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Simulating Molecular Cloud Regulated Star Formation in Galaxies 

Craig Martin Booth 

Abstract 

This thesis is primarily concerned with understanding the process of galaxy formation 

via the simulation of the interstellar medium, star formation and supernova feedback. 

In order to probe galaxy formation it is necessary that we first obtain a basic knowledge 

of the cosmological framework in which we are working. Therefore in chapter 1 we 

provide a brief overview of the salient features of the current cosmological paradigm in 

addition to discussing in some detail the physics of the interstellar medium 

In chapter 2 we focus on the numerical methods necessary to perform accurate cos­

mological simulations. We begin by providing an overview of the different simulation 

techniques currently in use in the field before performing comparisons of two simula­

tion codes that work via two completely different methods. We then introduce a code 

for generating high-resolution initial conditions for the simulation of individual objects 

and investigate the numerical effects of mass resolution in cosmological simulation. 

In chapter 3 we describe a statistical model of the interstellar medium, in which the 

conversion of cooling gas to stars in the multiphase interstellar medium is governed by 

the rate at which molecular clouds are formed and destroyed. In the model, clouds form 

from thermally unstable ambient gas and get destroyed by star formation, feedback and 

thermal conduction. 

In chapter 4 this statistical model is applied to the simulation of isolated disk galaxies. 

We show that it naturally produces a multiphase medium with cold clouds, a warm 

disk and hot supernova bubbles. We illustrate this by evolving an isolated Milky Way­

like galaxy. Many observed properties of disk galaxies are reproduced well, including 

the molecular cloud mass spectrum, the molecular fraction as a function of radius, the 

Schmidt law, the stellar density profile and the appearance of a galactic fountain. 

Finally in chapter 5 we perform an investigation into more dynamic situations, namely 

the evolution of gravitationally interacting disk galaxies and the formation of a galaxy 

in a fully cosmological simulation. It is found that the sticky particle model does a good 

job of reproducing many of the observed properties of interacting galaxies, including the 

properties of the ISM in the resulting elliptical galaxy. 
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Chapter 1 
Introduction 

1.1 Background 

The main thrust of this thesis is to obtain an understanding of the physics that is impor­

tant to the formation, evolution and dynamics of galaxies by using large-scale computer 

simulations. In order to understand galaxy formation it is necessary that we first obtain a 

basic knowledge of the cosmological framework in which we are working, both in order 

to understand the physical conditions in which galaxies are thought to form and so that 

we can assess the impact of galaxies on the surrounding universe. In this chapter we 

will therefore outline the basic features of the hot Big Bang (BB) model and the physical 

mechanisms by which the observable structure in the universe today came to be formed. 

We will see that although it is possible to summarise the properties of the universe at 

very early times using only a few equations and constants, the evolution of these initial 

conditions exhibits an inexorable march from simplicity to complexity, until the universe 

we see today is an immeasurably intricate and complex place. 

We begin by sketching some of the notable turning points in the history of the study 

of the universe, before reviewing the current state of the Hot BB theory. Finally we ad­

dress in some detail the features of galaxies that are most relevant to this thesis. Notably, 

the properties of the interstellar medium in galaxies, and the process of star formation. 

1.1.1 The Development of the Hot Big Bang Model 

The universe is the sum of all matter that exists and the space in which all events occur 

or could occur. Cosmology, taken as a whole, is the study of the origin and evolution 

of the universe. The study of cosmology has a long history involving science, philoso­

phy, and religion and is amongst the oldest of humanity's pursuits. We are concerned 

with physical cosmology, the application of the principles of physics to the universe at 

large. The first application of modem physics to cosmology occurred with Isaac New­

ton's 1687 publication of Principia Mathematica and his use of the theory of gravity to 
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explain the motions of celestial bodies. One fundamental difference between Newton's 

cosmology and those preceding it was the application of the Copernican principle (no 

'special' observers should be proposed and so bodies both on and off the earth should 

be subject to the same physical laws). Newton believed that the Universe must be both 

infinite and static. If the distribution of matter did not extend forever, he realised, then 

it would inevitably collapse inwards due to its own self-gravity. One major objection 

to this model of the universe was popularised by Heinrich Wilhelm Olbers in 1824 (al­

though first proposed by Kepler in 1610) and is now known as Olbers' paradox 

Olbers argued that if we live in an infinite, transparent universe filled with stars, then 

in any direction one looks in the night sky, one's line of sight will fall on the surface of 

a star. This implies that the sky should have a uniform brightness, equal in luminosity 

to the surface of a star. This fact is in obvious disagreement with the fact that the night 

sky is dark. This argument was so strong that it puzzled scientists for over 75 years. 

Surprisingly, the first essentially correct solution to this paradox came from the author 

and poet Edgar Allan Poe in his 1847 poem 'Eureka': 

"Were the succession of stars endless, then the background of the sky would present 

us an uniform luminosity, like that displayed by the Galaxy - since there could be 

absolutely no point, in all that background, at which would not exist a star. The only 

mode, therefore, in which, under such a state of affairs, we could comprehend the 

voids which our telescopes find in innumerable directions, would be by supposing 

the distance of the invisible background so immense that no ray from it has yet been 

able to reach us at all. That this may be so, who shall venture to deny?" 

Poe argues that since light has a finite speed and the universe is not infinitely old, the 

light from the most distant sources has not yet reached us. This solution was put forward 

independently on a firmer scientific basis by Kelvin (1901). These first arguments against 

the idea of an infinite, static universe marked the beginnings of an investigation into to 

the properties and dynamics of a constantly evolving universe, governed by the laws of 

physics. 

Modem scientific cosmology is usually considered to have started with Albert Ein­

stein's publication of the theory of general relativity (Einstein (1916)), in which he wrote 

down the field equations that describe the relationship between space-time and matter­

energy. The most fundamental assumption of cosmology from the days of Einstein 

through to the 1980's was that the universe is both homogeneous and isotropic on large 
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scales, this assumption became such a necessary part of virtually all cosmological mod­

els that it is known as the cosmological principle (however, see section 1.1.2, for a discus­

sion of inflationary theory, which may provide a physical explanation for the observed 

isotropy and homogeneity of the universe) 

In 1935 A. G. Walker and H. P. Robertson independently found a metric that deter­

mines the space-time interval between two events in a dust filled universe that obeys 

the cosmological principle. These models were first studied in detail by A. Friedmann in 

1922 (and independently by G. Lemaitre in 1927) who solved Einstein's field equations 

for an isotropic, homogeneous universe to obtain what are now known as the Friedmann 

equations 

H2 = (~)2 = 87rG p+ ~- kc2 
a 3 3 a2 

(1.1) 

a 47rG A 
~ = -3- (p + 3p) + 3 . (1.2) 

In these equations the matter in the universe is described as a fluid with density p and 

pressure p. The universe has curvature k and expansion factor a = a( t) is normalised 

such that a at the present epoch is unity. c represents the speed of light and A represents 

a constant arbitrarily added by Einstein to his original formulation of General relativity 

in order to allow that the Universe is static. H is the Hubble constant that characterises 

the rate of expansion of the Universe 

The Friedmann equations reveal the astonishing fact that there is a connection be­

tween the density of the universe and its geometry. Assuming that the cosmological 

constant is zero then for any given expansion rate there is a corresponding critical den­

sity, Pc, that will yield k = 0, given by 

( ) 
_ 3H(t)2 

Pc t - 87rG (1.3) 

The ultimate behaviour of the universe depends on its mean density. If p < Pc, then the 

universe is unbound and a can continue to increase to infinity. If p > Pc then the universe 

is bound and a inevitably collapses to 0. The ratio of the average density to the critical 

density is an often used quantity so we define 

Ox= Px' 
Pc 

(1.4) 

where Px represents the density of a particular component of the universe (e.g. baryons 

(b), cold dark matter (c), radiation (r) or dark energy (A)). The total density parameter is 

represented by Oo. 
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Despite this theoretical work on the evolution of an isotropic, homogeneous uni­

verse, observational results about the distribution of matter in the universe were still 

few and far between. In 1916, when Einstein published the theory of general relativity 

the phrase 'the large-scale distribution of matter' was generally taken to mean the dis­

tribution of stars in the Milky Way galaxy (Peebles (1981)). The nature and distribution 

of 'spiral nebulae' was uncertain, as was whether or not they were associated with the 

Milky Way or if they were 'island universes' completely decoupled from our galaxy 

(Kant (1798)) . It was not until the pioneering work of Hubble (1929b) who, following 

the discovery of a relation between the periodicity of a pulsating Cepheid variable star 

and its magnitude, was able to use Cepheid variables as sources of known luminosity 

and discovered that the distance to the nearby galaxy M31 was approximately 275kpc, 

and therefore external to the Milky Way, which was known to be less than 100kpc across. 

This marked the first time that any object had been conclusively proven to lie outside of 

our galaxy. 

It was in the same year that Hubble proved conclusively that at least one spiral neb­

ula was of extragalactic origin that he also demonstrated a linear relationship between 

the redshift of the emission lines in the spectra of other galaxies (Hubble (1929a)), de­

fined as 
Aobs - A[ab ~).. 

Z = Alab A ' (l.S) 

where z is the redshift, Aobs is the wavelength at which a feature is observed and Alab is 

the wavelength the same feature has in the laboratory. It is natural to interpret redshifts 

as being due to the Doppler shift of the light from the galaxy due to the motion of the 

galaxies away from us. Hubble's law is written 

v=Hd, (1.6) 

where v represents the recessional velocity of other galaxies and d represents their dis­

tance from us. H, the constant of proportionality, is the Hubble constant as first in­

troduced in equation 1.1. This discovery indicated that the universe was expanding, 

providing evidence for the usefulness of the Friedman solutions. 

The Hubble law also fits with the concept of homogeneity, it is easy to show that if the 

Hubble law holds for some observer, A, moving with the Hubble flow it must also hold 

for all other observers moving with the same flow, this is consistent with the Copernican 

principle. To demonstrate this consider figure 1.1. Each of the three points represents a 

different observer. If the observer at position ra observes the Hubble law to be true, that 



1. Introduction 

is 

and 

r ac es 

Figure 1.1: Demonstration of the Hubble law. Considering three ob­

servers, A, B and C we can show that if the Hubble law holds for any 

one of the observers then it must necessarily hold for the others. 

Vab = Hrab, 

Vac = Hrac 

5 

(1.7) 

(1.8) 

where Vab is the relative velocity between observer A and observer B. By a simple piece 

of vector addition we can see that the Hubble law also holds between points b and c, 

(1.9) 

The Hubble law is therefore consistent with the concept of homogeneity. 

The ideas of homogeneity and isotropy, when coupled with Einstein's theory of gen­

eral relativity provide a coherent pichlfe of the universe in which at early times the Uni­

verse was small, dense and hot and has expanded and cooled through to the present 

day. In the following sections we will flesh out the BB paradigm by working chronologi­

cally from very early times (lo-32s after the BB) to the present day, highlighting some of 
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the physical mechanisms that operated to form the rich variety of structure we observe 

today. 

1.1.2 The Early Evolution of the Universe 

In the following two sections we will detail some of the major features of the evolution 

of the Universe in a chronological order. The cutoff between the 'early' evolution of the 

universe and the 'late' evolution is somewhat arbitrary, and has been chosen to corre­

spond to a time shortly after the time at which the cosmic microwave background was 

formed. This roughly represents the boundary between the parts of the evolution of the 

universe we can treat analytically (early times) and those that we are forced to treat with 

numerical tools (late times). In our discussion of the early evolution of the Universe we 

will consider three different physical processes, each of which represents a fundamental 

change in the makeup of the Universe. These processes are inflation, nucleosynthesis 

and decoupling. 

Inflation 

Despite the great successes of the BB theory in explaining the relative abundances of 

chemical elements and the existence of the CMB (see the rest of this section), in the early 

90's BB theory was plagued by a number of serious problems. In this section we will 

discuss three of these problems and introduce a period of inflation as a possible solution. 

The Flatness Problem: It has been known for a long time that the present day mean 

density of the Universe - parameterised by no - is at least to order of magnitude, unity. 

However, the no = 1 universe is unstable. In its very early history, an no only very 

slightly above 1 would have resulted in a very rapid big crunch, while with an no only 

very slightly below 1, the universe would have expanded so fast that stars and galaxies 

could not have formed. The fact that approximately 13.7 billion years after its formation, 

the universe still has a value of n0 so close to unity indicates that n0 must have been 

within one part in 1022 (Peacock (1999)) of unity at early times. We can demonstrate this 

by substituting an expression for no into the Friedman equations to obtain 

kc2 

n(t)o- 1 = ~. 
a 

Dividing this into the result at the present epoch we obtain 

• 2 ao 
n(t)o- 1 = ~. 

a 

(1.10) 

(1.11) 
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Putting in numbers here (Assuming a ex t 112, i.e. the Universe is dominated by radiation) 

at this epoch we obtain that a6/ a2 < 10-48 • In other words I Do - 11 is extremely finely 

tuned to zero. The problem is that a simple BB theory cannot explain how an 0 0 so close 

to unity could arise, the fine tuning of this parameter is indicative of hidden physics. 

The Horizon Problem: This problem relates to the uniformity of the CMB (Partridge 

and Wilkinson (1967); Misner (1968); section 1.1.2). In a BB with only matter and radia­

tion, two widely separated regions (e.g. the regions probed by two patches of the CMB 

separated by 180 degrees on the sky) will never have been in causal contact (that is, at no 

point in the history of the Universe will it have been possible for a photon to travel from 

one region to the other). If two regions cannot have interacted at any point in the past 

then they should not have been able to smooth out any irregularities in the CMB. This 

is in contradiction with the observation that the CMB is isotropic and homogeneous to 

better than one part in 100000 (Smoot et al. (1992)) 

The Magnetic Monopole Problem: Grand unified theories (GUT) predict the existence 

of topological defects and massive relic particles, notably magnetic monopoles ('t Hooft 

(1974)). These particles are expected to form at around the GUT scale (t ""' 10-35s). 

If no more than one monopole forms per horizon scale then the mean density of the 

Universe would be so high that it would recollapse within""' 105 years (Narlikar and 

Padmanabhan (1991)). Inflation was suggested as a solution to these problems by Guth 

(1981). According to Guth the BB picture is essentially correct, but with the addition of 

an inflationary phase during which the Universe expands exponentially (as in the classical 

de Sitter (1917) model) for a short period of time. 

The theory of inflation posits that the universe underwent a period of exponential 

growth (a ex eHt) within the first 10-32s. This exponential expansion was theorised to 

occur due to the presence of a quantum scalar field in the early universe (the inflaton). 

In the original models of Guth this scalar field,¢, has a potential, V(¢, T), that depends 

upon temperature such that at T » Tc (where Tc is some critical temperature), the field 

has one minimum at ¢ = 0. As the temperature of the Universe decreases the shape of 

the potential changes until at T = Tc the potential has two minima, and at T « Tc the 

minimum potential is actually at some finite value of ¢. When this happens, the sys­

tem is in a state of 'false vacuum', and over the course of time, thermal fluctuations and 

quantum tunnelling will move the scalar field from ¢ = 0 to the new, lower potential 

state, For the time during which the universe is in the 'false vacuum' state, the poten­

tial difference between the true vacuum and the false vacuum is the dominant energy 
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density in the universe and it behaves like a de Sitter universe. 

A thorough calculation reveals that Guth' s original model does not work (Guth (1983b)), 

since if the false vacuum is stable for long enough to inflate the universe, the phase tran­

sition will proceed in a patchy manner and lead to an inhomogeneous universe incom­

patible with observations. 

Many improvements on the standard model of inflation have been suggested, from 

changes in the form of the potential (e.g. Linde (1982a,b)), to chaotic inflation whereby 

the initial value of the potential is slightly different from zero and it slowly 'rolls' to the 

zero potential (Linde (1983)). 

A period of inflation can solve each of the three problems presented so far. The 

horizon problem is solved because regions outside of each others horizon at the time of 

CMB emission (z "' 1000) are in contact during the inflationary, de Sitter period and so 

can thermalize. A period of inflation also has the effect of smoothing out any regions of 

curvature, forcing that no ~ 1. 

The temperatures at which magnetic monopoles and other exotic relics would be 

expected to be produced are greater than T "' 1027K (t "' w-34s), inflation occurs after 

this time and is thought to double the Universe in size roughly 60 times (Peacock (1999)) 

from a size of rv w-25m to around rv w-7 m, diluting the density of relic particles so that 

we would never expect to observe them. 

Probably the most compelling feature of inflation theory is that it provides a natural 

mechanism for generating tiny fluctuations in the initial density field due to quantum 

thermal fluctuations present in any de Sitter universe. The form of these fluctuations 

was first calculated by four groups working independently (Hawking (1982); Bardeen 

et al. (1983); Starobinsky (1982); Guth (1983a)), who predicted that the spectrum of per­

turbations laid down by inflation would be that of a nearly scale-invariant Gaussian random 

field (see section 2.4). The properties of Gaussian random fields are discussed in great de­

tail by Bardeen et al. (1986); a Gaussian random field is defined as any random field for 

which each value is drawn independently from a Gaussian probability density function. 

The properties of a Gaussian random field are specified entirely by its power spectrum 

and in the case of cosmological initial conditions the field is thought to have the form 

P(k) = Akns. (1.12) 

This prediction has been borne out by the WMAP Cosmic Microwave Background exper­

iment (Spergel et al. (2003, 2006)), which by probing the statistical distribution of density 
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perturbations at the time of decoupling found that the spectral index, n8 , which is 1 for 

a scale invariant field, and is predicted to be between 0.92 and 0.98 by simple models 

of inflation (Steinhardt (2004)), was found to be 0.95. Additionally galaxy surveys (e.g. 

York et al. (2000)) show galaxy clustering properties consistent with a spectrum of per­

turbations of this form. These experiments are important confirmations of the theory of 

inflation and show that the form of the initial density perturbations in the Universe is 

very close to that predicted by inflation. Other methods of fluctuation generation, for 

example cosmic strings (Albrecht and Stebbins (1992)) and global textures (Park et al. 

(1991)) do not make such predictions for the form of the initial density perturbations. 

It is worth noting, however, that currently inflation theory is understood principally 

in terms of its predictions for the initial conditions of the hot, early universe. Despite 

having passed many observational tests, the physics in inflation theory is still largely ad 

hoc modelling and as such there are open questions about the theory, particularly with 

regards to the hypothesised inflaton field, which does not currently fit into the standard 

model of particle physics 

Big Bang Nucleosynthesis 

The mechanism of stellar nucleosysnthesis (the fusing of primordial hydrogen into heav­

ier elements) was first discussed by Salpeter (1952) and Burbidge et al. (1957), who 

found that if stellar nucleosynthesis were the only mechanism by which elements heav­

ier than hydrogen could be formed then we vastly under-predict the abundance of He­

lium, which makes up over 20% of the observable Universe. 

The hot, dense universe predicted by the BB model at early times provides an ideal 

mechanism for generation of the primordial mix of heavy elements we observe. This 

process is reviewed thoroughly by Boesgaard and Steigman (1985) and sketched only in 

the barest detail here. 

At a temperature of just below 1012K, the universe contained a mixture of photons, 

electron-positron pairs, and neutrinos. There was also a smaller number of protons and 

neutrons that were constantly transformed into each other1. As long as the rate of the 

reactions that convert protons and neutrons between each other remains high enough, 

the neutron-proton ratio will be described by the Boltzmann law. At 1012K this ratio is 

0.985. As the universe expands the reaction rates drop rapidly and the neutron-proton 

ratio becomes 'frozen' at the value it has when T ~ 1010K, which was nn/np = 0.223. 

1the following are the important reactions n ~ p+ + e- + v.; n + e+ ~ p+ +De; p+ + e- ~ n + Ve 
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At this point the universe is still too hot for heavier nuclei to form and the free neutrons 

continue to decay via the process 

----' + + - -n ..-- p e + Ve . (1.13) 

This reaction has a half-life of 617s and continues to dominate until the temperature 

of the universe drops as far as 109K. This took approximately 229s, and the neutron­

proton ratio becomes 0.213. Below 109K protons and neutrons readily combine to form 

deuterium and then helium via the following reaction chains 

2H + 2H ~ 3H + 1 H' (1.14) 

3H + 2H ~ 4He + n, (1.15) 

and 

2H + 2H ~ 3He + n, (1.16) 

3He + 2H ~ 4He + 1 H . (1.17) 

The buildup of large amounts of heavier elements is blocked by the fact that there are 

no stable elements with atomic numbers 5 or 8 at these temperatures and so only trace 

amounts of heavier elements (e.g. 7Li and 7Be) are formed (Dicus and Teplitz (1980)). 

Detailed calculations of the abundances of the heavier elements were carried out by Yang 

et al. (1984) 

Detailed calculations of the predicted primordial abundances of the elements gener­

ated during this period provide a very strong test of BB theory. Although complicated by 

stellar nucleosynthesis the fraction of 4 He observed in the universe agree incredibly well 

with the BB predictions (see e.g. Izotov et al. (1994)). The abundances of other elements 

(e.g. Li) are not in such good agreement with the predictions of BBN, but it is unclear 

whether the origin of this discrepancy is observational, stellar, nuclear or more funda­

mental (Coc and Vangioni (2005)). The fact that the helium abundance in the universe 

never drops below 23%, no matter where it is observed is an important confirmation of 

the theory. 

The Cosmic Microwave Background 

At the present epoch, we observe a homogeneous background of electromagnetic radia­

tion, well described by a black body with a temperature of 2.73K, which gives it a peak 

wavelength in the microwave section of the electromagnetic spectrum. The existence of 
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this cosmic microwave background (CMB) was first predicted qualitatively by Alpher 

et al. (1948), and observed by Penzias and Wilson (1965). 

After nucleosynthesis took place and the primordial mixture of hydrogen, helium 

and traces of other elements were formed, the universe was made up of a hot plasma 

of photons, electrons and baryons. Due to the adiabatic expansion of the universe the 

temperature of this plasma was decreasing. When the temperature of the universe fell to 

approximately 3000K (redshift of rv 1100), it became favourable for protons and electrons 

to combine into neutral hydrogen in a process called recombination (Peebles (1968)). 

Before this occurrence the photons are kept in thermal equilibrium with the baryons 

due to the large cross section for the interaction between photons and electrons (Thom­

son scattering). When recombination takes places this cross section drops to virtually 

zero and the matter and radiation fields begin to evolve independently (decoupling of the 

photons and baryons). At the moment of decoupling the spectrum of the photons is well 

described by a black body at a temperature of rv 3000K, by the present day the radiation 

has been redshifted by a factor adec/ ao and has a temperature of approximately 2.73K. 

Due to the initial density perturbations put in place by a period of inflation, the CMB 

is not perfectly smooth, there are small fluctuations in its temperature, these fluctuations 

are of order one part in 100,000 (Smoot et al. (1992)). These fluctuations arise due to a 

large variety of physical mechanisms, some of which will be summarised here. Primary 

fluctuations are those that arise due to physical effect before or at the epoch of decou­

pling. Secondary anisotropies arise due to scattering along the line of sight. It is important 

to note that an accurate calculation of the effect of these perturbations requires a full nu­

merical treatment of the Boltzmann equation (see e.g. Seljak and Zaldarriaga (1996)), so 

we will discuss them only qualitatively. Primary anisotropies include 

• Sachs-Wolfe perturbations. Photons from high density regions at decoupling have 

to climb out of potential wells and so are redshifted 

• Adiabatic perturbations. In high density regions, both the radiation and matter 

will be compressed and have a higher temperature 

These effects are important for perturbations for which only gravity has been impor­

tant up until the time of recombination, that is: those with wavelengths larger than the 

horizon size at decoupling. On smaller scales a variety of additional physical processes 

act on the perturbations. 

Radiation pressure tends to erase anisotropies, whereas the gravitational force acts to 
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make baryons collapse in overdense regions. These two competing effects create acous­

tic oscillations, which give the CMB its characteristic peak structure. The peaks corre­

spond, roughly, to resonances occurring during recombination when a particular mode 

is at its peak amplitude. The location of the first acoustic peak in the CMB spectrum de­

pends sensitively upon the total matter density in the universe and thus its location is of 

crucial importance. Many experiments including Toco (Miller et al. (1999)), Boomerang 

(Mauskopf et al. (2000)) and Maxima-l (Hanany et al. (2000)) were designed primarily 

to determine its location. In the ACDM model, the peak shows up right where it would 

be expected if the curvature of the universe was zero (i.e. k = 0). 

Secondary anisotropies, which arise due to the interaction between the CMB photons 

and the intervening medium include: 

• The integrated Sachs-Wolfe effect. Photons travel through evolving potential wells 

and are blueshifted as they fall in to the potential, then redshifted again as they 

climb back out. If the potential deepens as the photons are travelling through it 

there will be a net redshift of photons 

• The Sunyaev-Zel'dovich effect (see e.g. Sunyaev and Zeldovich (1980)). Photons 

that interact with high energy electrons (for example those present in the hot dif­

fuse gas of a galaxy cluster), may undergo inverse Compton scattering, in which 

some of the energy of the electrons is transferred to the photons, leading to an 

apparent upward shift in CMB temperatures in the directions of galaxy clusters. 

Some galaxy clusters have been observed via this effect (Birkinshaw et al. (1984)) 

Other secondary effects including gravitational lensing of the CMB photons can in­

troduce non-gaussianity into the CMB spectrum, this must be carefully controlled for. 

See Hu and Dodelson (2002) for a comprehensive recent review of the different mech­

anisms by which anisotropies are embedded in the CMB. 

1.1.3 The Late Stage Evolution of the Universe 

After the cosmic background radiation was decoupled from the baryonic component of 

the universe its subsequent evolution is governed primarily by the effects of gravity, 

which drives the collapse of objects on all scales, from the largest superclusters down to 

individual stars. In this section we investigate the process by which galaxies are formed. 
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Large Scale Structure Formation 

Gravity causes the density perturbations laid down by inflation to amplify themselves; 

overdense regions tend to become more overdense and underdense regions tend to be­

come more underdense. Over time this leads to the collapse of virialised 'haloes' of 

matter. These haloes continue to interact with each other gravitationally; merging hier­

archically to form ever larger structures. 

The formation of virialised haloes is a non-linear problem and as such we must resort 

to numerical tools to investigate it in detail. In section 2.2 we introduce the most widely 

used numerical tools, and in section 2.4 discuss the generation of the initial conditions 

that go into one of these codes. 

The dynamics of gas in these virialised haloes is a complex and dynamic process. 

In this section we sketch an outline of how this dense gas is thought to form the wide 

variety of galaxies we see in the present day universe. In section 1.2 we will discuss 

the properties of the interstellar medium in present day galaxies, and in chapter 3 will 

investigate how this system can be simulated. 

According to many recent galaxy formation models (Somerville and Primack (1999); 

Cole et al. (2000); Bower et al. (2006)) diffuse gas that falls into a halo is shock heated to 

the virial temperature of that halo. When the virial temperature of the halo (White and 

Rees (1978)) is high enough the gas can cool radiatively (Rees and Ostriker (1977)) and 

may collapse into the halo. Haloes gain angular momentum from tidal torques operating 

during their formation (see e.g. Mo et al. (1998)) and so the gas is accreted into the form 

of a disk. Dense, cold gas in the disk of a galaxy will collapse into stars (see section 1.3.1 

for an overview). Various feedback processes from stars regulate the star formation rate 

in the galaxy (Dekel and Silk (1986)). 

The dynamics and evolution of the gas in galaxies is very complex. Stars are thought 

to form in molecular clouds in a complex interstellar medium (ISM) in which magnetic 

fields (Safier et al. (1997)), cosmic rays, turbulence (Krumholz and McKee (2005)), rel­

ativistic jets (Klamer et al. (2004)), molecules, dust, and radiative transfer may all play 

some role. Additionally mergers between galaxies can move the gas in the galaxy far 

from equilibrium. 
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Reionization 

The formation of the first stars and galaxies marks a transition between the smooth uni­

verse we have examined at high redshift and the clumpy universe we see at low redshift. 

It is currently thought that this occurs at redshifts rv 50 (Reed et al. (2005b ); Gao et al. 

(2005)). 

After recombination (see 1.1.2) the hydrogen in the universe is neutral and thus ab­

sorbs photons blueward of the Lyman a line very strongly (Gunn and Peterson (1965))2 • 

Neutral hydrogen therefore has the effect of efficiently absorbing all UV photons. How­

ever, modelling of the transmitted light from observed quasars implies that at least as 

far back as z ~ 5.8 the neutral fraction of hydrogen was less that w-6 (Fan et al. (2000)). 

We therefore require some mechanism by which the neutral hydrogen that exists from 

z rv 1000 down to z rv 6- 15 becomes ionized. 

It is thought that this process occurs via the escape of ionizing photons (hv 2:: 13.6eV) 

from the sites of star formation into the surrounding IGM. In this way each star forming 

object will ionize a 'bubble' of hydrogen. As the number density of star forming objects 

increases, ionized bubbles begin to overlap until the intergalactic medium is ionized and 

reionization is said to be complete. 

The redshift at which reionization takes place is still uncertain, additionally reion­

ization is a patchy process, and proceeds by stages (Gnedin (2000)). Studies of quasar 

spectra have placed the redshift of reionization as low as 6 (Becker et al. (2001)), the 

WMAP CMB experiment estimated that the redshift of reionization as rv 11 - 17 (Spergel 

et al. (2003, 2006)), and numerical studies of reionization in ACDM simulations place 

this epoch anywhere in the range z rv 7- 12 (Haiman and Loeb (1998); Gnedin and 

Ostriker (1997); Gnedin (2000)). 

The end of reionization marks the time at which the universe takes on the charac­

teristics it has at a redshift of zero, with star forming galaxies merging in a hierarchical 

manner embedded in a highly ionized intergalactic medium. 

Many open questions remain about the nature of the sources that reionized the uni­

verse. Current best estimates indicate reionization occured at z rv 12 it is known that the 

observed number counts of high redshift galaxies and quasars could not produce enough 

ionizing flux to successfully reionize the universe. Other sources therefore become nec­

essary. Some candidate objects have included population III stars and micro-quasars. 

2This period has become known as the 'cosmic dark ages' a term originally coined by Sir. Martin Rees 
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21-cm hydrogren emission (Madau et al. (1997)) provides an ideal tool for probing the 

epoch of reionization and some of the new generation of radio telescopes (e.g. LOFAR 

(Zaroubi and Silk (2005))) are targeted at discriminating between these different sources 

and so explaining the process of reionization. 

The Existence of 'Dark' Matter 

Over the past century a variety of observations have suggested very strongly that a large 

fraction of the Universe must be in the form of 'dark' matter. That is: matter that does 

not emit or scatter enough electromagnetic radiation to be directly detectable. 

