt, below the lipid pre-transition temperature, a 

structured arrangement in which the lipid monomers are tilted to as much as 58° 

relative to the plane of the bilayer; this arrangement is thought to maximise lipid 

chain interactions by filling space created by the bulky choline lipid headgroups 

in the gel phase. 58 

Figure 112.20. Showing the tilted lipid monomers in the gel phase, 

below the pre-transition temperature. 
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The lipid monomers undergo a change in orientation during the pre-transition, 

from a tilted to a more perpendicular orientation relative to the plane of the 

bilayer. The pre-transition can be used as a sensitive indicator of the presence of 

even minor amounts of impurities in the lipid bilayer and consequently will be 

absent from the DSC trace of a disturbed bilayer. 56
•
57 

As the temperature is further increased past the pre-transition and up to the main 

transition, the bilayer appears to adopt a rippled structure; above the main 

transition temperature the lipids become more disordered and fluid like as the 

degree of freedom of the lipid monomers increases with temperature. 

Figure II. 2. 21. Showing the disordered lipids in the fluid phase, 

above the main transition temperature of the lipids. 

The actual conformation of the lamellar bilayer is not affected by the phase 

change, although the bilayer undergoes a lateral expansion as well as a decrease 

in thickness as it reaches the fluid state. 

H.2.3.2. Differential Scanning Calorimetric analysis of peptide-lipid systems. 

This calorimetric technique was used to examine the effect of the template 

peptide 6Y01 on the temperatures and enthalpies of the pre-transition, Tp and the 

main transition, Tm of phospholipid bilayers. 
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11.2.3.3. Peptide-DMPC systems. 

The fully hydrated pure DMPC sample gave two peaks in the DSC thermogram, 

a weak broad peak centred at 12 °C corresponding to the phospholipid pre­

transition and a strong narrow main transition peak at 23 °C in agreement with 

the literature values.58
•
59 The effect of the amphiphilic peptide 6Y01 on the phase 

transition temperature and the enthalpy change of DMPC was investigated over a 

range of peptide to lipid molar ratios. 
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Figure IL2.22. DSC thermograms of fully hydrated DMPC-6YOJ peptide 

mixtures (20-30 wt% suspension) with a range of molar ratios ofpeptide to 

lipid: 0 (A),0.02 (B), 0.08 (C) and 0.2 (D). The samples were submitted to a 

minimum of 6 heating and cooling cycles from 6 to 26 °C, at a rate of 2 °C min-1
. 
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The peptide 6Y01 at peptide to lipid molar ratios as low as 0.02 had a significant 

effect on the integrity of the lipid bilayer; causing the disappearance of the pre­

transition, a reduction by half of the enthalpy change as well as a slight decrease 

in the temperature of the main transition. At the higher molar ratio of 0.2, the 

effect was greater still with a considerable broadening of the main transition and 

a shift of around 4 °C to a lower temperature. 

These results indicate that at the highest peptide to lipid ratio of 0.2, the 6Y01 

peptide produced a significant overall destabilisation of the gel state DMPC 

bilayers. 
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11.2.3.4. Peptide-DPPC systems. 

Another saturated phospholipid with a longer chain length and a higher transition 

temperature was again studied over a range of peptide to lipid ratios in order to 

analyze the effect of the peptide on a lipid with a less fluid and much more rigid 

conformation. 

The DSC thermogram of fully hydrated multilamellar vesicles of the dipalmitoyl 

phospholipid, DPPC in pure water showed a broad and weak pre-transition 

centred at 36 °C and a strong sharp main transition at 41 °C (Fig. 11.2.23).60 
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Figure /12.23. DSC thermograms of hydrated DPPC-6YOJ peptide with peptide 

to lipid molar ratios of: 0 (A), 0. 05 (B), 0.1 (C) and 0.2 (D). (6 heating and 

cooling cycles were ranfor each sample, .from 6 to 48 °C at a rate of2 °C min-1
). 
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The pre-transition was abolished at the lowest peptide to lipid ratio, 0.05 and the 

enthalpy change for the main transition was reduced by about a third of its 

original value. As the molar ratio was increased by two fold, the temperature of 

the main transition was reduced by about 3 °C and at the highest ratio studied, 0.2 

the enthalpy change for the main transition was further reduced to about a third 

of the measured value for pure DPPC bilayers. 

DSC experiments carried out on another cyclic P-sheet forming peptide 

gramicidin S (GS) with phospholipid DMPC multilamellar vesicles, showed that 

this peptide had a comparable affect to the 6Y01 peptide at similar peptide to 

lipid ratios, on both the temperature and the enthalpy change of the main phase 

transition ofthe lipid.59
•
61 

A study showing the effect of the linear helical peptide gramicidin A on DMPC 

bilayers indicated that the peptide, in equivalent peptide to lipid ratios, appeared 

to have a much more disruptive effect on the gel state bilayers than both cyclic P­
sheet forming peptides GS and 6YO 1. The phase transition of the bilayer was 

completely abolished at peptide to lipid ratios of 0.08, whereas for both the GS 

and 6YO 1 peptides the enthalpy change for the transition still retained at least a 

third of its original value at this ratio. 62 

110 



D.2.4. Transmission Electron Microscopy. 

The synthetic amphiphilic peptides were imaged by electron microscopy in order 

to gain some understanding of the behaviour of the peptides in terms of the 

structures formed and their degree of aggregation in a buffer solution with the 

fluorinated alcohol HFIP. The behaviour of the peptides in solution strongly 

influences their suitability for 2D crystallisation in that solution. The appearance 

of the peptide 2K4Y03 was monitored by depositing, on to a carbon coated 

copper grid, a drop (2 J.lL) of peptide solution (0.5 mg ml-1
) from a 30 % HFIP 

solution and negatively staining the sample with a 2 % (w/v) uranyl acetate 

solution. 
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Figure Il 2.24. TEM image of the negatively stained 2K4Y03 peptides showing 

filamentous structures. 
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The peptides formed fibrous structures when precipitated from HFIP on to the 

carbon coated TEM grids, over the range of concentrations studied. 
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Figure 112.25. TEM image of the negatively stained 2K4Y03 peptides showing 

large areas of fibrous structures with a range of thicknesses. 

The individual fibres appeared to have aggregated into bundles of various widths, 

some of which showed twisted structures. 

The thickness of the fibres and bundles of fibres were measured using Image J 

software. 63 
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The individual fibres had an average width of 13 run± 0.8 run and the bundles 

ranged in thickness from~ 26 run, 39 run, 52 run, 65 nm, 78 run and 91 nm, 

corresponding respectively to 2, 3, 4, 5, 6 and 7 fibres in thickness. 
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Figure 112.26. TEM image of the negatively stained 2K 4 Y03 peptides showing 

individual, bundles and twisted strands of fibre like structures. (!'he arrows are 

indicating the twisted bundles of fibres). 
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The fibres and bundles of twisted fibres, which were observed by TEM in 

samples of the amphiphilic cyclic 2K4Y peptide deposited from a 30 % HFIP­

buffer solution on to the carbon coated copper TEM grids, resembled both in size 

and in morphology the polypeptide assemblies of amyloid fibres formed by the 

prion protein (PrP). 64 

Amyloids are intracellular deposits of polypeptides that have assembled through 

formation of intermolecular P-sheets and are an essential feature of prion 

diseases such as Gerstmann-striiussler-scheinker disease (GSS) and variant 

Creutzfeldt-jakob disease. They are also present in numerous other diseases 

including Alzheimer's, Parkinson's and Huntington's diseases. Amyloids are 

thought to be formed quite readily by any polypeptide that displays a propensity 

for P-sheets, especially if the peptide has a tendency to aggregate and does not 

fold rapidly to form a stable P-sheet structure, but could coexist in equilibrium 

with partially folded and unfolded forms. 65
•
66 
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ll.2.5. Chapter summary. 

A series of amphiphilic cyclic peptides, designed to form P-sheet structures in 

lipid bilayers, were successfully synthesized using solid phase Fmoc chemistry 

with in situ cyclisation in a fully automated peptide synthesizer. The peptides 

were purified using RP-HPLC and analysed by MALDI mass spectrometry 

following optimization of the solvent systems. 

The cyclic amphiphilic peptides were examined using a wide range of analytical 

techniques in order to establish whether the cyclic amphiphilic peptides had a 

propensity to adopt P-sheet structures in phospholipid bilayers and to gain some 

understanding of their behaviour under different environments, aqueous and 

lipidic. 

Circular Dichroism, which was used to examine the amphiphilic cyclic peptide 

structure in a range of environments, showed the template peptide 6YO 1 to 

undergo a conformational change on addition of increasing concentrations of 

TFE to the peptide solution and in presence of phospholipid bilayers. The CD 

spectra clearly revealed that the cyclic amphiphilic peptide had a propensity to 

adopt P-sheet structures in buffer-salt solutions containing over 30 % TFE and in 

EPC/buffer-salt solutions. The structural change from random coil to P-sheet is 

also confirmation of the cyclic amphiphilic peptide affinity for lipid media and of 

its ability to form a polymeric structure in membranes. 

Linear Dichroism, which was carried out on the template cyclic 6YO 1 peptide 

with EPC unilamellar vesicles, confirmed the predisposition of the cyclic 

amphiphilic peptide for a P-sheet type structure and also provided strong 

evidence of peptide insertion in to phospholipid membranes, together with the 

direction of insertion of the peptide backbone relative to the normal of the lipid 

membrane. The cyclic peptide was shown to interact with phospholipid 

membranes by inserting into the bilayer with the peptide backbone in a 

perpendicular orientation to the plane of the membrane. This orientation suggests 

that the peptide would not form channels by stacking of the cyclic peptide 
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backbone ring structure to form a tubular structure, as proposed for the cyclic 

antimicrobial P-sheet peptide rhesus theta defensin RTD-1, but could form a P­
barrel type structure in phospholipid membranes similarly to those formed by 

prokaryotic outer membrane proteins. 

Differential Scanning Calorimetry performed on the cyclic amphiphilic 

peptides with phospholipid multilamellar bilayers explored the effect of the 

amphiphilic peptides on the cooperativety of the phospholipid phase transition. 

The template cyclic peptide 6Y01, in peptide to lipid ratios as low as 0.02 

abolished the pre-transition and decreased the temperature and the enthalpy 

change of the main transition of both DMPC and DPPC lipid bilayers. At peptide 

to lipid ratios of 0.2 the enthalpy change of the phospholipid was significantly 

reduced by at least a half of its initial value for DMPC and a third for DPPC 

bilayers and the temperature of the main transition decreased by about 4 °C for 

DMPC and 3 °C for DPPC bilayers. The DSC study provided strong support for 

the insertion of the cyclic amphiphilic peptide into phospholipid membranes and 

gave comparable results to DSC investigations carried out on another cyclic f3-
sheet peptides, gramicidin S with DMPC membranes. 

Transmission Electron Microscopy revealed that the cyclic amphiphilic peptide 

2K4Y03 appeared to form amyloid type fibres on precipitation from a 30 % 

solution of the fluorinated alcohol, HFIP in water. The fibres and bundles of 

twisted fibres, which were similar in size and morphology to those, observed in 

prion diseases, are thought to be readily formed by P-sheet proteins that have a 

tendency to aggregate and do not fold rapidly to adopt their stable conformation. 
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11.3.1. Materials and Methods. 

II.3.1.1. Materials. 

Trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) were obtained from 

Apollo and biological grade trifluoroacetic acid (TF A), piperidine, 

diisopropylethylamine (DIPEA), 1-Hydroxybenzotriazole (HOBt), 1,2-

ethanedithiol (EDT), sodium diethyldithiocarbonate, acetic acid (CH3C02H), N­

methylmorpholine (NMM) and triisopropylsilane (TIS) were all from Lancaster. 

The Fmoc protected amino acid residues, Fmoc-Asp(OAll)-OH, Fmoc-Gly-OH, 

Fmoc-V al-OH, Fmoc-Cys(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Asn-OH, Fmoc­

Lys(Boc)-OH and the Fmoc Protected pseudoproline dipeptides, Fmoc-Tyr(tBu)­

Ser( 'I'Me,Mepro )-OH, Fmoc-V al-Ser( 'I'Me,Mepro )-OH, Fmoc-Trp(Boc )­

Ser(~e,Mepro)-OH and Fmoc-Leu-Ser(~e,Mepro)-OH were all purchased from 

Novabiochem, EMD Biosciences, Inc. The resin (Novasyn TGR) and 

benzotriazol-1-yl-oxy-tris-pyrrolidinophosphonium, Hexafluorophosphate salt 

(PyBOP) were obtained from Merck biosciences, Inc. 

The dimethylformamide (DMF), water, acetonitrile (CH3CN), unstabilised 

dichloromethane (DCM), chloroform (CH3Cl) and methanol (CH30H) were all 

HPLC grade solvents from Fisher chemicals. 

Dipalmitoyl phosphatidyl choline (DPPC) and dimyristoyl phosphatidyl choline 

(DMPC) were purchased from A vanti polar lipids and egg phosphatidyl choline 

(EPC) was obtained as a solution (100 mg mr1
) in chloroform from Sigma. 
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11.3.2. Methods. 

11.3.2.1. Peptide synthesis. 
Peptide synthesis was performed in a fully automated programmable Advanced 

Chemtech peptide synthesiser, model 348 n MPS. The software used was Act 

348 n provided by Advanced Chemtech. 

1st step: loading of solid support. A suspension of the resin (Novasyn TGR, 

0.10 g, 0.03 mmol) in DMF (2 ml) was mechanically agitated for 15 min (at 400 

rpm). 

2nd step: coupling of the first amino acid (aspartic acid) to the solid support. 

Following the addition ofFmoc-Asp (OAll) (0.060 g, 0.15 mmol, 5 eq), PyBOP 

(0.075 g, 0.14 mmol, 5 eq), DIPEA (0.026 g, 0.15 mmol, 5 eq) and HOBt (0.023 

g, 0.15 mmol, 5 eq) in DMF (2.5 ml), the mixture was agitated (400 rpm) under a 

N2 atmosphere for 60 min at room temperature. Following filtration, the resin 

was suspended in DMF (2 ml) and the above coupling process was repeated once 

again. 

The resin was then filtered and washed 3 times by each time mechanically 

shaking the resin (at 400 rpm) for 1 min in DMF (2 ml) and then filtering. 

Fmoc deprotection. Removal of the Fmoc protection from the Asp (OAll) 

amino acid was achieved by mechanically agitating the resin (at 400 rpm) for 10 

min in a 20 % (v/v) piperidine/DMF solution (2.5 ml) and filtering. This process 

was repeated twice before washing the resin 4 times in DMF as described above. 

The synthesis of all the amphiphilic cyclic peptides follows on from the steps 

described above (section 11.3.2.1.). 
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(1 ). Synthesis of cyclo-Asn-Giy-Asn-Vai-Ser-Leu-Ser-Vai-Ser-Tyr-Ser-Tyr­

Ser-Val-Ser-Tyr-Ser-Asn-Giy-Asn-Vai-Ser-Leu-Ser-Vai-Ser-Tyr-Ser-Tyr­

Ser-Vai-Ser-Tyr-Ser ( 6YO 1) 

3rd step: coupling of Fmoc protected glycine. Following the addition of Fmoc­

Gly-OH (0.044 g, 0.15 mmol, 5 eq), PyBOP (0.078 g, 0.15 mmol, 5 eq), DIPEA 

(0.026 g, 0.15 mmol, 5 eq) and HOBt (0.023 g, 0.15 mmol, 5 eq) in DMF (2.5 

ml), the mixture was agitated ( 400 rpm) under a N2 atmosphere for 90 min at 

room temperature. 

The resin was then filtered and washed 3 times, by each time mechanically 

shaking the resin (at 400 rpm) for 1 min in DMF (2 ml) and filtering. Fmoc 

deprotection and subsequent washing were then carried out as described above. 

4th step: coupling of Fmoc protected asparagine. Following the addition of 

Fmoc-Asn-OH (0.089 g, 0.15 mmol, 5 eq), PyBOP (0.078 g, 0.15 mmol, 5 eq), 

DIPEA (0.026 g, 0.15 mmol, 5 eq) and HOBt (0.023 g, 0.15 mmol, 5 eq) in DMF 

(2.5 ml), the mixture was agitated (400 rpm) under a N2 atmosphere for 90 min at 

room temperature. 

The resin was then filtered and washed 3 times, by each time mechanically 

shaking the resin (at 400 rpm) for 1 min in DMF (2 ml) and filtering. Fmoc 

deprotection and subsequent washing were then carried out. 

5th step: coupling of the Fmoc protected pseudo proline dipeptide tyrosine­

serine. Following the addition of Fmoc-Tyr(tBu)-Ser(~e,Mepro )-OH (0.088 g, 

0.15 mmol, 5 eq), PyBOP (0.078 g, 0.15 mmol, 5 eq), DIPEA (0.026 g, 0.15 

mmol, 5 eq) and HOBt (0.023 g, 0.15 mmol, 5 eq) in DMF (2.5 ml), the mixture 

was agitated ( 400 rpm) under a N2 atmosphere for 90 min at room temperature. 

The resin was then filtered and washed 3 times by each time mechanically 

shaking the resin (at 400 rpm) for 1 min in DMF (2 ml) and filtering. Fmoc 

deprotection and subsequent washing were then carried out. 

6th step: coupling of the Fmoc protected pseudo proline dipeptide valine­

serine. Following the addition of Fmoc-Val-Ser(~e,MePro)-OH (0.070 g, 0.15 

mmol, 5 eq), PyBOP (0.078 g, 0.15 mmol, 5 eq), DIPEA (0.026 g, 0.15 mmol, 5 

eq) and HOBt (0.023 g, 0.15 mmol, 5 eq) in DMF (2.5 ml), the mixture was 

agitated (400 rpm) under a N2 atmosphere for 90 min at room temperature. 
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The resin was then filtered and washed 3 times by each time mechanically 

shaking the resin (at 400 rpm) for 1 min in DMF (2 ml) and filtering. Fmoc 

deprotection and subsequent washing were then carried out. 

7th step: coupling of the Fmoc protected pseudo proline dipeptide tyrosine­

serine. As described above in step 5. 

8th step: coupling of the Fmoc protected pseudo proline dipeptide tyrosine­

serine. As described above in step 5. 

9th step: coupling of the Fmoc protected pseudo proline dipeptide valine­

serine. As described above in step 6. 

10th step: coupling of the Fmoc protected pseudo proline dipeptide leucine­

serine. Following the addition of Fmoc-Leu-Ser('I'Me,Mepro)-OH (0.072 g, 0.15 

mmol, 5 eq), PyBOP (0.078 g, 0.15 mmol, 5 eq), DIPEA (0.026 g, 0.15 mmol, 5 

eq) and HOBt (0.023 g, 0.15 mmol, 5 eq) in DMF (2.5 ml), the mixture was 

agitated (400 rpm) under a N2 atmosphere for 90 min at room temperature. 

The resin was then filtered and washed 3 times by each time mechanically 

shaking the resin (at 400 rpm) for 1 min in DMF (2 ml) and filtering. Fmoc 

deprotection and subsequent washing were then carried out. 

11th step: coupling of the Fmoc protected pseudo proline dipeptide valine­

serine. As described in step 6. 

12th step: coupling of Fmoc protected asparagine. As described in step 4. 

13th step: coupling of Fmoc protected glycine. As described in step 3. 

14th step: coupling ofFmoc protected asparagine. As described in step 4. 

15th step: coupling of the Fmoc protected pseudo proline dipeptide tyrosine­

serine. As described in step 5. 

16th step: coupling of the Fmoc protected pseudo proline dipeptide valine­

serine. As described in step 6. 

17th step: coupling of the Fmoc protected pseudo proline dipeptide tyrosine­

serine. As described in step 5. 

18th step: coupling of the Fmoc protected pseudo proline dipeptide tyrosine­

serine. As described in step 5. 

19th step: coupling of the Fmoc protected pseudo proline dipeptide valine­

serine. As described in step 6. 

20th step: coupling of the Fmoc protected pseudo proline dipeptide leucine­

serine. As described in step 10. 
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21st step: coupling of the Fmoc protected pseudo proline dipeptide valine­

serine. As described in step 6. 

(2) Synthesis of cyclo-Asn-Giy-Asn-Vai-Ser-Leu-Ser-Vai-Ser-Tyr-Ser-Tyr­

Ser-Vai-Ser-Trp-Ser-Asn-Giy-Asn-Vai-Ser-Leu-Ser-Vai-Ser-Tyr-Ser-Tyr­

Ser-Vai-Ser-Trp-Ser (2W 4Y02). 

The synthesis of peptide (2) 2W4Y02 followed all the steps described above for 

the synthesis ofpeptide (1) 6Y01, except steps 5 and 15, which are as follows: 

5tb step: coupling of the Fmoc protected pseudo proline dipeptide 

tryptophan-serine. Following the addition of Fmoc-Trp(Boc )-Ser( 'I'Me,Mepro )­

OH (0.098 g, 0.15 mmol, 5 eq), PyBOP (0.078 g, 0.15 mmol, 5 eq), DIPEA 

(0.026 g, 0.15 mmol, 5 eq) and HOBt (0.023 g, 0.15 mmol, 5 eq) in DMF (2.5 

ml), the mixture was agitated ( 400 rpm) under a N2 atmosphere for 90 min at 

room temperature. 

The resin was then filtered and washed 3 times by each time mechanically 

shaking the resin (at 400 rpm) for 1 min in DMF (2 ml) and filtering. Fmoc 

deprotection and subsequent washing were then carried out. 

15th step: coupling of the Fmoc protected pseudo proline dipeptide 

tryptophan-serine. As described above in step 5(2). 

(3) Synthesis of cyclo-Asn-Giy-Asn-Vai-Ser-Leu-Ser-Vai-Ser-Tyr-Ser-Tyr­

Ser-Vai-Ser-Lys-Ser-Asn-Giy-Asn-Vai-Ser-Leu-Ser-Val-Ser-Tyr-Ser-Tyr­

Ser-Vai-Ser-Lys-Ser (2K4Y03) 

The synthesis of peptide (3) 2K4Y03 followed all the steps described above for 

the synthesis of peptide (1) 6Y01, except steps 5 and 15, which are as follows: 

5tb step: coupling of the Fmoc protected pseudo proline dipeptide lysine­

serine. Following the addition of Fmoc-Lys(Boc)-OH (0.089 g, 0.15 mmol, 5 

eq), PyBOP (0.078 g, 0.15 mmol, 5 eq), DIPEA (0.026 g, 0.15 mmol, 5 eq) and 

HOBt (0.023 g, 0.15 mmol, 5 eq) in DMF (2.5 ml), the mixture was agitated (400 

rpm) under a N2 atmosphere for 90 min at room temperature. 
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The resin was then filtered and washed 3 times by each time mechanically 

shaking the resin (at 400 rpm) for 1 min in DMF (2 ml) and filtering. Fmoc 

deprotection and subsequent washing were then carried out. 

15th step: coupling of the Fmoc protected pseudo proline dipeptide lysine­

serine. As described above in step 5(3). 

( 4) Synthesis of cyclo-Asn-Giy-Asn-Vai-Ser-Leu-Ser-Vai-Ser-Cys-Ser-Tyr­

Ser-Vai-Ser-Tyr-Ser-Asn-Giy-Asn-Vai-Ser-Leu-Ser-Vai-Ser-Cys-Ser-Tyr­

Ser-Vai-Ser-Tyr-Ser (2C4Y04) 

The synthesis of peptide ( 4) 2C4 Y04 followed all the steps described above for 

the synthesis of peptide (1) 6Y01, except steps 8 and 18, which are as follows: 

8th step (a): coupling of the Fmoc protected cysteine. Following the addition 

of Fmoc-Cys(tBu)-OH (0.088 g, 0.15 mmol, 5 eq), PyBOP (0.078 g, 0.15 mmol, 

5 eq), DIPEA (0.026 g, 0.15 mmol, 5 eq) and HOBt (0.023 g, 0.15 mmol, 5 eq) 

in DMF (2.5 ml), the mixture was agitated (400 rpm) under a N2 atmosphere for 

90 min at room temperature. 

The resin was then filtered and washed 3 times by each time mechanically 

shaking the resin (at 400 rpm) for 1 min in DMF (2 ml) and filtering. Fmoc 

deprotection and subsequent washing were then carried out. 

8th step (b): coupling of the Fmoc protected serine. Following the addition of 

Fmoc-Ser(tBu)-OH (0.057 g, 0.15 mmol, 5 eq), PyBOP (0.078 g, 0.15 mmol, 5 

eq), DIPEA (0.026 g, 0.15 mmol, 5 eq) and HOBt (0.023 g, 0.15 mmol, 5 eq) in 

DMF (2.5 ml), the mixture was agitated (400 rpm) under a N2 atmosphere for 90 

min at room temperature. 

The resin was then filtered and washed 3 times by each time mechanically 

shaking the resin (at 400 rpm) for 1 min in DMF (2 ml) and filtering. Fmoc 

deprotection and subsequent washing were then carried out. 

18th step (a): coupling of the Fmoc protected cysteine. As described in step 

8(a)(4). 

18th step (b): coupling of the Fmoc protected serine. As described in step 

8(b)(4). 
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11.3.2.2. Allyl ester deprotection and cyciisation. 
Following peptides synthesis (1-4), deprotection was carried out on the allyl ester 

protected aspartic acid residue and then all peptides were cyclised in situ. 

Allyl ester deprotection. The resin was washed 3 times in DCM (2 ml) by each 

time mechanically shaking the resin (at 400 rpm) for 2 min and filtering. A 

solution of Tetrakis(triphenylphosphine) Palladium(O) catalyst (0.051 g, 0.044 

mmol) dissolved in a chloroform (1.38 ml), acetic acid (0.075 ml), N­

methylmorpholine (0.037 ml) solution was added to the resin with DCM (2 ml) 

and was mechanically shaken (at 400 rpm) for 2 hours under a nitrogen 

atmosphere. The resin then was filtered and a solution DIPEA (0.026 g, 0.15 

mmol) in DMF (3.3 ml) was added to the resin and mechanically shaken (at 400 

rpm) for 5 min before filtering the resin again. A solution of sodium 

diethyldithiocarbonate (0.013 g, 0.058 mmol) in DMF (2.5 ml) was then added to 

the resin, which was mechanically shaken (at 400 rpm) for 15 min under a 

nitrogen atmosphere. The resin was then filtered and washed twice by each time 

mechanically shaking the resin (at 400 rpm) for 2 min in DMF (3 ml) and 

filtering. 

Cyclisation. A solution of DIPEA (0.026 g, 0.15 mmol), HOBt (0.023 g, 0.15 

mmol) and PyBOP (0.078 g, 0.15 mmol) in DMF (3 ml) were added to the resin 

and mechanically shaken (at 400 rpm) for 5 hours at room temperature under a 

nitrogen atmosphere. The resin was then filtered and washed 14 times, 4 times in 

DMF (1.5 ml), 5 times in methanol (2 ml) and 5 times in DCM (2 ml) by each 

time adding the required amount of solvent and mechanically shaking the resin 

(at 400 rpm) for 1 min before filtering. The resin was then allowed to dry for 30 

min under a nitrogen atmosphere, before being carefully removed from the 

automated peptide synthesiser and weighed out into clearway extraction units for 

peptide cleavage. The amount of crude peptide (with attached resin) obtained 

was 194 mg for peptide 6Y01, 182 mg for peptide 2W4Y02, 195 mg for the 

peptide 2K4Y03 and 180 mg for peptide 2C4Y04. 
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11.3.2.3. Peptide cleavage from the resin and side cham deprotection. 

Cleavage and final deprotection were carried out on aliquots of 50 mg (peptide 

with resin) at a time. A solution of TF A (0.95 ml), H20 (0.025 ml), EDT (0.025 

ml) and Tis (0.01 ml) was added to each aliquot of peptide with resin (50 mg) in 

a clearway extraction unit and gently shaken (in a table top shaker) for 4 hours. 

The solution was then filtered under reduced pressure and the filter was washed a 

further 3 times with TF A (0.5 ml) to remove any residual peptide from the resin. 

