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Abstract 

In this thesis we study the infrared (IR) behaviour of QCD observables, and solutions 

to the problem of renormalization scheme dependence. We investigate the IR behaviour 

of all-orders leading-b renormalon resummations for certain Euclidean observables (the 

Adler-D function and the GLS and Bjorken sum rules) in the Borel representation. We 

find that these resummations are finite at the Landau pole ( Q2 = A 2 ) and also 'freeze' 

to zero in the Q2 
--t 0 limit. We find this finite Landau pole behaviour has its ori­

gin in curious relations between IR and UV renormalons, which correspond to deeper 

conformal symmetries in QCD Green's functions. We consider these Borel resummed 

results in a skeleton expansion representation. This representation leads naturally to 

the standard Borel representation in the UV ( Q2 > A 2 ) region and to a modified Borel 

representation in the IR ( Q2 < A 2 ) region. We also consider the ambiguous part of 

the perturbative expansion in these representations. By demanding that such ambi­

guities cancel with similar ambiguities generated by the non-perturbative OPE, we 

are led to a new model for power corrections. We apply the complete renormaliza­

tion group improved (CORGI) approach to all-orders renormalon resummations of the 

above-mentioned sum rules and compare the resultant predictions with experimental 

data. We also test our model for power corrections on these observables and find that 

the data favours power corrections of reasonably small magnitude. 

We also apply the CORGI approach, together with the physical scale and the effec­

tive charge approaches, to moments of F!{N and F;P. We use the Bernstein averages 

method in which any dependence of the analysis on regions of x and Q2 inaccessible to 

experiment is reduced. We also make use of the recently completed calculation for the 

NNLO anomalous dimension coefficients. We find that data for F!{N favours a value 

of A~~ = 219.1~~~:~ MeV, corresponding to a8 (Mz) = 0.1189 ± 0.0019. In the case of 

F;P we find A~~= 267.3~i~:1 MeV, corresponding to et8 (Mz) = 0.1226~g:ggg. 
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Preface 

Over the last three decades, quantum chromodynamics ( QCD) has firmly established 

itself as the fundamental theory of strong interactions. However, despite its innumerable 

successes, there remain several major obstacles which limit the precision with which 

we can predict observables. In this thesis, we will investigate two of these: the infrared 

(low-energy) behaviour of observables, and the problem of renormalization scheme (RS) 

dependence. 

In perturbative QCD, observables are approximated by an expansion m powers of 

the strong coupling constant. Truncating this expansion at some finite order forms 

the basis of fixed-order perturbation theory and it is assumed that the convergence 

properties of the perturbative expansion are such that this will provide an accurate 

approximation to the exact result. However, the energy dependence of the coupling 

induced by the renormalization process, combined with the non-Abelian SU(3) nature of 

QCD, leads to the coupling becoming large at low energies. This seriously compromises 

the convergence properties of the perturbative expansion, limiting the accuracy with 

which we can apply perturbation theory. This limit in accuracy can be quantified 

as a theoretical error, the magnitude of which is determined by estimating the size 

of the omitted higher order corrections. At the Landau pole the coupling becomes 

singular, representing a complete breakdown of perturbation theory and as a result, no 

meaningful predictions can be obtained at energies below this point. 

This is compounded by the fact that the perturbative expansions for all QCD observ­

ables are known to be factorially divergent, with the nth_order coefficients behaving as 

nt forla_rg~ 1!: Consequently, the perturbative ~PJ~roximat~on can o_ply ever be asymp­

totic to the exact form of the observable, and therefore there is an inherent theoretical 

1 



ambiguity associated with perturbation theory. This ambiguity is present even at high 

energies and grows in magnitude as the coupling becomes larger. FUrthermore, it is 

present no matter how many terms in the perturbation series we calculate and can only 

be negated when we include the full set of perturbative and non-perturbative contri­

butions. 

The disastrous Landau-pole behaviour of the coupling is related to the fact that in 

fixed-order perturbation theory we ignore an infinite set of terms present in the full 

expansion. Presumably when we sum over the full set of terms, this singular behaviour 

disappears, yielding a result which has more meaningful infrared (IR) behaviour. For­

tunately, we have access to results for the leading-NJ component of the perturbative co­

efficients at all-orders for many observables. These results can be converted into the 

so-called leading-b form and resummed such that we obtain expressions which represent 

a significant subset of the terms present in the full perturbative expansion, summed to 

all-orders. The possibility that such resummations might yield well-defined results at or 

below the Landau pole, and hence improve the predictive power of perturbative QCD 

at low energies, forms a significant part of the research carried out in this thesis. 

As mentioned above, the theoretical ambiguity associated with the asymptotic nature 

of perturbation theory can only be removed when we take non-perturbative effects into 

account; both non-perturbative and perturbative sectors generate such ambiguities, and 

in the full theory these compensate each other. This implies a direct correspondence 

between perturbative and non-perturbative physics in QCD, and represents a unique 

bridge between these two sectors. In contrast to the success of perturbative methods in 

QCD, non-perturbative effects remain poorly understood and any means by which we 

might gain insight into them would be very welcome. Since the nature of the perturba­

tive ambiguities only becomes apparent when we consider the large-order behaviour of 

perturbation theory, the all-orders resummations mentioned above are an appropriate 

tool with which to study this correspondence. In doing so, it is hoped that we can nul­

lify the theoretical ambiguity associated with the perturbative part, and furthermore, 

gain insight into the nature of the non-perturbative effects. 

We will also investigate potential solutions to the problem of RS dependence. The 

renormalization procedure allows us to obtain predictions for observables which are 

well-defined and finite order-by-order in perturbation theory. However, the price we 

2 



pay for this is a residual dependence of the predictions on an arbitrary scale (the renor­

malization scale), and on the scheme in which we choose to perform the renormalization. 

Although the full perturbative expansion must be and is RS invariant, truncation at 

finite order yields a result which has the RS dependence which would otherwise have 

been cancelled by the omitted higher-order terms. Consequently, we have an additional 

source of theoretical error in our predictions. The standard approach to dealing with 

this problem is to set the renormalization scale equal to some energy scale with physical 

meaning, such as the centre of mass energy, and then choose a popular or convenient 

RS such as modified minimal subtraction. However, there is no compelling physical 

reason for either of these choices nor is there a consensus amongst physicists. Hence we 

are left with a prediction which is inherently ambiguous due to the freedom of choice 

in RS. 

Various proposed solutions to this problem have been suggested and amongst the can­

didates is the complete renormalization group improved (CORGI) approach to pertur­

bation theory. In this approach, the necessity of choosing a renormalization scale is 

removed by relating the centre of mass energy to the renormalization scale in an RS 

invariant manner. A final result can then be obtained which is invariant under changes 

in renormalization scheme or scale. For observables which require factorization it is 

necessary to choose both an RS and a factorization scheme (FS) and this results in a 

double dose of the theoretical ambiguity associated with RS dependence. Fortunately, 

the CORGI approach can be extended to treat both factorization and renormaliza­

tion scheme (FRS) dependence. In this thesis we intend to test the accuracy of CORGI 

perturbation theory by applying it to a phenomenological analysis of sum rules and 

moments of structure functions in deep inelastic scattering. 

Thesis outline 

In chapter 1 we present an introduction to QCD. Particular attention is paid to the sub­

ject of renormalization scheme dependence; we describe some of the proposed solutions 

to this problem and how they can be applied to fixed-order perturbative predictions. 

In chapter 2 we review the subject of deep inelastic lepton-hadron scattering. We 

defi.nt::) tbe moments of structurefunctions and show how their scale dependence can be 

derived. We also discuss the FS dependence of the moments, drawing parallels between 

3 



this and RS dependence. 

Chapter 3 is intended as an introduction to the behaviour of perturbative QCD at large 

orders of the coupling. We discuss instantons and renormalons as sources of factorially 

divergent contributions to the perturbative coefficients. We then describe how the 

existence of renormalons has inspired a series of all-orders leading-Nf calculations and 

how these results can be given added significance by converting them into leading­

b results. We also describe how the presence of renormalons generated by the IR 

behaviour of QCD causes the perturbative definitions of observables to be ambiguous, 

and how only when we include non-perturbative effects can we recover a self-consistent 

perturbative definition of observables. 

In chapter 4 we take the renormalon inspired all-orders leading-b results for the Adler D­

function and the GLS, polarized Bjorken and unpolarized Bjorken sum rules and study 

their behaviour at low energies. Specifically we are interested in their behaviour at the 

Landau pole, and whether they 'freeze' to a well-defined finite value as Q2 --> 0. We also 

study the perturbative ambiguities generated by these resummations and investigate 

whether we can use them to infer any properties of the non-perturbative contributions 

to observables. 

Chapter 5 is a phenomenological study of the above-mentioned sum rules, based on 

the findings of chapter 4. We adopt the CORGI approach to perturbation theory and 

adapt it to the all-orders leading-b resummations. We compare the resultant predic­

tions with the available experimental data and also with the equivalent fixed-order 

perturbative predictions. 

In chapter 6 we turn our attention to the FRS dependence of fixed-order predictions 

for moments of the F3 structure function. We consider three different approaches to 

dealing with this problem: the CORGI, physical scale and effective charge approaches. 

We apply these approaches to a phenomenological analysis of the moments via the 

method of Bernstein averages, our intent being to obtain a prediction of the QCD scale 

parameter, A. 

ln. chapter 7 we present an analysis similar to that carried out in chapter 6 but for 

moments of the F2 structure function. The principal difference between the F3 and 

4 



F2 analyses is the existence of a singlet contribution to the scale dependence of the 

moments in the F2 case. We apply the CORGI and physical scale approaches and 

attempt to extract a value of the QCD scale parameter from F2 data. 

5 



Chapter 1 

Perturbative QCD 

The purpose of this thesis is to improve both the predictive power and our understand­

ing of quantum chromodynamics (QCD). As a first step, it is necessary to understand 

the basics of how QCD forms a consistent field theory from which accurate predictions 

for physical observables can be derived. To this end, we review in this chapter the 

theoretical framework of perturbative quantum field theory, applied to QCD. More 

detailed and thorough reviews of QCD can be found in the following references [1-13]. 

1.1 Introduction 

We are interested in the dynamics of particles - in broad terms, how they react when 

they encounter or are 'scattered-off' each other. Ideally we would like to calculate 

cross sections, as these are the most important physical quantities in this respect. This 

chapter describes the link between the theoretical content of QCD (characterized by the 

Lagrangian and its field content) and predictions for physical observables. Accordingly, 

the material is organized as follows: 

We define the QCD Lagrangian and describe the central role it plays in defining the 

theory of strong interactions. In order to derive predictions for physical observables 

from the QCD Lagrangian, it is necessary to take the intermediate step of calculat­

ing Green's functions. From these it is reasonably easy to extract cross sections and 

ther~fore we concentrate mainly on how quantized Green's functions may be obtained, 

through the technique of path integral quantization. Next, we describe how the QCD 
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Chapter 1: Perturbative QCD 

Feynman rules are obtained before proceeding to explain how QCD must be systemat­

ically renormalized in order to remove the singularities that are encountered when one 

tries to make non-trivial calculations. We then describe how the renormalization pro­

cedure generates an energy dependence for the strong coupling constant and how from 

this, we can infer the properties of asymptotic freedom and confinement. 

A large proportion of this thesis is concerned with the renormalization scheme (RS) 

dependence of QCD observables. Therefore, we describe the source of this problem and 

detail three proposed approaches to overcoming it: the physical scale (PS), the complete 

renormalization group improved (CORGI) and the effective charge (EC) approaches. 

We emphasize how the RS-dependence of a calculation can always be parameterized, 

and how as a result of this, a set of RS invariant parameters appears naturally. 

We briefly describe the nature of non-perturbative corrections to QCD observables and 

in so doing, introduce the operator product expansion. Finally, we define some of the 

observables that are of interest to us in this thesis. 

1.2 The QCD Lagrangian 

Our starting point is classical field theory and the definition of the action in four 

dimensions, 

s (1.1) 

C is the four dimensional Lagrangian density (hereafter referred to simply as the La­

grangian) and is a function of fields and their derivatives. The Lagrangian serves a 

dual purpose. It is both a formal mathematical object from which we can derive pre­

dictions for physical observables, and also a compact means by which we may express 

the principal symmetries and field content of a theory. 

The conjecture that QCD possesses SU(3) gauge symmetry leads us to propose that 

the following classical Lagrangian, 

(1.2) 
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Chapter 1: Perturbative QCD 

describes strong interactions. 

The field content of Lei is as follows: 1/J and 1jj denote fermion (quark) fields, they 

are colour triplets as denoted by the indices i and j. There are six known flavours of 

fermion, hence the first term in Eq. (1.2) must be summed over all six of these, with 

a different mass, m f, for each flavour f. This sum, together with all spinorial indices, 

has been suppressed for the sake of brevity. Fff11 is the gluon field strength tensor and 

is defined as, 

(1.3) 

The G~ symbol denotes a set of vector boson (gluon) fields; their eight colour degrees 

of freedom are denoted by the indices a, b and c. 

The covariant derivative, DJJ., is a generalized form of the partial derivative [)JJ. and is 

defined such that Lei is invariant under SU(3) transformations of the fields. In Eq. (1.2) 

the covariant derivative appears with a 'slash' through it. This denotes that it has been 

contracted with a gamma matrix, /w The defining property of gamma matrices is that 

they obey the following anti-commutation relation, 

(1.4) 

where gJl 11 is the space-time metric. When acting on quark and gluon fields, DJJ. has 

the following form, 

(1.5) 

(1.6) 

Here, Ta are matrices of the fundamental representation of SU(3), and we have also 

introduced the notation T · GJJ. = TaG~. These matrices are defined in terms of the 

eight Cell-Mann matrices, Aa, 

(1. 7) 

!abc are the structure constants of SU(3), they are related to Ta by, 

(1.8) 
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Chapter 1: Perturbative QCD 

Expressions for Aa can be found in many textbooks. Several useful identities involving 

the matrices Ta, are given in appendix A. 

The Lagrangian of Eq. (1.2) possesses SU(3) local gauge symmetry, by which we mean 

that the following transformations, 

'l/Ji -----.. nij(x)'l/Jj = exp{igT · A(x)}ii'l/Ji, (1.9) 

T ·Gil -----.. D.(x) [r ·Gil+ n- 1 (x)~alln(x)] n-1(x), (1.10) 

leave .Cc1 unchanged. 1 From .Cc1 the classical QCD equations of motion can be derived, 

via the Euler-Lagrange equations: 

(if/)- m)'lj; 0, (1.11) 

(1.12) 

We recognize Eq. (1.11) as the Dirac equation and together, these equations describe 

the classical theory of strong interactions. 

Gauge fixing 

It remains for us to quantize our theory. However, if we were to attempt to do so 

at this stage, it would become apparent that quantizing .Cc1 in a meaningful way is 

impossible, for the following reason. In order to maintain manifest Lorentz invariance, 

.Cc1 is written purely in terms of four-vectors. However, for this we pay a high price. 

The (massless) gluon, like the photon, has only two physical degrees of freedom and 

yet the gluon field variable Gil has four. As a result of this inconsistency, were we to 

attempt to form a perturbation series using .Cc1 we would end up integrating over a set 

of field configurations that are related by the gauge transformations of Eqs. (1.9) and 

(1.10). This procedure (equivalent to carrying out the integral J0
00 dx) inevitably results 

in the appearance of singularities when we attempt to perform even the most trivial 

of calculations, such as defining the gluon propagator. The most common approach to 

remedying this problem is to factor out this set of field configurations. This can be 

achieved through the addition to the Lagrangian of a 'gauge fixing' term, .Cgf· Among 

the many possible forms .Cgrmay take, one popular choice '- the 'covariant ·gauge'~ has 

1From this point forward, we suppress i,j indices. 
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the form, 

(1.13) 

where~ is known as the gauge parameter. Details of non-covariant gauges can be found 

in Refs. [14, 15]. The inclusion of a gauge fixing term and the choosing of a value for the 

gauge parameter breaks the manifest gauge invariance of the Lagrangian. In order to 

restore this symmetry, we must ensure that all physical predictions are independent of 

the choice of gauge and therefore independent of ~. On the rare occasion in this thesis 

when we have to choose a gauge, we set ~ = 1, which corresponds to the Feynman 

gauge. 

The procedure of gauge fixing is necessary in both Abelian and non-Abelian field the­

ories. However, in non-Abelian theories Lgf must be supplemented by another term, 

Lfp, known as the Fadeev-Popov or 'ghost' Lagrangian [16]. It has the following form, 

(1.14) 

Unitarity of the S-matrix is then ensured by BRST symmetry [17, 18]. We have intro­

duced a new set of fields, 'fla, known as ghost fields. They are unphysical in the sense 

that they only propagate as intermediate states, undetectable in the initial and final 

states of any interaction. They do however appear in the QCD Feynman rules, acting 

to cancel the unphysical gluon polarization states. Therefore, ghost field contributions 

must always be included in any calculation. 2 

When we include gauge fixing and ghost terms, the final QCD Lagrangian has the form, 

(1.15) 

There are additional possible terms which could be added to £qeD, all maintaining 

gauge invariance. However, these are not of concern in this thesis and we shall re­

strict ourselves to the minimal Lagrangian of Eq. (1.15), and consider this to be the 

fundamental object defining QCD. 

2There do exist certain choices for the gauge fixing term which make the addition of a ghost term 
unnecessary. These are known as 'physical gauges'. 

10 



Chapter 1: Perturbative QCD 

The QCD coupling constant 

So far we have neglected to identify the symbol g, first introduced in Eqs. (1.3), (1.5) 

and (1.6). It appears wherever trilinear or quadrilinear products of fields occur and 

we therefore associate it with the coupling together of fields i.e. interactions. Known 

as the coupling constant, g is (in four dimensions) a dimensionless parameter and is 

characteristic of the strength of QCD interactions. The coupling constant is perhaps 

the most important parameter in QCD and from its nature and behaviour, we can gain 

much physical insight. 

In light of this, it is often convenient to split LQCD into an interaction part and a 'free' 

part: 

(1.16) 

Here, .Co = .C(g = 0), and consequently the interaction Lagrangian, .C 1, contains all the 

terms in LQCD which involve factors of g. QCD Green's functions, in the absence of 

interactions, are almost trivial and can be solved exactly. However, as soon as we 'turn' 

the interaction on (i.e. set g # 0), the resultant Green's functions become incalculable 

and it becomes necessary to use some approximation to extract information about 

them. 

In the perturbative approximation we assume that g « 1, i.e. all interactions are 'weak'. 

The full Green's functions are then expanded in terms of the solutions to the free theory. 

A generic result of a perturbative calculation for an observable is an expansion in powers 

of g, 

F(g) (1.17) 

The full result, F(g), can then be obtained by calculating the infinite set of coefficients, 

fn· In practice, it is possible to calculate only a finite number of coefficients, or, in some 

cases we can calculate a portion of fn for all n. The accuracy of the approximation 

rests on the assumptions that the above series converges and that fn can be uniquely 

defined. Challenges to these assumptions form the central theme of this thesis. 

Hav'ing,discussed the basic ingredients ofQCD, we now turn our attention to describing 
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how QCD becomes a true quantum theory, through the quantization procedure. 

1.3 Path integral quantization 

There exist two widely used methods of quantizing QCD: the canonical commutator 

method and the path integral method. In this thesis, we use the path integral quan­

tization method, originally developed by Feynman and Dirac as an alternative means 

by which quantum mechanics may be formulated [19, 20]. Path integral quantization 

involves the use of functional integrals to relate the dynamical content of a theory 

(represented by the Lagrangian) to Green's functions. The method generalizes to the 

quantization of classical field theory, and provides an elegant method of formulating 

QFT. This section provides a brief summary of the main ideas behind this formalism, 

and shows how some of the important results relevant to later chapters are derived. 

A detailed discussion of path integral quantization can be found in many QFT texts, 

including the following, [1,2,6, 11-13]. 

The determination of Green's functions is central to the process of extracting physical 

information (in the form of observables) from a theory. In this sense, they are an 

intermediate step between the observables and .CQcD. Cross sections are closely related 

to transition amplitudes; these in turn can be related to Green's functions via the 

Lehmann-Symanzik-Zimmerman reduction formula (see Ref. [11] for further details of 

this). The step that is most difficult, and that also gives us greatest physical insight, is 

that of obtaining Green's functions from .CQcD, and this can be achieved through the 

path integral formalism. 

1.3.1 The generating functional 

We start by considering the simple example of the quantum field theory of a scalar field 

with a quartic interaction, 

!(8 ¢)(81-L¢)- !l-l2¢2- _!_A¢4 
2 J.L 2 4! 

(1.18) 

= .Co+ A.CJ, (1.19) 

where A is the coupling in this theory.- Subsequently, we will generalize the results · 

obtained in this example and apply them to QCD. 
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It is necessary to define an object known as the vacuum to vacuum transition amplitude 

in the presence of a source, J(x), 

W[J] = N j ~¢ exp { i J dx4 (C(¢, 8/l¢) + J(x)¢(x))}. (1.20) 

This is also known as the generating functional. ~¢ represents the functional integral 

over all field configurations, ¢( x), which satisfy certain boundary conditions, and the 

normalization factor N is defined so that W[J = OJ = 1. We simplify things by first 

considering free scalar field theory; in which W[J] = W0 [J] = W[J]h=o· In this case 

we can obtain an exact expression for Wo[J], 

W0 [J] = N j ~¢ exp { -~ j d4x j d4y ¢(x)k(x, y)¢(y) + i J d4 xJ(x)¢(x)} 

(1.21) 

(1.22) 

where k(x, y) = o(x- y)(81l81l +m2 ) and the notation (¢, k¢) is self-explanatory. When 

we include the normalization factor N, Eq.(1.22) becomes, 

(1.23) 

Using the form of k(x, y) given above it can be shown that, 

(1.24) 

(1.25) 

where ~F(x) is known as the Feynman propagator. The integral in (1.24) represents a 

Fourier transform and so the Feynman propagator in momentum space can be defined 

as, 

fiF(P) 
1 

(1.26) 

Because our scattering experiments involve external states of definite momentum, we 

express Green's functions in terms of components defined in momentum space. 

We have obtained an exact expression for ·W [ J] in the case of free scalar field theory. 

The path integral contains an oscillatory exponential and appears to be ill-defined. 
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However this can be remedied by performing a Wick rotation of the time coordinate, 

t --> it, evaluating Wo[J] in Euclidean space and then continuing back to Minkowski 

space. This process is justified provided there exist no poles above the positive, real 

semi-axis or below the negative real semi-axis. The Feynman prescription, introduced 

via an ic term in Eq. (1.24), ensures that this is the case. The introduction of the 

source J(x) can be understood, in broad terms, as the introduction of a probe field 

as a means by which we may examine the vacuum of the theory. The form of the 

generating functional encapsulates the result of that examination. When we come 

to consider QCD, things are slightly more complicated; it will become necessary to 

introduce source terms for each type of field. 

1.3.2 Green's functions 

The next step is to show how Green's functions are obtained from the generating 

functional. An n-particle Green's function is defined as the vacuum expectation value 

of n time ordered fields and is denoted by g(n) (x1, x2, ... , Xn). This can be related 

to W[J] by extending to field theory a result from the path integral quantization of 

QM [2]: 

(1.27) 

The Green's functions for free scalar field theory, though useful as a gentle introduction, 

are rather uninteresting; we will extend our analysis to include interactions before we 

investigate Eq. (1.27) any further. 

When we turn the interactions on, Eq. (1.20) becomes 

(1.28) 

N J 'iJ¢ {~ (i~r [! d4x £1 ( -i JJ~x)) n exr{; J d'x (Co+ J¢)} 
(1.29) 

In Eq. (1.29), the exponential of the interaction action has been expanded as a Taylor 
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series in powers of >.. Also, in .C I ( ¢) each instance of ¢ is replaced by a functional 

derivative with respect to J(x); this replacement builds the ¢ dependence of .CI(¢). 

The purpose of this replacement is to make .C I independent of ¢, allowing us to take 

the interaction piece outside of the integral, 

(1.30) 

Note also that integral and summation symbols have been interchanged. This is a 

subtle though significant step which can, in some cases, disrupt the convergence of 

perturbative expansions (see Refs. [21-23] for details of this). To make the perturba­

tive application of Eq. (1.30) more explicit we rewrite it as, 

In summary, we have succeeded in writing the full generating functional as an expansion 

in powers of >.. Here we see the mechanism of the perturbative approximation in 

action. The exact, though incalculable, expression in Eq. (1.30) has been manipulated 

to produce an infinite series of calculable terms. 

Using Eq. (1.31) in conjunction with Eq. (1.27), Green's functions can be expressed as 

an (infinite) series in powers of the coupling >., 

00 

g(n) (>.) = L gkn) ).k. (1.32) 
k=O 

It then follows that a generic physical observable, .F(>.), can also be expressed as a 

perturbative expansion, 

00 

F(>.) = L fn>.n. (1.33) 
n=O 

In thjs ?-pproximation, O.t:E:Jt:Jn's fun<:;tions can be determined by calculating terms in 

Eq. (1.32) at successive orders of >., up to the highest order we have the strength to 
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calculate. The complete form of the Green's functions can be reconstructed by including 

an infinite number of terms; it is of course hoped that the series rapidly converges and 

that it is necessary to calculate only the first few terms. The convergence properties of 

Green's functions and physical observables are discussed in more detail in chapter 3. 

Connected and one particle irreducible Green's functions 

In practice it is often more productive to consider 'connected' Green's functions. These 

are derived from the connected generating functional, X[J], defined as, 

X[J] = -i log W[J]. (1.34) 

The connected Green's functions, xCn)(xl, X2, ... , Xn), are then obtained from this 

generating functional using an expression analogous to Eq. (1.27). Furthermore, it is 

also beneficial to consider only a subset of connected Green's functions known as one 

particle irreducible (OPI) Green's functions, which we denote by G(n). The difference 

between normal connected and OPI Green's functions will become apparent when we 

come to consider their diagrammatic interpretation. 

OPI diagrams can be derived from an object known as the effective action, r[¢c] defined 

as a function of the classical field, ¢c, 

r[¢c] = X[J]- (J, ¢c)· (1.35) 

The connected OPI Green's functions are then defined in terms of the effective action; 

in analogy with Eq. (1.27), 

(1.36) 

The effective action can also be used to illustrate how the quantization procedure has 

modified our theory. If we calculate r[¢c] up to order >.., we obtain an expression in 

terms of integrals of classical fields, sources and propagators. 3 This can be solved to 

3 See Ref. [2] p. 66 for further details. 
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+ .0. 

X 
Figure 1.1: The 2- and 4-point connected Green's functions in ¢4 , up to 0( ,\), given in 
Eqs. (1.39) and (1.40). 

obtain an expression for J(x) in terms of </Jc, 

J(x) = ( D + J.L2 + ~,\i~F(O)) <Pc + ~,\¢~ + 0(.\2
). (1.37) 

Setting J(x) = 0 (we can do this because it is an arbitrary function) gives an equation 

which we can consider to be the quantum equation of motion. This can be compared 

with the classical equation of motion for ¢4 theory, the Klein-Gordon equation: 

(1.38) 

If we restored the factors of fi in the Eq. (1.37), we would see that the ~F(O) term 

is proportional to fi. Hence this is a quantum correction, not present in the classical 

fi ~ 0 limit, and generated by the quantization procedure. 

For illustrative purposes, we now use Eqs. (1.27), (1.31) and (1.34) to calculate the 2-

and 4-point connected Green's functions up to 0(,\): 

xC2l(xi,X2) i~F(XI- X2)- ~i,\ I dxi~F(xl- x)i~F(X- x)ii:l.F(X- X2) 

+ 0(,\2
), (1.39) 

xC4l(xi,X2,X3,X4) -i,\ I dx~F(Xl- x)~F(X2- x)f:l.F(X3- x)~F(X4- x) 

+ 0(.\2
). (1.40) 
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The Feynman propagator in Eq. (1.24) is associated with the propagation of solutions 

to the Klein-Gordon equation. Hence ~F(x - y), and therefore the propagators in 

Eq. (1.39), may be represented diagrammatically as lines propagating between space­

time points x and y. Equivalently, the momentum space propagator ~F(P) can be 

represented by a line carrying momentum p. Figure 1.1 shows such diagrammatic rep­

resentations of the Green's functions in Eqs. (1.39) and (1.40). In this diagrammatic 

interpretation, connected diagrams are those which cannot be considered to be two sep­

arate diagrams; and OPI diagrams are diagrams that cannot be split into two separate 

diagrams by the removal of a single line. 

It is clear that the Green's functions given in Eq. (1.39) and (1.40) and depicted in 

Fig. 1.1 can be written in terms of just two components: the Feynman propagator and 

a -i>. term associated with each vertex. This is true of all n-point Green's functions at 

any order of perturbation theory. Consequently, we can obtain expressions of the 

form of Eq. (1.39) and (1.40) for any n-particle Green's functions without explicitly 

evaluating Eq. (1.27). 

The Feynman rules provide a shorthand for deriving these Green's functions with as 

little work as possible. They consist of a set of mathematical expressions, in momentum 

space, one for each propagator and vertex in the Lagrangian, together with a set of 

rules for integrating over internal momenta, and necessary symmetry factors. These 

rules provide us with a systematic approach for calculating Green's functions order by 

order in perturbation theory [24]. 

Before we discuss the Feynman rules in more detail, we describe how the path integral 

quantization technique is adapted to QCD. 

1.3.3 The QCD generating functional 

The generating functional of QCD is slightly more complicated than that of ¢4 theory, 

given in Eq. (1.28). To derive it, we first split Co into quark, gluon and ghost terms 
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i.e. terms bilinear in these fields or their derivatives,4 

(1.41) 

Similarly, we split the LJ into quark-gluon three-gluon, four-gluon and ghost-gluon 

vertex terms, 

(1.42) 

Next, we define the free generating functional, in analogy with Eq. (1.20), 

(1.43) 

where, 

wg[J] (1.44) 

(1.45) 

and J(x), ((x) and x(x) are source terms associated with the three different types of 

field. Note that the fields 1/J(x), x(x), ry(x) and ((x) are all Grassman variables and care 

must be taken to ensure they are treated as such upon integration and differentiation. 

In analogy with the scalar field theory example and Eq. (1.25), we can obtain exact 

expressions for these three functionals, 

wg[J] exp { ~ J d4 x d4 y Ja~(x)D~~(x- y)Jbv(y)}, 

exp {i J d4xd4y(a(x)tDab(x- y)(b(y)}, 

W6[x, x] = exp { i j d4x d4yx(x)S(x- y)x(y)}, 

(1.47) 

(1.48) 

(1.49) 

4 Note that .cg contains not only the Abelian terms in -tF;:vF/:v but also the gauge fixing term, 

Lgf· Similarly .C{/ is just the O(g0
) term in Lfp· 
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where D(x) and S(x) are the QCD field propagators in configuration space. Their 

Fourier transforms are given by, 

(1.50) 

iJab(p) (1.51) 

(1.52) 

In analogy with Eq. (1.30), the full QCD generating functional can be written as, 

W[J,(,(t,x,x] = exp [i j d
4
x £1 c:J' ~~' i~f' i~~' i:x)] Wo[J,(,(t,x,xJ, 

(1.53) 

where each instance of each field in £I has been replaced by a functional derivative 

with respect to the appropriate source term. 

In analogy with Eq. (1.31) we can approximate Eq. (1.53) perturbatively to obtain an 

expansion in powers of g. Hence all QCD Green's functions can be obtained by using 

an equation analogous to Eq. (1.27): 

(1.54) 

where Si can be either of the five source terms. The correct combination of these source 

term derivatives depends on the types of external field that the Green's function refers 

to. 

1.4 QCD Feynman rules 

We saw in section 1.3.2 how the propagators for ¢4 theory can be obtained by con­

sidering the free generating functional, isolating the term coupled to two sources and 

identifying it as the propagator (in configuration space). In general, field bilinear terms 

in the Lagrangian give rise to the propagators, and multilinear terms"generate interac­

tion terms in the Feynman rules. Hence, inspection of Eqs. (1.47) - (1.49) allows us to 
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p 

= 

p 

-------------~-------------

p 

Figure 1.2: Feynman rules for the propagators of QCD. Expressions for D~~(p), iJab(p) 
and SiJ(P) can be found in Eqs. (1.50) - (1.52). 

obtain the propagators for QCD fields. These are given, along with their diagrammatic 

representations in Fig. 1.2. 

To calculate the interaction Feynman rules, we isolate the term in the Lagrangian rele­

vant to a particular vertex, calculate the generating functional for that vertex and then 

use Eq. (1.54) to obtain the relevant Green's function. For example, for the quark-gluon 

vertex, the relevant generating functional is, 

W q-g[J _1 _ _I d4 pq-g ( o -6 o ) w.g[J] w.qr _1 ,x,x - ~ xL,I ioJaJ.L' iox' iO'X. o o x,x' (1.55) 

and the relevant 3-point Green's function is, 

(1.56) 

When converted to the momentum representation this gives,5 

(1.57) 

where PI, P2 and k are the momenta carried by the two quarks and the gluon, respec­

tively and we have defined dJ.Lv = -gJ.Lv + (1 - 0kJ.Lkv/k2. By stripping Eq. (1.57) of 

external propagators we can obtain the Feynman rule for the quark-gluon vertex. Its 

5We' have-aroifped the Lorentz artd colour ihdices from gq-g,(a) irt order· to make the expressions 
clearer. 
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_ 9 rbe [(p _ qyr gJ.IV + (q _ r)J.I 9vu + (r _ p)"' gUJ.L] l 

(all momenta incoming, p + q + r = 0) 

-ig2 rae rbd [gJ.LV gPU _ gJ.tU g"'P] 

-ig2 rad rbe [gJ.tV gPU _ gl-tP 9vul 

-ig2 rab red [gJ.LP gJ.IU _ gJ.IU g"'P] ' 

Figure 1.3: Feynman rules for the vertices of QCD. 

form is given in Fig. 1.3, along with the rest of the QCD vertex Feynman rules. 6 

1.5 Renormalization 

In section 1.3.2 we saw how the classical equations of motion for ¢4 theory are modified 

by the quantization procedure, 

(1.58) 

In a system of particles described by ¢4 theory, a measurement of particle mass would 

measure the terms in Eq. (1.58) that are proportional to ¢e; the measurement would 

6See Re{ [i] for fllrth~r details. 
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not be able to distinguish between the J.L2 and ~F(O) terms. If it were possible to turn 

the interactions off, we would be able to measure f-L· However, this is impossible and 

we therefore conclude that f..L is an unmeasurable (and therefore unphysical) quantity. 

Accordingly we redefine it as the 'bare' mass, f..LB· The measurable quantity would then 

be the effective or 'renormalized' mass, f..LR, 

(1.59) 

(1.60) 

where Z is known as the mass renormalization constant. Were we to calculate higher­

order terms in Eq. (1.58), it would become apparent that the same is true for the 

coupling, A, and in fact for all parameters in the Lagrangian. 

As a consequence of this, it would appear that all parameters in the Lagrangian of 

Eq. (1.18) are unphysical. Furthermore, the propagator term in Eq. (1.59) is singular, 

meaning that if we wish to recover a finite value for the measured mass, f..LR, then f..LB 

must also be singular. It must contain the same singularity as that in Eq. (1.59), but 

with the opposite sign, so that the singularities in Z and f..LB cancel each other out. 

The fact that f..LB is singular is troubling. However, we can justify this worrying turn 

of events by reminding ourselves that bare parameters are unphysical and hence they 

are allowed to be singular. 

The singularity structure of Z can be determined by calculating the singular term in 

Eq. (1.59) and demanding that f..LR be finite. However, it must be noted that the value 

of Z can be shifted by an arbitrary finite amount, without violating this physicality 

condition. As we shall see later, this element of arbitrariness propagates into renormal­

ized predictions for physical observables. 

The type of divergence in Eq. (1.59) is endemic in field theory (in four dimensions). 

It occurs because field theory allows the existence of intermediate states which can 

propagate with arbitrarily large momenta. The same situation arises in QCD. Let us 

consider the order O(g2 ) fermion loop correction to the gluon propagator, illustrated 

in Fig. 1.4. Using the Feynman rules in section 1.4 we can construct the following 
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k 

/-l,a v, b 

Figure 1.4: Fermion loop contribution to corrections to the gluon propagator. 

expression, 

Figure 1.4 _ ·rr'.w( 2) ~ ab P 

(1.61) 

Ignoring, for a moment, the numerator of the integrand and the colour structure, and 

using the following identity, 

1 
xy 

t da 
} 0 (x(1 -a) + ya) 2 ' 

(1.62) 

we obtain, 

(1.63) 

where the substitutions k --t k- ap and M = m 2 - a(l- a)p2 have been made. 

The integral in Eq. (1.63) is logarithmically divergent, exhibiting the same kind of 

divergence present in Eq. (1.59). Fortunately, we have only encountered logarithmic 

divergences. Had the divergences been quadratic, the situation we find ourselves in 

would have been many times worse. However, in order to extract a meaningful result 

from Eq. (1.61) we must first regularize and then renormalize it. 
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1.5.1 Regularization 

The purpose of regularization is to quantify the extent to which a particular diagram, 

such as Fig. 1.4, is divergent. This allows us to obtain expressions for Green's func­

tions which, although still formally divergent, expose the nature of their singularities. 

A number of regularization procedures exist. However, we limit ourselves to the study 

of dimensional regularization (DR). First, we note that the divergent nature of II~~(p2 ) 

is dependent on the number of space-time dimensions i.e. the number of k integrations. 

By generalizing (using analytic continuation) the number of dimensions to D = 4- 2c­

we can control the divergent nature of Eq. (1.61); eventually we will set c to zero in 

order to restore the D = 4 limit. In D dimensions, the integral in Eq. (1.63) can be 

obtained from the following result, 

- i(-1)nr(n+c-)M-2n(M2)-E 
- (4n) 2 r(n + 2) 47r 

(1.64) 

Generalizing the number of dimensions to D also has the effect of changing the mass 

dimension of the Lagrangian to D. Using this fact, and dimensional analysis, we 

can deduce that the fermion and gluon fields and the coupling constant, g, have mass 

dimensions of 3/2-c-, 1-c- and c respectively. In light of this, we redefine the (previously 

dimensionless) coupling g, in terms of a truly dimensionless coupling, g, and an arbitrary 

scale fl, 

9 = !JflE· (1.65) 

The scale fL generates the mass dimension of g, and is known as the renormalization 

scale. Despite it being physically meaningless, the final result of any renormalized cal­

culation to finite order in perturbation theory will be dependent on fL· This dependence 

on an arbitrary scale is a manifestation of the inherently ambiguous nature of regulated 

divergent integrals. 

The numerator of the integrand in Eq. (1.61) is a trace over products of gamma matri­

ces. Upon performing this trace, and after the application of the result in Eq. (1.64), 

one obtains, 

_ ·rrJ.LII( 2) 
'l ab P 

. 9
2 

4TR ~ (,..1-L II J.LII 2) ( 1 . ) 'l----uab v P - g p -- + fimte 
16n2 3 c-
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n ~ 

p p 
(diagram 1) 

Figure 1.5: The one-loop correction to the fermion propagator, also known as the 
self-energy diagram. 

The presence of a 1/c pole makes explicit the singular nature of this one-loop integral; 

it is a manifestation of the logarithmic divergence in Eq. (1.63). The finite part in 

Eq. (1.66) has the form, 

[ ( 
p2) 5] m2 (m6) /E -ln(4rr) + ln - -- - - + 0 - + O(c). 

/-L2 3 p2 p6 
(1.67) 

Where /E is the Euler-Mascheroni constant and has an approximate value of /E = 

0.577215665 .... Terms of order E. or higher can be neglected (at one-loop) as they are 

zero in four dimensions. Furthermore, in this thesis we will be working in 'massless 

QCD' in which all quark masses are set to zero. Therefore we need consider only the 

terms in the square brackets in Eq. (1.67). The 1/c pole in the vacuum polarization 

function in Eq. (1.66) is the crucial component of this result, important when we come 

to renormalize QCD. In general, higher-loop diagrams contain higher-order pole terms. 

Figures 1.5 - 1. 7 show 7 of the one-loop OPI diagrams that contribute to the quark and 

gluon propagators and the quark-gluon vertex. For illustrative purposes we shall now 

state their (dimensionally) regularized forms: 

Diagram 1 is known as the fermion self-energy. Its regularized form is 

(1.68) 

where, 

= 
1 -p2 -'- + ln 4rr- "YE- ln -· ·---, 
E. /-L2 

(1.69) 
1 

E.' 
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p ,,, ............. ,,, p 

r,....,.,?J~0-..--0 G"><""'~ Y--x-D--x-0 .....--0 Gx--'\ 

(diagram 2) 

(diagram 4) 

' ' ' 

(diagram 3) 

(diagram 5) 

Figure 1.6: One-loop corrections to the gluon propagator, also known as vacuum po­
larization diagrams. 

and the ellipsis represents terms absent or finite in the E --+ 0 limit. We have kept 

them dependence but from now on, we will set m = 0. We have also kept the gauge 

dependence on~' previously omitted in Eq. (1.66). 

Corrections to the gluon propagator are shown in Fig. 1.6 and are known as the vacuum 

polarization diagrams. Diagram 5 is zero in dimensional regularization; the combined 

contributions of the other diagrams are, 

(diagrams 2 + 3 + 4) 

(1.70) 

The constants CA and CF are the group theory quantities defined in appendix A. 

The fermion propagating in the loop in diagram 2 could be any of potentially 6 quark 

flavours. We therefore sum this diagram over the number of active7 fermion flavours, 

Nt. The Abelian, QED result can be obtained from Eq. (1.70) by setting all terms not 

involving Nt to zero and adopting the value of Tn appropriate to QED. 

7We describe what we mean by 'active fermions' in section 5.3. 
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(diagram 6) (diagram 7) 

Figure 1.7: One-loop corrections to the quark-gluon vertex. 

Diagrams 6 and 7 are known as the vertex correction diagrams. Their combined regu­

larized form is, 

(diagrams 6 + 7) 
-2 1 

ig l~7T2 'YIL(Ta)ij[4CA + 4Cp- (1- O(CA + 4Cp )] E' + .... 

(1.71) 

Using dimensional regularization we have exposed the singularity structure of the one­

loop correction diagrams of Figs. 1.5 - 1. 7. Via the process of renormalization these 

singularities can now be systematically removed. 

1.5.2 Renormalization constants 

As was the case with ¢4 theory, we are required to redefine our Lagrangian in terms of 

bare and renormalized quantities, related to each other via renormalization constants. 

For .Cqco we perform the following redefinitions: 

where, 

'Tla - zl/2'11a 
•tB- 1J 'tR• 
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'000000000' + 

Figure 1.8: Comparison of 'bare' and renormalized diagrams for the gluon propagator, 
at one-loop. The first term on the RHS is the full propagator and contains no singu­
larities. Hence, the singularity structure of f:lZi can be determined by comparing the 
LHS and RHS of this equation. 

In massless QCD we can omit the equation for Zm, leaving us with 5 renormaliza­

tion constants. We redefine the Lagrangian of Eq. (1.15) as the bare Lagrangian and 

all the parameters within it as bare parameters, denoted by a subscript B. We also 

define the renormalized Lagrangian, £, as in Eq. (1.15) but with all parameters being 

renormalized parameters (instead of writing all renormalized parameters with a sub­

script R we omit it and assume, from now on, that all parameters without a subscript 

are renormalized). The bare and renormalized Lagrangians are related to each other 

by, 

(1.74) 

where f:l£ is the counterterm Lagrangian. Substituting Eq. (1.72) into Eq. (1.74) and 

using Eq. (1.73) allows us to obtain f:l£ in terms of renormalized parameters and the 

renormalization constants, 

f:l£ = '1/Ja (il/J- ml:lZm)ab '1/Jb f:lZ7j;- ~ F:vF/:v f:lZA 

+ Cgf (f:lZA + f:lZ~) + Cfp f:lZ, 

(1.75) 

The renormalization constants encode the singularity structure of the loop diagrams. 

At one-loop they contain only simple poles, the residues of which are the crucial infor­

mation obtained from the regularization procedure. 

The renormalization constants can be determined by comparing Green's functions cal-
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culated from the LHS and RHS of Eq. (1.74). For example, if we calculate the gluon 

propagator from .CB, we obtain the tree level propagator, plus the one-loop corrections 

of Eq. (1.70) . .C and!;,.£ have their own set of Feynman rules . .C leads to Green's func­

tions written in terms of renormalized parameters, corresponding to what we actually 

measure. Also, !;,.£ gives rise to a set of Feynman rules similar to those of Figs. 1.2 

and 1.3, but which include extra factors in the form of combinations of !;,.Zi· The 

appropriate combinations of these are derived from Eq. (1.75). Diagrams constructed 

from these rules are known as counterterm diagrams and are represented by placing a 

0 symbol on them. Comparing the singularity structure of Green's functions derived 

from each side of Eq. (1.74) allows us to obtain the poles in Zi. 

For the gluon propagator example, we can compare the one-loop corrections written 

in terms of bare parameters with the renormalized propagator and the counterterm 

propagator. This is shown in Fig. 1.8 and expressed mathematically below, 

(1.76) 

where we have omitted the tree level gluon propagator from both sides. The appro­

priate combinations of !;,.Zi used in Eq. (1.76) can be obtained by determining which 

terms in Eq. (1.75) contribute to the gluon propagator. From Eq. (1.76), the renormal­

ization constants ZA and Z( can be identified, 

(1. 77) 

(1.78) 

Repeating this procedure for the quark self-energy and then the ghost self-energy, one 

obtains, 

(1. 79) 

( 1.80) 
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Finally, the one-loop quark-gluon vertex function can be used to obtain Z9 , 

-2 1 
tlZ = --9-- [llCA- 4TnNJ]· 

g 167r2c 6 
(1.81) 

Note that this expression is independent of ~· Equations (1.77) - (1.81) represent 

a successful renormalization of QCD at one-loop and can be used to perform O(g2 ) 

calculations of renormalized Green's functions. 

To summarize, the singularities occurring at one-loop have been absorbed into the 

unphysical parameters of the bare Lagrangian. Our reward for this feat is a set of 

finite expressions for the one-loop quantum corrections to QCD Green's functions, and 

the ability to calculate perturbative corrections to observables, order-by-order, in the 

following form, 

00 

'""'f an+ I 
~ n s ' 
n=O 

(1.82) 

where a 8 = g2 /47r. However, this is at the cost of the introduction of an element of am­

biguity, the origin of which is the arbitrariness of both the renormalization scale and of 

the finite subtractions made by Zi. As we shall see in section 1.8, truncating Eq. (1.82) 

at fixed-order 0 (a~) leads to an 0 (a~+ 1) dependence of the result on the way in 

which it has been renormalized. Furthermore, when we attempt to resum leading logs 

in order to define the running coupling, this 0 (a~+ I) dependence is absorbed into the 

lower-order terms in the truncated sum. Hence fixed-order predictions will depend on 

the way they are renormalized. 

1.5.3 Renormalization scheme 

As a result of the renormalization process, all singularities occurring at one-loop have 

been absorbed into the renormalization constants, and sense can finally be made of 

QCD Green's functions. This process can be generalized to higher-loop diagrams and 

consequently, QCD can be renormalized order-by-order in perturbation theory. 

However, although the loop diagrams fix the pole structure of the renormalization con­

stants, their finite part is arbitrary. We could shift the tlZi 's by any finite amount 

whilsCstlll meetirig -the conditio'n that rEmo~malf;~d Green's functions ~'ust be finite. 
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Furthermore, the renormalized one-loop diagrams all have a dependence on the arbi­

trary scale f.t· 

We are forced to choose what finite part of the loop diagrams we will keep when we 

perform the subtractions, and this choice is reflected in the value of the finite part of 

f:.Zi· A particular set of choices for the finite parts of t:.Zi, together with a choice of 

renormalization scale, defines the renormalization scheme (RS). 

When we wrote down Eqs. (1.77) - (1.81), we set the finite parts of t:.Zi to zero, and 

in so doing we unwittingly made a choice of renormalization scheme. We used the 

renormalization constants to subtract only the poles, and nothing else; this is known as 

the minimal subtraction (MS) scheme. We can transform from one scheme into another 

simply by performing a finite renormalization. 

The two schemes used in this thesis are the modified minimal subtraction (MS) scheme 

and the V-scheme. In MS the finite part /E -ln47r, present in Eqs. (1.68)- (1.71) and 

always present with DR, is removed. In the V-scheme the additional factor of -5/3, 

present in Eq. (1.67) is also removed. This scheme is useful when we come to consider 

chains of renormalized fermion loops, in chapter 3. 