The first evidence for a large fraction of matter in the universe being dark came from 

two directions almost simultaneously. On large scales it was discovered that when the 

virial theorem is applied to galaxy clusters (Zwicky (1933)) the observable mass in the 

galaxy cluster could not account for the random motions of the galaxies. On smaller 

scales it was found that in our own galaxy the numbers of visible stars fell short by 30-

50% of adding up to the amount of matter implied by their velocities. Over the next 

decades evidence for a large fraction of the matter in the Universe being dark began 

to stack up. Rotation curves in galaxies were discovered to be flat out to large radii 

(Ostriker et al. (1974)), and gravitational lensing implies that there is much more mass in 

galaxy clusters than can be observed directly (Walsh et al. (1979)). 

It is still unclear exactly what dark matter is made of. Many candidates have been 

suggested, these may be broadly classified into baryonic and non-baryonic candidates. 

Baryonic candidates are mainly classified under the umbrella term MACHOs (massive 

compact halo objects), a general name for any kind of astronomical body that emits little 

or no radiation and is present in interstellar space. Candidates for MACHOs have in­

cluded black holes, neutron stars, brown dwarfs and very faint red dwarf stars. Studies 

of BBN have indicated that baryons do not make up enough of the universe to explain 

all of the missing mass. Non-baryonic candidates may be classified as 'cold' ,'warm' 

or 'hot' , differing from each other by the mean velocity the candidate particles have at 

high redshift. At least one hot dark matter candidate is known, the neutrino,although 

this particle is not massive enough to account for the missing mass in the universe (Goo­

baret al. (2006)). Additionally, hot dark matter candidates do not allow gravitational 

collapse on small scales due to their free-streaming motion out of small potential wells. 

For this reason at least some of the dark matter content of the universe is thought to be 

in the form of cold dark matter. 
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Evidence for dark matter is so strong that it has become an integral part of the mod­

em cosmological paradigm, and has been found necessary in order for large structures 

to have formed by gravitational collapse over the lifetime of the universe. 

The Modem Cosmological Model 

Starting from the assumptions of homogeneity and isotropy and applying Einstein's the­

ory of general relativity the BB theory provides a coherent framework within which we 

can make progress towards understanding the formation and evolution of galaxies. 

Shortly after the BB we have seen how a period of inflation, which imprints tiny 

density fluctuations into the initial density field, solves many problems with the basic 

BB picture and provides a natural mechanism by which the seeds of the galaxies we 

see today can be formed. When the temperature of the universe drops enough that it is 

neutral then we see that the primordial radiation field is decoupled from the matter field 

and subsequently evolves independently. We observe this relic radiation at the present 

day at microwave wavelengths and it provides a strong probe of the properties of the 

universe. 

At later times, the perturbations laid down by inflation begin to collapse gravitation­

ally, dragging gas into their potential wells. This gas cools radiatively and some frac­

tion of it collapses into stars. Stellar feedback processes make the resulting structure of 

galaxies and the ISM very complex, and very many different feedback processes operate 

in bringing about a stable equilibrium. 

In addition to the CMB, many other observations help in constraining the properties 

of the Universe. These include large scale galaxy surveys (e.g. Colless et al. (2001); York 

et al. (2000)), which probe the clustering properties of the galaxies at low redshift and 

hence give us a second, independent probe of the properties of the primordial density 

field. 

The 'Hubble key project' is an attempt to pin down the Hubble constant, Ho, through 

the use of Cepheid variable stars in nearby galaxies as standard candles in order to make 

accurate distance determinations for a sample of nearby(:::; 20Mpc) galaxies (Freedman 

et al. (2001)). Ho may then be probed by applying the Cepheid calibration to several 

secondary distance indicators (e.g. Type Ia supernovae and the Tully-Fisher relation) 

operating further out in the Hubble flow. 

Additionally supernovae used as standard candles can tell us about the expansion 

properties of the universe (Branch (1998); Knop et al. (2003)) 
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Parameter WMAPOnly WMAP + 2dFGRS 

1000bh2 2 233+0.072 . -0.091 2 223+0.066 . -0.083 

Omh2 0 1268+0.0072 . -0.0095 0 1262+0.0045 . -0.0062 

h 0 734+0.028 . -0.038 0 732+0.018 . -0.025 

T 0 088+0.028 . -0.034 0 083+0.027 . -0.031 

ns 0 951 +0.015 . -0.019 0 948+0.014 . . -0.018 

0"8 0 744+0.050 . -0.060 0 737+0.033 . -0.045 

Table 1.1: Cosmological Parameters as derived from the WMAP 3 year 

results. The middle column shows the results obtained from the WMAP 

data alone, the right hand column shows the effect of adding the anal­

ysis of the 2dFGRS. Data adapted from Spergel et al (2006}. Ob and 

Om were defined by equation 1.4, h is the Hubble constant divided by 

lOOkm/s/Mpc, Tis the optical depth to the surface of last scattering, 

n 8 is the slope of the initial density perturbation power law (equation 

1.12) and a-8 is the RMS density fluctuation in spheres of 8Mpc. 
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These many independent observations paint a coherent picture of a universe born in 

a BB, and well described by the Friedman equations. The most recent experiments to 

obtain the values of the constants that describe the universe include the WMAP probe 

(Spergel et al. (2003, 2006}} 

Assuming a power-law flat AC D M model the WMAP experiment along with other 

experiments as detailed above places tight constraints on the values of the cosmological 

parameters. Table 1.1 summarises the current WMAP estimates of these numbers, both 

from data from the WMAP experiment alone, and from a combination of the WMAP and 

2dFGRS survey (Colless et al. (2001)), which reduces the error bars on the measurements. 

Combining the WMAP results with supernova catalogues allows us to estimate that 

the Universe is dominated by dark energy. In combination with the Hubble key project 

(Mould et al. (2000)) the value of the Hubble constant can be measured with great preci-

sian. 

Now that we have sketched out the primary features of a BB cosmology, the remain­

der of this introductory chapter will be concerned with a more detailed treatment of the 

properties of individual galaxies. 
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1.2 The Interstellar Medium 

Thus far we have sketched the main features of the evolving universe from when it was a 

fraction of a second old down to the present day. We have not, however, looked in much 

detail at the properties of the gas internal to each galaxy. In this section we describe the 

properties of the interstellar medium (ISM), and the stellar content of galaxies. 

1.2.1 The Components of the Interstellar Medium 

According to the models of McKee and Ostriker (1977) (hereafter M077; see also Efs­

tathiou (2000); Monaco (2004); Krumholz and McKee (2005)) the ISM of the MW con­

sists of at least three separate and distinct gas phases: a hot tenuous medium at a tem­

perature of"' 106 K; cold, dense molecular clouds at a temperature of::; lOOK and a 

warm medium that exists at the boundaries between clouds and the hot medium with 

T rv 104 K. In the MW, the hot medium has a filling factor of 70--80% and the cold 

clouds account for a few percent of the volume (M077). Different techniques are used 

to observe these different phases, with radio observations probing rota-vibrational tran­

sitions of molecules (mainly CO), the 21-cm line probing atomic hydrogen, and UV- and 

X-ray observations probing the hot phase, see e.g. Binney and Merrifield (1998) for an 

overview and further references. The fact that different techniques are used to observe 

the different gas phases might exaggerate the degree to which these phases are really 

distinct. 

Observations of star formation in the MW show that most form in groups, either 

as gravitationally bound clusters or unbound associations, in the most massive of the 

molecular clouds (Giant Molecular Clouds, hereafter GMCs), with masses"' 106 M0 , and 

sizes of order 30-SOpc, see e.g. Blitz and Thaddeus (1980) and Lada and Lada (2003) for 

recent reviews. The relatively small sizes of GMCs currently limit detailed observations 

of such clouds to nearby galaxies, with recent surveys done in the MW (Solomon et al. 

(1987); Heyer et al. (2001)), M33 (Rosolowsky and Blitz (2004)) and the LMC (Fukui et al. 

(2001)). 

Blitz et al. (2006) present detailed observations of GMCs in five local galaxies. GMCs 

are excellent tracers of spiral structure to the extent that they are often used to define the 

location of arms, in a similar way as for example HII regions or massive stars are. There 

is a good correlation between GMCs and filaments of HI, although the reverse is not 

true, suggesting that clouds form from HI. 
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Observations in more distant galaxies are currently limited to measuring the mean 

surface density of molecular gas, with more detailed observations awaiting new instru­

ments such as ALMA3. According to Young and Scoville (1991), the fraction of gas in 

the molecular phase depends on Hubble type, with early-type spirals tending to be pre­

dominantly molecular, and late-types atomic . Optically barred spirals show a clear 

enhancement of CO emission along the bar. This suggests that the large-scale structure 

of the galaxy affects the formation of clouds, and hence presumably also the star forma­

tion rate. A physical implementation of star formation should therefore aim to track the 

formation and evolution molecular clouds. A recent review of the status of three phase 

models of the ISM is presented by Cox (2005) 

1.2.2 The Atomic Component of the Interstellar Medium 

The material that makes up the majority of the volume of the ISM is a diffuse, atomic gas. 

Typical densities and temperatures for this phase of matter are approximately n = 10-2·5 

atoms per cubic centimetre and T = 105· 7K (M077). This diffuse gas phase is formed by 

the heating action of supernovae, and it is this phase which most supernova remnants 

expand into and so controls the dynamics of SN remnant expansion (for a more complete 

discussion on this point see section 3.2.6). 

One of the major physical processes that controls the thermal properties of the atomic 

component of the ISM and hence the phase structure of the ISM is radiative cooling (see 

e.g. Black (1981); Sutherland and Dopita (1993)). The first studies in this area (Cox and 

Tucker (1969); Tucker and Gould (1966)) concentrated on simple, optically thin plasmas. 

Since then both our understanding of atomic processes and the available computing 

power have increased and allowed a full treatment of collisional ionization rates and 

other atomic processes. Sutherland and Dopita (1993) performed calculations of the ra­

diative cooling rates of a hot astrophysical plasma in collisional ionization equilibrium. 

Photoionization (Seaton (1958)), electron collision ionization, charge transfer reactions 

and recombination radiation (Gould (1978)) were all treated in a self consistent manner 

for a set of 225 species of ion. The resulting cooling rates are shown in figure 1.2. Suther­

land and Dopita (1993) noted that non-equilibrium effects can appreciably change the 

shape of the astrophysical cooling function, but only analysed these effects for a few, 

idealised, non-equilibrium situations. The cooling function of a primordial gas is of vital 

importance to the formation of galaxies as it is this cooling that determines the fraction 

3http:/ /www.alma.nrao.edu/ 
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Figure 1.2: Radiative cooling rate of a gas as a function of tempera­

ture for a number of different metallicities. Data from Sutherland & 

Dopita (1993). The ratios between the different metal abundances are 

assumed to be in solar proportion. The cooling rate falls off below 104 K 

due to the lack of molecular hydrogen in these calculations. The mid 

temperature cooling peaks are due to electron collision ionization (and 

associated radiation due to recombination) and at high temperatures 

Bremsstrahlung radiation dominates. 
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of gas that can cool into galactic disks and controls with great sensitivity the properties 

of the interstellar medium 

1.2.3 The Molecular Component of the Interstellar Medium 

It has long been understood that the vast majority of star formation in the Milky Way 

takes place inside molecular clouds (see e.g. Lada and Lada (2003) and references therein). 

The study of molecular clouds is therefore of critical importance in our understanding of 

how galaxies form and evolve. In this section we discuss the formation and properties of 
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molecular clouds before investigating the mechanism by which they collapse into stars 

in the next section. 

The Formation of Giant Molecular Clouds 

Although the early models by Field et al. (1969) assumed that the different phases of 

the ISM were in pressure equilibrium, modem observations paint a much more complex 

and dynamic situation, in which the ISM is shaped by turbulence, possibly powered by 

SNe and the large-scale dynamics of the galactic disk itself, see e.g. Burkert (2006) for a 

recent review. A galaxy-wide effect seems required to explain the observed Hubble-type 

dependence of cloud properties. 

Yet how GMCs form in this complex environment is not well understood (Blitz and 

Rosolowsky (2004)). Some authors have suggested that GMCs form by the coagula­

tion of preexisting molecular clouds (Kwan and Valdes (1983); Oort (1954)) while others 

have argued that GMCs form primarily from atomic gas through instability or large­

scale shocks (Blitz and Shu (1980)), a viable mechanism by which this could occur is 

the formation of convergent flows induced by a passing spiral arm (Ballesteros-Paredes 

et al. (1999)). Of course, both modes of formation may occur: in high density regions, 

where the vast majority of hydrogen is molecular it seems likely that molecular clouds 

form from the coagulation of smaller clouds, whereas in the outskirts of galaxies where 

the gas is predominantly atomic the compression of gas in spiral density shock waves 

provides a more plausible formation mechanism. 

Observationally, star formation in disks seems to occur only above a given surface­

density threshold (Kennicutt (1989)), with star formation dropping abruptly below the 

threshold even though the gaseous disk may extend far beyond it. Schaye (2004) de­

scribes a model in which this threshold arises naturally due to the thermal instability 

when gas cools from 104 K to the cold phase (rv lOOK), rendering the disk gravitationally 

unstable on a range of scales. This suggests that a combination of thermal instability and 

large-scale dynamics may be responsible for determining when and where GMCs form. 

Elmegreen (2000) discusses observational evidence that GMCs are in fact short lived 

entities that form, make stars and disperse again on their dynamical time scale. This 

short time-scale alleviates the need for an internal energy source to sustain the observed 

internal supersonic turbulence, something that had puzzled astronomers for a long time. 

Pringle et al. (2001) discuss this assumption in more detail, and suggest that GMCs form 

from agglomeration of the dense phase of the ISM, already in molecular form, when 
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compressed in a spiral shock. They envisage the pre-existing molecular gas to be in 

dense 'wisps', in the inter arm regions, formed from atomic gas by shocks, as simulated 

by Koyama and Inutsuka (2000). 

Recent numerical simulations support the view that when clumpy gas is overrun by 

a density wave, it produces structures that resemble GMCs. Wada et al. (2002) present 

high-resolution two-dimensional simulations of the evolution of perturbations in a cool­

ing, self-gravitating disk in differential rotation. They show that the disk develops sta­

tionary turbulence, even without any stellar feedback. Bonnell et al. (2006) and Dobbs 

et al. (2006) perform three dimensional simulations of the passage of clumpy cold gas 

through a spiral shock. Their simulations produce dense clouds, with large internal ve­

locity dispersion reminiscent of the 'supersonic turbulence' seen in GMCs. They note 

that the velocity dispersion is generated on all scales simultaneously, in contrast to what 

is usually meant by turbulence where energy cascades from large to small scales. Mac 

Low and Klessen (2004) review the current state of the art in simulations and models 

of GMC formation, including references to more recent work. In this picture of clouds, 

GMCs are temporary structures formed and dissolving in converging flows, do not re­

quire an internal source of energy, are not in virial or pressure equilibrium, and need not 

even be gravitationally bound. They point-out that the relative contribution of galactic 

rotation and stellar sources to driving the observed turbulence is not clear. 

The Properties of Giant Molecular Clouds 

As implied by the name, molecular clouds are dense regions consisting primarily of 

molecular hydrogen that forms via interaction with interstellar dust grains (Cohen (1976b)). 

Molecular clouds have a small spatial extent and as such are very hard to resolve. Over 

recent years, however, surveys of molecular clouds have been undertaken in the MW 

and various nearby galaxies. When it became possible to spatially resolve individual 

molecular clouds it was found that they do not have a simple structure, but are instead 

complex and dynamic objects. The study of the structure of molecular clouds is very 

much an active research area today. Hierarchical temperature and density peaks are 

known to exist within molecular clouds, with dense cores embedded within larger, less 

dense, molecular clumps. These less dense clumps are, in tum, embedded in larger and 

less dense clumps (Dickman et al. (1990); Elmegreen and Falgarone (1996)). Densities 

decrease by approximately an order of magnitude going from clump to clump (Cesaroni 

et al. (1994)). This has led to molecular clouds being described as having a 'fractal' struc-
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ture (see Elmegreen and Elmegreen (2001) and references therein) 

1.3 The Stellar Content of Galaxies 

In this section we discuss the formation, properties and observations of the stellar con­

tent of galaxies. We first introduce the mechanism by which most stars are thought to 

form; the collapse of turbulent molecular clouds (section 1.3.1). We then describe the 

ways in which star formation can be observationally probed in distant galaxies (section 

1.3.2). Finally we talk about how massive stars end their lives as supernovae (section 

1.3.3). This process is of critical importance in the energetics and dynamics of galaxy 

evolution and additionally supplies the vast majority of the heavy elements in the uni­

verse (1.3.4). 

1.3.1 Star Formation in Molecular Clouds 

In the older picture of cloud formation, GMCs were long-lived, gravitationally bound, 

virialised objects. The presence of supersonic turbulence ensures that clouds do not im­

mediately collapse to form stars, as this would predict a star formation rate for the MW 

which is far higher than observed. Locally unstable clumps collapse to form proto-stars, 

which built-up their mass to produce the initial mass function (IMF) through competitive 

accretion (e.g. Bonnell et al. (1997)). 

However simulations show that the energy contained in supersonic motions is quickly 

dissipated even in the presence of magnetic fields (see references in Mac Low and Klessen 

(2004)). To sustain the turbulence hence requires an energy source, for example from star 

formation, yet some clouds have turbulence but no current star formation. 

The modem picture is one in which clouds are short-lived structures and the turbu­

lence results from the same process that formed the cloud in the first place. Observa­

tionally, GMCs tum a small fraction E* ~ 0.1 of their mass into stars before they disperse 

again. This low star formation efficiency of clouds may be due to the fact that they are 

short lived. The short life times of (star forming) clouds also follows from the small age 

spread in star clusters (see e.g. Gomez et al. (1992)), and indicates that star formation 

in a given cloud only lasts for a few million years. The short life-times of GMCs then 

also suggests that competitive accretion (e.g. Bonnell et al. (1997)) is less important in 

shaping the IMF (Padoan and Nordlund (2002)). 
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Turbulence generates a range of substructures inside a GMC, and Padoan and Nord­

lund (2002) suggest that such 'turbulent fragmentation' builds a mass spectrum of proto­

cores, some of which will collapse under their own gravity to form stars. The resulting 

IMF is a power-law due to the self-similar nature of the turbulence. Only cores dense 

enough so that self gravity can overcome their magnetic and thermal energy can col­

lapse. This consideration flattens the IMP at low masses, and prevents very low-mass 

cores from forming stars. They also argue that the maximum mass is a fraction of the 

overall cloud mass. 

A young stellar population does of course dump a lot of energy into its surround­

ings through stellar winds, ionisation, and SN explosions. Even if these do not drive 

the observed turbulence, they may contribute to the destruction of the cloud, and pre­

vent further star formation. Most simulations use such feedback from star formation to 

regulate the star formation rate. 

1.3.2 Observations of Star Formation Rates 

In all but the closest galaxies individual stars remain unresolved even with the most 

modem telescopes. Most information on the star formation properties of galaxies comes 

from integrated light measurements in the ultra-violet (UV) and far-infrared (FIR) and 

from observation of the strength of recombination lines, for example Ha. We will now 

discuss each of these methods, highlighting both the advantages and disadvantages of 

each one. 

Ultraviolet Continuum: Young stars dominate the emission at ultraviolet wavelengths 

so the luminosity scales almost linearly with SFR (Kennicutt (1998)). The conversion 

between UV flux in a given band and the SFR can be derived using stellar synthesis 

models (see e.g. Bruzual and Charlot (1993)). The optimal wavelength range to make UV 

observations is 1250 - 2500 angstroms, which is longward of the Lyman alpha forest but 

still short enough to remove most contamination from older stellar populations. These 

wavelengths cannot be observed from ground based telescopes for redshifts z < 0.5 but 

are visible from redshifts 1 - 5. For this reason the most complete UV studies of nearby 

galaxies have been carried out by balloon, rocket and space experiments. 

Far-Infrared Continuum: Interstellar dust in galaxies will absorb a significant fraction 

of the stellar luminosity. This heats the dust, which then re-emits photons with a black 

body spectrum characterised by the temperature of the dust. In real galaxies the situ­

ation is somewhat complicated by the fact that the dust exists at at least two discrete 
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temperatures (e.g. Cox et al. (1986)), and so any analysis must take into account con­

tributions from a 'warm' component associated with dust around star-forming regions 

and another 'cool' component, which is emitted by the diffuse dust throughout the rest 

of the galaxy. This makes the calibration of the conversion factor between FIR lumi­

nosity and SFR a somewhat controversial subject, and only relatively recently have the 

calibrations used by different authors (Hunter et al. (1986); Lehnert and Heckman (1996); 

Meurer et al. (1997)) begun to agree to within better than a few tens of percent. 

Recombination Lines: Hydrogen atoms that interact with high energy photons can 

be ionized, and then at a later time recombine with the electrons, emitting photons at 

specific frequencies. Stars with masses > 10M0 and lifetimes of < 20Myr contribute 

significantly to the flux of these ionizing photons, so measuring the strength of the re­

combination lines provides an estimate of the instantaneous star formation rate. The 

most commonly used line is Ha, which is both very strong and exists in a part of the 

spectrum visible from the ground (at least for z < 0.5). Calibrations between Ha flux 

and SFR have been provided by a number of authors (Kennicutt (1983); Leitherer and 

Heckman (1995)). The Ha line is used very commonly as an SFR indicator due to its 

high sensitivity. Additionally SFRs measured by this method are very sensitive to the 

slope of the IMF, and as such provide a good way of constraining its properties (Kenni­

cutt (1983)) 

At high redshift the Ha line is redshifted outside of the visible window and therefore 

must be investigated with space-based experiments. There is therefore a lot of interest 

in using higher order lines as SFR tracers. The integrated strengths of the other hydro­

gen recombination lines is very low, and they are strongly influenced by absorption in 

stellar atmospheres. However, the [Oil] forbidden-line doublet is sufficiently strong and 

sufficiently well behaved that it is possible to calibrate between SFR and [Oil] luminos­

ity (Gallagher et al. (1989)). SFRs measured by this line are somewhat more uncertain 

than similar ones calculated using the Ha line, but the [Oil] line is visible up to a higher 

redshift. 

Many large surveys of the global SFRs of galaxies have been carried out using all of 

the techniques summarised above. Ha(Cohen ( 1976a); Young et al. (1996)), UV (Deharveng 

et al. (1994); Buat (1992)), FIR(Colless et al. (2001); Moshir et al. (1992)). The absolute 

SFRs in galaxies (usually expressed in units of M 0 jyr, show an enormous range, from 

virtually zero in gas-poor elliptical, SO, and dwarf galaxies to 20M0 jyr in gas-rich spiral 

galaxies and 100M0 /yr in high redshift starburst galaxies, although these figures are 
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somewhat uncertain due to the as yet poorly constrained shape of the stellar initial mass 

function, which although measured for our own galaxy (Salpeter (1955); Kroupa (1998); 

Chabrier (2001)), is still unknown in high redshift objects, where the physics of the ISM 

may be significantly different to the low redshift universe. 

1.3.3 The Physics of Supernova Explosions 

A supernova event marks the end of life for some stars. There are a variety of different 

mechanisms by which SN can occur. These include accretion of matter from a compan­

ion star (Type Ia) or exhaustion of its own fuel supply (Types lb, Ic, and II). Each of these 

mechanisms can take a star to the point where it can no longer support itself against 

gravity and thus collapses, throwing off its outer layers in a burst of energy that out­

shines an entire galaxy. This discussion is divided into sections on Type I supernovae 

and Type II supernovae (see e.g. Woosley and Weaver (1986) for a review). The distinc­

tion between supernova types is based on the presence or absence of hydrogen lines in 

the spectrum. The two types of supernova are almost totally distinct phenomena, the 

only relations being the approximate equality of the explosion energy ( 1051 erg) and the 

fact that both produce heavy elements. 

Type II supernovae are estimated to occur once every 44 years in our galaxy, and 

Type I's every 36 years (Tammann (1982)). In this section we will discuss the physics of 

both Type I and Type II supernovae before summarising the behaviour of the resulting 

supernova blast wave, and describing the metal yields from different types of supernova. 

Type 1 Supernovae 

Supernovae that do not show prominent hydrogen lines are classified as Type I. Type I 

supernovae are not a homogeneous set and following Elias et al. (1985) we will consider 

Type I supernovae to be split into three subgroups, Type Ia (strong Si II line), Type lb 

and Ic (characterised by an absence or presence of a Helium line) 

Type Ia supernovae are generally considered to be due to an accreting white dwarf in 

a binary system that grows to a critical mass (Whelan and lben (1973)), and ignites carbon 

or helium. The energy from the burning disrupts the star at high velocity. In general no 

neutron star or black hole remnant would be expected from this type of explosion. 

Type lb and Ic supernovae are thought to be associated with massive stars (Wheeler 

and Levreault (1985)), and perhaps represent the collapse of a star massive enough to 
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have blown away its outer hydrogen envelope. The supernova explosion in this case 

would proceed in a way similar to the iron core-collapse supernovae discussed in the 

following section. 

Type 2 Supernovae 

Type II supernovae are generally believed to be a consequence of gravitational collapse 

of massive stars (M > 8M0 ). Type II supernovae are characterised by the presence of 

hydrogen lines in their spectra (Branch et al. (1981)). The fate of massive stars depends 

sensitively on their mass and composition (metallicity) at birth. See e.g. Heger et al. 

(2003) for a recent review. 

The mass range for stars that undergo supernova events fitting our description of 

a Type II supernovae is bounded on the lower end by the largest mass of star that can 

become a white dwarf and on the upper end by the most massive stars that will keep 

an appreciable hydrogen envelope. For isolated stars, this mass can be estimated in a 

number of ways: by finding the mass of the progenitors of the largest white dwarfs 

(lben and Renzini (1983)), with statistical arguments on the occurrence of supernovae 

(Tammann (1982)) and theoretical models for white dwarf formation (lben (1985)). The 

values obtained by each of these techniques are in good agreement at 8M0 . 

The mass of the most massive star that maintains a hydrogen envelope is uncer­

tain and depends strongly on metallicity, and varies from approximately 30M0 in solar 

metallicity stars to hundreds of solar masses in metal free stars (Heger et al. (2003)). 

Stars with masses greater than 8M0 and with a hydrogen envelope will undergo what 

we observe as Type II supernovae. More massive stars may undergo a violent instability 

Stars in the mass range 8 - 11M0 (Barkat et al. (1974)) form, in their later stages 

of evolution, a core of Oxygen, Neon and Magnesium (Miyaji et al. (1980)). According 

to the models of Barkat et al. (1974) these 0-Ne-Mg cores grow through a complicated 

series of shell burnings, until two competing effects electron capture by Ne and Mg (acting 

to allow the core to collapse gravitationally) and Oxygen dejlagration (acting to cause the 

star to explode) begin to act against each other. Miyaji et al. (1980) found that electron 

capture is the dominant effect and stars in this mass range have cores that collapse into 

neutron stars. 

More massive stars undergo supernovae via a different mechanism. These stars are 

massive enough to ignite all six nuclear burning stages (hydrogen, helium, carbon, neon, 

oxygen and silicon) until an iron core is formed. As the iron core grows its temperature 
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and density increase until photons have enough energy to destroy heavy nuclei, a pro­

cess known as photodisintegration. Most importantly: 

~~Fe + 'Y ---. 13~He + 4n , (1.18) 

and 

~He + 'Y ---. 2p+ + 2n. (1.19) 

Photodisintegration can, in a very short time, undo what the star has been trying to do 

its entire life, namely produce elements more massive than Hand He. This process of 

stripping iron down to protons and neutrons is highly endothermic and the core begins 

to collapse. Under the extreme conditions that now exist the free electrons that had 

assisted in supporting the core through electron degeneracy pressure are captured by 

heavy nuclei and the protons that were produced through photodisintegration 

(1.20) 

Most of the core's support is now gone and it begins to collapse rapidly until supported 

by neutron degeneracy pressure, at which point it rebounds. The outer layers of the star 

collapse inwards on the core and rebound, sending shock waves outward. This is a Type 

II supernova. 

The late stage evolution of stars massive enough to shed their hydrogen-envelopes is 

more complex still and depends upon the rotation speed, metallicity and mass of the star. 

Depending on mass and metallicity different instabilities become important, including 

the 'pair instability' (Fowler and Hoyle (1964)). The resulting supernova events can have 

a large range of effects on the supernova remnant from complete disruption of the star 

(Heger and Woosley (2002)) to the formation of a massive black hole (Fryer et al. (2001)). 

Main sequence stars with masses greater than 8M0 are short lived so Type II super­

novae are observed only in regions that have recently formed stars and therefore rarely 

in elliptical galaxies (Tammann (1974)). 

The Evolution of a Supernova Remnant 

In the classical model of Supernova Remnant (SNR) evolution (Chevalier (1977); Gull 

(1973); Woltjer (1970)) there are four main stages or phases through which a SNR passes: 

Free Expansion, Adiabatic, Snowplough and Dispersal. We simplify the discussion of 

SNR evolution by treating a supernova as an injection of some amount of energy, Eo, to 

an amount of mass Mo, which acquires an initial velocity, vo. At timet the resulting blast 
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wave has a radius R8 • We treat the system as spherically symmetric and consider how it 

interacts with the surrounding ISM of density nism hydrogen atoms per cubic centimetre 

(Woltjer (1972)) we can treat each of these phases in tum: 

I. Free Expansion: The supernova ejecta will sweep up gas from the ISM as it travels. 

As long as the mass swept up is very much less than the mass in the ejecta: 

47r 3 
3nismmH R 8 < Mo , (1.21) 

then the expansion of the remnant will be essentially free and much of the development 

will depend on the initial conditions. 

II. Adiabatic: The swept up mass will increase until it exceeds M0, we then enter 

the phase where the behaviour of the expanding shock wave can be described by the 

self similarity solution of Sedov (see section 3.2.6 for a more detailed discussion of this 

phase). During this phase the shock wave has a radius ex t2/5, other properties of the 

shock wave are discussed more fully in section 3.2.6. This solution for the behaviour of 

the shock wave assumes that the gas is adiabatic. In reality, a hot gas will cool radiatively 

so this regime is valid whilst 

(1.22) 

By assuming that all of the mass internal to the shock wave is contained in a thin shock 

wave it can be shown (Woltjer (1972)) that the time at which the integrated radiative 

energy loss equals ~Eo is 
- 4/17 -9/17 

trad - l.lEo nism ' (1.23) 

and assuming that the adiabatic relation for the velocity still holds: 

(1.24) 

This evaluates to 200km/ s and depends only very weakly on the parameters of this par­

ticular supernova. This velocity is taken to mark the end of phase II and the beginning 

of phase III. 

