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Abstract 

 

Aim: This thesis aims to investigate the potential impacts of climatic change on Afro-

Palaearctic migratory birds by investigating simulated changes in breeding and non-breeding 

distribution. 

Methods: Generalised Additive Models were used to determine those climatic variables that 

produced the most robust species distribution models. Tests on the performance of three 

regression-based techniques were undertaken and consensus modelling framework was 

subsequently chosen.  This framework was used in conjunction with three general circulation 

models and two emission scenarios to model the future distributions of Afro-Palaearctic 

migratory birds. Changes in both breeding and non-breeding range and migratory distance 

were examined for groups of species. A vulnerability index was created to indicate those 

species that were most vulnerable to climate change. Finally, changes in recent population 

trends observed on the European breeding grounds were related to simulated climatic 

suitability to investigate the role of climate in recent population changes and determine the 

vulnerability of populations to climate change. This analysis also enabled a partial validation 

of species distribution models. 

Results: The results indicate differential change on the breeding and non-breeding grounds 

for many species. For many migratory birds a progressive separation of the two ranges is 

projected, potentially increasing migratory distances in future. However, for some species 

newly suitable climatic areas may provide non-breeding areas closer to the breeding range, 

enabling species to adapt to climatic change. Trans-Saharan migrants, species residing in dry 

environments as well as montane and coastal species are projected to be most vulnerable to 

climatic change. Although a link between population trends and climatic suitability could be 

found, the results indicated, as might be expected, that climate is only one of a number of 

factors potentially contributing to population changes 

Conclusion: This thesis gives the first broad analysis of the likely direction and magnitude of 

change of the distribution of migratory birds to climate change, when only climate is 

considered. The challenge ahead is to refine these coarse scale models to include habitat and 

demographic data so as to provide more realistic estimates of change and improve 

conservation strategies that aim to support species under climate change. 
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1. Introduction 
   
 
 
 
Climate change and its effects on biodiversity are of great current concern. Many studies have 

already documented and demonstrated changes in climate and the effects of these changes on 

species (King, 2005; McCarty, 2001; Parmesan and Yohe, 2003; Root et al., 2005; Walther, 

Berger and Sykes, 2005; Walther et al., 2002). The high likelihood that this global climate 

change is set to continue (IPCC 2001) has led to the development of climate impact studies, 

which simulate future climatic scenarios based on what is known of climate dynamics and 

economic and political scenarios (IPCC, 2001; Nakicenovic, et al. 2000) and then, in some 

cases, predict the consequences for species.  

Birds have been considered as indicators of ecosystem health (Gregory et al., 2005) 

and as such have been used as indicators of change (Eaton et al., 2005; Gregory et al., 2009). 

It is, therefore, appropriate to examine the effects of climate change on this taxon. Many 

studies have already been conducted on this subject, though few have specifically looked at 

the consequences of global climate change on the distribution and migration of migratory 

birds. Migration is a common strategy among birds, particularly for species in temperate 

regions, to cope with seasonal variability in food supplies. Around 70% of the breeding bird 

species of the Western Palaearctic are migratory, 30% undertaking long-distance migrations 

to sub-Saharan Africa (Snow and Perrins, 1998; Moreau 1972). Migration is a complex 

process driven by ecological, physiological and biogeographic factors (Alerstam et al., 2003; 

Berthold, 2001; Berthold and Helbig, 1992; Newton, 2008). It is often strongly linked with 

changes in temperature and prey availability (Berthold, 2001; Moreau 1972; Robinson, et al. 

2005). Therefore, the current and predicted future changes in climate (Barker et al., 2007) 

have the potential to affect substantially migratory bird species, especially long-distance 

migrants. 

The convention on the Conservation of Migratory Species (CMS) recognises that 

signatory states have a duty to protect migratory species that live within, or pass through their 

jurisdictional boundaries. Moreover, it states that effective population management requires 

concerted action from all states in which a species spends any part of its life-cycle (CMS, 

2006). For effective management, states would need to know how climatic change is to affect 

migratory species.  

This thesis aims to give some insight into how climate change may affect migratory 

birds in terms of their distribution on both the breeding and the non-breeding grounds, 
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migratory distance, changes in species richness and migratory strategy. It also aims to answer 

whether projected climate change will affect species with differing migratory strategies 

differently, and which species are most likely to suffer under the projected climatic change. 

These questions are addressed using species distribution models and concentrate on Afro-

Palaearctic migratory birds; those birds with breeding distributions within Europe and with 

non-breeding ranges within the Western-Palaearctic and Africa. 

In the first part of this thesis (Chapter 2), a review of the relevant literature on 

migratory birds, climate change and species distribution models, is presented. This lays the 

foundation for a number of research aims and questions that are to be answered in the 

following chapters. 

 In a preliminary study, Doswald et al. (2009) modelled the breeding and non-breeding 

ranges of 17 Sylvia Warblers. This group of species was chosen because they have a diversity 

of migration patterns and have a diversity of range extents, many of which are wholly within 

the Western Palaearctic. In this preliminary study, two modelling methods and four 

bioclimatic1

 In Chapter 4, species’ ranges are projected onto future climate scenarios. The first part 

of this chapter examines the differences in projected range change among modelling methods 

and discusses ensemble forecasts. In the second part of Chapter 4, the preliminary study of 

Doswald et al. (2009) is extended to all Afro-Palaearctic migrants (see Appendix I). Section 

4.2 presents summary statistics on relative range changes, changes in migratory species 

richness and changes in migratory distance for migratory species as a group.  

 variables were tested (see Appendix I; Doswald et al. 2009). This ground work 

highlighted the necessity of exploring model selection and robustness, and of comparing 

different methodologies for modelling species’ distributions. Chapter 3 explores which 

bioclimatic variables best describe the migratory species’ breeding and non-breeding 

distributions and the importance of model robustness in the prediction of species’ 

distributions. Chapter 3 also compares three widely used modelling methods for building 

species distribution models. Finally, it presents the models for the migratory birds presented 

in this study and asks whether species’ ecological characteristics determine how well their 

ranges can be modelled. 

 Doswald et al. (2009) postulated that climate change would affect species of differing 

migratory strategies differently: specifically 1) there might be differences in response to 

climate change among long-distance or short-distance migrants; 2) that trans-Saharan 

migrants would face increased migration distance between the breeding and the non-breeding 

                                                 
1 The variables are bioclimatic variables rather than purely climatic because they include a measure of soil water 
availability. 
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compared to resident/short distance; and 3) species with small geographical ranges on either 

the breeding or non-breeding grounds would suffer more from the effects of climate change 

due to less range overlap with regions of suitable future climate.  We found no consistent 

difference in mean future range extents or overlaps between trans-Saharan migrants and 

residents/local migrants. Moreover, we found that changes in migration distance between 

current and future simulations were not significantly different between long-distance migrants 

and short-distance migrants/residents; but there were differences between wide-spread and 

range restricted species. However, the number of species used in the study (17) was too 

limited to produce general conclusions about long-distance versus short-distance migrants. 

The question of whether there are differences between migratory groups is addressed in the 

final section of Chapter 4 and applied to all European breeding migratory birds. Potential 

changes in migratory strategy and residency are also explored using simulated changes in 

species’ distributions. 

Chapter 5 focuses on species’ and populations’ vulnerability to climate change. In the first 

part of Chapter 5, an index of impact of climate change is created, based on changes in range 

and migratory distance. This categorises those species that are the most vulnerable to future 

climate change. The chapter also discusses how much can be inferred from species 

distribution models with regards to extinction risk. The questions arising from this section are 

explored in the second section of Chapter 5, which asks specifically whether inferences about 

species’ abundances can be made using species distribution models. Although changes in 

species’ distribution in response to climatic change have been observed (see Chapter 2), 

changes in population numbers are more difficult to attribute to climate change. In this 

section, recent population changes are related to changes in climatic suitability as modelled by 

the methods detailed in Chapter 3. This provides a partial validation of the species distribution 

models and discusses other factors involved in population change. The final part of this 

chapter relates recent population change to future vulnerability from climatic change, as 

typified in the index. This section also discusses how much inference can be made regarding 

population change. 

Finally, Chapter 6 sets the results of this study in the wider context. First, the findings of 

this thesis are synthesised and the results are discussed in terms of other studies. Second, the 

uncertainty and limitations are outlined and the likelihood of changes happening as projected 

is discussed in an evolutionary context. Finally, future research avenues and challenges are 

outlined.  
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2. Background and Aims 
 

 
 
The relationship between climate and birds’ geographical distributions, as well as with their 

migration (Moreau 1972; Root 1988a; Root 1988b), has lead researchers to question how current 

and future climate change may influence species’ range boundaries (Root & Schneider 1993). 

Moreover, how climate change may influence migratory species has been of concern. Indeed, 

Berthold (2001) postulated that long-distance migrants may be particularly affected by climate 

change as migrants rely on spatially separated areas that are often bio-climatically different (e.g. 

Eurasia and Africa) and that are affected by different processes and drivers of change such as 

agricultural intensification in Europe and desertification in Africa. Long-distance migrants are 

often also dependent on stopover sites during migration. The effects of climate change on all 

these critical areas are unlikely to be uniform and will be exacerbated by other drivers such as 

habitat loss. Indeed, the world’s landscape has already been altered through anthropogenic 

intervention and is likely to continue to change with human population growth and human 

reaction to the effects of global warming. The anthropogenic landscape is likely to interact with 

climate change in a yet unknown way and impact on species. This present study examines the 

current knowledge surrounding climate change and migratory birds and the models used to study 

the impact of climate change on species. 

 Initially, I will give some background to Afro-Palaearctic migrant birds including how 

climate affects birds and recent trends in migrant populations. Following on from this, I will 

consider current climate change, specifically in Europe and Africa and the effects of such change 

on migrant birds. In a third section, I will give an overview of climate modelling and of the 

predicted future climates for Europe and Africa. Then the methods for predicting the effects of 

future climate change will be reviewed and the current predictions for birds and other species 

residing in Europe and Africa will be considered. This will lead to the formulation of aims and 

research questions to be dealt with in the subsequent chapters. 
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2.1 Climate Change and Migratory Birds 

 

2.1.1 Afro-Palaearctic Migrants 
 

Afro-Palaearctic migrant birds typically breed in Eurasia and winter in Africa (Moreau 1972).  

There are 215 such species, most of which migrate to sub-Saharan Africa (Moreau 1972; Fry, 

1992; Salewski and Jones, 2006; Newton, 2008; Walther et al., 2004). Migration is a response to 

seasonality, a to-and-fro movement following the environmental conditions and the resources 

needed by the birds to survive (Berthold, 2001). Indeed, the Palaearctic winters do not provide 

the resources (e.g. insects) that the birds need, so they head south at the end of the Palaearctic 

summer (Moreau 1972; Fry 1992). Sub-Saharan Africa offers a suitable climate, resources and 

less stresses than winter on the breeding grounds (Fry, 1992).  Migration is a common 

phenomenon in birds as well as in other animal groups (Alerstam et al., 2003), with migrant bird 

species, including Afro-Palaearctic migrants, in nearly all orders. There have been many 

ecological reasons put forward as to why migration should be such a successful strategy, such as 

reduced competition and access to preferred food sources (Fry 1992), when spending so much 

energy and time on migration seems counter-intuitive (Alerstam et al., 2003). Many migrant 

species are successful, especially those that are partial migrants such as Sylvia atricapilla1

 Most migratory species show high site fidelity in their breeding and non-breeding quarters 

(also termed goal areas) and stopovers (Berthold, 2001; Fransson et al. 2005; Markovets and 

Yosef, 2005). In general, species winter in similar habitats to those they breed in (Moreau, 1972; 

Fry, 1992; Telleria and Perez-Tris, 2003). Markovets and Yosef (2005) examined the winter site 

fidelity of Luscinia svecica at Eilat, Israel, for six seasons. Over their study period they 

recaptured 37.1% of marked birds. This result indicates high site fidelity when the difficulty in 

trapping and re-trapping birds is accounted for. Similar results were found for Ficedula 

hypoleuca in West Africa (Salewski et al., 2000). There is less evidence for site philopatry in 

stopovers, although some areas have been identified along migration routes as consistent staging 

areas (Nolet and Drent, 1998). A study by Fransson et al. (2005) examining the distribution of 

seven passerine species in the eastern Mediterranean region (a passing point for many Afro-

, a 

species that has seen increases in population in recent decades (Birdlife International, 2004a). 

                                                 
1 All common names for each species cited in this thesis can be found pages xvi to xvii. 



 6 

Palaearctic migrants) suggests, though does not prove, that faithfulness to stopover sites may be a 

common pattern. High site fidelity has important implications for the conservation of migrant 

birds as the elimination or alteration of these sites could have negative impacts on these species. 