If we examine the effects of these finite renormalizations on the vacuum polarization 

function of Eq. (1.66), we see that they can simply be treated as different re-scalings 

of the renormalization scale. The renormalized form of Eq. (1.66) can be written, 

· 2 · 9 R -p -2 4T ( 2 ) 
-tii(p ) = z 167r2 -3-ln f.t2eCRs , ( 1.83) 

where CRs depends on the renormalization scheme being applied and in the three above 

mentioned cases, takes the values CMs = ln 47r + 5/3 - /E, OMs = 5/3 and Cv = 0. 

From this, it is easy to see how different choices of finite subtraction will affect the 

result of any physical observable calculated from the vacuum polarization function. 

This problem hinders attempts to unambiguously define QCD observables. 
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1.6 The renormalization group equation 

It is clear that through the renormalization procedure, a dependence of physical ob­

servables on the renormalization scale 1-l is generated. This dependence can be defined 

more rigorously through the renormalization group equation. In order to show this we 

must first know how bare and renormalized OPI Green's functions relate to each other. 

For QCD to be renormalizable, the divergences in the generating functionals must 

be removed; this has been achieved partially by the renormalization carried out via 

Eq. (1.72). However, this must be supplemented by renormalization of the source 

terms, which must satisfy, 

J · G = ls · Gs, x'l/J (1.84) 

The bare and renormalized functionals are related by, 

(1.85) 

where Xs is simply the functional of Eq. (1.34) but written entirely in terms of bare 

parameters and X is the renormalized form of Xs, obtained by using the Lagrangian .C+ 

t:l.C in Eq. (1.53). It then follows (using Eqs. (1.35) and (1.36)) that renormalized OPI 

momentum space Green's functions are related to their bare counterparts by, 

G- (n) ( - (: ) znal2zn"'/2c-(n) ( ) p,g,.,,m,J.t = A '1/J 8 p,gs,~s,ms . (1.86) 

Here, nc and n'I/J are the number of external gluon and quark legs, respectively and 

p represents the set of external momenta, {PI, P2, ... , Pn}· The factor of z~a/2 Z~"'12 

appears because for renormalized Green's functions, the functional differentiations in 

Eq. (1.54) are with respect to renormalized source terms. 

Differentiating both sides of Eq. (1.86) with respect to J.t, and then rearranging gives, 

[ 
f) - f) f) f) ] -() 

J.t- + f3a- + f3f.-- rmm-- narc- n'I/Jr'I/J G n = 0. 
OJ.t 9 &g a~ am 

(1.87) 

This can be written more concisely as, 

(1.88) 
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Here, 

(1.89) 

and the following quantities have been defined, 

'Ym = (1.90) 

(1.91) 

Equation (1.87) is known as the renormalization group equation (RGE). It demon­

strates that changes in unrenormalized (bare) Green's functions, induced by varying 

the renormalization scale, are compensated for by changes in the other RS dependent 

parameters, g, ~ and m. {Jg is known as the beta-function equation and is crucial in 

determining the energy dependence of QCD observables. It can be calculated as a per­

turbation series, in powers of g, the leading order coefficient of which can be computed 

from the diagrams in Figs. 1.5- 1.7. Using Eq. (1.65), we can write, 

[Jg a (IL-c9B) = 
aln 1L Z9 

2flZ9 -
(1.92) -E:g- ---z-/3g, 

g 

~[Jg b ...,.3 
(1.93) -E:g- -g + ... 

87!'2 

where b is the first beta-function coefficient [25,26] which, using Eqs. (1.77)- (1.81), is 

found to be, 

(1.94) 

For the definition of C A, see appendix A. In general, the beta-function equation is a 

perturbative expansion in powers of the coupling; for convenience, we redefine it as,8 

(1.95) 

8 There exist many different conventions for defining the beta-function equation, which differ in such 
~ll,:~~~~:_,~h~ q~ft.ri~ .. \9!:1 ._<;>fJL~~!h,[~P~<?tJo"q,_Jil.e ,U§!l~~o(,g_ OI:,Q .. irstead .()ta,. t~e .giffer.e!'ltial .being~with. 
respect to J1.2 instead of J1. etc. Consequently, our definitions of /3, b, c etc. may differ from those in 
other works. 
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where, 

(1.96) 

The sub-leading coefficients can be obtained by calculating diagrams beyond one-loop 

and are found to be [27-31], 

c = 

CMS 
2 

c~s 

2857 _ 5033 N + 325 N2 
9· I 21 I 

64b 

1 + 149753 _ (6508 1 + 1078361) N + (6472 1 + 50065) N2 + 1093 N3 
'>3 6 27 '>3 162 I 81 '>3 162 I 729 I 

256b 

(1.97) 

(1.98) 

(1.99) 

The coefficients b and c are RS invariant i.e. they are the same no matter which RS 

we use to calculate them. However, subsequent coefficients are all RS dependent, and 

hence Eqs. (1.98) and (1.99) reflect their values calculated in the MS scheme. Equations 

(1.97) - (1.99) can also be rewritten as expansions in powers of b, 

c 
107 19 

- 8b + 4' 

37117 243 325 b 
- 768b + 32 + 192 ' 

12185857 + 1389486 (3 5857771 + 932400 (3 

13824 b 27648 
7761 + 1618 (3 b- 1093 b2. 

+ 576 6912 

1. 7 The running coupling and asymptotic freedom 

(1.100) 

(1.101) 

(1.102) 

As a direct consequence of the RGE, the dependence of the coupling on J.L is dictated 

by the beta-function equation, 

f3(a). (1.103) 
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Truncating Eq. (1.103) at leading order (LO) and integrating the resulting differential 

equation between the limits JL and Q gives, 

Rearranging this yields, 

Q 
bln-

JL 

1 
a(Q) -blnQ 

1 1 
a( Q) - a(JL )" 

1 
--· - blnJL = -blnA. 
a(IL) 

(1.104) 

(1.105) 

The functions of JL and Q in the above equation are identical and therefore indepen­

dent of both JL and Q. We identify A as the universal scale parameter of QCD; a Q 

and JL independent quantity which parameterizes the missing boundary condition in 

Eq. (1.103). 

Rearranging Eq. (1.105) allows us to write a independently of JL: 

a(Q) = 
1 + ba(JL) In ( Q / JL) 

(1.106) 

1 
(1.107) 

bin (Qj A)" 

A is a physical QCD parameter, in the sense that by studying the strength of QCD 

interactions at different values of Q we could, in theory, obtain a value for A by fitting 

a(Q) to the data. Indeed, it can be argued that A is more fundamental than even the 

coupling, because it can be defined in an RS-invariant way (see section 1.8.1). 

It follows from Eqs. (1.68) - (1.71) that the measured (renormalized) coupling receives 

the following finite renormalizations due to the diagrams in Figs. 1.5 - 1. 7, 

which can be written as a 'leading log' expansion in an+1 Inn, 

(1.109) 

From this, we can see that expanding Eq. (1.106) as a Taylor series would reproduce 

the leading logarithmic components of Eq. (1.109). In effect, Eq. (1.107) has resummed 
-· ,o.· .,~--~, '.,., -~-----"'--""~ "-=~.--:..;,·-~· ,_. ~"1 ,__- ·· -''•' · "-';-•' • --=-- ,.,_..;;..-...o,- .--,;;..:. ·,,. '.- ··--~---.··"·-,_,~·-_.,..-.:-_..._. :·~ ~"'-·"· · -- -~- --"-"'>··: o--·'- -- '--. "" · 'c .,. · ~ ·• -;.:.o--,,·..,..~-c ""'i- ,.:-_ """'"'-' ---:-·.;-:,~·"?'·=:-···~-- --~,. ·· ··r ·-:-_,_,'"". · '"'""· 

the logarithms present in Eq. (1.109), and we say that the coupling of Eq. (1.107) is 
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'renormalization group (RG) improved'. 

Via the beta-function equation, the coupling has gained a dependence on Q; because of 

this the coupling is said to be a 'running coupling'. From Eq. (1.107) we can see that 

the coupling, and therefore QCD observables, have the following important properties: 

Asymptotic Freedom [25, 26] For Q » A, the coupling is small and has the limit 

a(Q) ---+ 0 as Q ---+ oo. In this region, the perturbative approximation is on firm 

ground; we can safely use Eq. (1.82), and need only include the first few terms 

to make accurate predictions. Quarks with Q »A will behave as if they are free 

particles. 

Infrared slavery In the region Q ~ A the coupling becomes very large and this corre­

sponds to interactions becoming very strong. As a result of this, the convergence 

properties of Eq. (1.82) will suffer and the perturbative approximation becomes 

unreliable. The behaviour of the coupling at these low energies gives rise to the 

confinement of quarks inside baryons. Free quarks cannot exist as they can al­

ways lower their energy state by combining with virtual quarks created from the 

vacuum. 

The value of A serves as a guide to the (energy) range of validity of perturbation 

theory. The existence of a singularity in the coupling at Q = A (known as the Landau 

pole), would seem to spell disaster for QCD. However, the singularity is a pathology 

and signals the fact that perturbation theory breaks down and is invalid for values of 

a ;:::, 1. As a consequence, we must be careful about the energy scales at which we apply 

perturbation theory. 

Solutions to the beta-function equation 

Equation (1.107) gives the energy dependence of the coupling at one-loop. To further 

increase the accuracy of our prediction we can include higher-order corrections to the 

beta-function equation. Integrating the full beta-function equation gives the following 

transcendental equation, 

f-L In-
A 

rdx 'fi' Jo {3(x) + m mte constant, (1.110) 
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where we have assumed asymptotic freedom ( a(/-L) -t 0 as 1-L -t oo). The only constraint 

on the infinite constant in Eq. (1.110) is that it must possess the same singularity struc­

ture as the integral. However, the particular choice of finite constant made corresponds 

to a particular choice for the definition of A. In this thesis, we make the following 

choice, 

. fi . r)() dx 
m mte constant = Jo bx2 ( 1 +ex). (1.111) 

This differs from the standard choice [32], but coincides with that used by Stevenson 

in Ref. [33]. As a consequence, our definition of A is not the standard one; the two 

definitions are related by, 

(2e) -& 
A = Astevenson = b Aconventional· (1.112) 

Truncating the beta-function equation after the nth term gives us the following tran­

scendental equation, 

1-L 1 ea(n) 1a(n) [ b 1 ] 
bIn -=- = - + c In + dx + , 

A a(n) 1 + ca(n) 0 ,B(n)(x) x2 (1 +ex) 
(1.113) 

where ,B(n)(x) is the beta-function equation truncated at n terms, and a(n) is the nth 

order approximation of the coupling.9 

We now describe several higher-order approximations to the running coupling. Trun­

cating Eq. (1.103) at order a3 and integrating the resultant differential equation gives 

us Eq. (1.113) with n = 2. In this case, the term in the integral vanishes and the 

solution to this equation can be written in closed form, 

ao(z(/-L)) = 
-1 

(1.114) 

where, 

1 (X) -b/c 
z(x) = ~~ A , (1.115) 

and W _1 ( z) is the Lambert-W function, defined by the following transcendental equa-

9 We can make the RS dependl'mce of this coupling more explicit by writing it as a(n)(Jl, c2, c3, ... , en). 
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tion [34], 

z = W(z)eW(z). (1.116) 

The '-1' subscript denotes that we have chosen the -1 branch of W(z); this is necessary 

in order to ensure asymptotic freedom [35,36]. We label the coupling in Eq. (1.114) with 

a '0' because, not only is it the second order approximation to the coupling, but it also 

corresponds to an RS in which all of the RS dependent coefficients of the beta-function 

equation are zero, i.e. ao = a(/-l, 0, ... , 0); this scheme is known as the 't Hooft scheme. 

Because of this, we drop the (n = 2) superscript because, although in any standard 

scheme it is a next-to-leading-order (NLO) approximation, in the 't Hooft scheme it is 

exact. 

At NLO and next-to-next-to-leading-order (NNLO) (n = 2 and n = 3 in Eq. (1.113)) 

the coupling can be approximated by the following expansions in logs of 1-l/ A: 

(1.117) 

1 ( c - 1 - -log(2r /b) 
T T 

+ 
(1.118) 

Here, T = bIn X, and these approximations are derived using the conventional definition 

of A in Eq. (1.112). 

1.8 Renormalization scheme dependence 

We noted in section 1.5.2 how renormalized perturbation series can depend on the 

choice of RS. It is clear that such dependence can disrupt the predictive power of 

QCD. Let us now put this analysis on a firmer footing. 

Consider a generic, dimensionless QCD observable, R(Q), dependent on a single di­

mensionful scale, Q. Perturbative corrections to R(Q), denoted by a calligraphic letter, 
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can always be written, 10 

R(Q) (1.119) 

Physical observables must be RS invariant and therefore, 

a 
o(RS) R( Q) = 0, (1.120) 

where we have used RS to symbolically represent variation of and dependence on 

renormalization scheme. Combining the two equations above gives, 

0. (1.121) 

So although the coefficients and the coupling depend on the RS, this dependence cancels 

in the full expansion. In reality, we are not able to calculate the n = oo term in the 

series, and truncation of Eq. (1.121) at finite order leads directly to a dependence of 

the prediction on choice of RS. If we assume that we have an order O(aN) calculation 

for R(a), i.e. we know the coefficients rn<N, then we can relate the RS dependence of 

this result to the higher-order corrections. From Eq. (1.121), 

(1.122) 

From this we can infer that the difference between O(aN) calculations in two different 

schemes is of order O(aN+l ). This is a direct consequence of demanding that pertur­

bation theory be self-consistent [33]. 

So, further to the inaccuracy inherent in the truncation of an infinite series at finite 

order, we also have theoretical uncertainty, of the same order, generated by the non­

uniqueness of the renormalization procedure. It is arguable as to which of these sources 

of uncertainty is more troubling. Indeed, as we shall see in later chapters, the known 

convergence properties of QCD perturbation series call into question the validity of 

a finite order truncation. However, the RS dependence problem is compounded by 

10We can transform any perturbative result into this form by scaling, subtracting a constant, and 
raising to a suitable power. 
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the fact that the higher-order coefficients (which one might imagine could be used to 

estimate the theoretical uncertainty) are themselves RS dependent. 

In an attempt to gain control of this source of ambiguity in QCD, we show in the next 

section how the RS dependence of perturbative expansions can be parameterized. We 

then proceed to describe three approaches to dealing with the RS dependence problem. 

1.8.1 Parameterizing renormalization scheme dependence 

When truncated at finite n, the perturbative expansion for R(a) (given in Eq. (1.119)) 

possesses RS dependence from two sources: the coupling exhibits RS dependence due 

to its dependence on J.t and ci (expressed in the beta-function equation) and also, the 

perturbative coefficients rn are RS dependent. 

The beta-function equation can be rewritten (in the notation of Ref. [33]) as, 

da 2 2 i 
dT = -a (1 + ca + c2a +···+Cia + · · ·), (1.123) 

where T = b ln *. In order to study the effects of changes in RS, we consider the coupling 

defined in two different unspecified schemes, denoted by a and a. Using Eq. (1.72) we 

can relate both a and a to the bare coupling, 

(1.124) 

The pole structures of Z and Z must be identical and so a and a are related by only a 

finite renormalization, hence, 

(1.125) 

Both a and a are defined at the same renormalization scale, J.t, and the coefficients vi 

encode the difference between the different renormalization schemes. The two couplings 

can also be related to each other through their respective beta-function equations, 

/3(a) 
da 

f](a)da· (1.126) 

Con§equently, the RS depensf~n<;e of th~ co.tmJi!lg in the§e two different schemes 

can be related using their respective RS dependent coefficients, { c2, c3, ... Cn ... } and 
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{c2, c3, ... en ... } . In fact, as shown in Ref. [33], any particular RS can be char­

acterized by the values of those coefficients in that scheme, together with J.L/ A (or 

equivalently T). In other words, a particular RS corresponds to a particular set 

of values for { c2, c3, ... en ... } and vice versa; we denote this set of parameters, 

{'RS} = { T, c2, c3 ... en···}. Because of this, {'RS} can be used to parameterize all 

possible renormalization schemes, and hence the RS dependence of perturbative calcu­

lations. 

The key to unlocking the RS dependence of the coupling lies in the beta-function 

equation. Differentiating Eq. (1.113) (with n = oo) with respect to Ci yields, 

{a xi+2 

= -b(3(a) Jo f32(x) dx. (1.127) 

We know that, given an O(an) calculation, the RS dependence of any observable is 

known to be zero up to order n + 1, and hence we can write, 

(1.128) 

Using the consistency of perturbation theory (expressed through Eq. (1.128)) in con­

junction with the beta-function equation and Eq. (1.127), we can now obtain the explicit 

RS dependence of the coefficients rn. We consider each rn individually and assume in 

each case we have performed the relevant NnLO calculation. For r 1 we have, 

(3(a) = -ba2(1 + ca), (1.129) 

[)R(l) 2 
-!:}- = O(a ). 

UCi 
(1.130) 

Performing the partial differentiations in Eq. (1.130) and equating coefficients gives, 

8r1 = 1 
OT ' 

and (1.131) 

and integrating these derivatives gives the explicit RS dependence of r 1, 

J.L r1 = bln""'"""-Xo(Q). 
A 

(1.132) 

Here Xo(Q) is a constant of integration - by definition it is independent of all RS 
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parameters and hence is RS invariant. By contrast, the definition of J-L and A and the 

value of r1 are RS-dependent. The fact that Xo is RS invariant is remarkable and 

suggests that it is of genuine physical significance, in contrast to r 1, which is scheme 

dependent. Since R(Q) is a dimensionless function of a single scale Q, it follows that, 

Q 
bln An. (1.133) 

Since Xo and Q are RS invariant, using Eq. (1.133) we can infer that An is so too 

(although it is observable dependent). To obtain a relation between A and An we 

consider Eq. (1.133) calculated in the MS scheme with J-l = Q. This leads to the 

following equation, 

- (rr8
(J-L = Q)) An = AM8 exp b . (1.134) 

Since An is RS invariant, specifying an RS does not affect the result. We can also use 

Eq. (1.134) to relate the scale parameters of two different schemes (RS and RS') to 

each other: 

(1.135) 

The crucial point about Eq. (1.132) is that we can determine the explicit RS depen­

dence of the perturbative coefficient r1. Furthermore, we can extend this treatment to 

higher orders and determine the RS dependence of r n> 1· Performing the same proce­

dure with r 2 yields, 

-1, 

-2, 

Here we have used, 
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and ~ = 0 fori > n, which can be obtained from Eq. (1.127). The general form of 

the partial derivatives of rn with respect to T is, 

8rn ~( ') aT = L.....t n-~ CiTn-i-1· 

i=O 

(1.139) 

By integrating up the partial derivatives in Eqs. (1.131), (1.136) and (1.137) we can 

obtain the dependence of rn on the scheme parameters, 

r1 T-X0, (1.140) 

r2 rr + cr1 - C2 + X2, (1.141) 

r3 = 3 cr? 1 
3r1r2 ~ 2r1 - 2 + r1c2- 2C3 + X3. (1.142) 

In the above equations, Xn are all generated as constants of integration with respect 

to the RS dependent parameters. Therefore they are by definition, RS-invariant quan­

tities i.e. they have the same values no matter which scheme we use to calculate them. 

Xo is of special significance due to its dependence on Q. The coefficient r 2 can be 

written as a polynomial in r1, 

and rn has the general form, 

A X Cn 
rn = rn + n- --. 

n-1 

(1.143) 

(1.144) 

Here, f n is simply a polynomial in r1, and is RG predictable from only an Nn- 1 LO cal­

culation of R(a). The coefficients Xn and Cn are obtainable by performing NnLO cal­

culations of R(a) and {3(a) respectively. 

We have demonstrated how to quantify the RS dependence of a general NnLO calcula­

tion. We have also seen how to make the dependence on the parameters {RS} explicit 

and how in doing this, RS invariant quantities appear naturally. We now proceed to 

discuss three different approaches to solving the RS dependence problem. 
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1.8.2 The physical scale approach 

The physical scale (PS) approach derives its name from the fact that it involves setting 

the f-L to some scale with physical meaning, such as the c.m. energy, Q. This is supple­

mented by the choice of some specific RS such as MS. Such an approach falls into the 

category of approaches which propose that there is some 'best choice' of RS. 

The motivation for the choice of scale /-L = Q is the fact that at large orders of pertur­

bation theory, the coefficients have the form, 

(1.145) 

Thus, setting f-L = Q allows us to control the (potentially large) logarithms present. 

The act of setting f-L = Q seems, at first, dubious and unphysical. However, since 

f-L is entirely arbitrary, it can be set to any value we wish; the error associated with 

different choices of f-L is simply hidden inside the ambiguity inherent in RS dependent 

calculations. This error can be estimated by varying /-L within the range Q/2 < /-L < 2Q. 

The estimate of the higher-order coefficients in Eq. (1.145) is based on a simple LO 

analysis and assumes that RS dependence is given entirely by 1-L· A more sophisticated 

NLO analysis reveals that they have the following, more complicated form, 

n ( )i - f-L rRS b 
r ,..._, ""'K · bIn -e 1 I n ~ m Q , 

i=O 

( 1.146) 

where rf8 = rf8 (f-L = Q). The coefficients kik are independent of f-L whereas Kik are 

f-L-dependent [37]. Hence, from Eq. (1.146) we can deduce that a more natural choice 

of renormalization scale is, 

(1.147) 

In subsections 1.8.3 and 1.8.4 we will give a slightly different motivation for this choice 

of renormalization scale. However, the motivation for choosing the MS scheme with 

a physical scale is merely that it is convenient and widely used. Beyond that it is 

difficult to argue why it would be the 'best' scheme to use. Clearly, the ideal scheme 

is that in which the higher-order corrections (which quantify the RS dependence of 

fixed-order calculations) are maximally suppressed. However, the higher order terms 
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being unknown makes it difficult to assess the success of any particular scheme on such 

a basis. 

1.8.3 Complete renormalization group improved perturbation theory 

Through Eq. (1.95) the coupling, and therefore all QCD observables, gain a dependence 

on logarithms of J.LI A, with A being RS dependent. This is in direct contradiction with 

the fact that all observables must be RS independent. In reality, the energy dependence 

of the couplinglobservables must be built from physical logarithms, log Q I An, with An 

being RS invariant [37]. 

The dependence on unphysical logs (of J.LI A) is present because the standard RG im­

provement (described in section 1. 7) is incomplete. It omits a set of RG predictable 

logarithms which could, in theory, be resummed; consequently, there remains a residual 

dependence on these unphysical logs. In Refs. [38, 39] it was shown that by resumming 

all RG predictable physical logs, one can complete the RG improvement and build the 

log Q I An dependence automatically, without having to impose a relation between J.L 

and Q. Importantly, this procedure is independent of J.L. 

We begin by writing the perturbation series for R(a) in terms of the set of RS pa­

rameters {'RS} = {r1, c2, c3, ... }. We have swapped the parameter T for r1, which 

is permitted since they both parameterize the 10 RS dependence equally well (see 

Eq. (1.133)). Substituting the expressions for rn given in Eqs. (1.140) - (1.142) into 

Eq. (1.119) gives, 

R(Q) a+ rla2 + (rr + crl + x2 - c2)a3 

3 5 2 1 4 + (r1 + 2cr1 + (3X2- 2c2)r1 + X3- 2c3)a + .... (1.148) 

We then adopt the principle that we should resum all known RG predictable parts of 

Eq. (1.148) (i.e. the fn terms in Eq. (1.144)) and we define this subset of terms as ao. 

If we have an NLO calculation, then we know r 1 but not X 2 , X 3 ... , and a0 therefore 

has the form, 

ao = 2 2 3 (3 52 1 4 a+ r1a + (r1 + cr1 - c2)a + r 1 + 2cr1 - 2c2r1 - 2c3)a + .... 
(1.149) 
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This sum includes all terms in the full perturbative expansion which are RG-predictable 

at NLO i.e. those that don't include X2, X3 etc. Importantly, we can infer that ao is 

RS invariant, via the following argument. The expression in Eq. (1.148), when summed 

to all orders, is RS invariant. This sum differs from ao only by an RS invariant set of 

terms built from Xn, and therefore a0 must also be RS invariant. 

We have learnt that the values of the coefficients en, together with r1, can be used 

to define any particular RS. Also, given that ao is RS invariant, calculating it in any 

scheme will yield the same result. We can take advantage of these facts by defining 

a special scheme in which all sub-leading coefficients of the beta-function equation as 

well as r1 are set to zero, i.e. r1 = c2 = c3 = ... = en ... = 0. This is known as the 't 

Hooft scheme [40] cf. Eq. (1.114). In a sense, this is moving in the opposite direction to 

the usual way in which an RS is defined. Previously, we made a set of finite subtractions 

using L:::.Zi and observed the effects of this on the values of the coefficients en and r1. 

Now we are fixing the values of these coefficients first; the exact nature of the finite 

subtractions in L':J.Zi can then be derived from that information. 

In the 't Hooft scheme, Eq. (1.149) reduces to ao = a, and therefore ao is simply the 

coupling calculated in that scheme. Hence, we can use Eq. (1.113), and then Eq. (1.133) 

to obtain, 

1 
1 

cao -+c n--­
ao 1 + cao 

f.l bIn -z-
A 

Q 
bln An. 

( 1.150) 

(1.151) 

And using the results obtained in section 1.7, we can write the solution to this equation 

in closed form, 

with 

ao(Q) 
-1 

c [1 + W(z(Q))]' 

1 ( Q ) -b/c 
z(Q) = -- -

e An 

(1.152) 

(1.153) 

We conclude that the observable at NLO has the following complete renormaliza-
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tion group improved (CORGI) form, 

R(Q) = ao(Q). (1.154) 

This treatment can easily be extended to higher-orders. At NNLO, we have the coef­

ficient X 2 at our disposal. Hence we can resum a further set of RG-predictable terms 

in Eq. (1.148) which have the form, 

(1.155) 

and consequently, the observable has the NNLO form, 

(1.156) 

Extending beyond NNLO, we finally obtain, 

00 

R(Q) = ao(Q) + L Xna~+l. (1.157) 
n=2 

From now on, we label observables expressed in the CORGI representation with a 

tilde, in order to differentiate them from the standard perturbative representation. 

The coefficients Xn can be obtained from Eqs. (1.141) and (1.142). Since they are 

scheme invariant, we can use any scheme we like to evaluate them. For example, 

2 r2 - r 1 - cr1 + c2 (1.158) 
MS,~-t=Q 

3 err 1 
= r3- 3rlr2 + 2r1 + 2- r1c2 + 2c3 _ (1.159) 

MS,~-t=Q 

where all coefficients on the RHS are calculated in MS with 11 = Q. 

It is curious that although Eq. (1.154) is an NLO result, it contains no a6 term. In­

deed, this term is also absent from the NNLO and all-orders results. However, closer 

inspection reveals that the a6 term is present in Eq. (1.154), via the definition of An. 

If we temporarily relabel ao with the type of scale used to define it, 

-1 
ao(Q, A) = c[l + W'(z(Q;A))]' wh~r~, 

1 (Q) -b/c 
z A - -- -(Q, ) - e "A" (1.190) 

48 



Chapter 1: Perturbative QCD 

then a0 (Q, An) is equal to the following expansion, 

(1.161) 

The above equation can be verified by substitution into Eq. (1.150). Thus, we see 

that the NLO information in Eq. (1.157) is encoded in An. Rather than including this 

information in the form of an a6 term, the CORGI expressions use An to resum it 

together with a further infinite subset of RG predictable terms. 

Although An is in itself a valid parameter of the theory, it is often more convenient to 

relate it to an observable independent and more commonly recognized parameter, such 

as AMs· We can convert between these two scales using Eqs. (1.134) and (1.112), 

(
2c)c/b ( rr8 (ft=Q)) b exp - b An. (1.162) 

We have obtained a result which is written purely in terms of RS invariant components 

and is therefore independent of the scheme we use in order to calculate it. This is 

a significant development, given the shaky ground we were on when we had to opt 

for some 'best' scheme. However, it must be noted that Eq. (1.157) does depend on 

the set of parameters we chose to parameterize the RS invariance, i.e. {r1, c2, c3, ... }. 

Though the choice we have made is obviously natural, it is not unique, and there is an 

ambiguity in Eq. (1.157) associated with this freedom of choice. In a sense, we have 

traded RS dependence - with no obvious choice for the correct RS - for 'parameteriza­

tion dependence', but with an obvious natural choice for the correct 'parameterization 

scheme'. 

Indeed, it is argued in Refs. [38,39] that r1 has special status, since it translates between 

fL and Q dependence, via Eq. (1.140). Using this equation, we can write, 

It Q 
r1(r) = bln-==-- bln -. 

A An 
(1.163) 

To simplify the following demonstration, we set c = 0 and choose the 't Hooft scheme 

where c2 = C3 = ... = 0. We can write the coupling as, 

J 
(1.164) 
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and at NLO, the RG improvement of Eq. (1.148) becomes, 

(1.165) 

This can be resummed, and then simplified using Eq. (1.163), 

R(Q) ~ 
a(/-1-) 

1- (bln X- bln R;) a(fJ-) 

1 
(1.166) 

bln(QIAn)' 

Thus we can see explicitly how the unphysical logs are 'eaten' by r 1 and the physical 

log( Q I An) dependence is built automatically. 

Via the CORGI approach we have resummed a set of RG predictable log Il-l A terms, 

omitted by the standard PS prediction. Because of this, the uncertainty due to the 

freedom in choice of ~t present in the PS result, is absent in the CORGI equivalent. 

Hence applying CORGI perturbation theory to phenomenological analyses will yield 

results for which the uncertainty due to RS dependence is heavily suppressed. 

1.8.4 Effective charge scheme 

We have learnt that the values of the coefficients Cn, together with r 1, can define any 

particular RS. The effective charge (EC) scheme [41,42] takes advantage of this fact by 

defining a scheme in which all sub-leading coefficients of the perturbative expansion of 

R are set to zero, i.e. r1 = r2 = ... = rn ... = 0. As a result, the observable is simply 

equal to the coupling (defined in this scheme), 

(1.167) 

As a direct consequence of setting r1 = 0 we can determine a relationship between ~ 

and Q. Using Eqs. (1.132), (1.133) and then Eq. (1.134), we obtain, 

A 
/-1- = -Q 

An 
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- (- rrs(!-L = Q)) - Qexp b . (1.168) 

The energy dependence of R(a) is now directly related to the beta-function equation, 

and using Eq. (1.168) we can write, 

fJR(Q) 
fJln Q 

{JEC('R(Q)) =: p(R(Q)), (1.169) 

where p(a) is the beta-function equation in the EC scheme; because p(a) is a beta­

function its first two coefficients are known, 

(1.170) 

In order to obtain the higher-order coefficients we need to compare the EC scheme with 

some other scheme. Using Eq. (1.126) with the EC scheme as the barred scheme and 

the non-barred scheme being 'any other scheme', we obtain, 

dR 
p(R) = {3(a(R)) da, (1.171) 

where a(n) is an inversion of the perturbation series in Eq. (1.119). In the above 

non-barred scheme, it is given by, 

(1.172) 

Expanding Eq. (1.171) in powers of n (using Eqs. (1.172) and (1.169)), and then 

equating coefficients, allows us to obtain Pn in terms of scheme dependent parameters, 

P3 

(1.173) 

(1.174) 

By comparing this with Eqs. (1.140) - (1.142) we can see that the coefficients Pn are 

simply the RS invariants Xn, up to a factor of 1/(n-1) for n = 2 and 3. The relationship 

between X4 and P4 is slightly more complicated. 

The Q dependence of the effective charge perturbative prediction now lies in a single 

power of the coupling \liz Eq. (1.167). Solving the beta-function equation in the effective 
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charge scheme gives, 

Q 100 
dx 1n(Q) [ b 1 ] b ln- = + dx -- + . . 

An n(Q) x2 (1 +ex) 0 p(x) x2 (1 +ex) 
(1.175) 

This can be used as a means by which we may extract a value for A from a set of 

experimental data for R(Q). Alternatively, Eq. (1.175) can be used to make predictions 

for R(Q); exponentiating it yields, 

Here, we have defined, 

:F(R) 

Q(R) = 

An 
Q 

:F(R(Q)) Q(R(Q)). 

( 
1 ) c/b 

e-1/bn 1 + eR ' 

exp [- tQ) dx (-p(~-) + -bx--;:2--,-(1-1+_ex-,-)) l 

(1.176) 

(1.177) 

(1.178) 

We can then solve Eq. (1.176) iteratively to obtain R(Q) as a function of Q. An can 

then be obtained by obtaining the best fit to the data. Using Eq. (1.168), we can then 

extract AMs directly bin-by-bin from data for R(Q). 

1.9 Non-perturbative corrections 

We include here a short section on non-perturbative contributions to QCD observables. 

So far we have assumed that an observable can be reconstructed from its Taylor series, 

about the point a = 0. However, this assumption turns out to be false, as we cannot 

rule out the possibility of R(Q) containing terms of the form, 

R(Q) 3 e-K/a(Q). (1.179) 

It is impossible to form a Taylor series from such terms; in this sense they are invisible 

to perturbation theory. Terms of this kind are known as non-perturbative corrections 

and in general take the form of inverse powers of the energy scale Q2 (this can be seen 

by substituting the one-loop form of the coupling into Eq. (1.179)). Consequently, a 
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QCD observable will receive contributions from power corrections of the following form, 

( 1.180) 

Non-perturbative corrections are somewhat harder to evaluate than their perturba­

tive counterparts. The operator product expansion (OPE) [43-46] is a commonly used 

approach and in the following section we briefly describe its origin and application. 

1.9.1 The Wilson operator product expansion 

In quantum field theory, one is often interested in evaluating the time ordered product 

of two operators, 

T[A(x)B(y)]. (1.181) 

Often this quantity is not well-defined in the limit x --t y. However, the singular nature 

of this limit can be quantified by expanding Eq. (1.181) in a series of operators, Oi(x), 

constructed from the components of the Lagrangian, 

T[A(x)B(y)] = L Ci(X- y) oi (X; y). 
t 

(1.182) 

The operators Oi(x) are the set of all non-singular local renormalized composite oper­

ators of the theory, with quantum numbers matching those of the product A(x)B(y). 

The sequence of terms in the sum in Eq. (1.182) is organized in order of the canoni­

cal dimension of the operators. These composite operators are regular and hence the 

singularity structure of T[A(x)B(y)] is wholly contained in the Wilson coefficients, Ci. 

Furthermore, in a theory with no dimensionful parameters, each ci involves only a 

single power of x- y, obtainable by applying dimensional analysis to Eq. (1.182). In 

QCD they will be subject to corrections in the form of logarithms of the 'renormaliza­

tion scale'. We use inverted commas because it is not meant in the same sense as the 

renormalization scale defined in section 1.5. We give more details of this in chapter 2. 

Equation (1.182) is dominated by those terms which are most singular in x. Further­

more, there will only be a finite number of Wilson coefficients-that are singular at x = y 

and hence we can approximate Eq. (1.181) by considering only the first term (or first 
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few terms) in Eq. (1.182). This makes the OPE a powerful tool with which to study 

QFT. 

The OPE technique has been applied to the calculation of both perturbative and non­

perturbative corrections. Non-perturbative corrections can be evaluated by organizing 

the Wilson coefficients into a series in powers of 1/Q2 and then evaluating the relevant 

operators. The OPE also has an important perturbative application in the study of 

deep inelastic scattering and we study this in more detail in chapter 2. 

1.10 QCD observables of interest 

We now proceed to define several observables used in this thesis. We always work in 

massless QCD . This means that at a particular energy scale Q, we ignore the existence 

of quarks with masses mq > Q and treat all quarks with mq < Q as massless. This 

is implemented in perturbative expansions by treating the value NJ appearing in the 

coefficients, as a (step-like) function of energy e.g. it takes the values of 6 for Q 2: mt, 5 

for mt > Q 2: mb, etc. We will give more details of how this is implemented in chapter 

5. 

1.10.1 The Adler D-function 

The Adler D-function is related to the vacuum polarization function, formally defined 

as the transverse part of the correlator of two (electromagnetic) vector currents j /1- ( x), 

(with i = u, d, s, .. . ) in the Euclidean region (Q2 = -q2), 

(1.183) 

The currents, j/1-(x) have the form, 

(1.184) 

There exist several different definitions of II( Q2 ) and the Adler D-function in the liter­

ature, all differing by constant factors. We define the Adler D-function as follows: 

(1.185) 
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q 

e q 

Figure 1.9: An example of a light-by-light scattering diagram. The two gluon version of 
the above diagram cancels and hence this is the lowest order light-by-light contribution. 

Because D(Q2 ) is defined for space-like momenta only, it is known as a Euclidean 

observable. Unlike II(Q2 ), the Adler D-function is an RG-invariant quantity. Hence 

we can consider D( Q2 ) to be a physical 'observable', despite the fact that it cannot be 

measured directly in experiment. Experimental values for D( Q2 ) can only be obtained 

indirectly, e.g. via the Re+e- ratio [47,48]. 

D(Q2 ) can be split into a constant term, known as the parton model result (also known 

as the Born term), and perturbative corrections, 11 

(1.186) 

The V(a) term arises from so-called 'light-by-light' scattering diagrams, an example 

of which is given in Fig. 1.9. These contributions are suppressed relative to V(a) and 

therefore we neglect them. The remaining perturbative corrections take the form, 

00 

V(a) = a+ Ldnan+l. (1.187) 
n=l 

The coefficients dn are RS-dependent; d1 and d2 have been calculated in MS with 

f-l = Q, in [49-51] and [52, 53] respectively. Their values are found to be, 

( 
11 2 ) (41 11 ) 1 -- + -(3 NJ + CA -- -(3 - -Cp 
12 3 8 3 8 ' 

( 1.188) 

11 In this thesis, wherever we use a capital letter to denote an observable, we use the calligraphic 
version of that letter to represent the perturbative corrections. 
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( 
151 19 ) 2 ( 970 224 5 ) -- -(3 Nf + CA -- + -(3 + -(s Nf 
162 27 81 27 9 

(1.189) 

where (n is the Riemann zeta function, defined in section B.4. 

In addition to the perturbative corrections in Eq. (1.186), the Adler D-function will also 

have non-perturbative corrections and these can be studied within the OPE. Applying 

Eq. (1.182) to D(Q), via Eq. (1.183), gives the following representation, 

(1.190) 
n dimO; =2n 

The relevant operators in this case are local gauge invariant operators constructed 

from the field operators of .CqcD· Then= 0 term simply corresponds to the perturba­

tive corrections V( a). For n = 1 the relevant operator is constructed from the running 

quark masses mi (11 )mj (p,). These will generate corrections of the form mi (11 )mj (11) / Q2 , 

and will build the quark mass dependence that we have ignored by working in massless 

QCD. Non-perturbative corrections are generated by terms for which n ~ 2. At n = 2 

the relevant operators are (mj'f/;(t/Ji) and (F F), known as the quark and gluon con­

densates respectively. These non-perturbative corrections are evaluated by separating 

long and short distance effects at a factorization scale 11· The long-distance effects can 

be absorbed into a non-perturbative parameter which can be determined by fitting to 

experimental data and the short distance effects are then calculated perturbatively as 

an expansion in a ( Q). Correspondingly, Ci ( Q2 , 112 ) can be expressed as a function of 

the coupling. 

1.10.2 The Re+e- ratio 

Another good test of QCD is found in the production of hadrons from e+ e- annihilation. 

This process occurs via the production of a quark anti-quark pair and is depicted in 

Fig. 1.10. The relationship between this process and QCD is simpler if we express it 
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~ 
e+ 

::I: -----q ~ ..., 
0 
i:l N. 
ll' 
M-

ij o· ------i:l 
e 

~ 
Figure 1.10: Depiction of the process e+e- ---+ hadrons. 

via the following ratio of cross sections, 

cr(e+e- ---+ hadrons) 
cr(e+e----+ J..L+J..L-) · 

(1.191) 

The hadronization process depicted in Fig. 1.10 is strictly a non-perturbative effect 

and this fact would appear to complicate the evaluation of the cross section. However, 

the details of hadronization are irrelevant since the q-ij pair are converted into hadrons 

with a probability of 1. Consequently, we can make the identification, 

L:::q cr( e+ e- ---+ qij) 

cr(e+e- ---+ J..L+ J..L-)' 
(1. 192) 

and the LO result for this can be obtained simply by counting the number of possible 

qij states, weighted by their charges, 

Re+e-(s) = NcLQ~. (1.193) 
q 

This result is subject to perturbative corrections of the form, 

(1.194) 

where s = Q2 = -q2 > 0 is the physical time-like Minkowski squared momentum 

transfer. R(a) are light-by-light corrections which again we neglect , and R(a) takes 
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the canonical perturbative form, 

R(a) (1.195) 

The Re+e- ratio can be related to the Adler D-function using analytic continuation and 

the optical theorem. Using the optical theorem, we can relate Re+e- to the vacuum 

polarization function, 

R(s) = 
4
: Im ll(s + iE) = ~[II(s + iE)- IT(s- iE)]. 
II 81f'/, 

(1.196) 

Equation (1.196) can then be related to the Adler D-function by integrating Eq. (1.185) 

between the limits s ± iE, 

1 /_-s+if V(t) 
R(s) = -. dt-. 

27r'l -S-if t 
(1.197) 

The above expression can be used to relate dn torn. This expression can also be used 

to obtain 'experimental' values for the Adler D-function from data for the Re+e- ratio 

[47,48]. 

1.11 Summary 

In this chapter we have introduced some of the basic QCD concepts which will be 

of use to us in later chapters. We saw how the techniques of path integral quanti­

zation and renormalization can be used to obtain perturbative expressions for QCD 

observables. However, we also saw how the renormalization procedure introduces an 

element of ambiguity, known as RS dependence to these theoretical predictions. We 

introduced the beta-function equation and showed how it can be used to determine the 

scale dependence and also the RS dependence of observables. We then discussed three 

proposed methods for dealing with RS dependence. We briefly discussed the nature of 

non-perturbative effects before finally defining some of the observables which we will 

study in this thesis. 
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Deep inelastic scattering 

In this chapter we present a brief introduction to the subject of deep inelastic lepton­

hadron scattering. Our aim is to show the origin of some of the deep inelastic scattering 

(DIS) observables we will study in later chapters; in particular, we highlight the role of 

factorization in computing QCD corrections to these observables. Detailed introduc­

tions to the subjects covered in this chapter may be found in Refs. [1-5, 54, 55]. 

2.1 Introduction 

The confinement of quarks within hadrons is a strictly non-perturbative effect - a con­

sequence of which is the absence of free quarks in nature. This apparent unavailability 

of free quarks with which to test QCD would seem to make any perturbative treatment 

impossible. Fortunately, the twin concepts of asymptotic freedom and factorization pro­

vide us with an escape route from this apparent impasse. 

As a consequence of asymptotic freedom, the behaviour of 'free' (high energy) quarks 

is relatively well understood. It is how this behaviour transfers over to the scattering 

of hadron-bound quarks that causes problems. Fortunately, in certain circumstances, 

it is possible to 'factor out' the non-perturbative effects such that hadron scattering 

processes can be described in terms of perturbative results for quark scattering, sup­

plemented by a set of non-perturbative parameters. These parameters are presumably 

ca,ls;ul~gJ~, LI:l !)O!J:ll:l nOIJ-:;P}~It1l!'.bl!tiy«::J~J'CPE:)IQe,, ·. ;Eio\X~Y~r, . bes:ause ofJactO!'i:t;~tion, th~y 

can be treated just as free parameters of the theory; their values obtainable by optimiz-
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ing fits to data. In this way QCD can be used to make predictions for hadron scattering 

and, conversely, hadron scattering can be used to test QCD. However, for our ignorance 

of non-perturbative effects, we pay a price. The factorization process is a type of renor­

malization and consequently, freedom in the choice of factorization scheme results in a 

theoretical ambiguity - in analogy with RS dependence. The study of the dependence 

of DIS observables on the choice of renormalization and factorization schemes forms 

the basis of much of the research carried out in this thesis. 

The material in this chapter is organized as follows: 

First, we introduce the DIS lepton-hadron scattering diagram and explain how the 

na'ive parton model can be used to describe this process in terms of structure functions. 

These structure functions have relevance beyond the na'ive parton model and are used 

to characterize the momentum structure of the constituents of hadrons. As such, they 

are of great importance in DIS. We describe how the operator product expansion can 

be used to link structure functions to perturbative QCD, via the definition of Mellin 

moments of the structure functions. In this way we can compute QCD corrections to 

results obtained from the na'ive parton model. We then introduce the renormaliza­

tion group equation (RGE) for inserted Green's functions and describe how it can be 

used to determine the scale dependence of the moments. Next, we describe how factor­

ization allows perturbative and non-perturbative effects to be separated in DIS cross 

sections, and we draw analogies between the renormalization and factorization proce­

dures. We then define several of the DIS observables which are of interest to us in this 

thesis. 

2.2 The basics of deep inelastic scattering 

We are interested in deep inelastic lepton-hadron scattering, as described by the fol­

lowing equation, 

l(k) + h(p) ~ l'(k') +X, (2.1) 

and characterized by the diagram in Fig. 2.1. As the title 'DIS' suggests, we are 

interested in the case where the momentum transfer from the lepton to the hadron is 

large, and hence the scattering is inelastic. In Eq. (2.1), X represents the collection 
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l' (k) 

X 

Figure 2.1: The diagram describing deep inelastic scattering. 

of final state hadrons; we make no specific assumptions about their nature except that 

X f:- h (due to the inelastic nature of the scattering). In this thesis we limit ourselves 

to the case where h is either a proton or neutron, but the results are easily adapted so 

that they apply to other hadrons. 

The final state lepton, l', may be the same as that of the initial state, l , but we also 

allow for the possibility that it is not. In the case of electron or muon scattering, we 

have l = l' = e or p, and in these cases, the exchanged vector boson in Fig. 2.1 is a 

photon.l In the case of neutrino scattering, we have l = v (or 17), whilst l' could be 

either the original neutrino or its associated lepton. As a result, the scattering could be 

via the exchange of either a Z or W particle. In effect, we are using an electromagnetic 

or weak current (via the exchange of a gauge boson) to probe the internal structure of 

nucleons. 

The kinematic variables which characterize DIS are defined below, 

Q2 = -q2, p2 = 2 mN, (2.2) 

X 
q2 Q2 

(2.3) IJ = p·q, - --- = - ' 2p· q 2v 
1Here, we make the assumption that the centre of mass energy squared of the scattering is« M~. 
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y = 
q·p 

k·p 
(2.4) 

Here, mN is the mass of the target nucleon. As stated above, the intermediate gauge 

boson is used to probe the internal structure of the nucleon, and for this to be the 

case, the initial lepton must transfer a large amount of momentum to it. The region in 

which the scattering is deeply inelastic and to which we can apply asymptotic freedom, 

is known as the Bjorken limit. It is defined as, 

(2.5) 

p. q -t oo, (2.6) 

x constant. (2.7) 

The lepton-hadron cross section 

The differential cross section for the process in Eq. (2.1) can be written in terms of 

three independent functions known as structure functions, denoted by Fi, i = 1, 2, 3. 

These functions parameterize the cross section as follows, 2 

ex (2.8) 

ex [2F . 2 () m'fv D 2 () ± mN(ko + kb) F] 
1 sm - + --r2 cos - x 3 . 

2 1/ 2 XI/ 
(2.9) 

The value of the constant of proportionality in Eq. (2.8) depends on the type of scat­

tering. Also, the F3 term is present only in neutrino scattering and the sign in front of 

it depends on whether l is a neutrino ( +) or an anti-neutrino (- ). 

Using Eq. (2.9), experimental values for the structure functions can be obtained from 

measurements of the lepton-hadron cross section. At this stage we know nothing about 

the nature of the structure functions, except that the cross section can be parameterized 

in terms of them. However, they are physical observables, and so by forging a path from 

the QCD Lagrangian to the cross section we can test the validity of QCD in describing 

strong interaction phenomena. 

The structurefunctions.describethe internal momentum str.ucture of the nucleon. One 
2 From this point on, we neglect the mass of the nucleon (Q2 » mJv). 
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would expect them to be functions of both Q2 and x, yet they appear to obey the 

following relation, 

(2.10) 

This behaviour is known as Bjorken scaling and implies that the constituents of hadrons 

are point-like. It can be understood in terms of the naive parton model [56-58], of 

which Eq. (2.10) is a direct prediction. Perturbative QCD corrections to the parton 

model generate corrections to this in the form of scale logarithms which violate Bjorken 

scaling. The study of the nature and magnitude of these violations forms the basis of 

a stringent test of QCD. 

For the remainder of this chapter we will discuss DIS in terms of electron or muon 

scattering, in which the lepton vertex is electromagnetic. We will state, where necessary, 

how to generalize the results we obtain, to neutrino scattering. 

