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Abstract

In probability and statistics, uncertainty is usually quantified using single-valued

probabilities satisfying Kolmogorov’s axioms. Generalisation of classical probability

theory leads to various less restrictive representations of uncertainty which are

collectively referred to as imprecise probability. Several approaches to statistical

inference using imprecise probability have been suggested, one of which is

nonparametric predictive inference (NPI). The multinomial NPI model was

recently proposed [14,17], which quantifies uncertainty in terms of lower and upper

probabilities. It has several advantages, one being the facility to handle multinomial

data sets with unknown numbers of possible outcomes. The model gives inferences

about a single future observation.

This thesis comprises new theoretical developments and applications of the

multinomial NPI model. The model is applied to selection problems, for which

multiple future observations are also considered. This is the first time inferences

about multiple future observations have been presented for the multinomial NPI

model. Applications of NPI to classification are also considered and a method is

presented for building classification trees using the maximum entropy distribution

consistent with the multinomial NPI model. Two algorithms, one approximate

and one exact, are proposed for finding this distribution. Finally, a new NPI

model is developed for the case of multinomial data with subcategories and several

properties of this model are proven.
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Chapter 1

Introduction

In probability and statistics, uncertainty is usually quantified using classical

probabilities satisfying Kolmogorov’s axioms. Generalisation of classical probability

theory leads to various less restrictive representations of uncertainty which are

collectively referred to as imprecise probability. The concept of imprecise probability

has a long history, but in the last twenty years there has been much new research in

this field. In 2002, the Society for Imprecise Probability: Theories and Applications

(SIPTA) was founded. This society organises conferences, workshops and summer

schools in addition to providing access to information and publications about

imprecise probability through its webpage (www.sipta.org) and has succeeded in

raising awareness of the potential of imprecise probability. Many new methods

for uncertainty quantification have been proposed and clear advantages over

the classical theory of probability have been shown, indicating that the ongoing

development of imprecise probability theories and applications is an exciting and

important area of research.

The ever-increasing interest in imprecise probability has led to various new

approaches to statistical inference, one of which is nonparametric predictive

inference (NPI) [6, 14, 17]. NPI is an inferential framework that uses lower and

upper probabilities and has attractive properties from the perspective of interval

probability theory [43]. Many applications of NPI have already been presented in

the literature and its development is gathering strong momentum with regard to

1



Chapter 1. Introduction 2

new methodology for practical applications.

In this thesis, we present several new developments to the theory of NPI for

multinomial data. Inferences about multiple future observations are considered

for the first time and a new NPI model is presented for multinomial data with

subcategories. We also consider methods based on this theory for selection problems

and for classification problems, providing an important and innovative step in the

development of practical applications of NPI for multinomial data.

In Chapter 2, the background literature relevant to this thesis is summarised. We

give a general introduction to imprecise probability and an overview of NPI. This

is followed by a summary of classification methods from the literature which are

relevant to Chapter 4.

Chapter 3 begins with a summary of relevant selection methods from the literature.

We present NPI-based selection methods using a single future observation, then

we derive NPI lower and upper probabilities for events involving multiple future

observations from a multinomial data set and we show how these can be applied to

the problems of category selection and subset selection for multinomial data. The

extension of NPI to inferences about multiple future observations is an ongoing

topic to which an important contribution is made here. The results of Chapter

3 were presented at the 2009 International Symposium on Imprecise Probability:

Theories and Applications [7] and a journal paper on this work is currently under

review [8].

In Chapter 4, we present the use of NPI for building classification trees. We

test our methods on forty data sets and we use the results to compare NPI-based

classifiers with other methods from the literature. Much of the work in Chapter

4 was carried out in collaboration with Joaquin Abellan and Andres Masegosa of

the University of Granada, and a paper focusing on the theoretical results of this

chapter is currently under review [3]. The development of NPI-based algorithms
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for classification trees is a significant contribution with many potential applications

and a further paper on this subject is in preparation.

In Chapter 5, we present a new model which is an extension of the multinomial

NPI model to the case of multinomial data with subcategories. We derive NPI

lower and upper probabilities for all events of interest involving a single future

observation and we present several properties of the model. We also consider the

application of the model to classification trees. The development of this model is

a considerable addition to the theory of NPI and the flexibility of the inferences in

the sense that observations can be represented as subcategories or main categories

makes the model widely applicable to practical problems. A paper on this model is

in preparation.

There are many interesting opportunities to extend the research presented in

this thesis, as discussed in the final sections of each of Chapters 3 to 5 and in

Chapter 6.



Chapter 2

Preliminaries

In this chapter we summarise the main theories and concepts from the literature

that provide relevant background information for the topics considered in this thesis.

An introduction to imprecise probability, with emphasis on the theory of interval

probability, is given in Section 2.1. In Section 2.2 an overview of nonparametric

predictive inference (NPI) is presented and some fundamental properties of the NPI

model for multinomial data are described. Section 2.3 contains a brief overview

of two classification methods, namely naive classification and classification trees,

and an explanation of how these methods have been adapted for use with interval

probability models. An introduction to Weka software is also given, which is widely

used in practical applications of classification methods. This software is used in

Chapter 4.

2.1 Imprecise probability

In classical probability theory, the probability for an event A is given by a precise

value p(A) ∈ [0, 1], where p is a probability satisfying Kolmogorov’s axioms.

However, when information or knowledge is incomplete, a unique probability may

be too restrictive. An alternative approach is to use imprecise probability, which is

an umbrella term encompassing all qualitative and quantitative ways of measuring

uncertainty without single-valued probabilities.

4



2.1. Imprecise probability 5

Imprecise probability is a long-standing concept (see Hampel [28] for a historical

overview) and was first formally proposed in 1854 by Boole [12]. Throughout the

twentieth century, several new theories were proposed for quantifying uncertainty,

and the past two decades in particular have seen much new research in the field

of imprecise probability including the development of interval probability theory.

An interval probability consists of a lower probability P ∈ [0, 1] and an upper

probability P ∈ [0, 1]. The classical situation is a special case of interval probability

with P = P and the vacuous assessment P = 0 and P = 1 represents a total lack of

knowledge about an event. Comprehensive foundations of interval probability theory

have been proposed by Walley [40] and by Weichselberger [43, 44]. Walley’s [40]

treatment of the subject is based on De Finetti’s [23] interpretation of probabilities

as fair prices for gambles. According to Walley, the lower probability P (A) for some

event A is interpreted as the maximum price for which one would buy the bet which

pays 1 if A occurs and 0 otherwise. The upper probability P (A) is interpreted

as the minimum price for which one would sell this bet. The theory developed

by Walley [40] is based on a set of coherence conditions which ensures that the

lower and upper probabilities are rational from the behavioural point of view. The

foundations of interval probability presented by Weichselberger [43, 44] are purely

theoretical with no assumed interpretation, generalising Kolmogorov’s axioms. The

theory and terminology developed by Weichselberger are used throughout this

thesis and the relevant aspects of his approach to interval probability are explained

below.

For a sample space Ω, the set of events A is given by the power set of Ω.

An interval probability model assigns an interval probability P (A) = [P (A), P (A)]

to every event A ∈ A, such that 0 ≤ P (A) ≤ P (A) ≤ 1 for all A ∈ A. The structure

of the model is defined by Weichselberger [43] as the set

M = {p|P (A) ≤ p(A) ≤ P (A),∀A ∈ A}, (2.1)

i.e. the set of all classical probability distributions p that are in accordance with

the interval limits.
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An interval probability is described by Weichselberger [43] as an F-probability if

inf
p∈M

p(A) = P (A)

and

sup
p∈M

p(A) = P (A)

for all A ∈ A. For a finite set of events A, the concept of F-probability coincides

with Walley’s [40] notion of coherence (see Weichselberger [43]). For a given

F-probability, a prestructure is defined by Weichselberger [43] as any subset J of

M such that inf
p∈J

p(A) = P (A) for all A ∈ A.

F-probability is an important concept in Weichselberger’s theory, as it implies

a number of other properties. When we have F-probability, lower probability is

superadditive and upper probability is subadditive. This means that for events

A and B, P (A ∪ B) ≥ P (A) + P (B) and P (A ∪ B) ≤ P (A) + P (B). Also, for

every F-probability, the lower and upper probabilities satisfy the conjugacy relation

P (A) = 1−P (Ac), where Ac is the complementary event to A. It can be shown [44]

that on a finite space, M is a closed and convex set of probability distributions.

Such sets are also called credal sets in the literature. The theory of credal sets

of probability distributions has strong foundations (see Levi [31]) and is widely

used [1, 40,46–48].

In this thesis, we focus on interval probabilistic statistical inference, specifically for

multinomial data. In a multinomial setting, observed data consist of n categorical

observations Y1, ..., Yn. This data set comprises nj observations in category cj, for

j = 1, ..., K. We consider inferences about a future observation Yn+1.

One imprecise probability model for inference from multinomial data, Walley’s

Imprecise Dirichlet Model (IDM) [41], has attracted much attention and has been

applied in a variety of areas [11]. The model generalises the standard Bayesian

approach to inference from multinomial data. The multinomial model is assumed,

where each category cj is associated with a probability θj such that θj ≥ 0 and
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K∑
j=1

θj = 1, and the vector n = (n1, ..., nK) follows a multinomial distribution

with parameters n and θ where θ is the vector of probabilities (θ1, ..., θK). Under

the IDM, prior uncertainty about θ is described by the set of all Dirichlet (s, t)

distributions such that 0 < tj < 1 for j = 1, ..., K and
K∑
j=1

tj = 1. The choice

of the parameter s is important and is discussed in detail by Walley [41]. After

observing the data, Bayes’ theorem is used to update each prior distribution in

the set, and hence the posterior uncertainty about θ is described by the set of all

Dirichlet (s, t∗) distributions where t∗j =
nj+stj
n+s

for j = 1, ..., K. Inferences about

an event are in the form of a lower probability and an upper probability. These

are obtained by minimising and maximising the posterior probability for the event

with respect to t. According to the IDM, the lower and upper probabilities for the

event that the next observation will be in category cj are P IDM(Yn+1 ∈ cj) =
nj
n+s

and P IDM(Yn+1 ∈ cj) =
nj+s

n+s
. In the discussion of Walley’s paper on the IDM [41]

and indeed by Walley himself, a number of criticisms of the model were made. In

the light of this, a new model for inference from multinomial data was proposed by

Coolen and Augustin [14, 17]. This is an attractive alternative to the IDM which

uses the theory of nonparametric predictive inference (NPI).

2.2 Nonparametric predictive inference

NPI is an inferential framework of statistical theory and methodology that is based

on Hill’s exchangeability-related assumption A(n) [29], defined below.

Definition 2.2.1. Consider a real-valued data set consisting of observed values

Xi = xi, i = 1, ..., n, where we assume that there are no tied observations. These

observations are ordered such that x1 < ... < xn and they partition the real line into

n + 1 open intervals (xi, xi+1) for i = 0, ..., n, where x0 = −∞ and xn+1 =∞. The

assumption A(n) states that the next observation will fall in any interval (xi, xi+1)

with probability 1
n+1

, i.e. P (Xn+1 ∈ (xi, xi+1)) = 1
n+1

for i = 0, ..., n.

NPI makes use of A(n) to give predictive inferences about future observations in

the form of lower and upper probabilities and has been presented for Bernoulli
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data [13], real-valued data [6], data including right-censored observations [22] and

multinomial data [14,17]. It has a wide range of applications in statistics, reliability

and operational research, summarised by Coolen [16]. We focus on the NPI model

for multinomial data [14, 17], which we henceforth refer to as the MNPI model.

The MNPI model is based on a variation of Hill’s assumption A(n) [29] called

circular-A(n) that was first introduced in [14]. This assumption relates to circular

data. Circular-A(n) is defined below.

Definition 2.2.2. Consider a circular data set consisting of observed values Yi = yi,

i = 1, ..., n. These observations create n intervals on a circle, which are represented

as Ij = (yj, yj+1) for j = 1, ..., n−1 and In = (yn, y1). The assumption circular-A(n)

states that the next observation will fall in any interval Ij with equal probability 1
n

,

i.e. P (Yn+1 ∈ Ij) = 1
n

for j = 1, ..., n.

The MNPI model involves a probability wheel representation of the data. On the

probability wheel, each of the n categorical observations is represented by a radial

line, such that the wheel is partitioned into n equally-sized slices. Making inferences

about the next observation is analogous to spinning this probability wheel and from

the circular-A(n) assumption we conclude that the next observation has probability

1
n

of being in any given slice. The inferences given about a future observation

therefore depend upon which category each slice of the wheel represents. The

following assumption, and the constraints on the configuration of the wheel which

this assumption implies, are key to the results presented in this thesis. Coolen and

Augustin [14] assume that each category is only allowed to be represented by a single

segment of the wheel, where a segment is defined as a single part of the wheel (note

that the wheel is always divided radially) consisting of any number of full or partial

slices. This assumption implies the following:

• Two or more lines representing observations in the same category must always

be positioned next to each other on the wheel.

• A slice that is bordered by two lines representing observations in the same

category must be assigned to that category. (An exception to this rule occurs

when every line on the wheel represents the same category, in which case
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n− 1 slices must be assigned to that category and the remaining slice may be

assigned to another category.)

• A slice that is bordered by two lines representing observations in categories ci

and cj where ci 6= cj, defined as a separating slice, may be assigned to ci or to

cj or to an unobserved category not yet allocated to any other slice.

• Separating slices may be divided radially between multiple categories.

The concept of the probability wheel is clarified further by the illustrative examples

in the remainder of this section.

Throughout this work, it is assumed that there are K different categories

altogether, and that k categories have already been observed and are labelled

c1, ..., ck. It is assumed that K ≥ 3: when K = 2, the MNPI model can be used,

but the representation of the data on a line as presented for Bernoulli data [13]

is more appropriate. Suppose that there are nj observations in category cj, for

j = 1, ..., k. Therefore,
k∑
j=1

nj = n. In some situations, we may know the total

number K of possible categories, but at other times we may be unaware of this

value. Coolen and Augustin presented lower and upper probabilities for the case

where K is known [17] and for the case where K is unknown [14]. These results are

summarised in Subsections 2.2.1 and 2.2.2.

2.2.1 Known number of categories

We summarise the results of Coolen and Augustin [17]. When K is known, events

of interest can be expressed generally as

Yn+1 ∈
⋃
j∈J

cj (2.2)

where J ⊆ {1, ..., K}. We refer to this general event as E. Let

OJ = J ∩ {1, ..., k}
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represent the index-set for the categories in E that have already been observed and

let r = |OJ |. Also, let

UJ = J ∩ {k + 1, ..., K}

represent the index-set for the categories in E that have not yet been observed and

let l = |UJ |. The derivation of the NPI lower and upper probabilities for the general

event E is explained below.

Lower probability

We first consider the NPI lower probability for E. In order to find the minimal

predictive probability, it is necessary to construct a configuration of the probability

wheel which minimises the number of slices that must be assigned to E. This is

done by separating lines representing different categories in E by categories not in

E wherever possible.

We have r observed categories on the wheel which belong to E and we have

K − r − l categories which are not in E. We distinguish between the case where

r ≤ K − r− l and the case where r > K − r− l, because when r ≤ K − r− l there

are more categories not in E than there are observed categories in E. We consider

these two cases separately. Note that in examples, E denotes specific events of the

form shown in (2.2).

Case 1: r ≤ K − r − l

When the number of possible categories not in E is greater than or equal to the

number of observed categories in E, all lines on the wheel representing different

categories in E can be separated by categories not in E. Therefore, the only slices

which we are forced to assign to E are those between two lines representing the

same category in E. This leads to

P (E) =
∑
j∈OJ

nj − 1

n
. (2.3)
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Example 2.2.1. Consider a multinomial data set with possible categories blue (B),

green (G), red (R), yellow (Y), pink (P) and orange (O). The data are

(nB, nG, nR, nY , nP , nO) = (4, 2, 1, 1, 0, 0).

Suppose that we are interested in the event Y9 ∈ {B,G,P}. Then K = 6, r = 2

and l = 1, so this example illustrates the situation where r ≤ K − r − l. We can

therefore find a configuration of the probability wheel such that all categories in

E are separated by categories not in E. Figure 2.1 shows one such configuration,

B
B

B

B

R
G

G

Y

R

R

Y

Y

Figure 2.1: Probability wheel for Example 2.2.1

where B and G are separated by R and Y. The only slices of the wheel which must

be assigned to E are the slices between two B observations or two G observations.

This means that the NPI lower probability for E is 4
8
. This is verified by (2.3). �

Case 2: r > K − r − l

When the number of observed categories in E is greater than the number of

categories not in E, we cannot separate all lines on the wheel representing

different categories in E. We separate as many of these as possible, but there

are r − (K − r − l) = 2r + l − K separating slices that cannot be assigned to a

category not in E. These slices must therefore be assigned to E, leading to

P (E) =
∑
j∈OJ

nj − 1

n
+

2r + l −K
n

. (2.4)

Example 2.2.2. Consider the data set described in Example 2.2.1. Suppose that we

are interested in the event Y9 ∈ {B,G,P,R,Y}. Then K = 6, r = 4 and l = 1, so we
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B
B

B

B

R
G

G

Y

O

Figure 2.2: Probability wheel for Example 2.2.2

have the situation where r > K − r− l. We therefore cannot find any configuration

of the probability wheel such that all observed categories in E are separated by

categories not in E. Figure 2.2 shows a configuration of the probability wheel

corresponding to the NPI lower probability. As before, the slices between two B

observations or two G observations must be assigned to B and G respectively. We

can assign one of the remaining slices to O, but there are no other categories not in

E and therefore the remaining three separating slices must also be assigned to E.

This means that the NPI lower probability for E is 7
8
. This is verified by (2.4). �

Upper probability

We now consider the NPI upper probability for the general event E (2.2). In terms

of the probability wheel, we want to assign as many slices as possible to E. The

best configuration will therefore involve separating observed categories not in E by

categories in E wherever possible.

We have k − r observed categories on the wheel which are not in E and we

have r + l categories altogether which are in E. We consider separately the case

k − r ≤ r + l and the case k − r > r + l.

Case 1: k − r ≤ r + l

When the number of categories in E is not less than the number of observed

categories not in E, all lines on the wheel representing different categories not in E

can be separated by categories in E.
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Therefore, all k separating slices can be assigned to E. Furthermore, we

must assign to E all slices between two lines representing the same category in E.

This leads to

P (E) =
∑
j∈OJ

nj − 1

n
+
k

n
. (2.5)

Example 2.2.3. Consider the data set described in Example 2.2.1 and suppose that

we are interested in the event Y9 ∈ {B,G,P}. Then k = 4, r = 2 and l = 1, so

this example illustrates the situation where k − r ≤ r + l. We can therefore find a

configuration of the probability wheel such that all categories not in E are separated

by categories in E. Figure 2.3 shows one possible configuration of the probability

B
B

B

B

R
G

G

Y

B

G

G

B

Figure 2.3: Probability wheel for Example 2.2.3

wheel, where the slices separating B from R and Y are both assigned to B and the

slices separating G from R and Y are both assigned to G. The slices between two B

observations or two G observations are also assigned to B and G respectively. This

means that the NPI upper probability for E is 1. This is verified by (2.5). �

Case 2: k − r > r + l

When the number of observed categories not in E is greater than the number of

categories in E, there is no configuration of the wheel such that all categories not

in E are separated by categories in E. This means that we cannot assign all k

separating slices to E. There are k − r − (r + l) = k − 2r − l separating slices that

cannot be assigned to E and therefore only k− (k−2r− l) = 2r+ l separating slices

can be assigned to E. We must also assign to E all slices between lines representing
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the same category in E. This leads to

P (E) =
∑
j∈OJ

nj − 1

n
+

2r + l

n
. (2.6)

Example 2.2.4. Consider again the data set described in Example 2.2.1 and suppose

that we are interested in the event Y9 ∈ {B,P}. Then k = 4, r = 1 and l =

1, so we have the situation where k − r > r + l. We therefore cannot find any

configuration of the probability wheel such that all observed categories not in E are

separated by categories in E. Figure 2.4 shows a configuration of the probability

B
B

B

B

R
G

G

Y

B P

B

Figure 2.4: Probability wheel for Example 2.2.4

wheel corresponding to the NPI upper probability, where the slices separating B

from R and Y are both assigned to B and the slice separating G from Y is assigned

to P. The slices between two B observations are assigned to B and the slice between

the two G observations is assigned to G. This means that the NPI upper probability

for E is 6
8
. This is verified by (2.6). �

2.2.2 Unknown number of categories

We summarise the results of Coolen and Augustin [14]. When K is unknown, an

event can no longer be expressed using the subset J ⊆ {1, ..., K}, so new notation

is introduced. As before, c1, ..., ck are the observed categories. In addition we define

DNi, i = 1, ..., l, as Defined New categories, which represent categories we wish to

specify in the event of interest that have not yet been observed. We also define UN as

the set of Unobserved New categories, which refers to any not yet observed category.

Note that the categories DNi are contained within the set UN . The derivation of

the NPI lower and upper probabilities is based on the assumption that there is no
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finite limit on the number of UN categories. Coolen and Augustin [14] give two

general expressions which encompass any event of interest. These expressions are

Yn+1 ∈
r⋃
s=1

cjs ∪ UN \
l⋃

i=1

DNi (2.7)

and

Yn+1 ∈
r⋃
s=1

cjs ∪
l⋃

i=1

DNi (2.8)

where cj1 , ..., cjr are the observed categories in the event of interest, l ≥ 0 and

0 ≤ r ≤ k. We refer to these general events as E1 (2.7) and E2 (2.8). The derivation

of the NPI lower and upper probabilities for each of these general events is explained

below.

Lower probability

We consider the NPI lower probabilities for events E1 and E2. As in the situation

where K is known, we find the NPI lower probability by constructing a configuration

of the probability wheel which separates lines representing different categories in

the event of interest by categories not in the event of interest. This minimises the

number of slices that must be assigned to the event of interest.

We first consider E1. There are k observed categories and therefore there

are k separating slices. If k ≥ 2r, at least half of the k observed categories are

not in E1. We can therefore find a configuration of the wheel which separates all

observed categories in E1 by observed categories not in E1, meaning that the only

slices which we are forced to assign to E1 are those between two lines representing

the same category in E1. However, if r ≤ k < 2r, not all observed categories in

E1 can be separated. There are r − (k − r) = 2r − k separating slices that cannot

be assigned to an observed category not in E1. We can, however, assign l of these

slices to categories DNi, i = 1, ..., l, since these are not in E1. Overall, there are
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max(2r − k − l, 0) slices which we are forced to assign to E1. This leads to

P (E1) =



r∑
s=1

njs − 1

n
if k ≥ 2r

r∑
s=1

njs − 1

n
+

max(2r − k − l, 0)

n
if r ≤ k < 2r

(2.9)

where njs is the number of times cjs has been observed.

Example 2.2.5. Consider a multinomial data set where the set of possible categories

consists of an unknown number of different colours. We have observed the following

categories: blue (B), green (G), red (R) and yellow (Y). We define two new

categories: pink (P) and orange (O). The data are

(nB, nG, nR, nY ) = (4, 2, 1, 1).

Suppose that we are interested in the event Y9 ∈ {(B ∪G) ∪ UN \ (P ∪O)}. Then

k = 4, r = 2 and l = 2. This event is of type E1 and this example illustrates the

situation where k ≥ 2r. We can therefore configure the probability wheel such that

all observed categories in the event of interest are separated by observed categories

not in the event of interest. Figure 2.5 shows one such configuration of the wheel,

B
B

B

B

R
G

G

Y

R

R

Y

Y

Figure 2.5: Probability wheel for Example 2.2.5

where B and G are separated by R and Y. The only slices of the wheel which must

be assigned to the event of interest are the slices between two B observations or two

G observations. This means that the NPI lower probability for the event of interest

is 4
8
. This is verified by (2.9). �



2.2. Nonparametric predictive inference 17

Example 2.2.6. Consider again the data set described in Example 2.2.5. Suppose

that we are interested in the event Y9 ∈ {(B∪G∪R)∪UN \P}. Then k = 4, r = 3

and l = 1. This event is also of type E1, but this example illustrates the situation

B
B

B

B

R
G

G

Y

B

P

Y

Y

Figure 2.6: Probability wheel for Example 2.2.6

where k < 2r. We cannot find a configuration of the probability wheel such that all

observed categories in the event of interest are separated by observed categories not

in the event of interest. However, we can assign one separating slice to the Defined

New category P that is excluded from the event of interest. Figure 2.6 shows such

a configuration, where B and G are separated by Y, and also P separates G and

R. The remaining separating slice has to be assigned to the event of interest and

is assigned to B in Figure 2.6. The slices between two B observations or two G

observations must also be assigned to the event of interest. This means that the

NPI lower probability for the event of interest is 5
8
. This is verified by (2.9). �

We now consider E2. As before, we have k observed categories, so we have k

separating slices. The event E2 only includes l of the UN categories, so since

no maximum number of categories in UN is assumed, we can suppose that all

of the k separating slices can be assigned to a category not in E2, be it observed

or unobserved. Therefore, the only slices which must be assigned to E2 are those

between two lines representing the same category in E2. This leads to

P (E2) =
r∑
s=1

njs − 1

n
. (2.10)

Example 2.2.7. Consider the data set described in Example 2.2.5. Suppose that we

are interested in the event Y9 ∈ {(B ∪ G ∪ R) ∪ (P ∪ O)}. Then k = 4, r = 3 and
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l = 2. This event is of type E2. We can configure the probability wheel such that all

B
B

B

B

R
G

G

Y

UN

UN

Y

Y

Figure 2.7: Probability wheel for Example 2.2.7

categories in the event of interest are separated either by observed categories not in

the event of interest or by UN categories. Figure 2.7 shows one such configuration

of the wheel. Here, B and G are separated by Y. The event of interest does not

include any UN categories except P and O, so we use UN categories other than

P and O to separate B and R and to separate R and G. (Note that the two slices

assigned to UN must represent different Unobserved New categories.) Therefore,

the only slices which we must assign to the event of interest are the slices between

two B observations and the slices between two G observations. This means that the

NPI lower probability for the event of interest is 4
8
. This is verified by (2.10). �

Upper probability

We consider the NPI upper probabilities for events E1 (2.7) and E2 (2.8). Here, we

wish to find a configuration of the probability wheel which assigns as many slices

as possible to the event of interest.

We first consider E1. As described previously, there are k separating slices

on the wheel. Since E1 contains all except a finite number of the UN categories, we

can assume that every one of these k slices can be assigned either to an observed

category in E1 or to an unobserved category in E1. Furthermore, we assign to E1

any slices between two lines representing the same category in E1. This leads to

P (E1) =
r∑
s=1

njs − 1

n
+
k

n
. (2.11)



2.2. Nonparametric predictive inference 19

Example 2.2.8. Consider the data set described in Example 2.2.5. Suppose that we

are interested in the event Y9 ∈ {B ∪ UN \ (P ∪O)}. Then k = 4, r = 1 and l = 2.

This event is of type E1 and we can configure the probability wheel such that all

B
B

B

B

R
G

G

Y

B

UN

UN

B

Figure 2.8: Probability wheel for Example 2.2.8

categories not in the event of interest are separated either by observed categories

in the event of interest or by unobserved categories in the event of interest. Figure

2.8 shows one such configuration of the wheel. Here, R and Y are separated by B.

The event of interest includes all UN categories except P and O, so we use UN

categories other than P and O to separate R and G and to separate G and Y. This

means that the NPI upper probability for the event of interest is 7
8
. This is verified

by (2.11). �

We now consider E2. Again, we consider the k separating slices on the probability

wheel. If k ≤ 2r, at least half of the k observed categories are in E2, so we can

construct a configuration of the wheel where all observed categories not in E2 are

separated by observed categories in E2. Therefore, all k separating slices can be

assigned to E2. Conversely, if k > 2r, we cannot separate all observed categories

not in E2. Two of the separating slices can be assigned to each observed category

in E2, but we will have k − 2r remaining separating slices that cannot be filled by

an observed category in E2. However, E2 also contains l unobserved categories,

namely DNi, i = 1, ..., l. This means that we can assign up to l of the separating

slices to these categories. Overall, there will be min(k − 2r, l) remaining separating

slices which can be assigned to E2. We also assign to E2 all slices between lines

representing the same category in E2. This leads to
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P (E2) =



r∑
s=1

njs − 1

n
+
k

n
if r ≤ k ≤ 2r

r∑
s=1

njs + 1

n
+

min(k − 2r, l)

n
if k > 2r

(2.12)

Example 2.2.9. Consider the data set described in Example 2.2.5. Suppose that we

are interested in the event Y9 ∈ {(B ∪G) ∪ (P ∪O)}. Then k = 4, r = 2 and l = 2.

This event is of type E2, and this example illustrates a situation where k ≤ 2r. We

can therefore configure the probability wheel such that all observed categories not

in the event of interest are separated by observed categories in the event of interest.

Figure 2.9 shows one such configuration of the wheel, where R and Y are separated

B
B

B

B

R
G

G

Y

B

G

G

B

Figure 2.9: Probability wheel for Example 2.2.9

by B and G. This means that the NPI upper probability for the above event is 1.

We can verify this using (2.12). �

Example 2.2.10. Consider once more the data set described in Example 2.2.5.

Suppose that we are interested in the event Y9 ∈ {B ∪ (P ∪ O)}. Then k = 4,

r = 1 and l = 2. This event is of type E2 and we have the situation where k > 2r.