Some populations within a species also show strong connectivity2

Indeed, the breeding areas of most Palaearctic-African migrant birds are well known but 

their non-breeding quarters in Africa are not (Sanderson et al., 2006; Walther et al., 2004, 

Walther et al., 2007). Information is sketchy and unevenly distributed among species. General 

information about the non-breeding habitat of some migrants exists (e.g. Jones et al., 1996; Morel 

and Morel, 1992; Pearson and Lack, 1992) and recently the Zoological Museum, University of 

Copenhagen has collated all information on the distribution of Palaearctic-African migrant birds 

in Africa (Walther et al., 2004) while BirdLife International has set up a bird database including 

species’ distribution (BirdLife International World Bird Database). About a quarter of all 

European migrants winter in the Sahel, a region that is also an important staging area for many 

trans-Saharan migrants (Jones et al., 1996). With a few exceptions, migrants do not winter in 

equatorial rain forest. Instead, they mainly utilise heterogeneous open habitat (Salewski and 

Jones, 2006) in savannah type regions (Leisler, 1992).  

 between the breeding and non-

breeding areas. Procházka et al. (2008) investigated migratory connectivity of Acrocephalus 

scirpaceus by analyzing sub-Saharan ringing recoveries and stable isotopes in feathers grown in 

Africa. They found a strong connectivity with two main clusters representing populations taking 

two main migratory routes and establishing distinct winter quarters: South-West and South-East. 

The East – West divide is a common phenomenon among migratory species and may help 

identify some species’ non-breeding ranges. 

Outward migration usually occurs between July and November (Jenni and Kéry, 2003) 

and return migration from March to May (Ahola et al., 2004; Sparks et al., 2005). There is a 

semi-distinct divide between East and West African non-breeding quarters marked by the 

flyways used by migrants with, in general, western populations of birds migrating to West Africa 

and eastern populations migrating to East Africa (Erni et al., 2005). Movement between goal 

areas is accomplished using refined orientation mechanisms, an adapted physiology, endogenous 

programmes (see Berthold 2001; Berthold and Helbig, 1992; Berthold et al., 1992; Piersma, 

1998) and the right environmental conditions (wind, no adverse weather, migration routes and 

refuelling areas). Selective breeding experiments with Sylvia atricapilla, in which either 

                                                 
2 Migratory connectivity is a term used to describe the relationship between migratory species and geographic 
regions at different points during the year (Webster et al. 2002) 
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completely sedentary or completely migratory populations were bred from partial migrant 

populations (Berthold and Helbig, 1992; Berthold et al., 1992), have given evidence that, for 

some species, migration behaviour and direction (shown through orientation chamber 

experiments) is genetic. However, other studies have also shown that phenotypic plasticity allows 

flexibility in migration strategies (Crick, 2004; Sutherland, 1998; Vähätalo et al., 2004).  

Afro-Palaearctic migrants have to cross two major ecological barriers between their goal 

areas: the Sahara desert and the Mediterranean Sea. Only a few species have the capabilities to 

cross these on a non-stop flight (Biebach et al., 2000). The majority of birds have intermittent 

migration between goal areas for resting, i.e. staging, or resting and refuelling, i.e. stopovers 

(Bairlein, 1992; Biebach et al., 2000; Nolet and Drent, 1998). Stopovers are vital for migrant 

birds because their physiology, and environmental conditions constrain how much energy (stored 

mainly as fat) they can carry (Berthold, 2001; Newton, 2008). 

Of major interest to ornithologists are the cues used by migrants for the onset of migratory 

behaviour. It is generally assumed from the study of captive birds that the onset of migratory 

activity is controlled by endogenous programmes (Berthold, 2001). The fact that the length of the 

breeding season does not change even when birds arrive earlier on the breeding grounds (Cotton, 

2003; Jenni and Kéry, 2003) corroborates that there are endogenous controls to the onset of 

migration. However, the environment constantly interacts with and impacts on species and, as 

such, the circannual rhythm is also likely to be an important factor in the control of migration 

(Berthold, 2001). Indeed there is evidence that photoperiodic cues are important for the onset of 

migration (Coppack et al., 2003; Gwinner, 1990; Kok et al., 1991). In many species, climate is 

important in determining phenological events (McCarty, 2001) and there is mounting evidence 

that it plays a role in (migrant) bird biology and ecology (Ahola et al., 2004; Cotton 2003; Crick, 

2004; Devictor, et al. 2008; Gordo and Sanz, 2008; H-Acevedo and Currie, 2003; Marra et al., 

2005; Parmesan and Yohe, 2003; Robinson et al., 2005a; Saino et al., 2004a; Saino et al., 2004b; 

Sanz, 2002; Vähätalo et al., 2004; Walther et al., 2002; Weatherhead, 2005; Winkler et al. 2002). 

Climate and migrant birds 
 
Climate and weather3

                                                 
3 Weather is the short term and local climate variations. Climate is the broad average climatic conditions of an area. 

 are important to migrant birds for a number of reasons. First, at large 

geographical scales, climate shapes a species’ distribution – a species’ climate-space (Root, 

1998a, 1998b; Costa et al., 2008; H-Acevedo and Currie, 2003; Huntley et al., 1995; Lemoine 
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and Böhning-Gaese, 2003). However, it must also be recognised that species’ distributions are 

also limited by biotic factors, such as habitat, competition, persecution and predation. According 

to Root (1988b) these factors “fine-tune” species’ biogeographical ranges at the continent scale. 

Climate affects species directly and indirectly. Species are physiologically constrained by certain 

climatic variables. Root (1988b) showed that many birds’ winter ranges are constrained by 

temperature and are related to species’ basal metabolic rate. Climate also influences the resources 

birds depend upon (Root 1998a). Second, local climate variations, i.e. weather, affects a bird’s 

fitness and survival (Newton, 1998; Newton, 2007). Indeed, extreme weather events, such as 

drought (common in sub-Saharan Africa) or very cold spells, can severely reduce a population 

and have long lasting effects (Baillie and Peach, 1992; Peach et al., 1991; Saino et al., 2004a; 

Watkinson et al., 2004). Adverse weather conditions also delay migration departure and delay 

species en route through direct mechanisms, such as bad flying conditions, and indirect 

mechanisms, such as food availability (Alerstam, 2001; Berthold, 2001; Gordo and Sanz, 2008; 

Newton, 2007; Piersma and Lindström, 2004; Saino et al., 2004b). Third, climate affects 

reproduction: warmer conditions induce earlier breeding and egg laying (Both and Visser, 2001; 

Robinson et al., 2005; Weatherhead, 2005), increased egg and clutch size (Crick, 2004) as well as 

fledgling success (Crick, 2004; Sanz, 2002; Weatherhead, 2005). And fourth, there is evidence 

that climatic influences on bird phenology affects competition between species. Lemoine and 

Böhning-Gaese (2003) showed that there was a potential competitive relationship between 

resident and migrant birds in that climate during the winters influenced the relative numbers of 

resident and migrant birds. Intra-specific competition is also indirectly influenced by climate 

through the timing of arrival on the breeding grounds (Cotton, 2003; Sparks et al., 2005; 

Vähätalo et al., 2004). Arrival date can vary due to temperature cues on the non-breeding 

grounds (Cotton, 2003; van Noordwijk, 2003), climate en route (Ahola et al., 2004; Hüppop and 

Hüppop, 2003; Rubolini et al., 2005; van Noordwijk, 2003) or through large-scale climatic 

phenomena like the North Atlantic Oscillation (Hüppop and Hüppop, 2003; Stervander et al., 

2005; Vähätalo et al., 2004).  

 The North Atlantic Oscillation (NAO) is a large-scale fluctuation in atmospheric pressure 

in the Atlantic Ocean that influences the climate and weather in parts of Europe, North America 

and Africa (Vähätalo et al., 2004). The NAO index, the normalized pressure differences between 

the Azores and Iceland, describes meteorological conditions in winter and spring (Hüppop and 

Hüppop, 2003). Positive values are associated with warm moist winters, while negative values 

are correlated with cold dry winters in northern Europe (Hurrell, 1995). This index has been used 
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in a number of studies to explain the spring arrival in Europe of migrant birds (Ahola et al., 2004; 

Anthes, 2004; Hubalek, 2004; Hüppop and Hüppop, 2003; Marra et al., 2005; Sparks et al., 2005; 

Stervander et al., 2005; Vähätalo et al., 2004) as well as laying date (Sanz, 2002; Weatherhead, 

2005). Some studies have argued that the NAO affects the spring arrival of all migrant birds, 

including long-distance Afro-Palaearctic migrants, breeding in Europe (Forchhammer et al., 

2002; Hüppop and Hüppop, 2003; Stervander et al., 2005), whilst others argue that the NAO only 

affects short- to medium-distance migrants (Both and Visser, 2001; Hubalek, 2004; Nott et al., 

2002; Tryjanowski et al. , 2002). It is interesting that those studies that found a correlation 

between the NAO and spring arrival for long-distance migrants were those with study sites in the 

far North of Europe. This suggests that arrival time for these species is affected by the climate in 

Europe once the species are already in Europe and at stopovers. Alternatively, arrival time is 

affected by climate on the non-breeding quarters. Indeed, Cotton (2003) found that winter 

temperature in Africa was not correlated with winter NAO index and that arrival dates on the 

breeding grounds were correlated with temperature in sub-Saharan Africa. Saino et al. (2004b) 

and Gordo et al. (2005) also showed that weather (in particular rainfall) on the non-breeding 

grounds affected the spring arrival of trans-Saharan migrants not the climate on the breeding 

grounds. Indeed it is thought that the inter-annual fluctuations of spring arrival may be influenced 

by plant productivity and hence insect abundance on the African non-breeding grounds (Gordo 

and Sanz, 2008).  

Recent trends 
 

In a recent review, Sanderson et al. (2006) found that long-distant migrant birds were declining. 

More specifically, they found that species wintering in dry open habitats in Africa declined more 

than other long-distance migrants. Julliard et al. (2003) found that many common bird 

populations were declining in France. More specifically, south-biased species were doing better 

than north-biased species. In central Europe, a study found that whilst non-passerine bird richness 

remained stable from 1980 to 1990 and even increased between 1990 and 2000, passerine bird 

richness declined in both periods (Bauer et al., 2008).  

Factors driving these declines could come from a number of fronts (goal areas and 

stopovers) and may be interacting in some way. Climate has been shown to drive long-term 

species’ declines in the past. A major drought in Sub-Saharan Africa between1960-90s caused 

some populations to decline substantially (Baillie and Peach, 1992; Gordo et al., 2005; Jones et 
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al., 1996; Marchant, 1992; Peach et al., 1991; Wood, 1992). Additional drivers of change known 

to impact on migrants are habitat loss or deterioration, as well as land-use change such as 

agricultural intensification and drainage, and hunting (Berthold, 2001; Grimmet, 1987; Julliard et 

al., 2004; Sanderson et al., 2006). The relevant contribution of each of these drivers to the current 

population trends in long-distance migrant birds is currently unknown and there is some 

conflicting evidence. Indeed, whilst the current decline of Turdus torquatus in northern Britain 

was significantly correlated with changes in summer climate (Beale et al., 2006), population 

trends of birds residing in Spain were related to their habitat preferences rather than climate 

(Seoane and Carrascal, 2008). These results suggest that investigating the impact of climate 

change and its potential contribution to population change is a priority.  

2.1.2 Climate Change 

 

There is strong evidence that the climate has changed in the last century. Temperatures have 

increased world wide by about 0.6°C, rainfall has increased in some regions and decreased in 

others and there has been an increase in extreme weather events (Dore, 2005; Easterling et al., 

2000; IPCC, 2001). Although some of these changes are part of the natural variability of climate, 

there is undeniable evidence that some of the changes in climate are due to anthropogenic forcing 

by amongst other things the increased release of greenhouse gasses (IPCC, 2001). These changes 

in the global climate have had impacts at the regional level on physical and biological aspects of 

the environment. Glaciers have retreated and arctic sea-ice extent and thickness have decreased 

(Cook et al., 2005). This, along with thermal expansion, has resulted in annual global mean sea 

level rises of 1-2mm during the last decade (IPCC, 2001).  