The naYve parton model 

In the naive parton model we consider the constituents of nucleons (which we call par­

tons) to behave as free particles, interacting with the photon probe only. Furthermore, 

we assume that during its transit across the nucleon, the lepton interacts with only a 

single parton. These assumptions can be justified by the following arguments: 

In the centre of mass frame, and the Q2 ---> oo limit, the nucleon experiences extreme 

length contraction and time dilation. Consequently, the lepton 'sees' the nucleon as 

being flat in its direction of motion and the partons as effectively frozen in time. By 

the uncertainty principle, the lepton must pass within an 0(1/Q2 ) radius of a parton 

to encounter (interact with) it, and hence the probability of the lepton interacting with 

more than one parton is suppressed by a factor of, 

(2.11) 

with R the radius of the nucleon. As a result, it is unlikely that the lepton will interact 

with more than one parton. 

Under these assumptions, the cross section for lepton-hadron scattering can be deter-
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mined from two pieces of information: the cross section for lepton-parton scattering 

and the momentum carried by the individual partons in the nucleon. In light of this, 

we consider the cross section for a lepton scattering off a quark carrying momentum 

~pJ1., 

l(k) + q(~p) ---+ l'(k') + q(p'). (2.12) 

Here, ~ is known as the momentum fraction - it is the fraction of total nucleon mo­

mentum being carried by the struck quark. The Feynman rules of section 1.4 can be 

used to deduce the tree level cross section for the scattering process in Eq. (2.12). It is 

found to have the form, 

(2.13) 

The hat over the cross section and other variables denotes that we are calculating 

the cross section in quark (parton) rather than nucleon scattering. The Mandelstam 

variables, s, i and u are defined as follows, 

i 

u 

(k- k') 2 

(~p- k')2 

where we have taken the Q2 
---+ oo limit. 

(2.14) 

(2.15) 

s(y- 1), (2.16) 

Equation (2.13) can be converted into a double differential cross section, for the pur­

poses of comparison with Eq. (2.8), 

(2.17) 

where we have inserted a factor of 1 = J~ dx8(x- 0, a relation that can be verified by 

imposing the mass-shell constraint on the outgoing quark (i.e. k'2 = 0). 

Comparing Eq. (2.17) with Eq. (2.8), we can make the following identification, 

(2.18) 
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This relation is known as the Callan-Gross relation and verifies the Bjorken scaling 

relation of Eq. (2.10), within the naive parton model. It also suggests that F2 probes 

a quark carrying momentum fraction ~ = x. 

We now come to the central assumption of the parton model. We assume that the 

quarks in a nucleon can be described by probability density functions, q(e), which are 

representative of the probability of a quark q having momentum ~Pw The nucleon 

structure functions can then be obtained by averaging the quark structure functions, 

Fk> over the range of quark momentum fraction 0::; ~ ::; 1, and then summing over all 

quarks in the nucleon. This average takes the form of the following integral, 

L:e~xq(x). (2.19) 
q,lj 

Intuitively, this makes perfect sense. The momentum structure of the nucleon is simply 

a product of the combined momentum structure of its constituents. In general, there 

are contributions to the nucleon structure functions not just from the three constituent 

quarks (known as valence quarks) but also 'sea quarks' (comprised of virtual quark­

antiquark pairs), as well as gluons. Also, beyond the naive parton model, these results 

are subject to QCD corrections. 

By applying similar reasoning to that used to obtain Eq. (2.19) we can derive nucleon 

structure functions, in terms of individual quark distribution functions, for a variety of 

scattering processes. Below we state some of these results which are relevant to later 

chapters. For simplicity, we consider contributions from the first four quark flavours 

only. For electron-proton scattering we have the following, 

ep 4 1 [ - ] F2 = gx [u + u + c + c] + gx d + d + s + s , 

and in (anti)neutrino-proton scattering we can obtain, 

F~P = 2x [d + s + fi + c], 

FfP 2x ( u + c + d + s) . 
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From these, F1 structure functions can be obtained using the Callan-Gross relation, 

2xF1 = F2. 

We can also define a set of spin-dependent structure functions, 91 and 92, which describe 

the scattering of beams of leptons and hadrons polarized either parallel or anti-parallel 

to each other. These structure functions characterize the spin structure of nucleons and 

from them, several useful observables can be derived. In the naive parton model they 

are given by, 

91(x) 
1 

2 L e~ [~q(x) + ~q(x)], (2.23) 
q 

92(x) = 0, (2.24) 

where ~q = q T - q!. The functions q l and q! are distribution functions representing 

the probability that the spin of the quark is respectively parallel and anti-parallel to 

the spin of its parent nucleon. The above result for 92 is misleading and when a more 

sophisticated version of the parton model is applied, 92 has a magnitude similar to that 

> ::>f 91 (see Ref. [59]). 

The nai've parton model gives us an intuitive grasp of the behaviour of nucleon con­

stituents. However, as the title suggests, this view is rather over-simplistic and it is 

easy to imagine, qualitatively, how Bjorken scaling is violated by radiative corrections. 

In order to quantify this violation, it is necessary to perform a more rigorous analysis 

of DIS, within QCD. 

2.3 Field theory description of DIS 

If we assume that the scattering in Fig. 2.1 occurs via photon exchange then the am­

plitude for the process can be written as, 

(2.25) 

where the u(k)'s represent spinors for the incoming and outgoing leptons and jJ.l(x) 

is the electromagnetic current. The cross section is proportional to the amplitude 

-squanid,- and because ofthe natur~of the di-ag~~m in Fig: 2.1, ~e can sep~rate it out 
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into leptonic and hadronic components LJ.l.V and w/-Ll/1 

d2(} L WJ.l.V 
dxdy <X J.LV · (2.26) 

For photon exchange, LJ.Lv is fairly simple and describes the nature of the virtual photon 

probe. At leading order (10) it has the form, 

(2.27) 

The hadron vertex in Fig. 2.1 dominates the energy dependence of DIS observables and 

because of this, we neglect radiative corrections to the lepton vertex. 

WJ.Lv is descriptive of the internal structure of the nucleon and from Eqs. (2.25) and 

(2.26) can be determined to be, 

(2.28) 

We can project out different tensor structures of WJ.Lv, and parameterize these structures 

using three functions: wi (i = 1, 2, 3), 

(2.29) 

In the case of neutrino scattering, Eq. (2.29) must be supplemented by an additional 

term, 

(2.30) 

Via the optical theorem, WJ.Lv can be related to the forward scattering amplitude for 

1 N ---+ 1 N, given by, 

= 

where 

1 
-Im Ti. 
7r 
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The Wi functions are directly related to the structure functions of Eq. (2.8) by, 

(2.34) 

(2.35) 

(2.36) 

From Eq. (2.31), it is clear that the product of operators T[jft(z)jv(O)] is our link from 

the structure functions to the QCD Lagrangian. The study of this object and the 

extraction from it of perturbative predictions forms the basis of the next few sections. 

2.4 The operator product expansion approach to DIS 

Our link between the hadronic tensor and the QCD Lagrangian is the time-ordered 

product of operators T[jft(x)jv(O)J. The OPE, which we discussed very briefly in chap­

ter 1, allows us to expand this product in terms of a set of well-defined operators, 

ofJ ... ftl; (x), 

(2.37) 

where the expansion is in powers x2 (light-cone expansion). The most dominant terms 

in Eq. (2.37) are those for which the Wilson coefficients, Ci(x2 ) are most singular, and 

therefore our task must be to identify these terms. 

From the nature of the current jft(x), we can determine the appropriate set of operators 

in Eq. (2.37) [60, 61] (see also Refs. [62-64]). We identify three different types of 

operator: a set of non-singlet3 (NS) operators, 

il;-1 -
----zy-('ij!Aa/fti (1 ± a15 )DIL2 

••• DIL1;'lj! +permutations)- trace terms, 

(2.38) 

and two sets of singlet operators associated respectively with quark and gluon fields, 

·l;-1 

ot;~ .. ftl; = 'TCiiil/-tl (1-± Ct/5)Di1:2 ; •• DILl;¢ +·permutations)- trace terms; 

3 Here the terms 'non-singlet' and 'singlet' refer to SU ( N 1) of flavour. 
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(2.39) 
·1;-2 
z (FJ-LJ-t] DJ-t2 DJ-tt;-l (FJ-tt;) + t t' ) t t (2/)! a1 a1a2 • • • a 1;_2at;-l J-t a1; permu a wns - race erms. 

(2.40) 

Here, the addition of permutations has the effect of symmetrizing the operators in their 

Lorentz indices, and Aa are the generators of SU(NJ ). The value of a depends on the 

type of scattering considered. For neutral current scattering with Q2 « M~ we have 

a = 0, and for charged current scattering a = 1. 

The Wilson coefficients can be decomposed into contributions from the three different 

tensor structures that will contribute to each of the Ti functions, 

(2.41) 

In the absence of dimensionful parameters, the functions h~k) (x2 ) consist of only a 

single power of x 2 . Consequently, the dominant operator contributions in Eq. (2.37) 

are those for which the value of this power is lowest. By applying dimensional analysis 

to Eqs. (2.37) and (2.41), we can determine that these dominant operators are those 

which have lowest twist, ti, defined as, 

(2.42) 

where di and li are, respectively, the mass dimension and spin of the operators O~] ... J-tt;. 

The operators in Eqs. (2.38) - (2.40) have ti =2 and represent the lowest twist operators 

contributing to Eq. (2.37); we neglect all operators that are of twist-4 or higher. 

The Wilson coefficients of Eq. (2.41) can be rewritten in terms of partial derivative 

tensors, 

(2.43) 
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where the functions HY) (x2) are constructed such that they reproduce h~k) (x2) when 

acted upon by the derivatives. The three components of Eq. (2.43) correspond to the 

three different tensor structures of Eq. (2.32). Therefore, each of the functions HP) (x2 ), 

H?) (x2) and Hi(
3

) (x2 ) is relevant to a particular structure function. This can be seen 

by substituting Eqs. (2.43) and (2.37) into Eq. (2.31) yielding, 

TJLv(P, q) = L Ai ( -gJLv(2x)-l; if?) (q2 ) + ~:; (2x)-l;+l ifi(
2

) (q2) 

l 

(2.44) 

where Ai is a set of constants derived from the nucleon matrix element, 

(N IOJLJ ... JL'IN ) AwJ.tl wJ.tt· , p i ' , p = i.V ... 1' • + ... ' (2.45) 

and the functions ifi(k) ( q2) are constructed from the Fourier transforms of Ht> (x2), 

(2.46) 

where J1 = J3 = 0 and J2 = 1. Comparing Eq. (2.44) with Eq. (2.32) we can now make 

the following identifications, 

(2.47) 

(2.48) 

(2.49) 

The next step is to show how the functions ift>(q2 ) can be related to the structure 

functions via their Mellin moments. 
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Moments of structure functions 

Using the OPE approach, we cannot predict the energy dependence of the structure 

functions directly, rather, we can do so only indirectly via the moments of the structure 

functions. We define the moments as the following Mellin transforms of Fi, 

(2.50) 

If we assume that the functions~ are symmetric under the transformation,4 x ~ -x, 

then we can infer from Eqs. (2.47) - (2.49) that they will have a branch cut running 

from -1 :::; x :::; 1. Using Eqs. (2.34) - (2.36) together with Eq. (2.33), and the existence 

of the branch cut discontinuity, Mk(n; Q2) can be written in terms of the functions~' 

( 2) 1 1 n-1 Mr n;Q = -
4 

. dxx T1, 
7n <{/ 

1 1 d n-1 -
4 

. XX vT3, 
7r~ <{/ 

(2.52) 

where 1ff represents a large, circular, anticlockwise contour in the complex x-plane. 

This contour integration has the effect of isolating individual terms in the Laurent 

expansions of Eqs. (2.47) - (2.49); via the residue theorem, this leads to, 

(2.53) 

where, for the nth moment, the sum is over all Wilson coefficients5 flt)(q 2) corre­

sponding to operators of spin li = n. 

The key to linking the Wilson coefficients to QCD lies in studying the RG behaviour of 

the composite operators 0~1 
... 

111
;. Through this study, it is possible to predict the scale 

dependence of fli(k)(q2), and hence of the moments, giving us access to a rich testing 

ground for QCD phenomenology. 

4 The following derivation is slightly more troublesome in the case of F3 . However, the final result 
holds for all structure functions. 

~Although-.Ci (x~,)~are •the true -Wilson coefficients,- we also-- refer to H-fkl(x2)- and _H:jkl (q~) as such, 
due to their close connection. 
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2.5 Renormalization group analysis of composite opera­

tors 

In this section, we study the RG behaviour of the composite operators in Eqs. (2.38) 

- (2.40), with the intent of determining the scale dependence of the moments. This 

analysis runs parallel to that carried out in section 1.5 and follows the same line of 

reasoning. 

The operators of Eqs. (2.38) - (2.40) become singular upon the inclusion of radiative 

corrections. These singularities are different in nature to those considered in section 

1.5.1; they are caused by low energy (soft), non-perturbative QCD interactions which 

cannot be treated perturbatively. The singularities can be dealt with using renormaliza­

tion, but this particular form of renormalization is termed factorization, in reference to 

its association with the 'factoring out' of non-perturbative physics. As a consequence of 

this new renormalization, the operators orl···f.tli depend on the relevant renormalization 

scale and the subtraction procedure used to define the finite part of the regularization. 

Together, these define the factorization scheme (FS). 

To study the behaviour of orl···f.tli under variations in RS parameters, we consider the 

behaviour, under renormalization, of OPI Green's functions constructed from ordinary 

QCD fields and composite operators. By this we mean Green's functions in which one 

or more external legs/fields are replaced by an operator of the type in Eqs. (2.38) -

(2.40). Figure 2.2 shows the Feynman diagram depiction for such a Green's function; 

the double line represents the inserted operator. Green's functions constructed from 

composite operators are termed 'inserted' and are denoted by using a subscript Oi. 

Just as ordinary Green's functions require renormalization, so too do inserted Green's 

functions, due to the above-mentioned singularities in the bare operators of Eqs. (2.38) 

- (2.40). 

In analogy with Eq. (1.86) we can relate the renormalized inserted Green's functions to 

their bare counterparts, 

G-(n)( ) z zna/2zn.p/2c-(n) ( ) oi p,g,~,m,M = ij A 1/J Oj,B p,gs,~s,ms. (2.54) 

Here, ZA and Z1/J are the renormalizationcconstants .from Eq. (1.12), and M is a new 

renormalization scale, called the factorization scale. M is distinct from J,L, it con-
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' ·tj; 

Figure 2.2: Example of a diagram for an inserted Green's function. The double line 
represents the insertion of a composite field replacing a normal external propagator. 

trois the renormalization of composite operators and determines at what scale non­

perturbative effects are factored out. Also, we have limited ourselves to inserted Green's 

functions with only one operator insertion, although the results generalize easily. 

In Eq. (2.54) we have introduced a new renormalization constant, Zij· This constant 

controls the renormalization of the operators, serving to remove singularities in Oi 

generated by radiative corrections. It is defined (in analogy with Eq. (1.72)) by, 

(
p,fll .. ·lll;) - z .. fl'lllloo·lllj 
vi B - tJVj , (2.55) 

where arl· .. fll; written without a subscript B now denotes the renormalized operator. 

For the remainder of this section (and as we have done already in Eq. (2.54)) we omit 

the string of Lorentz indices from operators, Green's functions and coefficient functions. 

In general, Zij is a matrix. For instance, in the case of singlet operator contributions, 

Eq. (2.55) is of the form, 

i,j = q, g. (2.56) 

However, in the NS case, Eq. (2.55) simplifies to, 

(2.57) 

Where zNs is nOt a matrix. 
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The fact that the bare Green's functions must be independent of RG parameters allows 

us to derive the RGE for inserted Green's functions. In analogy with Eq. (1.87), we 

have, 

[ ( a a ) J -(n) _ _ 
oij M aM +!39 ag +J[J) -lij G0 i (p,g,~,m,M) - 0, (2.58) 

where J[J) is defined in Eq. (1.89) and we have defined an object known as the operator 

anomalous dimension matrix, /ij; it is related to the renormalization constants Zij by, 

(2.59) 

The above renormalization constant depends on n and therefore, so does /ij. By 

multiplying the expression in Eq. (2.37) by nc gauge fields and n'I/J fermion fields and 

then taking the Fourier transform, we obtain an equation relating Gj~"j" (an inserted 

Green's function formed from the operator product on the LHS of Eq. (2.37)) and Go;, 

(2.60) 

The current jJJ. is conserved and therefore requires no renormalization further to that 

carried out in section 1.5. Consequently, Gj~"j" has no operator anomalous dimen­

sion and therefore obeys the RGE of Eq. (1.87), with f./, --t M. Acting on Eq. (2.60) 

with the term in the square bracket in Eq. (2.58), and then using Eq. (1.87) gives us 

an RGE for the coefficient functions Ci, 

0. (2.61) 

Substituting for Ci using Eqs. (2.43) and (2.46) then gives, 

0. (2.62) 

We can now see how, by solving the above equation, the scale dependence of the 

moments can be obtained and hence how the structure functions can be compared with 

QCD predictions over a range of energies. The simplest case is that in which we have 

contributions from only NS operators. Because there is only one of these operators of 
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lowest twist per value of spin (and hence of n), we can write the moments as, 

(2.63) 

The scale dependence of the moments can then be determined by solving Eq. (2.62), 

with An being determined by fitting to data. 

A brief note on the calculation of the anomalous dimension 

The anomalous dimension of Eq. (2.59) describes the renormalization of inserted 

Green's functions, and hence its perturbative expansion can be computed by consid­

ering loop corrections to these functions. In the case of NS operators, the anomalous 

dimension is particularly simple. We need to consider the inserted Green's function con­

structed from two external quark legs and an NS, twist two, spin n operator of the type 

in Eq. (2.38). From Eq. (2.54) we can determine that this undergoes the following 

renormalization, 

Z Nsz (a- (2) ) 
= n ~ o~s s' (2.64) 

In analogy with Eq. (1.76) and Fig. 1.8, this renormalization can be represented dia­

grammatically in terms of diagrams of the type shown in Fig. 2.2. The evaluation of 

these diagrams is slightly more difficult than that of ordinary Green's functions, but 

the principles are the same: regularization of divergent integrals followed by determi­

nation of the singular nature of the renormalization constants. The calculation was 

first performed in Ref. [65], and from the results therein, we can determine that z;:s 
has the form, 

1 + !!_cF 1- + 4"'- . ( 2 n 1) 
4c- n(n + 1) ~ s 

(2.65) 

From this, and using Eq. (2.59), we can evaluate the anomalous dimension to order a, 

( ) __ 1_ 0 ZNS 
'YNs,n a = n zNs 81nM n 

(2.66) 

(2.67) 
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In general, the anomalous dimension takes the form of a perturbative expansion; 

/Ns,n(a) = -d(n)a- d1(n)a2 - d2(n)a3
- ... , (2.68) 

and from Eq. (2.67), we can determine d(n) to be, 

CF ( 2 n 1) d(n) = - 1- +42::- . 
2 n(n + 1) s 

s=2 

(2.69) 

In the singlet case, the anomalous dimension is a matrix and has the form, 

ls,n(a) = (2.70) 

(2.71) 

The coefficient matrix d was first obtained in Ref. [60], the elements have the following 

form, 

- 1- +4 -CF ( 2 n 1) 
2 n(n + 1) ?; s ' 

(2.72) 

- 2(n2 + n + 2) TRN 
n(n + l)(n + 2) 1' 

(2.73) 

(2.74) 

CA (1 4 4 n 1) 2 
d99(n) = 2 3 ~ n(n- 1) - (n + 1)(n + 2) + 4?;; + 3TRNJ. (2.75) 

The first NLO calculations of the non-singlet and singlet anomalous dimension were 

carried out in Refs. [66, 67] and [68, 69] respectively. These results were subsequently 

obtained in either simplified or corrected forms in Refs. [70-74]. NNLO non-singlet and 

singlet coefficients were first obtained in Refs. [75] and [76] respectively, but only for a 

limited set6 of values of n. This set was then extended in Ref. [77], but only recently 

have analytic expression for the anomalous dimension, applicable to both odd and even 

n, peen optail).ed J7~, 7Q]. 

6 The singlet and non-singlet coefficients were only available for even and odd values of n respectively. 
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2.6 Factorization 

The renormalization carried out on the operators Oi in section 2.5 is more commonly 

known as factorization, in reference to the fact that we are separating (or factoring out) 

long range and short range interactions. Our lack of knowledge of non-perturbative dy­

namics inside the nucleon manifests itself as singularities in the radiative corrections 

to the operators in Eqs. (2.38) - (2.40); these are indicative of the fact that we are 

applying perturbation theory to an energy region where it ought not to be applied. 

The factorization scale M represents a boundary between long-range and short range 

effects. Above Jvf we apply perturbation theory, but below, we parameterize the un­

known non-perturbative effects using the constants An. As a consequence, the range 

of validity of this approximation mirrors that of the perturbative approximation itself. 

For large M, we are applying perturbation theory to the higher Q region only and 

therefore the factorized result will be a good approximation. However, the lower we 

push M the more we step out of the energy range in which we should be applying 

perturbation theory, and therefore the factorized result tends to an unphysical limit 

as M -t A. In this way, the concept of asymptotic freedom propagates through to 

factorized results. 

Of course, as we might have expected, there is a price to pay for our ignorance of 

the non-perturbative effects. In order to define factorized predictions for observables 

a factorization scheme (FS) must be chosen. As a result of this freedom of choice, 

predictions for the moments will now suffer from both factorization and renormalization 

scheme (FRS) dependence [80]. This doubles the level of ambiguity and hence increases 

the theoretical error of any predictions made. The standard approach to this is to 

choose some physical scale (such as M = /1- = Q) and apply the same scheme (such 

as MS) to both renormalization and factorization. Although this setting of scales 

is convenient, it is not necessary. We shall show in chapter 6 that we can quantify 

factorization scheme dependence in the same way we have done with RS dependence, 

and consequently we can apply the ideas behind CORGI to FRS dependence. 

2. 7 DIS observables of interest 

The DIS observables of interest in this thesis fall into two categories. These are sum 

rules and moments of structure functions. 
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2.7.1 Sum rules 

Sum rules are combinations of structure functions integrated over the full range of x. 

Technically they are just combinations of the lowest n moments. However, the combi­

nations are chosen such that they give particularly simple results in the parton model, 

often related to conserved quantities. These results are then subject to QCD correc­

tions, and therefore the sum rules serve as a good test of both the parton model and 

QCD. 

In the language of the OPE, the reason for the simplicity of sum rules is the existence 

of certain combinations of operators which do not require renormalization, and hence 

have vanishing anomalous dimensions. Because of this they do not suffer from FS 

dependence. Like all DIS observables, the sum rules are Euclidean i.e. they are defined 

for space-like momenta (Q2 = -q2 > 0) only. 

The Gross-Llewelyn Smith sum rule 

The Gross-Llewelyn Smith (GLS) sum rule [81] is derived from (anti)neutrino-proton 

scattering, and is defined by the following integral, 

(2. 76) 

Using the results from the naive parton model in Eqs. (2.20) and (2.21), this sum 

rule can be related to an integral over valence quark distribution functions, 

KcLs(Q) = 11

dx(d-u+u-d) 

= 3, (2.77) 

and this implies that KcLs(Q2) counts the combined number of up and down quarks in 

the proton. Here, qv = q- ij is known as the valence quark distribution and represents 

the number of 'non-virtual' quarks. The parton model result in Eq. (2.77) is subject to 

perturbative corrections, 

KcLs (2.78) 
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Here, we have ignored corrections from light-by-light scattering diagrams. The per­

turbative corrections K(a) take the canonical form of a series expansion in powers of 

a, 

00 

K(a) = a+ L knan+l. (2.79) 
n=l 

The coefficients k1 and k2 were obtained in Refs. [82, 83] and [84] respectively. In 

MS with J-L = Q they are given by, 

(2.80) 

(2.81) 

The unpolarized Bjorken sum rule 

The unpolarized Bjorken sum rule [85] is also derived from (anti)neutrino-proton scat­

tering, but refers to F1. It is defined as follows, 

where, 

UuBj(Q) = 11 

dx (FfP- F~P) 

1 
= 1- 2,CpU(a), 

00 

U(a) = a+ L Unan+l. 
n=l 

(2.82) 

(2.83) 

(2.84) 

The LO, NLO and NNLO coefficients of U(a) were obtained in Refs. [86], [87] and [88] 

respectively. In MS with J-L = Q they have the following form, 

4 (91 11 ) --Nt + -CA- -Cp 9 36 8 , (2.85) 
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2 (8285 ) ( 2731 91 95 ) +CA - + 5(3 -10(s + CACF --- -(3 + -(s 
648 144 3 2 

2 (313 47 ) +CF 
32 

+ 2(3- 35(s . (2.86) 

The polarized Bjorken sum rule 

The polarized Bjorken sum rule [89, 90] is the polarized scattering analogue of KuBj. 

This sum rule is based on current algebra and SU(2) isospin symmetry, and is defined 

as, 

(2.87) 

As before, this sum rule can be split into a parton model result and perturbative cor­

rections. These corrections are identical to those for KcLS except that KpBj has no 

corrections due to light-by-light scattering, 

(2.88) 

Finally, there are a few general points to be made in relation to DIS sum rules: 

• Each of the above sum rules will receive non-perturbative corrections of the form, 

oo (A2)n LCn Q2 
n=l 

(2.89) 

These correspond to contributions from operators in Eq. (2.37) with twist greater 

than two and consequently, they are commonly known as higher-twist correc­

tions. They are suppressed relative to the perturbative corrections due to the 

sub-dominance of non-leading twist contributions in the OPE. In the GLS case 

the magnitude of these corrections has been estimated in [91-96]. 

• As a result of the anomalous dimension relevant to each sum rule vanishing, they 

do not suffer from a dependence on the choice of factorization scheme; conse­

quently we need only consider their renormalization scheme dependence. 

-. 'Botli 'tfiEfi>Olai'izecrBjorRefi · rura 'GES:sum'-rules 'nave'' been measured 'in "exper­

iment in Refs. [97] and [98-102] respectively. Currently, no data exists for the 
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unpolarized Bjorken sum rule. 

2.7.2 Moments of structure functions 

The moments were defined for each of the structure functions in Eq. (2.50). In this 

thesis, we will be concerned with moments of F3 in neutrino-nucleon scattering, and 

moments of F2 in electron-proton scattering. 

Moments of F3 in neutrino-nucleon scattering 

These moments are defined as follows, 

(2.90) 

Due to the fact that the only lowest twist operators which contribute to these moments 

are of NS nature, the expression for these moments is particularly simple, 

(2.91) 

From now on, we drop the v N superscript, and assume that the nature of the scattering 

is understood. 

In section 2.5 we saw how the scale dependence of the moments can be obtained in 

terms of the beta-function equation and anomalous dimension, via the RGE. From 

this point on, we change notation slightly to that used in Ref. [103]; this facilitates the 

separate study of factorization and renormalization dependence. The moments can be 

factorized in the following form, 

(2.92) 

where (NIVn,Ns(M)IN) is known as the operator matrix element. It is derived from the 

operator in Eq. (2.38), factorized at the scale M. Cn(Q, M, ft, a(~-t)) is the coefficient 

function; it is derived from the Wilson coefficients in Eq. (2.43) and depends on both 

the renormalization and the factorization scheme. 

The M dependence of the NS operator mattix element is goVerned by its anorhalous 
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dimension, 

M 8(0(M)) 
(O(M)) aM = /n,Ns(a) = -d(n)a- d1(n)a2 - d2(n)a3 - ... , (2.93) 

where we have written the operator matrix element as simply (O(M)). The coupling 

relevant to the operator matrix element is governed by the following beta-function 

equation, 

M 8a 
aM {3(a) (2.94) 

The coefficients di ( n) depend on the factorization procedure just as the coefficients ci 

depend on the renormalization scheme one adopts. Only the subscript-free coefficients 

i.e. b, c, and d, are FRS invariant. 

The coefficient function, Cn, is both RS and FS dependent. It can be written as an 

expansion of powers of the coupling evaluated at M == fL, 

(2.95) 

where a= a(M = fL). One-loop, two-loop and three-loop expressions for the coefficient 

functions can be found in Refs. [104], [105-113] and [75-77] respectively. 

We will return to these equations in chapter 6 when we come to study F3 moments in 

more detail. For now we simply state the 10 expression for the moments, obtained by 

taking the 10 forms of Eqs. (2.93), (2.94) and (2.95). 

(2.96) 

where An is a set of undetermined FRS invariant non-perturbative parameters. In 

chapter 6 we extend these expressions to NN10 and then subsequently adapt them to 

the CORGI and EC representations. 
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Moments of F2 in electron-proton scattering 

In the case of F2 moments, we must consider contributions from both singlet and non­

singlet operators, 

(2.97) 

The NS part has a structure identical to that of the F3 moments. However, the singlet 

component is more complicated. 

The singlet operators of lowest twist mix under renormalization, and hence M 8 (n; Q2) 

receives contributions from both the quark and gluon operators of Eqs. (2.39) and 

(2.40). In this case, the moments can be factorized in the form, 

(2.98) 

c; has a quark and a gluon component and the anomalous dimension, '"'f, is a 2 x 2 

matrix; 

'"Yn, s (a) (2.99) 

(2.100) 

Consequently, the operator matrix element also has q and g components. The ma­

trix/vector nature of C, 0, '"Y etc. is denoted by bold typeface. C and '"Y can both be 

written as expansions in powers of the coupling: 

'"Y n, s (a) (2.101) 

(2.102) 

(2.103) 

The FS dependence of the operator matrix element is described by the following equa­

tion, 

M a(o;(M)) ( )( s ( ) 
oM = '"Yn,s a On M) . (2.104) 

These expressions are somewhat harder to solve than their F3 counterparts; we will 
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return to them in chapter 7 when we come to study F2 in more detail. For now, 

we state the 10 result for the moments. In order to obtain this it is necessary to 

diagonalize d(n); Eqs. (2.98) - (2.103) then yield, 

(2.105) 

where A±(n) are the eigenvalues of d(n), and A; are sets of non-perturbative FRS 

invariant constants, analogous to An. 

2.8 Summary 

In this chapter, we presented a brief introduction to deep inelastic lepton-hadron scat­

tering. We introduced the nai've parton model and showed how it can give us a quali­

tative understanding of lepton-hadron interactions in terms of quark distribution func­

tions. We then described how the OPE formalism can be used to calculate QCD 

corrections to the parton model. 

We showed how the RGE for composite operators is derived and demonstrated how it 

can be used to determine the scale dependence of the moments of structure functions. 

We then presented a brief discussion of factorization and drew analogies between it 

and the renormalization process. Finally we defined the DIS observables which we will 

study in this thesis. 
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The large-order behaviour of 

perturbative QCD 

In this chapter we discuss the behaviour of perturbation theory at large-orders of the 

coupling. The validity of perturbation theory depends very much on the convergence 

properties of the perturbative expansion and up to this point, it has been a tacit as­

sumption that this expansion is absolutely convergent, for sufficiently small values of 

the coupling. In this chapter, we challenge this assumption. In so doing, we will 

discover that the perturbative expansions of all QCD observables are not convergent, 

rather they are asymptotic. As a consequence of this, observables can only be un­

ambiguously defined when perturbation theory is supplemented with information from 

non-perturbative QCD. In this way a bridge is formed between the perturbative and 

non-perturbative physics. 

3.1 Introduction 

In 1952, Dyson put forward an intuitive argument suggesting that the perturbative ex­

pansions for all QED observables are divergent [114], with the nth-order perturba­

tive coefficients behaving as n!. Subsequently, this was confirmed and it was discovered 

that QFT in general suffers from the same problem. Two sources of this divergence 

have since been identified: the proliferation of Feynman diagrams at large-orders, and 

the behaviour, under renormalization, of a single class of diagrams. The latter is re­

ferred to as renormalon divergence - it is the most troublesome and arguably the most 
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interesting of the two [115, 116]. 

The existence of renormalons has inspired a series of all-orders calculations of the per­

turbative coefficients for certain observables. Their generic form has been determined, 

and in some cases their exact form has been obtained in the large-Nt limit. Remarkably, 

these results allow the full form of the coefficients to be approximated at all-orders, via 

the leading-b approximation. 

These results also confirm the factorial nature of perturbative coefficients. As a con­

sequence of this, we are forced to weaken the assumption that observables can be 

unambiguously defined by their perturbative expansions. Indeed, by studying the 

nature of asymptotic series, we are led to conclude that perturbation theory cannot 

be a complete description of nature, that it can only determine the value of an ob­

servable to within a finite maximum accuracy, and that it must be supplemented by 

non-perturbative physics in order to be completely well-defined. 

Once we have understood this, we can use techniques such as Borel resummation to 

make sense of the factorially divergent sum, and also to extract information on non­

perturbative effects. In this way, the study of large order perturbation theory can be 

used to improve upon the accuracy of standard fixed-order (FO) predictions and also 

highlights the caveats which apply to the use of FO results. Perhaps most usefully, 

this also gives us insight into the interplay between perturbative and non-perturbative 

physics. 

The material in this chapter is organized as follows: 

We begin by outlining Dyson's argument and how it hints at a factorial form for the 

perturbative coefficients at large-orders. We then briefly discuss the two sources of di­

vergence so far discovered in QCD: instantons and renormalons. Next, we describe some 

general properties of asymptotic series and discuss how the Borel transform technology 

can be used to define such series in a more meaningful way. 

We present a discussion of renormalons in QED and QCD, emphasizing how their 

existence facilitates the obtaining of all-orders leading-Nf results. We then introduce 

the leading-b approximation and describe how it can be used to approximate the full 
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form of perturbative coefficients at all-orders. Finally, we describe how the inherent 

ambiguities associated with perturbative QCD (generated by renormalons) provide a 

link between perturbative and non-perturbative QCD. 

3.2 Dyson's Argument 

The potentially divergent behaviour of perturbative coefficients was first highlighted 

by Dyson. A simple, intuitive argument was presented which suggested that all QED 

perturbative expansions are divergent [114]. The argument is as follows: 

Perturbative corrections to a generic QED observable, :F(a) can always be expressed 

in the following form, 

:F(a) 
00 

Lfnan+l, 
n=O 

(3.1) 

where a = e2 / 4n is the QED coupling. If we assume that this series is absolutely 

convergent for some small positive value of a, then the series must have a finite radius 

of convergence in the complex-a plane. Consequently, the series will also converge for 

small negative values of a. 

Consider the physical implications of adopting a negative value for a. The most 

dramatic consequence is a reversal in the nature of electromagnetic interactions; like 

charges will attract each other and unlike charges will repel. Let us now examine the 

effect this would have on a system of N electrons confined to a 'small' region of space. 

Due to the nature of the potential between two electrons, the energy of this system 

can always be lowered by simply adding another electron. Moreover, if the region of 

confinement is small enough, then this drop in the total energy of the system can be 

larger in magnitude than that required to create an e+e- pair. 

We can now imagine a scenario in which (due to quantum fluctuations) a number of 

e+e- pairs are created from the vacuum and subsequently separate from their partners 

in such a way that separate concentrations of electrons and of positrons are formed. 

This configuration of the system reduces its total energy, and this reduction can be 

such that it cancels out the energy 'borrowed' from the vacuum in order to initially 
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create the e+ e- pairs. 

From this we conclude that the vacuum is unstable i.e. it can always decay into a state 

with lower energy. This state is pathological in the sense that eventually an infinite 

number of pairs would have to be created in order to minimize the energy of the 

system. Hence it is unimaginable that observables in such a system could be described 

by convergent perturbative expansions. 

If we now reverse our initial line of reasoning, we see that F(a) cannot converge for 

negative values of a and hence it must have a zero radius of convergence. This in turn, 

suggests that F(a) has a singularity at a= 0 and that the series in Eq. (3.1) is at best 

asymptotic and at worst completely divergent. 

The nature of the coefficients 

We can shed light on the implications of Dyson's argument for the exact nature of the 

perturbative coefficients by revisiting the system of N electrons. The total energy of 

such a system is given by, 

1 2 
E "" NT+ -N Va 

2 ' 
(3.2) 

where Tis the mean kinetic energy per electron, V is the mean potential energy between 

two electrons, and N 2 "" ~N(N- 1) counts the number of interacting electron pairs. 

For the physical (a > 0) case, there is a stable minimum at N = 0. However, for the 

a < 0 case, N = 0 is only a local minimum. There is then a peak at N = Ncrit, where, 

1 

r;!' (3.3) 

and above Ncrit, the energy decreases as E"" -N2 . The existence of no stable minimum 

is a manifestation of the pathology described above. 

From Eq. (3.3), we can infer that the system becomes unstable when Ncrit electrons are 

present and hence that Dyson's vacuum instability occurs via the creation of"" Ncrit 

e+ e- pairs from the vacuum. A Feynman diagram describing such an event has a factor 

of aNcrit associated with it, and therefore it is natural to assume that the divergence 

of F(a) is related to the behaviour of the set of coefficients, fn>N .t. We know that - en 
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the series in Eq. (3.1) must experience an initial period of convergence (QED and QCD 

perturbation series appear to converge at low orders of a). However, at some point 

this must be followed by a growth in successive terms in the series. Hence, we interpret 

Ncrit as a point intermediate between these regions of convergence and divergence. 

Therefore, at n"' Ncrit, we have, 

and then from Eq. (3.3), 

1 , 
a 

fn+1 11.r In "' 1Vcrit "' n. 

(3.4) 

(3.5) 

(3.6) 

This directly implies that fn "' n! for n :;:::, Ncrit, and we conclude that the divergent 

nature of F(a) highlighted by Dyson manifests itself as a factorial growth of the coef­

ficients. Furthermore, we recognize factorial behaviour as signalling that the series is 

asymptotic. 

The above argument is not completely rigorous. For instance, it is possible that F(a) 

contains non-perturbative terms of the form e- 1/a and that these are responsible for 

the non-analyticity at a = 0. However, it is now accepted that QED perturbative series 

are indeed asymptotic. Furthermore, this problem is also endemic in QCD, with all 

Green's functions (and therefore all observables) being described by divergent pertur­

bative expansions. In order to be able to make sense of these divergent predictions, 1 we 

need to know more about asymptotic series. However, before we study this in detail, we 

first briefly discuss the known mechanisms by which factorial coefficients are generated 

in QFT. 

1 Care must be taken not to confuse this type of divergence with that which was dealt with using 
the renormalization procedure. Here, we use the word divergent to refer to the n! behaviour of the 
coefficients which is present even after the Green's functions have been renormalized. Indeed, in the 
case of renormalons, it is actually the renormalization process itself which generates the factorial form 
of the coefficients. 
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3.3 Sources of divergence 

The exact cause of the divergence discovered by Dyson has, so far, remained unclear. 

By uncovering the mechanisms by which perturbation series become divergent, it is 

hoped that we can obtain information about the higher-order coefficients and hence, if 

not solve the problem, then at least quantify it. 

Two independent sources of divergence in QFT have so far been identified. The first 

is the proliferation of Feynman diagrams at large-orders, and this source is intimately 

linked with the existence of instantons within QFT. The second source is due to a 

single class of renormalized diagrams, whose contribution grows factorially at large n. 

3.3.1 Instanton based divergence 

This source has been studied extensively in the case of the generalized quantum anhar­

monic oscillator [117, 118]. To give an impression of the mechanism by which this type 

of divergence is generated, we consider the partition function for ¢4 theory in 1 + 0 

dimensions in quantum mechanics, 

(3.7) 

A cursory examination of Z(g) leads us to conclude that it has an essential singularity 

at g = 0. This is most easily seen by examining the behaviour as g -t -g. The 

'potential' term in the Lagrangian changes from one with stable minima to one which 

is not bounded from below. 

Z(g) can be expressed as the following perturbative expansion, 

00 

Z(g) = L Zngn, (3.8) 
n=O 

and the coefficients Zn count the number of possible vacuum diagrams contributing at 

order gn, in ¢4-theory. By expanding the second exponential in Eq. (3. 7) and using the 

definition of the Gamma function given in Eq. (B.l), we can obtain, 

Z(g) = 
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~ ( ( -l)n r (2n + ! ) ) n 
~ yl87f r(n+1) 9

' 

(-4)n 
Zn "' --(n- 1)!, 

47r 

(3.9) 

(3.10) 

where in the last step we have taken the large n limit. Barring any significant can­

cellation between diagrams, and under the reasonable assumption that each diagram 

contributes with equal magnitude2 as n grows, then this result identifies the prolifera­

tion of Feynman diagrams as a source of divergence in perturbation theory. 

A more rigorous analysis of this example [119], confirms this and yields the following 

result for the general form of Zn, 

(3.11) 

Note that there is an apparent paradox in the results above. The divergence of the 

perturbative expansion in Eq. (3.8) would seem to be in direct contradiction with the 

fact that Z (9) is otherwise a perfectly well-defined integral for 9 > 0, and has a finite 

limit as 9 --; o+. The resolution to this paradox lies in the realization that the route 

taken to obtain Eq. (3.10) is flawed. We have adopted a rather cavalier attitude towards 

the exchange of the integral and summation symbols in Eq. (3.9). In general, they do 

not commute and this destroys the convergence properties of what is otherwise a well­

defined integral [21,22]. As a result, we can only ever approximate Z(9) asymptotically 

in the 9 --; 0 limit. 

In gauge field theory, cancellations between diagrams will reduce the divergent growth 

in the coefficients. However, then! behaviour is still present. Indeed, the proliferation 

of diagrams at large n is intimately linked with the existence of solutions to the classical 

equations of motion of a field theory, viz instantons. Specifically, this is caused by the 

presence of instanton-antiinstanton pairs. This source of divergence is present in QCD 

(see Refs. [120, 121] and [115, 122]). 
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k k 

···~ 
Figure 3.1: A renormalon chain comprising of a string of n fermion loops. 

3.3.2 Renormalon based divergence 

Renormalons3 were first identified by 't Hooft as a source of divergence in perturbation 

theory [40]. They are particular to diagrams containing a string of fermion loops as 

an internal propagator. These strings are referred to as renormalon chains, and one is 

shown in Fig. 3.1. The renormalized form of the fermion loops is such that when n 

of them are coupled together and the momentum running through them is integrated 

over, the result contains a gamma function which then generates the n! behaviour of 

the coefficients. 

Using Eqs. (1.66) and (1.67) we can evaluate the contributions from such diagrams. 

For a chain of n fermion loops with momentum k running through it, each bubble 

will contribute "" aN1k2 ln k2 , and each of the propagators linking the bubbles will 

contribute k-2 . Consequently, the chain will have the form, 

(3.12) 

It is when we insert a renormalon chain as an internal line in some larger diagram 

that a factorial form of the coefficients is generated. As an example of this, Fig. 3.2 

shows a diagram depicting the renormalon chain correction to the quark-gluon vertex 

diagram. The diagram in Fig. 3.2 can be understood most easily in terms of the skeleton 

expansion. We refer to the bare quark-gluon vertex diagram as the skeleton diagram 

and can build the final result from its contribution, coupled to the contribution from 

the renormalon chain. 

Crucially, the contribution from the skeleton diagram can be written as a function 

of k2 jq2 , where q2 is the external momentum; we denote this function by ii>(k2 jq2 ). 

2 By this we mean the magnitude of the diagram when stripped of factors of the coupling g. 
3 The term renormalon was first coined in the now famous 1977 't Hooft article [40). Until then the 

only known sources of divergence were instanton based. The newly discovered source of divergence was 
known to be rooted in the renormalization process and hence termed renormalon divergence [115]. 
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Figure 3.2: A diagram of the type used by 't Hooft to demonstrate the existence of 
renormalon divergence in perturbation theory. 

Furthermore, this function can be written as an expansion in positive powers of k2 / q2 

for k2 < q2 and as an expansion in negative powers of k2 for k2 > q2 , with continuity 

at k2 = q2 . 

(3.13) 

(3.14) 

Thus, the order an contribution to the diagram in Fig. 3.2 will have the form, 

(3.15) 

Isolating a single term in the expansions in Eqs. (3.13) and (3.14) in each of the two 

regions yields, 

(1 1 dk2 /
00 

dk2 ) 'tHooftDiagram rv anN1n 
1

. (lnk2)n+ 1+. (lnk2)n 3.16) 
0 (k2) -)! 1 (k2) )2 

Here ]I and ]2 are positive integers, each of which represents a single term in the 

expansion of <P(k2 jq2 ) in each of the regions (Eqs. (3.13) and (3.14)). We ha~e omitted 
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the q2 dependence in the above equation4 and the full result will be a sum over all 

possible values of j1, J2. However, the calculation we have sketched above demonstrates 

how renormalon chains generate factorially divergent coefficients. Via a change of 

variables, the terms on the RHS of Eq. (3.16) can be transformed into Gamma functions 

and hence, 

(3.17) 

This clearly demonstrates that renormalon chains will generate a factorial contribution 

to the coefficients of any observable derived from the diagram in Fig. 3.2. Note also, 

that terms in the expansion for if>(k2 jq2 ) with the lowest values of )i will dominate 

Eq. (3.17). 

The (divergent) form of this diagram's contribution has its origin in the renormaliza­

tion of the initial fermion bubble, specifically its ln k 2 form. Furthermore, this type of 

divergence is present in all Green's functions of all renormalizable field theories. The 

discussion above is not completely rigorous and we will discuss renormalons in more 

detail in a subsequent section. 5 

Clearly the discovery of these two sources of divergence is troubling. However, in order 

to understand the implications for perturbative predictions, we must first understand 

more about divergent and asymptotic series. 

3.4 Asymptotic series 

The revelation that QCD perturbation series are divergent forces us to reassess the 

relationship between an observable and its perturbative representation. Consider the 

perturbative expansion of a generic QCD observable, :F(a), written in terms of the 

coupling a= a 8 j1r, 

:F(a) (3.18) 

4 The explicit q2-dependence disappears in the result of any observable calculated from Eq. (3.16). 
Only q2-dependence in the form of a remains. 

5 For a detailed review of renormalons, see Ref. [115]. 
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Previously, when convergence of this series was assumed, the only limit on its accuracy 

lay in our ability to calculate higher-order terms, and crucially the series had a well­

defined n -> oo limit. This is in contrast to the reality of divergent QCD perturbation 

series. If we assume a typically divergent form of the coefficients Un = n!) then 

calculating Eq. (3.18) to some large maximum n would yield a meaningless result with 

no correspondence to the measured value of the observable. In light of this, it is unclear 

how we should interpret the equals sign in Eq. (3.18). 

Indeed, we can only ever say that the perturbative expansion is asymptotic to the exact 

observable. To understand exactly what we mean by this, we first state the formal 

definition of an asymptotic series: 

Definition 

Consider a function F(a) which is analytic in some domain V, defined by, 

e 
V: I arg(a)l ~ 2, iai ~ p, (3.19) 

where 0 < e ~ 1r /4. In perturbation theory, we approximate such functions using an 

expansion about the point a = 0 (Eq. (3.18)). We can then define a function known 

as the remainder, which evaluates how close the perturbative approximation is to the 

exact function: 

(3.20) 

The series of Eq. (3.18) is then said to be asymptotic to F(a) if it satisfies the following 

condition, 

(3.21) 

and also diverges for a i= 0. In other words, the error associated with an order aN 

approximation must grow more slowly than the next term in the series. In contrast to 

convergent series, the remainder for an asymptotic series does not vanish as n -> oo, 

and we can interpret this as the placing of a limit on the accuracy with which an 

observable can be approximated within perturbation theory. 

We know that asymptotic series are characterized by an initial period of convergence, 
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during which the accuracy of the approximation appears to improve as we move to 

higher-orders. We also know that for large n, this behaviour is reversed and the sum 

begins to diverge. We can therefore infer that, intermediate to these two regions, there 

is an optimal value of n (which we denote by nopt), where the magnitude of successive 

terms stabilizes with respect to n. From the nature of the initial convergence and 

from Eq. (3.21), we can infer that the sum truncated at this point represents the best 

approximation we can achieve. 

Fortunately, Eq. (3.21) allows us to estimate the value of nopt· If we assume the 

following (very general) form of the coefficients, 

(3.22) 

then for large n, this can be approximated using Stirling's formula, 

(3.23) 

Minimizing the remainder with respect to n will yield the value of n which corresponds 

to the best approximation, 

0. (3.24) 

Using this with Eq. (3.23), it can be determined that [123], 

nopt 

Wo [-I t I ( 1 + ! ) J . 
(3.25) 

Here, Wo is the principal branch of the Lambert W function (cf. Eq. (1.116)), and 

this expression is valid providing la/zil (! + !) ~ i· Equation (3.25) can be further 

simplified by taking its large n limit, 

nopt rv I Zai I· (3.26) 

Therefore truncating Eq. (3.18) after lzi/al terms will yield the optimum approximation 

to the full function. 