III. Snowplough: When the radiative losses become dominant the behaviour of the 

shock wave will change. Matter passing through the shock wave cools rapidly and 

the density becomes high. In this phase we can consider the shock wave to be a thin, 

dense shell ploughing through the ISM. Pressure forces are no longer important and the 

shock moves with a constant radial momentum. The equation of motion simply becomes 

(Chevalier (1977)): 

(1.25) 
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where C1 is a constant. Integrating with respect to time we obtain that 

R = R ad(~_,!__-~) 
114 

r 5 trad 5 ' 
(1.26) 

where the subscript rad represents the values at the transition from stage II to stage III. 

W. Dispersal: After the shell has slowed down for some time its velocity becomes 

comparable to the random thermal motions of the ISM (around lOkm/s). The shell dis­

perses and loses its identity. The matter in the shell is mixed in with the material in 

the surrounding ISM, depositing the heavy elements that formed during the supernova 

explosion in the ISM. 

The model as introduced so far neglects a number of important physical processes, 

including the presence of magnetic fields in the swept up shell, the pressure of cosmic 

rays within the shell, the inhomogeneity of the ISM and thermal conduction between 

the hot gas of the supernova remnant and the surrounding cold molecular clouds (this 

process is discussed in section 3.2.7). These additional physical processes mean that the 

problem of understanding the evolution of a SNR is not yet closed and is still an active 

area of research. 

1.3.4 Metal Enrichment 

As discussed previously in this section, stellar nucleosysnthesis and supernova explo­

sions create elements heavier than the H and He formed by BB nucleosysnthesis (see 

section 1.1.2). 

In astronomy any elements heavier than helium are described as 'metals'. The frac­

tion of metals in a sample of gas is usually quantified using its 'metallicity', defined for 

Iron as 

[Fe] (NFe) (NFe) H = loglo NH - loglO NH 0, (1.27) 

Where N represents the number density of a particular species, and the subscript 8, is 

the value for the sun. A star with a metallicity equivalent to that of the sun therefore has 

a metallicity of 0. The observed range of metallicities in the MW is -4.5 (old, extremely 

metal poor stars) to +1 (very young, metal rich stars). 

Calculating the expected metal yield from a supernova explosion is not an easy task, 

and is a function of the mass, metallicity and rotational speed of the star. Additionally 

each of the different supernova mechanisms will produce different proportions of met­

als. There is still uncertainty about the precise metal yields from all types of supernovae. 
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Various authors have investigated the yields from Type II supernovae (Woosley and 

Weaver (1995); Thielemann et al. (1996); Limongi et al. (2000)) and although much work 

has been performed in this area, the resulting supernova yields are still somewhat uncer­

tain (Travaglio et al. (2004)) due to our only approximate understanding of the precise 

mechanism by which core collapse supernovae are triggered. The dominant product 

from these supernovae are thought to be the a elements, defined as the Z > 22 multiples 

of He (e.g. Mg, Si, S, Ca), which are synthesised by alpha capture during SNII. 

The nucleosysthesis expected in type I supernovae has been calculated by several 

groups (e.g. Nomoto et al. (1984)). The dominant products from these supernovae are 

the iron peak nuclei (elements with an atomic number near that of iron, and high binding 

energy per nucleon). 

The differing yields from different supernova types may, therefore, be used to probe 

the star formation history of the universe. Since Type II supernovae occur on a very short 

timescale, the relative abundances of the a and Fe elements can provide clues as to the 

history of star formation in a given object (Tissera et al. (2002)) 

1.4 Motivation for This Thesis 

In this section we provide a brief overview of the contents of each chapter. 

1.4.1 Computational Cosmology 

Cosmological structure formation is a complex and non-linear process, therefore a thor­

ough understanding of both simulation algorithms and their shortcomings is of crucial 

importance in carrying out scientific investigation in this field. This chapter is primarily 

concerned with numerical issues affecting cosmological simulation. We begin by provid­

ing an overview of the simulation techniques used in cosmological structure formation 

simulations, before carrying out numerical tests of two simulation codes. We then in­

troduce the process by which cosmological initial conditions are created and using this 

knowledge probe the numerical effects that alter the properties of a halo as a function of 

its mass resolution. 

1.4.2 Statistical Modelling of the Interstellar Medium 

Most computational models of star formation and supernova feedback are crude at best 

and rely on straight fits to empirical laws. In this chapter we introduce in detail a novel, 
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physically motivated prescription for the simulation of a multiphase ISM on galactic 

scales. This model could find many applications, two of which are discussed in the 

following two chapters. 

1.4.3 The Interstellar Medium in Isolated Galaxies 

In chapter 4 we investigate the properties of the interstellar medium in an isolated disk 

galaxy using the model introduced in chapter 3. We find that the model described in 

chapter 3 can reproduce many of the observed properties of quiescent galaxies, and we 

undertake a short investigation into the effects of changing some of the physics of the 

ISM. 

1.4.4 Simulating Galaxy-Galaxy Interactions 

Mergers and other gravitational interactions between galaxies are an essential part of 

hierarchical galaxy formation scenarios, and it is likely that the vast majority of galaxies 

in the observable universe have been shaped by collision events (Toomre (1977)). This 

suggests that in order to understand the properties of present day galaxies we require 

a thorough investigation of the dynamics and energetics of galaxy-galaxy interactions. 

In this chapter we analyse the properties and behaviours of previously quiescent disk 

galaxies as they undergo gravitational interactions with one another. It is found that 

many of the properties of the resulting remnant, including density and brightness pro­

files, the age gradient and the makeup of the ISM match very well with the correspond­

ing properties in local early-type galaxies. Additionally during the merger strong star 

formation is observed in the tidal features of the interacting galaxy pair. 



Chapter 2 

2.1 Introduction 

Computational 

Cosmology 

The past few decades have seen huge advances in our understanding of the formation 

and evolution of cosmic structure. Recent galaxy surveys (see e.g. Colless et al. (2001); 

York et al. (2000)) have allowed us to quantify the structure of the local Universe and the­

oretical models have allowed us to explain how these structures grew from the first few 

moments of the Universe's existence to the present day. Due to the huge timescales in­

volved in the formation of large scale structure, computer simulation has become one of 

the most important methods for the investigation of the formation and evolution of the 

largest scale cosmic structure. In order to perform reliable simulations is important that 

we understand the relative strengths and weaknesses of different simulation algorithms. 

In adition it is also important that we have a reliable way of generating the initial con­

ditions for large scale structure simulations. This chapter is concerned with all of these 

things and is split broadly into two sections. 

In the first section we introduce and describe the most common cosmological simula­

tion techniques before performing a series of tests of the reliability of simulation codes by 

carrying out a comparison of the results obtained by two different simulation techniques 

against one of the standard cosmological tests, the Santa Barbara cluster comparison test 

(Frenk et al. (1999)) 

In the second half of this chapter we discuss the techniques by which cosmologi­

cal initial conditions can be generated and introduce a code for the generation of high 

resolution cosmological initial conditions in which additional small scale power can be 

added to large scale modes. We use this code to present a detailed study of the effects of 

mass resolution on a set of simulated galactic haloes. 

33 
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2.2 Simulation Techniques 

In cosmological simulation the matter in the universe is usually modelled in two seperate 

components: firstly a collisionless fluid that represents dark matter or stellar material 

and secondly a baryonic component (primarily hydrogen and helium). Both of these 

phases feel the gravitational force, the gas phase is in addition subject to hydrodynamic 

forces. In order to tum the problem of the solution of the hydrodynamics equations into 

one that can be represented numerically we need to discretize the fluid properties that 

we wish to calculate. Broadly speaking hydrodynamic simulation codes may be broken 

down into two classes 'Eulerian' (discretize space and represent gas properties on a grid) 

and 'Lagrangian' (discretize mass and represent fluid properties in individual particles). 

Hydrodynamic forces may be evaluated in a large number of different ways. The 

most commonly used Lagrangian codes employ the Smoothed Particle Hydrodynamics 

(SPH) (Gingold and Monaghan, 1977; Monaghan, 1992) method, and the most common 

Eulerian codes use the Piecewise Parabolic Method (PPM), first developed by Colella 

and Woodward (1984) (see also Woodward and Colella (1984)). Lagrangian simulation 

codes have been implemented in a cosmological framework by various authors, first on 

a static grid (Cen (1992)) and later on a deformable grid allowing a spatially variable 

mass resolution Bryan et al. (1995); Fryxell et al. (2000); Teyssier (2002); Quilis (2004). 

Although not discussed further in this thesis it is worth noting that other hydrodynamic 

methods do exist, including HPM, and the smoothed lagrangian hydrodynamics codes 

due to Gnedin (1995). 

Most simulation codes calculate the gravitational forces (through solution of the Pois­

son equation) in one of a limited number of ways: either through the use of fast Fourier 

transforms on grids (PM methods). see e.g. (Klypin and Shandarin, 1983; White et al., 

1983; Efstathiou and Eastwood,1981); hierarchical trees (Barnes and Hut (1986); Jernigan 

and Porter (1989)); mesh relaxation methods (Brandt (1977)), or direct summation of the 

pairwise forces (see, e.g. (Aarseth et al., 1979; Frenk et al., 1983)). Each of these meth­

ods has its own advantages and disadvantages. PM codes are extremely fast but spatial 

resolution is limited by the size of the spatial grid. Other methods are more computa­

tionally expensive but allow forces to be resolved on much smaller scales. Hybrid codes, 

for example P3M (Efstathiou and Eastwood, 1981; Couchman et al., 1995; Wadsley and 

Bond, 1997) or Tree-PM (Wadsley et al., 2004; Springe!, 2005) can combine the best fea­

tures of each of these schemes. As in the case of the hydrodynamic calculation we will 
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discuss only the most commonly used methods of calculating the gravitational force, 

neglecting interesting but rarely used techniques such as the approach due to Widrow 

and Kaiser (1993) of reformulating the Schroedinger equation to describe the dynamics 

of collisionless matter. 

In the remainder of this section we will discuss in more detail a few of the methods 

by which the gravitational and hydrodynamic forces may be calculated for arbitrary 

distributions of matter. 

2.2.1 The Gravity Calculation 

For any continuous density field p(r), we can calculate the associated gravitational po­

tential via the Poisson equation 

\72<P(r) = 47rGp(r), (2.1) 

where <I> represents the gravitational potential and G is Newton's gravitational constant. 

The gradient of the potential as obtained from 2.1 can then be obtained to calculate the 

gravitational acceleration at any point. In cosmological comoving coordinates the Pois­

son equation becomes (Peebles (1981)) 

(2.2) 

General relatavistic effects can be neglected in cosmology due to the fact that the 

Newtonian limit is applicable on scales smaller than the Hubble length (c/H) and larger 

than the Schwartzchild radii of any collapsed objects. In order to approximate a contin­

uous field computationally we need to discretise the phase space distribution of matter, 

f(x, y, z, Vx, Vy, vz). This is usually achieved by subsampling the true phase-space dis­

tribution and representing it with enough discrete particles to capture the important 

features of the underlying phase space distribution. 

In this section we will discuss four different ways of calculating the gravitational 

force: The direct summation, using Fourier transforms on a regular grid, using a hier­

archical tree and finally using iterative methods on a (possibly irregular) grid. Finally 

these four techniques are compared and contrasted. 
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Particle Particle Methods 

The most conceptually simple way of calculating the gravitational force on a point mass 

due to a system of other point particles is the particle-particle (PP) direct summation 

method. This method, used in the first ever simulations of cosmic structure formation 

(Aarseth (1963); Henon (1964), works by explicity summing the gravitational force ex­

erted on each particle by each other particle directly via Newton's law of gravitation 

(2.3) 

where E represents a gravitational softening term, which acts to flatten off the gravita­

tional force at small radii (r < E) and so diminish the effect of two-body relaxation. 

PP codes solve exactly for the gravitational force on each particle, the disadvantage 

of these codes is that the number of computations to calculate the gravitational force on 

N particles scales as N 2, so these codes are unfeasible for use in even moderately large 

simulations. 

Particle Mesh Methods 

One method of cutting down the number of operations needed to calculate the gravita­

tional force is to calculate potentials on a regular mesh and then interpolate the forces 

back to the particles. 

The process of using a mesh to calculate the gravitational forces on a series of discrete 

mass elements consists of three seperate steps: 

1. Mapping the discrete particle masses on to a uniform grid 

2. Solution of equation 2.1 to obtain the potential on the grid 

3. Differencing of the potential on the uniform grid at the location of each particle to 

obtain the gravitational force. 

In this section we will discuss each of these processes in tum. For the sake of simplicity 

we will assume that we have a cubic volume of side length L, which contains Np discrete 

particles. The mass of the ith particle is mi. The mass distribution at any given three 

dimensional coordinate, r may then be described by 

Np 

m(r) = L mio(r- ri). (2.4) 
i=O 



2. Computational Cosmology 37 

If we place a uniform cubic grid over the volume then using equation 2.4 we can calculate 

the mass density at a gridpoint with coordinate rp by 

1 Np 

p(rp) = ~3 L miW(ri- rp), 
i=O 

(2.5) 

where ~ represents the grid spacing and W is a function that represents the charge as­

signment scheme that is in use. In order to simplify the mathematics we will demonstrate 

a number of charge assignment functions in one-dimension but note that multidimen­

sional versions of the assignment functions can be obtained by multiplying together the 

corresponding one-dimensional functions for each component. The simplest solution is 

to assign all of a particle's mass to its nearest grid point (NGP), mathematically this is 

represented by 

{ 

1 if lxl < ~-
W(x) = 2

' 

0 otherwise , 

where x = Xi - Xp. The NGP scheme introduces lots of noise on small ( < ~) scales, 

where the assigned charges will flip from 0 to their maximum value as particles cross 

grid boundaries. A more accurate solution is obtained by using the cloud in cell (CIC) 

scheme, which spreads a particle's mass over the nearest two grid points in each direc­

tion. This scheme may be described 

if lxl < ~ 

otherwise. 

This is more computationally expensive than the NGP scheme but the resulting map­

pings are more accurate. More complex still is the triangular shaped cloud (TSC) scheme, 

where each particle's mass is spread over even more grid points and the resulting den­

sity is even less noisy. TSC is described by 

if lxl < ~-- 2' 

if ~ < lxl < 3A. 
2 - 2 ' 

otherwise, 

where the values of the coefficients are determined by requiring that the function and its 

derivative are continuous and that it integrates to unity. Figure 2.1 shows the difference 

between the three mass assignment schemes in one dimension. The choice of a charge 

assignment scheme, therefore, depends upon a number of factors. High order schemes 

are more computationally expensive to calculate, but reduce the amount of noise in the 
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Figure 2.1: The weighting functions for three mass assignment schemes 

in one dimension. The amount of mass that is assigned to each grid­

point is proportional to the value of the assignment function at the 

gridpoint. Considering a particle at point x with neighbouring grid 

points P-1, p and PI the NGP method assigns all mass to gridpoint p, 

CIC assigns to the nearest two points (p and p 1 ). TSC assigns mass to 

the nearest three points. 

resulting solution. Low order schemes require few operations to calculate, but increase 

the amount of noise in the result. 

The second step in computing the gravitational force is to solve equation 2.1 on the 

uniform grid. With the advent of rapid methods for performing Fourier transforms in 

the 1960s (Cooley and Tukey, 1965), fast Fourier transform (FFT) methods, the most com­

putationally efficient method of solving this equation became to work in k-space. 

To begin we need to note that the Poisson equation is linear, that is, the potential at 

any mesh point (p, q, r) can always be written as the sum of contributions from all other 

source points (p', q', r'), or 

</Jp,q,r = L f!3p-p 1,q-q',r-r1 Pp',q',r' · (2.6) 

Equation 2.6 expresses the potential as the convolution of the source distribution p with 

some function that describes the interaction, usually called the Green's function, f!J. 



2. Computational Cosmology 

Now, via the convolution theorem, the statement that (see e.g. Boas (1983)) 

the Fourier transform of a convolution is equal to the piecewise products of the 

Fourier transforms of the quantities involved 

we can rewrite equation 2.6 in the form 

J. = ~ ' 'f'k,l,m k,l,mPk,l,m · 

39 

(2.7) 

In order to solve the Poisson equation we therefore need to identify the form of the 

Green's function that describes the interaction. To do this we note that the Greens func­

tion for a particular differential equation is defined to be its solution under the influence 

of a delta function (Boas (1983)). That is: 

\72 ~(t, t') = t5(t'- t)' (2.8) 

where t5 ( t- t') represents a Dirac delta function centered at t'. Using the Green's function 

we can then try to find a solution to the Poisson equation for a real density field by 

adding up the contributions from point sources at each gridpoint. The Green's function 

in this case is described by(Hockney and Eastwood (1988)) 

' [ 2 2 2] ~p,q,r = -1/ 1r(p + q + r ) . (2.9) 

The form of the Green's function changes when we define the density only on a grid. 

The Green's function of the seven-point finite-difference approximation to the laplacian 

is 
' 7r 1 

<!lp,q,c ~ - Ll. 
2 

( [ sin2 ( rrpLl.) + sin2 ( rrqLl.) + sin2 ( rrr Ll.)) . 
(2.10) 

See appendix B for details on how this form of the Green's function is derived. Substi-

tuting equation 2.10 into equation 2.7 allows us to obtain the potential at every point in 

space by Fourier transforming the density field, multiplying with ~p,q,r and then taking 

an inverse Fourier transform. The gradient of the potential at the position of each mass 

element may then by approximated by finite differencing of the potential 

8¢ 1 
ax = 2Ll (cPi+l,j,k + cPi-l,j,k- 2¢i,j,k)' (2.11) 

i,j,k 

which is accurate to first order. The spatial resolution available through FFT methods 

is limited by the spatial size of the FFT grid (as demonstrated in figure 2.2). To obtain 

gravitational forces on scales below that of the FFT grid we need to apply additional 

methods. 
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Figure 2.2: Gravitational acceleration of a series of test masses (m = 0) 

due to a single point mass in the centre of a periodic box. The dashed 

line shows the potential from a point mass, ignoring the periodic im­

ages of the massive particle (GMj r 2). Each series of black points rep­

resents the gravitational acceleration of a single particle as performed 

with a different number of PM cells (as marked on the graph). The de­

viations from a pure 1/ r 2 law at high radii are due to the gravitational 

influence of the periodic images of the point mass. The deviations at 

low radii are due to the finite PM grid size. The higher the resolution of 

the PM mesh, the more accurate the gravitational force at small scales. 
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Tree Methods 

As an alternative to Fourier techniques are the so-called tree methods. In these schemes, 

the particles are arranged in a hierarchy of groups. In order to cut down on the number 

of computer operations when compared to a PP code, distant particles in the tree are then 

treated in groups. The process by which a tree is constructed and then used to calculate 

the gravitational force is discussed in this section. 

There are a multitude of different ways of organizing the particles in a volume into a 

hierarchy, including the Barnes and Hut octree (Barnes and Hut (1986}), trees based on 

nearest-neighbour pairings Gernigan and Porter (1989)) and binary trees. The methods 

by which two different types of tree-structure can be unambiguously created is discussed 

here. 

Constructing a Barnes-Hut tree: In this scheme, starting with the entire computational 

domain, the volume is recursively partitioned into a sequence of cubes. Each time a cube 

is found to contain more than one particle it is split into eight equal volume children. 

This process is demonstrated for two-dimensions in figure 2.3. 

Constructing a Jernigan-Porter tree: Gernigan (1985)) Given a list of N particles the two 

which are closest together in physical space are joined together to form a node. These 

two particles are replaced by a single centre of mass node. This process is repeated 

indefinitely until only one centre of mass node remains. 

The detailed shape of the hierarchical tree affects only the storage requirements and 

efficiency of the gravitational calculation, the actual mathematical details are indepen­

dent of which tree construction method is used, so the following presentation of tech­

niques for calculating the gravitational force given a hierarchical tree structure is inde­

pendent of precisely which tree is used. 

The gravitational force on a single particle is calculated via the following method: 

Starting from the largest node we apply the criterion 

(2.12) 

where r is the distance between the particle we are considering and the current node 

of the tree. l is the spatial extent of the node and () is an accuracy parameter. If this 

inequality is satisfied then the tree node is distant enough that the tree walk along this 

branch may be terminated and the force from this node added to the total force on the 

particle. If, on the other hand, the inequality is not satisfied, the node is opened up and 

its child nodes are evaluated. This process is repeated recursively until every particle 
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Figure 2.3: Simple depiction of a two dimensional version of an octree, 

the quadtree. Each black circle represents a single particle and each 

square represents a node on the tree. The quadtree is constructed by 

starting with the entire computational volume contained within one 

node and then recursively splitting each node into four equal pieces if 

it contains more than one particle. Here we see six different levels of 

the tree. 
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has been allowed to contribute to the gravitational force. 

The force on a particle from any node can be calculated to first order by 

- GMm 
F = (r2 + E2)3/2 f, (2.13) 

where r is the distance between the centre of mass of the node and the particle. M and 

m are the mass of the node and the particle respectively and E is the Plummer softening 

of the gravitational potential. More accurate forces can be obtained at the cost of more 

computations per node by including higher order corrections to the gravitational force. 

Consider the distribution of matter inside any node of volume SU, its effect on the 

potential and acceleration field outside SU is given by 

c/J(r) = L 0(r- x)p(x)d3x, (2.14) 

where pis the mass density of matter in the volume and 0 is the Green's function of the 

interaction. In the case of gravity we use the Green's function of the Laplacian, equation 

2.9. The analytic form of the high order corrections for the gravitational force has been 

described in detail by Salmon and Warren (1994), who derived the analytic forms of the 

high order corrections all the way up to the hexidecapole. 

It is worth noting that by this method we obtain only an approximation to the true 

force. However, the discrepancy between the calculated force and the actual force ob­

tained by direct summation may be made arbitrarily small by tuning the tree opening 

criterion, 0 (how deeply through the tree we walk when doing the calculation), and 

altering the order to which the gravitational potential is calculated for each cell (how 

accurately we evaluate the acceleration due to each node). 

There is currently disagreement between various authors about the most efficient 

way to evaluate a tree force. In the original treecodes of Springe! et al. (2001) the po­

tential was expanded out to the quadrupole term, however in the more recent versions 

Springel (2005), it was found to be more efficient to use only the monopole term, and 

to walk deeper into the tree. In contrast the treecode of Wadsley et al. (2004) used the 

hexadecopole moment for each node, and found it more computationally efficient to use 

relatively few tree nodes. Hernquist (1987) and Barnes and Hut (1989) both find that the 

use of the quadrupole moment may increase the efficiency of the tree calculation. 

Mesh Relaxation Methods 

As an alternative to using Fourier methods for solving the Poisson equation on a grid, 

iterative methods may be used. These methods are of great use in eulerian codes (e.g. 
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FLASH Fryxell et al. (2000)) and have definite advantages when used in conjunction 

with adaptive mesh refinement (AMR) (see section 2.2.2), in which gravity needs to be 

solved on a grid that is not necessarily uniform in space. 

The solution of the Poisson equation on a mesh via relaxation method proceeds in 

three steps 

1. Map the discrete particles to the mesh 

2. Iterate to find the correct gravitational potential 

3. Difference the potential and map back to the particles to obtain the gravitational 

force. 

The first of the three steps proceeds in an identical manner to that discussed in section 

2.2.1. The particles are mapped on to the grid using usually either the NGP, CIC or TSC 

schemes. Considering a two-dimensional grid (grid spacing~), we can write that 

EP¢ + EP¢ ~ cPi+l,j- 2¢i,j + cPi-l,j + cPi,J+l- 2¢i,j + cPi,j-l _ .. 
fJx2 fJy2 ~2 ~2 - Pz,J · (2.15) 

This equation can be rearranged into a form we can work with iteratively 

(2.16) 

Equation 2.16 forms the basis for the Jacobi method of solving for the gravitational po­

tential on a grid. The full method is as follows: Take a guess at the gravitational potential, 

usually this takes the form of the gravitational potential calculated on the last timestep, 

or if no potential is known it can be zeroed out. Now loop over every gridpoint apply­

ing equation 2.16 to obtain an improved estimate of the gravitational potential at that 

coordinate. Keep on iterating until the solution has converged to the correct potential. 

It should be noted that it is hard to define exactly what is meant by convergence. One 

commonly used measure of the error in the potential is the residual, defined as 

(2.17) 

where ¢ represents our current best estimate of the gravitational potential, as obtained 

by iteration. When L: R(x) 2 drops below some critical tolerance parameter then the 

potential is said to be converged. 

One improvement to the Jacobi method is to use Gauss-Seidel iteration. Compu­

tationally Gauss-Seidel iteration proceeds in exactly the same way as Jacobi iteration, 
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except the values are updated as soon as they are calculated. It can be shown (Hack­

ney and Eastwood (1988)) that this leads to a large reduction in the number of computer 

operations needed to converge the solution. 

An additional improvement comes about when we consider the parallelisation of 

the iteration problem. As presented so far, the standard Gauss-Seidel scheme cannot be 

run easily in parallel since each calculation depends upon the results obtained from the 

previous one. One way to get around this is to use the so-called 'red-black' ordering of 

points. This ordering is demonstrated in figure 2.4. The advantage of red-black ordering 

with regards to parallelisation is that the calculation as performed on each black point 

is independent of what happens to every other black point. Therefore in a massively 

parallel code, each processor can calculate the potential on some subset of the black 

points, before communicating once, and then working independently again on the red 

points. 

The major disadvantage of relaxation techniques is that due to the fact that each 

gridpoint interacts only with its immediate neighbour every timestep that large scale 

perturbations take very many iterations to travel the length of the grid, and convergence 

is very slow. This problem will be addressed when discussing hybrid codes in section 

2.2.1. 

Comparison of Methods of Solving the Poisson Equation 

So far in this section we have described four different methods of solving the Poisson 

equation for a system of discrete particles. Each of these methods has its own advantages 

and disadvantages. In this section we will compare each of the different methods and 

introduce some examples of hybrid codes, which combine the best features of two or 

more computational methods. 

Particle-Particle Codes: PP codes have the advantage that they are conceptually the 

simplest codes to understand, and they obtain the gravitational force on any particle to 

within machine precision. The big problem with PP codes is that as the number of par­

ticles N increases, the number of calculations increases as"' O(N2 ), making PP codes 

computationally prohibitive for large numbers of particles. Specialised hardwave, for 

example GRAPE (Sugimoto et al. (1990)) can be employed to allow the rapid evalua­

tion of the gravitational sums, but PP codes are still limited in their application to large 

simulations. 

Particle-Mesh Codes: PM codes solve exactly for the gravitational force on a series 
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(i,j+ 1) 

Figure 2.4: Red-Black ordering. Each circle represents a point on the 

computational grid, specified by two indices i and j. When iterating to 

solve the gravitational potential, we first loop over all white points (as 

labelled by arrows 1,2,3,4), updating the solution as we go. Then we 

do a second loop over all black points, using the updated values of the 

white points to obtain the new solution. 
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of gridpoints, the only errors introduced are due to the interpolation from particles to 

gridpoints and back. The major drawback of a PM code is that the gravitational force 

cannot be represented below the scale of a couple of grid spacings, and a hard limit 

is placed on the size of a PM grid by memory considerations. To achieve a factor of 

two in the grid spacing, the total number of gridpoints must be increased by a factor of 

8. The number of calculations needed for a PM code scales as O(N9 log2 N 9 ) (Hackney 

and Eastwood (1988)), where N 9 represents the number of gridpoints in the simulation 

domain, making the PM calculation one of the most efficient methods of obtaining a 

gravitational potential. 

Tree Codes: Tree codes solve for the gravitational potential at the point of each particle 

to within any desired accuracy. The number of calculations required to evaluate the 

gravitational potential in a system of N particles scales as O(NlogN) (Springe! (2005)). 

Although not as efficient as a PM code, tree codes do not suffer from the resolution limit 

imposed by a finite grid size. 

Mesh Relaxation Codes: Mesh relaxation techniques (e.g. Gauss-Seidel iteration) can 

solve the Poisson equation to within any required tolerance. On a uniform grid, pure 

Gauss-Seidel iteration is unworkable due to the large number of iterations required to 

communicate information over very many gridpoints. These techniques become more 

useful in combination with adaptive grids. In these codes the large scale perturbations 

are first solved on a coarse grid and then sampled up to a finer grid, with the Gauss­

Seidel iterations used only to perform corrections on small scales. 

Hybrid Techniques: Various authors have either extended these techniques or com­

bined two or more of them in order to make use of the best features of each method. 

The large drawback to using a PM code is that the forces on small scales are strongly 

supressed. The simplest extension to a plain PM code is to explicitly sum the forces from 

nearby particles (the PP calculation), and use the mesh to calculate long range forces. 

This is a P3M code (Hackney and Eastwood (1988); Efstathiou and Eastwood (1981)). 

Efstathiou et al. (1985) compared the relative accuracy of P3M and PM codes in a cos­

mological context. P3M codes can resolve the gravitational force down to any required 

scale but the number of operations needed to calculate the gravitational force scales as 

O(Nnlog(N)) (Springe! (2005)), where N represents the number of particles in the sim­

ulation and Nn represents the average number of neighbours (defined as particles close 

enough to be calculated using the PP bit of code). If the particle resolution is significantly 

higher than the resolution of the PM grid then the PP calculation begins to dominate and 
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the calculation slows down. A further extension to the P3M code is to adaptively place 

high resolution PM grids over high density parts of the volume Adaptive-P3M (Couch­

man et al. (1995)). This cuts down on the amount of work that the PP calculation has to 

do inside the refined regions. Care must be taken, however, as the memory requirements 

for the storage of many high resolution PM grids are large. 

The numerical technique that is currently most commonly employed in cosmological 

simulation is the Tree-PM (Xu (1995)) method. In a similar way to the P3M method, 

the short range part of the gravitational interaction is replaced with a tree code. This 

simulation technique is very computationally efficient, allows the gravitational force to 

be resolved to arbitrarily small scales and as such has become the technique of choice for 

most of the current generation of lagrangian codes. 

2.2.2 The Hydrodynamic Calculation 

In order to describe the behaviour of an ideal gas we need to define both the equations 

of motion and the equation of state. The equation of state of an ideal gas is given by 

P = Ap'~', (2.18) 

where 1 is the ratio of the specific heats. There are then three equations that describe the 

behaviour of the gas. The continuity equation 

ap 
&t + V · (pv) = 0, (2.19) 

the Euler equation, 

(2.20) 

and the energy evolution equation: 

apE 8t + V · [(pE + p)v] = pv ·g. (2.21) 

Here p represents the gas pressure, p represents its density and 1 is the adiabatic expo­

nent. A is assumed to be constant in both space and time and is related to the specific 

entropy of the gas. v and g represent the velocity and gravitational acceleration vectors 

and E is the internal energy per unit mass of the gas. These equations also need to be 

coupled to the Poisson equation as described in section 2.2.1. 