 In the majority of Europe temperatures have increased by about 0.8°C this century during 

two major warming phases: 1900-40 and 1970 onwards (IPCC, 2001). In northern Europe (north 

of the Alps) precipitation has increased by 10-50% mostly during the autumn-winter period and 

precipitation has decreased in south and central Europe (Dore, 2005). These changes are not 

homogenous (Ahola et al., 2004). Indeed, topography and land cover are also important factors in 

determining climate through various land-atmosphere interactions (Lioubimtseva, 2004; Maynard 

and Royer, 2004). These interactions are thought to be very important in regulating climate in 

Africa because precipitation variability, especially in the Sahel region, is difficult to explain 

(Hulme et al., 2001; Nicholson, 2001). The African climate has varied considerably in the last 

20,000 years. Around 5000 BP the climate was much more humid and the extent of desert was 
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much smaller. It was only around 2000 BP that a similar climate to today was reached 

(Nicholson, 2001). During the last century, Africa as a whole has warmed by 0.5°C with larger 

warming in the summer and autumn seasons (Hulme et al., 2001). Rainfall variability in Africa is 

large with inter-annual, inter-decadal and multi-decadal patterns in rainfall making general trends 

difficult to discern. However, during the 20th century a general decrease in annual rainfall was 

observed (Dore, 2005; Gordo et al., 2005; Hulme et al., 2001; Nicholson, 2001), and a drop in 

precipitation of about 20-40% in the Sahel region (Maranz, 2009), causing widespread concern 

about irreversible desertification after the severe droughts between the 1960s-1990s (Olsson et 

al., 2005).  More recently, some observations point to a ‘greening’ of the Sahel. Indeed data have 

been collected through remote sensing studies that suggest increased vegetation in this region 

(Herrmann et al., 2005; Olsson et al., 2005).  The causes of this greening are attributed to 

increased rainfall during the period 1982-2003 and possibly anthropogenic causes (Herrmann et 

al., 2005), such as better land management or population retreat from rural to urban areas (Olsson 

et al., 2005).  

Ecological responses to climate change 
 
Species’ current distribution patterns are a result of both ecology and history (Crisci and Katinas, 

2009). Evidence from the fossil record shows that some species have responded to past climate 

change through migration and changes in range (Botkin et al., 2007; Thuiller et al., 2008) before 

declining to extinction due to new inter-specific interactions (Liow and Senseth, 2007). It is 

thought this is because species move individualistically and not as a community (Shuttle, et al., 

2007; Willis et al.,  2007). 

Observed changes in the ecology of species during the last century have been documented 

on different fronts: geographic range of species, phenology, community ecology, and population 

dynamics. These changes have been related to climate change in many studies. Some species 

have extended their range northwards and up to higher altitudes in apparent response to current 

warming (see McCarty, 2001; Parmesan and Yohe, 2003; Thomas and Lennon 1999; Walther et 

al. 2002). Many species are showing signs of earlier phenological events such as first leafing, the 

first appearance of insects, or bird breeding date (McCarty, 2001; Peñuelas et al., 2002). This is 

of great concern to ecologists, because although many spring events occur with temperature 

change, other events occur with different cues such as photoperiod or endogenous programmes. 

This may lead to an asynchrony in species’ interactions. Indeed, such a mismatch has been 

reported for a plant, insect and bird food web (Visser et al., 2004; Visser and Holleman, 2001; 
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Visser et al., 1998). Disruptions in marine ecosystems are also being observed (see Walther et al., 

2002) though it is difficult to determine with any certainty in the marine system whether climate 

is a direct or an indirect driver of change. The effects of global warming on population dynamics 

can be directly measured on ectotherms as their biology is often directly influenced by 

temperature. For example, the sex ratios of some species are being female-biased by warmer 

temperatures (Janzen, 1994; Weatherhead, 2005). 

Events in the biosphere are the result of complex interactions between biotic and abiotic 

factors and attributing change in the biosphere to climate change and to human-induced climate 

change is difficult and, at best, correlative. However, when many separate studies show trends in 

the expected direction of change, correlative relationships have more credibility as causative 

relationships. Meta-analyses that include a wide variety of species and geographic locations are 

the best for establishing quasi-causal relationships from individual correlative studies.  Parmesan 

and Yole (2003) argue that for a driver of change to be causal, changes should occur in the 

expected direction. Their meta-analysis shows that this is the case for 84% of species examined, 

providing evidence that climate change is a factor in the observed change occurring in the 

biosphere. Root et al. (2005) go a step further to provide evidence for a ‘joint attribution’; they 

show that the changes seen are due not only to climate change but also to human-induced climate 

change.  

Climate change and birds 
 

There is gathering evidence that (migrant) birds have already started to respond to the warming 

that has been experienced over the past century. Although all the evidence is correlative and so 

does not necessarily indicate a causal relationship, the consistency of the evidence strongly points 

to climate change being at least in part implicated in the ecological change seen (McCarty, 2001).  

In the UK and North America, there is evidence that birds have extended their range northwards 

in response to global warming (Thomas and Lennon, 1999; Valiela and Bowen, 2003). This may 

have severe consequences for those species that are already at the northern limits of their range or 

for species experiencing an altitudinal shift (Robinson et al., 2005). Contraction at the southern 

limits of species’ ranges has not yet been witnessed although many species’ populations are in 

decline in southern Europe (Birdlife International, 2004b). At the southern range boundary of a 

distribution, species may be limited by heat or water availability. Although temperatures have 

increased world wide, increases are more noticeable at the poles, and, in the developed world at 
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least, water is currently not lacking due to human intervention (e.g. irrigation). This may explain 

the current stability of the southern margin of species’ distribution (Böhning-Gaese and Lemoine, 

2004). There are very few studies investigating the processes occurring in the ‘trailing-edge’ of 

species’ distributions (Thuiller et al., 2008) but there is some empirical evidence that climate 

change is driving extinction in some plant populations (Foden et al., 2007).  

The projected sea level rise is likely to have drastic consequences for coastal birds’ 

habitat due to coastal squeeze, though this is not currently a major problem (Piersma and 

Lindström, 2004; Robinson et al., 2005). 

 Changes in breeding and migration phenology have been widely reported in recent 

decades. In most temperate regions there has been an earlier onset of breeding and egg laying 

across a wide range of bird species, migratory and resident, since the 1970s (Both and Visser, 

2001; Crick et al., 1997; Sanz, 2002). This is not a universal phenomenon with some bird species 

showing no change in response to global warming (Sanz, 2002). However, although the global 

climate has warmed by 0.6°C over the last century, climate and especially microclimate is not 

homogenous. Nonetheless these observed changes (or stability) in breeding phenology may lead 

to a mismatch between the timing of breeding and the timing of peak resource availability as 

Visser et al. (1998) and Peñuelas et al. (2002) have already demonstrated for some species. 

Recently, Both et al. (2006) have shown that the mismatches evidenced in Europe between 

caterpillar emergence and the timing of breeding of a long-distance migrant bird has led to 

population declines. 

 Numerous studies have reported that arrival on the breeding grounds has advanced in 

recent years (Hubalek, 2004; Hüppop and Hüppop, 2003; Sparks et al., 2005; Stervander et al., 

2005; Tryjanowski et al., 2002). Van Noordwiijk (2003) put forward three hypotheses for the 

earlier arrival of Palaearctic-African migrants on the breeding grounds: first, the departure date 

from Africa has not changed, but better conditions in Europe allow faster refuelling; second 

weather in Africa has also changed, which induces earlier departure; and third weather in Africa 

has not changed but micro-evolution has changed the cues used by birds in Africa. There exists 

evidence that could support every one of these hypotheses as outlined in the previous section. On 

the other hand, some studies report that long-distance migrants show no change in arrival date 

(Both and Visser, 2001; Jenkins and Watson, 2000) or even later arrival (Gordo et al., 2005; 

Peñuelas et al., 2002; Sanz, 2002). No change or later arrival to the breeding grounds could have 

serious consequences for the fitness of birds. Indeed, early arrival is beneficial for species (as 

long as weather conditions are favourable) because it may ensure less competition, access to 
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more resources and opportunity to lay more clutches (Drent et al., 2003; Rubolini et al., 2005). 

Moreover, later arrival could and has widened the phenological disjunction between a species and 

its food resources (Both et al., 2006). Two hypotheses for these contradicting findings (earlier or 

later arrival) have been put forward by Gordo et al. (2005): first, the conditions in Africa drive 

departure time. Saino et al. (2004b) showed that conditions in Africa could delay a species’ 

arrival in Europe. Second, arrival time could depend on conditions en route and availability of 

resources at stopovers. This second hypothesis is supported by two studies (Huin and Sparks, 

2000; Tryjanowski et al., 2002). However, it is likely that a combination of factors from both 

hypotheses lead to the different arrival times of the long-distance migrants. Miller-Rushing et al. 

(2008) suggest that reported changes in migration times may also be a methodological artifact. 

They found that changes in migration times depended on the unit measured as well as changes in 

cohort size. They also found links between migration times and climate for short distance and 

mid-distance migrants. 

 There are only a few studies that have looked at departure dates from the breeding 

grounds in relation to climate change. Cotton (2003) assumed that the departure date of migrants 

from the breeding grounds would be delayed. However, he found that the majority of species he 

looked at actually left earlier, so that there was no significant change in the time spent on the 

breeding grounds. Jenni and Kéry (2003) analysed the peak passage of 64 migratory birds in 

Switzerland between 1958 and 1999. They found that all long-distance migrants advanced their 

departure date from Europe, whereas many (though not all) short-distance migrants delayed their 

departure. This study inferred that these changes may benefit short-distance migrants but not 

long-distance migrants who may lose out from not having a prolonged breeding season. 

However, they also speculated that early departure from the breeding grounds may be due to a 

selection pressure to cross the Sahel early. Earlier departure could, therefore, be beneficial to 

long-distance migrants because conditions on the non-breeding grounds are good at the start of 

the non-breeding season but deteriorate later on (Fry, 1992; Salewski and Jones, 2006).  

 There has been much speculation about how climate-induced changes in habitat may 

affect staging, stopovers and fuelling in migratory birds (Bairlein and Hüppop, 2004; Robinson et 

al., 2005). These aspects of migration are liable to be mainly affected by land-use change, habitat 

loss or deterioration in conjunction with climate change. Migrant birds may have to cope with 

reduced fuel or find other stopover sites. There is evidence that birds arriving at stopovers where 

food is depleted have had to do with reduced fuel or fly to other stopover sites (Nolet and Drent, 

1998). Examining what this means for migrant birds is integral for future research. 
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Adaptation to climate change 
 

In response to environmental change, species have to adapt, change their distribution or 

abundance, or go extinct. Berthold (2001) postulated that, under climate change, partially 

migratory species would become resident because warmer climates allow overwintering on the 

breeding grounds. Resident species would increase under global warming and long-distance 

migrants would decrease from a combination of competition, loss of habitat and phenological 

miscuing. The extent to which long-distance migrants could adapt, or microevolve, and change 

their current migratory behaviour is not known. Berthold et al. (1992) showed that 

microevolution could take place rapidly, though a strong selective pressure would be needed. 

However, the capacity to evolve may depend on the strength of a species’ migratory connectivity, 

i.e. how strong the links are between goal areas, genetic variation (Webster et al., 2002) and 

phenotypic plasticity. Vähätalo et al. (2004) suggested that the observed relationship between the 

NAO and arrival dates was an indication that birds respond to change through phenotypic 

plasticity. However, the relationship between NAO and arrival dates is correlative and the true 

mechanisms behind this relationship are not known.  

De Mazancourt et al. (2008) studied the interaction of evolutionary and ecological 

dynamics in a changing environment using a modification of the Levene model, which combines 

population dynamics and evolutionary dynamics models. They modelled the effect of 

environmental heterogeneity on evolution in a one species and in a multi-species environment. 

They found that as the number of species increased in a system, the less phenotypic evolution 

occurred. This was because, when competitive interactions were taken into account, species 

migrated to areas matching their initial phenotype rather than adapting to change. Although this 

study was a simulation, there is evidence from paleoecological and current studies that migration 

or dispersal to new areas is the favoured response to environmental change. 

 The fossil record shows that geographic extents of species are not static over geological 

timescales (Liow and Stenseth, 2007) and that species move individualistically and not as a 

community (Willis et al., 2007). Under environmental change many species respond by shifting 

their ranges by dispersal. However, dispersal is influenced by habitat heterogeneity, population 

dynamics and biotic interactions (Best et al., 2007; Massot et al., 2008). Suttle et al. (2007) 

experimentally studied the effects of changes in water availability (matching future projections) 

on species on grassland plots. They found that, initially, species’ diversity increased as conditions 

became more favorable but, as the novel conditions persisted, the effects of the altered 
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community-level dynamics overshadowed individualistic responses leading to a decline in 

species’ diversity. Brooker et al. (2007) also found a complex response to climate change due to 

biotic interactions. They used a spatially explicit modelling approach to explore potential effects 

of dispersal ability and biotic interactions on species’ range shifting ability. They found that 

biotic interactions and the level of long range dispersal determined species’ responses and, that 

they interacted with the rate of climate change to produce non-linear responses. Massot et al. 