The error associated with truncating the series at n = N is simply equal to the remain­

der. Hence, from Eq. (3.21), we can determine that the minimum possible error (which 
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we denote by t:(a)) is just fnan evaluated at n = nopt· Hence, 

(3.27) 

From Eq. (3.23) this can be estimated in the large n limit, 

t:(a) 

(3.28) 

The significance of the values of nopt and t:(a) depends principally on the value of the 

coupling a. Assuming that Zi ,...., 1, then in QED we have6 nopt "' 128 and t:(a) ,...., w-56 

[32]. Consequently, the predictive power of perturbative QED is not seriously challenged 

by the large-order behaviour of the perturbative coefficients. 

This is not the case in QCD, where we have7 nopt ,...., 3.5- 8.5 and t:(a) "' w-2 - w-4 

[32]. Clearly this poses a problem, not only does it seriously limit the accuracy of 

perturbation theory (even at NNLO), but it also leads us to question the self-consistency 

of perturbation series with such poor convergence properties. 

Uniqueness 

We have seen that as a direct implication of Eq. (3.21 ), there is an intrinsic error 

associated with any asymptotic series. Furthermore, another consequence of Eq. (3.21) 

is that the series in Eq. (3.18) is not asymptotic to the function F(a) only, but is also 

asymptotic to an infinite class of functions related to F(a). This can be shown by 

noting that, for a generic factorial form of the coefficients Un = Az;nn!) the function, 

F'(a) = F(a) +A exp {-~}, 
6 We take the coupling to be GQED(Q = mz). 
7Here we take GQCD at Q = VJGeV and Q = mz. 
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also satisfies the bound in Eq. (3.21), provided that B cos(() /4) > Zi, A E IR, B > 0 

and 0 < k() < 1r [124]. Therefore, the series in Eq. (3.18) is asymptotic to a class 

of functions F' (a) defined by the above equation, and from this we conclude that the 

series in Eq. (3.18) does not define a unique function. 8 This implies that there is 

some additional information about the observable which is inaccessible to perturbation 

theory. 

In light of this, we rewrite Eq. (3.18) as, 

00 

F(a) ~ L fnan, (3.30) 
n=O 

where the·~· symbol means 'is asymptotic to'. The important conclusion that we draw 

from this is that the asymptotic nature of perturbation theory means that it cannot 

alone define observables in an unambiguous (and hence physically consistent) manner. 

The presence of such ambiguity is troubling. However, we note that the ambiguity (the 

additional term on the RHS of Eq. (3.29)) is non-perturbative in structure. We shall 

see later how, when non-perturbative effects are taken into account, we can recover 

self-consistent predictions for observables within QCD. 

3.4.1 The Borel transform 

The existence of an initial period of convergence for asymptotic series implies that the 

subset of coefficients, fn<nopt, must hold some information about the exact function. 

What though of the terms beyond this period of convergence, fn>nopt? Although 

they have a divergent form, they must still hold information about the exact function, 

since they are obtained directly from it. Indeed, the large-order behaviour of the 

perturbative coefficients (i.e. their behaviour beyond the period of convergence) can 

enlighten us as to aspects of the perturbative and non-perturbative sectors of QCD. 

Yet, how can information about the exact function be extracted from the large n 

coefficients when the series effectively satisfies L~=O fnan = oo? It is obvious that 

studying the series in this form is not practical. We can, however, endow the series 

with some meaning via the Borel transform. 

8 In contrast, the reverse is not true. Each function F(a) defines a unique asymptotic series. 
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We define the Borel transform of the series in Eq. (3.18) as: 

(3.31) 

We observe that this new series has improved convergence properties; any factorial 

divergence is cancelled out. Indeed, if we compare the radius of convergence of the 

Borel transform, PB, with that of the original series, p, using the Cauchy root test: 

P[/ = lim v'lfnl/n!, 
n->oo 

p- 1 = lim v'i!J, 
n->oo 

(3.32) 

we see that a series with p = 0 becomes a series with PB = finite, and a series with 

p = finite becomes a series with PB = oo. In effect, the Borel transform expands the 

radius of convergence such that a factorially divergent perturbation series will have a 

Borel transform with a finite radius of convergence. Redefining the series in this way 

allows us to study the n --> oo behaviour in a more meaningful way. 

The original series :F( a) can be recovered from the Borel transform by means of a special 

Laplace transform, as we shall now demonstrate. Inserting a factor of 1 = r(n + 1)/n! 
into Eq. (3.18) gives, 

:F() = ~f nr(n+ 1) = ~!nan 100 -z nd a LJ na 1 LJ 1 e z z. 
n=O n. n=O n. 0 

(3.33) 

Moving the sum and integral symbols through each other, and making a change of 

variables, then gives the Borel representation of :F(a), 

f:(a) = 

= - e-z/a B[:F](z)dz. 1100 
a o 

(3.34) 

This defines the Borel sum of :F(a). It is tempting to think that this expression is 

equal to that given in Eq. (3.18) - allowing us to omit the tilde symbol. However, 

the switching of the integral and sum signs is not strictly valid in general, and hence 

the above derivation is not entirely mathematically rigorous. In fact, the two series 

definitions :F(a) and f:(a) are asymptotic to each other, f:(a) ~ :F(a). In spite of this, in 

most cases the Borel sum can be used to give more precise meaning to asyrhptotic series. 

Through it, we can obtain a well-defined function which is asymptotic to the observable. 
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Formally, the series in Eq. (3.18) is Borel summable if it satisfies the following require­

ments [124]: 

• The Borel transform, B[F](z), converges inside some radius, 8 > 0. 

• The Borel sum converges for some a =/= 0. 

• B[F](z) can be analytically continued to a strip of the complex z-plane with 

non-vanishing width, bisected by the positive real semi-axis. 

One of the most useful features of the Borel transform is the fact that it can be used to 

classify different asymptotic series. To illustrate this, consider the following two series, 

00 00 

F1(a) = I)-1tn! an, F2(a) = L n! an. (3.35) 
n=O n=O 

Using Eq. (3.31) we can obtain the Borel transforms of these series, and these can be 

resummed as Taylor expansions, yielding, 

fn = (-1tn! 

l 
1 

B[F1](z) = 1 + z 

.!). 

11oo -z/a 1 d - e -- z 
a o 1 + z 

fn 

l 

.!). 

n!, 

1 
1- z' 

11oo -z/a 1 d - e -- z. 
a 0 1- z 

(3.36) 

(3.37) 

(3.38) 

We can see that B[F1](z) and B[F2](z) have poles on the real axis of the complex z­

plane; this is a familiar feature of the Borel transforms of asymptotic series. They are a 

manifestation of the divergent nature of the series expansion of Fi (a) (or alternatively, 

of its zero radius of convergence). The position and nature of the singularities are 

indicative of the specific type of divergence. In general, an alternating sign divergence 

generates poles on the negative real semi-axis, whereas a fixed sign divergence generates 

poles on the positive real semi-axis. The difference is crucial since it is only singularities 

on the positive real semi-axis which lie within the range of integration of the Borel 

integral. These poles cause problems in defining the Borel sum. Indeed, a prescription 

must be chosen for negotiating them, and this freedom of choice generates an ambiguity 

in the evaluation of the Borel sum. In general, divergent series generate poles or 
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branch points on the real axis. A common choice of prescription for negotiating such 

singularities occurring on the integration contour is the Cauchy principal value (PV) 

prescription. This prescription is defined by the following expression, 

PV lb f(x)dx = lim+ [le-E f(x)dx + ib f(x)dx] . 
a E---+0 a c+E 

(3.39) 

F1(a) and F2(a) can be evaluated in terms of the exponential integral function, Ei(x), 

defined in Eq. (B.6), 

F2(a) = e-~/a Ei (~). (3.40) 

F1 (a) requires no prescription and can easily be evaluated. However, the exponential 

integral in F2 (a) must be regulated and hence this Ei function refers to the PV regulated 

exponential integral function (see section B.3). 

We conclude from these examples that an alternating sign divergent series can be re­

summed using the Borel sum technique, and we can ascribe to the series a well-defined 

and unique value. For fixed sign divergence however the situation is less encouraging. 

Singularities in the Borel transform make the result ambiguous. This ambiguity corre­

sponds directly to the possible non-uniqueness of asymptotic series discussed in section 

3.4 and expressed in Eq. (3.29). However, via the Borel transform, we can resum per­

turbative expansions to all-orders and hence represent the corresponding observables 

asymptotically. 

Finally, we study the Borel transform for a more general and realistic asymptotic series, 

in which the coefficients have the form in Eq. (3.22). We have, 

00 

B[f](z) = A L:.::Z;nn-yzn. (3.41) 
n=O 

Using the following result (obtained by using the binomial theorem and then taking 

the large n limit), 

(1- z)-t = f r(n+t) 
n=O r(n + 1)r(t) 
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00 t-1 

""" n n ~ ~ (t -1)! z ' 
n=O 

(3.42) 

we can resum Eq. (3.41) to obtain, 

B[F](z) "'A r(/+1) 
"' ( z ) I'+ 1 . 1--

Zi 

(3.43) 

This Borel transform is similar to those of Eq. (3.37). However, the position of singu­

larities on the real axis is now determined by the sign and magnitude of Zi. The nature 

of the singularities is determined by /, with non-integer 1 corresponding to a branch 

point. 

All QCD Green's functions are related to each other through the Schwinger-Dyson 

equations [125-127]. Furthermore, the Green's functions are related in such a way 

that the positions of singularities in the Borel plane are preserved [40], although the 

nature of the singularities can be altered. Consequently, singularities in the Borel 

transform of one Green's function propagate throughout the entire theory, infecting 

all Green's functions. Therefore in general, the Borel transforms of all QCD Green's 

functions and observables have branch points along the real axis due to renormalons and 

instantons [128, 129]. 

3.5 Renormalons 

Having identified renormalons as the principle source of divergence in perturbative 

QCD, and having developed a set of tools (in the form of the Borel transform) to 

evaluate asymptotic series, we now discuss the origin of renormalons in more detail. 

As stated previously, the source of renormalon divergence is the existence of a class 

of Feynman diagrams, present at all-orders, which when renormalized are found to 

have a magnitude proportional to n!. To fully appreciate the mechanism by which 

this occurs, we return to the familiar example of the fermion loop contribution to the 

vacuum polarization function, depicted in Fig. 1.4. From Eqs. (1.66) - (1.67) and (1.83) 

we have: 

(3.44) 
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with 

2 .a4TR ( k
2

) IT0 (k ) = z4-
3
-ln Q2 . (3.45) 

Here, Q2 = -q2 > 0 is the space-like energy scale, and we work in the V scheme, which 

is MS with /-12 = e-513 Q2 . In a sense, this is purely a QED (Abelian) calculation: 

we would have to include gluon and ghost corrections in order to obtain the full one­

loop function. However, the fermion bubble is a component of the full QCD result and 

moreover, we will see that it is of special significance. 

We denote the chain of n fermion loops depicted9 in Fig. 3.1 by B(~(k2 ). We can 

evaluate the form of B(~(k2 ) using Eq. (3.44), together with the form of the gluon 

propagator given in Eq. (1.50). We find, 

(3.46) 

Here, we have made the identification a 1 = fl, and -iPJ.LV(k2
) = D~~(k) represents the 

photonjgluon propagator10 (see Eq. (1.50)). The above expression can be evaluated 

using the following results, 

(3.47) 

(3.48) 

Hence, 

(3.49) 

We can sum this over all values of n to obtain the all-orders renormalon chain contri-
9 Hereafter, we use the photon line symbol to denote both photons and gluons. 

10We omit colour indices in the following demonstration. 
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Figure 3.3: One-chain contributions to the vacuum polarization function. 

bution to the propagator, which we denote by B11v(k2), 

00 

B,_w(k2
) = L B~~) (k2

) 

n=l 

(-i) [ kJlkv] ~ n ( 2 )n k2 g11v- 7 ~( -1) Ilo(k ) 

(3.50) 

The complete gauge boson propagator is defined as the sum over all possible diagrams 

with two external photon lines only. Calculating this exactly would correspond to 

calculating all possible diagrams in perturbation theory - something we wish to avoid. 

However, of all the diagrams which contribute to the full vacuum polarization function, 

the above one-chain result has the highest power of Nt at each order of a. In the Iarge­

Nt limit, Eq. (3.50) is the full vacuum polarization function. Therefore, by inserting 

BJlv ( k2 ) as an internal line in a larger skeleton diagram, we can identify the leading­

Nf components of that diagram. Moreover, we can use the relatively simple expression 

above to evaluate that diagram at all-orders of a. 

The renormalon contributions to the Adler D-function 

Armed with the leading N1 result for the gluon/photon propagator, we now demon­

strate how single-chain contributions to QCD observables can be evaluated, using the 
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Adler D-function (defined in section 1.10.1) as an example. 

Corrections to the Adler D-function are calculated from corrections to the vacuum 

polarization function. The one-chain contributions to such corrections are shown in 

Fig. 3.3 and these will have the form: 

+ (3.51) 

00 d4k 4 "J d P [ up 2) up ( 2 - J 
fV a f='o (27r)4 (27r)4 B(n)(k XvpJLU + 2B(n) k )XVJLUP . (3.52) 

Here, k is the momentum running through the renormalon chain and p is the momentum 

running around the outer fermion loop. This can be rewritten in such a way that the 

chain and skeleton diagram contributions are separated, 

(3.53) 

renormalon chain skeleton diagram contribution 

Omitting the tensor structure, and performing the p integration will yield a result of 

the form, 

(3.54) 

To obtain the Adler D-function, we take the logarithmic derivative of the above equation 

with respect to Q2 . The Q2-dependence of Bup(k2 ) occurs in the form of factors of 

k2 /Q2 . Therefore, via a change of variables, we can transfer all of the Q2-dependence 

of Eq. (3.54) into the function F, and hence when we differentiate with respect to Q2, 

the renormalon chain term is preserved. Consequently, we can write the Adler D­

function as, 

(3.55) 

The kernel11 CJ)(k2 /Q2 ) is derived from F (k2 , k · q, q2), and represents the contribution 

11 Here, the form of <l>(k2 /Q2
) is different to that for the example given in section 3.3.2. 
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from the skeleton diagram [130]. The term in the square brackets comes solely from 

the renormalon chain and can be obtained directly from Eq. (3.50). ii>(k2 jQ2 ) can be 

written as an expansion in positive powers of k2 jQ 2 for k2 < Q2 and in negative powers 

for k2 > Q2 , with continuity at k2 = Q2 . The leading terms in these expansions12 

are [131, 132], 

ip (Z:) 

ip ( z:) 
for k2 < Q2

, (IR), (3.56) 

for k2 > Q2
, (UV). (3.57) 

From Eqs. (3.55) - (3.57) we can directly obtain the leading-b contribution to the Borel 

transform of the Adler D-function. Splitting the range of integration in Eq. (3.55) 

at k 2 = Q2 , and using the changes of variables k 2 = Q2e-z/2a and k 2 = Q2ez12a in 

Eqs. (3.56) and (3.57) respectively yields, 

Here, we have performed integration by parts on the In term in Eq. (3.57). From this 

we can determine the Borel transform, 

B[V](z) = 1 10/27 4/9 
1 + Nt~RZ + 1 - NtrRZ + ( 1 - NtrRZ r. (3.59) 

Equation (3.55) can also be used to obtain the form of the coefficients dn, defined in 

Eq. (1.187). Making the change of variables k 2 = Q2e±t, yields, 

(3.60) 

= ~ ( NJTR)n [(-1)n (22 + 12n)] 1 a~ a 3 2 + 27 n., 
n=O 

(3.61) 

12 Note that-only when all terms (or certain special subsets of terms) in this expansion ate considered 
do we have continuity at k2 = Q2 . 
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and this confirms that renormalons generate factorial contributions to the coefficients, 

(3.62) 

There are several points to note about the above results: 

• Higher-order terms in Eqs. (3.56) and (3.57) will generate terms in the Borel 

transform with singularities further away from the origin than those in Eq. (3.59). 

Therefore, their contributions to the coefficients will be less dominant than that 

of Eq. (3.61) but will still have a factorial form. The full form of i!!(k2 /Q2 ) is 

known for several observables and from it we can obtain the fullleading-Nf Borel 

transform. 

• Equations (3.59) and (3.61) are valid and gauge-invariant results in QED. How­

ever, in QCD, resumming the leading-NJ terms in this way generates a result 

which does not exhibit asymptotic freedom. This problem can be overcome by 

converting to an expansion in powers of the first coefficient of the beta-function 

equation, b. We will describe this in more detail in the next section. 

3.6 All-orders results for QCD observables 

The existence of renormalons in QFT has inspired a number of all-orders calculations 

of the most dominant (factorially) divergent components of the perturbative coeffi­

cients. The results from these are in the form of the leading-NJ component of the 

perturbative coefficients at all-orders. They are essentially QED results, in that their 

diagrammatic origin does not include contributions from gluon self-coupling or ghost 

components. However, such a result also corresponds to a significant subset of the full 

set of terms present in the equivalent QCD result. Moreover, the significance of these 

terms can be further enhanced by means of the leading-b approximation. 
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3.6.1 The leading-N1 expansion 

The coefficients of any QCD perturbative expansion can be written as an expansion in 

powers of the number of fermions, N1. For example, in the case of the Adler D-function, 

(3.63) 

and similar expressions also hold for the coefficients of the GLS and Bjorken sum rules, 

kn and Un (see section 2.7.1). 

The number of fermion loops present in a diagram dictates which coefficient in Eq.(3.63) 

it contributes to. Furthermore, the all-orders results obtained from single renor­

malon chain insertions correspond to the maximum number of powers of Nt one can 

have in a diagram for each power of a. That is, we cannot increase the number of 

powers of Nt (the number of fermion loops) in the diagrams in Fig. 3.3 without in­

troducing at least one extra power of a; diagrams with two chains inserted will be 

0 (1/ Nt) suppressed. We therefore identify the single-chain diagrams of Fig. 3.3 as the 

sole contribution to drl. 

As a consequence of this, the large-N/ expansion and renormalons are inextricably 

linked. Full renormalon calculations of the type sketched in section 3.5 will yield exact 

results for dhn] (or equivalently, uhn] or khn] etc.) for all n. Such results have been 

obtained in the cases of the Adler D-function, the sum rules of section 2.7.1, and the 

Re+e- ratio, amongst others. 

Progress in large-N/ calculations [133] has led Broadhurst to develop the following ele­

gant method which allows the values of the~] to be easily extracted at all-orders [134]: 

We introduce the QED Gell-Mann-Low function which at leading-N/ has the form, 

wfn] 
n = 

32-n ( d )n-2 I 
--

2
-- ~ P(x) , 

X x=l 
(3.64) 

where 

P(x) (3.65) 
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wrl can be explicitly evaluated in closed form [134], 

( n - 1) [ _ 2n 4 _ n + 4 
( -3)n-l + 2n 

(3.66) 

and using this result one can then obtain the leading-N/ result for the QCD Adler 

D-function. In the MS scheme with 112 = Q2 we have [135], 

n ( 5)m wln+2-m] 
d[n] = 2Tn 1 '""' - 9 n+2-m 

n nn. ~ 1 ( _ )1 · 
m=O m. n m. 

(3.67) 

This result becomes particularly simple if we convert it into the V-scheme (due to the 

absence of a finite part in the renormalized form of the one-loop vacuum polariza­

tion function, cf. Eqs. (1.66) and (1.67) ). We find, 

(3.68) 

and this gives us access to the leading-N/ components of dn for all n, allowing us, in 

principle, to evaluate the sum, 

00 

LdhnlNjan+l. (3.69) 
n=O 

This result can be applied to both QED and QCD. However, the QCD result can be 

given added meaning via the leading-b expansion. 

3.6.2 The leading-b expansion 

All-orders renormalon inspired results can play a more meaningful role in QCD if we 

convert them into the leading-b expansion form, whereby the coefficients are written as 

an expansion in powers of the first coefficient of the beta-function equation, b: 

(3.70) 

109 



Chapter 3: The large-order behaviour of perturbative QCD 

This discussion is different depending on whether we are talking about QED or QCD, 

due to the difference in their respective beta-function equations: 

1 
b := bQcD = (3 (33 - 2NJ). (3.71) 

Note that bQED < 0 and bQcD > 0. These expressions can be rearranged to give NJ in 

terms of b, 

Nf = -3b + 33/2, (3.72) 

and so by substitution into Eq. (3.63), we can determine that the leading-NJ and 

leading-b coefficients in QCD are related by dhn) = ( -3)ndhn], with a similar expression 

for QED. The sub-leading terms in Eq.(3.70) can be easily obtained from Eqs.(3.63) 

and (3.72). 

In QED there is a firm diagrammatical interpretation of dhn), since there is a direct 

correspondence between leading-NJ and leading-b diagrams. However, in QCD, this is 

not the case as dhn)bn contains not only the leading-NJ diagrams, but also an expansion 

in colour factors. Consequently, the diagrammatic origin of the leading b terms is 

less clear. However, using the background-field method [136], or the Pinch [137-141] 

technique, we can identify the component of the gluon propagator proportional to 

b In( -k2 / p,2 ) and from this we can build the leading-b terms in the coefficients in a 

gauge invariant manner. 

However, the benefits of using the leading-b expansion over its leading-NJ equivalent are 

twofold: firstly, the leading-b term in Eq. (3.70) tends to dominate over the sub-leading 

terms, and therefore we can use this term to approximate the full form of dn. Secondly, 

the sign of b determines the asymptotic behaviour of a field theory, and consequently, 

is indicative of the UV and IR behaviour. It is therefore more meaningful to discuss 

the Borel transform in the leading-b form. 

All-orders leading-b results 

The leading-NJ Borel transform of the Adler D-function can be obtained from 

Eq. (3.68). Borel transforms for several other observables have also been obtained 

including the GLS, polarized and unpolarized Bjorken sum rules and the Re+e- ra-
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tio. These can easily be converted into leading-b results by making the replacement 

NJ -t -3b in the case of QCD (and Nf -t ( -3/2)bQED in the case of QED). In this 

form, the Borel transforms represent the summation of leading-b terms in Eq. (3.70), 

which we denote as V(L)(a), 

00 

"'"'d(L)an+l 
~ n ' 

(3.73) 
n=O 

where we have denoted the leading-b component of dn as dhL) = dhn) bn. 

We can convert the results of Eqs. (3.58), (3.59) and (3.62) into a leading-b form. We 

have, 

00 

{

00 

z a [(bz)n 10 ( bz)n 4 ( bz)n] V(Q2) = ~Jo dz e- I 4 + 27 - 2 + -g(n + 1) -2 ' 

=} B['D](z) _1 - + _10_/2_7 + _4_;_/9____,. 
1-¥ 1+b2z (1+bn2· 

and consequently, 

d = bn [(~)n (- ~)n (22 + 12n)] 1 
n 4 + 2 27 n .. 

(3.74) 

(3.75) 

(3. 76) 

For QCD we have b > 0 and hence we conclude that the UV component of if!(k2 jq2 ) 

in Eq. (3.57) gives rise to renormalon singularities on the negative real semi-axis in 

the Borel plane and correspondingly generates an alternating sign factorially divergent 

contribution to the coefficients. In contrast, theIR component of if!(k2 jq2 ) in Eq. (3.56) 

generates singularities on the positive real semi-axis and fixed sign factorial divergence. 

The full form of the leading-b Borel transform of the Adler D-function can be obtained 

from Eqs. (3.64)- (3.68), or alternatively by considering the full form of the expansion 

in Eqs. (3.56) - (3.57). We find [142, 143], 

B[V(L)](z) = f Ao(n)- A1(n)zn A1(n)zn 

n= 1 ( 1 + z: r + ( 1 + z: ) 

(3. 77) 
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where 

Ao(n) 
8 (-1)n+1 (3n2 + 6n + 2) 
3 n 2(n + 1)2(n + 2)2 

Bo(1) 

Bo(2) 

0, 

1, 

Bo(n) = -Ao( -n), 

0, 

8 b(-1)n+l(n+~) 

3 n2 (n + 1)2(n + 2)2' 

for n 2: 3. 

(3.78) 

and where Zn = 2njb. These definitions coincide with those of Ref. [143], except for 

B1 (2) = -£. The purpose of the slight change of definition is to make more explicit 

the single and double pole structure. We can also obtain leading-b Borel transforms for 

the GLS and polarized Bjorken sum rules. These are much simpler, with only a finite 

number of simple poles and no double poles. We state these forms in chapter 4 when 

we come to study these all-orders results in more detail. 

Using Eq. (1.197), we can also obtain the Borel transform for Re+e- [142, 143], 

(3.79) 

Note that the zeros in the sine function have the effect of demoting the double poles 

present in B[V(L)](z) to simple poles. As a result, the leading-b Borel transform of the 

Re+e- ration contains simple poles only. From these results, we can obtain resummed 

expressions from the observables, written in terms of (suitably regulated) exponential 

integral functions. 

Figure 3.4 shows a diagrammatic representation of the singularities in the Borel plane, 

of the leading-b Borel transform of the QCD Adler D-function. There are several 

interesting points to note: 

• The singularities can be split into two different types: those on the negative real 

semi-axis and those on the positive real semi-axis. The former do not pose a 

problem when we attempt to evaluate the Borel integral, since they do not lie 

alohg the contour of ihtegfation. By examining the path from Eqs. (3.56) and 

(3.57) to Eqs. (3.74)- (3.76), we can see that these singularities are generated by 

112 



Chapter 3: The large-order behaviour of perturbative QCD 

Im z 
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Figure 3.4: The structure of the Borel plane for the Adler D-function indicating the 
positions of the first six UV and IR renormalon singularities ( x) and the first instanton 
singularity (•). The position of instanton singularities relative to the renormalon sin­
gularities will depend on the value of N1 adopted. 

the UV sector of QCD, and we interpret this as signifying that perturbative QCD 

is well-defined in the high energy domain. Conversely, the poles on the positive 

real semi-axis do lie on the integration contour and therefore they pose a problem 

for Borel resummation. Such singularities mean that the Borel integral cannot be 

evaluated unambiguously, and this we interpret as a manifestation of the break­

down of perturbative QCD in theIR limit. 

• The situation described above is reversed in the case of QED. Here, bQED has 

the opposite sign, and so it is the UV renormalons that cause problems in QED. 

Correspondingly, it is the (extreme) UV region of QED which is characterized by 

a breakdown of perturbation theory. 

• The components of Eq. (3. 77) with the coefficients Ao, 1 ( n) are poles on the neg­

ative real semi-axis, generated by the UV behaviour of the skeleton diagram. 

Accordingly, we refer to the singularity at position z = - zn as the UV n renor­

malon. Similarly, we refer a singularity in Eq. (3. 77) at position z = Zn as the 

IRn renormalon. 

• The absence of a renormalon singularity at position z = z1 in the Borel plane is 

curious. We will see later, when we come to study the relationship between 
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renormalons and non-perturbative physics, that this corresponds directly to the 

absence of a dimension-2 operator in the OPE of the Adler D-function. 

• In Fig. 3.4, the singularities due to instantons have also been marked, and these 

are at positions z = 4n on the Borel plane, with n = 1, 2, 3, ... [40, 144-146]. 

These singularities are caused by the existence of instanton-antiinstanton pairs. 

They are further away from the origin than their renormalon counterparts, and 

hence represent a less dominant divergent form of the perturbative coefficients. 

Furthermore, their positions on the Borel plane are fixed with respect to changes 

in Nt or b and hence they disappear in the large Nt or b limit. Curiously, for 

the special case of Nt = 15 we have b = 1/2 and the renormalon singularities are 

now positioned at Zn = 4n. Consequently, the positions of the renormalon sin­

gularities will now coincide with those of the instanton singularities. This occurs 

just before the flavour saturation of QCD (NJ = 16) at which point we lose 

asymptotic freedom. 

When additional refinements such as sub-leading coefficients of the beta-function equa­

tion and scale logarithms are added, the leading-b coefficients are found to have the 

general form [128, 129, 145], 

IR renormalons (3.80) 

UV renormalons (3.81) 

As a result, the structure of the Borel transform is changed from that in Eq. (3.77). 

The single and double poles become branch points, yet the positions of these singular­

ities remains fixed. The Borel transform have the following general form, 

IR renormalons (3.82) 

UV renormalons 
A 

(3.83) 

( )

-y+l. 
1 + ~ 

z; 
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The leading-b approximation 

It was stated previously, without justification, that the leading-b term in Eq. (3.70) is 

a good approximation to the exact form of the coefficients. We now give a justification 

of this claim. 

If we adopt the values of CA and Cp (defined in appendix A) specific to SU(Nc) QCD, 

then the NLO and NNLO coefficients for the Adler D-function become, 

(3.84) 

2 ( .024) ( 2 .180) .086Nf + NJ -l.40Nc- Nc + 2.10Nc - .661- NJ . (3.85) 

Equations (1.188) - (1.189) can also be rewritten as expansions in powers of b, using 

NJ = -3b + 11CA/2, 

(
11 ) CA Cp --2(3 b+---
4 12 8 ' 

(3.86) 

(
151 19 ) 2 (31 5 5 ) -- -(3 b + CA -- -(3- -(5 b 
18 3 6 3 3 

( 
29 19 ) 2 ( 799 ) +CF -- -(3 + 10(5 b + CA --- (3 
32 2 288 

(3.87) 

If we now isolate the leading-b term in Eqs. (3.86) - (3.87) and re-expand that term in 

powers of NJ using Eq. (1.94), we obtain, 

.345b = -.115NJ + .634Nc, 

.776b2 = .086NJ- .948NJNc + 2.61N;. 

(3.88) 

(3.89) 

Comparing with Eqs. (3.84) - (3.85), we see that Eqs. (3.88) - (3.89) approximate the 

sub-leading-N/ components of d1 and d2 well in both sign and magnitude. The coeffi­

cients of the Nj-r N; components are approximated with ,...., 20% accuracy. However, 

it must be noted that for fixed Nf, numerical cancellations can conspire to reduce this 

accuracy. Hence, the success in approximating individual components of the coefficients 
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does not always correspond to an accurate approximation of the full coefficient. As is 

expected, the leading-Nf terms agree exactly. 

We can draw similar conclusions about the coefficients of the GLS and unpolarized 

Bjorken sum rule, kn and Un. Rewriting Eqs. (2.80) - (2.81) and (2.85) - (2.86), for 

SU(Nc) QCD, we obtain, 

kt = ( .438) -.333NJ + 1.48Nc + Nc , (3.90) 

k2 2 ( . 244) ( 2 . 008) .177Nf + Nf -2.51Nc- Nc + 4.53Nc + .686 + NJ , (3.91) 

and 

Ul ( .688) -.444Nf + 1.84Nc + Nc , (3.92) 

U2 = 2 ( .481 ) ( 2 .434 ) .177Nf + Nf -3.111Nc- Nc + 5.77Nc + 2.22 + NJ . (3.93) 

In the leading-b expansion, these coefficients have the form, 

kl (CA 7 ) (3.94) = b+ -- -CF 
12 8 ' 

k2 2 (115) (335 3 15 ) ( 133 5 ) b - + b - + -(3- -(5 CA + b --. - -(3 CF 
72 144 2 9 288 6 

2 ( 179 11 ) ( 389 11 ) 2 ( 1 ) 
+CA -144- 4(3 + CACF -192 + 4(3 + CF 32 ' (3.95) 

and 

Ul = 4 (1 11 ) 3b+ 12CA-SCF ' (3.96) 

2 (115) (1705 7 ) ( 335 1 ) U2 = b - + b -- -(3 + 5(5 CA + b -- + -(3 CF 
72 432 2 96 2 

2 ( 235 137 115 ) ( 2413 125 95 ) 
+CA 1296 + 12(3 - 6(5 + CACF - 192 - 4(3 + 2(5 

2 (313 47 ) +CF 
32 

+ 2(3- 35(5 . (3.97) 
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Expanding the leading-b term of these equations gives, 

k(1) b 
1 b = -.333NJ + l.83Nc, (3.98) 

k(2) b2 
2 1.59b2 = .177Nj- l.95NJN + 5.37N'j_, (3.99) 

and 

(1) b 
u1 1.33b = -.444NJ + 7.33Nc, (3.100) 

u(2)b2 
2 1.59b2 = .177Nj -l.95NJN + 5.37N'j_. (3.101) 

By comparing Eqs. (3.90) - (3.93) with Eqs. (3.98) - (3.101), we see that the leading-b 

reproduces the components of the sub-leading-b terms equally well. However, the same 

caveat that applied to the Adler D-function case also applies here. 

In summary, as a consequence of the success of the leading-b approximation, the all­

orders leading-b result of Eqs. (3.77) and the equivalent results for B[K(L)](z) and 

B[U(L)](z) can be used as effective approximations to the full perturbative expansion of 

D(a), K(a) and U(a). 

3. 7 Renormalons and non-perturbative corrections 

The presence of IR renormalons in the Borel transforms of perturbative expan­

sions makes their respective Borel integrals ill-defined. The best we can achieve is 

to evaluate these integrals using some prescription to negotiate the singularities. How­

ever, the choice of prescription is arbitrary, and hence any result obtained will have an 

inherent ambiguity associated with it. 

We can evaluate the magnitude of this ambiguity by evaluating the difference between 

the Borel integrals in two 'extreme' prescriptions: that in which the contour passes just 

above the singularities, and that in which it passes just below it. The magnitude of 

this difference is then related to the residue of the singularity: 
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z'n · n -zn/a 1-!n 
=t=n~-(-) e a . r 'Yn 

(3.102) 

Clearly this situation is unphysical. In order to accept perturbative QCD as a theory 

consistent with what we observe, the full prediction of an observable must be free from 

such ambiguities. 

Note that this has the form of a non-perturbative contribution, reinforcing the no­

tion that renormalons are strongly linked to non-perturbative physics. The non­

perturbative nature of D.'DPT gives us a clue as to how this problem may be resolved. 

Indeed, we can infer that perturbation theory can only be unambiguously defined when 

supplemented by non-perturbative information. Ambiguities of identical structure to 

t:::.'DPT arise when we attempt to calculate non-perturbative corrections, again due to 

the necessity of having to choose a prescription. We can then assume that the ambigu­

ities from perturbative and non-perturbative sectors cancel with each other, leaving us 

with an unambiguous final result. We now briefly discuss how this mechanism works. 

Significant progress has been made in the relating of IR renormalons to non­

perturbative corrections, see Refs. [128, 129, 145, 147, 148]. In section 1.9.1 we saw 

how the OPE can be used to evaluate non-perturbative corrections. The result is an 

expansion in powers of 1/Q2 , with each coefficient being related to a QCD condensate. 

It was noted that for the Adler D-function, the first such condensate to contribute non­

perturbatively is the gluon condensate, and by dimensional analysis we can determine 

that this is associated with a 1/Q4 power correction, 

(3.103) 

where 0(1/Q6 ) represents contributions from higher dimensional condensates. 

The approach to evaluating terms in Eq. (3.103) is similar to that used in section 2.4. 

Each condensate must be renormalized (factorized) in order to be expressed in terms 

of perturbative variables viz the coupling a. Hence, M in Eq. (3.103) represents the 

scale at which the condensates are factorized. The factorization procedure separates 

gluons with high momentum, which are amenable to perturbation theory, from those 

with low momentum, which perturbation theory cannot describe. Terms in the OPE 
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can then be written in terms of a scheme invariant constant containing all the non­

perturbative physics, and an expression in terms of a. The scale dependence can then 

be determined by studying the RGE behaviour of the condensates. 

A condensate of dimension 2n is found to have a coefficient function, Cn(a(Q2 )) of the 

form 

(3.104) 

where On = 2djb- czn, Zn = 2njb, and d is the first coefficient of the gluon anoma­

lous dimension. Non-logarithmic UV divergences [149, 150]lead to an ambiguous imag­

inary part in the coefficient so that Cn = cAR) ± iCAI)' mirroring the ambiguity in the 

perturbative part: 

(3.105) 

The ambiguities in Eqs. (3.102) and (3.105) are of identical structure. We can there­

fore match them and allow ambiguities to cancel between perturbative and non­

perturbative components. From this we can infer a direct correspondence between IR 

renormalons in the Borel plane and condensates in the OPE. Specifically between the 

positions of Borel plane singularities and the dimension of the condensates. Therefore, 

each IR renormalon at position z = Zn must correspond to a condensate of dimension 

2n [128, 129]. Crucially we notice that the absence of an IR renormalon at z = z1 for the 

Adler D-function is mirrored by the absence of a dimension-2 (order 1/Q2) condensate 

contribution to the OPE. 

We can now see how renormalons are interlinked with non-perturbative physics. Per­

turbative and non-perturbative predictions cannot exist separately in a physically con­

sistent manner. This interdependency can be used to apply perturbative methods in 

order to gain knowledge of the behaviour of non-perturbative contributions. 
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3.8 Summary 

In this chapter we presented a brief review of the large-order behaviour of perturba­

tive QCD. We discussed Dyson's argument and described how from it we can infer 

a factorial form of QED perturbative coefficients. We then described two sources of 

factorial divergence in QCD: instantons and renormalons. We explained how these 

make the perturbative expansion asymptotic and how the Borel transform can be used 

to make sense of asymptotic series. We then described in more detail the origin of 

renormalon based divergence and its relation to the UV and IR sectors of QCD. 

We discussed how, using exact all-orders results for the leading-Nf component of per­

turbative coefficients, we can obtain Borel transforms for observables in the leading-b 

approximation. This allows us to approximate the full form of the perturbative ex­

pansion. Finally, we discussed how the existence of renormalon singularities in the 

Borel plane causes the perturbative definition of an observable to become ambiguous 

and how only when we take into account similar ambiguities originating from the non­

perturbative OPE can the perturbative representation of an observable be considered 

to be defined self-consistently. 
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Infrared freezing of Euclidean 

QCD observables 

In this chapter, we investigate the behaviour of all-orders leading-b resummations 

at energy scales equal to and below the Landau pole. We also study what non­

perturbative information we can determine from the relationship between renormalon 

and operator product expansion ambiguities. 

4.1 Introduction 

Thanks to asymptotic freedom, fixed-order QCD perturbation theory can potentially 

provide accurate approximations to physical observables at suitably large energy scales, 

Q. However, such a perturbative description necessarily breaks down below the Lan­

dau singularity at Q2 = A 2 , and the infrared (IR) behaviour unavoidably involves 

non-perturbative effects. In fact, non-perturbative information is needed even to make 

sense of perturbation theory in the large Q2 limit, since higher perturbative coefficients 

exhibit factorial growth, and the perturbation series is not convergent. As we saw in 

chapter 3, the existence of IR renormalon singularities in the Borel transform results 

in the perturbative predictions for observables being ambiguous. Without some mech­

anism to cancel these ambiguities, the self-consistency of perturbation theory would 

remain questionable. 

Fortunately, these ambiguities are structurally the same as terms in the operator prod-
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uct expansion (OPE) (in powers of A2 /Q2 ). Hence, OPE ambiguities and Borel repre­

sentation ambiguities can compensate each other, allowing the perturbative Borel and 

non-perturbative OPE components to be separately well-defined, once a regulation of 

the Borel integral (such as principal value (PV)) has been chosen [115, 116]. 

For Q2 < A 2 , however, the Borel representation breaks down, mirroring the behaviour 

of fixed-order perturbation theory. In a recent paper, Ref. [48], which focused on the 

IR freezing of the Minkowskian Re+e- ratio, it was suggested that below Q2 = A2 one 

should use a modified Borel representation whose ambiguities come from singularities 

lying on the negative real semi-axis, so-called ultraviolet (UV) renormalons. We are 

justified in using this modified representation since, like the standard Borel representa­

tion, it recreates exactly the correct perturbative expansion when expanded in powers 

of a. This modified Borel representation has ambiguities which are structurally the 

same as a modified expansion in powers of Q2 /A 2 , and once regulated both of these 

components can remain separately well-defined in theIR. 

In this chapter we shall show that if we postulate a QCD skeleton expansion [130, 151], 

then the leading one-chain term reproduces the standard Borel representation for Q2 > 
A 2 , and the proposed modified Borel representation for Q2 < A 2 . We also study the 

low-Q2 behaviour of the all-orders leading-b resummations introduced in chapter 3. In 

particular, we are interested in their behaviour at the Landau pole (Q2 = A2 ) and 

in the 'freezing' limit (Q2 
-t 0). Unexpectedly, we find that the observables remain 

finite at the Landau pole and freeze to a well-defined limit of zero. We show that the 

Landau pole behaviour is due to a subtle interplay between UV and IR renormalons and 

that although individual renormalon contributions show Landau-type divergence, when 

all renormalons are summed, these divergences cancel. This behaviour is linked to 

the continuity and conformal symmetry of the characteristic function of the skeleton 

expansion. 

We also investigate the compensation between ambiguities originating from renor­

malons and those from the OPE. Inspired by the newly discovered IR properties 

of the perturbative renormalon component, we are led to develop a model for non­

perturbative power corrections based on demanding that ambiguities cancel each other 

for all Q2 . When we combine perturbative and non-perturbative components, we find 

that this full result shares the attractive IR properties of the original renormalon con-
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tribution. 

The work presented in this chapter is based on the research carried out in Ref. [152]. 

The material is organized as follows: 

We consider the one-chain leading-b all-orders resummations of the Euclidean observ­

ables defined in sections 1.10 and 2.7.1. We introduce the skeleton expansion and 

discuss how this relates to the Borel representation. We show that the skeleton expan­

sion provides a natural link between the standard Borel representation in the UV region 

( Q2 > A 2) and a modified Borel representation in the IR region ( Q2 < A 2). We then 

investigate the IR behaviour of the observables in these representations, highlighting 

the attractive IR properties of their renormalon inspired (all-orders) resummed form. 

Next, we consider the relation between ambiguities generated by renormalon singular­

ities and those present in the OPE, and we determine the nature of these ambiguities 

in the UV and IR limits. Using the results of this, we propose a new model for power 

corrections which is valid for all values of Q2 . We briefly discuss the IR properties of 

Minkowskian observables, specifically the Re+e- ratio. We then summarize the work 

carried out in this chapter before finally discussing what conclusions can be drawn from 

it and highlighting possible future directions research on this subject may take. 

4.2 QCD skeleton expansion and the Borel representation 

Consider a generic Euclidean QCD observable, 'D(Q2 ), having the perturbative expan-

sion, 

00 

a(Q2) + I:t:tnan+l(Q2). (4.1) 
n=l 

Here a(Q2) = a 8 (Q2)/rr is the renormalized coupling. Throughout this chapter we will 

use the one-loop approximation for the coupling, 

2 
(4.2) 

where b is the leading beta-function coefficient in SU(3) QCD with Nf active quark 

flavours, and is defined in Eq. (1.94). Q2 = -q2 > 0 is the single space-like energy 

123 



Chapter 4: IR freezing of Euclidean QCD observables 

scale. In the Q2 ~ oo limit, asymptotic freedom ensures that D(Q2) ~ 0. However, 

our interest lies in the behaviour of D( Q2) at small Q2 . Specifically, is it possible that 

the observable remains finite at the Landau pole or freezes to a finite IR limit, D(O)? 

This is an intrinsically non-perturbative question which cannot be answered by per­

turbation theory alone. One has in addition, the non-perturbative contribution arising 

from the OPE given in Eq. (3.103). These contributions take the form of an expansion 

in powers of A2 /Q2
, 

(4.3) 

where Cn are the coefficient functions of the OPE and are presumably calculable via 

some non-perturbative technique. The OPE is valid for energies Q2 > A 2 only. Hence, 

the freezing limit, if any, of D(Q2) = DPT(Q2) + DNP(Q2), depends on the behaviour of 

both components as Q2 ~ 0. 

Perturbative freezing will not arise from fixed-order perturbation theory - truncating 

Eq. (4.1) at finite order leads inescapably to an unphysical Landau type singularity at 

Q2 = A 2 . One needs an all-orders resummation of Eq. ( 4.1) in order to obtain a result 

that is well-behaved in theIR. Unfortunately, exact information about the coefficients 

is limited, at best, to calculations of d1 and d2 - higher-orders are unknown. All­

orders information is only available in the Iarge-N! limit where one expands each dn 

as a polynomial in NJ of order n (see Eq. (3.63)). The leading-Nf coefficient d~l 
can be computed exactly to all-orders by considering the restricted set of Feynman 

diagrams formed by inserting the renormalon chains of Fig. 3.1 into a basic skeleton 

diagram [134, 153], as discussed in chapter 3. In principle one can consider more than 

one chain and construct a QED skeleton expansion [154]. 

In QCD one can replace Nt by (33/2- 3b), and obtain an expansion of dn in powers 

of b, 

(4.4) 

The leading-b term d~L) = d~n) bn can then be used to approximate dn [143, 155, 156] as 

was demonstrated in section 3.6.2, and an all-orders resummation of these terms can 
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be performed to obtain D~~) ( Q2), 

00 

D~~)(Q2) = a(Q2) + L d~L)an+1(Q2). (4.5) 
n=l 

Use of the one-loop form of the coupling in Eq. (4.2) ensures that this resummed result 

is RS-invariant [142, 143]. 

This all-orders leading-b result can be written in terms of a skeleton expansion. The 

leading term of the skeleton expansion arises from integrating over the momentum k 

flowing through the renormalon chain [130, 151, 157]: 

(4.6) 

This is equivalent to the representation of the Adler D-function given in Eq. (3.55). 

The kernel 1>(k2 /Q2 ) has been replaced with the so-called characteristic function of 

the observable, w(t), with t = k2 jQ2 . These two functions are related by a simple 

transformation. The last term in this integrand comes from the summation of the 

chain in Fig. 3.1, over all n (see section 3.5). The identification of this with the one­

chain resummation becomes apparent when we rewrite a(tQ2) as, 

(4.7) 

and compare with Eq. (3.55). Here we have used the one-loop form of the coupling. 

The constant C depends on the subtraction procedure used to renormalize the bubble. 

Standard MS subtraction corresponds to C = -5/3. From now on we shall assume C = 

0 which corresponds to the so-called V-scheme, MS subtraction with renormalization 

scale p,2 = e-5/ 3Q2 . Hence, A in Eq. (4.2) will always refer to that in the V-scheme. 

The characteristic function satisfies the normalization condition, 

100 

dt w(t) = 1, (4.8) 

which ensures the leading a(Q2) coefficient of unity in Eq. (4.1). The form of w(t) 

changes at t = 1; it can be written as an expansion in powers oft for t < 1 (the IR 
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region) and as an expansion in inverse powers of t for t > 0 (the UV region), plus 

additional log terms. Consequently, the range of integration in Eq. ( 4.6) splits into an 

IR and a UV part, 

The IR part corresponds to k2 < Q2, and the UV part to k2 > Q2. By making a 

change of variable one can transform the leading skeleton term into the familiar Borel 

representation of section 3.4.1. For Q2 > A2 one has the standard Borel representation 

(we shall explicitly write down the required changes of variable in section 4.4), 

( 4.10) 

Here B[V~~)](z) is the leading-b Borel transform, defined by, 

oo n (L) 

B[V~~](z) = Lz ~ . 
0 

n. 
n= 

( 4.11) 

We saw in chapter 3 that B[V~~)](z) contains singularities along the real z-axis. In 

the large-b approximation these are single and/or double poles at positions z = Zn and 

z = - Zn, with Zn = 2n / b, n = 1, 2, 3 ... , corresponding to IRn and UV n renormalons re­

spectively (see section 3.6 and Fig. 3.4). The IRn renormalons lie on the integration 

contour of Eq. (4.10) and therefore cause the Borel representation to be ambiguous. 

The difference between routeing the contour above or below the singularity yields the 

magnitude of the ambiguity. From Eq. (3.102) we can determine this to be of the form, 

(4.12) 

As noted in chapter 3, this has the same form as a term in the OPE in Eq. (4.3). Thus, 

OPE ambiguities associated with the (A2/Q2t OPE term in VNP(Q2) can potentially 

cancel against the IRn renormalon ambiguities, allowing each component separately to 

be well-defined [115, 116]. 

In practice we shall choose to take a PV definition of the integral. The IR part of 

the t integration in Eq. (4.9) produces the IR renormalon part of the Borel repre­

sentation, and needs to be PV regulated. The second UV component produces the 

UV renormalons and does not require regulation. As we shall see in the next section 
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the standard Borel representation of Eq. (4.10) for Euclidean quantities diverges like 

In a( Q2 ) at Q2 = A 2 for each individual IRn or UV n renormalon contribution. How­

ever, when the full set of renormalons is resummed, the In a divergence is cancelled and 

a finite result is found. We shall explore this further in sections 4.3 and 4.4. 