This means we cannot separate all observed categories not in the event of interest

by observed categories in the event of interest. However, we have two Defined New

categories, P and O, which are included in the event of interest. Figure 2.10 shows

one configuration of the wheel corresponding to upper probability, where R and Y

are separated by B, and also P separates R and G, and O separates G and Y. This
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B
B

B

B

R
G

G

Y

B

P

O

B

Figure 2.10: Probability wheel for Example 2.2.10

means that the NPI upper probability for the event of interest is 7
8
. This is verified

by (2.12). �

2.2.3 Properties of the model

It was proven by Coolen and Augustin [14, 17] that the NPI lower and upper

probabilities satisfy the conjugacy property P (E) = 1−P (Ec), where Ec represents

the complementary event to E, i.e. an event containing all possible categories except

for those contained in E. It can also be proven that P (E) ≤
∑
cj∈E

nj
n
≤ P (E),

showing that the model is a generalisation of the naive model in which the

probability for a category is equal to the relative frequency of that category in

the data. It can be shown that the imprecision vanishes as n → ∞. Coolen

and Augustin [14, 17] also proved that the intervals given by the NPI lower and

upper probabilities are F-probabilities in the sense of Weichselberger [43]. This

implies coherence in Walley’s sense [40] at any single point in time, meaning

that the NPI lower and upper probabilities are rational from the behavioural

point of view. The issues of conditioning and updating are not explored in this

thesis, but it is important to note the difference between these actions: in the

NPI framework, updating is not done in a Bayesian manner through conditioning,

but is done by taking new data into account as well as the previously available

data and recalculating the NPI lower and upper probabilities based on the new

total number of observations. It can be shown that the NPI approach has strong

consistency properties for both conditioning and updating and this is discussed
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further in [6], [17] and [18].

The set of probability distributions that are consistent with the MNPI model

is defined by the constraints of the probability wheel, explained at the beginning

of this section. Any distribution belonging to this set must clearly belong to

the structure M of the model. However, not all distributions in M correspond

to a valid configuration of the probability wheel. This is discussed further in

Chapter 4. The set of probability distributions that are in accordance with the

MNPI model is henceforth referred to as the NPI structure, and is denoted by

MNPI , where MNPI ⊆ M. We see that MNPI is a prestructure in the sense of

Weichselberger [43].

2.3 Classification

Classification is a procedure in which units are categorised according to the observed

values of one or more attribute variables. Suppose that {Xi}mi=1 is the set of attribute

variables and that Xi has possible values xi = 1, ..., |Ai| in a finite set Ai, where |Ai|

is the number of elements in Ai. Then a classifier maps a set of attribute values

{x1, ..., xm} to a category C ∈ {c1, ..., cK}. Classifiers are learned from a training

set of data, which is a sample of n observations for which the category is already

known. Recent advances in imprecise probability theory have led to the development

of classification methods based on imprecise probabilities, the most widely used of

which are naive classification and classification trees.

2.3.1 Naive classification

The naive Bayes classifier, proposed by Duda and Hart [25], is a straightforward

method based on the posterior probabilities p(C|X1, ..., Xm), j = 1, ..., K. The

naive assumption is made that each attribute is conditionally independent

of every other attribute given C, so the application of Bayes’ theorem gives

p(C|X1, ..., Xm) ∝ p(C)
m∏
i=1

p(Xi|C). The probabilities p(C) and p(Xi|C) are

estimated from the training set. Given a new observation with attribute



2.3. Classification 23

values x1, ..., xm, the output from the naive Bayes classifier is given by

argmax
cj

p(C = cj)
m∏
i=1

p(Xi = xi|C = cj), i.e. the category which has the

largest posterior probability.

The naive credal classifier, proposed by Zaffalon [46, 48], is an extension of

the naive Bayes classifier to credal sets of probability distributions. The set PC
is defined to be a credal set of distributions p(C) and for each j ∈ {1, ..., K}

the set PcjXi is defined to be a credal set of distributions p(Xi|cj). The naive

assumption together with Bayes’ theorem then gives the set of joint distributions

P = {p(C)
m∏
i=1

p(Xi|C)|p(C) ∈ PC , p(Xi|cj) ∈ P
cj
Xi
, i = 1, ...,m, j = 1, ..., K}. The

credal sets PC and PcjXi may be obtained using statistical inference, as discussed

in Section 2.1, or they may be provided by subjective judgements. Given a new

observation with attribute values x1, ..., xm, lower and upper probabilities for each

category cj are obtained by minimising and maximising the posterior probability

p(cj|x1, ..., xm) with respect to the set P . This optimisation problem is discussed

in detail by Zaffalon [46, 48]. The use of credal sets of distributions means that

the output of the naive credal classifier is generally a set of categories instead of

a single category, because the interval probabilities for categories may overlap.

This is referred to as imprecise classification. Various methods are proposed for

comparing these interval probabilities [46,48].

Zaffalon [47] showed that the IDM [40] can be used to infer the credal sets

that define the naive credal classifier. However, due to the parametric nature of

this method of classification, the MNPI model is not a natural alternative to the

IDM for this particular application. We therefore do not further consider naive

classification in this work.

2.3.2 Classification trees

A classification tree is a hierarchical structure used for predicting the category of an

observation from the values of the attribute variables. Within a classification tree,
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each node represents a single attribute variable, referred to as the split variable

for the node, and each possible value of this variable corresponds to a particular

branch from the node. We restrict attention to discrete attribute variables here, so

the number of splits at a node is defined by the number of possible values of the

split variable. Each leaf of the tree represents a category, and when classifying an

observation, the combination of attribute values observed defines a path through the

tree from the root node to a leaf node, leading to a prediction about the category

of this observation. Example 2.3.1 illustrates this method of classification.

Example 2.3.1. Consider a data set with two possible categories, C1 and C2, and

two attribute variables, X and Y . X has possible values x1 to x4 and Y has possible

values y1 and y2. Suppose that we wish to classify an observation which has attribute

Figure 2.11: Classification tree for Example 2.3.1

values X = x2 and Y = y1. Using the classification tree shown in Figure 2.11, we

see that the predicted category for this observation is C2. �

Classification trees are constructed using a subset of the observed data called the

training set. The remaining data, called the test set, are then used to test the

performance of the classifier. In practical applications, a ten-fold cross-validation

procedure is commonly used [30]. The observed data are randomly partitioned into

ten subsets, of which nine subsets are used as the training set and the remaining

subset is used as the test set. The tree-building process is repeated ten times, and
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each of the ten subsets is used precisely once as the test set. The ten results are

then averaged.

When building a classification tree using the training set, an impurity measure is

used to select the split variable at each node. Such a measure quantifies the extent

of the variation between the categories of the observations at that node and allows

us to determine the information content of an attribute variable. At the root node,

the set of all attribute variables is considered and a variable is selected such that

the impurity reduction achieved by the split is maximised. We then proceed in a

similar way for further nodes, splitting on the most informative remaining attribute

variable at each stage. When no further impurity reduction is achievable, we stop

splitting and a leaf node is produced showing the most probable category.

There are several different versions of this tree-building process that use various

impurity measures [34, 35, 45], but we focus now on Quinlan’s ID3 method [34].

This method is based on the principle of Occam’s Razor, in the sense that smaller

classification trees are preferred to larger ones, and this principle is applied through

the use of an impurity measure based on the Shannon entropy [38]

H(p) = −
K∑
j=1

p(cj) log[p(cj)], (2.13)

which is a function of the true category probabilities p(cj). Since these probabilities

are unknown, it is necessary to use the estimator

Ĥ(p̂) = −
K∑
j=1

p̂(cj) log[p̂(cj)] (2.14)

for the Shannon entropy, where p̂(cj) is an estimate of p(cj). Suppose that at some

node R we have nR observations in total, of which nRj belong to category cj for

j = 1, ..., K. At this node, the Shannon entropy is estimated by

Ĥ(p̂R) = −
K∑
j=1

p̂R(cj) log[p̂R(cj)] (2.15)

where p̂R(cj) indicates the relative frequency
nRj
nR

. The attribute variable Xi is then

considered for splitting. At each new node produced by this split, we have nR∪(Xi=xi)
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observations in total, of which n
R∪(Xi=xi)
j belong to category cj for j = 1, ...K. At

this node, the Shannon entropy is estimated by

Ĥ(p̂R∪(Xi=xi)) = −
K∑
j=1

p̂R∪(Xi=xi)(cj) log[p̂R∪(Xi=xi)(cj)] (2.16)

where p̂R∪(Xi=xi)(cj) indicates the relative frequency
n
R∪(Xi=xi)
j

nR∪(Xi=xi)
. The weighted sum

of impurity measures over all new nodes is

I(R,Xi) =
∑
xi∈Ai

nR∪(Xi=xi)

nR
Ĥ(p̂R∪(Xi=xi)), (2.17)

and the impurity reduction achieved by splitting on Xi is therefore equal to

Ĥ(p̂R) − I(R,Xi). However, since Ĥ(p̂R) is constant for all Xi, the impurity

reduction is measured by I(R,Xi) for practical purposes.

The ID3 method [34] can be adapted for use with interval probability models, as

shown by Abellan and Moral [1]. At each node of the tree, an interval probability

model is used to give P (cj) = [P (cj), P (cj)] for each category. The impurity

measure Ĥ (2.14) based on the Shannon entropy is still used, but the true category

probabilities are now estimated using the maximum entropy distribution pmaxE,

which is the distribution that maximises (2.14) taken from the set of all possible

probability distributions that are consistent with the interval probability model.

The impurity reduction achieved by splitting on Xi is measured by

I(R,Xi) =
∑
xi∈Ai

nR∪(Xi=xi)

nR
Ĥ(p

R∪(Xi=xi)
maxE ). (2.18)

As we are using interval probabilities, it may not always be clear which is the

most probable category at a leaf node. As mentioned in Subsection 2.3.1, there

are various ways of comparing the interval probabilities P (cj) [46, 48]. However,

for our purposes, we restrict to the method whereby if we cannot give a single

most probable category at a leaf node, the parent node is considered and the most

probable category at that node is used.

Abellan and Moral [1] considered the use of the IDM [41] for building
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classification trees. The maximum entropy distributions were taken from the

credal set of distributions associated with the IDM lower and upper probabilities

P IDM(Yn+1 ∈ cj) and P IDM(Yn+1 ∈ cj) (see Section 2.1). However, given the

nonparametric nature of classification trees, the MNPI model would be a suitable

alternative to the IDM for this application. This is considered further in Chapter 4.

2.3.3 Weka software

Weka is a suite of machine learning software that was developed at the University

of Waikato in New Zealand. It contains implementations of many classification

methods as well as a variety of tools, called filters, that are used for preprocessing

data. It is also possible to implement new classification methods in Weka. There

are two main graphical user interfaces to Weka: the Explorer and the Experimenter.

The Explorer enables the user to apply a classification method to a single data

set and to analyse the performance of the resulting classifier. The Experimenter

allows the user to apply multiple classification methods to a collection of data sets

and to compare the performance of the methods via statistical tests. The software

is available on the Weka webpage (www.cs.waikato.ac.nz/ml/weka), where current

information on the software can also be found [27]. A comprehensive guide to Weka

is given in [45]. We make use of this software for the practical applications seen in

Chapter 4.



Chapter 3

Selection

In this chapter we present methods based on nonparametric predictive inference

(NPI) for selection problems involving multinomial data. Selection is a wide-ranging

topic in statistics which involves finding methods for choosing the optimal member(s)

of some group. This group may be, for example, a set of categories or a range of

data sources. With regard to multinomial data, interest may be in choosing the

category that has the largest probability of occurrence. Bechhofer et al. [10] present

an overview of existing methods for this type of selection, but these are based on

hypothesis testing and do not consider predictive inference. These methods are

described briefly in Section 3.1. NPI-based selection has been applied to other

problems, such as the selection of an optimal data source where observations are

real-valued [21], for which the possibility of right-censored observations in the data

has also been considered [32], and the selection of an optimal group of Bernoulli

data [19, 20]. An overview of these types of predictive selection is given in Section

3.2. In the rest of the chapter, we discuss the use of NPI for category selection for

a multinomial data set. We present a method for selection of a single category in

Section 3.3 and a method for selection of a subset of categories in Section 3.4.

3.1 Overview of category selection methods

Given a set of multinomial data, we wish to select the category which is most likely

to occur, or a subset of categories containing this category. Suppose that there are K

28
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possible categories, c1, ..., cK , with associated unknown probabilities p1, ..., pK where

pj is the classical probability that an observation is in category cj. Let n1, ..., nK

denote the number of observations in categories c1 to cK , respectively. Suppose that

the category probabilities are reordered in an increasing way and relabelled such

that we have p[1] ≤ ... ≤ p[K]. The objective is therefore to select the category

associated with p[K], or a subset of the K categories which contains this category.

The following selection methods were summarised by Bechhofer et al. [10].

3.1.1 Indifference zone procedures

The indifference zone approach to selection was first introduced by Bechhofer [9].

The objective here is to select the single category associated with p[K], defined as

correct selection (CS). It is required that p(CS) ≥ P ∗ whenever
p[K]

p[K−1]
≥ Θ∗, for

specified constants P ∗ and Θ∗ such that 1 < Θ∗ <∞ and 1
K
< P ∗. The constant Θ∗

is defined as the indifference zone. Θ∗ and P ∗ are specified prior to sampling and are

used to determine the total number of observations, n, that should be sampled. The

sample is then taken and category cj is selected such that nj = max
i∈1,...,K

ni. The use

of curtailment is possible, where sampling can be stopped after n′ < n observations

if nj ≥ ni + n− n′ for all i 6= j.

3.1.2 Subset procedures

The subset selection approach was first introduced by Gupta [26]. The objective here

is to find a subset of categories which contains the category associated with p[K].

The selection of such a subset is defined as correct selection (CS). It is required

that p(CS) ≥ P ∗ for a specified constant P ∗. Selection is based on a sample of

n observations and category cj is included in the selected subset if and only if

nj ≥ max
i∈1,...,K

ni − d for a specified value d which depends on K, n and P ∗.

3.2 Overview of predictive selection methods

Selection methods based on NPI have been developed by Coolen and van der

Laan [21] and Coolen and Coolen-Schrijner [19, 20]. These methods use predictive
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inferences based on past observations and make use of Hill’s assumption A(n) [29].

Coolen and van der Laan [21] developed a NPI selection method for real-valued

data from k different sources. Their objective was to select the source which will

provide the largest next observation and this was done by making inferences about

one future observation from each source. NPI lower and upper probabilities were

determined for the event that the next observation from one source will exceed the

next observation from all other sources. They also considered two ways of selecting

a subset of sources: first, they determined the interval probability that some subset

will contain the source providing the largest next observation and secondly, they

found the interval probability that the next observations from every source in some

subset will all exceed the next observations from the remaining sources.

Coolen and Coolen-Schrijner [19, 20] developed a NPI selection method for

Bernoulli data from k different groups. The objective was to select the group which

will have the highest number of future successes. Here, inferences were made about

m future observations as opposed to a single observation. Groups were compared

pairwise [20] to find the NPI lower and upper probabilities for the event that one

group will have more future successes than another and a multiple comparison was

carried out [20] to find the NPI lower and upper probabilities for the event that

one group will have more future successes than any other group. Subsets of the

groups were also considered [19], with interval probabilities presented for the event

that some subset contains the group which has the most future successes and for

the event that all groups in some subset will have more future successes than every

other group.

3.3 NPI category selection for multinomial data

We develop NPI-based methods for category selection for a multinomial data set.

We have K possible categories, labelled c1, ..., cK , where K is a known value, and

our aim is to select a single category with the largest NPI lower or upper probability
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for some event of interest involving future observations. Suppose that we have

a data set consisting of n observations and let n1, ..., nK denote the number of

times we have observed categories c1, ..., cK , respectively. We consider m future

observations and we select a category based on predictive inferences about these

m observations. These inferences are made by using and extending the general

theory of NPI [17], discussed in Chapter 2. For j = 1, ..., K, let Mj denote the

random quantity representing the number of the m future observations that belong

to category cj, so
K∑
j=1

Mj = m.

3.3.1 One future observation

The simplest case is where m = 1, so inference is regarding one future observation.

We consider the problem of selecting a single category with the largest NPI lower or

upper probability for the event that the next observation belongs to this category.

According to the MNPI model, the lower and upper probabilities for the event that

the next observation will belong to category cj are

P (Mj = 1) = (
nj − 1

n
)+, (3.1)

where the notation x+ is used to represent max{x, 0}, and

P (Mj = 1) = min{nj + 1

n
, 1}. (3.2)

We see that these lower and upper probabilities are monotonically increasing in nj.

We can evaluate these probabilities for each of the possible categories and then select

the category with the largest NPI lower or upper probability.

Example 3.3.1. Consider a multinomial data set with possible categories blue (B),

red (R), yellow (Y) and green (G). The data are

(nB, nG, nR, nY ) = (3, 2, 2, 1).

Suppose that we want to select a single category with the largest NPI lower and

upper probability for the event that the next observation is in that category. First,

we find the NPI lower and upper probability for the event that the next observation is
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in B. By (3.1) and (3.2) we have P (MB = 1) =
nj−1

n
= 2

8
and P (MB = 1) =

nj+1

n
= 4

8
.

For the other categories, P (MY = 1) = P (MG = 1) = [1
8
, 3

8
] and P (MR = 1) = [0, 2

8
],

so we select B. �

Theorem 3.3.1. When m = 1 and we want to select a single category with the

largest NPI lower or upper probability for the event that the next observation belongs

to that category, it is always optimal to choose the category which has the greatest

number of observations in the data set.

Proof. This follows directly from (3.1) and (3.2). These NPI lower and upper

probabilities increase with nj, so it is optimal to select the category with the largest

value of nj, i.e. the greatest number of observations.

3.3.2 Multiple future observations

Whereas Coolen and Augustin [17] only considered one future observation, we now

consider inferences about multiple future observations, so m > 1. Suppose that the

data set is represented on a probability wheel and the n slices on the wheel are

numbered 1 to n. Each of the m future observations must fall in one of these n

slices. Let the vector (S1, ..., Sn) denote the number of future observations which

fall in slices 1 to n respectively. The total number of different arrangements of

these m observations is equal to
(
n+m−1

m

)
. Coolen [15] shows that it follows from the

circular-A(n) assumption that each of these arrangements is equally likely, giving the

precise probability for a particular arrangement

p(
n⋂
j=1

{Sj = sj}) =

(
n+m− 1

m

)−1

where sj ≥ 0 and
n∑
j=1

sj = m.

More generally, the total number of different arrangements of f future observations

within a segment made up of S slices, or S + 1 observations, is equal to(
(S − 1) + f

f

)
. (3.3)
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This is because there are S − 1 existing observations within the interior of such a

segment, so we are considering the number of arrangements of f future observations

amongst a total of (S − 1) + f observations.

(3.3) is needed when making inferences about multiple future observations.

We first consider the case m = 2.

Two future observations

When m = 2, it may be of interest to consider the probability for the event that

precisely one of the two future observations is in category cj. In terms of the

probability wheel, this means that one of the future observations falls in a slice

allocated to category cj and one falls elsewhere. Figure 3.1 illustrates the relevant

segments of the wheel. We first consider the NPI lower probability for this event.

There are nj − 1 slices of the wheel which must be assigned to observed category cj,

corresponding to the shaded segment A in Figure 3.1, and there are n−nj−1 slices

which cannot be assigned to cj, corresponding to the shaded segment B in Figure 3.1.

This means that the minimum number of different arrangements of the two future

observations such that only one is in category cj is equal to (nj − 1)(n − nj − 1).

When 0 < nj < n, the NPI lower probability is therefore

P (Mj = 1) =

(
n+m− 1

m

)−1

(nj − 1)(n− nj − 1).

In the case nj = 0, we have P (Mj = 1) = 0. This is also true when nj = n, since

every slice and therefore both future observations may then be assigned to cj.

We now consider the NPI upper probability for the event Mj = 1. There

are nj + 1 slices of the wheel which we can assign to category cj. This includes

two optional slices (labelled 1 and 2 in Figure 3.1), which we define as slices that

we may or may not assign to cj. There are a number of different arrangements of

the two future observations which can lead to Mj = 1. First, we could have one

observation in the cj segment and one in the remainder of the wheel. Secondly,

we could have both observations in the cj segment, with one of these falling in an
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cj
...

cj

A

B

21

Figure 3.1: Relevant segments and slices of probability wheel for NPI lower and

upper probabilities

optional slice. There are 2(nj − 1) such arrangements, since there are two optional

slices. Thirdly, we could have both observations in the optional slices. There are

three such arrangements, since we could have both observations in the same slice

or one in each. This means that the maximum number of different arrangements

of the two future observations such that only one is in category cj is equal to

(nj + 1)(n− nj − 1) + 2(nj − 1) + 3. When 0 < nj < n, the NPI upper probability

is therefore

P (Mj = 1) =

(
n+m− 1

m

)−1

[(nj + 1)(n− nj − 1) + 2(nj − 1) + 3].

In the cases nj = 0 and nj = n, the derivation of the upper probability is slightly

different, because when nj = 0, there is only one slice which we may assign to cj

and when nj = n, there is only one slice which we may assign to a category other

than cj. We therefore have P (Mj = 1) =
(
n+m−1

m

)−1
n for nj = 0 and nj = n.

It may also be of interest to consider the probability for the event that both

future observations are in category cj. When considering the lower probability

for Mj = 2, there are nj − 1 slices of the wheel assigned to observed category

cj. By (3.3), the number of possible arrangements of the two future observations

within these slices is equal to
(

(nj−2)+2
2

)
. When nj > 1, the NPI lower probability is

therefore

P (Mj = 2) =

(
n+m− 1

m

)−1(
nj
2

)
.
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In the cases nj = 0 and nj = 1 we have P (Mj = 2) = 0.

When considering the upper probability for Mj = 2, there are nj + 1 slices

of the wheel assigned to category cj. By (3.3), the number of possible arrangements

of the two future observations within these slices is equal to
(
nj+2

2

)
. When nj < n−1

the NPI upper probability is therefore

P (Mj = 2) =

(
n+m− 1

m

)−1(
nj + 2

2

)
.

In the cases nj = n− 1 and nj = n we have P (Mj = 2) = 1.

Example 3.3.2. Consider the data set described in Example 3.3.1. Suppose that

we make inferences about two future observations and we want to select a single

category with the largest NPI lower or upper probability for the event that both

future observations are in that category. We first consider category B.

To find the NPI lower probabilities, we require a configuration of the probability

wheel where B is assigned the minimum possible number of slices, such as the

configuration shown in Figure 3.2. We evaluate the NPI lower probability for the

B
B

B

R

G
G

Y

Y

Figure 3.2: Probability wheel for Example 3.3.2 corresponding to lower probability

event that precisely one of the two future observations is in B. This is equal to

P (MB = 1) =

(
n+m− 1

m

)−1

(nB − 1)(n− nB − 1) =
1

36
(2)(4) =

8

36
.

We also evaluate the NPI lower probability for the event that both future

observations are in B. This is equal to

P (MB = 2) =

(
n+m− 1

m

)−1(
nB
2

)
=

1

36

(
3

2

)
=

3

36
.
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To find the NPI upper probabilities, we configure the wheel such that two more

slices of the wheel may be assigned to B, as shown in Figure 3.3. The NPI upper

B
B

B

R

G
G

Y

Y

Figure 3.3: Probability wheel for Example 3.3.2 corresponding to upper probability

probability for the event that precisely one of the two future observations is in B is

equal to

P (MB = 1) =

(
n+m− 1

m

)−1

[(nB + 1)(n− nB − 1) + 2(nB − 1) + 3]

=
1

36
[(4)(4) + 2(2) + 3] =

23

36
.

(3.4)

The NPI upper probability for the event that both future observations are in B is

equal to

P (MB = 2) =

(
n+m− 1

m

)−1(
nB + 2

2

)
=

1

36

(
5

2

)
=

10

36
.

So P (MB = 1) = [ 8
36
, 23

36
] and P (MB = 2) = [ 3

36
, 10

36
]. We now use the same method

to evaluate the equivalent probabilities for the remaining categories. We find that

P (MG = 1) = P (MY = 1) = [ 5
36
, 20

36
] and P (MR = 1) = [0, 15

36
] and that P (MG =

2) = P (MY = 2) = [ 1
36
, 6

36
] and P (MR = 2) = [0, 3

36
]. This information allows us to

select B as the category with the largest NPI lower and upper probability for the

event that both future observations are in that category. �

m future observations

We now consider the general case where m may take any value. We want to find

the probability for the event that some proportion of these m future observations

is in category cj. We may wish to specify a particular number of observations,

corresponding to the event of interest Mj = mj for some number 0 < mj ≤ m. We

may also wish to specify a threshold for Mj, corresponding to the event Mj ≥ mj
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for some number mj ≤ m. The general formulae presented in this subsection hold

for 1 < nj < n− 1. Other cases are considered separately.

Deriving P(Mj = mj)

First, we derive the NPI lower probability for the event that precisely mj of the m

future observations belong to category cj. Figure 3.1 illustrates the two relevant

segments, A and B, of the wheel. The shaded segment A in Figure 3.1 represents

all slices which must be assigned to cj. There are nj − 1 such slices. By (3.3), the

number of different arrangements of mj future observations within this segment is

equal to (
nj − 2 +mj

mj

)
. (3.5)

The shaded segment B in Figure 3.1 represents all slices which must be assigned to

a category other than cj. There are n− nj − 1 such slices. By (3.3), the number of

different arrangements of m −mj future observations within this segment is equal

to (
n− nj − 2 + (m−mj)

m−mj

)
. (3.6)

Multiplying (3.5) and (3.6) gives the minimum number of arrangements in which

mj future observations are in cj, showing that the NPI lower probability is equal to

P (Mj = mj) =

(
n+m− 1

m

)−1(
nj − 2 +mj

mj

)(
n− nj − 2 + (m−mj)

m−mj

)
. (3.7)

This general formula holds for any positive integers m and mj such that mj ≤ m.

In the case nj ≤ 1 we are not forced to assign any slices of the wheel to cj, leading

to P (Mj = mj) = 0.

We now find the corresponding upper probability. We want to maximise the number

of arrangements of the m future observations in which mj future observations are

in cj. As in the case of lower probability, we count all arrangements where mj

observations fall in segment A and m − mj observations fall in segment B (see

Figure 3.1). We showed previously that there are(
nj − 2 +mj

mj

)(
n− nj − 2 + (m−mj)

m−mj

)
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such arrangements. However, we now also consider the two optional slices on the

wheel (labelled 1 and 2 in Figure 3.1). Any observations which fall in one of the

optional slices may be counted either as belonging to cj or as not belonging to cj.

This means that to find the upper probability we need to include arrangements

with one or more observations in the optional slices. Let T denote the total number

of future observations in the optional slices, where T ranges from 1 to m. For

T = 1, there are two possible orderings, as the observation could fall either in slice

1 or in slice 2. By similar reasoning, for T = 2, there are three possible orderings.

In general, there are T + 1 possible orderings for each value of T .

For each value of T there are a number of different arrangements of the m

future observations that give T observations in the optional slices. Let X be an

integer such that X ≤ mj and T − X ≤ m − mj. Then we may have mj − X

observations in segment A, (m − mj) − (T − X) observations in segment B, and

T observations in the optional slices, where X ranges from T − (m − mj) to mj.

Therefore, the total number of arrangements belonging to the event Mj = mj with

one or more observations in the optional slices is equal to

m∑
T=1

min{mj ,T}∑
X=(T−(m−mj))+

(T+1)

(
nj − 2 + (mj −X)

mj −X

)(
n− nj − 2 + (m−mj)− (T −X)

m−mj − (T −X)

)
.

This enables us to find the maximum number of different arrangements of the m

future observations in which mj observations are in cj, leading to the NPI upper

probability

P (Mj = mj) =

(
n+m− 1

m

)−1

[

(
nj − 2 +mj

mj

)(
n− nj − 2 + (m−mj)

m−mj

)

+
m∑
T=1

min{mj ,T}∑
X=(T−(m−mj))+

(T + 1)

(
nj − 2 + (mj −X)

mj −X

)(
n− nj − 2 + (m−mj)− (T −X)

m−mj − (T −X)

)
].

(3.8)

Again, this formula holds for any positive integers m and mj such that mj ≤ m.

An unobserved category can be assigned at most one slice of the wheel, leading to



3.3. NPI category selection for multinomial data 39

P (Mj = mj) =

(
n+m− 1

m

)−1 m∑
T=mj

(
n− 2 + (m− T )

m− T

)
. In the case nj = 1, the

formula becomes P (Mj = mj) =

(
n+m− 1

m

)−1 m∑
T=mj

(T + 1)

(
n− 3 + (m− T )

m− T

)
.

When nj ≥ n− 1, every slice on the wheel may be assigned to that category.

Example 3.3.3. Consider a multinomial data set with possible categories blue (B),

red (R), yellow (Y) and green (G). The data are

(nB, nR, nY , nG) = (2, 1, 1, 1).

Suppose that we make inferences about three future observations and we want to

find the NPI lower and upper probabilities for the event that precisely two of these

are in B. To find the NPI lower probability, we use (3.7) with mj = 2. Using the

values n = 5, m = 3 and nj = 2,

P (Mj = 2) =
1

35

(
2

2

)(
2

1

)
=

2

35
.