The filtrate containing the peptide was collected in a centrifuge tube and the 

peptide was precipitated out of solution by drop wise addition of a 1 0 fold 

volume of diethyl ether cooled over ice. The peptide solution was then 

centrifuged (in a table top centrifuge, 14,000 x g for 10 min). The supernatant 

was slowly decanted off and discarded. The pellet was dried to a constant weight 

under vacuum before being dissolved in HFIP (0.5 mg mr1
) and filtered to 

remove any insoluble material from the solution. 

H.3.2.4. Purification. 

The peptide in HFIP (0.5 mg mr1
) was injected by aliquots of 100 J!l per run, 

into an analytical C8 Supelco column of dimensions, 250 x 4.6 mm, 5 J.liD with 

C8 silica packing and a pore size of 100-300 A. 
The HPLC unit was composed of a Perkin Elmer series 200 pump with Gilson 

sample injection and dilutor with programmable keypad (231XL).The UV 

detector was a Waters ™ 486, Tunable Absorption Detector. 
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The HPLC conditions, the solvent gradient and flow rate are detailed below 

(Table 11.2.1). The optimised separation method used a multi solvent system with 

solvents: (A) 10 % HFIP/TFE; (B) 0.1 % TF A/acetonitrile and (C) 0.1 % 

TF A/water. The temperature of the column was maintained at 30 °C throughout 

the run and the UV detector was tuned to a wavelength of274 nm. 

Step Time Flow rate Solvent system Gradient 
(minutes) (ml I minutes) 

A% B% C o/'o 

0 0.5 0.7 90 0 10 none 

1 6 1.0 80 10 10 linear 

2 5 1.0 10 80 10 linear 

3 3 1.0 0 100 0 none 

4 6 1.0 90 0 10 linear 

5 0.5 1.0 90 0 10 none 

Table 113.1. Optimised RP-HPLC conditions for the synthetic cyclic peptides. 

Fractions corresponding to the area under each distinct peak were collected and 

the solvent was removed using a rotary evaporator. The dried samples were then 

redissolved in TFE, which produces less interference than HFIP with the UV 

absorbance spectra of the peptide. 

11.3.2.5. Determination of peptide concentration. 

UV spectra were obtained on a UNICAM 2 UV-Vis dual beam 

spectrophotometer in quartz UV cells with a path length of 1 em. A reference cell 

containing the background solution (TFE) was run in parallel to the sample cell 

and then automatically subtracted (UNICAM /vision software) from the sample 

spectrum. Samples were scanned over a wavelength range of 190 to 300 nm. 
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Peptide concentration was determined from the UV absorbance of the peptide at 

280 nm using the Beer Lambert law. The residue extinction coefficients at 280 

nm, for the tyrosine, tryptophan and cystine residues, used in the calculation, 

were 1280, 5690 and 120 Moles·1 cm-1respectively.67 The number of tyrosine, 

tryptophan and cystine residues in the peptide sequence were counted, multiplied 

by the appropriate extinction coefficient for each type of residue and then 

summed to give the extinction coefficient (€ 28onm) for the whole peptide: 

N° of residues in the sequence multiplied by Overall E 280 om 

Peptide E 280 om for the residue: for the peptide 

1'yr Trp Cys-Cys 

6Y01 6*1280 = 7680 0 0 7680 Moles"1 cm-1 

2W4Y02 4*1280 = 5120 2*5690 = 11380 0 16500 Moles-1 cm-1 

2K4Y03 4*1280 = 5120 0 0 5120 Moles-1 cm-1 

2C4Y04 4*1280 = 5120 0 2*120 = 240 5360 Moles-1 cm-1 

Table /1.3.2. Calculation of the extinction coefficient for the analogous cyclic 

peptides for UV absorption at a wavelength 280 nm. 
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H.3.2.6. Analysis by mass spectrometry. The Electrospray Mass Spectrometry 

was carried out on a Micromass LCT and Matrix Assisted Laser Desorption 

Ionisation Mass Spectroscopy was performed on a MALDI Voyager mass 

spectrometer. 

11.3.2.7. Positive electrospray ionisation. ESI+ MS was performed on the 

purified cyclic amphiphilic peptide( 6YO 1) dissolved in TFE. A series of multi 

charged ions of the correct mass for the peptide. Mr: 3590 g mor1 were 

produced. 

ES:t MS: 740 rnlz [(M + SNa+)/5] 15 %; 620 mlz [(M + 6Nal/6] 20 %; 

535 m/z [(M + 7Nall7] 12 %; 471 [(M + 8Nal/8] 10 %; 421 m/z 

[(M + 9Nal/9] 22%. 

11.3.2.8. MALDI MS. The matrix, which was either HABA or sinapinic acid was 

dissolved at a concentration of 10 mg m1"1 in HFIP with 0.1 % TF A and 

vortexed. The supernatant was premixed with the peptide also dissolved in HFIP 

(-1 mg m1"1
) in molar ratios ranging from 1:140 to 1:14,000. A 1 J.ll drop of this 

solution was then spotted on to a stainless steel, 100 well sample plate to dry. 

The sample tended to spread quite extensively over the plate and had to be 

concentrated by carefully spotting again on top of the dry sample. 

11.3.2.9. Preparation of Tetrakis(triphenylphosphine) Palladium(O). 

Palladium dichloride (0.44 mg. 2.5 mmol) and triphenylphosphine (3.27 g. 12 

mmol) were added to 30 m1 of dimethyl sulfoxide and stirred in a flask equipped 

with a condenser. The mixture was heated in an oil bath to above 140 °C under 

nitrogen, until completely dissolved. The bath was then removed and the solution 

was further stirred for 15 minutes. Hydrazine hydrate (0.5 g, 10 mmol) was 

rapidly added by syringe and the resulting dark mixture was left to cool to room 

temperature under nitrogen. 

The reaction mixture was then filtered and the solid obtained was washed with 2 

x 2 ml aliquots of ethanol and again with diethyl ether; then dried under nitrogen 

before being stored in a freezer under argon. 
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The yellow crystalline product weighed 2.57 g (68% yield). 

Calculated elemental composition for CnH60PdP4: C: 75.88; H: 5.25; P: 10.75. 

Found: C: 75.62; H: 5.54; P: 10.68. 

11.3.2.10. Preparation of the quaternary ammonium ion, 

[2-(acetylamino)ethyl]trimethylammonium iodide for peptide derivation. 

11.3.2.10.1. Preparation of trimethylamine anhydride. 

A saturated solution of Sodium hydroxide (1 0.2 g, 0.26 mol) in H20 was added 

to trimethylamine hydrochloride (25 g) and stirred over a hot (50 °C) bath. A 

cold trap (C02/ Acetone) and drying guard, filled with K2C03, were connected by 

a condenser to the reaction flask. 

Trimethylamine (bp. 3-4 °C) was collected (6.2 g) in the trap and stored in a 

freezer over K2C03. 

11.3.2.10.2. Preparation of N-trimethyl-1,2-diaminoethane. 
Trimethylamine ( 4.22 g, 0.072 mol) was added slowly to a solution of 2-

Bromoethylamine hydrobromide (5 g, 0.024 mol) in a methanol (6 ml) and 

stirred for 30 mins over an ice bath. 

The mixture was centrifuged; the solid by product, trimethylamine bromo 

hydrate was separated from the solution and discarded. The solvent was removed 

from the supernatant on a rotary evaporator, leaving behind an oily product 

which was then mixed with a 50 % methanol: 50% isopropanol solution and 

then neutralised (monitored by pH paper) with hydriodic acid. After removing 

the solvent under reduced pressure, a cream coloured solid, N-trimethyl-1,2-

diaminoethane (1.9 g, 21 %yield) was obtained. 
1H-NMR (300 MHz): 4.67 (s, D20); 3.52 (t, 2H); 3.41 (t, 2H) and 3.08 (s, 9H). 
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11.3.2.10.3. Preparation of [2-(acetylamino)ethyl]trimethylammonium 
iodide. 
Two methods were used to prepare [2-(acetylamino)ethyl]trimethylammonium 

iodide. 

Method 1.: A solution of sodium hydroxide (0.089 g; 2.28 mmol) in ethanol (1.5 

ml) was added to a stirred solution of N-trimethyl-1, 2-diaminoethane (0.3 g; 

1.14 mmol) in 20 mL of ethanol. lodoacetyl chloride (0.46 g; 2.28 mmol) was 

added to the mixture over an ice bath and the mixture was stirred for 30 mins. 

The solvent was evaporated under reduced pressure and the solid obtained was 

recrystallised from ethanol. The creamy-white crystals (0.47 g, 57% yield) were 

washed in methanol. 

Method 2.: N-trimethyl-1,2-diaminoethane (0.3 g) was suspended in DMF (20 

mL) and trimethylamine (0.23 g, 3.9 mM) was slowly added under a flow of 

nitrogen over an ice bath. Iodoacetyl chloride (0.46 g; 2.28 mmol) was slowly 

added to the mixture and stirred for 30 mins. A precipitate formed on addition of 

diethyl ether to the solution and was filtered before drying under reduced 

pressure; a creamy white solid (0.42 g, 42 % yield) was produced. 

The mass spectrum data strongly suggested the presence of both chloride 

products and 

[2-( acetylamino )ethyl]trimethylammonium iodide. 

ESr MS: 271 rn/z [(CH3)J"N\CH2)2 NCOCH2I] (92%); 179 rn/z 

[(CH3)3W(CH2)2NCOCH2Cl] (100%). 

Separation was readily achieved by addition of the crude product (0.24 g, 1.5 

mmol) to a solution ofDMF (5 ml) and sodium iodide (0.22 g, 1.5 mmol) stirring 

for 30 mins and then filtered to remove the resulting sodium chloride by-product. 

The solvent was evaporated under reduced pressure to give the pure iodide form 

of the compound. 

ESr MS: 271 rn/z [~] 100% and 212 rn/z [~- (CH3)3N] 58%. 
1H NMR (300 MHz): 4.67 (s, D20); 3.64 (s, 2H, CH3-CO); 3.58 (t, J =5.8, 2H); 

3.39 (t, J=5.8, 2H) and 3.04 (s, 9H, N(CH3)3). 

Melting point: 176 °C (Literature Mp: 176-177 °C). 
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11.3.2.10.4. Derivatization of peptides. The peptide (6Y01) (2 mg, 5.6 x 10'7 

mol) was added to 12 equivalents of [2-(acetylamino)ethyl]trimethylammonium 

iodide (1.8 mg, 6. 72 x 10-6 mol) and 12 equivalents of Et3N (0. 7 mg, 6. 72 x 1 0-6) 

in 0.6 ml of a 1 :3 solution of TFE and water. The mixture was heated to 30 °C 

and stirred for an hour. The solution was then filtered and the solvent removed 

from the filtrate under reduced pressure. The reaction vessel was kept covered to 

prevent exposure to light. 

11.3.3. Analytical methods. 

H.3.3.1. Unilamellar vesicles of phospholipids. 

ULVs were prepared by evaporating a lipid solution from CHC13 (1 mg mr1
) to 

dryness under vacuum to form a thin film and hydrating the film with pure water 

or a 10 mM Tris-150 mM NaCl buffer (adjusted to pH 7.4). The mixture was 

vortexed until complete lipid dispersal had been achieved and was then 

submitted to 5 cycles of freeze-thawing between -195 and 30 °C. Following this 

treatment the lipid suspension was extruded 1 0 times through a polycarbonate 

membrane (Whatman) with a pore size of 100 nm in diameter using a 

thermobarrel extruder (Lipex Biomembranes) at 30 °C. 

H.3.3.2. Circular dichroism (CD). 

The data was collected at a scan speed of 50 nm min"1 on a Jasco J-810 

spectropolarimeter and averaged over 6 runs. A background spectrum was run 

before collecting the data for a sample, using the same cell in a same orientation 

and with the same solvent composition as that in which the peptide sample was 

collected. The background also averaged over 6 runs was subtracted from the 

sample spectrum, which was then corrected for baseline. 
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The resulting data was converted to mean residue ellipticity units: 

[9] = 9/(IO*Cp*n*l) 

where e is the ellipticity; Cp is the molar concentration; n is the number of 

residues in the peptide and I is the cell path length. 

All data processing was performed using the Jasco software. The quartz cell used 

for the CD measurements of the peptide in water and in buffer-TFE solutions had 

a 1 em path length and for peptide-EPC mixtures, the cell path length was 1 mm. 

11.3.3.3. Linear Dichroism. 

The peptide 6Y01 was added to a final concentration of 0.4 mg mL-1 to a 1 mg 

mr1 solution ofEPC vesicles (100 nm in diameter) extruded in pure HPLC grade 

water. The solution was mixed by vortexing and was then refrigerated for at least 

an hour before collecting the linear dichroism spectra. 

The instrument used was a Jasco J-715 circular dichroism spectropolarimeter, 

which was adapted for flow LD measurements. The rotation speed used in the 

experiment was - 1 000 rpm, chosen as to avoid bubble formation in the 50 J.!L 

CaF2 Couette cell.68 The data was collected and averaged over 64 runs. The LD 

base line was measured on the same sample again over 64 runs but without cell 

rotation and was then subtracted from the sample spectra. All data processing 

was performed using the Jasco software. 

11.3.3.4. Differential Scanning Calorimetry. 

The template peptide 6Y01 dissolved at a concentration of 15 J.!M in TFE (1 ml), 

was added in predetermined volumes of 100 J.!L, 40 J.!L and 1 0 J.!L to aliquots of 

lipid (5 mg) dissolved in chloroform (200 f.lL); the solvent was removed on a 

rotary evaporator with the dried peptide-lipid mixtures forming a thin film 

around the inside of the flask and then further dried under reduced pressure for 3 

hours. The peptide-lipid samples were then hydrated with 100 J.!L of pure water 
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by constant agitation using a vortex-mixer until all the sample film had desorbed 

before being submitted to at least 5 cycles of freeze-thawing to anneal the 

peptide-lipid solutions. 

The sample solution was pipetted into tared pans and weighed before the pans 

were sealed for DSC analysis. Each sample was scanned a minimum of 6 times 

to allow for equilibration on a Perkin Elmer Pyris1 DSC. The peptide-DMPC and 

peptide-DPPC samples were scanned from 6 to 26 °C and 6 to 48 °C 

respectively, at a rate of 2 °C 

min-1
• Data processing was performed using the software Origin (OriginLab, 

Aston scientific, version 7 .5) 

11.3.3.5. Transmission Electron Microscope. 
The peptide dissolved (0.5 mg mr\ in a 30 % HFIP-1 0 mM tris-150 mM NaCI 

buffer (pH 7.4) solution, was spotted (2 J.LL of peptide solution) onto a carbon 

coated copper grid (Agar scientific) and left in air; after 30 seconds, excess 

solution was withdrawn with blotting paper form the edge of the grid and a 2 % 

(v/v) solution of uranyl acetate (Agar scientific) was spotted onto the grid, which 

was again left for about 30 seconds before withdrawing the excess as before. 

The sample grid was then analysed in a H-7200 Hitachi TEM and imaged at 100 

KV using x 60 K to x 100 K magnifications. 
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Chapter III 

Ill.!. Two dimensional (2D) crystallisation of membrane 

proteins. 

The series of synthetic amphiphilic peptides were designed to adopt P-sheet 

structures and potentially self assemble in lipid bilayers by forming pores with a 

P-barrel conformation. A previous study using fluorescence marker release 

experiments, in which a marker was encapsulated into a liposome, showed that 

on addition of these peptides, liposome integrity was effectively disrupted and 

the marker released; this was a clear indication that these peptides could form 

pore structures in lipid bilayers. 1 A popular method for investigating protein 

assemblies in membranes is 2D crystallisation, which can leads to densely 

packed highly ordered assemblies in lipid vesicles. A microscopy study of 

membrane proteins in crystalline arrays would enable the position of proteins 

relative to each other; their orientation in the membrane, as well as protein­

protein and protein .. lipid interactions to be determined whilst the protein is in its 

functional or biologically active state. 

The P-barrel channel forming moiety of an autotransporter protein was 

overexpressed for use in 2D crystal trials in order to both provide comparison of 

a natural P-barrel system and to investigate the crystallisation process before 

attempting 2D trials on the synthetic amphiphilic peptides. 

The number of membrane proteins that have been characterized to atomic 

resolution is very small and although genomic studies show that over a quarter of 

the proteins in any living cell are membrane proteins, the three dimensional (3D) 

structures of around 100 membrane proteins only have been determined by X·ray 

diffraction compared to several thousands of soluble proteins? 

This large decrepency is due to difficulties associated with the expressmn, 

purification and stability of membrane proteins (Fig.III.l.l) in sufficient 

quantities for crystallisation as their amphiphilic nature can be a considerable 
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handicap and in addition most membrane proteins form oligomeric complexes 

with high molecular weights, which can put them outside the range of current 

NMR structural studies, although progress is being made in this area on both 

protein solutions and 2D crystal arrays. J,4,s 

A powerful alternative approach is to investigate and solve membrane protein 

structures by electron diffraction which relies on the reconstitution of membrane 

proteins in presence of a lipid bilayer to form well ordered protein arrays, 2D 

lattices. 

Membrane proteins 

Peripheral 

Lipid bilayer 

Integral 

Figure Illl.l. Schema of membrane proteins in a lipid bilayer. 

Lipid 
anchor 

High resolution information is obtained from the position of the protein 

molecules in the unit cells of these 2D crystal structures and may be precisely 

determined by the crystal lattice vectors with the aid of computer programs such 

as ALLSPACE. 6 

2D crystal formation is largely due to hydrophobic interactions whereas 3D 

crystal growth is predominantly governed by hydrophilic interactions. 

Detergents are heavily involved in solubilisation and purification of membrane 

proteins (Fig.III.l.2) and to different extents in both 3D and 2D crystallisation 

processes. 3D crystals are grown from isotropic detergent solutions in which 
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each protein molecule is incorporated into a detergent micelle, the detergent 

molecules mask the hydrophobic regions of the protein which are normally 

hidden in the membrane. This leads to formation of crystals with a high content 

of detergent, whose size and structure depend on the physical properties and size 

of the detergent molecules used in the process. For example, detergents which 

form small micelles often cause more disruption than detergents that form larger 

micelles, but can fit better into a crystal lattice as they allow closer contact 

between the proteins. 

membrane 

~ Protein with 
"e bound deterger 

Figure //11.2. Representation of membrane protein solubilisation 

by detergent molecules. 

During 2D crystallization, the protein is only exposed to high levels of detergent 

for a limited period of time, which favours the formation of more stable protein 

structures as the crystal contacts are predominantly hydrophobic in 2D crystals, 

especially for the smaller membrane proteins. The ease with which some 

membrane proteins adopt well ordered crystalline arrays depends very much on 

the properties of the membrane protein itself. A high degree of intrinsic 

molecular symmetry and a tendency to form only heterogeneous oligomers are 

factors that are more likely to favour crystalline growth. 7 

The proteins that are found in bacterial, mitochondrial or chloroplast membranes 

pack tightly together and tend to form 2D crystals more readily, as the 

electrostatic repulsion and steric hindrance constraints are lower in these 

systems. 
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Furthermore electrostatic interactions caused by polar groups such as lysine side 

chains and N termini can be reduced by reaction of the free amine group with 

reagents such as N-hydroxy succinimides, isothiocynates and acetic anhydride. 7 

HI.1.1. Properties of membrane proteins. 

Progress in determining high-resolution structures of membrane proteins has not 

yet gained a steady pace; this is essentially due to the difficulties associated with 

their manipulation and in particular crystallization, resulting from properties such 

as solubility, purity, refolding, final concentration, aggregation and stability.8 

111.1.1.1. Quantities. 

A major handicap is to overexpress and purify the membrane proteins in 

sufficient quantities for structural analysis: In 2D crystal assays, protein 

concentrations from 1 to 5 mg mr1 are sufficient for successful trials but 

considerably higher concentrations of pure protein are required for 3D crystal 

growth. 

111.1.1.2. Purity. 

The purity of the protein is of prime importance in a crystallisation process 

because as the protein crystallises, the concentrations of impurities in the solution 

increases and will then interfere with crystal lattice formation. For large 2D 

crystals of a sufficient quality for electron diffraction studies, the purity of the 

starting material is just as important as in 3D crystallizations. 
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111.1.1.3. Aggregation. 

Membrane proteins especially those that favour fJ-sheet structures have a higher 

tendency to aggregate than other types of proteins.9 The production of soluble 

active proteins from expression in prokaryotes such as E. coli is difficult, as 

overexpression favours the formation of aggregates of misfolded, non functional 

protein, such as inclusion bodies. 10 

111.1.2. The purification process. 

Although the protein from an inclusion body is fairly easy to purify, its 

solubilisation requires strongly denaturing conditions such as high concentrations 

of urea or guanidine which are not compatible with a subsequent refolding 

process. 11 Purification of the protein is commonly carried out by 

chromatographic separation methods. A high degree of purity may be reached by 

adding a short chain of polyhistidine residues, a His•tag, to the protein through 

gene modification techniques; the protein will then specifically bind a nickel­

chelated nitroacetic acid (Ni2
+ •NTA) resin via the His-tag (Fig.III.1.3). 12

•
13 

Figure 1/Ll.J. Diagram of the interaction between the histidine residues on a 

tagged protein with a Ni2
+ ion on a Ni-NTA column. 
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The histidine structure contains an imidazole ring (Fig.III.1.4) that chelates 

through its less sterically hindered nitrogen atom to nickel ions on the Ni=NT A 

resm. 

0 

II 
H2N-CH-C-OH 

I 
CH:z 

Histidine Imidazole 

Figure Illl.4. Diagram showing the structure of histidine with its imidazole ring 

Imidazole in high enough concentration (100-250 mM) acts as a competitor for 

the binding sites on the nickel affinity column and displaces the histidine tag as 

its concentration is increased in the buffer. The His-tagged protein should then 

elute with a high degree of purity from the column. There is some speculation as 

to whether the His-tag could interfere to some degree with the formation of well 

ordered 2D crystals. 10 

Purification can also be carried out on an ion exchange column if the protein has 

a suitable isoelectric point (IP) and is solubilised in high concentrations of urea; 

the bound protein is eluted from the column by increasing the ionic strength of 

the mobile phase. 

After purification the protein may be refolded, either by slowly dialysing out the 

denaturant with an appropriate buffer, which may contain mild detergents, or by 

refolding in situ whilst still bound to the chromatographic column. 10 
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The folding conditions such as the protein concentration, the rate of denaturant 

removal, the temperature profile and the addition of detergents, salts and 

reducing agents like DTT, which breaks disulphide bridges, must be controlled in 

order to both minimize aggregation and to optimize refolding. 

Aggregation is less likely to occur if the denaturant concentration is lowered 

quite rapidly in the presence of a mild detergent such as Triton X· 100 at low 

temperatures (4°C). This enables the protein to be dispersed and refolded before 

aggregation can occur to any great extent. The presence of any residual 

denatured protein as well as aggregates can greatly disrupt the formation of 

coherent crystalline patches. 

The yeast mitochondrial outer membrane protein Tom40 was refolded by 

dilution and incorporation into liposomes. 14 The refolding process of the light 

harvesting complex II from pea was performed whilst the protein was bound to a 

Ni-NTA column via a His-tag because the dilution method did not produce the 

functional form ofthe protein. 15 

111.1.3. 2D crystallisation. 

The most common method for growing 2D crystals is by detergent dialysis in 

presence of lipid. 7•
16 The purified protein is premixed with detergent and then 

added to a suspension of detergent-lipid micelles. This solution is then generally 

incubated at low temperature for a few hours to allow the lipid to equilibrate with 

the detergent-protein micelles before removal of the detergent. 

In addition to the purity and concentration of the protein, there are a range of 

other parameters that need to be considered when setting up a crystallisation: for 

instance the physical characteristics and concentration of the detergents, the 

protein-lipid ratio, the nature of the lipids, the pH and ionic strength of the 

solutions, the temperature profile and the length of time for crystallisation. All of 

these need to be optimized specifically for each protein. The best initial 

conditions are generally found by trial and error; therefore ready access to an 

electron microscope for routine scanning of the dialysis solution to monitor 
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crystal growth is essential. These initial conditions are then used as the starting 

point for further optimization. 

Typical 2D crystal growth resulting from the dialysis of detergent solubilised 

membrane proteins produces an array (Fig.III.1.5) in which the protein molecules 

are oriented at 180° to each around a 2-fold axis in the plane of the membrane. 17 

Lipid 
bilayers 

Figure //11.5. Schematic diagram of membrane protein crystals in cross section. 

Depending on the size of the protein molecules, the thickness of the crystals can 

range from 5 to 20 nm with crystalline patches generally growing up to a few 

microns in diameter. These are often composed of two superimposed crystal 

lattices one from each of the two layers of the bilayer. 

111.1.3.1. Lipids used in reconstituted membrane environments. 

The 2D crystallisation process relies on the insertion of protein into a lipid matrix 

that should ideally mimic the original membrane environment and the subsequent 

rearrangement of these protein-lipid arrays into highly ordered structures. The 

choice of lipid therefore, may be determined by the properties of the natural 

membrane lipids.18 
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Unsaturated lipids with long chain lengths may be required for successful 2D 

crystal growth of eukaryotic membrane proteins, as the native lipid mixtures 

from eukaryotic cells contain a high proportion of fluid lipids, whereas proteins 

from prokaryotic membranes which are rich in saturated lipids, perform well in 

crystal trials with synthetic saturated lipids like DMPC (Fig.III.l.6). 19 
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Figure l/11. 6. Typical structure of a phosphatidylcholine lipid, 

dimyristoyl phosphatidylcholine (DMPC). 

The fluidity of the lipid membrane is governed by physical factors such as the 

length of the hydrocarbon chains, their degree of saturation and the size and 

charge of the lipid head groups. The most common lipids, used in a vast number 

of crystallisation processes, have been the saturated and unsaturated zwitteronic 

phospholipids;20 DMPC; E. coli phospholipid; Soybean PC; Egg PC and 

DOPC.21 These lipids preferentially form vesicular-bilayer structures in aqueous 

media that range from a few nanometers to several microns in size. 

Successful crystal trials have shown that 2D crystals start to form at temperatures 

above the gel to liquid crystalline phase, when the lipid is in a fluid state, giving 

the protein a greater degree of freedom to move and rearrange into ordered arrays 

in the lipid membrane. Protein-lipid ratios are difficult to predict as they depend 

both on nature and size of the protein and on the packing density of the crystals. 

2D crystals of porins, water filled channels spanning the outer membrane of 

Gram-negative bacteria have been formed at low lipid-protein ratios. 22 Larger 

membrane proteins like CaA TPases can accommodate a greater number of lipid 

molecules and will form crystal arrays at significantly higher lipid to protein 

ratios. 
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Excess lipid can be removed by treatment of the dialysis solution with 

phospholipase A2, which may improve the crystallinity of the protein arrays. 23 

The sample is incubated at 38°C for about 4 h to convert excess phospholipids to 

lysophospholipids, which are then removed by dialysis. 

The lipid to protein ratio is thought to have an effect on the size and shape of the 

crystal patches; for example a tendency to form vesicles rather than flat sheets 

has been reported in samples with high lipid content. 7 

111.1.3.2. Role and choice of detergent. 

Protein 2D crystallisation relies on detergents for both solubilisation of the 

protein and lipid molecules and for the reconstitution of the protein in a lipid 

bilayer through controlled removal of the detergent. 24 

There is a wide choice of detergents with a broad range of physical properties 

readily available for biomolecular work (see appendix for detergent property 

table) therefore selection of a detergent that is appropriate for a particular 

application and is compatible with the other reagent molecules involved in the 

process can be quite difficult. 25 

Detergents are generally classed in 3 groups, ionic, zwitteronic (Fig.III.l. 7) and 

non ionic. Ionic detergents which tend to affect protein structure more severely 

than the other types, may cause the protein to become denatured. Non ionic 

detergents which are milder than their zwitteronic counterparts can also affect 

protein stability to a degree so the choice of detergent also has to take in to 

consideration the sensitivity of a protein towards a particular detergent. 

A simple rule is that detergents with longer acyl chains and bulkier head groups 

tend to be less denaturing than detergents with shorter chains and smaller head 

groups. 