For Q2 < A2 , we have a(Q2 ) < 0, and the representation of Eq. (4.10) is invalid. The 

key point is that to translate from the skeleton expansion to the Borel representation, 

the necessary change of variables from t to z is proportional to a(Q2 ). Thus, if a(Q2 ) 

changes sign, then the limits of integration in z also change sign, yielding a modified 

Borel representation, 

(4.13) 

This is the modified Borel representation proposed in Ref. [48], where it was motivated 

as a standard Borel representation corresponding to an expansion in la(Q2 )1 = -a(Q2 ), 

since by changing variables one can write Eq. (4.13) as, 

(4.14) 

So we see that the one-chain skeleton contribution of Eq. ( 4.6) is equivalent to the 

standard Borel representation of Eq. (4.10) for Q2 > A2 , and to the modified repre­

sentation of Eq. (4.13) for Q2 < A2 . Note that when we substitute Eq. (4.11) into 

the Borel representation of Eq. (4.14) and perform successive integration by parts, it 

reproduces the correct form of the perturbative expansion in Eq. (4.1), for negative a. 

The modified Borel representation now has a contour of integration along the negative 

real semi-axis, and so it is rendered ambiguous by the ultraviolet renormalon singular­

ities, UV n· Correspondingly the IR component of Eq. ( 4.9) is well-defined, and it is 

now the UV component which requires regulation. The ambiguity from routeing the 

contour around the singularity is now, 

(4.15) 

It was suggested in Ref. [48] that the usual OPE of Eq. ( 4.3) breaks down for Q2 < A 2 , 

as does the associated PT Borel representation of Eq. (4.10), and should be recast and 
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replaced by a modified expansion1 in powers of Q2 j A 2 , 

( 4.16) 

The ambiguity associated with the nth term in this expansion is then structurally of 

the same form as the ambiguity associated with the UV n renormalon contribution in 

Eq. (4.13). It was further suggested in Ref. [48] that a Co term independent of Q2 could 

arise from rearrangement of the standard OPE. This was motivated by a simple toy 

example. In fact, in the one-chain approximation no such term arises and both PT 

and NP components freeze to zero. The terms in Eq. (4.16) are then in one-to-one 

correspondence with the UV n renormalon ambiguities. From its definition, the QCD 

skeleton expansion implies VPT(O) = 0 in the Q2 
---t 0 limit. For the one-chain term in 

Eq. (4.6) this follows simply because as Q2 
---t 0 the integrand vanishes everywhere in 

the range of integration, since a(tQ2 ) ---t 0 for any given t. Higher multiple chain terms 

will contain products of the form a(t1Q2)a(t2Q2) ... in the integrand and will similarly 

vanish. Hence, this implies that in theIR limit, VNP(Q2) behaves as, 

(4.17) 

where UV no is the UV renormalon singularity nearest to the origin in the Borel plane. 

We should note that the modified Borel representation, its IR behaviour and its con­

nection with UV renormalons, has also been discussed in Ref. [131]. In Appendix B of 

that paper theIR freezing behaviour of the Adler D-function, D(Q2 ), was discussed. 

From general arguments of non-perturbative spontaneous chiral symmetry breaking in 

the limit of a large number of colours, Nc, it was concluded that in the Q2 
---t 0 limit, 

D(Q2 ) goes to zero like, 

(4.18) 

Here, M is the mass of a one-meson state, with these states remaining massive in 

the chiral limit. A similar result is also obtained in Ref. [158]. Since UV 1 is the 

singularity nearest the origin for the Adler D-function, then no = 1, and therefore the 

freezing expectation is indeed consistent with Eq. ( 4.17). Note that strictly, the leading 

1This could be considered to be the IR equivalent of the OPE- applicable to Q2 < A?·. However, 
the OPE can only be defined self-consistently for Q2 > A 2 and therefore any terminology associated 
with the OPE is inappropriate. We therefore refer to this as the 'modified expansion'. 
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behaviour as Q2 ----. 0 is the logarithmic freezing to zero of a( Q2 ) contributed by the 

PT component. It is the non-perturbative effects which reflect the UV renormalon 

structure. 

4.3 The Q2-dependence of Euclidean observables 

The four Euclidean observables we shall consider are defined in sections 1.10 and 2.7.1. 

Here, we briefly summarize their origins and definitions. 

The QCD vacuum polarization function, II(Q2 ), is the correlator of two vector currents 

in the Euclidean region, 

and the leading-N/ component of II( Q2 ) can be calculated from the diagrams in Fig. 3.3. 

The Adler D-function, D(Q2), is then defined via the logarithmic derivative of II(Q2), 

(4.20) 

This can be split into the parton model result and QCD corrections, V(Q2), 

(4.21) 

where Nc is the number of colours, Qf is the charge of quark flavour J, and CF is defined 

in appendix A. Here, V(Q2 ) = VPT(Q2 ) + VNP(Q2), with the two components defined 

as in Eqs. (4.1) and (4.3). The polarized Bjorken (pBj) [89,90] and GLS [81] sum rules 

were defined in section 2.7.1. They too can be separated into a parton model result 

and QCD corrections: 

(4.22) 

(4.23) 

Here, we have neglected contributions due to "light-by-light" diagrams - which when 
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omitted render the perturbative corrections to KcLs(Q2 ) and Kpsj(Q2 ) identical. Fi­

nally, the unpolarized Bjorken sum rule (uBj) [85] (also defined in section 2.7.1) can be 

written, 

( 4.24) 

In these expressions, the QCD corrections K(Q2 ) and U(Q2 ) are split into PT and NP 

components, as for 'D(Q2). The leading-Nf contributions to these three sum rules can 

be calculated from the diagrams in Fig. 4.1. These large-Nf results can then be used to 

compute leading-b all-orders resummations for these observables, 'D~~ ( Q2), K~~ ( Q2) 

and U~~)(Q2 ), as was described in Section 3.6. 

The leading-b Borel transforms of the above observables are well known. For 'D~~) ( Q2), 

the Borel transform can be found in Ref. [143], and has the form, 2 

Here, 

Ao(n) 

B[V~~](z) = 

8 ( -1)n+1(3n2 + 6n + 2) 
3 n2(n + 1)2(n + 2)2 

Bo(1) 

Bo(2) 

0, 

1, 

Bo(n) = -Ao( -n), 

0, 

(4.25) 

8 b(-l)n+l(n+~) 

3 n2 (n + 1)2 (n + 2) 2 ' 

( 4.26) 

for n ~ 3. 

The Borel transforms of K~~ ( Q2 ) and U~~) ( Q2 ) can be found in Refs. [135, 159] respec­

tively. They have a much simpler structure than that of the Adler D-function since they 

arise from the insertion of a renormalon chain into a tree-level diagram, rather than 

into a quark loop, as can be seen by comparing Fig. 4.1 with Fig. 3.3. Consequently, 

2 AlthoUgh we have aliehli)Fgiven tlie Borel transform of the Adler D-ftinction in chapter 3, we 
restate it here for ease of reference. 
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Figure 4.1: Leading leading-NJ contributions to the DIS sum rules of Eqs. (4.22) -
(4.24) at nth order in perturbation theory. 

there are only a finite number of single poles and no double poles, and we can write 

out their Borel transforms explicitly: 

B[K~~](z) = 
4/9 

( 4.27) 

and 

(4.28) 

As noted in section 3.6.2 the leading-b approximations for the NLO and NNLO coeffi­

cients for these observables are in reasonable agreement with the known exact coeffi­

cients [143, 159]. 

We can now evaluate the Borel integral of Eq. ( 4.10) to obtain 'D~~\ Q2), K~~ ( Q2) and 

U~~)(Q2 ). Using the integrals, 

rXJ dz e-z/a 

Jo (1+z/zn) 
(4.29) 

f dz (I:-:;:,)' ~ Zn [1 + ~ e'"/"Ei( -zn/a)], ( 4.30) 

the following resummed expressions are obtained, 
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~Zn { ezn/a(Q
2

)Ei (- a(~2 )) [a(~2 ) (Ao(n)- ZnAl(n))- ZnAl(n)] 

+ (Ao(n)- ZnA1(n))} 

+ ~zn{ e-• .. /a(Q')Ei (.(~'J [a(~') (Bo(n) + znB1(n))- z,B1(n)] 

- (Bo(n) + ZnB1(n)) }' (4.31) 

( 4.33) 

where Ei(x) is the exponential integral function (defined in section B.3) and for x > 0 

we must take the PV of the integral in its definition. Ei(x) has the expansion, 

Ei(x) = ln lxl + "YE + O(x), (4.34) 

for small x, where "YE = 0.57721 ... is the Euler constant. 

A crucial point is that the above expressions for the Q2-dependence apply at all val­

ues of Q2 . For Q2 < A 2 the modified Borel representation (written as an ordinary 

Borel representation for an expansion in powers of lal, as in Eq. (4.14)) corresponds to 

changing a(Q2 ) ---t -a(Q2 ), Zn ---t -zn, and adding an overall minus sign in Eqs. (4.31)­

(4.33). One can easily see that these equations are invariant under these changes. Note 
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that in Eq. (4.31) one needs to change A1 -t -A1 and B1 -t -B1, since they contain 

a hidden Zn factor in their definitions. Also, in Eqs. ( 4.32) and ( 4.33) the prefactor 

proportional to 1/b also needs to change sign since it has been factorized from z1, z2. 

The expressions in Eqs. ( 4.31) - ( 4.33) are the leading-b components (i.e. d~n) bnan+l) of 

the perturbative expansions, resummed to all-orders. Although, one might argue that 

these expressions omit an infinite set of terms in the full perturbative expansion, namely 

those sub-leading in b, we must remember so too do fixed-order predictions. In fixed­

order perturbation theory, we omit an infinite subset of terms which are suppressed by 

powers of the coupling but which we know to be factorially divergent at higher orders. 

In all-orders perturbation theory, we include the dominant divergent components of the 

coefficients (the leading-b term) and omit an infinite subset of terms which, although 

they do not fully include the known leading-a8 terms, we know to be less divergent, 

and furthermore, appear to be naturally suppressed relative to the leading-b component 

(see section 3.6.2). 

4.3.1 Infrared behaviour 

We now turn our attention to the behaviour of the above resummed expressions at 

the Landau pole. The Ei(zn/a(Q 2 )) functions exhibit a logarithmic divergence as their 

argument goes to zero, and so it would appear that one does not obtain a finite result 

at Q2 = A2 . Using Eq. (4.34), we have, 

(4.35) 

for A2 ~ Q2 . Note that the only terms in Eqs. (4.31) - (4.33) which could possibly 

contribute to any divergence are the e±znlaEi(=Fzn/a) terms, and these are present in 

both the UV and IR components. All other terms vanish or are finite. As can be seen 

from Eqs. (4.29) and (4.30), these terms are generated exclusively by the single pole 

terms in the Borel transform. The double pole terms only generate finite contributions 
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Using Eq. (4.35) we obtain the Q2 ----+ A2 limit of D~~(Q2 ), 

00 

+ I)z;(l +IE)( -A1 (n)- B1 (n)) + zn(Ao(n) - Bo(n))] 
n=l 

(4.36) 

So the coefficient of the divergent log term in D~~) ( Q2 ) is, 

00 

- L z;[A1(n) + B1(n)], ( 4.37) 
n=l 

and for K~~ ( Q2 ) and U~~) ( Q2 ) the equivalent coefficients are ( -8 + 2 + 16 - 10 = 0) 

and (8- 6-2 = 0), respectively. Cancellation clearly occurs in the cases of K~~(Q2 ) 
and U~~) ( Q2 ) and in the case of D~~) ( Q2 ) the previously unnoticed relation 

(4.38) 

ensures that the potential logarithmic divergence in Eq. (4.31) cancels, and that 

D~~(A2 ) is finite, 

00 

L z;[A1(n) + B1 (n)] 0. (4.39) 
n=l 

A similar relation, 

Ao(n) = -Bo(n + 2), (4.40) 

was noted in Ref. [143]. We shall show in the next section that the relations of 

Eqs. ( 4.38) and ( 4.40) are underwritten by the continuity of the skeleton expansion 

characteristic function wn ( t) and its first derivative at t = 1. The form of the pertur­

bative corrections, D~~)(Q2 ), K~~(Q2) and U~~)(Q2 ), are shown in Fig. 4.2. 

Although we have shown that when summed to infinity, Eq. (4.31) is finite at Q2 = A2 , 
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Figure 4.2: Q2-dependence of the leading-b perturbative corrections to the observables 
in Eqs. (4.21)- (4.24), resummed to all-orders in the leading-b approximation. 

obviously we can only plot the expression including a finite number of terms in the n 

sum. The expression can remain finite, however, if we sum the UV renormalons to finite 

n = N, and theIR renormalons ton= N + 3. In this case the relation of Eq. (4.38) 

will ensure that the divergent terms cancel. In Fig. 4.2 we have taken N = 50 and 

assumed Nt = 0 quark flavours, thus avoiding the need to match at quark flavour 

thresholds (since we are only interested here in the form of the freezing behaviour, not 

in a phenomenological analysis). 

The plots in Fig. 4.2 demonstrate two important points about the Euclidean quantities 

we are considering. Firstly, they are finite at Q2 = A 2 , and secondly they change sign 

just above or below this point, before freezing to zero at Q2 = 0 (as noted in section 

4.2). Note that although these perturbative corrections become negative, crucially the 

full observable (i.e. with the parton model result included) remains positive at all values 

of Q2 . 

The relation of Eq. (4.38) simplifies the expression for the finite part of Eq. (4.36), 
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hence it becomes, 

00 00 

L Zn [ Ao ( n) - Bo ( n)] - L z~ [A 1 ( n) + B 1 ( n) ]In n 
n=1 

0.679938 ... 

b 

n=1 

(4.41) 

The values K~~ ( Q2 = A 2 ) and U~~) ( Q2 = A 2 ) are given by a formula identical to 

Eq. (4.41), but using values of Ao,1(n) and Bo,1(n) appropriate to K(Q2 ) and U(Q2). 

Although we have not given these values explicitly, they are of a much simpler form 

than in the case of V(Q2), and they can easily be deduced by comparing Eqs. (4.27) 

and (4.28) with Eq. (4.25). From this we obtain, 

K(L) (Q2 = A 2 ) = - ~ ln 2 
PT 9b ' 

u(L)(Q2 = A2) = -~ln2 
PT 3b . ( 4.42) 

The fact that these resummed expressions are finite at the Landau pole is quite remark­

able, and is in stark contrast to the disastrous behaviour of fixed-order expressions at 

this energy scale. Summing the leading-b component of the perturbative expansion to 

all orders would appear to cancel the logarithmic pole in the one-loop coupling, 

0.679938 ... 

b 
(4.43) 

Furthermore, from the results in chapter 3 we know that the above result is asymp­

totic to the exact form of the observable, in the large-b limit. It is also interesting that 

this cancellation occurs because of the conformal symmetry and other relations between 

theIR and UV sectors of QCD, expressed in terms of the characteristic function. 
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q k q k q k 

Figure 4.3: Light-by-light scattering diagrams, used to calculate wn(t). 

4.4 The skeleton expansion and Borel representations for 

the Adler D-function 

In this section we show how the skeleton expansion relates to the Borel representation 

and how from this relationship we can uncover the origin of the Landau pole behaviour 

of Euclidean observables. We begin with the one-chain skeleton expansion result for 

the vacuum polarization function II(Q2
) defined in Eqs. (1.183) and (4.19), 

( 4.44) 

where in this case the characteristic function wn(t) is given by, 

{ 

t 3(t) 

wn(t) = 1 
! ::'(!) t ~ t 

t :=:; 1 t-t IR 

( 4.45) 

t 2: 1 t-t uv 

and can be obtained from the classic QED work of Ref. [132] by simply including 

appropriate colour factors. In this language it is related to the Bethe-Salpeter kernel 

for the scattering of light-by-light, and is the first term in a well-defined QED skeleton 

expansion [154]. In contrast, the existence of the QCD skeleton expansion beyond 

leading-b is more problematic [157]. 

The diagrams relevant to this kernel are shown in Fig. 4.3. It is easy to see how, by 

connecting the ends of the renormalon chain in Fig. 3.1 to the ends of the momentum-k 

external propagators in Fig. 4.3, one can reproduce the topology of the diagrams in 

Fig. 3.3. 
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The exact form of S(t) can be found in Ref. [132], 

S(t) = 4 { (5 3 ) (1 + t) 2 
. } - 1-lnt+ ---lnt t+ [LI2(-t)+lntln(1+t)] , 

3t 2 2 t 
( 4.46) 

where Li2(x) is the dilogarithm function, defined in Eq. (B.13). Although we define 

wn ( t) separately in the IR and UV domains, the two regions are related by the conformal 

symmetry t t----) t. 

The Adler D-function (related to II(Q2) through Eq. (4.20)) will have the following 

one-chain skeleton expansion term with characteristic function wv(t), 

(4.47) 

wv(t) can be obtained from wn(t) by performing the differentiation of Eq. (4.20) on 

Eq. (4.44) and then performing integration by parts on the resulting expression: 

3 2d r)() d[ ] 2 + 2b Q dQ2 Jo dt dt wn(t)t ln[a(tQ )] 

( 4.48) 

The transformation from II(Q2) to 1J(Q2) therefore induces a transformation in wn(t) 

of, 

II(Q2) -t Q2 d~2II(Q2) = - ~1J(Q2), 

d 4 
wn(t) -t wn(t) + t dtwn(t) = 3wv(t). (4.49) 

This transformation spoils the conformal symmetry present in wrr(t). Indeed, the ex­

pressions for wv(t) in the UV and IR regions are slightly more complicated, 

(4.50) 
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- 1 + In t + - + - In t -8 { (3 1 ) 1 
3 4 2 t 

(4.51) 

However, a partial symmetry remains in wv(t) and this will be elucidated upon in the 

following discussion. 

We shall now convert the skeleton expansion form into the Borel representations of 

Eqs. (4.10) and (4.13) by making a change of variables. To achieve this, it is necessary 

to write wrr(t) as an expansion in powers oft. This yields expressions in both the IR 

and UV regions comprising of an expansion plus an expansion times a logarithm, 

( 4.52) 

The conformal symmetry expressed in Eq. (4.45) means that the UV part can also be 

written in terms of the same coefficients, ~n and ~n, 

(4.53) 

From Eq. (4.46), ~n and ~n are found to be, 

4 (2- 6n2)( -1)n 4 2(-l)n 
3 (n- 1)2n2(n + 1)2' = 3 (n- 1)n(n + 1)' 

6 = 1, 0. ( 4.54) 

Performing the transformation in Eq. (4.49) allows us to write wv(t) as a similar ex­

pansion, 

00 00 

w~(t) = L[~n(1 + n) + En]tn +In t L En(n + 1)tn, (4.55) 
n=l n=2 
00 00 

wijv (t) = L[~n(1- n)- En]Cn + lnt L~~(n -1)Cn. ( 4.56) 
n=l n=2 

Using the expansions of Eqs. ( 4.55) and ( 4.56) we can now represent V~~ ( Q2) in terms 

of a Borel integral. We take V~~)(Q2 ) expressed in terms of wv(t) and then split the 
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integral into IR and UV regions, 

t, a(Q2
) 1' dtw!G(t) (- ba~Q') lnt)' 

+ t,a(Q2
) f dtw¥,v(t)(- ba(~') lnt)' 

a(Q') t, (- ba~Q')) k 

[ 1' dt ( ~[1;.(1 + n) + {.](t)" +In t t, €,.(n + l)(t)") (In t)' 

+ 1= dt(~[l;.(!- n)- €.](W" +In t t,t.(n- !J(W") (lnt)' ]· 

(4.57) 

Here we have used, 

(4.58) 

We note that [~n(1- n)- tn] = 0 for n = 1, which allows us to omit this term from 

Eq. (4.57). This expression may be transformed into a Borel integral of the form of 

Eq. (4.10) by changes of variables and integration by parts. We use the change of 

variables z = -a(Q2 )(n + 1) ln t and z = a(Q2 )(n - 1) ln t for IR and UV parts of 

Eq. (4.57), respectively. Integration by parts is necessary for the integrals with an 

extra ln t term. For Q2 > A2 , we have a(Q2 ) > 0, and we then obtain the standard 

Borel representation, of Eq. (4.10), 
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[~ [~n(1 + n) + tn] 1 

L....; n + 1 (1 bz ) n=l - 2(n+l) 

~ ~n(n + 1) 1 ] 
- ~ ( n + 1) 2 

( 1 _ bz ) 
2 

n- 2(n+l) 

[f [~n(1- n)- tnJ 1 

n- 1 ( 1 + bz ) n=2 2(n-1) 

+ f tn(n- 1) 1 ] 

n=2 (n-1)2 (1+2(~=-l)r . 

(4.59) 

For Q2 < A2, a(Q2) < 0, we obtain the modified Borel representation of Eq. (4.13), in 

which the upper limit in z is -oo. 

Having obtained the Borel transform we can now make contact with Eq. ( 4.25), and 

this allows us to make the following identifications: 

~n(1+n)+tn 
-B1(n + 1)zn+l, n~1 (4.60) = 

n+1 

~n(1-n)-~n 
A1(n -1)zn-1, n~2 (4.61) 

n-1 

for the single pole residues and, 

tn(n + 1) 
Bo(n + 1) + B1(n + 1)zn+l, n~2 (4.62) 

(n + 1)2 

en(n- 1) 
Ao(n- 1)- A1(n- 1)Zn-l, n~2 (4.63) 

(n- 1)2 
= 

for the double pole residues. Substituting the form of ~n and tn given by Eq. (4.54), 

and comparing with Eq. (4.26), verifies the above equations. 

Equations (4.60) - (4.63) can be used to rewrite the w~(t) and wi!,v(t) expansions of 
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Eqs. (4.55) and (4.56) in terms of the Ao(n), A1(n), and Bo(n), B1(n) renormalon 

residues. One finds, 

w~(t) = ~ f -z~+ 1 B1(n + 1)tn 
n=l 

00 

-lnt L (n + 1)2 [Bo(n + 1) + Zn+IBI(n + 1)]tn, (4.64) 
n=2 

~ fz~_1 A1(n -1)t-n 
n=l 

00 

+ lnt L (n -1)2 [Ao(n -1)- Zn-1A1(n- 1)]cn. (4.65) 
n=2 

The discontinuity at t = 1 is then found to be, 

w}!,v(1)- w~(1) = ~ f z~[A1(n) + B1(n)], 
n=I 

( 4.66) 

which vanishes using Eq. (4.39). In the language of ~nand €n coefficients, Eq. (4.66) is 

equivalent to, 

00 

-2 L ( n~n + €n) 0. ( 4.67) 
n=l 

So the relation between UV and IR renormalon residues of Eq. (4.38), which guarantees 

finiteness at Q2 = A2 , ensures that the characteristic function wv(t) is continuous at 

t = 1. Therefore, finiteness of V~~)(A2 ) would appear to stem from continuity of 

wv(t = 1). 

4.4.1 Continuity of the Adler D-function and its derivatives at the 
Landau pole 

For the first derivative of wv(t), at t = 1 one finds the discontinuity, 

00 

= b L z~[A1(n) + B1(n)] 
t=l t=l n=I 

b2 ()0 b2 CX? 
4 Lz~[Ao(n) + Bo(n)] + 2 L z~[A1(n)- B1(n)]. 

n=l n=l 
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(4.68) 

Equation (4.39), which ensures that V~~(A2 ) is finite, means that the first line of this 

expression vanishes. Furthermore, the second line also vanishes, ensuring continuity 

of the first derivative of wv(t). This also guarantees that the V~~~ (A2) is finite (the 

prime denoting the derivative d/dlnQ). Indeed, the required relation corresponding to 

the vanishing of the coefficient of the potentially divergent In a term in V~~)' (A 2 ) is, 

00 

L_)2z~(A1(n)- B1(n))- z~(Ao(n) + Bo(n)] = 0. (4.69) 
n=l 

So finiteness of the first derivative of V~~) ( Q2 ) at Q = A, corresponds to continuity 

of the first derivative of w( t) at t = 1. Furthermore, Eq. ( 4.69) written in terms of ~n 

and tn is simply Eq. ( 4.67), with an extra factor of -2. Consequently, the continuity 

of wv(t) and its first derivative (corresponding to finiteness of V~~) (A2 ) and V~~~ (A2)) 

both stem from a single relation, Eq. (4.67). 

The second and third derivatives of wv(t) are also continuous at t = 1, and their 

discontinuities involve additional new structures built from combinations of the Ao,l 
(L)" and Bo, 1· Furthermore, to ensure finiteness of VPT ( Q2 ) at Q2 = A 2, one requires the 

relation, 

00 

L[3z~(AI(n) + B1(n))- 2z~(Ao(n)- Bo(n))] 0, (4.70) 
n=l 

( L )m 
and for finiteness of VPT (Q2 ) at Q2 = A2 , one requires the relation, 

00 

L[4z~(AI(n)- B1(n))- 3z~(Ao(n) + Bo(n))] = 0, ( 4.71) 
n=l 

and these are both satisfied. Equations (4.70) and (4.71) are also the relations which 

ensure that the second and third derivatives of wv(t) are continuous at t = 1. Further­

more, they can both be derived from the following relation, 

00 

L ( n3~n + 3n2tn) = 0. (4.72) 
n=l 

(L)" (L)'" We conclude that finiteness of IJPT (Q2 ) and VPT (Q2) is ensured by continuity of 

the second and third derivatives of wv(t) at t = 1 and that this in turn stems from the 
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relation in Eq. (4.72). 

The fourth and higher derivatives of wv(t) are discontinuous at t 

Ref. [130]. 

1, as noted in 

4.5 The skeleton expansion and non-perturbative effects 

In this section we wish to consider in more detail, the compensation of ambiguities 

between renormalons and the OPE. The regular OPE is a sum over the contributions 

of condensates with different mass dimensions. As discussed in section 3. 7, in the case of 

the Adler D-function, the dimension-four gluon condensate is the leading contribution, 

(4.73) 

where Cca(a(Q2 )) is the appropriate Wilson coefficient. In general, the nth term in 

the OPE expansion of Eq. ( 4.3) will have the coefficient, 

(4.74) 

The exponent c5n corresponds to the anomalous dimension of the condensate operator 

concerned. As was stated in section 3.7, these non-perturbative corrections cannot be 

unambiguously defined and this leads to Cn having an imaginary part so that Cn = 

CAR) ± iCAJ). This mirrors the ambiguity in the perturbative part. Hence the nth term 

in the expansion in Eq. (3.103) will have an ambiguous imaginary part of the form, 

Im[VNP] = ±iCAJ)[a(Q2
)]

6n (~:) n (1 + O(a)) 

±iCAI)[a(Q2)Jone-2n/ba(1 + O(a)). ( 4. 75) 

Here, to obtain the second line we have used Eq. (1.113). If one considers an IRn 

renormalon singularity in the Borel plane with the generic form Kn/(1 - zj zn)'Yn, then 

one finds an ambiguous imaginary part arising of the form, 

(4.76) 
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Here, the ± ambiguity comes from routeing the contour above or below the real z-axis 

in the Borel plane (see Eq. (3.102)). This is structurally the same as the ambiguous 

OPE term in Eq. (4.74), and if we make the identification CAl) = Kn7rzJn fr(ln) and 

On = 1 -In, then the PT Borel and NP OPE ambiguities can cancel against each 

other [147]. Taking a PV of the Borel integral corresponds to averaging over the ± 

possibilities. 

For Q2 < A2 the modified expansion of Eq. (4.16) will have an nth coefficient of the 

form, 

(4.77) 

In this case the exponent Jn is related to the anomalous dimension of four- fermion 

operators with mass dimension-6, which are associated with UV renormalons [160]. 

IR divergences associated with these render the imaginary part ambiguous, and Cn = 

c!nR) ± iCAI). Thus the nth term in the modified expansion will have an ambiguous 

imaginary part of the form, 

( 4. 78) 

The modified Borel representation of Eq. ( 4.13) has ambiguities arising from UV renor­

malons. Assuming that the UVn singularity is of the form Kn/(1 + z/zn).:Yn one finds, 

(4.79) 

This is structurally the same as the ambiguity in the modified NP expansion coefficient 

in Eq. (4.77), and so if c!nl) = Kn1fZjn jr(i'n) and Jn = 1- i'n, then the ambiguities 

can be cancelled. 

In the one-chain (leading-b) approximation the renormalons are single or double poles 

(corresponding to In = 1 or In = 2). Consequently the ambiguous imaginary parts 

in Eqs. (4.76) and (4.79) contain factors of a 1-"Y which are 1 or 1/a, respectively. For 

the Adler D-function, Im['D~~] is obtained by making the change Ei(x) -t Ei(x) ± i1r 
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in the second term in Eq. ( 4.31) for Q2 > A 2, and in the first term for Q2 < A 2. To 

ensure continuity of the imaginary part at Q2 = A 2 , one needs to choose the sign of i1r 

oppositely in the two regions. We then find, for Q2 > A 2 , 

Correspondingly, for Q2 < A 2 one finds, 

1 oo 2 (Q2)n-ll 
a(Q2 ) ~zn_IfAo(n -1)- Zn-1A1(n -1)] A2 . 

(4.81) 

Alternatively, we can obtain the same results by directly evaluating the residues 

along the integration contours in Eqs. (4.10) and (4.13) using the Borel transform of 

Eq. (4.25). 

Comparing these expressions with Eqs. ( 4.64) and ( 4.65) one then finds that the imag­

inary part may be written directly in terms of the characteristic function wv(t), 

( 4.82) 

Continuity of these expressions at Q2 = A2 then follows from continuity of w(t) at 

t = 1. By requiring that these ambiguities are matched and cancelled by their OPE 

and modified expansion counterparts, we can relate the ambiguities in 7)~~)(Q2 ) to 

wv(t) in both the UV and IR regions. 

The C~R) and C~R) coefficients of the OPE and the modified NP expansion are in prin­

ciple independent of the imaginary part. However, continuity at Q2 = A2 is dependent 
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upon relations between the A0,1 and B0,1 residues, such as Eqs. (4.38) and (4.40), to­

gether with the more complicated structures of Eqs. (4.69)- (4.71), which are required 

for finiteness of the Q2 derivatives. Although not strictly necessary for continuity, this 

continuity follows naturally if we write, 

( 4.83) 

Here, K is an undetermined overall real, non-perturbative factor and the t integration 

reproduces the expressions of Eq. (4.82) in the two Q2 regions. If the perturbative com­

ponent is PV regulated one averages over the ± possibilities. Combining Eq. ( 4.83) 

with Eq. (4.47) for V~~)(Q2 ) one can then write down a result for v<L)(Q2 ) for all 

values of Q2 , 

V(L\Q 2
) = 100 

dt [wv(t)a(tQ2 )+K(wv(t)+tdw~(t))O(A2 -tQ2)]. 
(4.84) 

The Q2 evolution is then fixed by the non-perturbative constant K, and by A. The 

IR limit is V(L)(O) = 0; we have already noted that V~;!(O) = 0, however the NP 

component also freezes to zero, since on integrating the second term, one finds an IR 

limit of w~(1)-wi!,v(l) = 0, from continuity of the characteristic function at t = 1. The 

same expression holds for the other Euclidean observables K~~ ( Q2 ) and U~~) ( Q2 ) on 

replacing wv(t) by w!C(t) and wu(t), respectively.3 From Eq. (4.84) we can determine 

that, 

0.679938 ... + ~ (~ - 7!"
2

) 

b 3 2 3 . 
(4.85) 

We plot in Fig. 4.4 the overall result for v<L)(Q2 ), K;(L)(Q2) and u<L)(Q2 ) for the 

choices K = 0, K = 1 and K = -1. For the DIS sum rules, w!C(t), wu(t) and their first 

derivatives are continuous at t = 1. In the case of U~~) ( Q2 ) there are a total of three 

non-perturbative terms, and hence the continuity of the characteristic function and its 

first derivative fixes the form of the function up to an overall constant factor. Thus 

Eq. (4.84) does indeed hold for U(L)(Q2 ) without conjecturing the form of Eq. (4.83). 

3 The characteristic functions for IC(a) and U(a) can be obtained by taking the Borel transforms of 
Eqs. (4.27) and (4.28), substituting these into Eq. (4.10) and then reversing the changes of variables 
used to obtain Eq. (4.59). 
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Figure 4.4: Here we plot the combined perturbative plus non-perturbative corrections 
to the observables, which are evaluated using Eq. (4.84). In each of the plots we adopt 
three different values of the non-perturbative parameter "'· The grey curves correspond 
to "' = -1 and "' = 1 and the bold curve corresponds to "' = 0 (equivalent to the 
expressions in Eqs. (4.31) - (4.33)). 

4.6 Infrared freezing behaviour of the Re+e- ratio 

We turn in this section to a consideration of the freezing behaviour of the Minkowskian 

quantity Re+e- which was discussed in Ref. [48]. This treatment was criticized in 

Ref. [161], which argued that in fact there is an unphysical divergence in theIR limit. 

We wish to address these criticisms. 

Re+e- (s) will be defined by Eq. ( 4.21) with the perturbative corrections V(Q2) replaced 

by R(s), where ..jS is the e+e- c.m. energy. R(s) is related to V(-s) by analytical 

continuation from Euclidean to Minkowskian space. One may write the dispersion 

relation, 

n(s) 1 1-s+if V(t) 
-. dt-. 
271"Z -B-i! t 

( 4.86) 
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If V(t) is represented by a Borel representation as in Eq. (4.10) then one arrives at, 

R (L) ( ) = rood -z/a(s) sin( 7rbz/2) B[-n(L)l ( ) 
PT s Jo z e 7rbz/2 .vPT z . (4.87) 

There is now an extra oscillatory factor of sin( 1rbz /2) j ( 1rbz /2) arising from the analyti­

cal continuation. In consequence, each individual IR or UV renormalon contribution at 

Q2 = A 2 will be finite, and the cancellation of Eq. ( 4.39) is not required. One can also 

analytically continue the one-chain skeleton expansion result for V~~\Q2) to obtain,4 

(L) 2 roo (1rba(ts)) 
RPT (s) = 1rb Jo dt wv(t) arctan 

2 
. (4.88) 

Here, the principal branch of arctan is assumed so that it lies in the interval 

[-1r /2, +1r /2], and arctan(O) = 0. This form is equivalent to the Borel representa­

tion of Eq. ( 4.87) for s > A 2 , and to the modified Borel representation for s < A 2 . 

Notice that the choice of principal branch is crucial if the PV Borel sum is to be con­

tinuous at s = A 2 . The result freezes to the IR limit R~;/ (0) = 0, since arctan(O) = 0 

on the principal branch. This freezing limit differs from that found in the 'analytic 

perturbation theory' approach [162-164], where freezing to an IR limit of 2/b occurs. 

This freezing limit was also erroneously claimed in Ref. [48], but unfortunately leads 

to the PV Borel sum being discontinuous. In Ref. [161], unphysical singularities in the 

region -A 2 < s < 0 lead to extra terms and they find, 

(4.89) 

The extra terms may be treated as contributions to R~I;/ ( Q2). The final term leads 

to an IR divergence as s ---t 0, and has an expansion of the same form as the OPE. 

Note however, that the Minkowskian OPE for R(Q2 ) is pathological and contains delta­

functions, o(s), and their derivatives [165]. It is only when a smearing procedure in Q2 

is used [166] that it makes sense. In contrast, for Euclidean quantities the regular OPE 

is potentially well-defined, and no smearing is required. 

We will now consider the evaluation of the PV Borel integral for R~;/, and correct the 

4 Note that for R.+.-, we cannot obtain a skeleton expansion representation of the form ofEq. (4.6). 
The appropriate characteristic function, WR(t) does not exist. 
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erroneous statements made in Ref. [48] and noted above. This can be expressed in 

terms of generalized exponential integral functions Ei(n, w), defined for Re w > 0 by 

Ei(n, w) = dt-e-. i
oo -wt 

1 tn 
( 4.90) 

One also needs the integral, 

(
7rba) = arctan T . ( 4.91) 

Here, the principal branch of the arctan is again assumed. Care needs to be taken 

when Re w < 0. With the standard continuation one arrives at a function which is 

analytic everywhere in the cut complex w-plane, except at w = 0, and with a branch 

cut running along the negative real semi-axis. Explicitly [167], 

(-wt-1 [ n-1 1] 
Ei(n,w) = (n- 1)! -lnw-!E+~m- ~ 

(-w)m 
( ) ,.(4.92) m-n+1 m. 

m#n-1 

The In w term contributes to the branch cut along the negative real semi-axis. To obtain 

the PV of the Borel integral one needs to compensate for the discontinuity across the 

branch cut, and make the replacement Ei( n, w) ---> Ei( n, w) + i1r sign(Im w). One then 

finds that the IR renormalon contributions to R~~ ( s) can be written in terms of the 

function, 

</J-(P, q) 

The UV renormalon contributions can be written in terms of the function, 

The PV regulated R~~(s) is then given for all values of s by, 

2 (1rba(s)) 1rb arctan -
2
-
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+ :b f (Ao(j)¢+(1,j) + (Ao(j)- Al(j)z1)¢+(2,j)) 
J=l 

+ 
28:~2 ) <jJ_(1, 2) + :b f (B0 (j)¢-(1,j) + (Bo(j) + Bl(j)zj)</J-(2,j)) · 

j=3 

(4.95) 

Note that the presence of the 8-functions is crucial in Eqs. (4.93) and (4.94). The terms 

they multiply are the extra contributions necessary to obtain the PV when Re w < 0. 

For s > A 2 the second contribution is required for the IR renormalon contribution, but 

for s < A 2 it must be switched off, otherwise the Borel integral will not be correctly 

evaluated. With a(s) < 0 for s < A2 , Re w < 0 occurs for the UV renormalon 

contributions and the extra term must be switched on to obtain a PV regulation of the 

UV component. Leaving out the 8-function in Eq. ( 4.93) would cause an unphysical 

divergence in theIR, and leaving it out in Eq. (4.94) would cause asymptotic freedom to 

fail in the UV. If the PV is correctly evaluated with arctan remaining on the principal 

branch for s 2 < A2 , then one obtains 'R~~(O) = (2/7rb) arctan(O) = 0. Notice that 

at first sight the PV result appears to be discontinuous at s = A2 , as the 8-function 

contributions switch over. However the discontinuity is given by the ¢±(1, j) terms, 

and one finds, upon summing them, a discontinuity, 

~ f[Bo(j)(-1)1 + Ao(j)(-1)1] = ~B0 (2) 
j=l 

2 

b 
( 4.96) 

Here, the relation of Eq. ( 4.40) ensures pairwise cancellations of terms, and Bo(2) = 1 

is left over. If we remain on the principal branch, however, the arctan term has 

an equal discontinuity of opposite sign, since (2/7rb) arctan(+oo) = 1/b, whereas 

(2/7rb) arctan(-oo) = -1/b, and overall there is continuity at s = A2 . In Ref. [48) it was 

wrongly claimed that the PV result is discontinuous at s = A 2 , and instead it was sug­

gested that a regulation in which one throws away the second terms in Eqs. (4.93) and 

( 4.94) should be used. These terms are of the form (A2 j s)q, and (s/ A2)q, respectively, 

and so they can simply be absorbed into the regular OPE and its modified form. 

We finally discuss the ambiguous part of 'R~~(s), given by Im['R~~(s)). This may be 

evaluated straightforwardly as, 
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(4.97) 

If one defines wv(t) = wg)(t) + lnt w~)(t) (the split being into the single and double 

pole renormalon contributions), then comparing with Eqs. (4.64) and (4.65) one finds, 

(s < A2
). (4.98) 

Notice that only the double poles contribute since the sin('Trbz/2)/(7rbz/2) analytical 

continuation term in Eq. ( 4.87) contains zeros at z = ±zn which nullify the single 

pole contributions. Whilst the characteristic function wv(t) is continuous at t = 1, 

the w~)(t) function is discontinuous at t = -1. The magnitude of the discontinuity is 

±2/b and arises from the same sum in Eq. (4.96), which gave an apparent discontinuity 

in the PV regulated R~;! ( s) component, although in the PT case this is cancelled by 

the arctan term. Thus, defined in this way, Im [R~;! ( s)] is discontinuous at s = A 2 . It 

would seem that the proper way to proceed is to use the dispersion relation of Eq. ( 4.86) 

to analytically continue the expression for p(L) ( Q2) arrived at in Eq. ( 4.84) into the 

Minkowskian region. Unfortunately, the one-chain skeleton expansion form for 'D(Q2) 

is difficult to analytically continue in a consistent fashion, which was a key motivation 

for the alternative inverse Mellin representation introduced in Ref. [168]. Clearly the 

issue of Minkowskian freezing is more subtle and requires further investigation. 

4. 7 Summary and Conclusions 

We have shown in this chapter that the leading-b, all-orders resummed form of Eu­

clidean observables are finite at the Landau pole, despite the singular behaviour of 

the coupling at this point. In addition, we found that perturbative corrections to the 

observables remain finite below the Landau pole, and freeze to zero. Previous studies 

of potentially finite behaviour of these observables at or below A 2 , such as the 'analytic 

perturbation theory' approach [162-164], have focused on the use of a modified or 'ana­

lytic' coupling, which is itself finite all the way to Q2 = 0 and this automatically results 

in finite IR behaviour. However, we have shown that this is not necessary. When one 
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sums the perturbative expansion to all-orders, the logarithmic divergences in the cou­

pling at A 2 cancel, leaving the full result finite. Furthermore, we have shown that this 

is due to a curious relation between the IR and UV behaviour of QCD - cancellation 

between UV and IR renormalons. Whilst we might have expected the full form of the 

perturbative expansion5 to have finite IR properties, it is surprising that we can obtain 

such a result in the large-b limit, and using only the one-loop form of the coupling. The 

structure of IRt-tUV relations between the residues of renormalon singularities in the 

Borel plane appears to be much more extensive than previously thought. This finite 

behaviour also confirms the leading-b expansion as being of special significance in QCD. 

When we study the skeleton expansion representation of these observables, we can 

relate these structures to the continuity of the characteristic function - a function 

which we can interpret physically as the distribution of momentum flowing through the 

renormalon chains in Figs. 3.3 and 4.1, and the form of which is dictated by the nature 

of the skeleton diagram itself. 

We found that before freezing to zero, the perturbative corrections change sign in the 

vicinity of the Landau pole. However, when added to the parton model result, the 

observable remain positive for all Q2 . We also demonstrated that the skeleton ex­

pansion language provided a natural link between the standard Borel representation 

(valid in the Q2 > A2 region) and a modified Borel representation (applicable to the 

Q2 < A2 region). In doing so, we established a dictionary between the residues of 

renormalon singularities and the series expansion coefficients of the characteristic func­

tion. We showed that for the modified representation, the singularity structure of the 

Borel plane is inverted, with UV renormalons now being the source of ambiguities. 

This further highlights the strong relation between UV and IR physics embedded in 

the renormalon description of QCD. 

We discussed the ambiguous imaginary part of the renormalon contribution to the per­

turbative expansion, and how this differs between the UV and IR regions. We then 

developed a model for non-perturbative power corrections, based on the compensa­

tion of perturbative and non-perturbative ambiguities. This was only made possible 

by the newly discovered attractive IR properties of the renormalon component noted 

5 By this we mean the form of Eq. (4.1) Including all higher-order coefficients in their exact form 
and the full all-orders coupling. 
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above. The result of this is an expression for the combined perturbative and non­

perturbative components of the observable, written in terms of the QCD scale param­

eter A and a single undetermined non-perturbative parameter, K,. 

All of the above properties and results hold in general for Euclidean observables for 

which a one-chain result of the form of Eq. ( 4.6) can be written down. 

We also briefly considered theIR properties of the Re+e- ratio, for which a characteristic 

function, wn(t), in the representation of Eq. (4.6) does not exist. We concluded that 

the subject of IR freezing in the case of Minkowskian observables requires further study. 

Having developed these theoretical predictions, an obvious next step is to apply them 

to a phenomenological analysis of the observables concerned. Experimental data exists 

for the GLS and polarized Bjorken sum rules and data for the Adler D-function can be 

obtained indirectly via analytical continuation of data for the Re+e- ratio. A study of 

this kind (in the case of the sum rules) is the subject of the next chapter. Also, it is 

interesting to note that the characteristic function of the Adler D-function is continuous 

only up to its third derivative. This would presumably cause problems with the conti­

nuity and finiteness of the separate perturbative and non-perturbative components of 

the fourth derivative of the Adler D-function, when written in terms of Eq. ( 4.84). It 

is unclear whether we can make any conclusions about the physical implications of this 

and this subject requires further study. 

One might expect that the IR properties of the one-chain result also hold for the 

two-chain result. However, the relation between the two-chain form of Eq. (4.6) and 

the sub-leading-Nf and -b coefficients dr-IJ and 4n-I) is slightly more complicated. 

Whereas the one-chain term corresponds exactly to the leading-Nf coefficient, dhn], only 

part of the sub-leading-Nf coefficient, dr-IJ is built from two-chain contributions. This 

makes it difficult to draw any conclusions on general grounds about the IR properties 

of the two-chain term in the skeleton expansion. Clearly, the nature of the two-chain 

term also warrants further study. 
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Comparison of NNLO and 

all-orders estimates of corrections 

to QCD sum rules 

In this chapter we build upon the progress made in chapter 4 by using the results 

obtained there to perform a phenomenological analysis of QCD sum rules. We apply 

CORGI perturbation theory to the all~orders leading-b resummation of the GLS and 

Bjorken sum rules, and compare resulting predictions with experimental data. We also 

test the proposed model for non-perturbative power corrections and perform fits to 

obtain an optimal value of the non-perturbative parameter in each case. 

5.1 Introduction 

As we have seen, perturbation theory can only remain well-defined when supplemented 

by non-perturbative corrections in the form of the OPE. Even in the limit of asymp­

totic freedom, non-perturbative corrections are needed in order to account for the exis­

tence of ambiguous imaginary components of perturbative predictions. Consequently, 

for low values of Q2 , not only do the convergence properties of fixed order estimates 

suffer, but we also have to contend with a large theoretical error associated with the 

intrinsically ambiguous nature of perturbation theory (see Eqs. (3.28) and (3.102)). 

The inclusion of non-perturb&tive contributions should act to negate this error. 
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Furthermore, we can assess the likely accuracy of fixed-order predictions by comparing 

them with their all-orders counterparts. In the past, this has been done for quantities 

such as the Re+e- ratio at low values of the c.m. energy (where the QCD coupling is 

not so small), and for its tau-decay analogue Rr, where again, at the scale of the T 

mass, the coupling is relatively large [130,143,169-171]. DIS sum rules have also been 

studied in Refs. [172-179]. However, in matching to the exact fixed-order perturbative 

calculations (NLO and NNLO coefficients are available for Re+e-, Rr and DIS sum 

rules), one faces the problem that the all-orders leading-b result is only renormalization 

scheme (RS) invariant if the one-loop form of the coupling is used, whereas the exact 

result must involve the higher-loop coupling. The matched leading-b resummed result 

consequently depends on the assumed renormalization scale at which the matching 

takes place. To avoid this ambiguity it has been argued in the past that one should 

remove scale dependence by a resummation of scale logs to all-orders; employing the 

effective charge approach [41,42], or the CORGI approach [38,39]. The scheme invariant 

quantities associated with these approaches (given in Eqs. (1.158) - (1.159)) -like the 

standard perturbative coefficients - can be approximated at the leading-b level and, 

subsequently resummed [170, 171, 180]. 

The sum rules we will consider have only been measured for relatively small values of 

Q2 [97,102,181-184]. Consequently, for the reasons stated above, non-perturbative cor­

rections must be included in order to perform an accurate phenomenological compar­

ison. In light of this, we use the non-perturbative model developed in the previous 

chapter to improve the accuracy of QCD predictions and to quantify the importance 

of non-perturbative effects for the individual sum rules. 

The work presented in this chapter is based on the research carried out in Ref. [185] 

and the material is organized as follows: 

We describe how the CORGI approach can be adapted to leading-b resummations 

of GLS, polarized and unpolarized Bjorken sum rules. We then compare the resultant 

predictions with the available data from experiment and assess the consistency between 

fixed-order and all-orders approaches. In so doing it is necessary to choose a method 

for evolving through quark mass thresholds and we describe the method we adopt for 

this analysis, and for the remainder of this thesis. We then apply the model for power 

corrections developed in the previous chapter to these observables and perform fitting 
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for the non-perturbative parameter "'· Finally we discuss what conclusions can be 

drawn from this work. 

5.2 Fixed-order and all-orders predictions 

The three physical quantities we are interested in are the GLS sum rule [81], the 

polarized Bjorken sum rule [90], and the unpolarized Bjorken sum rule [85]. These 

quantities were defined in section 2.7.1 and can be written as a parton model result plus 

perturbative corrections (denoted by calligraphic letters). The perturbative corrections 

take the form of expansions in powers of the strong coupling a= a 8 (rr, 

00 00 

K(a) = a(Q) + L knan+l(Q), U(a) = a(Q) + L Unan+l(Q), (5.1) 
n=l n=l 

with K(a) being relevant to the GLS and polarized Bjorken sum rules and U(a) to the 

unpolarized Bjorken sum rule. These expressions can be evaluated at fixed-order, and 

the coefficients kn and Un are known up to n = 2 (NNLO) [82-84, 86-88]. 