To find the NPI upper probability, we use (3.8) with mj = 2, which gives

P (Mj = 2) =
1

35
[

(
2

2

)(
2

1

)
+

1∑
X=0

2

(
2−X
2−X

)(
2− (1−X)

1− (1−X)

)
+

2∑
X=1

3

(
2−X
2−X

)(
2− (2−X)

1− (2−X)

)
+

2∑
X=2

4

(
2−X
2−X

)(
2− (3−X)

1− (3−X)

)
]

=
1

35
[2 + 2

(
2

2

)(
1

0

)
+ 2

(
1

1

)(
2

1

)
+ 3

(
1

1

)(
1

0

)
+ 3

(
0

0

)(
2

1

)
+ 4

(
0

0

)(
1

0

)
]

=
1

35
[2 + 2 + 4 + 3 + 6 + 4] =

21

35
.

So we see that P (Mj = 2) = [ 2
35
, 21

35
]. �

Theorem 3.3.2. For general m, when selecting the category which has the largest

NPI lower or upper probability for the event that the category contains all of the

future observations, it is optimal to select the category with the greatest number of

data observations.

Proof. We find the category which maximises P (Mj = m) and P (Mj = m). The

general formulae (3.7) and (3.8) can be simplified in the case mj = m, because in
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this case m−mj = 0 and also the only possible value of X in the summation is T ,

leading to T −X = 0. This gives

P (Mj = m) =

(
n+m− 1

m

)−1(
nj − 2 +m

m

)
and

P (Mj = m) =

(
n+m− 1

m

)−1

[

(
nj − 2 +m

m

)
+

m∑
T=1

(
nj − 2 + (m− T )

m− T

)
].

The values of n, m and T do not depend on the category selected and since both

of these probability formulae are increasing in nj, it is always optimal to select the

category with the largest value of nj, i.e. the greatest number of data observations.

It is also of interest to investigate which values of nj maximise the NPI lower

probability P (Mj = mj). We denote such values by n∗j . Plotting P (Mj = mj)

against values of nj ranging from 1 to n shows the graph to be unimodal. Intuitively,

we expect that this peak will occur near to nj =
nmj
m

, because it seems natural that

the proportion of the future observations which are in cj should be similar to the

proportion of the data observations which are in cj. We now formally assess which

values of nj maximise this lower probability by considering the two ratios

P (Mj = mj|nj)
P (Mj = mj|nj + 1)

and
P (Mj = mj|nj)

P (Mj = mj|nj − 1)
,

where P (Mj = mj|nj) denotes the lower probability for the event of interest when

there are nj observations in category cj.

Theorem 3.3.3. For general m, the value of nj which maximises P (Mj = mj) is

the integer which lies in the interval [1 +
mj
m

(n− 3), 2 +
mj
m

(n− 3)].

Proof. Consider the ratio
P (Mj = mj|nj)

P (Mj = mj|nj + 1)
.
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We want to find the point at which this ratio becomes greater than 1, as this gives

the smallest value of nj for which P (Mj = mj) is maximised. This ratio is equal to

P (Mj = mj|nj)
P (Mj = mj|nj + 1)

=

(
n+m−1

m

)−1(nj−2+mj
mj

)(
n−nj−2+(m−mj)

m−mj

)(
n+m−1

m

)−1(nj−1+mj
mj

)(
n−nj−3+(m−mj)

m−mj

)
=

(nj − 1)(n− nj − 2 +m−mj)

(nj − 1 +mj)(n− nj − 2)
.

We find the smallest value of nj for which this is greater than 1, as shown below.

(nj − 1)(n− nj − 2 +m−mj) > (nj − 1 +mj)(n− nj − 2)⇒ nj > 1 +
mj

m
(n− 3).

Now, consider
P (Mj = mj|nj)

P (Mj = mj|nj − 1)
.

We want to find the point at which this ratio becomes less than 1, as this gives the

largest value of nj for which P (Mj = mj) is maximised. This ratio is equal to

P (Mj = mj|nj)
P (Mj = mj|nj − 1)

=

(
n+m−1

m

)−1(nj−2+mj
mj

)(
n−nj−2+(m−mj)

m−mj

)(
n+m−1

m

)−1(nj−3+mj
mj

)(
n−nj−1+(m−mj)

m−mj

)
=

(nj − 2 +mj)(n− nj − 1)

(nj − 2)(n− nj − 1 +m−mj)
.

We find the smallest value of nj for which this is less than 1, as shown below.

(nj − 2 +mj)(n− nj − 1) < (nj − 2)(n− nj − 1 +m−mj)⇒ nj > 2 +
mj

m
(n− 3).

So we see that P (Mj = mj|nj) is unimodal as a function of nj for a given mj and n∗j

must lie in the interval [1 +
mj
m

(n−3), 2 +
mj
m

(n−3)]. This interval has width 1, and

n∗j must necessarily be an integer. Excluding the case mj = m (covered in Theorem

3.3.2), the interval limits are non-integers, so there is only one possible value for n∗j ,

this being the integer part of 2 +
mj
m

(n− 3).

To see whether this result corresponds to our initial prediction, we check whether

nmj
m

lies within this interval, as shown below.

1 +
mj

m
(n− 3) <

nmj

m
⇒ mj >

1

3
m

nmj

m
< 1 +

mj

m
(n− 3)⇒ mj <

2

3
m
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We see that if 1
3
m < mj <

2
3
m, then

nmj
m

is indeed within the interval. We also find

that if mj <
1
3
m, then

nmj
m

+ 1 is within the interval, meaning that
nmj
m

is just to

the left of the interval. Similarly, if mj >
2
3
m, then

nmj
m
− 1 is within the interval,

meaning that
nmj
m

is just to the right of the interval. So in all cases, the optimal

value n∗j is close to
nmj
m

, as intuitively expected.

Corollary 3.3.1. For general m, when selecting a category which maximises

P (Mj = mj), the optimal category is selected as follows:

1. If there exists cj such that nj ∈ [1+
mj
m

(n−3), 2+
mj
m

(n−3)], then this category

is optimal.

2. If there is no cj such that nj ∈ [1 +
mj
m

(n − 3), 2 +
mj
m

(n − 3)], then find the

value of nj which is closest to the interval on each side. Compare the values of

P (Mj = mj) for the two corresponding categories. The category which gives

the largest probability is optimal.

We also notice that if there are many observations and if both mj and m are very

large and
mj
m

tends to some limit l, then the interval [1 +
mj
m

(n− 3), 2 +
mj
m

(n− 3)]

will shrink to the point value nl. This means that the value of the ratio
nj
n

with nj

such that it maximises P (Mj = mj) will tend to the same limit l, as is to be expected.

Note that it is also possible to find the values of nj that maximise the NPI

upper probability P (Mj = mj). This is not shown here, but the method is the same

as that used in the proof of Theorem 3.3.3. Example 3.3.4 illustrates how Theorem

3.3.3 and its corollary can be implemented.

Example 3.3.4. Consider a multinomial data set with possible categories blue (B),

red (R), yellow (Y) and green (G). The data are

(nB, nR, nY , nG) = (20, 25, 28, 32).

Suppose that we make inferences about the next fifty observations (so m = 50) and

we want to select the category that maximises P (Mj = 11).
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Figure 3.4: Graph of P (Mj = 11) against nj for Example 3.3.4

The plot of P (Mj = 11) against all possible values of nj is shown in Figure

3.4. From this graph, we see that n∗j will be either 20 or 25, as this is where

the peak occurs. By Theorem 3.3.3, the optimal value n∗j lies in the interval

[1 + 11
50

(97), 2 + 11
50

(97)] = [22.34, 23.34], so the ideal choice of nj would be nj = 23.

However, there is no cj in the data set with this value of nj, so by Corollary

3.3.1 we must look at either side of the interval. To the left of the interval, we

have nj = 20 corresponding to B. By (3.7), the relevant lower probability here is

P (MB = 11) = 0.0443. To the right of the interval, we have nj = 25 corresponding

to R. The relevant lower probability here is P (MR = 11) = 0.0462. As the second

lower probability is largest, we see that nj = 25 is the optimal choice, so we select

R as the optimal category. �

Deriving P(Mj ≥mj)

A second event of interest here is the event that at least mj of the m future
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observations are in category cj. We first consider the NPI lower probability for

this event. As before, we count the minimum number of relevant arrangements of

the future observations. However, we are now interested in all arrangements which

have R future observations that fall in the shaded segment A, where mj ≤ R ≤ m.

We consider each possible value of R separately in order to avoid counting any

arrangements more than once. For a given value of R, there are(
nj − 2 +R

R

)
(3.9)

different arrangements within this segment. We must also consider the remaining

m − R observations. Note that, contrary to the lower probability formula above

(3.7), arrangements with one or more observations in an optional slice will now be

counted. We did not count these when deriving the lower probability P (Mj = mj),

because for example an arrangement with mj observations in segment A and one

observation in an optional slice could be allocated to the event Mj = mj + 1

when trying to minimise the probability for the event Mj = mj. However, such

arrangements are now relevant because we are simultaneously considering all events

Mj ∈ {mj,mj + 1, ...,m}.

By (3.3), the number of different arrangements of m − R future observations

within the shaded segment B plus the two optional slices is equal to(
n− nj + (m−R)

m−R

)
. (3.10)

Multiplying (3.9) and (3.10) and summing over R from mj to m gives the NPI lower

probability

P (Mj ≥ mj) =

(
n+m− 1

m

)−1 m∑
R=mj

(
nj − 2 +R

R

)(
n− nj + (m−R)

m−R

)
. (3.11)

This formula holds for any positive integers m and mj such that mj ≤ m. In the

case nj ≤ 1 we are not forced to assign any slices of the wheel to cj, leading to

P (Mj ≥ mj) = 0.

To find the corresponding upper probability, we maximise the number of
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arrangements which have at least mj of the m future observations in category cj.

We still need to count all of the arrangements included for the lower probability, so

m∑
R=mj

(
nj − 2 +R

R

)(
n− nj + (m−R)

m−R

)
(3.12)

arrangements are included in our total. However, we must also include arrangements

where there are fewer than mj observations in segment A but where observations

in the optional slices can be counted as belonging to cj.

Suppose we have Y observations in segment A, where 0 ≤ Y ≤ mj − 1. We

need to count any arrangement which has mj − Y or more observations in an

optional slice. Let T denote the total number of future observations in the optional

slices. T may range from mj − Y to m − Y for a given value of Y . As explained

above, there are T + 1 possible orderings of these observations for each value of T .

Therefore, by (3.3), the number of different arrangements is equal to

mj−1∑
Y=0

m−Y∑
T=mj−Y

(T + 1)

(
nj − 2 + Y

Y

)(
n− nj − 2 + (m− Y − T )

m− Y − T

)
. (3.13)

Summing (3.12) and (3.13) gives the total number of relevant arrangements, leading

to the NPI upper probability

P (Mj ≥ mj) =

(
n+m− 1

m

)−1

[
m∑

R=mj

(
nj − 2 +R

R

)(
n− nj + (m−R)

m−R

)
+

mj−1∑
Y=0

m−Y∑
T=mj−Y

(T + 1)

(
nj − 2 + Y

Y

)(
n− nj − 2 + (m− Y − T )

m− Y − T

)
].

(3.14)

Again, this formula is valid for any positive integers m and mj such that mj ≤ m.

An unobserved category can be assigned at most one slice of the wheel, leading

to P (Mj ≥ mj) =

(
n+m− 1

m

)−1 m∑
T=mj

(
n− 2 + (m− T )

m− T

)
. When nj = 1, the

formula is P (Mj ≥ mj) =

(
n+m− 1

m

)−1 m∑
T=mj

(T + 1)

(
n− 3 + (m− T )

m− T

)
. When

nj ≥ n− 1, every slice on the wheel may be assigned to that category.
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These formulae can be used in various different ways. For example, suppose

that we want to select a category with a NPI lower probability of at least 0.75

for the event that two or more of the future observations will be in that category.

We use (3.11) to find all cj such that P (Mj ≥ 2) ≥ 0.75. (Note that if such a

category does not exist we may instead select a subset of categories that meets

this criterion, as discussed in Section 3.4.) Alternatively, suppose that we want to

select a category based on the NPI lower and upper probabilities for the event that

the category contains 10% or more of the future observations. We use (3.11) and

(3.14) to evaluate P (Mj ≥ m
10

) and P (Mj ≥ m
10

) for each of the possible categories

and then select the category according to these values. This method of selection is

illustrated in Example 3.3.5.

Example 3.3.5. Consider the data set described in Example 3.3.3. Suppose that we

make inferences about three future observations and we want to select the category

with the largest NPI lower and upper probabilities for the event that the category

contains at least one of the future observations. To find the NPI lower probability

for the event Mj ≥ 1, we use (3.11) with mj = 1. The first category considered is

B. Using the values n = 5, m = 3 and nj = 2, we find that

P (MB ≥ 1) =
1

35
[

(
5

2

)
+

(
4

1

)
+

(
3

0

)
] =

15

35
.

To find the NPI upper probability, we use (3.14) with mj = 1. For B, this gives

P (MB ≥ 1) =
1

35
[15 +

3∑
T=1

(T + 1)

(
0

0

)(
4− T
3− T

)
]

=
1

35
[15 + 2

(
3

2

)
+ 3

(
2

1

)
+ 4

(
1

0

)
] =

31

35
.

So we see that P (MB ≥ 1) = [15
35
, 31

35
]. For all three remaining categories P (Mj ≥

1) = [0, 25
35

]. So the category we select here is B. The key aspect of this inference is

the quantification that B contains at least one of the three future observations with

lower probability 15
35

. �
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3.4 NPI subset selection for multinomial data

We now consider the use of NPI to select a subset of categories, rather than a single

category, from a multinomial data set. As before, we have K possible categories,

where K is a known value, and we have a data set consisting of n observations where

nj denotes the number of times we have observed category cj for j = 1, ..., K. Recall

that k represents the total number of categories that have been observed. We select

a subset based on inferences about m future observations.

3.4.1 One future observation

We select a subset based on the NPI lower probability for the event that the next

observation, Yn+1, belongs to a category within that subset.

Let S denote the selected subset of categories. Let OS denote the index-set

for observed categories in S and let US denote the index-set for unobserved

categories in S. The sizes of these sets are denoted by r and l respectively. Then,

according to the MNPI model described in Chapter 2, it follows from (2.3) and

(2.4) that the formula for the lower probability P (Yn+1 ∈ S) is

P (Yn+1 ∈ S) =
∑
j∈OS

nj − 1

n
+

(2r + l −K)+

n
(3.15)

and it follows from (2.5) and (2.6) that the formula for the upper probability

P (Yn+1 ∈ S) is

P (Yn+1 ∈ S) =
∑
j∈OS

nj − 1

n
+

min{2r + l, k}
n

. (3.16)

Our objective is to find a subset S such that

P (Yn+1 ∈ S) ≥ p∗

for some specified threshold probability p∗. We also want S to be of minimal size. If

several such subsets exist, we select one with maximum lower probability. We call

such a subset S an optimal subset. This method of subset selection is illustrated in

Example 3.4.1.
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Example 3.4.1. Consider the data set described in Example 3.3.1. Suppose that we

want to find a subset of categories S of minimal size which satisfies the criterion

P (Yn+1 ∈ S) ≥ 3

8
.

As shown in Example 3.3.1, B is the optimal choice when we are selecting a single

category and P (MB = 1) = 2
8
. So a subset of size 1 does not satisfy our requirements.

We instead look for a subset of size 2. Consider the subset S = {B,G}.

Here, r = 2 and l = 0. (3.15) gives

P (Yn+1 ∈ {B,G}) =
3− 1

8
+

2− 1

8
+ (4− 4) =

3

8
.

This satisfies the selection criterion. Applying (3.15) to other possible subsets of

size 2 shows that 3
8

is the largest lower probability that we can achieve with a subset

of size 2. So the subset we select is S = {B,G}. �

Theorem 3.4.1. When m = 1 and we want to select a subset of categories in order

to maximise the NPI lower probability that the next observation belongs to a category

within that subset, the optimal subset has the property that for all cj ∈ S, nj ≥ nl

for all cl /∈ S.

Proof. Subset selection is based on the NPI lower probability (3.15). The inclusion

of an observed category in S adds
nj−1

n
to the first term in (3.15) and may add 2

n

to the second term. The inclusion of an unobserved category in S adds 0 to the

first term and may add 1
n

to the second term. So we should always include observed

categories before unobserved categories. Furthermore, the observed categories which

give the largest increase to the NPI lower probability when included in S are those

with the largest values of nj. So it is always optimal that for all cj ∈ S, nj ≥ nl for

all cl /∈ S.

3.4.2 Multiple future observations

We now consider inferences about multiple future observations. This requires

some new notation: let the random quantity MS represent the number of future
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observations that are in S. In terms of the probability wheel, the event MS = 1

means that precisely one future observation falls in any of the slices allocated to S.

Let S denote the subset of categories not in S, then OS denotes the index set for

observed categories in S and US denotes the index set for unobserved categories in

S. We label the respective sizes of these sets r and l.

Based on the MNPI model [17], there are

L =
∑
j∈OS

(nj − 1) + (2r + l −K)+ (3.17)

slices of the wheel which must be assigned to a category in S and there are

L =
∑
j∈OS

(nj − 1) + (2r + l −K)+

slices of the wheel which cannot be assigned to S.

By considering the difference between the lower and upper probabilities given by

the MNPI model [17], we see that there are

Q = min{2r + l, k} − (2r + l −K)+ (3.18)

optional slices of the wheel, which we can choose to assign either to S or to S.

Two future observations

When m = 2, it may be of interest to consider the probability for the event that

precisely one of the two future observations is in the subset S, i.e. the event MS = 1.

We first consider the NPI lower probability for this event. As explained above, there

are L slices of the wheel which must be assigned to a category in S and there are

L slices of the wheel which cannot be assigned to S. Multiplying L and L gives the

minimum number of different arrangements of the two future observations such that

precisely one is in S. By (3.3) there are(
n+m− 1

m

)
=

(
n+ 1

2

)
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different arrangements in total, leading to the NPI lower probability

P (MS = 1) =

(
n+ 1

2

)−1

LL. (3.19)

We now consider the corresponding upper probability and we make use of the

optional slices. To find the NPI upper probability, we need to maximise the number

of different arrangements of the two future observations which have precisely one

observation in S. There are a number of ways in which this situation can arise.

First, we may have one observation in a slice of the wheel which must be assigned

to S and one in a slice which cannot be assigned to S. As shown above, there are

LL such arrangements. Secondly, we may have one observation which falls in an

optional slice and one observation which falls in any slice other than one of these

optional slices. There are Q(n−Q) such arrangements. Finally, we may have both

observations in an optional slice. There are

Q∑
i=1

i =
Q(Q+ 1)

2

such arrangements. Summing all of these arrangements leads to the NPI upper

probability

P (MS = 1) =

(
n+ 1

2

)−1

{LL+Q(n−Q) +
Q(Q+ 1)

2
}. (3.20)

It may also be of interest to consider the probability for the event that both

future observations are in the subset S. There are L slices of the wheel that

must be assigned to S, so the minimum number of arrangements of the two future

observations such that both are in S is equal to

L(L+ 1)

2
.

This leads to the NPI lower probability

P (MS = 2) =

(
n+ 1

2

)−1
L(L+ 1)

2
. (3.21)

In total, there are

L+Q =
∑
j∈OS

(nj − 1) + min{2r + l, k}
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slices of the wheel that may be assigned to S. The maximum number of

arrangements such that both future observations are in S is equal to

(L+Q)(L+Q+ 1)

2

which gives the NPI upper probability

P (MS = 2) =

(
n+ 1

2

)−1
(L+Q)(L+Q+ 1)

2
. (3.22)

Example 3.4.2. Consider the data set described in Example 3.3.1. Suppose that we

are interested in the subset of categories S = {B,G} and that we make inferences

about two future observations. Using (3.19), we evaluate the NPI lower probability

for the event that precisely one of the two future observations is in S. We find that

r = r = 2 and l = l = 0, giving L = 3 and L = 1. This leads to

P (MS = 1) =

(
9

2

)−1

LL =
1

36
(3)(1) =

3

36
.

We use (3.21) to find the NPI lower probability for the event that both of the future

observations are in S. We have

P (MS = 2) =

(
9

2

)−1
L(L+ 1)

2
=

(
9

2

)−1
3(4)

2
=

6

36
.

We now consider the NPI upper probabilities. We find that Q = min{4, 4}− 0 = 4,

and by using (3.20), we find that

P (MS = 1) =

(
9

2

)−1

{(3)(1) + (4)(8− 4) +
4(5)

2
} =

29

36
.

We also use (3.22) to give

P (MS = 2) =

(
9

2

)−1
(3 + 4)(3 + 4 + 1)

2
=

28

36
.

�

A further event of interest is that at least one of the two future observations is in

the subset S. In terms of the probability wheel, the event MS ≥ 1 means that

either one or two future observations fall in any of the slices assigned to S.
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To find the NPI lower probability P (MS ≥ 1), we must find the minimum

number of arrangements of the two future observations such that at least one is in

a slice assigned to S. This means that we have to count all arrangements where

one observation is in a slice that must be assigned to S, but one observation may

be anywhere on the wheel.

There are L slices which must be assigned to S and there are n − L slices

which do not have to be assigned to S, leading to L(n − L) arrangements where

only one observation is in a slice that must be assigned to S. Also, there are L(L+1)
2

arrangements where both observations are in a slice that must be assigned to S.

Summing these arrangements leads to the NPI lower probability

P (MS ≥ 1) =

(
n+ 1

2

)−1

[L(n− L) +
L(L+ 1)

2
]. (3.23)

To find the equivalent upper probability, we need to find the corresponding maximum

number of arrangements. This means we must count all arrangements where one

observation is in a slice that may be assigned to S but one observation can be

anywhere on the wheel. There are L + Q slices which may be assigned to S and

therefore there are (L + Q)(n − L − Q) arrangements where only one observation

is in a slice that must be assigned to S. There are also (L+Q)(L+Q+1)
2

arrangements

where both observations are in such a slice. Summing these arrangements gives the

NPI upper probability

P (MS ≥ 1) =

(
n+ 1

2

)−1

[(L+Q)(n− L−Q) +
(L+Q)(L+Q+ 1)

2
]. (3.24)

Example 3.4.3. Recall Example 3.4.2, where we consider the subset S = {B,G}.

Suppose that we are now interested in the event MS ≥ 1. We previously saw that

L = 3 and Q = 4 for this example. Using (3.23),

P (MS ≥ 1) =

(
9

2

)−1

[3(5) +
3(4)

2
] =

21

36

and using (3.24),

P (MS ≥ 1) =

(
9

2

)−1

[(7)(1) +
(7)(8)

2
] =

35

36
.
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This implies that there is only one arrangement of the two future observations such

that neither observation falls in a slice which may be assigned to S, which means

that P (MS = 0) = 1
36

. It is interesting to compare this example to Example 3.4.2,

as the superadditivity of the NPI lower probabilities and the subadditivity of the

NPI upper probabilities is illustrated. �

m future observations

We now consider the general case where m may take any value. We focus on the

event that MS reaches a specified threshold value, i.e. the event MS ≥ mS, because

for selection purposes, this is a more natural and useful event to consider than the

event that MS takes one specific value. We assume 0 < L < n (see (3.17)), because

L = 0 leads to lower probability zero. Also, we only have to consider ms > 0 since

P (MS ≥ 0) = 1.

We first consider the NPI lower probability for the event MS ≥ mS. We

need to find the minimum number of arrangements of the m future observations

such that at least mS are in the subset S. We do this by counting all arrangements

such that R observations fall in slices which must be assigned to S, where

mS ≤ R ≤ m. It is important that we do not count any arrangement multiple

times, so we consider each value of R separately and then sum over R to avoid this.

There are L slices which must be assigned to S, so for a certain value of R,

there are (
L− 1 +R

R

)
(3.25)

arrangements of the R observations within the slices which must be assigned to S.

We must also account for the other m − R observations. The remainder of

the wheel consists of n− L slices and by (3.3) there are(
n− L− 1 + (m−R)

m−R

)
(3.26)
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different arrangements of the m−R observations within these slices.

Multiplying (3.25) and (3.26) gives the minimum number of arrangements

for which MS = R. Summing over all relevant values of R leads to the NPI lower

probability

P (MS ≥ ms) =

(
n+m− 1

m

)−1 m∑
R=mS

(
L− 1 +R

R

)(
n− L− 1 + (m−R)

m−R

)
.

(3.27)

We now consider the NPI upper probability, which means that we need to maximise

the number of arrangements which have at least mS of the m future observations in

the subset S. We must still count all of the arrangements described above, i.e. those

where at least mS of the future observations are in slices which must be assigned to

S. As explained above, there are(
L− 1 +R

R

)(
n− L− 1 + (m−R)

m−R

)
such arrangements.

However, there are other arrangements which must now be included, as we

can make use of the Q optional slices (see (3.18)). If we have fewer than mS

observations in slices which must be assigned to S, but we have observations which

fall in the Q optional slices, then we can count these observations as belonging to

S. It is assumed here that L+Q < n. This is because in the situation L+Q = n,

every slice on the wheel may be assigned to the subset S, leading to the upper

probability P (MS ≥ mS) = 1.

Suppose that we have Y observations which fall in a slice that must be assigned to

the subset S, where 0 ≤ Y ≤ mS − 1. Any arrangement which has mS − Y or more

observations in an optional slice must be counted when calculating the NPI upper

probability. Let T denote the total number of future observations in the optional

slices. T can take values from mS − Y to m − Y for a particular value of Y . For

each Y , there are (
L− 1 + Y

Y

)
(3.28)
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different arrangements of the Y observations within the slices which must be assigned

to S. Also, there are (
Q− 1 + T

T

)
(3.29)

different arrangements of the T observations within the optional slices. Finally,

there are (
n− L−Q− 1 + (m− Y − T )

m− Y − T

)
(3.30)

different arrangements of the other observations within the remaining slices of the

wheel.

Combining (3.28), (3.29) and (3.30) leads to the following NPI upper probability:

P (MS ≥ mS) =

(
n+m− 1

m

)−1

[
m∑

R=mS

(
L− 1 +R

R

)(
n− L− 1 + (m−R)

m−R

)

+

mS−1∑
Y=0

m−Y∑
T=mS−Y

(
L− 1 + Y

Y

)(
Q− 1 + T

T

)(
n− L−Q− 1 + (m− Y − T )

m− Y − T

)
].

(3.31)

For L = 0, similar arguments directly lead to

P (MS ≥ mS) =

(
n+m− 1

m

)−1

×

[

mS−1∑
Y=0

m−Y∑
T=mS−Y

(
Q− 1 + T

T

)(
n−Q− 1 + (m− Y − T )

m− Y − T

)
].

Example 3.4.4. Consider the data set described in Example 3.3.3. We make

inferences about three future observations and we are interested in the event that

at least one of these is in the subset S = {B,G}. To find the NPI lower probability

for this event, we use (3.27) with mS = 1. We have n = 5, m = 3,

L =
∑
j∈OS

(nj − 1) + (2r + l −K)+ = 1

and

Q = min{2r + l, k} − (2r + l −K)+ = 4

and so (3.27) gives

P (MS ≥ 1) =
1

35
[

(
1

1

)(
5

2

)
+

(
2

2

)(
4

1

)
+

(
3

3

)(
3

0

)
] =

15

35
.
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We observe that L + Q = n and this leads to P (MS ≥ 1) = 1 because we may

assign every slice on the wheel to S.

Now suppose that we are interested in the event that at least two of the

three future observations are in S. We now apply (3.27) with mS = 2, which gives

P (MS ≥ 2) =
1

35
[

(
2

2

)(
4

1

)
+

(
3

3

)(
3

0

)
] =

5

35
.

As before, every slice on the wheel can be assigned to S, so P (MS ≥ 2) = 1. So we

see that P (MS ≥ 1) = [15
35
, 1] and P (MS ≥ 2) = [ 5

35
, 1]. �

Theorem 3.4.2. For general m, when selecting a subset of categories in order to

maximise the NPI lower probability for the event MS ≥ ms, the optimal subset has

the property that for all cj ∈ S, nj ≥ nl for all cl /∈ S.

Proof. Our aim is to select the subset which has the highest NPI lower probability

P (MS ≥ ms) =

(
n+m− 1

m

)−1 m∑
R=ms

(
L− 1 +R

R

)(
n− L− 1 + (m−R)

m−R

)
for some given value ms. L is the only variable in this formula that changes according

to which categories are included in S. We therefore wish to determine the behaviour

of P (MS ≥ ms) as L increases. To do this, we consider two consecutive values of L.

Consider the ratio
P (MS ≥ ms|L)

P (MS ≥ ms|L+ 1)
. (3.32)

If P (MS ≥ ms) were increasing in L, we would expect this ratio to be always

less than 1. Now consider the term within the summation in the formula for this

probability. If (
L−1+R

R

)(
n−L−1+(m−R)

m−R

)(
L+R
R

)(
n−L+(m−R)

m−R

) (3.33)

is less than 1 for every possible value of R, then (3.32) must always be less than 1.

Using the identities of the binomial coefficients, we can rewrite (3.33) as

L(n− L)

(L+R)(n− L+m−R)
.

Then, L(n−L) < (L+R)(n−L+m−R)⇔ 0 < (L+R)(m−R) +R(n−L). The

term L+R is clearly always positive, m−R ≥ 0 since R ≤ m, and n−L > 0 since
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L < n. Therefore P (MS ≥ ms) is increasing in L and our initial aim translates to

making L as large as possible.

We now consider how the composition of the subset S affects the value of L.

By (3.17), the inclusion of an unobserved category in S adds 0 to the first term in

L and may add 1 to the second term in L. The inclusion of an observed category in

S adds nj − 1 to the first term in L and may add 2 to the second term in L. So we

see that it is optimal to include observed categories in S before unobserved ones.

Additionally, we see that the observed categories which increase L by the greatest

amount are those with the largest values of nj. It is therefore optimal that for all

cj ∈ S, nj ≥ nl for all cl /∈ S.