In the remainder of this section we will discuss how these equations can be modelled 

both by a system of particles and by a regular mesh. 
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Particle Methods 

The most popular Lagrangian (mass quantised) hydrodynamics method is Smoothed 

Particle Hydrodynamics (SPH; (Gingold and Monaghan, 1977; Monaghan, 1992)) in which 

the fluid is represented by some number of discrete point particles, and the fluid prop­

erties at any point can be calculated by taking the weighted mean of the properties of 

nearby particles. 

The main advantages of SPH are that it does not need any sort of spatial grid in order 

to calculate spatial derivatives and that by its lagrangian nature areas of interest (usually 

high density regions) are well represented due to the flow of particles into that area. This 

is in contrast to grid based hydrodynamic methods where great effort must be spent in 

setting up grids so that areas of interest are simulated in high detail (see section 2.2.2). 

The essentials of the SPH method can be expressed with two concepts. Firstly we 

need to assume that the phase space distribution of a gas can be adequately represented 

by some discrete distribution of particles. Secondly the properties of the gas fluid at 

any point can be estimated by taking a weighted average of those properties over the 

surrounding particles. 

The value of some hydrodynamical quantity, A, can be calculated at any point in 

space via the following equation 

A(r) =I A(r')W(r- r', h)dr', (2.22) 

where the integration is over all space. A represents some property of the fluid, with 

A representing an estimated value at coordinate r. W(r, h) is an appropriately chosen 

smoothing function, the SPH kernel, which must obey two properties. Firstly it must be 

normalised, 

I W ( r - r', h )dr' = 1 , (2.23) 

secondly, in the limit that we have an infinite number of particles (and therefore h tends 

to zero), the kernel must tend toward becoming a delta function 

lim W(r- r', h) = J(r- r'). 
h-+0 

(2.24) 

The original kernel chosen by ((Gingold and Monaghan, 1977)) was a Gaussian, 

(2.25) 
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Figure 2.5: A comparison of SPH kernels as used in the literature. The 

spline kernel falls off to precisely zero ar r I h = 2.0, the Gaussian kernel 

is small but nonzero at high radii. The Thomas & Couchman (1992) 

kernel is identical to the spline kernel at r I h > 0.5, but is modified such 

that it is linear at smaller radii 

an improvement to the Gaussian kernel comes in the form of a spline kernel 

[ 
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1
- 1(2 - .!:.)3 if 1 < r < 2· rrh3 4 h - li - • 

0 otherwise . 

2.5 

The spline kernel has a continuous second derivative, the dominant error term in the 

integral interpolant falls off as h 2, and for r > 2h the kernel is precisely zero. Figure 2.5 

shows three different SPH kernels used in the literature. 

When working with a finite number of particles the integral in equation 2.22 is ap­

proximated by a summation 

A(r ) = L mi AiW(r - rt, h). 
i Pi 

(2.26) 

Where i represents a unique particle label for each particle in the simulation. It is 

important to note that although the summation in equation 2.26 is formally done over 



2. Computational Cosmology 51 

all particles, in reality the choice of W(r, h) will mean that only those particles within 

a distance 2h of the point we are considering are important in the calculation. Deriva­

tives of the interpolant can be obtained by ordinary differentiation; no need for finite 

differencing or grids. For example V' A may be written 

- '""'A-V' A(r) = 6 ~ V'W(r- r 1, h). 
i Pi 

(2.27) 

Using these ideas the equations of motion of an ideal gas may be obtained. Consider 

an ideal gas with no heat sinks or inputs, decoupled from the gravitational force. The 

momentum (or Euler) equation is then described by 

1 av f = --V'p + 'l¢c =- + (v · V')v. 
P at (2.28) 

For the purposes of demonstrating how SPH represents the equations of motion of an 

ideal gas we will consider rewriting the V' P j p term in a form suitable for integration 

with an SPH code. The simplest approach is to use the fundamental equation of SPH 

(equation 2.26) along with equation 2.27 and the identity 

V' P = [V'(pP)- PV' p]j p, (2.29) 

to write 

(2.30) 

where 'liW(ri- ra, h) represents the gradient of W(ri- ra) taken with respect to the 

coordinates of particle a. However, with this equation of motion, linear and angular 

momentum are not conserved exactly (Monaghan (1992)). It is therefore better to make 

the equation symmetric between a and i by using the identity 

V'P p p 
- = V' (-) + - V' (p) ' 

p p p2 
(2.31) 

we can write that 

V' aPa '""' (Pa Pi) ( -) --=6mi 2+2 V'iWra-ri,h, 
Pa i Pa Pi 

(2.32) 

where W(ra- ri, h) is a symmetrized kernel (Hernquist and Katz (1989)), which ensures 

that the force between two particles is precisely symmetric. 

(2.33) 
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Equations 2.32 and 2.33 provide the basis for reconstructing the equations of motion of 

an ideal gas in a form suitable for use in SPH. Using these techniques the momentum of 

particle i can be integrated forward in time using (Springe! and Hemquist (2002)) 

(2.34) 

Where Ilia represents an artificial viscosity force between particles i and a. The artifi­

cial viscosity is introduced in order to damp the unphysical oscillations that occur after 

strong shocks, and also has the effect of allowing shocks to occur. The artificial viscosity 

term was originally introduced by Monaghan and Gingold (1984) and took the following 

form, known as the Monaghan-Gingold tensor 

if(ri-rj)·(vi-Vj) <0; 

otherwise 

hij(ri- rj) ·(vi- Vj) (
2

.
35

) 
J,lij = 2 + 2 ' 

rij T/ 

where Cij, hij and Pij are the arithmetic means of the sound speed, smoothing length and 

density of particles i and j. a and {3 are free parameters that are used to tune the strength 

of the artificial viscosity term. Steinmetz (1996) found that values of a = 0.5 and {3 = 1 

worked well. For problems with strong shocks, these values were increased to a = 1 

and {3 = 2, but it is noted that an increased artificial viscosity has the effect of smearing 

out shocks. 

It was noted (Hemquist and Katz (1989); Katz and Gunn (1991)) that this form of the 

artificial viscosity does not vanish in pure shear flows (V' x v =I= 0, V' · v = 0), and may 

lead to unphysical angular momentum transport in the formation of disks, particularly 

in the case of low resolution galaxy simulations (Steinmetz (1996)). This problem can be 

almost completely prevented by using the form of the articifial viscosity due to Balsara 

(1995) 

(2.36) 

where the function f is an order-of-magnitude estimate of the irrotational fraction of the 

flow. Described by 

(2.37) 

The final term in the denominator prevents divergences. In the case of a purely com­

pressive flow (V' x v = 0, V' · v :f= 0) f = 1, and the artificial viscosity is identical to 

the Monaghan-Gingold viscosity. In a purely rotational flow (V' x v = 0, V' · v =I= 0) the 
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viscosity is completely supressed. Steinmetz (1996) found that in a simple simulation of 

a gas disk containing 280 particles and using the Monaghan-Gingold artificial viscosity 

the half-angular-momentum velocity grew by a factor of 2 to 3 within 3Gyr. Using the 

modified artificial viscosity the half-angular-momentum radius varied by less than 10% 

over a Hubble time. 

Grid Methods 

The basis of most grid based hydrodynamics codes is to split the simulation volume into 

a discrete set of gridpoints, for which the gas properties are known. The evolution of 

this system can then be evolved by solving for the behaviour of a gas at the boundaries 

between each of these cells. This problem may be described in the following way, 

{ 

u~ for x < 0, 
u(x, 0) = 

u~ for x ~ 0, 

where subscripts denote spatial positions and superscripts represent time. Such a prob­

lem is called a Riemann problem and represents a discontinuity in the gas properties. The 

usual way of incorporating the Riemann problem into the numerical solution is to take 

( uf, uu 1), for each i in tum, that is to treat the boundary between each grid cell in the 

simulation as a separate Riemann problem, which are then thought of as providing infor­

mation about the sol uti on in each interval ( i, i + 1). The precise workings of the Riemann 

solver are beyond the scope of this thesis but include random choice methods (Glimm 

(1965); Chorin (1976)) and Newton iteration (Colella and Glaz (1985); van Leer (1979)). 

Godunov (1959) assumed that the initial data could be replaced by a piecewise con­

stant set of states with discontinuities at xi_1; 2 and xi+l/2 , this simplified problem can 

then be solved exactly. Godunov then replaced the exact solution with a new set of 

piecewise constant approximation, preserving the integral properties of the exact solu­

tion. The first major extension to this approach was made by van Leer (van Leer (1979)), 

who approximated the data by piecewise linear segments, allowing discontinuities be­

tween the segments. This approach required the solution to a more complex problem 

but raises the accuracy of the resulting solution substantially. 

The piecewise parabolic mesh (PPM) method (Colella and Woodward (1984); Wood­

ward and Colella (1984)) extends this concept to higher orders and uses parabolic solu­

tions to the Riemann problem, allowing for much more accurate solutions. PPM codes 

are now used in a wide variety of current mesh codes (e.g. Fryxell et al. (2000); Bryan 
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et al. (1995)) due to the high order accuracy of the scheme and the fact that PPM can 

resolve strong shocks much more readily than the lower order piecewise codes. 

Uniform mesh codes run into the same problems as pure PM gravity codes, the spa­

tial resolution of the resulting solution is limited by the size of the largest uniform mesh 

that can fit in memory. For this reason adaptive mesh refinement (AMR) codes have been 

developed (e.g. Fryxell et al. (2000)). Here the spatial resolution of the grid is allowed 

to vary with position. This is demonstrated in figure 2.6, which depicts the density field 

around a simulated galaxy cluster (see section 2.3.1 for details of the simulation). 

In most AMR codes, the actual structure of the adaptive mesh takes one of two forms: 

block structured, in which the computational volume is filled with identical 'blocks' that 

may be split apart or combined together to change the spatial resolution at a point., or 

structured grids in which rectangular grids of different sizes and resolutions are placed 

in regions of interest. Figure 2.6 shows an example of a block structured code (FLASH). 

Each square in the image represents 8 x 8 x 8 grid points. It is clear that the regions of 

interest (the centre of the galaxy cluster) are simulated with greater precision than the 

surrounding gas. One challenge in writing a block structured AMR code is to find some 

measure of when it is necessary to refine a block up to a higher refinement level. FLASH 

uses the Lohner (1987) estimator. In one dimension if we have some discrete function 

u, defined at gridpoints seperated by an amount .6. then we can approximate the second 

derivative as: 
{)

2u Ui+1 + Ui-1 - 2Ui 
ax2 ~ .6,2 

(2.38) 

The Lohner estimator, which is a modified version of the second derivative, normalised 

by the average of the gradient over one computational cell, is then given by 

L _ lui+1- 2ui + Ui-11 

- lui+1 - uil + lui - Ui-1 It: [lui+1 - 2luil + lui-11] ' 
(2.39) 

where ui is the refinement test variable's value in the ith cell. The last term in the de­

nominator of this expression acts as a filter, preventing the refinement of small ripples. 

By default the constant E is given a value of 0.01, although this can be tuned in the code. 

In addition to this refinement criterion it was found that forcing refinement in regions of 

high density provided very good results. 

At the expense of more complex coding, AMR codes allow Eulerian hydrodynamics 

codes to compete with Lagrangian codes, both in terms of spatial resolution and the 

computational resources required to evolve a system (see e.g. O'Shea et al. (2005) for a 

recent comparison) 



2. Computational Cosmology 

Figure 2.6: Baryonic density slice around a simulated galaxy cluster at 

redshift 0. The image is 20Mpc across. Blue lines represent the loca­

tion of blocks in the adaptive AMR mesh, each square contains 8 x 8 

gridpoints. It is clear that the mesh has a higher spatial resolution in 

the higher density regions so the properties of the cluster are simulated 

more exactly than those of the surrounding low density gas. The blocks 

in this image were refined using the local gas density to flag when it be­

comes necessary to increase the level of refinement. 
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2.2.3 Time Stepping 

The final numerical detail we will consider is the role of timestepping in cosmological 

simulation. 

The naive choice for a system of timestepping is just to update the velocity and posi­

tion at the start of each timestep and then make linear increments over the length of each 

timestep. This may be denoted by 

(2.40) 

(2.41) 

where r, v and a are positions, velocities and accelerations respectively. The subscript i 

represents the value at the beginning of timestep i, and i + 1 represents its value at the 

end. This timestepping method is only first-order accurate. A simple improvement on 

this simple timestepping scheme is the so called leapfrog scheme (see e.g. Hackney and 

Eastwood (1988)), which is second-order accurate, but still only requires one costly force 

evaluation per timestep 
1 

ri+~ = ri + 2vi~t, 

Vi+! =Vi+ ait, 

(2.42) 

(2.43) 

(2.44) 

More complex timestepping algorithms are discussed by Quinn et al. (1997). Other 

than the time integration method we need to be careful with the length of timesteps. 

If timesteps are too short then the simulation will take an unfeasable amount of time to 

run. If they are too long then the system being simulated may become unstable 

For baryonic matter the fundamental timestep limiting factor is given by the Courant­

Friedrich-Lewy (CFL; Courant et al. (1928)) condition, which qualititatively states that 

the timestep must be less than the time for 'some significant action' to occur, and prefer­

ably considerably less. For baryonic matter this is usually set using the time it takes for 

a 'signal', say, a sound-wave to propagate across one resolution element, or 

~tcfl = H cfl = Hp cfl (2.45) 
c 'YP 

where eft is a parameter, set significantly lower than unity in order to guarantee stability, 

c is the local sound speed. H is the size of a single resolution element corresponding to 

either the smoothing length of a particle or the size of a grid cell depending on the type of 

simulation code in use. Other timesteps used in simulations include limits controlled by 

the radiative cooling rate of a gas and the maximum particle displacements per timestep. 
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2.3 Code Validation 

In sections 2.2.1 and 2.2.2 we discussed a large number of different simulation algo­

rithms, all of which make different assumptions and calculate forces in widely differing 

ways. It is reasonable, therefore, to ask how similar the behaviour of the different codes 

is in a physically relevant situation. In this section we investigate the accuracy of results 

produced by two different simulation codes (FLASH Fryxell et al. (2000) and Gadget 

Springel (2005)), which operate using two very different algorithms (PPM on an adap­

tive grid & Mesh relaxation in FLASH versus SPH and Tree-PM in Gadget). 

The full physics of galaxy formation and evolution is a very complex problem (see 

chapter 3), and is not yet fully understood. For this reason we restrict our studies to 

physics that is relatively well understood: gravitational dynamics and adiabatic1 gas 

dynamics. Although vastly simplified, this model has immediate relevance to the simu­

lation of various astronomical objects including the hot component of X-Ray clusters. 

Inclusion of more complex physical processes including cooling and heating, metal 

production, supernova feedback and reionization is still something that differs wildly 

between different authors and a comprehensive comparison between different author's 

implementations of additional physics still remains to be done. 

Various code comparison projects have been undertaken in the literature. O'Shea 

et al. (2005) compare two codes, simulating dark matter and adiabatic gas in a large 

cosmological volume. The most comprehensive comparison project undertaken so far 

is probably the Santa Barbara (SB) comparison project of Frenk et al. (1999). The initial 

conditions for the SB cluster are publically available2 , making the SB cluster an ideal way 

to verify the accuracy of our simulation codes. 

2.3.1 The Santa Barbara Test 

The SB cluster (Frenk et al. (1999)) represents the formation of an X-Ray cluster in a CDM 

universe, and was originally simulated independently by 12 different groups. The codes 

compared in the paper span the full range of techniques discussed in this chapter and 

include both parallel and serial simulation codes, and have resolution lengths from 5kpc 

all the way up to 960kpc. 

1 Although technically these simulations do contain non-adiabatic shocks and should perhaps better be 

termed 'non-radiative' simulations, we continue to follow the convention found in the Santa Barbara paper 

and refer to them as adiabatic simulations 
2http: I I star-www.dur.ac. ukl .....,csf I clusdata 
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The cosmology of choice for the SB study used the parameters h100 = 0.5, CTg = 0.9, 

n = 1.0, nb = 0.1. The size of the simulated volume at redshift 0 was 64Mpc. The 

power spectrum for the simulation was obtained from Bardeen et al. (1986). The initial 

conditions were made available in the form of 2563 grids of linear theory displacements 

in the x, y, and z directions (see 2.4), and each author in the original SB paper used these 

displacement files to generate initial conditions in their own format. The recommended 

starting redshift for each simulation is 20. 

Simulation Details 

We ran the SB cluster initial conditions with both Gadget and FLASH. The initial con­

ditions were subsampled down to a 643 mesh, then one particle was placed in the cen­

tre of each gridcell. The minimum allowed adaptive gridcell size allowed in FLASH is 

0.125Mpc, the gravitational softening allowed in Gadget is 0.1Mpc. The minimum SPH 

smoothing length is constrained to be a minimum of 0.1 times the gravitational soften­

ing. 

At redshift zero the centre of mass coordinates of the haloes agreed very well, [33.308, 

34.45, 33.53] in FLASH versus [33.418, 34.36, 33.26] in Gadget. The dark matter proper­

ties at redshift zero lie in all cases within the range of scatter investigated in the SB paper. 

The dark matter density profiles are shown in figure 2.7. Outside of the resolution length, 

each density profile agrees very well. Inside of one resolution length the results become 

very uncertain. The same behaviour was found with the dark matter velocity dispersion 

profiles (figure 2.8). Plots of the positions of individual dark matter particles in each 

halo show that although the overall position of the halo remains unchanged between 

simulations, the locations of the very non-linear small scale structure is significantly dif­

ferent between the two runs. Once again this is in good agreement with the differences 

between different codes found in the original SB paper. 

In common with the SB paper we find that when looking at the baryonic component 

of the matter in the halo agreement between the different codes is less good. The gas 

density profile in the halo (figure 2.10) is in good agreement down to roughly the reso­

lution length of each code. The AMR codes, which specify gas properties on a grid have 

a constant density below the grid spacing. 

The temperature profile of the galaxy clusters are plotted in figure 2.10. Additionally 

plotted in this graph are the results from the code of Bryan and Norman (1995), an AMR 

code that solves the hydrodynamic equations in a similar way to FLASH. Once again up 



2. Computational Cosmology 59 

,.----, 
n 
< u 
Q_ 

2 
"'-c 
~ 
[/) 

2 
'-----' 

>--
+-' 

[/) 

c 
Q) 

0 

I 

0 Jenkins<> 
1 016 0 -

0 Gnedin * -

* ~ Gadget D D * ~ 
D ~ FLASH 6 1 015 D -

D ~ 
-

t::.. t::.. t::.. ~ • 1 014 - -

' 1 013 • -

I II 
-

Iii 

~ 1 012 - -

Iii 
1 011 - . -

I 

0.01 0.10 1 .00 10.00 
Radius [Mpc] 

Figure 2.7: Dark matter density profile of the z=O halo from both the 

FLASH and Gadget simulations alongside the results of Jenkins and 

Gnedin from the Santa Barbara paper. The three vertical lines represent 

the resolution limit in each of the simulations. The FLASH resolution 

limit is set to the size of the smallest cells in the cluster. Flash obtains 

a constant density on scales below the grid spacing. The Gadget soft­

ening was chosen to match closely with the FLASH grid spacing. The 

softening of Jenkins is 20kpc, the softening of the Gnedin simulation is 

equal to the softening of the Gadget simulation. 



2. Computational Cosmology 60 

r----1 
~ 

I 
en 

E 
..::(_ ....___, 

::2' 
0 

b 

1200 I 

Jenkins 0 
!:;,. <> <> B Gnedin * 

1000 §ij * ~ 
~ 

D Gadget 0 _ r-
<> FLASH 6. !:;,. <> 

~ 
!:;,. !:;,. <> 

i D 

* !:;,. 

800 - <> -

~ D 
<> * * !:;,. 

D 
D /};. 

i 
600 ~ * D <> -

D ! 
<> 

400 1- D -

* I 

0.01 0.10 1 .00 10.00 
Radius [Mpc] 

Figure 2.8: Dark matter velocity dispersion profile of the z=O halo from 

both the FLASH and Gadget simulations alongside the results of Jenk­

ins and Gnedin from the Santa Barbara paper. The quantity shown in 

the plot is the one-dimensional velocity dispersion, calculated from the 

three dimensional velocity dispersion by O"ld = 0"3d/ J3. In common 

with Frenk et. al. (1999) we find that agreement between all codes is to 

within 20% outside of the resolution limit of the code. 
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of mass of each halo. The shapes of the haloes between the FLASH 

and Gadget runs differ by a small amount, but are both well within the 

spread of shapes observed in the original Santa Barbara study. 
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Figure 2.10: Gas density profile of the SB cluster from various runs. 

Agreement outside of the resolution length is good between all codes. 

Inside of one resolution length the density of the AMR run flattens off 

due to the finite cellsize. 

to the resolution length of the simulation the results are very similar. 

These results suggest that both codes can reliably simulate a complex, non-linear sit­

uation and despite the wildly different numerical effects and methods applied in each 

code the overall results are remarkably similar. This suggests that both codes are solving 

both the gravitational evolution and hydrodynamics accurately in this fully cosmologi­

cal scenario. 

2.4 Initial Conditions 

The generation of correct and accurate initial conditions for cosmological simulation is of 

crucial importance. The problem is one of representing a nearly scale-invariant Gaussian 

random field with a given power spectrum using a discrete set of particles. In this section 

we introduce methods of generating the initial, uniform distributions of particles, before 

discussing methods of imposing a given power spectrum on this particle distribution, 
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Figure 2.11: Temperature profile of the SB cluster. Agreement at the out­

skirts of the cluster is good. Additionally plotted in this graph are the 

results from the code of Bryan & Norman (1995), an adaptive mesh re­

finement code similar to FLASH. It appears that the temperatures near 

the centre of the halo diverge depending upon the simulation method 

used. It should be noted, however that the cellsize in the FLASH simu­

lation is 0.125Mpc so we cannot trust results below this radius. 
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Figure 2.12: Different types of pre-initial particle distribution. Each 

panel shows particles from a thin slice from the pre-initial conditions 

of a 262144 particle simulation. The random distribution is unsuitable 

for any sort of simulation, both the grid and glass distributions are used 

by various authors. 
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and then discussing techniques for resimulation of individual objects. A code developed 

using the techniques in this section is used in section 2.5 to quantify the numerical effects 

of mass resolution on simulated galaxy haloes. 

2.4.1 Pre-initial Conditions 

Before generating cosmological initial conditions it is important that we are able to cre­

ate a set of 'pre-initial conditions'; which represent the state of the system before the 

cosmological perturbations are imposed. This has been investigated in detail by White 

(1994), who discussed three choices for initial particle positions: randomly placed parti­

cles, particles on a grid and particles in a glass distribution. An example of each of these 

three configurations is shown in figure 2.12 

The first type of particle distribution, random placing of particles suffers strongly 

from Poisson noise and initially has a white noise power spectrum. If a simulation filled 

with randomly distributed particles is evolved, non-linear objects will form, even if other 

fluctuations are not imposed. 

The usual approach to get around this is to place particles on a grid, the problem 

with this is that the initial grid structure introduces strongly preferred directions along 

each axis on the scale of a few grid spacings. Simulations with very little small scale 

power (e.g. hot dark matter simulations) will therefore develop spurious features along 

the grid axis. 
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The optimal solution, as first proposed by White (1994) is to take an initially ran­

dom distribution of particles and evolve it as an Einstein-de Sitter universe for many 

expansion factors, with the sign of the gravitational force reversed, making it repulsive. 

This has the effect of smoothing out the particle distribution and removing all large scale 

perturbations and preferred directions. 

2.4.2 Generation of Uniform Volume 

As mentioned at the beginning of section 2.4 the problem we wish to solve is that of 

representing a primordial spectrum of density fluctuations using a discrete ensemble of 

particles. As discussed in section 1.1.2 in the inflationary scenario these density fluc­

tuations are thought to take the form of a Gaussian random field. This is defined as a 

field where in real space each data element is chosen from a Gaussian probability dis­

tribution. Equivalently we can represent this in k-space by choosing for each k-value 

normally distributed amplitudes (with variance equal to P(k)) and random phases. 

The properties of a Gaussian random field may be described completely by its power 

spectrum, P ( k), which in the case of most inflation models is of the form 

P(k) = Akns, (2.46) 

where A and n 8 are the amplitude and slope of the primordial power spectrum. Cosmo­

logical initial conditions are generated at significantly lower redshift than the epoch of 

inflation and so we have to take into account their early linear evolution. This is usu­

ally accomplished by multiplying the initial fluctuation spectrum by a transfer function 

representing the later evolution of the fluctuations 

(2.47) 

Transfer functions have been published by many authors, Holtzman (1989) provides a 

listing of early examples and describes how such transfer functions are calculated. These 

analytic examples have been superseded by numerical codes that compute matter trans­

fer functions accurately (e.g. Ma and Bertschinger (1995); Seljak and Zaldarriaga (1996)). 

For the rest of this chapter we will assume that reliable transfer functions have been pro­

vided. We now introduce the methods by which initial conditions can be generated by 

two different methods; working ink-space and real-space. 
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Ink-space 

Our starting point is to describe the density at a given space and time, using the density 

contrast, defined as 

fJ( t) = p(x, t) - p(t) 
x, p(t) , (2.48) 

where p( t) is the mean density of the universe at time t. If we assume that the simulation 

volume we are interested in is periodic then we may obtain the k-space representation 

of the density field via a Fourier transform, 

(2.49) 

Ink-space we may measure the power spectrum, P(k), of the Gaussian random field by 

noting that 

P(k) = fJ(k)fJ*(k). (2.50) 

Where * represents the complex conjugate. In order to generate a random field with a 

desired power spectrum we initially specify the k-space density fluctuation field, fJ(k). 

The k-space fluctuation is a complex value with random phase and a gaussian distribu­

tion of amplitudes. We pick a random amplitude for each k-vector from a distribution 

with variance P(k). These random numbers are the k-space representation of the den­

sity field, the real space initial density field may be then recovered by an inverse Fourier 

transform 

fJ(x) = J eik.xfJ(k)d3k. (2.51) 

This provides a conceptually simple way of generating random fields with any de-

sired power spectrum, but it does have some drawbacks, notably that only a discrete 

number of wavevectors can fit a whole number of wavelengths across the simulation 

volume. These wavevectors are given by 

k = 2mr 
L , (2.52) 

where L is the size of the simulation volume. This suggests that the power spectrum is 

only sampled at a series of discrete values, and so any features in the power spectrum 

that lie between these points are not modelled. This effect is particularly serious at small 

values of k, where only very few wavelengths fit across the box. Secondly the finite 

size of the simulation volume means that wavelengths larger than that of the simulation 

box are not included in the simulations. Gelb and Bertschinger (1994) showed that in a 

COM cosmology a simulation volume of size 50Mpc would underestimate o-s by over 
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40% due to the truncation of the power spectrum at long wavelengths. Simulations of 

the Lymano: forest are particularly strongly affected by the loss of this large scale power 

(see Rauch et al. (1997)). We shall see in later sections how some of these difficulties may 

be overcome. 

Given a pre-initial distribution of particles and an associated density field the final 

step in calculating the initial particle distribution is to perturb the initial particle posi­

tions to give them the the same power spectrum as the density field generated above. 

This procedure is calculated using the Zel'Dovich approximation (Zel'Dovich (1970)) 

r(t, q) = a(t)[q- b(t)s(q)], (2.53) 

where q represents the unperturbed position of each particle, r(t, q) is the perturbed 

position of a particle initially at position q, b( t) is the growth rate of linear density fluc­

tuations in the expanding universe and s ( q) may be written as the gradient of a potential, 

s(q) = 'VIl>(q) (Shandarin and Zeldovich (1989)), given suitable normalisation. 

The form of the growth rate for density perturbations depends upon the cosmology 

we are using, and are calculated by rewriting the continuity, Euler and Poisson equations 

in terms of the density contrast (Peebles (1981)), and then assuming that in the early 

universe both r5 and 8 are small. In the case of an Einstein-de Sitter universe (A = 0, 0 0 = 

1, dust-dominated) then two solutions are permitted; a growing mode with r5 ex: t 213 ex: a 

and a decaying mode r5 ex: 1/t ex: a-3/ 2• In the case of universes with lower matter 

densities or a cosmological constant the solution is more complex but some situations 

still lend themselves to analytic solution (see e.g. White (1994)) 

Once positions have been assigned, it is necessary to generate initial velocities for the 

particles. At times corresponding to the start of the simulation the peculiar velocity at a 

point can be derived immediately from equation 2.53 

r(t, q) = -b(t)s(q). (2.54) 

The full procedure for generating a uniform set of initial conditions is therefore to 

• Generate a random field ink-space with variance P(k) at each k vector 

• take the inverse fourier transform of this field, to obtain a uniform mesh of densi­

ties with the required power spectrum 

• generate a 'pre-initial' distribution of particles 
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• displace the particles using the Zel'Dovich (1970) approximation, set velocities us­

ing equation 2.54 

In the following sections we will examine how initial conditions may be generated 

by a different method and then how non-uniform initial conditions may be created. 

In Real Space 

It was pointed out by Salmon (1996) that any Gaussian random field sampled on a lattice 

can be written as the convolution of white noise with a function that we will call the 

transfer function, or 

(2.55) 

Where T'(k) represents the transfer function. Note that the transfer function defined 

above is not the same as that defined in section 2.4.2. N(k) is Gaussian white noise with 

autocorrelation 

e(r) = (N(x)N(x + r)) = c5v(O), (2.56) 

where c5 D represents a Dirac delta function. The transfer function may be shown to be 

related to the desired power spectrum of our density field by (Salmon (1996)) 

T'(k) = [P(k)jl/2 . (2.57) 

Thus we may construct a random field with any desired power spectrum via the follow­

ing steps: 

1. Generate an uncorrelated gaussian white noise sample, N(x), for each real space 

grid point 

2. Take the Fourier transform of this white noise 

3. Multiply the noise by the transfer function as given previously 

4. Inverse Fourier transform this result to obtain the real space density contrast field 

This method is very similar to the k-space approach to generating Gaussian random 

fields, but with the addition of an extra Fourier transform (step 1). This makes the gen­

eration of single level Gaussian random fields more computationally expensive than the 

k-space approach, but is absolutely critical when the algorithm is extended to multiple 

levels. 
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2.4.3 Generation of 'Zoomed' Initial Conditions 

As discussed in section 2.4.2 in order to obtain the correct clustering statistics of haloes 

in a cosmological setting we require the use of large simulation volumes. However, in 

order to simulate an individual galaxy in a realistic manner we require a spatial resolu­

tion better than 1kpc and a mass resolution better than 106 M0 . lbis consideration has 

led to many authors performing 'zoomed' simulations, where most of the particles are 

concentrated in regions of interest, and other regions are represented only by relatively 

few particles. Generating initial conditions of this form provides additional challenges 

on top of those required to generate a uniform volume. In this section we will discuss 

how zoomed initial conditions can be generated, both in real and k-space. 