148 



Detergent molecules cover the hydrophobic surfaces of the protein and mask 

parts of the protein that would normally come into contact with the lipid head 

groups.26 

A choice has to be made between the use of a milder detergent with a bulky head 

group and a harsher detergent with a smaller head group but increased protein 

contact, unless the physical properties of different detergents can be combined by 

using a mixture of detergents in the crystallisation solution. 56 
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Figure Ill1. 7. Structure of zwittergent 3-12, n-decy/-N,N-dimethy/-3 -ammonio-

1-propanesu/fonate, a zwitteronic detergent with a CMC of2-4 mM 

Above a certain concentration, the critical micelle concentration (CMC), the 

detergent molecules associate in aqueous media to form micelles, with 

segregation of the hydrophobic chains and polar head groups. An equilibrium is 

established between the concentration of the monomers, which is independent of 

the overall detergent concentration and the micelles in solution (Fig.III.1.8). 

Monolayer 
[Detergent] above CMC 

Monomer 
[Detergent] below CMC Micelle 

[Detergent] above CMC 

Figure 1111.8. Diagram showing monomer- micelle equilibrium in aqueous 

solution. 
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The initial detergent concentration needs to be higher than the critical micelle 

concentration as detergent monomers can pass through the dialysis membrane 

quite freely and only the micelles will be retained within. 

Another important factor is the value of the critical micelle concentration itself, 

as this determines the rate of dialysis and by consequence the rate of crystal 

formation. 27 

Dialysis of detergents with low CMCs is much slower and easier to control than 

those with higher CMCs, as they may take several hours to reach dialysis 

equilibrium. A very gradual elimination of detergent from the dialysate is 

thought to promote 2D crystal formation by reducing the number of protein 

nucleation sites and favouring the growth of larger crystalline patches. 

A general trend is that detergents with bulky head groups tend to have higher 

CMC values than detergents with smaller head groups and for a given head 

group size, CMC values tend to decrease with chain length, but in the case of 

ionic detergents, this depends also on the counter ion and salt concentration of 

the dialysis solution. 

The most common detergents for biological applications are the milder non 

denaturing zwitteronic and non ionic detergents with either a sugar base or a 

polyoxyethylene head group (Fig.III.l.9). 28
•
29

•
30

•
31 

Figure II11.9. Structure ofTritonX-100, a non ionic polyoxyethylene detergent 

with a relatively low CMC of0.2 mM 
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In particular the sugar based detergents (Fig.III.1.1 0) are among the most popular 

type of detergent used with membrane proteins. 32
•
33 The crystallisation of the 

pore-forming a-Toxin protein, Staphylococcus aureus was performed using the 

sugar based non ionic detergent, octylglucoside. 17 

Figure //11.10. Structure of DDM, n-dodecyl-P-D-maltoside, a non ionic sugar 

based detergent with a low CMC of 0.15 mM 

Once a detergent has been selected, the conditions under which the dialysis is 

carried out require careful consideration and optimization, as their affect can be 

large enough to promote or even interfere with the crystallisation process. 

The most important parameters to set are the ionic strength and pH of the 

solutions, the temperature profile and the duration of the dialysis. 

111.1.3.3. 1'he ionic strength and pH of buffer solutions. 

Bound water molecules at the surface of a protein interfere with close protein­

protein and protein-lipid contacts and by consequence with the crystal growth 

process. Small molecules and ions perturb the specific arrangement of water 

molecules, the solvation forces around the proteins and even the protein 

conformation itself by inducing contact between protein molecules at specific 

sites with a lock and key type adhesion that induces directional growth in protein 

arrays. 

The presence of divalent cations are well known to promote the formaticm of 

filaments in proteins such as actin and tubulin, they act by defining a growth 

direction in 2D assemblies, where lock and key sites are thought to develop in 
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two directional assemblies of subunits. Enhanced protein-protein contact leads to 

a much greater degree of order in protein arrays and to the formation of highly 

crystalline patches. 56 

Addition of ions to the dialysis buffer also has a significant affect on the 

crystallisation of proteins that have large extra-membranous domains, by 

effectively screening any charged amino acids on the protein surface. 

Many proteins also require the presence of different additives in order to remain 

soluble, which may include metal cofactors, salts and co solvents such as 

glycerol, glucose and sucrose. Amphiphiles, like taurine are also used to help 

promote 2D crystal formation. 34 

Successful crystallisation of membrane proteins has been carried out at low ionic 

strengths and a neutral pH, as the risk of protein aggregation tends to increase at 

high ionic strength and at pH values above the isoelectric point of the protein. 35
,
36 

111.1.3.4. The temperature profile and the duration of dialysis. 

2D Crystallization protocols follow characteristic temperature profiles, often 

with an incubation period of up to a few hours at 4°C to allow for equilibration 

before the actual dialysis, which may start at room temperature for a period of 

several hours and then move to temperatures above 3 7°C for a day and more. 

As mentioned previously, temperatures above the main transition from gel to 

fluid state of the lipid are required for 2D crystal formation. This is centered at 

23°C for the fully saturated phospholipid, DMPC. 

The increase in temperature is thought to enhance the rate of 2D crystal 

formation by favouring both protein diffusion in the bilayer and hydrophobic 

interactions between the protein molecules. For the PhoE porin, increasing the 

temperature induced the formation of large 2D crystal sheets from smaller 

mosaic lattices. 37 

Temperature is also a significant factor for controlling interactions between 

detergent micelles. Those of the polyoxyethylene detergent, Triton x .. 100 

interact more strongly as the temperature is raised but micelles of sugar based 

detergents like octylglucoside merge as the temperature is lowered. These 
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different tendencies could be exploited by using a mixture of detergents in the 

protein crystallisation process. 

The average size of most 2D crystals lies in the range of 0.5 to 5 microns in 

diameter, as crystalline patches above this limit tend to break up due to thermal 

vibrations or fold up into rolls because of the inherent mechanical instability 

associated with large unsupported 2D structures. Once formed 2D crystals 

generally remain stable enough to be stored at 4°C for several weeks. 

IH.1.3.5. The mechanism of crystal formation from detergent solution. 

The detergent dialysis method for 2D crystal formation relies on mutual 

interactions between the protein, lipid and detergent molecules as well as 

significant contributions from buffers, salts and additives and any influence from 

parameters such as temperature and dialysis time. The crystallisation process is 

thought to involve several consecutive steps before well ordered protein-lipid 

arrays are formed. 

The lipid and protein molecules are premixed in appropriate ratios with 

detergent; this solubilises the molecules by forming mixed micellar structures in 

which the hydrophobic regions are shielded from the aqueous media. The 

detergent is then gradually removed by dialysis either into detergent free buffers 

or into a buffer with a lower concentration of detergent. A common way of doing 

this is to reduce the concentration of detergent in the buffer by halving it every 

few hours or by dilution with a peristaltic pump. The membrane protein should 

then integrate into the lipid membrane to form stable assemblies or arrays of 

protein and lipid. Formation of the lipid bilayers from lipid-detergent micelles 

may take place either before protein insertion or as the protein-lipid micelles 

merge on dilution of the detergent. 

The fmal step involves rearrangement of the protein-lipid arrays into well 

ordered 2D lattices through specific interactions with close protein-protein and 

protein-lipid contacts. 
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The insertion of membrane proteins into lipid bilayers is an energetically 

favourable process due to the tendency of the protein to adopt conformations that 

allow hydrophilic regions to remain in contact with the aqueous media on either 

side of the bilayer and hydrophobic regions to be hidden within the lipid interior. 

This whole process is entropically driven, with a net gain in entropy on 

segregation of protein and lipid hydrophobic areas from the surrounding aqueous 

media through formation of large vesicular or sheet like structures, since any 

exposed hydrophobic domains would force the aqueous molecules to adopt a 

non-random arrangement and thereby decreasing the overall entropy of the 

system.38 

Aggregation of the protein molecules, especially those with large protruding 

hydrophilic domains, can interfere and disrupt crystallisation, but this problem 

can be minimised if the protein-lipid and detergent ratios are adjusted correctly 

and appropriate dialysis conditions selected. 

The first 2D crystallisations to be carried out using the detergent dialysis method 

were on the membrane protein Cytochrome reductase from mitochondria of 

Neurospora crassa.39 A wide variety of 2D crystal growth trials have since been 

attempted on a number of membrane proteins in order to obtain crystal lattices of 

sufficient quality for structure determination by electron microscopy and even 

atomic force microscopy. 

No one set of crystallisation conditions will be successful for all proteins, which 

means that trials to establish the best conditions need to be carried out for each 

protein. 

Highly ordered 2D crystals of purified lactose "red" permease, membrane 

transporter protein were reconstituted in the presence of a mixture of saturated 

and unsaturated phospholipids solubilised in octyl•P,D-glucopyranoside (OG) 

and decyl-P,D-maltopyranoside (DM) detergents with sodium and magnesium 

chloride salts in the dialysis solution and produced. 11 

The best crystallisation conditions for the bacterial outer membrane protein, 

OmpF were achieved using a 1:1 protein to lipid ratio ofDMPC and a 1 % (w/v) 

solution of octyl-polyoxyethylene (CsPOE), a detergent with a high CMC and 

which is consequently easily dialysed. 
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Highly ordered 2D arrays of PhoE were produced following incubation with 

DMPC with a 4 fold excess of protein and 0.6 % (w/v) SDS under controlled 

dialysis conditions.40
'
41

'
42 

Whereas the best result for the Cytochrome bf/ complex from spinach purified 

protein was obtained by reconstitution with EPC and a phosphoglycerol lipid, 

DOPG solubilised in Hecameg, a non ionic detergent with a CMC value some 78 

times that of Triton X-100.43 

The detergent dialysis method is the most common and reproducible 2D 

crystallisation process although it is not by far the only or always the most 

appropriate method available. 

A range of other processes have been explored and some successfully developed 

in order to enhance the growth, stability, size and reproducibility of the crystal 

arrays.44 

111.1.3.6. Other methods for 2D crystallization. 

One method that has produced good results and which is gaining more and more 

scope is the use of solid supports to grow 2D crystal arrays in situ 

(Fig.III.1.11 ). 45 

Several techniques are currently employed to meet a variety of conditions: 

proteins can be engineered for anchorage to a film of functionalised or natural 

lipids spread at the air-water interface. Binding the proteins in this way forces the 

protein monomers to adopt a preferred orientation relative to the interface and 

will also induces high local protein concentration both of which are an advantage 

in 2D crystallisation trials. Proteins are frequently tagged with short sequences of 

histidine residues to aid in purification on a nickel affinity column however the 

His tag can also be used to crystallize membrane proteins on lipids derivatised 

with a Ni2+·chelating nitrilotriacetate (Ni·NTA) group.46
• 

47 This method is not 

without problems as the detergents used to solubilise the protein disrupt and also 

solubilise the lipid film therefore a detergent with a low CMC or a lipid with 

resistance to detergent solubilisation is required for successful crystallization. 
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A solution was developed by designing partially fluorinated lipids that show 

resistance to detergent solubilisation when spread at the aif .. water interface; this 

arises because alkane and perfluoroalkane mixtures are not miscible. 

Protein 
Immobilization 

) 
Detergent depletion 

Figure 111.1.11. 2D crystallisation of membrane proteins anchored to 

functionalisedjluorinated lipid spread at the air-water interface. 48 

2D crystalline arrays of a membrane protein, proton ATPase from plant plasma 

membranes, were successfully grown on functionalised fluorinated lipids spread 

at the air-water interface.48 

Another strategy for minimizing detergent solubilisation of the lipid film is to 

spread a layer of lipid in slight excess to that required for monolayer coverage 

over a detergent free buffer and to inject the protein detergent solution into the 

sub .. phase. In this way the lipid film is stable enough for crystallization to 

proceed.47 

Detergents with low CMCs can be especially difficult to eliminate by the dialysis 

method and can require quite lengthy dialysis times. Adsorption of the detergent 

with polystyrene Bio-Beads, which are neutral, macroporous polymeric beads 
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with high surface areas, provides a much quicker solution although this process 

also has its shortcomings in that the rate of detergent removal may be too rapid 

for crystal growth and lipid and protein molecules may also adsorb to the 

beads.49 

This method is becoming more popular as crystal trials have successfully 

employed Bio-Beads for the formation of highly ordered protein arrays of 

sarcoplasmic reticulum Ca2
+ ATPase, melibiose permease from E. coli and 

Cytochrome b6f from C. reinhardtii. 50 

111.1.4. Electron microscopy analysis. 

The choice of a 2D Crystallisation method and optimisation of the conditions is 

not straightforward or easily predictable as there are too many factors influencing 

the process. Therefore the crystallisation solutions will require routine scanning 

to establish the right conditions and adjust these to produce well ordered protein 

arrays. 

The best method for monitoring 2.0 <:rystal growth is by electron microscopy as 

sample preparation is both relatively simple and the quality of any protein-lipid 

arrays can be rapidly assessed. 51 

The two most commonly used electron microscopy techniques are scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM). 

UI.1.4.1. Scanning electron microscopy. 

Electron optics are very similar in design and use to light optics; electron 

microscopy (Fig.III.1.12) uses a beam of accelerated electrons instead of visible 

light. Rapidly moving electrons take on a wave like behaviour with wavelengths 

that are much shorter than those of visible light, by at least four orders of 

magnitude (typically 0.012 nm for electrons accelerated to 10 KeV), which 

means that samples can be resolved down to distances of less than a nanometre. 

157 



Because electrons are charged species they will be deflected by electromagnetic 

fields; this property is exploited in an electron microscope to focus and move the 

beam back and forth, thus effectively scanning the sample. 

,__~--Electron gun -----a 
~=-~- Gun alignment control __ .., 

Pneumatic air lock valve --
1-----Condenser lens ___ _ 

E~~--·-Objective a1)erture ---

::1~~-.--- Scanning coil 

Objective lens 

Figure 1111.12. Diagram showing the main parts of a scanning electron 

microscope. 

The electrons that strike the sample surface emit signals that are simultaneously 

detected and then converted to give a topographical image or detailed 

information about the sample composition depending on the type of detector 

used (Fig.III.l.13 ). Electrons are very much more strongly scattered by gases 

than light and therefore all the optical paths must be evacuated to pressures lower 

than 1 0"2 Pa. 
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The most widely used signal in SEM is from the secondary electrons which are 

detected by a scintillator (phosphor screen) photomultiplier system. 

SEM Setup 
Electron/Specimen Interactions 

When the electron beam strikes the sample, both photon am electron signals are 
emitted. 
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Figure Ill 1.1 3. Diagram showing the different signals and information that can 

be obtained in a scanning electron microscope. 

Briefly an electron strikes the scintillator and light is emitted, the light is then 

transmitted through a fibre optic cable and into a photomultiplier which converts 

photons into pulses of electrons. These are amplified and used to modulate the 

intensity of a cathode ray tube (CRT). 

111.1.4.2. Transmission electron microscopy. 

The electrons in this technique are transmitted through the sample and detected 

by a phosphor screen (a scintillator) which then relays the signal following the 

same process as in scanning electron microscopy. 
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Transmission electron microscopy routinely reaches very high magnifications 

which can resolve fine details of the internal structures in a sample and may even 

in some cases resolve features on a near atomic scale. 

The images obtained by TEM are 2D sections of the material studied, but it is 

also possible to carry out 3D reconstructions from data obtained by TEM. 

IH.1.4.3. Sample preparation for electron microscopy. 

The most common method for preparing samples for screening is by negative 

staining with for example a solution of 1-2% uranyl acetate, phosphotungstic 

acid or ammonium molybdate. 52 The high contrast of the protein against the 

heavy metals contained in the stains allows the 2D crystal lattice structures to be 

clearly visible by electron microscopy and if the protein contains small extra 

membranous domains that are not exposed beyond the lipid surface then a low 

concentration of detergent can be added for deeper stain penetration into the 

membranes providing a better contrast to any lattice structures. 53
•
54 

Negative staining does have a few disadvantages, amongst which are the risk of 

staining artefacts such as stain crystallisation and precipitation that can 

compromise and make interpretation of the sample quite difficult. There is a limit 

to the resolution that can be obtained with negatively stained specimens; samples 

prepared with an ionic negative stain or by metal shadowing have a resolution 

that will be limited by the grain size of the heavy metal ions outlining the 

structures. The limit is about 1.6 nm for uranyl acetate though this can be 

reduced to 1 nm when the stain is combined with glucose. 55 

It is therefore advantageous to also prepare unstained samples for comparison. 

Specimens can be fixed by cryo-EM, which consists of rapid freezing of pre­

treated samples and also offers some protection against the high vacuum 

conditions present in electron microscopy. Samples may be washed with a tannin 

solution and then frozen in liquid nitrogen or ethane before the sample is 

completely dry. Problems associated with this method are due to the low contrast 

between crystals and the surrounding buffer, the high radiation sensitivity of the 

samples prepared in this way and also beam induced movements. 
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The resolution of any features is limited by high background scattering from 

layers of vitrified buffer as well as some charging from the sample. 

Another technique is to freeze fracture the sample followed by heavy metal and 

carbon shadowing, but this is not a routine procedure and would not be 

convenient for screening. 54 

The state of the sample supports also needs to be considered; these generally 

consist of freshly carbon coated copper grids which tent to remain hydrophilic 

for a few days to a week before becoming more and more hydrophobic. In order 

to maintain affinity with the samples they can then be treated by a glow 

discharge process, which will reactivate the carbon. 

lll.1.4.4. Electron ditTraction. 

Electron diffraction patterns are relatively simple to record and can give a rapid 

assessment of the degree of order of the crystalline arrays. 56 

Large crystalline areas, from about 0.5 to 2 J.UU in diameter with tens of 

thousands of unit cells, depending on the lattice size and crystal packing density, 

are required for good diffraction patterns as the signal to noise ratio of the 

diffraction peaks increases with the square root of the number of unit cells. 

The structures of highly ordered protein-lipid arrays can be determined by 

electron crystallography from the unit cell dimensions and crystallographic 

symmetry. The images are also processed with a variety of imaging techniques 

such as Fourier transformation, which will average peak amplitudes and phases 

to generate a projection map from which information about crystal size, shape 

and symmetry can be obtained. 57
•
58 

A more complete picture of the structure can be attained by processing extensive 

series of 2D images recorded with a gradual variation in sample tilt angles and 

focus. 59 
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ill.1.5. Other techniques used for crystallographic studies. 

lll.l.S.l. Atomic Force Microscopy. 

Atomic Force Microscopy, AFM is a surface sensitive technique which can 

enable high resolution topographical images of biological structures to be 

observed under near physiological conditions using a solution cell.60
•
61 

This microscopy technique allows a sample to be imaged through interaction of a 

probing tip with the sample surface. The tip, which is attached to a cantilever, 

exerts a force on the surface of the sample through the atoms at the apex of the 

tip. 

In contact mode AFM, the deflections of the cantilever tip as it scans the surface 

of a sample are recorded by a detector. These deflections are recorded as a 

function of position and build up an image of the surface on the atomic scale. 
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Figure /111.14. Diagram showing the main features of contact mode AFM 
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Cantilever deflection is kept constant using a feedback loop, which adjusts the 

probe at each displacement or position to ensure that the force between the tip 

and the surface remains constant. 

The force is calculated from Hooke's law: F =- k x 

Where F is force; k is the spring constant and xis the cantilever deflection. 

111.1.5.2 Imaging conditions. 

Samples must be firmly attached to a solid support as scanning produces strong 

lateral movements, which could easily displace the sample and solutions from 

within the sample cell area. 62
•
63

•
64 A Sample support is typically a freshly cleaved 

mica disc glued to a steel stub, which is held magnetically in place, on the AFM 

stage. Another problem associated with contact mode AFM, is the ease with, 

which soft biological samples can be damaged by the tip ploughing through the 

sample surface. 

Tip-sample interactions also have to be enhanced in order to gain high resolution 

images; the double layer repulsion that exists between the tip-sample and the tip­

support can strongly affect the spatial resolution of the AFM. The electric double 

layer results from interactions at the solid-liquid interface and is composed of a 

firmly bound layer of ions at the surface of the solid, the Helmholtz layer and a 

diffuse ion cloud. 65
•
66 This double layer repulsion can be minimized by adjusting 

the electrolyte concentration in the sample solution.67 The solution salt 

concentration is important for both firm adhesion of the sample to the support as 

well as close contact between the AFM tip and the sample surface; optimum 

sample absorption to the support, require solutions with much higher salt 

concentrations (-300 mM for monovalent cations) than those required for high 

resolution sample imaging ( -150 mM). AFM is not a suitable technique for 

routine monitoring of 2D crystal formation, but on samples with tightly packed 

and highly ordered protein arrays of 2D crystals, nano to subnanoscale structural 

details can be imaged under optimimum conditions.68
·
69

•
70 
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111.1.5.3. X-ray diffraction. 

X -ray diffraction can be used to investigate the degree of order in 2D crystal and 

is an excellent method for determining accurate measurements of unit cell 

dimensions, but the amount of sample required needs to be quite concentrated 

(e.g. a few mgs of crystalline material). Samples are prepared by either pelleting 

the 2D crystal solutions by centrifugation or by drying layer after layer of sample 

on to a flat compatible surface.7 
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111.2. Natural P-barrel pore forming models for structural 

analysis: the BordeteUa pertussis autotransporter BrKA C­

terminal protein. 

Ill.2.1. Jintroduction. 

A key factor for the survival of bacterial is the ability to secrete proteinacous 

materials, such as virulence factors, adhesins or toxins, into host cells. 

Virulent proteins produced by Gram-negative bacteria face quite a challenge in 

order to leave the bacterial cell, as they must cross both an inner and outer 

membrane, as well as the periplasmic space and the peptidoglycan layer, in order 

to reach the cell surface.71
'
72 

Several different mechanisms for protein transportation have been described in 

Gram-negative bacteria and depending on the type of protein, these may follow 

either a two step process with secretion systems for the inner membrane and 

other mechanisms for the outer membrane or a one step transportation via a 

complex oligomeric structure spanning both membranes. The latter process, 

which may require activation on substrate binding, could enable protein injection 

directly into host cells may. 73 

Autotransporters are a family of secreted proteins, which contain within their 

own polypeptide sequence the basic units, required for translocation of part of 

the protein to the cell surface The virulence factors of significant human 

pathogens, such as the IgAl protease from Neisseria gonorrhoeae, Neisseria 

meningitides and Haemophilus injluenzae are known members of the 

autotransporter family. 12 

The autotransporter protein BrKA from Bordetella pertussis, a highly efficient 

bacterial pathogen responsible for causing whooping cough and mediating 

resistance to antibody dependent killing in humans, was selected as a model for a 

natural pore forming protein because of strong evidence suggesting that it adopts 

a P-barrel structure in the bacterial outer membrane. 74 
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Members of the autotransporter family have a generic or modular primary 

structure, which is composed (Fig. III.2.1) of 3 domains with very distinct roles; 

an N-terminal signal sequence of about 30 to 40 amino acids in length, a 

passenger domain (a-domain), which can exhibit sequences of over a 100 KDa 

(IgA1 protease), and a C terminus called the P-domain, which has a short a­

helical linker region of 21-39 amino acids and a multistranded P-barrel domain 

typically of 250-300 amino acids. The P-barrel domain, which forms a channel in 

the outer membrane through which the passenger proteins are exported to the cell 

surface, was found in general to consist of 14 antiparallel P-stands of 9 to 12 

residues each. 75
'
76 
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Figure Ill2.1. Diagram of the primary structure of an auto transporter. 

The role of the N-terminal signal sequence is to direct the autotransporter 

complex across the inner membrane, after which it is cleaved to the periplasm. 

The C-terminal domain is then thought to fold spontaneously in a 

thermodynamically favourable process, as it comes into contact with the lipidic 

non polar environment of the outer membrane, to form an aqueous P-barrel 

channel (Fig.III.2.2). 

The sequence of the C-terminal domain is highly conserved in all known 

autotransporters and has even been referred to as a structural hallmark for 

classifying this family of protein complexes. 77 

An a-helical linker region associated with the P-domain is thought to adopt a 

hairpin conformation on folding into the aqueous channel, as in the case of the 

autotransporter IgA and is believed to play a role in directing the passenger 

secretion through the channel onto the cell surface. 78 

The passenger· domain part of the autotransporter complex is the active agent or 

effector molecule that must be exported to the cell surface in order for it to carry 
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out its function, which could be that of an adhesin, toxin or an enzyme such as a 

protease, a peptidase, a lipase or an esterase. 

Once exported to the outer membrane surface the active passengers may be 

cleaved and released into the extracellular media or, as proposed in the BrKA 

autotransporter system remain anchored to the membrane surface possibly 

through the linker region of the C-terminal domain. 
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Passenger domain 
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Figure III2.2. Diagram showing insertion of outer membrane protein C-terminal 

domain into outer membrane. 79 

The dimensions of an autotransporter channel have been investigated using a 

polyhistidine tagged version of the C-terminal domain of the IgA protease from 

Neisseria gonorrhoeae. 12 Electron microscopy carried out on the negatively 

stained samples showed evidence of pore like structures with an inner diameter 

of about 2 nm and an outer diameter of about 9 nm. These channels would then 

be at least two and a half to five times smaller than those of other protein 

translocation systems and clearly indicate that large or bulky folded proteins 

would be very unlikely to fit through a channel of this size. This suggests that a 

passenger domain would have to adopt a non folded competent conformation 

appropriate for translocation through the channel and would then be subsequently 

refolded on the outer membrane surface. 
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As the unfolded passenger domain emerges from the outer membrane up to the 

bacterial surface, it begins to fold in a directional process from the C terminus to 

the N-terminus while using the junction region as a scaffold. 

The refolding process which leads to the active conformation is thought to be 

carried out with the help of an intramolecular chaperone contained within the 

polypeptide sequence itself adjacent to the beta domain.80 The barrel 

conformation of the channel affords a sufficiently stable structure to resist 

degradation and thus to remain in the outer membrane after translocation; this 

could lead to an accumulation of pores in the outer membrane and eventually to 

cell death. 

Ill.2.2. The outer membrane C-terminal domain of BrKA. 

Analytical and structural studies often require a large amount of pure protein, 

which can simply not be obtained by isolation of naturally expressed protein 

alone; substantial quantities of functionally expressed channel forming or outer 

membrane recombinant protein in the membrane would be very toxic to the cell 

itself and result in cell lysis. 

Consequently other methods such as overexpression of protein as inclusion 

bodies in the cytoplasm are often the only solution for producing the high yields 

required. 81 
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Outer membrane proteins (OMP) when overexpressed without an N-terminal 

signal sequence are predominately produced in the form of inclusion bodies (Fig. 

111.2.3), since it is the signal sequence that directs the protein through the inner 

membrane into the periplasmic space, where the native protein can then fold and 

insert into the outer membrane following cleavage of the signal sequence. 
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Figure l/12. 3. Expression of prokaryotic outer membrane proteins. 81 

111.2.2.1. The BrKA C-terminal protein. 

A construct of the C-terminal domain ofBrKA in a pET (11 a) expression vector 

(driven by a T7-promoter system) was kindly donated to us by Dr Blackburn 

from Glasgow University. 

The DNA was sequenced by the Biological and Biomedical departmental DNA 

sequencing service at the University of Durham and a similarity search was 

carried out through the electronic-mail server BLAST (at the NCBI). The 

sequence was found to be an exact match for the C-terminal domain of BrKA 

which represents amino acids 715 to 1 011 of the protein. 82 A database search, 

carried out for homologs of BrKA using BLAST, revealed that the closest match 

was the Bordetella outer membrane protein pertactin, which is a hundred am:ino 

acids shorter than the BrKA protein. 

169 



The two proteins showed a 54.4 % match over their last 300 amino acids with 

the best fit situated in the C-terminal region, where the proteins were found to 

share a C terminal outer membrane motif. 82 

The most common method for overexpression of recombinant proteins into 

inclusion bodies is using the phage T7 -promoter system and the E. coli BL21 

(DE3) strain as the expression host. This strain contains a source of T7 RNA 

polymerase under control of the lac promoter. Gene expression can then be 

induced by addition of IPTG which enables the polymerase to transcribe the 

target gene in the expression vector. 83
•
84 In addition, genes that confer antibiotic 

resistance are built into the vector. They encode enzymes or transmembrane 

pumps to degrade or remove antibiotics and consequently when antibiotics are 

incorporated into the growth media only the target cells that contain the plasmid 

vector encoding antibiotic resistance will grow. The cultivation temperature was 

typically set at 3 7 °C for an optimum expression yield and the growth media 

selected was generally a standard Luria broth (LB) media. 