Example 3.4.5 illustrates how Theorem 3.4.2 can be implemented when selecting

subsets.

Example 3.4.5. Consider a multinomial data set with possible categories A to H.

The data are shown in Table 3.1. Suppose that we make inferences about three

Category A B C D E F G H

Observations 25 20 18 13 10 9 5 0

Table 3.1: Data for Example 3.4.5

future observations and we want to investigate subsets of all possible sizes that

maximise the NPI lower probability for the event MS ≥ ms. There are three events

of interest here: first, the event that at least one future observation is in some

subset S, secondly, the event that at least two future observations are in S and

thirdly, the event that all three future observations are in S.

Consider an increasing sequence of subsets S1, ..., S8, where we begin with a

subset of size 1 and add one category at a time. By Theorem 3.4.2, we know

that the categories should be added in decreasing order of number of observations.

Table 3.2 shows the composition of each of the subsets. Using (3.27) and (3.31)
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i Si P (MSi ≥ 1) P (MSi ≥ 2) P (MSi ≥ 3)

1 A [0.5569, 0.5906] [0.1479, 0.1704] [0.0151, 0.0191]

2 A,B [0.8107, 0.8472] [0.3967, 0.4555] [0.0826, 0.1073]

3 A-C [0.9331, 0.9584] [0.6466, 0.7297] [0.2207, 0.2919]

4 A-D [0.9764, 0.9897] [0.8061, 0.8834] [0.3775, 0.4969]

5 A-E [0.9944, 0.9979] [0.9204, 0.9579] [0.5752, 0.6842]

6 A-F [0.9995, 0.9999] [0.9843, 0.9943] [0.8061, 0.8858]

7 A-G [0.9999, 1.0000] [0.9994, 1.0000] [0.9706, 1.0000]

8 A-H [1.0000, 1.0000] [1.0000, 1.0000] [1.0000, 1.0000]

Table 3.2: NPI lower and upper probabilities for Example 3.4.5

with mS = 1, we can find the NPI lower and upper probabilities for the event that

at least one future observation will be in Si for i = 1, ..., 8. Similarly, we use (3.27)

and (3.31) with mS = 2 to find the NPI lower and upper probabilities for the event

that at least two future observations will be in Si for i = 1, ..., 8 and we use (3.27)

and (3.31) with mS = 3 to find the NPI lower and upper probabilities for the event

that all three future observations will be in Si for i = 1, ..., 8. Table 3.2 shows these

probabilities.

Suppose that we want to select a subset of minimal size such that the NPI

lower probability for the event that one or more of the future observations belongs

to a category in that subset is at least 0.5. Looking at Table 3.2 for the event

MSi ≥ 1, we see that the first Si which satisfies P (MSi ≥ 1) ≥ 0.5 is S1 = {A},

which we therefore select.

Now suppose that we want to select a subset of minimal size such that the

NPI lower probability for the event that two or more of the future observations

belong to a category in that subset is at least 0.5. We now need to select a larger

subset in order to achieve this minimally required probability. Looking at Table 3.2

for the event MSi ≥ 2, we see that the first Si which satisfies P (MSi ≥ 2) ≥ 0.5 is

S3 = {A,B,C}, which we therefore select.
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Finally, suppose that we want to select a subset of minimal size such that

the NPI lower probability for the event that all future observations belong to a

category in that subset is at least 0.5. From Table 3.2 we see that the first Si which

satisfies P (MSi ≥ 3) ≥ 0.5 is S5 = {A,B,C,D,E}, which we therefore select. �

3.5 Concluding remarks

In this chapter we presented applications of NPI to selection problems. Methods

were presented for selection of a single category and for selection of a subset of

categories. These methods incorporated an extension of the MNPI model which

enabled inferences about multiple future observations. The results achieved in this

chapter could be extended to give NPI lower and upper probabilities for a general

event of interest involving multiple future observations and this is an important

subject for further research. Such results would make it possible to develop other

selection methods using MNPI, e.g. methods analogous to the NPI-based subset

selection for real-valued data that was described in Section 3.2. Another possible

extension to this work would be the inclusion of observations in the data set

which are known to belong to some subset of categories but for which a single

category is not specified. This type of missing data is conceptually easy to work

with using the MNPI model, as in principle, the lower and upper probabilities

for an event of interest can be derived by minimising and maximising over all

exact configurations of the wheel that are in line with the available data. The

derivation of general formulae could be computationally difficult, however, and the

development of selection methods in the case of missing data such as this is a

challenging future research topic. A further consideration for future work is the

comparison of NPI-based selection methods with other selection methods from the

literature. It is clear that the formulation of the inferences given by the MNPI model

is very different from that of other methods; for example, indifference zone selection

methods give guidance on the sample size, whereas NPI-based selection methods

cannot do this. However, a comparison may still lead to useful conclusions.



Chapter 4

Classification

In this chapter we present applications of nonparametric predictive inference (NPI)

to classification problems. Throughout this chapter, we assume that K is known

(see Subsection 2.2.1) and that there is no ordering of the categories. We adapt the

classification tree approach that was outlined in Section 2.3 and we present the use

of the MNPI model for building classification trees. As discussed in Section 2.3, we

use the maximum entropy distribution when building classification trees using an

interval probability model, and in this chapter we present two maximum entropy

algorithms for use with the MNPI model. In Section 4.1, we prove that the inferences

given by the MNPI model lead to a particular type of interval probability called

an F-probability interval. This is useful because it means that the NPI lower and

upper probabilities for any general event can be expressed as combinations of the NPI

probabilities for single categories. We use the credal set generated by these singleton

probabilities as an approximation to the NPI structure and we present an algorithm

(A-NPI-M) which finds the maximum entropy distribution within this credal set. In

Section 4.2, we consider the true NPI structureMNPI and we present an algorithm

(NPI-M) which finds the maximum entropy distribution within MNPI . In Sections

4.3 and 4.4, we use these algorithms to build classification trees and we compare

these methods with other classical and interval probability methods. Finally, in

Section 4.5 we consider a variation on the method for building classification trees

using the NPI-M algorithm, which involves a bias correction to the Shannon entropy

estimator Ĥ.

60
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4.1 Approximate (A-NPI-M) algorithm

As explained in Section 2.2, the MNPI model can be used to produce an

F-probability for the general event Yn+1 ∈
⋃
j∈J

cj (denoted by E as in (2.2)). For

the set of singleton events Yn+1 ∈ cj, j = 1, ..., K, the model gives the set of

F-probabilities

L = {[Lj, Uj], j = 1, ..., K},

where Lj = P (Yn+1 ∈ cj) = max{0, nj−1

n
} and Uj = P (Yn+1 ∈ cj) = min{nj+1

n
, 1}.

Recall that k is the number of categories that have been observed. Theorem 4.1.1

shows that the NPI lower and upper probabilities for the general event E can always

be determined from the singleton probabilities Lj and Uj. The proof below is based

on the configuration of the probability wheel, but Theorem 4.1.1 can also be proven

by considering the general formulae for P (E) and P (E) and this was done by Abellan

in parallel to this work for inclusion in a collaborative journal paper [3].

Theorem 4.1.1. The NPI lower and upper probabilities for E can be derived from

the singleton probabilities Lj and Uj, via the following equations:

(a) P (E) = max{
∑
j∈J

Lj, 1−
∑
j /∈J

Uj} (4.1)

(b) P (E) = min{
∑
j∈J

Uj, 1−
∑
j /∈J

Lj} (4.2)

Proof. (a) We want to show that P (E) = max{A,B}, where A =
∑
j∈J

Lj and B =

1 −
∑
j /∈J

Uj. First, we consider the situation where all observed categories in E can

be separated on the probability wheel by categories not in E. In this situation, all

k separating slices of the wheel can be assigned to Ec and none must be assigned to

E. So

P (E) =
∑
j∈OJ

nj − 1

n
=
∑
j∈J

Lj.

We have
∑
j /∈J

Uj ≥ P (Ec), because P (Ec) contains all k separating slices whereas∑
j /∈J

Uj includes all k separating slices and may count some of these slices twice. So
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therefore, 1−
∑
j /∈J

Uj ≤ 1− P (Ec). By the conjugacy property [17], this means that

P (E) ≥ 1−
∑
j /∈J

Uj. So we have P (E) = A and max{A,B} = A. Therefore (4.1) is

satisfied.

Secondly, we consider the situation where we cannot separate all observed

categories in E on the wheel by categories not in E. In this situation, some of the

separating slices must be assigned to E. This means that P (E) is necessarily larger

than A, since A does not include any separating slices. We see that all observed

categories in Ec can be separated on the wheel by categories in E, which means

that P (Ec) =
∑
j /∈J

Uj. By conjugacy, this implies that

P (E) = 1−
∑
j /∈J

Uj.

So we have P (E) = B and max{A,B} = B. Therefore (4.1) is satisfied.

(b) We want to show that P (E) = min{C,D}, where C =
∑
j∈J

Uj and D = 1−
∑
j /∈J

Lj.

First, we consider the situation where all observed categories in E can be

separated on the wheel by observed categories not in E and also 2r+ l < k. In this

situation, some of the separating slices have to be assigned to Ec. We assign as

many separating slices as possible to E, leading to

P (E) =
∑
j∈OJ

nj + 1

n
+
∑
j∈UJ

1

n
=
∑
j∈J

Uj.

Since we are forced to assign some of the separating slices to Ec, we have

P (Ec) >
∑
j /∈J

Lj, hence 1 −
∑
j /∈J

Lj > 1 − P (Ec). By conjugacy, this implies that

P (E) < 1 −
∑
j /∈J

Lj. So we have P (E) = C and min{C,D} = C. Therefore (4.2) is

satisfied.

Secondly, we consider the situations where either we cannot separate all observed

categories in E on the wheel by observed categories not in E, or we can separate all
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observed categories in E but 2r + l ≥ k. In these situations, we are able to assign

all k separating slices to E. This means that P (E) is necessarily not larger than C,

since P (E) includes all separating slices whereas C includes all separating slices and

may count some of these slices twice. We see that all observed categories in Ec can

be separated on the wheel by categories in E, which means that P (Ec) =
∑
j /∈J

Lj.

By conjugacy, this shows that

P (E) = 1−
∑
j /∈J

Lj.

So we have P (E) = D and min{C,D} = D. Therefore (4.2) is satisfied.

Note that in general interval probability theory, equations (4.1) and (4.2) do not

hold. Interval probabilities which do satisfy these equations have been studied in

detail by Weichselberger (see Section 3.3 of [44]) and by De Campos et al. [24].

In Weichselberger’s theory, such interval probabilities are termed F-probability

intervals, whilst De Campos et al. define these as reachable probability intervals.

The set of F-probability intervals L is associated with a credal set P(L) of

probability distribution functions, p, which is defined as follows:

P(L) = {p| j ∈ {1, ..., K}, p(cj) ∈ [Lj, Uj],
K∑
j=1

p(cj) = 1}. (4.3)

When working with F-probability intervals, the maximum entropy algorithm

presented by Abellan and Moral [2] can be used to find the maximum entropy

distribution within the associated credal set of probability distributions. The

A-NPI-M algorithm presented below is based on this algorithm, but applies

specifically to the set P(L) linked to the MNPI model.

Consider the set J(t) = {j|nj = t} and let K(t) = |J(t)|, such that
n∑
i=0

K(i) = K

and n =
n∑
i=0

i · K(i). Let K ′ = K − (K(0) + K(1)). The algorithm shown below

attains the array p̂ = (p̂(c1), . . . , p̂(cK)) ≡ (p̂1, . . . , p̂K), which is the maximum

entropy distribution within the set P(L). Initially, each category is assigned its
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lower probability Lj, then these probabilities are augmented successively beginning

with the categories observed least often. The algorithm has been programmed in

Weka for use in practical applications, but is written here in pseudo-code. The

arrow symbol ← indicates a new value being assigned to the quantity on the left

hand side. Other notation is self-explanatory.

A-NPI-M

If K ′ < K(0)

For j = 1 to K

If (nj = 0 or nj = 1) p̂j ← K′+K(1)
n(K(0)+K(1))

;

Else p̂j ← nj−1

n
;

Else

mass← K ′ −K(0);

For j = 1 to K

If (nj = 0 or nj = 1) p̂j ← 1
n
;

Else p̂j ← nj−1

n
;

i← 1;

While (mass > 0) do

If (K(i) +K(i+ 1) < mass)

For j = 1 to K

If (nj = i or nj = i+ 1) p̂j ← p̂j + 1
n
;

mass← mass− 1;

Else

For j = 1 to K

If (nj = i or nj = i+ 1) p̂j ← p̂j + mass
n(K(i)+K(i+1))

;

mass← 0;

i← i+ 1;

It was proven by Abellan and Moral [2] that their algorithm for general credal

sets always attains the maximum entropy distribution. This same proof can also be
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used to show that the A-NPI-M algorithm attains the maximum entropy distribution

within P(L) (see Theorem 4.1.2 below). Lemmas 4.1.1 and 4.1.2 are needed for this

proof. Lemma 4.1.1 was proven by Abellan and Moral [2] and Lemma 4.1.2 was

proven by Wasserman and Kadane [42].

Lemma 4.1.1. Suppose that {pj}Kj=1 is an array of K non-negative real numbers

and let qj = pj + εj where εj ≥ 0 for all j. Let {p∗j}Kj=1 and {q∗j}Kj=1 denote the

rearrangements of these arrays such that the values are in decreasing order. Then,

p∗j ≤ q∗j for all j ∈ {1, ..., K}.

Lemma 4.1.2. Let p and q be two probability distributions on the finite set of

categories c1, ..., cK. Let p∗ and q∗ be the corresponding arrays reordered in decreasing

order. If
i∑

j=1

p∗(cj) ≤
i∑

j=1

q∗(cj) for i = 1, ..., K, then H(p) ≥ H(q), where H denotes

the Shannon entropy function.

Theorem 4.1.2. The probability distribution p̂ that is attained by the A-NPI-M

algorithm gives the maximum entropy value of any distribution within the set P(L).

Proof. Rearranging the array {p̂j}Kj=1 in decreasing order to give p̂∗K ≤ ... ≤ p̂∗1, for

some s and t we have

p̂∗j = Lj, j ∈ {1, ..., s},

Lj < p̂∗j = α < Uj, j ∈ {s+ 1, ..., t}

and

p̂∗j = Uj, j ∈ {t+ 1, ..., K}.

It is sufficient to prove that p̂ is the maximum entropy distribution in B(p̂, ε)∩P(L)

for some ε > 0, where B(p̂, ε) is the set of all distributions {qj}Kj=1 such that d(p̂, q) ≤

ε for a distance function d on Rn. This is sufficient because H is a convex function [2].

We have

q = (p̂1 + ε1, ..., p̂s + εs, p̂s+1 ± εs+1, ..., p̂t ± εt, p̂t+1 − εt+1, ..., p̂K − εK),

where 0 ≤ εj ≤ ε for all j. Rearranging in decreasing order, this array becomes

q∗ = (q∗1, ..., q
∗
s1
, q∗s1+1, ..., q

∗
t1
, q∗t1+1, ..., q

∗
K),
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where s1 ≥ s, K − t1 ≥ K − t and q∗s1+1 = ... = q∗t1 = α. Let ε∗j denote the values

corresponding to q∗j for j = 1, ..., K. Since all the terms in the array must sum to

1, we have

s1∑
j=1

ε∗j =
K∑

j=t1+1

ε∗j .

Using Lemma 4.1.1, we see that:

• q∗j ≥ p̂∗j for j ∈ {1, ..., s}, so
h∑
j=1

q∗j ≥
h∑
j=1

p̂∗j for all h ≤ s.

• q∗j ≥ α = p̂∗j for j ∈ {s+ 1, ..., s1}, so
h∑
j=1

q∗j ≥
h∑
j=1

p̂∗j for all h ≤ s1.

• q∗j = α = p̂∗j for j ∈ {s1 + 1, ..., t1}, so
h∑
j=1

q∗j ≥
h∑
j=1

p̂∗j for all h ≤ t1.

Since

t1∑
j=1

q∗j =

t1∑
j=1

p̂∗j +

s1∑
j=1

ε∗j , and since

s1∑
j=1

ε∗j =
K∑

j=t1+1

ε∗j , we must have

t1+h∑
j=1

q∗j ≥

t1+h∑
j=1

p̂∗j for all h ∈ {1, ..., K − t1}. Therefore, by Lemma 4.1.2, H(p̂∗) ≥ H(q∗), so

H(p̂) ≥ H(q).

The use of the A-NPI-M algorithm for classification is considered in Section 4.3.

4.2 Exact (NPI-M) algorithm

It is important to note that the set of probability distributions generated by the

MNPI model, i.e. the NPI structureMNPI , is not a credal set. As shown in Section

4.1, we can determine bounds on the probability for a general event via the NPI

probabilities for the single categories, but not all distributions in the associated

credal set P(L) are compatible with the theoretical MNPI model. Example 4.2.1

illustrates this by giving a distribution which is in the set P(L) but not in MNPI .

Example 4.2.1. Consider a multinomial data set with observed categories R, B and

O and unobserved categories U1, U2, U3 and U4. The data are

(nR, nB, nO) = (3, 3, 2).
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According to the MNPI model, the set of probability intervals L for the set of

categories {R,B,O,U1,U2,U3,U4} is given by

{[2
8
,
4

8
], [

2

8
,
4

8
], [

1

8
,
3

8
], [0,

1

8
], [0,

1

8
], [0,

1

8
], [0,

1

8
]}.

The maximum entropy probability distribution within the credal set

P(L) = {p| j ∈ {1, ..., K}, p(cj) ∈ [Lj, Uj],
K∑
j=1

p(cj) = 1}

is given by

p̂ = {2

8
,
2

8
,
1

8
,

3

32
,

3

32
,

3

32
,

3

32
}.

However, it is not possible to find a configuration of the probability wheel that

corresponds to this distribution and that is in line with the MNPI model. In order to

B
B

B

R

R
R

O

O

Figure 4.1: Probability wheel for Example 4.2.1

achieve this distribution, the three separating slices of the wheel shown in Figure 4.1

would have to be shared evenly between the four unobserved categories. This would

mean that at least one of the unobserved categories would have to be represented

by multiple segments of the wheel, which is not allowed by the MNPI model. �

The NPI-M algorithm presented below gives the maximum entropy distribution

within the true NPI structure MNPI rather than approximating the NPI structure

by a credal set. It is clear that the discrepancy between MNPI and the credal

set P(L) is due to limitations caused by the configuration of the probability

wheel, so the NPI-M algorithm is constructed by considering how best to assign

each slice of the wheel. The distribution returned by the algorithm, pmaxE =

(pmaxE(c1), . . . , pmaxE(cK)), gives the largest entropy value possible whilst still

corresponding to a valid configuration of the probability wheel. The cases K(0) > K ′
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and K(0) ≤ K ′ are considered separately, because when K(0) > K ′ all separating

slices of the wheel can be assigned to unobserved categories or to categories observed

only once, which makes the problem simpler than in the case K(0) ≤ K ′.

4.2.1 NPI-M algorithm: K(0) > K ′

As before, let K(0) represent the number of unobserved categories, K(1) the

number of categories observed once and K ′ the number observed twice or more.

We first consider situations where K(0) > K ′ > 0. In the trivial case of K ′ = 0,

every category is either unobserved or observed only once, so all lower probabilities

Lj are zero and upper probabilities Uj are 1
n

for unobserved categories and 2
n

for categories observed once. In this case, the uniform probability distribution

assigning probability 1
K

to every category maximises entropy and is in MNPI .

The construction of the maximum entropy distribution presented in this subsection

is based on the principle of Lemma 4.1.2. As in the A-NPI-M algorithm described in

Section 4.1, categories observed more than once are assigned their lower probability

Lj and the remaining probability mass is then shared between the unobserved

categories and the categories observed only once. However, there are restrictions on

the way in which this can be shared. We need to share the K ′ + K(1) separating

slices between the K(0) + K(1) categories that have a lower probability of zero, in

such a way that the resulting distribution gives the largest entropy value possible

but does not violate the rules of the MNPI model.

The configuration of the wheel which gives the most flexibility with respect

to sharing out the separating slices is the arrangement where all categories that

have been observed only once are placed next to each other on the wheel. This

results in one segment made up of K(1) + 1 separating slices, plus K ′− 1 individual

separating slices.

As K,K ′ and K(i), for each i, are integers, we can denote

β = (K(0) +K(1))/(K ′ +K(1)) (4.4)
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and

h = (K(0) +K(1))%(K ′ +K(1)), (4.5)

where “/” represents the integer division operator and “%” represents the remainder

operator (also known as the modulo operator).

To find a probability distribution that gives the largest entropy value possible, the

categories observed more than once should only be assigned their lower probabilities.

By Lemma 4.1.2, an increase in the probability for a category cj with nj ≥ 2 causes

a decrease in entropy. The remaining probability mass K′+K(1)
n

must be distributed

as equally as possible amongst the K(0) +K(1) categories.

As a first step, we assign β (see (4.4)) categories to each of the K ′ + K(1)

separating slices. This is clearly optimal with regard to maximising entropy, since

we assign the same number of categories to each available slice. As a second step,

we then distribute the remaining h (see (4.5)) categories. We consider the situations

h < K(1) + 1 and h ≥ K(1) + 1 separately.

If h < K(1) + 1, we assign the h categories to the segment of K(1) + 1

separating slices. Due to the constraints of the wheel, this gives more flexibility

with respect to sharing out the remaining probability mass than if we were to assign

these h categories to single separating slices. So, in this case, we have K ′ − 1 single

separating slices that are assigned β categories each and a segment of K(1) + 1

separating slices that has β(K(1) + 1) + h categories in total. By Lemma 4.1.2, we

could only increase entropy by sharing the final h categories between more than

K(1) + 1 slices, but this is not possible due to the model constraints.

If h ≥ K(1) + 1, the best way to distribute the remaining mass is to assign

each of the h categories to a different separating slice. So, in this case, we have

h separating slices that are assigned β + 1 categories each and K ′ + K(1) − h

separating slices that are assigned β categories each. By Lemma 4.1.2, we could

only increase entropy by splitting one or more categories over separate slices, but
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again this is not allowed by the model constraints.

For simplicity, suppose that we reorder the categories and label them c1, ..., cK in

order of increasing nj. The above method of filling the slices of the wheel then

leads to the following maximum entropy probability distribution:

If h < K(1) + 1:

pmaxE(cj) = 1
nβ

for j = 1, ..., β(K ′ − 1)

pmaxE(cj) = K(1)+1
n[β(K(1)+1)+h]

for j = β(K ′ − 1) + 1, ..., K(0) +K(1)

pmaxE(cj) =
nj−1

n
for j = K(0) +K(1) + 1, ..., K

If h ≥ K(1) + 1:

pmaxE(cj) = 1
n(β+1)

for j = 1, ..., h(β + 1)

pmaxE(cj) = 1
nβ

for j = h(β + 1) + 1, ..., K(0) +K(1)

pmaxE(cj) =
nj−1

n
for j = K(0) +K(1) + 1, ..., K

In some cases, categories with the same nj value are assigned different probabilities.

With regard to maximising entropy for the purpose of building classification trees,

it is irrelevant which of these categories is assigned a larger probability and which

is assigned a smaller probability. This is because when calculating the entropy in

order to select a split variable (see Subsection 2.3.2) we sum over all categories. The

following examples illustrate this method of assigning probabilities. Examples 4.2.2

and 4.2.3 illustrate the situation h < K(1) + 1 and Example 4.2.4 illustrates the

situation h ≥ K(1) + 1.

Example 4.2.2. Consider a multinomial data set with observed categories R, B, G,

P and O and unobserved categories U1, U2, U3 and U4. The data are

(nR, nB, nG, nP , nO) = (2, 2, 2, 1, 1).

In order of increasing nj, the set of possible categories is

{U1,U2,U3,U4,P,O,R,B,G}.
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The NPI-M algorithm assigns the lower probability
nj−1

n
to categories R, B and

G, so pmaxE(R) = pmaxE(B) = pmaxE(G) = 1
8
. We have K(0) + K(1) = 6 and

K ′ +K(1) = 5, therefore

β = (K(0) +K(1))/(K ′ +K(1)) = 1

and

h = (K(0) +K(1))%(K ′ +K(1)) = 1.

Here K(1) = 2 and so h < K(1) + 1. As β(K ′ − 1) = 2, two of the unobserved
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Figure 4.2: Probability wheel for Example 4.2.2

categories, say U1 and U2, are assigned the probability

pmaxE(cj) =
1

nβ
=

1

8
,

while the other two unobserved categories (U3 and U4) and the two categories

observed only once (P and O) are assigned the probability

pmaxE(cj) =
K(1) + 1

n[β(K(1) + 1) + h]
=

3

32
.

Note that the order within the unobserved categories does not matter. This is

because it does not matter which categories are assigned the larger probability, since

we sum over all categories when calculating the entropy. A possible configuration

of the probability wheel is shown in Figure 4.2. The resulting maximum entropy

distribution for the set of categories

{U1,U2,U3,U4,P,O,R,B,G}
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is

pmaxE = {1

8
,
1

8
,

3

32
,

3

32
,

3

32
,

3

32
,
1

8
,
1

8
,
1

8
}.
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Example 4.2.3. Consider a multinomial data set with observed categories R, B, G,

P and O and unobserved categories U1 to U9. The data are

(nR, nB, nG, nP , nO) = (2, 2, 2, 1, 1).

In order of increasing nj, the set of possible categories is

{U1,U2,U3,U4,U5,U6,U7,U8,U9,P,O,R,B,G}.

The NPI-M algorithm assigns the lower probability
nj−1

n
to categories R, B and

G, so pmaxE(R) = pmaxE(B) = pmaxE(G) = 1
8
. We have K(0) + K(1) = 11 and

K ′ +K(1) = 5, therefore

β = (K(0) +K(1))/(K ′ +K(1)) = 2

and

h = (K(0) +K(1))%(K ′ +K(1)) = 1.

Here K(1) = 2 and so h < K(1) + 1. As β(K ′ − 1) = 4, four of the unobserved

categories, say U1 to U4, are assigned the probability

pmaxE(cj) =
1

nβ
=

1

16
,

while the other five unobserved categories (U5 to U9) and the two categories observed

only once are assigned the probability

pmaxE(cj) =
K(1) + 1

n[β(K(1) + 1) + h]
=

3

56
.

Again, the order within unobserved categories is not relevant as it does not matter

which of these categories is assigned the larger probability. A possible configuration

of the probability wheel is shown in Figure 4.3. The resulting maximum entropy

distribution for the set of categories

{U1,U2,U3,U4,U5,U6,U7,U8,U9,P,O,R,B,G}
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Figure 4.3: Probability wheel for Example 4.2.3

is

pmaxE = { 1

16
,

1

16
,

1

16
,

1

16
,

3

56
,

3

56
,

3

56
,

3

56
,

3
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3
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,

3
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,
1
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,
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Example 4.2.4. Consider the data set described in Example 4.2.1. In order of

increasing nj, the set of categories is

{U1,U2,U3,U4,O,R,B}.

The NPI-M algorithm assigns the lower probability
nj−1

n
to categories R, B and O,

so pmaxE(R) = pmaxE(B) = 1
4

and pmaxE(O) = 1
8
. We have K(0) + K(1) = 4 and

K ′ +K(1) = 3, therefore

β = (K(0) +K(1))/(K ′ +K(1)) = 1

and

h = (K(0) +K(1))%(K ′ +K(1)) = 1.

Here K(1) = 0 and so h ≥ K(1) + 1. As h(β + 1) = 2, two of the unobserved
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categories, say U1 and U2, are assigned the probability

pmaxE(cj) =
1

n(β + 1)
=

1

16
,

while the other two unobserved categories (U3 and U4) are assigned the probability

pmaxE(cj) =
1

nβ
=

1

8
.

Again, the order within the unobserved categories does not matter. A possible

configuration of the probability wheel is shown in Figure 4.4. The resulting

B
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R

R

O

O

U4 U3

U1
U2

Figure 4.4: Probability wheel for Example 4.2.4

maximum entropy distribution for the set of categories

{U1,U2,U3,U4,O,R,B}

is

pmaxE = { 1

16
,

1

16
,
1

8
,
1

8
,
1

8
,
1

4
,
1

4
}.
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The maximum entropy distribution given in Subsection 4.2.1 should only be used

when K(0) > K ′. When K(0) ≤ K ′, the NPI-M algorithm given in Subsection 4.2.2

should be used.

4.2.2 NPI-M algorithm: K(0) ≤ K ′

We now consider situations where K(0) ≤ K ′. As in the A-NPI-M algorithm

described in Subsection 4.1, unobserved categories and categories observed only
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once are initially assigned probability 1
n

and categories observed more than once

are initially assigned their lower probability Lj. The remaining probability mass

is then shared out in such a way that the distribution returned by the algorithm

gives the largest entropy value possible with the wheel constraints satisfied and

pmaxE(cj) ≤ Uj for all categories.

Once the initial probability assignments are made, there are K ′ −K(0) separating

slices remaining. These separating slices are then shared between the categories

with the least probability mass, provided that the resulting probabilities are no

larger than their upper limits Uj. At each stage, if the number of categories with

the least probability mass is smaller than the number of separating slices remaining,

each category is assigned one whole slice. Otherwise, the remaining separating

slices are evenly divided between as many of the categories as possible. In some

cases, where the number of categories with the least probability mass is much

larger than the number of separating slices remaining, we cannot share the slices

between all relevant categories due to restrictions imposed by the configuration of

the probability wheel.