Ink-space 

To make random fields on multiple levels of refinements an approach followed by many 

workers is that due to Katz et al. (1994). Here the Gaussian random field is first gen­

erated at the coarsest level, then again at a higher resolution ensuring that all of the 

random numbers chosen for long wavelength power match up exactly with the coarse 

data. These density fields are then overlaid onto each other and the high resolution data 

is then thrown away in the regions where it is not needed. 

lbis approach has the advantage that it is simple to code, but the maximum resolu­

tion of any region in the simulation is limited by the largest FFT that can be performed 

as in order to generate even a small region at high resolution the high resolution data 

for the entire simulation volume is generated by direct FFT and then most of it is thrown 

away. lbis fact limits the maximum resolution of any initial conditions generated by 

this method on today's computers to around 20483 (holding a single 20483 array of sin­

gle precision real numbers in memory takes 32Gb of RAM). For this reason alternative 

approaches to the generation of Gaussian random fields have been implemented, we 

will now discuss one of these. 

In Real Space 

Pen (1997) and Bertschinger (2001) extended the real-space techniques of Salmon (1996) 

to multiple levels of refinement. In this section we will discuss the generation of initial 

conditions on two levels of refinement, as represented in figure 2.13. In figure 2.13 the 

coarse level has M vertices, the subvolume has M 8 = 3 vertices and refinement factor, 
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r = 2. We can then describe any gridpoint using two indices, m for the coarse grid and 

n for the refined grid. The first step in generating a refined set of initial conditions is to 

create an additional sample of white noise on the refined grid, N1, which maintains the 

same large-wavelength structure as the white noise on the coarse grid, N0 • This may be 

accomplished by (Hoffman and Ribak (1991)) the process 

N(m, n) = N1(m, n) + No(m)- N1(m). (2.58) 

This just represents that each coarse grid point has its value propagated to its associated 

r 3 refined points, then a high frequency correction N1 - N1 is added. Given this white 

noise we now need to calculate the corresponding density field, which is considered to 

be split up into long and short-wavelength components, 

8(m, n) = 8~(m, n) + 81 (m, n), (2.59) 

where 8~(m, n) represents the contribution of the coarse density field, 80 (m), to the high 

resolution density field. 81 ( m, n) is the additional short wavelength contribution from 

the refined region. 

The short-wavelength contribution may be calculated simply from 

(2.60) 

where* represents a convolution. It was shown by Bertschinger (2001) that it is possible 

to carry out this convolution using only (rM8 )
3 gridpoints and as such the full (rM)3 

calculation is avoided. 

The long-wavelength contribution could, in principle, be evaluated by resampling the 

coarse grid at every point up to the full resolution of the refined region (i.e. an entire 

r 3 M 3 points), and then explicitly carrying out the convolution over the entire volume. 

This is impractical and runs into exactly the problem we are trying to avoid through 

working in real space as we would be forced to carry out convolutions over the entire 

( r M)3 volume. One solution to this problem is to write 8~ ( m, n) as a convolution of the 

coarse density field with some filtering function: 

8~(m, n) = L 8o(m')W(m- m', n- n'). (2.61) 
m 1,n1 

This equation has a simple interpretation. The coarse grid density is spread to the fine 

grid by mapping each value of 80 (m) to r 3 grid points. This leads to aliasing effects due 

to each bunch of r 3 grid points having exactly the same value, and ink-space this leads to 
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Figure 2.13: Simple depiction of a nested, hierarchical grid. The hollow 

points represent a coarse grid, with size M = 7, the filled points repre­

sent a refined region with refinement factor, r = 2 and the size of the 

refined region is M 8 = 3 
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high frequency distortions, thus just setting 6' ( m, n) = o0( m) leads to an incorrect power 

spectrum. Bertschinger (2001) showed that this problem can be avoided through the use 

of an aliasing filter, which for certain forms of W ( m, n) is exactly equivalent to carrying 

out the full convolution. 

Figure 2.14 shows a typical COM overdensity field with two different levels of re­

finement generated by the methods described above. The refined density fields in each 

of the panels was generated without resorting to carrying out the full ( r M)3 calcula­

tion, and as such grids at much higher levels of refinement can be generated without 
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prohibitive memory and computational costs. This section contains a simplified sketch 

of the method by which the real-space refinement technique works, more detail is con­

tained in Pen (1997) and Bertschinger (2001) 

2.4.4 An Initial Conditions Toolkit 

Generating a zoomed set of initial conditions consists of very many separate and dis­

tinct steps, we need to: generate the transfer function and initial particle distribution. 

Create density and velocity fields for each different mass resolution. Finally the parti­

cles on each level of refinement must be displaced according to the Zel'Dovich (1970) 

approximation. 

In order to facilitate this process an interactive toolkit has been developed, which 

allows interactive selection of cosmological parameters and refinement positions (figure 

2.15). 

In addition to generating cosmological density fields using the real space techniques 

of Bertschinger (2001) the package facilitates the easy resimulation of haloes. Two fea­

tures of the code that make this process easy are the method of particle refinement, and 

the way in which noise samples are generated so that their large scale properties remain 

the same regardless of the resolution of the sample. The methods by which each of these 

processes is carried out is detailed in the following section 

Particle Refinement on Individual Haloes 

When creating the initial particle distributions for the simulation of an individual halo 

it is important that we both minimize the number of high resolution particles in the 

simulation (in order that it remains computationally cheap to run), and ensure that the 

halo itself remains uncontaminated by low resolution particles. These two constraints 

are sometimes difficult to satisfy at the same time. We will now describe the process by 

which our code marks out individual haloes and ensures they remain uncontaminated 

until redshift zero. Figure 2.16 shows the steps required to identify and recursively refine 

a region of a simulation. Each panel represents a different part of the process 

top-left: A low resolution simulation is run, all particles that are within the halo at 

redshift zero are marked, and their positions in the low resolution initial conditions are 

noted. This defines the region of the early universe that will collapse into the halo at 

redshift zero 
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No Refi nemen ts 

Figure 2.14: Slice through a typical overdensity field for a CDM set of 

initial conditions. The upper panel shows an unrefined density field 

with M = 32. The central plot depicts the same field with an additional 

subgrid (r = 2, M8 = 16), and the lowest grid shows a second, nested 

refinement (r = 4, M 8 = 8). Note that in each case the large scale fea­

tures of the field agree well, but additional small-scale power is added 

to the simulation volume. 
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Figure 2.15: Grapical User Interface for the initial conditions toolkit, 

allowing for simple, interactive input and design of cosmological initial 

conditions. 
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top-right: It is important that particles that end up in the halo are completely sur­

rounded by other high-resolution particles, in order that their properties are self con­

sistently calculated and no spurious numerical effects are introduced. The first step of 

ensuring this is the case is to map the low-resolution halo particles to a three dimensional 

grid, note that there are holes in the grid, and some particles are disconnected from the 

rest of the region. 

bottom-left: The grid is convolved a number of times with the three-dimensional ver­

sion of the following kernel 

X=(~:~) 
0 1 0 

This has the effect of filling in holes in the marked region, and expands the region so that 

previously unlinked regions are now linked. 

bottom-right: All low resolution particles lying within the expanded grid are marked 

and then split into 8 lower mass particles. Particles that interact with the halo should 

now be part of one contiguous region, and should be surrounded by other particles of 

the same mass. Figure 2.17 shows an example of this process being carried out recur­

sively. At redshift zero The resulting halo is uncontaminated by high resolution parti­

cles out to a few times r 200, and there are a minimal number of particles in the initial 

conditions. If, at any point, it is found that the halo is contaminated, it is easy to mark 

additional particles, and so extend the high resolution region, until the halo does not 

become contaminated by redshift zero. 

Resolution Independent White Noise 

One disadvantage of generating noise samples in real-space is that it is very difficult to 

increase the resolution of a uniform grid whilst maintaining the same large scale power. 

In order that our initial conditions toolkit can, for a given random seed, always reproduce 

the same large scale structure we require a more sophisticated method of generating 

white noise samples. We choose to work in k-space and generate numbers such that the 

lowest k-vectors are always filled in first with zero-mean gaussian deviates. The noise 

sample is then obtained by performing an inverse FFT on this field. If we require the 

same noise field at a different resolution this process is repeated, with higher frequency 

modes incorporated, the underlying low frequency structure will, however, remain un­

changed. 
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Putting together the real-space refinement techniques with a simple, interactive ini­

tial condition design package and the halo resimulation techniques discussed in this 

section allows us to rapidly and easily construct catalogues of resimulated haloes in any 

cosmology, and to scale up and down the mass resolution of any one of these haloes 

without affecting the large scale properties of the simulation. In the next section we use 

this code to probe the effects of mass resolution on the properties of simulated haloes. 

2.5 Resolution Studies 

The effects of numerical resolution on the properties of simulated galaxies is numerically 

complex, hard to quantify, especially in the presence of complex physical processes for 

instance SN feedback and radiative cooling. In this section we attempt to quantify the 

effects of particle number on the properties of individual MW sized haloes. 

Early galaxy formation simulations (e.g. Navarro and White (1994)) reported a huge 

loss of angular momentum in galaxies, leading to the formation of galaxies strongly 

dominated by a central concentration of cold gas. Govemato et al. (2004) and Kaufmann 

et al. (2006) have shown that the angular momentum problem is due to poor mass and 

spatial resolution, which may lead to significant angular momentum loss in baryonic 

disks embedded in dark matter haloes. 

Additionally Govemato et al. (2006) found that as the number of particles in the 

halo approached several million, the resulting galaxy became increasingly less centrally 

concentrated. It is clear that a thorough understanding of the effects of resolution on the 

properties of simulated galaxies is a non-trivial problem but is necessary in order to fully 

understand galaxy formation. 

The work described in this section represents preliminary work in this direction, 

comparing a set of MW sized haloes generated using the initial conditions code of sec­

tion 2.4.4 at a variety of mass resolutions. 

2.5.1 The Simulation Set 

In order to identify suitable candidates for resimulation a uniform volume of size 50Mpc 

containing 1923 dark matter particles was evolved from redshift 99 to redshift zero (us­

ing Do = 0.3, Ob = 0.044, hwo = 0.7, as = 0.9). From this volume MW mass haloes 

("-' 1012 M0 ) were selected and resimulated at a variety of mass resolutions. Table 2.5.1 

contains details of the mass resolutions in different simulations. The highest mass reso-
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Figure 2.16: The process by which individual haloes are marked out in 

a zoomed simulation. The process is described in detail in the text and 

will be summarized here. top-left: a low resolution simulation is run, 

and the particles that end up in the halo are traced back to the initial 

conditions. top-right: these particles are mapped to a grid. bottom-left: 

this grid is then convolved with a kernel (equation 2.4.4), which ensures 

that the halo remains uncontaminated. bottom-right: particles in the 

marked region are split into eight lower mass particles. 
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Figure 2.17: Thin slice through the initial (z = 99) particle distribution 

in a zoomed galaxy simulation. The darker the colour of a point the 

more massive the particle it represents. The ratio of masses between 

the largest and smallest particles in this simulation is rv 5000 
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Name Mass Resolution (M0 ) Gravitational Softening (kpc) 

Uniform 7.21 X 108 9.11 

XOX2 9.01 X 107 4.61 

XOX3 2.67 X 107 3.03 

XOX4 1.12 X 107 2.27 

xoxs 5.76 X 106 1.82 

XOX6 3.34 X 106 1.52 

Table 2.1: Details of the initial particle masses in each of the simulations. 

The naming convention followed is that the numbers represent one­

dimensional spatial resolutions (ex N;~;t), as a multiple of the resolution 

used in the uniform simulation. The mass represents the smallest dark 

matter particle mass in the refined region. 
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lution haloes have a dark matter mass resolution of 2.84 x 106 M0 , corresponding to of 

order a few million dark matter particles within the virial radius of the halo. The lowest 

mass resolution simulations contain only a few tens of thousands of particles within the 

virial radius of the halo. The gravitational softening length of each simulation was cho­

sen to be consistent with that used in Reed et al. (2005a), scaled with the linear spatial 

resolution (ex N 113 ) of our simulations. 

Each simulation was run with dark matter only, again with dark matter and adia­

batic gas and then finally with dark matter, and full physics (star formation, feedback, 

radiative cooling, as described in Stinson et al. (2006)). In this section we discuss only 

the dark matter simulations. 

2.5.2 The Basic Properties of Haloes 

Some global properties of the haloes are plotted as a function of mass resolution in figure 

2.19. For each halo the virial radius, r 2oo, defined as the radius at which the mean density 

contrast of the halo falls to 200 times the critical density of the universe was calculated 

and in addition each halo was fitted with the universal density profile due to Navarro 

et al. (1997) 

p(r) 
(2.62) 

Pc 
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Figure 2.18: Dark matter particles in each of the haloes. It is clear that 

dark matter substructure in each of the simulations is in almost exactly 

the same place. 
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1his profile fits the densities of dark matter haloes using two parameters, a central den­

sity, 6c, and a scale radius, r8 • Additionally the concentration of a halo may be defined as 

the ratio of its virial radius to its scale radius. 1his number measures the shape of the 

halo (Lokas and Mamon (2001)) 

Figure 2.19 shows some of these parameters plotted as a function of the mass reso­

lution of the simulation. One encouraging result is that the concentration parameters of 

the haloes remains approximately constant across all mass resolutions, indicating that 

the halo shape is independent of resolution. (JDM, the three dimensional dark matter 

velocity dispersion decreases as the mass resolution in the halo is degraded. As would 

be expected the central overdensity of the halo, 6CI decreases as the particle mass is in­

creased. This is due to the effects of larger softening lengths. 

Figure 2.20 shows the dark matter density profile of the halo for each mass resolu­

tion. The diagonal lines are power laws with slopes -3 and -1.5, as would be predicted 

from the universal halo fitting formula of Navarro et al. (1997). Figure 2.21 shows the 

three dimensional dark matter velocity dispersion of each halo, again agreement be­

tween the various simulations is very good, especially at large radii, where the features 

corresponding to individual pieces of substructure match up well. 

Figure 2.22 shows the mean radial velocity as a function of radius for all of the dif­

ferent resolutions. It is clear that despite the vastly different refinement sizes and resolu­

tions between the different simulations, the large scale flow velocities of the simulations 

are always recovered. 
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Figure 2.21: Dark matter velocity dispersion profiles, computed by tak­

ing the variance of all of the dark matter particles in a series of concen­

tric shells. The vertical lines represent the softening lengths of simula­

tions X2 and X6. The agreement between the different simulations is 

good up to the resolution length of each simulation. 
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Chapter 3 

3.1 Introduction 

Statistical Models of the 

Interstellar Medium 

The problem of modelling star formation in large scale simulations is a difficult one for 

a number of reasons. Firstly, the detailed process of star formation is not fully under­

stood even in our own galaxy and additionally we expect that young galaxies in the 

high redshift Universe will have wildly differing properties from those of our own qui­

escent disk. Secondly, on the scales of interest in Cosmological simulations (tens of Mpc 

and upwards) we can not achieve the required spatial or mass resolution to resolve the 

actual formation of stars. Most star formation prescriptions in the literature today ap­

proach this in one of two ways. Either by creating a set of rules that govern when a 

'gas unit' (be that particle or grid cell) may change into a star particle, then converting 

them in a stochastic manner (Kay et al. (2002)) or by describing the interstellar medium 

(ISM) in a statistical manner (Springe! and Hemquist (2003); Yepes et al. (1997)). In the 

following chapter we introduce examples of the first generation of star formation mod­

els before discussing the major problems with them. We then describe in detail our own 

implementation of the physical processes that are important in star formation and the 

evolution of the ISM. 

3.1.1 Models of Star Formation Using a Single Phase 

The basic empirical law that most numerical models either use explicity or try to fit by 

the adjustment of free parameters is the Kennicutt law (Schmidt (1959)): 

(3.1) 

Where ~ denotes a density per unit area. This simple power law relation between star 

formation rate density (SFR) and gas density was found to hold over many orders of 
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magnitude by Kennicutt (1988), who constrained the exponent to be N = 1.4 ± 0.2. 

The basic process by which star formation is then modelled is to, at each timestep, ap­

ply some sensible criteria that describe whether or not a particular gas unit is eligible to 

tum into a star. Some criteria that have been used in the literature include (X represents 

a free parameter in each rule): 

1. The minimum overdensity: J > X 

2. The minimum physical density: p > X 

3. The maximum temperatute: T < X 

4. Converging flow: \7. v < 0 

5. Jeans instability: T J < Tdyn 

6. Cooling instability: tcool < tdyn 

Rules 1 and 2 prevent underdense material from collapsing and forming stars, rule 3 

prevents material that is too hot to collapse gravitationally from turning into stars. Rule 

4 represents the local estimate of the divergence of the gas flow, for example in an SPH 

simulation this is given by 

where W ( r, h) is the SPH kernel so \7. W ( r, h) is the direction of the gradient of the SPH 

kernel at a given point. A negative divergence represents a net flow of baryonic material 

into this mass unit. 

Rule 5 forces that only material that is Jeans unstable (that is: it is unstable to any 

perturbations and cannot diffuse away density fluctuations as sound waves) to collapse. 

In a Lagrangian simulation a particle may be considered Jeans unstable if 

h· 1 
__!:_<---=== 
Ci .j41rGpi . 

(3.3) 

Here, hi represents the SPH smoothing length of the gas particle, ci is the sound speed 

in that particle. 

The final rule represents the fact that as a gas cloud collapses it heats up. If the 

time it takes for a gas cloud to radiate away this extra heat is less than the characteristic 

timescale on which it can collapse then it can continue to collapse unimpeded; otherwise 

it will become pressure supported. 
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Table 3.1: Star formation criteria used by different authors 

Author(s) Star Formation Rules 

Pearce et al. (1999) (see Kay et al. (2002)) 

Summers (see Kay et al. (2002)) 

Navarro and White (1993) 

Steinmetz and Mueller (1994) 

Katz (1992) 

Cen and Ostriker (1992) 

Katz et al. (1996) 

Mihos and Hernquist (1994b) 

t5>X;T<X 

t5>X;T<X;p>X 

p > X ; \7. V < 0 ; tcool < tdyn 

\7 · V < 0 ; tcool < tdyn ; 0 > X 

TJ < Tdyn; \l.v < 0; tcool < tdyn 

t5 >X; \l.v < 0; TJ < Tdyn 

t5 >X; p >X; \l.v < 0 

t5>X;\7.v<0 
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A selection of the particular criteria chosen by a number of authors is included in 

table 3.1.1. When some gas unit has been labelled as eligible to form stars by whatever 

set of rules its author has chosen then its SFR is calculated by the Schmidt law (equation 

3.1), and then depending upon its SFR has some probability of either 

• being converted into a collisionless star particle representing millions, or hundreds 

of millions of stars, or 

• spawning a new collisionless star particle with a mass in direct proportion to the 

SFR of the gas particle and decreasing the mass of the gas particle by an equivalent 

amount 

The first approach has the advantage that it is both simple to implement and actu­

ally cuts down on the amount of computational work that needs to be done on each 

timestep as more stars are formed (star particles do not feel hydrodynamic forces). On 

the other hand, the minimum amount of star formation that can be resolved is equal 

to the mass resolution of the simulation. The second approach has the advantage that 

smaller amounts of star formation can be resolved but it can be computationally very 

expensive to calculate gravitational forces after spawning a lot of new collisionless par­

ticles in high density regions. 

A comparison of different star formation methods (including most of those in table 

3.1.1) was recently undertaken by Kay et al. (2002) who found that although each pre­

scription agreed well in most ways that some fundamental physical properties, such as 

the fraction of baryons in stars, in each simulation could vary greatly between star for-
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mation treatments. The star formation histories for each method also showed significant 

differences in shape. 

One of the largest problems with the modelling of star formation in this manner is 

that these star formation recipes are chosen purely phenomenologically and although 

they may mirror the large scale behaviours of star forming regions they offer no insights 

into the actual dynamic processes that go into the formation of stars. 

Additionally feedback from core collapse (type II) SNe, described as an extra source 

of thermal or kinetic energy in these single phase models, was found to have little ef­

fect in the early models. This is because the gas in the surroundings of star formation 

sites is at high density and so is very efficient at just radiating away the added energy. 

As a consequence, too much gas cooled in dense knots, producing galaxies much more 

concentrated than those observed (Navarro and Benz (1991); Weil et al. (1998)). 

3.1.2 Multiphase Star Formation 

In response to these problems with the simplest star formation and feedback criteria sev­

eral authors have introduced 'multiphase' models for star formation in which the ISM 

is treated as a number of distinct phases. These schemes take various forms including 

modification of the simulation algorithm (Ritchie and Thomas (2001); Croft et al. (2000)), 

treating the multiphase medium implicitly by formulating differential equations that 

model the interactions between the phases(Yepes et al. (1997); Springel and Hemquist 

(2003); Okamoto et al. (2005)), or by decoupling the cold molecular phase from the hot 

phase by means of 'sticky particles' (Semelin and Combes (2002); Harfst et al. (2006)), re­

moving 'cold' particles from the SPH calculation (Hultman and Pharasyn (1999); Pearce 

et al. (1999, 2001); Marri and White (2003)), or by explicit modification of the SPH rou­

tines to decouple cold, molecular gas from the hot phase (Scannapieco et al. (2006)). The 

decoupling of the hot and cold ISM phases allows thermal heating from SN feedback to 

become more efficient (due to the much lower density of the hot phase), and also allows 

one to follow the properties of the cold molecular phase of the ISM. In this chapter we de­

scribe how the physical processes integral to the evolution of the ISM may be modelled 

computationally. 
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3.2 Details of the Sticky Particle Model 

In typical simulations of galaxy formation we can resolve the Jeans length of the ambient 

gas phase and so can treat its hydrodynamic properties consistently. However, we can­

not yet resolve the properties of the cold molecular phase of the ISM. We therefore follow 

the evolution of the ambient gas phase using a hydrodynamic simulation code, whereas 

we treat the cold phase using a statistical model that encapsulates the physics relevant 

to the formation and evolution of molecular clouds. In this section we introduce the 

properties of the sticky particle model and describe the physics we have implemented. 

Following Efstathiou (2000) we consider the ISM to consist of warm and hot ambi­

ent materials, and cold molecular clouds. We additionally treat the properties of SN 

remnants. Throughout this chapter the properties of the ambient medium will be repre­

sented with the subscript h, the properties of the molecular clouds with the subscript c, 

and the properties of the gas internal to SN remnants, or hot bubbles, with the subscript 

b. 

The ambient gas phase is represented using the entropy conserving, parallel Tree­

SPH code GAOCET2 (Springel (2005); Springel et al. (2001)). The properties of SPH 

simulation codes were introduced in some detail in chapter 2. We will refer to the gas 

component treated using SPH interchangeably as ambient, warm or hot, to distinguish 

it from the cold molecular gas. We will see that in galaxy formation simulations, this 

ambient (i.e. non-molecular) medium naturally develops three relatively well-defined 

phases: a warm (T "' 104K) component in a galactic disk, a hot (T "' 106K)) tenuous 

component of shock-heated gas in the halo, and a similarly hot component resulting 

from gas heated by SN. The fourth, cold (T "' lOOK) and molecular cloud phase is rep­

resented with sticky particles, which interact gravitationally with all other material in 

the simulation and are allowed to stick together forming more massive sticky particles. 

Stars and dark matter are both treated as collisionless particles by GAOCET2. 

The different phases of the ISM may interact with each other as follows: thermally 

unstable ambient gas may collapse into molecular clouds via thermal instability (section 

3.2.1 ). Molecular clouds can interact with each other to form GMCs (section 3.2.2). GMCs 

then collapse into stars (section 3.2.5). Stars disrupt the cloud they formed from and may, 

via SN feedback, return energy (section 3.2.6) to the ambient phase. Hot bubbles blown 

by SNe can evaporate cold clouds (3.2.7) and heat the ambient medium. 

Fig 3.1 contains a summary of all of the physics implemented in our model. Arrows 
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represent a transfer of mass and/or energy from one phase to another. The distinction 

between clouds and GMCs is somewhat arbitrary; they are separated in the figure to 

allow an easy pictorial representation of mass and energy transfer within a single phase. 

Appendix A contains a list of frequently used symbols and their meaning. 

Each physical process will be treated in tum in the remainder of this section. We 

first introduce the physics relevant to each physical process before discussing the nu­

merical implementation. We will also give our preferred physical values for the various 

parameters that occur. How we choose these is discussed in section 3.3. 

3.2.1 Radiative Cooling And The Formation of Molecular Clouds 

Begelman and McKee (1990) show that under appropriate physical conditions, a thermal 

instability may operate in hot gas which causes a fraction of the gas to condense into 

much colder molecular clouds. The sticky particle star formation prescription contains a 

basic representation of this process, based on a detailed treatment of baryonic radiative 

cooling. 

Relevant Physics 

The radiative processes that we take into account are Compton cooling off the microwave 

background, thermal Bremsstrahlung cooling, line cooling and photo-ionization heating 

from Hydrogen, Helium and metal species in the presence of an imposed ionising back­

ground. These routines were developed for a different project and will be described 

elsewhere1. Briefly, they use tabulated rates for radiative cooling and photo-ionization 

heating for many species and ionization states computed assuming ionization equilib­

rium using CLOUDY (version 05.07 of the code last described by Ferland et al. (1998)) with 

a UV background given by Haardt and Madau (2001). The rates are tabulated element 

by element and we will assume solar abundance ratios and specify a fixed metallicity 

of the gas in solar units. We do, however, note that the behaviour of the system may 

depend upon precisely which value of the metallicity we choose, and investigate this in 

section 4.4 

Other processes such as cosmic ray heating, and cooling by dust and atomic lines 

that affect the molecular gas in clouds are not treated explicitly since we do not model 

the internal properties of the clouds themselves. 

1 We would like to thank our colleagues J Schaye, C Dalla Vecchia and R Wiersma for allowing us to use 

these rates. 
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Figure 3.1: Summary of the physical processes that operate in our 

model of a two phase interstellar medium. The boundaries between 

molecular and giant molecular clouds and between heated and non­

heated diffuse gas are somewhat arbitrary and they are separate out in 

this figure only to highlight the different physical mechanisms that are 

operating at any given time. Each arrow represents the transfer of mass 

and/ or energy from one phase to another. 
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We include a simple model to determine the rate at which the ambient gas forms 

molecular clouds. When we identify ambient gas that is thermally unstable (Begelman 

and McKee (1990)) we allow it to collapse into molecular clouds. The rate at which this 

process occurs is goverened by the rate at which the gas is losing thermal energy by 

radiative cooling. 

Numerical Implementation 

Following Yepes et al. (1997) we define a density threshold, Pth' to determine when gas 

becomes thermally unstable. Gas with p < Pth undergoes ordinary radiative cooling. 

Gas with density above the threshold becomes thermally unstable and begins to be con­

verted to molecular clouds. In addition to the density criterion we add a maximum tem­

perature (Tth) for gas to be called thermally unstable which has the effect of preventing 

SN heated gas in dense regions from collapsing straight to the cold phase. 

When gas has been identified as thermally unstable it begins to form molecular 

clouds at a rate controlled by the rate at which the gas can lose thermal energy by ra­

diative cooling 

(3.4) 

where uh and Uc represent the internal energies per unit mass of the ambient phase and 

cold phase respectively and Anet is the cooling rate of the ambient gas (ergs cm-3 s-1 ). 

We assume that the cold clouds remain at a fixed temperature of Tc = lOOK hence their 

thermal energy Uc is a constant as well. 

In practice, each ambient gas particle is identified as either thermally unstable, or 

non-thermally unstable. Non-thermally unstable gas undergoes radiative cooling; ther­

mally unstable ambient gas forms molecular clouds at a rate controlled by the radiative 

cooling rate, as described by Eq. 3.4. 

In this way each ambient gas particle can keep track of what fraction of its mass is 

in the form of molecular clouds. Gas in the molecular phase is ignored for the purposes 

of the SPH calculation. When the amount of mass in the molecular phase in a particle 

reaches the resolution limit of the simulation a seperate 'sticky particle', representing 

many sub-resolution molecular clouds is created. This process decouples the molecular 

clouds from the associated ambient phase. Since we cannot resolve the individual molec­

ular clouds in each sticky particle we work with the mass function of clouds. Initially we 

assume that the molecular clouds formed through instability are all in the smallest mass 
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bin, that is that the clouds formed by thermal instability are very small, and will interact 

to form more massive clouds. In the following section we describe the behaviour and 

evolution of the sticky particles in the simulation. 

3.2.2 Cloud Coagulation and GMC Formation 

Molecular clouds are typically many orders of magnitude more dense than the medium 

they form in (M077), and their behaviour is governed by a different set of rules than the 

ambient medium. This section describes the physics of the simplified molecular clouds 

in the sticky particle model and how it is implemented. 

Relevant Physics 

We assume that clouds may be treated as approximately spherical objects that obey a 

power law relation between mass (Me) and radius (re) 

(
Me )ac 

re = M Tref 
ref 

( 
Me )0.3 

= 36 15M pc. 
0 0 

(3.5) 

Here, ae describes how clouds grow as mass is added to them (if they remain at con­

stant density then ae = 1/3), and Mref and Tref are a reference mass and radius used to 

fix the normalisation of this relation. The example phyical values used in this equation 

are discussed fully in section 3.3.1. The lower bound on molecular cloud masses is typ­

ically calculated to be 100M0 (Monaco (2004)) due to the efficient destruction of smaller 

molecular clouds by photoionization. We introduce an upper limit by converting molec­

ular clouds with large masses into stars (see section 3.2.5 for discussion). In order to 

facilitate easy estimates of the relative importance of various effects we have substituted 

typical numbers and units into most of the equations in this section. 

