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ABSTRACT 
This thesis presents the results of investigation of arsenic doped CdTe thin 

films and CdTe/CdS solar cells grown by MOCVD. Particular emphasis has been 

placed on the electrical and microstructural characterisation of layers and structures, 

and the effects of the post-deposition heat treatment of the materials and devices. 

For a growth temperature of 400°C, using dimethylcadmium, di­

isopropyltelluride and dimethylamino arsine as precursors, the incorporation of 

arsenic in thin films of CdTe is dependent on the ratio of organometallics partial 

pressures in the growth ambient (VIlli ratio) with concentration of up to 2x10 19 

at.cm-3 for a VIlli ratio of0.73. The dependency ofthe lateral resistivity upon arsenic 

incorporation was investigated and found to increase for higher arsenic 

concentrations. The influence of the growth temperature and VIlli ratio on the 

texture and lattice parameter of the films is also examined. 

Investigations of the microstructure of absorber layers of CdTe/CdS hi-layers 

revealed that grain size and preferred orientation are dependent on the thickness of 

the films which is itself a function of the substrate position on the susceptor block. 

The influence of the post-deposition heat treatment with and without CdCh was 

investigated by means of XRD and SEM. In both cases annealing causes a 

recrystallisation from the [ 111] into the [ 422] direction and a reduction in the in­

plane lattice stress of the CdTe layers. The grain size increases from 0. 7 to 1.3 Jlm 

only in the presence of CdCh and Burke and Turnbull's grain growth exponents of 7 

and ~4 are derived for ~8 11m thick films treated at 440°C and 400°C. 

The activation of CdTe/CdS bi-layers using the CdCh heat treatment shows 

that only devices with ~4 Jlm CdTe can be made into efficient solar cells. Thinner 

and thicker structures produce cells exhibiting no photoresponse due to the lack of 

sustainability of the thin layers during treatment and the particularly low conductivity 

of the thicker layers. Optimisation of the CdCh treatment indicates that best devices 

are produced following an 18 min annealing at 420°C for structures coated with a 30 

nm layer of CdCh. The cells are limited by a poor fill factor arising from low shunt 

and high series resistances indicated by a high reverse saturation current and diode 

quality factor. 
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1 

Introduction 

Global energy consumption has increased at a rate of around 2% each year, 

doubling, on average, every 30 to 40 years [ 1]. Today world energy consumption is 

highly dependent on fossil fuel-based sources, i.e. oil, natural gas and coal, these 

sources accounting for over 80% of the global market [2]. The remainder is provided 

predominantly from nuclear resources but also from renewable energy, such as 

hydro-power (Figure 1-1 ). However, this ever-growing global demand for energy 

cannot be sustained indefinitely as primary resources are rapidly running out. 

Projections based on known reserves and predicted consumption extrapolations have 

been made regarding the different time scales over which, through depletion, each 

fuel source will become increasingly scarce and therefore their expense will increase 

considerably. It is estimated that coal production can continue for the next 200 years 

while resources of natural gas and oil will extinguish in 40 and 60 years, respectively 

[3]. 

The environmental impact of the burning of fossil fuels for energy production 

is also of high considerations and concerns. Green house gases and ozone depleting 

gases are among the product of such combustion. Long term effects of this include 

smog build up in urban areas, acid rain deforestation and global climate changes. The 

latter being considered as a high priority·matter·for many governmental institutions. 

Regarding nuclear power, safety, disposal, storage, material handling and reactor 
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Chapter 1 - Introduction 

decommissioning are some of the questions that make the future of nuclear energy 

uncertain. 
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Order of magnitude of primary energy resources (left) [3] and world 
production of primary energy (right) [2]. 

Since the 1970' s a diverse range of technologies have emerged as potential 

alternatives for renewable energies from natural resources. These include wind, 

geothermal, tidal wave, hydroelectric and biomass, solar thermal and solar 

photovoltaic energies. As seen in Figure 1-1, the sun is responsible for most of the 

earth's exploitable energy, producing the exploitable resources of wind, wave, 

photosynthesis and hydroelectric power. It is also solar radiation in its immediate 

form that can be exploited through solar thermal heating and photovoltaic 

conversion. The latter is the subject of this work. 

Photovoltaic (PV) conversion is the direct conversion of the solar energy into 

electrical power, providing a promising renewable, almost unlimited, affordable and 

environmentally friendly energy source as well as being economically viable. Among 

the different photovoltaic materials available, the cadmium telluride - cadmium 

sulphide solar cell has attracted considerable attention. The use of cadmium telluride 

(CdTe) as a light absorbing material in solar cells is attractive, because it possesses a 

nearly optimal bandgap of 1. 5 e V for conversion efficiency [ 4]. The direct band gap 

of this semiconductor allows considerable light absorption for film thicknesses of 
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Chapter 1 - Introduction 

only 2 J.lm, resulting in low material usage. Moreover, CdTe is a robust material open 

to a wide variety of deposition techniques. 

One of these techniques is metal-organic chemical vapour deposition 

(MOCVD) and has been used throughout the course of this work to produce the 

different layers and structures studied. MOCVD is a well established technique for 

producing optoelectronic devices based on III-V materials [5]. The use of MOCVD 

for solar cell applications has mainly been limited to the development of GaAs-based 

devices for space applications. In the case of II-VI materials such as CdTe and CdS, 

progress on controlling point defects, doping and alloy composition have been 

slower compared to III-V technology. At a research level, MOCVD is utilised for the 

growth of CdTe/CdS solar cells in an attempt to improve the quality of the CdTe 

layer compared to other deposition techniques and hence improving the collecting 

power of the film. Although the growth conditions can be optimised to produced p­

type CdTe films with micron sized grains [6], the resulting polycrystalline films are, 

however, often too resistive for photovoltaic applications arising from the high 

density of grain boundaries. 

The opportunities offered by the MOCVD technique for reproducible high 

efficiency photovoltaic devices are (i) control in the growth of the CdTe/CdS 

structures, (ii) doping consistently in all areas of the device and (iii) annealing in a 

controlled atmosphere during and after growth cycles. Improvement in 

heterojunction and metal-semiconductor junction formation, maximisation of grain 

size and controlled passivation of grain boundary provide the major challenges for 

MOCVD if it is to become a reliable and cost-effective technique for the production 

of thin film solar cells. 

Initially this thesis discusses the principles and fundamentals of solar cell 

devices and also the diverse structures and materials used (Chapter 2). Following 

this, Chapter 3 will focus on the CdTe/CdS polycrystalline thin film solar cell by 

reviewing the technologies and properties of the materials and also the effects of 

processing. Then the range of experimental techniques used through the course of 

this work is described in details in Chapter 4. The experimental results are then 

described and analysed in the following chapters: 
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Chapter 1 - Introduction 

(i) In Chapter 5, the structural and electrical properties of arsenic doped thin film 

CdTe are investigated in order to assess the influence of the dopant 

incorporation. 

(ii) In Chapter 6, the microstructure of the absorber layer of CdTe/CdS hi-layers 

is studied with regards to the post-deposition treatment of the structures. 

(iii) The processing and characterisation of solar cell structures are then detailed 

in Chapter 7 by means of current-voltage characteristics and microscopy 

techniques. 

(iv) Finally, the junction properties of two devices with thin and thick CdTe are 

analysed by means of impedance spectroscopy in order to assess the 

particular differences between the two junctions (Chapter 8). 

4 



Chapter 1 - lntroductjon 

1 . 1 References for Chapter 1 

1. International Institute for Applied Systems Analysis, Environmentally 
Compatible Energy Strategies (1998) 
http://www.iiasa.ac.at/Admin/OSR/RP95/ECS.html 

2. M. Combarnous and A. Prieur, Les consommations d'energie dans le monde : 
une methode robuste de prevision de leur evolution a moyen terme ; 
premieres consequences - World energy consumption: a robust method for 
the prevision of their medium term evolution; first consequences, Comptes 
Rendus Geosciences 335 (2003) 943-950 

3. World Energy Council, Survey of Energy Resources (2004) 
http://www. worldenergy.org/wec-geis/ 

4. J. J. Loferski, Theoretical considerations governing the choice of the 
optimum semiconductor for photovoltaic solar energy conversion, Journal of 
Applied Physics 27 ( 1956) 777-784 

5. R. L. Moon, MOVPE: is there any other technology for optoelectronics?, 
Journal of Crystal Growth 170 (1997) 1-10 

6. T. L. Chu, S. S. Chu, C. Ferekides, J. Britt, and C. Q. Wu, Cadmium telluride 
films by meta/organic chemical vapor deposition, Journal of Applied Physics 
69 (1991) 7651-7655 

5 



Chapter 

Fundament,als of' Solar~ 
Cell Devices 

2.1 Introduction 

Solar cells are semiconductor devices that convert sunlight directly into 

electrical energy using the photovoltaic process. Not only is the efficiency of the cell 

important, but also its ability to perform well over a long period of time under real 

atmospheric conditions. This chapter presents a review of the features of solar cells, 

their band structures, their working parameters and the main materials. 

2.1.1 Historical Development 

Solar cells depend upon the photovoltaic effect for their operation. Becquerel, 

who observed a light-dependent voltage between electrodes immersed in an 

electrolyte, reported this effect initially in 1839 [1]. It was also observed in an all­

solid-state system in 1876 for the case of selenium [2]. This was followed by the 

development of photocells based on both this material and cuprous oxide. Although a 

silicon cell was reported in 1941, it was not until 1954 [3] that the forerunner of 

present silicon cells was announced. This device represented a major development 

because it was the first photovoltaic structure that converted light to eleCtriCity with -

reasonable efficiency. These cells found application as power sources in spacecrafts 
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Chapter 2 - Fundamentals of Solar Cell Devices 

as early as 1958. By the early 1960's, the design of cells for space use had stabilized 

and over the next decade this was their major application. 

The early 1970's saw an innovative period in silicon cell development with 

marked increases in realisable energy conversion efficiencies. At about the same 

time, there was a reawakening of interest in terrestrial use of these devices. By the 

end of the 1970's, the volume of cells produced for terrestrial use had completely 

outstripped that for space use. This increase in production volume was accompanied 

by a significant reduction in solar cell costs. The early 1980's saw newer device 

technologies being evaluated at the pilot production stage, poised to enable further 

reduction in costs over the coming decade such as copper indium diselenide and 

cadmium telluride based devices. Today, attention is concentrated on implementing 

new devices such as organic solar cells or multijunction cells and also on improving 

performances of current devices. 

2.1.2 The Photovoltaic Effect 

The photovoltaic (PV) effect in a semiconductor is the combined result of 

two processes. The first one is the generation of carriers by interaction of incident 

photons with the semiconductor. The second process consists of the collection of 

those generated carriers in order to create an electrical current. Those two stages are 

now explained. 

Carrier generation depends upon the photon energy h v and the energy 

bandgap Eg of the semiconductor. If h v < Eg then nothing will happen as the energy 

provided by the photon is too small to excite an electron from the valence band to the 

conduction band of the semiconductor. If Eg :S h v < 2Eg an electron-hole pair is 

created by the promotion of an electron across the bandgap of the semiconductor. In 

a third case, if h v ~ 2Eg the electron promoted across the bandgap gain enough 

energy so that it can excite electron-holes pairs by the process known as impact 

ionisation. 

Carrier collection is achieved by separating an electron and hole pair through 

the creation of a built-in electric field. In a solar cell, such a field arises when a 

s_emiconductor is put in contact with a metal, i.e. Schottky barrier, or to another 

semiconductor. In the latter case, the two semiconductors can be of different 
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compounds (heterojunction) or from the same material but differently doped 

(homojunction). 

In this chapter, the three different solar cell configurations mentioned above 

are described followed by the derivation of the diode equation for an ideal p-n 

junction and the description of solar cell parameters from the current-voltage J-V 

curve. Finally, losses and limitations affecting cell parameters are introduced 

followed by a review of the different types of photovoltaic devices and the materials 

used for them. 

2. 2 Solar Cell Configurations 

2. 2.1 Schottky Junction 

The potential barrier, which forms when a metal is in contact with a 

semiconductor, arises from the separation of charges at the metal-semiconductor 

interface. The energy band diagrams in Figure 2-1 illustrate the process of barrier 

formation. Figure 2-1 a) shows the electron energy band diagram of a metal having a 

work function ¢111 and an n-type semiconductor of work function ¢s and electron 

affinity Xs· 

Metal 

Figure 2-1 

n-type Metal n-type 

Vacuum Level- ---

Xs 

a) b) 

E lectron energy band diagrams of a metal contact to an n-type 
semiconductor with ¢111 > ¢,. a) Neutral materials separated from each other 
and b) thermal equilibrium situation after the contact has been made. 
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Chapter 2 - Fundamentals of Solar Cell Devices 

Figure 2-1 b) shows the energy band diagram after the contact is made and 

equilibrium has been reached. When the two materials are brought into intimate 

contact, electrons from the conduction band of the semiconductor, which have higher 

energy than the metal electrons, flow into the metal until the Fermi level on the two 

sides is brought into coincidence. As the electrons move out of the semiconductor 

into the metal, the free electron concentration in the semiconductor region near the 

boundary decreases. Since the separation between the conduction band edge Ec and 

the Fermi level EF of the semiconductor increases with decreasing electron 

concentration, the conduction band edge bends up as shown in Figure 2-1 b). 

The conduction band electrons which cross over into the metal leave a 

positive charge of ionised donors behind, so the semiconductor region near the metal 

gets depleted of mobile electrons. Thus a positive charge is established on the 

semiconductor side of the interface and the electrons which cross over into the metal 

form a thin sheet of negative charges. Consequently an electric field is established 

from the semiconductor to the metal. 

The amount of band bending is equal to the difference between the two 

vacuum levels and is q vbi = ¢m - ¢s where vbi is the built-in potential of the junction. 

q Vb; is the potential barrier which an electron, moving from the semiconductor into 

the metal, has to surmount. However, the barrier looking from the metal towards the 

semiconductor is different and is given by ¢8 = ¢m - Xs = q Vbi + ¢n where 

¢n = Ec - E F represents the penetration of the Fermi level in the bandgap of the 

semiconductor. 

2. 2. 2 Homojunction 

We now consider the case of a formation of a barrier between two 

semiconductors of the same material, doped differently to ensure they have opposite 

conductivity. The energy band diagram of the isolated pieces of semiconductor is 

shown in Figure 2-2 a). When contacted together, the Fermi level of the two 

semiconductors are brought into coincidence at the equilibrium condition so some 

electrons have migrated from the n-type into the p-type and a dipole layer of charge 

exists near the contact surface creating a barrier. This is shown in Figure 2-2 b). 
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Chapter 2 - Fundamentals of Solar Cell Devices 

Again the amount of band bending IS equal to the difference between the two 

vacuum levels, q Vbi = ¢ P - tPn. 

p-type n-type p-type n-type 

<Pn Xs 

++++++ 

EFp- --- -----

+++++++ 

a) b) 

Figure 2-2 Electron energy band diagram of a homojunction: a) Neutral materials 
separated from each other and b) thermal equilibrium situation after the 
contact has been made. 

2.2.3 Heterojunction 

A heterojunction is a junction formed between semiconductors having 

different energy bandgaps. The energy band model of the two isolated 

semiconductors is shown in Figure 2-3 a). When the junction is formed between 

these semiconductors, the energy band profile at equilibrium is shown in Figure 2-3 

b) and based upon the Anderson model [4]. 

The differences m energy bandgap and electron affinity require 

discontinuities in the conduction band and valence band, LJEc and iJEv that can be 

seen on the diagram. These discontinuities act as barriers to the flow of electrons and 

limit the performance of the solar cell. 
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¢p 

Ecp 

EFp 

Evp 

Figure 2-3 
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n-type p-type n-type 

---- Vacuum Level-

Xp 
¢n Xn 

Ecn 

LIEJ- ----EFn 

EliP qVh, 
£1(11 

Egp 

\ 

LIEvt 
Evn 

a) b) 

Electron energy band diagram of a heterojunction. a) Neutral materials 
separated from each other and b) thermal equilibrium situation after the 
contact has been made. 

The heterojunction structure is the configuration that concerns the CdTe/CdS 

structures used in this work. The wide bandgap CdS material is referred to as the 

window layer and the narrow bandgap CdTe semiconductor as the absorber or active 

layer. Although the homojunction offers no possibility of discontinuities in the band 

diagram at the interface, a working constraint of homojunction is that the active 

junction must be located near the surface in order to avoid strong absorption loss in 

the layer which receives the light. This can significantly reduce the generated current 

due to surface recombination in absorbers with high absorption coefficients. 

However, some of the most efficient cells to date use this type of junction. Indeed, 

silicon homojunction are eminently practical in contrast to those made from 

compound semiconductors for which the absorption coefficients are higher. The 

Schottky junction is also of concern in this work: one of the inherent difficulties in 

device processing is the inability, due to the high work function ofCdTe (5.8 eV), to 

prepare ohmic contacts to p-CdTe. If the metallization layer has a smaller work 

function, a Schottky barrier will form when the two materials are contacted. 
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2. 3 Diode Physics and Cell Parameters 

2.3.1 The Diode Equation 

The current voltage characteristic for an ideal p-n junction was first derived 

by Shockley in 1949 [5]. The derivation assumed that the doped regions are 

uniformly doped and that the transition between the two regions is abrupt. It also 

assumed low level injection, i.e. the injected minority carrier densities are small 

compared to the majority carrier densities. A diagram of the junction is presented in 

Figure 2-4. 

The minority carrier densities at the edges of the depletion width xd are 

defined for the holes as: 

Pn(x = xn) = Pn exp(qV) 
" kT 

(2-1) 

and for the electrons 

n P ( x = - x P ) = n Po exp( ~~) (2-2) 

where V is the applied voltage, T the temperature, k the Holtzman constant, q the 

electronic charge, p no and n Po are the equilibrium hole and electron density 

respectively on the n-side and p-side. 
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Figure 2-4 Diagram of a p-n junction cross section. 
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The carrier density at the metal contacts is assumed to be equal to the thermal 

equilibrium carrier density. This assumption implies that excess carriers immediately 

recombine when reaching either of the two metal-semiconductor contacts. This 

results in the following set ofboundary conditions: 

Pn(x = w") = Pn" (2-3) 

and 

n (x = ~w ) = n p p ~ 
(2-4) 

The general expression for the ideal diode current is obtained by applying the 

boundary conditions to the general solution of the diffusion equation for each of the 

quasi neutral regions: 

( X- X J (X- X J Pn(x ~ x") = Pno + Aexp -r:- + Bexp LP" (2-5) 

(2-6) 

where Ln and Lp are the diffusion lengths of electrons and holes, respectively and A, 

B, C and Dare constants. 

Applying the boundary conditions after rearranging equations 2-5 and 2-6 

into hyperbolic terms and assuming -
1
- = _.!._ for x << 1 yields: 

tanhx x 

(2-7) 

(2-8) 

The current density in each region is obtained by calculating the diffusion current 

density [ 6]: 

( ) D Dpn 
Jp X~ X 11 = q p £5.x 

qDpPn0 ( (qV) 1) -(x-xJ = exp- - exp 
LP kT LP 

(2-9) 

and 
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= qDnnPo (exp(qV)-1Jexp x+xP 
Ln kT Ln 

(2-10) 

where Dn and Dp are the diffusion coefficients for electrons and holes, respectively. 

The total current must be constant throughout the structure since a steady 

state case is assumed. No charge can accumulate or disappear somewhere in the 

structure so that the charge flow must be constant throughout the diode. The total 

current then equals the sum of the maximum electron current in the p-type region and 

the maximum hole current in then-type region. The maximum currents in the quasi­

neutral regions occur at either side of the depletion region and can therefore be 

calculated from equations 2-9 and 2-10. The total current is then given by: 

J ~ J" + J, ~ J o (ex{ i;) -I J (2-11) 

qDnnp qDpPn 
where J - o + --'-----"-" 0 -

L11 LP 
(2-12) 

Equation 2-11 is the diode equation for an ideal p-n junction with Jo the saturation 

current density. 

2.3.2 Current-Voltage Characteristic and Cell Parameters 

The diode equation for an ideal homojunction was previously derived in the 

dark (equation 2-11 ). Under illumination the dark current-voltage (J- V) characteristic 

is translated downward by the magnitude of the light generated current density JL 

without change in shape (equation 2-13). These ideal characteristics for a solar cell 

operating in the dark and under illumination are shown in Figure 2-5. 

J ~ J,( exv(;;T )-IJ-J, (2-13) 

where J0 is the reverse saturation current density, JL the light generated current 

density and A the diode quality factor. For an ideal junction, the diode factor is equal 

to 1 and in real devices it is almost always between one and two. 
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Typical current-voltage (J-V) curves for a solar cell operating in the dark 
and under illumination. The important points are marked on the plot and are 
explained in the text. 

From the light J- V characteristic, the primary parameters of the solar cell 

under investigation may be extracted. These are open circuit voltage Von short circuit 

current density Jsc, efficiency 77 and fill factor FF, and are defined as: 

Open circuit voltage The open circuit voltage Voc is defined as the 

applied voltage at which no current is flowing through the junction. For an ideal cell 

the open circuit voltage value is obtained by setting the total current to zero and has a 

value of: 

(2-14) 

Short circuit current The short circuit current density Jsc is the 

current density measured when no bias is applied to the device and in an ideal case it 

is equal to the light generated current density JL. 

Fill Factor The fill factor is given by: 

(2-15) 
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where Jmp and Vmp are the current density and voltage describing the maximum 

output power P mp of the cell and is computed from the area of the rectangle indicated 

in the fourth quadrant of the J- V curve. The fill factor is a measure of the 

"squareness" of the J-V curve in forward bias. 

Efficiency The efficiency gives the power conversion of the device and is 

defined as the ratio of the maximum power over the incident illumination intensity 

Typical values for a 16.5% efficient CdTe/CdS cell are: Vac 

Jsc = 25 mA/cm2 and FF = 75% [7]. 

(2-16) 

850 mV, 

Although these four parameters have been used throughout this work, in the 

case of real devices, the diode equation must be modified to take into account the 

resistance losses due to the different layers. Two resistances are introduced, the 

series resistance Rs and the shunt resistance Rsh· The series resistance arises from the 

resistance of the different layers of the device, and hence limits the total output 

current available. The shunt or parallel resistance is attributed to short circuit paths 

through the device. The ideal single diode equation can be modified to describe real 

devices: 

[ (
q(V -JR )) l V -JR J = J exp . s - 1 + s - J 

0 AkT R L 
sh 

(2-17) 

The equivalent circuit is shown in Figure 2-6. It consists of a current source 

in parallel with a non-ideal diode, i.e. with a diode quality factor :#:1. In addition are 

included a shunt resistor to model the current flowing through pin-holes in the 

window layer and a resistor in series to take into account the resistance of the films. 
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Figure 2-6 Equivalent single diode circuit for a real solar cell. 

2.3.3 Efficiency Limits and Losses 

The major constraints on photovoltaic efficiency come from the poor match 

between the broad spectral distribution of the sunlight and the single bandgap Eg of a 

given semiconductor. The bandgap of a photoactive semiconductor determines the 

upper bound of both the open circuit voltage Voc and short circuit current density Jsc· 

A narrow bandgap cell such as a silicon based device has a larger Vac than a wider 

bandgap cell, e.g. CdTe device, but it absorbs fewer photons so it has a smaller Jsc· 

The theoretical limit for a single junction cell is a power conversion efficiency of 

~30% for a bandgap of~ 1.4 eV [8]. 

As mentioned earlier for the case of real devices, power losses are also due to 

the presence of series and shunt resistances. Series resistance arises both from the 

resistance of the semiconductor bulk and from the contact resistance to the 

semiconductor to complete the circuit. Shunt resistance arises from imperfections on 

the devices surface or in the bulk as well as leakage currents across the edge of the 

cell. The experimental determination of series and shunt resistance from the J- V 

curve is explained in Chapter 7. In this section, origins of losses are considered with 

regard to the main parameters of the cells, Jsc, Voc and FF. 
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2.3.3.1 Short Circuit Current 

Under ideal conditions, each incident photon of greater energy than the 

bandgap gives rise to one electron flowing in the external circuit. Hence, to calculate 

the maximum short circuit current, the photon flux of the sunlight must be known. 

This can be calculated from the energy distribution of the sunlight by dividing the 

energy content at a given wavelength by the energy of an individual photon. The 

maximum Jsc is then found by integrating these distributions from low wavelengths 

up to the maximum wavelength for which electron hole pairs can be generated for a 

given semiconductor. Types of optical losses can be described as follows: 

(i) Reflection losses at the front surface of the glass substrate in superstrate 

configuration cell. Reflection losses also occur at the interfaces between the 

different layers constituting the cell [9]. To reduce this, an anti-reflective 

coating such as MgF2 is used in some applications [ 1 0-12]. 

(ii) Absorption losses occur in the glass substrate, front contact and window 

layer. The substrate and the front contact can account for a loss of 5-10% of 

the incoming sunlight [13]. 

(iii) If the cell is not thick enough, some of the light will pass right through before 

being absorbed. This problem is not significant for direct bandgap materials 

like CdTe as it has a large absorption coefficient, ~105 cm-1 [14, 15]. 

(iv) In the case of large area modules, a conductive grid is used to retrieve the 

current at the front contact, grid that can cover 5 to 15% [ 13] of the structure 

area generating considerable optical losses. 

Because of the wavelength dependence of the absorption coefficient, it is 

expected that the shorter wavelength photons will be absorbed close to the surface, 

while those with longer wavelengths are absorbed deeper in the bulk. Surface 

recombination will therefore be more important for short wavelengths while 

recombination in the quasi-neutral region is more important for long wavelengths. 

Short circuit current losses can also occur due to the recombination at the surfaces 

and/or in the bulk of semiconductor materials. Only electron-hole pairs generated in 

the depletion region of the p-n junction contribute towards Jsc· 

18 



Chapter 2 - Fundamentals of Solar Cell Devices 

2.3.3.2 Open Circuit Voltage 

The ideal open circuit voltage value (equation 2-14) can be simplified for 

J L / J o > > 1 as: 

(2-18) 

For a good cell performance, Voc and hence JL must be as large as possible. 

The maximum value of JL would be obtained if all photo-generated electron hole 

pairs are collected as photocurrent. JL can achieve 80-90% of this limit if light 

absorption and minority carrier collection are both highly efficient [ 16]. The limiting 

value of Voc is the built-in voltage barrier q Vb; and usually Voc is no more than 

0. 7 x q Vbi. Inspection of equation 2-18 shows that Voc increases as the saturation 

current J0 decreases. Interestingly, J0 has no absolute minimum value. In thin film 

solar cells with well passivated surfaces, J0 can be reduced to zero and Voc increased 

to its upper limit of q Vbi· In thicker cells where volume recombination occurs, the 

lower limit on J0 is determined by the rate of radiative recombination of minority 

carriers. Usually non-radiative recombination also occurs and this raises J0 by some 

orders of magnitude and lowers Voc accordingly. 

2.3.3.3 Fill Factor 

The fill factor is strongly affected by series and shunt resistances due to their 

influence on lsc and Voc· Series resistance in high efficiency polycrystalline cells is 

usually small (Rs < 1 Q.cm) and probably dominated by the TCO layer [4]. 

The fill factor is also influenced by the voltage dependence of the light 

generated current. This can be easily observed on the J- V curve, by the fact that the 

dark and light curves cannot be superimposed. At reverse and small forward bias the 

light generated current decreases with increasing voltage hence reducing the fill 

factor value. 
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2.4 Types of Solar Cells 

The first solar cell was developed at Bell laboratories in 1954 [3]. At that 

time, solar cells were made from semiconductor grade single crystalline silicon and 

were used as power source for space applications such like on satellites. The systems 

were very reliable, and the cost was of little concern with regard to huge space 

program budgets. At present, solar cells can be single junction devices or 

multijunction structures and new technologies are employed for making solar cells. 

Nanotechnology have helped producing a 8.2% efficient nanocrystalline dye­

sensitized solar cell [17] while organic cells with 3-4% efficiencies have been 

reported [ 18]. However, most efficient devices have been produced using inorganic 

materials and the technology of these solar cells is outlined next. 

2.4.1 Single Crystal and Polycrystalline Silicon 

Silicon is still the most popular solar cell material for commercial application 

because it is so readily abundant (it is actually the second most abundant element in 

the earth's crust second only to oxygen [19]). Another reason why silicon is a 

popular choice for photovoltaic energy generation is the large technology base that 

has built up over the past 50 years for silicon used in the semiconductor industry 

[ 19]. The source material for extraction of silicon is silicon dioxide, the major 

constituent of sand. Single crystalline and polycrystalline silicon have an indirect 

bandgap of 1.1 eV and low absorption coefficient (l.lx103 cm- 1 at 1.63 eV [4]). This 

means that over a large range of the visible spectrum, light absorption occurs only 

with the assistance of phonons. Phonons provide the additional wave vector needed 

for momentum conservation in any energy transition in an indirect bandgap 

semiconductor. 

Single crystal silicon devices have attained an efficiency of 24.4% [20] on the 

laboratory scale. Commercial crystalline silicon solar cell modules are available with 

conversion efficiencies as high as 22.7% [21]. The major disadvantages of single 

crystal silicon solar cells are the requirements of high grade material and the 

problems associated with producing single crystals over large areas. Recently, there 

have been some imaginative attempts to make single crystal ribbon silicon, which is 
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lower in cost than high quality single crystals and today, accounts for 10% of the 

world PV total [22, 23]. 

The production of polycrystalline silicon cells is more cost effective than 

single crystal silicon. Silicon is poured into blocks that are subsequently sawn into 

plates. During solidification of the material, crystal structures of varying sizes are 

formed. Polycrystalline silicon has the disadvantage that large grain sizes are 

required to reduce the negative influence caused by grain boundaries. In 

polycrystalline silicon the smaller crystals or "grains" introduce boundaries that 

impede the flow of electrons and encourage them to recombine with holes, thereby 

reducing the output power of the cell. However, polycrystalline silicon is much 

cheaper to produce than single crystal silicon, hence researchers are working on new 

innovative ways of minimizing the effects of grain boundaries. 

2.4. 2 Group 111-V Technologies 

Photovoltaic technologies based on group III and V elements in the periodic 

table show very high efficiencies under either normal or concentrated sunlight. 

Although expensive, their cost can be compensated for by using concentrators, which 

increase the energy conversion efficiency under higher illumination [24, 25]. 

Concentrators focus light from a large area to a small area, thereby increasing 

illumination to many times the terrestrial sunlight. The most important solar cells in 

this category are gallium arsenide (GaAs) and indium phosphide (InP). 

2.4.2.1 Gallium Arsenide 

Gallium arsenide is a compound semiconductor for which the use in solar 

cells has been developing synergistically with its use in light emitting diodes, lasers, 

and other optical devices. It has a direct bandgap of 1.43 eV, nearly ideal for single 

junction solar cells [8]. The absorption coefficient of GaAs is relatively high 

(> 104 cm- 1 for hv > 1.45 eV [26]) and causes sufficient absorption of photons in 

only a few microns of material. It is also very resistant to radiation damage. This, 

along with its high efficiency, makes GaAs very desirable for space applications. The 

most efficient solar cell to date has been based on this material and cells of 25.1% 
-

efficiency have already been confirmed [21]. When used in concentrator application, 
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the efficiency increases to 27.6% [27]. The greatest barrier to the success of GaAs 

cells has been the high cost of single crystalline GaAs substrates. For this reason, 

GaAs cells are used primarily in concentrator system. For mass production of GaAs 

solar cells, gallium element availability and the toxic nature of the arsenic are 

considered as major limitations of this technology. 

2.4.2.2 Indium Phosphide 

Indium phosphide (lnP) has a direct bandgap of 1.34 eV, close to the 

optimum for solar energy conversion [8]. Research on InP heterojunctions did not 

start until about 1974, probably because of the unavailability of high quality single 

crystals of p-type InP. InP crystals are grown by the Czochraski method at high 

pressures using the liquid encapsulation technique to preserve the stoichiometry [28]. 