This method of filling the slices of the wheel leads to the following algorithm:

NPI-M (K(0) ≤ K ′)

mass← K ′ −K(0);

For j = 1 to K

If (nj = 0 or nj = 1) pmaxE(cj)← 1
n
;

Else pmaxE(cj)← nj−1

n
;

i← 1;

While (mass > 0) do

If (K(i) +K(i+ 1) < mass)

For j = 1 to K

If (nj = i or nj = i+ 1) pmaxE(cj)← pmaxE(cj) + 1
n
;
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mass← mass− (K(i) +K(i+ 1));

Else

W ← min{mass+ 1 +K(i), K(i) +K(i+ 1)};

Acc← W ;

For j = 1 to K

If ((nj = i or nj = i+ 1) and (Acc > 0))

pmaxE(cj)← pmaxE(cj) + mass
nW

;

Acc← Acc− 1;

mass← 0;

i← i+ 1;

Theorem 4.2.1. The probability distribution pmaxE that is attained by the NPI-M

algorithm for K(0) ≤ K ′ gives the maximum entropy value of any distribution within

the NPI structure MNPI .

Proof. Suppose that we rearrange the array {pmaxE(cj)}Kj=1 in decreasing order. This

gives the array

p∗maxE = (Lj1 , ..., LjR , Z +
massf
nW

, ..., Z +
massf
nW

,Z, ..., Z, Uj′1 , ..., Uj′T ),

where Lji represents the NPI lower probability for category cji , Uj′i represents

the NPI upper probability for category cj′i and Z represents the probability mass

already assigned to categories observed i or i + 1 times when we reach the final

step of the algorithm. At this final step, remaining probability mass (
massf
n

) is

shared equally between W categories. This is the maximum number of categories

for which we can increase the probability from Z, due to the model constraints.

Let I denote the number of categories that are assigned a probability such that

Lj < pmaxE(cj) < Uj. Then I − W categories have probability Z, whilst W

categories have probability Z +
massf
nW

. Hence, K = R + I + T .

Based on Lemma 4.1.2, we want to show that for every distribution q in the

NPI structure,
i∑

j=1

p∗maxE(cj) ≤
i∑

j=1

q∗(cj) for all i ∈ {1, ..., K}, where q∗ is a

rearrangement of the array q in decreasing order.
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• It is clear that decreasing any of the elements equal to Lji , i = 1, .., R, in the

array p∗maxE, or increasing any of the elements equal to Uj′i , i = 1, .., T , does not

lead to a valid distribution. Also, if we increase one or more of the Lji values

or decrease one or more of the Uj′i values, we obtain a probability distribution

with a smaller entropy than the distribution pmaxE.

• If any one of the W elements equal to Z +
massf
nW

is decreased, this will

necessitate an increase in one or more of the other W elements or in one

of the elements equal to Lji , i = 1, .., R, resulting in a smaller entropy. Note

that it is not possible to counteract such a decrease by an increase in one of

the I−W elements equal to Z, because the model constraints mean that W is

the maximum number of categories for which we can increase the probability

from Z.

• If any one of the I −W elements equal to Z is decreased, this will necessitate

an increase in one or more of the W elements equal to Z +
massf
nW

or in one or

more of the Lji values, resulting in a smaller entropy.

Therefore, for every distribution q in the NPI structure,
i∑

j=1

p∗maxE(cj) ≤
i∑

j=1

q∗(cj)

for all i ∈ {1, ..., K}, so the distribution pmaxE must give the maximum entropy

value of any distribution within MNPI .

Example 4.2.5. Consider a multinomial data set with observed categories R, B, G,

P, Y, M and O and unobserved categories U1 and U2. The data are

(nR, nB, nG, nP , nY , nM , nO) = (6, 6, 3, 2, 1, 1, 1).

The NPI-M algorithm initially assigns probability masses
nj−1

n
to categories

R, B, G and P, which are equal to the corresponding lower probabilities. So

p(R) = p(B) = 5
20

, p(G) = 2
20

and p(P) = 1
20

. The algorithm initially assigns

probability 1
20

to the remaining categories.

We now reach the recursive part of the algorithm. For i = 1, K(1) +K(2) = 4 and
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mass = 2, therefore K(i) +K(i+ 1) > mass and

W = min{mass+ 1 +K(1), K(1) +K(2)} = K(1) +K(2) = 4.

This means that all four categories which have been observed either once or twice

are assigned the probability

pmaxE(cj) =
1

20
+

mass

20(min{mass+ 1 +K(1), K(1) +K(2)})
=

1

20
+

2

4× 20
=

3

40
.

A possible configuration of the probability wheel is shown in Figure 4.5. The
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Figure 4.5: Probability wheel for Example 4.2.5

resulting maximum entropy distribution for the set of categories

{U1,U2,O,Y,M,P,G,R,B}

is

pmaxE = { 1

20
,

1

20
,

3

40
,

3

40
,

3

40
,

3

40
,

2

20
,

5
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,
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Example 4.2.6. Consider a multinomial data set with observed categories R, B, G,

P and O and unobserved categories U1 and U2. The data are

(nR, nB, nG, nP , nO) = (5, 5, 5, 5, 4).
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The NPI-M algorithm initially assigns the lower probability
nj−1

n
to categories R,

B, G, P and O. So p(R) = p(B) = p(G) = p(P) = 4
24

and p(O) = 3
24

. The algorithm

initially assigns probability 1
24

to the remaining categories.

We now reach the recursive part of the algorithm. For i = 1, K(1) + K(2) = 0.

For i = 2, K(2) + K(3) = 0. For i = 3, K(3) + K(4) = 1 and mass = 3, so

K(i) +K(i+ 1) < mass and in this step of the algorithm p(O) is increased from 3
24

to 4
24

. For i = 4, K(4) +K(5) = 5 and mass = 2, therefore K(i) +K(i+ 1) > mass
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Figure 4.6: Probability wheel for Example 4.2.6

and

W = min{mass+ 1 +K(4), K(4) +K(5)} = mass+ 1 +K(4) = 4.

This means that four of the five categories observed either four or five times are

assigned the probability

pmaxE(cj) =
4

24
+

mass

24(min{mass+ 1 +K(4), K(4) +K(5)})
=

4

24
+

2

4× 24
=

3

16
,

while the remaining category is assigned the probability

pmaxE(cj) =
4

24
.
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Note that it does not matter which of the categories is assigned the smaller

probability, since we sum over all categories when calculating the entropy. A

possible configuration of the probability wheel is shown in Figure 4.6. The resulting

maximum entropy distribution for the set of categories

{U1,U2,O,R,B,G,P}

is

pmaxE = { 1

24
,

1

24
,

4

24
,

3

16
,

3

16
,

3

16
,

3

16
}.
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4.3 Performance of the A-NPI-M algorithm

In order to assess the success of the A-NPI-M algorithm when used in building

classification trees, experiments were carried out on forty data sets. These data sets

were obtained from the UCI machine learning repository [4] and were chosen such

that they vary greatly in terms of the sample size, the number and type of attribute

variables and the number of categories. As a first step, an A-NPI-M classification

tree was built for each data set. This was done using the tree-building process

for interval probabilities described in Subsection 2.3.2, with the entropy values in

the impurity measure (2.18) calculated using the A-NPI-M probabilities. Then,

classification trees were produced for each data set using four alternative methods.

The first of these alternative methods was the IDM method: the tree-building

process remains the same, but the maximum entropy probabilities in the impurity

measure (2.18) are based on the IDM with s = 1 (see Section 2.1) rather than the

MNPI model. The remaining three alternative methods used all involve classical

probabilities. Two of these methods use the ID3 [34] tree-building process but use

varying impurity measures and the final method used was the C4.5 method [35],

which is a more complex tree-building process that uses pruning to improve

accuracy. The five classifiers resulting from these five methods were then compared

in various ways.
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The experiments were carried out using Weka software (see Subsection 2.3.3).

First, the algorithms and methods required were implemented in Weka. Some

preprocessing of the data was then carried out, using the filters in Weka. The

missing value filter was applied, which replaces missing values with mean or modal

values, and the discretise filter was applied, which discretises any continuous

variables. Such preprocessing is necessary in order to apply our classification

methods to the data in a straightforward way. However, it would be of interest to

carry out further research on how NPI classification methods could be adapted to

deal with data sets that do have missing values and on the effect of discretisation.

The classification trees were then built using Weka. A ten-fold cross-validation

procedure was used (see Subsection 2.3.2) and this was repeated ten times for each

data set. The comparisons between classifiers were based on the average numbers of

correct classifications. In addition to a straightforward comparison based on which

classifier had the highest number of correct classifications, various statistical tests

were also used. A brief description of each of these tests is given in the following

list. Further information on these tests can be found in [36].

1. Paired T-test: This test is used to compare two classifiers on a single data

set. It checks whether one classifier is significantly better or worse than the

other, by testing the null hypothesis that the difference between the numbers

of correct classifications has a mean value of zero.

2. Wilcoxon signed-ranks test: This test is used to compare two classifiers

on multiple data sets. For each data set, the test ranks the difference in

performance of the two classifiers and these ranks are used to test the null

hypothesis that there is no significant difference between the classifiers.

3. Friedman test: This test is used to compare multiple classifiers on multiple

data sets. For each data set, the test ranks the classifiers and they are then

compared in terms of their average rank. The null hypothesis is tested that

there is no significant difference between these average ranks.



4.3. Performance of the A-NPI-M algorithm 82

IDM A-NPI-M IG IGR C4.5

IDM - (19/2/19) (18/2/20) (15/2/23) (17/1/22)

NPI (19/2/19) - (18/2/20) (15/2/23) (17/1/22)

IG (20/2/18) (20/2/18) - (18/3/19) (19/1/20)

IGR (23/2/15) (23/2/15) (19/3/18) - (21/1/18)

C4.5 (22/1/17) (22/1/17) (20/1/19) (18/1/21) -

W-L 15 15 -4 -20 -8

Table 4.1: Numbers of wins, ties and losses (W/T/L) based on average numbers of

correct classifications

IDM A-NPI-M IG IGR C4.5

IDM - (3/34/3) (6/23/11) (4/32/4) (3/36/1)

NPI (3/34/3) - (8/19/13) (4/28/8) (4/34/2)

IG (11/23/6) (13/19/8) - (6/30/4) (11/21/8)

IGR (4/32/4) (8/28/4) (4/30/6) - (7/24/9)

C4.5 (1/36/3) (2/34/4) (8/21/11) (9/24/7) -

W-L 3 7 -15 0 5

Table 4.2: Numbers of wins, ties and losses (W/T/L) based on the paired T-test

carried out on numbers of correct classifications

Classifier Rank

IDM 2.81

A-NPI-M 2.81

IG 3.02

IGR 3.25

C4.5 3.10

Table 4.3: Friedman ranks of the classifiers

The results of the experiments are shown in Tables 4.1 to 4.3. Table 4.1 shows

the results of the straightforward comparison based on average numbers of correct

classifications. Each column in the table corresponds to a particular classifier

and shows the numbers of wins, ties and losses (W/T/L) for that classifier when

compared pairwise with the other four classifiers. For example, (23/2/15) in the

A-NPI-M column and IGR row means that the A-NPI-M classifier performed

better than the IGR classifier on 23 data sets, equally well on 2 data sets and

worse on 15 data sets. Table 4.2 shows the results of the paired T-test at a 5%
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significance level. Again, each column shows the numbers of wins, ties and losses

for a particular classifier. A win signifies that the performance of the classifier

was significantly better at the 5% level, while a loss signifies that the performance

was significantly worse. The Wilcoxon signed-ranks test showed that at a 5%

significance level, the A-NPI-M classifier performs significantly better than the

IGR classifier. The other pairwise comparisons did not highlight any significant

differences. The Friedman ranks of the classifiers are shown in Table 4.3. The null

hypothesis that the Friedman ranks are not significantly different is rejected and

the Friedman ranks of the A-NPI-M classifier and the IDM classifier are found to be

significantly higher than the ranks of the other classifiers at a 5% level of significance.

We see that the A-NPI-M and IDM classifiers have very similar performance,

with the A-NPI-M classifier slightly outperforming the IDM classifier according

to the paired T-test as shown in Table 4.2. Both perform better than the

other classifiers considered here. Further detailed experiments on each data set

individually, and also on further available data sets, would enable us to determine

which classifier performs best on each data set and may give some insight into

common characteristics of the data sets on which the A-NPI-M classifer performs

well. This is not considered here, but further investigation would be useful for

future research as it may allow us to give advice about which classification method

would be best given specific features of a particular data set.

4.4 Comparison of A-NPI-M and NPI-M

In order to compare the A-NPI-M and NPI-M algorithms and to determine which

of these is more successful when applied to classification trees, further experiments

were carried out using Weka. The same forty data sets were used as in Section 4.3

and classification trees were built for each data set. When building the A-NPI-M

and NPI-M classifiers, the tree-building procedure described in Subsection 2.3.2

was used and the entropy values in the impurity measure were computed using the

A-NPI-M and NPI-M probabilities, respectively. Table 4.4 shows the percentages of
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correct classifications achieved by these two classifiers for each of the forty data sets.

Dataset NPI-M A-NPI-M Dataset NPI-M A-NPI-M

anneal 99.09 99.09 mfeat-morphological 69.78 69.78

arrhythmia 67.88 68.06 mfeat-pixel 79.99 79.92

audiology 85.04 85.04 mfeat-zernike 64.19 64.24

autos 78.45 78.25 nursery 95.15 94.99

balance-scale 69.59 69.59 optdigits 78.95 78.98

bridges-version1 67.74 67.74 page-blocks 96.08 96.10

bridges-version2 64.15 63.87 pendigits 89.37 89.37

car 90.13 90.13 postoperative-patient-data 71.11 71.11

cmc 48.98 48.98 primary-tumor 39.21 39.48

dermatology 93.43 93.46 segment 94.18 94.20

ecoli 80.19 80.19 soybean 93.29 93.35

flags 59.12 59.27 spectrometer 43.32 43.33

hypothyroid 99.33 99.33 splice 93.25 93.25

iris 93.40 93.40 sponge 94.48 94.48

letter 78.77 78.77 tae 46.78 46.78

lung-cancer 41.33 41.33 vehicle 69.39 69.39

lymphography 73.68 73.68 vowel 75.92 75.95

mfeat-factors 81.71 81.68 waveform 73.99 73.99

mfeat-fourier 68.90 68.92 wine 92.02 92.02

mfeat-karhunen 73.14 73.15 zoo 95.53 95.53

Table 4.4: Percentages of correct classifications

The A-NPI-M and NPI-M classifiers were compared with each other and

with the IDM classifier using the paired T-test, the Wilcoxon signed-ranks test and

the Friedman test, all of which are described in Section 4.3. A straightforward

comparison was also carried out based on which classifier had the highest number

of correct classifications. Table 4.5 shows the results of the comparison based on

average numbers of correct classifications and Table 4.6 shows the results of the

paired T-test at a 5% significance level. The Wilcoxon signed-ranks test showed

no significant differences between any of the classifiers. The Friedman ranks of

the classifiers, shown in Table 4.7, are not significantly different at a 5% level of

significance.

IDM A-NPI-M NPI-M

IDM - (21/2/17) (21/2/17)

A-NPI-M (17/2/21) - (7/20/13)

NPI-M (17/2/21) (13/20/7) -

W-L -8 10 -2

Table 4.5: Numbers of wins, ties and losses (W/T/L) based on average numbers of

correct classifications
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IDM A-NPI-M NPI-M

IDM - (3/34/3) (3/34/3)

A-NPI-M (3/34/3) - (1/39/0)

NPI-M (3/34/3) (0/39/1) -

W-L 0 -1 1

Table 4.6: Numbers of wins, ties and losses (W/T/L) based on the paired T-test

carried out on numbers of correct classifications

Classifier Rank

IDM 2.10

A-NPI-M 1.85

NPI-M 2.05

Table 4.7: Friedman ranks of the classifiers

We see from the results in Tables 4.5, 4.6 and 4.7 that all three classifiers are quite

similar, with the NPI-based classifiers slightly outperforming the IDM classifier.

The A-NPI-M and NPI-M classifiers perform in a very similar way. Table 4.5 shows

that the A-NPI-M classifier gives more correct classifications than the NPI-M

classifier on 13 data sets; however, for most data sets the difference in numbers of

correct classifications is negligible and we see from Table 4.6 that there is only one

data set on which the two classifiers differ significantly. On this data set, entitled

the nursery data set, the paired T-test shows us that the NPI-M classifier gives a

significantly higher number of correct classifications.

Weka was used to analyse the nursery data set in more detail, in order to

give some insight about any characteristics of this data set that may cause the

significant difference in the performance of the A-NPI-M and NPI-M classifiers.

The nursery data set is taken from a set of applications to a private nursery school,

and contains a total of 12960 observations. There are eight attribute variables and

five categories c1 to c5 where an observation is classified in terms of how suitable

the applicant is for acceptance at the school. The classification trees built using

Weka show that the health of the applicant is the most informative attribute
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variable, so this is used for splitting at the root node (see Figure 4.7). There are

Figure 4.7: Diagram showing first split in classification tree for nursery data set

three possible values of this attribute variable, labelled 1 to 3, and in the branch

health=1 (i.e. at the node marked * in Figure 4.7), the observation counts for the

set of categories {c1, ..., c5} are {0, 0, 0, 1854, 2466}. All observations in categories c1

to c3 have been eliminated by this split, showing that health is a very informative

attribute variable. At this point, the A-NPI-M algorithm returns the distribution

{ 1
6480

, 1
6480

, 1
6480

, 1853
4320

, 2465
4320
} corresponding to categories c1, ..., c5, whereas the NPI-M

algorithm returns the distribution { 1
8640

, 1
8640

, 1
4320

, 1853
4320

, 2465
4320
}. The fact that this

discrepancy occurs so high up in the tree may be a reason for the significantly

different performance of the A-NPI-M and NPI-M classifiers on this data set, but a

more detailed investigation would be needed in order to gain a full understanding

of this difference.

It should also be noted here that, for the nursery data set, there is a natural

ordering of the categories. The MNPI model explicitly assumes no specific ordering

of the categories; however, NPI for ordinal data is currently under development and

its application to classification problems is an interesting and important topic for

future research.

Further analysis of each of the forty data sets, and also of further available

data sets, would allow us to discover common characteristics of the data sets on

which the NPI-M classifier performed best. This is not considered here, but it
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would be useful for future research as it may enable us to make an informed decision

about which classification method to use given a particular data set.

4.5 Split variable selection bias

In Sections 4.1 to 4.4, we considered classification trees that employ an estimator

of the Shannon entropy H (see (2.13)) as the impurity measure used to select

split variables. This estimator, Ĥ (see (2.14)), is widely and successfully used in

classification. However, Ĥ is a biased estimator of the true Shannon entropy. The

bias is linked to the numbers of possible values of the attribute variables and means

that when selecting variables for splitting, the tree-building method tends to favour

attribute variables with high numbers of distinct values over equally informative

attribute variables with fewer values. A study by Strobl [39] showed that this effect

is particularly pronounced when the attribute variables in question are not very

informative.

The theoretical Shannon entropy, H, is calculated using the true category

probabilities p(cj), whereas Ĥ is a function of some estimate p̂ of this distribution.

A naive approach to estimating the probabilities p(cj) is to use the observed relative

frequencies. The estimated Shannon entropy is then calculated via (2.14) together

with p̂(cj) =
nj
n

. The bias of this estimate was computed analytically by Miller [33].

It was shown that the expected value of the estimator was equal to

E(Ĥ(p̂)) = E(−
K∑
j=1

nj
n

log[
nj
n

]) = H(p)− K − 1

2n
+O(n−2). (4.6)

Miller proposed that the terms of order n−2 should be ignored, due to the fact that

these terms involve the unknown probabilities p(cj). He suggested the following

correction to give a less biased estimator of the Shannon entropy:

ĤMiller(p̂) = Ĥ(p̂) +
K − 1

2n
. (4.7)

As discussed in Chapter 2, when using interval probabilities the distribution used to

estimate the true category probabilities is the maximum entropy distribution. The
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probabilities pmaxE(cj) that are attained depend on the interval probability model

being used. Strobl [39] investigated split variable selection bias in classification trees

constructed using the IDM [41]. In this method, the maximum entropy probability

for each category cj is derived from the IDM interval probabilities [P IDM(Yn+1 ∈

cj), P IDM(Yn+1 ∈ cj)] = [
nj
n+s

,
nj+s

n+s
]. Based on the expected value of Ĥ derived by

Miller, it was suggested by Strobl that the entropy estimator Ĥ be replaced by

ĤMiller(p̂) = Ĥ(p̂) +
K − 1

2(n+ s)

when using the IDM. This correction approach was tested in a simulation study [39],

and the corrected estimator was found to perform better than the original with

regard to split variable selection.

We now discuss the use of a bias correction when building classification trees

using NPI. As explained in Section 4.2, the maximum entropy distribution within

the NPI structure is achieved by the NPI-M algorithm. Consider some node

(Xi = xi) which is generated by splitting on the attribute variable Xi. Let n(Xi=xi)

represent the total number of observations at this node and let n
(Xi=xi)
j represent

the number of observations in category cj at this node. At the node (Xi = xi), the

maximum entropy probability for each category, p
(Xi=xi)
maxE (cj), will always lie within

the interval [
n

(Xi=xi)
j −1

n(Xi=xi)
,
n

(Xi=xi)
j +1

n(Xi=xi)
]. The standard entropy estimator, used in Sections

4.3 and 4.4, is

Ĥ(p
(Xi=xi)
maxE ) = −

K∑
j=1

p
(Xi=xi)
maxE (cj) log[p

(Xi=xi)
maxE (cj)]. (4.8)

Based on Miller’s derivation of the extent of the bias in Ĥ (see (4.6)), it is reasonable

to assume that the bias in (4.8) is equivalent. We therefore replace this estimator

by

ĤMiller(p
(Xi=xi)
maxE ) = Ĥ(p

(Xi=xi)
maxE ) +

K − 1

2n(Xi=xi)
. (4.9)

In order to test this bias correction, experiments in Weka were carried out using the

forty data sets introduced in Section 4.3. The NPI-M algorithm was implemented

to build classification trees for each data set, first with the impurity measure

calculated using the standard entropy estimator (4.8) and secondly with the



4.6. Concluding remarks 89

impurity measure calculated using the corrected entropy estimator (4.9). The

two methods were compared based on which gave the highest number of correct

classifications. Further comparisons were carried out using the paired T-test with a

5% significance level, the Wilcoxon signed-ranks test and the Friedman test. These

tests are described in Section 4.3.

With regard to the straightforward comparison based on numbers of correct

classifications, the numbers of wins, ties and losses (W/T/L) for the bias-corrected

method against the original method were (6/3/31), i.e. the bias-corrected method

performed better than the original method on 6 data sets but worse on 31 data sets.

The equivalent results of the paired T-test were (1/23/16), i.e. the performance

of the bias-corrected method was significantly better on only 1 data set but was

significantly worse on 16 data sets. The Wilcoxon signed-ranks test showed that at a

5% significance level, the original method performed better than the bias-corrected

method. The Friedman ranks of the bias-corrected and original methods were

shown to be 1.8125 and 1.1875 respectively. These are found to be significantly

different at a 5% level of significance.

We see from the results of these experiments that when building classification trees

using NPI, introducing the above bias correction to Ĥ does not appear to improve

classifier performance. The original method appears to be more successful, so we

cannot recommend at this stage that the method should be adapted. We therefore

do not consider further the issue of split variable selection bias here; however,

further exploration of this is an important topic for future research and a more

detailed study is required in order to come to a final judgement on whether this or

any other bias correction would be useful.

4.6 Concluding remarks

In this chapter we presented applications of NPI to classification. We focused on

classification trees, since this type of classification does not make explicit use of
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parameters in the way that other types such as naive classification do (see Section

2.3). However, it would be of interest to investigate applications of NPI to other

types of classification in the future.

In this chapter, the use of the MNPI model for building classification trees

was considered. Two algorithms were presented: the A-NPI-M algorithm for

finding the maximum entropy distribution within the credal set of distributions

associated with the NPI lower and upper probabilities and the NPI-M algorithm for

finding the maximum entropy distribution within the NPI structure MNPI . These

algorithms were used to build classification trees for forty data sets and experiments

were carried out to measure and compare the performance of the algorithms.

Finally, a bias correction to the Shannon entropy estimator was investigated, as a

possible variation on the tree-building method. It would be of interest to extend

this research further and to investigate more fully the use of a bias correction, as

although we did not find this correction to be useful for our purposes, it has proved

to be successful in a number of studies. It would also be interesting to consider

the use of other impurity measures when building classification trees using NPI. A

more detailed analysis of a wider range of data sets would be beneficial, including

an investigation of common characteristics of the data sets on which the NPI-based

classifiers perform well, as this may allow us to identify future data sets for which

a NPI-based classifier would be a suitable choice.

Another important extension to this work is the development of imprecise

classification trees, which may sometimes return a set of categories rather than a

single most probable category. Imprecise classification has been presented in the

literature [46,48], as mentioned in Subsection 2.3.1, and it seems natural to consider

imprecise classification using NPI.

We return to the subject of classification in Section 5.4, where we present an

algorithm for approximating the maximum entropy distribution consistent with the

NPI model for data described at subcategory level as well as at main category level.



Chapter 5

NPI for subcategory data

In this chapter we present an extension of nonparametric predictive inference for

multinomial data such that subcategories may be included in our inferences as

well as main categories. This is motivated by the hierarchical structure that is

inherent in some multinomial data sets. As before, there is no ordering of the main

categories, and we also assume that for a single main category there is no ordering

of its subcategories. We still use the probability wheel representation that was

explained in Chapter 2, but we now include lines and subsegments to represent

these subcategories. As in the original MNPI model, slices are assigned an area

of 1
n
, representing the probability 1

n
for the event that a future observation falls

in any given slice. In addition to the assumptions underlying the MNPI model,

the extended model presented here requires that two or more lines representing

the same subcategory are always positioned next to each other on the wheel and

that different subcategories within the same main category are always grouped

together in one single segment of the wheel. Also, if a slice is bordered by two

lines representing the same subcategory, it must be assigned to this subcategory.

Multiple slices assigned to the same subcategory must always be grouped together

in one single subsegment. We henceforth refer to this model as the Sub-MNPI model.

As in the original MNPI model (see Section 2.2), we assume that there are

K main categories in total and that the data consist of nj observations in main

category cj, for j = 1, ..., K. We have observed k main categories and the remaining

91



5.1. Known numbers of (sub)categories 92

K − k main categories are unobserved. We also assume that some observations

may belong to a particular subcategory. Subcategories are denoted by sj,ij , where

sj,ij ⊆ cj. Suppose that there is a total of Kj subcategories in main category cj

and that we have observed kj of these subcategories. Let nj,ij be the total number

of observations in subcategory sj,ij . Some main categories may not consist of

subcategories, or may only be described at main category level, in which case we

continue to denote these simply by cj. Such categories are referred to as main-only

categories, distinct from main categories which may or may not have specified

subcategories.

As is the case for the original MNPI model, it may be that we know the

total numbers of possible main categories and subcategories, or it may be that these

quantities are unknown. In Section 5.1, we consider the case where the quantities K

and Kj, j = 1, ..., K, are known. We define the general event of interest and derive

the NPI lower and upper probabilities for this event. In Section 5.2, we formulate

some general properties of the NPI lower and upper probabilities presented in

Section 5.1. In Section 5.3, we consider the case where K and Kj, j = 1, ..., K, are

unknown. In this case there are two general events of interest. We define these

events and derive the NPI lower and upper probabilities for both events. Finally,

in Section 5.4, we revisit the application of NPI to classification trees discussed in

Chapter 4 and we propose an algorithm for approximating the maximum entropy

distribution consistent with the Sub-MNPI model that is presented in Section 5.1.

The inferences throughout this chapter are restricted to a single future observation;

however, it will be interesting to consider more general inferences about multiple

future observations as an extension to this work.

5.1 Known numbers of (sub)categories

When K and Kj, j = 1, ..., K, are known, the event of interest can be expressed

generally as

Yn+1 ∈
⋃
j∈J

cj ∪
⋃
j∈J∗

⋃
ij∈Ij

sj,ij (5.1)
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where J ∩ J∗ = ∅, J ⊆ {1, ..., K}, J∗ ⊆ {1, ..., K} and Ij ⊆ {1, ..., Kj} for

j = 1, ..., K. We also define Ij = {1, ..., Kj}\Ij. This notation allows us to describe

events which contain only specific subcategories of particular main categories,

whilst also retaining the possibility of considering some main categories as a whole.

We refer to the general event (5.1) as E. Note that in examples, E denotes specific

events of the form shown in (5.1).

As in Section 2.2, k categories have been observed and these are labelled

c1, ..., ck. As in Subsection 2.2.1, we have OJ = J ∩{1, ..., k}, which is the index-set

of observed main-only categories in E, and we define | OJ |= rmain. Also, recall

that UJ = J ∩ {k + 1, ..., K}, which is the index-set of unobserved main-only

categories in E, and let | UJ |= lmain. Similarly, we define

OJ∗ = J∗ ∩ {1, ..., k},

where | OJ∗ |= rsub. OJ
∗ is the index-set of observed main categories in E which

are described at subcategory level. We also define

UJ∗ = J∗ ∩ {k + 1, ..., K},

where | UJ∗ |= lsub. UJ∗ is the index-set of unobserved main categories in E

which are described at subcategory level. Let r = rmain+rsub, and let l = lmain+lsub.