Numerical Implementation 

Each sticky particle represents numerous cold clouds. Sticky particles are hydrodynami­

cally decoupled from the ambient SPH phase of the gas and interact only gravitationally 

with the other phases in the simulation. However, when two sticky particles collide they 

may coagulate to form a more massive sticky particle. The mass of the smallest molecu­

lar clouds is typically orders of magnitude below the mass resolution in a cosmological 

simulation. We represent an entire mass spectrum of clouds statistically inside of each 
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sticky particle. Our formalism to treat the evolution of the mass function of clouds inter­

nal to each of the 'multiple cloud' particles will start from the Smoluchowski equation of 

kinetic aggregation (Smoluchowski (1916)), which describes the behaviour of a system 

consisting of ballistic particles that can interact via mergers. The coagulation behaviour 

of this system is driven by a coagulation kernel, K ( m 1, m2 ), that represents the formation 

rate of clouds of masses m = m1 + m2, 

(3.6) 

where Vapp is the relative velocity of the clouds and I: is the collision cross section. For 

a Maxwellian distribution of velocities with three-dimensional dispersion CJ we have 

(vapp) = 1.3CJ (Monaco (2004)). The product of the approach velocity and the collision 

cross section is averaged over the distribution of relative velocities. The cross section is 

( 
1 )2 ( Me + M~ 1 ) E ~ 1r r c + r c 1 + 2G 

1 
- 2- , 

Tc + rc Vapp 
(3.7) 

where the first term represents the collision geometric cross section and the second term 

represents the effect of gravitational focusing (Saslaw (1985)). The focused term becomes 

significant when the approach velocity is not much larger than the internal velocity dis­

persion of the system. In most cases of interest the geometric term will dominate so 

the focused term is neglected. In these calculations we need to assume that molecular 

clouds, although transient and turbulent, are stable for long enough for coagulation to 

take place. This is reasonable because the cloud velocity dispersion is typically larger 

than the sound speed of the cold cloud gas (Monaco (2004)). 

To model the cooling of sub-resolution molecular clouds via gravitational interaction 

it has been assumed that when molecular clouds with relative velocities, Vapp' greater 

than Vstick (a parameter in our simulations) collide they do not merge, but rather bounce 

back with relative velocity a fraction, TJ, of the initial approach velocity. Clouds with 

relative velocities less than Vstick merge. For simplicity it has been assumed that the 

velocity distribution of clouds is Gaussian with a velocity dispersion that is a function of 

cloud mass, CJ = CJ(m). 

The upper and lower bounds on the molecular cloud mass function are set such that 

the smallest mass bin is comparable with the smallest observable clouds, and the largest 

molecular clouds are approximately the same mass as the largest clouds in the MW. The 

mass function is discrete. All clouds are assumed to form at the lowest mass, Mmin 1 
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and then the mass of each bin is a multiple of this value. This discrete mass function is 

neccessary when working with the Smoluchowski equation. 

In order for us to be able to hold a mass function with a large number of bins internal 

to every single sticky particle without the requirement to store one number for each mass 

bin we parameterize the mass function as a third order polynomial, and store only the 

four coefficients between timesteps. 

As these sub-resolution clouds interact and merge, the one dimensional velocity dis­

persion a( m) changes, which affects the rate of evolution of the cloud mass function, 

n(m). Let Em= (3/2)ma2 (m) denote the random kinetic energy of clouds with mass m. 

Em may change due to three distinct processes: 

• Clouds with masses m' and m - m' merge to form extra clouds of mass m, increas­

ing Em at a rate Egain 

• Clouds with masses m may merge with clouds of any other mass decreasing the 

number of clouds of mass m. This process decreases Em at a rate E1oss 

• Clouds with mass m may interact collisionally with clouds of any other mass and 

so lose kinetic energy. This process decreases Em at a rate Ecool 

The net change in kinetic energy for particles of mass m during some timestep f:l.t is 

given by 

dEm [ · · · ] l:l.Em = dt f:l.t = Egain - Eloss - Ecool f:l.t · (3.8) 

And for this change in kinetic energy, the corresponding change in velocity dispersion is 

given by 

(3.9) 

Details of the equations used to model these processes are given in Appendix 3.2.3, and 

the method by which they are solved numerically in Appendix 3.2.4. 

The same processes (cooling and merging) are followed explicitly for the individual 

sticky particles in our simulations, which can interact in the same two ways as the unre­

solved sub resolution clouds. Following the same rules should allow us to remove much 

of the resolution dependence of the star formation. As the mass resolution of a simu­

lation is degraded, more massive clouds will be treated with the sub-grid physics; our 

implementation should ensure that the large scale results are approximately the same. 

This is demonstrated in section 3.3.1. 
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3.2.3 Energy Transfer Through Coagulation 

In this section the numerical methods by which the equations governing molecular cloud 

behaviour are discussed in detail. The starting point is the Smoluchowski equation of 

kinetic aggregation (Smoluchowski (1916)) 

an 1 roo ( 1 ) ( 1 1 I I 
&t = 2V Jo nm,tnm-m,t)K(m,m-m)dm 

- ~n(m, t) fooo n(m1
, t)K(m, m 1)dm1

, (3.10) 

where n(m, t) represents the number of clouds with masses between m and m + dm 

contained within a volume, V and K(m, m1
) represents the kernel for aggregation of 

clouds with masses m and m1
, as defined by Eq (3.6) 

In one dimension, the fraction of collisions between clouds of masses m 1 and m2 that 

lead to mergers is given by 

f ( ) = 1 100 
- c~~J 

2 

[ f(V1 + Vstick) _ f(Vl - Vstick )] d m 0"1, 0"2 ~ e er 10 er 10 VI. 
0"1 v 27r -00 v 20"2 v 20"2 

(3.11) 

Figure 3.2 shows for two populations of particles with different velocity dispersions 

the fraction of collisions that will lead to a merger, this demonstrates the symmetry be­

tween 0"1 and 0"2 in equation 3.11. Using this definition of fm the Smoluchowski equation 

becomes 

an 1 roo 1 I ) 1 1) ) I 
&t =

2
V Jo n(m,t)n(m-m,t K(m,m-m fm(O"m',O"m-m' dm 

n(m,f) roo 1 ( 1) ( I 
- V Jo n(m, t)K m, m fm O"m, O"m' )dm . (3.12) 

As discussed in section 3.2.2, clouds of mass m may gain or lose kinetic energy in 

three ways: clouds of mass m 1 and m - m 1 may merge to form extra clouds of mass m. 

Clouds of mass m may merge with clouds of any other mass to decrease the number 

of clouds of mass m. Finally clouds of mass m can interact gravitationally with any 

other clouds, thus losing kinetic energy. These three processes are termed gain, loss and 

cooling. 

Gain processes may be represented in the following way, where we have integrated 

over m1 such that the two particles that merge have masses that sum to m 

100 1V! =00 1V2 =VI +Vstick [ 

Egain = _ _ P(vi)P(v2)n(m1
, t) 

0 VJ--00 V2-VJ -Vstick 

n(m- m 1
, t)K(m1

, m- m 1)fm(m1
, m- m 1)EJ J dv2dv1dm1

• (3.13) 
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sents a merging fraction of 1.0, dark blues represent low merging frac­

tions. The solid black lines show merging fractions of 0.75, 0.5 and 0.25. 
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P(vi) and P(v2) are the probability distributions velocities VI and v2 and are assumed 

to be gaussian with standard deviation o-I and o-2 respectively. Er represents the final 

kinetic energy of a collision between particles of masses m 1 and m - m 1
• Er is evaluated 

by considering conservation of momentum, 

Ef = ~ (m1
VI + (m- m

1
)v2)2 

2 m 
(3.14) 

Eq (3.13) then becomes 

E. n(m1,t) rXJ ( 1 1 1 
gain= 

2
7f Jo nm-m,t)K(m,m-m) 

(3.15) 

and Eq (3.15) may be written 

. n(m
1 t) 100 joo 1 -(~)

2 

Egain = 
2 

' n(m- m 1
, t)K(m1

, m- m 1
) e .J2"m' 

7f 0 -oo O"m'O"m-m' 

J.
VJ+Vstick -( v

2 
)

2 

1 ((m1V1 + (m- m1)v2)2) 
e .J2"m-m' - . dv2dvidm1 

V] -Vstick 2 ffi 
(3.16) 

The total kinetic energy of particles of mass m may also be decreased by mergers 

between particles of mass m and any other mass (the second process in the list). Similarly 

to Eq (3.15), the rate of energy loss may be written 

E1oss= n(m,t) {oo n(m1,t)K(m,m1)100 1 e-(v4;m) 
27f Jo -oo O"mO"m' 

1
V] +Vstick _ (~) 

2 

ffiV2 
e .J2"m' Tdv2dvidm1

• 

VJ-Vstick 

(3.17) 

Finally, the total energy of particles with mass m may be decreased by collisions between 

particles of mass m and particles of any other mass that occur at relative velocities greater 

than Vstick· In this case, the velocity of both particles is decreased by a factor 'fJ relative 

to the centre of mass. For a collision between particles of masses m1 and m2 (velocities 

vi and v2 ) the final velocity of particle 1 (denoted v~) is evaluated by conservation of 

momentum 

V~ = 'TJ(VI - Vcom) + Vcom 
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(3.18) 

Using these definitions, the change in energy of a particle of mass m 1 by gravitational 

cooling with a particle of mass m 2, denoted E is given by 

(3.19) 

where 

(3.20) 

(3.21) 

In a similar way to Eq (3.15) the energy loss via this process may be written 

• n( m, t) {00 
( 1 ( 1 

Ecool = 
2

7r Jo n m ,t)K m,m) 

1
00 1 -(~)

2 

/lv1-V2I>vstick -(~)
2 

---e v'2um Ee ..12um' dv2dv1dm1
• 

-oo amam' 
(3.22) 

3.2.4 The Solution of the Coagulation Equations 

In our simulations we solve the discrete versions of Eq (3.12), Eq (3.8) and Eq (3.9). By 

assuming that cloud mass is quantised into N bins characterised by an index, i, where 

Mi = iMo we can write 

(3.23) 

(3.24) 

. 1 2 
. Ek- 2akMknk 
ak = 

aknkMk 
(3.25) 

where subscripts represent different mass bins. Kij = K(Mi, Mj) = K(iM0 , kM0 ). 

The superscript m represents that f is a cross section for particle mergers 

To demonstrate the technique for solving these equations we will consider the nu­

merical solution of the simple Smoluchowski equation (Eq (3.10)), which when written 

in a discrete form takes on the following form 

(3.26) 
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Following Benson et al. (2005) Eq (3.26) can be rewritten in the form of a matrix equation 

n=B·k, (3.27) 

the vector k has N x N elements corresponding to K(mi, mj)· The kernel matrix, B has 

N x N x N elements and may be written more explicitly as 

where 

ni = L Bijkkjk, 
jk 

(3.28) 

(3.29) 

8 represents a Kronecker delta function. We solve Eq (3.27) implicitly using an iterative 

method. 

The solution of the equations that govern energy exchange between clouds (Eq (3.16), 

Eq (3.17) and Eq (3.22)) is the same as for the solution of the Srnoluchowski equation 

in that we will write the equations in the form of the linear multiplication of two rna­

trices and then solve this equation implicitly. In order to simplify the notation in this 

section we will denote the terms in the three equations that are inside of the integrals 

over velocity as e. Explicitly for the case of the equation for energy gain (Eq (3.16)): 

(3.30) 

The corresponding terms in the equations for energy loss(3.17) and cooling (3.22) are 

denoted eL(mb m2) and e0 (ml, m2) respectively. Note that the definitions of e include 

the factors of 21r and ~ from throughout the equations. 

The equation for the total evolution of the energy of a system of coagulating and 

cooling particles may be written in terms of these new functions as: 

E(m) = 100 

n(m', t)n(m- m', t)K(m', m- m')ea(m', m- m')dm' 

- n(m, t) 100 

n(m', t)K(m, m')eL(m, m')dm' 

- n(m, t) 100 

n(m', t)K(m, m')e0 (m, m')dm' (3.31) 

Which when discretized and rearranged becomes 

i-1 N 

Ei = L ninjKijeg- ni ( L njKij (e3 + eb)) (3.32) 
j=l j=l 

·~·.:.r 
v·. 

·-.!~-· 
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The subscripts represent different mass bins (nj = n(jM0 )). Our goal is to rewrite Eq 

(3.32) in the form of a linear multiplication of two matrices 

E=C·k, (3.33) 

where k is defined in the same way in the solution of the Smoluchowski equation, that 

is: kij = K(mi, mj)· The form of Cijk that is consistent with Eq (3.32) is given by: 

(3.34) 

This form for Cijk is functionally equivalent to Bijk (Eq (3.29)) so the solution may 

proceed in exactly the same way as for the Smoluchowski equation, the only difference 

is the form of the matrix B 

The calculation of the quantities ~c, ~c and ~Lis computationally very expensive so 

they are initialised once into a lookup table at the start of every simulation and obtained 

by bilinear interpolation thereafter 

3.2.5 Cloud Collapse and Star Formation 

The vast majority of stars form in Giant Molecular Clouds. This process is described in 

the sticky particle model by allowing the most massive clouds in the galaxy to collapse 

into stars. 

Relevant Physics 

We follow the process of star formation in our simulations by waiting for star forming 

clouds to be created by the coagulation process described in section 3.2.2. We define star 

forming clouds to be clouds of a mass similar to the most massive clouds observed in 

the MW (rv 106 M0 ). When one of these star forming clouds is created it is assumed to 

collapse on a short timescale and approximately E* "' 10% of its mass is converted into 

stars, whilst the remainder is disrupted by stellar feedback processes including stellar 

winds, SN feedback and photoionization. This process reflects that although stars may 

form in less massive molecular clouds, it is not until the relatively rare, massive 0 and B 

stars are created that the cloud is destroyed (Elmegreen (1983)). 

We assume that each cloud collapse forms a single stellar population with an IMF of 

the standard Salpeter (1955) form 

N(M) dM ex M-(I+x)dM, (3.35) 
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where x is the slope of the IMF and takes the usual value of 1.35. The masses of stars 

are assumed to lie between well defined minimum and maximum values, M*,min and 

Numerical Implementation 

The treatment of star formation adopted in most simulations is to identify gas that is 

likely to be star-forming and impose a star formation rate given by the Schmidt law, 

· _ C NsF 
P*- Pgas · (3.36) 

Here, ih and Pgas denote the rate of star formation per unit volume and the gas density 

respectively. This power law relation between star formation rate (SFR) and gas density 

was found to hold over many orders of magnitude by Kennicutt (1988), who constrained 

the exponent to be NsF = 1.4 ± 0.2. 

We take a different approach: unstable molecular clouds are identified in the simu­

lations as any cloud with a mass greater than Msf· We identify the formation of these 

massive clouds by using the cloud mass function, as stored internally to every single 

sticky particle. These unstable clouds are assumed to collapse on a very short timescale, 

forming stars. 

As soon as a cloud of mass M8r forms, it is assumed to be disrupted by OB stars on a 

timescale of rvlOMyr (Matzner (2002)), the rest of the massive cloud is broken down into 

smaller clouds and the coagulation process begins all over again as described in section 

3.2.2. This process is modelled by taking the fraction of the cloud's mass that does not 

tum into stars, 1- E*, and assuming that the net effect of the stellar feedback processes is 

to fragment the GMC into the smallest clouds represented in the sticky particle internal 

mass function. This has the net effect of steepening the cloud mass function. 

Each star particle formation event represents the formation of a single stellar pop­

ulation of stars that are all assumed to have the same age, and to be drawn from the 

Salpeter IMF. Each stellar particle is therefore formed with a mass approximately equal 

to E* times the mass of a starforming cloud. If this particle mass is not allowed by the 

mass resolution of a given simulation then we either store up unresolved stars internal 

to a sticky particle (if the star mass is too small to be allowed), or split it into multiple, 

equal mass particles (if the star mass is too large to be allowed). 
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3.2.6 Supernova Feedback 

Our simulations include only energy feedback from type II SN. These events return en­

ergy from the stars to the ambient phase. We note that it is not currently computationally 

feasible to resolve the properties of SN remnants so we treat them with a simple, ana­

lytic prescription. The mechanism by which SN feedback is implemented in our model 

is discussed here. 

Relevant Physics 

Each star of mass greater than 8M0 releases 1051 E51 ergs in thermal energy when it 

undergoes a SN event. The lifetime, t, of a star of mass M (where M > 6.6M0 ) is given 

by (Padovani and Matteucci (1993)) 

t ( M )-1.85 
-G = 1.2 M +0.003. 

yr 0 
(3.37) 

Each SN explosion can be approximated as the injection of energy at a single point 

in space. If we assume that the ambient density on scales of interest is approximately 

homogeneous, with density Ph, then each SN explosion can be modelled as a Sedov blast 

wave (Sedov (1959)). According to this solution, if at timet= 0 we release an amount of 

energy Eb, then after time t the resulting blasLwave will have reached a radius rb given 

by 

(
Eb) 1/5 2/5 rb = - t 
Ph 

= 292 ( Eb;1051er~~) 1/5 (t/10Myr)2/5 pc. 
Ph 0.1 em 

(3.38) 

These hot SN bubbles have two main effects. Firstly, as they expand and decelerate 

the SN heated gas will get mixed in with the surrounding ambient medium; the net 

result of this process is the heating of the ambient medium. Secondly, as discussed in 

section 3.2.7, any cold clouds caught inside a SN bubble will undergo evaporation. 

There are two main assumptions that must hold for the Sedov solution to be valid, 

the pressure of the ambient medium, and the cooling rate inside the bubble, must both 

be negligible. Often at least one these assumptions is invalid. If the ambient medium 

has a low density and is very hot, for example due to a previous set of explosions, then 

its pressure is no longer negligible and the Sedov solution breaks down. If the ambient 

medium is dense then radiative cooling becomes an important process. In the remainder 

of this section we describe various modifications to the standard Sedov solutions, which 

allow us to model SN remnants in a wider variety of conditions. 
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In the case of a hot, tenuous medium the radius of each blast wave is increased (Tang 

and Wang (2005)). These authors derive a fitting formula for the velocity of a SN blast in 

a hot medium, which is accurate to within 3% 

r (tc )3/5 rb(t) = Jo ch t' + 1 dt', (3.39) 

(t/Myr t 3/5 
= 156 lo c~ + 1) dt' pc, (3.40) 

where ch is the sound speed of the ambient medium. We assumed a temperature of 

Th = 106K, mean molecular weight of 11 = 0.58, blast wave energy of 1 x 1051 ergs and 

an ambient density of 0.1 atoms per cm3 in order to illustrate the order of magnitude of 

rb. tc is a characteristic time, 

(3.41) 

where~ equals 1.14 for a gas with adiabatic index"' = 5/3. This solution matches the 

standard Sedov evolution, rb ex t215, closely until t ""' tc, after which the shell's velocity 

becomes constant, rb ex t. This modification allows us to take into account that the major­

ity (rv90%) of SNII happen in preheated SN bubbles (Higdon et al. (1998)) and, therefore, 

the approximation that the pressure of the ambient medium is negligible is often incor­

rect. Fig (3.3) shows the difference between an adiabatic gas SPH simulation of a SN 

induced shock-wave, the pure Sedov solution and the blast wave radius as predicted by 

the hot medium-modified Sedov solution from Tang & Wang (2005). 

Situations where radiative cooling are important may be taken into account using 

the prescription of Thornton et al. (1998), whose high resolution simulations of SN ex­

plosions expanding in an ambient medium with temperature Th = 103K, provide the 

total thermal energy in SN bubbles as a function of time, ambient density and metallic­

ity. We perform bilinear interpolation on the results in tables 2 and 4 of Thornton et al. 

(1998) to obtain the SN bubble radius and thermal energy at any given time. 

Neither of these solutions treats the more general case of SN remnant expansion in a 

porous ISM, which may have regions of both high and low ambient density, and so we 

are not able to include the effects of SNe in a fully self-consistent manner. In most of our 

simulations we use the simple Sedov solution for the evolution of the SN blast waves, but 
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note that the details of our prescription are uncertain. In section 4.4 we investigate the 

effects of using different implementations of the physics of SN blast waves to estimate 

how important the details of the behaviour of SN remnants are to the overall properties 

of the galaxy. Both the radiative cooling and blast wave velocity physics are varied. 

Numerical Implementation 

By assuming that each stellar particle in the simulation represents an entire population 

with the same age we can calculate the minimum and maximum masses of stars that 

undergo supernova events over any given time period using Eq (3.37). Each of these 

supernovae is assumed to go off in a neighbouring gas particle (i.e. one for which the 

distance, r, to the star is smaller than its smoothing length, h, in the SPH formalism). 

We chose this particle randomly from the neighbours, with a weight computed from the 

solid angle, n, it subtends on the sky as seen from the position of the star particle, 

n=27r(l- J(r2r+h2)). (3.42) 

This weighting forces that nearby hot, diffuse gas (which tends to have larger h, hence 

larger weight) is heated more frequently than cooler, denser parts of the ambient medium 

(which are dense, hence have smaller h). 

We do not transfer all SN energy to gas particles each timestep. Assuming that SN 

explosions are distributed evenly in time and space we can calculate for every ambient 

gas particle a 'porosity' of SN bubbles, Q = VB/VA. For the volume associated with a 

gas particle we use VA = ( 47r /3) h3 , and VB = ( 47r /3) I: r~ is the total volume of all the 

SN bubbles in this particle. When Q is greater than a critical value, Qcrit ~ 1, the ambient 

phase is heated, else the available SN energy is carried over to the next time step. This 

ensures that the ambient phase is only heated when hot supernova bubbles make up a 

significant fraction of the volume. There are two motivations for this, firstly a given SPH 

particle cannot represent more than one phase at a given time. Secondly simulations 

usually do not limit the timestep to be a fraction of the cooling time. Consider a warm, 

T ,....., 104 K, SPH particle in the disk. If a small amount of SN energy is injected into this 

dense particle, it will cool very efficiently since the cooling rate is very high. It is only 

when the particle is heated toT» 106K that the reduced cooling may affect the particle 

dynamically, so that it will move into lower density gas, further decreasing its cooling 

rate, and becoming part of the hot, tenuous gas. Storing the available heating until the 

SN bubbles fill a significant fraction of the particle is a way of easing the transition from 
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warm to hot and makes the outcome less dependent on the timestep. 

To determine the porosity Q, we need to know the current radii, rb, of SN bubbles. 

The radius rb depends on the ambient gas properties and also on the available energy, 

Eb, as discussed in section 3.2.6. Typically a single stellar particle will undergo mul­

tiple SN events over a single timestep. Using Eqs. (3.37) and (3.38) and obtaining the 

SPH estimate of the ambient gas density at the position of the star particle we can esti­

mate the average radius of all supernova bubbles blown by a given star particle at any 

time. Working under the assumption that the porosity of the ISM is low we calculate 

the radiative loss from each bubble separately. When the porosity of the ISM becomes 

Q > Qcrit ,...., 1, the SN bubbles are overlapping significantly and all coherent structure is 

assumed to be wiped out. The ambient gas particles are heated by the remaining thermal 

energy in the supernova bubbles and they are considered to disperse. The porosity is set 

back to zero. Note that using the Sedov solution implies we neglect radiative cooling in 

the remnants to determine the porosity, Q. However to determine how much energy is 

in the bubbles once we decide to heat the particle, we do use the tables of Thornton et al. 

{1998) to account for radiative cooling in the SN shells. We believe that even though this 

treatment is not fully consistent, it does capture the main physics. 

3.2.7 Thermal Conduction 

Thermal conduction between the ambient and cold gas in the simulation is an important 

ingredient in the self-regulation of the star formation rate in our model of the ISM. 

Relevant Physics 

Thermal conduction has two primary effects. The first is to smooth out the tempera­

ture and density profiles inside SN remnants. In the strong explosion solution of Se­

dov, where thermal conduction is neglected, the temperature of the blast wave increases 

sharply towards the centre of the blast. This is due to the fact that the gas near the origin 

was heated by a stronger shock than that at the edges and thereafter evolves adiabat­

ically. The effect of thermal conduction is to efficiently transport heat from the centre 

of the blast to the outer cool regions. The temperature of the interior of the super­

nova blast, n, is then approximately constant and equal to the mean temperature of 

the blast(Chevalier (1975); M077): 

(3.43) 
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where nb and n are the mean density and temperature inside the bubble, respectively. 

We assume rb to be described by Sedov's self-similar solution. The density nb is also 

approximately constant and is given in terms of the ambient density, nh, as 

nb =1 + x-5/3 
nh 

X ::::0.65(_!!!___) El/5( ~ )3/5( Eb )-2/5. 
lOpe con cm-3 1051 erg 

The dimensionless number Econ represents the effectiveness of evaporation, 

E = etcon ( rc )2!.-1,.~,-1 
con 3 c1 '!' , 

pc 

(3.44) 

(3.45) 

(3.46) 

(McKee and Cowie (1977)), and depends on Ctcon = fb/ch (the ratio of the velocity of 

the supernova blast wave to the sound speed of the medium), the cloud's radius, rc, the 

volume filling factor of the cold clouds, fcJ, and the efficiency of thermal conduction, 

<P (see M077 for details). For a pure Sedov blast wave Ctcon = 1.68. The presence of 

magnetic fields and turbulence may decrease <P below its maximum value of <P = 1. 

We compute f c1 for each sticky particle from its current cloud mass spectrum given the 

assumed cloud mass-radius relation, Eq. (3.5). 

The second effect of thermal conduction is to evaporate cold clouds. According to 

(McKee and Cowie (1977); Cowie (1977)), the evaporation rate is well described by: 

( Me ) ( T )5/2 ( rc) --044 X -- -
M0Myr-1 - . 106K pc . 

(3.47) 

Numerical Implementation 

Since we store the mass function of molecular clouds internal to each sticky particle 

explicitly (Sect. 3.2.2), we can apply Eq. (3.47) along with Eq. (3.5) to each cloud mass bin 

to calculate the total mass loss of a cloud over one timestep. The evaporation rate of the 

cloud depends on the temperature of the ambient gas, which is represented with SPH 

particles. However, as we discussed above, some fraction Q of the volume of each SPH 

particle may be filled by hot SN bubbles, in which the evaporation rate of clouds may be 

much higher. Since we have computed Q, we can take this important effect into account. 

Consider a single molecular cloud in thermal contact with an ambient medium of 

(constant) temperature T. The mass of a cloud at the end of a timestep (Mf) is related to 

its mass at the start of the timestep (Mi) by: 

M = [M.l-ac - ( - ) 0.44T5/2rref ~ ] 1/(1-ac) 
f z 1 Ctc Mac t ' 

ref 
(3.48) 
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where Tis in units of 106K, masses are in M0 , lengths are in pc and times are in Myr. 

Eq (3.48) represents the mass loss rate for a single cloud in contact with a medium 

of temperature T. More generally in a porous medium a single cloud of mass m has a 

mean mass loss rate described by: 

(3.49) 

where rhbubble and rhambient represent the rate of mass loss for a cloud inside a supernova 

bubble and situated in the ambient medium respectively. 

Eq. (3.48) can be applied directly to the evaporation of a cloud in the local ambient 

medium (rhambient)· However to apply the same formula to the evaporation of clouds in­

side of supernova bubbles we need to account for the fact that although the temperature 

inside the bubbles remains uniform, due to conduction, it is not constant in time, but 

decreases as the bubble expands. We therefore make the additional assumption that the 

mean temperature of the supernova remnant is constant over a timestep (a good approx­

imation after a short transient phase). Under this assumption Eq. (3.48) can be applied 

successfully to the more general case of evaporation in a porous medium. Eq (3.47) and 

Eq (3.5) are used to show that the total mass loss rate for clouds of mass min a volume 

VA is given by 

( M _ ) = -0.44 ( Me )o:(rref) (Mref)-nc (Q(_Il_)5/2 + (l- Q)(~)S/2). 
M0 Myr 1 M0 c pc M0 106 K 106 K 

(3.50) 

Under the assumption that n, the mean temperature of supernova remnants, and Ta, 

the mean ambient temperature, are constant over any single timestep we can write 

(3.51) 

In order to calculate the constant of proportionality, >., we use an estimate of the mean 

temperature and density inside of a supernova remnant. These estimates were obtained 

by noting that by definition Q = Vs/VA. (Vs and VA represent the total volume in 

bubbles and the ambient phase respectively). The mean radius of a supernova remnant 

is then 
- ( 3QVA )1/3 

rb- 4 N ' 
7r SN 

(3.52) 

where NsN is the total number of supernova explosions that have affected the local am-

bient medium (calculated from equations 3.37 and 3.35). The mean density inside the 
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1 Q6 

supernova remnants, nb, may then be calculated from Eq (3.44) and Eq (3.45) and the 

mean temperature from Eq (3.43). 

Over a period of time tl.t a cloud with mass M1 will evaporate to a mass of MF, given 

by: 

(3.53) 

Thermal conduction efficiently destroys smaller clouds, but its effects are far less 

dramatic on larger clouds. Fig (3.4) shows the evolution of an initially power law mass 

spectrum of clouds in a hot medium. The energy used to evaporate a mass MF- M1 of 

cold clouds is removed from the supernova remnants. 
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3.2.8 Mass Resolution Limits 

The sticky particle model allows particles of all types to change their mass via processes 

including merging, thermal conduction and star formation. For this reason it is neces­

sary for us to introduce numerical minimum and maximum masses on all particle types. 

We define at the initial time a characteristic mass resolution for our simulation, Mchar' 

typically this is set equal to the mass of the ambient gas particles in the initial conditions. 

Where more than one mass of ambient particles is present (for example in the model 

galaxies discussed in section 4.1) we use the mass of the gas particles that will be form­

ing most stars. We then define minimum and maximum particle masses relative to this 

characteristic mass scale. 

Ambient gas particles may have their mass decreased by the formation of molecular 

clouds. If the total mass of a gas particle becomes less than O.lMchar then it is converted 

entirely into a cloud particle. The ambient gas particles may also have their mass in­

creased by the process of thermal conduction. If a gas particle becomes more massive 

than 4Mchar then it is not allowed to grow any more, and the evaporated cloud mass is 

given to a different particle. In practice this limit is rarely, if ever, reached as evaporat­

ing cold clouds effectively cools the ambient gas particles so they become inefficient at 

thermal conduction. 

Sticky particles may decrease their mass by star formation and evaporation. If the 

mass of a sticky particle drops below O.lMchar then it is either completely evaporated or 

completely converted into stars. Coagulation may drive the mass of a sticky particle to 

be very large. In practice this is not a real concern since when a sticky particle becomes 

very massive the rate at which its internal clouds coagulate also increases, causing it to 

form stars very rapidly. 

Stars have a maximum and minimum mass of 4Mchar and O.lMchar· If a star forms 

with a mass greater than the maximum allowed mass it is split into a number of smaller 

star particles. A sticky particle may not form a star with a mass lower than the minimum 

allowed mass. In this eventuality then the mass of the 'unresolved' stars is tracked 

internally by the sticky particle and added into the next star formation event until the 

total mass of stars formed reaches the resolution limit of the simulation. 