(2008) analysed plastic dispersal using an experimental manipulation of a lizard population and 

meta-population model. The experiment showed that juvenile dispersal declined with increasing 

temperature, which would increase extinction risk according to their model. However, other 

species have shown increased dispersal tendencies under climate change (Massot et al. 2008). 

These contrasting examples show that evidence is currently ambiguous. 

 Intra-specific competition may also affect species’ ability to shift ranges under climatic 

change.  Best et al. (2007) investigated this using a simulation model incorporating competition, 

density dependence, dispersal and transient dynamics of habitat patches. Their results show that 

the type of competition (scramble or contest), density dependence and patch growth rate were all 

important factors in species’ ability to shift their ranges in response to climate change. All these 

studies show that the response to climate change is complex and difficult to predict for any given 

species.  

Coppack et al. (2003) argued that species would have to shift their non-breeding quarters 

north and decrease their migration distance so that photoperiodic cues used by migrant birds 

could bring these species to the breeding grounds earlier in conjunction with other phenological 

events. There is evidence of many species having changed their migratory routes and goal areas 

in the past and present (Sutherland, 1998). Sylvia atricapilla populations breeding in southern 

Germany and Austria and that usually winter in the Mediterranean now have a population 

wintering in the UK (Berthold, 2001), reducing their migration distance. Moreover, due to a 

different photoperiod in the north, Sylvia atricapilla also migrate earlier to the breeding grounds 

with the consequence that assortative mating occurs (Bearhop et al., 2005). Although this 

indication that species can evolve new migration routes, along with evidence showing that 

species can adapt to changes in climate, is encouraging in terms of projected survival of these 

species, it also indicates the importance of other cues such as photoperiod and puts in question 

whether all species will be able to keep up with the current changes. Moreover, even if species 

could all change their migration patterns and routes there still is the uncertainty of whether there 

will be enough suitable habitat for species to shift their range, or space for these species to 
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establish into (Brooker et al., 2007). Indeed, Travis (2003) used a model of habitat loss coupled 

with climate change to show that species would be more affected by climate change in a 

fragmented landscape.  

2.1.3 Future Climates 

 
Climate is complex and is regulated by many factors; predicting how it might change in the 

future is impossible without the use of global climate models (GCM). Climate models consist of 

a “set of mathematical equations that are solved using a three dimensional grid over the globe” 

(IPCC, 2001, p.48). They are based on fundamental physical laws (Randall et al., 2007). The 

most comprehensive climate models are Atmosphere-Ocean General Circulation Models 

(AOGCMs) in which atmosphere circulation and ocean circulation models are coupled so that the 

variability and physical processes of these systems can be studied. AOGCMs are used to predict 

future climates as well as the rate of change (IPCC, 2001). The models most often used by 

scientists in Europe are those developed by the Hadley Centre, in particular HadCM2 developed 

in 1994 and HadCM3 developed in 1998. A major problem of many AOGCMs is that they 

become unstable (called climate drift) when simulating current climates (Gordon et al., 2000; 

IPCC 2001). This problem was side-stepped in the past by using flux adjustments, i.e. adjusting 

the heat and water flux terms (IPCC 2001). Although this fixes the problem it does not improve 

the models. HadCM3, however, was created to overcome this problem.  This AOGCM produces 

stable climate models without flux adjustment (Gordon et al., 2000) and also provides better 

simulations (i.e. produces similar patterns to those observed) than its predecessor HadCM2 

(Collins and Cooper, 2001). Since the Third Assessment Report, most AOGCMs no longer use 

flux adjustments and, in the Fourth Assessment Report (AR4), have been much improved in 

terms of their dynamical cores, their resolution, the number of processes included in the models 

and their parameterisation of the physical processes (Randall et al., 2007). All AGOCMs, created 

by scientists around the world, perform slightly differently so that the uncertainty in predictions is 

evident (IPCC, 2001). However, when taken in conjunction, the mean of all models show better 

agreement with observed large-scale phenomena than single models because individual model 

biases tend to cancel each other out (Meehl et al., 2007). The reliability of these models is 

considered high because 1) they are based on established physical laws, 2) they simulate 

important aspects of the current climate and 3) they can reproduce features of past climates 

(Randall et al., 2007; Hegerl et al., 2007). However, there are still significant features of the 
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climate that these new models cannot accurately reproduce, such as tropical precipitation, El 

Niňo, the Southern Oscillation and the Madden-Julian Oscillation. Moreover there are 

uncertainties in the representation of clouds in the models (Randall et al., 2007; Hegerl et al., 

2007). Each of the AOGCM has different uncertainties associated with them.  

These AOGCMs are used in conjunction with future scenarios of change to predict future 

climate. The IPCC has come up with an approved set of scenarios described in the IPCC Special 

Report on Emission Scenarios (SRES; Nakicenovic et al., 2000) These scenarios describe 

possible storylines in terms of future economic growth, technological development and social 

trends. There are four main storylines (Table 2.1) that result in a set of 40 scenarios (IPCC, 

2001). Some studies still use the IS92 scenarios created by Leggett et al. (1992). These are a 

series of six emissions scenarios, which were changed in favour of the SRES storylines to 

provide an updated and a more complete picture of the uncertainties of future greenhouse gas 

emissions (Nakicenovic et al., 2000). 

 
Table 2.1: SRES Scenarios (Nakicenovic et al., 2000). 
A1 A global/economic narrative, with rapid economic growth and a global population that 

declines after a peak. New and efficient technologies are created. Different variants of this 
storyline depend on technological emphasis.  

A2 A regional/economic narrative, in which countries evolve separately so that the global 
population and technology increase more slowly.  

B1 A global/environmental narrative; like in A1 population grows rapidly before declining. 
However, in this scenario materialism reduces, clean and sustainable technologies are 
created and people work together. There is not, however, any additional climate legislation.  

B2 A regional/environmental narrative where the world’s dominant paradigm is one of local 
solutions and sustainability at all levels. Population growth and economic development is 
slow and technological development, though slow, is more diverse.  

 
 The way an AOCGM responds to changes from increased greenhouse gases (all external 

additions to the general climate system are termed ‘external forcing’) is characterised by two 

measures: the equilibrium climate sensitivity and the transient climate response. The equilibrium 

climate sensitivity is defined in the AR4 as “the equilibrium global mean surface temperature 

change experienced by the climate system following a doubling of atmospheric CO2 

concentration” (Randall et al., 2007, p.629). The transient climate response is the immediate 

response in annual global mean temperature at the time of CO2 doubling (see Randall et al 2007). 

The AR4 AOGCMs cover a range of equilibrium climate sensitivity from 2.1°C to 4.4°C with a 

mean of 3.2°C (See table 8.2 in Randall et al., 2007). Constraints from the observed climate 
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change suggest that equilibrium climate sensitivity may be between 2°C and 4.5°C supporting the 

AOCGMs simulations (Hegerl et al., 2007). The range in climate sensitivities produced by the 

models is in part due to the differences in feedbacks from parameters in the models as well how 

each model deals with radiative forcing. This spread contributes to the range in projections 

(Randall et al., 2007). The uncertainties in the climate change projections come from the models 

themselves, emission patterns of greenhouse gases and aerosols, and the internal climate 

variability (Hegerl et al., 2007; Meehl et al., 2007). 

Europe 
 

Projections by the IPCC (1998) indicate that winter temperature will rise by between 1.5-4.5°C 

all over Europe in the 21st century. However, this increase could be larger in boreal latitudes. 

Summer temperatures are also projected to rise though different models provide different results. 

The maximum projected rise is by 4.5°C (IPCC, 1998). 

According to most IPCC models (IPCC, 1998; IPCC, 2001; Meehl et al., 2007), 

precipitation is to increase in the high latitudes, possibly up to 20%, particularly in the winter 

months. In southern Europe, summer precipitation is expected to decrease substantially (IPCC, 

2001). 

Africa 
 

Hulme et al. (2001) projected African climate to 2100 using a variety of emission scenarios and 

seven climate models, including HadCM2. They found that future annual warming across Africa 

ranged from under 0.2°C to over 0.5°C per decade and that warming was the greatest over the 

interior of the Sahara and central Africa. This is in agreement with IPCC models (2001), though 

the IPCC highlights the uncertainty in the magnitude of warming produced by various models. 

Recent models indicate an increase of 1.5-5°C mean annual temperature across Africa by the end 

of the 21st century (Meehl et al., 2007). 

 Precipitation seems to be one of the hardest climate factors to model and accordingly 

Hulme et al. (2001), and the IPCC (2001) find an inconsistent signal in the direction and 

magnitude of change. Hulme et al. (2001) reported that none of the models used simulated multi-

decadal rainfall regimes that are observed in the Sahel region. However, it is possible that newer 

models may correct this problem. Regional circulation models (RCMs) are much better at 

simulating rainfall patterns in the Sahel region because they can take into account factors at a 
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finer resolution. However, for the prediction of future climatic change AOGCMs are still needed 

because they provide the input for the boundary conditions in the RCMs (Huntley, pers. comm.). 

Nonetheless, current models project a decrease in rainfall in southern Africa and an increase in 

the rest of Africa, though with much variability (and uncertainty) throughout the seasons and 

areas (Hulme et al., 2001; IPCC, 2001; Meehl et al., 2007).  

 The projections of future climate change also show that the tropics and sub-tropics may 

experience climate with no modern analogue (Williams and Jackson, 2007; Williams et al., 

2007), which engenders difficulties when predicting species’ responses. 

2.1.4 Predicting Impacts of Climate Change 

 

The predicted climate change may affect species on many levels: distribution, population size, 

biology, phenology and evolution (see above). Predicting impacts at these levels requires either 

the use of statistical models, where the outcomes are probabilistic due to the vast amount of 

uncertainty involved in projections into the future, or experiments. Predicting how species may 

evolve or micro-evolve in the future is near impossible. Hellmann and Pineda-Krch (2007) used a 

simple population genetic model to explore the effect of climate change on fitness using a 

hypothetical population under two scenarios of climate change: 1) a monotonically changing 

environment and 2) a periodic environment where amplitude and frequency of environmental 

extremes were altered. Under scenario 1, the population was able to track the changing 

environment closely with a decline in fitness depending on covariance between genetic traits. 

Under scenario 2, the population suffered a higher decline in fitness under greater environmental 

amplitude than under increased frequency of extremes. Studies into genetic variation and 

biological history may give an insight into past evolution and the scope for natural selection. 

Such studies have seldom been used in biodiversity conservation but offer a wealth of 

information (Willis et al., 2007). The fossil record indicates few extinctions in the Quaternary 

period, which may be due to fast migration or adaptive evolution (Botkin et al., 2007). 

However, with future climate change projected to occur at a faster rate than ever 

experienced (IPCC, 2007) and the possibility of novel climates (Williams and Jackson, 2007), 

only experimental studies can truly give an idea of how species may adapt through evolution and 

phenotypic plasticity. Selection experiments, such as those done by Berthold and Helbig (1992), 

can give some indication of how species may change. Recent studies have found that some 

species can evolve increased dispersal rates through the success of more dispersive phenotypes 
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under climate change (Battisti et al., 2006; Møller et al., 2006; Pearman et al., 2007; Thomas et 

al., 2001). However, simulations undertaken by de Mazancourt et al. (2008) showed that 

interactions with other species may inhibit evolution.  

Gienapp et al. (2005) have recently developed a statistical tool to predict phenological 

change under climatic change. Their proportional hazards model was developed for predicting 

laying dates of Parus major. The model successfully predicted the expected effect of increased 

temperature on laying dates. Being probabilistic also meant that the effects of other factors, such 

as food availability or individual condition, could be included in the model (Gienapp et al., 

2005). This model is one of a kind and is likely to become useful as more studies follow suit.  

Predicting how the biology of species may change, on the other hand, is difficult. 

Experiments exposing plants to increased CO2 have given some insight into how species’ biology 

and community dynamics may change (Graves and Reavey, 1996). However, these experiments 

only give an idea of what may happen if plants are suddenly exposed to vast quantities of CO2 – 

an unrealistic scenario. These kinds of experiments are unethical to perform on animals and so 

observation or simulation models are necessary. Rodenhouse (1992), for instance, used a 

simulation model to predict the changes in the annual productivity of Dendroica caerulescens 

under projected climate change.  

Estimating change in population size can be done using Population Viability Analyses 

(PVA) (Thuiller et al., 2008; Wichmann et al., 2005). McRae et al. (2008) developed an 

innovative framework to predict wildlife population trends. Their framework was three-fold. 