Suppose that kj subcategories of main category cj have been observed and

are labelled sj,1, ..., sj,kj . Let

OIj = Ij ∩ {1, ..., kj},

where | OIj |= rj, for j = 1, ..., K. OIj is the index-set of observed subcategories in

E. Also suppose that

UIj = Ij ∩ {kj + 1, ..., Kj},

where | UIj |= lj, for j = 1, ..., K. UIj is the index-set of unobserved subcategories

in E.
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Let OIj = Ij ∩ {1, ..., kj}, where | OIj |= rj, and let UIj = Ij ∩ {kj + 1, ..., Kj},

where | UIj |= lj.

We consider the NPI lower and upper probabilities for E (5.1).

5.1.1 Lower probability

First, we consider the NPI lower probability for the event E (5.1). This is found by

minimising the number of slices of the probability wheel which must be assigned to

a main category or subcategory in E.

There are four different cases which may arise, depending on the numbers of

categories and subcategories which have already been observed, and these are

considered separately.

Case 1: r ≤ K − r − l and rj − 1 ≤ Kj − rj − lj for all j

When r ≤ K−r− l, the number of main categories not in E is greater than or equal

to the number of observed main categories in E. This means that all separating

slices on the wheel between different observed main categories in E can be assigned

to a main category which is not in E. Similarly, when rj − 1 ≤ Kj − rj − lj, all

separating slices between different observed subcategories in E can be assigned to

subcategories of main category cj which are not in E. Therefore, the only slices

which we are forced to assign to E are those which lie between lines representing

the same main-only category in E and those which lie between lines representing

the same subcategory in E. This leads to

P (E) =
∑
j∈OJ

nj − 1

n
+
∑
j∈OJ∗

∑
ij∈OIj

nj,ij − 1

n
. (5.2)

Example 5.1.1. Consider a multinomial data set with possible main categories blue

(B), green (G), red (R), yellow (Y), pink (P) and orange (O). These main categories

are labelled 1 to 6 respectively. Observations in B are further classified as light blue

(LB), medium blue (MB), dark blue (DB) or other blue (OB) and observations in
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G are further classified as light green (LG), dark green (DG) or other green (OG).

The data set consists of eight observations altogether, including 1 LB, 1 MB, 2 DB,

1 LG, 1 DG, 1 R and 1 Y.

Suppose that we are interested in the event Y9 ∈ {LB,DB,LG,P}. Then

K = 6, r = 2 and l = 1. For main categories described at subcategory level,

the values of Kj, rj and lj are shown in Table 5.1. This example illustrates the

j Kj rj lj

B 1 4 2 0

G 2 3 1 0

Table 5.1: Values of Kj, rj and lj for Example 5.1.1

situation where r ≤ K − r − l and rj − 1 ≤ Kj − rj − lj for all j. We can therefore

find a configuration of the probability wheel such that all main categories in E are

separated by main categories not in E and within each segment all subcategories in

E are separated by subcategories not in E. Figure 5.1 shows one such configuration,

LB
MB

DB

DB

R
DG

LG

Y

MBMB

R

R DG

Y

Y

Figure 5.1: Probability wheel for Example 5.1.1

where B and G are separated by R and Y, and LB and DB are separated by

MB. The only part of the wheel which must be assigned to a category in E is

therefore the slice between the two DB observations. This means that the NPI

lower probability for the event E is 1
8
. This also follows from (5.2): the set OJ is

empty (since P is not yet observed), the set OJ∗ contains B and G, the set OI1
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contains LB and DB and the set OI2 contains LG, therefore (5.2) gives

P (E) = 0 +
1− 1

8
+

2− 1

8
+

1− 1

8
=

1

8
.

�

Case 2: r > K − r − l and rj − 1 ≤ Kj − rj − lj for all j

As in Case 1, all lines representing different observed subcategories in E can be

separated by subcategories which are not in E. Now, though, the number of main

categories not in E is smaller than the number of observed main categories in E.

This means that not all of the observed main categories in E can be separated

by main categories not in E. There are r − (K − r − l) = 2r + l − K separating

slices between main categories which cannot be filled in this way. However, if we

have subcategories which are not in E but which are part of a main category that

appears in E, it may be possible to utilise these subcategories to separate observed

main categories in E. In order to see how this could work, we need to consider the

configuration of the slices carefully.

Recall that rj + lj is the total number of subcategories within category j

that are not in E. Within each segment of the wheel, if rj + lj > rj then we can

find a configuration such that all observations of subcategories in E are separated

and also each end of the segment (i.e. the line on either end of the segment)

represents a subcategory not in E. If rj + lj = rj then the best configuration

of the segment is such that one end of the segment represents a subcategory

in E and one end represents a subcategory not in E. Finally, if rj + lj < rj,

we cannot find a configuration such that the ends of the segment represent a

subcategory not in E whilst still satisfying the requirement that all observations of

subcategories in E are separated. So, within each main category such that j ∈ J∗,

rj + lj − (rj − 1) = rj + lj − rj + 1 subcategories would potentially be available for

separating main categories in E.

It is important to remember that the subcategories of a single main category
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must always be grouped together in a single segment of the wheel. This means that

the maximum number of subcategories which could be assigned to separating slices

between main categories would be two per observed main category and one per

unobserved main category. The number of separating slices which can potentially

be filled in this way is therefore

SM =
∑
j∈OJ∗

min{(rj + lj − rj + 1)+, 2}+
∑
j∈UJ∗

min{lj, 1} (5.3)

where the notation x+ represents max{x, 0}. So, the overall number of slices which

still cannot be filled by a main category or subcategory not in E is 2r+ l−K−SM ,

provided that this is a number greater than or equal to zero. This leads to

P (E) =
∑
j∈OJ

nj − 1

n
+
∑
j∈OJ∗

∑
i∈OIj

nj,ij − 1

n
+

1

n
(2r + l −K − SM)+. (5.4)

Example 5.1.2. Consider the data set described in Example 5.1.1. Suppose that

we are interested in the event Y9 ∈ {LB,DB,LG,R,Y,P}. We have K = 6, r = 4

and l = 1. For main categories described at subcategory level, the values of Kj, rj

and lj are shown in Table 5.2. We have the situation where rj − 1 ≤ Kj − rj − lj

j Kj rj lj

B 1 4 2 0

G 2 3 1 0

Table 5.2: Values of Kj, rj and lj for Example 5.1.2

for all j, but r > K − r − l. We therefore cannot find any configuration of the

probability wheel such that all observed main categories in E are separated by

main categories not in E. However, we can still separate subcategories in E within

each individual segment. In this example, 2r + l −K = 3 and SM = 3. So whilst

we cannot separate all observed main categories in E using other main categories,

we can in fact use subcategories which are not in E but which are part of a main

category that appears in E.
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In this example, the main category B appears in E, but the subcategories

MB and OB are not included in E. Similarly, the main category G appears in E,

but the subcategories DG and OG are not included in E. Figure 5.2 shows one

LB
MB

DB

DB

R
DG

LG

Y

MBMB

OB

DG DG

OG

O

Figure 5.2: Probability wheel for Example 5.1.2

possible configuration where all elements of E are separated and illustrates the case

where O separates B and Y, OB separates R and B, DG separates G and R, and

OG separates G and Y. The only part of the wheel which must be assigned to E

is the slice between the two DB observations, leading to a NPI lower probability of

1
8

for the event E. This lower probability can be verified using (5.4). The set OJ

contains R and Y, the set OJ∗ contains B and G, the set OI1 contains LB and DB

and the set OI2 contains LG. Also, 2r+ l−K = 3 and SM = 3, therefore (5.4) gives

P (E) =
1− 1

8
+

1− 1

8
+

1− 1

8
+

2− 1

8
+

1− 1

8
+ 0 =

1

8
.

�

Case 3: r ≤ K − r − l and rj − 1 > Kj − rj − lj for at least one j

In this situation, we can separate all lines corresponding to different observed main

categories in E by main categories not in E. This is because the number of main

categories not in E is greater than or equal to the number of observed main categories

in E. However, within main categories for which rj−1 > Kj−rj−lj holds, we cannot

separate all the observed subcategories in E, since the number of subcategories not

in E is smaller than the number of separating slices between observed subcategories
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in E. For such a category, there are rj − 1 − (Kj − rj − lj) = 2rj + lj −Kj − 1 of

these separating slices remaining and these have to be assigned to E. This leads to

P (E) =
∑
j∈OJ

nj − 1

n
+
∑
j∈OJ∗

∑
ij∈OIj

nj,ij − 1

n
+

1

n

∑
j∈OJ∗

(2rj + lj −Kj − 1)+. (5.5)

Example 5.1.3. Consider the data set described in Example 5.1.1. Suppose that

we are interested in the event Y9 ∈ {LB,MB,DB,LG,P}. We have K = 6, r = 2

and l = 1. For main categories which have subcategories, the values of Kj, rj

and lj are given in Table 5.3. So we have the situation where r ≤ K − r − l, but

j Kj rj lj

B 1 4 3 0

G 2 3 1 0

Table 5.3: Values of Kj, rj and lj for Example 5.1.3

rj − 1 > Kj − rj − lj for the case j = 1, i.e. for main category B. We can therefore

separate all observed main categories in E by main categories not in E, but within

the B segment we are unable to find a configuration such that all subcategories in

E are separated. Figure 5.3 illustrates this and shows a configuration where B and

LB
MB

DB

DB

R
DG

LG

Y

OB

R

R DG

Y

Y

Figure 5.3: Probability wheel for Example 5.1.3

G are separated by R and Y. Looking specifically at the B segment, we see that

although OB can be used to separate LB and MB, the slice between MB and DB



5.1. Known numbers of (sub)categories 100

then has to belong to either MB or DB and we are therefore forced to assign this

slice to E. This means that the NPI lower probability for the event E is 2
8
. We can

verify this using (5.5). We see that the set OJ is empty, the set OJ∗ contains B

and G, the set OI1 contains LB, MB and DB and the set OI2 contains LG. Also,∑
j∈OJ∗

max{2rj + lj −Kj − 1, 0} = 1, therefore (5.5) gives

P (E) = 0 +
1− 1

8
+

2− 1

8
+

1− 1

8
+

1− 1

8
+

1

8
=

2

8
. �

Case 4: r > K − r − l and rj − 1 > Kj − rj − lj for at least one j

In this situation, not all of the observed main categories in E can be separated by

main categories not in E. As explained in Case 2, there are 2r + l −K separating

slices between main categories which cannot be filled in this way. However, as

illustrated in Example 5.1.2, we may still be able to separate observed main

categories in E using subcategories which are not in E but which are within a main

category that appears in E. As shown in Case 2, the number of subcategories which

can potentially be used to separate main categories in E is SM as given by (5.3).

In addition, due to the fact that rj − 1 > Kj − rj − lj for some j, some segments

have observed subcategories in E that cannot be separated by subcategories not in

E. As explained in Case 3, this means that there are 2rj + lj −Kj − 1 separating

slices remaining, which we are forced to assign to E. This leads to

P (E) =
∑
j∈OJ

nj − 1

n
+
∑
j∈OJ∗

∑
ij∈OIj

nj,ij − 1

n
+

1

n
(2r + l −K − SM)+

+
1

n

∑
j∈OJ∗

(2rj + lj −Kj − 1)+.

(5.6)

Example 5.1.4. Consider the data set described in Example 5.1.1. Suppose that we

are interested in the event Y9 ∈ {LB,MB,DB,LG,R,Y,P}. We have K = 6, r = 4

and l = 1. For main categories described at subcategory level, the values of Kj, rj

and lj are shown in Table 5.4. Here we have the situation where rj−1 > Kj−rj− lj



5.1. Known numbers of (sub)categories 101

j Kj rj lj

B 1 4 3 0

G 2 3 1 0

Table 5.4: Values of Kj, rj and lj for Example 5.1.4

for j = 1, i.e. for main category B, and also r > K − r − l. We are therefore

unable to separate all subcategories in E within the B segment. Furthermore, we

are unable to configure the probability wheel such that all observed main categories

in E are separated by main categories not in E. In this example, 2r + l − K = 3

and SM = 2. So whilst we can use some subcategories which are not in E but which

are part of a main category that appears in E, there is still one separating slice

between main categories which has to be assigned to E. Figure 5.4 shows a possible

LB
MB

DB

DB

R
DG

LG

Y

OG

O

OB

DG DG

Figure 5.4: Probability wheel for Example 5.1.4

configuration of the wheel such that O separates B and Y, OG separates Y and G,

and DG separates G and R. There is then no way of separating R and B by a main

category or subcategory not in E and we are therefore forced to assign this slice to

E. Looking specifically at the B segment, we see that OB separates LB and MB but

the slice between MB and DB then has to be assigned to E. This leads to a NPI

lower probability of 3
8

for the event E. This lower probability can be verified using

(5.6). We see that the set OJ contains R and Y, the set OJ∗ contains B and G, the

set OI1 contains LB, MB and DB and the set OI2 contains LG. Also, 2r+ l−K = 3,
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SM = 2 and
∑
j∈OJ∗

max{2rj + lj −Kj − 1, 0} = 1, therefore (5.6) gives

P (E) =
1− 1

8
+

1− 1

8
+

1− 1

8
+

2− 1

8
+

1− 1

8
+

1− 1

8
+

1

8
+

1

8
=

3

8
.

�

The NPI lower probability formulae for the four cases in this subsection can be

combined to give the following general expression:

P (E) =
∑
j∈OJ

nj − 1

n
+
∑
j∈OJ∗

∑
ij∈OIj

nj,ij − 1

n
+

1

n
(2r + l −K − SM)+

+
1

n

∑
j∈OJ∗

(2rj + lj −Kj − 1)+.

(5.7)

5.1.2 Upper probability

We now derive the NPI upper probability for the event E (5.1). This is found by

constructing a configuration of the probability wheel which maximises the number

of slices assigned to E. We do this by considering which slices can definitely not

be assigned to E and are accounted for by the k − r observed main categories not

in E or by the rj observed subcategories not in E. In order to construct such

a configuration, we first need to think about the various ways in which we can

separate lines or segments on the wheel representing different main categories which

either are not in E or are present in E but have neither end of their segment in E.

First, we can separate these main categories using unobserved main categories in E.

There are l of these categories. Secondly, we can separate using observed main-only

categories in E. There are rmain such categories. Finally, we can separate using the

other observed main categories in E, provided that the configuration of the relevant

segment is such that each end represents a subcategory in E. There are rsub main

categories in E that are described at subcategory level. For a segment to have the

required configuration, the category must satisfy kj−rj+1 ≤ rj+lj. This is because

we need kj − rj − 1 subcategories in E to ensure that all subcategories not in E are

separated and a further two to ensure that both ends of the segment are in E. We

define the number of main categories which satisfy this condition as r̃sub. We define
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the number of main categories which are present in E but have neither end of their

segment belonging to E, i.e. the number which satisfy kj−rj−1 ≥ rj+lj, as r0
sub. We

define the number of main categories which are present in E but have only one end

of their segment belonging to E, i.e. the number which satisfy kj−rj = rj+lj, as r1
sub.

As in Subsection 5.1.1, there are four different cases which we consider individually.

Case 1: (k − r) + r0
sub ≤ l + rmain + r̃sub, kj − rj − 1 ≤ rj + lj for all j

When (k − r) + r0
sub ≤ l + rmain + r̃sub, the number of main categories in E which

are either main-only or have both ends of their segment in E is greater than or

equal to the number of observed main categories which are either not in E at all or

are present in E but have neither end of their segment in E. All k separating slices

between two lines representing different main categories can therefore be assigned

to E.

Similarly, when kj − rj − 1 ≤ rj + lj within main category cj, there are

enough subcategories in E within each single segment to separate all the different

observed subcategories not in E. Therefore all kj − 1 separating slices between two

lines representing different subcategories can be assigned to E.

In addition, we must assign to E the slices between lines representing the

same main-only category in E and the slices between lines representing the same

subcategory in E. This leads to

P (E) =
∑
j∈OJ

nj − 1

n
+
k

n
+
∑
j∈OJ∗

(
∑
ij∈OIj

nj,ij − 1

n
+
kj − 1

n
). (5.8)

Example 5.1.5. Consider the data set used in Examples 5.1.1 to 5.1.4. This is a

multinomial data set with possible main categories blue (B), green (G), red (R),

yellow (Y), pink (P) and orange (O). These main categories are labelled 1 to 6

respectively. Observations in B are further classified as light blue (LB), medium

blue (MB), dark blue (DB) or other blue (OB) and observations in G are further

classified as light green (LG), dark green (DG) or other green (OG). The data set
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consists of eight observations altogether, including 1 LB, 1 MB, 2 DB, 1 LG, 1 DG,

1 R and 1 Y. Suppose that we are interested in the event Y9 ∈ {LB,DB,LG,P}.

Then k = 4, rmain = 0, rsub = 2, r = 2 and l = 1. For main categories which have

subcategories, the values of kj, rj and lj are shown in Table 5.5. The values in

j kj rj lj

B 1 3 2 0

G 2 2 1 0

Table 5.5: Values of kj, rj and lj for Example 5.1.5

LB
MB

DB

DB

R
DG

LG

Y

LBDB

DB

P LG

LG

LB

Figure 5.5: Probability wheel for Example 5.1.5

Table 5.5 show that the condition kj − rj + 1 ≤ rj + lj is satisfied by main category

B but not by main category G, so we have r̃sub = 1. We also have r0
sub = 0. This

example illustrates the situation where (k − r) + r0
sub ≤ l + rmain + r̃sub and also

kj − rj − 1 ≤ rj + lj for all j. We can find a configuration of the probability wheel

such that every slice is accounted for by a main category or subcategory in E. Figure

5.5 shows such a configuration with R and Y separated by B, R and G separated

by P, and G and Y separated by LG (since LG is in E). This leads to a NPI upper

probability of 1 for the event E. This upper probability can be verified using (5.8):

we see that the set OJ is empty, the set OJ∗ contains B and G, the set OI1 contains

LB and DB and the set OI2 contains LG, therefore (5.8) gives

P (E) =
4

8
+

1− 1

8
+

2− 1

8
+

2

8
+

1− 1

8
+

1

8
= 1.

�
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Case 2: (k − r) + r0
sub > l + rmain + r̃sub, kj − rj − 1 ≤ rj + lj for all j

As in Case 1, within each individual segment there are enough subcategories in

E to separate all observed subcategories not in E. We therefore find that within

each segment, all kj − 1 separating slices between two lines representing different

subcategories can be assigned to E.

However, the number of observed main categories which have neither end of

their segment in E is greater than the number of main categories in E which

are either main-only or have both ends of their segment in E. There are

(k − r) + r0
sub − (l + rmain + r̃sub) separating slices which we cannot assign to E, in

other words only k − ((k − r) + r0
sub − l − rmain − r̃sub) = r + l + rmain + r̃sub − r0

sub

of the k separating slices can be assigned to E.

In addition, we assign to E the slices between lines representing the same

main-only category in E and the slices between lines representing the same

subcategory in E. This leads to

P (E) =
∑
j∈OJ

nj − 1

n
+
r + l + rmain + r̃sub − r0

sub

n
+
∑
j∈OJ∗

(
∑
ij∈OIj

nj,ij − 1

n
+
kj − 1

n
).

(5.9)

Example 5.1.6. Consider the data set described in Example 5.1.5. Suppose that

we are interested in the event Y9 ∈ {LB,DB,LG}. We have k = 4, rmain = 0,

rsub = 2, r = 2 and l = 0. For main categories with subcategories, the values of kj,

rj and lj are shown in Table 5.6. The values in Table 5.6 show that the condition

j kj rj lj

B 1 3 2 0

G 2 2 1 0

Table 5.6: Values of kj, rj and lj for Example 5.1.6

kj − rj + 1 ≤ rj + lj is satisfied by main category B but not by main category G
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and we have r̃sub = 1. We also have r0
sub = 0. This example illustrates the situation

where (k − r) + r0
sub > l + rmain + r̃sub and kj − rj − 1 ≤ rj + lj for all j. We

can configure the probability wheel such that within each segment, every separating

slice between subcategories is assigned to a subcategory in E. However, we cannot

assign to E all separating slices between main categories. One configuration of the

LB
MB

DB

DB

R
DG

LG

Y

LBDB

DB

LG

LG

LB

Figure 5.6: Probability wheel for Example 5.1.6

wheel corresponding to the NPI upper probability is shown in Figure 5.6, where R

and Y are separated by B, and G and Y are separated by LG. However, there is

no available main category or subcategory in E to which we can assign the slice

separating R and G. This leads to a NPI upper probability of 7
8

for the event E.

This upper probability can be verified using (5.9). We see that the set OJ is empty,

the set OJ∗ contains B and G, the set OI1 contains LB and DB and the set OI2

contains LG. Also, r + l + rmain + r̃sub − r0
sub = 3, therefore (5.9) gives

P (E) =
3

8
+

1− 1

8
+

2− 1

8
+

2

8
+

1− 1

8
+

1

8
=

7

8
.

�

Case 3: (k − r) + r0
sub ≤ l + rmain + r̃sub, kj − rj − 1 > rj + lj for at least

one j

In this situation, the number of main categories in E that can be used to separate

observed main categories not in E is greater than or equal to the number of

observed main categories with neither end of their segment in E. This means that
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all k separating slices between main categories can be assigned to E.

However, within certain individual segments, we cannot separate all observed

subcategories not in E. There will be kj − rj − 1 − (rj + lj) = kj − 2rj − lj − 1

slices remaining. We can therefore only assign kj − 1− (kj − 2rj − lj − 1) = 2rj + lj

separating slices to E.

We must also assign to E the slices which lie between lines representing the

same main-only category in E and the slices which lie between lines representing

the same subcategory in E. This leads to

P (E) =
∑
j∈OJ

nj − 1

n
+
k

n
+
∑
j∈OJ∗

(
∑
ij∈OIj

nj,ij − 1

n
+

min{2rj + lj, kj − 1}
n

). (5.10)

Example 5.1.7. Consider the data set described in Example 5.1.5. Suppose that we

are interested in the event Y9 ∈ {LB,DB,P,O}. We have k = 4, rmain = 0, rsub = 1,

r = 1 and l = 2. The values of kj, rj and lj are shown in Table 5.7. The values in

j kj rj lj

B 1 3 2 0

G 2 2 0 0

Table 5.7: Values of kj, rj and lj for Example 5.1.7

Table 5.7 show that the condition kj − rj − 1 ≤ rj + lj is satisfied by main category

B but not by main category G. Furthermore, the condition kj − rj + 1 ≤ rj + lj is

only satisfied by B, so we have r̃sub = 1. We also have r0
sub = 0. This is an example

of the situation where (k − r) + r0
sub ≤ l + rmain + r̃sub and kj − rj − 1 > rj + lj for

one or more j. We can configure the probability wheel such that all k separating

slices between two lines representing different main categories can be assigned to E.

However, within the G segment we cannot separate all subcategories not in E. A

configuration of the wheel corresponding to the NPI upper probability is shown in

Figure 5.7, where R and Y are separated by B, G and Y are separated by O, and
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LB
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Figure 5.7: Probability wheel for Example 5.1.7

G and R are separated by P. However, there is no available subcategory in E to

which we can assign the slice separating DG and LG. This leads to a NPI upper

probability of 7
8

for the event E. This upper probability can be verified using (5.10).

We see that the set OJ is empty, the set OJ∗ contains B and the set OI1 contains

LB and DB. Also,
∑
j∈OJ∗

min{2rj + lj, kj − 1} = 2, therefore (5.10) gives

P (E) =
4

8
+

1− 1

8
+

2− 1

8
+

2

8
=

7

8
.

�

Case 4: (k − r) + r0
sub > l + rmain + r̃sub, kj − rj − 1 > rj + lj for at least

one j

In this situation, there are more observed main categories with neither end of

their segment in E than there are main categories in E which are either main-only

or have both ends of their segment in E. This means that, as in Case 2, only

r + l + rmain + r̃sub − r0
sub of the k separating slices between main categories can be

assigned to E.

Also, within some particular main categories there are more observed subcategories

not in E than there are subcategories in E, so as in Case 3 only 2rj + lj of the

separating slices between subcategories can be assigned to E. Again, we must

assign to E any slices between lines representing the same main-only category in E
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and any slices between lines representing the same subcategory in E. This leads to

P (E) =
∑
j∈OJ

nj − 1

n
+
r + l + rmain + r̃sub − r0

sub

n

+
∑
j∈OJ∗

(
∑
ij∈OIj

nj,ij − 1

n
+

min{2rj + lj, kj − 1}
n

).

(5.11)

Example 5.1.8. Consider the data set described in Example 5.1.5. Suppose that we

are interested in the event Y9 ∈ {LB,DB,P}. We have k = 4, rmain = 0, rsub = 1,

r = 1 and l = 1. For main categories described at subcategory level, the values of

kj, rj and lj are shown in Table 5.8. The values in Table 5.8 show that the condition

j kj rj lj

B 1 3 2 0

G 2 2 0 0

Table 5.8: Values of kj, rj and lj for Example 5.1.8

kj− rj− 1 ≤ rj + lj is satisfied by main category B but not by main category G. We

also see that the condition kj − rj + 1 ≤ rj + lj is only satisfied by B, so r̃sub = 1.

We also have r0
sub = 0. We have the situation where (k− r) + r0

sub > l+ rmain + r̃sub

and kj − rj − 1 > rj + lj for one or more j. There is no configuration of the

probability wheel such that all categories not in E are separated by categories in

E. Also, within the G segment we cannot separate all subcategories not in E. One

LB
MB

DB

DB

R
DG

LG

Y

LBDB

DB

P

LB

Figure 5.8: Probability wheel for Example 5.1.8
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configuration of the wheel corresponding to the NPI upper probability is shown in

Figure 5.8. Figure 5.8 shows a configuration where R and Y are separated by B, and

G and R are separated by P. However, we cannot separate G and Y by a category

in E. We also do not have an available subcategory in E to which we can assign

the slice separating DG and LG. This leads to a NPI upper probability of 6
8

for the

event E. This upper probability can be verified using (5.11). We see that the set

OJ is empty, the set OJ∗ contains B and the set OI1 contains LB and DB. Also,

r + l + rmain + r̃sub − r0
sub = 3 and

∑
j∈OJ∗

min{2rj + lj, kj − 1} = 2, therefore (5.11)

gives

P (E) =
3

8
+

1− 1

8
+

2− 1

8
+

2

8
=

6

8
.

�

The NPI upper probability formulae for the four cases in this subsection can be

combined to give the following general expression:

P (E) =
∑
j∈OJ

nj − 1

n
+

min{r + l + rmain + r̃sub − r0
sub, k}

n

+
∑
j∈OJ∗

(
∑
ij∈OIj

nj,ij − 1

n
+

min{2rj + lj, kj − 1}
n

).

(5.12)

5.2 Properties of the model

In this section, we prove some general properties of the results presented in Section

5.1, where a general expression for the event of interest E was given (5.1) and the

NPI lower probability (5.7) and upper probability (5.12) for this event were derived.

We discuss four properties of these inferences.

5.2.1 Conjugacy

A fundamental property for lower and upper probabilities is the conjugacy property.

Conjugacy means that for any event of interest E, the following expression is always

true:

P (E) = 1− P (Ec).
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Ec represents the complementary event to E, i.e. an event containing all possible

categories and subcategories except for those contained in E. We illustrate

conjugacy in Example 5.2.1 below.

Example 5.2.1. Consider a multinomial data set with possible main categories blue

(B), green (G), red (R), yellow (Y), pink (P) and orange (O). These are labelled

1 to 6 respectively. Observations in B are classified further as light blue (LB),

medium blue (MB), dark blue (DB) or other blue (OB) and observations in G are

classified further as light green (LG), dark green (DG) or other green (OG). The

data set consists of eight observations, namely 1 LB, 1 MB, 2 DB, 1 LG, 1 DG, 1

R and 1 Y.

Suppose that we are interested in the event Y9 ∈ {MB,OB,DG,OG,R,Y,O}.

We label this event E. To find the upper probability for E we use (5.12). For this

event, K = 6, k = 4, r = 4 and l = 1. For main categories with subcategories,

the values of Kj, kj, rj, lj, rj and lj are shown in Table 5.9. We have rmain = 2,

rsub = 2 and r̃sub = 1. Substituting these values into (5.12) gives P (E) = 7
8
.

j Kj kj rj lj rj lj

B 1 4 3 1 1 2 0

G 2 3 2 1 1 1 0

Table 5.9: Values for E for Example 5.2.1

j Kj rj lj rj lj

B 1 4 2 0 1 1

G 2 3 1 0 1 1

Table 5.10: Values for Ec for Example 5.2.1

We now consider the complementary event to E, which is Y9 ∈ {LB,DB,LG,P}.

We label this event Ec. To find the lower probability for Ec, we use (5.7). For Ec,

K = 6, r = 2 and l = 1. For main categories described at subcategory level, the

values of Kj, rj, lj, rj and lj are shown in Table 5.10. Substituting these values
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into (5.7) gives P (Ec) = 1
8

and hence

P (Ec) =
1

8
= 1− 7

8
= 1− P (E).

This shows that the general formulae for NPI lower and upper probability are

conjugated with regard to the specific event considered here. �

We now show that the conjugacy property is satisfied for all events. We do this

by considering the general expressions for E and Ec. We already have a general

formula for E (5.1) and we can express the complementary event Ec as

Yn+1 ∈
⋃
j∈F

cj ∪
⋃
j∈J∗

⋃
ij∈Ij

sjij (5.13)

where F ⊆ {1, ..., K}. Note that F, J and J∗ form a partition of {1, ..., K} and are

pairwise disjoint and Ij = {1, ..., Kj}\Ij for j = 1, ..., K as before.