These particle mass limits keep all particle masses in the range O.lMchar to 4Mchau 

which both minimises two body effects between very massive and very small particles 

and also prevents the formation of very many low mass particles, which are computa-
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tionally very expensive to evolve. 

3.3 Parameter Estimation 

The various physical processes in the star formation and feedback models each have 

associated with them physical parameters. Before we discuss the properties of our model 

in detail we discuss how its free parameters can be constrained. 

The free parameters that control the thermal instability and formation of the molec­

ular clouds are Pth and Tth 1 the physical density and temperature at which thermal in­

stability is allowed to set in and radiative cooling creates molecular clouds. Wolfire et al. 

(1995) found that a diffuse ISM naturally settles into two stable phases, with a sharp 

cutoff between the ambient and molecular phases at a density of approximately 1 atom 

per cm3 . We use this as the value of Pth· A threshold temperature Tth = 105K allows the 

gas in galaxies which cools radiatively to "' 104 K to collapse into clouds but prevents 

supernova heated material (typically at temperatures of 106 K) from forming molecular 

clouds until it has radiated away most of its supernova energy. 

The properties of the molecular clouds themselves are contained in four parameters: 

rref 1 Mref, and etc as defined in Eq (3.5) and Uc, the internal energy per unit mass of 

molecular clouds. The first three values are set by comparison with observations of 

molecular clouds in the nearby galaxy M33 (Wilson and Scoville (1990)): 

( rc) _ ( M )0.3±0.1 
- (36 ± 6) 105M pc 0 

(3.54) 

Thus rref and Mref are assumed to be 36pc and 105 M0 respectively. This calibration (and 

an assumed etc of 0.3) suggest a radius of 122 ± 6pc for the largest clouds observed in the 

MW ( 6 x 106 M0 (Williams and McKee (1997)). 

The properties of the stars and associated feedback are contained within four param­

eters: x, the slope of the IMF; E 51 , the energy of each supernova blast in units of 1051erg; 

M*,min, the minimum star mass; and M*,mruu the mass of the largest allowed stars. For 

E 51 we use the fiducial value of 1.0 noting, however, that the value of E51 is very un­

certain and may be significantly higher. The effects of varying E51 are investigated in 

section 4.4. For the purposes of this work uncertainties in the IMF are neglected and x 

is assumed to take on the standard Salpeter value of 1.35. We follow Kawata and Gib­

son (2003) in adopting values 0.2M0 and 60M0 for the minimum and maximum stellar 

masses, respectively. 
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The star formation efficiency in a single cloud collapse is also somewhat uncertain 

and is known to be approximately t* ~ 11% (Williams and McKee (1997)) in the MW. 

The thermal conduction efficiency is characterised by two numbers: neon, the ratio of 

the blast wave velocity to the ambient sound speed and ¢, the efficiency of thermal con­

duction. Following M077, the value of neon is set to 2.5 (for the ideal Sedov blast wave 

case, neon is 1.68, the presence of thermal conduction changes this value). The thermal 

conduction efficiency parameter is assumed to be ¢ = 1. The presence of magnetic fields 

and turbulence may change ¢ significantly; we investigate the effect of moving away 

from this value in Sect. 4.4 

This leaves Vstiek (the maximum relative cloud velocity for mergers) and ry (the frac­

tion of a cloud's velocity lost per non-merger collision) as free parameters that are hard 

to constrain via observation. It is noted that the large scale behaviour of a given simu­

lation is largely independent of the value of ry. This is because the cold cloud velocity 

dispersion is always limited by Vstiek· In the following section simple simulations are 

used in order to calibrate the properties of the physical model. 

3.3.1 One Zone Simulations 

Simulation Details 

A 'one zone model' is a periodic box that represents a fixed mass and volume (i.e. 

a static, periodic box with no mass outflow). The ambient ISM phase is assumed to 

be homogeneous. Initially, for a chosen mean density of matter we assume that 50% 

of the material is initially in the hot phase at a temperature of To = 106K. The re­

maining gas is initially in cold clouds with an initial mass function that is a very steep 

(N(M)dM ex: M-8dM) power law. Numerically we represent the different phases as 

follows: the ambient phase is assumed to be homogeneous and isotropic and so is rep­

resented by a single density and temperature throughout the whole periodic volume, 

molecular clouds are represented by discrete sticky particles that are spawned at a ran­

dom point in the computational volume with a random velocity, stars are not tracked 

individually, and are assumed to heat the whole volume evenly when they undergo 

SN explosions. The mass resolution of the molecular phase is approximately 107 M 0 , 

although the effects of varying this figure are investigated later in this section. 

This initial situation represents hot, dense gas that has just begun to experience a 

thermal instability and started forming its first molecular clouds. The volume we sim-
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Figure 3.5: Star formation rate as a function of time for a one zone box 

with three different values of Vstick· The initial gas density is no = 2 

cm-3 in each case. Each curve follows the same general shape, there 

is an initial delay during which the first GMCs are forming. The un­

opposed collapse of the first GMCs causes a burst of star formation, 

which is quickly regulated by the effects of feedback from stellar winds 

and supernova explosions. After this initial burst the star formation 

rate in the simulation settles down and gradually decreases as the gas 

in the box is used up. 
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ulate is one cubic kpc. The hot phase will evaporate cold clouds through thermal con­

duction, and can cool via radiative processes using a simple tabulated cooling function 

from Sutherland and Dopita (1993) (assuming solar metallicity). Cold cloud particles 

are scattered randomly throughout the volume and given random velocities. Clouds do 

not feel gravitational forces. Depending on the parameters, the ambient phase will cool 

radiatively to form more molecular gas. Clouds will coagulate to form GMCs, which in 

tum form stars. The associated SNe evaporate smaller clouds, and may heat the ambient 

medium and quench the star formation. This sequence of events is plotted in Fig (3.5), 

the same general shape is observed for each value of Vstick, there is a brief delay as the 

first clouds coagulate to form GMCs, these clouds then collapse and form stars, which 

undergo supernovae and quench the star formation. On a longer timescale, the quiescent 

star formation rate slowly decreases as the available gas is consumed by stars. Since the 

dynamical equilibrium is reached on a very short timescale, typically a couple of hun­

dred Myr, we assume instantaneous recycling when considering supernova feedback. 

The role of Tth is suppressed in the one zone simulations, due to the fact that energy 

injected via supernovae cannot escape the volume. 

The lack of self gravity does not affect the global properties of the volume signif­

icantly. From Eq (3.7) assuming typical cloud properties (Me ~ 105 M8 , r ~ 50pc) 

and a reasonable velocity dispersion (a = 7km/s) the ratio of the geometric part of the 

cross section to the gravitationally focused part is approximately 0.1, therefore direct 

collisions between clouds account for the majority of the collisions and gravitational fo­

cusing makes for an effect of only 10%. In the following section we will choose a value of 

Vstick by comparing the star formation rates in one zone volumes with the Schmidt law, 

and also look at the properties of one zone volumes. 

As noted in section 3.3 the properties of the simulation are largely independent of "'· 

We assume a value of 0.5 throughout the rest of this thesis. 

Calibrating the base model 

The one zone model provides a useful sandbox in which we can investigate a wide vari­

ety of parameter choices in a relatively computationally inexpensive environment. In the 

following section we discuss our choices for the values of the different parameters. The 

effects of moving away from this 'base model' are discussed more fully in later sections. 

The parameters that are available for tuning the output of the model are as follows: 

the cold cloud reference size and radius (rref, Mred; the slope of the cloud mass-radius 
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in the MW (Solomon et al (1987))and M33 (Rosolowsky & Blitz (2004)). 

The numbers in the legend represent the power law slopes in each of 

the galaxies. It is clear that we obtain a good agreement between our 

model and the cloud mass spectrum in real galaxies. 
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Figure 3.7: Schmidt law. The diagonal dashed line represents the ob­

served star formation law (Kennicutt 1998) and the vertical line repre­

sents the observed cutoff in star formation (10M0 pc-2; Schaye 2004). 

Each point represents the star formation rate averaged over a period 

of 500Myr for a separate one zone simulation. Data is shown for two 

different values of Vstick, the base value used in all subsequent simula­

tions is 7km/ s. We calculate star formation rates by averaging the star 

formation rate in the simulation volume over a 500Myr period. Surface 

densities were calculated from volume densities by assuming a disk of 

thickness of lkpc. 
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Figure 3.8: Star formation rate as a function of time for one zone models 

with three different mass resolutions. The star formation rate remains 

almost unchanged over two orders of magnitude in mass resolution. 

The coarsest mass resolution of 109 M0 corresponds to the entire one­

zone system being represented with a single particle with all clouds 

interactions modelled with the coagulation equations. 
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zone model for a variety of different choices of initial temperature 
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quickly brings the system into an equilibrium independent of the initial 

value. The initial conditions for each of the simulations are as follows: 
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relation, ac; the efficiency of star formation in any given cloud collapse, E*; the maximum 

relative cloud velocity for merger ( Vstick) and the amount of energy ejected per SNII event 

(E51). 

Even though the initially assumed cloud spectrum, N(M)dM ex M-8 dM, is very 

steep and far from equilibrium, SNe feedback and cloud coagulation rapidly build a 

mass spectrum N(M)dM ex M-a. dM with a ~ 2 (Fig (3.6)), close to what is the ob­

served cloud spectrum in the MW (dashed line) and M33 (dotted lines). This gives us 

confidence that, although the modelling of cloud formation is simple, it does produce a 

realistic cloud spectrum. 

The ISM model can also reproduce the observed Schmidt law. We find that in our 

model the interaction between the coagulation of clouds and their destruction by stars 

leads to a SFR-density relation that is in good agreement with observation (Fig (3.7)) if 

Vstick is set to 7km/ s. This represents a reasonable value for the molecular cloud velocity 

dispersion, as considering theoretical models for the origin of random motion on molec­

ular clouds, we would expect typical velocities in the range 5-7km/s Gog and Ostriker 

(1988)) 

The effect of changing the mass resolution of the simulation over two orders of mag­

nitude is demonstrated in Fig (3.8). Sub-resolution clouds that are simulated only by 

integrating the coagulation equations are designed to behave in exactly the same way as 

the resolved cloud particles in the simulation, and so we expect the simulations not to 

depend strongly on particle number. This is borne out by the good agreement between 

simulations carried out with only one resolved particle (Fig (3.8), line with mass resolu­

tion of 109 M8 ) where all of the physics is followed by integrating the sub-grid equations 

in a single particle and simulations with a hundred particles that are followed explicitly. 

As stated in previous sections, the behaviour of a one zone model is virtually inde­

pendent of its initial temperature and the fraction of the gas that starts off in the cold 

phase. This behaviour is demonstrated in Fig (3.9). A one zone volume with total initial 

density of no = 2cm - 3 was evolved with a variety of different initial values for the initial 

temperature and initial fraction of the mass in the hot phase. We observe that regardless 

of the initial choices for these two quantities the system quickly settles down to its equi­

librium state. This process occurs through the opposing actions of thermal conduction 

and supernova feedback. 

Fig (3.10) and Fig (3.11) show the behaviour of the large scale properties of two 

different one zone volumes as a function of time. The only difference in the initial condi-



3. Statistical Models of the Interstellar Medium 124 

tions of the two one zone volumes is their initial density Fig (3.10) shows the evolution 

of a one zone volume with a total density of 2 atoms/cm3 ; Fig (3.11) shows exactly the 

same plots for a density of 16 atoms/ cm3. The initial temperature of the hot phase in 

both simulations is 106K. In both cases the star formation rate follows the same general 

shape. There is a small period of time at the beginning of the simulation where small 

clouds are coagulating and there is no star formation. When GMCs are formed there 

is a large burst of star formation that is quickly quenched by feedback SN and thermal 

conduction in SN bubbles. The temperature of the diffuse phase is regulated by a combi­

nation of supernova feedback (acting to increase the temperature) and radiative cooling. 

Due to the fact that we do not allow mass to leave the one zone volume and also as­

sume instantaneous recycling, the temperature profile very closely matches that of the 

star formation rate. It is noted that in the one zone simulation with the largest density, 

the temperature of the ambient phase is held at a higher temperature by the action of 

supernovae. The fraction of the gas in the molecular phase is lower in the high density 

simulation due to the increased amount of evaporation by thermal conduction in the 

high temperature ambient phase. In the following chapter the star formation and feed­

back prescriptions are tested in a more realistic situation, and the properties of the ISM 

in a simulated galaxy are investigated. In the final chapter we look in detail at the star 

formation history of a merging galaxy. 



Chapter 4 
The Interstellar Medium 

in Isolated Galaxies 

4.1 Introduction 

In this chapter we apply the physical model developed in chapter 3 to the simulation of 

isolated galaxies. We perform simulations of both isolated quiescent galactic disks and 

of the collapse of dark matter /baryonic haloes. We find that the sticky particle model is 

very successful in reproducing many of the observed properties of disk galaxies, includ­

ing the molecular cloud mass spectrum, the molecular fraction as a function of radius, 

the Schmidt law, the stellar density profile and the appearance of a galactic fountain. 

We find that the ISM created by the sticky particle model is tightly self-regulating and 

stable; and that simulations of an initially quiescent disk remain stable over many years, 

with an almost contant SFR, which slowly decreases due to having used up the gas in 

the disk. 

In the second part of this chapter we observe the effects on the galaxy of including 

differing physics in our implementation. 

4.2 Quiescent Disk 

One of the fundamental properties that a star formation prescription must be able to 

reproduce is that in MW like conditions, the resulting behaviour should be similar to 

that in the MW. In this section we discuss the properties of galaxy simulations set up to 

approximate the conditions in the MW' s quiescent disk. 

4.2.1 Simulation Details 

We set up a simplified model of a MW type galaxy using initial conditions from Galac­

tiCS (Kuijken and Dubinski (1995)). GalactiCS generates near equilibrium distributions 
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Resolution (M0 ) Disk Bulge Halo 

Low 6.6 X 106 5.84 X 106 5.6 X 106 

Base 8.3 X 105 7.5 X 105 7.1 X 105 

High 1.0 X 105 9.2 X 104 1.0 X 105 

Table 4.1: Initial particle masses in three different realisations of the 

model GalactiCs galaxy that are used throughout this paper. The disk, 

bulge and halo consist entirely of baryons, the halo additionally con­

tains dark matter. All masses are in units of M0 . Baryons are added to 

the dark matter halo by converting a random 1% of the particles into 

gas, so the dark matter particle mass in the halo is the same as the gas 

particle mass. 
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of collisionless particles consisting of a disk, bulge and halo. These models consist of 

a spherical bulge component; an approximately exponential disk, which is rotationally 

supported in the x-y plane and supported by random motion in the z direction; and an 

approximately spherical halo. 

We add baryonic material to this distribution by converting the disk and bulge in 

their entirety into SPH particles at a temperature of 104 K. 1% of the material in the halo 

is converted to baryons with a temperature of 106 K. The addition of baryonic mate­

rial puts the system well out of equilibrium so each simulation is run adiabatically for 

250Myr to allow the galaxy to relax closer to its equilibrium state before the additional 

physics is allowed to operate. The total mass in the disk, bulge and halo are 1 x 1010 M0 , 

0.43 x 1010 M0 and 1.1 x 1011 M0 respectively. The mass resolution of particles in each of 

three realisations of this galaxy are summarised in table 4.1. These masses were chosen 

such that the gaseous particles in each of the three components have approximately the 

same mass and the dark matter halo particles have masses as close as possible to the 

gas particle mass. The gravitational softenings for the disk particles (that is: gas, sticky 

and star) is set to 0.1kpc, 0.05kpc and 0.02kpc in simulations GALLORES, GALBASE 

and GALHIRES respectively. The dark matter particles have softening lengths ten times 

larger than the disk particles. 

The GalactiCS simulations provide a test of the code in a situation somewhat similar 

to a quiescent MW disk. As discussed in section 3.2, all simulations were performed with 

the entropy conserving SPH code GADGET2 (Springel (2005)), with all of the physics 
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Name Details Ngas 

GALBASE Base GalactiCs model 19330 

GALLO RES Base model with degraded mass resolution 2450 

GALHIRES Base model with improved mass resolution 255000 

GALBASE_LOSN E51 decreased by factor of 5 19330 

GALBASE_HISN E51 increased by factor of 5 19330 

GALBASE_LOCON Conduction efficiency decreased by factor of 5 19330 

GAL_BASEBICON Conduction efficiency increased by factor of 5 19330 

GALBASE_LOZ Gas metallicity set to 0.5 Solar 19330 

GALBASE_HIZ Gas metallicity set to 1.5 Solar 19330 

ROT_BASE Spherical rotating collapse 15000 

ROT_LORES Spherical rotating collapse 4000 

ROT _HIRES Spherical rotating collapse 45000 

Table 4.2: Brief table of simulation references and details. Ngas shows 

the number of gas particles in the disk, bulge and halo combined. 
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discussed in section 3.2 implemented as additional modules. Table 4.2 contains a brief 

summary of the different simulations. Typical timestep size in one of the base simula­

tions is"' 104yr, although this figure is smaller at early times when bursts of supernovae 

heat gas very strongly. 

4.2.2 The Base Simulations 

In this section we will discuss simulations run with the base set of physical parameters 

(section 3.3.1). Most simulations were run at the base mass resolution as defined in table 

4.1. 

The large scale behaviour of the model galaxy is as follows: Immediately after switch­

ing on the additional star formation physics the dense, thermally unstable gas in the disk 

and bulge collapses into cold clouds, which quickly collapse, causing a large burst of star 

formation. After approximately 500Myr the galaxy settles down into a quiescent state 

with a star formation rate of approximately 1M0 jyr. The star formation rate gradually 

decreases as the cold gas in the galaxy is consumed by stars. 

It is known that in the MW, most areas of active star formation are concentrated in the 
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Figure 4.1: Demonstration of the star formation properties of the iso­

lated galactic disk. The continuous field represents the molecular gas 

surface density of the simulated galactic disk, spiral structure is evi­

dent. The circles represent the locations of all stars formed within the 

last 10M yr. Most star formation events represent the collapse of a single 

GMC, resulting in the formation of 105 M0 of stars. It is clear that star 

formation is occurring primarily in the spiral arms of the galaxy. 
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Figure 4.2: A thin slice of the gas temperature and density distributions 

after lGyr in run GALBASE. The slice is taken directly through the 

centre of mass of the stellar disk. The temperature plot clearly shows 

regions of strongly heated gas, these are areas near to sites of active star 

formation, where the massive, shortly lived stars are undergoing SNe. 
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6 
Temperature [K) 

B 

Figure 4.3: A thin slice of the gas temperature field through the centre 

of a disk galaxy simulation. The arrows represent the gas velocity field, 

taking into account only gas that has been heated by supernovae. The 

generation of bipolar outflows from the galactic disk is very clear. The 

lower plot represents the galaxy after 50Myr, the upper panel is the 

same galactic disk after 500Myr. 
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Figure 4.4: Relationship between the number of supernova heatings 

and the distance from the mid-plane of the disk for a sampling of five 

particles from the simulated galaxy. Each different linestyle represents 

a different SPH particle. The top panel shows the perpendicular dis­

tance from the centre of the stellar disk, the central panel shows the 

entropy of each particle and the lower panel the cumulative amount of 

thermal energy that has been dumped into the particle. It is clear that 

some particles with a higher entropy are lifted away from the galactic 

disk where they cool and rain back down on the galactic disk within a 

hundred Myr of being supernova heated. Other particles are ejected vi­

olently from the galaxy, their density becomes very low and they evolve 

adiabatically. 
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Figure 4.5: The density-star formation rate relationship for our sim­

ulated quiescent disk. The diamond shaped points represent the ob­

served star formation rates after 200Myr, and the triangles represent 

the star formation rates in the same disk after lGyr. The dashed line 

is the observed Schmidt law due to Kennicutt (1998). Our galaxy is in 

good agreement with the observed Schmidt law throughout its lifetime. 
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Figure 4.6: Star formation rate as a function of time for isolated galaxy 

models with different mass resolutions. The mass resolution is 64 times 

better in the high resolution disk than the low resolution one. The three 

simulations plotted are GALLORES, GALBASE and GALHIRES. The 

fact that the star formation rate remains almost unchanged shows that 

numerical convergence has been achieved. 
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Figure 4.7: Plot of the distribution of atomic gas in a galactic disk. 

Colours and plot dimensions are matched to those in Levine et al (2006) 

for easy comparison to observations. The inner circle represents the ra­

dius from the centre of the galaxy to the position of the sun. The outer 

radius is where the observations of Levine et al (2006) are truncated. 

The simulated MW has a surface density profile in close agreement with 

that observed by Levine et al. 
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galactic spiral arms (e.g. Engargiola et al. (2003)). Fig (4.1) shows that our simulations 

reproduce this behaviour. In the sticky particle model this behaviour occurs naturally 

as the converging gas flows in galactic spiral arms lead to an increased merger rate and, 

therefore, to the presence of more star forming clouds. Face and edge on temperature 

and density plots of the standard resolution galaxy are shown in Fig (4.2). The gas 

heated by SNII is preferentially situated perpendicular to the plane of the disk, suggest­

ing that the feedback scheme is preferentially heating the low density gas and setting up 

strong outflows. Fig (4.3) shows the behaviour of the supernova heated gas in a thin 

slice through the centre of the disk. Initially there is a strong burst of star formation 

(lower panel of Fig (4.3)), followed shortly by a burst of supernova explosions that heat 

the gas around the galactic disk as hot at 108K. Most of this gas is driven straight out of 

the halo in a direction perpendicular to the galactic disk. Later on, as the supernova rate 

dies down, gas is heated more gently and is ejected from the galactic disk in the form 

of a fountain reminiscent of the galactic fountains present in the MW. This behaviour is 

demonstrated in figure 4.4, which shows for a random subset of particles from the gas 

disk the number of times they have been heated as a function of time with their height 

above the galactic disk. It is clear that upon being strongly heated, some particles are 

ejected from the galactic disk and fall back down a few hundred Myr later. Others re­

main in dense regions and cool immediately. Some escape the disk completely in the 

form of a galactic wind. This behaviour was also observed in the multiphase star forma­

tion models of Scannapieco et al. (2006), suggesting that it is a more general feature of 

multiphase models. 

Additionally our simulated galaxies are in good agreement with the observed Schmidt 

law, Eq (4.5). This behaviour arises due to the self-regulation of the simulated ISM. 

At higher densities more molecular clouds are formed and so star formation rates are 

higher. Runaway star formation is prevented by various forms of stellar feedback, which 

prevent too many clouds from forming. The slope of the Schmidt law in the simulated 

galaxies may be changed by altering the value of Vstick· Higher values of Vstick lead to 

clouds coagulating more rapidly, and so low density regions of the galactic disk un­

dergo more star formation. The effect is less severe in the higher density regions of the 

galaxy as strong feedback from large bursts of star formation can effectively regulate the 

amount of star formation. Conversely a lower value of Vstickleads to a steeper Schmidt 

law with a lower overall star formation rate. This behaviour is demonstrated in Fig (3.5) 

for the one zone model. The value of Vstick used to reproduce the Schmidt law slope 



4. The Interstellar Medium in Isolated Galaxies 136 

and normalisation in the one zone model also works in the simulated galaxy and the 

observed galaxy follows the observed Schmidt law very closely throughout its whole 

lifetime (figure (4.5)). In this figure we do not observe a cutoff in star formation rate at 

a density of 10cm-3 as observed in local galaxies. This anomaly is due to the averaging 

procedure used when calculating star formation rates and densities. Since we do not 

store star formation rates on a particle-by-particle basis radial bins were used and star 

formation rates were calculated from the rate of change of stellar mass in each radial bin. 

This means that although a given radial bin may have a low density on average it may 

contain some dense star forming knots. 

The resolution independence of the star formation prescription is once again demon­

strated by Fig (4.6). The star formation rate between the highest and lowest mass res­

olution simulations is in remarkably good agreement. The general form followed by 

all simulations is that there is a strong burst of star formation at the initial time, this is 

rapidly quenched by supernova feedback, and a self-regulating ISM is set up. The star 

formation rate slowly increases as the gas in the galactic disk is either used up or ejected 

in the form of winds. 

Recent observations of the gas content of the MW have allowed the construction of 

maps of its gas surface density (Levine et al. (2006)). In order to compare the properties 

of our model to observations, another GalactiCs model was generated with properties 

as close as possible to those of the MW. The total mass of the galactic disk was set to 

5 x 1010 M0 , and the scale radius of the exponential disk to 4.5kpc. This simulation was 

evolved for 1Gyr. The resulting gas distribution is shown in Fig (4.7). Our simulations 

are in good agreement with the observations of Levine et al. (2006). 

These properties suggest that the star formation and feedback prescriptions behave 

well in a quiescent disk, a more robust test of how they perform in a more general situa­

tion is given by the rotating collapse simulations. 

4.3 Rotating Collapse 

4.3.1 Simulation Details 

The second simulation we investigate is the collapse of a rotating spherical halo (Navarro 

and White (1993)) with an initiall/r density profile consisting of 90% collisionless dark 

matter and 10% baryonic material. The mass of the rotating sphere is 1 x 1012 M0 and 

its initial radius is 100kpc. Velocities are chosen such that the sphere is initially rotating 
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Figure 4.8: Density profiles for the hot, diffuse gas (grey lines) and the 

cold molecular clouds (black lines). The solid lines represent the low 

resolution rotating collapse simulations and the dotted lines represent 

the highest resolution simulations. Agreement between the high and 

low resolution simulations is very good. 
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as a solid body with a spin parameter of 0.1. Once again this simulation is created at 

three different mass resolutions, corresponding to dark matter particle masses of 5.2 x 

108 M0 , 5.8 x 107 M0 and 2.0 x 107 M0 , with corresponding gravitational softenings of 

1.93kpc, 0.96kpc and 0.68kpc. The rotating collapse simulations model, in a crude way, 

the collapse of a protogalaxy, and allow us to investigate how the ISM model behaves 

when it is initially far from equilibrium and in situations with strong shocks and rapid 

density changes. 

4.3.2 The Base Simulations 

After 2Gyr the density profiles of each of the three phases of matter are shown in figure 

(4.8) and figure (4.9). The density profiles are averaged around the disk; each radial bin 

represents a ring centered on the centre of mass of the disk. Figure ( 4.8) shows the radial 

density profiles of the hot and cold gas. The three different resolution simulations once 
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Figure 4.9: Stellar density profile in the base rotating collapse simula­
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profile. The scale radii used in the exponential and de Vacouleurs fits 

are r d and rb respectively. It is clear that even starting from an initial 

condition far from equilibrium we generate a stellar disk with a surface 

density profile similar to that in observed galaxies. 
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Figure 4.11: Density-Temperature relation for a rotating collapse sim­

ulation showing the creation of three distinct components. In the final 

time plot region a contains the supernova heated gas in the halo of the 

galaxy. b is gas contained in the disk of the galaxy, which reaches an 

equilibrium temperature of "' 104 K and c represents the approximate 

position of the molecular clouds, at an assumed temperature of lOOK. 

Approximately 45% of the mass is in the hot phase, 40% in the disk and 

15% in the cold molecular clouds. 
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again behave in very similar ways. Fig (4.9) shows the radial density profile of stellar 

mass, demonstrating that our star formation prescription gives rise to an exponential 

disk and a bulge component well fitted by the standard r 114 law. 

The rotating collapse simulations are especially interesting because they start far 

from equilibrium and so features that arise in the final particle distribution are purely 

an effect of the physics in the simulation and not just set up by hand in the initial con­

ditions. Fig (4.10) shows how the molecular fraction (the ratio of the mass in molecular 

hydrogen to the mass in atomic hydrogen) varies as a function of distance from the cen­

tre. Observational data from M31 (Dame et al. (1993)) is included as a comparison. 

The evolution of the thermal properties of the halo are shown in Fig (4.11). In its 

initial state all the gas in the halo is cold. As the halo collapses it becomes dense and 

is shock heated. The gas that ends up in the disk comes to an equilibrium between 

radiative cooling and the heating due to SNe at approximately 104 Kanda halo of hot, 

SN heated gas at rv 106 K is gradually formed. The addition of the molecular gas (T rv 

lOOK, p rv 100 -lOOOcm - 3) forms an ISM with four phases: shocked halo gas, SNe heated 

material, cold molecular clouds and warm disk gas. The first two components are hard 

to distinguish on the p - T plot. 

Blitz et al. (2006) have argued that the ratio of molecular to atomic gas in galaxies, 

RmoJ, is determined by hydrostatic pressure and through observations of nearby galaxies 

found the following relation: 

[ 
Pext/ k B ] 0. 92±0.07 

Rmol = (3.5 ± 0.6) X 104 ' 
(4.1) 

where Pext is an estimate of the mid-plane pressure. Rmal is the ratio of mass in the 

atomic and molecular phases. Fig (4.12) shows the data for the ROT_BASE simulation 

after 1 Gyr alongside the observed best fit line (Eq (4.1)). We use the SPH estimate of 

the pressure at z = 0. To calculate Rmol we use all matter within a vertical distance of 

1kpc from the centre of mass of the disk and bin radially. The model of the ISM clearly 

reproduces the observed behaviour. 

4.4 Away From the Base Model 

The determination of some of the physical parameters used in our model is somewhat 

uncertain. In this section we investigate the effect of varying some of the physics in­

cluded in the models. Large uncertainties are present in the determination of some of the 
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Figure 4.13: The star formation rates in the simulated disks for different 

values of E 51 . Higher values of E51 effectively quench the star forma­

tion by heating and ejecting the ambient gas from the stellar disk. 
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1000 

parameters including E51, the thermal conduction efficiency, and the physics we include 

in our treatment of supernova explosions. In addition our simulations do not contain a 

detailed treatment of metals. We demonstrate the effects of changing these parameters 

on the large scale properties of simulated galaxies. 

4.4.1 Supernova Physics 

In this section we investigate the effect of changing the parameters that govern the be­

haviour of supernova remnants. The value of E51 is poorly constrained by observation 

and may differ greatly from unity, for example due to radiative cooling of the super­

nova remnant. We investigate the effect of moving E51 away from unity and also look 

at changing the physics included in our analytic model for blast wave evolution, firstly 
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Figure 4.14: The ambient gas density profile in the simulated disks for 

three different values of E51. The simulations with lower supernova 

efficiencies lead to more concentrated gas disks. 
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by extending the simple Sedov solution with the fitting formula due to Tang and Wang 

(2005) and secondly by investigating the effects of preventing radiative cooling in super­

nova remnants. 