Following protein expression, the cultures were passed through a French press 

cell to rupture the cells, before they were harvested by centrifugation. The 

resulting protein pellet was dissolved in a 6 M urea-phosphate buffer (pH 8), as 

high concentrations of urea are strongly denaturing and therefore allow the 

protein to be isolated from inclusion bodies and completely solubilised. 

The disadvantage of using strong denaturing conditions is mainly due to 

incompatibility of the solutions with any subsequent refolding processes. 14
•
85 
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The BrKA P-domain was found to express very poorly or not at all on a large 

scale and in order to obtain a good yield, cultures had to be grown in 1 0 m1 

bottles. A possible explanation for this behaviour is that the protein expresses 

better when exposed to the reduced volume of oxygen contained in the 1 0 m1 

bottles as opposed to the more extensive oxygenation afforded by the larger 250 

ml or 500 ml flasks. 

An 80S-Polyacrylamide gel was used to estimate the amount of target protein in 

the different fractions and expression controls. 

SDS-Page (Sodium dodecyl sulfate-Polyacrylamide electrophoresis gel) is an 

extremely useful and straight forward method of separating proteins according to 

their size. 

0 

II e ® 
0-,,-o Na 

0 

Figure Ill2. 4. Structure of Sodium dodecyl sulfate (SDS). 

The protein is frrst reduced and denatured by incubation at 100 °C with P­
mercapto ethanol and sodium dodecyl sulfate, SDS (Fig.III.2.4) and is then 

injected along with a range of molecular weight markers (SDS7) into the wells in 

the gel. On application of an electric current, the proteins migrate down the gel at 

a rate, which is dependant on molecular size. 
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The resulting protein bands are then stained to reveal their position in the gel, 

before being compared to the standard protein markers of known molecular 

weights (Fig. III.2.5). 
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Figure 1112.5. SDS-page showing the change in protein production following a 

range of different expression conditions: F3: induced I 300 ml culture; 

F5: induced I 50 ml culture; N15 non induced I 50 ml culture; 

N/10 non induced I 10 ml culture; /10 induced I 10 ml culture. 

After determining the best expression conditions for the protein, the next step 

was to select an efficient purification method. 

Using a protein calculator program, the BrKA P-domain protein was predicted to 

have a high content ofhydrophilic sites and a high isoelectric point of9.8.86 This 

result suggested that an ion exchange column with negative packing: 

(Sulphopropyl(s) sepharose fast flow column) could be used for the protein 

purification. 
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The protein-urea solution was centrifuged and the supernatant loaded on to the 

column. The protein was then eluted from the column with a linear gradient of 

500 mM sodium chloride in a phosphate-urea buffer against the same buffer but 

without NaCl. The elutate was analysed by SDS-15 % Polyacrylamide gel 

electrophoresis along with a sample from the flowthrough (FT) and the pellet, 

remaining after urea extraction, in order to establish if any protein had remained 

in these fractions. The gel indicated that although the pellet still contained a high 

proportion of the target protein, a weak band at around 30 kDa did show, that 

extracted protein had eluted from the column, with a high degree of purity. 
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Figure 1112. 6. SDS Page showing the concentration of protein present in the 

different fractions: pellet, flow through (FT) and eluted pure protein. 

The solubility of the protein was tested in a range of solutions and it was found to 

be only mildly soluble in all of the solutions tried including 6 M Guanidine HCl 

and a range of detergents including n-octyl-~-D-glucopyranoside, OG and n­

decyl-~-D-maltopyranoside, DM in Tris-HCl buffer. 

The typical concentration of protein expressed and purified for this system was 

estimated by SDS-page at around 1 0 ~g for 200 ~1 of eluted pure protein solution 

(acetone precipitated and dissolved in 1 x sample buffer) by comparison with the 

standard SDS7 marker band, which contains approximately 3.3 ~g per band in a 

10 ~I loading. 
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This lead to an estimation of only 0.05 mg mr1 eluted from the ion exchange 

column, for the protein expressed in 100 ml of culture media (Fig. III.2. 7) and 

which would decrease even further after refolding the denatured protein 

The typical quantities of pure renatured protein, considered sufficient for 

growing 2D crystalline arrays, are estimated at about 1 to 2 mg ml"1 which leads 

to the problem of increasing significantly the yield of expressed protein. 
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Figure 1112.7. SDS Page showing the reference markers SDS7(1) 

and the pure fractions of eluted protein (2 and 3). 

111.2.2.2. Generation of a His-tagged BrKA C-terminal protein. 

As the most common strategy for increasing the yield of pure and subsequently 

refolded protein is by addition of an affinity tag to the protein sequence, a gene 

construct was generated to encode for a functional polyhistidine tagged version 

of the BrKA C-terminal protein. The target DNA was ligated in to an appropriate 

vector pET -19b (Fig. III.2.8). This vector contains a sequence encoding for a 10 

histidine tag as well as a short 10 amino acid sequence up-stream (N-terminal) 

from the target protein insertion site, which lead to an increase in molecular 

weight of the BrKA C-terminal protein to around 33 kDa. After transformation 

into E. coli BL21 (DE3) cells, the constructs were grown overnight at 37 °C on a 

LB agar plate containing ampicillin antibiotic, from which singles colonies were 
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lifted and inoculated into LB culture media with antibiotic. The cells were grown 

until it was assumed that a high cell density had been reached. 
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Figure I/l2.8. Diagram outlining the steps in a generic ligation process. 

The best protein expression conditions were selected by carrying out a series of 

control tests with a range of culture volumes and temperatures (Fig. III.2.9), as 

well as performing trials for induced and non induced protein expression. 
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Figure //12.9. SDS-page showing total cell protein expression levels at different 

temperatures: 1. SDS 7, 2. 20 °C; 3. 25 °C; 4. 30 °C; 5. and 6. 37 °C. 
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SDS-page revealed that expression of the His-tagged version of the BrKA P­
domain was just as difficult to scale up as the non His-tagged protein and that 

over the range of temperatures tested, the protein expressed better at the highest 

temperature tested of 37 °C. The protein also appeared to express equally well in 

the non induced cultures which is a phenomenon that has been observed in some 

systems and could be due to mutation around the T7 promoter location in the 

host vector following ligation. 

After harvesting and preparing the cells in a similar process to that described for 

the non His-tagged BrKA C-terminal domain, the expressed protein was 

resuspended in a phosphate (50 mM)-urea (8 M) and sodium chloride (0.5 M) 

buffer (pH 7.8) and purified on a nickel affinity (Ni2+-NTA) column. The elutate 

was then analysed by SDS-page (Fig. III.2.1 0), which clearly showed that the 

target protein (~33 kDa) had bound efficiently to the column and had eluted with 

a high degree of purity. 

KDa 

66K-

45K-
36K-

29K-
24K-

20K-

14K-

SDS7 Ff El E2 E3 E4 SDS7 SDS7 

Figure 1112.10. SDS-page showing the high level of purity of the eluted protein 

fraction: El - E4: Eluted fractions; FT: flow through. 

The eluted fractions of pure protein were pooled and their concentration 

estimated at around 0.5 mg ml-1
, giving at least a 5 fold increase in yield when 

compared to the non His-tagged version of the BrKA C-terminal protein. 
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ill.2.2.3. Protein folding. 

The protein was renatured following the method used by Shannon and Fernandez 

and other groups for refolding membrane proteins, after extraction from 

inclusion bodies.22
•
75

•
87

•
101

•
88 Shannon and Fernandez showed that the BrKA C­

terminal domain protein renatured following their procedure had the capacity to 

form channels in membranes as assessed by black lipid bilayer experiments. 75 

The pure eluted protein fractions were pooled and then dialysed against a 

phosphate-sodium chloride buffer (PSB) to slowly remove the urea at a rate of 

0.2% dilution min"1 whilst maintaining the temperature at 4 °C. Once all the urea 

had been eliminated from the system the protein was again slowly dialysed with 

a Tris-salt buffer (pH 7.4) with 0.1% ofthe non ionic polyoxyethylene detergent, 

Triton x-100 to help keep the protein in solution and to prevent aggregation. The 

protein solution was then centrifuged (10 mins at 17000 x g) and both the 

resulting supernatant and the pellet were analysed by SDS-page (Fig.III.2.11 ). In 

order to concentrate and increase the sample visibility in the gel, a 300 J.ll aliquot 

of the supernatant was acetone precipitated and resuspended in 20 J.ll of 1 x SDS 

sample buffer before being loaded on to the gel. 
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Figure 1112.11. SDS-page showing the pure (denatured) fractions, from E1 to E6 

and the jlowthrough, FT from the Br KA C-terminal protein after elution from a 

Ni2
+ affinity column and again following dialysis to remove urea with the 

supernatant (SD); concentrated supernatant (CSD) and pellet (PD). 
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The concentration of the soluble fraction of the protein (supernatant), which was 

considered to have adopted a native conformation, was estimated at less than 20 

% of the total protein content, revealing that the large majority of the protein had 

remained in the insoluble and denatured form. The same dialysis method was 

used but with other detergents such as n-octyl-P-D-glucopyranoside, OG and n­

decyl-P-D-maltopyranoside, DM with concentrations above the CMC of each 

detergent but these were no more successful than Triton X-100. 

DI.2.2.4. Concentration determination. 

In order to carry out structural studies on the protein, a more accurate 

concentration for the BrKA C-terminal domain was determined by using the 

Beer Lambert law: 

Molar Concentration = Abs28orun/ €280 nm * dilution factor (i) 

UV titrations were carried out to measure the protein absorbance in the aromatic 

region of the spectrum; the extinction coefficient (€280 run) for the protein, 69840 

M"1 cm"1
, was calculated by taking in to consideration the spectral contributions 

at 280 nm of all the tyrosine, tryptophan and cysteine residues in the protein 

sequence. 89 
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Figure II12.12. Plot of protein absorbance against change in concentration 

(dilution) of the protein. 
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111.2.2.5. Structural analysis. 

The secondary structure of the purified and dialysed BrKA C-tenninal protein, in 

a Tris- detergent buffer, was investigated by circular dichroism, CD in an attempt 

to establish whether the protein had efficiently refolded to its active 

conformation and had not misfolded to a partially native state after the 

renaturation (Fig. III.2.13). 

The native conformation for an autotransporter is thought to be very similar to 

that of an outer membrane protein, OMP which adopts multistranded P-barrel 

structures in the membrane. 79 

Therefore a spectrum with a high P-sheet content would be a very favourable 

indication that the BrKA C-tenninal protein had successfully refolded.79 
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Figure II12.13. CD spectrum of purified and dialysed Br KA C-terminal protein 

(0.1 mg mf1
) was measured in 0.1 % Triton X-1 00-10 mM Tris at pH 8. 0. 

A minimum of 6 spectra were accumulated and contributions from 

the detergent-buffer solution were subtracted. 

The CD spectrum was analysed using the CDsstr program (at http// 

www.alpha.als.orst.edu) originally developed by Hennessey and Jonhson in 1981 

and which has since been considerably optimised.90
•
91 This program uses a 

singular value decomposition, SVD algorithm to analyse the CD spectra of a 

series of proteins whose structures have been accurately determined by X-ray 

crystallography. 
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The spectra are deconvoluted into orthogonal basis curves which are correlated 

to known combinations of a-helix, antiparallel and parallel 

P-sheets, P-tums and random coil conformations. The extracted curves are then 

used as reference standards against which unknown protein spectra are compared 

and then assigned to certain structural conformations with determination of the 

percentage for each different type.92 

The conformation of the dialysed BrKA C-terminal protein in detergent-Tris 

buffer could not be assigned unambiguously to any particular type of structure 

and consequently the P-sheet content of the protein could not be evaluated. 93 

Extraction of protein from inclusion bodies involves complete denaturation with 

reagents like urea, guanidine or detergents and therefore efficient refolding 

methods are required that may need optimising for each protein. Some membrane 

proteins will only refold correctly from urea and not from guanidine which is 

used at a higher ionic strength and could inhibit specific interactions necessary 

for protein folding The spontaneous refolding in vitro of the denatured 

archaebacterial protein, Bacteriorhodopsin, as well as the E. coli outer membrane 

proteins, OmpA, OmpF and OMPLA, has demonstrated that this can be carried 

out successfully-94
•
95

•
96 

Membrane proteins adopt their stable native conformations on interaction with 

appropriate lipid bilayers therefore it seems reasonable to assume that a better 

understanding of the interactions and the properties of lipids with proteins could 

be used to develop a more efficient or tailored method of protein folding as well 

as to an increase in structural stability.97
•
98 

The folding process of proteins solubilised in detergent, is thought to go through 

an intermediate state, before the proteins undergo structural rearrangement to 

adopt a stable fully functional conformation, on interaction with a lipid bilayer. 

Mixed lipid-detergent systems can provide the appropriate conditions for correct 

folding, as the protein structure is more stable in a membrane than in detergent 

alone on account of the specific protein-lipid interactions that stabilise the 

protein structure. 

The detergent will facilitate protein insertion into the membrane by reducing the 

curvature or the elastic energy of the lipid bilayer and therefore fine tuning of the 

protein tertiary structure will depend on selecting the best detergent-lipid 
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combinations to allow the protein to rearrange, extend and pack into a fully 

functional conformation. 31 

lll.2.2.6. Optimisation of folding process. 

The folding method used for BrKA C-terminal protein was modified to include a 

mixed lipid-detergent system with addition to the folding solution of the fully 

saturated DMPC phospholipid, dimyristoyl phosphatidyl choline, in a 5:1 molar 

ratio of lipid to protein and a 0.1 % (v/v) ofpolyoxyethylene detergent, Triton X-

100. 

In order to assess the affect of both the lipid and the detergent on the folding 

process, the denatured protein was incubated with a solution containing either 

lipid or detergent or both lipid and detergent. The mixed protein, lipid and 

detergent solutions were then dialysed against a phosphate-salt buffer (PSB) with 

0.1 % (v/v) Triton X-100 at 4 °C and then again with a Tris-salt buffer containing 

0.1% (v/v) Triton X-100 detergent. Following dialysis the protein solutions were 

centrifuged (20 min at 19000 x g) and an aliquot (300 J.ll) of the supernatant from 

each of the folding solutions was acetone precipitated and analysed (Fig. III.2.14) 

by SDS page. 
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The protein was visibly more soluble, when both lipid and detergent were used in 

the folding solution. 
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Figure Ill2.14. SDS-page of the folding solutions: 1. SDS 7 protein standard; 

2. mixed protein-lipid-detergent; 3. protein only; 4. protein-lipid 

and 5. protein-detergent. 

n:n:.2.2. 7. Structural analysis after optimisation of folding conditions. 

The secondary structure of the renatured BrKA C-terminal protein was again 

investigated by circular dichroism, CD in order to analyse the P-sheet content of 

the protein and to determine as far as possible if the protein had successfully 

refolded. 
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The CD spectrum revealed a classical antiparallel P-sheet structure with typical 

maximum at 200 run and minimum at 215 run as well as a second minimum at 

about 230 run which has been proposed to be strongly indicative of absorbance 

due to specific interactions or arrangement of the tryptophan residues within the 

P-sheet structure.99
•
100

•
96 
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Figure l/12.15. CD spectrum of refolded BrKA C-terminal protein (0.1 mg mf1
) 

measured in a 0.1 % Triton X-1 00-10 mM Tris at pH 7. 4. A minimum of 6 

spectra were accumulated and contribution from the detergent-buffer solution 

was subtracted 

The structural components derived from this spectrum were analysed using the 

CDsstr program which showed the protein to contain 44 % P-sheet and 15 % 

turns. This is compatible with a P-barrel system with more than 15 strands of P­
sheet and may also be taken as confirmation that the protein is very likely to have 

adopted its fully functional native conformation. 12
•
101 

Other folding methods were considered in an attempt to eliminate urea from the 

system altogether, by extracting the protein from inclusion bodies with high 

concentrations of a zwitterionic detergent, zwittergent 3-14, which is used to 

solubilise membrane proteins, but this procedure proved to be only mildly 

successful as most of the protein remained insoluble. 
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ill.2.3.1. Two-dimensional (2D) trials ofBrKA C-terminal 
domain. 

Following the development of a promising folding method, the protein was used 

in a range of two-dimensional (2D) crystal trials, in an attempt to obtain 

structural information on the BrKA C-terminal domain. 

A wide range of conditions had to be established and optimised before the 

crystalisation process could be carried out. These included the choice of method, 

the lipids and detergents, the lipid-protein ratio, the temperature and the duration 

of the process as well as any buffers and additives required. 

Dialysis was selected as the method of choice in the present study, as it is the 

most common and straight forward process and has been used successfully in a 

number of 2D crystallisations. 7 Two phospholipids, the fully saturated DMPC 

and the monounsaturated DOPC lipids were either used separately or in a 1: 1 

ratio (w/w) with two different lipid-protein ratios of either 1:1 or 1:2 (w/w). 

A mixture of detergents, one with a high CMC, octyl-~-D-glucopyranoside, OG 

and another with a low CMC, n-decyl-~-D-maltopyranoside, DM were 

considered to offer the best probability of success, as they had worked well in 2D 

crystal trials of outer membrane proteins. 102
•
103 

The temperature profile, the duration of the trials, as well as the buffer systems 

were developed after considering a range of similar processes in the 

literature. 19
'
104 

lll.2.3.2. Preparation and imaging. 

Protein and lipid solutions, premixed with the detergents, Triton X-100 and OG 

were incubated at 4 °C for up to an hour, to allow for equilibration of the system. 

The crystallisation solution was then typically dialysed in a 10 mM Tris-0.1 % 

(v/v) Triton X-100 buffer in presence of both monovalent, Na+ and divalent, 

Mg2+ cations, at 4 °C. The detergent was slowly removed by pumping (peristatic 

pump) a detergent free Tris-salt buffer into the dialysis flask, before submitting 

the dialysis solution to several further buffer exchanges and to a temperature 

184 



profile, which included warming the solution to room temperature for a defined 

period (4-6 hours) and then heating to physiological temperatures (37 °C) from 

48 hours to a week. A final dialysis was performed with salt free Tris buffer, 

before samples were removed for imaging by transmission electron microscopy 

or scanning electron microscopy. Sample preparation for EM analysis consisted 

of the sample solutions being either used directly or centrifuged and the 

supernatant spotted on to the carbon coated copper support grids. The dried 

sample was then negatively stained with a 1 to 2 % uranyl acetate solution. 

lli.2.3.3. Lipid sheets. 

Transmission electron microscopy, TEM images, of the first crystallisation trials, 

showed that the solutions contain large lipid sheets and vesicles packed with non 

ordered arrays (Fig. 111.2.16). These structures were thought to be composed of 

either protein or of a mixture of protein and detergent molecules. 

Figure II12.16. TEM image of a DMPC lipid sheet packed with protein arrays 

formed following dialysis of protein and lipid in a 1:1 ratio from a solution 

containing Triton X-1 00 and OG. (scale bar 0.1 pm). 
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The possibility that the arrays could be either uranyl acetate crystals or 

precipitates was also considered but thought unlikely as the stain does not 

normally precipitate under these conditions and this was further supported by 

tests carried out on the solution in the absence of sample in which no such 

depositions were observed. 

In an attempt to induce the growth of crystalline protein arrays, the dialysis 

solution was incubated (at 38 °C for about 4 h) with phospholipase A2, which 

eliminate excess lipid by hydrolysing the lipid headgroups and therefore converts 

the phospholipids to lysophospholipids, which can then be removed by dialysis?3 

Analysis by electron microscopy unfortunately did not show any improvement in 

the crystallinity of the sample, following this treatment and by consequence a 

systematic modification of the dialysis conditions was under taken. 

The detergent content of the sample was the first modification to be considered, 

with the addition of a mixture of OG and DM, at concentrations just above their 

respective CMC values (see appendix 1), to both the protein and the lipid 

solution. Samples were then dialysed using the method previously outlined and 

then imaged by TEM. 
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TII.2.3.4. Striated domains. 

A considerable proportion of the sample grid was covered with what can be 

described as "worm" like features that appeared to be in the process of arranging 

into large ordered areas (Fig. 111.2.17). The structures themselves were measured 

using the software Image J, which gave a value of 3.4 ± 0.7 nm for the width and 

3.4 ± 0.6 nm for the length. 105 

Figure III2.17. TEM image showing "worm" like features after varying the 

dialysis conditions. 

The effect of the detergent was assessed by carrying out the dialysis under the 

same conditions on lipid-detergent solutions without protein. 

187 



The sample was analysed by TEM, but no such structures were observed on any 

of the grids prepared, whereas the samples that contained the BrKA C-terminal 

protein all revealed "worm" like features and ordered areas or domains (Fig. 

IIL2.18a). 

Figure Ill2.18a. TEM image of ordered striated areas following addition of a 

mixture of detergents, DM and OG to both the protein and DMPC before 

carrying out dialysis. 

Similar patterns of striated domains from about 10 to 100 nm in size have been 

observed by atomic force microscopy, AFM on phospholipids preparations with 

amphiphilic peptides at 1 to 5 mol% peptide. 106
•
107 

These ordered regions, which are described as consisting of low (dark) and high 

(light) lines have a regular repeat distance of 6.8 ± 0.5 nm in the case of BrKA 

C-terminal protein and are produced at 2 mol % protein which is consistent with 

the concentrations used in the AFM studies on the striated domains formed with 

amphiphilic peptides. 
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Domains are well known in biological membranes; lipid bilayers that have been 

heated to above their transition temperature, as is the case in dialysis 

preparations, will on cooling order within different areas of the bilayer and 

within each area the acyl chains of the lipids will be tilted in a same direction, 

slightly different from that of the neighbouring areas. This leads to the creation 

of lipid areas defined by a difference in tilt orientation of the lipid acyl chains 

within each domain. 

Proteins are also well known to affect the state of neighbouring lipids and may 

induce a change from gel phase to liquid crystalline phase in a lipid membrane. 

The striated pattern of the domains is thought to reflect the arrangement of the 

amphiphilic peptides in the lipid bilayer. 106 This idea could also be extended to 

the present study on the BrKA C-terminal protein, which would integrate into the 

lipid bilayer as it forms a P-barrel channel in the membrane. In addition, the 

BrKA C-terminal domain has a sequence composed of around 10 % aromatic 

residues, tyrosine and tryptophan; these are believed to locate preferentially at 

the interface between lipid headgroups and acyl chains and therefore keep the 

protein below the lipid surface. 

The striated patterns are thought to arise when the protein forms oligomeric 

arrays within the lipid bilayer inducing, on one hand, a change in the surrounding 

lipids to a more fluid state, which produces the dark low lines or depressions and 

on the other hand, forcing the lipids from different domains (area of lipid with a 

different tilt or orientation) to pack in a more constrained gel state, thus giving 

the higher light or elevated lines (Fig. III.2.18b ). 
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These striated patterns are therefore thought to arise from the general geometrical 

factors of both the lipids and the proteins as well as the properties of the bilayer 

itself. 

Figure /112.18b. TEM image of distinct patches of striated domains. 

These characteristic areas could reveal an intermediate state in the arrangement 

of the protein structures in the bilayer, but do not as yet show evidence of well 

ordered crystalline structures. 

ID.2.3.5. Stacks. 

The rate of detergent removal was the next key parameter to be considered in the 

2D crystal trials of the BrKA C-terminal protein, as this was considered to 

strongly influence the morphology and the size of crystalline arrays. The dialysis 

rate was increased to twice the previous value and several further complete 

buffer exchanges were carried out, in order to ensure complete detergent 

removal. Electron microscopy images of the negatively stained samples showed 

the formation of planar disk like structures stacked in layers (Fig. III.2.19). 

190 



These disk structures were determined to have an average width of 3.4 ± 0.6 nm 

and an average diameter of 33 ± 3.5 run per disk. 

Figure 1/12.19. TEM images of stacked planar structures obtained after a two 

fold increase in the dialysis rate. 

The number of stacked structures varied considerably from as few as five or six 

to over a hundred all stacked in register (Fig. III.2.20) and therefore creating 

what appeared to be long screw like features on the TEM grid. 
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Figure JJ/2. 20. TEM images showing the extensive stacking of disk like 

structures. 
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The multilayer stacking of planar protein-lipid structures (Fig. III.2.21) is 

thought to occur as detergent is gradually removed from the dialysis system and 

appears to be sensitive to both the lipid to protein ratios as well as to the rate of 

detergent removal. 108 

Figure Ill2. 21. TEM images of disk like structures stacked with different 

orientations. 

The stacking process is believed to involve interactions between the detergent 

molecules and the exposed hydrophilic headgroups of the protein molecules. As 

detergent molecules are eliminated from the protein-lipid-detergent micellar 

solution, a series of micelle-micelle interactions are induced, which results in the 

formation of the large disk like mixed micelles. 

These structure will still contain detergent molecules, which locate towards the 

micellar edges and could induce the large micelles to merge into bilayers after 

further detergent removal. 
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The rate of detergent removal is a critical factor in the formation and the stacking 

of the disk like structures; at too rapid rate of detergent removal could impede the 

protein-lipid interactions, since the detergent molecules appear to be directly 

involved in the formation and packing of the protein molecules into these arrays. 

Figure Ill2. 22. TEM images of non stacked disk like structures along side 

groups of stacked structures. 

ID.2.3.6. Fourier transform processing of digital images 

The boxed area in figure III.2.22 was processed to reveal any specific patterns in 

the protein-lipid structures. Inverse Fourier Transform performed on the filtered 

Fourier Transform image showed a high degree of ordering in the stacked 

structures (Fig. III.2.23). 105 
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In order to determine the degree of ordering or the special frequency within the 

imaged structure, the digital image processing algorithm, Fourier Transform (FT) 

was used to transform the electron microscope images into frequency domains, 

which were then displayed as a power spectrum. 

Figure I/l2.23. Inverse Fourier Transform of a filtered Fourier Transformed 

image of stacked structures 

Once the image has been transformed and described as a senes of space 

frequencies, a range of filtering algorithms can be applied (to the power 

spectrum) to eliminate either noise or spatial frequency information, that may 

reveal specific well ordered patterns or periodicity within the image, hence 

within the sample structure itself. Retransformation is then performed to process 

the image back into the spacial domain. The processed image, depending on the 

type of filtering performed, would be a specifically enhanced version of the 

original image. 
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The digital processing as described above was applied to a number of EM images 

recorded on the protein-lipid samples and to specific areas within these images 

(Fig. III.2.24) that were considered to contain features of interest 

Figure /Il2. 24. Image of a large area of protein-lipid structures with a variety 

of clearly defined domains 

Figure //!2.25. Power spectrum of the boxed are in figure //!2.25 showing the 

effect of filters and inverse Fourier Transform of filtered Fourier Transform 

image. 
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The protein-lipid samples appeared to have adopted a variety of structures under 

the range of crystallisation conditions used with different degrees of ordering 

from well ordered striated domains to stacked disk like structures (Fig. III.2.25). 

Further optimisation of the 2D crystallisation process was considered and the rate 

of detergent removal was again increased. The rate of buffer exchange with 

detergent free buffer was increased to 0.6 % min-1
, while following the same 

temperature profile and dialysis duration as previously. 

Examination by electron microscopy of the crystallisation solution (Fig. III.2.26), 

revealed that the disk like structures were still apparent and that although no 

stacking could be detected, the disks appeared to be involved in the formation of 

larger sheet like structure. 
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Figure Ill2.26. TEM images of non stacked disk structures merging into a sheet 

like layer following a further increase in the rate of dialysis. 

196 



ID.2.3.7. Pore structures. 