The leading-b approximation (previously discussed in chapters 3 and 4) arises from 

rearranging the coefficients into an expansion in powers of N1. The leading NJ term 

can be obtained exactly to all-orders and converting this into the leading-b term allows 

us to approximate the full coefficients at all orders. The result is a Borel integral which 

resums allleading-b terms k~L) = k~n)bn and u~L) = u~n)bn. In the case of K(a), this 

has the form, 1 

oo k(L) 
""' n n = L.....t--z 
n=O n! 

with a similar expression for U00 (a). 

The Borel transforms of the above sum rules in the leading-b approximation can be 

1 In this chapter we have chan'fed notation slightly. We redefine the all-orders resummations as 
Koo(a) = K~;/(a) and Uoo(a) = Upf:i(a). This emphasizes the number of terms in Eq. (5.1) included 
in these predictions (relative to the NLO and NNLO expressions) and also makes the labelling of the 
plots less cluttered. 
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calculated from the results in Refs. [135] and [159], and they are given in Eqs. ( 4.27) 

and (4.28). One can easily compute the PV regulated leading-b Borel sums [143] and 

these are given in Eqs. (4.32) and (4.33). Here, we denote them by, K00 (Q2 ) and 

Uoo(Q2
). 

For these all-orders resummations to be RS (scale)-invariant we need to take a(Q2 ) as 

the one-loop coupling, given in Eq. (4.2). Also, Eqs. (4.32) and (4.33) are derived in 

the so-called V-scheme (MS subtraction with renormalization scale p 2 = e-5/ 3Q2), and 

hence A in Eq. (4.2) will refer to that in the V-scheme defined by, 

(5.4) 

As noted above, there is a problem if we wish to match these leading-b resummations 

with exact higher-order NLO and NNLO calculations for K(a) and U(a) which involve 

the higher-loop coupling. We shall avoid the matching ambiguity by employing the 

CORGI approach described in section 1.8.3 [39, 186]. The CORGI approach consists 

of resumming to all-orders the RG-predictable terms available to a given fixed-order of 

calculation (see section 1.8.3). The standard perturbative expansion is then replaced 

with the following expression, 

00 

K(ao) ao + L Xna3+ 1
, (5.5) 

n=2 

which removes the renormalization scale dependence of Eq. (5.1). In this chapter, we 

will use a tilde to denote CORGI-ized results. Initially we shall deal with K(a) but the 

results are easily generalized to U(a). 

The coefficients Xn are renormalization scheme invariant quantities, each of which can 

be derived from an NnLo calculation of the coefficients of K(a), and of the beta function 

equation coefficients, en. They are given for n = 2 and 3 in Eqs. (1.158) - (1.159) and 

in the case of K(a), they have the form, 

X 2 = k2 - kr - ckl + C2, (5.6) 

3 ck? 1 
k3- 3klk2 + 2k1 + 2- k1c2 + 2c3. (5.7) 
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The coupling ao used in Eq. (5.5) has the same form as that given in Eq. (1.152) [35,36], 

ao(Q) = ( [ 1 ( 2 )-b/2c])' 
c 1+W-1 -- ~ 

e AK 

-1 
(5.8) 

but in terms of the scale AK. The relation between AK and the MS scale can be obtained 

through the expression for Xo, evaluated in MS with It= Q, 

Xo(Q) = bin (_It ) - krs 
AMS 

c MS 
(

2 
)

-c/b _ 

AMs b exp(k1 /b) 

(5.9) 

(5.10) 

(5.11) 

Here, krs denotes the NLO perturbative coefficient in MS with scale choice It = Q 

and on the second line we have assumed Nt = 4. The exponential term in the above 

equation has the effect of resumming a set of RG predictable terms present in the full 

perturbative expansion, it also reproduces the O(a2 ) term present in Eq. (5.1) but 

absent from Eq. (5.5). 

Equation (5.5) can easily be adapted to provide a prediction for the unpolarized Bjorken 

sum rule of Eq. (4.24). We simply use the equivalent coefficients of U(a) in Eqs. (5.6) 

and (5. 7) and the following coupling, 

ao(Q) = ( [ 1 ( 2 )-b/2c])' 
c 1 + w_1 -- ~ 

e Au 

-1 
(5.12) 

where, 

~ 2.901AMs· (5.13) 

Again, we have assumed Nt = 4 in Eq. (5.13). 

Equation (4.32) can be adapted so that it resums the leading-b components of Eq. (5.5) 
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and essentially becomes an all-orders CORGI result. We define the coupling av through, 

1 _!_ + k(1)b 
1 ' ao 

(5.14) 

where kp) is defined through the kn analogue of Eq. 4.4; it is calculated in the V­

scheme2 and has a value of 1/6. For U(a) we have u~l) = 1/2. The coupling ao in 

Eq. (5.14) is that of Eq. (5.8). The all-orders CORGI result can now be obtained from 

Eq. (4.32) using Eq. (5.14), 

00 

Koo(Q) = ao + L x~n)bna~+ 1 

n=2 

(5.15) 

with K00 (a) given by Eq. (4.32). X~n), in analogy with Eq. (3.70), is the leading-b part 

of Xn, for example: 

k(2) - (k(1)) 2 
2 1 ' 

(5.16) 

(5.17) 

We can verify Eq. (5.15) by substituting for av using Eq. (5.14) and expanding in 

powers of ao. This yields, 

00 

Koo(Q) = av + L kp)bna~+l 
n=1 

which is consistent with Eqs. (5.15) - (5.17). 

Furthermore, we can also improve upon Koo by adding to Eq. (5.15) the known sub­

leading-b part of x2, 

(5.19) 

21b obtain the coefficients kn in the V-scheme, or indeed in any scheme, we use the fact that Xn 
are RS invariant, in conjunction with Eqs. (5.9), (5.6) and (5.7). 
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Equation (5.19) now contains all the information we have about the perturbative coef­

ficients for !C(a) at all-orders. Analogous expressions also hold for U00 (Q) and Uoo+(Q). 

In chapter 4, we noted that the one chain result of Eq. ( 4.32) is finite at the Landau 

pole (Q =A), and remains so for values of Q below A. Remarkably, this finiteness at 

Q = A holds when we use the 't Hooft coupling of Eq. (5.8). Furthermore, both of 

these results have the same values at their respective Landau poles, i.e. 

!C(a) I = !C(ao) I = --
9
8

1n 2. 
Q=Av Q=AJC 

(5.20) 

Similar relations apply to U(a) and also to the Adler D-function [152]. This conclusion 

is altered slightly for the actual CORGI result of Eq. (5.15) because of the use of av(Q). 

In this case the result remains finite at Q = AJC, but has a different value to that in 

Eq. (5.20). 

Finally, we can also consider NLO and NNLO CORGI, fixed-order approximations, 

KNLo(ao) 

KNNLo(ao) 

ao(Q), 

ao(Q) + X2a~(Q). 

(5.21) 

(5.22) 

By comparing these with the all-orders resummations, we can assess the reliability of 

fixed-order perturbative predictions. 

5.3 Comparison of fixed-order and all-orders predictions 

The data available for KcLs(Q) and KuBj(Q) span a range of energy which includes 

the bottom quark mass threshold. It is therefore necessary for us to choose a method 

for evolving the above expressions through this threshold and we adopt the approach 

detailed in Ref. [187]. At a particular energy scale we treat all quarks with masses less 

than that scale as 'active' but massless and we ignore quarks with masses greater than 

that scale. As a consequence, the coefficients kn and Un are now N1-dependent and 

hence they will depend on the c.m. energy scale. 

We also perform matching of the coupling at Q2 = m~. At LO and NLO this amounts to 

demanding continuity of the coupling at the threshold, but at NNLO and beyond, this 
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continuity is violated. The matching is governed by the decoupling theorem [188] and 

leads to the following relation between the coupling above and below a quark threshold 

(denoted by af+l (Q2 ) and af(Q2) respectively) [187, 189], 

2 2 11 ( 2 )3 af(mb) = af+I(mb) + 
72 

af+I(mb) . (5.23) 

This matching is implemented by adopting different values of the scale parameter in 

different Nf regions. This is governed by the following equations [187], 

(5.24) 

where 8 N LO and 8 N N LO are given by 

(5.25) 

+ (5.26) 

Here, AN1 is the scale parameter in the region where NJ quarks are active, mN1 is the 

pole mass of the f quark, bNJ, eN! and c~1 are simply b, c and c2 evaluated for NJ 

quark flavours and Lm =In ( m'jy
1
+1/ A'jy

1
). The above relations ensure that Eq. (5.23) 

is satisfied by the three-loop coupling of Eq. (1.118). It must be noted that even for 

NLO predictions (where continuity of the coupling is assured) the observable is still 

discontinuous due to the coefficients kn and Un being N1-dependent. 

We must be careful how we apply this matching to the different results we have obtained. 

Equation (5.24) is an MS result and hence we carry out the matching for AMs and then 

convert to the various other scales we have defined in Eqs. (5.4), (5.11) and (5.13). 

Also, JCNLO is an NLO result and hence, when applying Eq. (5.24) to this result, we 

omit ONNLO· The results in Eqs. (5.15), (5.19) and (5.22) are all at least NNLO and 

hence we use the full result from Eq. (5.24). 

We wish to compare these results with relevant experimental data. Data is available 

for the GLS sum rule [97] and the polarized Bjorken sum rule [102, 181-183], where the 
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Koo+ 
Koo 

·-·-·- KNNLO 2. 2 /1 .. 
I I ·-·-·- f<NLO 

1 2 5 10 20 50 100 
Q2 /GeV2 I I 

Figure 5.1: Various predictions for the GLS sum rule, superimposed on to experimental 
data. 
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Figure 5.2: Various predictions for the polarized Bjorken sum rule, superimposed on 
to experimental data. 

points we plot are those arising from the analysis of Ref. [184]. We plot the data in 

Figs. 5.1 and 5.2 along with our predictions for the full observables. No experiment has 

so far measured the unpolarized Bjorken sum rule, however the possibility exists that it 

may be extracted from experiments at a future neutrino factory [190]. We have taken 

A~~= 207 MeV, corresponding to the world average value a 8 (Mz) = 0.1176 [32]. 
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Figure 5.3: Various predictions for the unpolarized Bjorken sum rule. 

Within the considerable error bars we see that the different versions of CORGI all show 

good agreement with the data. The important conclusion is that below Q2 '"" 5 Ge V2 

the all-orders and fixed-order approaches give drastically different predictions for the 

GLS and pBj sum rules. This indicates that fixed-order perturbation theory cannot 

be trusted for these lower energies. Even though we have no experimental data points 

for UuBj ( Q2 ) we have plotted the different versions of CORGI in Fig. 5.3. We see that 

fixed-order perturbation theory cannot be trusted below Q2 '""2 GeV2 . 

We can contrast these CORGI resummations with a leading-b resummation in the 

MS scheme. If we choose the scale t-t = xQ we have, analogous to Eq. (5.15), 

00 

JC~8 (x) = a(xQ) + L k~n)(x)bnan+ 1 (xQ) (5.27) 
n=l 

(5.28) 

Here a(xQ) denotes the full higher-loop (three-loop if matching to NNLO) MS coupling 

at scale t-t = xQ, and the kn(x) coefficients are the MS coefficients with scale t-t = xQ. 

The coupling av(x) can be related to a(xQ) using Eqs. (1.133) and (5.14), 

1 1 ( 5) 
av(x) = a(xQ) - b lnx + 6 . (5.29) 
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We can match this all-orders resummation to the exact NLO and NNLO perturbative 

coefficients obtaining, in analogy with Eq. (5.19), 

In this equation, a(Q) is the approximated three-loop coupling, given in Eq. (1.118) [32]. 

3 

2.8 

2.6 

2.4 

2.2 

1 2 5 10 20 

......................... 

J.l=2Q 

J.l=Q 

J.l = Q/2 

50 100 

Figure 5.4: All-orders leading-b prediction for the GLS sum rule. Here we use the 
MS result of Eq. (5.30) with renormalization scales of J.l = 2Q, Q and Q/2. 

The resulting prediction is plotted in Fig. 5.4 for the GLS sum rule. Three different 

matching scales corresponding to x = 2, 1,! were chosen. As can be seen, the matched 

resummed perturbative result is hopelessly x-dependent. The CORGI result Koo+(Q2) 

corresponds to the choice x = e-k1 (x=l)/b. Notice that no NLO matching is required in 

the CORGI approach, since an infinite set of RG-predictable terms involving k1 have 

been resummed to all-orders, yielding a J.t-independent result cf. Eq. (1.166). 

5.4 Non-perturbative corrections 

In addition to perturbative corrections it is expected that there will be non­

perturbative, Higher-Twist (HT) corrections to the sum rules. These were discussed in 

the previous chapter in the language of the one-chain term of the skeleton expansion. 

The leading-b resummations we have discussed can be written in the form derived from 
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Eq. (4.6), 

(5.31) 

Here WJC(t) is the characteristic function which is piecewise continuous at t = 1. As 

detailed in chapter 4, the two terms respectively reproduce the IR renormalon and 

UV renormalon contributions in the Borel sum. The skeleton expansion result is also 

well-defined for Q2 < A 2 where the standard Borel representation breaks down. 

By considering the compensation of ambiguities between perturbative and non­

perturbative corrections we are led to an expression for HT corrections in terms of 

the characteristic function, 

(5.32) 

(see Eqs. (4.82) - (4.84)). Here ,.., is a single overall non-perturbative constant. This 

result is obtained from the V-scheme result of Eq. (4.32) and hence the appropriate 

scale parameter for Eq. (5.32) is Av. A similar expression holds for UHT(Q2) in terms 

of wlJ(t). 

The characteristic functions WJC(t) and wu(t) can be determined from their Borel rep­

resentations (Eq. (4.10) in conjunction with Eqs. (4.27) and (4.28)) by reversing the 

changes of variables used to obtain Eq. (4.59). wJC(t) has the form, 

w~(t) 

w}?(t) = 

and the equivalent expression for U (a) is, 

wlJ(t) 

8 5 - ~ -t 
9 9 ' 

4 1 
---
9t2 9t3 ' 

4 
-- t 
3 ' 

1 
wJ:/ (t) = 3t3. 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

Each term in these expansions is in one-to-one correspondence with a renormalon sin­

gularity in the Borel transforms of Eqs. (4.27) and (4.28). 

In Figs. 5.5 and 5.6 we take the four expressions in Eqs. (5.15), (5.19), (5.21) and 
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K,GLS -3 (~) /'l,QLS A~/GeV2 
x2ns/d.o.f. 

ICNLO -0.166 ± 0.20 0.1007 ± 0.12 1.256/4 
JCNNLO -0.217 ± 0.20 0.1313 ± 0.12 1.238/4 

Koo -0.33 ± 0.20 0.1997 ± 0.12 1.804/4 
Koo+ 0.0216 ± 0.20 -0.01311 ± 0.12 2.089/4 

Table 5.1: Fitted values of the non-perturbative constant K,GLS, together with their 
respective x2 per degree of freedom ( d.o.f). 

K,pBj -/;I~ I (~) K,pBj A~/GeV2 X~Bjjd.o.f. 

ICNLO -0.06255 ± 0.26 0.002647 ± 0.011 1.173/11 
JCNNLO -0.1085 ± 0.26 0.004593 ± 0.011 1.162/11 

Koo -0.2823 ± 0.26 0.01195 ± 0.011 1.456/11 
Koo+ 0.03957 ± 0.26 -0.001674 ± 0.011 1.662/11 

Table 5.2: Fitted values of the non-perturbative constant K,pBj, together with their 
respective x2 per degree of freedom. 

(5.22), supplemented by the non-perturbative term in Eq. (5.32), and perform fitting 

to experimental data for both the GLS and the polarized Bjorken sum rules separately. 

We fix A~~ = 207 MeV, as before, and use x2 fitting to obtain the optimal value of the 

non-perturbative parameters3 in each case, K,GLS and K,pBj· The fitted parameters are 

summarized in tables 5.1 and 5.2. We note that the coefficient of a 1/Q2 (twist-4) power 

correction to either Eq. (4.23) or Eq. (4.22) corresponds to a value of -8A~K,G£s/3 or 

- 2~I9A/gyiA~K,pBj, respectively. The corresponding values in GeV2 are presented in 

tables 5.1 and 5.2. For comparison, the central values resulting from a three-point 

function QCD sum rules fit [91-93] are -0.294 and -0.013, respectively. We see that 

the power corrections in tables 5.1 and 5.2 resulting from fitting to the Koo+ all-orders 

resummations are significantly smaller, although with large error bars. Connections 

between power corrections for the three DIS sum rules have also been explored in 

Ref. [191]. 

3 We assume that the non-perturbative parameters in the cases of KaLs and KpBJ are independent 
of each other. 
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Figure 5.5: Predictions for the GLS sum rule, including both perturbative and non­
perturbative corrections, fitted to the data by varying the parameter t;,GLS· 
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Figure 5.6: Predictions for the polarized Bjorken sum rule, including both perturbative 
and non-perturbative corrections, fitted to the data by varying the parameter t;,pBj· 

5.5 Summary and conclusions 

By comparing with leading-b resummations based on the CORGI approach we at­

tempted to infer the validity of fixed-order perturbation theory for the GLS and Bjorken 

DIS sum rules at small energy scales Q2 "'3 GeV2
, where data has been used to extract 

o:8 (Mz) [32]. Figures 5.1 and 5.2 indicate that fixed-order perturbation theory andre-
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summed all-orders predictions start to differ drastically for energies below Q2 "' 5 Ge V2 

in the GLS and pBj cases, and for energies below Q2 "'2 GeV2 in the uBj case. 

The use of the CORGI approach ensures that all RG-predictable scale-dependent loga­

rithms are resummed to all-orders, avoiding the need for NLO matching, which would 

otherwise make the conclusions about the validity of fixed-order perturbation theory 

dependent on the chosen matching scale, as illustrated in Fig. 5.4. 

We performed fits to data for power corrections using the model proposed in chapter 

4 and based on the skeleton expansion characteristic function. The size of power cor­

rections inferred by fitting the all-orders CORGI resummations was much smaller than 

the central values obtained from three-point QCD sum rule estimates of Refs. [91-93]. 
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Chapter 6 

Analysis of moments of F3 in 

neutrino-nucleon scattering 

In this chapter we turn our attention to fixed-order predictions for moments of DIS 

structure functions. We present an analysis of the moments of F3 in neutrino-nucleon 

scattering, our aim being to test the accuracy of QCD predictions by comparing them 

with experimental data. In particular, we are interested in how this analysis is affected 

by the removal of renormalization and factorization scale dependence via the CORGI 

approach to perturbation theory. 

6.1 Introduction 

Because of asymptotic freedom, we can apply perturbation theory to the dynamics of 

quarks at high energies. When supplemented by the OPE and the factorization pro­

cedure, we have at our disposal a powerful method of investigating the behaviour of 

hadron-bound quarks, via lepton-hadron scattering. In particular, factorization allows 

us to avoid the explicit calculation of non-perturbative effects, and hence allows us to 

obtain a result written in terms of perturbative variables, supplemented by a set of 

non-perturbative constants. 

Despite this, there remain several obstacles which limit both the validity and accuracy 

of factorized predictions when applied to experimentally measured structure functions. 

Two of these are outlined below: 
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• QCD predictions for the moments are both factorization and renormaliza­

tion scheme (FRS) dependent. This is effectively a double dose of the problem of 

RS dependence discussed in section 1.8. The canonical approach to dealing with 

this is to set the arbitrary scales equal to some 'physical scale' i.e. M = f.-£ = Q, 

and then to adopt some 'best scheme' (such as MS) for making the finite sub­

tractions in each of the cases of renormalization and factorization. However, 

the resultant expressions then suffer from dependence on these arbitrary choices, 

and therefore have an inherent theoretical error associated with them. Moreover, 

there is a lack of physical motivation to justify any particular scheme being the 

'best' choice. 

• There are certain limitations on the ranges of Q2 and x (defined in Eqs. (2.2) 

- (2.4)) for which data for the structure functions is available. In particular, 

there are upper and lower limits on the accessible range of x at low and high Q2 

respectively. Experimental values for the moments at a given Q2 are obtained by 

integration of the structure function (measured at that Q2), over the full range of 

x. In order to do this, it is necessary to model the available structure function data 

over this x-range. 

However, regions of x for which we have no data will leave the structure func­

tion modelling (and therefore the experimental moments) poorly constrained. 

As a consequence, the result of any analysis will be dependent on the way the 

structure functions are modelled (in the missing data regions). This is clearly 

undesirable and we are forced to either live with this modelling dependency, or 

expand the errors on the experimental values for the moments accordingly. 

In this chapter, we intend to overcome these problems and to improve upon previous 

analyses in the following ways: 

• We use the method of Bernstein averages to overcome the above-mentioned 

limitations of the structure function data. This technique was first applied in 

Refs. [192,193], and was adapted for CORGI analysis in Ref. [194). In this method, 

data for a structure function at a given Q2 is multiplied by a polynomial in x 

(which is peaked sharply within the region for which we have data) and then 

integrated over the full range of x. The result is a Bernstein average- an object 
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which has negligible dependence on the values of the structure functions in the 

missing data regions, and can be written as a linear combination of moments. 

Thus, by comparing theoretical and experimental values of the Bernstein aver­

ages (rather than the moments themselves) we can reduce any dependence of the 

analysis on the way we model the structure functions in the inaccessible regions 

of x. 

• Until recently, only partial results for the NNLO coefficients of the anomalous di­

mension were available. This has limited any analysis of F3 to the subset of odd 

moments n = 1, 3, 5, ... 13. However, due to the results in Ref. [78], we now have 

analytic expressions for the non-singlet anomalous dimension for any value of n. 

Hence, we no longer need to limit ourselves to odd moments, and we can also 

remove the limit on the highest moment available to the analysis. 

• We will adapt the CORGI approach (previously applied to the elimination of 

renormalization scale dependence, in section 1.8.3) to the problem of FRS depen­

dence (in which we have two arbitrary scales), and thus reduce any dependence of 

the analysis on renormalization or factorization scales. This approach was previ­

ously outlined in Refs. [39,194,195]. However, the expressions for the explicit FRS 

dependence of the moments derived in those works were incorrect. We correct 

these results and apply them to the analysis of moments of F3. 

The material in this chapter is derived from the research carried out in Ref. [196], and 

is organized as follows: 

First, we describe how the FRS dependence of moments can be parameterized and how, 

as a result of this, the CORGI approach to perturbation theory may be generalized to 

deal with dependence on two arbitrary scales (M and Jl.). We show how the explicit 

FRS dependence of the moments may be obtained, before deriving perturbative predic­

tions for them in the CORGI, physical scale and effective charge approaches. We then 

describe how these predictions are extended to include quark mass threshold, target 

mass, and higher twist effects. Next, we describe how the method of Bernstein aver­

ages allows us to overcome limitations in the data for F3 and how this approach can 

be adapted to deal with both odd and even moments. Finally we present the results of 

our analysis and discuss what conclusions we can draw from them. 
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6.2 Factorization and renormalization scheme depen­

dence of F3 moments 

The moments we are concerned with in this chapter are those derived from F3 in 

(anti)neutrino-nucleon scattering. They are defined as: 

(6.1) 

As stated in section 2.7.2, these moments can be factorized in the following form, 

(6.2) 

where (NIOn, Ns(M) IN) is the NS operator matrix element of nucleon states and 

CA3
) ( Q, M, f-L, a(f-L)) is the coefficient function. The operator matrix element is fac­

torized at the scale M into a non-perturbative component and a perturbative expres­

sion. The perturbative component is written in terms of the coupling evaluated at the 

factorization scale, a= a(M). The factorization scale dependence is then governed by 

the anomalous dimension equation, 

{) 
M {)M(NIOn,Ns(M)IN) = (NIOn,Ns(M)IN)'Yn,Ns(a), (6.3) 

where 'Yn,Ns(a) is the non-singlet anomalous dimension and has the following perturba­

tive expansion, 

(6.4) 

The M dependence of the coupling is governed by the beta-function equation, 

(6.5) 

These two equations determine the perturbative behaviour of the operator matrix ele­

ment. For the remainder of this chapter, we simplify our notation by dropping the sub­

and superscripts 'vN', 'n', '(3)' and 'NS', from the quantities in Eqs. (6.2) and (6.3). 

Also, although the coefficients di(n) in Eq. (6.4) are n-dependent we suppress this, 

again for the sake of brevity. In section 1.8.1 we described how we can parameterize 

RS dependence in the case where we have a single arbitrary scale. In the case of the 

moments however, we have two arbitrary scales and hence we must adapt the approach 

in order to take this into account. 
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A solution to Eqs. (6.3) and (6.5) can be obtained in the form, 

{ 

{a(M) r(x) rXJ /(l)(x) } 
(O(M)) = Anexp Jo (3(x)dx- Jo (3( 2)(x)dx , (6.6) 

where 'Y(i) and f3(i) denote the anomalous dimension and beta-function equation trun­

cated after i terms, and we have defined (O(M)) = (NIOn, Ns(M)IN). There is a 

distinct parallel between the above equation and the solution to the beta function in 

Eqs. (1.110) and (1.111). The second integral in Eq. (6.6) is an infinite constant. We 

are free to choose any form we wish for this term, subject to the constraint that it 

must have the same singularity structure as the first term in the integrand. How­

ever, a particular choice for this constant corresponds to a particular definition of An. 

Consequently, An can be likened to the dimensional transmutation parameter, A, in 

that it defines the missing boundary condition in Eq. (6.3). An is actually a (set of) 

non-perturbative constant(s), generated by the factorization process. Their precise val­

ues cannot be calculated within perturbation theory, and hence must be obtained by 

comparison with experimental data. 

The coefficient function Cn(Q, M, J.L, a(J.L)) depends on both the renormalization and 

factorization scheme adopted, and it takes the form of an expansion in powers of the 

coupling evaluated at the renormalization scale, 

(6.7) 

where ii = a(M = J.L). Using the above equation together with Eqs. (6.2) and (6.6), the 

moments can be written as [39], 

(6.8) 

where, 

The explicit M dependence of the coupling can be obtained by solving the following 

transcendental equation [33], 

1 ca 
- +cln-­
a 1 + ca 

b ln - - b -- - -.,.,.,---M 1a [ 1 1 ] 
A o f3(x) (3( 2)(x) · 

(6.10) 
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Equation (6.8) serves as a prototypical expression for the moments, from which we 

derive perturbative expansions for them using three different approaches described in 

sections 1.8.2 - 1.8.4. However, we must first adapt these approaches to the two-scale 

case. 

6.2.1 Parameterizing FRS dependence 

In the same way that the beta-function equation governs the RS dependence of the 

coupling, the anomalous dimension equation governs the FS dependence of the operator 

matrix element. Hence the FRS dependence of the moments is characterized by the 

coefficients of these two equations. The first coefficient of the anomalous dimension is 

FS invariant and therefore it is the set of parameters {M,J.t,C2,c3, ... ,d1,d2, ... } that 

are relevant to FRS dependence [103]. Moreover, these parameters can be used to 

define any particular FRS and also parameterize the FRS dependence of the moments. 

The self-consistency of perturbation theory demands that the FRS dependence of an 

O(aN) result, M(N)(n; Q2), is at least of order N + 1, hence formally, 

8M(N) 

8(FRS) 
= O(aN+l). (6.11) 

Here, as in Eq. (1.120), we use FRS to symbolize the set of parameters defining a 

particular scheme. 

Inspired by the parameterization of RS dependence in section 1.8.1, we now proceed 

to systematically determine the explicit FRS dependence of the coefficients ri. This is 

achieved by differentiating the expressions for the moments with respect to the FRS 

parameters, {M,J.t,C2, ... ,d1,d2, ... } [103], and in order to do this, we will need the 

following results. 

We can write I(a) as an expansion in powers of a, 

(6.12) 

where the coefficients are, 

( 6.13) 
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d2 cd1 c2d 
2b- 2b- 2b' (6.14) 

(6.15) 

Also, using the beta-function equation, we can write the coupling a as an expansion in 

powers of a, 

a 

and consequently, 

where we have defined, 

L b ln[M / !-£]. 

Factorization scale dependence 

Differentiating Eq. (6.8) with respect to ln M gives, 

MoM 
aM 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

where M = M(n; Q2). Using Eqs. (6.12) - (6.18), and then expanding in powers of a 

gives, 

MoM 
aM 

+ M ;;"~ (r1- r2 - 2r,£ + £2 + cL)) + 0 (a4
) ]· (6.20) 
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From Eq. (6.11) we know that the term in square brackets in the above equation must 

vanish order-by-order in a. Thus, equating the coefficients of powers of a, and then 

setting to zero yields, 

M8r1 = d, (6.21) 
8M 

M8rz 
8M 

dr1-dL+d1, (6.22) 

M8r3 = dz + d1r1 + drz- dr1L- 2d1L + dL2
- deL. (6.23) 

8M 

Renormalization scale dependence 

The log J.L dependence is somewhat easier to determine. Differentiating M ( n; Q2 ) with 

respect to log p, gives, 

8M 
p,-

8p, 

+ I' Z: a'+ 2r,iifJ(ii) + 11 Z: a'+ 3r3a2f)(a) + o (a4
) ]· (6.24) 

Comparing orders of ii is equivalent to comparing orders of a and therefore, we can 

obtain, 

8r1 
0, (6.25) p,- = 8p, 

8rz 
r1b, (6.26) p,-

8p, 

8r3 
2rzb + br1c. (6.27) p,- = 8p, 

Dependence on di 

First, for d1 we have, 

(6.28) 
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and expanding this in powers of a gives, 

+ a3 
( :: + :: ( 2L- r1) + :: (rl- r,- 2r1L+ £ 2 + cL)) + 0 (a4

) ]· 

(6.29) 

Equating coefficients then yields, 

8r1 1 

8dr b' 
(6.30) 

8r2 c rr L 

8dr 2b- b + b' (6.31) 

(6.32) 

Performing the same procedure for d2 gives, 

+ a3 
( ~~: + ~~: ( 2L- r1) + :: (rl- rz- 2n£+ £ 2 + cL)) + 0 (a4

) l 
and equating coefficients yields, 

= 0, 

c 1 - + -(2£- r1). 
3b 2b 
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Finally, the only term relevant to the d3 dependence is the following differential, 

(6.37) 

and therefore we infer that, 

(6.38) 

Dependence on ci 

Finally, we turn our attention to the dependence of the moments on the RS depen­

dent coefficients of the beta-function equation, Ci· For this we will need the results of 

Eq. (1.138), 

Also, to simplify things, we state the differentials of ii and ii2 with respect to c2 , 

and for ii2 , we have, 

aii 8a 

(1 + 2La + 3(L2 + cL)a2 + ·. ·)(a3 + .. ·) 

a3 + 2La4 + 0 (a5
), 

8ii2 8ii2 8a 
= --

OCz 8a 8cz 

(2a + 6La2 + · · ·)(a3 + .. ·) 

2a4 +0(a5
). 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

(6.43) 

(6.44) 

(6.45) 

The derivative of ii3 with respect to cz is of minimum order a5 and hence can be 

neglected. 

Differentiating M(n; Q2 ) with respect to c2 gives, 

M [ d ( 1 + ca) ( .. c . c
2 
a ) a a 8I (a) 

= b ---;;;:- . 1 + ca - ( 1 + ca) 2 . 8cz + 8cz 
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+ 

M [~ (! __ c_) a3 _ da
2 + a3 2cd- d1 + 8I(a) 8a 

b a 1 + ca 2b 3b aa 8c2 

+ 

and equating coefficients yields, 

= 0, (6.47) 

(6.48) 

r1d Ld cd 2dl 
--+-+----rl. 

2b b 3b 3b 
(6.49) 

In the case of c3, we have, 

M c a .L a oc3 oc3 ac3 [d ( 1 ) 4 a,--r( ) afu + a2 £!:z + a3~ ] 
- ---- -+--+ + 
b a 1 + ca 2 8c3 1 + r1 a + r2a2 + r3a3 · · · 

+ a3 
( :: + :: ( 2L - n) + :: (r1 -r2 - 2r1 L + L 2 + cL)) + 0 (a 4) ] , 

(6.50) 
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and equating coefficients in this case, gives, 

0, (6.51) 

0, (6.52) 

(6.53) 

FRS invariance of An 

In the above derivations we have assumed that An is scheme invariant. This was shown 

in Ref. [197], by means of the following argument. Using the beta-function equation we 

can relate the coupling defined in two different schemes a and a (see Eq. (1.125)). We 

can also do this for the operator matrix element, using the anomalous dimension. Thus, 

(O(M)) 

a(p,)(1 + v1a(p,) + v2a(p,)2 + .. ·), 

(6(M))(1 + w1a(p,) + w2a(p,)2 + .. ·). 

(6.54) 

(6.55) 

The coefficients Vi and Wi encode the finite renormalization that relates the two schemes 

to each other. Taking the difference between the logarithm of Eq. (6.6), evaluated in 

the two different schemes (and assuming that An has a different value in each scheme) 

yields, 

ln( (O~~)))-ln((OA(Mn))) - {a(M)r(x) - r(M);y(x) 
- Jo f3(x) dx Jo f3(x) dx. (6.56) 

Expanding this expression in powers of a then gives, 

(6.57) 

We can evaluate this in the M -> oo limit, and from this we conclude that, 

In(~:) = 0, (6.58) 

and therefore that An is scheme invariant. Note that this is subtly different from 

A, which does depend on the subtraction procedure, as can be seen by comparing 

Eq. (1.113) with Eq. (6.56). 
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6.2.2 The explicit FRS dependence of ri 

The partial derivatives derived above allow us to obtain the explicit FRS dependence 

of the coefficients ri. Integrating Eqs. (6.21) and (6.30), gives, 

(6.59) 

where 7M = bln ( M/A). Xo(Q) is an FRS invariant quantity, generated as a constant 

of integration. It is the equivalent of Eq. (1.133) but generalized to the case where 

we have dependence on two arbitrary scales (t-t and M). In analogy with the one 

scale problem, we can define an FRS invariant, non-universal scale parameter, AM, via 

Xo(Q). Thus, 

Xo(Q) dIn (A~)· (6.60) 

In the case of r2, systematically integrating the partial derivatives in Eqs. (6.22), (6.26), 

(6.31), (6.35) and (6.48) gives, 

( 
1 b ) 2 b - d 1 dc2 dr cd 1 d2 
-- - T1 + -r1r1 + -r1--+-+-- - + X2 
2 2d d d 2b 2bd 2b 2b ' 

where we have defined, 

r1(M = t-t) 

d d1 
//J.L- b- Xo(Q). 

(6.61) 

(6.62) 

(6.63) 

Again, X2 is an FRS invariant constant of integration, and is the analogue of the X2 

in Eq. (1.158). 

Finally, for r3 we have, 

2bd1r1r1 b2r r2 br2r bcr r - ___ 1 _1 - --_1 _1 + ___ 1 _1 
-,..:.d.,-2~ d2 d d 
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(6.64) 

Using Eq. (6.61), we can write this as a multinomial in r1 and h, in analogy with 

Eq. (1.143). We can also derive similar equations for ri>3· 

References [39, 195] contained errors in the equations obtained for the following deriva-

t . · Mfu fu fu fu fu fu d fu C tl th . · f 1ves. aM, ad
1

, ad
1

, ad
2

, ac
2

, ac
2 

an ac
3

• onsequen y, e expressiOns or r 2 , r 3, 

X 2 and X 3 presented in those works, and also in Ref. [194], are incorrect. 

6.3 Theoretical predictions for the moments 

We adopt three different approaches to obtaining theoretical predictions of the mo­

ments, each of which endorses a different philosophy for dealing with FRS dependence. 

In CORGI, we do not explicitly set the renormalization scales M and Jl· Rather, the 

relation between these scales is embedded in the FRS invariant X 0 . As a result of this, 

a set of unphysical logarithms (of M and J.L) are resummed. These cancel each other 

out and in so doing, they build the physical log Q /AM dependence automatically (see 

Eqs. (1.163) - (1.166)). Consequently we can remove the dependence of the result on 

factorization and renormalization scales. This is a natural generalization of the CORGI 

approach of section 1.8.3 to the case where we have dependence on two arbitrary scales 

(M and J.L), see Ref. [39]. 

By contrast, in the physical scale (PS) approach, the scales are explicitly set to Q. The 

third approach we use lies halfway in between PS and CORGI. We treat the moments 

as a single effective charge, setting M = Jl· We then 'CORGI-ize' this expression, as in 

the single-scale case, viz section 1.8.3. 

6.3.1 CORGI predictions 

In analogy with section 1.8.3, we can use the FRS invariant quantities appearing in 

Eqs. (6.59), (6.61) and (6.64), to obtain an expression in which all RG-predictable 

terms are resummed. In this way, the physical Q-dependence of M(n; Q 2 ) is built 

automatically via the resummation of unphysical logs [39]. The result of this resumma­

tion is simply equivalent to Eq. (6.8) (with the expressions for ri given in Eqs. (6.61) 

and (6.64)), evaluated in the 't Hooft scheme. Previously, we stated that the values 
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of the parameters { M, J-L, c2, ... , d1, d2, ... } can be used to define any particular FRS. 

However, using Eqs. (6.59) and (6.63) we can swap the first two of these parameters 

for r 1 and 'h. Consequently, the 't Hooft scheme corresponds to the case in which the 

set of coefficients { r 1, r1, c2, ... , d1, d2, ... } are all set to zero. Thus, from Eq. ( 6.8) we 

have, 1 

(6.65) 

In this expression, the second term resums an infinite set of terms which are RG­

predictable at NLO; specifically, these are all the terms in the full perturbative ex­

pansion which do not include factors of Xi. In the third term, each successive Xiat+l 

component we include resums a further subset of terms which are RG-predictable at 

NiLO. As noted above, this has the effect of resumming the RG-predictable set of un­

physical logarithms (ln M and ln J-L), and through Eqs. (6.59) and (6.63), builds the 

physical Q2-dependence automatically. 

Setting r1 = h = d1 = 0 also implies a= ii = ao, where ao is equivalent to the coupling 

evaluated in the 't Hooft scheme, 

ao(Q) 
-1 

(6.66) 
c [1 + w_l (z(Q))]' 

with, 

1 ( Q ) -b/c 
z(Q) = -- - ' 

e AM 
(6.67) 

and W_l (z) defined in Eq. (1.116). The scale AM, can be related to the scale parameter 

for any particular scheme using Eq. (6.60). This expression is FRS invariant and hence 

to relate it to the MS scale, we simply evaluate it in this scheme, 

(2c) -c/b { d1 r1 } 
AM = AMs b exp db + d , (6.68) 

with r1 and d1 calculated in MS with M = J-L = Q. 
1 Note that in the 't Hooft scheme we have I(a) = 0, Ti>l = xi>l and Tl = 0. 
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The FRS invariant X2 can be obtained from Eq. (6.61), 

Again, this can be evaluated in any scheme. In MS with M = J.l = Q, we have r1 = h 

and hence, 

(6.70) 

This can then be evaluated from the MS two-loop coefficients of the anomalous dimen­

sion and coefficient functions. 

For then= 1 case we have d = 0. This would appear to make Eq. (6.65) invalid, due 

to the 1ld terms in Eqs. (6.68) and (6.70). However, using Eq. (6.60) we can show that 

the coefficients of the 1 I d terms are themselves proportional to d, and hence AM I AMs 

and X 2 are in fact non-singular. The question remains however, how may we write the 

n = 1 moment in the CORGI form? 

Expanding Eq. (6.8) in powers of a with d = 0 yields a result which resembles a single­

scale perturbation series. Setting a= a then gives, 

(6.71) 

with R1 = -1 for all n. R2 is obtainable from Eq. (6.8) and is given in Eq. (6.76). 

CORGI-izing the above expression as in the single-scale case then yields: 

(6.72) 

where ao is the coupling in Eq. (6.66) but with AM now given by, 

(2c) -c/b { R2 } 
AM = AMs b exp - b · (6.73) 
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6.3.2 Physical scale predictions 

In the standard physical scale approach, we set Q = M = J-t and adopt MS. Setting 

M = J-t implies that a = a, and hence the moments have the form, 

(6.74) 

The coefficients ~ can be determined by expanding Eq. (6.8) in powers of a, 

(6.75) 

(6.76) 

and the coupling in this expression is that of Eq. (1.118) with scale parameter AMs· For 

then= 1 case, the PS prediction is still given by Eq. (6.74) but with the c~~ar/b 
term absent. 

6.3.3 Effective charge predictions 

We can also 'CORGI-ize' the expression for the moments as a single-scale problem. 

This is done by explicitly setting J-t = M and treating the resultant expression as an 

effective charge (see section 1.8.4 and Refs. [41,42]) in which we have only one arbitrary 

scale. By resumming Eq. (6.74), we can obtain the moments in the form, 

2 ( - )d/b M(n; Q ) = An cR(a) , 

where, 

R(a) 

is our effective charge and the coefficients f4 have the form, 

bR1 
--c 

d 

bcr1 d1c 2 = --+--c 
d d 
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(6.80) 

We can then 'CORGI-ize' R(a) such that the moments have the form, 

2 d/b ( - 3 ) d/b M(n;Q) = Anc ao+X2ao+... , ( 6.81) 

where the coupling a0 differs from that in Eq. (6.66). In this case, the Xi coefficients 

are the single-scaleRS invariants of Eqs. (1.158) and (1.159). They have the form, 

(6.82) 

(6.83) 

The coupling in Eq. (6.81) is that of Eq. (6.66) but with the scale A~ now defined by, 

AEC _ 
M - (

2c)-c/b (R1 ) b exp b AMs, (6.84) 

(see Eq. (1.134)). For then= 1 case, the EC prediction for the moments is identical 

to the CORGI prediction, given in Eq. (6.72) 

The coefficients of the three predictions in Eqs. (6.65), (6.72), (6.74) and (6.81) are all 

built from the coefficients for the anomalous dimension and of the coefficient function, 

which are obtainable (up to NNLO) from Refs. [78] and [113] respectively. In appendix 

C can be found the values for the NNLO coefficients X2, R2 and X2, the NLO coefficient 

R1, and the NLO information relevant to the CORGI and effective charge approaches 

i.e. AM/ AMs and A~/ AMs· We state their values for Nt = 4 and Nf = 5, and for the 

range 1 ::; n::; 20. 

6.3.4 Target mass corrections and higher twist contributions 

The perturbative expressions derived above will be subject to non-perturbative correc­

tions in the form of 0 (1/Q2 ) terms. The two principal sources of these terms are: 

higher twist terms (of the type neglected in the OPE analysis of section 2.4) and effects 

due to the mass of the target hadron. 
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Target mass corrections 

The perturbative form of the moments is derived under the assumption that the mass 

of the target hadron is zero (in the limit Q2 ---> oo). At intermediate and low Q2 this 

assumption will begin to break down and the moments will be subject to potentially 

significant power corrections of order 0 (m~/Q2 ), where mN is the nucleon mass. 

These are known as target mass corrections (TMCs) and when they are included, the 

F3 moments have the form [198, 199], 

Higher twist corrections 

The moments will also be subject to corrections from sub-leading twist contributions to 

the OPE. These effects are poorly understood and hence we only estimate them. This 

is done by means of an unknown parameter, AHT· The estimate has the form [192], 

(6.86) 

and the value of AHT is obtained by fitting to data. Due to the poorly understood 

nature of these effects, we do not include the above term in the full analysis. Rather, 

we perform the analysis with and without this term included, and take the difference in 

the results as an estimate of the error associated with our ignorance of the true nature 

of these effects. 

6.3.5 Quark mass thresholds 

The bottom quark mass threshold is within the range of Q2 that is spanned by the 

available data for F3. It is therefore necessary to evolve the expressions for the moments 

over this threshold and for this, we adopt the approach previously detailed in section 

5.3. We use massless QCD with 4 quarks (NJ = 4) for Q2 :::; m~ and massless QCD 

with 5 quarks (NJ = 5) for Q2 > m~. Here, mb is the pole mass of the b-quark, 

and mb = 4.85 ± 0.15 GeV [32]. We also perform matching of the coupling, resulting 

in the use of different values of the scale parameter above and below the threshold, 

denoted A~~ and A~~ respectively. The relation between A~~ and A~~ is governed by 

the expressions in Eqs. (5.24) - (5.26). 
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Further to this, we also demand continuity of the moments at the threshold, i.e. 

(6.87) 

As a consequence of this, the parameters An also have different values in the NJ = 4 

and NJ = 5 regions and their values are related by, 

A(5) = 
n (6.88) 

6.4 An alternative derivation of Xi ( n) 

We can derive the FRS invariants Xi via a simpler method to that used in section 6.2. 

If we set M = 11 in Eq. (6.8), then the moments reduce to a single-scale problem viz 

section 1.8.3. We can then rearrange the resultant expression in terms of an effective 

charge, R(a), 

M A cR(a) 
( 

' ) d/b 

n 1 + cR(a) 
(6.89) 

R( a) has the form, 

R(a) (6.90) 

The coefficients Ri can be determined by expanding Eqs. (6.8) and (6.89) in powers of 

a and then equating coefficients. They are found to be, 

(6.91) 

- R2 + cR1 - - 1 + - 1 b ( R
2 

bR2) 
d 2 2d ' 

(6.92) 

where R1 and R2 are given by Eqs. (6.75) and (6.76). If we then CORGI-ize this 

effective charge, we have (from Eqs. (1.133) and (1.158)) a new set of FRS invariants, 

(6.93) 

(6.94) 
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and the moments become, 

(6.95) 

Expanding this into a form which we can compare with Eq. (6.65), gives, 

ca0 d , 2 
( )

d/b ( ) 
M = An 1 + cao 1 + b X 2 a0 + . . . . (6.96) 

Isolating the CJ(a6) term in the right hand bracket of the above equation, and then 

using Eqs. (6.94), (6.91), (6.92), (6.75) and (6.76), gives, 

(6.97) 

(6.98) 

So we see that the coefficient of the CJ(a2 ) term in Eq. (6.96) is the FRS invariant X 2 , 

of Eq. (6.69) with !-" = M i.e. r 1 =ft. Isolating the a3 term will yield X3 , and so on 

for higher xi. 

The coupling in Eq. (6.96) is the 't Hooft coupling of Eq. (6.66), but with the scale 

parameter determined by Eq. (6.93). Evaluation of Eq. (6.93) in MS with M = !-" = Q 

gives, 

Xo Q 
(6.99) bln-

AM 

Q ' 
(6.100) = bln...,...-Rl. 

A 

Using Eqs. (6.91) and (6.75) we can then relate AM to AMs, 

(6.101) 

(6.102) 

which is in agreement with Eq. (6.68). 

This gives us a means by which we can obtain the CORGI coefficients without having to 
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calculate the partial derivatives of section 6.2.1. Moreover, we can now obtain CORGI 

predictions from expressions in which f-L has already been set to M. This will be useful 

when we come to consider singlet components of moments of F2 in the next chapter. 

6.5 The method of Bernstein averages 

When comparing theoretical predictions for moments of structure functions with exper­

imental data, we are faced with the long-standing issue of missing data regions at high 

and low x for low and high Q2 respectively. This is demonstrated in Fig. 6.1 in which 

we plot the Columbia-Chicago-Fermilab-Rochester (CCFR) data [200] for 12 different 

values of Q2 . We can see that at the lower range of Q2 we are limited to low-x data, 

and that at high-Q2 we are limited to the high-x range. 

In order to reliably evaluate a moment at a particular Q2 , we require data for the whole 

range of x. This being unavailable, we are forced to make some guess about how the 

structure function behaves in the missing data region. That is to say, we have to choose 

some method of modelling (extrapolating and interpolating) the data to cover the full 

range of x. We could use some QCD inspired method for this modelling, such as MRST 

[201] or CTEQ [202]. However, we wish to keep our experimental input as free from 

QCD assumptions as possible - the intent being to make the comparison of theoretical 

predictions for the moments with experiment, as direct as possible. Therefore we carry 

out this comparison indirectly, via Bernstein averages - objects which, though related 

to the moments, have negligible dependence on the modelling method adopted (and 

hence on the behaviour of the structure function in the missing data regions). 

We define the Bernstein polynomials as follows [203], 

r (n + ;!) 
P (x2) _ 2 2 x2k(1 _ x2)n-k 

nk - r ( k + ~) r ( n - k + 1) , 
n, k E IT. (6.103) 

These functions are constructed such that they are zero at the endpoints x = 0 and 

x = 1, and they are also normalized such that J~ Pnk(x)dx = 1. Furthermore, if we 

constrain nand k such that n > k 2: 0, then Pnk(x) are peaked sharply in some region 

between the two endpoints. 
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Figure 6.1: Data for xF3 plotted against x for the 12 different Q2 bins of the CCFR 
data [200]. 
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The Bernstein polynomials can be treated as a distribution, with a mean, 

and variance, 

flXnk 

f(k + 1)r(n + ~) 
r(k + !)r(n + 2)' 

k+! _ (r(k+1)f(n+~))
2 

n+~ r(k+!)r(n+2) 

The Bernstein averages of F3 are then defined by, 

(6.104) 

(6.105) 

(6.106) 

(6.107) 

(6.108) 

Thus Fnk is the average of the structure function weighted such that the region around 

Xnk is emphasized. By picking the values of n and k wisely, we can construct a set of 

averages which enhance the region for which we have data for F3 , and de-emphasize 

the regions where there are gaps. Therefore, in the resultant averages, the dependence 

on the missing data regions will be heavily suppressed. 