Altering the value of E51 has, as expected, two main effects. Firstly an increased 

supernova efficiency can eject gas from the galactic disk more efficiently and quenches 

star formation very quickly (fig 4.13). Secondly, the gas disk in simulations with higher 

supernova efficiency is found to be less concentrated (figure 4.14) 

More accurate modelling of the evolution of supernova blast waves (by using the 

Tang and Wang (2005) fit to the blast wave evolution) does not significantly change the 

properties of the galaxy. Assuming that a typical supernova remnant expands for ap­

proximately rv0.3 Myr before being dispersed, that the mean ambient temperature of the 

ISM is 106 K and the mean density is w-2 atoms per cm3 then the difference in the blast 

wave radius between the pure Sedov solution (3.38) and the modified fitting formula 

due to Tang and Wang (2005) (Eq (3.39)) is never more than 20%. This is demonstrated 

in Fig 3.3, which shows a pure Sedov blast wave compared with the simulated result 

from an SPH simulation of a blast wave in a hot (106 K) medium. 

The net result of having larger blastwaves is that the porosity of the ISM increases 

at a greater rate and the delay between a supernova explosion occuring and its thermal 

energy being injected into the ambient medium is decreased. 

Finally we can switch off the radiative cooling in supernova remnants. The effects 

here are much more dramatic. In the dense galactic disk a supernova remnant can typi­

cally radiate away over 90% of its thermal energy before being disrupted. Switching off 

radiative cooling in supernova remnants, therefore, has a very severe effect in our galaxy 

simulations, and leads to the almost immediate suppression of star formation and much 

of the material in the galactic disk is ejected from the galaxy. This demonstrates that 

radiative losses from supernova remnants are of crucial importance in our models. 

4.4.2 The Effects of Metals 

Our simulation code does not contain a detailed description of mass feedback from su­

pernovae, therefore we need to verify that the expected evolution in metallicity over the 

timescale of the simulation will not substantially affect the properties of the galactic disk. 

Following Harfst et al. (2006) we use a simple analytic model to estimate the change 

in metallicity over the timescale of a typical simulation then run simulations with metal­

licites bracketing this range. By assuming that stars form at a constant rate of 1M0 /yr, 



4. The Interstellar Medium in Isolated Galaxies 146 

that there is one type 2 supernova event per 125M0 of stars formed, and using metal 

yields due to Woosley and Weaver (1995) we estimate that over the lGyr timespan of 

one of the quiescent disk simulations the average metallicity of the galaxy should not 

change by more than 0.04Z0 . 

The base simulations have a metallicity of l.OZ0 , an additional two disk simulations 

were run with metallicities of 0.5Z0 and 1.5Z0 , far outside the metallicity evolution 

range expected in our quiescent disks. The total amount of stars after lGyr in the high 

metallicity run is 5% higher than in the base run. The low metallicity run contains ap­

proximately 5% less stars than the base run. This trend arises because the radiative 

cooling rate of the ambient phase is related to the ambient gas metallicity. All the prop­

erties of the three simulated disks agree to within 10% with the properties of the base 

simulations. 

However, as noted by Harfst et al. (2006) a detailed prescription for the yields from 

supernovae is necessary if we want to simulate the early evolution of a galaxy. 

4.4.3 Thermal Conduction 

One of the most poorly constrained parameters is the efficiency of evaporation of molec­

ular clouds through thermal conduction. Magnetic fields and turbulence may affect the 

amount of thermal conduction by a large amount (M077). We ran quiescent disk simu­

lations with the efficiency of thermal conduction moved by a factor of five in each direc­

tion. The effects of varying thermal conduction on the cloud mass function can be seen 

in figure 4.15. More efficient thermal conduction leads to a lower density of molecular 

clouds in the galactic disk, as well as making the cloud mass function more shallow. The 

star formation rates are affected by a similar amount, in the simulations with a high ther­

mal conduction rate the star formation rate is depressed by a large factor. As discussed 

in section 4.3 the base value for the thermal conduction efficiency reproduces many of 

the observed properties of the MW. 
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Chapter 5 

5.1 Introduction 

Simulating 

Galaxy-Galaxy 

Interactions 

Mergers and other gravitational interactions between galaxies are an essential part of 

hierarchical galaxy formation scenarios (White and Rees (1978)). Mergers can have a 

dramatic effect on the structure of galaxies. It was first noted by Toomre (1977) that 

galaxy collisions can drive the evolution of galaxy types by transforming disk galaxies 

into elliptical galaxies. Additionally galaxy mergers are thought to explain the extremely 

high levels of star formation seen in high redshift ultra-luminous infrared galaxies (e.g. 

Sanders et al. (1988)) 

In this chapter we present simulations of interacting disk galaxies. In section 5.2 we 

discuss the initial conditions of the simulations. In section 5.3 we introduce the specific 

simulations that were run and in sections 5.4 and 5.5 we analyse the interacting galax­

ies in terms of the structure of the tidal tails, and the properties and structure of the 

resulting remnant. Additionally these simulations provide an ideal way of testing the 

performance of the sticky particle star formation and feedback model in a more dynamic 

situation than the isolated galaxies discussed in previous chapters. 

We conclude this chapter by simulating the formation of a disk galaxy in a fully 

cosmological setting. 

5.2 Initial Conditions 

The most favourable conditions for the creation of tidal tails are interactions in which the 

angular momentum vectors of the individual galactic disks (spin angular momentum) 
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v 

Figure 5.1: Geometry used in the galaxy collision simulations. The cir­

cles represent the initial locations of the galaxies. They are separated by 

an amount 2r, moving with a velocity v and each has mass M. 
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M 

are aligned with the angular momentum vector of the orbit (orbital angular momentum) 

of the galaxies around each other (Springe} and White (1999)). Since here we are trying 

to form prominent tidal tails we usually set up the disk-disk collisions on these types 

of orbits. The properties of the individual disks are as described in section 4.2.1. The 

geometry of the initial conditions is described in figure 5.1. We need to specify five 

numbers to completely define a set of initial conditions: 2r, the separation between the 

two disks; 28 the angle between their velocity vectors; lvl, the magnitude of the relative 

velocities; 7/J, the angle between the spin vectors of the two galaxies and M, the mass of 

each galaxy. 

The initial separation of the disks is always set to twice the virial radius of their 

respective dark matter haloes (r = rv)· The magnitude of the velocity is set such that the 

interaction is 'parabolic' (the total energy of the system is 0). (} is set by considering the 

'circularity' of the interaction, which is defined as (Lacey and Cole (1993)) 

J 
E = Jc(E)' (5.1) 

where J is the orbital angular momentum of the galaxies and Jc(E) is the orbital angular 

momentum of a circular orbit with the same energy, E. Radial orbits have E = 0 and 

circular orbits have E = 1. Typical galaxy-galaxy interactions have a circularity of"' 0.5 

(Tormen (1997)). For the collision geometry described above, the circularity of the orbit 

is given by 

E =sin(}. (5.2) 
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5.3 Simulations 

The galaxy collision simulations we ran fall into two main groups; those that are de­

signed to allow us to probe the properties of tidal tails and those that are designed to 

form an elliptical galaxy to allow us to investigate the properties of the resulting rem­

nant. In all simulations the two galaxies start off separated by 200 kpc, simulations were 

run with circularities of 0.0,0.2 and 0.5. Initial conditions were set up as described in the 

previous section. 

An additional simulation was run with initial conditions that approximate the in­

teraction between the MW and M31. In this case, properties of the initial conditions 

are set via observation as possible. The ratio of the galaxy masses is somewhat uncer­

tain and has been estimated as 1:0.7 (Dunn and Laflamme (1993)), 1:0.625 (Klypin et al. 

(2002)) and 1.25:1 (Seigar et al. (2006)). Due to this uncertainty we assume in our simu­

lations that the galaxies are of equal mass. The initial separation between the galaxies is 

780kpc (Holland (1998)) and their initial relative radial velocity is 123 km/s (Dunn and 

Laflamme (1993)). The galactic latitude of M31 is -21.57 degrees1, and its disk is tilted 

at an angle of 77.5 degrees to our line of sight (Schmidt (1957); Ma et al. (1997)). The 

tangential velocity of the Andromeda galaxy relative to the MW is hard to constrain via 

observation. It has long been suspected that this tangential velocity must be small, given 

that there is no other large galaxy in the local group to impart much angular momentum 

to the M31-Milky Way system (Kahn and Woltjer (1959)). Under the assumption that the 

Milky Way and M31 have equal but opposite angular momenta Einasto and Lynden-Bell 

(1982) estimated that the tangential velocity of M31 is 60 ± 30km/ s. This is in agreement 

with studies using the 'least action principle' (Peebles (1989, 1990)). The least action 

principle assumes that each galaxy can be treated as a point particle and then setting 

two boundary conditions. Firstly at early times the peculiar velocities of all galaxies are 

small and secondly that at late times the position of each galaxy is known. It is possible 

to numerically iterate over trial orbits until we find the one that minimises the 'action' 

of the system. Recent least action principle studies of the local group suggest that the 

transverse velocity of M31 is less than lOOkm/s (Peebles et al. (2001)). We therefore use 

a value of 60km/s for the transverse velocity of M31. 

1via NED 
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5.4 Star Formation in Tidal TaHs 

Tidal tails are produced during galaxy collisions from the effects of gravitational tides 

and galactic rotation (Toomre and Toomre (1972)). Tails may be ejected over 100kpc from 

the merger remnant, and some fraction may become completely unbound from the rest 

of the system. Evidence for strong star formation in tidal arms comes from the fact that 

they are often blue (Schombert et al. (1990)), in some tidal features it is possible to detect 

H a and UV (Neff et al. (2005)) emission, also indicative of strong star formation. The 

inferred ages of stars forming in tidal arms is much less than the dynamical timescales 

on which the tidal arms are evolving and so it may be assumed that the stars are forming 

in the tidal arms themselves (Knierman et al. (2003)). It has been predicted (Barnes and 

Hernquist (1992); Mihos and Hernquist (1994a)) that the collapse of gas in tidal arms 

could lead to the formation of 'tidal dwarf galaxies', this has been borne out by observa­

tions of star forming clumps in the tidal arms of various interacting galaxies, which are 

found to have masses in the range 108·3 - 109·8 M0 (Due and Mirabel (1998)), consistent 

with the masses of observed dwarf galaxies. 

Figures 5.2 and 5.3 show the locations of particles in the stellar disk of the galaxy and 

the resulting projected temperature structure of the Milky Way /M31 interacting galaxy 

simulation. The formation of strong tidal features is evident. Gas within the tidal arms 

cools to'"'"' 104K, HII regions due to gas heating by supernovae are also evident. At late 

times the merger remnant contains very little cold gas, in common with elliptical galaxies 

observed in the local universe (see next section). 

It is hard to objectively quantify either the mass or the extent of tidal arms during an 

interaction. We follow Springe! and White (1999) by using the tidal response, T, defined 

here as the fraction of the mass of a disk that reaches a distance of more than 3Rv from its 

centre of mass, where Rd is the unperturbed initial truncation radius of the disk. Figure 

5.5 shows the evolution of the tidal response of three galaxy interaction simulations as a 

function of time. There is a clear correlation between the height of the peak in the tidal 

response and the initial circularity of the orbit, in agreement with the results of Springe! 

and White (1999), suggesting that in order to probe the properties of tidal tails we should 

be colliding galaxies on nearly circular orbits. 

Since stars form from molecular gas, an understanding of the physical properties 

and kinematics of the molecular phase in tidal arms is very important in the study of the 

formation of tidal dwarf galaxies. Figure 5.6 shows contours of molecular gas density 
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on top of a greyscale representation of the atomic gas density in an interacting galaxy 

pair. The contours of molecular gas density are chosen to match those used by Wilson 

et al. (2000) in their high-resolution images of molecular gas in the antennae galaxies. 

In common with Wilson et al. (2000) we find strong peaks in the molecular gas density 

coincident with the nuclei of each galaxy. Molecular gas is also present in the tidal fea­

tures around the galaxy and in the region between the two nuclei, which in the case of 

the antennae galaxies has been named the 'overlap region' Stanford et al. (1990). It has 

long been known (van der Hulst (1979) that the majority(> 60%) of the molecular gas 

in typical mergers is found in the tidal arm structures. Our simulations reproduce this, 

with 62% of the molecular gas being situated further than 3Rd from the centre of mass 

of either of the disks. 

In this section we have investigated some of the basic properties of tidal arms and 

found that our statistical model reproduces very well many of their observed features. 

It remains as future work (see chapter 6) to apply our model to simulations designed to 

match the properties of real galaxy mergers. 

5.5 Merger Remnants 

In this section we compare the properties of the merger remnants left over from the 

merger of two equal mass disks, the initial configuration of this simulation is as de­

scribed in the MW /M31 interaction. Results are compared both to other simulations 

and, where possible, to observational data from local elliptical galaxies. 

The total amount of molecular gas in the remnant is ,....., 108 M 0 , this is in good agree­

ment with observational studies of local early type galaxies (see e.g. Faber et al. (1997)) 

Previous galaxy merger simulations by Barnes (1992) have concentrated on the kine­

matics and orbital structure of the resulting galaxy. We find in common with these sim­

ulations that the radial density profile of the stellar material in the remnant is well fit by 

a broken power law with indices -2 toward the interior of the galaxy and -4 towards 

the outskirts (figure 5.7). The projected brightness profile of the galaxy is well described 

by the standard de Vaucouleurs law 

(5.3) 

where ~(r) is a surface brightness and the two parameters that control the fit are ~o, 

the central brightness and r e the effective radius of the galaxy. Magnitudes were calcu-
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Figure 5.2: Time series showing the location of a random 10% of the 

particles in the old stellar disk of the galaxies. The numbers represent 

times in units of Myr 
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Figure 5.5: The tidal response of the three galaxy collision simulations. 

The tidal response is defined at the fraction of the mass of a disk that 

moves to a distance > 3Rd from its centre of mass. There is a clear 

correlation between the tidal response of a collision and the circularity 

of the initial orbits. 
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Figure 5.7: The radial stellar density profile of the merger remnant. The 

diagonal lines are power laws with indices -2 and -4, as observed in the 

simulations of Barnes (1992) 
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lated crudely from stellar masses by assuming that the flux from any given particle is 

proportional to its mass, then calculating the magnitude from m = -2.5log(flux). This 

approximation is very crude and it remains as future work (see chapter 6) to include stel­

lar population synthesis models (e.g. Bruzual and Charlot (1993)) in our code in order to 

provide more accurate observational constraints on the stellar features of our galaxy. 

X-ray studies of local early-type galaxies have found evidence for hot gas haloes (see 

e.g. Forman et al. (1985)) around early type galaxies. The X-ray surface brightness profile 

was found to closely follow the optical image (Trinchieri et al. (1986)) although closer 

inspection revealed that the X-ray spectrum consists of both a hard and soft component. 

The hard X-ray component of the luminosity is found to be proportional to the blue 

band luminosity of the galaxy (Trinchieri et al. (1986)), suggesting that the origin of this 

component is due to low-mass X-ray binary stars. The soft component of the X-ray 

spectrum can be explained in terms of thermal Bremsstrahlung emission from hot gas 

(Fabbiano et al. (1994)) and as such can be used as a probe of the temperature structure 
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Figure 5.9: Three dimensional temperature profile of the merger rem­

nant, we find a negative temperature gradient in the halo. This is in 

agreement of recent X-ray observations of local early type galaxies, 

which have found that in haloes with masses less than 1013 M8 there 

is a negative temperature gradient 

of the hot phase of the ISM 

Figure 5.9 shows the three dimensional temperature profile of the resulting elliptical 

galaxy. We find a shallow negative gradient to the temperature profile. This result is in 

agreement with the observations of Humphrey et al. (2006) (see also Randall et al. (2006); 

Khosroshahi et al. (2004)), who found that galaxies with halo masses< 1013 M 0 tended 

to have negative temperature profiles 
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In this chapter we have examined some of the properties of interacting galaxies, we 

find that we create realistic tidal features and that the resulting merger remnant has 

many properties in common both with other simulations and the observed properties of 

early type galaxies in the local universe. These features include density and brightness 

profiles, the temperature gradient in the galaxy and the appearance of strong bursts of 

star formation in tidal structures. 

5.6 The ISM in a Cosmological Setling 

Galaxies do not evolve in isolation and the effects of the surrounding intergalactic medium 

and mergers with other galaxies play important roles in shaping the properties of the 

galaxies we observe today. It is therefore important to be able to understand how galax­

ies form in a fully self consistent cosmological context. As a final test of the code we 

therefore attempt to simulate a MW-like galaxy picked from a cosmological volume. 

In order to facilitate a comparison of our results with those obtained using different 

codes we use the initial conditions first developed by Okamoto et al. (2005). These ini­

tial conditions represent the formation of a single high resolution halo in a volume of 

35.325 Mpc/h. The cosmology used is Do = 0.3, DA = 0. 7, as = 0.9, h100 = 0. 7. The 

gravitational softening for the high resolution parts of this simulation is E = 1.4 kpc.The 

numerical parameters governing the behaviour of the sticky particle model are exactly 

the same as those used in the earlier simulations of both isolated and interacting galaxies. 

5.6.1 Results 

Figure 5.10 shows the projected density of each phase of the ISM at redshift zero. Both the 

molecular and atomic phases of the ISM are confined to a thin (rv 1 kpc) disk, whereas 

the stellar disk has a significantly larger scale height. The radial density profile of the 

ambient and molecular ISM phases are shown in figure 5.11. It is clear that at the cen­

tre of the galaxy the ISM is primarily molecular, and at the outskirts it is almost entirely 

atomic, qualititatively the shapes of the two density profiles match well with those found 

in the local universe (e.g. Dame et al. (1993); Binney and Merrifield (1998)). This finding 

is consistent with the results found in chapter 4 for an isolated model halo, and provides 

confirmation that our approach towards modeling can provide insight into the proper­

ties of the molecular ISM in low redshift galaxies. The molecular fraction in the galaxy 

(N(H2 )j(N(H2 ) + N(HI))) as a function of radius also agrees well with that observed 
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in the local universe (for comparison see figure 4.10). 

Figure 5.13 shows the radial density profile of the stellar component of the galaxy. 

This distribution is well fitted by a Vaucouleurs law, representing a bulge component 

(5.4) 

and an exponential disk 

(5.5) 

We find that the values of the scale lengths, rb and r d, needed to describe the simulated 

galaxy are r d = 4kpc, the bulge component has a scale length of rb = 0.8kpc. 

Finally the same halo was simulated using different star formation and feedback 

prescriptions, including the code from Okamoto et al. (2005) and the Girnic code2, which 

has been developed to perform large scale simulations of galaxy formation. Comparing 

the star formation histories of the galaxies generated with each code (figure 5.14) we 

find that the total mass in stars is very similar between the sticky particle simulation and 

the run using the Girnic code, differing only by,....., 10% at redshift zero. The Okamoto 

et al. (2005) code forms more stars by a factor of two. However, we note that at high 

redshift the sticky particle code forms significantly more stars than the other codes. This 

is due to its crude treatment of metal production, more specifically the assumption that 

the metallicity is constant and equal to the solar value at all redshifts. This leads to 

radiative cooling rates for the gas that are orders of magnitude larger than those for zero 

metallicity gas and results in an efficient and early collapse of much material. 

In this section we have demonstrated that the sticky particle star formation model 

does a good job of reproducing many of the observed properties of galaxies in the low 

redshift universe, including: The density profiles of all of the phases of matter, star for­

mation rates over the entire lifetime of the galaxy and the molecular fraction of the galaxy 

as a function of radius. Possible future directions in which this work may be taken are 

described in chapter 6. 

2We thank our colleagues J. Schaye, C. Dalla Veccia and R. Wiersma for allowing us the use of this code, 

and R. Crain for performing this simulation 
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Figure 5.11: Radial density profiles for the hot atomic (SPH) and cold 

molecular (sticky particle) gas phases in the redshift zero galactic disk. 

It is clear that near the centre of the galaxy most of the gas is molecular, 

whereas on the outskirts the galaxy is primarily atomic 
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Chapter 6 
Conclusions 

6.1 Discussion 

6.1.1 Computational Cosmology 

We have introduced an initial conditions code suitable for the resimulation of individual 

haloes at extremely high resolution and verified that the basic properties of the haloes -

including density profiles and velocity dispersion profiles - remain the same regardless 

of the mass resolution of the halo. We also introduced a conceptually simple way of 

marking out the lagrangian regions of haloes and presented details of automated tools 

for carrying out this process. We also presented some work on code validation on two 

different codes were compared with one of the standard numerical tests. Both were 

found to perform adequately. 

6.1.2 Statistical Models of the Interstellar Medium 

Motivated by the fact that we cannot reasonably resolve the Jeans scale for molecular 

clouds in galaxy simulations we have introduced a new star formation and feedback 

prescription. We model the ambient phase of the ISM using a hydrodynamic simulation 

code and the unresolved molecular gas using a sticky particle prescription. Our model 

leads to a tightly self-regulating multiphase ISM. The multiphase nature of our star for­

mation prescription avoids a lot of the problems of overcooling that were present in the 

first generation of star formation models. With the exception of the parameter that con­

trols the molecular cloud coagulation timescale, Vstick, all the parameters in our model 

can be tightly constrained by observation, leaving the cloud coagulation timescale as a 

free parameter that we can adjust to match the observed properties of galaxies. Where 

possible our model of the ISM has been formulated in such a way that the results of a 

simulation should be independent of mass resolution. We demonstrated that the large 

scale properties of our simulations were unchanged over a two orders of magnitude shift 

in mass resolution. 
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6.1.3 The Interstellar Medium in Isolated Galaxies 

We have applied the sticky particle star formation model to two different types of simu­

lation: the rotating collapse of a gas and dark matter sphere and a model of a quiescent 

galactic disk. We find that after using the one zone simulation to set the value of the 

parameters that cannot be determined observationally, the sticky particle model can be 

applied to the other simulations without any parameter changes. 

The simulations of a quiescent disk galaxy reproduce the observed Schmidt law with 

a slope of 1.4 due to the opposing effects of cloud coagulation and feedback effects. The 

galaxy also developed a natural three component ISM. Finally we observe supernova 

heated gas in the galaxy being ejected from the disk either in the form of a galactic foun­

tain, or, when the star formation rate (and associated supernova rate) is sufficient, in the 

form of strong bipolar outflows. Both of these results arise as a natural consequence of 

the physics included in our star formation prescription. 

Simulations of the collapse of a rotating sphere of dark matter and gas reproduced 

many of the observed properties of galactic disks, beginning from an initial condition 

well out of equilibrium. In particular we observe a stellar disk with distinct bulge and 

disk components, well fitted by the standard exponential and de Vacouleurs density pro­

files. The fraction of molecular gas in the disk as a function of radius is reproduced, and 

agrees well with recent observations of nearby galaxies. The observed relation between 

the disk midplane pressure and the fraction of molecular clouds is also reproduced. We 

also observe star formation rates comparable to those in disk galaxies and note that our 

model reproduces the formation of stars in the spiral arms of the galaxy. 

6.1.4 Simulating Galaxy-Galaxy Interactions 

Using the isolated galaxies that were investigated in the previous chapter we investi­

gate the properties of the ISM during galaxy merger events. We found that the result­

ing galaxy expressed many of the properties of observed elliptical galaxies, the mass of 

molecular gas was found to fit will with that in elliptical galaxies of a similar total mass. 

The stellar density profile matched that found in other simulations, the projected bright­

ness profiles were also well described by the observational fits. The temperature profile 

of the hot component of the ISM was found to fit well with that observed in nearby galax­

ies. During the interaction we see that strong tidal arms are generated. It was found that 

these arms exhibit strong bursts of star formation, as observed in interacting galaxies in 
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the local universe. 

The fully self-consistent cosmological simulation produced a disk galaxy that matches 

many of the observed properties of local galaxies in spite of our crude treatment of metal 

enrichment by supernovae. 

Overall our statistical model for star formation and feedback does a good job of re­

producing many of the properties of both quiescent and interacting disk galaxies, and 

the properties of elliptical galaxies are also closely matched to those in the local universe. 

6.2 Future Work 

A natural continuation of this work is to extend our investigations to higher redshift 

through the use of fully cosmological simulations in which we can use our models of the 

ISM to probe the properties of galaxies of all morphologies over a range of redshifts. 

In order to carry this out it is necessary that we incorporate additional levels of com­

plexity into our code. Firstly the addition of stellar population synthesis codes into our 

outputs will facilitate comparisons between our simulations ond observations. Secondly 

although in the case of a quiescent disk galaxy it is a fair assumption that the metallicity 

of the galaxy remains approximately constant over the period we are investigating this 

is not the case in a fully cosmological simulation. Here the metallicity ranges all the way 

from 0 at high redshift to rv Z0 at redshift zero. The collapse of gas into galaxies will also 

be very strongly affected by its metallicity (since metallicity can change cooling rates by 

over an order of magnitude). Incorporation of these two pieces of physics into our simu­

lations will allow us to perform simulations of galaxy formation with an unprecedented 

level of sophistication. 

We can then analyse these galaxies and investigate in detail the buildup and evolu­

tion of present day disk galaxies. It will be particularly interesting to observe the effects 

of the strong galactic winds seen in chapter 4 on the intergalactic medium, both in terms 

of their effect on QSO spectra and the metal enrichment of the IGM. By combining so­

phisticated simulation techniques with high resolution resimulation techniques we also 

hope to be able to resolve the structure and properties of galaxies at all redshifts. 

Our second area of active research is in attempting to gain a better understanding 

of the numerical effects that may affect our results. The two 'traditional' problems with 

the simulation of cosmological haloes are the 'angular momentum problem' and the 

'substructure problem'. Recent results (see e.g. Governato et al. (2006)) suggest that 
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increasing the mass resolution of a simulated halo alleviates the angular momentum 

problem, and galaxies with enough particles("' millions within the virial radius) begin 

to form extended stellar disks. It is additionally unclear in many circumstances how a 

particular author's star formation and feedback prescriptions are affected by the mass 

resolution of the simulation and how this may affect the properties both of the central 

galaxy in a halo and its subhaloes. 

We plan to carry out a comprehensive study into the effects of mass resolution on 

the properties of simulated galaxies using the initial conditions code and simulations 

introduced in chapter 2 in order to gain an understanding of how particle number affects 

the star formation and feedback in the subhaloes of typical MW sized haloes and how 

resolution effects control the early history and buildup of a simulated galaxy. 
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Appendix A 
List of Symbols 

The following is a list of symbols used throughout the description of the sticky par­

ticle star formation model (see chapter 3) 

O:c : Slope of the molecular cloud mass-radius relation. Eq 3.5 

ch : Sound speed of the ambient gas phase 

E* : Fraction of a GMC converted to stars in a collapse. E51 : Energy ejected per Snll in 

units of 1051ergs 

Eb : Total energy in a supernova blast wave 

Em : Total kinetic energy in molecular clouds of mass m in a given volume 

fc1 : Filling factor of cold clouds 

fm((JI, (}2) : Fraction of collisions between clouds with velocity dispersions (Jl and (}2 

that lead to mergers 

K(m, m'): The kernel for aggregation of clouds of masses m and m'. Eq. 3.6 

.X : Constant of proportionality relating cloud mass and destruction rate by thermal con­

duction. Eq. 3.50 

AN : Normalised radiative cooling rate 

Anet :Net radiative cooling rate (ergs cm-3s-1) 

Me : Mass of a molecular cloud 

Mref : Reference cold cloud mass. Eq 3.5 

M*,min: Minimum allowed star mass 

M*,max : Maximum allowed star mass 

nb: Density internal to a supernova remnant in atoms I cm3 nc: Density of a molecular 

cloud in atoms I cm3 

nh : Density of the ambient medium in atoms I cm3 

NsF : The slope of the schmidt law. Eq 3.36 

n(m, t): The number of clouds with masses between m and m + dm 

N ( m, t) : The number density of clouds with masses between m and m + dm 

</>: Efficiency of destruction of cold clouds by thermal conduction 

Q : Porosity of the interstellar medium. Sec. 3.2.6 
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rc: Radius of a molecular cloud 

r ref : Reference cold cloud radius. Eq 3.5 

rb : The radius of a spherical blast wave 

Pc : Mean density of molecular clouds contained in a volume 

Ph : Mean density of ambient gas contained in a volume 

Pth : Density at which ambient gas becomes thermally unstable 

PSFR : Volume density of star formation 

"7 : Fraction of cloud velocity lost to 'cooling' collision 

Tb : Mean temperature inside of a supernova remnant 

Tc : Internal temperature of cold clouds 

Th : Temperature of the ambient gas phase 

Ub : Thermal energy per unit mass of supernova remnants 

Uc : Thermal energy per unit mass of the cold clouds 

uh : Thermal energy per unit mass of the ambient phase 

I: : Cross section for collision between clouds. Eq. 3.7 

Econd : Efficiency of thermal conduction. Eq 3.46 

Vapp : Relative approach velocity of two molecular clouds 

Vstick : Maximum relative velocity for cloud merger 

x : Slope of the stellar IMF 
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Appendix B 
The Green's Function of 

the Finite Differenced 

Laplacian 

For some function ¢, defined on a regular grid at points i, with grid spacing ~ the 

finite-difference approximation to the Laplacian at point i is given by 

n2.+,. ,...., cPi+l + cPi-l - 2¢i 
v '//~ ,...., ~2 (B.l) 

We now note that for some function g(x), ~(g(t)) = G(k), where the notation~ repre­

sents a Fourier transform, defined as 

(B.2) 

k represents a frequency, we can write 

J>(k)ei2Trkt:. + ¢(k)e-i21rkt:. _ 2¢(k) . 
\72 A. = """' e21r~kx 

'1/ L....t ~2 ' 
k 

(B.3) 

by using ~(g(t- a)) = e-i21rakG(k). Now noting that eiax = cos(ax) + isin(ax) we can 

write 

\72¢ = L J>(k) cos(27rk~) + isin(27rk~) + c~~ -27rk~) + isin( -27rk~)- 2 eikx, (B.4) 

k 

which, through symmetry, becomes 

\72¢ = L J>(k) 2cos(2~~~)- 2 e2nikx. 

k 

and substituting in cos(2x) = 1- 2sin2 (x) we obtain 

\72¢ = 12 L J>(k)sin2(7rk~)e2nikx' 

(B.5) 

(B.6) 

which is equal to the right hand side of the Poisson equation. Then we can say that (after 

taking a fourier transform) 

~(k) = '(k) 
15(k) p 

(B.7) 
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where we have defined the Greens function as 

A 2 2 

( )

-1 

C!3j,k,l = 6.2 sin (1rk6.) (B.8) 
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