We let OF = F ∩ {1, ..., k} and define | OF |= fmain. OF is the index-set

of observed main-only categories in Ec. Also, let UF = F ∩ {k + 1, ..., K} and

define | UF |= qmain. UF is the index-set of unobserved main-only categories in

Ec. Table 5.11 shows how the notation used for the two events E and Ec compares.

We take (5.7) and substitute Ec in place of E. This shows that the NPI lower

E Ec

Observed main categories rmain + rsub = r fmain + rsub

Unobserved main categories lmain + lsub = l qmain + lsub

Observed subcategories in event rj rj

Unobserved subcategories in event lj lj

Observed subcategories not in event rj rj

Unobserved subcategories not in event lj lj

Table 5.11: Notation for E and Ec
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probability for Ec is

P (Ec) =
∑
j∈OF

nj − 1

n
+
∑
j∈OJ∗

∑
ij∈OIj

nj,ij − 1

n

+
1

n
(2fmain + 2rsub + qmain + lsub −K − SM)+

+
1

n

∑
j∈OJ∗

(2rj + lj −Kj − 1)+

(5.14)

where SM =
∑
j∈OJ∗

min{(rj + lj − rj + 1)+, 2} +
∑
j∈UJ∗

min{lj, 1}. To investigate the

conjugacy property, we compare (5.14) to the NPI upper probability (5.12) for E .

Theorem 5.2.1. P (Ec) = 1− P (E).

Proof. To satisfy conjugacy, P (Ec) and P (E) must always sum to 1. This means

for the probability wheel that the total number of slices of the wheel assigned to E

according to P (E) or to Ec according to P (Ec) must sum to n.

Within each individual segment, there are nj − 1 slices in total including

nj,ij − 1 slices which must belong to each subcategory sj,ij . We need to prove that

the total number of separating slices assigned to E or Ec in an individual segment

always sums to kj − 1. The formula for P (Ec) assigns (2rj + lj −Kj − 1)+ of these

separating slices to Ec and the formula for P (E) assigns min{2rj+lj, kj−1} of these

separating slices to E. So we need to show two things: first, that 2rj+lj−Kj−1 and

2rj+ lj sum to kj−1 and secondly, that if kj−1 < 2rj+ lj, then 2rj+ lj−Kj−1 < 0.

Since rj + rj = kj, and rj + rj + lj + lj = Kj, we have

2rj + lj −Kj − 1 + 2rj + lj = kj +Kj −Kj − 1 = kj − 1.

Also,

kj−1 < 2rj + lj ⇔ kj−1−2rj− lj < 0⇔ rj−rj− lj−1 < 0⇔ 2rj + lj−Kj−1 < 0.

So this shows that the total number of slices in a segment will always sum to nj − 1

as required. This is also clearly true for main-only categories.
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Looking at the wheel as a whole, we need to show that the number of separating

slices between main categories that are assigned to E or Ec always sums to k. The

formula for P (E) assigns min{r+ l+ rmain + r̃sub− r0
sub, k} of these separating slices

to E and the formula for P (Ec) assigns (2fmain + 2rsub + qmain + lsub −K − SM)+

of these separating slices to Ec. So we need to show two things: first, that

r+l+rmain+r̃sub−r0
sub and 2fmain+2rsub+qmain+lsub−K−SM sum to k and secondly,

that if r+ l+ rmain + r̃sub− r0
sub > k then 2fmain + 2rsub + qmain + lsub−K−SM < 0.

By considering the definitions of r̃sub and r1
sub, we find that

SM = 2r̃sub + r1
sub + lsub.

Using this and also using the relations rmain + fmain + rsub + lmain + qmain + lsub = K

and rmain + fmain + rsub = k, we have

r + l + rmain + r̃sub − r0
sub + 2fmain + 2rsub + qmain + lsub −K − SM =

r + l + rmain − rsub + 2fmain + 2rsub + qmain −K = rmain + rsub + fmain = k.

Also,

r + l + rmain + r̃sub − r0
sub > k ⇔ k − r − l − rmain − r̃sub + r0

sub < 0

⇔ 2fmain + 2rsub + qmain + lsub −K − SM < 0.

This proves that the number of separating slices between main categories which are

assigned to E or Ec always sums to k. This completes the proof that the total

number of slices assigned to E and Ec is always equal to n, or in other words that

P (E) and P (Ec) sum to 1. Therefore the general formulae (5.7) and (5.12) for the

NPI lower and upper probability are conjugated, as required.

5.2.2 Relative frequencies

A desirable property for the Sub-MNPI model is that the interval between the lower

and upper probabilities contains the relative frequency of observations in the event

of interest E. We label the relative frequency as RF , where

RF =
∑
j∈OJ

nj
n

+
∑
j∈OJ∗

∑
ij∈OIj

nj,ij
n
. (5.15)
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We want to prove that

P (E) ≤ RF ≤ P (E). (5.16)

A basic form of predictive inference is the method whereby the predictive probability

of a category is simply set to be to the relative frequency of that category in the data.

The above property (5.16) is desirable because we wish to show that the Sub-MNPI

model is a generalisation of this intuitive method and furthermore that the lower

and upper probabilities given by the model are not in conflict with the empirical

probabilities. This cannot be said of precise probability methods such as Bayesian

inferences, which typically assign a positive probability to a category before it has

been observed even once. Example 5.2.2 illustrates (5.16).

Example 5.2.2. Consider a multinomial data set with possible main categories blue

(B), green (G), red (R), yellow (Y), pink (P) and orange (O). Observations in B are

classified further as light blue (LB), medium blue (MB), dark blue (DB) or other

blue (OB) and observations in G are classified further as light green (LG), dark green

(DG) or other green (OG). The data set consists of eight observations, namely 1

LB, 1 MB, 2 DB, 1 LG, 1 DG, 1 R and 1 Y.

S P RF P

P 0 0 1
8

P,LB 0 1
8

3
8

P,LB,LG 0 2
8

5
8

P,LB,LG,DB 1
8

4
8

1

P,LB,LG,DB,R 1
8

5
8

1

P,LB,LG,DB,R,Y 1
8

6
8

1

P,LB,LG,DB,R,Y,MB 1
8

7
8

1

P,LB,LG,DB,R,Y,MB,DG 1
8

1 1

Table 5.12: Lower and upper probabilities and relative frequencies for Example 5.2.2

Several general events of the form Y9 ∈ S are considered here, where S is a subset

of the K possible categories. These are shown in Table 5.12, together with the

corresponding relative frequencies and NPI lower and upper probabilities, which are
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found using (5.15), (5.7) and (5.12) respectively. We see that (5.16) is true for all

events considered in this example. �

We now prove (5.16) for the general case. We prove this property in two stages,

considering each inequality separately.

Theorem 5.2.2. P (E) ≤ RF.

Proof. We can rearrange the formula for P (E) (5.7) as

P (E) =
∑
j∈OJ

nj
n
− rmain

n
+
∑
j∈OJ∗

(
∑
ij∈OIj

nj,ij
n
− rj
n

)

+
1

n
(2r + l −K − SM)+

+
1

n

∑
j∈OJ∗

(2rj + lj −Kj − 1)+.

(5.17)

In the event that the terms (2r+l−K−SM)+ and (2rj+lj−Kj−1)+ are both equal

to zero, the proof is trivial. Supposing that they are both non-zero, the inequality

that must be proven is equivalent to

−rmain + 2r + l −K +
∑
j∈OJ∗

(rj + lj −Kj − 1)− SM ≤ 0.

Since
∑
j∈OJ∗

1 = rsub, the inequality becomes

(r + l −K) +
∑
j∈OJ∗

(rj + lj −Kj)− SM ≤ 0.

By definition, (r+ l−K) and (rj + lj −Kj) must be less than or equal to zero, and

the third term always subtracts a number greater than or equal to zero, therefore

we see that the LHS is always non-positive. This proves the required inequality.

If (2rj + lj − Kj − 1)+ is equal to zero but (2r + l − K − SM)+ is not, the

inequality that must be proven is equivalent to

−rmain + 2r + l −K −
∑
j∈OJ∗

rj − SM ≤ 0.

The term
∑

j∈OJ∗ rj + SM is always at least as large as
∑
j∈OJ∗

1 = rsub and this leads

to the inequality

r + l −K ≤ 0
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which is true by definition.

If (2r + l − K − SM)+ is equal to zero but (2rj + lj − Kj − 1)+ is not, the

inequality that must be proven is equivalent to

−rmain +
∑
j∈OJ∗

(−rj + 2rj + lj −Kj − 1) ≤ 0

which can be rewritten as

−rmain +
∑
j∈OJ∗

(rj + lj −Kj − 1) ≤ 0.

By definition, (rj + lj − Kj) is less than or equal to zero, so the LHS is always

non-positive. This proves the required inequality. So Theorem 5.2.2 holds in all

situations.

Theorem 5.2.3. RF ≤ P (E).

Proof. The formula for P (E) can be rewritten as

P (E) =
∑
j∈OJ

nj
n
− rmain

n
+

min{r + l + rmain + r̃sub − r0
sub, k}

n

+
∑
j∈OJ∗

(
∑
ij∈OIj

nj,ij
n
− rj
n

+
min{2rj + lj, kj − 1}

n
)

(5.18)

and so the inequality that must be proven is equivalent to

0 ≤ −rmain + min{r+ l+ rmain + r̃sub− r0
sub, k}+

∑
j∈OJ∗

(−rj + min{2rj + lj, kj − 1}).

Since kj = rj + rj, this inequality becomes

0 ≤ min{r + l + r̃sub − r0
sub, k − rmain}+

∑
j∈OJ∗

min{rj + lj, rj − 1}.

The RHS is always positive, proving Theorem 5.2.3.

Combining Theorems 5.2.2 and 5.2.3 shows that the model contains the relative

frequencies, so (5.16) is satisfied.
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5.2.3 Imprecision vanishes as n→∞

A third property of the Sub-MNPI model is that as the number of observations

in the data set becomes infinitely large, the imprecision vanishes and the interval

probability P (E) shrinks to a point value equal to the relative frequency, which is

given by (5.15).

Theorem 5.2.4. lim
n→∞

[P (E)− P (E)] = 0.

Proof. Using (5.7) and (5.12), P (E)− P (E) can be written as

1

n
(min{r + l + rmain + r̃sub − r0

sub, k}) +
1

n

∑
j∈OJ∗

(min{2rj + lj, kj − 1} − rj)

− 1

n
(2r + l −K − SM)+ − 1

n

∑
j∈OJ∗

((2rj + lj −Kj − 1)+ − rj).
(5.19)

We consider what happens to the terms in this expression as n→∞. The value of

k increases as more data are observed because the number of main categories that

have not been observed diminishes and we find that k → k∞ for some k∞ ≤ K.

The same applies to the total number of subcategories and we find that kj → k∞j

for some k∞j ≤ Kj. Similarly, r, l, rj, lj, rj and lj are affected: as the numbers of

observed main categories and subcategories increase, r, rj and rj increase whilst l,

lj and lj decrease. However, all these terms remain finite, since they are limited by

the total numbers of main categories and subcategories. The total number of main

categories, K, and the total number of subcategories in each main category, Kj,

are unchanged as n increases and remain finite. (5.19) tends to zero as n → ∞, so

lim
n→∞

[P (E)− P (E)] = 0.

5.2.4 F-probability

An important property for the Sub-MNPI model to satisfy is that the interval

probabilities [P (E), P (E)] are F-probabilities in the sense of Weichselberger [43].

Let Ω represent the sample space consisting of all possible main categories

and subcategories and suppose that E is the power set of Ω. An event E is an

element of E . Weichselberger [43] defines the structure as the set of all classical
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probabilities p that are in accordance with the interval limits, i.e. the set

M = {p|P (E) ≤ p(E) ≤ P (E), ∀E ∈ E}.

An interval probability P (·) is an F-probability if, for all E ∈ E ,

inf
p∈M

p(E) = P (E)

and

sup
p∈M

p(E) = P (E).

F-probability is a desirable property because it shows that none of the interval

probabilities is too wide and that they could not be made any smaller given the

data available to us. Also, F-probability is strongly linked to other concepts

in probability theory. Conjugacy, proven in Subsection 5.2.1, is implicit in the

F-probability property. Coherence is a direct consequence of F-probability, by

Walley’s lower envelope theorem [40], and this can be seen as a rationality

requirement. From a subjective perspective, lower and upper probabilities can be

used to determine betting behaviour, and coherence ensures rational behaviour and

that no sure-loss gambles are accepted. It should be noted that the NPI lower and

upper probabilities are not coherent in the sense of Walley upon updating, but they

are at any single point in time. Updating, however, is not done in a Bayesian way

through conditioning as Walley’s coherence implies, but is dealt with by taking

new observations into account as well as the previously observed data and making

inferences based on the new total number of observations. We do not consider

updating or conditioning here, but in [6] and [18] it is shown that NPI leads to

strong consistency properties for these actions.

In order to investigate the F-probability property, we introduce some new

notation to describe all the possible configurations of the probability wheel.

As stated previously, there are K main categories in total and there are Kj

subcategories within each category. We now imagine that the wheel is split into K

segments and that each segment is split into Kj subsegments. We move clockwise

around the wheel numbering the segments as 1, ..., K as shown in Figure 5.9. We
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also number the subsegments within segment j as 1, ..., Kj as shown in Figure 5.10.

The area of these segments and subsegments is thus far unspecified: we allocate a

different main category or subcategory to each segment or subsegment in order to

describe the configuration of the wheel, but a segment assigned to an unobserved

category may have area zero.

K

K-1...

j

...

3 2

1

Figure 5.9: Diagram showing how segments are numbered

Kj

Kj-1

...
i

...21

Figure 5.10: Diagram showing how subsegments are numbered

As seen in [17], we let Σ represent the set of all possible permutations σ of

the wheel. Each σ can be described by a sequence

(σ(j))j=1...K+1, σ(K + 1) = σ(1)

where σ(j) is the index of the main category assigned to segment j, and a set of

sequences

(σ(i, j))i=1...Kj , j ∈ J∗
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where σ(i, j) is the index of the subcategory within main category j assigned to

subsegment i.

It is also necessary to describe the position of the observed main categories and

subcategories on the wheel for a given σ. Let the circular sequence σ(i1), ..., σ(ik+1),

with σ(ik+1) = σ(i1), be the indices of the observed main categories as we move

around the wheel and let the sequence σ(i1, j), ..., σ(ikj , j), j ∈ J∗, be the indices

of the observed subcategories as we move through the segment representing main

category j.

Using the above notation, Coolen and Augustin [17] described the separating

slice between two observed main categories using the set {σ(j)|il ≤ j ≤ il+1} for

l = 1, ..., k. This is the set of indices of all possible main categories to which, for the

particular configuration σ, we could assign the separating slice between the main

categories in positions il and il+1 on the wheel.

However, since we are now considering the situation where main categories

may be broken down into subcategories, we must also consider the specific

subcategories to which the slice could be assigned. We describe the separating slice

as follows:

Jσ,l = {σ(j)|il ≤ j ≤ il+1}, l = 1, ..., k

if categories in positions il and il+1 are main-only,

Jσ,l = {σ(j)|il ≤ j < il+1} ∪
i1⋃
x=1

σ(x, l + 1), l = 1, ..., k

if category in position il is main-only but category in position il+1 has subcategories,

Jσ,l = {σ(j)|il < j ≤ il+1} ∪
Kl⋃

x=ikl

σ(x, l), l = 1, ..., k

if category in position il has subcategories but category in position il+1 is main-only,

and

Jσ,l = {σ(j)|il < j < il+1} ∪
i1⋃
x=1

σ(x, l + 1) ∪
Kl⋃

x=ikl

σ(x, l), l = 1, ..., k
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if categories in positions il and il+1 both have subcategories.

Jσ,l is the index set of all main categories and subcategories to which the

separating slice could be assigned. Let c|Jσ,l| be the set of all these main categories

and subcategories.

We also describe the separating slice between two observed subcategories

within the same main category using

Bσ,j,l = {σ(b, j)|il ≤ b ≤ il+1}, l = 1, ..., kj − 1, j ∈ J∗.

This is the set of indices of all possible subcategories to which, for the particular

configuration σ, we could assign the separating slice between the subcategories in

positions il and il+1 in the segment representing main category j. Let s|Bσ,j,l| be the

set of these subcategories.

Example 5.2.3 is included to clarify the above notation.

Example 5.2.3. Consider a multinomial data set with possible main categories red

(R), yellow (Y), blue (B), green (G), pink (P), purple (Pu), orange (O) and white

(W). These categories are numbered 1 to 8 respectively. We can describe B in

more detail: observations may be dark blue (DB), medium blue (MB) or light

blue (LB). These subcategories are numbered 1 to 3 respectively. Similarly, G

observations may be dark green (DG), medium green (MG) or light green (LG).

These subcategories are numbered 1 to 3 respectively.

First we consider the positioning of these main categories and subcategories

on the wheel. As explained above, there is a set of configurations Σ detailing

the position of every possible main category and subcategory, both observed and

unobserved. Suppose that we are looking at one particular configuration, σ. The

positions of the main categories and subcategories in this configuration are as follows:

σ(1) = 1, σ(2) = 5, σ(3) = 3, σ(4) = 6, σ(5) = 4, σ(6) = 7, σ(7) = 2,
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σ(8) = 8

σ(1, 3) = 1, 3, σ(2, 3) = 2, 3, σ(3, 3) = 3, 3

σ(1, 4) = 3, 4, σ(2, 4) = 2, 4, σ(3, 4) = 1, 4

For further clarification, σ is shown in Figure 5.11.

R
1

W

8

Y

7

O
6

DG

MG
5

LG

Pu

4

LBMB

3

DB

P
2

Figure 5.11: Configuration σ for Example 5.2.3

Suppose that we have observed 2 R, 1 Y, 2 DB, 1 LB, 1 MG and 1 DG. Given the

configuration σ explained above, the probability wheel for these data is as shown in

Figure 5.12. In order to decide how to assign each of the slices separating different

main categories, we use the sets Jσ,l explained above. The slice labelled S1, which

separates the Y and R main categories, is an example of a slice separating two

main-only categories. We therefore use the formula Jσ,l = {σ(j)|il ≤ j ≤ il+1}.

Here, Jσ,l = {σ(j)|7 ≤ j ≤ 9} = {σ(7), σ(8), σ(9)}. So this slice could be assigned

to R, W or Y.

The slice labelled S2, which separates the R and B main categories, is an

example of a separating slice where the category in position il is main-only but

the category in position il+1 has subcategories. We therefore use the formula
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R
R

Y

MG

LG
LB

DB

DB

S2

S1

S3

S4

S6

S5

Figure 5.12: Probability wheel for Example 5.2.3

Jσ,l = {σ(j)|il ≤ j < il+1} ∪
i1⋃
x=1

σ(x, l + 1). Here, Jσ,l = {σ(j)|1 ≤ j < 3} ∪ σ(1, 3)

= {σ(1), σ(2), σ(1, 3)}. So this slice could be assigned to R, P or DB.

The slice labelled S3, which separates the G and Y main categories, is an

example of a separating slice where the category in position il has subcategories

but the category in position il+1 is main-only. We therefore use the formula

Jσ,l = {σ(j)|il < j ≤ il+1} ∪
Kl⋃

x=ikl

σ(x, l). Here, Jσ,l = {σ(j)|5 < j ≤ 7} ∪
3⋃

x=2

σ(x, 5)

= {σ(6), σ(7), σ(2, 5), σ(3, 5)}. So this slice could be assigned to O, Y, MG or DG.

The slice labelled S4, which separates the B and G main categories, is an example of a

separating slice where the categories in positions il and il+1 both have subcategories.

We therefore use the formula Jσ,l = {σ(j)|il < j < il+1}∪
i1⋃
x=1

σ(x, l+1)∪
Kl⋃

x=ikl

σ(x, l).

Here, Jσ,l = {σ(j)|3 < j < 5} ∪ σ(1, 5) ∪ σ(3, 3) = {σ(4), σ(1, 5), σ(3, 3)}. So this

slice could be assigned to Pu, LB or LG.

In order to decide how to assign each of the slices separating different subcategories

within a segment, we use the sets Bσ,j,l, also explained above.

The slice labelled S5, which separates the DB and LB subcategories,

could be assigned to any subcategory in Bσ,j,l = {σ(b, 3)|1 ≤ b ≤ 3} =
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{σ(1, 3), σ(2, 3), σ(3, 3)}, i.e. to LB, MB or DB.

The slice labelled S6, which separates the LG and MG subcategories, could

be assigned to any subcategory in Bσ,j,l = {σ(b, 4)|1 ≤ b ≤ 2} = {σ(1, 4), σ(2, 4)},

i.e. to LG or MG. �

Now that the notation has been explained, we prove the F-probability property.

The following theorem and proof is based on work by Coolen and Augustin [17]

which proved the F-probability property for the original MNPI model. The proof

below generalises this for the Sub-MNPI model. In this proof, basic probability

assignments are used to describe our inferences in a formal way. For some event A,

the basic probability assignment m(A) is a measure interpreted as the proportion of

the available information that supports the claim that A occurs without assuming

any particular division among proper subsets of A. The theory of basic probability

assignments is summarised in [5]. As seen in [17], for a given configuration σ,

the Sub-MNPI model gives the following basic probability assignment to the event

Yn+1 ∈ cj:

mσ(Yn+1 ∈ cj) = max{nj − 1

n
, 0}, j = 1, ..., K.

Similarly, the basic probability assignment given to the event Yn+1 ∈ sj,ij is

mσ(Yn+1 ∈ sj,ij) = max{
nj,ij − 1

n
, 0}, i = 1, ..., Kj.

With regard to distributing probability mass amongst slices separating different

main categories or subcategories, we give the following basic probability assignments:

mσ(Yn+1 ∈ c|Jσ,l|) =
1

n
, l = 1, ..., k.

mσ(Yn+1 ∈ s|Bσ,j,l|) =
1

n
, l = 1, ..., kj − 1, j ∈ J∗.

Any other event is given the basic probability assignment of zero.

The proof of Theorem 5.2.5 also utilises the belief function and the plausibility

function, which draw on the Dempster-Shafer theory [37]. (Note that we do not

make use of any further concepts from Dempster-Shafer theory, particularly not
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their updating rules.) Let XE represent the index set of the event of interest

E. This set contains some one-dimensional elements, corresponding to main-only

categories, and some two-dimensional elements, corresponding to subcategories.

We also define a second event of interest Yn+1 ∈ D, where D is some subset of main

categories and subcategories corresponding to an index set XD.

The belief function [37] of a set is defined as the sum of the basic probability

assignments of all possible subsets of that set. For a given configuration σ, the

belief function of E is

P σ(E) =
∑

XD⊆XE

mσ(Yn+1 ∈ D). (5.20)

The plausibility function [37] of a set is defined as the sum of the basic probability

assignments of all possible sets which intersect that set. For a given configuration

σ, the plausibility function of E is

P σ(E) =
∑

XD∩XE 6=∅

mσ(Yn+1 ∈ D). (5.21)

Theorem 5.2.5. The interval consisting of the lower probability (5.7) and the upper

probability (5.12) is an F-probability in the sense of Weichselberger [43].

Proof. In order to prove this property, we determine the lower and upper

probabilities for event E via the belief function (5.20) and the plausibility function

(5.21). We first derive the belief function of E. With the basic probability

assignments explained above, the only subsets of E which have a non-zero basic

probability assignment are single main-only categories or subcategories in E, or sets

c|Jσ,l| where Jσ,l ⊆ XE, or sets s|Bσ,j,l| where Bσ,j,l ⊆ Ij. This leads to the following

belief function:

P σ(E) =
∑
j∈J

mσ({Yn+1 ∈ cj}) +
∑
j∈J∗

∑
ij∈Ij

mσ({Yn+1 ∈ sj,ij})

+
∑

Jσ,l⊆XE

mσ({Yn+1 ∈ c|Jσ,l|}) +
∑

Bσ,j,l⊆Ij

mσ({Yn+1 ∈ s|Bσ,j,l|}).
(5.22)

We now derive the plausibility function of E. With the basic probability assignments

explained above, the only subsets of E which have a non-zero basic probability
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assignment are single main-only categories or subcategories in E, or sets c|Jσ,l| where

Jσ,l ∩ XE 6= ∅, or sets s|Bσ,j,l| where Bσ,j,l ∩ Ij 6= ∅. This leads to the following

plausibility function:

P σ(E) =
∑
j∈J

mσ({Yn+1 ∈ cj}) +
∑
j∈J∗

∑
ij∈Ij

mσ({Yn+1 ∈ sj,ij})

+
∑

Jσ,l∩XE 6=∅

mσ({Yn+1 ∈ c|Jσ,l|}) +
∑

Bσ,j,l∩Ij 6=∅

mσ({Yn+1 ∈ s|Bσ,j,l|}).
(5.23)

We have a set of belief functions and a set of plausibility functions corresponding

to the set Σ of possible configurations of the probability wheel. In Section 5.1,

we derived the lower and upper probability formulae of the Sub-MNPI model by

considering all possible configurations σ ∈ Σ, resulting in

P (E) = min
σ∈Σ

P σ(E)

and

P (E) = max
σ∈Σ

P σ(E).

In other words, we took the lower and upper envelopes over all possible

configurations.

According to Theorem 3.2 of [5], taking the lower and upper envelopes over

all possible configurations leads to F-probability. Therefore the interval probability

is an F-probability as required.

5.3 Unknown numbers of (sub)categories

In this section we consider the situation where the quantities K and Kj, j = 1, ..., K,

are unknown. It is important to note that in addition to these quantities being

unknown, they are not assumed to have a finite limit. As in Section 5.1, we

have observed k main categories and within category cj we have observed kj

subcategories. In order to describe the general events of interest in this situation,

we introduce some new notation. As in Subsection 2.2.2, let cjs , s = 1, ..., r′, be

the observed main-only categories in the event of interest, let UN be the set of
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Unobserved New main categories, which refers to any not yet observed category,

and let DNj, j = 1, ..., l, be the set of Defined New main categories, which is a

subset of UN and which represents categories we wish to specify in the event of

interest but which have not yet been observed.

In addition, let cjs , s = r′ + 1, ..., r, be the observed main categories in the event

of interest which are described at subcategory level and let sjs,ijs , s = r′ + 1, ..., r,

ijs = 1, ..., rs, be the observed subcategories in the event of interest. Let D̃N js,ijs
,

ijs = 1, ..., ds, be the set of Defined New subcategories within the observed main

categories cjs and let DNj,ij , j = 1, ..., l, ij = 1, ..., lj, be the set of Defined New

subcategories within the Defined New main categories. Let ˜UN js , s = 1, ..., r be

the set of all Unobserved New subcategories within the observed main categories cjs

and let UNj, j = 1, ..., l be the set of all Unobserved New subcategories within the

Defined New main categories. A given event can be expressed as a union involving

some or all of the above terms. Let A,B ⊆ {1, ..., k} such that A ∩ B = ∅. Any

event of interest can be expressed using one of the two formulae shown below. The

first general event is

Yn+1 ∈
r′⋃
s=1

cjs ∪
r⋃

s=r′+1

(
rs⋃

ijs=1

sjs,ijs )

∪
⋃
s∈A

( ˜UN js \
ds⋃

ijs=1

D̃N js,ijs
) ∪

⋃
s∈B

(
ds⋃

ijs=1

D̃N js,ijs
)

∪
l′⋃
j=1

(UNj \
lj⋃

ij=1

DNj,ij) ∪
l⋃

j=l′+1

(

lj⋃
ij=1

DNj,ij).

(5.24)

The second general event is

Yn+1 ∈
r′⋃
s=1

cjs ∪
r⋃

s=r′+1

(
rs⋃

ijs=1

sjs,ijs )

∪
⋃
s∈A

( ˜UN js \
ds⋃

ijs=1

D̃N js,ijs
) ∪

⋃
s∈B

(
ds⋃

ijs=1

D̃N js,ijs
)

∪ UN \ {
l′⋃
j=1

(UNj \
lj⋃

ij=1

DNj,ij) ∪
l⋃

j=l′+1

(

lj⋃
ij=1

DNj,ij)}.

(5.25)

We denote these by E1 (5.24) and E2 (5.25). The notation used in these expressions
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allows us to include only defined subcategories of some main categories, but all

undefined subcategories of other main categories. E1 encompasses all events

containing only defined main categories, whilst E2 encompasses all events containing

the set of undefined main categories. We can therefore describe any event using

either (5.24) or (5.25). We now derive formulae for the NPI lower and upper

probabilities for each of these general events.

5.3.1 Lower probability

We consider the NPI lower probabilities for events E1 (5.24) and E2 (5.25). These

are found by minimising the number of slices of the probability wheel that must

be assigned to the event of interest. The slices of the wheel which must always be

assigned to an event of interest are those between two lines representing the same

observed main-only category or subcategory in that event. So for both E1 and E2,

the term
r′⋃
s=1

cjs ∪
r⋃

s=r′+1

(
rs⋃

ijs=1

sjs,ijs ),

always contributes to the NPI lower probability. This term includes specified

observed main-only categories and specified observed subcategories.

Let njs represent the number of times main category cjs has been observed.

We also define njs,ijs to be the number of times we have observed subcategory

sjs,ijs .