Defining this more rigorously: for a given value of Q2 , we only consider averages for 

which the range, 

(6.109) 

lies entirely within the region for which we have data. The only exception to this is 

if the highest-x data point lies within this range, then we do accept this average, but 

only if the data suggests that xF3 vanishes very rapidly beyond this point. 

The construction of an acceptable average, and the resultant suppression of the missing 

data region is demonstrated in Fig. 6.2. We see that the red missing data regions 

disappear almost completely in the right hand plot. 
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Figure 6.2: Constructing the Bernstein average, F52(Q2 = 50.1). The cyan region 
represents the interval in Eq. (6.109) and the red areas represent the missing data 
regions. The small size of the red region in the right hand plot demonstrates that this 
average will have negligible dependence on the missing data regions. Note that the 
right hand plot actually shows the integrand of the Bernstein average. The average 
itself will be this function integrated over [0, 1]. 

By expanding the integrand of Eq. (6.108) in powers of x, and using Eq. (6.1), we can 

relate the averages directly to the moments, 

2r(n+~)n-k (-1)1 
2 

r(k + ~) t; l!(n- k -l)!M(2(k + l) + 1; Q ), (6.110) 

and so theoretical predictions for the averages can be obtained by substitution of 

Eqs. (6.65), (6.72) (6.74) and (6.81) into the above expression. 

Modelling the structure functions 

In order to calculate averages from data for F3, we need an expression for xF3 covering 

the entire range of x, for each value of Q2 . 

As mentioned above, the values of the moments calculated in this way will depend on 

how we model the structure functions in the missing data regions, but for the averages 

this dependence is suppressed. However, we would like to test this assertion, and so we 

use four different methods of modelling F3 and perform our analysis separately for each 

method. Significant differences between the results would signify a failure of the Bern­

stein average method, and in instances where this is the case, we reject that particular 

average at that particular Q2 . Moderate deviation, however, is acceptable, provided 

that we use the magnitude of the deviation as an estimate of the error associated with 

the missing data region. This error is then included as a 'modelling error ' in the final 

result. In this way, we can almost completely remove any dependence on missing data 
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regions, and quantify the error associated with any residual dependence. 

The four extrapolation methods we use are described below: 

I In the first method, we fit the function, 

(6.111) 

to the data for each fixed value of Q2 . The parameters A, B and C are obtained 

by performing x2 fitting of Eq. (6.111) to data for F3 . They are Q2 dependent 

quantities, and errors on their values are obtained by performing the fitting with 

the data for F3 shifted to the two extremes of the error bars. 

A justification for the particular form of fitting function in Eq. ( 6.111) can be 

found in Ref. [204]. However, the simple fact that this function fits the data 

well is justification enough, since the Bernstein averages are independent of the 

extrapolation method. 

II The second method we use is linear interpolation between successive data points. 

We also extrapolate beyond the data range, to the endpoints xF3(x)lx=D = 

xF3(x)lx=l = 0, in order to be consistent with method I. 

III The third method consists of using the fitting function of Eq. (6.111), but setting 

xF3(x) = 0 everywhere outside the region for which we have data. 

IV In analogy with III, in this method we use the linear interpolation of method II 

but setting xF3(x) = 0 everywhere outside the data region. 

The deviation between the results obtained from the above methods (in particular, 

the difference between the first two and the last two) will be a good measure of the 

effectiveness of the Bernstein average method. 

In Fig. 6.3 we show each of the four modelling methods applied to F3 measured at 

Q2 = 79.4 GeV2 . Also shown on these figures (in grey) are the fits which are used to 

determine the statistical error on the form of F3 , which then propagates through to 

errors on the averages. The systematic errors are determined in the same way. 
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Figure 6.3: The four methods used for modelling the structure functions. Here we show 
the measured values of xF3 at Q2 = 79.4 Ge V 2

. The statistical errors are determined 
by re-performing the fitting for the data shifted to the extremes of the (statistical) error 
bars, and this is denoted by the grey lines. 
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6.5.1 Modified Bernstein averages 

Due to the unavailability of results for d2 for even n, previous NNLO analyses of this 

kind have been limited to the inclusion of only odd F3 moments. As an artefact of this, 

the Bernstein polynomials of (6.103) are constructed such that the resultant Bernstein 

averages depend only on odd moments, as can be seen from Eq. (6.110). 

However, now that the NNLO calculation of the NS anomalous dimension is complete 

[78], we are no longer constrained in such a way. In light of this, we define a new set of 

modified Bernstein polynomials, 

- ( 2) - r (n + 2) 2k+l( 2)n-k 
Pnk X - 2 f ( k + 1) f ( n - k + 1) X 1 - X ' n, k E ll,(6.112) 

which include only odd powers of x and hence whose averages are related to even 

moments. These modified Bernstein polynomials are simply the original polynomials 

of Eq. (6.103), multiplied by x, and then "re-normalized" such that they still satisfy 

f0
1 

Pnk(x)dx = 1. We can calculate the mean and variance of Pnk(x), 

X 
r(k + ~)r(n + 2) 

r(k + 1)f(n + ~)' 

k+ 1 _ [r(k+ ~)r(n+2)]
2 

n + 2 r(k + 1)f(n + ~) 

and in analogy with Eq. (6.108), we define the modified Bernstein averages, 

- 2 2 2 1
1 

Fnk(Q ) = 
0 

Pnk(X )F3(x, Q )dx. 

Again, we only accept experimental modified averages for which the range, 

= 1~< <""" 1~ Xnk - 2 Y Ll.Xnk _ X _ Xnk + 2 Y Ll.Xnk, 

(6.113) 

(6.114) 

(6.115) 

(6.116) 

lies within the region for which we have data, with the same exception as that we 

applied to the standard averages. We obtain theoretical predictions for the modified 

averages using the equation, 

2r(n + 2) n-k (-1)1 2 

r(k + 1) L l!(n- k -l)!M(2(k + l) + 2; Q ), 
1=0 

(6.117) 
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Figure 6.4: Diagram depicting the x-ranges covered by the CCFR data, at different 
Q2. 

and the expressions in Eqs. (6.65), (6.72) (6.74) and (6.81). 

6.5.2 Experimental input 

Data for xF3 in neutrino-nucleon scattering is available from the CCFR collaboration 

[200]. The data was obtained from the scattering of neutrinos off iron nuclei and the 

measurements span the ranges 1.26 GeV2 ::; Q2 ::; 199.5 GeV2 and 0.015 ::; x ::; 0.75. 

The x-ranges covered at each Q2 are depicted in Fig. 6.4. 

From this data (and using the methods I- IV outlined above) we can obtain expressions 

describing the behaviour of the structure function over the full range of x, for each 

value of Q2 . It is then possible to extract experimental values of the averages, using 

the methods outlined below: 

In the case of method I, obtaining the averages is particularly simple. Substituting 

Eq. (6.111) into Eqs. (6.108) and (6.115) gives, 

p(exp) 
nk 

2r(n+~)n-k (-1)/ 
A r(k + 1) L l!(n _ k -l)!Beta(2(k + l) + B, C + 1), (6.118) 

2 1=0 
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for the Bernstein averages and, 

n-k 1 
-(exp) _ 2r(n+2)""' (-1) 

Fnk - A r(k + 1) L; l!(n _ k -l)!Beta(2(k + l) + B + 1, C + 1), (6.119) 
l=O 

for the modified Bernstein averages. Here, Beta(x, y) is the beta function, defined in 

Eq. (B.5). Once values for A, B, and C have been obtained, substitution into the above 

expressions leads directly to the averages. 

In the case of method II, each of the averages is split into j + 1 sections (where j is 

the number of data points at a particular Q2 ), and each section is an integral of a 

polynomial of order 2n + 1. It is then reasonably simple to evaluate the averages by 

computing this set of integrals. This approach also applies to method IV, but in this 

case there are only j - 1 integrals. 

For method III we simply integrate the fitting function, multiplied by the Bernstein 

polynomials, with the integration limits being the values of x at the first and last data 

points. 

Choosing appropriate averages 

Having outlined the method for obtaining the experimental averages we now turn our 

attention to which averages are acceptable at which energies. The highest moment we 

use is the 18th moment and the lowest the 1st. Inclusion of higher moments than this 

leads to no significant increase in the number of acceptable Bernstein averages and 

hence will lead to no improvement on the precision with which we can predict AMs· 

The upper limit of n = 18 implies that the highest Bernstein averages included are Fsk 

and Fsk and that the lowest used are Fw and F10 . We exclude the averages for which 

n = k as they simply correspond to individual moments themselves. This leaves us 

with a total of 72 (36 + 36) potential averages at our disposal for each value of Q2 . 

This number will be reduced when we come to exclude averages on the basis of the 

acceptance criteria. 

In Fig. 6.5 we plot the dominant regions of the Bernstein polynomials (given by 

Eq. (6.109)) for each of the used averages. This is superimposed onto the data-range 
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Figure 6.5: The black and light grey bars (H) show x ranges covered by the CCFR 
data at different energies. Superimposed onto these, in various colours, are the peaked 
regions of the individual Bernstein polynomials, defined by the interval in Eq. (6.109). 

diagram of Fig. 6.4. Figure 6.6 shows equivalent plots for the modified Bernstein aver­

ages. These plots can be used to identify which averages are acceptable for a particular 

value of Q2 . 

After applying the acceptance criteria, we are left with 132 data points for the standard 

Bernstein averages and 141 for the modified Bernstein averages. Exactly which averages 

we use at a particular Q2 , can be determined by inspecting the plots in the results 

section. 

6.6 Fitting procedure 

We use x2 minimization to optimize the fits of the theoretical predictions to the data. 

The highest moment included in the experimental averages is the 18th, and so when 

TMCs are included, we will require predictions for the first 20 moments. Therefore, 
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data at different energies. Superimposed onto these, in various colours, are the peaked 
regions of the individual modified Bernstein polynomials, defined by the interval in 
Eq. (6.116). 

the set of fitting parameters comprises of {A1 ... A2o} plus the QCD scale parameter 

AMs · When we include higher twist corrections this set is expanded to include AHT· To 

check consistency between the odd and even moments we perform the analysis for each 

of these sets of moments separately and then finally together, and compare the results. 

Although we stated previously that 132 standard Bernstein averages are available to 

us, in the CORGI case this is reduced to 130 for the following reason: When fitting 

predictions to the data, we scan values of A~~ between 0 and 590 MeV for a minimum 

in x2. Unfortunately, for n = 17 and 19, the values of AM/AMs (see section C.1) 

are such that Q2 = 7.9GeV2 is below the Landau pole in Eq. (6.66). Consequently we 

cannot obtain CORGI predictions for Bernstein averages which include these moments. 

From Eqs. (6.85) and (6.110) we can determine that this excludes Fso(Q2 = 7.9) and 

F7o(Q2 = 7.9) from the fit. In the case of the modifi d Bernstein averages, F80 (Q2 = 
7.9) and F7o(Q2 = 7.9) are already excluded due to their failure to meet the acceptance 
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criteria. 

The CCFR data includes statistical errors and 18 different sources of systematic error. 

These errors cannot be added in quadrature, and so we perform the analysis for each 

of these 19 sources of error separately and then add the variation in the results in 

quadrature to obtain the final total error on the Bernstein averages. We also include, 

as additional sources of error: the deviation in results associated with using the four 

different modelling methods (this forms the 'modelling error' in our final result) and 

the deviation in the results obtained by performing the analysis with and without HT 

corrections included (forming the 'HT error'). 

Determination of errors 

The optimum value of AMs is obtained by minimizing the following x2 function with 

respect to all parameters, 

(6.120) 

Here, { Ql} is the set of values of Q2 for which we have experimental values for the 

averages. CJF~'kP(Q2 ) represents the experimental error on the averages and is obtained 

by adding the statistical, systematic and modelling errors in quadrature: 

((J pexp) 2 + ((J pexp) 2 + ((J pexp) 2 
nk stat nk sys nk mod 

(6.121) 

We isolate the individual contribution of these three sources of error to the value of 

the total error on AMs using the following method: For the statistical error, we set 

( CJ F~'kP) 2 
= ( CJ F~'kP) ~tat and then minimize x2 with respect to the fitting parameters, to 

obtain the optimal value of AMs relative to the statistical errors. We then search for the 

maximum amount AMs can deviate by (in both the positive and negative directions), 

subject to the constraint that x2 = X;;n + 1. This yields a value for (CJAMs)stat· We 
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then repeat this procedure for the systematic and modelling errors to obtain values 

for (aAMs)sys and (aAMs)mod' The total error on AMs is then obtained by adding these 

values in quadrature. 

Correlation of errors 

When fitting theoretical predictions to experimental data using x2 minimization, care 

must be taken in order to take into account fully the correlation between data points. 

The raw data for xF3 is uncorrelated. However, we are not comparing predictions for 

the structure functions themselves with data directly; rather we are doing so indirectly 

via the Bernstein averages. For a given value of Q2 , the full set of Bernstein averages 

(and modified Bernstein averages) we obtain will be correlated, due to their being 

derived from the same set of (xF3) data points (see Fig. 6.2). Furthermore, we can 

expect this correlation to be significant, since for a given value of Q2 the averages 

which satisfy the acceptance criteria are all derived from Bernstein polynomials that 

are peaked within a fixed region in x. 

In the case where data are correlated, the form of x2 given in Eq. 6.120 is not sufficient. 

In order to take into account the correlation, a more general form of x2 involving the 

covariance matrix V must be used (see Ref. [205] for details). 

Previously, to construct x2 from a set of N uncorrelated data points urP·} ( i = 

1, ... N), with errors {a JJ and corresponding theoretical predictions {Jtheo. }, we had, 

(6.122) 

However, for the case where {frP·} are correlated we have, 

N N 

x2 L L urP· - !teo.) Vij 1 ( JrP· - Jteo ) 
i=l j=l 

(6.123) 

In the second line of the above equation we have constructed vectors from the data 

points and their predictions. 
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The covariance matrix encodes the correlation between each of the data points; its 

elements are obtained as follows, 

Vij cov Ui, fj) 

(6.124) 

However, in the case where the fi are functions of M variables Xk (representing the 

'raw' data), we have, 

(6.125) 

If the data for Xi are uncorrelated, this reduces to, 

M '"'"'(a!k) (af1) 2 COV(fk,fl) = t:I' 8Xj 8Xi O"Xi' 
(6.126) 

To apply this to data for the Bernstein averages, we first form vectors out of the data. 

The averages are uncorrelated between different values of Q2 , therefore we can separate 

the data out into seven separate vectors; one for each value of Q2 between 7.9 and 125.9 

GeV2. For example, for Q2 = 7.9 and 12.6 GeV2 we have, 

Fso(12.6) 

F7o(12.6) 

( FBo(7.9) ) 
F6o(12.6) 

Fexp. = Fso(7.9) Fexp. (6.127) 7.9 12.6 
F4o(7.9) Fs2(12.6) 

Fs3(12.6) 

Fn(12.6) 

We then construct similar vectors, FQ;o., from the theoretical predictions for the aver­

ages. 

Finally, the elements of the covariance matrix must be determined. Like the vectors, 

there are seven separate matrices, one for each value of Q2 . To obtain the elements of 

these matrices, it is necessary to approximate the averages (using the trapezium rule) 
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in the following form, 

N; 1 
Fnk(Qf) = L 2 (Pnk(Xj)F3(Xj; Qf) + Pnk(xj+I)F3(Xj+l; Qf)) (Xj+l- Xj) 

j=O 

N; 1 
= L 2 Pnk(xj)F3(xj; Qf) (Xj+l- Xj-1), 

j=l 

(6.128) 

where Ni is the number of xF3 data points available for Q2 = Qt. The j = 0 and 

j = Ni + 1 terms are simply the x = 0 and x = 1 endpoints (see parts I and II 

of Fig. 6.3). To obtain elements of the covariance matrices, we require the following 

derivatives, 

a (Fnk)z 
a (F3(xj)) 

(6.129) 

This is the differential of the lth element of the vectors in Eq. (6.127) with respect 

to the jth data point for xF3. The elements of the covariance matrices can then be 

obtained as follows, 

N; 1 
Vlm(Qt) = L 4 (Pnk(Xj))z (Pnk(xj))m (Xj+l- Xj-1)

2 a~3 (xj)' 
j=l 

(6.130) 

Hence, the V(Qf) matrices can be obtained for each value of Q2 directly from the data 

for xF3. Using the same method we can also obtain the covariance matrices for the 

modified Bernstein averages. In this case there are only 6 matrices, due to there being 

no acceptable modified Bernstein averages for Q2 = 7.9 GeV2 . 

With the covariance matrices included, x2 becomes, 

L (F~t·(Q2)- F~x{'(Q2))Tv-l(Q2)(F~ht(Q2)- F~x{'(Q2)) 
Q2E{Qn 

+ L ( F;~;o (Q2) _ F~x: (Q2)) T v--l(Q2) ( F~h;o (Q2) _ F~xt(Q2)) • 
Q2E{Qn 

(6.131) 

All that remains is to invert the covariance matrices. However, upon attempting to do 
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so, we find that these matrices are ill-conditioned, with some of their eigenvalues being 

close to zero. Hence their inverses are intractable. As a result of this, it is impossible to 

perform a reliable x2 analysis of the averages with their correlation taken into account. 

We believe that this is mainly due to the fact that the correlation between averages is 

significant in some cases, and this in turn is an artefact of the fact that the selection 

criteria systematically select Bernstein polynomials which are peaked in the same region 

and hence are of fairly similar shape. This situation arises because the intent behind 

the inclusion of more averages in the analysis is not to increase the amount of 'data', 

rather it is to further ensure that the missing data regions are suppressed. 

In light of this, we settle for the method adopted in Refs. [192, 193], in which the 

naive x2 function of Eq. (6.120) is used, but the error bars on the averages are modified 

in order to account for the 'over-counting of degrees of freedom'. 

For example, for the standard averages, at each value of Q2 we have theoretical infor­

mation on 9 moments, but the number of experimental Bernstein averages we use is 

often more than this; e.g. for Q2 = 20 GeV2 we use 27 standard Bernstein averages. To 

remedy this, we adopt the following approach. For each value of Q2 we count the num­

ber of averages above 9 as duplicate information. The number of duplicates we have 

altogether is 73 and so for the values of Q2 for which we have more Bernstein aver­

ages than moments, we rescale the error on these averages by J130/(130- 73) = 1.510. 

Correspondingly, for the modified Bernstein averages we rescale the errors by a factor of 

J141/(141 - 87) = 1.616. This rescaling has the effect of suppressing the contribution 

of the duplicate data points to x2, relative to those values of Q2 for which we have 

fewer Bernstein averages than moments. 

Despite this modification, the use of the naive form of x2 given in Eq. (6.122) rather than 

the form given in Eq. (6.123) is still incorrect; as a result of this, it will yield unreliable 

estimates of as ( M z) and AMs. Correspondingly, the errors on these quantities will also 

be unreliable, and it is possible that they will be underestimated. However, it is worth 

stressing that the analyses of Refs. [192-194] also used the naive form of x2 , and hence 

the results presented there are equally as unreliable. 
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6.6.1 Positivity constraints 

The fact that xF3 is a positive definite function, and that the moments are simply 

integrals over these functions multiplied by a single power of x, means that we can 

impose certain positivity constraints on the parameters An, as follows: 

We construct the following matrices from the moments, 

M1 M2 Mg 

M2 M3 

M M3 (6.132) 

Mg Ml7 

and 

~M1 ~M2 ~Mg 

~M2 ~M3 

~M ~M3 (6.133) 

~Mg ~M11 

where Mn = M(n; Q2) and ~Mn = Mn- Mn+l· 

In order for M(n; Q2 ) to be moments of positive definite functions (as the structure 

functions must be), the determinants of the above matrices, and of all their minors, 

must be positive, for all values of Q2 [193]. Evaluating these determinants at fixed 

Q2 will translate to conditions on the parameters An. We do not implement these 

constraints as part of the fitting procedure. Rather, we perform checks on the values of 

the fitting parameters resulting from the x2 minimization in order to ensure that they 

obey the above constraints. 

However, we do impose positivity constraints on the moments themselves. As a result 

of the determinantal constraints described above, and from the general form of the 

moments in Eq. (6.1), we can infer that the following inequalities must be satisfied, 

(6.134) 
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(6.135) 

for fixed Q2 . Furthermore, we can implement these constraints by defining our fitting 

parameters An in terms of a new set of parameters and then minimizing x2 with respect 

to these new parameters. 

We begin by picking some value of Q5 at which to implement the conditions. We 

then take the last moment used in the analysis (n = 20) and rewrite the constraint in 

Eq. (6.134) as, 

(6.136) 

where A2o is a real number. The constraints in Eq. (6.135) can also be rewritten as, 

2 2 (A )2 M(n; Q0 ) = M(n + 1; Q0 ) + An , (6.137) 

for 1 ::; n < 20, where An are all real numbers. The LHSs of Eqs. (6.136) and (6.137) 

are simply a fitting parameter times a number. For example, in the case of n = 2 and 

Q5 = 12.6 GeV2 we have, 

M(2; 12.6 GeV2) = 0.3932 A2. (6.138) 

From this, and equivalent expressions for the rest of the An, we can obtain an expression 

for each An in terms of the parameters A1 - A2o· This means that we can replace 

the parameters Al - A2o with Al - A2o in the x2 function. By doing this and then 

minimizing with respect to the An parameters, we can find a minimum in x2 for which 

the constraints in Eqs. (6.134) and (6.135) are automatically satisfied. In effect, the 

reparameterization embedded in Eqs. (6.136) and (6.137) restricts the parameter space 

to exclude solutions for which the constraints are not satisfied. 

To implement this reparameterization we must choose a value of Q6 at which to impose 

the constraints, whereas in reality, they must be satisfied for all Q2 . Because of this, 

we perform the analysis for several different values of Q5 and check that the results 

remain stable. 
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6.7 Results 

We focus principally on the results from the CORGI analysis in which both odd and 

even moments are included, and in which we include target mass corrections. This 

analysis results in a prediction for the QCD scale parameter of, 

A~ = 219 11+23·6 MeV 
MS ' -22.1 ' (6.139) 

which corresponds to a value of A~~ = 302.2~~~:~ MeV in the NJ = 4 region. The error 

on this result can be broken down into four different sources, 

A~~ = 219.11 ~~~:~~(stat.) :!t~~ (sys.) +14.47 (mod ) -13.74 . ± 8.97 (HT) MeV. 

(6.140) 

We have used method I to obtain experimental values of the averages. The deviation 

between the results obtained using methods I and IV is used to evaluate the modelling 

error since these are the two methods which exhibit the largest deviation. 

This result for AMs corresponds to a value of the strong coupling constant (evaluated 

at the mass of the Z particle) of, 

0 11890+0.00191 
. -0.00186' (6.141) 

These values show excellent agreement with the current global averages of A~~ = 

207.2 ± 23 MeV and a 8 (Mz) = 0.1176 ± .002 [32]. 

The x2 /d.o.f. for this result is as follows, 

x2 
d.o.f. = 

20.37 
271- (20 + 1) 

0.0815. (6.142) 

In Fig. 6.7 we plot the CORGI predictions for the Bernstein averages (with TMCs 

included) fitted to the experimental values. Figure 6.8 shows equivalent plots for the 

modified averages. 
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Figure 6.7: CORGI fits for the Bernstein averages of F3, with TMCs included. 
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A~~(MeV) O:s(Mz) x2 /d.o.f. 

All moments 219.1~;;:~ 0 1189 +0·0019 
0 -0.0019 20.37 /(271 - (20 + 1)) 

Odd moments 210.5 ~~~:~ 0 1182+0.0029 
0 -0.0030 10.94/(130- (10 + 1)) 

Even moments 229.5~~~:~ 0 1198 +0.0048 
0 -0.0048 9.24/(141- (10 + 1)) 

All moments: Q2 > m~ only 232.4~~~:; 0 1200+0.0027 
0 -0.0027 15.59/(228- (20 + 1)) 

Table 6.1: In this table we present the result of the analysis performed using the 
CORGI approach to perturbation theory with target mass corrections included. We 
compare the results obtained when we include all moments (up to n = 20) with those 
obtained when we restrict the analysis to even or odd moments only. We also show the 
results from performing the analysis with only data points for which Q2 > m~ (NJ = 5) 
included. 

In table 6.1 we present the full set of results from the CORGI analysis. This table 

shows the results obtained when we include both odd and even moments (standard and 

modified Bernstein averages) together, and also those obtained when we restrict the 

analysis to either odd or even moments only. These results allow us to check consistency 

between the odd, even and 'all moments' analyses. 

We can also use the results of the 'odd moments' analysis to check consistency with 

previous analyses.2 In the PS analysis of Ref. [193] (in which only then= 1, 3, 5, 7, 9, 11 

and 13 moments were included) a value of A~~ = 255±72MeV was found, corresponding 

to A~~ = 178:::~~MeV, with a value of x2 jd.o.f. = 0.007. Using the same set of moments, 

the CORGI analysis of Ref. [194] found a value of A~~ = 228:::~~MeV, although it must 

be noted that this analysis used incorrect values of the coefficients X2, and therefore 

the result must be regarded as unreliable. Both of those results are indeed consistent 

with the 'odd moments' analysis performed here. 

We also perform the analysis in which we restrict the CCFR data to Q2 > m~ only; 

this will serve as a consistency check on our method of evolving though the b quark 

threshold. The results of this are also included in table 6.1. 
2 Because the NNLO anomalous dimension coefficients for even n have only recently become available, 

previous analyses of this kind have included only odd moments. Therefore it is more appropriate to 
use the results of our 'odd moments' analysis for comparison, rather than the even or 'all moments' 
results. 
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n A~4) M(n; 8.75 GeV2
) M(n; 12.6 GeV2

) 

1 2.346 2.494 2.525 
2 0.8814 0.3557 0.3466 
3 0.4133 0.1002 9.545x 10-:.! 
4 0.2217 3.835x10 ·:.! 3.584x10 ·:.! 

5 0.1292 1.744x10-:.! 1.603x 10-:.! 
6 8.134x10 -:.! 9.048x10 -J 8.191 X 10 -J 

7 5.241x10- 2 4.988x10-J 4.452x10-J 
8 3.639x10 -:.! 3.044x10 -J 2.681 X 10 -J 

9 2.434x10-2 1.826x10-J 1.588x 10-J 

10 1.822x 10 -:.! 1.246x10 -J 1.07x 10 -J 

11 1.202x 10-2 7.588x10-4 6.438x10-4 

12 9.64x 10 -J 5.677x10 -4 4.76x10 -4 

13 5.935x10-J 3.289x10-4 2.726x 10-4 

14 5.119x10 -J 2.69x 10 -4 2.204x 10 -4 

15 2.702x 10-J 1.355x 10-4 1.098x 10-4 

16 2.535x 10 -J 1.22x 10 -4 9.768x10 -n 

17 9.362x10-4 4.343x10-5 3.44x 10-5 

18 9.739x10 -4 4.376x 10 -o 3.426x 10 -n 

19 9.807x 10-lU 4.284x 10-ll 3.317x 10-=n 
20 7.69x10 -w 3.277x 10 11 2.509x 10 11 

Table 6.2: The fitting parameters A~4) together with the moments evaluated at Q2 = 

8.75 and 12.6 GeV2
. 

In table 6.2 we present the values of the parameters A1 - A2o resulting from the CORGI 

'all moments' fit with TMCs included, shown in Figs. 6.7- 6.8. This table also shows 

the corresponding values of the moments at Q2 = 8.75 and 12.6 GeV2 . 

In table 6.3 we compare the CORGI results with those obtained using the PS and EC 

approaches. We also present results obtained from performing these analyses with and 

without target mass corrections. 

6.8 Summary and conclusions 

In this chapter we used three different approaches to perturbation theory to perform a 

phenomenological analysis of moments of F3 using the method of Bernstein averages. 

The three approaches differ in how they deal with the FRS dependence. In the CORGI 
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AWs(MeV) as(Mz) x2 /d.o.f. 

CORGI 
with TMC 219.1 ~;;:~ 0 1189+0.0019 

. -0.0019 20.37 /(271 - (20 + 1)) 

noTMC 280.3~;~:~ 0 1235 +0.0017 
. -0.0017 24.76/(272- (18 + 1)) 

PS 
with TMC 200.4~;~:~ 0 1173+0.0023 

. -0.0022 21.73/(273- (20 + 1)) 

noTMC 257.5~;~:~ 0 1219+0.0020 
. -0.0020 25.20/(273- (18 + 1)) 

EC 
with TMC 204.5~~~:~ 0 1177+0.0017 

. -0.0017 22.71/(273- (20 + 1)) 

noTMC 261.5~~~:~ 0 1222+0.0014 
. -0.0014 26.04/(273- (18 + 1)) 

Table 6.3: In this table we compare the results of the analysis performed with the three 
different approaches to perturbation theory described in section 6.3, CORGI, PS and 
EC. We also show the results from these analyses performed with and without target 
mass corrections. 

approach, we allow the FRS invariant quantity Xo(Q) to determine the relationship 

between M, 1-l and Q for each moment. In so doing, we automatically resum the subset 

of terms present in the full perturbative expansion which are RG-predictable at NNLO. 

In the physical scale approach we set M = 1-l = Q and adopt the MS scheme for the 

subtractions in the renormalization and factorization procedures. In the effective charge 

approach, we set 111 = 1-l and act as though we have only one arbitrary scale. Predictions 

were then obtained by proceeding as we did in the single-scale case in section 1.8.3. We 

described how predictions are derived in these three approaches and corrected errors 

in the CORGI results presented in Refs. [39, 194]. 

We described how target mass and higher twist corrections affect these theoretical 

predictions and also how we evolve expressions for the moments through the b-quark 

threshold. We explained how the Bernstein averages method eliminates any potential 

dependence of the analysis on missing data regions in x and Q2 and we also described 

how this method is generalized to treat both odd and even moments. We described 

the fitting procedure used to extract the optimal values of the QCD scale parameter 

and how we can implement various constraints which ensure that the results of this 

fitting are consistent with the structure functions being positive definite functions. We 

also presented an alternative, and slightly easier method for deriving the FRS invariant 

quantities xi· 
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The results of the CORGI analysis presented in table 6.1 show excellent agreement with 

the current global average for the strong coupling evaluated at Q2 = M1 [32]. From 

this we conclude that CORGI perturbation theory performs well when applied to the 

analysis of moments. 

Although the minimum value of x2 per d.o.f. quoted in Eq. (6.142) is an order of 

magnitude larger than that obtained in Ref. [193], it is still significantly smaller than 

one would expect. Indeed, in the MRST analysis of Ref. [206], fits are performed to 

the CCFR xF!{N data, resulting in a value of x2 jd.o.f. ~ 110/105. This suggests that 

the errors on the Bernstein averages in our analysis have been overestimated. However, 

as discussed in section 6.6, the x2 function we are using does not take into account 

the correlation between data points. Indeed, if correlation was taken into account, one 

might expect that a more reasonable value of x2 would be obtained. 

In the x2 function we eventually used, the errors on the Bernstein averages were rescaled 

in order to take into account the 'over-counting of degrees of freedom'. As a result, 

the number of Bernstein averages is not representative of the true number of degrees 

of freedom in this particular x2 function. Indeed, the Bernstein averages in the plots 

in Fig. 6. 7 can be constructed from just 58 different moments at different values of Q2 

(via Eq. (6.110). Similarly, the modified Bernstein averages in Fig. 6.8 can be built 

from 53 different moments. Hence, 

x2 
d.o.f. 

20.37 
= 0.226, 

111 - 21 
(6.143) 

is more representative of the true value of x2 jd.o.f. in this approach. This is a more 

acceptable value (although it is still a factor of 4.6 smaller than the MRST value), 

however we stress that the true minimum in x2 can only be determined by taking 

correlation fully into account. Determining which averages are most strongly correlated, 

and then excluding these from the fit may be a possible way to do this. 

The analyses in which we include only odd or even moments are consistent with each 

other and with the full (all moments) analysis. Furthermore, in the analysis in which we 

include all moments, the errors are greatly reduced. This improvement is made possible 

by the availability of the full NNLO anomalous dimension calculation and represents 

significant improvement on previous analyses. 
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Excluding data points for which Q2 < m~ leads to no significant change in the results 

and from this we conclude that the quark mass threshold method we have applied is 

suitable to the moment analysis. The error associated with the exclusion of higher 

twist effects, given in Eq. (6.140), is relatively small, signifying that these effects are 

not particularly important at scales Q2 > 7.6 GeV2
. 

We include in the analysis, positivity constraints on the moments (Eqs. (6.134) and 

(6.135)), via the parameter redefinitions of sections 6.6.1. We find that this implemen­

tation has little affect on the prediction of AMs ("-' 10 Mev), but does make a difference 

to the predicted values of An. 

The CORGI predictions for the Bernstein averages (with TMCs included) are plotted 

in Figs. 6. 7 and 6.8 and show excellent agreement with experimental values. This is 

reflected by the low value of x2 associated with this fitting, given in Eq. (6.142). 

The results also show consistency between the CORGI, PS and EC approaches. The PS 

analysis leads to values of AMs and o:8 (Mz) slightly lower than in the CORGI analysis, 

and the EC results are lower still. However, this variation is well within the error bars 

on the associated quantities. 

Although the errors quoted in table 6.3 for the CORGI, PS and EC analyses are of 

comparable magnitude, it is expected that when the theoretical error due to RS de­

pendence and the unknown higher order corrections is included, the errors on the PS 

quantities will be much larger. By comparison, in the CORGI and EC cases this source 

of error is greatly reduced. 

Inclusion of HT corrections generally results in a small shift in AMs of about 10 MeV. 

However, when target mass corrections are included, we see a shift of approximately 60 

MeV in the predicted value of AMs, and from this we conclude that these contributions 

are significant in the case of F3. 
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Chapter 7 

Analysis of moments of F2 in 

electron-proton scattering 

In this chapter, we present an analysis of moments of F2 in electron-proton scattering, 

within CORGI perturbation theory. We wish to build upon the progress made in the 

previous chapter by extending the analysis to moments which have a flavour-singlet 

component. The result of this analysis will be a prediction for the QCD scale parame­

ter, AMs from F2 data, with the reduced theoretical error associated with the CORGI 

approach to perturbation theory. 

7.1 Introduction 

The principal difference between F2 and F3 moments is the existence, in the F2 case, of a 

singlet contribution to the equations governing their Q2-dependence. This corresponds 

to the fact that for the F2 component of the OPE in Eq. (2.37), there exist lowest-twist 

operators of each of the types in Eqs. (2.38)- (2.40). The non-singlet (NS) contribution 

is almost identical to that of F3 and consequently the Q2-dependence of this component 

is described by Eq. (6.65). However, the quark and gluon operators which form the 

singlet (S) contribution mix under renormalization (factorization). As a result of this, 

obtaining perturbative predictions for the singlet component of F2 moments is more 

troublesome. 

In Ref. [192], NNLO expressions for the non-singlet and singlet components of F2 
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moments were obtained, and subsequently a physical scale perturbation theory analysis 

of these moments was carried out. However, we use as our starting point the NLO 

expressions for F2 derived in Ref. [207], extending them to NNLO. This derivation 

is more easily adapted to the study of the explicit factorization and renormalization 

scheme (FRS) dependence of the moments, and therefore allows us to obtain predictions 

in the CORGI form. In this way, we can perform an analysis of F2 moments in which 

the renormalization and factorization scale dependence of the result is reduced, and so 

improve upon previous analyses. 

The existence of a singlet component for F2 introduces two new sets of free parameters 

in the expressions for the moments, whose values are to be determined by comparison 

with data. This effectively triples the number of fitting parameters, and results in the 

x2 minimization procedure becoming more complicated and more subtle. As a con­

sequence of this, the positivity constraints introduced in section 6.6.1, become crucial 

to the fitting procedure. Only when they are implemented can we eliminate spurious, 

unphysical minima from x2 . 

As was the case for F3, the completion of the NNLO calculation of the non-singlet and 

singlet anomalous dimensions [78, 79] extends the set of moments available to us at this 

order. Hence, we can improve upon previous analyses (limited to even F2 moments) 

by including both odd and even moments and extending the highest moment used. 

The work presented in this chapter draws mainly on the introductory material covered 

in chapter 2, and is based on the research carried out in Ref. [208]. The material is 

organized as follows: 

We begin by describing the nature of the singlet contribution to F2 moments, and 

detail how we obtain a CORGI prediction for it. We then describe how the method of 

Bernstein averages may be applied to F2, including how our approach to modelling F2 

must be modified. We then give details of the fitting procedure and discuss how the 

positivity constraints, introduced in the last chapter, play a more important role in this 

analysis. Finally, we present the results of the analysis and discuss what conclusions 

can be drawn from this work. 
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7. 2 Moments of F2 

In this chapter we are concerned with moments of F2 in electron-proton scattering, as 

defined below, 

(7.1) 

These moments can be decomposed into singlet and non-singlet components, 

(7.2) 

The origin of the difference between these two components lies in the nature of the 

operators from which they are derived (Eqs. (2.38) - (2.40)). 

The non-singlet component is virtually identical to that of F3 and therefore we can 

write down a CORGI prediction for its Q2-dependence. From Eq. (6.65) we have, 

Here, dNs ( n) is the first coefficient of the non-singlet anomalous dimension (identical 

to that used in the F3 analysis) and X~5 (n) is an FRS invariant quantity - the F2 

equivalent of Eq. (6.69). Values for X~8 (n) can be obtained using Eq. (6.70), but 

with the appropriate F2 values for the coefficients r 1 and r2 used (these can be found 

in Ref. [113]). The coupling ao is the same as that defined in Eq. (6.66), with the 

appropriate scale parameter, A~, given by Eq. (6.68), but with r1 now being that 

of the F2 coefficient function. The coefficients dN 8 (n), A~/AMs and X~8 (n) can be 

calculated from the results in Refs. [78, 113]; in appendix D we quote their values for 

Nt = 4 and 5, and for the range 2 ::; n ::; 20. Henceforth, we suppress the notation 

indicating the n dependence of these parameters. 

Knowing that we can obtain an expression for the non-singlet component of the F2 mo­

ments in the CORGI form, we now turn our attention to obtaining similar expressions 

for the singlet component. 
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7.2.1 The singlet component 

The quark and gluon operators of Eqs. (2.39) and (2.40) mix under renormalization (due 

to Eq. (2.55)). Consequently, the factorized form of the singlet component (the equiv­

alent of Eq. (6.2)) has contributions from both of these operators, 

M~(n; Q2
) = L c~,s(Q, a(f-L), f-L, M)(piO~, s(M)Ip) (7.4) 

i=q,g 

Cn,s(Q, a(f-L), f-L, M)(piO;(M)Ip). (7.5) 

Here, Cn,s(Q, a(f-L), f-L, M) and (piO;(M)Ip) are the singlet coefficient function and op­

erator matrix element respectively and IP) represents a proton state vector. Boldface 

type denotes the matrix or vector nature of these components and henceforth, we sim­

plify the notation by defining, 

(7.6) 

(7.7) 

The perturbative behaviour (specifically the factorization scale dependence) of the op­

erator matrix element is governed by the singlet anomalous dimension equation. From 

Eqs. (2.55) and (2.59), we have, 

(7.8) 

Here, In (a) is the singlet anomalous dimension and is a 2 x 2 matrix, with quark and 

gluon components, 1 

!(a) (7.9) 

Like the non-singlet anomalous dimension, this can be written as an expansion in powers 

of the coupling, but with each coefficient being a matrix, 

(7.10) 

1 Note that our definition of 'Y(a) is the transpose of that in Ref. [207]. This is due to the fact that in 
our version of Eq. (7.5), the two components are swapped so that Cn comes first. For other differences 
between our notation and that adopted in other works, see section D.l. 
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In the above equation, the relevant coupling is that defined as a function of factorization 

scale, a= a(M). Similarly, the coefficient function can also be written as an expansion 

in powers of the coupling, 

where, 

1 q - q -2 + r n, 1 a + r n, 2 a + ... , 
g - g -2 

r n, 1 a + r n, 2 a + .... 

(7.11) 

(7.12) 

(7.13) 

Here, a = a(M = p,) is the coupling evaluated at the renormalization scale. Note that 

the 10 coefficient of the gluon component vanishes. 

A solution to Eq. (7.8) can be written in the form, 

{ 
t /(X) ('XJ X d } 

(O(M)) = exp Jo {J(x) dx + Jo [J(2)(x) dx An 

W(a)A. (7.14) 

Here, the components of An are sets of non-perturbative parameters, 

( A~) A~ ' 
(7.15) 

they are the analogues of A~8 and are generated by the factorization process. W(a) is 

a 2 x 2 matrix defined implicitly via Eq. (7.14). 

In order to isolate contributions to W(a) at successive orders of a, we separate it into 

its 10 component and a matrix containing the higher-order components,2 

{ t /(X) roo X d } 
W(a) = exp Jo {J(x)dx+ Jo {3( 2)(x)dx (7.16) 

V(a) exp {~log ( 1 :aca)} · (7.17) 

The form of V(a) is determined by 1(a) and {J(a); it can be written as an expansion 

2See Ref. [207] p.252 for the origin of the following derivation. 
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in powers of a, 

(7.18) 

The coefficients V 2 and V 3 contain the NLO and NNLO information encoded in W (a), 

and hence our aim must be to evaluate these matrices. To achieve this, we take the 

derivative of W(a) with respect to a using Eqs. (7.16) and (7.17) separately. This 

yields, 

;i:~ V(a) exp { t log ( 1 :aca)}, (7.19) 

Oa W(a) = ( Oa V(a) + V(a) ba(1 ~ ca)) exp { t log ( 1 :aca)}. (7.20) 

Equating these two differentials gives the following equation for V (a), 

1 
Oa V + ba(1 + ca) [V(a), d] = (

/(a) d ) 
/3( a) - ba(1 + ca) V(a), (7.21) 

where [x, y] denotes the commutator of x andy. By expanding this expression in powers 

of a and then equating coefficients, we can obtain equations for V 2 and V 3, 

(7.22) 

(7.23) 

Solving these equations will yield expressions for the individual components of V 2 and 

V 3. In order to achieve this it is necessary to diagonalize the first coefficient of the 

anomalous dimension matrix, d. There is some freedom in the choice of diagonalization 

procedure. We use the matrix, 

u (7.24) 

to diagonalize d thus, 

(.\+ > .\_ > 0). (7.25) 
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Here, A=f are the eigenvalues of d and have the form, 

(7.26) 

(7.27) 

We also define V(a) when acted upon by U as, 

(7.28) 

and for the coefficients of V(a), 

v:;. (7.29) 

Similarly, for dn we define, 

U-1dnU (7.30) 

By acting on equations (7.22) and (7.23) with the diagonalization matrices we obtain 

four equations for each of the coefficients V 2 and V 3. Solving these yields, 

and, 

v--
3 

v;-+ 
3 

v;+-
3 

v;++ 
3 

d--
v;-+ 

d-+ v;-- = _1_ = 1 
2 b ' 2 b+ A+- A- ' 

(7.31) 

v;+-
d+-

v;++ 
d++ 

1 _1_ 
2 b+ A-- A+ ' 2 b ' 

1 ( -+ -+ -+ -- -+ -+ ++) 
2b+A+-A- cV2 (A+-A-)+d2 -cd1 +d1 V2 +d1 V2 , 

1 
2b +A-_ A+ (cv/-(A-- A+)+ dt-- edt-+ dt-v2-- + dt+v2+-), 

1 (d++ d++ \ d++v;++ d+-v;-+) 2b 2 - C 1 - C2"+ + 1 2 + 1 2 · (7.32) 
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These form the vital components of the NLO and NNLO expressions for the singlet mo­

ments, as we now show. Inserting factors of 1 = uu-1 into Eq. (7.5), via Eqs. (7.14), 

(7.17) and (7.29), yields, 

M 8 (n;Q2
) = CnUVD(a)U- 1 exp{~log( 1 :aca)}uu- 1A (7.33) 

Here, 

- (A-) A = u- 1A = A+ , 

and Cn is a transformation of the coefficient function, 

cu 

(1 - - - -2 1 + - + -2 ) + r 1 a+ r 2 a + ... , - - r 1 a- r 2 a - . . . , 

with, 

(7.34) 

(7.35) 

(7.36) 

(7.37) 

(7.38) 

At this point we set a = a and expand equation (7.34) in powers of a. Although it 

is necessary to make this identification at this stage, it will still be possible to recover 

expressions in the CORGI form from the eventual result, through the method outlined 

in section 6.4. 

The diagonalization carried out in Eq. (7.34) causes the singlet moments to decouple 

into ( +) and (-) components. Expanding Eq. (7.34) gives, 

(7.39) 

(7.40) 
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where, 

(7.41) 

(7.42) 

The constants A~ are related to the original parameters by an FRS independent trans­

formation and hence, are equally valid fitting parameters of the analysis. Setting 

Q = M at this stage, and then adopting the three loop coupling of Eq. (1.118), would 

correspond to the PS approach, detailed in sections 1.8.2 and 6.3.2. However, we wish 

to adapt Eq. (7.39) to CORGI perturbation theory, and we describe how this is done 

in the next section. 

7.3 CORGI predictions for F2 moments 

Equation (7.39) can be rewritten in the form of two effective charges A+(a) and A-(a) 

[41], 

(7.43) 

where, 

(7.44) 

However, we can relate this form of the moments to the CORGI approach by instead 

rewriting this in terms of two new effective charges, R'f-(a), 

(7.45) 

with 

A± A± 2 A± 3 
R (a) = a + R 1 a + R2 a + .... (7.46) 

The coefficients Rf and Rf can be obtained by comparing Eqs. (7.43) and (7.45) with 

Eq. (7.39). Using the method described in section 6.4, we can then write, 
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( 
+ )>·+lb + ca0 + + 2 

- An + (1 + X 2 (a0 ) + ... ) . 
1 + ca0 

(7.47) 

The coefficients X:j are obtainable from Eq. (6.97) and they have the form, 

A (R=t-)
2 

( b ) R=t- + c _.f. - - 1- 1 + -2 2 b 2 A . 
Of 

(7.48) 

The coupling in Eq. (7.47) is the familiar 't Hooft coupling of Eq. (6.66). However the 

scale AM has a different form for the ( +) and (-) component. The relation between 

A1 and AMs can be obtained from Eq. (6.101) and is given in the summary below. 

From the above results we can write down a CORGI prediction for both the non­

singlet and singlet components of the F2 moments. The full result has the form, 

( 2) NS ( Ca~S ) dNS /b ( NS ( NS)2 ) 
M n; Q = An 1 + ca~S 1 + x2 ao + ... 

(7.49) 

Due to the relation between the scales AM and AMs being dependent on which compo­

nent of Eq. (7.49) we are referring to, the coupling has a different form in each case. 

Thus, 

-1 
ah(Q) = 

c [1 + w_l(zi(Q))J' 
= -~(-E-) -b/c zi(Q) At ' 

e M 

with i =NS, (-) and ( + ). Finally, the scales A\.t are given by, 

ANS 
M = - { drs rrs} 

AMs exp dNSb + dNs ' 

AT 
M 

- { Rf} AMsexp A=t- . 

(7.50) 

(7.51) 

(7.52) 

The coefficients in Eq. (7.49) and those in Eq. (7.39) are derived from the coefficients 
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of the singlet and non-singlet anomalous dimensions [78, 79] and the F2 coefficient 

functions [113]. We quote their values in appendix D, for NJ = 4 and NJ = 5, and for 

the range 2 ::; n ::; 20. 

7.4 Additional effects 

As was the case in the F3 analysis, it is necessary to include a number of other effects 

to supplement the perturbative prediction of Eq. (7.49). These are effects due to the 

b-quark mass threshold, target mass corrections and higher twist operators. 

Matching of the coupling at the mass of the b-quark leads to a relation between A~~ 

and A~~' as given by Eq. (5.24). From this, we can derive values for the scales A~ in 

the two regions. Continuity of the moments themselves is ensured by relating the A~ 

parameters in these two regions by, 

Ai,(5) = 
n (7.53) 

where i =NS, (+)and(-). 

Target mass corrections for F2 have the form [198, 199], 

(7.54) 

where mp is the mass of the proton. We apply this expression to both the non­

singlet and singlet components. 