A 21.9% efficient InP crystalline solar cell was reported 15 years ago [29]. When a 

99-sun concentrator is used, the efficiency increases to 24.3% [30]. A 31.8% 

multijunction lnP/GalnAs cell, operating at 50 suns concentration has been achieved 

[31]. The major limitation of this technology is the high cost due to limited resources 

for indium and purification of phosphorous. 

2.4. 3 Thin Film Solar Cell 

In an effort to reduce the fabrication costs of the present technology based on 

silicon, and to increase material utilisation, thin film materials have been the subject 

of intensive research. Three main types of materials have emerged as the most 

promising candidates for the next generation of solar cells. These are hydrogenated 

amorphous silicon (a-Si:H), cadmium telluride (CdTe) and copper indium diselenide 

(CuinSe2) and its related alloys. 

2.4.3.1 Hydrogenated Amorphous Silicon a-Si:H 

Amorphous silicon films exhibit very different characteristics than crystalline 

silicon. The main difference between the two materials is that there is no long-range 

order in the amorphous film. There is also a large number of dangling bonds in 

amorphous films that create trap states throughout the bandgap region. In order to 

remove the dangling bonds, amorphous silicon films are hydrogenated during 

deposition. This results in the occupation of dangling bonds by hydrogen atoms. 
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Hydrogenated amorphous silicon (a-Si:H) exhibits a bandgap that is not well defined. 

Its value may vary from approximately 1.6 to 1.8 eV depending on deposition 

conditions. For plasma chemical vapour deposited a-Si:H, the variation depends on 

the deposition conditions including substrate temperature, RF power and gas pressure 

[32]. This material can be doped either p- or n-type by introduction, during 

deposition, of boron or phosphorous, respectively. 

Solar cells fabricated from a-Si:H are based on a p-i-n structure rather than a 

p-n junction. This is because the doping necessary to generate the field across the 

junction results in a very high defect density, greatly reducing carrier lifetime. The 

deposition of an insulating intrinsic layer between thin p-type and n-type layers 

circumvents this problem. A nominally 100 nm thick p-type layer and a 20-30 nm 

thick n-type layer generate a field across the 100-400 nm intrinsic layer. The intrinsic 

layer becomes the absorber in this configuration, with the collection of the generated 

carriers enabled by the externally generated field. Textured surfaces are typically 

used in this type of device to induce light trapping, thereby effectively increasing the 

optical path length within the device. This results in an increased probability of 

collecting each photon and generating an electron-hole pair. A primary problem 

associated with these devices is a photo-induced increase in defect density resulting 

in degraded device performance [33]. The effect can be reversed by annealing the 

device after degradation, but the process repeats when the device is again 

illuminated. Elimination of this effect is a topic of current research. 

2.4.3.2 Copper Indium Diselenide (CulnSe2) 

One of the most promising thin film solar cell devices is based on CuinSe2 

(CIS) absorber films. Conversion efficiencies of between 12 and 15% have already 

been achieved for devices based on a CuinSe2/CdS/ZnO heterojunction [34-36]. The 

bandgap of CIS can be modified continuously over a wide range (i.e. 1.0-1.65 e V) by 

substituting Ga for In. Similarly, one can also increase the bandgap by the 

substitution of Se for S. 

Recent trends in CuinSe2 research and development focus on these high 

bandgap chalcopyrite alloys, and preliminary results indicated that conversion 

efficiencies above 18% can be achieved when using these specific absorber films 
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[37]. Gallium incorporation is also believed to improve adhesion between the CIS 

and the molybdenum electrical back contact [38] and also increases the open circuit 

voltage of the cell. Record efficiency of 19.2% has been demonstrated using this type 

of devices [39]. Beside basic investigations at various university laboratories, 

commercialisation of CIS based solar cell technology has already been realised. To 

compete with silicon solar cells, conversion efficiency above 10% is required on 

large areas and currently, the best modules can achieve 13.4% efficiency for an 

active area of 3460 cm2 
[ 40]. 

2.4.3.3 Cadmium Telluride (CdTe) 

Cadmium telluride was very early seen as one of the best materials for solar 

cell applications with a theoretical efficiency limit of ~27% [8], CdTe is the nearly 

ideal material for absorbing the maximum amount of the solar spectrum with 

minimal losses. CdTe is typically used in conjunction with cadmium sulphide (CdS) 

for the formation of heterojunctions. The first CdTe/CdS solar cell device was 

developed by Bonnet and Rabenhorst in the early 1970's and achieved a power 

conversion of ~5% [41]. Today the best cell reaches an efficiency of 16.5% m 

laboratories [7] whilst large area modules perform at~ 11% [ 42]. 

The development of CdTe/CdS cells has been dominated by empirical 

methodology. For example, the 99.999% purity standard used in industry has not 

been defined by systematic investigations. Hence doping by residual impurities and 

the CdCh post-growth heat treatment is an optimised if not fully understood process. 

One feature of the present work is to investigate the feasibility of intentional arsenic 

doping of CdTe as a new route to controllable CdTe/CdS solar cells. 

In order to perform well CdTe solar cells require a post-deposition heat 

treatment in a CdCh environment (see for example [43]). One of the critical issues 

for CdTe-based devices is the formation of an ohmic back contact, which requires in 

most case a chemical treatment of the surface [ 44]. This CdC12 treatment and back 

contact formation as well as the CdTe/CdS solar cell as a whole are studied in more 

depth in the next chapter as it is the type of solar cell concerned in this work. 
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Chapter 3 

T'hin Film CdTe/CdlS 
Solar, Cells 

3.1 Introduction 

The potential of cadmium telluride (CdTe) for use as absorber in a solar cell 

has long been recognised, as with a bandgap of 1.45 e V it is close to the theoretical 

ideal that could produce devices up to 27% efficient [ 1]. Homojunction cells were 

first investigated to make use of the ability to produce both p and n-type CdTe, but 

efficiencies were limited to 6% [2] due to surface recombination arising from the 

strong absorption coefficient of the CdTe and the collecting junction being located 

near the surface. The first efficient polycrystalline thin film CdTe-based solar cells 

was p-Cu2 Te/n-CdTe heterojunction and demonstrated a conversion efficiency of 6% 

[3]. However, due to instabilities associated with the Cu2 Te layer, alternative p-type 

window layers were sought. Ultimately, this proved unsuccessful and consequently 

attention turned to device structures employing p-CdTe. 

As a result, a p-CdTe/n-CdS heterojunction solar cell with 1% efficiency was 

fabricated in 1969 by evaporating CdS then CdTe films on a glass substrate coated 

with a transparent conductive oxide (TCO) [ 4]. This type of configuration is referred 

to as "superstrate" configuration and is shown in Figure 3-1. In 1972 an all thin film 

CdTe/CdS solar cell was reported by Bonnet and Rabenhorst [5] by evaporation of a 
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CdS layer over a CdTe absorber film, in "substrate" configuration. This device 

demonstrated an efficiency of 5% under 50 m W.cm-2 illumination. In both 

"substrate" and "superstrate" configurations, light enters through the TCO and CdS 

fi lms . In a superstrate cell , the TCO, CdS and CdTe layers are sequentially deposited 

onto a glass substrate. However, in a substrate configuration the CdTe fi lm is 

typically deposited first onto a suitable metal substrate followed by the deposition of 

CdS and TCO. 

In this chapter the functions and properties of each layer that constitutes the 

CdTe/CdS thin film solar cell are reviewed. In section 3.3 , some of the growth 

techniques are described with particular emphasis on chemical vapour deposition, the 

deposition method used for the fabrication of the layers and devices investigated in 

this work. Then, the effects of the CdC b post-growth treatment are detailed (section 

3.4), followed by a review of defect chemistry in CdTe. 

3.2 Solar Cell Structure 

Back contact Load 

~ 2- 10 J.lm CdTe 

- 0.1 J..!mCdS ----... 
- 0.1 J.lm TCO ~ 
2-4 mm glass ~ 

Light 

Figure 3-1 Basic structure of a ty pical CdTe/CdS so lar cell in superstrate configuration. 
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3.2.1 The substrate 

The choice of an appropriate substrate is very important. It should withstand 

the cell fabrication process temperature and must not contaminate the layers that are 

subsequently grown. CdTe/CdS solar cells in superstrate configuration require a 

transparent substrate because incident light has to pass through it before reaching the 

CdS and the CdTe layers, any absorption in the substrate would be detrimental to the 

current generation in the cell. The general choice is glass because it is transparent, 

cheap and withstands relatively high temperature. Common types of glass used 

include soda-lime glass which is inexpensive and borosilicate glass. The latter has a 

higher softening temperature, and for this reason it is often used for the higher 

temperature deposition methods, but since it is ten times more expensive, soda-lime 

glass is generally preferred for low-cost production. However, it should be 

mentioned that cells fabricated on low ion or borosilicate glass are ~3% more 

efficient than those made on soda-lime glass. Presumably this is due to a reduced 

contamination of the layers. The substrate is usually 2-4 mm thick, with sometimes 

an anti-reflection coating such as MgF2 on its surface to minimise reflection losses. 

3. 2. 2 The Front Contact 

The front contact must be transparent and highly conducting. In general 

transparent conductive oxides (TCO) are used as front contact. For high efficiency 

cells, it is required that the sheet resistance of the front contact is no more than 

I 0 0/D. The most widely used material is tin oxide (Sn02) usually I 00 nm thick, 

deposited by sputtering or atmospheric pressure chemical vapour deposition. Since 

tin oxide has a low conductivity, it is often doped with indium, forming indium tin 

oxide (ITO), or sometimes with fluorine (FTO). The choice between ITO and Sn02 

is primarily determined by the deposition temperature of CdS and CdTe films [6]. 

For low temperature deposition processes, ITO is the material of choice, because it 

has a high optical transmission for a given sheet resistance. For higher temperature 

deposition, Sn02 is the material preferred since it is more stable. However, to avoid 

diffusion of indium from the ITO used in high temperature deposition techniques, a 

layer of undoped Sn02 is often included between the ITO and CdS layers. Recently, .. 

the use of cadmium stannate (Cd2Sn04, CTO) as front contact has shown 
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improvements m power conversion [7] due to the higher conductivity of CTO 

compared to ITO and also to a higher transmittance. 

3.2.3 The CdS Window Layer 

The bandgap of the window layer must be large compared to the absorber 

layer bandgap to enable a maximum light absorption in CdTe. Also, the window 

layer should be of relatively high electrical conductivity (i) to ensure that the field 

region is largely located in the CdTe layer to maximise carrier collection and (ii) to 

minimise resistance losses in the transport of carriers to the external circuit. The 

polycrystalline CdS is grown n-type and can be deposited by vacuum evaporation 

(physical vapour deposition) [8], close space sublimation (CSS) [9], chemical bath 

deposition (CBD) [ 1 0], radio frequency (RF) sputtering [ 11] and MOCVD [ 12]. 

As a wide bandgap semiconductor (Eg = 2.42 e V at 300 K), CdS is largely 

transparent down to a wavelength of around 510 nm. Depending on the thickness of 

the CdS layer which is usually ~ 100 nm, some of the light below the 510 nm 

wavelength can still pass through to the CdTe giving additional current in the device. 

The reduction of layer thickness is then important to allow greater transmission into 

the CdTe, but on the other hand the uniform coverage of the TCO and the 

consumption of CdS into the CdTe layer during annealing treatment require that the 

thickness is not reduced below a certain limit, otherwise the cell is shunted or gives 

low voltage [13]. 

CdS grown by low temperature deposition techniques (e.g. CBD) generally 

requires an annealing in air or in chlorine ambient to increase grain size and reduce 

defect density [ 14]. This treatment has been found to be less influential for layers 

deposited by methods such as CSS, spray pyrolysis and screen printing where 

temperature, in excess of 500°C are used during the deposition. 

3.2.4 The CdTe Absorber Layer 

CdTe is, in principal, an ideal thin film photovoltaic absorber material as 

~99% of the solar radiation is absorbed within a thickness of 2 11m. The 

polycrystalline CdTe layer should be p-type to form the p-n junction with the n-CdS 

layer. Since CdTe has a lower carrier concentration than the CdS layer, the depletion 
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region is mostly located within the CdTe layer and in this region most of the carrier 

generation and collection occur. 

The conductivity and grain s1ze of the layer depend on the deposition 

technique and post-deposition treatment used. Typically the thickness of this layer is 

between 2 and 10 J.lm, with grain size ranging from 0.5 to 5 J.lm. As-deposited, the 

CdTe layer is either n-type or highly resistive p-type. However, a suitable heat 

treatment in chlorine or oxygen ambient can convert the layer to p-type and also 

increase its conductivity. This will be further detailed in section 3.3. 

3. 2. 5 The Back Contact 

Producing ohmic contacts on most semiconductors is a difficult problem. 

With p-type material, an ohmic contact is only created when the work function of the 

conducting layer is larger than that of the semiconductor. When this condition is not 

satisfied, a Schottky barrier is formed which can reduce device performance. For p­

type CdTe, forming an ohmic contact is exceptionally hard due to the high work 

function ofCdTe (¢p ~ 5.7 eV) [15]. This can be seen in Figure 3-2, which shows a 

band diagram of a metal contact on p-type CdTe. 

Figure 3-2 

Metal 

' ' - -- - -" 
' 

' ' ' 

p-type CdTe 

------ Vacuum Leve l 

,._..... __ ........__-+ ----- -------------

Band diagram of a metal/p-type CdTe contact at equi librium. 
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The Schottky barrier height, defined as the difference of the two work 

functions q Vbi = ¢ P - <Pm , can be reduced by increasing the carrier concentration in 

the CdTe in the vicinity of the back contact. Numerous chemical recipes are 

employed with more or less success to make a back contact to CdTe/CdS solar cells. 

One possibility is to prepare a p +-type layer which can decrease the work function of 

the top part of the absorber in order to make a quasi-ohmic contact with the metal. 

Various chemical etchants may be used and include acidified dichromate [ 16], 

bromine methanol [ 1 7] and nitric phosphoric acid [ 18). The principle of this etching 

is to leave a tellurium rich layer at the surface of the CdTe by reduction of the 

tellurium ions, hence creating a more p-type layer at the surface of the absorber. 

A second technique involves direct doping of the top surface of the absorber 

using a graphite paste with the required dopant such as Cux Te in HgTe. Subsequent 

annealing allows the dopant to diffuse in the CdTe [19]. Doping can also be 

performed during growth. Both methods increase the acceptor concentration near the 

surface and this results in a narrower depletion region when the metal is subsequently 

applied. This allows the thermally assisted tunnelling of holes through the barrier. 

Finally deposition of an intermediate layer of p-type semiconductor with a 

lower work function than CdTe, such as ZnTe [20], HgTe [21] or Sb2Te3 [8] can be 

used sometimes in complement with one of the first two methods. 

A different approach, suggested by Irvine et al. [22], for contacting 

CdTe/CdS solar cell would be to make contact to a n + -CdS layer instead of the usual 

p-CdTe layer by modifying the cell structure to n + -CdS/p + -CdTe/p-CdTe/n­

CdS/ITO/glass. Contacting to n+-CdS would be achieved through the formation of a 

low resistive tunnel junction between the p+-CdTe absorber layer and the n+-CdS 

window layer. The electron affinity of CdS is ~4.2 eV, hence a number of metals 

with smaller work function are available for contacting to the n + -CdS layer: In, Al, 

W, Ti, Cr and Mo. Part of this work is based on this new approach, with 

investigation of conductive CdTe layers doped with arsenic to create the p + region of 

the tunnel junction. 
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3.3 Material !Deposition Techniques 

Numerous methods have been employed to deposit CdTe and CdS thin films 

for solar cells. Some of the methods that have demonstrated viability for the 

commercial manufacture of CdTe/CdS solar cells and modules are reviewed in this 

section with some aspects of the microstructure of the absorber layer being also 

described. 

3.3.1 Chemical Vapour Deposition 

Chemical deposition from the vapour phase is a well developed technique for 

the growth of epitaxial or polycrystalline material. Since Manasevit's pioneering 

work [23], chemical vapour deposition (CVD) has been extended so that nearly all 

III-V and II-VI compounds can be produced using this and other vapour methods. 

Metal-organic vapour phase epitaxy (MOVPE) is defined as the growth on the 

surface of a crystal so that the layer grown has the same structure as the underlying 

substrate. The main advantages of the CVD technique are: 

(i) a wide range ofthickness can be achieved and controlled; 

(ii) the dopant concentration and distribution in the film can also be 

controlled; 

(iii) multilayer structures are obtainable in a single deposition run; 

(iv) the technique is scalable to manufacturing. 

CVD is a non vacuum technique operating over a broad range of temperature 

(200-1200°C) from organic precursors in hydrogen carrier gas. The substrates are 

supported on a graphite susceptor and can be heated radiatively or by coupling a RF 

generator. The CVD principle involves a series of gas phase and surface reactions, 

and this is schematically shown in Figure 3-3. The process can be divided into 

several steps: 

(A) Mass transport of reagents m the bulk gas flow region to the 

deposition zone. 

(B) Gas phase reactions m the boundary layer which produce film 

precursors and by-products. 
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(C) Mass transport of film precursors through the boundary layer to the 

surface growth. 

(D) Adsorption of film precursors on the growth surface. 

(E) Surface diffusion of precursors to growth sites. 

(F) Surface chemical reactions leading to film deposition and to by­

products, which subsequently desorb. 

(G) Mass transport of by-products into the bulk gas flow region and out of 

the reactor. 

Main gas flow 

@ Gas phase reaction 

\ 
0 0 

Transport to surface~ j Desorption of precursor 

Desorption of 
volatile surface 

reaction products 

Figure 3-3 Transport and reaction processes in chemical vapour deposition [24]. 

The choice of organometallics for the growth of II-VI compounds has been 

one of the issues in the development of MOCVD, to fulfil an increasing demand for 

lower decomposition temperatures and higher purity. Low growth temperatures are 

desirable since they reduce solid state inter-diffusional processes, sharpening 

interfaces and decreasing the possibility of unwanted doping from foreign substrates. 

Tellurium precursors have always been the limiting factor as temperatures higher 

than 400°C were required for the decomposition of diethyltelluride, one of the early 

gases used. With the advent of di-isopropyltelluride (DIPTe) the growth temperature 

could then be lowered down to 320°C [25]. On the other hand, dimethylcadmium 
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(DMCd) decomposes at 150°C and is therefore well suited. The organometallic of 

choice for the production of sulphur atoms is ditertiarybutylsulphide (DTBS) that 

allows growth temperatures of 290°C. The choice of growth conditions is an 

important part of the overall process design. Independent parameters such as 

substrate temperature, VIlli ratio and total flow rate have to be carefully chosen to 

give the desired material properties. 

High quality MOVPE-grown CdTe is best grown on lattice matched or nearly 

lattice matched substrates. But despite a 14.6% lattice mismatch, CdTe crystals have 

been produced on GaAs substrates with comparable quality to that of bulk CdTe. 

This substrate has for long been preferred due to its availability in high quality at low 

cost and large area. Alternative substrates such as sapphire or InSb have also been 

employed [26]. As a prospect for solar cell applications, the first epitaxial growth of 

CdS onto CdTe was reported by Igarashi in 1971 [27], but it was not until 1976 that 

heterostructures for photovoltaic devices were produced, achieving over 1 0% 

conversion efficiencies [28, 29] using the substrate configuration. It was shown by 

Simmons eta!. that it is also possible to grow epitaxial CdTe onto single crystal CdS 

in a superstrate configuration using MOVPE [30, 31]. Devices made from these 

structures achieved -7% efficiency. Since then the effort expended on the 

development of photovoltaic devices grown by MOVPE has been rather less than 

that put into direct vapour transport fabrication of CdTe/CdS solar cells: the latter has 

given more efficient devices. 

MOCVD, widely used for the epitaxial growth of compound semiconductors, 

has also been applied to the deposition of polycrystalline CdTe thin films [32] and 

CdS films [33]. CdS can be deposited onto ITO/glass at rates of up to 5 nm/min for 

substrate temperature of 300°C, while CdTe can be deposited at temperatures of 320-

4500C at rates of 85 nm/min. The conductivity type of CdTe films can be controlled 

via the VIlli molar ratio in the growth ambient, that modifies the density of intrinsic 

defects [34]. At low ratios (VIlli < 2), the deposited films are p-type and become n­

type at higher ratios. However, the material produced is usually highly resistive 

(lateral resistivity of -10 7 O.cm in the dark). The resistivity can be reduced by in situ 

doping using, for example, gallium or arsenic sources for n- and p-type dopant, 
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respectively, and by choosing the appropriate VIlli ratio. Defects and doping in 

CdTe material are reviewed in section 3.6. 

The use of MOCVD-grown polycrystalline CdTe for producing solar cells 

was initially reported by Rohatgi et al. [35], Sudharsanan et al. [36] and Chu et al. 

[37]. Devices with conversion efficiency up to 10% were reported for CdTe grown 

by MOCVD onto CdS/Sn02/glass substrates. Growth was performed in a tellurium 

rich ambient at substrate temperature of 300-400°C. A post-deposition treatment in 

CdCh solution followed by anneal at 400°C for 15-30 min proved necessary to 

activate the structure. Annealed films were etched in bromine methanol solution 

prior to contact deposition. Best devices produced had open circuit voltage of 0. 73 V, 

fill factor of 60% and short circuit current of 22 mA/cm2
• An in situ heat treatment of 

the substrate prior to CdTe deposition showed improvements on both Voc and FF. 

Devices were characterised by a strong bias dependence but a wavelength 

independent quantum efficiency response, suggesting that recombination of carriers 

occurs at the interface. 

Chou et al. [38] investigated the influence of the VIlli ratio in the growth 

ambient on the performance of the cells. The cell fabrication was similar to the one 

described above. Quantum efficiency measurements of the as-grown structures with 

illumination from both sides of the devices were used to confirm that cadmium rich 

growth (VI/II= 0.02) produces essentially n-type films and for tellurium rich growth 

(VIlli = 6) films are p-type. After CdCh treatment, cells grown in Te-rich condition 

achieved 11.9% efficiency, while those grown in Cd-rich condition reached only 6-

7%. 

Kumazawa et al. [39], Aramoto et al. [12] and Tsuji et al. [ 40] have all used 

the MOCVD technique to grow the CdS window layer coupled with CSS growth of 

the absorber layer. Kamuzawa et al. [39] investigated the effect of CdS thickness 

reduction on device performance. As the film thickness was decreased from 80 to 40 

nm, the open circuit voltage also decreased from 0.8 to 0.6 V. However, a slight 

increase in short circuit current was observed. A maximum power conversion of 

15.1% was obtained for a CdS thickness of 60 nm with very reproducible results. 

Following this, Aramoto et al. [12] produced a 50 nm MOCVD-CdS/3.5 )liD CSS­

CdTe cell with 16% conversion efficiency (FF = 73%, Voc = 0.84 V, lsc = 26 
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mA/cm2
). The use of an ultra thin window layer allows higher quantum efficiency in 

the 300-500 nm region thus improving the performance of the devices. This 

technique was also applied to the fabrication of modules with success as Tsuji et al. 

[40] reported MOCVD-CdS/CSS-CdTe 1376 cm2 modules with efficiency up to 

10.5%. 

Full polycrystalline MOCVD structure have also been reported by Rohatgi et 

a!. [ 41] and Irvine et al. [ 42, 43]. Full advantage of the opportunity offered by the 

MOCVD technique to control doping during growth was taken by Irvine. In situ 

chlorine doped-CdS and arsenic doped-CdTe produced photovoltaic devices with 

limited efficiency. Improved performance was observed when undoped CdS was 

used. In this condition, the CdTe growth ambient was optimised for a VI/II ratio of 

~0.6 at which devices exhibit a 2% power conversion, without the use of the post­

deposition heat treatment. ~ 11% conversion efficiency was achieved by Rohatgi 

using full MOCVD structures with the use of the CdCh heat treatment. 

3.3.2 Other Deposition Techniques 

Physical Vapour Deposition PVD can be used to deposit either CdS or CdTe. 

Deposition occurs by evaporation from elemental sources, by direct sublimation from 

a CdTe source or by vapour transport using a carrier gas to entrain and deliver Cd 

and Te2 vapours from either elemental or CdTe source. For deposition in moderate 

vacuum,~ 1 o-6 Torr, a deposition rate of 1 IJ.m/min is obtained at 800°C for substrate 

temperature sufficiently low ( ~ 1 00°C). Higher substrate temperatures result in lower 

deposition rate. As-deposited films often exhibit a [ 111] preferred orientation [ 44] 

and also a columnar grain structure [45]. Grain size strongly depends on film 

thickness and substrate temperature, but as an example, for a 2 IJ.m thick film, grain 

sizes range from 100 nm for a substrate temperature of 100°C to 1 IJ.m at 350°C. 

Close-Space Sublimation CSS is a widely used technique for depositing CdTe 

but CdS can also be grown using this technique. To date, the most efficient cells use 

CSS deposited CdTe [7, 12, 46, 47]. The technique is based on reversible 

dissociation of both CdTe and CdS at high temperature. The source material is 

maintained at a higher temperature (e.g. 650°C) than the substrate (e.g. 550°C), a few 
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mm away from it. The source dissociates into its elements which recombine on the 

substrate surface. In the case of CdTe, this technique is characterised by a high 

deposition rate ( ~ 1 J.lmlmin), nearly random orientation of the as-deposited film [ 44] 

and large grain size (severalJ.lm) [ 48]. 

Electrodeposition Electrodeposition of CdTe and CdS has been developed to 

become a promising method for producing efficient thin film solar cells. It consists 

of the galvanic reduction of cadmium and tellurium from Cd2+ and HTe02 + ions in 

acidic aqueous electrolyte. The reduction of these ions utilises six electrons in the 

following reactions taking place simultaneously: 

HTe02 + + 3H+ + 4e- ~ Te + 2H20, Eo= +0.559 V 

Cd2+ + 2e- ~ Cd, Eo= -0.4 V 

Cd+Te~CdTe 

Thickness and deposition rate are limited to the ability to maintain deposition 

potential over the entire surface ofthe growing film. As-deposited CdTe film on CdS 

exhibit strong [Ill] orientation [ 49] with columnar grains having a mean lateral 

diameter of 100-200 nm [50]. 

Radio Frequency Sputtering CdTe and CdS films can be deposited by RF 

magnetron sputtering from compound targets. In the case of CdTe, mass transfer of 

Cd and Te occurs via ablation of the CdTe target by At ions, followed by diffusion 

to the substrate and condensation. As-deposited films (2 J.lm thick) exhibit grain size 

of ~300 nm and nearly random orientation [51]. 

Screen Printing Screen printing deposition can be used to deposit both CdS 

and CdTe layers. High purity elements are combined together with a suitable binder 

into a paste that is applied to the substrate through a screen. Following a drying step 

to remove binder solvents, the layer is baked at temperature up to 700°C to 

recrystallise the film and activate the junction. For CdTe films, Cd02 is combined 

together with Cd and Te to act as a sintering flux and to avoid the usual post­

deposition heat treatment. Films fabricated by this method typically have a thickness 

of 1 0 to 20 J.lm with lateral grain dimension of ~5 J.lm and random orientation. 
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Spray Pyrolysis Pyrolytic spraying is a low-cost technique for the fabrication 

of large area CdTe/CdS solar cells. It is a non vacuum technique for depositing films 

from a solution. Droplets of liquid are sprayed onto unheated or heated substrates 

after which a reaction/recrystallisation treatment is performed. CdTe films deposited 

by this technique have usually large grains and random orientation. 

Chemical Bath Deposition CBD is used to deposit CdS with success, as this is 

the method employed to produce the best cell [7]. The CBD CdS process involves 

the use of aqueous alkaline solutions containing a cadmium salt, a complexing agent 

(e.g. aqueous ammonia) and a sulphur compound such as thiourea. The release of 

Cd2+ ions occurs through the dissociation of a complex species formed from the 

cadmium salt and complexing agent: 

Cd(NH3)/+ ~Cd2+ + 4NH3(aq) 

Sulphide ions are supplied by the hydrolysis of thiourea: 

S=C(NH2)2 + OK - S2-+ H2NC=N + 2H20 

Finally CdS precipitates when the concentration product of Cd2+ and s2
• in solution 

exceeds the solubility product of CdS. This method results in uniform film deposition 

even with very thin layer (50 nm) due to a slow deposition rate, typically 10 nm/min. 

The following table summanses the best CdTe/CdS thin film solar cells 

produced to date for each of the technique described previously. This table reports 

only structures that have both CdS and CdTe grown using the same deposition 

method. 
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Growth Technique 
Efficiency Cell Area 

Laboratory 
(%) (cm2

) 

css 16 1 
Matsushita Battery 

Industrial [ 4 7] 

PVD 16 0.25 
Central Research 
Laboratory [52] 

Electrodeposition 13.1 0.02 
University of 

Queensland [53] 

RF Sputtering 14 
University of 
Toledo [54] 

Spray Pyrolysis 12.7 0.3 
Golden Photon Inc. 

[55] 

Screen Printing 11.3 
Matsushita Battery 

Industrial [56] 

MOCVD 11.9 0.077 
Georgia Institute of 

Technology [41] 

Table 3-1 CdTe/CdS thin film solar cells. Best devices reported for each of the 
deposition techniques presented. Window and absorber layers of each device 
reported are grown by the same technique. 

3.4 Post-Deposition Treatment 

A large number of successful techniques for depositing quality CdS and CdTe 

films have been previously described. However, in the case of chloride free 

deposition technique, the deposition itself has been found to be less critical than the 

post-deposition processing. It generally involves a high temperature processing step 

with exposure to a chlorine containing species and/or oxygen. This treatment 

changes the electrical and structural properties not only of the absorber layer but also 

of the junction itself, and enables the solar cell to increase its efficiency from 2-5% 

in the as-grown state to 1 0-16% after treatment. 

The treatment steps can be performed in a variety of ways such as: 

(i) In situ incorporation of chlorine species during CdTe film deposition; 

(ii) Dipping the CdTe layer in a CdC}z aqueous solution followed by 

drying in or~er to precipitate a CdC}z film and then annealing [57]; 

(iii) Annealing in CdCh vapour [58], HCl [59] or C}z gas [60, 61]; 
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(iv) Deposition of a CdCh layer onto the absorber followed by annealing. 

The typical temperature-time range for the thermal cycle for chlorine 

incorporation is from 380 to 450°C for 15 to 30 min depending on the CdTe film 

thickness, with thicker films requiring longer treatment time. 

The post-deposition treatment modifies the electronic properties of the CdTe 

layer. In its as-deposited state, CdTe is usually n-type or highly resistive p-type, 

making it unsuitable for solar cell applications. The CdCh treatment is thought to 

introduce p-type dopant centres into the absorber layer and this is referred to as a 

"type conversion" process because most CdTe film are grown n-type. 

The incorporation of chlorine is considered to form an acceptor complex with 

cadmium vacancies, [V cctCher. This relatively shallow acceptor state has an 

ionisation energy of 0.12 eV [62] compared to 0.6 eV for [Vcctt [63] which makes 

the complex a more effective dopant than the cadmium vacancies alone. However, 

excess chlorine can lead to compensating [Chet donors. This will be further 

developed in section 3.6. This, as well as converting the conductivity of the CdTe 

layer from n top-type, decreases the sheet resistance of the absorber layer up to three 

orders of magnitude [ 64]. 

The CdCh treatment also modifies the structural properties of the CdTe films. 