The lower probability formulae for E1 and E2 therefore include the term

r′∑
s=1

njs − 1

n
+

r∑
s=r′+1

(
rs∑

ijs=1

njs,ijs − 1

n
) (5.26)

We also have to consider the separating slices of the wheel, i.e. the slices which

separate different observed main categories and the slices which separate different

observed subcategories within one main category segment. We want to assign as

few of these slices as possible to the event of interest.
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First we consider event E1. This event includes only a finite number of

unobserved main categories, and since we do not assume an upper bound on the

total number of unobserved categories, we can assign any slices separating observed

main categories either to unobserved main categories not in E1 or to observed main

categories not in E1. For slices separating subcategories, the situation is more

complicated. For each main category described at subcategory level, there are rs

observed subcategories in E1, so to fully separate these we need at least rs − 1

subcategories not in E1. If s /∈ A (where A ⊆ {1, ..., k}), the main category in

question only has a finite number of unobserved subcategories in E1, so we can

assign slices separating observed subcategories either to unobserved subcategories

not in E1 or to observed subcategories not in E1. However, if s ∈ A, then there are

only ds unobserved subcategories which are not in E1. We may have to assign some

of the separating slices to subcategories in E1 if there is an insufficient number of

subcategories not in E1. The number of separating slices we have to assign to E1 is

Ns = [(rs − 1)− ds − (kjs − rs)]+. (5.27)

So, given all of the above reasoning, the NPI lower probability for the event E1 is

P (E1) =
r′∑
s=1

njs − 1

n
+
∑
s/∈A

{
r∑

s=r′+1

(
rs∑

ijs=1

njs,ijs − 1

n
)}

+
∑
s∈A

{
r∑

s=r′+1

(
rs∑

ijs=1

njs,ijs − 1

n
) +

Ns

n
}.

(5.28)

Example 5.3.1. Consider a multinomial data set where the set of possible main

categories consists of an unknown number of different colours. We have observed the

following main categories: red (R), blue (B), green (G) and pink (P). At subcategory

level, we have observed dark blue (DB), medium blue (MB), light blue (LB), dark

green (DG), medium green (MG), light green (LG), medium pink (MP) and dark

pink (DP). In addition we define two new main categories: orange (O), with defined

subcategories light orange (LO) and medium orange (MO), and purple (Pu) with

defined subcategory dark purple (DPu). We also define the new subcategory light

pink (LP). We let UNB represent all unobserved new subcategories within the main

category B, including the defined new subcategory royal blue (RB), and let UNPu
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represent the equivalent for the main category Pu. The data set consists of twenty

observations including 3 R, 3 DB, 1 MB, 2 LB, 3 DG, 2 MG, 2 LG, 2 MP and 2 DP.

B G P

njs 6 7 4

Table 5.13: Values of njs for Example 5.3.1

LB MB LG MG MP

njs,ijs 2 1 2 2 2

Table 5.14: Values of njs,ijs for Example 5.3.1

R

R
R

MPMPDP
DP

LG

LG

MG

MG

DG
DG

DG LB LB
MB

DB

DB

DB
R

R
MP

DP

UN

UNG

DG

DG

DG
UN

RB

DB

DB

DB

R

Figure 5.13: Probability wheel for Example 5.3.1

Suppose that we are interested in the event Y21 ∈ {(LB ∪ MB) ∪ (LG ∪ MG) ∪

(MP) ∪ (UNB\RB) ∪ (LP) ∪ (UNPu\DPu) ∪ (LO ∪MO)}. We label this event E.

Let s = 1 correspond to B, s = 2 to G and s = 3 to P. Comparing E to the general

formulae, (5.24) and (5.25), we see that this is an event of type E1, so (5.28) is used

to compute the NPI lower probability.

In this example, r = 3. The main categories for which s /∈ A are

G and P and the only main category for which s ∈ A is B. We have
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N1 = [(r1 − 1) − d1 − (kj1 − r1)]+ = [(2 − 1) − 1 − (3 − 2)]+ = 0. The

values of njs and njs,ijs are shown in Tables 5.13 and 5.14.

Putting these values into (5.28) shows that the NPI lower probability for the event

E is

(
2− 1

20
) + (

2− 1

20
) + (

2− 1

20
) + (

2− 1

20
) + (

1− 1

20
) +

N1

20
=

4

20
.

Figure 5.13 shows a corresponding configuration of the probability wheel. There are

only four slices of the wheel that must be assigned to E. The remaining slices are

all assigned to main categories or subcategories not in E and these are labelled in

Figure 5.13. �

We now consider the NPI lower probability for event E2. As explained above, if

s ∈ A we have to assign Ns (see (5.27)) slices to E2. However, E2 contains all except

a finite number of the UN main categories, so we need to think about how best to

fill the slices separating different observed main categories. To avoid assigning them

to E2, we could assign these to observed main categories not in E2 or to unobserved

main categories not in E2. There are k − r observed main categories not in E2 and

there are l unobserved main categories not in E2. Given that there are r observed

main categories in E2, this leaves r−(k−r)−l = 2r−k−l separating slices to be filled.

A way in which we may be able to fill these is by using subcategories not in

E2 which belong to a main category that appears in E2. Within each segment

representing a main category described at subcategory level, rs − 1 of the total

number of subcategories not in E2 are needed to separate observed subcategories

in E2. In a main category cjs with s /∈ A, there is no upper bound on the number

of unobserved subcategories not in E2, so the separating slices to either side of

the segment can always be assigned to an unobserved subcategory not in E2 or an

observed subcategory not in E2. However, if s ∈ A, there are only ds + (kjs − rs)

subcategories that are not in E2. Furthermore, a maximum of two subcategories

per main category can be used. The number of separating slices which could be
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filled in this way is

Ms =

 2 if s /∈ A

min{[ds + (kjs − rs)− (rs − 1)]+, 2} if s ∈ A
(5.29)

for main category cjs .

The NPI lower probability for event E2 is therefore

P (E2) =
r′∑
s=1

njs − 1

n
+
∑
s/∈A

{
r∑

s=r′+1

(
rs∑

ijs=1

njsijs − 1

n
)}

+
∑
s∈A

{
r∑

s=r′+1

(
rs∑

ijs=1

njsijs − 1

n
) +

Ns

n
}

+
1

n
(2r − k − l −

r∑
s=r′+1

Ms)
+.

(5.30)

Example 5.3.2. Consider the data set described in Example 5.3.1. We consider

the event Y21 ∈ {(LB ∪ MB) ∪ (LG ∪ MG) ∪ (MP) ∪ (UNB\RB) ∪ (LP) ∪

[UN\((UNPu\DPu) ∪ (LO ∪MO))]}. We label this event E. Let s = 1 correspond

to B, s = 2 to G and s = 3 to P. This is an event of type E2 (5.25), so (5.30) is

used to compute the NPI lower probability for this event.

In this example, r = 3. The main categories for which s /∈ A are

G and P and the only main category for which s ∈ A is B. We have

N1 = [(r1 − 1) − d1 − (kj1 − r1)]+ = [(2 − 1) − 1 − (3 − 2)]+ = 0. We also

have M1 = min{[d1 + (kj1 − r1)− (r1− 1)]+, 2} = 1, M2 = 2 and M3 = 2. Therefore
3∑
s=1

Ms = 5. The values of njs and njs,ijs are shown in Tables 5.15 and 5.16.

B G P

njs 6 7 4

Table 5.15: Values of njs for Example 5.3.2
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LB MB LG MG MP

njs,ijs 2 1 2 2 2

Table 5.16: Values of njs,ijs for Example 5.3.2
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Figure 5.14: Probability wheel for Example 5.3.2

By (5.30), the NPI lower probability for the event E is

(
2− 1

20
) + (

2− 1

20
) + (

2− 1

20
) + (

2− 1

20
) + (

1− 1

20
) +

N1

20
+

(2r − k − l − 5)+

n
=

4

20
.

Figure 5.14 shows a corresponding configuration of the probability wheel. There are

four slices assigned to E and the remaining slices are assigned to main categories or

subcategories not in E and are labelled accordingly. �

5.3.2 Upper probability

The NPI upper probabilities for events E1 and E2 are derived by assigning as many

slices of the wheel as possible to the event of interest. As in Subsection 5.3.1,

we know that all slices of the wheel which are between two lines representing the

same main-only category or subcategory must always be assigned to that main-only

category or subcategory. This means that the term

r′∑
s=1

njs − 1

n
+

r∑
s=r′+1

(
rs∑

ijs=1

njsijs − 1

n
)
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appears in the probability formulae for E1 and E2. We then consider how many

separating slices we can assign to the event of interest. These include slices which

separate different main categories on the wheel and slices which separate different

subcategories within the same main category.

We first derive the NPI upper probability for the general event E1 (5.24).

Consider a single segment of the wheel. For a main category cjs in E1 described

at subcategory level, we have kjs − rs observed subcategories not in E1 and rs

observed subcategories in E1. Also, we have ds unobserved subcategories in E1 if

s /∈ A, or an unlimited number of UN subcategories in E1 if s ∈ A. This means

that if s ∈ A, we can always separate observed subcategories that are not in E1 by

subcategories in E1, so all kjs − 1 separating slices in the segment will be assigned

to E1. In addition, we can ensure that the subcategories on the ends of the segment

are in E1. If s /∈ A, however, we can only separate all subcategories not in E1 if

rs + ds − (kjs − rs − 1) ≥ 0, as we require at least kjs − rs − 1 subcategories in E1

to do this. Otherwise, we must assign

Ps = [(kjs − rs − 1)− rs − ds]+

separating slices to a subcategory not in E1. In addition, if rs+ds−(kjs−rs−1) ≥ 2,

we can separate all subcategories not in E1 and also ensure that the subcategories

on the ends of the segment are both in E1. If rs + ds = kjs − rs, we can separate all

subcategories not in E1, but only one of the ends of the segment will be in E1.

We now consider the wheel as a whole. There are k − r observed main categories

not in E1 and r observed main categories in E1. Of these r main categories, let r̃

denote the number which have both ends of their segment in E1, i.e. the number of

main categories cjs which satisfy either s ∈ {1, ..., r′}, s ∈ A or the condition

s /∈ A, rs + ds − (kjs − rs − 1) ≥ 2.

Similarly, let r1 denote the number of main categories which have only one end

of their segment in E1, i.e. the number of main categories such that s /∈ A which

satisfy rs + ds = kjs − rs, and let r0 denote the number of main categories which
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have neither end of their segment in E1, i.e. the number of main categories such

that s /∈ A which satisfy rs + ds − (kjs − rs − 1) ≤ 0.

There are (k − r) + r0 − (l + r̃) separating slices between main categories

which cannot be assigned to E1. The NPI upper probability for event E1 is

therefore

P (E1) =
r′∑
s=1

njs − 1

n
+
∑
s/∈A

{
r∑

s=r′+1

(
rs∑

ijs=1

njs,ijs − 1

n
) +

kjs − 1− Ps
n

}

+
∑
s∈A

{
r∑

s=r′+1

(
rs∑

ijs=1

njs,ijs − 1

n
) +

kjs − 1

n
}+

min{r − r0 + l + r̃, k}
n

.

(5.31)

Example 5.3.3. Consider the data set described in Example 5.3.1. Suppose that we

are interested in the event Y21 ∈ {(LB ∪MB) ∪ (LG ∪MG) ∪ (MP) ∪ (UNB\RB) ∪

(LP)∪ (UNPu\DPu)∪ (LO∪MO)}. We label this event E. This is an event of type

E1, so (5.31) is used for the NPI upper probability for E.

In this example, r = 3, l = 2 and k = 4. Let s = 1 correspond to

B, s = 2 to G and s = 3 to P. The main categories for which s /∈ A

are G and P, and the only main category for which s ∈ A is B. We

have P2 = [(kj2 − r2 − 1) − r2 − d2]+ = [(3 − 2 − 1) − 2 − 1]+ = 0 and

P3 = [(kj3 − r3 − 1)− r3 − d3]+ = [(2− 2− 1)− 1− 1]+ = 0. The values of njs , kjs

and njs,ijs are shown in Tables 5.17 and 5.18.

B G P

njs 6 7 4

kjs 3 3 2

Table 5.17: Values of njs and kjs for Example 5.3.3

LB MB LG MG MP

njs,ijs 2 1 2 2 2

Table 5.18: Values of njs,ijs for Example 5.3.3
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R

R
R

MPMPDP
DP

LG

LG

MG

MG

DG
DG

DG LB LB
MB

DB

DB

DB
O

MP
MP

LG

LG

MG

LB
LB

MB

Figure 5.15: Probability wheel for Example 5.3.3

We have r0 = 0 and r̃ = 3, as both of the main categories in E for which s /∈ A

satisfy the condition rs + ds − (kjs − rs − 1) ≥ 2. The general formula (5.31) shows

that the NPI upper probability for the event E is

(
2− 1

20
) + (

2− 1

20
) + (

kj2 − 1− P2

20
) + (

2− 1

20
) + (

kj3 − P3 − 1

20
)

+(
2− 1

20
) + (

1− 1

20
) +

kj1 − 1

20
+

min{8, 4}
20

=
13

20
.

Figure 5.15 shows a corresponding configuration of the probability wheel. There are

four slices of the wheel that must be assigned to E. The nine further slices that can

be assigned to elements of E are labelled. �

We now consider event E2 (5.25). As explained for E1, for a single segment of the

wheel representing a main category cjs in E2 described at subcategory level, we find

that if s ∈ A we can always assign all kjs − 1 separating slices in the segment to E2,

whereas if s /∈ A we cannot necessarily do this and we must assign

Ps = [(kjs − rs − 1)− rs − ds]+

slices to a subcategory not in E2.

Considering the wheel as a whole, we see that we can always assign all k slices

separating different main categories to E2. This is because E2 contains all except l
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of the UN main categories, and since we do not set an upper bound on the total

number of unobserved categories, they can account for as many of the separating

slices as we need. Note that we can also separate main categories not in E2 using

observed main categories in E2, provided that both ends of their segments are in E2.

This leads to the following NPI upper probability for event E2:

P (E2) =
r′∑
s=1

njs − 1

n
+
∑
s/∈A

{
r∑

s=r′+1

(
rs∑

ijs=1

njsijs − 1

n
) +

kjs − 1− Ps
n

}

+
∑
s∈A

{
r∑

s=r′+1

(
rs∑

ijs=1

njsijs − 1

n
) +

kjs − 1

n
}+

k

n
.

(5.32)

Example 5.3.4. Consider the data set described in Example 5.3.1 and suppose that

we are interested in the event Y21 ∈ {(LB∪MB)∪(LG∪MG)∪(MP)∪(UNB\RB)∪

(LP)∪ [UN\((UNPu\DPu)∪ (LO∪MO))]}. We label this event E. This is an event

of type E2, so we use (5.32) to determine the NPI upper probability for event E.

In this example, r = 3 and k = 4. Let s = 1 correspond to B, s = 2 to G and s = 3

to P. The main categories for which s /∈ A are G and P and the only main category

for which s ∈ A is B. We have P2 = [(kj2−r2−1)−r2−d2]+ = [(3−2−1)−2−1]+ = 0

and P3 = [(kj3 − r3 − 1)− r3 − d3]+ = [(2− 2− 1)− 1− 1]+ = 0. The values of njs ,

kjs and njs,ijs are shown in Tables 5.19 and 5.20.

B G P

njs 6 7 4

kjs 3 3 2

Table 5.19: Values of njs and kjs for Example 5.3.4

By the general upper probability formula (5.32), the NPI upper probability for the
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LB MB LG MG MP

njs,ijs 2 1 2 2 2

Table 5.20: Values of njs,ijs for Example 5.3.4
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Figure 5.16: Probability wheel for Example 5.3.4

event E is

(
2− 1

20
) + (

2− 1

20
) + (

kj2 − 1− P2

20
) + (

2− 1

20
) + (

kj3 − P3 − 1

20
)

+(
2− 1

20
) + (

1− 1

20
) +

kj1 − 1

20
+

k

20
=

13

20
.

Figure 5.16 shows a corresponding configuration of the probability wheel for this

upper probability. �

It should be noted that the results of this section are closely related to the results of

Section 5.1, in which the numbers of main categories and subcategories are known.

The inferences in this section are either the same as the inferences in Section 5.1, or

have more imprecision. In the case of more imprecision, for any event, the interval

given by the NPI lower and upper probabilities derived in Section 5.1 is nested

within the interval given by the NPI lower and upper probabilities derived in this

section.

The properties of the results presented in this section are not considered
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here in detail. It is clear, however, that the properties described in Subsections

5.2.1 to 5.2.3 also hold here. The proof of the F-probability property is under

development and can be based on the proof given in Subsection 5.2.4 by writing

UN =
∞⋃
j=1

DNj and then using a large yet finite number of these unobserved

categories. Further study of the case where K and Kj, j = 1, ..., K, are unknown

and its possible applications is an interesting topic for future research.

5.4 Classification trees with subcategory NPI

In this section we consider a method for building classification trees for subcategory

data. In Chapter 4, the A-NPI-M and NPI-M algorithms were presented for finding

the maximum entropy distribution consistent with the MNPI model. We now

formulate a similar algorithm for approximating the maximum entropy distribution

consistent with the Sub-MNPI model. An approximation is considered for the sake

of computational simplicity, as is explained below. We restrict to the case where K

and Kj, j = 1, ..., K, are known (see Section 5.1).

In Chapter 4, it was proven that for data with main categories only, the

NPI lower and upper probabilities for a general event can always be derived from

the singleton probabilities Lj and Uj (see Theorem 4.1.1). Let Lj,ij and Uj,ij denote

the NPI lower and upper probabilities for the event that the next observation

is in subcategory sj,ij . Then the equivalent statement to Theorem 4.1.1 for the

Sub-MNPI model would be that P (E) is given by the expression

max{
∑
j∈J

Lj +
∑
j∈J∗

∑
ij∈Ij

Lj,ij , 1−
∑
j∈F

Uj −
∑
j∈J∗

∑
ij∈Ij

Uj,ij} (5.33)

and P (E) is given by the expression

min{
∑
j∈J

Uj +
∑
j∈J∗

∑
ij∈Ij

Uj,ij , 1−
∑
j∈F

Lj −
∑
j∈J∗

∑
ij∈Ij

Lj,ij} (5.34)

However, this is not the case. For subcategory data, the NPI lower and

upper probabilities for a general event cannot be determined from the singleton

probabilities. Because of the need to configure the wheel such that all subcategories
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within the same main category are grouped together, the set of probability

distributions that are consistent with the Sub-MNPI model is more restricted than

that of the original MNPI model and the interval probability for event E is often

narrower than the interval given by the expressions (5.33) and (5.34). The interval

consisting of the NPI lower probability (5.7) and the NPI upper probability (5.12)

is therefore not an F-probability interval in the sense of Weichselberger. This is

illustrated in Example 5.4.1.

Example 5.4.1. Consider a multinomial data set with possible main categories blue

(B), green (G), red (R), yellow (Y), pink (P) and orange (O). Observations in B

are further classified as light blue (LB), medium blue (MB) or dark blue (DB),

observations in Y are further classified as light yellow (LY), medium yellow (MY) or

dark yellow (DY) and observations in G are further classified as light green (LG),

medium green (MG), dark green (DG) or other green (OG). The data set consists

of twenty observations altogether, including 1 LB, 1 MB, 2 DB, 1 LG, 1 MG, 1 DG,

1 OG, 1 LY, 1 MY, 1 DY, 2 O, 3 R and 4 P.

LB

MB
DB

DBPP
P

P

O

O

R

R
R

LYMYDY
LG

MG

DG

OG

O

O

MY MY
LG

LG

MG

OG

OG

MB

MB

Figure 5.17: Probability wheel for Example 5.4.1

Suppose that we are interested in the event Y9 ∈ {R,P,LY,DY,DG,LB,DB}. We

label this event E. According to (5.7), the NPI lower probability for the event E is
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equal to 8
20

. There is no configuration of the wheel which results in a smaller lower

probability. A possible configuration of the wheel which gives the lower probability

8
20

is shown in Figure 5.17. However, (5.33) gives

max{
∑
j∈J

Lj +
∑
j∈J∗

∑
ij∈Ij

Lj,ij , 1−
∑
j∈F

Uj −
∑
j∈J∗

∑
ij∈Ij

Uj,ij} = max{ 6

20
,

7

20
} =

7

20
.

This discrepancy is due to the extra restriction on the configuration of the wheel

which arises from the fact that we group together all subcategories within the same

main category. �

We now construct an algorithm which approximates the maximum entropy

distribution consistent with the Sub-MNPI model. The process of computing the

distribution is carried out in two stages. Initially, we consider observations at main

category level only. We apply the NPI-M algorithm described in Section 4.2. This

gives a maximum entropy probability pmaxE(cj) for each main category. We then

need to share this probability mass between all subcategories of cj. In order to

do this in such a way that the resulting distribution would always correspond to

a valid configuration of the probability wheel, it would be necessary to specify

the exact wheel configuration for the results of the NPI-M algorithm and to then

consider each category individually. This is because the main category segments do

not have a fixed configuration. A segment may consist of a whole number of slices

or may sometimes contain a fraction of a slice. There may be a fraction of a slice

at just one end of the segment or at both ends of the segment. This problem is

clarified further by Example 5.4.2.

In order to give a computationally straightforward algorithm, we use an

approximation at this stage of the process. This approximation is analogous

to that of the A-NPI-M algorithm presented in Section 4.1. We share the

probability mass pmaxE(cj) as evenly as possible between the subcategories, in such

a way that the probability p̂j,ij that is assigned by the algorithm to subcategory

sj,ij is within the interval [Lj,ij , Uj,ij ]. However, in practice there may not be a

configuration of the wheel that corresponds to the resulting distribution p̂. This is



5.4. Classification trees with subcategory NPI 143

illustrated in Example 5.4.2.

Let K(i)j represent the number of subcategories in main category cj that

have been observed i times. Suppose that we have already applied the NPI-M

algorithm and we have the results pj = pmaxE(cj), j = 1, ..., K. This means

that for each main category cj, we have a segment consisting of npj slices. Of

these slices, n(

Kj∑
i=1

Lj,ij) must be assigned to observed subcategories in cj. We

therefore have probability mass pj −
Kj∑
i=1

Lj,ij that may be assigned to any available

subcategory in cj and this is termed remaining probability mass. For each cj, we

share this remaining probability mass between subcategories of cj, beginning with

subcategories with the fewest observations. This leads to the algorithm shown

below. The algorithm is programmed in Weka software for possible use in practical

applications, but is written here in pseudo-code.

Sub-A-NPI-M

For j = 1 to K and for i = 1 to Kj

Lj,ij ← max{nj,ij−1

n
, 0}

rem← pj −
Kj∑
i=1

Lj,ij

p̂j,ij ← Lj,ij

t← 0;

While (rem > 0) do

If ( 1
n
(K(t)j +K(t+ 1)j) < rem)

If (nj,ij = t or nj,ij = t+ 1) p̂j,ij ← p̂j,ij + 1
n
;

rem← rem− 1
n
;

Else

If (nj,ij = t or nj,ij = t+ 1) p̂j,ij ← p̂j,ij + rem
K(t)j+K(t+1)j

;

rem← 0;

t← t+ 1;
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The Sub-A-NPI-M algorithm is illustrated in Example 5.4.2.

Example 5.4.2. Consider a multinomial data set with observed main categories blue

(B), green (G), red (R) and pink (P) and unobserved main category orange (O).

Observations in B are further classified as light blue (LB) or dark blue (DB) and

observations in G are further classified as light green (LG) or dark green (DG). The

data set consists of twenty observations altogether, including 5 DB, 5 DG, 5 R and

5 P.

First, considering the data at main category level only, we apply the NPI-M

algorithm (see Section 4.2). Here K(0) < K ′, so we use the algorithm described in

Subsection 4.2.2. The NPI-M algorithm initially assigns the lower probability
nj−1

n

to categories R, B, G and P. So p(R) = p(B) = p(G) = p(P) = 4
20

. The algorithm

assigns probability 1
20

to the unobserved category O.

For i = 1, ..., 3, K(i) + K(i + 1) = 0. Taking i = 4, K(4) + K(5) = 4 and

mass = 3, therefore K(i) +K(i+ 1) > mass and

W = min{mass+ 1 +K(4), K(4) +K(5)} = 4.

This means that the four categories observed five times are assigned the probability

pmaxE(cj) =
4

20
+

mass

20(min{mass+ 1 +K(4), K(4) +K(5)})
=

4

20
+

3

4× 20
=

19

80
.

So the maximum entropy probabilities assigned to the main categories {O,R,B,G,P}

are

{ 1

20
,
19

80
,
19

80
,
19

80
,
19

80
}. (5.35)

A configuration of the wheel corresponding to this distribution is shown in Figure

5.18. The separating slices are shared in such a way that B, R, G and P are

each assigned 3
4

of a separating slice. We now consider the subcategories. The

maximum entropy probabilities for the main categories (5.35) are distributed over

the subcategories using the Sub-A-NPI-M algorithm. For main category B we have

P (DB) = 4
20

and P (LB) = 0. For main category G we have P (DG) = 4
20

and
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Figure 5.18: Probability wheel for Example 5.4.2

P (LG) = 0. Applying the Sub-A-NPI-M algorithm, we find that

rem =
19

80
− 4

20
=

3

80

for both of these main categories. Taking t = 0,

p̂(LB) = 0 + min{ rem

K(t)j +K(t+ 1)j
,

1

n
} = 0 + min{ 3

80
,

1

20
} =

3

80

and

p̂(LG) = 0 + min{ rem

K(t)j +K(t+ 1)j
,

1

n
} = 0 + min{ 3

80
,

1

20
} =

3

80
.

So the probabilities assigned to the set of subcategories {LB,DB} are

{ 3

80
,

4

20
}

and the probabilities assigned to the set of subcategories {LG,DG} are

{ 3

80
,

4

20
}.

In the configuration shown above, this distribution can be achieved for the B

subcategories in a way that maintains a valid arrangement of the wheel. This is

because the remaining probability mass is all contained in one portion, located at

one end of the B segment. However, for the G subcategories there is not a valid

arrangement of the wheel that results in this distribution. This is because the

remaining probability mass is split up and some is located at either end of the G

segment. �
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The Sub-A-NPI-M algorithm can be implemented for building classification trees in

the same way that the A-NPI-M and NPI-M algorithms were used in Chapter 4.

We have not yet considered this further, but it is of interest to explore this topic in

future research.

5.5 Concluding remarks

In this chapter we presented the Sub-MNPI model for inferences from multinomial

data described at subcategory level as well as at main category level. NPI lower

and upper probabilities were derived for the general events of interest and some

fundamental properties of these inferences were proven. An algorithm was then

presented for approximating the maximum entropy distribution consistent with

these inferences. Further study of the Sub-MNPI model would be an interesting

future research topic and the work presented here could be extended by further

study of the properties of the results derived in Section 5.3 where K and Kj,

j = 1, ..., K, are unknown. The application to classification could be investigated

further and it would be of particular interest to compare classification trees built

using the Sub-A-NPI-M algorithm presented in Section 5.4 with classification trees

constructed by ignoring the hierarchical relationship between the categories and

subcategories and simply using the NPI-M algorithm presented in Section 4.2.

Further research to develop an algorithm for the true maximum entropy distribution

consistent with the Sub-MNPI model would also be a useful extension of this

work. In the future, other applications of NPI for subcategory data could be

investigated and the Sub-MNPI model could also be developed further by considering

inferences about multiple future observations and by introducing further layers, e.g.

subsubcategories, to the hierarchy. Such developments would be of theoretical and

practical interest.



Chapter 6

Conclusion

In this thesis, several extensions to the theory of NPI for multinomial data were

presented, alongside applications of this theory in the areas of selection and

classification. The research presented here comprises a substantial contribution to

the development of NPI as a useful and versatile inferential framework and as one

of the fastest-growing areas within the field of statistical inference using imprecise

probability.

In Chapter 3, an extension of the MNPI model was presented which enabled

inferences about multiple future observations. These inferences were applied to

the problems of category selection and subset selection for multinomial data. The

results of this chapter could be extended further still: the derivation of lower and

upper probabilities for all events of interest involving multiple future observations

is an important subject for future research and would be of use in more complex

selection problems as well as in other areas of application.

In Chapter 4, algorithms based on the MNPI model were developed for building

classification trees. These were tested on forty data sets and it was shown

that NPI-based classifiers performed well compared with other classifiers from

the literature. The application of NPI to classification provides a number of

opportunities for future research. Further study of NPI-based classification trees

could be pursued, including a more in-depth analysis of a larger number of data

147
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sets and a more detailed examination of split variable selection bias. Aside from

classification trees, the application of NPI to other types of classification could

be considered. It is also important to investigate imprecise classification with

NPI, where the classifier output is a set of categories as opposed to a single category.

In Chapter 5, the Sub-MNPI model was presented for inferences about a

future observation from a set of multinomial data with subcategories. NPI lower

and upper probabilities were derived for all events of interest and some fundamental

properties of the model were proven. Also, an algorithm based on the Sub-MNPI

model was proposed for building classification trees. The Sub-MNPI model is an

important contribution to the theory of NPI and in future it could be extended

further to enable inferences about multiple future observations. Applications of

the Sub-MNPI model to classification and to other areas could also be investigated

further.

The increasing popularity of NPI and other imprecise probability theories

has led to widespread interest in applications of NPI to practical problems. The

continued investigation of such applications is an important future research topic,

but there is a need for further extensions to the MNPI model in order to analyse

multinomial data sets in a meaningful way. In addition to the inferences about

multiple future observations discussed above, there are a number of issues to

consider. It is important to incorporate ordinal data into the NPI methodology,

as categories often have a natural ordering to them, and a treatment of ordinal

data distinct from categorical data could give interesting results. Also, the idea of

subcategory data should be taken further and the introduction of further layers e.g.

subsubcategories to form a nested hierarchy should be considered. Techniques for

handling missing data should also be assimilated, as missing values are a common

occurrence in data sets. These extensions to the MNPI model would be of interest

theoretically and may also lead to exciting new applications of NPI in the future.
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