The lipid composition was changed to a 1:1 (w/w) mixed saturated and 

unsaturated phospholipid, DOPC-DMPC system with a range of lipid to protein 

ratios. 108 Electron microscope images of the dialysis solution with a 1:1 (w/w) 

lipid to protein ratio, revealed pore like structures that appeared at different focal 

planes on the sample grid (Fig.III.2.27). 12 The pore structures from several grids 

and different sample batches were analysed using the pre-calibrated particle 

analysing and measuring functions on the imaging software, Image J. 108 
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Figure 1112.27. TEM image of pore like structures, which became apparent after 

a change to a mixed saturated and unsaturated phospholipid system. The arrows 

indicate pore structures visible on different focal planes and the circle 

pore structures, which are in focus 

The structures in the mixed phospholipid systems, all displayed a similar pore 

like appearance with an outer diameter of 10.2 ± 0.6 nm and an inner diameter of 

3.1 ± 0.5 nm. These dimensions are in agreement with those of pores structures 
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imaged by electron microscopy for another His tagged autotransporter protein, 

C-IgAP from Neisseria gonorrhoeae, which was shown to form hydrophilic 

pores with an average outer diameter of about 9 nm and an inner diameter of 

about 2 nm. The pores formed were thought to be large enough to tolerate the 

passage of a range of secondary structural elements or small proteins in a 

partially folded state.85 The CD spectrum of the protein C-lgAP from Neisseria 

gonorrhoeae indicated the presence of a 30 % fJ-sheet content, compatible with a 

15 strand fJ-barrel structure similar to the core structure common to many integral 

outer membrane proteins of Gram-negative bacteria, which is thought to have 

been conserved throughout evolution 109 

The E. Coli lactose permease (with His tag) reconstructed in presence of 

phospholipids, showed trimeric particles with a similar sized diameter of 10.4 ± 2 

nm and porins of the trimeric membrane protein, PhoE were shown to be 

composed of 16 stranded monomers with short turns on the peri-side of the 

membrane and long loops on the cell surface. 110 The pore structures imaged for 

BrKA C-terminal protein therefore appear to be in good agreement with those of 

other autotransporter and integral outer membrane proteins. 

IH.2.3.8. Extended regions of ordered protein-lipid arrays. 

The amount of detergent in the dialysis solution was reduced and dialysis time 

was increased to ensure the complete removal of detergent from the system, 

especially Triton X-1 00 and DM, which have low CMC values and are therefore 

more difficult to eliminate completely. 

The initial concentration of Triton X-100 was decreased to half of its original 

value and the duration of the dialysis was extended by 4 to 5 days. 
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A simple technique, "the drop spreading method", was employed to test for 

residual detergent in the sample solution and consisted of depositing a drop of 

protein crystallisation solution onto parafilm and estimating the degree of 

spreading of the drop by comparison with a drop of pure water of equal volume 

(Fig. III.2.28). Drops of sample solution, occupying the same surface diameter on 

the parafilm as a drop of pure water, and were therefore considered not to have 

spread, were estimated to be detergent free . 

Dialysis solution Pure water 

Figure /112.28. Diagram of "the drop spreading method" for detecting residual 

detergent. 

Detergent free samples with a 1:1 (w/w) protein to lipid ratio, analysed by 

Transmission electron microscopy (Fig. Ill.2.29), revealed that the dominant 

features present in these samples were of lipid sheets folded into several layers in 

places, with striated domains or arrays covering the entire sheet surface. Two sets 

of domains with different periodicities were apparent with one set running over 

and at a right angle to the other. 
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The periodicity in the first domain was determined at 16.4 ± 0.7 nm and that of 

the second domain at 6.6 ± 0.5 nm using the software image J. 105 The periodicity 

of the smaller domains was within the estimated size range for arrays of the 

BrKA C-terminal protein and provides strong evidence that the protein has 

adopted a regular arrangement in the membrane. 
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Figure 1112.29. TEM image showing lipid sheets with different periodicities 

perpendicular to each other. Thick white arrows indicate the thicker 

domains and thin red arrows indicate the thinner domains. 

This TEM study puts forward a strong case for the formation of arrays of the 

BrKA C-terminal domain in saturated phospholipid bilayers (Fig. III.2.30), with 

closely packed structures that appear to have adopted a well ordered 

arrangement. 
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These results provide a encouraging indication, that arrays of the BrKA C­

terminal domain of sufficient quality for structure determination by electron 

diffraction, could be grown under favourable crystallisation conditions. 
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Figure l/!2.30. TEM image showing juxtaposed lipid sheets covered with arrays, 

which clearly show a high degree of ordering following an increase in the 

dialysis time and a decrease in the concentration ofTritonX-100. 
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111.2.3.9. Other systems for 2D crystal trials. 

2D crystal trials were carried out on the M protein from the respiratory syncytial 

virus using methods developed in the BrKA C-terminal protein trials 

The respiratory syncytial virus is a member of the paramyxovirus family, which 

are negative-stranded, non-segmented RNA viruses. They initiate infection by 

attaching to cell surface receptors and allowing fusion of the viral membrane 

with the host cell membranes. 

The virus resembles an enveloped particle whose membrane contains 

transmembrane proteins and a Matrix or M protein, which localises at the inner 

surface of the plasma membrane. 111
•
112 TheM protein is thought to play a central 

role in viral assembly and budding, as well as being responsible for inhibition of 

the host gene expression. 

111.2.4.1. TheM protein. 

The fusion protein, M from the A2 strain of the respiratory syncytial virus, which 

had been inserted into a pET 16b vector, expressed in the E. coli BL21 strain and 

purified by Ni-affinity chromatography, was donated by Dr R. P. Yeo of the 

University of Durham, Biomedical and Biological sciences department. 

The protein is of a similar size to the BrKA C-terminal protein with a sequence 

comprising of 281 residues and a molecular weight of 31.5 kDa. 
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111.2.4.2. 2D crystallisation. 

TheM protein was dialysed with either DMPC or a 1:1 mixture ofDMPC-DOPC 

in a Tris-NaCI buffer with both OG and DM detergents. 113 

Samples of the M protein crystallisation solution analysed by TEM, clearly 

showed the presence of well ordered areas of protein 2D arrays on large lipid 

sheets of several microns in size. 
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Figure 1112.31. TEM image showing crystalline arrays of the M protein in sheets 

of the saturated lipid, DMPC 
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Crystalline arrays of the M protein were produced, by reconstituted in presence 

of the saturated DMPC phospholipid, but not with mixed DMPC-DOPC systems 

(Fig. ill.2.31 ). The M protein was obtained from a strain of the respiratory 

syncytial virus, which is active in the lung, where there is a predominance of 

saturated phospholipids. It is therefore not a surprising result that the M protein 

has demonstrated more affinity for the saturated phospholipid over the 

unsaturated phospholipid systems. 

The arrays although crystalline were not of high enough quality for high 

resolution structure determination, but they clearly showed interaction of the M 

protein with the saturated phospholipid DMPC membrane (Fig. III.2.32) and 

have provided strong evidence of M protein binding with the lipid membrane. 
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Figure IIL2.32. TEM image showing a long vesicular structure packed with 

crystalline arrays of the M protein. 
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EM analysis of the 2D crystallisation solution has also provided some evidence 

that the M protein could adopt ordered arrays with different morphologies, when 

produced from large lipid sheets or from small tubular lipid patches (Fig. 

III.2.33). The pattern of ordered protein arrays in each of the different crystal 

patches were shown to have the same periodicity of 3.5 ± 0.2 nm, after analysis 

and reveals the extreme regularity of these structures. 105 
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Figure III2.33. TEM image of larger lipid sheets again packed with clearly 

crystalline arrays of the M protein 

205 



The crystallisation conditions were modified with respect to the initial detergent 

concentration, especially to that of Triton X-100 and to the dialysis time, but 

these modifications did not appear to increase the quality of the crystalline 

arrays. Further optimisation trials are therefore required in order to obtain highly 

ordered arrays for structure determination. 

liii.2.5. 2]) trials on synthetic amphiphilic peptides. 

2D crystallisation trials were carried out on one of the synthetic amphiphilic 

peptides discussed in chapter II of this thesis, the 2K4Y03 peptide; sufficient 

quantities of this peptide had been produced, purified and analysed, to allow for a 

range of 2D trials. 

Purified 2K4Y03 peptide in HFIP was mixed, in 1:1 and 1:2 peptide to lipid 

ratios, with either pure DMPC or a mixed DMPC-DOPC system, in Tris buffer 

(pH 7.4) containing both NaCl and MgCh salts as well as a mixture of OG and 

DM. The dialysis conditions were the same as those used in the M protein 2D 

trials. EM examination, of the synthetic peptide crystallisation solutions, did not 

show evidence of the formation of any structures or arrays with a degree of 

ordering. Peptides and proteins, which adopt P-sheets conformations, have a 

tendency to aggregate and to precipitate out of solution; they will not readily 

form ordered structures and therefore can be very difficult to crystallise. 

A much more extensive range of crystallisation conditions would need to be 

examined, such as the crystallisation method; peptide and lipid ratios; the lipids; 

the ionic strength, the additives and the pH of the buffer; the detergents used and 

the temperature profile, before reaching the conclusion that this peptide would 

not lend itself to crystallisation. To this end batch methods could be designed to 

accelerate the trial process, such as those already employed by a number of well 

know research groups in this field. 124 
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Ill.2.6. Examination of protein-lipid arrays by AFM. 

Samples from the most successful 2D trials of both BrKA and the M protein, 

which contained the more ordered protein-lipid arrays, were examined by AFM, 

as the samples could be imaged under solution without further preparation and it 

was hoped, at much higher resolutions.61
•
113 

,£l1
4 

111.2.6.1. Supported lipid bilayers. 

In order to assess effects or features induced in the lipid membrane by any of the 

species present in the crystallisation solution; samples prepared in the absence of 

protein with the saturated DMPC or monounsaturated DOPC phospholipids were 

incubated on an atomically flat mica support and imaged by contact mode AFM 

in a 10 mM Tris-150 mM NaCl buffer (pH 7.4) at 20 °C.115 

The monounsaturated DOPC supported bilayer, which adopts a fluid-liquid 

crystalline state above -20 °C, appeared by AFM as a featureless-carpet like 

surface showing very few defects. 

Figure Ill2.34. AFM image of a supported DOPC bilayer (300 nm x 300 nm 

frame). 
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The supported bilayer, formed with the saturated DMPC lipid, appeared to offer 

a much less uniform coverage by comparison with the DOPC bilayer; large 

defects were clearly visible on the bilayer surface. 
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0.0 nm 

Figure l/!2.35. AFM image of a supported DMPC bilayer (300 nm x 300 nm). 

The thickness of the DMPC bilayer was estimated by measuring the depth of the 

holes in the supported lipid surface; these defects showed the bilayer had a 

thickness of 6-7 nm, which is within literature values for single bilayers of 

saturated phospholipids. 106 
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Figure l/!2.36. Cross section of the line drawn on the DMPC bilayer surface. 
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111.2.6.2. Electrostatic repulsion. 

The resolution of the AFM image is dictated by reliable and close contact 

between the probe tip and the sample surface; regulating the ionic strength or salt 

concentration of the buffer solution used in the AFM fluid cell, helps reduce 

double layer electrostatic repulsion during imaging, and should be adjusted to 

around 150 mM for monovalent cations, such as NaCl or KCl in Tris 

buffer. 116
•
117

• 
118

•
119 A particular problem associated, with contact mode AFM, is 

the ease with which a soft biological sample can be displaced or damaged by the 

tip ploughing through the sample surface; consequently the force exerted by the 

tip on the sample, must be kept as low as possible, whilst still maintaining 

contact with the sample.68
•
107

•
120 

Force-distance plots can be recorded for a sample, at a given set of conditions, to 

monitor the contact or electrostatic repulsion between the tip and the sample 

surface. 121 

Force calibration plot: ~ Extending 
Retracting 

0.00 Z - 5.00 nm/div 100.00 

Figure 1112.37. Force curves were recordedfor all samples in 10 mMTris-150 

mM NaCl buffer (pH 7.4) at a scan .frequency of 1.97 Hz and scan range 

of 50 nm. Arrow (1) marks the onset of measurable electrostatic repulsion 

and arrow (2) indicates the point of contact between the tip and sample. 
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Force-distance plots enable the imaging conditions, such as cantilever deflection, 

scan rate and ionic strength of the solution, to be adjusted to ensure close contact 

between the tip and sample without disruption to the sample surface. A small 

electrostatic repulsion between 0.1 and 0.3 nN, appeared sufficient to provide 

reliable scanning of the sample surface in both directions. 

ill.2.6.3. AFM imaging performed on BrKA-DMPC samples. 

The BrKA-DMPC samples were incubated on an atomically flat mica support in 

a 10 mM Tris-150 mM NaCl Buffer (pH 7.4). Images were recorded in the 

sample buffer at least 30 minutes after the AFM cell and probe tip had been 

positioned over the sample, in order to allow the system to thermally equilibrate. 

0 . 5 1.0 1.5 2.0 ~m 

Figure Ill2.38. AFMperformed on a BrKA-DMPC sample incubated at 4 °C 

overnight on a freshly cleaved mica support. 
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The sample appeared quite densely packed in places, with distinct structures of 

similar size situated at different depths within the lipid membrane. The individual 

structures were measured at 41 ± 3 nm in diameter. 

Focusing on a less densely packed area of the sample and reducing the scan size, 

revealed each distinct structure to be in fact composed of a tetrameric unit. These 

oligomeric complexes are larger (- 3 times) than those formed by other 

membrane proteins and characterised by AFM, which could be an indication that 

the imaging conditions, sharpness of the tips and force applied may be effecting 

the resolution. 57
•
122 These structures were observed reproducibly with a new tip 

under the same conditions. 

200 400 600 800 nm 

Figure III2.39. AFM image ofBrKA C-terminal protein crystallisation samples 

showing features with a tetrameric appearance protruding from the lipid 

membrane. 
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An area of the sample surface was removed by increasing the scan rate and the 

force applied to the sample surface. A depth profile measured over cross sections 

of the area, showed the oligomeric structures to have an average height of 5 run. 
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Figure 1112.40. Cross section analysis of a supported Br.KA-DMPC sample, from 

which an area of the sample has been scrapped away with the probe tip. 

The exposed underlying surface revealed spot like deep depressions in the 

supported lipid membrane, which do not appear to have been produced by the 

probe, as the strong scanning motion would create furrow type defects in 

supported membranes. 
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These localised depressions are believed to have been produced by the BrKA C­

terminal protein, which forms channels in outer membranes. 
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Figure //12.41. Spot like depressions in a supported DMPC membrane 

visualised after removal of sample upper surface. 

Liquid cell AFM has provided support, along with the results obtained from the 

TEM analysis, towards the integration of the over expressed and renatured BrKA 

C-terminal protein, into saturated phospholipid membranes as well as for the 

formation of large oligomeric complexes. 
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111.2.6.4. AFM imaging performed on M protein-DMPC samples. 

TheM protein-DMPC crystallisation solution, absorbed onto mica and imaged in 

10 mM Tris-150 mM NaCl, was shown by AFM to contain large striated areas 

with regular domains of 3.4 ± 0.7 run in width. The size and regularity of these 

structures suggest that they could be well ordered arrays of the M protein in 

DMPC membranes and would correspond to those observed by TEM. 
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Figure Ill2.42. Striated domains, a and b recorded on Mprotein-DMPC 

samples by AFM in 10 mM Tris-15 0 mM NaCl (pH 7. 4) 
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AFM has help confirm the effects induced by both the BrKA C terminal domain 

protein and the M protein in lipid membranes under more natural physiological 

conditions and without interference or artifacts from preparative methods such as 

harsh drying and negative staining. 

Ill.2.7. Further work. 

The aim of this study has been to gain further insight into the interactions 

between integral membrane proteins and lipid membranes, as well as to 

determine protein structures. 

Although a better understanding of the behaviour of the BrKA C-terminal protein 

with phospholipid membranes has been achieved, there are still a considerable 

range of options to explore, especially in the 2D crystallisation process. 

Further folding methods could also be considered, for example using other 

detergents such as SDS, which has been used successfully to extract protein from 

inclusion bodies; the dialysis rate could be optimised and attempting to refold the 

protein whilst attached to a column could also be tried. Highly ordered 2D crystal 

arrays may only be obtained if the protein has correctly refolded in the first 

place. Elimination of the His tag could also possibly help with both the refolding 

and crystallisation process. 

Another option would be to examine the behaviour of the protein under different 

buffer-detergent conditions by electron microscopy and to determine the most 

appropriate conditions for future work. 

The addition of a short protein sequence with a high proportional polar surface 

area could make the membrane protein easier to handle, as well as enhancing 

protein-lipid interactions and inducing 2D crystallisation.123 

Considering a wider range of lipid to protein ratios should be an option, as some 

proteins crystallise only at low ratios, as for example in the case ofCa-ATPase of 

sarcoplasmic reticulum which formed highly ordered 2D arrays at protein-lipid 

ratios below 0.4 (w/w) 108
•
124 
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Other methods of 2D crystallisation have demonstrated more efficient processes 

for certain protein-lipid systems; such as the use of Bio-beads SM2 for detergent 

removal combined with dialysis would allow a greater control over detergent 

removal and protein concentration could be increased by attaching the protein to 

a supported membrane. 

Another approach, which has attracted much attention, is the exploitation of co­

existing neighbouring cubic and lamellar phases within a bilayer (structures 

defined by Small Angle X-ray Scattering, SAXS) to promote the crystallisation 

of membrane proteins. 125
'
126 
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111.3. Materials and Methods. 

UI.3.1. Materials. 

Detergents: Octyl-fJ-D-glucopyranoside (OG) was obtained from Bachem Ltd. 

(UK); dodecyl-fJ-D-maltopyranoside (DDM) and decyl-fJ-D-maltopyranoside 

(DM) were from Anatrace (Switzerland); Triton X-100 and sodium dodecyl 

sulphate (SDS) was purchase from Lancaster Synthesis; Zwittergent 3-14 was 

from Calbiochem. 

Lipids: Dimyristoyl phosphatidyl choline (DMPC) was obtained from Bachem 

Ltd. (UK) and dioleyol phosphatidyl choline (DOPC) was purchased from 

Sigma. All phospholipids were used without further purification. 

Reagents: Sodium Chloride, magnestum chloride, sodium azide, 

ethylenediamine tetraacetic acid (EDTA), tris(hydroxymethyl)aminomethane 

(Tris), sodium dihydrogen phosphate, urea, imidazole, trypticase (pancreatic 

digest of casein), yeast extract and agarose were all obtained from Lancaster 

Synthesis; 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) was purchased from Apollo 

Scientific and further purified by distillation. HLPC grade water was from Fisher 

Scientific, and ultra pure water was purified using a Milli-Q purification system 

(Waters). 

Isopropyl-~-D-thiogalactopyranoside (IPTGs) was obtained from Gold 

biotechnology, inc, USA. 

Equipment. All the eppendorf and falcon tubes and the pipette tips used in these 

preparations and processes were sterile. 
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IU.3.2. Protein analysis. 

111.3.2.1. Circular dichroism. 
Secondary structure determination was performed at a scan rate of 50 nm min-1 

on a Jasco J-810 Spectopolarimeter. The sample and background were analysed 

in quartz cell with a 1 em path length and six scans were accumulated for each 

run. The background spectra were subtracted from the sample spectra and the 

resulting data converted to molecular ellipticity units. 

111.3.2.2. UV titrations. 
Determination of protein concentration was carried out on a Unicam 2 UV-Vis 

dual beam spectrophotometer in quartz UV cells with a path length of 1 em. 

Samples were scanned over a wavelength range of 190 to 300 nm. 

IU.3.2.3. Electron Microscopy. 
Samples were spotted on to carbon coated copper grids and after a period of 30 

seconds, any excess solution was drawn off from the edge of the grid using 

blotting paper. A droplet of a 2 % (w/v) uranyl acetate solution was deposited on 

to the still wet grid, again any excess solution was drawn off after 30 seconds. 

Transmission Electron Microscopy was performed on a Hitachi H-7600 at an 

accelerating voltage of 100 kV and Scanning Electron Microscopy on a Hitachi 

S-5200 (FEG) operated at 30 kV. The carbon coated 400 mesh copper grids and 

the negative stain, uranyl acetate were both from Agar scientific. 

111.3.2.4. Atomic Force Microscopy. 
AFM images were obtained in contact mode using a liquid cell set up on a 

NanoScope IV AFM (Digital instruments). The probe tips used were of oxide 

sharpened Si)N4 with a spring constant of 0.06 N/m (OMCL-RC800 PSA-1, 

Olimpus). The tracking force was kept below 0.1 nN by manually adjusting the 

feedback gain and the scanning speed to compensate for the drift of the 

cantilever deflection during scanning. A range of scanning speeds were used but 
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these were mostly kept within the 3-8 Hz range and imaging was performed at 

room temperature. 

The only treatment applied to the AFM images was flattening for Images 

acquired in height mode (Nanoscope Reference Manual, 1996) 

11:0:.3.2.5. Supported EPC, DMPC and DOPC bilayers 

were prepared by incubating 50 J.Ll of phospholipid unilamellar vesicle solution 

(prepared as below) onto a freshly cleaved mica disc (Agar scientific) at 4 °C 

overnight and then heating for 30 minutes to above 30 °C or to above the main 

transition of the lipid, which ever was highest. The sample surface was then 

washed carefully (x 10) by exchanging 50 J.Ll of 10 mM Tris-150 mM NaCl 

buffer (adjusted to pH 7.4), to remove excess lipid from the support whilst 

keeping the sample in solution, as exposing the lipid bilayer support to air would 

destroy its integrity. 

HI.3.2.6. Protein-lipid sample preparation. 

The samples were prepared by incubating at 4 °C overnight a freshly cleaved 

mica disc with 50 J.Ll of the 2D trial protein-lipid preparation and then washing (x 

1 0) the mica surface very gently by buffer exchange to remove any excess lipid 

from the support. The AFM fluid cell with rubber 0-ring seal was then placed 

over the sample and clamped in place to produce a hermetical seal around the 

sample. 
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111.3.3. Methods. 

111.3.3.1. Unilamellar vesicles of phospholipids. 
ULVs were prepared by evaporating a lipid solution from CHCh (1 mg ml"1

) to 

dryness under vacuum to form a thin film and hydrating the film with a 10 mM 

Tris-150 mM NaCl buffer (adjusted to pH 7.4). The solution was vortexed until 

complete lipid dispersal had been achieved and was then submitted to 5 cycles of 

freeze-thawing between -195 and 30 °C. Following this treatment the lipid 

suspension was extruded 10 times through a polycarbonate membrane 

(Whatman) with a pore size of 100 nm in diameter using a thermobarrel extruder 

(Lipex Biomembranes) at 30 °C. 

:n:n.3.3.2. Lipid preparation for 2D crystallisation trials. 
DMPC and DOPC were stored (at -20 °C) as stock solutions in CHCh at a 

concentration of 30 mg mr1
• Aliquots of 167 J.Ll of lipid solution (5 mg of lipid) 

were dried to a thin film using a rotary evaporator and further dried under 

nitrogen for 2 hours. 

The films were then hydrated with either buffer or a buffer-detergent solution 

and vortexed until all the lipid was dispersed in the solution. The suspension was 

then submitted to 5 cycles of freeze-thawing between -195 and 30 °C and 

sonicated for 20 minutes at 30 °C. Lipid solutions were either used immediately 

or stored in the fridge for 2-3 days before use. 

111.3.3.3. Dialysis tube preparation. 
Dialysis cellulose tubing (Sigma-Aldrich) with a cut of size off 10,000 Da was 

cut into 1 0 em sections and then boiled for 1 0 mins in 2 litres of distilled water 

with 1 mM (5.8 g) of EDT A and a small spatula end of sodium bicarbonate. The 

tubes were thoroughly washed with distilled water before use. 
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Ill.3.3.4. Dialysis procedure. 

The sample solution was pipetted into dialysis tubes, which had been knotted at 

one end and then closed with a clip. The tubes were suspended into a buffer 

solution, from the neck of a 600 ml flask, which was fitted with an inlet tube for 

introduction of 800 ml of fresh buffer, at a rate of 1 ml min"1
, into the bottom of 

the flask using a peristatic pump (Gilson). The buffer was continuously agitated 

with a magnetic stirrer bar and an outlet tube allowed removal of the buffer 

overflow from the dialysis flask. 

H1.3.3.5. YT media. 
YT media was prepared in distilled water with 8 g r1 of trypticase (pancreatic 

digest of casein), 5 g r1 of yeast extract and 5 g r 1 of NaCl (all from Lancaster 

Synthesis). The media was thoroughly mixed, autoclaved and cooled to room 

temperature. Ampicillin (50 J.tg ml"1 of YT media) was added to media before 

use. 

111.3.3.6. Agar plates. 
Agar plates were prepared by mixing 10 g r 1 trypticase, 5 g r 1 yeast extract, 5 g 

r 1 NaCI and 15 g of agar in distilled water. The media was thoroughly mixed and 

autoclaved. The mixture was heated to 55 °C in a water bath until fluid and then 

ampicillin (50 J.tg mr1 of media) was added to the agar media, before it was 

poured carefully in to sterile Petri dishes and allowed to set in a sterile 

environment. Plates were then stored at 4 °C until used. 

111.3.3.7. Standard 15% SDS-Polyacrylamide gel. 

A resolving gel was prepared by mixing 7.5 ml of acrylamide, 1.9 ml of 3 M 

Tris-HCl (pH 8.8) buffer, 5 ml of pure water, 150 J.ll of a 10 % (v/v) SDS 

solution, 560 J.tl of a 2 % (v/v) ammonium persulphate solution and 7.5 of 

TEMED. The gel was gently mixed to avoid creating any air bubbles and was 

then poured in between two glass plats separated by a gasket seal and held 

together by clips. A shallow layer of water was carefully added on top of the gel, 

which occupied about 2/3rd of the space in between the plates. 
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The layer of water was removed with blotting paper, after the gel had set ( -10 

minutes) and a stacking gel was then prepared by gently mixing 1.25 ml of 

acrylamide, 2.5 ml of0.5 M Tris-HCl (pH 6.8) buffer, 5.65 ml of pure water, 100 

J,tl of a 10 % (w/v) SDS, 500 J.tl of a 2 % (v/v) ammonium persulphate solution 

and 7.5 J,tl of TEMED. The stacking gel was poured on top of the resolving gel 

and a comb was pushed in to the opening at the top of the plates, with the comb 

teeth below the stacking gel surface. The gel was then left to set for 

approximately 30 minutes, before the comb was removed. The seal around the 

plates was then removed and the gel between the two glass plates inserted into 

the electrophoresis tank. 

The purified protein and SDS-7 size markers (Dalton Mark VII-1, Sigma) were 

premixed with 10 J,tl of 5 x sample buffer (0.2 M Tris, 20 % (v/v) glycerol, 5 % 

(w/v) SDS and 0.002 % BPB adjusted to pH 6.8) for 10 J,tl of sample and boiled 

for 5 minutes with 1 % (v/v) of a reducing agent, P-mercapto-ethanol. After 

cooling to room temperature, the peptide solutions were pipetted into the wells, 

left by the comb teeth, in the gel. A 10 x reservoir buffer was prepared with 0.25 

M Tris, 1.92 M glycine and 1 % (w/v) SDS (pH 8.3) and diluted 10 fold with 

distilled water to fill the tank. The terminals were attached to the tank and 

electric current was run through the tank to separate charged species within the 

gel. 

The gel stain contained 0.05 % kenacid blueR (0.5 g r 1
) in a solution of 40% 

methanol and 7 % glacial acetic acid in distilled water. 

The gel destain was a solution of 40 % methanol and 7 % glacial acetic acid in 

distilled water. 

11:0:.3.3.8. Agarose gel. 

Agarose (0.8 g) was dissolved in 90 ml of distilled water and heated 3 times, in a 

microwave for 2 minutes until the mixture started to boil. The solution was 

removed from the microwave periodically and gently swirled. Following this 

treatment, the agarose solution was cooled to 65 °C before adding 10 ml of 10 x 

reservoir buffer (0.25 M Tris, 1.9 M glycine and 1 % (v/v) SDS adjusted to pH 

8.3) and 10 J.tl of ethidium bromine. The solution was thoroughly mixed before 

pouring in to an agarose gel tray in which a comb had been inserted to create a 
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row of sample wells in the gel. The running buffer for a 600 ml tank contained 

540 ml of distilled water, 60 ml of 10 x buffer and 60 J.ll of ethidium bromide. 