The treatment can promote recrystallisation and grain growth in small grained films 

[65]. Levi et al. [66] observed a five time increase of the initial crystallite size 

following treatment on small grained PVD-grown films, but not for larger grained 

CSS-deposited layers. This was confirmed by Cousins et al. who observed that no 

grain growth occurs following chloride treatment on 10 IJ.m thick CSS-deposited 

structures [ 67]. The predominant recrystallisation effect common to almost all 

deposition techniques giving small grains is the randomisation of the orientation of 

the CdTe films, showing the intragrain influence of the CdCh on lattice arrangement. 

The effect of the CdCh treatment on CdTe films grown by different techniques on 

crystallite size and orientation is summarised in Table 3-2. 

43 



Chapter 3 - Thin FUm CdTe/CdS Solar Cells 

Film Grain size (~-tm) Orientation 
Growth Technique Thickness Initial- After Initial- After 

(~-tm) treatment treatment 

css 8 8-t8 Random -t Random 

PVD 4 0.1- 1 (Ill) -t (220) 

Electrodeposition 2 0.1-0.3 (111)---t(llO) 

RF Sputtering 2 0.3-0.5 (111)---t(?) 

Spray Pyrolysis 10 10- 10 Random 

Screen Printing 12 ~10 Random 

MOCVD 2 0.2- 1 (Ill)- Random 

Table 3-2 Structural changes that CdTe deposited by different methods, undergoes 
following CdCh treatment (after McCandless eta!. [68]). 

The post-deposition treatment is usually performed at temperatures greater 

than 350°C. During this phase, a physical reaction between CdTe and CdS can occur 

and interdiffusion between the two semiconductors forms a CdTe1-xSx solid solution 

in the absorber layer but also a CdSt-xTex solid solution in the window layer. These 

solid solutions have both beneficial and detrimental effects on the performance of 

solar cell. The interdiffusion process narrows the bandgap of the absorber layer for 

lower sulphur concentration (x < 0.4), resulting in higher long wavelength quantum 

efficiency [69]. Intermixing of CdS and CdTe reduces interfacial strain by reduction 

of the lattice mismatch at the CdTe/CdS junction [70] and may reduce the dark 

current recombination [71]. Alloy formation also consumes the CdS layer which can 

be beneficial for window transmission, but non-uniform consumption can result in 

lateral discontinuities at the junction [72]. 

Finally, one of the important effects of the CdCh treatment is the passivation 

of the grain boundaries of the polycrystalline absorber layer. This has been evidenced 

by Edwards et al. [73, 74] using electron beam induced current (EBIC) imaging. The 

technique, which basically consists of mapping the short circuit current collected by 

the p-n junction after carrier excitation by the electron beam, is further detailed in 

section 4-6 and 7-5. Using the front-wall configuration, i.e. junction irradiated from 
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the front surface after chemically removal of the glass substrate, Edwards showed 

that the collected images were beam current dependent and that for CdCh-treated 

CSS-grown structures, no image contrast was observed between grains and grain 

boundaries at low beam current. Further investigations under high beam injection, 

i.e. higher beam current, gave rise to a newer band structure diagram of grain 

boundaries this being consistent with previously derived model using conductivity 

experiments indicating an upwards band bending at the grain boundaries [75, 76]. 

3. 5 Typical Device Characteristics 

To date, the most efficient CdTe/CdS thin film solar cell produced on a 

laboratory scale achieved 16.5% power conversion under standard AM1.5 

illumination conditions [7]. The cell parameters were FF = 75.5%, Jsc = 25.9 

mA/cm2 and Voc = 845 mV. The structure was glass/CTO/Zn2Sn04/CBD-CdS (0.1 

)lm)/CSS-CdTe (10 )lm)/back contact (C:Hg:CuTe). By comparison, Aramoto eta!. 

[12] have produced a 16% efficient MgF2/glass/ITO/MOCVD-CdS (50 nm)/CSS­

CdTe (3.5 )lm)/Carbon/ Ag cell. High efficiency was achieved because of an increase 

in the quantum efficiency to 50% for wavelengths around 400 nm due to the reduced 

CdS thickness. This shows the wide range of opportunities available for improving 

the performances of CdTe/CdS solar cells. 

A common feature of CdTe cells, but also of solar cells to which it is difficult 

to form an ohmic back contact, is a current limiting effect in forward bias, which 

becomes progressively more important as temperature decreases. This is shown in 

Figure 3-4 where the current-voltage (J-V) curve for a CSS-grown solar cell is 

plotted as a function of temperature [77]. The influence of temperature on the open­

circuit voltage can be seen as well as a flattening of the J- V curve at high forward 

bias and is referred to as the rollover effect. 

The current-voltage equation for a solar cell was derived in section 2.3. In the 

particular case of CdTe thin film solar cells, the single diode equation is not 

sufficient to fully describe the behaviour of the device. Stollwerck and Sites [78] 

described this phenomenon as due to a second diode barrier located at the back 

contact of the solar cell. The equivalent circuit model corresponding to this is shown 

in Figure 3-5. 
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0.5 
Voltage (V) 

333 K 

1.0 1.5 

Current-voltage characteristics under illumination as a function of 
temperature for a CdTe/CdS solar cell (reproduced from [77]). 

R.,. 

Solar Cell junction RectifYing Back Contact 

Equivalent circuit for a solar cell with rectifying back contact: this 
comprises two diodes associated with the main solar cell and the Schottky 
junction located at the back contact, respectively. 

This barrier is also thought to be responsible for the crossover effect between 

the dark and light J- V curves because of non negligible minority carrier current. This 

feature also demonstrates the poor conductivity of the absorber layer in the dark. 

However, it has been sugge~ted by Agostinelli et al. [79] that the crossover obs~rved 

between the current-voltage characteristics measured in the dark and under 
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illumination could be associated with a barrier located at the front region of the 

device due to an increased compensation of donors in the CdS window layer and the 

presence of a buried junction located deeper in the absorber layer. 

3.6 Defects and Doping in CdTe Materials 

The development of preparing high quality single crystals in II-VI technology 

has been slower than in other technologies because of the ease of defect formation 

within the crystal lattice. This is particularly true for CdTe materials. Due to the large 

number of CdTe film deposition methods, control of impurities is difficult. The 

multi-stage processing of the solar cell brings even more impurity elements into the 

system. It has been shown recently using quantitative SIMS (secondary ion mass 

spectroscopy) and ICPMS (inductively coupled plasma mass spectrometry) analysis 

by Emziane et al. [80-82] that numerous impurities are introduced into the structure 

originating from the starting materials, even when using high purity ones. 

The defects are classified into categories depending on their dimension. Point 

defects are zero dimensional defects involving a single atom or a complex of a few 

atoms. These can be vacancies, i.e. a missing atom from the lattice, interstitials, i.e. 

an extra atom between normal lattice sites, or substitutions, i.e. an atom on another 

element's lattice site. Vacancies and self-interstitials are called intrinsic defects, 

while substitutions and extraneous interstitials are labelled extrinsic defects. Figure 

3-6 shows the positions of common defect levels in CdTe and will be discussed in 

more detail later in this section. 

One dimensional defect such as dislocations, involves a line of continuous 

defects. Two dimensional defects include grain boundaries, stacking faults, interfaces 

and twin boundaries. Grain boundaries are a source of high defect densities in 

polycrystalline CdTe. High concentrations of two dimensional defects can be found 

near the interface of a CdTe/CdS heterojunction because of the important lattice 

mismatch (~10%) between the two semiconductors. Finally, three dimensional 

defects can exist in a crystal in the form of voids or precipitates of point defects. Part 

of this work is concerned with impurity doping of CdTe, thus involving point 

defects. 
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Ionisation energy in eV of common defects and impurities m CdTe. 
References for each level are given in the text. 

Doping in CdTe is achieved by making use of point defects, either intrinsic or 

extrinsic. Processing steps for the fabrication of a solar cell involve the addition of 

various impurities to the structure and especially to the absorber layer. Some of these 

impurities such as chlorine are intentionally added while others are unintentionally 

introduced, such as indium or sodium. Other processing steps include annealing at 

various temperatures for different durations and these annealings can create or 

annihilate many types of defects due to an enhanced diffusion at increased 

temperatures. 

Intrinsic Defects and Doping The case of tellurium rich growth of CdTe 

implies an excess of tellurium and hence a deficiency of cadmium in the crystal 

lattice. Thus the dominating defect is cadmium vacancy, singly [V cdr or doubly 

[V cdf ionised, both acting as acceptors. Their energies have been reported at 0 .I e V 

[83] and 0.45 eV [84) above the upper limit of the valence band for the single 

acceptor, and 0.6-0.74 eV+Ev [63, 85) for the double acceptor. The density of 

cadmium vacancies is commonly in the range of 1017-10 18 cm-3 [86], with an 

estimation of up to 1019 cm-3 [63). High concentration of compensating anti-site 
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[Tecctt donors can also be found in tellurium rich grown CdTe [86]. Compensation 

occurs with the existence of both cadmium vacancies and [Tecctt donors. Neutral or 

singly ionised acceptor complex [V cct Teed] are also commonly form during material 

growth. The neutral defect was reported as having an energy level of0.743 eV above 

the valence band [85]. 

When the material is grown cadmium rich, there is an increase in tellurium 

vacancy concentration. Tellurium vacancies can be doubly ionised [Vre]2
+ and act as 

donors. They reside 0.4-0.5 eV below the bottom of the conduction band. Also 

possible but less common are tellurium interstitial acceptors, [Teir, having a 

formation energy of3.44 eV [62]. 

Intrinsic doping is achieved by controlling the concentration of native defects 

m the undoped material. The cadmium rich growth enhances the formation of 

tellurium vacancies which can become positively charged. These defects act as 

donors, therefore the material is grown n-type. On the other hand, a tellurium rich 

film will be p-type owing to an increase in cadmium vacancy (acceptor) 

concentration. This type of doping is limited by strong compensation of donors and 

acceptors in CdTe. Doping can be applied to both CdS and CdTe layers in order to 

increase carrier concentrations. Usually doping occurs during the CdCh heat 

treatment of the respective layers (see section 3.4). Impurity doping also occurs 

during the preparation of the back contact as explained in section 3.2.5. 

Extrinsic Defects and Doping Abundant literature is available on extrinsic 

defects arising from the introduction of impurities in CdTe due to the long history of 

the material in the detector industry. The discussion will be restricted to chlorine and 

arsenic as they are the main impurities used in this work. 

Chlorine defects are introduced when depositing the CdTe layer or during the 

post-deposition treatment when processing the solar cells. Typically, chlorine resides 

on a tellurium site [Chet, acting as a shallow donor. This defect is located 0.014 eV 

below the conduction band [2] and is present in concentrations of up to 1018 cm-3 

[87]. Many complexes may form in the presence of chlorine in CdTe. The [V cctChe] 

complex can be neutral for a singly ionised cadmium vacancy or an acceptor for a 

doubly ionised cadmium vacancy. The latter resides 0.12 e V above the valence band 
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[62]. Chlorine self-compensation occurs through the existence of both [Clret and 

[V cdClrer [88]. 

Arsenic, a group V element, acts as an acceptor on a tellurium site [Asrer· 

This is a shallow acceptor located between 0.06 eV [89] and 0.10 eV [90] above the 

valence band. Compensation of the shallow acceptors occurs at high doping with 

tellurium vacancies. Arsenic can also be incorporated in cadmium sites as a triply 

ionized donor [89]. Thus the doping level of arsenic is function of the partial 

pressures of cadmium and tellurium used during layer growth. 

Extrinsic doping is achieved using a variety of impurities, but carrier 

concentration may be limited by compensation effects. This has made possible the 

fabrication of highly resistive CdTe crystals but this can be problematic for 

conductive CdTe. Doping is limited by the solubility of the dopant atoms in the host 

semiconductor lattice. For example, when the quantity of arsenic acceptor exceeds 

the solubility of arsenic in CdTe, the excess acceptor atoms create tellurium 

vacancies forming a complex centre that acts as a donor and hence annihilates the p­

doping effect of the process. 

3. 7 Concluding Remarks 

The science and technology of CdTe/CdS thin film solar cells have been 

reviewed. It has been shown that the optical and electrical properties of CdS and 

CdTe are well-suited for photovoltaic applications, and that the flexibility of the 

system in terms of the wide range of deposition methods available, make the 

technology highly promising for large-scale production. Several companies are 

currently commercialising thin film CdTe/CdS modules (First Solar, Matsushita and 

ANTEC Solar) which can reach 11% conversion efficiency for a 0.54 m2 area. 

On a laboratory scale, several groups can produce in a reproducible way, 

devices with efficiencies in the range of 14-16%. A realistic target in the near future 

is an efficiency over 20% [91]. In order to further increase the efficiency of current 

CdTe solar cells, the research focuses on several main issues: 

(i) Determining the exact mechanisms behind the effect of the CdCh 

treatment. This should allow greater control over the post-deposition 

processing, without relying on empirical methods; 
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(ii) Examining the extent and effect of the sulphur and tellurium 

interdiffusion at the device junction; 

(iii) Development of a cheap, stable and low-resistance back contact; 

(iv) Increasing the carrier concentration in the absorber layer which is today 

limited to l-4x 1014 cm-3 [92]; 

(v) Routes for novel materials, for the front contact to reduce optical losses 

and control the out-diffusion of impurities from the substrate. 
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Chapter 4-~ 

Sample Preparation 
and Characterisation 

Techniques 

4. 1 Introduction 

This chapter describes the sample preparation and characterisation methods 

used throughout this work. Both individual layers and cell structures were prepared 

by metal-organic chemical vapour deposition (MOCVD), the principles of which are 

described in section 4.2. The post-growth processing steps required to make working 

devices are outlined in section 4.3. The reminder of the chapter is dedicated to 

characterisation techniques used for both layers and devices. They include optical, 

electrical, structural and chemical methods namely, response to solar radiation, 

current-voltage measurements, spectral response, carrier type and resistivity 

measurements for single layer, SEM and electron beam induced current (EBIC) plus 

x-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). 
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4.2 MOCV[) Growth of CdS, CdTe and CdTe:As 

All the layers and structures used in this work were grown by MOCVD at the 

University of Wales, Bangor. A review of CdTe based solar cells and materials was 

presented in section 3.3 .1 and a schematic of the actual growth system is now shown 

in Figure 4-1. 

The substrates used in this work were of two kinds. Films of CdTe:As were 

grown onto insulating sapphire and CdTe/CdS solar cell structures were grown onto 

ITO/glass substrates. Two kinds of glass substrates with different TCO were used. 

The first one was supplied by Merck Display Technology (MDT) and consisted of 

0.7 mm soda lime glass coated with a bilayer of Si02 (-20 nm) and ITO (-100 nm). 

The indium doped tin oxide has the high conductivity required to provide a low sheet 

resistance front contact, whereas the silicon dioxide layer acts as a barrier to the 

diffusion of impurities from the glass. The second ITO/glass substrate was provided 

by ANTEC GmbH. This substrate is somewhat different from the first one as it 

comprises -4 mm soda lime glass coated with a bilayer ofiTO ( -250 nm) and Sn02 

(-30 nm). In this case the tin oxide layer is used to reduce the diffusion of indium 

atoms from the ITO layer into the rest of the cell. This layer, with higher resistivity 

than ITO, is less prone to pinholes. This type of substrate is commercially used by 

ANTEC GmbH to produce CdTe based photovoltaic modules. 

The precursor vapours for MOCVD used were dimethylcadmium (DMCd) 

and ditertiarybutylsulphide (DTBS) for the growth of CdS, and DMCd and di­

isopropyltelluride (DIPTe) for CdTe growth. In situ doping was achieved using tris­

dimethylamino arsine (DMAAs). All organometallic vapours were supplied by 

Epichem Ltd. The layers were deposited at atmospheric pressure in a Thomas Swan 

horizontal reactor with a graphite substrate holder. The substrate holder was heated 

with a graphite resistance heater capable of reaching a working temperature of up to 

600°C. Prior to growth, the organometallic concentrations were calibrated using an 

Epison (Thomas Swan Ltd) ultrasonic concentration monitor. This is a gas 

concentration analyser that measures the speed of sound in a binary ambient. The 

sound velocity is related to the composition via analytical calculations using the 

temperature, molecular weight of each component and specific heat ratio. This is also 
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used during the growth to ensure that the organometallic mixture is maintained at a 

constant concentration. 

H2 push flow __.. 

__.. 
H2 flow for 
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Laser Reflectance Monitoring 
r-------- -- --- -~ 
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--------, Reactor 
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Figure 4-1 

__.. 
Vent flow 
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I Pneumatic valve 

Horizontal reactor with gas supply for MOCVD growth [I]. The actual 
system contains six bubblers forTe, Cd, S, As, Cl and Zn organometallics. 

The top walls of the reactor and liner tube are modified to permit the 

reflectance of a 635 nm diode laser beam for in situ optical monitoring [2]. In situ 

monitoring helps in understanding kinetic mechanism and in providing parameters 

suitable for feedback control of the layers during growth. The monitoring technique 

used was laser reflectometry that measures the thin film interference between the 

surface of a growing film and the film/substrate interface. The technique gives 

information on film thickness, growth rate, surface roughening and some indication 

of fi lm composition and this is briefly outlined now. 

When a monochromatic light beam hits the surface of a growmg film a 

succession of reflection/transmission phenomena occurs. All reflected beams leaving 

the sample are detected yielding an overall reflected intensity. Because there is a 

phase difference between the multiple reflected beams, constructive or destructive 

interferences will occur, leading to an intensity modulation of the overall reflected 

light. This is also known as Fabry-Perot etalon or interferometer [3) . The phase 

difference and therefore the intensity of the reflected light depends upon the 
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thickness of the growing layer as well as on the optical constants of the materials and 

beam wavelength. Thus the thickness is determined by measuring the period of the 

oscillations and the growth rate can thereafter be deduced. Hence low growth rates 

are characterised by long oscillation periods while higher growth rate will yield 

shorter ones. 

Changes in the reflected signal also arise from surface roughness and optical 

waviness. The former being referred to as thickness fluctuations on a nanometre 

scale while the latter on a micron scale. Increasing optical waviness is detected by 

reduced oscillation amplitudes but a constant average value. On the other hand 

increasing roughness is detected by a reduced total reflected intensity. When 

roughness is negligible only specular reflectance is detected while as roughness 

increases more and more light is scattered, i.e. diffuse reflectance, and therefore the 

total signal detected is smaller. Changes in film composition can also be detected by 

reflectance measurements due to changes in the refractive index associated for each 

composition. Optimum sensitivity of such a system is achieved when more than one 

wavelength of incoming light is used. 
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An example of an optical interferogram recorded for the growth of CdS (240 

nm) and CdTe (8 !liD) on ITO/glass substrate is given in Figure 4-2. This time 

resolved reflectance gives the growth history. The interferogram can be divided into 

four parts marked A, B, C and Don the figure which are explained next. 

A Time t = 0-1230 s. The heating phase starts. The temperature is raised to 

300°C and stabilised for ~1200 s. 

B Time t = 1230-4240 s. This is the CdS growth phase. The organometallics 

DMCd and DTBS are allowed into the reactor and this is marked by a small decrease 

in reflectance marked (i) on the figure. Then a short period of stagnation (~300 s) 

corresponding to nucleation process [4] is observed before the CdS growth starts. 

Growth is marked by two oscillations. During this time 240 nm of CdS are grown at 

a rate of ~5 nm/min. 

C Time t = 4240-5496 s. The CdS growth is stopped, the organometallics are 

switched to vent and the temperature is reset to 350°C in preparation for the growth 

of the CdTe absorber layer. 

D Time t = 5496-11500 s. The DMCd and DIPTe organometallics are 

switched into the reactor to start the CdTe growth. No delay is observed and the 

growth starts immediately. More rapid oscillations are observed compared to the CdS 

growth which indicate a higher growth rate for CdTe compared to CdS. The 

interferogram shows strong attenuation ofthe CdTe oscillations due to the absorption 

at the laser wavelength. 8 !liD of CdTe were grown in ~6000 s, i.e. at a growth rate of 

~80 nm/min. 

Growth parameters for the samples used in the different studies will be given 

in the respective chapters, but the ranges are as follows. The CdS layers were grown 

at 300°C while the CdTe layers were deposited at 300-400°C. The precursor ratio 

(Te:Cd or VI/II ratio) for the CdS growth ranged between 1.2 and 1.5, and between 

0.6 and 1. 7 for the CdTe growth. For the study of arsenic doped CdTe films the flow 

of arsenic organometallic in the growth system varied between 3 and 9 seem 

(standard cubic centimetres per minute). Note that throughout this work the precurs9r 

ratio refers to the concentrations in the reactor and not in the material grown. For a 
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stoichiometric MOCVD-grown CdTe film it is generally considered that a VI/II ratio 

of~ 1.96 is required, while a I: I reactant mixture gives cadmium rich (n-type) films 

[5]. 

4. 3 Post-Deposition Treatment 

To enhance the performance of a CdTe/CdS solar cell a post-deposition heat 

treatment in a cadmium chloride (CdCh) environment must be performed. Following 

this a special chemical surface preparation must carried out on the CdTe prior to 

application of a back contact to the CdTe absorber layer. Post-growth treatment of 

the as-grown layers usually takes the form of a four step process that includes (i) a 

deposition of a CdCh layer, (ii) a bake in air or nitrogen, (iii) a chemical etch and 

then (iv) contact deposition. 

A thin film of CdCh (up to ~ I40 nrn) was deposited onto the back surface of 

the CdTe/CdS structures (~I cm2
) by evaporation of CdCh powder under vacuum. 

At this stage, the substrate was not heated. The thickness of the deposited coating 

was controlled in situ by a crystal quartz monitoring. The sample was subsequently 

annealed in nitrogen in a tube furnace. Baking temperatures were in the range of 340-

5000C for 5-50 min. Once the annealing was completed, the sample was thoroughly 

rinsed in deionised water in order to remove any CdCh residue from the surface, and 

then blow dry with nitrogen. For contacting the CdTe layer, an intermediate Te rich 

layer was formed at the surface before applying a back contact. This was achieved by 

chemically etching the back surface in either a solution of bromine methanol 

(Br2/MeOH) or nitric and phosphoric acid (NP). 

In most cases, the samples were dipped in a solution of I% HN03 (70%)+ 

70% H3P04 (85%) + 29% H20 [6] until bubbles appeared at the back surface and left 

for ~I 0 s before rinsing in water and drying in nitrogen. When dipped in the 

Br2/MeOH solution (0.03-0.5% bromine concentrated), the cells were etched for 5 s 

before rinsing in methanol and drying in nitrogen. In both cases the solution was 

maintained at room temperature. 

Immediately after the etching step the cells were placed in an evaporator 

where four ~ 1 00 nm thick gold dots of 2.5 mm diameter each were deposited to form 

back contacts. Finally, a contact to the ITO was made. To allow this, part of the 
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CdTe layer was removed mechanically and the underlying CdS etched off with 

hydrochloric acid. Contact to the ITO could then be made using indium-gallium 

amalgam. Hence most of the devices measured comprised 4 gold dots on a ~ 1 cm2 

area. The contact dots were not scribed to define their area and the active area was 

defined by the area of a single gold dot. 

4.4 Solar Cell Characterisation 

4.4.1 Solar Radiation and Solar Simulator 

The sun is essentially a self-sustained nuclear fusion reactor transforming 

hydrogen into helium at temperatures of around 2x 107 K within its core. This 

produces around 4x 1020 W. This energy is liberated as spectrally continuous 

electromagnetic radiation between ~ 1 A (x-ray) and 30 m (RF) and can be closely 

approximated by a black body radiator at 5800 K, the surface temperature of the sun. 

The intensity of solar radiation in the free space at the average distance of the 

earth from the sun is defined by the solar constant, the value of which is 1367 W.m-2 

[7]. As solar radiation passes through the earth's atmosphere it is scattered by 

atmospheric molecules. These attenuate the whole spectrum but are more effective at 

shorter wavelength. In addition the spectrum is also attenuated in particular spectral 

bands through absorption by constituent atmospheric gases and water. The degree of 

which the atmosphere attenuates the solar radiation reaching the earth's surface is 

defined as the air mass (AM). 

The AMO spectrum represents the solar spectrum outside the earth's 

atmosphere where intensity is given by the solar constant. The shortest path through 

the atmosphere is that taken when the sun is directly overhead. This is known as 

AMI. When the sun is at an angle B from the vertical, air mass is given by 1/cos B. 

For example, an angle of 45° corresponds to AM1.5. For temperate latitudes AM1.5 

is used to represent the average spectrum. In this case the incident power density is 

777 W.m-2 for direct irradiation and 960 W.m-2 with the inclusion of diffuse and 

scattered light to give a total or global intensity. Both AMO and AM1.5 direct spectra 

are shown in Figure 4-3. In this work, the 100 mW.cm-2 AM1.5 direct spectrum was 

used throughout for all the measurements. 
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In order to achieve standard illumination conditions, a commercial 300 W 

xenon arc-lamp solar simulator from ORIEL (model 81160) was used [10]. The light 

path inside the housing is shown in Figure 4-4. The simulator produces a uniform, 

collimated 51 x51 mm output beam. The uniformity in intensity is within ±5% over 

the area and the equivalent output power produced by the xenon arc-lamp is ~2 suns. 

The xenon lamp differs from the solar spectrum in the 800 to 1100 nm region 

because of the intense line output of the lamp. A primary filter is used to reduce the 

mismatch in this region, and a second filter modifies the visible and ultraviolet 

portion of the spectrum to match the AM1.5 one. This is shown in Figure 4-5 where 

both the unfiltered output and the output with AM1 .5 filters are plotted. 

Finally a light intensity controller is used to ensure long-term stability of the 

output. It compares the recorded signal to the set level and changes the power supply 

setting accordingly. Intensity fluctuations of less than 0.03% are achieved with this 

system. Calibration of the light intensity to 100 mW.cm-2 was done using an ORIEL 

thermopile and a Kipp & Zonen SP Lite pyranometer. 
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ORIEL solar simulator output. Unfiltered (red line) and filtered (black line) 
output to give an approximate AMI .5 spectrum [11] . 
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4.4.2 Current-Voltage Measurements 

Current-voltage (J- V) measurements are necessary to evaluate pnmary 

characteristics of solar cells that determine the energy conversion performance as 

described in section 2.3.2. J- V measurements also allow the R1easurement of more 

basic p-n junction parameters such as diode quality factor and series and parallel 

resistances. A further description of these parameters is given in section 2.3.2 and the 

method used to extract parameters from the J- V curves is given with the results in 

Chapter 7. 

To perform the test, the solar cell was mounted on a sample holder specially 

designed and built for this experiment that allows the use of samples in either the 

substrate or superstrate configuration. The design was based on an earlier setup from 

the Solar Cells group at the University of Ghent in Belgium. A picture of a specimen 

mounted on the holder is displayed in Figure 4-6. Measurements were done using 

two magnetic PHl 00 probes from SUSS MicroTec connected to a Keithley 

sourcemeter controlled by a computer through an IEEE GPIB interface to allow data 

acquisition. The control software was written as part of this work in Visual Basic. 

The software includes both current and voltage sweeps, although current sweeps 

were generally used in practice. Other features include the facility to repeat and 

average each data point, and the display of the sample response in real time. 

Figure 4-6 Solar cell and sample holder. 

69 



Chapter 4- Sample Preparation and Characterisation Techniques 

4.4.3 Spectral Response Measurements 

Spectral response measurements entail the determination of the quantum 

efficiency (QE) of a sample as a function of wavelength. QE is defined as the 

number of electron-hole pairs created and collected by the solar cell per incident 

photon and is usually less than unity. QE has a strong wavelength dependence due to 

the spectral behaviour of the optical absorption coefficients of CdS and CdTe, and 

also due to the depth dependence of the carrier collection probability. The as­

measured QE is referred to as external quantum efficiency. In contrast the internal 

quantum efficiency is used when corrections are made to allow for reflection losses 

at the front of the cell. For this work, new spectral response experiment was built 

from components according to the schematic shown in Figure 4-7. 

JB ..... 0··•••••••••······~~· ~············ ···················•••: 
; ~ 

E ! \ 

0 
= 0 

H 

J 
A: Convex Lens 
B:Lamp 
C: Monochromator 
D: Beam Splitter 
E: Power Supply 
F: Photodiode 
G: Sourcemeter 
H: PC 
I: Mask 
J: Solar Cell 

Figure 4-7 Experimental arrangement used for spectral response measurements 
(adapted from [12]). 

The system was based on a Bentham M300 monochromator having a Czemy­

Turner configuration and a Bentham 100 W quartz halogen lamp controlled by a 

constant current stabilised power supply. The output intensity was monitored by a 

fully calibrated silicon PIN photodiode from Hamamatsu Photonics Ltd in order to 

determine the photon flux. Order sorting filters were used to eliminate second order 

harmonics and were integrated in the entrance slit of the monochromator. A built-in 

stepping motor allowed wavelength scanning controlled from a remote stepping 

motor drive unit equipped with an IEEE-488 bus interface. Wavelength increments 
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as well as the currents recorded from the photodiode and the sample response were 

computer controlled using GPIB links and Keithley sourcemeters. 

A QE spectrum is an important source of device performance-related 

information. It is possible to extract material information from QE spectra such as 

the intermixing of the CdS and CdTe layers for a CdTe/CdS cell [13-15]. It is also 

possible to determine the position where the highest carrier collection occurs and 

therefore to distinguish between a heterojunction and a buried homojunction [ 16]. 

For example, for an ideal heterojunction the QE is high and constant between the 

bandgaps of the two materials. If the minority carrier diffusion length is small in the 

absorbing material, the QE decreases towards lower photon energies for which the 

optical absorption coefficient is also lower. On the other hand, if the particular device 

is a buried homojunction, the QE will increase at long wavelength due to deep 

penetration of photons into the buried junction. 

4. 5 Electrical 

Layers 

Measurements for Individual 

Electrical measurements were also employed to investigate the effectiveness 

of doping layers of CdTe with arsenic. Apparatus used to determine the conductivity 

type and the resistivity of these layers was set up and is described in the next two 

sections. 

4. 5.1 Carrier Type Determination 

The determination of the conductivity type of the films provided is essential 

to assess the effectiveness of growing p-type CdTe absorbers that are required for 

solar cell applications. Two different methods were used for the conductivity type 

determination ofthin film CdTe and are outlined next. 

Thermoelectric probe method The conductivity type is determined by 

the sign of the thermal emf or See back voltage generated by a temperature gradient. 

Two probes contact the sample surface: one is "hot" and the other one is "cold" as 

illustrated in Figure 4-8 a). The hot probe heats the n-type semiconductor 

immediately below it, thereby causing the donor atoms to release their extra· 

electrons. Thus, the concentration of free electrons near the hot probe is increased. In 
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order to maintain a uniform free carrier concentration throughout the sample, these 

carriers tend to diffuse away from the heated region, which becomes positively 

charged since the electrons are negatively charged. This creates an electric field that 

opposes the diffusion, producing a potential detected by the voltmeter. Analogous 

reasoning leads to the opposite potential for p-type samples. 

Hot probe techniques are effective over the 1 o-3 to 103 n.cm resistivity range. 

The voltmeter tends to indicate n-type for high resistivity material even if the sample 

is weakly p-type. As some of the material measured in this study appeared to be of 

high resistivity, the rectification method was also used and is now explained. 

Cold 

Figure 4-8 

Hot 
2 4 

-• electron 

n-type n-type 

a) b) 

Hot probe (a)) and rectifying probe (b)) methods for conductivity type 
measurements. 

Rectification method The sign of the conductivity is determined by 

the polarity of a rectified AC signal at a point contact to the semiconductor [ 17, 18]. 

When two probes are used, one should be rectifying and the other should be ohmic. 