First, they simulated the effects of future land-use and climate change on vegetation using 

FORCLIM which is an individual-based forest dynamic simulator (Busing et al., 2007). Second, 

they converted the resulting land cover data into habitat suitability maps for various species using 

expert opinion. These habitat suitability maps were then used along with climate change 

scenarios in the PATCH model, a spatially explicit individual-based animal population simulator 

that evaluates the outcome of species survival and reproduction, to estimate future mean 

population size. In their paper, they gave the results of an application of this framework that 

analysed and projected long-term (1990-2060) population trends for Troglodytes troglodytes and 

Melospiza melodia, two bird species residing in Oregon. They simulated initial population 

declines with later recovery in population size. Interestingly, they found that land-use change had 

a greater effect on species’ survival than climate change. They also found that mean habitat 

suitability was a poor predictor of population change (relative to the 1990 values) as populations 

fluctuated more than mean habitat suitability (McRae et al., 2008). In contrast to the poor link 
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between habitat suitability and population trends, Green et al. (2008) found a strong relationship 

between population trends and climate suitability. This indicates that the expert habitat suitability 

models created by McRae et al. (2008) may not be entirely valid.  

The vast data requirements of PVAs often mean that extinction risk is usually inferred 

from the same models that predict change in distribution range under the assumption that range 

size is a good indicator of abundance. This assumption is not necessarily true as Shoo, Williams 

and Hero (2005a,b) demonstrate using empirical abundance patterns of endemic birds across an 

altitudinal gradient. Indeed, decline in population size can occur at a faster rate than the reduction 

in range size.  

In the literature searched, no studies were found that looked at the impact of climate 

change on stopovers or the migration route of migrating species, though the basis for such studies 

already exists. Three studies provide the methodological basis upon which climate change 

impacts migratory species’ stopover sites could be inferred. First, Farmer and Wiens (1999) used 

dynamic modelling to investigate migration strategies in terms of time spent at stopover sites and 

arrival at the breeding grounds. Second, Tankersley and Orvis (2003) combined maps of suitable 

stopover sites with flight algorithms to examine the importance of intact migratory routes for 

species survival. Third, Erni et al. (2003; 2005) created a simulation model of the migration of 

Palaearctic-African migrant birds to examine the survival rate along different migration routes, 

which included factors such as stopover sites.   

There are numerous studies that have attempted to predict how species’ distributions 

might change under global warming, which is mainly because the methodology is well 

developed.  Peterson et al. (2001) summarise the methodological framework: 1) accumulation of 

large sets of present-day species’ distribution; 2) the development of ‘species distribution 

models’ (SDM); 3) projecting regional shifts in geographic and ecological dimensions in the 

‘study area’ based on the result of future scenarios GCMs; and 4) projecting fitted species-

environment relationships onto the future landscape to obtain future distribution ranges. Guisan 

and Zimmermann (2000) define SDM as empirical models relating field observations to 

environmental predictor variables based on statistically or theoretically derived response surfaces. 

Species distribution models are, thus, basically a statistical characterisation of the species-

environment relationship (Corsi et al., 2000). 
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Data  
 

Species data can be derived from expert opinion, observed presence/abundance obtained from 

surveys or museum collection, or presence and absence information obtained from extensive field 

studies. The first two types of data are the most easily acquired. Presence-absence data are 

difficult to obtain with any reliability. Indeed, true absences are hard to confirm. Failing to detect 

a species in the field does not necessarily mean that the species is absent. Assuming an absence, 

when a species is in fact present, results in omission errors (see below), which can lead to under 

prediction in a model, that is not predicting all areas where the species is actually present. Using 

presence-only data could be seen, therefore, as the only feasible course of action. Indeed in some 

cases it is. However, where available, reliable presence-absence data have been shown to be the 

most useful in predictive modelling (Brotons et al., 2004) as such data allow for the description 

of a more discerning species-environment relationship. Data quality and quantity are important 

issues. Detailed data on species are often scarce, biased (in that samples are only taken near 

roads, rivers and easily accessible areas; Reddy and Dàvalos, 2003), and auto-correlated (Phillips 

et al., 2004). Different modelling techniques address these problems differently and it is therefore 

important to use the correct method for the data available. 

 Sample size will also affect the accuracy of models (McPherson et al., 2004; Stockwell 

and Peterson, 2002). Data sets that are too small do not result in good models because a lot of the 

information on the species-environment relationship cannot be captured. Prevalence, which is the 

proportion of ‘present’ data points in the dataset, has also been shown to affect modelling 

techniques (McPherson et al., 2004; Seoane et al., 2005). Although this may be a data issue, it 

can also be an ecological issue: range size could be small resulting in few data points (Seoane et 

al., 2005). Therefore it may be useful to consider the species’ ecology before choosing the 

appropriate modelling method. 

 Guisan and Zimmermann (2000) suggest that there are three types of environmental 

variables that can be used as predictors in the species-environment relationship: direct, resource 

and indirect variables. Direct variables are those that impact directly on a species’ ability to 

persist in an area, such as temperature and pH. Resource variables are those environmental 

factors that are required by the organism to live such as food, light and water. Indirect variables 

are those environmental factors, that are correlated with a species’ distribution but which have no 

direct physiological significance like topography, geology, land-use and distance from roads 

(Austin, 2007; Guisan and Zimmermann, 2000). This classification is useful though a 
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simplification as some variables may be classified under more than one category. There is a 

fourth category, which modellers should be careful not to use, of spurious variables, i.e. those 

that correlate with a species’ distribution but which have no meaning at all. Many studies use 

indirect variables for the construction of models because they correlate well with species’ 

distribution (e.g. Austin et al., 1996; Brotons et al., 2004; Corsi et al., 1999; Manel et al., 1999; 

Zimmermann and Breitenmoser, 2002). However, in doing so the model loses its generality 

(applicability over different regions) and becomes only of local use (Austin, 2007; Guisan and 

Zimmermann, 2000; Zimmermann and Breitenmoser, 2002). 

 Several studies have advocated the use of climate variables as predictors of species’ 

distribution (e.g. Beerling et al., 1995; Gavin and Hu, 2005; Huntley et al., 1995; Huntley et al., 

2004; Huntley et al., 2007; Lees, 2002) as climate is a broad determiner of species’ distribution – 

a direct ultimate factor (Root 1988a,b; Huntley et al., 2007). This relationship between climate 

and species’ distribution has been shown in many successful modelling studies (e.g. Huntley et 

al., 2004). However, the sole use of climate variables for predicting species’ distribution is 

determined by the scale, i.e. geographic extent and resolution, of the study. At fine scales, climate 

is too coarse to determine variation in species’ distribution in which case other factors, such as 

land cover become important (Pearson and Dawson, 2003; Pearson et al., 2004). Conversely, at 

coarse resolution, variables such as land cover become less useful (Thuiller et al., 2004a). Two 

recent studies have demonstrated this. Luoto et al. (2007) investigated the importance of climate 

and land cover variables in bird SDM at four spatial scales. Land cover improved the climate 

models at 10 Km and 20 Km but showed no improvement at 40 Km and decreased model 

accuracy at 80 Km. However, they also pointed out that this finding was species dependant, with 

highly habitat-orientated species, e.g. the marshland bird Circus aeruginosus, having better fitting 

models that included relevant land cover variables. Heikkinen et al. (2007) investigated the role 

of biotic interactions in SDM. They found the predictive accuracy of models depended strongly 

on the spatial resolution: including biotic interactions was only useful at fine resolutions (10 Km).  

 The choice of direct and resource variables used has theoretical implications, because 

there would be some theoretical expectation or hypothesis about the shape of the response 

(Austin, 2007). This is often ignored in the choice of data or the formulation of the data model 

but has impact on the validity of a model (Austin, 2007; Rykiel, 1996). It has been shown that 

many of these direct variables’ response curves follow a Gaussian-shaped curve (Austin, 2002, 

2007).  
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Data for species and data for climate do not often cover the same area. It is therefore 

necessary to interpolate climate data to match the ‘study area’ for the species. It is important to 

examine this climate data because interpolations from poorly distributed meteorological stations 

can cause strongly auto-correlated climate surfaces. Meteorological station data are usually 

interpolated as a function of latitude, longitude and elevation. This can use observed data with 

variable coverage in space and time, or more uniform coverage and the climatic norm, i.e. 30 

year average, which is usually 1961-1990, (Olwoch et al., 2003). Olwoch et al. (2003) compared 

climate surfaces derived from these traditional data sets with purely process derived, modelled 

climate data and then looked at how these different data sets influenced simulated tick 

distributions. They found that 1) all three derived climate surfaces differed, 2) the simulated tick 

distributions were different using different climatic surfaces and 3) the modelled data set was 

equal to or slightly outperformed the traditionally interpolated climate surface in predicting tick 

distribution (Olwoch et al., 2003). However, this new method will require further testing before 

more widespread use.  

Models should be built using environmental/climate data and species data at similar scales 

to avoid prediction errors. Some mismatches in scale are unavoidable due to lack of data. Guisan 

and Thuiller (2005) argue that is the case in the use of GCM in future SDM as these climate 

models are built at scales much coarser than species data input to the SDM (Guisan and Thuiller 

2005). Most SDM use fine scale climate data smoothed with the anomalies (difference between 

future prediction and the climatic norm), which resolves the issue of scale but carries the 

assumption that the fine scale pattern will not change in the future. 

Species distribution models 
 

There are many techniques that are used to formalise the species-environment relationship into 

SDM. Guisan and Zimmermann (2000) and Elith and Burgman (2003) provide good overviews 

of SDM. Table 2.2 provides examples of modelling techniques (the list is not exhaustive) that are 

used in conjunction with the three different types of species data. All techniques have their 

benefits and limitations (Brotons et al., 2004; Zaniewski et al., 2002). However, the method 

chosen for any particular analysis will depend 1) on the data available, 2) on the aims and 

objectives of the study, and 3) on scale of the study. 

 
 
 



 26 

Table 2.2: Classification of species distribution modelling techniques (non-exhaustive list). 
Species data Techniques Studies 
Expert 
opinion 

Multi-Criteria Decision-
Making 

Clevenger et al., 2002; Doswald et al., 2007; 
Pereira and Duckenstein, 1993; Store and 
Kangas, 2001 

Presence-only Climate envelopes, Genetic 
Algorithm for Rule Set 
Protection, Maximum 
entropy, Ecological Niche 
Factor Analysis  

Anderson et al., 2003; Beaumont et al., 2005; 
Farber and Kadmon, 2003; Hirzel et al., 2002; 
Lees, 2002; Phillips et al., 2006; Phillips et al., 
2004; Zaniewski et al. 2002 

Presence-
absence 

Generalised Liner Models, 
Generalised Additive 
Models, Climate Response 
Surface, Regression, 
Artificial Neural Networks,  
multivariate analysis  

Augustin et al., 1996; Austin et al., 1996; 
Beerling et al., 1995; Corsi, et al. 1999; 
Doswald et al., 2009; Gavin and Hu, 2005; 
Huntley et al., 1995; Manel et al., 1999; 
Thuiller et al., 2005 

 
 

For the purpose of predicting the impacts of climate change on species’ distributions, the 

scale of the study necessarily has to be large 1) because climate affects species on the macro-

scale; 2) because GCM have coarse resolutions; and 3) to minimise projecting species’ 

distributions into climate space different from that used to calibrate the model (Pearson et al., 

2004; Thuiller et al., 2004b). For this type of modelling, techniques using expert opinion are not 

appropriate as climate has to be related to species’ distribution by some statistical approach. 

Whether to use presence-only data or presence-absence data depends on what is available though 

it is generally accepted that presence-absence data provide the best results (Brotons et al., 2004) 

because presence-only models provide overoptimistic predictions (Engler et al., 2004).  

Kearny et al. (2008) used a mechanistic model, not using occurrence data, to model the 

distribution of Bufo marinus in Australia. Their model, using ecophysical data, is innovative but 

data intensive. This is the first geographic mechanistic model and, whilst the simulated 

distribution encompassed the range of the species, there was some over-prediction. The authors 

suggest that this approach could be used in conjunction with other methods (Kearny et al., 2008).  

There are many studies comparing different methods for modelling species’ distributions 

(e.g. Araújo et al., 2005; Elith et al., 2006; Manel et al., 1999; Meynard and Quinn, 2007; 

Leatherwick et al., 2005). However, none of the studies are comprehensive and are rarely 

comparable (Austin, 2007). Nevertheless, these studies give an indication of the merits and 
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limitations of each method. Despite the rise of new methods, many new studies are falling back 

to using tried-and-tested methodology or using ensembles (Araújo and New, 2006).  