111.3.3.9. BrKA C-terminal protein expression. 

Constructs of the C-terminal domain of BrKA (Bordete/la pertussis) in a pET 

11a expression vector (a kind donated from Dr Blackburn, Glasgow University) 

were transformed into BL21 (DE3) and spread on to an YT agar plate. The 

clones were left to grow at 3 7 °C overnight. Several cultures were then lifted 

from the culture plate and grown in 10 ml of YT media with ampicillin (50 J.lg 

mr1
) overnight at 37 °C, with constant agitation of the growth media to ensure 

adequate aeration. These cultures were then further grown for 3 or 5 hours, 

following a 20 fold dilution into fresh YT media. After which it was assumed 

that a high cell density had been reached. Controls containing only E. coli BL21 

(DE3) cells were also prepared and grown without antibiotic along side the 

BrKA-pET 11a clone. 

111.3.3.10. Protein expression. 

Protein expression was induced following addition of isopropyl-~-D-

thiogalactopyranoside (IPTGs) to a fmal concentration of 1 mM and cultures 

were incubated for 3 hours at 37 °C. It was found after further investigation that 

the protein would not express well on a large scale in shake flasks and had to be 

grown in 10 ml culture bottles. 

111.3.3.11. Cell harvesting. 

The cells were harvested by centrifugation (10 min at 3000 x g), put through a 

French press cell and centrifuged again for 25 minutes at 19000 x g. The 

supernatant was decanted and the pellet resuspended in a bacterial protein 

extraction reagent, B-PER ™ (PIERCE, Biotechnology) and centrifuged before 

being frozen overnight, to further rupture the cells. The pellet was then 

suspended in a 50 mM Sodium dihydrogen phosphate and 8 M urea buffer at pH 

8 and centrifuged for 25 minutes at 19000 x g. The concentration of the BrKA C­

terminal protein was estimated by SDS-Page. 
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111.3.3.12. Protein purification. 

The supernatant after urea extraction was purified on an ion exchange column 

with negative packing: Sulphopropyl(s) sepharose fast flow column, Amersham. 

The column was equilibrated for 10 minutes at a flow rate of 1 ml min-I with a 50 

mM sodium dihydrogen phosphate-S M urea buffer (pH S), before loading the 

protein (in 5 ml of buffer per pellet spun down from a 10 ml culture) on to the 

column in the same buffer. The UV detector was set at a wavelength of 2SO nm 

and at a flow rate of 1 ml min-I. Protein elution from the column was carried out 

using a linear gradient of a 50 mM sodium dihydrogen phosphate-S M urea 

buffer (pH S) against the same buffer but after addition of 0.5M NaCl (pH S). 

lll.3.3.13. Subcloning of BrKA C-terminal domain into a pET 19b Vector. 

BrKA-pET 11a clones transformed into BL21(DE3) (Novagen) were spread on 

an agar plate (containing ampicillin) and left to grow at 37 °C overnight. Several 

cultures from different areas of the agar plate were lifted into YT media and 

allowed to grow overnight at 37 °C. The suspension was centrifuged to give a 

cell pellet on which a minipreparation was carried out to purify the DNA 

construct (plasmid DNA). 

m.3.3.14. Purification of constructs. 
Minipreps were performed using a Wizard SV kit (Promega); the pellet, resulting 

from 10 ml of culture, was completely resuspended in 250 J11 of a 50 mM Tris­

HCl buffer solution (pH 7.5) with 10 mM EDTA and 100 J.Lg mri of RNase A 

(promega). Then 250 J.Ll of a cell lysis solution, containing 0.2 M NaOH and 1 % 

(v/v) of SDS was added to the suspension and very gently mixed. This solution 

was incubated until it appeared clear (from 1-5 min), an alkaline protease 

solution (promega) was then added and the solution was incubated for 5 minutes 

at room temperature. Finally 350 J.Ll of a neutralization solution containing 4.06 

M guanidine hydrochloride, 0.76 M potassium acetate and 2.12 M glacial acetic 

acid adjusted to pH 4.2 was gently mixed with the solution, which was then 

centrifuged (at 14 000 x g) for 1 0 minutes. The supernatant containing the 

plasmid DNA was then filtered and washed 4 times with a 60 % ethanol, 60 mM 

potassium acetate, S. mM Tris-HCl and 0.04 mM EDTA (pH 7.5) wash solution. 
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The DNA was eluted from the filter with Nuclease free water (promega) and then 

stored at -20 °C. 

111.3.3.15. Subcloning. 
Subcloning of the BrKA C-terminal domain DNA from a pET 11 a to a pET 19b 

vector (Novagen), to incorporate anN-terminal His tag in the protein product, 

was carried out by digesting both the BrKA construct and the new vector with 

the restriction enzymes BamH1 and Nde1 which both have sites within their 

DNA sequence. 

T7 promotw primer f69348.3 

~ T7 PfOI11C*r lac openllor XbB 1 riM 

AGA TCTCGA TCCCGCGAAA TT AATACGAC TCACT AT AGGGGAATTGTGAGCGGAT UCAA TTCCCCTCTAGAAA TAA TTTTGTTTAACT TT AAGAAGGAcA 

.1!2f1 Nhel T7•Teg . pET-IIo ~ 8pull021 ---
TAT ACA~ffiP ACCA TGACTCGTCGACAGCAAA TCGC TCGCGGA T~T AACAAAGCCCGAAAGGAAGCTGAG TTGGCTGCTGCCACCGCTGAGCAA TAAC TAGCA TAA 

e l o$erHetThrG i yG i yG i nGinHetGiyArgGiy5erG i yCyaEnd in . t _ 

pET - lid 
~ 

pET ·lib ... GG TCGGGATCCGGCTGCTAACAAAGCCCGAAAGGAAGC TGAGTTGGC TGC TCCCACCGCTGAGCAATAAC TACCA TAA 
.. . G l yAn~AopProA I oA I oAanlysA I oArgLyaG I uA l oG I uLeuA I oA I oA I oThrA I oG I uG I nEnd 

. .. TACCATGGCTAGC . . . pET· Ilc . d 
HetA I a5er ... 

CCCCTTCCCCCCTCT AAAC GGGTCT TCAGGGG T T TTT TG 

Figure 1/13.1. Diagram depicting the pET lla vector cloning and expression 

regions with Nde/ and BamHI cloning sites underlined in red. 

T7 promoter primer lt69348-3 

~ T7 promoter lac operator Xba 1 rbe 

AGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTG TGAGCGGATAACAATTCCCCTCTAGAAATAA TT TTGT TTAACTTTAAGAAGGAGA 

Nco I Hie-li J:fs!!1J_ Xho I BamH I 
TATACCATGGGCCATCATCATCATCATCATCATCAT CATCACAGCAGCGGCCATATCGACGACGACGACAAGC~CTCGAGGAleCGGC TGCTAACAA . 

MetGiyH isHisH tsH isH isH isH i sH isH i sH tsSerSerG iyHtsl leAspAspAspAsplysH iaMet l euGiuAspProAioA ioAsnl y. 
8pu11021 Enterokinase 1 T7terminetor 

GCCCGAAAGGAAGC TGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCC TTGGGGCCTCTAAACGGGTCT TGAGGGG TTTTTTG 
AloArqlysGiuAioGiuleuA ioA ioA ioThrA ioGtuG inEnd 

T7 terminator primer 169337-3 

Figure 1/13.2. Diagram depicting the pET 19b vector cloning and expression 

regions with Nde/ and BamHI cloning sites and N-terminal His Tag sequence 

underlined in red. 
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Purified BrKA-pET 11a DNA from the minipreparation was used and all other 

digestion components as listed below were purchased from Roche. 

pET 19b vector BrKA-pET 11a 

Vector/construct 1 J.1l 20 J.1l 

Nde1 1 J.1l 1 J.1l 

BamH1 1 J.1l 1 J.1l 

Buffer B 1 Ox (Roche) 3 J.ll 4 J.1l 

H20 24 J.1l 14 J.ll 

Table //13.1. Digestion preparation of the BrKA construct and the pET 19b 

vector with the restriction enzymes BamBI and Ndel. 

The digestion preparations were mixed by pulse centrifugation and then 

incubated at 3 7 °C for 2 hours. 

IH.3.3.16. Separation of fragment by agarose gel electrophoresis. 

The digestion products were separated by agarose gel: dye was added to 30 JJ.l of 

sample (1 part dye to 5 parts DNA) and run against the DNA standard, 'A Eco 471 

(2-5 JJ.g). The vectors pET 11a and pET 19b have respectively 5,677 and 5,717 

base pairs and the BrKA C-terminal domain has 856 base pairs. DNA gel bands 

corresponding to the pET 19b plasmid and to the BrKA C-terminal fragment 

were carefully cut out of the gel and inserted into dialysis tubes with 200 J.1l of 

running buffer for separation by electro elution. 

111.3.3.17. Purification of target fragments. 

Following electro elution, the solution in the dialysis tubes was removed 

(avoiding any gel transfer) and submitted to a phenol-chloroform extraction 

process. The DNA buffer solutions (200 JJ.l) were added to an equal part of 

phenol, vortexed and centrifuged for 3 minutes (in a table top centrifuge). The 

upper aqueous layers were removed and the phenol phases re-extracted with 100 

J.1l ofTE buffer containing 10 mM Tris-HCl and 1 mM EDTA (pH 8). 
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The two aqueous parts were pooled together and extracted twice (2 x 250 J.Ll) 

with chloroform held at 4 °C, to give a final 300 J.Ll aqueous phase, for each DNA 

extraction, to which were added: 12 J.ll of a 5 M ammonium acetate-MgCh 

solution, 1 J.Ll of glycogen and 630 J.Ll of a 70 % ethanol solution (stored at -20 

°C). These were then placed at -20 °C for at least 2 hours to precipitate the DNA. 

The solutions were centrifuged for 20 minutes at 4 °C and 19000 x g to give a 

pellet, which was then washed with 1 ml of a 70 %ethanol solution (stored at -20 

°C) and centrifuged again for 10 minutes. The ethanol was decanted and the 

pellet dried in a desiccator for 5 minutes. The pellet was fmally redissolved in 1 0 

J.Ll of sterile water. 

HJf.3.3.18. Ligation of recombinant pET 19b-BrKA C-terminal clone. 

The BrKA-C terminal fragment was ligated into the pET 19b vector using the 

following method: 4 J.Ll of pET 19b plasmid DNA and 4 J.Ll of BrKA C-terminal 

domain DNA were mixed with 1 J.Ll of 10 x ligase buffer and 1 J.Ll of ligase (T4 

DNA) and then incubated at room temperature for 4 hours. 

HI.3.3.19. Transformation into competent cells. 

The pET 19b-BrKA C-terminal construct was transferred to Top 10 competent 

cells: 2 J.Ll from the ligation reaction were combined with 40 J.Ll of Top 10 

competent cells (Invitrogen™) and placed over ice for half an hour. This solution 

were then heat shocked (without agitation) for 30 seconds at 42 °C and 

transferred back to ice before adding 1 00 J.1l of SOC medium (Invitrogen ™) and 

shaking the mixture for an hour at 37 °C. The transformed cells were then spread 

on a pre warmed agar plate (with ampicillin) and incubated overnight at 37 °C. 

111.3.3.20. Expression and cell harvesting. 

Several colonies from the plate were then grown in YT media (with ampicillin), 

expressed and harvested as described above in section 11!.3 .3 .11. 
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111.3.3.21. Purification. 

Purification was carried out on a Ni2+ -NT A affinity column equilibrated for 10 

minutes with a buffer (a), containing 8 M Urea, 50 mM Sodium dihydrogen 

phosphate, 150 mM Sodium chloride and 5 mM Imidazole (adjusted to pH 7.4 

with NaOH). The protein dissolved in the same buffer (a) was then loaded on to 

the column. The column was washed with buffer (a) containing a higher 

concentration of imidazole (20 mM Imidazole) and the protein was eluted then 

from the column again with buffer (a) with a 0.3 M concentration of imidazole. 

Protein elution was monitored at 280 nm at a flow rate of 1 m1 min"1
• 

X 

Intensity 

f--~ 

,_f- -

Time (min) 

Figure 1113.3. Elution of BrKA C-terminal protein from the nickel affinity 

column. 

ITI.3.3.22. Protein refolding. 

The protein (---0.5 mg ml"1
) in elution buffer was either dialysed alone or after 

thoroughly mixing with either 0.05 mg of lipid (DMPC) or 0.1% (v/v) Triton X-

100, or with both 0.1% (v/v) Triton X-100 and 0.05 mg ofDMPC. 
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The mixtures were dialysed at a rate of 0.2 % min"1 (at 4 °C) against a 20 mM 

sodium dihydrogen phosphate, 150 mM NaCl and 0.1 % (v/v) Triton X-100 

buffer, adjusted to pH 7.4 with NaOH. A second dialysis was performed under 

the same conditions against a 10 mM Tris, 150 mM NaCl, 20 mM MgCh, 3 mM 

NaN3 and 0.1% (v/v) Triton X-100 buffer (pH 7.4). 

111.3.3.23. Determination of protein concentration. 

The protein concentration was determined by from the UV absorbance of the 

protein at 280 nm using the Beer Lambert law for which the protein extinction 

coefficient (at 280 nm) had to be calculated. 

The residue extinction coefficients at 280 nm, for the tyrosine and tryptophan 

residues, used in the calculation, were 1280 and 5690 Moles·1 cm"1respectively.89 

The predicted number of tyrosine, tryptophan and cysteine residues in the 

recombinant protein sequence were counted, multiplied by the appropriate 

extinction coefficient for each type of residue and then summed to give the 

extinction coefficient (e 2sorun) for the whole protein: 

Residue ~ of residues N° of residues multiplied by e 280nmfor 

in the sequence e 280 run for each residue the protein 

Trp 8 8*5690 = 45520 (M"1 cm-1
) 

Tyr 19 19*1280 = 24320 {M"1 cm-1
) 69840 (M"1 cm-1

) 

Cys-Cys 0 0 

Table II13.2. Calculation of the extinction coefficient (s 2ao,J for the BrKA C­

terminal domain. 

A plot of protein absorption at 280 nm against volume of peptide stock solution 

in the UV cuvette, gave a linear relationship, from the gradient of which, the 

protein concentration in a 1 ml cuvette with a path length of 1 em, was calculated 

using the Beer Lambert law: Abs = e*C*l (1) 
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For which Absorption, Abs. was corrected for protein dilution and path length 

was equal to 1 : 

Cone. (M) = Abs2sonm I E2so run* vol. in cuvette I vol. of peptide. solution (2) 

and the gradient of Abs. against vol. of peptide solution was given by: 

Gradient= (E2sonm • Molar Cone.) I vol. in cuvette.(3) 

HI.3.3.24. 2D crystallisation procedures. 
The purified refolded protein (0.5 mg ml-I), in buffer (1) with 0.1 %Triton X-

100 (vlv), was thoroughly mixed by vortexing, in a 1:1 (wlw) and 1 :2 (wlw) 

protein to lipid ratio with DMPC, in buffer (1) with 1 % OG (wlv). The solution 

was then incubated in an eppendorf tube for one hour at 4 °C, before dialysis at a 

rate of 0.2 % min-Iagainst detergent free buffer (1) using a peristaltic pump 

(Gilson), at 4 °C. 

The solution was then dialysed from 4-6 hours, against fresh buffer (1 ), pre­

equilibrated at 23 °C and following a third buffer change, the dialysis solution 

was placed at 3 7 °C for 48 hours. A final dialysis was then carried out for 2 

hours, on samples prepared for EM but not AFM examination, with salt free 1 0 

mM Tris-HCl buffer (pH 7.4) pre-equilibrated at 37 °C, before storing the 

samples at 4 °C. Samples were allowed to warm to room temperature for an hour 

before imaging either by EM or AFM. 

Buffer (1): 10 mM Tris, 150 mM NaCl, 20 mM MgChand3 mMNaN3 buffer 

prepared in distilled water (adjusted to pH 7.4) 

111.3.3.25. Modified crystallisation procedures. 
The purified refolded protein (--0.5 mg mri) in a mixture of 1 % (wlv) OG and 

0.1 % (wlv) DM in buffer (1) was mixed with either DMPC or a 1:1 (wlw) 

mixture ofDMPC and DOPC, also in buffer (1) with a 1% (wlv) OG and 0.1 % 

(wlv) DM mixture. Protein to lipid ratios of 1:1 and 1:2 (wlw) were used in all 

the 2D trials. Dialysis rates were increased two (0.4% min-I) and four fold (0.6 

%min-I) and dialysis at 37 °C was extended from 48 hours to a week. 
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Ull.3.3.26. The M protein crystallisation procedures. 

TheM protein was soluble in a (10 mM) Tris-(150 mM) NaCl buffer (pH 7.4) at 

concentrations below 1 mg mr1
• A 1:1 (w/w) mixture of the M protein with 

either DMPC or a 1:1(w/w) mixture ofDMPC and DOPC, was pre-mixed with 1 

% (w/w) OG and 0.1 % (w/w) DM in buffer (1 ). The solution was incubated at 4 

°C for over an hour, to allow for equilibration of the system and then dialysis in 

buffer (1) with 0.1 % Triton X-100. Half the buffer was replaced by fresh 

detergent-free buffer following dialysis at room temperature (23 °C) for 4 hours. 

The dialysis flask was then transferred to a 3 7 °C environment and again half the 

buffer was replaced by 37 °C pre-equilibrated detergent-free buffer. After a 24 

hour period, 3 complete buffer exchanges were carried out over 8 hours to ensure 

complete detergent elimination from the system. The solution was then allowed 

to cool to room temperature, before imaging by EM or AFM. 

111.3.3.27. The 2K4Y03 peptide crystallisation procedure. 

The purified 2K4Y03 peptide, in HFIP at a concentration of 0.5 mg mr1
, was 

mixed in a 1: 1 and 1 :2 peptide to lipid ratio, with either DMPC or a 1:1 mixture 

of DMPC-DOPC, in buffer (1) (pH 7.4) with 1 % (w/v) OG and 0.1 % (w/v) 

DM. The dialysis conditions were those used for the crystallisation trials of the 

M protein. 

111.3.3.28. Elimination of excess lipid. 

Excess lipid was eliminated by mixing the sample solution with 20 ~g of 

phospholipase A2 in buffer (1) and then dialysing the sample-phospholipase 

solution over night at 4 °C. After exchanging the dialysis buffer with fresh buffer 

(1), the sample was heated to 37 °C for 3 hours and then cooled toRT. 
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111.4. Appendix 1. 

Properties of detergents.127
'
128

'
129 

Non-Ionic detergents. 

I Detergent Name IM.'w. (monomer) lCMC(mM) I 
I I I Conditions 

CMC 

~------AP-0--1-0___ I 218.3 I 4.6 I 50mMNa+ 

I ___ A_P_0--1--2-----1 246.4 ,--1--0-.5-68 ___ 1 

I BRIJ-35(C12E23) J,--

1 

--12_0_0-(a-v-g)--~ 0.09 ,--: -50-mM--N-a-:.-+-

1 CsE6 I 399.1 .-~--~9.---::-9 __ _ 

~-------C=1--=0E=-6------~--4-2-7.·-1-----~---(}.9-----~50mM Na+ 

I C12E6 ~..---4-5_1._1 ___ 1 0.087 ~50mMNa+ 

I C12E10(atlas G2127) ~ 539.1 ,--~--0-.1-1---~ 

I cl2~ I 583.1 I 0.08 r-1-50-mM--N-a-:;:+---

1 c1~12 1 771.1 1 0.0023 I 

[ c1~21 I 1167.1 I 0.00391 r------=-25=0:-=:C--

J Cyclohexyl-n-Ethyl-P-0-Maltoside I 452.5 I 120 I 

I Cyclohexyl-n-hexyl-P-0-Maltoside I 508.6 I 0.56 _,.,-50--:--mM--N-a-:.-+-

l Cyclohexyl-n-methyl-P-D- I 438.5 I 340 150mM Na+ 
I Maltoside I 1 

I n-Decanoylsucrose I 496.6 I 2.5 ~.----50-mM--N-a-.. +-

1 n-Decyl-P-0-glucopyranoside I 320.4 I 2.2 I 50mM Na+ 

~-Decyl-P-D-maltopyranoside ~ 482.6 I 1.6 ---~ 50mM Na + 

I n-Decyl-P-0-thiomaltoside I 498.6 I 0.9 ~~~ 

-----n--=-o=-o--'-d::-'-ec-an-oy___,l----, 524.6 _.I 0.03 ~-

------------------------------
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Non-Ionic detergents. (continued) 

I 

I 
Detergent Name 

Sucrose 

I n -Oodecyl-~-0-glucopyranoside 

I 

I 

I 
I 

n-Oodecyl-~-D-maltoside 

HECAMEG 

Heptane-1 ,2,3-triol 

I 
n-heptyi-~-D-glucopyranoside 

I n-heptyl-~-0-thioglucopyranoside 

MEGA-8(0catanoyi-N-
methylglucamide) 1 

I 

n-nonyl-~-0-glucopyranoside I 
I 

n-Octanoyi-~-O-g1ucoslyamine 
(NOGA) 

I 
n-Octanoylsucrose 

I n 
-Octyl-alpha-D-glucopyranoside 

n-Octyl-~-0-glucopyranoside 

n-Octyl-~-0-maltopyranoside I 
-I 
I 

I Triton X-100 (tert-C8-0-~-6) 

I 
Triton X-100 hydrogenated I 

I 
Triton X-114 (tert-C8-0-E,_g) 

-

I 
Tween 80 (C1s:J-Sorbitan-E2o) 

I 
M.W. (monomer) 

I --

~8.5 

j348.5 

I 
335.4 

I 
148.2 

I 
278.3 

I 
294.3 

I 
321.5 

I 
306.5 

I 
305.4 

I 
468.5 

I 
292.4 

I 
292.4 

I 454.5 

I 

I 
650(avg) 

I 
631(avg) 

I 
537(avg) 

I 
1310 

I 
CMC(mM) I CMC Conditions 

~---1 SOmMNa+ 

I 
0.13 ~mMNa+ 

I 
0.15 I SOmMNa+ 

I 
19.5 

I 
SOmMNa+ 

I I 

I 
79 

I 
SOmMNa+ 

I 
30 

I 
SOmMNa+ 

I 
58 I SOmMNa+ 

I 
6.5 

I 
SOmMNa+ 

T 80 

I 
SOmMNa+ 

I 
24.4 

I 
SOmMNa+ 

I 20 

I 
-

125 
I 

SOmMNa+ 

I 

---

I 
SOmMNa+ 23.4 

I 
0.3 

I 
SOmMNa+ 

I 
0.25 

I 
SOmMNa+ 

I 
0.35 I SOmMNa+ 

I 

I 0.012 

I 
SOmMNa+ 
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Ionic Detergents. 

Detergent Name 

I 
M.W. (monomer) I CMC(mM) 

! 
I 
I I 

' 
CMC 

Conditions 
- --

Cholic acid, Na+ salt I 430.6 I 4 

I I 
50mMNa:r-

J Decanesulfonic acid, Na+ salt I 244.3 

I 
32.6 

I I 
-

Deoxycholic acid, Na+ salt 

I 
414.6 ~ (DOC) I 

50mMNa+ 

~ Digitonin .I 1229 

I 
0.087 

I I I 
-

Lithium n-dodecyl sulfate I 272.3 

I 
6-8 

I .. I 
50mMNa+ 

Lysophosphatidyl-choline (16:0) 

I 
495.7 0.007 I -

Sodium n-dodecyl sulfate (SDS) 

I 
288.5 

I 

2.30 

I 
50mMNa+ 

TaUrocholic acid, Na+ salt 

I 
537.7 

I 
3.3 

I 
20mMNa+ 

~50mMNa+ I Taurodeoxycholic acid, Na+ salt-, 521.7 

I 
2.7 

-~--

I 
TOPPS 

I 
350.5 ~ -r 
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Zwitterionic Detergents 

Detergent Name 

I 
M.W. (monomer) CMC(mM) 

I 
CMC 

Conditions 
---. 

BigCHAP I 878.1 3.4 I SOmMNa+ 
·--. 

CHAPS 

I 
614.9 I 6-10 

I r 

SOmMNa+ 

i CHAPSO 

I 
630.9 

I 
8 

I 
I I 

SOmMNa+ 

j EMPIGEN BB (N-Dodecyl-

I 

272.0 I 1.6-2.1 
1 N,N, Dimemthylglycine) 

I ! I 
SOmMNa+ 

! ZWITTERGENT 3-08 

I 

279.6 I 330 

I I I 
I I 

SOmMNa+ 

ZWITTERGENT 3-10 ~--- - --307.6 

I 
25-40 

I 

SOmMNa+ 

ZWITTERGENT 3-14 

I 

363.6 

I 

0.1-0.4 

I 

SOmMNa+ 

The values of CMC given are for the temperature range between 20 °C and 25 °C. 
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Chapter IV 

IV.l. Analytical studies of the interactions of the perfluorinated 

alcohon, lltexat1uoroisopropanol, with phospholipid membranes. 

IV.l.l. Introduction. 

Hexafluoroisopropanol, HFIP Is a solvent commonly used, alongside 

trifluoroethanol, 1 in conformational and structural studies of peptides and proteins. 

This short chain, bulky alcohol with its six fluorine substituents is particularly 

efficient at solvating hydrophobic macromolecules such as the amphiphilic 

synthetic peptides described in chapter II. 

Perfluorinated amphiphiles, such as HFIP, have unique properties due to their 

weak intermolecular interactions and higher conformational rigidity than their non 

fluorinated hydrocarbon and alcohol counterparts; the fluoroalkyl groups give a 

strong amphiphilic character to the alcohol molecule. 2 HFIP is miscible with water 

and has a high affinity for hydrophobic environments such as lipid membranes; its 

dual properties are attributed to the creation of a hydrophobic microenvironment in 

aqueous media. 3 

Figure IV.1.1. [1,1,1,3,3,3-hexajluoroisopropanol] (HFIP). 
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Before carrying out biophysical measurements on the interactions of the 

amphiphilic synthetic peptides with phospholipid membranes, using HFIP as the 

most efficient solvent for the amphiphilic peptides, a thorough understanding of 

the effects of HFIP on the phospholipid membranes was considered a crucial 

preliminary investigation in this analytical project.4
•
5 

A study on the effect of a range of small alcohol molecules on the stability of 

phospholipid membranes, which had been carried out using Fluorescence Marker 

Release and 2H NMR experiments, revealed that of all the alcohols analysed, HFIP 

had the most potent effect on the phospholipid membranes. 6 This high affinity of 

HFIP for lipid membranes had also been observed during some preliminary work 

carried out on the analysis ofliposomes by Raman spectroscopy.7 

In the present study a wide range of analytical techniques: I9p NMR, Fluorescence 

Marker Release, Differential Scanning Calorimetry (DSC), Small Angle X-ray 

Scattering (SAXS), Pressure-Area Isotherms (Langmuir Blodgettry), Laser light 

scattering and Electron Microscopy were all explored in order to gain as 

comprehensive a view as possible of the interactions of HFIP with phospholipid 

membranes, without losing sight of the main research project. 
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:U:V.1.2. :U:nvestigation of the effects of HFIP on phospholipid 
membranes. 

The affmity of HFIP for phospholipid membranes was first assessed by 19F NMR 

analysis by monitoring changes in the signal intensity of HFIP as a function of 

lipid concentration with reference to the fluoride ion, which was assumed not to 

partition into the lipid membranes. 
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Figure IV.1.2. 19F NMR spectra ofHFIP-DMPC and HFIP-DOPC preparations 

performed in D20 at 376 MHz: A, 1% HFIP; B, [HFIP]/[DOPC} = 2:1; C, 

[HFIP]/[DMPC} = 2:1 and D, [HFIP]/[DMPC] = 1:1. 
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Multilamellar vesicles of a fully saturated and a monounsaturated phospholipid, 

dimyristoyl phosphatidylcholine, DMPC and dioleoyl phosphatidylcholine, DOPC 

respectively, were used to investigate the effect of bilayer fluidity on the ability of 

HFIP to partition into phospholipid membranes. Multilamellar vesicles hydrated in 

deuterated water, D20 were added in a 1:1 and a 1:2 molar ratio relative to the 

concentration of HFIP, to a solution containing both HFIP and sodium fluoride, 

NaF. The volume of HFIP (1 % v/v) and the concentration of NaF (0.3 M) were 

kept constant throughout the experiment. 
19F NMR spectroscopic analysis of the free HFIP molecules produced a sharp 

doublet at -76.23 ppm, which showed a clear decrease in intensity as the 

concentration of lipid in the sample was increased; a much boarder signal was 

produced as a function of HFIP partitioning in to the lipid, which was 

superimposed on the signal for the free HFIP (Figure IV .1.2. ). 
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Figure IV.l.3. Expanded section of19F NMR spectra recorded in D20 at 376 MHz 

of A, a 1% solution ofHFIP and B, a 1:1 molar ratio ofHFIPIDMPC. 
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A lipid-water partition coefficient, KLw for HFIP was then estimated from the 

intensities ofthe free HFIP and lipid bound HFIP molecules according to: 

KLw= [W] hI [L]T Is 

Where [W] is the concentration of D20, h is the signal intensity of the lipid bound 

HFIP, [L]r is the concentration of lipid in the sample and IBis the signal intensity 

of.free HFIP in the aqueous phase. 