Higher twist effects are estimated by means of the following expression, 

(7.55) 

We only include this term in order to estimate the error associated with our poor 

understanding of these effects. The deviation between the result of the analysis with 

and without Eq. (7.55) included will form the 'HT error'. The final quoted results will 

be obtained with this term omitted. 
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7.5 Bernstein averages of F2 

The definition of the Bernstein averages of F2 is identical to that for F3, 

(7.56) 

- 2 2 2 1
1 

Fnk(Q ) = 
0 

Pnk(x )F2(x, Q )dx. (7.57) 

We wish to study both odd and even moments and so we include both standard and 

modified averages in our analysis. The functions Pnk(x) and Pnk(x) are defined in 

Eqs. (6.103) and (6.112) and the ranges of x enhanced by the averages are the same 

as before (Eqs. (6.109) and (6.116)). We also use the same acceptance criteria as that 

described in section 6.5. 

7.5.1 Modelling F2 

To obtain values of the averages from experimental data it is necessary to model the 

structure functions over the whole range of x, for each value of Q2 . The result is 

expected to be independent of this modelling, due to the nature of the Bernstein poly­

nomials. Nonetheless, we must first choose a method of extrapolating and interpolating 

the moments. We use the methods I- IV described in section 6.5, modified in the fol­

lowing ways: 

I 1 To account for the fact that F2 has a singlet contribution, we modify the fitting 

function of Eq. (6.111) to, 

where, 

(Ax-·44 + B)(1- x)"', 

Cx112(1- x) 11 . 

(7.58) 

(7.59) 

(7.60) 

The parameters {A, B, C, 11-, v} are obtained by fitting to the data. A theoretical 

justification for the use of this function can be found in Ref. [204]. However, we 

once again stress that the final result will be independent of the fitting method 
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used. We find that Eqs. (7.58) - (7.60) fit the data well in almost all cases. 

II 1 The only modification we make to method II is to change the extrapolation 

between x = 0 and the first data point. Instead of extrapolating to the point 

F2(x = 0) = 0, we use the gradient between the two lowest-x data points to 

extrapolate back to x = 0. This makes method II 1 consistent with I 1
• 

III 1 For method III the only modification we make is to use the fitting function of 

Eqs. (7.58) - (7.60) instead of Eq. (6.111). 

IV 1 Method IV is left unaltered. 

In method I 1
, the experimental averages can be obtained directly, once we have fitted 

values of A, B, C, J-t and vat each value of Q2 . Substituting Eq. (7.58) into Eqs. (7.56) 

and (7.57), and using the definition of the beta function given in Eq. (B.5) yields, 

F (2) _ 2r(n + ~) ~ ( -1)1 
[ 

nk - r(k + .!.) ~ l!(n _ k _ l)! A Beta(2(k + l) + 0.56, v + 1) 
2 1=0 

+ B Beta(2(k +I)+ I, v +I)+ C Beta(2(k +I) + 1.5, 1L + I) l, (7.61) 

-(2) 2r(n+2) n-k (-1)1 [ 
Fnk r(k +I) ~ l!(n _ k -l)! A Beta (2(k + l) + 1.56, v + 1) 

+ B Beta(2(k +I)+ 2, v +I)+ C Beta(2(k +I)+ 2.5, I'+ 1)]. (7.62) 

For method III 1, the averages are obtained by evaluating the integrals in Eqs. (7.56) 

and (7.57) between the appropriate limits of integration, and in methods II 1 and IV 1, 

the averages are obtained in the same way as they were in the F3 analysis. 

7.5.2 Experimental input 

Data for F;P is available from a number of different sources. We use data from SLAC 

[209], BCDMS [210], E665 [211], ZEUS [212], HI [213, 214] and NMC [215]. The 

principal difficulty in organizing this data into a practicable form stems from the fact 

that different experiments have chosen different sets of Q2 values at which to perform 

229 



Chapter 7: Analysis of moments of F2 in electron-proton scattering 

measurements. If two experiments have measured F2 at values of Q2 that are in the 

immediate vicinity of each other, then we amalgamate these data sets and assign them 

to a single Q2 value. Thus, in the final result, we include an error associated with the 

uncertainty in the value of Q2 . In this way we can extend the range of x covered at 

each value of Q2 . 

7.6 The fitting procedure and positivity constraints 

We use x2 minimization to fit the predictions of Eq. (7.49) to experimental data. The 

x2 function has the following form, 

+ 

where { Q?} is the set of values of Q2 for which we have experimental values for the 

averages. The errors on the averages, O'F~'k(Q2 ), are obtained by summing statistical, 

systematic and modelling errors in quadrature. 

As was the case in the F3 analysis, the x2 function given in Eq. (7.63) does not take into 

account the correlation between data for the averages. Hence it is considered rather 

too na:ive and will lead to an unreliable extraction of a8 (Mz) and AMs· However, the 

covariance matrices for the F2 averages are, like their F3 counterparts, ill-conditioned. 

As a result, it is impossible to perform a x2 minimization with the correlation taken 

into account. 

In light of this we settle for the approach taken in chapter 6 of rescaling the errors 

on the averages in order to take into account the 'over-counting of degrees of free­

dom'. This results in the experimental errors on the Bernstein averages and mod­

ified Bernstein averages being rescaled by factors of )789/(789- 524) = 1.73 and 

)1058/(1058 - 694) = 1.70 respectively. 
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The lowest moment we include is n = 2 and the highest is nmax = 17. Including 

moments higher than this leads to no significant increase in the number of acceptable 

averages, and hence will not lead to any increase on the precision of the prediction for 

AMs· Limiting the number of moments also ensures that the computing time taken to 

minimize x2 is not unreasonably large. When target mass corrections are included, we 

have a total of 3nmax + 3 + 1 = 55 fitting parameters, consisting of 18 parameters for 

each of the components of Eq. (7.49) plus the scale parameter AMs· Including higher 

twist corrections expands this set to 56 parameters. 

The large number of free parameters means that the minimization of x2 is a rather 

complicated exercise. The most complicated part of x2 is its dependence on AMs, 

and things are simplified greatly if we fix this parameter and minimize with respect 

to the remaining parameters. In this case, x2 is simply an order-2 multinomial in A~. 

Consequently, minimization can be achieved by setting to zero the differentials of x2 

with respect to each of the fitting parameters, and then solving the resultant system of 

simultaneous equations. This is still a far from trivial exercise. However it is an order 

of magnitude simpler than minimization with respect to AMs· In light of this, we adopt 

the following approach to minimizing x2 : 

We minimize x2 for fixed AMs via the method described above, and then repeat this 

procedure for a range of AMs values. The result of this is a set of values of the minimum 

possible x2 , for each value of AMs. From this we can directly identify the optimal value 

of AMs (the minimum in x2), as well as the level of precision associated with this value 

(the values of AMs corresponding to X~;n + 1). 

Positivity constraints 

The increase in the number of fitting parameters (relative to the F3 analysis) increases 

the importance of implementing the positivity constraints on the moments. Without 

them, it is possible that spurious, unphysical minima may occur in the x2 function, 

and we wish to eliminate these. 

In the F3 analysis we performed a redefinition of our fitting parameters, which had the 

effect of restricting the parameter space such that certain positivity constraints on the 

moments (Eqs. (6.134) and (6.135)) were satisfied automatically. We then checked that 
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the values of An resulting from the fit, satisfied the full set of determinantal constraints 

(see Eqs. (6.132) and (6.133)). In the F2 analysis, we shall proceed as we did for F3, 

but we wish to make this more sophisticated by including some of the determinantal 

constraints as part of the fitting procedure. 

7.6.1 Positivity of the singlet and non-singlet moments 

The moments of F2 have two separate components, each of which must independently 

satisfy constraints of the type described in section 6.6.1. Therefore we have, 

MNs(n; Q2) > 

Ms(n; Q2) > 

MNs(n;Q2) > 

Ms(n; Q2) > 

0, 

0, 

MNs(n + 1; Q2), 

M 8 (n + 1; Q2). 

(7.64) 

(7.65) 

(7.66) 

(7.67) 

We discuss how these constraints are implemented first, before dealing with the rather 

more complicated determinantal constraints. 

The non-singlet component 

For the non-singlet component we proceed as we did for F3 by defining a new set of 

parameters, A.~s, 

nmax+2 2 
MNs(n, Q6) = L ( .A_~s) ' (7.68) 

t=n 

where Q6 is some reference energy scale. This redefinition ensures that Eqs. (7.64) and 

(7.66) are satisfied automatically for all real values of A.~s at Q2 = Q6. In analogy 

with Eq. (6.138), for fixed n the LHS of the above equation is simply a number times 

A~8 • Hence we can replace the set of parameters A2- Anmax+2 with A2 - Anmax+2 and 

minimize x2 with respect to the latter set. In this way, we can guarantee that the 

results of the x2 minimization will correspond to values of the moments which satisfy 

Eqs. (7.64) and (7.66) at Q2 = Q6. 
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The singlet component 

The singlet component can be split into ( +) and (-) components. From Eq. (7.47), 

(7.69) 

We can use the small and large Q2 behaviour of the moments to infer constraints 

on the individual ( +) and (-) components. At large Q2 , the smallest power of a in 

Eq. (7.49) will dominate the behaviour of the moments. From appendix D we can see 

that ,\_ ::; dNs ::; ..\+, for all n and therefore the dominant term in Eq. (7.49) is the LO 

(-) component, 

(7.70) 

Hence, in order for the moments to remain positive in the limit of asymptotic freedom 

we must demand, 

==> A;;- > 0, 

for all Q2 • 

At small Q2 , the highest power of a will dominate, and hence, 

(7.71) 

(7.72) 

(7.73) 

This would appear to suggest that we should demand that A;t" < 0. However, due to 

the uncertainty in the sign of the beyond NNLO coefficients, we cannot draw any firm 

conclusions about the sign of A;t. 

In light of the above constraint on A~, we now define two new sets of parameters, A~ 

and A~, 

(7.74) 

nmax+2 2 
M-(n;Q6)- L (A.;) (7.75) 

i=n 
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The above equations ensure that Eqs. (7.65), (7.67) and (7.71) are satisfied for all real 

values of the new parameters, at Q5. Using the relationship between M±(n; Q2 ) and 

A~, together with the above equations, we can replace the original fitting parameters 

Af - A;max+2 with A~ - A.~max+2 and A2 - A.~max+2 in x2' for all n. Minimizing with 

respect to these new parameters will force the minimum in x2 to correspond to values 

of the singlet component of the moments which satisfy Eqs. (7.65), (7.67) and (7.71). 

7.6.2 Determinantal constraints 

In addition to the positivity constraints on the values of the moments, demanding 

that the structure functions are positive definite functions implies a further set of 

constraints, in the form of inequality relations on the determinants of matrices of the 

type in Eqs. (6.132) and (6.133). In the case of F2, we can apply these constraints 

to the singlet and non-singlet components separately. Furthermore, we find that the 

crucial components of these constraints involve the following matrices, 

(7.76) 

where i =NS or S. We find that demanding that these matrices have positive determi­

nants, causes most of the rest of the constraints to be satisfied automatically. In order 

to implement the above constraints as part of the fitting procedure, we adopt a pa­

rameter redefinition similar to that of the last section. In practice, we only implement 

Eq. (7.76) for the first two values of n. Therefore we have, 

det 
Mi(2; Q2) Mi(3; Q2) 

Mi(3; Q2) Mi(4; Q2) 

where i = S or NS. 

The non-singlet component 

> 0, > 0, 

(7.77) 

For the non-singlet component, we define the non-singlet version of the determinants in 

Eq. (7.77) in terms of two new parameters, A~8 and A~8 • We then apply the necessary 
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constraints at the reference energy Q5, 

( }i~sr MNS(2; Q5)MNS(4; Q5)- (MNS(3; Q6))2 > o, (7.78) 

( }i~Sr = MNS(3; Q5)MNS(5; Q5)- (MNS(4; Q5))2 > 0. (7.79) 

Rearranging the above yields, 

(MNS(3; Q5)) 2 + ( }i~s) 2 

MNS{4;Q5) 

(MNS(4;Q5))2 + (Ji~sr 
MNS(5;Q5) 

(7.80) 

(7.81) 

The LHSs of Eqs. (7.80) and (7.81) are simply multiples of the parameters A~s and 

A~s respectively. Hence we can use these equations together with Eq. (7.68) to replace 

the set of parameters ANs - ANs with a new set: }iNs }iNs and A_Ns - A_Ns . 2 nmax+2 2 ' 3 4 nmax+2 
Minimizing with respect to this new set of parameters will restrict the parameter space 

such that Eqs. (7.64), (7.66) and (7.77) are satisfied automatically at Q2 = Qg. 

The singlet component 

For the singlet component we proceed in the same manner by defining the singlet de­

terminants of Eq. (7.77), evaluated at Q5, in terms of two new parameters, A~ and 

A~, 

(ii~) 2 = Ms(2;Q6)Ms(4;Q5)- (Ms(3;Q6))
2 ~ 0, 

(ii~f = Ms(3;Q5)Ms(s;Q5)-(Ms(4;Q5))
2 > o. 

Rearranging the above yields, 

(MS(3; Q5))
2 + (A~ r 

MS(4; Q5) 

(Ms(4;Q5))
2 + (Ji~r 

MS(5;Q5) 

235 

(7.82) 

(7.83) 

(7.84) 

(7.85) 



Chapter 7: Analysis of moments of F2 in electron-proton scattering 

The LHSs of these equations are simply linear combinations of Ai' and Ar respectively. 

Hence we can use these equations together with Eqs. (7.74) and (7.75) to replace the 

parameters Ai' - A~max+2 with A~, A~, A~ - A~max+2 and A2 - A~max+2 . Minimizing 

with respect to this new set of parameters will restrict the parameter space such that 

Eqs. (7.65), (7.67) and the singlet component of Eq. (7.77) are satisfied automatically 

at Q2 = Q6. 

In summary, by defining new sets of fitting parameters, we can restrict the parameter 

space such that chosen sets of positivity conditions are satisfied automatically at a given 

value of Q6. 

7.7 Results 

In Fig. 7.1 we plot the CORGI predictions for the Bernstein averages (with TMCs 

included) fitted to experimental values. Figure 7.2 shows equivalent plots for the modi­

fied averages. The plots show excellent agreement between theory and experiment, and 

result in a prediction for the QCD scale parameter of, 

A~~ = 267.3:!:i~:1 MeV. (7.86) 

The corresponding value of the strong coupling constant (evaluated at the mass of the 

Z particle) is, 

a 8 (Mz) = 0.1226:!:8:88~~· (7.87) 

These values are within 2 - 3 standard deviations of the current global averages of 

A~~= 207.2 ± 23 MeV and a 8 (Mz) = 0.1176 ± 0.002 [32]. However, this deviation is 

not unreasonable, due to the differences between the analysis performed here and those 

which contributed to the results in Ref. [32]. 

The corresponding value of x2 per degree of freedom is, 

x2 
d.o.f. = 

752.665 
1847- (54+ 1) 

0.420, 
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A~(MeV) O:s(Mz) x2 /d.o.f. 

All moments 267.3~i~:~ 0 1226 +0.0012 
. -0.0017 752.665/(1847- (54+ 1)) 

Even moments 236.4 ~~!:~ 0 1203+0.0025 
. -0.0047 334.339/(789- (27 + 1)) 

Odd moments 285.3~;;:~ 0 1239+0.0016 
. -0.0017 415.28/(1058- (27 + 1)) 

Table 7.1: In this table we present the results of the analysis performed with all mo­
ments included and with only odd or even moments included. 

which is comparable to the value of 0.68 found in Ref. [193]. We also perform the 

analysis separately for even and odd moments only, and these results are presented 

together with the result for all moments in table 7.1. 

Note that in the results in Eqs. (7.86) and (7.87) we have not included the theoretical 

error due toRS dependence and the unknown higher order corrections. However, due 

to its CORGI nature, this error is expected to be significantly lower in our analysis 

than that of the equivalent PS analysis of Refs. [192, 193]. 

In table 7.2 we present the values of the fitting parameters A~5 and A~ corresponding 

to the CORGI fits in Figs. 7.1 and 7.2. We see that the A~ parameters are all positive, 

corresponding to an overall negative contribution of the(+) component in Eq. (7.49). 

Using the values of the fitting parameters in table 7.2 together with Eq. (7.49) we can 

obtain values for the individual non-singlet, ( +) and (-) components of the moments, 

as well as the combined singlet contribution, at any Q2. In table 7.3 we present val­

ues for these components at Q2 = 14.9 GeV2. From these values we can obtain the 

determinants in Eq. (7.77). We find that most of these are positive, and those that are 

negative are extremely small in magnitude ( < 10-9). 

We find that applying the constraints in Eqs. (7.64) - (7.67) and (7.71) is crucial to 

obtaining a physical minimum in x 2 (by which we mean a minimum which corresponds 

to an acceptable value of AM5 ). In contrast, the determinantal constraints are of less 

importance, in the sense that implementing them has little effect on the resultant value 

of AMs· However, without these constraints we find that the values of the fitting pa­

rameters resulting from the fit are such that a substantial number of the determinantal 

constraints are violated. 
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Figure 7.1: CORGI fits for the Bernstein averages of F2, with TMCs included. 
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Figure 7.2: CORGI fits for the modified Bernstein averages of F2 , with TMCs included. 
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n A~s, t4J An't4) A;i· t4J 

2 0.3108 4.193x10 -:t 0.2451 
3 0.1265 2.271x10-2 0.1414 
4 6.719x10 -:t 8.342x 10 -J 7.488x10 -:t 

5 4.008x10-2 3.569x1o-3 5.609x10-2 

6 2.562 x10 -:t 2.273x 10 -J 4.655 x10 -:t 

7 1.744x10-2 1.212x1o-3 3.103x 10-:l 

8 1.22x 10 -:t 9.946x10 -4 2.924x10 -:t 

9 9.053 x10-3 5.446x1o-4 1.848 x 10-:l 

10 6.693x10 -J 4.968x10 -4 1.824x 10 -:t 

11 5.334x10-3 2.71x10-4 1.101 x 10-2 

12 4.089 x10 -J 2.539x10 -4 1.083 X 10 -:t 

13 3.486x10-3 1.437x10-4 6.369x10-3 

14 2.726x 10 -J 1.395 X 10 -4 6.486x 10 -J 
15 2.481x 10-3 9.303x1o-5 4.571x 10-3 

16 1.966 X 10 -J 8.181x10 -t> 4.066 x10 -J 
17 1.908x 10-J 7.334x1o-5 3.789x 10-J 
18 1.5x 10 -J 5.31x 10 -t> 2.745x 10 -J 
19 1.544 x 10-3 6.35x10-5 3.375 x10-3 

Table 7.2: In the table above, we present the values of the fitting parameters A~s, A;i 
and A~ in the N1 = 4 region corresponding to the CORGI fits in Figs. (7.1) and (7.2). 

The results in tables 7.1 - 7.3 and in Figs. 7.1 and 7.2 correspond to the analysis 

performed with TMCs included. When we remove these corrections from the analysis, 

we find a shift in the predicted value of AMs similar to that obtained in the F3 analysis. 

For example, in the 'all moments' analysis without TMCs we obtain A~~ = 306.0 ± 17 

MeV with a x2 value of 795.3. Including HT corrections results in a smaller shift in the 

scale parameter of ~ 10 MeV, and this is included in the error quoted in Eqs. (7.86) 

and (7.87). We also include a modelling error in these results, as we did for F3. 

We also perform a PS analysis of the F2 moments in order to check consistency with 

previous analyses. A PS expression for F2 moments can be assembled from the expres­

sion for the singlet component given in Eq. (7.39) and by modifying the non-singlet F3 

expression of Eq. (6.74) so that it applies to F2. Unfortunately, when we perform the 

analysis using these expressions we find no stable minima in x2 for values of A~~ < 590 

MeV. We discuss possible reasons for this in the next section. 
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n MNs(n; Q6) M (n; Q6) M+(n;Q6) Ms(n; Q6) 
2 0.1696 6.338 x10 -<: 6.248 x10 -<: 8.997 X 10 -'1 

3 4.056 x10-<! 8.43 x 10-J 8.398 x10 -J 3.2 X 10 -b 

4 1.512 X 10 ·<: 1.622 X 10 -J 1.621 x10 -J 1.138 X 10 -o 

5 6.946 x10-J 6.239 X 10 -4 6.228 X 10 -4 1.103 X 10 -ti 
6 3.621 X 10 -3 3.237 x10 -'1 3.226 x10 -'1 1.095 X 10 -o 

7 2.089 x10 -J 1.461 X 10 -4 1.461 x10 -4 1.163 X 10 -tl 

8 1.274 X 10 -J 1.044 x10 -'1 1.044 X 10 -'1 9.363 X 10 -w 

9 8.413 X 10 -4 5.084 x10 -a 5.084 x10 -5 9.363 X 10 ·lU 

10 5.628 x10 -4 4.196 x10 -n 4.196 x1o-n 9.363 X 10 ·lU 

11 4.112 x10-4 2.099 X 10 -5 2.099 x10 -5 9.363 X 10 -lU 

12 2.922 X 10 -4 1.829 X 10 -n 1.829 X 10 -n 9.363 X 10 -w 

13 2.329 x10-4 9.35 x10-ti 9.35 x 10-(j 4.7 X 10 -15 

14 1.716 x10 -4 8.754 x10 -ti 8.754 X 10 -ti 4.694 X 10 -w 

15 1.482 X 10 -4 5.548 X 10 -ti 5.548 x10 -{j 4.685 x10 -w 

16 1.12 X 10 -'1 4.657 X 10 -o 4.657 x10 -o 2.195 x10 -w 

17 1.042 x 10-4 4.003 x10-(j 4.003 x10-ti 2.195 X 10 "15 

18 7.89 X 10 -n 2.791 x10 -o 2.791 x10 -o 2.421 X 10 ·<:U 

19 7.849 x10-5 3.227 X 10 -ti 3.227 x10 -ti 1.991 X 10 ·<:U 

Table 7.3: In this table we give the values of the non-singlet, (- ), ( +) and singlet com­
ponents of the moments resulting from the CORGI fits, evaluated at Q6 = 14.9 GeV2 . 

7.8 Summary and conclusions 

In this chapter we attempted to expand the foundation of CORGI phenomenology by 

applying an analysis of the type carried out in chapter 6 to moments of F2. We showed 

how NNLO expressions for the singlet component of the F2 moments can be obtained 

and how this component can then be 'CORGI-ized'. We described how the Bernstein 

averages method can be adapted to F2 and how the positivity constraints introduced in 

chapter 6 can be applied to the non-singlet and singlet components of F2 individually. 

The results of the CORGI analysis are presented in tables 7.1 - 7.2 and the fits to the 

data are shown in Figs. 7.1 and 7.2. The values of AMs and a8 (Mz) corresponding to 

these fits are higher than the current global averages, but are still within acceptable 

proximity. There is also good consistency between odd and even sets of moments. 

As was the case for the F3 analysis, the value of x2 /d.o.f. in Eq. (7.88) is rather 

lower than one might expect. However, this is consistent with the value found in 
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Refs. [192, 193]. Furthermore, with regard to the correlation of the data for the averages, 

the same caveats apply to this analysis as to that of chapter 6; the true x2 minimum 

can only be obtained when the correlation is taken into account. Here we give a value 

of x2 /d.o.f. corrected for the rescaling of errors applied in the x2 function. In analogy 

with Eq. (6.143), 

x2 
d.o.f. 

752.665 
= 1.34, 

270 + 347-55 

is more representative of the true x2 per d.o.f. 

(7.89) 

Target mass corrections appear to be as important for F2 as they are for F3 • Omitting 

these corrections results in a ~ +40 MeV shift in the predicted value of AMs. Higher 

twist corrections also appear to be of equal importance to F2 and F3. The values of 

the singlet and non-singlet components of the moments at Q2 = 14.9 GeV2 are given in 

table 7.3, and these values automatically satisfy the constraints in Eqs. (7.64) - (7.67) 

and (7.71). They also satisfy most of the determinantal constraints - only some of 

these constraints are violated and only by negligible magnitudes ( < w-9 ). 

For the PS analysis, we find there is no stable minimum in x2 that corresponds to a 

physical value of AMs· This is in contradiction to previous analyses [192, 193] in which 

stable minima were found for values of AMs in good agreement with the global average. 

It is curious that the CORGI analysis succeeds where the PS analysis fails. Clearly we 

cannot claim this to be an endorsement of the CORGI approach over the PS approach, 

since previous PS analyses have been successful. Furthermore, the fact that the results 

of the non-singlet analysis in the previous chapter were perfectly consistent suggests 

that it is the singlet component which causes problems in the F2 case. 

An algebraic error would seem to be an obvious candidate for the reason the CORGI 

and PS analyses differ so drastically. However, the PS and CORGI coefficients are 

related by fairly simple relations, and having carried out checks on the algebra, we are 

confident that this is not the cause of the problem. 

The main difference between the CORGI and physical scale expressions is the re-scaling 

of A111s in the CORGI case via Eqs. (7.51) and (7.52). This re-scaling represents the 

resumming of an infinite set of terms which are RG-predictable at NLO, but the prac-
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tical effect of this is to push the Landau pole in ao to higher scales as n increases (as 

can be seen from the table in section D.3). One can see how this might have the effect 

of favouring a lower value of AMs in the CORGI case, since pushing it too high would 

result in a0 and therefore, the moments being of large magnitude at Q2 
rv 2 Ge V2 , 

making agreement with the data difficult. However, the PS result does contain a trun­

cated set of the resummed terms which give rise to the re-scaling in the CORGI case 

(see Eq. (1.161)), and therefore one would expect these terms to mimic the re-scaling. 

Furthermore, the F3 analysis showed no significant difference between the results of the 

PS and CORGI analysis, even though the re-scaling of AMs is of similar magnitude in 

the Fz and F3 cases.3 This makes it difficult to argue that there should be some natural 

mechanism by which the CORGI and PS approaches might generate such drastically 

different results. Indeed, it is more likely to be some subtlety of the fitting procedure 

that we have not taken into account that is causing this impasse. Work is continuing 

on this analysis and we intend to report on it in a future publication. 

3 Th is can be seen by comparing the values of AM/ AMs in the tables in sections C.l and D .3 and 
noting that they are of similar magnitude. 
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Chapter 8 

Summary and conclusions 

In this thesis, we attempted to improve the predictive power of QCD by investigat­

ing how the large-order behaviour of perturbation theory affects the IR properties of 

observables, and also how the renormalization scheme dependence problem may be 

solved. 

In chapter 1 we presented an introduction to perturbative QCD, focusing on the RS 

dependence of perturbative predictions. We introduced three proposed solutions to 

overcoming this problem: the PS, CORGI and EC approaches. 

In chapter 2 we introduced the subject of deep inelastic lepton-hadron scattering. We 

described the parton model and how QCD corrections to it can be calculated. We then 

introduced structure functions and their Mellin moments, and described how the scale 

dependence of the moments can be determined by applying RG methods to composite 

operators. We also briefly described how the factorization process allows us to separate 

non-perturbative and perturbative effects and how, in analogy with renormalization, 

this leads to an FS dependence of factorized observables. 

In chapter 3 (the last of the introductory chapters), we discussed the behaviour of 

perturbative QCD at large orders of the coupling. We described Dyson's original ar­

gument for the divergence of QED and detailed the two known sources of divergence 

in QCD: renormalons and instantons. We then studied renormalons in more detail and 
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described how their existence has inspired a series of all-orders leading-Nf /leading-b 

calculations for QCD observables. We then explained how, in the context of the Borel 

transform, we can separate the large-order influence of renormalons into UV and IR 

components and how it is the IR renormalons which cause ambiguities in the perturba­

tive definition of an observable. We then discussed how such ambiguities can be linked 

to non-perturbative physics and how renormalon singularities in the Borel plane are in 

one-to-one correspondence with QCD condensates. 

In chapter 4 we studied the IR properties of all-orders leading-b resummations for 

Euclidean observables. Our principle aim was to investigate the behaviour of these 

resummations at and below the Landau pole. From the singular behaviour of fixed­

order predictions, and individual renormalon contributions at the Landau-pole, we 

would expect that the full all-orders expansion is singular too. Remarkably, this is 

not the case and cancellations between individual renormalons ensure that when we 

sum over the full set (or over special subsets) we recover a finite result. Although 

we might have expected the full perturbative expansion (written in terms of the all­

orders coupling) to be finite at this point, the fact that a subset of this full set of terms 

(the leading-b components) sums to a finite result is very surprising. Indeed, this is the 

first example of a finite result being obtained at the Landau pole without some form 

of analytical continuation procedure being carried out in order to ensure finiteness. 

We also found that below the Landau pole the all-orders predictions remain finite and 

freeze to zero in the Q2 -) 0 limit. Hence, at Q2 = 0 the value of the observable 

is simply the parton model result. We can understand this IR behaviour in terms of 

the skeleton expansion representation. When the one-loop coupling is used we find 

that the skeleton expansion separates naturally in to a UV region in which the Q2-

dependence can be obtained via the standard Borel representation, and an IR region 

in which the Q2-dependence is given by means of a modified Borel representation. In 

the standard representation, ambiguities are generated by IR renormalons, however in 

the modified representation the singularity structure of the Borel transform is inverted 

and it is the UV renormalons that generate ambiguities. We evaluated the form of 

these ambiguities in the two regions, and by demanding that they are compensated by 

their non-perturbative counterparts, we were led to a new model for power corrections. 

This results in our being able to write down a single, simple expression for both the 

perturbative and non-perturbative components of an observable in terms of the QCD 
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scale parameter A and a single non-perturbative parameter K. 

In chapter 5 we applied the results of chapter 4 to a phenomenological analysis of the 

GLS, polarized Bjorken and unpolarized Bjorken sum rules. We adapted the leading-b 

resummations to CORGI perturbation theory and from this we obtained predictions 

written in terms of the 't Hooft coupling which resummed the leading-b components of 

the RS invariant quantities Xn to all orders. We compared these results with the NLO 

and NNLO CORGI predictions, in order to assess the validity of fixed-order perturba­

tion theory. We found that the fixed-order and all-orders estimates differ drastically for 

the GLS and polarized Bjorken below "'5GeV2 and for the unpolarized Bjorken below 

""'2GeV2 . We also compared the fixed-order and all-orders predictions with the avail­

able data. All predictions were in reasonably good agreement with experiment, but 

the sizeable error bars limit the significance of any conclusions we can draw from this 

comparison. We also tested the model for non-perturbative power corrections proposed 

in chapter 4 on these sum rules and found that the data favours power corrections of 

reasonably small magnitude. 

In chapter 6 we turned our attention to the FRS dependence of fixed order predictions 

for moments of structure functions, performing a phenomenological analysis of F3 mo­

ments in neutrino-nucleon scattering. We adopted the three different approaches to 

solving the RS dependence problem that were outlined in chapter 1. We showed how 

these approaches are generalized to deal with FRS dependence and we used the method 

of Bernstein averages in order to overcome the problems associated with regions of x and 

Q2 for which structure function data is unavailable. We also improved upon previous 

analyses of this kind by including both odd and even moments and also by including 

higher moments. We found that the CORGI, PS and EC approaches all predicted 

similar values of the QCD scale parameter and that these were in excellent agreement 

with the current global average (see tables 6.1 and 6.3). The errors on these values 

were greatly reduced in comparison with previous analyses. We also found consistency 

between analyses in which we included only odd or even moments. We attempted to 

quantify the success of the Bernstein average method by measuring the deviation in the 

final result generated by changing the method used to obtain the experimental averages 

and found that this deviation is reasonably small. We also found that whereas target 

mass corrections appear to be significant for F3, higher twist corrections are less so. 
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In chapter 7 we performed a phenomenological analysis of moments of F2 . As for 

the F3 analysis, we used the method of Bernstein averages, whilst recent results also 

allowed us to extend the set of moments used relative to previous analyses. In the case 

of F2, matters are complicated by the presence of a singlet contribution. We showed 

how an NNLO expression for this component can be derived and how we can then 

apply CORGI perturbation theory to it. From the CORGI analysis we found that 

the F2 data favours a value of the QCD scale parameter which is in reasonably good 

agreement with the current global average (see table 7.1). We found good consistency 

between odd and even moments and also that TMCs and HT effects have a similar 

impact on the outcome of the analysis as they did in the F3 case, shifting the predicted 

value of AMs by ~ 40 and ~ 10 MeV respectively. In the PS analysis we found that 

a value of the QCD scale parameter of A~~ > 590 MeV was favoured, which is clearly 

unphysical. We believe that this is due to subtleties of the fitting procedure related to 

the presence of the singlet contribution (the F2 analysis has triple the number of fitting 

parameters of the F3 analysis). It is curious that the CORGI approach is successful 

where the PS approach fails. However we cannot claim that this is an endorsement of 

CORGI over PS since previous PS analyses have found perfectly physically valid values 

of AMs· Work is continuing on this analysis. 
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Appendix A 

Group theory relations for 

SU(Nc) 

A matrix representation of the generators of SU(3) is provided by the eight Cell-Mann 

matrices, Aa· These matrices can be found in many textbooks, including Ref. [3]. By 

convention, the normalization of these matrices is chosen such that, 

l:TtJT?k = CFbjk· (A.l) 
a 

As a result, the matrices obey the following relations, 

{Ta, Tb} = ~c 15ab I+ dabcyc, (A.2) 

0, (A.3) 

(yaybya)·. = Tb (c _ CA) 
tJ tJ F 2 · (A.4) 

CA and CF are group theory factors. Their values, in SU(Nc) are, 

(A.5) 
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Appendix B 

Special functions 

In this appendix we define some of the special functions used in this thesis. 

B.l The Gamma function 

The Gamma function is defined as, 

r(z) (B.l) 

For integer n, it satisfies 

n! = r(n + 1), (B.2) 

and is therefore a generalization of the factorial function to non-integer values of n. 

The Gamma function can be used to determine the large n behaviour of the factorial 

function via Stirling's formula: 

n! ~ 
n-+oo 

(B.3) 

For negative integer values of z, and also at z = 0, the Gamma function is singular. In 

the small z limit we have, 

r(e:) (B.4) 
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where /E is the Euler-Mascheroni constant, and /E = 0.577215665 .... 

B. 2 The beta function 

The beta function (not to be confused with the beta-function equation) is defined in 

terms of gamma functions, 

Beta(x, y) 
= r(x)r(y) 

r(x+y)' 

B.3 The exponential integral function 

The exponential integral function is defined as, 

. Joo e-t 
E1(x) = - dt -, 

-x t 

(B.5) 

(B.6) 

for x < 0, and can be defined for x > 0 by taking the principal value of the above 

integral. 

B.4 The Riemann zeta function 

The Riemann zeta function is defined as, 

00 1 
((s) = '"'"'-. L.,; ns 

n=l 

(B.7) 

This sum converges for all s with Re(s) > 1, and for the first few integer values of s 

has the following values, 

((2) 
7r2 

(B.8) 6' 
((3) 1.20206 ... , (B.9) 

((4) 
7r4 

(B.10) 
90' 

((5) 1.03693 ... , (B.ll) 

((6) 
7r6 

(B.12) = 
945 
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B.5 The dilogarithm function 

The dilogarithm function can be defined via the integral, 

L. ( ) = 1° ln(1 - t) d 12 z - t, 
z t 

(B.13) 

or by the sum, 

oo n 

Li2(z) = Lz2 . 

n=l n 
(B.14) 

At the point z = 1, this is simply equal to ((2). 
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Appendix C 

NLO and NNLO coefficients for 

moments of F3 structu:re 

functions 

In this appendix we present the coefficients for the NNLO predictions of F3 moments 

in CORGI, PS and EC perturbation theory. These predictions are given in Eqs. (6.65), 

(6.74) and (6.81). 
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C.l CORGI coefficients 

In the table below, we present the information required to construct an NNLO CORGI 

prediction for the moments of F3. The coefficient d/b is relevant to all three approaches, 

AM/AMs represents the NLO contribution to Eq. (6.65) (or Eq. (6.72) in the case of 

n = 1), and X 2 is the NNLO coefficient. 

N1 =4 N1 = 5 

n d/b AM/AMs x2 d/b AM/AMs x2 
1 0. 2.439 n/a 0. 2.456 n/a 

2 0.4267 1.578 -2.448 0.4638 1.609 -3.01 

3 0.6667 2.239 -2.203 0.7246 2.269 -3.28 

4 0.8373 2.655 -2.059 0.9101 2.68 -3.485 

5 0.9707 2.977 -1.933 1.055 3. -3.627 

6 1.08 3.242 -1.797 1.174 3.262 -3.713 

7 1.174 3.472 -1.661 1.276 3.489 -3.766 

8 1.255 3.674 -1.521 1.364 3.69 -3.792 

9 1.327 3.857 -1.381 1.442 3.871 -3.8 

10 1.392 4.023 -1.24 1.513 4.036 -3.793 

11 1.45 4.177 -1.1 1.576 4.188 -3.776 

12 1.504 4.32 -0.9598 1.635 4.33 -3.749 

13 1.554 4.454 -0.8213 1.689 4.463 -3.716 

14 1.599 4.579 -0.6841 1.739 4.587 -3.677 

15 1.642 4.698 -0.5483 1.785 4.705 -3.633 

16 1.682 4.811 -0.4142 1.829 4.817 -3.586 

17 1.72 4.918 -0.2816 1.87 4.924 -3.536 

18 1.756 5.021 -0.1507 1.909 5.026 -3.483 

19 1.79 5.119 -0.02136 1.945 5.123 -3.428 

20 1.822 5.213 0.1062 1.98 5.217 -3.372 
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C.2 Physical scale coefficients 

In the table below, we present the information required to construct an NNLO PS 

prediction for the moments of F3. R1 and R2 are the NLO and NNLO coefficients 

respectively in Eq. (6.74). 

NJ =4 NJ = 5 

n R1 R2 R1 R2 

1 -1. -3.25 -1. -2.917 

2 0.6119 -3.123 0.6006 -3.125 

3 1.928 0.4136 1.893 -0.08583 

4 3.017 5.373 2.959 4.363 

5 3.961 11.03 3.886 9.523 

6 4.792 17.02 4.702 15.03 

7 5.541 23.19 5.438 20.73 

8 6.221 29.42 6.107 26.51 

9 6.846 35.67 6.722 32.33 

10 7.424 41.88 7.292 38.13 

11 7.964 48.06 7.823 43.91 

12 8.47 54.17 8.321 49.64 

13 8.946 60.22 8.79 55.31 

14 9.396 66.18 9.234 60.92 

15 9.823 72.07 9.655 66.46 

16 10.23 77.88 10.06 71.93 

17 10.62 83.61 10.44 77.33 

18 10.99 89.26 10.81 82.66 

19 11.34 94.83 11.16 87.93 

20 11.69 100.3 11.49 93.12 
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C.3 Effective charge coefficients 

In the table below, we present the information required to construct an NNLO EC 

prediction for the moments of F3. 

NJ =4 NJ = 5 

n A~/AMs x2 A~/AMs x2 
1 2.439 n/a 2.456 n/a 

2 1.09 -3.366 1.158 -4.901 

3 1.547 -0.9329 1.633 -2.937 

4 1.834 -0.08705 1.929 -2.239 

5 2.057 0.3803 2.159 -1.848 

6 2.24 0.7083 2.348 -1.572 

7 2.399 0.9563 2.511 -1.362 

8 2.539 1.16 2.656 -1.19 

9 2.665 1.331 2.786 -1.045 

10 2.78 1.481 2.905 -0.918 

11 2.886 1.613 3.014 -0.8054 

12 2.985 1.733 3.116 -0.7037 

13 3.077 1.843 3.212 -0.6108 

14 3.164 1.944 3.302 -0.5251 

15 3.246 2.038 3.386 -0.4456 

16 3.324 2.125 3.467 -0.3712 

17 3.399 2.208 3.544 -0.3012 

18 3.47 2.286 3.617 -0.2352 

19 3.537 2.36 3.687 -0.1726 

20 3.603 2.43 3.755 -0.113 
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Appendix D 

LO, NLO and NNLO coefficients 

for moments of F2 

D.l Differences in notation between this thesis and other 

works 

There are several differences in convention between the way we define the anoma­

lous dimension and the ways it is defined by Yndurain (in Ref. [192]) and by Buras (in 

Ref. [207]). Firstly, the definition of the anomalous dimension itself differs. We have, 

(Usj ( ) _ , n ( ) _ ( ) TS,n a - -')'(Bur.J 9 - J'(Ynd.J a · (D.l) 

Also, due to our definition of a, the individual coefficients of the anomalous dimen­

sion differ: 

4i+ld(Usj = (i) 
t 'Y(Ynd.J 

(i), n 
'Y(Bur.) · (D.2) 

Finally, the eigenvalues of the first coefficient matrix of the anomalous dimension are 

different. 

(D.3) 
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D.2 LO coefficients 

Here, we present the leading order coefficients relevant to the non-singlet component, 

and the ( +) and (-) singlet components of the F2 moments. 

NJ =4 NJ =5 

n dN 8 (n)jb >.._jb >..+jb dN 8 (n)jb >.._jb >..+jb 

2 0.4267 0. 0.7467 0.4638 0. 0.8986 

3 0.6667 0.6085 1.386 0.7246 0.6542 1.601 

4 0.8373 0.817 1.852 0.9101 0.8846 2.104 

5 0.9707 0.9604 2.192 1.055 1.042 2.471 

6 1.08 1.074 2.46 1.174 1.166 2.762 

7 1.174 1.17 2.683 1.276 1.271 3.005 

8 1.255 1.252 2.875 1.364 1.36 3.212 

9 1.327 1.325 3.043 1.442 1.44 3.395 

10 1.392 1.39 3.192 1.513 1.511 3.557 

11 1.45 1.449 3.328 1.576 1.575 3.704 

12 1.504 1.503 3.451 1.635 1.633 3.838 

13 1.554 1.553 3.564 1.689 1.687 3.961 

14 1.599 1.599 3.669 1.739 1.738 4.075 

15 1.642 1.642 3.767 1.785 1.784 4.181 

16 1.682 1.682 3.858 1.829 1.828 4.281 

17 1.72 1.72 3.944 1.87 1.869 4.374 

18 1.756 1.756 4.025 1.909 1.908 4.462 

19 1.79 1.789 4.101 1.945 1.945 4.545 

20 1.822 1.821 4.174 1.98 1.98 4.624 
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D.3 NLO CORGI coefficients 

In the table below we present the NLO information relevant to the CORGI predictions 

for the non-singlet, (-) and ( +) components of F2 moments, given in Eqs. (7.49) -

(7.52). 

NJ =4 Nf = 5 

n i\~j i\Ms AJv./ i\Ms At/AMs i\~j i\Ms AJv./AMs At/AMs 

2 2.156 1.804 2.38 2.199 1.909 2.517 

3 2.575 2.671 2.819 2.609 3.731 2.886 

4 2.893 1.698 2.903 2.921 2.565 2.922 

5 3.163 3.05 3.313 3.187 3.091 3.326 

6 3.394 3.343 3.501 3.415 3.364 3.502 

7 3.601 3.576 3.806 3.619 3.592 3.805 

8 3.786 3.771 3.982 3.803 3.785 3.975 

9 3.956 3.946 4.223 3.971 3.959 4.214 

10 4.113 4.106 4.38 4.126 4.117 4.366 

11 4.258 4.253 4.579 4.27 4.264 4.564 

12 4.394 4.39 4.719 4.404 4.4 4.701 

13 4.522 4.519 4.89 4.531 4.528 4.87 

14 4.643 4.641 5.016 4.651 4.648 4.994 

15 4.758 4.756 5.165 4.765 4.763 5.142 

16 4.867 4.865 5.28 4.873 4.871 5.256 

17 4.971 4.97 5.413 4.977 4.975 5.387 

18 5.071 5.07 5.519 5.076 5.074 5.492 

19 5.166 5.166 5.639 5.171 5.17 5.611 

20 5.258 5.258 5.737 5.262 5.261 5.707 
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D.4 NNLO CORGI coefficients 

In the table below we present the NNLO coefficients of the CORGI predictions for the 

non-singlet, (-) and ( +) components of F2 moments, given in Eqs. (7.49) - (7.52). 

NJ =4 Nf = 5 

n XNS 
2 

x-
2 x+ 2 x~s x-

2 x+ 2 

2 -0.7744 -1.991 -2.485 -1.557 -4.398 -41.32 

3 -1.145 -1.075 -5.596 -2.378 -8.502 -3.738 

4 -1.274 -2.126 -3.547 -2.823 -6.93 -2.363 

5 -1.312 -1.094 -5.608 -3.109 -9.611 -2.875 

6 -1.284 -1.136 -3.13 -3.289 -7.468 -3.067 

7 -1.228 -1.128 -4.305 -3.411 -9.062 -3.199 

8 -1.146 -1.055 -2.07 -3.487 -7.079 -3.195 

9 -1.053 -0.9668 -2.807 -3.536 -8.135 -2.798 

10 -0.9479 -0.8514 -0.884 -3.56 -6.418 -4.141 

11 -0.8384 -0.7128 -1.368 -3.568 -7.161 -3.743 

12 -0.7234 -0.4785 0.2864 -3.563 -5.684 -3.658 

13 -0.6065 -1.549 -0.0352 -3.548 -6.224 -3.61 

14 -0.487 -0.621 1.403 -3.524 -4.942 -3.568 

15 -0.3672 -0.4336 1.192 -3.494 -5.343 -3.527 

16 -0.2464 -0.2884 2.458 -3.457 -4.216 -3.484 

17 -0.126 -0.1557 2.326 -3.417 -4.517 -3.439 

18 -0.005423 -0.02787 3.454 -3.373 -3.516 -3.391 

19 0.1143 0.09657 3.38 -3.326 -3.742 -3.342 

20 0.2337 0.2193 4.395 -3.277 -2.843 -3.29 
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D.5 NLO physical scale coefficients 

In the table below we present the NLO coefficients of the PS predictions for the non­

singlet, (-) and ( +) components of F2 moments, given in Eqs. (6.74) - (7.39). 

Nt =4 Nt = 5 

n Rrs R-
1 

R+ 
1 Rrs R-

1 
R+ 

1 

2 1.167 -2.029 2.35 1.156 2.705 -6.206 

3 2.317 2.208 5.341 2.282 5.659 2.956 

4 3.317 1.423 7.364 3.259 7.537 2.727 

5 4.205 4.015 9.919 4.13 10.08 3.957 

6 4.998 4.902 11.7 4.909 11.81 4.808 

7 5.719 5.666 13.7 5.617 13.8 5.557 

8 6.378 6.342 15.21 6.264 15.3 6.222 

9 6.987 6.962 16.85 6.863 16.92 6.833 

10 7.552 7.533 18.16 7.419 18.22 7.396 

11 8.08 8.066 19.55 7.939 19.6 7.922 

12 8.576 8.565 20.7 8.428 20.75 8.414 

13 9.045 9.036 21.91 8.889 21.95 8.878 

14 9.488 9.481 22.95 9.326 22.97 9.317 

15 9.909 9.903 24.02 9.741 24.04 9.734 

16 10.31 10.31 24.95 10.14 24.97 10.13 

17 10.69 10.69 25.92 10.52 25.93 10.51 

18 11.06 11.06 26.77 10.88 26.78 10.87 

19 11.41 11.41 27.65 11.22 27.65 11.22 

20 11.75 11.75 28.44 11.56 28.43 11.56 
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D.6 NNLO physical scale coefficients 

In the table below we present the NNLO coefficients of the PS predictions for the 

non-singlet, (-) and ( +) components of F2 moments, given in Eqs. (6.74) - (7.39). 

N1 =4 Nt = 5 

n R~s R-
2 

R+ 
2 R~s R-

2 
R+ 

2 

2 0.2038 -4.045 1.698 -0.1318 2.004 -12.11 

3 3.535 3.514 14.74 2.748 15.15 6.348 

4 8.243 -2.365 32.55 6.983 31.87 4.253 

5 13.68 12.43 59.35 11.95 58.09 10.93 

6 19.48 18.79 85.64 17.29 83.51 16.68 

7 25.48 25.08 116.3 22.84 113.5 22.52 

8 31.58 31.3 145.2 28.5 141.6 28.39 

9 37.7 37.52 176.5 34.21 172.3 34.65 

10 43.81 43.7 206. 39.92 201. 39.09 

11 49.9 49.85 237. 45.61 231.4 45.24 

12 55.92 56.03 266.2 51.27 259.9 51. 

13 61.89 60.83 296.5 56.87 289.6 56.67 

14 67.79 67.56 325.2 62.42 317.7 62.25 

15 73.62 73.47 354.7 67.9 346.5 67.76 

16 79.37 79.25 382.7 73.32 374. 73.2 

17 85.05 84.95 411.3 78.68 402. 78.57 

18 90.65 90.57 438.7 83.96 428.7 83.87 

19 96.18 96.11 466.4 89.19 455.9 89.11 

20 101.6 101.6 493. 94.34 481.9 94.27 
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