Current flows through a rectifying contact to n-type material if the contact probe is 

positive and for p-type if it is negative. Rectifying and ohmic contacts are difficult to 

implement with two-point contacts. Fortunately four-point probes experiment can be 

used with appropriate connections not requiring ohmic contacts. An AC voltage is 

applied between probes 1 and 2, and the resulting potential is measured between 

probes 4 (or 3) and 2 as shown in Figure 4-8 b). The metal-semiconductor Schottky 

diode at probe 2 will therefore be either forward or reverse biased depending on the 

polarity of the current and the film conductivity type. The DC voltage measured 

between probes 2 and 4 will be positive for a p-type material and negative for ann-
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type material. The use of an oscilloscope in place of the voltmeter allows direct 

observation of the biasing of the metal-semiconductor junction and the average 

voltage gives the conductivity of the film. 

4. 5. 2 Resistivity and Sheet Resistance 

Arsenic doped CdTe films were grown in an attempt to provide low 

resistivity material with a high concentration of carriers. A resistivity experiment was 

set up to test the grown films. The objectives were to determine the sheet resistance 

Rs and the resistivity p of the layers studied. The geometry of such an experiment is 

shown in Figure 4-9 and is referred to as the Vander Pauw technique. This method 

requires four contacts on the periphery of the sample, rather than depending on 

miscellaneous corrections for finite sheets as used in the more classical four-point 

probe technique. Van der Pauw demonstrated that there are actually two 

characteristic resistances RA and R8 associated with the corresponding terminals 

shown in Figure 4-9 [19]. 

Figure 4-9 

1 

Rs = V14/123 

Schematic of a Van der Pauw configuration used in the determination of the 
two characteristic resistances RA and R8 for a thin film sample. 

RA and R8 are related to the sheet resistance through the Van der Pauw 

equation which can be solved numerically for Rs: 

( TrRA J ( TrR 8 J exp --- +exp --- = 1 
R, R, 

(4.3) 

Then the bulk electrical resistivity p can be calculated using p=R,xd where dis the 

thickness of the material. To obtain the two characteristic resistances, one applies a 

DC current 112 into contact 1 and out of contact 2 and. measures the voltage V43 from 

contact 4 to contact 3 as shown in Figure 4-9. Reversing the polarity of the current 
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(121 ) allows measuring V 34 and then this procedure is repeated to measure the six 

remaining currents and voltages (V41, V14, V, 2, V21, V23, V32). Because some 

measurements are redundant they allow consistency checks on measurement 

reproducibility, ohmic contact quality and sample uniformity. These eight voltages 

and current measurements yield eight values of resistance such as R21,34 = VJi hJ. 

The sheet resistance can now be determined via the Van der Pauw equation 

(Equation 4.3) using the two characteristic resistances: 

(4.4) 

and (4.5) 

In order to facilitate the measurements and to avoid confusion in wiring the 

eight different voltage-current couples, a unit box was built to allow switching 

between each one of the combinations by simply turning a knob and is pictured in 

Figure 4-10. This unit also allows two-point measurements between each of the four 

contacts to control the contact quality and to evaluate two-point resistance. Finally, 

this tmit box is wired to support Hall effect measurements but as the technique has 

not been used in this work it will not be described here. Rapid processing of the 

experimental data was done using solvers and spreadsheets in Microsoft Excel. 

Van - Der Pauw Measurement 
Con toe. ta 

Figure 4-10 Van der Pauw and Hall effect measurement unit box. 
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4. 6 Scanning Electron Microscopy 

This section outlines the principles of the scanning electron microscope 

(SEM) and the different modes in which they have been used in this work. 

Principles of the SEM The scannmg electron microscope scans the 

surface of a specimen with an electron beam. When the electron beam hits the 

sample, the interaction between high energy primary electrons from the filament and 

the sample atoms generates a variety of signals. The effects are shown schematically 

in Figure 4-11. 

Not all of these effects are necessarily significant enough to be detectable from 

a given sample. However, virtually all materials exhibit useful large primary and 

secondary electron emission currents as well as x-ray emissions [20]. During this 

work, the SEM investigation was performed on a JEOL JSM-IC848 used in two 

different modes as outlined next. 

Figure 4-11 

Elastically 
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Primary Electron Beam 

X-rays 
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Specimen 

Charge 
Collection 
Current 

Specimen Current 

Unscattered Electrons 

Schematic diagram of the types of interaction produced as a result of 
electron beam interaction with a solid material. 
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The secondary electron mode is the most common mode used for surface 

topology investigations. The incident electron can interact with the loosely bound 

conduction band electrons in the specimen. Only those electrons excited within a 

short distance ofthe surface have sufficient energy to leave the sample. Topographic 

contrast arises from shadowing of the line of sight to the detector by surface features. 

In electron beam induced current (EBIC) mode, electrical connections are 

made to the specimen to be studied and the measured current is amplified and used 

for SEM display. Using EBIC, it is possible to observe electrical barrier contrast at p­

n junctions, Schottky barriers or heterojunctions, and bulk contrast at, for instance, 

impurity growth striations or grain boundaries. The EBIC technique was used with 

two different configurations. The first one is in the planar geometry of the cell 

referred to as back-wall EBIC in which the electron beam irradiates the back surface 

of the cell. The second configuration used is when the beam irradiates the active 

region of the cell, i.e. the side that is illuminated under normal device operation. This 

configuration is referred to as plan view or front-wall EBIC. In order to allow the 

electron to penetrate the active region of the cell, the glass substrate must be removed 

prior to the EBIC experiment. This was achieved by mechanical polishing of the 

glass to reduce the thickness of the substrate to a few hundreds of nm, followed by a 

chemical etch using hydrofluoric acid (HF), the ITO acting as an etch stop layer [21]. 

The spatial resolution of an SEM depends on the mode used. It is determined 

by the electron-probe size, the size of the generation volume which is related to the 

electron beam penetration range in the material, and the minority carrier diffusion 

length. Spatial resolution is the highest in the secondary electron mode (30-50 A). 

This is because the low energy secondary electrons can only escape from the material 

from less than 100 A of the specimen surface and since the electron-probe size can 

be made much smaller than the size of the generation volume. In the other modes 

such as cathodoluminescence, x-ray and charge collection microscopy, the spatial 

resolution is on the order of 1 11m depending on the material and beam voltage. 
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4. 7 X-Ray Diffraction 

X-ray diffraction (XRD) is a well documented method for specimen 

characterisation [22, 23], and is one of the most important characterisation tools in 

solid state chemistry and materials science. X-rays are electromagnetic radiation with 

a wavelength ranging from 0.1 A to 100 A. This technique allows crystalline 

structures to be probed at the atomic level. X-ray diffraction has been in use for two 

main purposes, namely the fingerprint characterisation of crystalline materials and 

the determination of their structure. This includes the determination of the lattice 

parameter, the preferred orientation as well as the size of the grains in polycrystalline 

materials, and the deformation strain. It will be explained how these parameters are 

determined later in this section. Each crystalline material has its unique characteristic 

x-ray powder diffraction pattern which may be used as a fingerprint for its 

identification. Materials may be identified from diffraction patterns, using databases 

from the ICDD (International Centre for Diffraction Data). Using such references for 

known materials, x-ray crystallography provides rapid access to information about 

the lattice type, interatomic distances and angles between planes. 

The diffraction condition is described by Bragg's law (Equation 4.6): 

nA. = 2d hkt sin () (4.6) 

where A is the x-rays' wavelength, ()the angle between the reflected beam and the 

diffracted plane, dhkt the interatomic distance between hkl planes and n is the order of 

diffraction and is always assumed to be equal to 1. This is illustrated in Figure 4-12. 

nA.=ABC 
AB=dsinB 
nA.=2dsinB 

Figure 4-12 Diffraction ofx-rays from atomic plane in a crystal. 
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Powder diffraction is the XRD method that was used in this work. It uses a 

monochromatic beam ofx-rays and a polycrystalline specimen. If we consider part of 

the irradiated sample, every time the Bragg condition is fulfilled then the incident 

beam is reflected to the detector by the hkl planes. We then easily have access to the 

diffracted intensity (counts per second) as a function of the angular position of the 

detector. This principle was used in the B-28 (also called Bragg-Brentano) mode 

which is illustrated in Figure 4-13. The first aperture positioned in the incident path 

determines the irradiated zone on the specimen. The second aperture placed in the 

diffracted beam path, allows attenuation of the unwanted diffused radiation. Then a 

monochromatic radiation is obtained by filtering the KP line prior to detection. 

Figure 4-13 
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Schematic of an x-ray diffractometer in 8-2Bmode. 

In this study two systems were used for XRD measurements, a Philips 

PW1800 and a Siemens D5000 diffractometers both using the Cu Ka (1.5406 A) 

line. Typical wide angle scans from 20° to 135° at 0.02° step integrated for 4 seconds 

per step were taken using x-ray tube settings of 40 kV and 20 rnA for most samples 

in order to carry out phase analysis. 
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4. 7.1 Determination of the Lattice Parameter 

This section describes the accurate determination of lattice spacing of a cubic 

structure such as that of CdTe with cell parameter a. This parameter can be 

determined using Bragg's law: 

A= 2dhkt sinO 

(4.7) 

As a consequence it is possible to determine a for each reflection. The 

accuracy in determining a is essentially the accuracy with which B and A can be 

determined. Differentiating Bragg's law with respect to B shows that the error in a is 

proportional to cot B. Therefore, the error in a, generated by a defined L1B is smaller 

when a reflection at a higher 2 B angle is used. 

Although there are different causes of systematic errors in determining a, the 

predominant one is displacement of the specimen from the diffractometer axis. This 

results in an error in the lattice spacing defined by: 

!1.a D cos 2 B 
-=-----
a R sinO 

(4.8) 

where D is the horizontal displacement of the specimen from the diffractometer axis 

and R is the distance from the specimen to the detector. The procedure for an 

accurate determination of the lattice parameter a is as follows: 

• Determine a for the different hkl planes with Equation 4.7. 

o Plot the data as a function of f(B) = (cos 2 B) I sin()+ (cos 2 B) I() , function 

extrapolated by Taylor and Sinclair [24] and by Nelson and Riley [25]. 

• Linear extrapolation to f(B) = 0 gives a lattice spacing which takes account of 

the systematic errors from B. 

4.7.2 Grain Size and Deformation Strain 

Information on grain size and strain is obtained from the shapes and positions 

of the diffraction peaks respectively. The strain within a crystal affects the d spacing 

and therefore the position of the diffraction peaks and the grain size has an effect of 

broadening the peaks. 
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The effect of grain size on the width of the diffraction peak is given by the 

Scherrer equation [22]: 

KA 
LJsiz/28) = -­

DCOS8 
(4.9) 

where L1size(2 B) is the width of the peak in radians, A the wavelength, D the grain size, 

8 the Bragg angle and K a constant approximately equal to unity depending both on 

the line shape profile of the peaks and the crystallite shape. It must be noted that the 

grain size determined by x-ray diffraction experiments is that perpendicular to the 

plane of the specimen. 

The peak can also be broadened by micro-strains, &, within the crystal or 

powder. These strains cause variations in the d spacing, L1d, and consequently cause a 

broadening of the diffraction peak. Differentiating Bragg's law yields: 

Llstraii 28) = 2c: tan 8 ( 4.1 0) 

where L1strain(2 B) is the width of the peak in radians due to strain. 

If both strain and size effects occur within the sample, the width of the 

diffraction peak is the sum of equations 4.9 and 4.10 and by rearranging the 

equation: 

llwtal (28) cos 8 = KA. + 2E sin 8 
D 

( 4.11) 

A plot of !1 total (28) cos 8 against sin 8 allows the two broadening terms to be 

separated and measured and is referred to as a Williamson-Hall plot [26]. 

4. 7. 3 Crystallographic Orientation 

The other major parameter that can be obtained from powder diffraction 

studies is the intensity of the individual peaks. The intensity can be affected by the 

non random orientation of the crystallites. The preferential orientation along a 

specific direction is termed "texture" and can give useful information about the 

sample itself. For this, the method of Harris is used [27] and the fraction of the 

crystals that have hkl plane normals lying parallel to the fibre axis, Chkt, is defined by 

[27, 28]: 
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Jhkl 

l,,hkt c hkl = ----'----
! L Ihkl 

n n l,,hkt 

( 4.12) 

where n is the number of reflections, hkl the intensity of the hkl reflection and 1,, hkl 

the intensity of the hkl reflection for a completely random sample. Chkl is also 

referred to as texture coefficient. 

The preferred orientation of each film, as a whole, was analysed from the 

standard deviation a of all Chkl values as compared with randomly oriented samples 

as: 

(4.13) 

a values are used to compare the degree of orientation between different 

samples, so that lower avalues indicate more randomly oriented samples. 

4.8 Thickness Measurements 

The thickness of the CdS and CdTe layers grown was estimated using in situ 

laser reflectometry. Exact measurement was done using a Tencor Instruments Alpha 

Step 200 step profiler. The equipment provides routine measurements of step heights 

less than 200A and can identify discontinuities in the tens of Angstroms. It works by 

accurately monitoring the displacement of a stylus placed in contact with the sample 

as the specimen is scanned beneath it. 

4. 9 Secondary ~on Mass Spectroscopy 

Secondary ion mass spectroscopy (SIMS) is a widely used technique for 

analysis of trace element and compositional studies of solid materials, including thin 

films and semiconductors (29]. In this work, SIMS was applied to thin film CdTe 

doped with arsenic. The analyses were performed by MATS-UK using a 7 kV 

Cameca IMS with Cs + primary ions and a probe current of approximately 80 nA 

rastered over a 1 mm2 area. The SIMS technique involves a focused ion beam, which 

sputters the surface region of the sample. The bombarding ion beam produces 

monoatomic and polyatomic particles of sample material, along with electrons and 
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photons. The secondary particles carry positive, negative and neutral charges, with 

kinetic energies that range from zero to several hundred eV. Neutral species are 

typically the most abundant of the secondary particles. Mass spectroscopy is applied 

to measure the mass to charge ratios of the emitted secondary ions. This provides the 

basis for compositional analysis. Monitoring the secondary ion count rate of selected 

elements as a function of time provides a depth profile of an elemental species within 

the sample. To convert this axis into a depth scale, a stylus profile meter is typically 

used to measure the sputter crater depth. The signal count is converted into 

concentration using standards. 

This chapter gave an overview of the range of experimental methods used for 

this work. The next chapters will now present and discuss the results for studies on 

MOCVD CdTe-based grown materials, including doping studies by impurities 

incorporation and processing material for solar cells. The first study concerns the 

arsenic doping of CdTe thin films. 
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Doping Studies of 
CdTe:As on1 Sapphire 

Substrates 

5.1 Introduction 

In order to perform well a CdTe/CdS solar cell must undergo an ex situ post 

growth heat treatment in a chlorine environment. The effects of this treatment have 

been reviewed in section 3.4 and include among them a conversion type of the 

absorber layer from n- to p-type due to chlorine inclusion. The effects of this 

treatment are not fully understood and it is vital to investigate other possible routes 

for the activation of the CdTe/CdS structure. 

It is possible to obtain p-type material grown by MOCVD in a Te-rich growth 

ambient, thus relying on intrinsic defects such as cadmium vacancies to produce the 

required conductivity type [1]. However, because only slight deviations from 

stoichiometry can occur, the carrier concentration remains relatively low. Another 

possible route is via acceptor doping, for example using arsenic. This has previously 

been applied to produce solar cells with limited efficiencies (1-2%) but without the 

use of a post-deposition ariilealing step [2]. However, efficient incorporation of'the 

dopant species is of primary concern. The difficulty in doping p-type CdTe stems 
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from both strong compensation effects and the low solubility of the dopant species. 

A doping review of CdTe was previously detailed in section 3.6. 

The results presented in this chapter aim at gaining a better understanding of 

the behaviour of the As dopant under various growth conditions, with a view to 

optimising the p-type conductivity and hence finding a route to improve the 

photovoltaic performances ofthe CdTe/CdS structure. 

5. 2 Description of the Samples Used in this 

Study 

Thin layers of CdTe doped with arsenic were grown onto insulating sapphire 

by MOCVD. The MOCVD growth technique and apparatus have been described 

earlier in sections 3.3.1 and 4.2. The organometallic precursors were 

dimethylcadmium (DMCd), di-isopropyltelluride (DIPTe) and dimethylamino arsine 

(DMAAs). The concentrations of DMCd and DIPTe in the growth ambient were 

measured using an Epison ultrasonic monitor (see section 4.2). Dopant concentration 

was controlled by the flow of the carrier gas through the bubbler as the ultrasonic 

monitor equipment was not sensitive enough to measure the partial pressure of 

DMAAs in the growth mixture. This is due to the small flow of the dopant gas varied 

between 0-9 seem (standard cubic centimetre per minute) at a bubbler temperature of 

20°C in a total gas flow of 3355 seem. 

As mentioned above the CdTe layers were grown onto insulating c-plane 

sapphire. Sapphire was chosen since (i) it is an insulator and allows the resistivity of 

the CdTe layers to be unambiguously checked and (ii) it is chemically stable to the 

growth of CdTe upon it. Sapphire is composed of hexagonal close packed (HCP) 

planes of oxygen intercalated with HCP planes of aluminium. The aluminium planes 

have vacancies on one third of the sites so that each aluminium atom is surrounded 

by six oxygen atoms, and each oxygen atom is surrounded by four aluminium atoms. 

The lattice mismatch between CdTe and sapphire is large, > 10%. Despite this large 

mismatch, epitaxial growth of CdTe in the [111] direction on the sapphire basal 

plane can be achieved [3]. However, because of interface strain relaxation, CdTe 

layers grown by MOVPE are affected by a rough surface whose microrelief features 

depend on several parameters like growth conditions, layer thickness, substrate 
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nature or substrate orientation. The surface roughness usually exceeds 1-2 11m for 5-

15 11m thick MOVPE-grown CdTe layers on sapphire substrate at relatively low 

temperature (300-400°C) [4]. Nevertheless sapphire was utilised because of its high 

temperature stability and its availability at low price in wafers of good quality. 

For this study the variable parameters are the growth temperature, the dopant 

flow and the VIlli ratio, which is the ratio of the tellurium and cadmium partial 

pressures in the growth ambient. 

Table 5-l lists the samples grown and the growth parameters used. The 

temperature was varied between 320 and 400°C whilst varying the VI/II ratio from 

0.59 to 2.4 and the DMAAs dopant line flow from 0 to 9 seem. Samples were grown 

on wafers of 5 em diameter and then cleaved into pieces of ~2 cm2
. Gold contacts 

were evaporated at the periphery of the sample using a mask for electrical 

measurements. The thickness of the layers grown was monitored during growth by 

laser interferometry and measured ex situ using the Alpha Step. This was not 

intentionally varied during growth. 

Table 5-l also summarises the electrical properties (conductivity type, 

resistivity and arsenic concentration) and structural properties (degree of preferred 

orientation, texture coefficient, lattice parameter and grain size) obtained for the 

layers investigated. 

The conductivity type of each sample was verified usmg either the 

thermoelectric probe or the rectification method (see section 4.5.1 ). Resistivity 

measurements were performed under dark and AM1.5 illumination conditions using 

the Van der Pauw technique as explained in section 4.5.2. The structural properties 

ofthe thin CdTe:As layers grown were investigated using x-ray diffraction (XRD) in 

a Philips PW800 diffractometer using the Cu Ka (1.5406 A) line. Peak determination 

was performed using Topas Software from Bruker AXS [5]. The arsenic 

concentration in the layers was determined by SIMS using a Cameca IMS with 7 kV 

and 80 nA Cs + primary ions rastered over a I mm2 area. Finally, atomic force 

microscopy (AFM) was performed on selected specimens using a Digital Instrument 

Nanoscope IV in order to reveal the surface morphology ofthe layers. 
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5.3 General Effects of Growth Temperature 

In this section the effects of the growth temperature on the structural and 

electrical properties of the CdTe:As layers are described. Since the layers grown at 

the highest temperature investigated ( 400°C) showed the highest p-type conductivity 

they were investigated in more detail and a full description of them is deferred until 

section 5.4. 

5.3.1 On Electrical Properties 

Three Te-rich (VI/II = 2.4) CdTe samples were grown at 320°C, with dopant 

flows of 3, 6 and 9 seem respectively. These p-type samples proved to be too 

resistive to be measured using the Van der Pauw technique, i.e. the resistance 

between two contacts was greater than 200x 106 0. When the growth temperature 

was increased to 350°C, with high As concentration (bubbler flow of 9 seem) the 

conductivity was measurable under AM1.5 conditions for a VIlli ratio of0.6 (i.e. Cd­

rich) but not for a ratio of 0.95. The lateral resistivity was relatively high at around 

10.9 kO.cm. At a growth temperature of 400°C the resistivity was measurable for a 

range of VIlli ratios and dopant flows as can be seen in Table 5-1. 

For undoped material, p-type conductivity occurs in samples grown in aTe­

rich ambient (i.e. a VIlli ratio > 1) since the intrinsic defects which give rise to 

conductivity of this type are cadmium vacancies and act as acceptor species for CdTe 

[6]. However, in the case of Cd-rich growth with As, the Cd-rich growth ambient is 

thought to promote p-type conductivity via encouraging the occupation of Te sites by 

the As dopant. For the layers grown at 320°C in a Te-rich ambient it may only be 

concluded that the carrier concentration and/or mobility are very low, too low to 

allow successful measurements. For a growth temperature of 350°C the results are 

consistent with the fact that for solar cells doped with arsenic grown at 350°C, 

efficiency was optimised by using a Cd-rich growth ambient [2]. Increasing the 

growth temperature to 400°C allowed measurement on a variety of samples grown 

with different VIlli ratios. 
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SIMS analysis indicated that the actual chemical concentration of As in the 

layer grown at 350.°C was higher than in the one grown at 400°C (for the same VIlli 

ratio and As flow), i.e. 2x10 19 at.cm-3 compared with 6x10 18 at.cm-3 (see Table 5-1). 

However, the resistivity was also higher, 10.9 kO.cm compared to 0.78 kO.cm. This 

may be understood in terms of the increased presence of more compensating defects 

such as [VTe] 2+ or [Cdif+ in the lower temperature material, resulting in a reduced 

concentration of active carriers [7]. An increase in adsorption of As species onto Cd 

species was also observed by Capper et al. when the growth temperature was 

lowered [8]. In addition, lowering the growth temperature had the effect of reducing 

the effective Te/Cd atomic ratio at the growing surface because the pyrolytic 

efficiency ofDIPTe is significantly reduced below 400°C [9], whereas that ofDMCd 

is less affected. This is because the decomposition temperature of DIPTe is 320°C 

compared to 150°C for DMCd. This decrease in the Te/Cd atomic ratio enhances the 

arsenic incorporation onto Te species. 

5.3.2 On Crystal Structure 

Figure 5-1 shows the XRD data for representative samples grown at 320 and 

400°C where the intensity (in square root unit) is plotted against the position of the 

detector in 28 angle. All samples showed peaks corresponding to the cubic structure 

of CdTe and also to the substrate. Reflections from oxides such as Te02 and CdTe03 

were also observed in some cases. 

The experimental data were analysed using the values of texture coefficients 

Chkl for each CdTe peak in the XRD pattern and the degree of preferred orientation a 

(as described in section 4.7.3). Note that the peaks corresponding to the (333) and 

(511) reflections have been excluded in the analysis due to their overlapping in the 

XRD pattern - it is not possible to obtain values of intensity for each of these peaks 

individually. The results are included in Table 5-1. For the sample grown at 320°C 

the a values ranged between 0.3 and 0.6 and for samples grown at higher 

temperature they ranged from 1.4 to 2. 7. This indicates that a lower growth 

temperature will produce samples that are more randomly oriented compared to those 

grown at higher temperature. The spread of a values for samples grown at 400°C is 

due to the variation of the VIlli ratio. 
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1 I 1 - 400°C 
- 320°C 

(511)/(333) 

Substrate 

(111) (220) (311) (400) (331) (422) (440) (620) (622) (444) 

20 40 60 80 100 

Diffraction angle 2B(degrees) 

X-ray diffraction scans of two characteristic samples grown at 320°C (black 
line) and 400°C (red line). 

This was also confirmed by the variation in C 111 values, as for the samples 

grown at 320°C lower values of texture coefficients were determined compared to 

those for samples grown at 350-400°C (see Table 5-l). Both u and Clll values 

indicate that the samples grown at 320°C are almost randomly oriented, while some 

samples grown at 400°C are completely textured in the [Ill] direction. From our 

measurements it was not possible to determine the position of the temperature 

threshold above which the samples become [Ill] oriented with great precision, but 

was estimated to be around 350°C depending on the ratio of the organometallics 

used. 

5.4 Effect of VI/II Ratio and Dopant 

Incorporation on the Properties of Layers 

Grown at 400 o C 

The results for the samples grown at 400°C with an arsenic precursor gas 

flow of 9 seem are now described in detail. All the films grown, regardless of the 
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growth temperature, were found to be of p-type conductivity except the undoped 

sample ( 42) which was found to be n-type. This confirms that MOCVD-CdTe films 

grown in a stoichiometric growth ambient are of n-type conductivity. When possible, 

resistivity measurements were also performed in the dark. Strong photoconductivity 

of the material was observed as the dark resistivity was found to be two orders of 

magnitude higher compared to light resistivity. 

Depth profiles of arsenic and chlorine content were recorded by SIMS 

measurements. Arsenic calibration was done using implanted CdTe material and for 

chlorine only a CdS reference sample was available, so the chlorine level in CdTe is 

only known approximately. Profiles for samples number 63, 64 and 67 are shown in 

Figure 5-2. The profiles stop at the point where the sapphire substrate became 

visible. A uniform concentration in arsenic is observed throughout the CdTe films for 

sample 63 and 64. This is also true for the other samples analysed but not shown 

here, i.e. specimen number 43 and 44. This was not the case for sample 67, as a 

constant increase in concentration is observed over the entire layer increasing from 

3x1017 to 1.5x1018 at.cm-3 in 1 IJ.m. No explanation for this is known but it is 

suspected that a change in the dopant flow is the cause of this variation. The SIMS 

profiles show the great advantage of MOCVD for controlling the dopant 

concentration within the layer. By comparison, the ion implantation technique can 

only form an extremely thin p-doped layer at the surface [ 1 0]. 

For most samples, very noisy chlorine SIMS signal can be noticed and this 

marks the background level of the detection. This is confirmed by the fact that no 

chlorine species were used during growth. However for sample 67, a background 

level is recorded for the first ~600 nm but then there is a strong increase in chlorine 

concentration near the interface with the substrate. This strong offset is due to 

memory effects in the pipework and originates from the previous growth run (not 

part of this work) which involved chlorine doping. 
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Sims depth profile for sample 63 , 64 and 67 showing the total concentration 
of As (black line) and Cl (red line) in the sample as a function of depth. 

Figure 5-3 a) shows a plot of the lateral resistivity of the polycrystalline CdTe 

films against the VIlli ratio of the organometallics in the growth ambient. It must be 

noted that the lateral resistivity measured may be different from the resistivity in the 

thickness direction due to grain boundary effects. This is particularly true in high 

resistivity films, since the potential barrier across the grain boundaries contributes to 

the resistivity measured by the Van der Pauw technique, and this contribution 

decreases with increasing carrier concentration in the film. At sufficiently high 

carrier concentrations, the potential barrier at grain boundaries becomes negligible, 

and the Van der Pauw measurements provide the average resistivity of the grains. On 

the other hand, the resistivity measured in the thickness direction of the film 

potentially consists of contributions from the columnar arrangement of the grains and 

grain boundaries. Their relative importance depends on the carrier concentration in 

the grains and the chemical and structural properties of the grain boundary. 

Figure 5-3 a) shows that as the DMCd partial pressure in the precursor 

mixture is reduced, i.e. VI/II ratio increased, the resistivity of the film first increases 

up to 104 n.cm for a VIlli ratio of 0. 7. At higher tellurium to cadmium ratios the 

resistivity decreases owing to the increase in cadmium vacancy concentration and 

reaches a minimum of ~200 n .cm for a VIlli ratio of ~ 1.1. As the cadmium partial 
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pressure in the growth ambient is further reduced, the resistivity mcreases 

presumably owing to defect complexes and/or self-compensation. 
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a) Lateral resistivity and b) arsenic concentration as a function of VIlli ratio 
in the growth ambient, for samples grown at 400°C, with constant As 
precursor flow rate of 9 seem. Sample numbers used in Table 5-l are 
marked for each point. 

The same data distribution IS observed between the actual arsenic 

incorporation in the CdTe films measured by SIMS and the organometallic ratio. 

Arsenic incorporation does appear to be affected to some extent by VI/II ratio in the 

growth ambient. Figure 5-3 b) shows this relationship for five samples all of which 

were grown with a DMAAs flow of 9 seem. An increase in arsenic concentration can 

be seen as the VIlli ratio decreases, up to an apparent maximum arsenic 

concentration at Vl/11~0.7, which correspond to a Cd-rich growth. Insufficient data is 

available at the low VI/II ratios to draw any conclusions about a possible optimum 

VIlli ratio for arsenic incorporation. However, Ghandhi et al. [ 1 0] also reported 

higher arsenic incorporation at a VIlli ratio of 0.6 than at a ratio of 1 and Taskar et 

al. [11] observed higher As incorporation for lower tellurium to cadmium ratios. If it 

is assumed that the arsenic incorporation is dependent upon the VIlli ratio as shown 

in Figure 5-3 b), then the high resistivity of sample 64 can be explained by the high 

incorporation of the dopant species. The maximum uncompensated acceptor doping 

concentration using As in CdTe grown by liquid phase epitaxy is ~2.8x 1018 at.cm-3 

[12]. Above this threshold strong self-compensation occurs in the case of a cadmium 

rich growth with [VTe]2+ but also with [Cdif+. 
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Sample 67 (VIlli= 1.2), included in Figure 5-3 b), was not included in Figure 

5-3 a) due to the high chlorine concentration measured in this particular film. For 

growth under certain conditions, chlorine is known to play a role in creating highly 

resistive CdTe material due to the formation of [Tei-2Che] and [V cct-2Che] 

complexes [13, 14], and indeed the resistivity of this particular sample was much 

higher than expected. It was too resistive to be measured with the setup used. 

However, it is unlikely that the chlorine content would have affected the arsenic 

concentration significantly, so the inclusion of this sample in Figure 5-3 b) is 

believed to be valid. Sample 42, on the other hand, is not included in Figure 5-3 a) 

and b) as this sample was not intentionally doped and is n-type. 

As expected, arsenic incorporation is enhanced for tellurium deficient growth 

conditions because of the decrease of the surface coverage rate ofTe species over Cd 

species at the growing surface. This offers more opportunities for As species to bond 

to Cd species, which would lead to an increase in effective As incorporation onto Te 

sites. However, in the present case this explanation may be over-simplistic since the 

dopant incorporation is expected to be influenced by grain boundaries and other 

structural defects. 

A correlation was found between the actual arsenic incorporation measured 

by SIMS and the resistivity of the films for samples grown at 400°C with the same 

dopant flow of 9 seem. This is shown in Figure 5-4 where the resistivity decreases 

with decreasing arsenic content, down to -1 x 1018 at.cm-3
. Note that in Figure 5-4, 

sample 42 was nominally undoped. The assigned arsenic concentration for this 

particular sample is close to the SIMS background signal of around 5x 1016 at.cm-3
. 

Furthermore, sample 67 was also disregarded in this plot due to the high chlorine 

content present in the layer. This means that the arsenic content in the films which 

depends on the tellurium and cadmium partial pressures in the growth ambient is not 

electrically active at high concentration. 
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measurments 63 Vl/11=0.9 
!::, 

Vl/11=0.95 

1e+16 1e+17 1e+18 1e+19 1e+20 

[As] by SIMS (at.cm-3
) 

Lateral resistivity (Van der Pauw) as a function of arsenic concentration as 
measured by SIMS for samples grown at 400°C. Sample number and VIlli 
ratio in the growth ambient are marked for each data point. The • marker 
indicates undoped layer and 6. markers indicate doped layers. 