Elith et al. (2006) found that some methods using presence-only data could provide useful 

predictions of species’ distribution. They tested 16 different modelling techniques on a variety of 

data and found that those that were the most efficient (Maxent, multivariate regression splines 

and boosted decision trees) all had a high ‘expressiveness’ factor in the method, i.e. the technique 

could express complex relationships between the variables used (Elith et al., 2006). Many authors 

using presence-absence data advocate that generalised regression techniques, such as Generalised 

Linear Models (GLM) and Generalised Additive models (GAM), and Neural Networks (ANN) 

provide the best SDM (e.g. Araújo et al., 2005) and the analysis by Elith et al. (2006) also shows 

that they are good in presence-only modelling.  

GAM and other non-parametric methods are generally preferred because they make fewer 

assumptions about variables. However, Huntley et al. (2007) argue that these techniques impose 

a shape to the species-environment relationship that may not be viable and seek global fits, which 

may cause interactions between variables to be missed. Climate envelope models (CEM) are 

another approach that has often been used. Most CEM can cope with presence-only data. 

However, they have many limitations. Most CEM cannot describe interactions between variables 

or show a varied suitability for the factors included in the envelope (Farber and Kadmon, 2003). 

Climate response surfaces (CRS), on the other hand, do not have these limitations although they 

cannot cope with presence-only data. CRS represent a multi-dimensional space comprising a 

particular combination of a range of values for environmental variables that describe a species’ 

probability of occurrence in an area. CRS have been successfully used to model a number of 

species’ distributions (Beerling et al., 1995; Doswald et al., 2009; Gavin and Hu, 2005; Huntley 

et al., 1995; Huntley et al., 2004; Huntley et al., 2007). This non-parametric technique is 

particularly attractive for use in predicting species’ distributions as it addresses species’ 

responses to bioclimatic variables more specifically (so has a high ‘expressiveness’ factor) due to 

the use of locally weighted regression. Moreover, it allows interactions between variables and 

provides a response curve less smooth than other techniques, which reportedly allows for a better 

depiction of the realised niche (Austin, 2007; Huntley et al., 1995).  

 The main critique of all these modelling techniques for predicting future species’ 

distributions is fivefold. The first criticism has to do with the fact that the underlying assumption 

of all SDM is that species are in equilibrium with their environment (Guisan and Thuiller, 2005). 

This assumption is necessary because the species data input into the model is only a snapshot in 



 28 

time. However, this assumption may not hold if the population was sampled when it was 

expanding or if it had been relegated to suboptimal habitat. Building models with such data will 

give a false representation of the species-environment relationship. Kearny et al. (2008) got over 

this problem by using a mechanistic model of the distribution of Bufo marinus, which is currently 

expanding its range in Australia.  

The second criticism has to do with the concept of a species’ niche (see Guisan and 

Thuiller, 2005). SDM, because they use observations of species, can only model species’ realised 

niches, as species’ current distributions will also reflect biotic interactions (Davis et al., 1998; 

Guisan and Thuiller, 2005; Pearson and Dawson, 2003). Consequently, if interactions between 

species change as a result of climate change (as they have shown to do in the past; Davis and 

Shaw, 2001), predicted future distributions will be erroneous (Davis et al., 1998). Best et al. 

(2007) showed with a simulation model, taking type of competition, density dependence and 

habitat fragmentation into account, that intra-specific competition would exacerbate the effect of 

climate change on species. Various studies have also shown that biotic interactions are very 

important in shaping species’ current distributions and, consequently, limit the efficacy of SDM 

built with bioclimatic variables. Beale et al. (2008) set up a quantitative study to investigate how 

well species’ distributions matched climate. They built a series of bioclimatic models and null 

models, first, using the distribution of bird species using observed data, then second, using 

synthetic data that was similar to the observed distributions but that were randomly placed with 

respect to climate. They then did a power analysis to determine if the distributions were 

determined by the climatic variables. They found that many of the null models performed as well, 

if not sometimes better, than the bioclimatic models. From this result and their power analysis 

they concluded that the birds’ distributions in the study were not related to the climate variables 

used. They suggest that other factors may be (more) important and that biotic interactions could 

overwhelm the direct climate impacts (Beale et al., 2008). Shuttle et al.’s (2007) experiment 

showed that, at a community-level, biotic interactions could overshadow the effects of climate 

change. Other studies, however, demonstrate that climate is still important in SDM. Costa et al. 

(2008) investigated which factors influenced species’ distributions most (e.g. environment, inter-

specific interactions, historical factors) by building SDM of closely related species across a steep 

longitudinal environmental gradient. Their results suggested that environmental variables clearly 

affected species’ distributions but that competition and historical factors may also be involved. 

Duncan et al.’s (2009) revealing study agrees with this conclusion. Their study used data on the 

introduction of five South African dung beetle species to Australia. In the introduction 
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programme, the species released in Australia were selected by their climate compatibility, were 

raised in laboratory and released at sites where the primary resource was abundant. This ensured 

that the authors were confident that the confounding effects of dispersal limitation, resource 

limitation and natural enemies were removed, leaving climate as the determining factor. They 

then built SDM for 1) the Australian data with Australian climate, 2) South African data with 

South African climate and 3) for Australia projected from South African models. They found that 

the first set of models were the most accurate, whilst the second and third group of models were 

less good. They concluded that climate is important but that other constraints can limit model 

accuracy in some areas and for some species. However, their models were built on a very fine 

scale (10’ x 10’), which would account for their results. 

Third, most future SDM do not (properly) take dispersal into account (Guisan and 

Thuiller, 2005). The ability of species to disperse in the face of climate change (also ability to 

disperse in a fragmented landscape) will result in large differences in the impact climate change 

has on species (Davis et al., 1998; Schwartz et al., 2001; Thomas et al., 2004b). Evidence from 

paleo-ecological studies show that species are likely to shift their ranges (Thuiller et al., 2008) 

and so incorporating range shift, which is a result of fecundity, dispersal, recruitment and 

population growth (Massot et al., 2008), into SDM is vital. Del Barrio et al. (2006) used an 

innovative integrated approach to investigate the localised effects of climate change. They used 

four modelling approaches: a continental-scale bioclimatic model, a regional bioclimatic and 

land-use model, a dispersal model (spatially explicit cellular automaton) and a connectivity 

model on two contrasting study regions. Their models revealed that many species would not be 

able to fulfil their potential future range.  

Fourth, different modelling techniques result in different predictions of impacts of climate 

change, in terms of spatial extent and distribution (Thuiller, 2003, 2004), with no way of knowing 

which technique will be best for assessing future change. Thuiller (2004) suggests using different 

models and analysing consensus among models to help choose the best technique.  Many of the 

differences found could be due to the different assumptions each SDM technique makes about the 

form of the species-environment relationship. If this is the case, then the CRS technique may be 

more reliable since it makes no formal assumption.  

The final problem in current climate impact SDM modelling studies is the necessary 

coarseness of the models. Habitat alteration and loss impact immensely on biodiversity. 

However, inclusion of land cover variables at a coarse resolution is difficult because 

heterogeneity is lost (Thuiller et al., 2004a; Luoto et al., 2007).  Pearson et al. (2004) developed a 
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hierarchical approach to circumvent the different resolutions between climate and land cover. 

Although this improved the SDM, not having data at the appropriate scales was limiting. 

Combining the effects of habitat loss and climate change and incorporating factors which impact 

on species’ ability to persist, such as migration and ecological and evolutionary processes 

(Thuiller et al. 2008), will be a challenge in future modelling studies. SDM are also too coarse for 

conservation planning, though attempts are being made with the use of reserve selection 

algorithms (Araújo et al., 2004). Despite these limitations, SDM are currently the best method 

available for assessing climate change impacts on species. Moreover, there is scope for 

improving SDM by including dispersal and population dynamic processes or biotic interactions 

(del Barrio et al., 2006; Guisan and Thuiller, 2005; Heikkinen et al., 2007; Thuiller et al., 2008). 

Evaluation of species distribution models 
 

Species distribution models are only useful if they provide an accurate picture of the ‘truth’, i.e. 

the models reflect the observations (good agreement between model predictions and input data). 

Oreskes et al. (1994) argue that the ‘truth’ of a model can never be demonstrated unless it is a 

model of a closed system. Therefore a model can only be evaluated. Many authors use the term 

validation interchangeably with evaluation. However, validation refers to a testing process that 

allows an assessment of how well the model performs and is only one component in model 

evaluation (Rykiel, 1996). Indeed, even if the model has minimal errors in terms of how it 

reflects the data used to calibrate the model (determined through validation) it does not 

necessarily follow that the model will perform well in a predictive sense (Oreskes et al., 1994). 

There are thus two important components to model evaluation: testing how well the model fits 

the data used and testing how well the model performs in making predictions.  

Testing how a model fits the data involves comparing the data used to build the model 

with the model predictions. The simplest way of doing this is resubstitution. However, this 

method overestimates the performance of a model due to over-fitting (Fielding, 2002). 

Bootstrapping (sampling with replacement), randomisation (sampling without replacement) and 

jack-knife sampling (leave-one-out method) are more robust in terms of evaluating the 

performance of a model (Fielding and Bell, 1997). All these methods suffer from not overcoming 

spatial and temporal autocorrelation, i.e. “the tendency of neighbouring sample units to possess 

similar characteristics” (Fielding and Bell, 1997, p.41) the result of which is that these methods 

overestimate a model’s goodness of fit when extrapolated outside the remit of the training data 
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(Araújo et al., 2005). The results of such methods should therefore not be used to infer a model’s 

predictive ability. To test the predictive ability of a model, an independent data set, i.e. 

temporally and/or spatially independent, is needed. However, the availability or the feasibility of 

collecting such data is not always high. In such cases it is possible to partition the data collected 

so that one part is used to calibrate (train the model) and the other is used to test the model’s 

performance. Most studies use a 70% partition of the data to build the model, the remainder being 

used to test it. While this method still does not avoid autocorrelation, it gives an indication of a 

model’s predictive ability, albeit overoptimistic in comparison to using independent data (Araújo 

et al., 2005).  

 Different techniques exist to validate the performance of a model and once again these 

depend on the type of data used to build the model. In presence/absence models, how well a 

model performs is usually determined through analysis of prediction errors. There are two types 

of errors that are characterised in an error (or confusion) matrix (Table 2.3): false positives (or 

commission error) where a species is predicted to be present where in fact it is absent (b), and 

false negatives (or omission error) where a species is predicted to be absent where it is in fact 

present (c).  

 

 
 
 

 

 

 

These errors do not carry equal cost in conservation. For instance, if the purpose of an 

SDM is to define areas for protection of a rare species, omission errors will be costly for the 

species. The values in the confusion matrix are obtained from a probability of occurrence model 

by placing a threshold on the probability. Different thresholds yield different values in the 

confusion matrix (Fielding and Bell, 1997). Often a threshold of 0.5 is used though there has been 

a move in recent studies to choose a threshold that maximises the accuracy of the model as 

measured by goodness-to-fit. Fielding and Bell (1997) give a good review of measures of 

goodness-of-fit. Kappa is one of the best threshold-dependent measures (Fielding and Bell, 1997; 

Manel et al., 2001; Freeman et al., 2008). Kappa has been shown to be sensitive to prevalence 

(Huntley et al., 2004) though Manel et al. (2001) argue that this sensitivity to prevalence is slight 

compared with that of other measures derived from the confusion matrix (Fielding and Bell, 

Table 2.3: Error or confusion matrix (after Fielding and Bell 
1997) 
  Observations 

present absent 
Model 
prediction 

present a b 
absent c d 
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1997; Manel et al., 2001). However, use of such threshold-dependent measures means that much 

of the information provided by the model is lost, and imposing a binomial system on a 

continuous variable can result in biases in the model output (Fielding and Bell, 1997). The 

receiver operating characteristic (ROC) plot is a threshold-independent measure that has been 

much used in medicine (Swets et al., 2000). A ROC plot is obtained by plotting, for every 

threshold, the rate of true positives (y-axis called sensitivity) against the rate of false positives (x-

axis called 1-specificity). The area under the curve (AUC) forms the index of model 

performance. The attainment of a straight line would signify a model performance no better than 

chance and an AUC of 0.5. Curves above that line with AUCs greater than 0.7 indicate good 

performance with values greater than 0.9 as excellent (Fielding, 2002; Swets et al., 2000). 