The partition coefficient, KLw for HFIP partitioning into the saturated lipid, DMPC 

was estimated as 460 and for the monounsaturated, DOPC, as 660. These values 

are indicative of the very high affinity of the perfluorinated alcohol for 

phospholipid membranes, considering that the non fluorinated alcohol, isopropanol 

only has a KLw value of 1.8 and that halothane has a coefficient of 200.8 This 19F 

NMR study has also exposed a considerable difference in HFIP partition 

coefficients for the saturated and monounsaturated phospholipids, which reveals a 

far greater affinity ofHFIP for the more fluid unsaturated membrane, DOPC. 

The partitioning of HFIP into phospholipid bilayers was shown in a separate 19F 

NMR experiment to be fully reversible; following dialysis of the lipid-HFIP 

mixtures against deuterated water, the presence of HFIP appeared to have been 

completely eliminated from the samples. 

1lV.1.3. (Fluorescence) Marker Release experiments. 

The extent of HFIP interaction with phospholipids membranes was probed through 

marker release experiments by encapsulating a fluorescent marker, 

carboxyfluorescein, CF into phospholipid liposomes and monitoring the 

fluorescence emission intensity immediately after HFIP addition to a solution of 

CF containing liposomes. 
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Carboxyfluorescein, CF was encapsulated into liposomes at concentrations above 

which the fluorescence marker was self quenching (>35 mM); significant increases 

in fluorescence intensity were observed once the integrity of the lipid bilayer was 

breached and the marker diluted in to the aqueous media surrounding the 

liposomes. 

Aliquots of HFIP were added to a liposome suspension producing the release of 

short bursts of fluorescence marker, as indicated by an increase in fluorescence 

intensity, monitored at an emission wavelength of 518 nm following excitation at 

491 nm; after an initial increase, fluorescence intensity remained stable between 

each new HFIP addition. Total CF release was assumed after addition of 1 % (v/v) 

of Triton X-100, a non-ionic detergent to the HFIP-CF-liposome mixture in the 

sample cell and the percentage release of CF was then calculated using the 

following equation: 

%release= 100 * (Fs- Fo) I (Fm- Fo) 

Where Fs is the measured steady state emission signal at the start of the 

experiment; Fm is the emission following addition of Triton X-I 00 and Fo is the 

emission after addition of HFIP. 
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Addition of aliquots of 0.03 % (v/v) of HFIP appeared to create a transient 

disruption to the liposomal membrane and enabled leakage of encapsulated CF for 

a short period after HFIP addition, following which no further increase in intensity 

was observed. 
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Figure IV.1.4. Release of encapsulated CF (> 35mM) from EPC liposomes, 

(0. 05 mg mf1 in Tris (1 OmM)-NaC/ (150mM) Buffer, pH 7.4) 

following addition of HFIP. 

The reverse process, which was carried out by addition of aliquots of CF 

encapsulated liposomes to a HFIP-buffer solution, gave very similar results, 

indicating that CF release was not due to inefficient HFIP-lipid mixing producing 

localized areas of high concentrations of HFIP. 

The fluorinated alcohol induced disturbance in phospholipid membranes, as shown 

by the marker release experiments, was further examined by Differential Scanning 

Calorimetry (DSC) on HFIP-DMPC systems. 
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IV.1.4. Differential Scanning Calorimetry. 

A Differential Scanning Calorimetric analysis of the effect of HFIP on 

multilamellar vesicles of DMPC, revealed that the fluorinated alcohol had a 

considerable impact on the DMPC bilayer system at low concentrations, ranging 

from 2 mM to 0.05 M and corresponding to HFIP/lipid molar ratios of0.05 to 0.12 

respectively. 

Following addition of only 2 mM HFIP, the pre-transition, Tp could no longer be 

observed in the DSC thermogram and a there was a marked decrease in both the 

temperature and enthalpy change of the main phase transition, Tm corresponding 

to the change from a gel to a liquid-crystalline state. 9 
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Figure !V.I. 5. DSC thermograms showing the effect of HF/P, from 2 mM to 0. 05 

M on fully hydrated ML Vs of DMPC; HFIPIDMPC molar ratios were 0. 5 %, 

5 % and 12 % respectively. 
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The enthalpy change for the main transition decreased by ~50 % of its original 

value on interaction of DMPC multilamellar vesicles at an initial HFIP 

concentration of 0.02 M (MR: 0.05), but then only decreased slightly further on 

addition of higher HFIP concentrations, up to 0.05 M (MR: 0.12). The effect of 

HFIP on the main transition temperature followed a concentration dependent trend, 

with a decrease of 3-4 °C at 0.02 M HFIP, which continued as the concentration 

of HFIP was further increased, to reach a reduction in temperature of 8-9 °C at the 

highest concentration examined of0.05 M HFIP. 
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Figure /V.I. 6. The variation of phase transition temperature, Tm 

as a jUnction of the increase in HFIP I DMPC molar ratios. 

0.2 

This DSC study has clearly demonstrated that HFIP has a significant effect at low 

concentrations on the DMPC bilayer system, which is indicative of incorporation 

of the bulky fluorinated alcohol molecules into the phospholipid membrane; 

causing considerable disruption to the ordering and packing of the lipid monomers. 

This strongly suggests that once integrated in the lipid bilayer, HFIP could locate 

in the head group region of the bilayer, which would force the lipid chains further 

apart and substantially reduce their interactions; thereby increasing the fluidity of 

the bilayer resulting in the significant decrease in transition temperature observed 

in this study. 

The lipid head group region is believed to be the preferred location for many other 

alcohol molecules including the fluorinated alcohol, TFE.6 
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Integration of the bulky fluorinated alcohol molecule, in to the glycerol part of the 

phospholipid head group region, would allow for hydrogen bonding between a 

HFIP hydroxyl group and an oxygen atom on the lipid phosphate group and could 

potentially accommodate at least two HFIP molecules. 

Figure !V.I. 7. Diagram showing suggested location of HFIP in phospholipid 

hi/ayers. The hydroxyl group of a HFIP molecule would form a hydrogen bond 

with an oxygen atom on the phosphate group. 

Perturbations created in saturated phospholipid bilayers by drugs and amphiphilic 

peptides at [introduced molecule] I [lipid] molar ratios of 10 % tend to affect the 

temperature of the main transition by only 1-2 °C. The smaller alcohol molecule, 

ethanol, which is also believed to integrate in the lipid head group region of 

saturated phospholipid bilayers, induces a shift in main transition temperature of 

around 2 °C, but this shift is produced at concentrations around 500 times those 

used in this study. 10
•
11

•
12

•
13

•
14 
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IV.l.S. Small Angle X-ray Scattering, SAXS. 

Small Angle X-ray Scattering (SAXS) experiments were carried out over a similar 

range of HFIP/lipid molar ratios as those used in the DSC analysis, in order to 

explore further the interactions of HFIP with phospholipid membranes and to 

study their effect on the periodicity and the stability of the bilayer system. 

A monounsaturated phospholipid, DOPC, with a main phase transition temperature 

of around -20 °C was used alongside the saturated phospholipid, DMPC (Tm ~ 23 

°C) to determine whether the effect of HFIP on the bilayer could be influenced by 

the phase of the bilayer. 

IV.1.5.1. Description of the technique. 

Small Angle X-ray Scattering, is a well established technique used for studying 

structural features of colloidal dimensions, from a few thousand to tens of 

Angstroms (A) in diameter. The periodicity of the lamellar structure, the contrast 

between the bilayers and the solution in a sample gives rise to small angle X-ray 

scattering on exposure to X-ray radiation. 15
•
16

•
17

•
18

•
19 
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Figure !V.i . 8. Diagram of the basic components of an SAXS diffractometer. 
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The X-rays are produced when an accelerated beam of electrons (by a high voltage 

~40 000 volts) are directed toward a metal target and strike it with enough energy 

to ionize a few of the metal 1 s electrons. An electron from a higher 2p or 3p shell 

will drop down to fill the Is vacancy and release energy as X-rays in the process. 
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Figure /V.I. 9. Diagram showing the production of X-rays. 

When a low divergent beam ofX-rays is focused on a sample, the electrons within 

the sample resonate at the frequency of the X-rays that are passing through and 

emit secondary waves that interfere with each other; the maximum scattering and 

hence the strongest signal is observed when all the waves are exactly in phase and 

in the direction of zero scattering angle. Coherent scattering arises from the 

inhomogeneous electron density within the sample and is produced at small angles 

for particles that are much larger than the X-ray wavelength (Cu Ka -1.542 A). 
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The angular range over which scattering is observed is quite small, typically from 

0.1° to 5° (29). SAXS, like all other scattering processes, is governed by a 

reciprocal law that shows an inverse relationship between the sample particle size 

and the scattering angle.2° 

IV.1.5.2. X-ray scattering data collection and processing. 

HFIP was added to fully hydrated multilamellar phospholipid vesicles (9 % w/v 

lipid content in pure water) over a small range of concentrations from 5.00 mM to 

0.04 M corresponding to HFIP/lipid molar ratios of 0.03 to 0.25 respectively. The 

HFIP-lipid samples were injected into a quartz capillary placed in a sample holder 

in the path of the beam; the position of the sample was then adjusted by measuring 

the intensity of scattered transmission (by a glassy carbon) through the sample. 

Following collection, the sample and background scattering data were radially 

averaged and integrated; a transmission factor was calculated to correct sample 

data for background scattering and the intensity of the scattering data, measured in 

number of counts, was normalised to counts s"1 against the collection time. 

The transmission factor, 't, for the sample was calculated from: 

't sample= I sample- ('t oc * I sample) I I co- ('t oc • I Background) 

where I is intensity and CG is the transmission through the glassy carbon. 

Correction for scattering was performed using: 

I normalised = I sample - ( 't sample * I Background) 

The corrected scattering data was then shown as a plot of intensity against 

scattering vector, Q, from which information about bilayer repeat distance and 

bilayer thickness could be deduced. 
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The lamellar repeat distance, D, was calculated from the peak position of the 

diffracted X-rays using the Bragg equation: 

2D sine= nA. 

and Q = 4n sine I /.. 

therefore Q = 2n I D and D = 2n I Q. 

Where n is an integer, A. is the monochromatic x-ray wavelength of 1. 5418 A and 

sinO is the scattering angle. 
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IV.1.5.3. SAXS from HFIP-DMPC systems. 

The scattering data collected for HFIP-DMPC systems collected over a range of 

HFIP to lipid molar ratios, from 0.00 to 0.25 were characterized by a main 

reflection at 0.097 Q and a second order reflection at 0.194 Q. The shape, width 

and height of the subsidiary peak are more sensitive to small changes within the 

sample than those of the maximum peak.21 
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Figure IV.l.JO. The X-ray patterns for HFIP-DMPC systems were measured over 

a range ofHFIPIDMPC molar ratios, MRfrom 0.03 to 0.25. [lipid}: 0.15 M and 

[HFIP] from: 0. 005 M to 0. 040 M SAXS data were collected at 20 °C. 

The scale bar corresponds to the intensity in units of counts s-1 (Cps). 
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The intensity of both the main and the second order reflections for the fully 

hydrated saturated phospholipid changed considerably on addition of HFIP, over 

the range of HFIP to lipid molar ratios analysed. 

The Small Angle X-ray Scattering data for HFIP to DMPC molar ratio of 0.03 

showed a significant reduction in intensity for both the main and second order 

reflections as well as a slight decrease in the width of the second order reflection. 

Increasing the HFIP concentration, to a HFIP to lipid molar ratio of 0.06, produced 

only a small reduction in the intensity, but quite a marked increase in the width of 

both reflections. A further increase to a molar ratio of 0.12 revealed a considerable 

decrease in the intensity accompanied by a significant broadening and loss of 

definition of both reflections. These effects continued at the highest molar ratio 

analysed of 0.25, revealing the considerable disruption produced by HFIP on 

saturated phospholipid bilayers. 

Molar ratio * Area (A-1
) Reflection (Peak) Width (11

) Height (P) 

ofHFIP: position rA-1
) 

DMPC 

MR: 0.00 1. 1.44*10-5 0.097 0.007 0.002 

2. 7.11 * 10-6 0.194 0.009 5.28*104 

MR: 0.03 1. 1.25* 10_, 0.097 0.007 0.001 

2. 9.06*10-6 0.197 0.014 4.45* 104 

MR: 0.06 1. 1.88*10-5 0.094 0.018 9.13*104 

2. 1.46*10-5 0.195 0.024 5.22*104 

MR: 0.12 1. 1.21 * 10_, 0.096 0.019 4.99*1()-'f 

2. 1.78* 1 o-5 0.196 0.052 3.76*104 

MR: 0.25 1. 1.01 •to-=> 0.093 0.034 3.50*104 

2. 2.76* 10-5 0.193 0.074 4.23*104 

* 1: Main reflection and 2: second-order reflection. 

Table IV.J.l. Table listing numerical values (A-1
) calculated/or the area under 

the first-order and second-order reflections, the position, width and height 

of the reflections for scattering data collected on HFIP-DMPC systems. 

Data were processed using Origin software (Originlab, version 7.5). 
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The decrease in peak intensity is clearly indicative of the creation of a large 

disruption to the periodicity of the bilayer, as HFIP integrates unevenly into the 

saturated bilayer, producing HFIP richer and poorer areas in the bilayer. The 

broadening of both reflections, at molar ratios above 0.03, strongly suggests that 

HFIP is having a destabilizing effect on the bilayer, which would be consistent 

with the bilayer becoming unstable under the strain of localized high 

concentrations of the fluorinated alcohol in the bilayer. 

The lamellar repeat distance (thickness of the bilayer and water layer), which is 

calculated from the reflection positions in the HFIP-lipid systems, did not change 

significantly over the range of concentrations considered; a calculated value of 

6.43 ± 0.02 nm for these systems falls well within the reported range for DMPC 

bilayers. 22 
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IV.1.5.4. SAXS from HFIP-DOPC systems. 

Small Angle X-ray Scattering data were collected for DOPC-HFIP systems over 

the same range of concentrations considered in the HFIP-DMPC systems and 

under the same conditions. 
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Figure IV.l .ll. SAXS datafor the HFIP-DMPC systems was collected over 

a range ofHFIPIDOPC molar ratios, MRfrom 0.03 to 0.25. 

[lipid]: 0.15 M and [HFIP] from: 0. 005 M to 0. 040 M 

The scale bar corresponds to the intensity in units 

of counts s·1 (Cps). 
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The difference in the scattering data between the two HFIP-lipid systems is quite 

significant; the addition of HFIP over the same range of concentrations produced a 

much smaller effect on DOPC bilayers. A decrease in width as well as a much 

slighter and more gradual decrease in the intensity of both reflections is observed 

as the concentration ofHFIP is increased in the DOPC systems. 

The fluorinated alcohol noticeably produces a much smaller disturbance in DOPC 

bilayers; the greater fluidity of the monounsaturated bilayers and hence less 

densely packed lipids monomers, must clearly allow the bulky fluorinated 

molecule to integrate into the bilayer without perturbing lipid ordering to the 

extent it would, in the more tightly packed, saturated DMPC multilamellar 

systems. 

IV.1.6. HFIP-Phosphatidylcboline Monolayer experiments. 

The HFIP induced disturbances in the phospholipid systems were further 

investigated by lipid monolayer experiments over a range of HFIP-water 

subphases, in an attempt to gain deeper insight into the disordering and 

destabilizing effects observed in the previous experiments. 

IV.1.6.1. Monolayer technique. 

Lipids are amphiphilic molecules and when spread on the surface of an aqueous 

solution, they form insoluble monolayers (monomolecular films), with their 

hydrophilic headgroups oriented towards the aqueous solution, the subphase and 

their hydrophobic hydrocarbon chains towards the air. 

The lipid dissolved in a suitably volatile solvent (usually chloroform) is spread 

drop wise onto an aqueous surface. Spontaneous spreading occurs, as the lipid 

peripheral molecules are pulled into the bulk solution and both the surface pressure 

of the monolayer and the equilibrium spreading pressure are equal. 
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The area occupied by the monolayer can be reduced by moving a barrier across the 

surface of the aqueous solution (using a Langmuir-Blodgett trough). Compression 

of the lipid film at a given subphase temperature leads to an increase in the surface 

pressure and as pressure is applied the lipids in the film are forced to become more 

and more ordered. The lipid acyl chains will undergo a phase change from a 2-D 

gas state with no noticeable ordering via an ordered liquid-expanded (LE) state to 

a more ordered and closer packed liquid-condensed (LC) state.23
,
24

,
25 

Pressure-Area Isotherms are recorded for each monolayer as they are compressed 

over a range of HFIP-water subphases; they describe the compressional process of 

the monolayer, allowing quantitative information about the size and packing of the 

molecules in the film, to be obtained from the gradient of the phases the film goes 

through as it is compressed. 

P1essme - A1·e•1 Isotherm 

Ac Am Ao 
Area 1)er molecule 

Figure IV.l.l2. Diagram of a pressure-area isotherm for DMPC 

over a pure H20 subphase. 
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The collapse pressure (7tc) (diagram IV.l.l2) is the maximum pressure to which 

the monolayer film can be compressed before it begins to collapse into a 3-D 

folded structure and molecules are ejected from the film; the lift off area (A0 ) is the 

area at which the film starts to compress; the molecular area (Am) is the 

hypothetical area occupied by one molecule in the condensed state at zero pressure 

and is obtained by extrapolating to zero pressure from the gradient of the liquid 

condensed phase and the collapse area (Ac) is the maximum area to which the film 

can be compressed extrapolated to zero pressure from the collapse pressure. 

The most common method for measuring the surface pressure of the monolayer is 

with a Wilhelmy plate (sensitivity: 10"3 mNm-1
). The surface pressure is taken as 

the difference between the surface tensions of pure water (~72 mNm"1
) or a mixed 

subphase, such as HFIP-H20 and the subphase-monolayer surface. 

A Wilhelmy plate (Whatman filter paper) is suspended from a sensitive balance 

into the monolayer. The forces acting on the plate in a downwards direction are 

due to gravity and surface tension. Forces acting upwards are buoyancy due to 

displaced water. 

The usual procedure is to measure the change in force acting on a thoroughly 

wetted stationary plate, where the change in force, I1F is related to the change in 

surface tension, t!y by: 

tiy= !1F/2w 

Where w is the width of plate in contact with the monolayer . 

Monolayer 

Subphue 

.----.,__ _ _.,. 1'[ 

~...:__r----.., A 

Figure IV.1 .13. diagram of a Langmuir-Blodgett trough. 
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IV.1.6.2. Experimental procedure. 

The lipids, dimyristoyl phosphatidylcholine, DMPC and oleoyl 

phosphatidylcholine, DOPC were dissolved in CHCh and spread drop wise, with a 

Hamilton micro-syringe, on the surface of the trough. The number of molecules 

spread on the surface was kept constant for all experiments and monolayers were 

left to evaporate for 10-15 min before initiating compression with a barrier speed 

of 50 cm2 min-I _26,27,28 

The pressure-area isotherms for the monolayers were recorded over a subphase 

maintained at 20 °C (below Tm for DMPC and above Tm for DOPC) as the 

temperature of the subphase will affect the compressionality of the lipid and hence 

the packing of the acyl chains.29·30·31'32 

The lipid monolayers were compressed to a point just below their collapse 

pressures and expanded several times (3-4 cycles) before finally being compressed 

to beyond the collapse area for the monolayer. This treatment was to ensure that 

the isotherms were reproducible and that no lipid material was being lost to the 

subphase. 

The pressure-area isotherms for these lipids over pure water, were in agreement 

with literature values for both the area per molecule and the collapse 

pressure. 33,34,35,36,37 
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IV.1.6.3. Monolayers ofDMPC over HFIP-H20 subphases. 

The lipid monolayers were compressed over a HFIP-pure water subphase with 

HFIP concentrations ranging from 0.00 M (0 %) to 0.38 M (4% v/v). 

60 

50 

";' 40 
E z 
E 
f 30 
;::, 

I at 20 

10 

20 30 40 50 60 70 80 90 100 110 
Area A2/molecule 

- O.OOM - 0.05M - 0.10M - 0.19M - 0.38M 

Figure IV.1.14. Pressure-area isotherm of DMPC over HFIP-H20 subphases. 

L-E is a liquid expanded state and L-C a liquid condensed state of the monolayer. 

HFIP concentrations are indicated in the legend above. 

The collapse pressure (1tc) of the DMPC monolayer decreased as the concentration 

of HFIP in the subphase increased. The collapse area (A) followed a different 

trend and increased for HFIP concentrations of up to 0.19 M, then decreased 

steadily at higher concentrations. 
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The plot of collapse pressure against subphase composition showed a clear 

correlation between the concentration of HFIP in the subphase and the pressure at 

which the monolayer collapsed. 
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Figure IV.1 .15. plot of collapse pressures and collapse areas 

against HFIP concentration in the subphase. 
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The steady decrease in collapse pressure, over the range of HFIP concentrations 

studied is indicative of a decrease in the stability of the monolayer as a function of 

HFIP content in the subphase. 
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The lift off area (Ao) decreased on addition of 0.05 M HFIP to the subphase, but 

then remained stable as the HFIP concentration was further increased up to 0.19 M 

and subsequently decreased again at higher concentrations. The decrease in 

monolayer lift off area is strongly indicative of an increase in fluidity of the lipid 

film, for subphase compositions of0.05 M HFIP and again above 0.19 M HFIP. 
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Figure W.l.l6. A plot of area, Ao against HFIP concentration in the subphase. 

The area occupied by a lipid molecule is determined by an equilibrium of 

attractive (hydrophobic effect and van der waals interactions) and repulsive forces 

(the electric charges of the lipid headgroups, hydration and steric repulsion) 

between the lipid molecules. An increase in packing of the lipid molecules implies 

a reduction in repulsive forces or an increase in attractive forces or both. 

A measure of the compressibility of a monolayer, which gives a measure of the 

equilibrium elasticity of the monolayer film, can be calculated from the pressure­

area isotherm, where the compressional modulus (K) in mNm"1 is the reciprocal of 

the compressibility: 

Where Am is the molecular area in A2 and :r is the lateral surface pressure in 

mNm-1. 
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A DMPC lipid monolayer spread over pure water will go through two different 

states as it is compressed; a liquid expanded state (L-E) in which the lipid 

molecules are still quite wide apart and very compressible and a liquid condensed 

state (L-C) in which the molecules are more densely packed and much less 

compressible. 24 

The compressional modulus (K) calculated for the L-C state ofDMPC monolayers, 

gave a value of 111.99 mNm"1 over pure water in agreement with literature values, 
24 and much lower values, ranging from 90.20 mNm"1 to 44.90 mNm"1

, over HFIP­

water subphases with HFIP concentrations from 0.05 M to 0.38 M (Table IV.l.2). 

The compressional modulus (K) decreased quite significantly as the HFIP 

subphase concentration increased, which is a clear indication that the monolayer 

became less compact or more fluid as a function of HFIP concentration in the 

subphase. 
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IV.1.6.4. Monolayers of DOPC over HFIP-H20 subphases. 

The pressure-area isotherm, recorded for a monolayer of the unsaturated DOPC 

phospholipid over pure water, had a collapse pressure and a compressional 

modulus in agreement with literature values for this lipid.38
•
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Figure IV.l.J 7. Pressure-area isotherms of DOPC recorded over a range of 

HFJP-pure water subphases. HFIP concentrations are indicated 

in the legend above. 

The DOPC monolayer on compression showed a smooth transition from a liquid 

expanded (L-E) to a liquid condensed (L-C) state and had lower collapse pressures 

than the DMPC monolayers over both pure water and mixed HFIP-water 

subphases. The compressional modulus (K) calculated for the DOPC monolayer 

over pure water (Table IV.6.6) gave a value of 134.66 mNm-1 and values ranging 

from 111 .87 mNm'1 to 36.20 mNm-1 for subphase HFIP concentrations of 0.05 M 

to 0.38 M. 
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Compressional modulus (K) values for DOPC monolayers were much higher than 

those calculated for DMPC monolayers, over subphases with HFIP concentrations 

up to 0.19 M; but this trend was reversed at the highest HFIP concentration 

examined of 0.38 M, at which the saturated DMPC monolayer had a greater 

compressional modulus value than the DOPC monolayer. 

Monounsaturated DOPC monolayers are naturally much more fluid than saturated 

DMPC monolayers and would therefore be expected to be more compressible 

without perturbations from HFIP. 

[HFIP] (M) in subphase: 0 0.05 0.1 0.19 0.38 

DMPC K (mNm-1
): 112.0 90.2 72.4 64.9 44.9 

DOPC K (mNm-1
): 134.7 111.9 92.9 76.5 36.2 

Table IV.1.2. Showing data for the compressional modulus, KofDMPC and 

DOPC mono/ayers over a range of HFIP-water subphases. 

The collapse pressures for DOPC monolayers, over the range of HFIP-water 

subphases investigated, decreased as the HFIP content in the subphase increased, 

but the molecular areas followed an opposite trend after and initial decrease on 

addition of 0.05 M HFIP and then increased for all further concentrations of HFIP 

in the subphase. 
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A plot of the collapse pressures of DOPC monolayers against HFIP-water 

subphase compositions showed that the stability of this monolayer was affected in 

a similar way to the fully saturated DMPC monolayer by the increase in HFIP 

subphase concentration. 
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Figure W.1.18. Plot of collapse pressures and areas against HFIP concentration 

in the subphase for DOPC mono/ayers recorded at 20 °C. 

The collapse area (Ac) extrapolated from the collapse pressure (7tc) initially 

decreased on addition of HFIP to the subphase, but then expanded steadily as the 

concentration of HFIP increased (Figure IV .1.18). An expansion of the area 

occupied per molecule of lipid would be expected to occur on integration of the 

HFIP molecules from the subphase into the lipid monolayer. 
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The lift off area (Ao) for DOPC monolayers initially decreased on addition of 

HFIP concentrations up to 0.1 M in the subphase and then remained steady for all 

further increases in HFIP concentration examined (Figure IV .1.19) 

90 
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Figure IV.J.l9. Plot of lift off area, Ao against HFIP concentration in the sub phase 

for DOPC mono/ayers recorded at 20 °C. 

The monolayer experiments on both the saturated and unsaturated phospholipids 

have demonstrated the dramatic effect of HFIP on these phospholipid films; 

increasing the concentration of HFIP significantly reduced the stability and 

increased the fluidity of both types of monolayers. A HFIP concentration of 0.19 

M in the subphase appeared to be a critical concentration for the saturated lipid, as 

the molecular area increased up to this concentration and then decreased sharply 

above this value. The monolayer lift of area initially decreased on addition of 

HFIP, but then remained constant for HFIP subphase concentrations up to 0.19 M, 

above which there was a significant decreases in the lift off area. The unsaturated 

DOPC monolayers did not appear to be affected by a critical concentration and 

maintain a steady change over the 0.00 M to 0.38 M HFIP concentration range in 

the subphase. 
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An examination of the effects of HFIP on the size and morphology of both DMPC 

and DOPC unilamelar vesicles was performed in presence of HFIP. The 

techniques used, TEM and laser correlation spectroscopy, gave some very 

interesting results that have helped bring together our fmdings and draw up a 

general view of the effect of HFIP in these systems. 