5. 5 Structural Analysis 

Figure 5-5 a) shows the variations of the lattice parameter (obtained from 

Nelson-Riley plots, see section 4. 7.1) as a function of the VIlli ratio. Only data 

points corresponding to samples grown at 400°C with an As gas flow of 9 seem are 

plotted. For the samples measured, lattice parameter values fall between 6.4833 and 

6.4857 A, which is larger than the value for a randomly oriented powder sample 

(6.481 A). The lattice parameter of the undoped sample grown in a stoichiometric 

ambient is 6.4820 A. This suggests that the film is submitted to a compressive stress 

in the plane parallel to the substrate surface. This stress is caused by a lattice 

mismatch and difference in thermal expansion coefficients between CdTe and the 

sapphire substrate. No trend is observed in Figure 5-5 a) between the lattice 

parameter and the gas phase VIlli ratio. This might be explained by the fact that the 

VIlli ratio is riot the only parameter affecting the lattice spacing and that the arsenic 

incorporation would probably affect the interatomic distance. This is shown in Figure 
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5-5 b) where the lattice parameter is plotted against the arsemc concentration 

measured by SIMS. No definite trend can be seen but the lattice parameter has a 

tendency to increase with arsenic incorporation. 
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VIlli ratio fAsl bv SIMS (at.cm-3) 

Lattice parameter for samples grown at 400°C as a function of a) the VI/II 
ratio in the growth ambient and b) As concentration measured by SIMS. 
Sample number is marked for each point. The • marker indicates undoped 
layers and !::::,. markers indicate doped layers. 

The smallest lattice spacing value was measured for the undoped sample, 

grown in a stoichiometric ambient and indicates a possible influence of impurity 

incorporation. For example, sample 67 has a high content of chlorine which atomic 

radius (189 pm) is larger than the ones of Cd (151 pm) and Te (142 pm), so its 

incorporation will increase the lattice parameter of the structure. Indeed this sample 

has one of the largest lattice parameter values measured. This sample and the other 

doped samples have a high concentration in arsenic throughout the layers and this 

will introduce more compressive stress yielding a larger lattice parameter. 

The preferred orientation of the layers was discussed in section 5.3 .2 with 

respect to the growth temperature. The samples grown at temperatures in the range 

350-400°C had a [111] preferred orientation, some samples being nearly completely 

[111] oriented. This could be attributed to the substrate which provided sites of low 

energy and also provided a reference plane during the growth of the CdTe film. At 

lower growth temperature, the films had almost no texture, i.e. were almost randomly 

oriented. 
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Grain sizes were also determined from the XRD data o using the Williamson­

Hall method and Scherrer's equation (see section 4.7.3). Note that the data was not 

corrected to take into account the instrument broadening as it was considered to be 

negligible compared to strain and size effects. Some Williamson-Hall plots examples 

are shown in Figure 5-6 for samples 42, 44, 63, 64 and 67. The slope of each graph 

indicates the strain in the film and the intercept with the ordinate axis yields the 

crystallite size. A great scatter in the plots can be seen and this is characteristic of the 

Williamson-Hall plots. Moreover, due to the highly oriented film structure, some 

plots have limited number of data points as seen in Figure 5-6 b). 

0.0055 

0.0050 
" 

<I> 0.0045 0 

"' 8 
X 

0.0040 
~ 

~ 
0.0035 

u. 0.0030 

0.0025 

0.0020 
0 

0.2 

Figure 5-6 

" 0.0045 • 
64 • 42 0 

67 0.0040 
0 44 
/),. 63 

0.0035 
• 

0.0030 
0 ··o 

0.0025 

a) 
0.0020 b) 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

sinO sinO 

Williamson-Hall plots for samples grown at 400°C with different growth 
ambient (VI/II ratio). The total broadening of the peak due to strain and size 
is measured as the full width at half maximum (FWHM). a) Samples 64 and 
67 and b) samples 42, 44 and 63. 

The crystallite sizes were also extracted from the XRD data using Scherrer's 

equation applied to the ( 111) peak. This is the most widely used technique for grain 

size determination from XRD analysis when neglecting micro-strain effects. It must 

be reminded that grain size values quoted from XRD measurements are in the 

direction perpendicular to the reflected plane. The crystallite sizes for the range of 

samples grown at 400°C are plotted in Figure 5-7 a) as a function of the VVII ratio. 

The data points represent the mean values for each sample extracted using both 

techniques. The error is given by the standard deviation between the two 

measurements. No influence of the tellurium and cadmium partial pressures is 

observed, and also the arsenic incorporation seems to have no effect. 
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a) Variation of calculated grain sizes with VI/II ratio in the growth ambient 
for samples grown at 400°C and b) AFM micrograph of sample 64 revealing 
hillock structure. The • marker indicates undoped layers and 6 markers 
indicate doped layers. 

However it can be noted that the absolute grain sizes are very small ranging 

from ~45 to ~ 75 nm. The MOCVD growth technique is know for growing small 

grained polycrystalline structures by comparison with films grown by PVD ( 400 nm 

at 250°C) and films grown by CSS (2-1 0 ~m at 600°C) [ 15] . This small grain 

structure was confirmed by the SEM images that revealed morphological details 

smaller than 1 00 nm and AFM images revealed hillock structured surface as seen in 

Figure 5-7 b). Although the grain sizes measured are fundamentally different -SEM 

and AFM give grain size indications in the plane of the substrate while XRD informs 

on grain sizes in the plane perpendicular to the substrate- comparison between the 

three measurements give information on the grain development in both directions. 

5. 6 Discussion 

It is important at this point to recall that the conductivity of a semiconductor, 

a;, is given by: 

(5-1) 
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where p is the resistivity, q the electron charge, n and p the concentrations of 

electrons and holes, respectively, and /ln and /lp their mobilities. Therefore high 

conductivity is achieved for higher carrier concentrations and mobilities. 

Prior to discussing the doping mechanism in MOCVD-grown thin film CdTe, 

the understanding of CdTe growth kinetics is essential. Among several growth 

parameters, the growth temperature and the flow rates of organometallics are 

considered to have the greatest influence on the gr?wth kinetics. It has been observed 

that (i) the growth rate increases with the VIlli ratio and saturates for ratios greater 

than 1 [ 16, 17] and that (ii) the growth rate also increases with the substrate 

temperature [ 1 7, 18]. Theses dependences of the growth rate show that the growth is 

dominated by the surface kinetically controlled reactions, the so-called Lambmuir­

Hinshelwood type growth [19]. The effect of temperature is attributed to an 

enhancement in the Te/Cd atomic ratio at the growing surface, because the pyrolysis 

of DIPTe is significantly increased above 320°C whereas that of DMCd is less 

affected [20]. 

In the present study, higher As incorporation was achieved when the growth 

temperature was lowered: 2x 1019 at.cm-3 at 350°C compared to 6x 1018 at.cm-3 at 

400°C for a VI/II = 0.6. Lowering the growth temperature is considered effective in 

increasing the adsorption of As species onto Cd species because of the reduced 

Te/Cd atomic ratio at the growing surface at lower substrate temperature. Lowering 

the VIlli ratio has an effect on the decrease of the surface coverage rate of Te species 

over Cd species at the growing surface. This offers more opportunities for As species 

to stick on Cd species, which would lead to an effective incorporation of As into Te 

sites. This was shown in Figure 5-3 b) where increased As concentration was 

measured when the VVII ratio was lowered from 1 to 0.7. This suggests that the As 

incorporation is not dominated by the pyrolytic efficiency of the dopant species but 

by the sticking efficiency of the dopant species. However, the increased As 

incorporation increased the lateral resistivity of the CdTe films yielding ineffective 

doping. 

It has been suggested by some authors that the solubility limit of As in 

epitaxial CdTe film grown by MOVPE is around ~2x10 17 at.cm-3 (10, 21, 22], when 

using arsine as the dopant species. For the samples presented in Figure 5-3 the 
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measured As concentration is higher than the limit suggested above and it is thought 

that above this limit the conductivity in the films is governed by intrinsic defects. 

The film resistivity was shown to increase for decreasing VIlli ratios owing to the 

increased concentration of cadmium vacancies. Although cadmium vacancies act as 

acceptors, the increased resistivity is thought to be due to the formation of complexes 

such as [V cd-Asre] but could also be due to the incorporation of As into Cd sites 

acting as compensating donors [ 1 0]. 

Preliminary Hall measurements performed at room temperature and light 

conditions on sample 47 (p = 0.17 kQ.cm under AM 1.5 illumination) revealed a low 

carrier concentration of ~10 14 cm-3 and a hole mobility of 62 cm2.V-1.s-1
. Other 

authors [21, 22] have measured such hole concentrations for As doped epitaxial 

CdTe films and concluded that thermal anneals were necessary to activate the As 

acceptors. Indeed hole carrier concentration could be increased to ~2x 1017 cm-3 after 

a heat treatment at 500°C. However, because the As has been incorporated in such 

high concentrations (2x 1018 -2x 1019 cm-3
) part of it must be incorporated in the form 

of precipitates or at grain boundaries due to the polycrystalline nature of the films. 

The effect of grain boundaries on the conductivity is now exposed. Because the 

solubility of As in CdTe is low, it is suggested that most of the As is incorporated at 

grain boundaries. If it is assumed that for all samples grown the density of grain 

boundaries is of a similar order of magnitude, then this would explain the fact that 

increasing arsenic incorporation yielded more resistive films because the 

incorporated As is located at grain boundaries. 

It is known that grain boundaries influence the electrical behaviour of 

polycrystalline semiconductor by favouring recombination at grain boundaries and 

limiting current transport through potential barriers and hence influencing grain 

boundaries diffusion, segregation and compensation effects [23]. Thorpe et al. [24] 

and Gilmore et a!. [25] showed that the resistances associated with grain boundaries 

are 3-5 orders of magnitude larger than that of the bulk material, and that the 

potential barrier present at the grain boundary decreases with increasing light 

intensity. This explains the differences between light and dark resistivity 

measurements described earlier, the mobility of the carriers being limited by the 

increased barrier in dark conditions. A reduced density of states in polycrystalline p-
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CdTe compared to bulk CdTe [24] and a high density of grain boundary trapping 

states (~10 19 cm-3
) [26] induce a reduced mobility and hence the conductivity in 

polycrystalline films. The carrier mobility in the polycrystalline layer is dominated 

by the potential barriers associated with grain boundaries and thus controls the 

resistivity of the films. In this case the conductivity does not depend linearly on the 

carrier density; the influence of carrier density is manifested most strongly through 

its effect on barrier height. The resistivity in the parallel direction of the film such as 

measured by the Van der Pauw technique is thus strongly affected by the grain 

boundaries whereas the transverse resistivity is less affected. However the mobility 

in p-CdTe usually decreases with increasing carrier concentration yielding higher 

conductivity [27] and therefore in the study presented here the conductivity is limited 

by the low active carrier concentration. 

5. 7 Conclusion 

The resistivity of arsenic doped CdTe thin films is dependent on growth 

temperature and upon arsenic incorporation. For a growth temperature of 400°C, 

arsenic incorporation is affected not only by the proportion of arsenic precursor in 

the gas flow, but also by the VIlli precursor ratio. This offers two potential means of 

controlling the resistivity. A uniform incorporation of the dopant species throughout 

the layer was confirmed by SIMS showing the advantages of the in situ doping. For 

this growth temperature there appears to be a minimum in the resistivity (200 n.cm) 

at a total arsenic concentration of ~2x10 18 at.cm-3
. 

Structural analysis of the layers showed that higher growth temperature 

favours the [111] preferred orientation. The growth of CdTe films onto sapphire 

substrates is characterised by a lattice under compressive stress and a small grained 

structure ( ~ 70 nm) with dopant incorporation having almost no effect on the 

structural properties ofthe specimens. 

Furthermore the incorporated arsenic seemed to be not wholly electrically 

active. While there was a relationship between conductivity and As incorporation, it 

was not possible to achieve high p-type conductivity in CdTe using the MOCVD 

conditions investigated in this work. Indeed the samples were generally very 

resistive. These findings caused a major change of direction in the work presented in 
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this thesis. It was decided to investigate the more widely used CdCh post-growth 

treatment. This has rarely been investigated as a route to making cells from 

MOCVD-grown CdTe/CdS structures and offers a potential high-purity route to cell 

production. The remainder of this thesis describes the work on this topic. 
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Chapte·r 

Influence of the Post~ 
Growth Treatment on, 
the Absorber Layer 

Microstructure 

6. 1 Introduction 

One of the key steps m optimising the photovoltaic performance of 

CdTe/CdS solar cells is the post-deposition heat treatment of the structure. There are 

reports regarding the effects of the post-deposition heat treatments on the structural 

changes of CdTe thin films and their influence on the cell performance [1-6]. It is 

known that the annealing in 0 2 (air) or CdCh containing environments have a 

significant impact on morphology of the films, promoting grain growth or sometimes 

reconstructing grains and reducing internal stress - depending on the growth 

deposition technique (see section 3.3). It has also been observed that the 

recrystallisation process influences the preferred orientation of the crystallites. This 

chapter reports the investigation into the post-deposition heat treatment conditions on 
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the morphology and microstructure of thick absorber layers (8-13 J.lm) of CdTe/CdS 

solar cell structures grown by MOCVD. 

6. 2 Description of the Samples Used in this 

Study 

CdTe/CdS solar cell structures were grown by MOCVD on ITO/glass 

substrates supplied by Merck Display Technology. The MOCVD technique was 

described earlier in section 4.2 and details on the ITO/glass substrates can be found 

in section 4.2. Substrates were cleaved into 35 x50 mm pieces and cleaned using the 

process described in [7] prior to growth. The structures were grown in an original 

manner which consisted of three substrates placed along the graphite susceptor block 

instead of the usual single substrate. The arrangement of this is shown in Figure 6-1. 

Three positions are defined: the inlet, centre and outlet positions with reference to 

the entry and exhaust sides of the reactor tube. The centre position has a facility for 

sample rotation that was not used in this part of the work. 

Gas flow 

Figure 6-1 

Inlet position 

635 nm diode laser for 
interferometry 

Graphite susceptor block 

Gas flow 

Centre position Outlet position 

Diagram showing the arrangement of the ITO/glass substrates on the 
graphite susceptor block for the growth of CdTe/CdS solar cell structures. 

The CdS window layers were grown at a temperature of 300°C in a total flow 

of 3355 seem. The flows of ditertiarybutylsulphide (DTBS) and dimethylcadmium 

(DMCd) were 5 51 and 101 seem respectively (VI/II ratio of 1.25) diluted in 2703 
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seem of hydrogen. The final thicknesses were estimated at the centre position from 

interferometry and were 120, 240 and 500 nm for three growth runs performed. The 

CdTe absorber layers were grown at 350°C on top of the CdS using a DMCd and di­

isopropyltelluride (DIPTe) flows of 101 and 500 seem respectively (VVII = 1) 

diluted in 2755 seem of H2. The nominal thickness of the CdTe layer for all three 

growths was 8 ~m. Nine structures were grown in total, three for each run, with the 

CdS layer thickness being the only parameter changed intentionally. 

Specimens were characterised by means of x-ray diffraction (XRD) and 

scanning electron microscopy (SEM). XRD was performed using a Siemens D5000 

diffractometer using the Cu Ka line (1.5406 A). Peak determination and phase 

identification was accomplished using the DIFFRACplus software suite from Bruker 

AXS [8]. SEM was performed in a JEOL IC-848 instrument. All the scanning 

electron micrographs presented in this chapter were taken at a beam voltage of 

20 keY unless stated otherwise. 

6 .. 3 Results for As-Grown Materia[ 

Figure 6-2 a) shows the variation of the thickness of the structure measured 

by the alpha step, as function of the position of the substrate on the graphite block. 

Data for the three different growth runs is plotted. The zero position is arbitrary and 

referred to as the position on the susceptor block where the laser beam for 

interferometry is directed. Great variations in thickness were observed. The nominal 

thickness of 8 ~m deduced from laser interferometry was confirmed for the centre 

sample as the values measured at x = 0 were between 8.5 and 9.5 ~m. The inlet 

samples were thicker than expected, ~ 12.5 ~m while the outlet ones were much 

thinner, ~4.8 ~m. Thickness variation within the same sample was also observed 

with best uniformity measured for the inlet samples at ~ 1.5%. Variations of 15% 

were measured for the centre samples and 40% for the outlet samples. These 

variations within the same substrate and as a function of the substrate position reflect 

a change in the growth rate. The growth rate can be estimated from the thickness 

measurements and is plotted in Figure 6-2 b). Note that the growth rate is plotted on 

a logarithmic scale and that errors arise from the uncertainty of the exact position of 

the substrate along the susceptor block. The growth rate increases exponentially as 
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the substrate is moved closer to the reactor gas inlet and seems to reach an upper 

limit. 
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a) Thickness of the structures grown as a function of the substrate position 
along the graphite suceptor. Data for the three different growth runs is 
plotted. b) Estimated equivalent growth rate as a function of the substrate 
position. Note the logarithmic scale of the growth rate axis. 

Generally non-uniform growth is considered to be caused by either thermal 

and/or gaseous effects. Berrigan et a!. for example, reported the growth rate for 

MOCVD-grown CdTe as a function oftemperature [9]. For low growth temperature, 

the growth rate is kinetically limited and the deposition process is governed by 

surface reactions. The velocity of surface reactions increases exponentionally with 

temperature. Then, when the growth temperature reaches -360°C the deposition 

process becomes mass transport limited and consequently the growth rate depends on 

the substrate position for a given growth temperature, because it depends on the 

arrival of the precursors at the growing surface, yielding therefore a higher growth 

rate when a substrate is placed closer to the gas inlet of the reactor. Measurements 

using tin globules indicated that the temperature variation along the reactor are small, 

and in any case, growth profiles caused by temperature profiles generally show a 

peak at the centre of the susceptor (its hottest position); this is not the case in Figure 

6-2. In the present case therefore, the thickness profile represents depletion of the 

precursor stream as it flows down the reactor, as is discussed further in section 6-6. 

For the purposes of what follows it can therefore be assumed that the properties of 

the films measured are as a function of thickness and not the growth temperature. 
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Figure 6-3 shows the x-ray diffraction patterns of CdTe/CdS/ITO/glass 

samples for different absorber thickness. The peaks observed belong to the CdTe 

zinc-blende structure. Some extra peaks corresponding to cadmium based oxides are 

also observed, probably arising from non-optimum storage conditions. It can be seen 

that the importance of the (331) and ( 422) reflections increases for thicker material 

while the intensities of the (Ill) and (511)/(333) reflections is reduced. It should be 

remembered that x-rays have a finite penetration depth which is a function of the 

incident angle and dependent on the material under investigation. Calculations of x­

ray absorption as function of sample depth revealed that, for CdTe, 99% of the x-rays 

are absorbed within 2.3 Jlm at an incident angle of2B = 20° and within 7.6 Jlm at 2B 

= 70°. This indicates strong absorption of the x-ray radiations in CdTe and therefore 

in this work only the top part of the structure was probed. 
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X-ray diffraction patterns for six samples with different absorber thickness. 
Reflections corresponding to the cubic structure of CdTe are observed. The 
6 samples originate from the same growth run (RUN 3). 
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In order to quantify the effects of the absorber thickness and therefore the 

growth conditions on the texture of the samples, the evolution of preferred 

orientation u and texture coefficients Chkl were analysed (section 4.7.3). The 

preferred orientation u is used to compare the degree of orientation between 

different samples so that lower u values indicate more randomly oriented samples, 

while Chkl gives a measure of the enhancement of the hkl reflection in comparison to 

a completely randomly oriented sample [5]. In the analysis nine planes were 

considered, namely (111), (220), (311), (400), (331), (422), (531), (620) and (533), 

excluding the (333) and (511) reflections due to their overlapping in the diffraction 

patterns. For a completely oriented sample, this gives a maximum value of u = 2.8 

and Chkl = 9. Table 6-1 shows the Chkl and u values corresponding to the as-grown 

samples for the three growth runs. 

Absorber 
Thickness c111 C22o c3ll C4oo C331 C422 C531 c62o C533 u 

(Jlm) 
13 4.0 0.1 0.5 0.2 0.7 1.8 0.3 0.1 1.3 1.2 

12.7 4.8 0.0 0.1 0.1 0.5 1.5 0.1 0.0 1.5 1.5 

9.3 7.4 0.0 0.0 0.0 0.1 0.5 0.0 0.0 0.9 2.3 

5 8.5 6.3 0.0 0.1 0.0 0.2 1.0 0.1 0.0 1.3 1.9 
~ 

4.7 8.3 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.4 2.6 

4.7 8.3 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.4 2.6 

12.5 4.2 0.1 0.4 0.1 0.7 1.9 0.2 0.0 1.4 1.3 

N 12.3 2.8 0.3 1.3 0.2 0.9 2 0.5 0.0 1.1 0.9 

5 9.1 7.4 0.0 0.0 0.0 0.1 0.5 0.0 0.0 0.9 2.3 
~ 

4.5 7.9 0.0 0.0 0.0 0.1 0.4 0.0 0.0 0.6 2.5 

12.2 4.3 0.1 0.4 0.1 0.6 1.8 0.2 0.0 1.4 1.3 

9.8 7.9 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.7 2.4 
..... 

5 8.7 8.2 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.5 2.5 
~ 6.1 8.3 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.4 2.6 

3.8 8.5 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.3 2.7 

Table 6-1 Values of texture coefficients Chkl and degree of preferred orientation a for 
the absorber layer deposited on CdS/ITO/glass substrates. Results for the 
three growth runs are presented. CdS and CdTe layers were grown at 300 
and 3 50°C, respectively and further details about the growth ambient can be 
found in section 6.2. 
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a) Degree of preferred orientation CY as a function of the absorber thickness 
and b) texture coefficients of the (Ill) (0) and (422) (6) reflections as a 
function of the absorber thickness. The dashed lines represent values for a 
completely oriented sample. 

The data of Table 6-1 is plotted in Figure 6-4. Figure 6-4 a) is a scatter plot of 

the preferred orientation a as a function of the absorber layer thickness and Figure 

6-4 b) is a scatter plot of the C 111 and C422 texture coefficients against the absorber 

layer thickness. The dashed lines corresponds to a= 2.8 Chkl = 9 for a completely 

oriented sample. It can be seen that there is decrease of the [ 111] preferred 

orientation as the CdTe thickness increases. Structures with 4-6 ~-tm CdTe are nearly 

completely oriented in the [111] direction (a= 2.5-2.7 and C111 = 7.9-8.5). While 

structures with 8-1 0 ~-tm still have a [Ill] preferred orientation, there is an important 

loss of this preferred orientation for thicker structures (~12 ~-tm). Although the [111] 

direction is the dominant one for all the samples studied, thicker samples exhibited 

an increased C422 texture coefficient indicating a change of orientation in this 

direction. This structural change to the [ 422] preferred orientation is associated with 

thicker films. 

The crystallite sizes at the surface of the absorber layer were estimated from 

secondary electron micrographs for three different substrate positions. It was found 

that the grain size increases linearly with the thickness of CdTe material. The 

absorber layer grown on the outlet substrate (~4 ~-tm) had a grain size of 0.2 f..tm, 

while at the centre it is 0.7 ~-tm for a 9 ~-tm thick CdTe and ~1 ~-tm for a 12 J.lm thick 

layer grown at the inlet. There is a linear relationship between the grain size 

measured at the top surface of the absorber layer and the film thickness expressed as 
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r = 0.050xx - 0.10 where r is the grain radius and x the thickness expressed in 

microns. It must be noted that the interpolation at x = 0 is not expected to be valid 

since the near-interface material in similar structures grown by CSS has smaller 

grains than the linear relation (for thicknesses > lj..tm) would suggest [12]. By 

comparison, Cousins et al. [13] measured the grain size of the absorber layer as a 

function of distance from the CdS/ITO interface for CSS-grown structures and also 

found a linear relationship (r = 0.1 07xx - 1.06) for 1 < x < 9 J..tm. Although the 

absolute grain size increases with thickness in both deposition techniques, grains 

develop in size at half the rate in MOCVD at 350°C as they do in CSS growth. 

6.4 Heat Treated Samples (No CdCb) 

Samples grown on the inlet substrates were annealed in nitrogen in a tube 

furnace over the temperature range of 360-500°C for 5-70 min. All the samples used 

for this work had a CdTe absorber layer thickness of~ 12 J..lm and have been studied 

by XRD and SEM. Figure 6-5 shows the XRD patterns of samples annealed at 360, 

400, 440 and 500°C for 20 min. All samples showed peaks corresponding to the 

cubic structure of CdTe. Also peaks belonging to cadmium oxides were observed for 

samples treated at higher temperatures. 

The texture coefficients Chkt and preferred orientation a were determined for 

all the CdTe peaks. Figure 6-6 shows the variations of a, C111 and C422 as function of 

the annealing time for different annealing temperatures. At all temperatures there is a 

slight loss of [Ill] preferred orientation following the first 20 min of annealing due 

to a decrease in Cm texture coefficients. For longer anneal, a remains constant 

indicating no change in the crystallite arrangements. Despite no significant variation 

of a, there is a strong decay in the Cm coefficients indicating a distinct loss of the 

[ 111] preferred orientation. On the other hand the loss of [ 111] preferred orientation 

is accompanied by an increase in C422 texture coefficients (Figure 6-6 c)) indicating 

that the [ 422] direction becomes the preferred orientation following annealing. 

However, this is less pronounced for samples treated at 360°C. This temperature is 

close to the growth temperature and offers little energy for the driving force of 

recrystallisation. Annealing samples at 400°C and 440°C yielded layers presenting 

very similar structural changes. The 500°C annealings resulted in stronger structural 
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changes for the first 5-l 0 min, with samples randomly oriented after 5 min but for 

longer annealings, these became the most oriented along the [ 422] direction. 
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X-ray diffraction patterns for samples annealed for 20 min at different 
temperatures. Reflections corresponding to the cubic structure of CdTe are 
observed as well as cadmium based oxides for samples treated at higher 
temperatures. 

This confirms that an increased growth temperature or post-growth anneal 

favours a structural rearrangement in the [ 422] direction. The structural changes in 

the CdTe are caused by the recrystallisation process and this recrystallisation process 

is dependent upon temperature and time of anneal. Recrystallisation process can 

occur during post-growth processing of materials and also during the growth itself. It 

uses strain energy either from planar defects such as grain boundaries or epitaxial 

mismatch [ 14]. In the case of small grained material, the strain energy per unit 

volume may be sufficient to cause recrystallisation on annealing. A small grain size 

also encourages recrystallisation by providing a higher density of nucleation sites, 

i.e. grain boundaries. For the samples processed at 360°C it is concluded that the 

recrystallisation process was in the early stages because a and Chkt vary only slightly 

with time. At higher processing temperatures recrystallisation takes place during the 
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first 20-30 min and then the films are completely recrystallised which is indicated by 

an invariant a and texture coefficients Chkl· 
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Degree of preferred orientation a (a), texture coefficients of the (Ill) (b) 
and (422) (c) reflections as function of the annealing time for different 
annealing temperatures. The markers are experimental data and the lines are 
a guide to the eye. 

Figure 6-7 shows the influence of annealing on the lattice parameter a. For all 

treatment conditions a was found to be larger than the lattice parameter for a 

powdered CdTe film (a = 6.481 A), indicating a compressive stress in the plane of 

film growth. However, there is a clear reduction in a following a 10-20 min heat 

treatment for all temperature. When the annealing step is sustained beyond 20 min, 

the lattice parameter is nearly invariant for treatment temperatures below 500°C. 

Treatment at this temperature induced greater variations in lattice parameter with a 

decreasing further with longer annealing times. The reduction in the lattice parameter 

is due to a decrease in the material strain following the heat treatment. This was 

confirmed by Williamson-Hall plots (see section 4.7.2) which indicated that the 

internal Strain for the as-grown layerS, found tO be between 1 X 1 o-3 and 5 X 1 o-3
, WaS 
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reduced to 1 X 1 0"5 -7X 1 0"4 after heat treatment. Some examples of Williamson-Hall 

plots are shown in Figure 6-8. Figure 6-8 a) shows plots for two as-deposited 

samples with a 12 J-tm thick CdTe absorber. The internal strain is given by the slope 

of the linear fit to the data and is 2.1 x 1 o-3 and 3.3 x 10-3 for the examples shown. 

Following heat treatment of 12 J-tm thick films the internal strain reduces as shown in 

Figure 6-8 b). For processing at 400°C the resulting strain is 7.3x10"4 while it is 

3.9x10-4 at 440°C and 5.0x10-4 at 500°C. 
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Figure 6-7 Lattice parameter as function of annealing time for different annealing 
temperatures. The markers are experimental data and the lines are a guide to 
the eye. 
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Williamson-Hall plots for a) two as-deposited 12 J..lm thick films and b) 
following a 20 min heat treatment at different temperatures. The lines 
represent the best fit for each group of data. 
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The treated layers were examined by SEM in order to reveal the morphology 

of the absorber layer, characteristic micrographs are shown in Figure 6-9. Prior to 

analysis, the sample were etched in a nitric/phosphoric mixture (see section 4.3) for 

15 seconds in order to remove any oxides from the surface of the absorber layer. 

Figure 6-9 

a) As-deposited film (12 J.Lm thick) 

b) 400°C - 20 min c) 440°C- 20 min 

d) 440°C - 60 min e) 500°C- 20 min 

SEM micrographs of the absorber layer surfaces for CdTe/CdS structures 
treated in nitrogen at different annealing temperature. The images were 
recorded at 20 keY. The scale marker is identical for all images. 
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When treated at 360°C the surface features of the CdTe layer were found to 

be identical to those of the as-grown layer (Figure 6-9 a)), and this was the case for 

all annealing times. Annealing at higher temperatures and for longer times 

encouraged thermal etching and evaporation from the films. There was also some 

indication of grain coalescence. For example Figure 6-9 c) (440°C, 20 min) shows 

more deeply (thermally) etched grain boundaries than does Figure 6-9 b) ( 400°C, 20 

min). Annealing for 60 min at 440°C causes the film to begin to break up (Figure 6-9 

d)), while a 20 minute anneal at 500°C (Figure 6-9 e)) causes inhomogeneous 

evaporation of the complete film thickness. The extent to which grain growth occurs 

is difficult to determine since the grain boundaries are not always made more distinct 

by the annealing in nitrogen. Figure 6-9 does show some evidence of grain 

coalescence but such effects are much clearer for CdCh treated samples which are 

discussed in detail in the next section. 

6.5 CdCh Treated Samples 

Samples grown on substrates positioned at the centre of the susceptor were 

annealed in nitrogen in a tube furnace at temperatures of 400 and 440°C for 5 to 60 

min. Prior to annealing, samples were coated with a ~90 nm layer of CdCh. For this 

study, the samples had an initial CdTe thickness of 8-10 1-1m and were characterised 

by XRD and SEM. 

6.5.1 Effect on Crystal Structure 

Figure 6-10 shows XRD patterns of samples treated at 440°C for annealing 

times of 5-60 min. The peaks belong to the zinc-blende structure of CdTe. Peaks 

corresponding to cadmium based oxides are also observed, their intensity being more 

pronounced for longer annealing times. It can be seen that the intensity of some 

peaks increases with annealing time, e.g. (311), (422) and (531) while it is reduced 

for others, e.g. (111) and (511)/(333). 
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Figure 6-10 X-ray diffraction patterns for samples heat treated with CdCh at 440°C for 
different annealing times. Reflections corresponding to the cubic structure of 
CdTe are observed as well as some oxides. 