Fielding (2002) advocates the use of ROC for evaluating presence/absence models.  Moreover, 

AUC values are independent of prevalence (Manel et al., 2001). However, Manel et al. (2001) 

argue that, although the AUC of a ROC plot is a good measure of a model’s fit, it does not work 

when testing a model’s predictive ability (by using an independent data set), because doing so 

“the model operation is no longer threshold independent” (Manel et al., 2001). There are only a 

handful of studies that have validated their models with independent data sets (see Araújo et al., 

2005) and none have systematically tested the effects of different accuracy measures. As a 

consequence it is difficult to make decisions on the usefulness of such measures without more 

examination. Recently, a study by Lobo et al. (2008) criticised the use of AUC in predictive 

modelling. They highlighted five main problems. First, AUC is a discrimination index, i.e. “it 

represents the likelihood that a presence will have a higher predictive value than an absence” 

(Hosmer and Lemeshow, 2000, p.162), and does not necessarily measure the goodness-of-fit or 

accuracy of a model. Second, it equally weights omission and commission errors, which may be 

erroneous? However, most measures do this as well unless weights are used to correct this. Third, 

it measures the discrimination over all the information of the predictive model (though this is also 

its strength!). Fourth, it does not provide spatial distribution of errors. Fifth, it is influenced by 

prevalence, which makes it difficult to compare model performance between species with 

different prevalences. Most of these criticisms also apply to the other measures of goodness-of-

fit. It is necessary to keep these in mind and not to abuse the use of any measure. However, as 

Lobo et al. (2008) do not provide any alternative to AUC, AUC is still useful as long as its 

limitations are realised and taken into account. 

Validating presence-only built SDM is difficult because there are no absence data to 

compare with. Certain modelling techniques such as GARP get round this problem by generating 
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‘pseudo-absences’, which are obtained by randomly sampling a number of points for which there 

are no occurrences (Phillips et al., 2004). The problem of this approach is that there is a great risk 

of omission error (Zaniewski et al., 2002). Most presence-only modelling produces habitat 

suitability maps rather than probability of occurrence maps. Some studies have put thresholds to 

habitat suitability maps to yield presence-absence (Hirzel et al., 2002). More innovative studies 

have used Spearman rank correlation between habitat selection/use by the species and habitat 

suitability as an indication of model performance (Boyce et al., 2002; Doswald et al., 2007). 

Ottaviani et al. (2004) propose two statistical methods for validating such models: 1) 

compositional analysis, where the overlap between presence data and habitat suitability is 

examined, followed by comparison to a null model, and 2) multinomial parametric bootstrap (for 

use with good quality validation data) in which validation is done using a generalised maximum 

likelihood type test. Validating presence-only models is a relatively new field in ecological 

modelling and therefore more research is needed to assess the validity of each approach. 

Evaluating future climate SDM is difficult due to the uncertainty of how the climate will 

change. Most studies, using ‘species-climate impact models’, have only validated the fit of the 

current data to the simulated model (Araújo et al., 2005). Some studies have used independent 

data sets in different regions (Beerling et al., 1995; Duncan et al., 2009), or have projected their 

models in the past and used fossil records (Martinez-Meyer et al., 2004; Fløjgaard et al., 2009). 

Projecting models into the past can be useful because it allows an examination of whether the 

actual observed range expansion or contraction of a species has occurred. However, it might be 

more useful if models could be built for past time periods then projected forwards to the present 

so as to capture the ‘real’ change in climate that is being observed. Such an undertaking would 

require good large-scale historic data for calibrating the models – an improbable task. Another 

possibility, though it would require a finer scale modelling, would be to model change in climate 

altitudinally as it has been shown that species are moving upwards in response to climate change 

(Sekercioglu et al., 2008). Nevertheless, evaluating species-climate impact models is impossible 

due to unforeseeable factors (Araújo et al., 2005; Oreskes et al., 1994). It is thus important when 

building species-climate impact models to ensure the validity of the assumptions and the 

modelling methodology (Araújo et al., 2005), and apply rigorous and critical evaluation of the 

projections. The modelling results should only be interpreted as giving an indication of the 

magnitude and direction of the probable impact of climate change. Thus current species-climate 

impact models are mainly strategic models, i.e. they give insight into key questions, rather than 

tactical models that give testable predictions.  
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Current predictions  
 

Studies using species-climate impact models are not uniform in the species or areas they 

examine. Most studies use higher plants, butterflies or birds in Europe (often the UK), South 

Africa, Australia and North America. Geographic patchiness is due to data availability. These 

studies are varied in the use they make of such models, investigating not only species’ future 

range changes, but also species’ extinction risk or the effectiveness of protected areas. Thomas et 

al. (2004a) modelled the response to climate change in terms of distribution range of 1,103 

endemic plant and animal species from around the globe. They then used the species-area 

relationship to estimate the extinction risk of species from climate change. Using two dispersal 

scenarios (full dispersal or no dispersal) and three climate scenarios for 2050, they projected that 

on average between 18% and 35% of species were committed to extinction. Many people have 

criticised this approach; in particular because of the use of the species area relationship (Hannah 

et al., 2005) and, in general, because of the uncertainty associated with the methods used (Araújo 

et al., 2005). Nonetheless their large-scale study highlighted the threat to biodiversity from 

climate change. 

 For Europe as a whole, the change in distribution under future climate scenarios has been 

modelled mainly for plants (Araújo et al., 2004; Bakkenes et al., 2002; Huntley et al., 1995; 

Thuiller, 2003; Thuiller et al., 2005a), birds (Huntley et al., 2006; Huntley et al., 2007) and 

butterflies (Hill et al., 2002), as extensive data for these taxonomic groups exist. Huntley et al. 

(1995) used climate response surface modelling to simulate the potential future distribution of 8 

higher plants in Europe under a double CO2 climate change scenario. They found that many 

species showed marked shifts and reductions in potential future range. However, they stressed the 

uncertainties in the predictions they made. Indeed they highlighted that the marked changes 

simulated were unlikely to happen within the short time periods modelled and that there would 

probably be a mismatch between the latitudinal extent of the simulated range displacements and 

the photoperiodic requirements of the plants. In contrast to this careful use of the predictions 

made using uncertain climate change models, Bakkenes et al.’s (2002) study endeavoured to 

‘forecast’ the effects of climate change on plant diversity and distribution by 2050. They stated 

that, on average, 32% of species would disappear from each grid cell (of Europe) and that, in 

10% of Europe, species loss would be more than 25%, although 45% of Europe would have more 

species by 25%. Amongst these confusing percentages, however, they found that there was a 

general movement of species’ ranges towards the North-east. This is in agreement with many 
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studies on range movement under climate change (e.g. Araújo et al., 2004; Huntley et al., 1995). 

They also found that species from drier southern areas would increase their ranges as they moved 

north and/or east, while, species from northern and eastern parts would be pushed out of their 

current range. This study, although interesting in many aspects, is problematic in the way it is 

reported, principally due to the lack of critical reflection of the methods used considering the 

uncertainty in predicting future outcomes. Huntley et al. (2007) also modelled the potential future 

distribution of all European breeding birds, using data from the EBCC Atlas (Hagemeijer and 

Blair, 1997). They found similar patterns to plants in that many species showed potentially 

substantial reductions in breeding range. Moreover, they found that only 39% of species’ current 

range would still have a similar climate by 2100 (Huntley et al., 2007). Similar patterns of range 

shift and reduction were found for 35 species of butterflies (Hill et al., 2002).  

 For sub-Saharan Africa, McClean et al. (2005) studied the shift in climatically suitable 

areas for 5197 plant species for three future time periods (2025, 2055, 2085) using a climate 

envelope model and two genetic algorithm models. Dispersal was also taken into account though 

only a full dispersal scenario and a no dispersal scenario was used (two extreme and thus unlikely 

scenarios). Their models showed that between 81-97% of species’ ranges decreased in size and 

shifted location (often to higher altitudes), whilst between 25-42% were projected to lose all 

climate suitability. Huntley et al. (2006) modelled the potential future ranges of sub-Saharan 

African breeding birds. They found a more complex pattern of potential change to that projected 

to occur in Europe. The distributions of species from South Africa, as well as those from semi-

arid and eastern Africa, were projected to become more restricted, while those species associated 

with equatorial Africa and moist tropical forest habitat were projected to have relatively stable 

distributions. These two studies were the only ones found that looked at change in (non-invasive) 

species’ distribution from a continental Africa perspective. The reason for this is probably the 

lack of good quality data for the whole of Africa (e.g. Giles, 2005). However, a number of studies 

have looked at climate change in South Africa. Erasmus et al. (2002) modelled the potential 

future range of 179 species in South Africa. They then superimposed on the future distributions, 

areas of the country that were currently transformed by human activity, as these areas would be 

effectively unsuitable for species’ long term viability. They found that many species 

concentrated/retracted to the east (similar to the north-east shift in Europe) and that most species 

(139) also showed a range contraction. This eastward shift follows the current aridity gradient 

from east to west. However, the extent to which the eastward shift will occur in the future will 

also depend on the prevalence of standing water dispersed in the landscape from agriculture 
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(Erasmus et al., 2002). In overlaying the anthropogenic landscape, Erasmus et al. (2002) 

highlighted the fact that there might be a conflict of land usage and suitability for species in the 

future. This was also demonstrated by Simmons et al. (2004) in their study on the impact of 

climate change on birds in South Africa. Indeed, the projected range shift of Hirundo 

atrocaerulea covered unsuitable human-impacted habitats so that projected future distribution of 

Hirundo atrocaerulea would be in reality much smaller. Their study also found that, on average, 

40% of modelled birds’ ranges would disappear by 2050. Although they cautioned that this 

percentage might increase when taking the anthropogenic landscape into consideration, 

modelling these species’ ranges only in part of their geographic range (South Africa) may be 

misleading for the species as a whole. This problem does not arise when modelling endemic 

species. The impact of climate change and land use change on endemic Proteaceae, a plant family 

of great conservation importance in the Cape Floristic Region (CFR), was looked at in terms of 

future distribution, future Red List status (IUCN 2001) and effectiveness of the current and future 

protected areas (Bomhard et al., 2005; Hannah et al., 2005). In terms of effectiveness of current 

protected areas, Hannah et al. (2005) found that mountainous protected areas were useful due to 

the projected upwards movement of many species. Their study also found that species with small-

range and, contrary to expectation, lowland species lost most range in the CFR because the 

climate is more uniform in the lowlands and so species require longer dispersal distances to find 

suitable habitat. Currently, the projected extinction risk of species from climate change is not 

included in the Red List assessment. Bomhard et al. (2005) used future climate scenarios and 

future land use change scenarios for 2020 (Rouget et al., 2003) as well as the current and planned 

conservation areas to calculate the future Red List status of Proteaceae species. This novel way of 

using species climate impact models found that the current Red listing of species would not 

change much by 2020, though 29% of species modelled would be up-listed (i.e. to more 

threatened categories) when both land use and climate change were taken into account. Thuiller 

et al. (2006) also examined the future extinction risk of 277 mammal species using future 

distributions and current land transformations. Current land use was used since no future land 

predictions were available for Africa. They found that, under a full dispersal scenario, 39-50% of 

species would be classified as low risk by 2080 and, under a no dispersal scenario, between 25-

35% would be classified as low risk (Thuiller et al., 2006). 

 All the studies mentioned suffer from the limitations stated in the section on SDM. 

Moreover, none of these studies has evaluated their current SDM with independent data, an 

important step for future studies to take into account. Although many of these studies aim to 
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make definite predictions about the impacts of climate change at some future date, the future 

reality is unlikely to match such forecasts due to a number of factors. First, other factors than 

climate will affect species’ distributions. Second, it is difficult to know how the anthropogenic 

landscape will interact with biodiversity. Third, some species may adapt to the new conditions 

and time lags to extinction will also confound factors. Fourth, as species respond 

individualistically to change, how communities will change or interact is difficult to conjecture. 

Nevertheless, all the current predictions for the change in species’ distribution under climate 

change project similar patterns despite being modelled with different GCM, climate scenarios and 

modelling techniques. These models therefore provide us with a baseline of the direction and 

magnitude of change which can be improved upon by incorporating other factors into the models, 

such as better dispersal scenarios. Evaluation of these models will become paramount if their 

results are to be taken seriously by the wider public.  

 

2.1.5 Conclusion 

 

It is evident that climate is an important factor (amongst others) in many aspects of a bird’s 

ecology. Changes due to global climate change have already been documented by a number of 

means and at a variety of levels, and as such are likely to continue to occur with increasing 

average temperatures and changes to precipitation patterns. Species distribution models are 

currently one of the most widespread tools for predicting the future effects of climate change on 

species’ ranges. Regression-based non-parametric methods, such as GAM, are advocated as the 

best methods to use with presence-absence data. CRS is another non-parametric method, which 

shows promise but has not yet been rigorously compared with other methods. Furthermore, 

model robustness and transferability are issues that still need investigating.  As discussed, all 

SDM techniques have a number of limitations, but they are one of the few tools available for 

examining the widespread impact of global warming on species’ distribution. Therefore, 

thorough analyses of different SDM techniques need to form an integral first part of any study 

using these tools to investigate the impact of climate change on species. 