IV.1.7. Light Scattering Analysis of the effects ofHFIP on the size 

of DMPC and DOPC liposomes. 

The particle sizing technique used in our experiments only measures an average 

size for the bulk of particles in solution, but it can be used routinely as it is a quite 

straightforward analytical technique. 

IV.l. 7.1. A brief description of the technique. 

Laser light shone through a suspension of particles is scattered by the particles and 

the intensity of the scattered light which fluctuates according to the movement or 

rate of diffusion of the particles in the solution (Brownian motion) is recorded as a 

series of photomultiplier bursts over a period of time. The fluctuation in intensity 

is related to the particle size and because the rate of diffusion of the particles is 

dependant on their size, smaller particles diffuse more rapidly that larger ones 

A mathematical correlation can be performed on the signal to obtain an average 

size value for the particles in solution. The signal is multiplied with a copy of itself 

separated from the original by a given time delay (a corresponding set of 

channels). The product of which is then plotted for each time separation against 

the channel number corresponding to that separation; this produces a curve, which 

will decay exponentially to a mean value and at a rate that will depend on the 

rapidity of the signal fluctuations and hence on particle size. 
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IV.1.7.2. Particle sizing ofDMPC-HFIP systems. 

The effect of HFIP on the size of unilamelar vesicles (extruded through a 

polycarbonate membrane with pore diameters of 100 nm) was monitored by light 

scattering spectroscopy. The mean diameter of the fully saturated, DMPC 

liposomes in pure water was measured as 140 nm with a low polydispersity (0.19), 

typical of liposomes prepared by extrusion. 

On addition of increasing concentrations of HFIP from 0.00 M to 0.3 M, to the 

liposome solution, the effective diameter of the DMPC liposomes increased 

significantly, from -140 nm to -208 nm, following a near linear trend. The 

intensity of the light scattering at 658 nm also decreased progressively as the HFIP 

concentration increased. 
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Figure !V.I. 20. Diameter of DMPC liposomes determined, as a function of HFIP 

concentration in the sample solution, by laser correlation spectroscopy. 

DMPC concentration was 2 mM 
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The polydispersity ofthe DMPC liposome-HFIP samples increased slightly from 

0.19 to 0.24 over the range of HFIP concentrations examined. 

[HFIJP] (M) Effective diameter (nm) lPolydispersity 

0 139.7 0.193 

0.0032 141.7 0.218 

0.0064 144.0 0.202 

0.009 144.6 0.197 

0.0127 145.5 0.213 

0.015 148.2 0.182 

0.03 149.1 0.207 

0.06 152.1 0.212 

0.15 172.6 0.24 

0.3 207.8 0.235 

Table IV.J.3. Showing the effective diameter and the polydispersity of the DMPC 

liposome-HFIP samples over a range of HFIP concentrations. 

The linear increase in the effective diameter of the saturated liposomes, on 

addition of HFIP, is again indicative of HFIP integration into the DMPC bilayer 

with expansion of the bilayer area as a function of HFIP concentration. Light 

scattering experiments between ethanol and phospholipid liposomes have shown a 

similar increase in liposome diameter at equivalent concentrations.40 
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IV.1.7.3. Particle sizing ofDOPC-HFIP systems. 

Monounsaturated, DOPC unilamellar liposomes in pure water, also prepared by 

extrusion through a polycarbonate membrane (pore diameter of 100 nm), were 

analysed by Light Scattering to determined the effective diameter and 

polydispersity of the unsaturated phospholipid vesicles following addition of 

increasing concentrations of HFIP. The fluorinated alcohol, in accordance with 

results obtained form the wide range of experiments described in this chapter had a 

much more subdued effect on the DOPC liposomes; the effective diameter of the 

DOPC liposomes, which was ~ 143 nm in the absence of HFIP, decreased slightly 

by around 7 nm to 136 nm on addition of the smallest HFIP concentration of 3.2 

mM (1 % v/v) and then increased from 6.4 mM (2 % v/v) to remain within 5 nm of 

the original effective diameter. 
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Figure IV.1.21. Diameter ofDOPC liposomes determined, as afunction ofHFIP 

concentration in the sample solution, by Light Scattering Spectroscopy. 

DOPC concentration was 2 mM 
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The intensity of the scattered light or optical density of the samples did not change 

significantly throughout the experiments carried out on the DOPC liposomes, but 

the polydispersity of the sample was affected in a similar change to the DMPC 

systems over the range of HFIP concentrations examined. 

Light scattering experiments on both the saturated and monounsaturated 

phospholipids confirm previous findings highlighting the much greater effect 

exerted by HFIP molecules on the saturated lipid systems. 

:O:V.1.8. Transmission Electron Microscopy, TEM. 

The change in diameter of the saturated DMPC liposomes, the decrease in stability 

and increase in fluidity of the lipid bilayers on interaction with HFIP molecules, 

are effects that might be detected as morphological changes in the liposomes by 

electron microscopy. Images showing the effects of HFIP would add to a general 

interpretation of the fmdings from the wide range of experiments conducted on the 

phospholipid-HFIP interactions. 

Transmission electron microscopy was considered the instrument of choice due to 

the very high resolutions that this technique is capable of reaching routinely. 
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IV.1.8.1. TEM imaging of the effects of HFIP on DMPC liposomes. 

Unilamellar vesicles of DMPC, prepared by extrusion (diameter of 100 run) in 

pure water, were deposited on to a copper grid coated with a formvar film and then 

negatively stained (1-2 % uranyl acetate).41 The DMPC liposomes were clearly 

visible at lipid concentrations of 0.6 mM; the liposomes observed had a mean 

diameter of 123 ± 35 nm and showed no obvious deformations 

Figure IV.1.22. TEMimages ofDMPC liposomes in pure water 

at magnifications of a, x 100 000 and b, x 80 000. 

The scale bars represent 100 nm. 

The DMPC liposomes in pure water were then thoroughly mixed with HFIP over a 

range of concentrations from 0.05 M to 0.38 M and imaged immediately. 

On addition of the smallest concentration of HFIP, smooth particulate structures, 

with a mean diameter of 60 ± 17 run, were clearly visible along side and attached 

to the liposomes. 
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The mean diameter of the DMPC liposomes, in a 0.05 M HFIP-water solution, was 

105 ± 26 nm, which is around 20 nm smaller than liposomes in the absence of 

HFIP. 

Figure WI.23. DMPC liposomes in a 0.05 M HFIP- pure water solution imaged 

by TEM at magnifications of x 46 000. The arrows indicate the location of the 

smooth particulate structures. The scale bar represents I 00 nm. 

Imaging of the DMPC liposome-HFIP mixtures after a delay of 30 minutes 

generally revealed an absence of smooth particles which suggests that the 

particulates could have been imaged before DMPC-HFIP equilibrium conditions 

had been attained. 
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At the highest HFIP concentration of 0.38 M, the appearance of the DMPC 

liposomes changed considerably, with liposomes taking on an unusually smooth 

morphology and forming aggregates or clusters. 

a 

Figure IV.1.24. DMPC /iposomes in a 0.38 M HFIP- pure water solution imaged 

by TEM at magnifications of a, x 22 000 and b, x 46 000. The arrows show 

appearance of blebbing in the liposomal structures 

The scale bars represent 100 nm. 

The very clear change in appearance of the sample strongly suggests that HFIP 

may have integrated in to the lipid membrane and affected the physical properties 

of the bilayer by forming mixed HFIP-lipid structures which on closer examination 

show signs of bleb bing in many of the individualliposomal structures. 

Similar experiments were carried out on DOPC liposomes in order to assess the 

effect of HFIP on the monounsaturated phospholipid, but the more fluid 

membranes did not submit as well as the saturated DMPC liposomes to the harsh 

drying out conditions of the TEM vacuum; it was more difficult to distinguish the 

effects of HFIP on the DOPC liposomes and therefore the data from these 

experiments was not included in this study. 
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In order to assess whether there were any artifacts present in the samples under 

observation, which could be due to the staining process, TEM images of both the 

stain solution and the stain with 0.38 M HFIP-water were examined. 

Figure IV.1.25. TEMimages ofHFIP (0.38 M)- pure water mixtures 

(mag. a, x 46 000 and b, x 100 000). Scale bars represent 100 nm. 

The stain solution on its own only revealed a featureless background with 

occasional patches of higher density stain, but the HFIP-water mixtures produced 

small particulate structures, many of which formed discrete clusters. The 

individual particles had a mean diameter of 29 ± 16 nm. 

An explanation for the emergence of particulate structures and clusters from HFIP­

water solutions may lie in the fact that fluorocarbons have a strong capacity to self 

aggregate into discrete molecular assemblies and to form a hydrophobic 

microenvironment when dispersed in an aqueous solution. The observation of 

these structures, which would be expected to have evaporated under the instrument 

vacuum, could be due to impressions left by the HFIP structures on the grid, in the 

stain and the formvar film. 

The purity of all materials, especially HFIP was rigorously checked and all 

equipment involved in the experimental procedure was thoroughly cleaned, to 

eliminate any possibility that these structures were produced by some contaminant 

in the system. Scanning electron microscopy (SEM) was also used to image the 
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samples prepared for TEM and confirmed that the results obtained by TEM were 

reproducible. 

Samples of HFIP-water mixtures were analysed by light scattering in order to 

check for the presents of particulates or clusters in solution. At the higher HFIP 

concentration of 0.38 M, clusters within the same average size range as those 

observed by TEM at this concentration, were measured reproducibly. 

Experimental evidence of the presence of similar structures in trifluoroethanol­

water mixtures have also been obtained from laser light scattering experiments and 

a range of other studies on bulky fluorinated and non fluorinated alcohols, using 

X-ray scattering and molecular modeling techniques, have strongly indicated self 

assembly of the alcohols in aqueous media with the formation of discrete 

clusters. 3•
42

'
43 
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IV.1.9. Conclusion. 

An understanding of the effects of hexafluoroisopropanol on phospholipid 

membranes could lead to a more efficient use of its properties, in particular for 

solvation of the synthetic amphiphilic cyclic peptides, discussed in chapter II of 

this thesis and in general to a greater understanding of the interactions of this 

fluorinated alcohol with the cell membrane; interactions of small molecules with 

the cell membrane are of considerable importance for a number of biological 

applications, such as drug and metabolite uptake or passive transport across the 

membrane. 

The effect of HFIP on the integrity, stability, packing, size and morphology of 

phospholipid membranes has been investigated using a wide range of experimental 

techniques, including I9p NMR; marker release experiments on EPC unilamellar 

vesicles containing carboxyfluorescein; differential scanning calorimetry and small 

angle x-ray scattering; monolayer experiments, transmission electron microscopy 

and light scattering analysis. 

19F NMR was used to estimate partition coefficients values for the saturated, 

DMPC and the monounsaturated, DOPC phospholipids. The extent of the HFIP 

interactions with phospholipid membranes, would depend on the affinity of the 

fluorinated alcohol for the lipid bilayer and hence on its ability to partition in to 

phospholipid membranes. 5 The values estimated for the partition coefficients were 

very large, which shows that the HFIP molecule has a high affinity for the 

phospholipid environment with a marked preference for partitioning in to the more 

fluid monounsaturated bilayers. 8 

Marker release experiments, performed on EPC vesicles encapsulating a 

fluorescent marker, have confirmed previous reports that HFIP induces bilayer 

leakage and hence affects acyl chain order at very low concentrations. All alcohols 

are thought to affect lipid membranes, but HFIP has been shown to have a much 

stronger affect than most common alcohols. 6 
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Differential scanning calorimetric analysis of multilamellar vesicles of DMPC 

showed a marked decrease in the main transition temperature of the bilayer on 

addition of HFIP over a range of concentrations, from 0.002 M to 0.05 M. This 

effect can be attributed to a significant decrease in fluidity of the bilayer and 

would result from considerable disruption to the packing of the saturated 

phospholipid monomers in the bilayer. 

Small angle X-ray scattering data, obtained for multilamellar vesicles of both 

DMPC and DOPC, revealed a significant difference in the effect of HFIP on the 

saturated and unsaturated lipids. The intensity of both the first and second order 

reflections was greatly reduced and a significant broadening occurred in the case 

of the saturated, DMPC lipid. These results show that HFIP, over the range of 

concentrations considered, greatly disrupts the periodicity of the bilayer system 

which can be attributed to the creation of areas within the membrane with different 

concentrations of HFIP; this would result in loss of bilayer periodicity and would 

correspond to a decrease in intensity of the reflections. The substantial broadening 

observed in the DMPC-HFIP systems is indicative of increasing instability in the 

bilayer as a function of HFIP concentration, which would result from stress 

produced by high localized concentrations of HFIP on the bilayer structure. 

The effects of HFIP were considerably less marked for the unsaturated, DOPC 

lipid, which shows that the more fluid and hence less densely packed membrane 

could accommodate the bulky fluorinated alcohol with less disruption to the 

unsaturated bilayer system. 9 

Further investigation of the behaviour of these HFIP-phospholipid systems was 

performed by recording pressure-area isotherms of phospholipid monolayers over 

HFIP-water subphases, which again provided support for strong HFIP­

phospholipid interactions with considerable disruption to the saturated systems; the 

decrease in lift off areas and in collapse pressures was clearly indicative of an 

increase in monolayer fluidity and instability respectively for both phospholipid 

monolayers examined. Once more the saturated lipid, DMPC behaved differently 

to the monounsaturated lipid, DOPC by showing an increase in collapse area up to 

what appears to be a critical concentration for these systems and then deceasing 

substantially at higher HFIP subphase concentrations. These results add to an 
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overall interpretation of the HFIP-phospholipid systems which reveal the 

significant role that the degree of saturation of the lipid has in HFIP-lipid 

interactions. 

Examination of the size (light scattering) and morphology (TEM) of phospholipid 

unilamelar vesicles in presence of HFIP have shown that HFIP affects the diameter 

of the saturated lipid vesicles to a much greater extent than that of the 

monounsaturated lipid vesicles. Electron microscopy of DMPC-HFIP mixtures has 

helped shed some light on the activity of HFIP in phospholipid membranes and 

together with the fmdings from the other techniques has lead to the following 

proposition of a mechanism for HFIP integration and perturbation of saturated 

phospholipid DMPC membranes: 

HFIP molecules 
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Figure !V.I. 26. Schematic model describing a mechanism for the interaction of 

HFIP with DMPC membranes. 
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The HFIP induced perturbation in saturated DMPC membranes (DSC and SAXS 

data) is believed to arise through localized concentration of the HFIP molecules in 

the membrane, which produces areas richer and others poorer in HFIP (SAXS and 

Monolayer experiments). The membrane becomes unstable under the strain 

produced by the localized high concentration of HFIP (SAXS data), which would 

induce rearrangement of the membrane with lose of material in the form of mixed 

HFIP-lipid micelles (Light Scattering and TEM experiments) to produce a more 

stable membrane, poorer in HFIP. 

Further investigations of a range of fluorinated and non fluorinated bulky alcohols 

on phospholipid membranes would add considerably to this work and could 

possibly provide some support for the proposed mechanism of HFIP interaction 

with DMPC membranes. 
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IV.2. Materials and Methods. 

IV.2.1. Materials. 

Phospholipids: 1,2-Dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) was 

obtained from Bachem Ltd. (UK); 1,2-Dioleyol-sn-glycerol-3-phosphocholine 

(DOPC) and Egg phosphatidylcholine (EPC) were purchased from Sigma. All 

phospholipids were used without further purification. HLPC grade water was from 

Fisher Scientific, and ultrapure water was purified using a Milli-Q purification 

system (Waters). 

5(6)-Carboxyfluorescein (CF), Sodium Chloride, Sodium Fluoride and 

tris(hydroxymethyl)aminomethane (Tris) were obtained from Lancaster Synthesis. 

1,1,1,3,3,3-hexafluoroisopropanol (HFIP) was purchased from Apollo Scientific 

and further purified by distillation at 58 to 60 °C.44
• 

:O:V.2.2. Methods. 

IV.2.2.1. 19F NMR experiments. 

Multilamellar vesicles of both DOPC and DMPC were prepared by evaporating a 

solution of lipid (30 mg) in CHCh (1 ml) to dryness under vacuum to form a thin 

film. The film was then hydrated with deuterated water (300 J.d) (D20) to form a 

lipid suspension (containing 9 % w/v lipid by weight). Lipid/water partition 

coefficients were measured for HFIP/lipid ratios of 1 :2 and 1:1, by addition of 

varying concentrations of liposomes to solutions of HFIP (0.09 M) in D20 

containing NaF (0.3 M) as an internal reference and monitoring the intensity of the 
19F signal of HFIP by NMR at 376 MHz using a Varian Mercury-400 

spectrometer. The intensity of the 19F signal arising from the free HFIP was 
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measured as a function of lipid concentration with the intensity of the F signal 

used as a reference. Experiments were performed at 20 °C. 

IV.2.2.2. Marker release experiments. 

Unilamellar vesicles of EPC encapsulating CF were prepared by evaporating a 

solution ofEPC in CHCb (1 mg mr1
) to dryness under vacuum to form a thin film 

and hydrating the film with 1 ml of a solution of CF (35 mM) and NaCl (150 mM) 

in Tris buffer (10 mM, pH 7.4). The solution was vortexed until complete lipid 

dispersal had been achieved and then submitted to 5 cycles of freeze-thawing 

between -195 and 30 °C. The solution was then extruded 10 times through a laser 

etched polycarbonate membrane (Whatman) with a pore size of 100 nm in 

diameter using a thermobarrel extruder (Lipex Biomembranes) at a temperature of 

30 °C. The EPC liposome solution was then passed through a sephadex G 10 

column (Pharmacia PD10) equilibrated with an iostonic solution of NaCl (150 

mM) in Tris buffer (10mM, pH 7.4). The ionic strength of the buffers were 

measured using a cryoscopic osmometer (Osmomat 030) and adjusted by addition 

of NaCl. Fluorescence experiments were performed immediately after CF­

liposome preparation in Tris (10 mM)-NaCl (150 mM) buffer (pH 7.4) at a lipid 

concentration of 0.05 mg mr1
• Fluorescence emission was measured at 518 nm 

following excitation at 491 nm using a Spex Fluorolog SpectrACQ instrument. 

Emission and excitation slit widths were both set at 1 mm. 

IV.2.2.3. Differential Scanning Calorimetry, DSC. 

DMPC (50 mg) dissolved in CHCb (1 ml), was dried on a rotary evaporator to a 

thin film and stored under vacuum for at least 3 hours to ensure complete removal 

of solvent. The DMPC film was hydrated with 200 J..LL of HPLC grade water and 

vortexed for 30 mins to ensure all the lipid was dispersed. The lipid suspension 

was submitted to 5 cycles of freeze-thawing and divided into 10 J..LL aliquots which 

were thoroughly mixed with HFIP at concentrations up to 0.05 M. The HFIP­

DMPC samples were sealed in aluminum pans and weighed. Each sample was 

subjected to repeated heating/cooling cycles and scanned a minimum of 3 times to 
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allow for equilibration on a Perkin Elmer Pyris 1 differential scanning calorimeter 

(DSC),. The scanning temperature range was between 4 °C and 30 °C at a rate of 2 

°C min-1
• Data was processed using the software Origin (Microcal, version 6). 

IV.2.2.4. Small Angle X-ray Scattering, SAXS. 

Multilamellar vesicles ofDMPC and DOPC were prepared, by the method detailed 

above (section N.2.2.3) for the DSC experiments, at a lipid concentration of 100 

mg ml-1 in pure water. 

HFIP was added to the ML V suspension over a range of concentrations up to 0.04 

M. and then thoroughly mixed for about 15 mins before any measurements were 

taken. Samples were injected into a quartz capillary with a micro syringe and 

placed in the sample holder in the path of the beam. The beam path was evacuated 

(vacuum pump) and the position of the sample was optimised by measuring the 

intensity of scattered transmission (using a glassy carbon) through the sample. 

Scattering data for each of the samples were collected for one hour at 20 °C on a 

NanoStar (Anton Paar, Graz) distributed by Broker SAXS. The X-ray source was a 

Kristalloflex 760 generator (Cu Ka, 0.3 x 0.3 mm2 source point, operated at 40 Kv 

and 35 rnA) and the detector was a 2-D Position-Sensitive gas Detector (PSD). 

The path length from the X-ray source and sample to the detector was set at 64 em 

and the program Origin (Microcal, version 6) was used to analyze peak areas. 

IV.2.2.5. Monolayer experiments. 

The experiment was carried out on a Nima Langmuir film balance Type 601 

(programme Nima 516) with a total area of 540 cm2
. The instrument was placed on 

a granite slab and the Teflon through was filled with a HFIP/ultra pure water 

subphase with a HFIP content up to 4 % (v/v). The HFIP and water were 

thoroughly mixed before being poured into the trough and pressure-area isotherms 

were obtained for each subphase, prior to monolayer formation, to check for 

impurities (a flat isotherm corresponding to a clean surface). 
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Monolayers were prepared by drop wise addition of a 1 mg mr1 solution of lipid in 

chloroform to the subphase surface. After a period of 15 min following spreading, 

Pressure-Area Isotherms were obtained by compression of the monolayer at a 

barrier speed of 50 cm2 min"1
• 

IV.2.2.6. Light Scattering Analysis. 

Unilamellar vesicles of DMPC and DOPC were prepared by evaporating a lipid 

solution in CHCh (1 mg ml"1
) to dryness under vacuum to form a thin film. The 

film was then hydrated with pure water and vortexed until complete lipid dispersal 

had been achieved. The lipid suspension was submitted to 5 cycles of freeze­

thawing between -195 and 30 °C and then extruded 10 times through a lase etched 

polycarbonate membrane (Whatman) with a pore size of 100 nm in diameter using 

a thermobarrel extruder (Lipex Biomembranes) at a temperature of 30 °C. 

Size measurements on lipid/HFIP systems were performed at a final lipid 

concentration of 2 mM and HFIP concentrations up to 0.3 M. Size measurements 

on HFIP dispersions in water were performed at concentrations up to 0.57 M. All 

experiments were carried out in duplicate, at 25 °C on a Zeta Plus potential 

analyzer (Brookhaven Instrument Corp.), with a wavelength of 658 nm and a 

scattering angle of 90°. 

IV.2.2.7. Transmission Electron Microscopy. 

Unilamellar vesicles of DMPC were prepared at a lipid concentration of 0.37 mg 

ml"1
, using the method described above (section IV.2.2.6) for size measurements. 

DMPC liposomes were pre-mixed with HFIP at concentrations up to 0.38 M and 

spotted either immediately or after a 30 min mixing period, on to a carbon coated 

copper grid covered with a Formvar layer. After a period of 30 seconds, any 

excess lipid-HFIP solution was drawn off from the edge of the grid using blotting 

paper and then a droplet of a 1 % uranyl acetate solution was deposited on to the 

still wet grid, with any excess solution again drawn off after 30 seconds. 
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The samples were observed by TEM using a Philips 400 Transmission Electron 

Microscope at an accelerating voltage of 80 kV. Images were recorded 

photographically using Kodak 4883 film. 

Scanning Electron Microscopy (Hitachi S-5200 FEG), operating at an accelerating 

voltage of30 KV, was also used to image samples prepared for TEM. 
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Chapter V 

General conclusion. 

V.l. Chapter H. A series of amphiphilic cyclic peptides were designed with the view 

of developing model P-sheet systems, which could integrate into lipid membranes and 

disrupt the lipid bilayer through pore formation. 

The cyclic peptide synthesis was achieved using solid phase Fmoc chemistry with in 

situ cyclisation in a fully automated peptide synthesizer. The peptides were purified 

using RP-HPLC and analysed by MALDI mass spectrometry following optimization 

of the solvent systems using the fluorinated alcohol, hexafluoroisopropanol. 

The cyclic amphiphilic peptides were examined using a wide range of analytical 

techniques in order to establish whether the cyclic amphiphilic peptides had a 

propensity to adopt P-sheet structures in phospholipid bilayers and to gain some 

understanding of their behaviour under different environments, aqueous and lipidic. 

Circular Dichroism, which was used to examine the amphiphilic cyclic peptide 

structure in a range of environments, clearly demonstrated that the peptide had a 

propensity to adopt P-sheet structures in buffer-salt solutions containing over 30 % 

TFE and in EPC/buffer-salt solutions. The structural change from random coil to P­
sheet is also a confirmation of the cyclic amphiphilic peptide affinity for lipid media 

and of its ability to form a polymeric structure in membranes. 

Linear Dichroism confirmed the predisposition of the cyclic amphiphilic peptide for a 

P-sheet type structure and also provided strong evidence of peptide insertion in to 

phospholipid membranes, together with the direction of insertion of the peptide 

backbone relative to the normal of the lipid membrane. The cyclic peptide was shown 

to interact with phospholipid membranes by inserting into the bilayer with the peptide 

backbone in a perpendicular orientation to the plane of the membrane. This 

orientation suggests that the peptide could form a P-barrel type structure in 
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phospholipid membranes similarly to those formed by prokaryotic outer membrane 

proteins. 

Differential Scanning Calorimetry explored the effect of the amphiphilic peptide on 

the cooperativety of the phospholipid phase transition. The cyclic peptide, at peptide 

to lipid ratios as low as 0.02, abolished the pre-transition and affected both the 

temperature and the enthalpy change of the main transition of DMPC and DPPC lipid 

bilayers. This DSC study has provided strong support for the insertion of the cyclic 

amphiphilic peptide into phospholipid membranes and gave comparable results to 

DSC investigations carried out on another cyclic P-sheet peptide, gramicidin S with 

DMPC membranes. 

Transmission Electron Microscopy showed that one of the cyclic amphiphilic peptides 

appeared to form amyloid type fibres on precipitation from a 30 % solution of the 

fluorinated alcohol, HFIP in water. The fibres and bundles of twisted fibres, which 

were similar in size and morphology to those observed in prion diseases, are thought 

to be readily formed by P-sheet proteins that have a tendency to aggregate and do not 

fold rapidly to adopt their stable conformation. 

V.2. Chapter HI. A natural P-sheet forming protein, the C-terminal domain of the 

autotransporter protein BrKA from Bordete/la pertussis was overexpressed to provide 

a comparison for the model P-sheet peptides. 

The aim of this study was to gain further insight into the interactions between integral 

membrane proteins and phospholipid membranes, as well as to determine the protein 

structure by attempting to grow highly ordered 2D arrays of the protein in 

phospholipid membranes for structural analysis by TEM and AFM. 

Although a better understanding of the interactions of the BrKA C-terminal protein 

with phospholipid membranes has been achieved, there are still a considerable range 

of options to explore, especially with regards to optimization of the protein folding 

and 2D crystallisation processes. 
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V.3. Chapter IV. An investigation of the effects of hexafluoroisopropanol on 

phospholipid membranes should lead to a more efficient use of its properties, in 

particular with the synthetic amphiphilic cyclic peptides, discussed in chapter IT of 

this thesis and in general to a greater understanding of the interactions of this 

fluorinated alcohol with the cell membrane; interactions of small molecules with the 

cell membrane are of considerable importance for a number of biological applications, 

such as drug and metabolite uptake or passive transport across the membrane. 

The effect of HFIP on the integrity, stability, packing, size and morphology of 

phospholipid membranes has been investigated using a wide range of experimental 

techniques, including l9p NMR; marker release experiments on EPC unilamellar 

vesicles containing. carboxyfluorescein; Differential Scanning Calorimetry and Small 

Angle X-ray Scattering; Monolayer experiments, Transmission Electron Microscopy 

and Light Scattering analysis. 

HFIP was shown to induced perturbations in saturated DMPC membranes (DSC and 

SAXS data), which are believed to arise through localized concentration of the HFIP 

molecules in the membrane; this would effectively produce areas richer and others 

poorer in HFIP (SAXS and Monolayer experiments). The membrane, which is then 

believed to become unstable under the strain produced by localized high 

concentrations of HFIP (SAXS data), would appear to undergo a rearrangement 

resulting in lose of material in the form of mixed HFIP-lipid micelles (Light 

Scattering and TEM experiments) to produce a more stable membrane, poorer in 

HFIP. 

Further investigations of a range of fluorinated and non fluorinated bulky alcohols on 

phospholipid membranes would add considerably to this work and could possibly 

provide some support for this proposed mechanism of HFIP interaction with DMPC 

membranes. 
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