Table 6-2 summarises the values of texture coefficients and preferred 

orientation for the samples considered in this section. The loss of [Ill] preferred 

orientation can be seen and the randomisation of the crystallite arrangements is 

confirmed- evidenced by a decrease of the Clll coefficient and increase ofthe C3n, 

C422, C331, C531 coefficients with annealing time. The loss of [111] preferred 

orientation and randomisation of the layers becomes especially significant for 60 min 

annealings. However, the [422] preferred orientation is still favoured at higher 

temperatures and this is marked by a higher C422 coefficient. The samples treated at 

400°C had, in general, a more random structure than layers treated at 440°C. This is 

consistent with the higher temperature processing favouring the [ 422] direction as 

discussed in the previous section. 
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Annealing 
c/11 C22o c3u c4oo c331 C422 C531 C62o C533 Time a 

(min) 
Untreated 8.2 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.5 2.5 

5 7.9 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.6 2.5 

10 6.3 0.0 0.1 0.0 0.2 1.1 0.1 0.0 1.2 1.9 
u 

0.0 0.8 0.0 0.8 2.2 0 20 7.1 0.0 0.2 0.0 0.1 0 
"<<' 
"<<' 30 6.4 0.0 0.4 0.1 0.1 1.2 0.4 0.0 0.4 1.9 

60 1.6 0.0 1.1 0.0 0.0 4.6 0.8 0.0 0.5 1.4 

Untreated 7.4 0.0 0.0 0.0 0.1 0.5 0.0 0.0 0.9 2.3 

5 6.8 0.0 0.0 0.0 0.2 0.7 0.0 0.0 1.2 2.1 

10 5.6 0.0 0.1 0.1 0.3 1.3 0.0 0.0 1.5 1.7 
u 

0.0 1.6 1.8 0 20 5.9 0.0 0.0 0.0 0.2 1.2 0.0 0 
0 
"<<' 30 8.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.6 2.5 

60 2.2 0.3 0.9 0.3 1.0 2.3 0.3 0.2 1.4 0.8 

Table 6-2 Values of texture coefficients C11k1 and degree of preferred orientation a for 
the absorber layer heat treated with CdCb. Results for annealings at 400 and 
440°C for 5-60 min are presented. 

The variations of lattice parameter with annealing time are shown in Figure 

6-11 a). The lattice parameter initially increases for shorter annealings and then 

reduces for longer ones. For all treatment conditions the lattice spacing was found to 

be greater than for a powder sample (6.481 A). The variations in lattice parameter 

indicate an increased compressive stress following the first 10-20 min of annealing 

and then for longer annealing times this stress is released. In order to assess the 

variations of stress in the films, the in-plane stress (as) magnitude was estimated 

using the formula suggested by Clemens and Bain [ 15]: 

8 
= a film -a powder = a,(2S1I + 4Siz- S44) 

a powder 3 
(6-1) 

where & is the strain of the film, a film and apowder are the inter-planar distances for the 

CdTe films studied and powder sample, respectively, Su, S12 and S44 are the 

components of compliance. For CdTe, Su = 4.27x10- 12 dyn.cm-2
, S12 = -1.73x1Q- 12 
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dyn.cm-2 and S44 = 5x 10"12 dyn.cm·2* [16]. Positive and negative signs of stress 

correspond to tensile and compressive stress, respectively. The variation of stress in 

the treated films with annealing temperature and time are shown in Figure 6-11 b). It 

can be seen from the figure that the as-grown film is under compressive stress and 

the stress increases with annealing time reaching a maximum after 10 min at 440°C 

and 20 min at 400°C. The in-plane stress then decreases for longer annealing times. 

However, throughout the experiment, the films are only submitted to a compressive 

stress. 
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a) Lattice parameter as function of annealing time for CdCiz treated samples 
at 400 and 440°C. b) Magnitude of the in-plane stress in the CdTe films as a 
function of annealing time. The markers are experimental data and the lines 
are a guide to the eye. 

During the post-deposition thermal treatment, the stress falls from ~-1.1 x 109 

to -5.8 x 108 dyn.cm -2• These values are larger than the critical value of formation of 

structural defects for CdTe ( ~ 108 dyn.cm -2 
[ 17]) and therefore the formation of 

crystalline defects in the layers such as twinning and dislocations is anticipated [ 12, 

18, 19]. 

• The dyne (dyn) is the centimetre-gram-second unit of force. Although this unit is rarely used 

nowadays it was the unit used in the original reference [15]. The International System of Units would 

require to use the Newton so as I dyn = I X I 0"5 N 
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6.5.2 Effect on Crystallite Size 

The size of crystallites in the samples was determined from SEM imaging. 

Prior to analysis, the samples were etched in a nitric/phosphoric mixture (see section 

4.3) for 15 sec in order to remove any oxides and/or cadmium chloride residuals 

from the surface of the absorber layer. From the secondary electrons micrographs the 

shape of the grains were marked on a transparency film, scanned and analysed using 

PC-Image 2.0 software from Foster Findlay Associates Ltd. PC-Image allows the 

determination of the area of every single object and then the radius of the grain is 

calculated assuming a circular grain shape. 
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SEM micrographs (top row) and grain size distributions (bottom row) of 
CdCh treated samples annealed at 400°C (left column) and 440°C (right 
column) for 30 min. 

Figure 6-12 shows the SEM images and grain size distributions for CdCh 

treated samples at 400 and 440°C for 30 min. The CdCh treated layers showed an 

uniform and smooth surface. However, for long annealing (> 60 min) at 440°C, 

coalescence of CdTe grains and evaporation of the film start to occur similarly to that 
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shown for CdCh free annealing (Figure 6-9). The grain size distributions were fitted 

using a Rayleigh distribution model [20]: 

J(r)=arexp(- ;.)' (6-2) 

where r is the grain radius and a and r0 are constants. The use of this distribution 

function has previously been demonstrated by Cousins et al. [13] to describe the 

grain size distribution of CSS-grown CdTe/CdS solar cells. It gave closer fits than 

other grain size distribution functions. 

Figure 6-13 a) shows the evolution of grain size as function of annealing time 

for the treated samples. For all annealing times it was observed that the mean grain 

size was greater for the higher temperature processing. A 35-55% increase in grain 

size was measured between 400 and 440°C. It was also noted that the distribution of 

grain sizes becomes wider as the annealing temperature increases (Figure 6-12). 

Figure 6-13 a) shows that grain growth occurs during the first 30 min of annealing 

then the grain size is reduced for a 60 min annealing compare to a 30 min annealing. 

This observation may well be an artefact in the apparent grain sizes caused by 

significant inhomogeneous evaporation from the films. Available data for sample 

treated at 500°C (see chapter 7) was also included in Figure 6-13 a). Note that for 

this particular sample the thickness of the absorber layer was only 4 11m compared to 

8-10 11m for all the other samples considered. The time and temperature dependent 

grain growth observed in the initial stages of annealing can be studied using the 

parabolic grain growth law described by Burke and Turnbull [14]: 

(6-3) 

where D and Do are the average gram sizes before and after annealing, t the 

annealing time, K a constant and n the grain growth exponent. Values of n are 

usually much greater than 2 and only approach 2 for very pure metals - this is the 

"parabolic grain growth" law. 
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a) Evolution of the grain radii with annealing time for samples treated in 
CdCh at 400°C (o) and 440°C (6) and 500°C (D). The markers are 
experimental data and the lines are a guide to the eye. 
b) Grain growth isotherms for sample treated with CdCh at 400 and 440°C. 
The lines are the best fits for each temperature. Note that data for the 60 min 
annealings were not taken into account for the fittings as reduced grain 
growth was observed for these samples compared to those annealed for 
30 min. 

The logarithmic plot of (D 2 
- D~ r2 

as function of log t is shown in Figure 

6-13 b). The slope of the best fit line was used to determine the grain growth 

exponent for the two annealing temperatures. As the data showed reduced grain size 

for 60 min annealings, only annealing time up to 30 min were considered in the 

determination of n. It was found that n = 7 for treatment at 440°C and n- 4 at 400°C. 

The value of the grain growth exponent is smaller at higher annealing temperature 

because at this temperature the grain size is already much larger after shorter time. 

6. 6 Discussion 

The growth rate m a MOCVD reactor is dependent on the position of 

substrate along the susceptor. The growth rate was found to decrease when the 

substrate was moved away from the inlet side of the reactor. The variation of the 

growth rate on the susceptor with position (Figure 6-2) was consistent with the 

effects of gas phase precursor depletion during the growth of the CdTe layers. Since 

the growth was under a VI/II precursor ratio of 1, depletion is expected to affect both 

precursors equally and so no chemical imbalance is expected. It has also been 

inferred that the effects of temperature are minimal. It is on this basis that the 
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variations of structural effects with thickness are considered to be due to thickness 

rather than to some confounding variable. 

MOCVD-CdTe films grown on CdS/ITO/Glass are mainly [Ill] oriented. 

This is expected because of the low energy of formation associated with the [Ill] 

surface and the underlying CdS layer which is mainly [002] oriented [21]. However, 

there is a relationship between preferred orientation and the layer thickness, with thin 

layers being [ 111] oriented, this giving way to more randomised texture as the layers 

thicken. The most dominant emerging orientation was [ 422], as shown in Figure 6-4. 

Further to this for the as-grown films, the crystallite size of the CdTe absorber layer 

was found to increase with the layer thickness. Similar results have also been 

reported in the case of columnar structures by several other authors for PVD-grown 

films [22], CSS-grown films [13] and electrodeposited (ED) films [23]. For the 

MOCVD films grown at 350°C, the grains increase in size with thickness at half the 

rate that they do in CSS material, and moreover they are smaller overall: for films of 

1 1-lm thickness the average grain size for CSS material is ~ 1.2 1-lm while that for 

MOCVD material is ~0.15 /-lm. There are many examples of the increase in grain 

size of grains in polycrystalline films with the thickness of the film grown, but for 

any given growth method, the temperature has a strong influence on the overall grain 

size. Hence the low temperature of MOCVD growth (~350°C compared to ~sooac 

for CSS) could account for the large difference in grain size with the two methods. 

Whatever the exact cause, the small grain size of MOCVD material makes it inferior 

to CSS material for solar cell applications in which grain boundaries interfere with 

carrier collection. 

Given that the thicker films have increasing [ 422] orientation and larger 

grams while the thinner films have [ 111] orientation and smaller grains it is 

interesting to speculate whether there is a crystallographic component to grain size 

development during growth. [ 422] is parallel to the [211] direction, the former being 

recognised in diffraction patterns since the {211} reflections are structure factor 

disallowed. Planes of the <211> zone contain {Ill} close packed planes, the Te 

terminated variant being the fastest growing CdTe plane of all in vapour growth 

experiments of orientation versus growth rate. Grain size development is considered 

to occur by means of competition between grains with the fastest growing faces of 
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grains competing favourably against the slower growing faces of their neighbours. If 

this is the case, then grains with a [211] surface orientation will be at an advantage 

since the <211 > directions are perpendicular to { 111 } planes, these being the fastest 

growing in CdTe. 

The behaviour of these MOCVD-grown CdTe films with annealing in both 

N2 and in the presence of CdCh was broadly consistent with the response of films 

deposited by other methods to annealing. For instance, measurable changes in the 

preferred orientation and grain size were only observed for temperatures greater than 

400°C, this being significantly higher than the growth temperature of 350°C. 

Generally the [111] preferred orientation of the as-grown films gave way to an 

increasing proportion of the [ 422] with annealing and this was accompanied by grain 

growth. Both effects were enhanced by higher temperatures, longer annealing times 

and by the presence of CdCh which is considered to act as a flux. 

The structural changes in the CdTe layer are caused by the recrystallisation 

process that occurs during annealing. The recrystallisation is dependent upon the 

temperature and the time of the annealing but also upon the original grain size, 

orientation and lattice strain of the layer [ 14]. This is also indicated by a change in 

lattice parameter which is reduced following heat treatment, with or without CdCh. 

The primary effect of annealing is the reduction of the defect concentration and 

hence the availability of diffusion paths. The reduction of lattice parameter suggests 

that there is relief in tensile strain perpendicular to the substrate by reduction in 

compressive forces at the film surface. This is consistent with the observation that 

the lattice parameter also reduces with increasing film thickness for as-grown films. 

The recrystallisation is more pronounced in the presence of CdCh, indicated by the 

more randomly oriented layers and the significant increase in grain sizes. This 

indicates that intragrain (randomisation) and intergrain (grain growth) 

recrystallisation occurs in MOCVD-CdTe films. The heat treatment coupled with the 

presence of CdCh promotes expansion of grains, the driving force for this grain 

growth being the minimisation of the grain-grain boundary energy. 
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In the as-grown state the CdTe layers are under compressive stress, indicated 

by a lattice parameter higher than that of a powder sample. The primary effect of 

annealing is to release this stress, measured by analysing the variation of lattice 

parameter. It is common, in the case of CdTe/CdS solar cell structures, to attribute 

the reduction in lattice parameter for annealed material to an intermixing between the 

two semiconductors creating an intermediate CdSxTe 1_x alloy [5, 24, 25] -and also 

Te diffusion into the CdS layer creating a CdTeyS I-y alloy. This can usually be 

observed on the XRD pattern by either a displacement of all the CdTe peaks towards 

higher angle if the CdTe film is completely replaced by the CdSxTe1_x alloy, or by the 

appearance of adjacent peaks to the CdTe peaks. This has been observed to happen at 

400-450°C for CdCh or air treated 1-3 ~-tm thick CdTe/CdS structures, and sulphur 

has been found to diffuse as far as 500 nm away from the CdTe/CdS interface [23]. 

The lattice parameter values reported in the literature indicate a change in stress in 

the absorber layer following treatment, from compressive to tensile [3-5, 23, 24]. 

However, in the case of the samples analysed in this section, no extra peak was 

observed and therefore the change in lattice parameter is attributed only to the 

reduction of the in-plane stress of the CdTe films. However, it is anticipated that 

interdiffusion does occur, but because the films studied are ~8-12 ~-tm thick and x-ray 

absorption calculations (see section 6.3), the intermixing cannot be detected using 

wide angle x-ray diffraction in the present case. 

The grain growth exponent n was measured for the samples treated with 

CdCh and was found to be higher for the higher annealing temperature. The higher 

values of n may be attributed to (i) the preferred orientation of the films and (ii) the 

residual stress in the layers. In general, reduced grain growth occurs when the films 

are more oriented. This was the case for the CdCh treated layers; the structures 

treated at 400°C were more random compared to those annealed at 440°C and the 

grain growth exponent was lower. Normal grain growth occurs as a result of the 

surface energy stored in the grain boundaries but it is also possible for crystals to 

grow as a result of strain energy [26). However, strain-induced grain growth should 

not be expected in a polycrystalline material after complete recrystallisation. It was 

shown that the CdTe thin films characterised here had residual stress, stress which is 
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reduced for higher annealing temperatures and therefore the time required for 

complete recrystallisation decreases with increasing annealing temperature. 

This study partly confirms the results reviewed earlier in Table 3-2 indicating 

that grain growth occurs following CdCh treatment on MOCVD-grown CdTe thin 

films. However, some differences are noticed in the structural changes following this 

treatment, which showed a reorientation of the film in the [ 422] direction rather than 

a randomisation. 

6. 7 Conclusion 

The thickness and therefore the growth rate, of CdTe films grown by 

MOCVD on CdSIITO/glass substrate were found to be dependent upon the position 

of the substrate on the susceptor block, this being consistent with the effects of 

precursor consumption during growth. The preferred orientation and morphology of 

the CdTe layers were found to be dependent upon the thickness of the films. 

Outlet/thinner films are mainly [Ill] oriented while inlet/thicker films are more 

textured in the [ 422] direction. The grain size, estimated at the surface, was five 

times greater for the thicker films i.e. I J..tm for a 12 J..tm thick film compared to 0.2 

J..tm for a 4 J..tm thick film. 

The effects of the post-deposition heat treatment on thick CdTe films (8-12 

J..tm) grown were investigated in this chapter using x-ray diffraction and electron 

microscopy. In the case of CdC12 free treatment, little grain growth was observed. 

However, strong structural changes were measured. For treatment temperatures 

greater than 400°C the [Ill] preferred orientation is lost for the profit of the [ 422] 

orientation. In the case of heat treatment with CdCh grain growth occurs and was 

measured as function of time and temperature. It was measured that growth occurs 

for the first 30 min of annealing and is accentuated for higher treatment temperature. 

The grain size distributions were described by a Rayleigh distribution function and 

the increase in grain size was found to obey the non-ideal Burke and Turnbull 

kinetics (n = 7 at 440°C). In all cases, the absorbed layer was submitted to a 

compressive stress, stress which was released upon annealing, but not totally. 
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In the next chapter, the use of appropriate post-deposition heat treatment 

conditions will be employed to process solar cell devices in order to study their 

performances. 
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7 

Characterisation of 
CdC h .. Treated Solar 

Ce~ll Devices 

7. 1 Introduction 

The possibility of in situ doping of the absorber layer of a CdTe/CdS cell 

with a perspective of supplanting the post-growth CdCh heat treatment step was 

discussed in Chapter 5. However, this proved to be unsuccessful in that while growth 

conditions could be optimised to increase the dopant incorporation, this incorporation 

yielded more resistive CdTe films making them inadequate for solar cell 

applications. 

Hence as an alternative to the doping route, several large 

CdTe/CdS/ITO/glass solar cell structures grown by MOCVD were activated via the 

usual route using a cadmium chloride heat treatment. Cells made from these 

structures are the subject of this chapter. A wide range of post-growth processing 

parameters were investigated in order to improve the performance of the devices and 

to determine the optimum post-growth treatment conditions for this system. This 

chapter summarises the results obtained using current-voltage measurements and 

microscopy characterisation techniques such as SEM and EBIC. 
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7. 2 Description of the Samples Used in this 

Study 

7. 2. 1 The Samples 

The substrates used for this study were of two kinds. The first one was used 

to grow two sets of structures (SETS 1 and 3) and was supplied by Merck Display 

Technology (MDT). The MDT substrate consists of a 0.7 mm soda lime glass coated 

with a bilayer of silicon dioxide (Si02 ~20 nm) and indium doped tin oxide (ITO 

~ 100 nm). The ITO has the high conductivity required to reduce the sheet resistance 

of the front contact whereas the silicon dioxide layer acts as a barrier against the 

diffusion of impurities from the glass. The second substrate was provided by ANTEC 

GmbH and was used to deposit the structures of SET 2. This substrate is somewhat 

different from the first one as it comprises a ~4 mm soda lime glass coated with a 

bilayer ofiTO (~250 nm) and tin oxide (Sn02 ~30 nm). In this case the Sn02 layer is 

used to reduce the diffusion of the indium atoms from the ITO layer into the rest of 

the cell. It also acts to reduce the electrical losses due to any pinholes that may be 

present in the ITO coating. This substrate was commercially used by ANTEC GmbH 

to produce CdTe based photovoltaic modules. 

As these transparent conductive oxide (TCO) layers are conductive, the 

classic four-point probe and the Van der Pauw techniques (see section 4.5.2) were 

used to determine the sheet resistance of the TCO provided by the two companies. 

Both techniques gave similar results and it was measured that the ANTEC films were 

nearly twice as conductive as the ones provided by MDT, 7.2±0.7 Q/0 compared to 

13.7±0.4 Q/0, respectively. As the TCO resistance significantly influences the 

overall series resistance of the device, this difference in sheet resistance could be 

shown to be an important limiting factor in achieving highly efficient devices. 

The three sets of samples (SETS 1, 2 and 3) grown by MOCVD have been 

used in this study for processing via the standard CdCh route. The main difference 

between the three sets of samples was the change in thickness of the CdTe absorber 

layer. The sample growth parameters are detailed in Table 7-1. Samples from SET 1 

were grown on MDT ITO/glass substrate. The CdS window layer was grown at 
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300°C with a VIlli precursor ratio of 1.48 and the thickness of the layer was 

estimated from the in situ interferometry measurements to be 120 nm. Other details 

concerning the CdTe absorber layer are shown in Table 7-1. The thickness of the 

CdTe layer (2-3 f.tm) was confirmed by the Alpha Step profilometer. The second set 

of samples (SET 2) was grown on the ANTEC substrate. Six samples were grown in 

6 runs with a 120 nm window layer deposited at 300°C and a VI/II ratio of 1.3. 

Details of the CdTe layer (4 f.tm) are specified in the Table. The third batch of 

samples (SET 3) grown on MDT substrate consisted of three runs of three samples 

each as explained in section 6.2. The CdS was varied in thickness between 120 and 

500 nm while the CdTe layers had thicknesses of3-12 f.tm (see Table 7-1). 

Table 7-1 
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7. 2. 2 Post-Growth Treatment and Parameters 

Samples were activated using the CdC12 post-growth treatment, details of 

which were described in sections 3.4 and 4.3. Table 7-2 summarises the different 

parameters used for the deposition of the CdCh layer, the annealing of the structures 

and the chemical etching prior to the back contact deposition. 

SET 1 SET2 SET3 

CdCh thickness (nm) 0-90 0-140 0-100 

Annealing temperature (°C) 340-420 380-500 420-500 

Annealing time (min) 10-20 18 10-45 

Etching Br2/MeOH Nitric/Phosphoric acid 

Table 7-2 Post-growth treatment parameters for all processed samples. 

In addition, different etching procedures were performed for the preparation 

of the back contact deposition. For SET 1 a solution of bromine methanol 

(Br2/MeOH) in concentration of 0.03-0.5% was used while samples from SET 2 & 3 

were dipped into a solution of acid nitric/acid phosphoric (1% HN03, 70% H3P04, 

29% H20) [ 1]. After rinsing the samples with the appropriate solution (boiled 

deionised water for the NP etch and methanol for the Br2/MeOH etch), the cells were 

dried under nitrogen. Finally, gold contacts (~2.5 mm diameter dots) were 

evaporated onto the CdTe layer as back contacts, and In-Ga amalgam was applied to 

the ITO (after removing the CdTe and CdS layers) to make use of the front contact. 

The devices measured comprised 4 gold dots on a ~ 1 cm2 area. The contacts dots 

were not scribed to define their area. 

7. 3 Performance of Cells with -2 and -8 J.Lm 

Thick CdTe Absorber 

This section presents the results of cells from SET 1 (2-3 1-1m thick CdTe, i.e. 

relatively thin) and cells from SET 3 with a CdTe thickness greater than 8 1-1m (both 

of these sets gave poor photoresponse relative to those of SET 2, the results of which 
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are deferred to section 7.4 ). MOCVD solar cells with thin CdTe absorbers (SET 1) 

were coated with a thin CdCh film and heat treated. They were then etched by 

bromine methanol before applying the back contact. In this series 16 devices were 

produced. Typical current-voltage (J- V) curves recorded in the dark and under 100 

m W.cm-2 AM1.5 standard illumination conditions are shown in Figure 7-1 a). This 

device was coated with 20 nm of CdC12 and annealed at 360°C for 18 min. Poor 

photoresponse of the device is apparent: for the example described here, the short 

circuit current density was 0.2 mA.cm-2
, the open circuit voltage was 0.3 V and the 

power conversion was below 0.1 %. Although the device gives good diode shape 

responses both in the dark and under illumination, the dark J- V curve exhibits lower 

current in high forward bias, nearly two orders of magnitude lower than under 

AM1.5 illumination. 

All thin CdTe cells from SET 1 treated with the bromine methanol etch 

exhibited this poor photoresponse behaviour ( 17 < 0.1% ), this being weaker than in 

the as-grown state (TJ ~ 0.4%). However, for this thickness of material the best cell 

was obtained using the NP etch (TJ ~ 1%). Furthermore all treated cells examined 

under the SEM showed small-grained structures with a maximum grain size around 

200 nm. SEM also showed that the combination of CdCh and etch treatments caused 

perforation of the layers. For all processing conditions investigated it was concluded 

that the layers did not survive the treatment conditions used and thicker devices 

should be investigated in order to sustain the post-growth treatment conditions used. 

While results for devices with intermediate thickness (~4 Jlm) are presented 

in the next section, it should be stated here that structures with thick CdTe absorber 

(8 Jlm and above) showed similar device response to the cells with thin absorbers. 

An extensive survey of processing parameters was made. However, even using a 

wider range of post-growth treatment conditions (by changing the CdCh thickness, 

the etchant composition and concentration and using a longer heat treatment at 

higher temperature) did not appear to make any significant impact on the cell 

performances. 

This can be observed in Figure 7-1 b) where the dark and light J-V 

characteristics are presented for a 12 Jlm thick device. The absorber layer was coated 

with 50 nm of CdC12 then annealed at 480°C for 20 min followed by the NP etch. It 
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can be seen that this cell as well as all the other treated cells from SET 3, showed a 

very weak photoresponse similar to the one of the cells processed from SET 1. For 

the example exposed in Figure 7-l b) the short circuit current density was lsc ~ 0.4 

mA/cm2 and the open circuit voltage was Voc = 0.17 V, resulting in very low power 

conversion (17 << 0.1 %). 
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Figure 7-1 Current-voltage curves in the dark (dashed line) and under AMI.S 
illumination (solid line) for a) a cell with 2 J..Lm CdTe absorber treated at 
360°C for 18 min and b) a cell with 12 J..Lm CdTe absorber treated at 480°C 
for 20 min. The insets show the J- V characteristics plotted on a log scale at 
forward bias. 

In order to investigate the materials contribution to performance, the grain 

sizes were studied as a function of processing. The strongest microscopic changes of 

the CdTe layer were observed in cells from SET 3 and this is shown in Figure 7-2. 

The as-grown material (Figure 7-2 a) has a pyramidal hillock structure and grains 

cannot easily be defined. However, the grain size of these layers was estimated in 

Chapter 6 to be 0.7 J.lm. Processing the cells flattens the absorber layer surface and 

reveals the grain boundaries. Processing at 420°C yielded grains with an average 

diameter of 1.09 J.lm, while devices processed at 500°C have a mean grain diameter 

of 2.03 J..tm. This represents an increase by a factor of 2: the influence of annealing 

temperature is clearly seen here. The higher annealing temperature yielded not only 

larger grains but also wider grain boundaries or more precisely wider trenches 

between grains introduced by the back surface etching. 
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SEM images of the absorber layer surface of cells with thick CdTe (> 8 Jlm) 
in the as-grown state (a) and processed at 420°C (b) and 500°C (c). Also 
shown is the grain radius distribution for the processed samples. The solid 
lines are a fit to the data using a Rayleigh distribution function. 

Figure 7-2 also shows the grain size distributions from the SEM images. The 

data were fitted using a Rayleigh distribution function (see Chapter 6). The best fit 

was obtained for the sample processed at 420°C than at 500°C because the number of 

grains taken into account is about tlrree times higher for the former and it has 

therefore a better statistical representation. It must be noted that the tlrree devices of 

Figure 7-2 showed similar conversion efficiencies and that in the case of structures 

with thick CdTe the morphology of the absorber layer is not the performance 
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determining factor, rather it is likely to be the junction properties of the devices that 

reduces performance to such low levels. The devices parameters are now discussed. 

In general, processed cells exhibited much lower shunt resistance than in the 

as-grown state as can be observed in Figure 7-3 where the current-voltage curves for 

a thick device (SET 3) under illumination are plotted for both cases. The low shunt 

resistance was noticeable by the decrease in current with increasing applied voltage 

in reverse bias. Processed cells also showed smaller open circuit voltage and fill 

factors yielding lower efficiencies than the as-grown cells, even though the short 

circuit currents were increased by an order of magnitude following processing, 

possibly owing to grain growth. But overall poor performance could be explained by 

the fact that the as-grown structure was already inefficient with a Vac of 0.32 V, FF 

of 48% and a Jsc of 0.15 mA.cm-2 under illumination (77 ~ 0.01%). Processing the 

cells increased the current at zero bias but reduced both Vac and FF due to high series 

resistance, low shunt resistance and poor diode factor. 
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If the results for the thin CdTe cells (2 J..tm) can be understood by the use of 

damaging post-growth treatment conditions, results for cells with thick CdTe 

(> 8 J.lm) are less explicable. While processing caused perforation of the thinnest 

CdTe films this was not observed for the thickest. Moreover, while the range of 

CdCh treatment conditions used for the thick CdTe films was great, no effective 

devices resulted. Elsewhere several groups have made cells with 8-10 J.lm thick CdTe 

which reach efficiencies greater than 10% [2-4], but these have been for CSS-grown 

CdTe rather than by MOCVD growth used here. 

7.4 Results for Cells with -4 f.lm Thick CdTe 

Absorber 

This section exposes the performances of cells with ~4 J.lm CdTe absorber 

layer from SETS 2 & 3 processed using variable thicknesses of CdCh, annealing 

temperature and time. They were all finished with the nitric-phosphoric etch. First, 

the influence of the post-growth treatment parameters is described followed by the 

analysis of the overall performance and its variations using information extracted 

from the J-V curves and using SEM and EBIC techniques. 

7 .4.1 Influence of CdCb Thickness 

Firstly, the results of varying CdCh thickness while annealing at 420°C for 18 

mm are described. Figure 7-4 shows the working parameters of all the cells 

processed as a function of CdClz thickness. Each point represents data taken from a 

single 2.5 mm gold dot on a ~ 1 cm2 plate. The lines on the plots indicate the upper 

and lower extremes of response and are purely manual fittings, i.e. drawings. 

Variability of the performance arises most strongly from the scatter in the values of 

Jsc obtained. There is considerably less variation in the Vac values (~0.5 V) and the 

fill factor values (~25-35%). However, for the cells with highest Jsc. the efficiency 

was limited by the low fill factor. As the area of the cells were not scribed around the 

gold contact, errors on the short circuit current values might arise but considering the 

number of points plotted this is not likely to be the parameter with the most 

important effect as dots from the same plate gave similar results in most cases. Hence 
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while absolute values shall be subject to a consistent systematic error, the trend in 

processing-performance relationships shall nevertheless be revealed. 
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Figure 7-4 Variation of cell parameters for cells with ~4 J.Lm thick CdTe processed at 
420°C as a function of CdCh layer thickness (SET 2). The lines indicate the 
extent of the scatter of the data. There is great scatter in the Jsc values, but 
the best cells are limited by the fill factor. 

The best cells were obtained for a CdC12 thickness of 20-40 nm which results 

in a power conversion efficiency of ~6%. In all cases the fill factor was affected by 

low shunt resistance and high series resistance and this is explained in section 7.4.4. 

It can be noticed that in some cases the short circuit current densities reach values of 

30 mA/cm2 which is very close to the theoretical maximum calculated for a 

CdTe/CdS solar cell [5]. However, this is unlikely to be true and the high Jsc values 

are due to errors in estimating the active area of the dot contacted cells. 

7.4.2 Influence of Annealing Temperature 

In a second series, the CdCh thickness was fixed at 30 nm while the 

annealing temperature was adjusted from 380 to 500°C for 18 min. The working 

parameters of the cells processed in this series are plotted in Figure 7-5. Trends 
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emerge even though the number of devices is lower than in Figure 7-4. In general, 

higher temperature processing yielded higher fill factors and efficiencies. Despite 

this, the best single devices were made at 420°C. For this series also, it was the 

variation in Jsc that caused the strongest scatter in the data. SEM imaging showed 

that processing devices at higher temperature yielded some shunts in the materials 

(see section 7.4.4). The tendency for shunting was greater at high temperature (75% 

at 500°C) compared to lower temperature (25% at 440°C) for samples used from SET 

2. Shunts were indicated by the absence of short circuit current (Jsc = 0 mA.cm-2
) and 

ohmic behaviour of the response. 
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Figure 7-5 Variation of cell parameters for cells with ~4 J.lm thick CdTe processed 
using 30 om of CdCh as a function of temperature (SET 2). There is 
indication of trend to higher efficiency and fill factor with increasing 
processing temperature. Nevertheless the performance reproducibility is still 
dominated by the variation in Jsc while the best performance is limited by 
lowFF. 
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7.4.3 Influence of Annealing Time 

In a third series of measurements, the CdCb thickness and annealing 

temperature were kept constant at 60 nm and 500°C, respectively while the annealing 

time was varied between 9 and 25 min. Although the previous section showed that 

best results were obtained using a treatment temperature of 420°C, best consistency 

with samples from SET 3 was obtained when processed at 500°C. Working 

parameters of the cells produced are plotted in Figure 7-6. This series of 

measurements used 4 J.lm CdTe thick samples from SET 3 and did not present any 

shunts in the material although SEM revealed degradation of the surface of the CdTe 

with the fonnation of craters that might become shunt paths if the annealing was to 

be sustained. 
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Variation of cell parameters for cells with ~4 j.!m thick CdTe processed at 
500°C using 60 nm of CdCh as a function of annealing time (SET 3). The 
lines indicate the extent of the scatter of the data. There is great scatter in the 
J.,c values, but the best cells are limited by the fill factor. 

The variation of the fill factor does not seem to be influenced by the 

annealing time as its value is stationary around 30%. This time, greater variation is 

observed in open circuit voltage values ( ~0.3-0.6 V). The best values are obtained for 
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a 16-20 min anneal but a better consistency is seen with anneal of 20-25 min. Short 

baking time of only 9 min clearly limits the performance of the devices. Again the 

scatter in short circuit current density values influences strongly the overall 

efficiency of the cell. There seems to be a maximum in performance for a 12 min 

annealing. However, the short circuit current density values measured for this 

particular plate ( 4 dots) were high, higher than the maximum theoretical Jsc value CJsc 

max = 30.5 mA.cm-2 [5]). This again shows the impact of using contact dot devices 

with small area: the active area can easily be underestimated, probably by a factor of 

2 or greater which results in higher short circuit current density and efficiency 

values. 

From the three series of measurements we can try to assess the optimum 

parameters for processing MOCVD CdTe/CdS solar cells via the CdCh route. It was 

found that an evaporation of ~30 nm ofCdCh followed by an annealing at 420°C for 

12-18 min give the best results when followed by the nitric-phosphoric acid etch. 

These findings are similar to those reported by other research groups [ 6-8] who 

optimised post-growth processing parameters for PVD and CSS-grown materials. 

7 .4.4 Limiting Factors for Higher Efficiencies 

It was suggested earlier that the efficiency of the devices is limited by the low 

fill factor. Figure 7-7 shows a scatter plot of the ratio of the efficiency over the open 

circuit voltage as a function of the short circuit current. The entirety of the processed 

samples is plotted regardless of the processing conditions. This confirms that Jsc is 

the greatest cause of cell to cell variability. The slope of this graph multiply by the 

incident light intensity (P;n = 100 mW.cm-2
) gives the average fill factor for the set of 

samples analysed and is FF = 33%. This value is less than the usually reported 

values for CdTe based solar cells [4, 9], and is the cause for underperforming 

devices. 

146 



14 

12 

10 

~ 
u 8 

'::;:.0 

--~ e..- 6 
1::-

4 

2 

0 

Figure 7-7 

Chapter 7- Characterisation of CdClr Treated Solar Cell Devices 
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Scatter plot showing efficiency over open circuit voltage as a function of the 
short circuit current density for all processed devices. It shows the strong 
influence of J.,c on performance. 

Evidence is now exposed about the factors inducing the low fill factor 

observed in the devices prepared. Figure 7-8 a) shows a typical current-voltage curve 

in the dark and under AM1.5 illumination. The cell presented was coated with an 

80 run layer of CdCh then annealed at 420°C for 18 min and followed by a NP etch 

prior to gold contact deposition. The conversion efficiency of this device was 77 = 

3. 7% for a short circuit current density lsc = 19.1 mA/cm2
, an open circuit voltage 

Vac = 0.52 V and a fill factor FF = 38%. 

The quantum efficiency (QE) of this particular device is shown in Figure 7-9 

b). The spectral response exhibits the typical top-hat shape characteristics of a 

heterojunction cell. A small drop is observed at a wavelength of~ 750 run and is due 

to the change of order sorting filter in the spectral response measurement setup. At 

photon energies greater than the CdS bandgap (A.< 520 run), optical absorption in the 

window layer reduces the number of photons penetrating through to the depletion 

region. A similar cut-off is seen at 830 run corresponding to the energy bandgap of 

the CdTe absorber layer. It can be seen that the highest current collection occurs near 
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the CdTe band edge at ~830 run which would indicate the presence of a buried 

junction. Consequently a poor quantum efficiency is seen at the CdS absorption 

edge, about half of the maximum QE. 
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a) J-V curves in the dark (dashed line) and under illumination (solid line) for 
a sample coated with 80 nm of CdCb and annealed at 420°C for 18 min. b) 
Spectral response characteristic of the device. 

Detailed analysis of the room temperature J- V behaviour was carried out to 

characterise the diode behaviour and identify the possible cause of the reduced 

performance of the device. The data are described by a standard diode model with 

the forward diode current limited by Shockley Read Hall recombination states within 

the space-charge region [ 1 0]. This gives a modified single diode equation: 

J = Jo[exp(q(V- JR,)) -1]- JL + ~ 
AkT R,h 

(7-1) 

where J0 is the reverse saturated current, A the diode quality factor, JL the light 

generated current, Rs the series resistance and Rsh the shunt resistance. 

The accurate determination of the diode parameters is known to be difficult 

for thin film solar cells especially under illumination conditions. This is particularly 

true for the determination of A and Rs because (i) both of them have qualitatively 

similar effects on the shape of the J- V curve; (ii) both A and Rs vary with the 

illumination intensity; (iii) there are possible shunting effects, current limiting effects 

and changes in collection efficiency which affect the analysis but are not easily 

quantified. For this analysis it was assumed that Rs and Rsh are constant, i.e. the series 

and shunt terms are ohmic. In addition JL can be voltage dependent, but it is required 

that the light generated current is constant and is approximate to the short circuit 

current (JL = Jsc). 
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To analyse the J-V data Rsh is first determined from the minimum value of the 

slope dJ/dV in reverse bias. Series resistance and diode quality factor are determined 

by differentiation of the diode equation resulting in the relation [ 11]: 

dV = R + AkT 
dJ I q 

1 
__ 1_dV 

R,h dJ 
v 

J+J --
sc R 

sh 

(7-2) 

A linear fit to the plot dV/dJ versus the term in brackets in equation (7-2) yields Rs 

and A from the intercept and the slope, respectively. Finally, when the assumptions 

of constant Rs, Rsh and JL apply, a logarithmic plot of J+Jsc versus V-JRs will give an 

intercept of J0 and a slope of q/AkT. 

Figure 7-9 a) shows the dJ!dV versus applied voltage plots for the device 

presented in Figure 7-8 both in the dark and under AM1.5 illumination. For the cell 

operating in the dark, dJ!dV is constant in reverse bias voltage up to V = 0.3 V. This 

gives a dark shunt resistance of 1060 n.cm2
. When operating under AM1.5 light, the 

plot is more scattered, indicating the voltage dependence of the light generated 

current. The average plot of this graph is linear at reverse bias but voltage dependent 

at forward bias. The equivalent light shunt resistance is 140 Q.cm2
. Strong 

differences between light and dark behaviour are also observed in Figure 7-9 b), 

where dV/dJ is plotted against the function of equation 7-2. The intercepts give a 

series resistance Rs of 2.1 and 6.8 n.cm2 under illumination and in the dark, 

respectively, and the slopes yield a diode quality factor A of 4.4 and 2.4, respectively 

for light and dark conditions. 
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versus V-R.J. Solid lines show the fit to determineRs and A from b), and J0 
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Using the above values of Rs the logarithmic plot of J+Jsc versus V- JRs is 

shown in Figure 7-9 c). Extracted values for J0 were I.6x10·3 and 3.2xl0"1 mA.cm·2 

in the dark and under AM1.5 conditions, respectively. The measured values are 

several orders of magnitude higher than the usually reported values for CdTe solar 

cells [12]. The diode quality factor values obtained from this plot also confirms the 

ones previously derived. The results are summarized in Table 7-3. 

Table 7-3 

2 2 Rsh (Q.cm ) Rs (Q.cm ) 

DARK 1060 6.8 

AM1.5 140 2.1 

A 

2.4 

4.4 

1.6x 10·3 

3.2xl0"1 

Diode quality factor A, reverse saturated current Jo, series R, and shunt Rsh 
resistances in the dark and under AMl.S conditions for the cell presented in 
Figure 7-8. 
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Overall the devices are characterised by low shunt resistance and large series 

resistance and diode quality factor. The reverse saturation current is also high. By 

using the parameters from Table 7-3 and the single diode equation for a real solar 

cell (equation 2-17) Rs, Rsh, A and Jo can be refined to fit the data. This is shown in 

Figure 7-10. A good fit is obtained from this model but not at high forward bias. The 

assumption of a constant light generated current equal to the short circuit current 

clearly does not stand at high forward bias. Also the presence of a voltage dependent 

current collection function could explain this behaviour and the strong differences 

between the dark and light plots of Figure 7-9 and 7-10. The performances of the 

devices were found to be limited by the open circuit voltage and the fill factor. Those 

limitations arise from the poor junction parameters (Rsh, Rs, A, J0). 
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Figure 7-10 J-V curves in the dark and under AM1.5 illumination. The solid lines 
represent the fit to the data using the single diode model for a real solar cell. 
Refined parameters from Table 7-3 are: Dark: R., = 10 n.cm2

, A = 2.9, and 
AM1.5: Rsh = 90 n.cm2 and A= 5.1. 
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Investigation of the influence of the illumination intensity on cell parameters 

is now described. Varying light intensity was possible by the use of neutral density 

filters. An expression for the open circuit voltage for an ideal solar cell was derived 

in section 2.3.3.2. If we assumed the light generated current to be independent ofthe 

bias voltage then equation 2-18 becomes: 

V = AkT ln(Jsc J 
oc q Jo 

(7-3) 

For ideal p-n junctions it can be assumed that A and J0 are constant with 

irradiance, i.e. illumination intensity. Since Jsc is assumed to be linear with 

illumination intensity it follows that the open circuit voltage is proportional to the 

light intensity. The linear dependence of the short circuit current density on the light 

intensity is shown in Figure 7-11 a). The relative Vac of the investigated cell 

normalised to Vac under 100 mW.cm-2 AM1.5 conditions is shown in Figure 7-11 b). 

At an illumination of 1 m W.cm-2
, Vac is 0.332 V still more than 60% of the value 

under standard test conditions. However, the variation of the relative open circuit 

voltage is not strictly linear which indicates that either the diode quality factor or the 

reverse saturation current or both depend on the irradiance. 

The change in diode quality factor with irradiance is shown in Figure 7-11 c). 

Under lower light levels A decreases. According to equation 7-3 this causes a 

decrease in Vac for lower light intensity levels, in the order of 2. This leads to the 

conclusion that A( G) is not the sole determining factor for the irradiance dependence 

of Vac· The value of A is determined by the type of current transport mechanism in 

the solar cell. Typically a value of A = 1 is assigned to an ideal transport across the 

junction according to the Shockley theory, which is diffusion and direct 

recombination. A value of A = 2 is assigned to predominating defect recombination 

via mid-gap states in the space charge region, i.e. Shockley-Read-Hall 

recombination. Values higher than 2 are possible by multiple recombination steps or 

multi-step tunnelling [13]. Hence it seems that a tunnelling transport is the dominant 

transport mechanism for the cell investigated. 
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Since the variations of A do not fully explain the behaviour of Vac(G), it is 

necessary to further investigate the dependency of the dark current J0 on the 

irradiance. This is shown in Figure 7-11 d). J0 increases by 2 orders of magnitude 

over the range of illumination levels used. This is the main cause for a retained 

higher Vac at low light levels. It also indicates that the diode quality of the p-n 

junction suffers from a rising J0, which is possibly due to parasitic currents that 

become rnore important for higher injection. The approximation in equation 7-3 

excludes the influence of shunt resistance, which will become important if Rsh 
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becomes too low. In this case a low Rsh acts like a high J0 and reduces Vac· The 

variation of Rs and Rsh at different light levels are plotted in Figure 7-11 e) and f). 

The series resistance increases smoothly at lower light intensities. The shunt 

resistance of the device also increases more or less linearly with decreasing light 

intensity. The lower value at higher irradiance causes a limitation of the voltage at 

maximum power (Vmp) available in standard test conditions. The increase in Rsh and 

Rs at lower intensities probably results from the high photoconductivity in the CdS 

window layer. 

Evidence for the origin of the cell-to-cell and in-cell variability is now 

presented. The CdTe surfaces of the series of cells processed from SET 2 and 3 in the 

range 380-500°C were examined by SEM, with representative images being shown in 

Figure 7-12. The samples presented were coated with 30 nm CdC}z and annealed for 

18 min followed by NP etch. Also shown in Figure 7-12 is the grain radius 

distribution of the continuous films displayed. At every condition processing at 380-

4200C yielded a continuous film with grains in the range 1-3 j.lm. The structure 

displayed processed at 380°C has a mean grain diameter of 1.08 j.lm, which is the 

same value as for the thicker structures processed at the same temperature range. 

Processing at 440-500°C yielded larger grains (1-8 j.lm) with the sample shown 

having a mean grain diameter of2.74 j.lm. 

However processing at this temperature also interrupted the continuity of the 

films. Some areas of some plates had holes ~ 1 j.lm wide at grain boundaries as shown 

in Figure 7-12 c), while others had large grains but fewer or no holes. Generally the 

tendency for film breakdown was greater for the higher temperatures used. Such 

holes might be expected to give shunts, especially for the high temperature films. 

Shunting of cells from SET 2 was noticed and in proportions such as 75% shunted 

cells at 500°C and 25% at 440 oc. It must be noted that shunting was not observed 

for the thicker structure, 8 j.lm and above even when annealed for one hour. 
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380°C - showing small grains in a continuous film, b) 500°C- the film has 
larger grains and c) 500°C- showing discontinuities in the film. Also shown 
is the grain radius distribution for the processed samples. The solid lines are 
a fit to the data using a Rayleigh distribution function. 
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7.5 EBIC Measurements (Cells with -4 ~m CdTe) 

Cells from SET 2 performing relatively well were characterised using 

electron beam induced current (EBIC) technique. The teclmique was presented 

earlier in section 4.6 and can be performed in three different configurations: front­

wall EBIC when the electron beam irradiates the front part of the solar cell , back­

wall EBIC when irradiating the back surface and cross-sectional EBIC. The latter 

geometry was not used in this work but has previously been applied to CdTe/CdS 

solar cells, see for example [14]. Here EBIC was used to examine the uniformity of 

the cell response and the junction position. 

7. 5.1 Front-Wall EBIC 

Front-wall EBIC was used to probe the non uniformity in a given device, 

using the illumination side geometry or front-wall EBIC. The glass substrate was 

removed as described in section 4.6 and the experimental setup is illustrated in 

Figure 7-13. 

Glass substrate 

CdS 

Gold spot 
contact 

Electron 
beam 

Silver 

+------10 mm -----+ 

Matelect 

to PC-based 
frame grabber 

Figure 7-13 Experimental arrangement used for front-wall EBIC measurements [15]. 

Figure 7-14 shows a front-wall EBIC micrograph recorded at a beam voltage 

of 20 k V. Bright signal levels indicate high collection current while dark levels mark 

lower or no collection current due to recombination or poor junction properties for 

example. The cell presented was processed at 420°C with 20 nm CdCh coating and 
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had a power conversion of ~5%. Considerable contrast can be seen at all length 

scales, especially 20-50 1-1-m and ~5 1-1-m. The origin of the former is unknown, while 

the latter is attributed to grains. 

Figure 7-14 Front wall EBIC micrograph of a cell with 5% efficiency. Bright contrast 
represents high current collection. Performance variation is on the scale of 
- 20-50 ).!m and also on the scale of grains (5 ).!m). Note that the horizontal 
banding is due to electrical noise. 

It can also be stated that the presence of pin-holes might be the origin of some 

of the different contrast levels. Pin-holes may originate from the growth of the thin 

CdS layer but it was also found that pin-hole formation was due to particles located 

at the surface of the substrate prior to growth as will be explained later in section 7.6. 

7.5.2 Variation of Back-Wall EBIC Signal with Beam Voltage 

Back-wall EBIC was used as a tool for investigating the junction position in 

the solar cell. This experiment is known to be difficult to interpret due to the surface 

roughness of the material and the strong absorption that occurs when bombarding 

with electrons (or illuminating with photons) the top layer of the cell [ 16] but it has 

been successfully used by Scheer eta!. with chalcopyrite solar cells [17, 18] . For this 
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study the cells were used as-processed without any polishing or preliminary etching 

apart from the one used for the back contact formation. 

7.5.2.1 Theory and Experimental Procedure 

In an EBIC experiment, electron-hole pairs are generated by electron impact 

ionisation and collected at a rectifying contact. The method is used to determine the 

depth dependent collection function of the structure by measuring the collection 

efficiency of the cell as a function of the beam energy. The charge collection 

efficiency I(Eb) is given by [ 17]: 

(7-4) 

where g(Eb,z) is the generation function for minority carriers at a depth z and for a 

beam energy Eb. F(z) is the collection probability as a function of sample depth z. 

The EBIC lc(Eb) is measured experimentally for different accelerating voltages and is 

correlated to the collection function F(z) by the relation: 

(7-5) 

where Eb is the energy beam, Ib the beam current, Ei the energy of ionisation of the 

semiconductor and f is the fraction of the backscattered electron. 

F(z) is specific to the material characterised and if g(Eb,z) is known, F(z) can 

be found using the experimental I(Eb) and known assumptions about F(z). The 

carrier rate generation function g(Eb,z) also called depth-dose function is modelled 

using Monte Carlo simulation software developed by Napchan and Holt [19]. 

7.5.2.2 Monte Carlo Simulation of Carrier Generation 

The Monte Carlo method is a general technique of statistical sampling 

employed to approximate solutions to quantitative problems. The trajectory of one 

electron or particle through the specimen is calculated using random numbers and 

this is repeated for a large number of electrons in order to give an accurate result of 

the process. The software uses known empirical expressions to calculate the electron 

range and trajectory. Repeating the calculation for thousands of electrons yields 

quantitative information about the rate of secondary electron emission. An example 

of this is shown in Figure 7-15, which shows a 40 keV electron beam bombarding 
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the back surface of a CdTe/CdS solar cell comprising of 70 nm Au, 3.5 f.!m CdTe, 

120 nm CdS, 1 00 run ITO and a thick substrate glass. 

-3600 0 nm -1800.0 nm O.Onm 1800.0 nm 3600. nm 

Figure 7-15 Electron trajectories of 500 electrons simulated with CASINO (20] showing 
the interaction of a 40 keY electron beam with a Au/CdTe/CdS/ITO/glass 
so lar cell via the back-wall. 

In order to fit the experimental EBIC data, simulations using 5 x 104 electrons 

were used to produce the depth-dose functions at the relevant beam accelerating 

voltage. Figure 7-16 shows a selection of depth-dose functions generated for a 20, 30 

and 40 keV beam energy and in back-wall EBIC configuration. It can be seen that 

the rate of carrier generation rapidly decreases due to the absorption in the back 

contact and CdTe layer. 
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Figure 7-16 Depth dependent generation functions for back-wall Au/CdTe/CdS/ITO 
solar cell under electron beams of three different accelerating voltages. 
Functions simulated using Monte Carlo software with 5 x 1 04 electron 
trajectories for each curve. 

7.5.2.3 Experimental Results 

An SEM image and the equivalent back-wall EBIC image are shown in 

Figure 7-17 for a sample processed with 30 nm CdCh at 500°C for 18 min. This 

sample has a power conversion of 5% (Voc = 0.56 V, Jsc = 27 mA.cm-2
, FF = 35%). 

The SEM image reveals the polycrystalline morphology of the CdTe absorber. The 

region presented includes large grains ( 4-5 f.!m) with relatively flat surfaces and 

smaller grained regions forming a roughened surface. The polycrystalline nature of 

the film is also reflected on the EBIC image. Contrast difference between grains and 

grain boundaries is clearly seen and most collection current occurs when the beam is 

at the grain boundaries. This is purely a geometric effect: the grain boundaries are 

thin points in the layer and when the beam is incident at them it excites the junction 

more effectively than when it is at a grain centre. This was demonstrated for CSS­

grown material by Galloway et al. [21]. 
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a) SEM image b) Back-wall EBIC 

Figure 7-17 a) Secondary electron micrograph of the surface morphology of a 5% 
efficient CdTe cell and b) corresponding back-wall EBIC image. Brightness 
of the EBIC image is proportional to the collection efficiency. Images were 
recorded at a beam voltage of 30 kV and a beam current of 72 nA. 

Beam energy dependent EBIC results for the whole area of the Images 

displayed above are presented in Figure 7-18 . It must be noted that the measurements 

were carried out using a widely defocused beam in order to reduce the carrier 

injection density and hence eliminate the possibility of high-injection plasma effects 

occurring. It must be also noted that for the range of beam current used, the EBIC 

gain was independent of the beam current. 

Figure 7-18 a) shows the charge collection efficiency I:(Eb) calculated from 

equation 7-4 as a function of the beam energy. For beam energies smaller than 

20 ke V the electron beam does not penetrate deep enough into the sample for carriers 

to be collected by the junction of the device and no induced current is measured. On 

increasing energy (20-40 ke V) the carrier generation function begins to extend into 

the depletion region of the device, whence the carriers are collected by the junction 

with a higher efficiency. This results in an increase in the induced current detected. It 

is expected that for beam energy greater than 40 ke V the collection efficiency will 

reach a maximum followed by a small decrease or a plateau, but higher beam energy 

could be achieved with the equipment used. However, the charge collection 

efficiency remains low, < 10%, even at high energy electron beams. The reasons for 

this will be explained later on. 

161 



Chapter 7- Characterisation of CdC/2 - Treated Solar Cell Devices 

0.10 
~ 
~ 0.08 

0 Experimental data 
~ 

--- Fit using CF2 0 0 
>-u Fit using CF1 c: 
QJ 0.06 ·u 
lE 
w 
c: 0.04 0 

u 
..91 
0 0.02 
(.) 

QJ 
e> a) 111 0.00 

.s::; 
(.) 

20 25 30 35 40 
Beam energy (keV) 

0.12 
I 

~ 
Au 

CdTe ICdS/ITO 
Ll.. 0.10 
~ 
:.0 0.08 --- CF2 111 
.0 CF1 e 
c.. 0.06 c: 
0 

u 
..91 0.04 
0 
(.) 

QJ 0.02 "' b) e> '--111 
----.s::; 

(.) 0.00 

0 2 3 4 5 

Depth from surface z (11m) 

Figure 7-18 a) Collection efficiency of the CdTe solar cell as a function of the primary 
beam energy. b) Collection functions (CF) which were used for the fit as a 
function of depth. 

Figure 7-18 b) describes the extracted collection function F(z) derived from 

equation 7-5. The data could be fitted with numerous collection functions but only 

two are presented here, CFl and CF2. CFl describes the collection function expected 

for a heterojunction solar cell. It assumes that (i) no collection occurs within the CdS 

and ITO layers due to the small minority carrier lifetime in theses layers; (ii) 

maximum collection occurs within the depletion region located in the CdTe absorber 

layer; (iii) the collection efficiency decreases exponentionally with distance from the 

edge of the depletion region in the neutral region of the absorber layer; (iv) no 

collection occurs in the back contact. This function could well describe the 

experimental behaviour of the EBIC as a function of the beam voltage but only when 
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the no-collection in the back region assumption was extended further into the 

absorber layer (z = 0.7 j.!m). However this is unlikely and other functions were 

investigated. 

CF2 describes the function that can be ascribed to a buried junction. The 

assumptions for this function are as follows: (i) no collection occurs within the CdS 

and ITO layers; (ii) the collection increases exponentially from the CdTe/CdS 

interface; (iii) maximum collection in the depletion region occurs deep into the CdTe 

absorber layer; (iv) the collection function decreases exponentially away from the 

buried junction. The simulation indicated a very narrow depletion width (50 nm) 

located half way through the absorber layer. This collection function is in agreement 

with the spectral response measurements (Figure 7-8) which showed the presence of 

a buried heterojunction. 

Four other collection functions were found to be appropriate to describe the 

collection efficiency of the solar cells investigated and therefore no conclusion 

regarding the properties of the junction could be made. However, more information 

is now known about the EBIC technique. Firstly, it can be seen that few electrons can 

reach the CdTe/CdS interface due to the strong absorption of CdTe and for beam 

voltage less than 25 k V no electron can reach the depletion region. This means that a 

small induced current is measured resulting in a small EBIC gain and charge 

collection efficiency. In this particular experiment less than 1 0% efficiency is 

achieved for an EBIC gain of -400 at a beam voltage of 35 kV. By comparison, for a 

chloride treated CSS cell an EBIC gain of -4000 for a charge collection efficiency of 

90% was measured by Edwards et a!. [22] in front-wall configuration at the same 

beam voltage. Although good contrast is observed in back-wall images, it is 

suspected that the absorber layer of the devices is too thick to allow quantification of 

the induced current Ic(Eb) because electron penetration through the CdTe only just 

approaches the metallurgical interface for a 4 j.!m thick film and at a beam energy of 

25 keV (see Figure 7-16). Therefore to increase the induced current it is necessary to 

prepare specimens with thinner CdTe absorber layer in order to allow maximum 

collection at the junction supposedly located at CdTe/CdS interface. 

Figure 7-1 7 showed that brightness levels were higher at grain boundaries 

than at grain levels suggesting that current collection occurs mainly at grain 
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boundaries. This would be in direct opposition with the fact that one of the effects of 

the CdCh post-deposition treatment is thought to passivate grain boundaries (see 

section 3.4). However, grains boundaries with deeper valleys measured from the top 

surface had even higher brightness levels. This suggests that back-wall image 

contrast is characteristic of the surface morphology of the absorber layer rather than 

the electronic properties of the material. By using a defocused beam in the energy 

dependent EBIC, both the grain boundary and grain centre responses were averaged. 

This made the possibility of a unique fit to a collection function less likely. 

An attempt to quantify the front-wall induced current was done but this was 

unsuccessful due to the geometry of the device processed. The active area consisted 

of one ~2.5 mm diameter gold dot turned out to be too small for the preparation of 

good front-wall EBIC specimens. 

7.6 Influence of CdS Thickness and the ~TO 

Substrate Type 

Each growth run of the SET 3 sample series had a specific window layer 

thickness, i.e. 120, 240 and 500 nm. Devices with 4 J.lm CdTe and with a CdS 

thickness of 120 nm were produced and analysed for various post-deposition 

treatment as detailed in the previous sections. On the other hand, devices with 240 

nm thick CdS layer had limited efficiency (~0.5%) and no photoresponse was 

observed from devices made from structures with 500 nm thick CdS. Figure 7-19 

shows the transmittance spectra of 120, 240 and 500 nm thick CdS layers grown on 

ITO/glass at 300°C. Reduced transmission was observed for wavelengths below 500 

nm for the 120 nm thick layer while the other two layers absorb all the photons. At 

higher photon energies the transmittance decreases with increasing CdS thickness. 

This is due to the low hole lifetime and high recombination that occurs within the 

CdS layer and therefore it is necessary to minimise the CdS thickness. 

The absorption coefficient, a, is given by the relation: 

T = (1- RY exp(- a d) (7-6) 

where T is the transmittance, R is the reflectance and d is the thickness of the film. 

Assuming negligible reflections yield: 
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1 
a= --lnT 

d 
(7-7) 

The absorption coefficient is closely related to the energy bandgap of the material 

studied and is for a direct bandgap material [23]: 

a= _E_(hv- E )X 
hv g 

(7-8) 

where Eg is the material energy bandgap, h v the photon energy and C a constant. 

Therefore a plot of ( ah v)2 versus h v yields the energy bandgap of the film 

investigated at the intercept of the linear portion of the curve with the photon energy 

axis. This is shown in the inset of Figure 7-19 for the three films studied here. In all 

cases, the measured energy bandgap was 2.41 e V which is close to the usual reported 

value for CdS (2.42 eV at 300 K). Figure 7-19 is sufficient in itself to explain the 

influence of thick CdS films on the performance of solar cells. 
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Figure 7-19 Transmittance of 120 nm (solid dark line), 240 nm (dashed-dotted line) and 
500 nm (dashed line) thick MOCVD-grown CdS layers. 

Two different substrates, detailed in section 7 .2.1, were used through the 

course of this work and both gave similar results. Although no experiment was done 

to identify any possible influence of the TCO/glass substrates, they are not the 
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limiting factor in this study as ~4 J.tm devices grown on the two different substrates 

(SET 2 and 3) had similar efficiencies. However, the pre-growth cleaning process of 

the substrate revealed to be of particular concern. Devices from SET 2 used a 

standard cleaning process and when devices were processed at high temperature 

(480-500°C) shunts formed at the CdTe surface, killing the devices. This was not 

observed with devices made from SET 3 and it is thought to be due to the thorough 

cleaning of the substrate. The process involved cleaning in an ultrasonic bath filled 

with deionised water for 10 min followed by refluxing in toluene for one hour [24]. 

This procedure produced much cleaner surfaces and was adopted for growing the 

structures of SET 3. 

Shunts are believed to be created by the removal of the particles ( ~ 10 J.tm) 

present at the substrate surface following cell processing, e.g. device transport 

between the different processing steps are likely to be the main causes. These 

particles are bigger than the layer thickness and their removal before the application 

of the back contact allows direct connection between front and back surface yielding 

short-circuiting paths. These particles also created pin-holes in the window layer and 

pin-holes can be an important factor of reduced performance of the devices. Indeed, 

it was demonstrated by McCandless et al. [25] that 1% of fractional area of holes in 

the CdS film would reduce the open circuit voltage by 300 m V and would therefore 

increase the diode current (J0) by several orders of magnitude resulting in a reduced 

fill factor. 

7. 7 Discussion 

CdTe/CdS solar cell structures grown by MOCVD were CdCh-treated and 

characterised by means of current-voltage and microscopy measurements. It was 

demonstrated that the power conversion of the solar devices is dependent on the 

thickness of the two semiconductors. Only structures with a 4-6 J.tm thick CdTe 

absorber could be processed into efficient solar cells. Processing cells with absorber 

layer thickness of 2-3 J.tm and 8-12 J.!m resulted in inefficient devices. Among the 

devices with 4-6 J.tm thick CdTe, only structures with 120 nm thin window layer 

were efficient. It is concluded that the 2 J.tm thin structures did not survive the post­

deposition treatment conditions. On the other hand, the reasons of failure of the 8-
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12 1-1m devices remain unclear. It is suggested that the poor conductivity of the 

absorber layer may be the cause of these results. Low conductivity arises from the 

fact that the CdTe layer presented non-columnar grains, and therefore the conduction 

is limited by the high density of grain boundaries. 

However, solar cell devices were produced and the influence of the post­

growth treatment conditions was demonstrated. Best devices were made with cells 

processed at 420°C for 18 min with 30 nm of CdCh. This is in good agreement with 

other work published [26-28]. During the CdCh heat treatment of MOCVD-grown 

CdTe/CdS solar cells, significant recrystallisation of the absorber layer occurred. 

This grain growth is temperature dependent and also slightly dependent on the 

material thickness. While no significant recrystallisation was observed for the thin 

structure treated at relatively low temperature (360-400°C), thicker devices had grain 

growth occurring from 380°C. Increasing the temperature to 500°C yielded an 

increase in the average crystallite size by a factor of 2.5 compared to 380°C. 

However, for the thickest devices (8-12 1-1m) recrystallisation was more limited, with 

grain sizes increasing by a factor of~ 1.8 between 420°C and 500°C. The absence of 

recrystallisation for the thinner structures is due to the fact that the cells examined 

were grown at 400°C and the treatment performed at temperatures below the growth 

temperature cannot provide significant energy for the driving forces of 

recrystallisation of the absorber layer. 

The CdCh treatment was shown to improve the cell performance. Significant 

improvements were observed for treatment temperatures of 420°C and above with 

the best results obtained at 420°C. As the largest crystallite size was obtained for the 

highest processing temperature this indicated that grain growth of the small-grained 

absorber layer is necessary but only to a certain extent for producing efficient devices 

and that other phenomena induced by the CdCh treatment are to be considered. The 

apparition of holes at the grain boundaries observed on samples treated at higher 

temperatures (Figure 7-12) may be one of them: at high annealing temperature, the 

CdTe starts to disintegrate and the etching step accentuates this, yielding intergrain 

gaps. Best devices were achieved for limited CdCh thickness (~30 nm) and 

increasing this reduced the device perfor~ance. This may be due to (i) the doping 

limit of chlorine in CdTe being reached. Because the solubility of CdCh in CdTe is 
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low [29], the grain boundaries are rich in CdCh and hence there is a gradient of 

electrically active species near the grain boundaries [30]; (ii) it is also well known 

that the addition of chlorine in CdTe can produced highly restive CdTe crystals [31, 

32]. This is also true for the layers used in this work as reported in Chapter 5. This 

would seriously affect the conduction in the absorber layer. 

The study of dark and light current-voltage characteristics showed that 

devices had poor junction parameters affecting mainly the open circuit voltage and 

fill factor. Low shunt resistance, high series resistance, diode quality factor and 

reverse current were measured. The high series resistance values arise firstly from 

the resistivity of the TCO and active layers but also possibly from potential barriers 

located at grain boundaries in the absorber layer and at the back contact junction. The 

high reverse current indicates a low carrier lifetime and the high diode factor 

suggests that the tunnelling transport mechanism is dominant in the devices. A 

tunnelling transport mechanism would be promoted by the presence of a barrier 

located either near the front or back contact [33]. Under low light intensities the 

diode factor decreased to A~2 indicating a change in transport mechanism 

corresponding to a junction dominated by defect recombination via mid-gap states in 

the space charge region. This excess forward recombination current is responsible for 

the high diode factor and is mainly due to the polycrystallinity ofthe layers [34]. The 

presence of a buried junction was supported by quantum efficiency measurements 

which revealed the presence of such an interface. Although this could not be 

confirmed by EBIC measurements, it was not disputed, as a collection function 

corresponding to a buried junction could fit the data recorded in back-wall 

measurements (Figure 7 -18). 

Front-wall EBIC imaging showed the important variations of collection 

efficiency at the junction especially at a grain level. This was illustrated by strong 

variation of the image contrast on a grain scale (Figure 7-14 ). The grain to grain 

contrast variations are caused by changes in recombination and/or collection 

efficiency. The recombination rate at the interface may be position dependent in the 

substrate plane due to variations in the density of point or structural defects from 

grain to grain. The depth position of the electrical junction may vary and also be 

position dependent. This would also cause different levels of contrast on an EBIC 
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image. The position of the junction depends on the abruptness of the metallurgical 

interface and the doping concentration on the two sides with variations in 

concentration impurity influencing this. Grains with a shallower junction will 

therefore collect more beam-generated carriers, yielding an increased induced 

current. 

7. 8 Conclusion 

The activation of solar cells grown by MOCVD using a CdCh post-growth 

treatment was studied extensively using 200 trial dot-contacted devices. The process 

was successfully applied to MOCVD-grown CdTe/CdS structures and results showed 

an increase in performance from the as-grown state to the treated state by a factor of 

-10, from -0.3 to -6%. The devices are limited by their junction parameters and the 

type of transport mechanism characterising these structures. Also there are definite 

concerns about the as-grown performance which are very low (17- 0.5%). 

One of the main findings of this study is that the performances are dependent 

on the thickness of both CdS and CdTe layers. Efficient devices could only be 

produced using -4 f.!m thick CdTe coupled with a 120 nm CdS window layer. Other 

structures were inefficient. A set of optimum post-deposition heat treatment 

parameters were derived for the samples investigated and the most efficient devices 

were produced using a 30 nm CdCh layer followed by an 18 min annealing at 420°C. 

The cell parameters were 17 = 6%, Jsc = 30 mA.cm-2
, Vac = 0.595 V and FF = 35%. 

The short circuit current density was the cell parameter that was most affected by the 

changes in the post-deposition heat treatment. 

The performances of the devices were limited by the low fill factor arising 

from low shunt resistance and high series resistance and diode quality factor: shunt 

resistances of 1060 and 140 n.cm2
, series resistances of 6.8 and 2.1 n.cm2 and diode 

factor of 2.4 and 4.4 were derived from J- V measurements for a 5% efficient device 

in the dark and under illumination, respectively. The junctions of efficient devices 

were investigated using spectral response and EBIC measurements. Maximum 

quantum efficiency was recorded near the CdTe band edge indicating a buried 

junction. Analysis of the variations of the back-wall EBIC confirmed that maximum 

collection efficiency occurred in the absorber layer and not at the metallurgical 
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junction. This indicates that the devices are characterised by high recombination 

losses and high reverse saturation current densities (Jo = 1.6x 10"3 mA.cm -2 in the 

dark). 

In order to assess the reason why thick devices (8-12 )..tm) were not 

performing, structures with different thicknesses were examined using impedance 

spectroscopy in order to gain in-depth information about the device junction and this 

is outlined in the next chapter. 
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Chapter 8 

AC Impedance 
Measurements 

8.1 ~ntroduction 

It was demonstrated in Chapter 7 that the low performance of CdTe/CdS 

solar cells grown by MOCVD is linked to the thicknesses of the two semiconductors. 

Influence of the window layer thickness is generally understood in terms of low 

minority carrier lifetime and high recombination rate occurring in the CdS layer. 

However, the reason that efficient devices (17 2':5%) produced only from structures 

with ~4 IJ.m thick absorber layers remains unclear. It is understood that thin absorbers 

(2 IJ.m) cannot sustain the post-deposition conditions employed in this work but on 

the other hand the reasons for the failure of structures with thick absorber (12 !J.m) 

are still unproven. The polycrystalline nature of the CdTe layers used (they have 

small non-columnar grains) and their very low conductivity seem to be the main 

reason. However, junction phenomena cannot be ruled out and this is the subject of 

the investigation in this chapter where they are studied by means of small AC signal 

spectroscopy. 

Impedance analysis is a powerful tool for investigating the electrical 

properties of specimen of almost any kind. Impedance measurements enables a 
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qualitative analysis of the electric behaviour leading to an equivalent circuit model 

for the sample under investigation and quantitative contributions of the respective 

circuit elements to the overall impedance can be determined. Impedance analysis can 

also be used as a tool for investigating deep impurity levels, i.e. impedance 

spectroscopy [1], and ideally can allows the determination of the energy, carrier 

capture cross section, concentration, and spatial profile of each electrically active 

defect. Alternating current impedance spectroscopy has been widely used to analyse 

electrolytic solutions in order to gain separate information about cathode and anode 

reactions [2]. The technique has also been developed for the analysis of solid 

electrolytes and solid materials in general. It is capable of distinguishing between 

bulk, grain boundary and sample-electrode interface effects. Particular interest for 

solar cells is the extraction of complex, real and imaginary capacitances 

characteristic of the p-n junction. Parallel analysis and correlation can also be made 

with capacitance-voltage measurements. 

It is necessary, at this point, to stress to the reader that this chapter is not an 

extensive or complete impedance spectroscopy study but comes as complement to 

support the investigations presented earlier and should be viewed as a way of further 

understanding the CdTe/CdS thin film solar cell. 

8.2 Theoretical Approach 

Impedance spectroscopy enables the determination of the frequency 

dependence of the real and imaginary parts of the impedance. This technique is 

equivalent to admittance spectroscopy as both quantities are closely related as will be 

shown next. Using a suitable electrical circuit model, real and imaginary parts can 

then be translated into physical properties such as capacitance and conductance. The 

technique was first developed by Losee [3] and has several times been applied to 

CIS-based devices [4-6]. The technique has also recently been applied to CdTe/CdS 

solar cells by Gilmore et a!. [7]. 

The impedance Z* is defined by: 

Z* = V * = V,,1 sin(mt) = Z'+ JZ'' 
I* Imsin(mt+<p) 

(8-1) 
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where * denotes the complex nature of the measurement, m is the angular frequency 

of the applied voltage, V* is the time (t) dependent voltage, Vm is the amplitude of the 

applied signal. /* is the resulting current through the sample with Im its amplitude 

and rp the phase shift with respect to the input voltage. Z' denotes the real part of the 

impedance and Z'' the imaginary part. Similarly the admittance is defined as: 

Y* = -
1
- = Y'+ jY'' 

Z* 

From Z* and Y* "series" and "parallel" terms are identified: 

Series resistance: R, = Z' 

Parallel resistance: RP = __!_ = _!_ 
Y' G 

S . . c 1 enes capacitor: , = --
. m Z" 

Y" 
Parallel capacitor: C P = - = C 

(/) 

(8-2) 

(8-3) 

(8-4) 

(8-5) 

(8-6) 

where G and C will be referred as the conductance and the capacitance of the device 

from this point. 

Figure 8-1 Schematic of the standard model used for admittance spectroscopy of CdTe 
based solar cells [8, 9]. 

The basic standard electrical model of a solar cell used for impedance 

spectroscopy analysis is shown in Figure 8-1 [8, 9]. This model consists of a single 

diode (and assumes an ohmic back contact), of capacitive and conductive elements 

Cd and Gd in parallel. The diode is coupled in parallel with series connected 

capacitance and resistance elements, C1 and R1• These account for the deep level 

176 



Chapter 8 - AC Impedance Measurements 

(trap) response to the applied oscillating voltage. A senes connected resistor Rs 

accounts for the resistance of the layers. 

Using thermal impedance spectroscopy it IS possible to determine the 

activation energy, density of states and capture cross section of deep trap levels due 

to their contribution to the total capacitance of the system. As the frequency 

modulation of the input AC signal changes, the trap capacitance C1 will also change, 

decreasing for frequency OJ greater than the trap characteristic frequency OJr and 

increasing for w1 < OJr [ 4, 5]: 

1 
cl oc 2 

l+(iruJ 
(8-7) 

where OJ is oscillation frequency of the input signal, OJ1 is the characteristic frequency 

for the defect and Cr is the trap contribution to the total capacitance. 

The trapping and detrapping of deep levels generated by small AC signals 

occurs at the characteristic frequency OJr and is given by the relation [9]: 

OJ1 = 2v0 exp(- :~) (8-8) 

(8-9) 

where k is the Boltzman constant, T is the temperature, v0 is the "attempt-to-escape 

frequency", Nv is the effective density of states in the valence band, ap is the capture 

cross section for holes, Vrh is the carrier thermal velocity and E1 is the defect energy 

level above the valence band. The capture cross section is assumed to be temperature 

independent whereas Nv and Vrh vary as function of T 312 and T112
, respectively. 

Rearrangement ofEquation 8-8 yields: 

E 
lnOJ1 = ln(2v0 )- -

1 

kT 
(8-1 0) 

Therefore an Arrhenius plot of the natural logarithm of the characteristic frequency 

OJr divided by Y. (to account for the temperature dependence of N v and v0) versus the 

inverse temperature yields the determination of E1 and v0 from the slope and 

intercept ofthe graph, respectively. 
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It is then easy to extract the capture cross section for the deep level 

investigated using Equation 8-9 and calculated values of N v and u1h [ 1 0]: N v = 

1.8x1019 cm-3 and u1h = 1.3xi07 cm.s-1
. Finally, the determination of the defect 

density of states Nt(Ecu) from thermal admittance spectroscopy is possible and has 

been performed by Walter eta!. [6] for a n-i-p and n + -p junctions. It was shown that 

for an n+-p junction which corresponds closely to the band diagram of a CdTe/CdS 

solar cell: 

(8-11) 

where V6i is the built-in voltage, xd is the width of the depletion region, Eg the energy 

bandgap. Similarly, an expression can be derived from the conductance G using the 

relation between conductance and capacitance [11]: 

o/ G(E,m)= -C(E,m) 
(l)l 

and therefore: 

8. 3 Experimental Details 

(8-12) 

(8-13) 

Two CdTe/CdS structures processed and presented in the previous chapter 

were selected for impedance spectroscopy studies. Sample A was a 4 ~m CdTe/120 

nm CdS structure grown on an ANTEC substrate and sample B was a 12 ~m 

CdTe/120 nm CdS structure grown on a MDT substrate. Both structures received 

similar post-deposition heat treatment comprising the deposition of a 40 nm CdCh 

layer followed by annealing for 18 min at 420°C and both were finished with the 

nitric/phosphoric acid etch. Sample A had a power conversion of 5% while sample B 

exhibited no significant photoresponse. The J- V curves of these samples recorded 

under AMI .5 illumination are shown in Figure 8-2. 
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Current-voltage curves recorded under AM1.5 illumination for the two 
samples used in this chapter. 

Impedance measurements were performed using a Solartron 1260 Frequency 

Response Analyser (FRA) and a 1296 dielectric interface. The 1260 FRA supports 

frequencies varying from 10 J..I.HZ to 32 MHz for sample impedances between 

1 00 mQ and 1 00 MQ. The use of the dielectric interface reduces the frequency range 

(10 mHz-10 MHz) but allows ultra low current to be driven through the sample 

making it possible to analyse specimens with impedance over 100 TQ. The 

amplitude of the AC signal was 20 m V for frequencies from 1 Hz to 1 MHz at ten 

values per decade. For thermal admittance measurements, the samples were mounted 

in a low vacuum cryostat with a closed cycle cooling/heating system by Janis Inc. 

The sample temperature was varied in 5K steps between 30 and 350 K using a 

Lakeshore temperature controller. 

8.4 Thermal Admittance Results 

The frequency dependence of the device capacitance C(f) and the 

contribution of traps to the device conductance G(f) for different temperatures are 

displayed in Figure 8-3 for samples A. To separate the contribution of traps to the 

conductance, the DC conductance determined at low frequencies was subtracted to 
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the measured values. This accounted for leakage currents that would increase the 

conductance. 

!;: 
(..) 
Q) 
0 
c 
11) --~ 
0. 
11) 

(..) 

~ 
c 
11) 

ts 
:::J 
"0 

4e-9 

3e-9 

2e-9 

1e-9 

0 

1e+2 1e+3 1e+4 
Frequency (Hz) 

1e+5 

t.T=20 K 

a) 

1e+6 

b) 

§ 1e-10 
(..) 

"0 
Q) 

.!!! 
ro 
E 
0 z 

Figure 8-3 

1 e-11 +---t--t---t-jl-++++r--+-+-+-+-++++r---+-+-+--l-++++r--+-+-+-+-+-1-++f 

1e+2 1e+3 1e+4 1e+5 1e+6 
Frequency (Hz) 

Temperature dependent admittance measurements (20 K steps) on sample A. 
a) frequency dependence of the capacitance, b) frequency dependence of the 
trap contribution to the device conductance. 

It can be seen that the shape of the capacitance curves depends strongly on 

temperature and frequency (Figure 8-3 a). At low temperatures (30-130 K), the 

capacitance falls off from a low frequency value of 0.8 nF after the first decade of 

frequency. The cut-off frequency lies initially at 500 Hz and increases with 
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temperature. For this range of temperatures, the capacitance curves are converging at 

high frequency to a value of ~0.15 nF. For higher temperature (T > 130 K) a strong 

decay in capacitance occurs already at low frequency and is more pronounced as the 

temperature increases. The curves also seem to be converging at high frequencies. 

The capacitance on the low frequency side of the plots is fairly constant at low 

temperature (30-130 K). This is interpreted as the depletion capacitance of the p-n 

junction. At higher temperatures, deep levels make the main contribution to the 

capacitance. This is indicated by the strong dependence of C on both temperatures 

and frequencies. 

The conductance is also frequency and temperature dependent (Figure 8-3 b). 

A peak is observed for each curve corresponding to the presence of a defect. 

However, it can be seen from the figure that inaccuracies in the determination of the 

DC conductance have a large impact at low frequencies of the spectra indicated by 

the curves bending upward. This is because at low frequencies the conductance is 

oscillating around a minimum value and the exact determination of this minimum is 

difficult and yields errors which are embedded at low frequencies. 

The low temperature (T < 130 K) capacitance step (Figure 8-3 a) is attributed 

to the freeze out of the free carriers [5]. Because the main contribution to the 

capacitance is the depletion capacitance caused by the swing of the free carriers at 

the edges of the space charge region, at low temperature, the free carriers are moving 

too slowly to compensate the electric field of the applied AC voltage. 

Due to the Kramers-Kronig relations [12], the same information is comprised 

in the real and imaginary part of the admittance and is independent of the way the 

spectra are displayed. The Arrhenius data was derived from the capacitance and the 

normalised conductance spectra. In the first case, the cut-off frequency is yielded by 

the minimum of the derivative mdC/dm and in the second case by the maximum of 

the (G(m)-G0 c)/m curve itself. Due to the broad defect distribution in CdTe-based 

cells, the extremes are not very pronounced, but relevant information was extracted 

and is plotted in Figure 8-4. It can be seen that both extraction technique gave similar 

results. 
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Arrhenius diagram using data extracted from C(w) (6) and (G-GDc)lw (0) 
spectra of sample A. 

However, from this data an attempt-to-escape frequency and activation 

energy of the defect cannot be extracted as the slope of the graph is positive and 

Equation 8-11 require a negative slope. This can be anticipated by looking closely at 

the conductance plots of Figure 8-3 b): the peak position changes only slightly with 

temperature. Therefore the subsequent defect density of states could not be 

estimated. This anomalous behaviour has also been observed on CdTe/CdS solar cell 

provided by ANTEC by Proskuryakov [13] who studied the influence of the 

nitric/phosphoric etching time on the admittance plots. The cells studied had about 

the same efficiency as sample A (17 ~ 6%). But the anomalous Arrhenius plot 

behaviour was found to be a function of the CdTe etching time: it occurred following 

etchings of 20 s or longer. However, to date, this behaviour is not fully understood. 

Other authors [6, 14] have suggested that the temperature dependencies of v1h and Nv 

can be neglected. Using this assumption, the plot of OJ versus 1/T is a straight line 

and the slope is negative yielding a value of 6.4xi04 s- 1 for v0 and 21 meV for £ 1. 

This would give a hole capture cross section of O"p = 3.7xi021 cm2
. It is evident that 

those values are not characteristics of deep levels and that the above assumption 

cannot stand in the present case. 
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Temperature dependent admittance measurements (20 K steps) on sample B. 
a) frequency dependence ofthe capacitance, b) frequency dependence ofthe 
trap contribution to the device conductance. 

Capacitance and conductance spectra for sample B are presented in Figure 

8-5. The shape of the curves is noticeably different for those of sample A (Figure 

8-3). The conductance curves decrease monotonously when the frequency is varied, 

with no inflection point apart from the ones at the extremities of the spectra, these 

being due to uncertainties on the estimation of the DC conductance. No drop-off can 
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be seen on the capacitance spectra and no peak was found when calculating the 

derivative of the curves. For temperature range 110-210 K the capacitance varied 

little with frequency, while it decreases continuously at higher temperatures. The 

derivative plot of the capacitance did not reveal the presence of any inflection points. 

Compared to sample A, the capacitance and conductance curves of sample 8 are 

more converging at high frequencies. According to Kneisel et al. [4], this would 

indicate higher series resistance of the solar cell. Effectively, the dark and light 

resistances measured across the structure were 100 times higher for sample 8 and 

this can be seen on the Z' -Z" plots shown in Figure 8-6. The amplitude of both the 

real part and imaginary part of the impedance is two orders of magnitude greater for 

sample B. 
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Figure 8-6 
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Nyquist plots (Z" versus Z') of sample A and B measured at room 
temperature in the dark (0) and under AMI.5 illumination (L:.). 

One of the uses of AC measurements is to find a suitable equivalent circuit 

model to describe the behaviour of the impedance. Modelling the data of Figure 8-6 

using the electrical circuit of Figure 8-1 proved unable to describe the variations of 

the impedance with frequency either in the dark or under illumination. Although the 

data recorded under illumination could be fitted with a semi-circle representing a 

parallel RC sub-circuit in series with a resistor, this model could not be applied to the 

data recorded in the dark. In this case, the shape of the Nyquist plot depends on the 

sample as can be seen in Figure 8-6. For sample A, the shape of the Z"-Z' plot is 

similar to that representing a double semi-circular diagram. This would be 

characteristic of double RC sub-circuits in series with a resistor, a model that is 

usually applied to describe the current-voltage and capacitance-voltage 
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characteristics of CdTe/CdS solar cells [ 15]. This model was, however, not 

applicable to sample B. It is therefore necessary to find a suitable electrical model 

capable of describing simultaneously the behaviour of the devices under different 

light and bias conditions, and the use of a more advanced model is required. It has 

been shown in the case of dye-sensitized solar cells that the electrochemical 

behaviour of the device can be described using a transmission line-based model [ 16, 

17] and it is thought that such a model could also be suitable to describe the 

performance of CdTe/CdS thin film solar cell. This would require further 

investigations and this is beyond the scope of this work. 

8. 5 Conclusion 

In this chapter, the use of impedance (or admittance) spectroscopy for the 

characterisation of CdTe/CdS solar cell has been documented. From thermal 

admittance measurements, the usual behaviour of solar cell (with conventional 

thermally activated behaviour described by an Arrhenius plot with a negative slope) 

as observed in references [ 4-6] has not been detected in this study. The efficient 

device (sample A) investigated here showed anomalous Arrhenius behaviour that has 

been attributed to a contribution from the etching step required in processing devices. 

It is possible that the etching produced semi-metallic leakage paths that act to change 

the junction response under AC stimulation. It was therefore not possible to extract 

trap energies from the data. In the case of sample B, a thick and inefficient solar cell 

structure, the classic capacitance and conductance plots were not observed, and this 

is thought to be due to the high resistivity of the absorber layer. Modelling of Z "-Z' 

response using simple equivalent circuits was unsuccessful. This indicates that the 

materials have a complex response, and that its description by the transmission line 

models used for dye sensitised solar cells may meet with more success. 
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Conclusions 

9 0 1 Summary of Conclusions 

This thesis has documented the use of MOCVD for the growth of thin film 

materials for use in solar cells. In particular, this work was concerned with the 

characterisation of CdTe thin films doped with arsenic, and of CdTe/CdS solar cells 

following the post-deposition heat treatment with cadmium chloride. For 

characterisation purposes, some new experimental techniques were set up and some 

specific designs were implemented in order to facilitate their use. Also control 

programs were written in some cases for data acquisition. 

At first, in Chapter 5, this work focussed on the electrical and structural 

characterisation of in situ arsenic doped MOCVD-grown CdTe thin films on 

sapphire. The initial objective was to provide a high conductivity p-type CdTe films 

for solar cell applications. The organometallic precursors used for the growth of 

CdTe:As layers were dimethylcadmium (DMCd), di-isopropyltelluride (DIPTe) and 

dimethylamino arsine (DMAAs). It was demonstrated that for a growth temperature 

of 400°C the arsenic concentration in the films is dependent on the tellurium to 

cadmium precursor partial pressures ratio (VIlli ratio) in the growth ambient. Hence 

it can be controlled by varying the VIlli ratio. Arsenic concentrations as high as 

2xl0 19 at.cm-3 were measured by SIMS for a cadmium rich growth (VIlli ratio of 

0.73). However, it was observed that the lateral resistivity of the films increased 
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accordingly with increasing arsenic incorporation. Minimum resistivity of 200 n.cm 

was obtained for an arsenic concentration of2xi0 18 at.cm-3 at a VIlli ratio of0.95. 

The low conductivity is thought to be due to the formation of [V cct-Asre] complexes 

and [Ascctt donors due to the low solubility of As in epitaxial CdTe films (-2xl0 17 

at.cm-3 when using arsine as the dopant species) but also due to the polycrystallinity 

aspect of the CdTe films. The high density of grain boundaries and the very likely 

incorporation of As at them would yield very resistive layers. The growth of CdTe 

films onto sapphire substrates is characterised by a lattice under compressive stress 

and a small grained structure (grains are -1 00 nm) with dopant incorporation having 

almost no effect on the structural properties of the specimens. Structural analysis of 

the layers showed that the higher growth temperatures (350-400°C) favour the [Ill] 

preferred orientation compared to growth at 320°C, which favoured a random 

orientation of the crystallites. The achieved resistivity of the CdTe films (200 Q.cm) 

shows that in situ arsenic doped CdTe films grown by MOCVD can provide suitable 

absorber layers for solar cells if the carrier concentration can be increased beyond 

1015 cm-3
. However, since the in situ doping could not provide the required films 

properties - high conductivity (a; < 10-2 S .em -I) and high carrier concentrations (p > 

1018 cm-3
) - suitable for solar cells with tunnel junction, undoped CdTe/CdS 

structures were activated using the more widely used CdCh post-growth heat 

treatment. 

Chapter 6 discussed the microstructure of the absorber layers with regard to 

the growth parameters and post-deposition heat treatment conditions. Growth rate, 

grain size and crystallographic orientation were found to be dependent on the 

position of the substrate along the susceptor block, this being due to the gas phase 

precursors' consumption. When the substrate was positioned closer to the gas inlet 

side of the reactor, the growth rate and the degree of [Ill] preferred orientation 

increased with respect to the usual centre position on the heater block. When the 

substrate was sited away from this inlet position, the growth rate decreased 

significantly and the films became more [422] oriented. It was also found that the 

grain sizes develop significantly slower compared with films grown by other high 

temperature techniques. Indeed for the MOCVD films studied grown at 350°C, the 

grains increase at half the rate as they do in CSS-grown materials. 
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The influence of the post-deposition heat treatment with and without CdCh 

was studied for structures with 8-12 !Jill thick absorber layers. When heated without 

CdCh (12 !Jill thick layers, film nearly completely [Ill] oriented, original grain size 

of~ 1 !Jill) little grain growth, defined as the general uniform expansion of grains, 

was observed for treatment temperature ranging between 360 and 500°C. However, 

for high annealing temperatures and/or times, strong morphological changes were 

observed as CdTe grains coalesced together leading to a non-uniform surface and 

eventually the films started to evaporate. When treated with CdCh (8 !Jill thick 

layers, film slightly less [Ill] oriented, original grain size of 0.7 !Jm), the film 

surfaces appeared to be smoother with rounded grain surfaces and grain growth was 

measured. There was a significant increase in grain size following the first 5 min of 

annealing ( 1.1 !Jill at 440°C) and then the grains were still growing for annealing 

times up to 30 min (1 !Jill at 400°C and 1.3 !Jill at 440°C). The grain growth was 

enhanced for higher treatment temperatures and followed the parabolic grain growth 

law described by Burke and Turnbull's (section 6.5.2). Grain growth exponents of 4 

and 7 were derived for samples treated at 400°C and 440°C, respectively. Devices 

with 12 !Jill thick CdTe also showed grain growth when processed with CdCh and 

therefore it is concluded that the CdCh flux is necessary to promote grain growth. 

Following treatment, with or without cadmium chloride, the films lost their [Ill] 

preferred orientation and became more [ 422] oriented. The annealing step also 

reduced the in-plane stress in the films. 

The performances of CdCh-treated MOCVD-grown CdTe/CdS were 

investigated using light and dark current-voltage and SEM/EBIC measurements 

(Chapter 7). The successful activation of the structures was dependent on the 

thickness of both semiconductors. When window layers thicker than 120 nm were 

used, it was not possible to produce efficient devices. It was necessary to reduce the 

thickness of the CdS window layer to minimum probably due to the low hole lifetime 

and high recombination rate occurring in CdS thin films. As for the absorber layers, 

it was only possible to process efficient devices using ~4 !Jill thick structures. 

Thinner cells (~2 !Jm) were inefficient because the layers did not survive the post­

deposition heat treatment conditions employed for processing devices. On the other 

hand, thicker devices (8-12 !Jill) also produced solar cells exhibiting no 
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photoresponse. The junctions of efficient devices were investigated using spectral 

response and EBIC measurements. Maximum quantum efficiency was recorded near 

the CdTe band edge indicating a buried junction. Analysis of the variations of the 

back-wall EBIC confirmed that maximum collection efficiency occurred in the 

absorber layer and not at the metallurgical junction. 

However, solar cell devices were produced and the influence of the post­

deposition CdCh heat treatment was demonstrated. The influence of the CdCh layer 

thickness, annealing temperature and time on the cell parameters was studied on 

some 200 solar cells. The short circuit current density was the cell parameter that was 

most affected by changes in the post-deposition treatment conditions. The 

performances following this treatment were increased by an order of magnitude 

compare to the untreated structures. Best devices, with efficiency up to ~6% (Jsc = 30 

mA.cm-2
, Vac = 0.595 V, FF= 35%), were made with cells processed at 420°C for 18 

min with 30 nm of CdCh. It is again reminded that the collecting area of every 

devices might have been underestimated by a factor of two or greater yielding 

therefore an overestimated short circuit current. Generally, the solar cells had low 

efficiency and were limited by the low fill factor (35 %) arising from low shunt 

resistance and high series resistance and diode quality factor: shunt resistances of 

1060 and 140 n.cm2
, series resistances of 6.8 and 2.1 n.cm2 and diode factor of 2.4 

and 4.4 were derived from J- V measurements for a 5% efficient device in the dark 

and under illumination, respectively. Therefore devices were characterised by high 

recombination losses and high reverse saturation current densities (J0 = 1.6x 1 o-3 

mA.cm-2 in the dark). The limited performance of the solar cells processed could 

originate from the post-deposition treatment itself, as from the strong changes that 

accompany the processing: stress relief and grain growth can promote perforation of 

the films leading an increase in leakage current. 

The reasons of failure of 12 flm thick devices were explored using alternative 

current impedance measurements and compared with a 4 flm thick 5% efficient 

device (Chapter 8). Impedance spectroscopy applied to the 4 flm structure revealed 

an anomalous Arrhenius behaviour thought to be a consequence of the processing 

etching step. No defect information could be deduced from the measurement applied 

to the 12 flm thick cell. This is thought to be originating from the poor conductivity 
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of the absorber layer characterised by an overall small grain size and non columnar 

grains. Indeed, the resistances measured across the structures were 1 00 times higher 

for the thicker cell compared to the thinner one. Analysis using simple equivalent 

circuits proved unsuccessful indicating the complex response of the materials. 

This thesis has documented on the possible opportunities offered by the 

MOCVD technique for the growth of CdTe/CdS thin film solar cells. It has been 

shown that a moderate doping level of CdTe with As could be achieved. This could 

provide a new route for doping the active region of CdTe-based solar cells if the 

carrier concentration could be increased to 1015 cm-3 and beyond. However, the 

fabrication of a tunnel junction requires an extremely high carrier concentration and 

this has not yet been achieved. The CdCb post-growth processing applied to 

MOCVD-grown CdTe/CdS structures has been extensively explored. However, if 

MOCVD is to play an important role in the development of CdTe/CdS solar cells, 

improvements and further understanding must be achieved if it is to compete with 

other well established techniques such as CSS. 

9. 2 Suggestions for Future Work 

Further to the work describe in this thesis, a number of questions remain and 

more studies are needed in order to further develop the investigated work. 

• The effectiveness of the post-deposition treatment of CdTe/CdS hi-layers 

could be questioned. The process used in this work should be tested with structures 

that have proved to be suitable for high efficiency devices. Due to the many steps 

involved in the procedure, improvements can be expected. 

• It seems that the conductivity of the absorber layer remains one of the main 

issues limiting the progress of MOCVD-grown CdTe/CdS thin film solar cells. For 

this, more investigations of the film conductivity in the thickness direction are 

required with and without dopant incorporation. This would help in understanding 

the effect of non columnar grains that seem to characterise the layers investigated. 

• Finally, the use of impedance spectroscopy introduced in this work should be 

further researched. Finding a suitable model and correlating the results with current­

voltage but also quantum efficiency measurements is essential. 

0 192 