Despite numerous studies implementing these models, none has specifically investigated 

the impact of the predicted change on migrant bird populations. The breeding ranges of all birds 

in Europe have been modelled in the present and the future (Huntley et al., 2007). The non-

breeding ranges of Palaearctic-African migrant birds have not yet been modelled with the 
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exception of Acrocephalus griseldis and Emberiza cineracea (Walter et al., 2004) and 

Acrocephalus paludicola (Walther et al., 2007). However, these studies’ models are questionable. 

The simulated distributions greatly over predicted the species’ actual distributions with the result 

that the authors clipped the simulated distribution with ecoregions that contained species’ 

presence records. Thus, there is a great need to model current and future African non-breeding 

ranges of migrant birds.  

 Investigating the effects of climate change on migratory species is more complex than for 

non-migratory species. Not only do the changes in breeding and non-breeding ranges need to be 

examined, but also the changes along the migration route. Alongside issues of range expansion or 

contraction, are issues of changes to the length of the migratory pathway. This is important as 

changes in migratory distance may have implications for birds’ fitness. Habitat 

availability/suitability also has to be considered along with species ecology. For instance, wetland 

areas are vital for some migrants, and change in these areas may exacerbate the effects of climate 

change. Moreover, a species’ ecological characteristics may help identify those species most 

vulnerable to climate change. 

The possibility of phenological miscuing and disjunction is greater in long-distance 

migrants as there is an indication that photoperiod is a prime cue for departure from the non-

breeding grounds (Kok et al., 1991; Coppack et al., 2003).  This may exert a selection pressure 

on migrants to select different non-breeding grounds. Examining the potential effects of climate 

change on the migratory strategy of each species might give an indication of species’ plasticity. It 

is expected that partial migrants, such as Sylvia atricapilla, will adapt more easily to climate 

change due to their ability to change migratory behaviour. Competition between resident, short-

distance migrants and long-distance migrants may also change under climate change if short-

distance migrants start to overwinter on the breeding grounds. It will therefore be of interest to 

investigate community turnover of migratory birds. 

 Notwithstanding the problems associated with species-climate impact models, such as 

data availability, model choice and evaluation; migrant populations provide further complications 

for studying the effects of climate change, as change in populations may be the result of changes 

on the breeding grounds, non-breeding grounds or combination of both.  Examining past 

population changes will be necessary so that a comprehensive perspective on the potential effects 

of climate change on can emerge. In order to arrive at an accurate picture of the effects of 

environmental change on Palaearctic-African migrant birds, it will be necessary to model past, 

present and future climate suitability.   
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2.2 Aims and Research Questions 

 
 
1)   Model the present distribution of Afro-Palaearctic migrant birds on their breeding and non-

breeding grounds. 

a) How does model selection affect robustness and predictive ability? 

b) Are there differences between modelling methods? 

c) Can good species distribution models be constructed for the breeding and non-breeding 

ranges of migratory birds?  

d) What affects the performance of species distribution models? 

 

2)   Project the distribution of Afro-Palaearctic migrant birds into three future time frames: 2025, 

2055 and 2085. 

    a)    Do comparable modelling methods produce different future projections, i.e. what is the 

uncertainty surrounding future projections? 

    b)    How will the projected climate change affect migratory birds? 

    c)    Are there differences among migratory groups? 

    d)   Will climate change impact on species migratory behaviour? 

 

3)  Assess the vulnerability of species to climate change. 

a)   What factors impact on species vulnerability? 

b)   Which species are most vulnerable to climate change? 

c)    How much can be inferred from SDMs in terms of population changes? 

d)    Is there any relation between past population change and projected future risk? 
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3. Modelling the breeding and non-breeding ranges of European-
breeding migratory birds 

 
Species’ distributions in time and space are fascinating to biogeographers and ecologists alike. 

To study these macro-phenomena, the concept of niche was developed. Grinnell (1917), Elton 

(1927) and Hutchinson (1957) were all pioneers in the concept of niche, which is broadly 

defined as a place where a species can potentially live (Grinnell, 1917) or a species’ place in 

the biotic environment in terms of its ecological function (Elton, 1927). Hutchinson refined 

these theories of niche by introducing the concepts of fundamental and realised niche 

(Hutchinson, 1957). The fundamental niche refers to the area in environmental space 

(comprising conditions and resources) where a species can live (a definition with similarities 

to that of the Grinnellian niche; Pulliam, 2000; Soberon, 2007), whereas the realised niche is 

the area within the fundamental niche that the species actually occupies as a result of biotic 

interactions (a definition with similarities to the Eltonian concept of niche (Soberon, 2007)). 

These concepts are crucial to the study of species’ distributions. Indeed, the n-dimensional 

niche described by Hutchinson provides a framework for modelling species’ distributions.  

Before introducing the conceptual framework of species’ distribution modelling, it is 

vital to define properly certain terms that will be used throughout this work. Certain 

terminology has been much debated or left unexplained (Corsi et al., 2000; Kearney, 2006; 

Scott et al., 2002), hence the need to state explicitly how each term is used. 

Species’ distribution refers to the geographical distribution of species’ occurrence. 

Species’ distribution and range are used interchangeably here. Habitat is defined as “a 

description of a physical place, at a particular scale of space and time” (Kearney, 2006, 

p.186). A model is a simplification of a biological system. Species distribution models (SDM) 

relate a species’ distribution (response variable) to environmental variables (predictor 

variables). However, here I break down this definition to two parts: a set of environmental 

variables that describe a species’ distribution (conceptual model) and the statistical procedure 

(modelling method) which relates the environmental variables to species’ distributions.  

SDM are developed by intersecting observed data with predictor variables (see 

Chapter 2) that are thought to encompass a species’ niche. But which niche? Because 

observed data are used, SDM cannot represent a species’ fundamental niche (Kearney, 2006; 

Pearman et al., 2007). However, whether SDM really model a species’ realised niche (the 
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definition used by most modellers) is also questionable since biotic interactions are not 

directly input into the model (Martinez-Meyer, 2005) and this assumption is rarely 

investigated. However, predictor variables that represent biotic interactions have been 

successfully included in models with realised niche concepts (Anderson, Peterson and 

Gomez-Laverde, 2002; Heikkinen et al., 2007).  Many authors advocate the use of niche in 

terms of potential habitats for species’ distribution (Araújo and Guisan, 2006; Kearney, 

2006). In this vein, I will refer to niche as the climatic space where a species can potentially 

live because of the purpose of the models (effect of climatic change on species) and the coarse 

scale of the models used in this study (Kearney, 2006; Soberon, 2007). Scale is an important 

consideration when developing SDM (see Chapter 2) since the scale partly determines the 

model and hence the predictor variables. 

Determining a set of predictor variables and selecting them for the migratory birds’ 

distribution models forms the basis of the next section (Section 3.1). The choice of predictor 

variables is determined by the relationship sought and the scale of the study. At the local 

scale, landscape heterogeneity will influence species’ distributions more than at an extensive 

scale (Pearson et al., 2004). On a coarse scale, macro-phenomena like climate are likely to be 

more important. An initial selection of predictor variables is made on the basis of expert 

judgement/review of the relevant literature. The final choice of predictor variables and their 

interactions is then made through different methods: either a priori or through variable 

selection methods (see section 3.1). A recent study by Meynard and Quinn (2007) found that 

an expert-based variable selection performed better than the traditional automated procedures. 

They tested different statistical models and associated variable selection on artificial species 

and found that many methods did not pick the ‘true’ environmental variables. Selecting 

environmental predictors for a predictive model is complicated by the fact that there is a need 

to regularise the models, i.e. balance model fit with model complexity (Reineking and 

Schroder, 2006; Thuiller et al., 2008). Therefore, one cannot just ‘throw’ all seemingly 

important variables into a model. Issues of over-fitting and generality in reference to 

predictive models are discussed in Section 3.1. 

Choosing an appropriate method for modelling the distribution of migratory birds 

forms the basis of section 3.2. The response variable available (as well as the potential 

relationship between the response and the predictor variables) will determine which methods 

can potentially be used (see Chapter 2). However, how good the data are is also important to 

consider. Species’ recorded presences/absences are often biased and will necessarily contain 

errors (see Chapter 2). The data that we have for this study includes bias and error. Indeed, 

although occurrence data for the breeding grounds are relatively good, there is more 
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uncertainty about the whole validity of data for the non-breeding grounds. Graham et al. 

(2007) investigated the influence of spatial errors in species’ occurrence data on the 

performance of SDMs. They found that the regression methods, such as GAM, were robust to 

spatial errors and model performance did not decline as a result. Regression methods have 

also increasingly been found to be some of the best modelling methods for predictive species 

distribution modelling (Elith et al., 2006; Graham et al., 2007; Guisan et al., 2007; Meynard 

and Quinn, 2007; Randin et al., 2006). The choice of modelling technique is closely related to 

the objective and therefore there is no single ‘best’ method (Van Horne, 2002). However, 

since my goal is prediction, it is paramount that the models do not over-fit the data and that 

they are robust. 

Section 3.3 of this chapter presents the resultant models for the breeding and non-

breeding ranges of European-breeding migrant birds. The models are the culmination of the 

analyses in sections 3.1 and 3.2. The models relate species’ observed distributions to climatic 

predictor variables. This creates inevitable discrepancies between the observed and simulated 

data. Prediction errors such as these are inevitable in SDM (Barry and Elith, 2006). Section 

3.3 examines the sources of uncertainty and the limitations of the models. 
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3.1 Species distribution models: variable selection  
 
 

3.1.1 Introduction 
 

The conceptual framework and the statistical formulation of species distribution models 

(SDM) are already well formed (Guisan and Zimmermann, 2000). However, choosing an 

appropriate model still seems to cause modellers difficulty, especially when the model 

outputs, often fraught with uncertainty, are to serve as arguments for policy makers. Models 

are never accurate depictions of the real world but can reflect well the data used to build the 

models. However, how ‘well’ is judged depends on various criteria according to the many 

authors that have built SDM (Araújo et al., 2005; Flather and King, 1992; Huntley et al., 

2004; Manel et al., 2001; Thuiller, 2004; Thuiller et al., 2005). The initial steps to building a 

model, which are often overlooked in studies today, are to state 1) what purpose the model 

has, 2) what criteria make the model acceptable to use and 3) in what context the model is 

intended to operate (Rykiel, 1996). It is fulfilment of these factors that will determine whether 

or not a model performs ‘well’.  There currently exist many ‘proven’ techniques for modelling 

species’ distribution (Elith et al., 2006; Guisan et al., 2002; Thuiller, 2003). The choice of 

dependent variables to incorporate into the model will depend on the purpose of the model 

and the scale of the data. 

  Fielding (2002) urges modellers, when developing SDM, to consider statistical issues 

such as parameter estimation and model specification as well as pragmatic issues such as 

accuracy, generality, complexity and cost (monetary and computationally). These issues are 

involved in complicated trade-offs; for example, if the model form is too complex it loses 

generality but if it is too simple it loses accuracy. As in the case of classification errors 

(commission versus omission errors, see Fielding 2002), the cost of generality and accuracy 

depend on the purpose of the model. 

The purpose of most SDM is prediction; whether to predict where a species currently 

is, based on relatively few occurrence points, or to predict where a species’ range might lie 

under some future scenario.  

Most modellers agree that for a model to be acceptable for use, it has to be ‘validated’. 

What most authors mean by validation is what Rykiel (1996) calls operational validation 

where simulated data are compared to observational data. Operational validation, however, is 

but part of validation, which is defined as “a demonstration that a model within its domain of 

applicability possess a satisfactory range of accuracy consistent with the intended application 
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of the model” (Rykiel, 1996, p.233). Conceptual validity, where “the theories and 

assumptions underlying the conceptual model are correct, or at least justifiable, and that the 

model representation of the problem or system, its structure, logic, mathematical and causal 

relationships, are recognisable”, is just as important (Rykiel, 1996, p.234). This means that 

the model chosen to represent species’ distribution needs to be ecologically valid.  Conceptual 

validity is not often considered as the many variables included in SDM shows (Bakkenes, 

2002; Corsi, 1999). However, neither operational validity nor conceptual validity in 

themselves necessarily show that a model is any good at predicting. Indeed, a high 

concordance between simulated and observed data may arise because the model over-fits the 

data (Fielding, 2002).  

Although many agree that, in terms of testing how well a model predicts, an 

independent data set should be used, most do not do so through an understandable lack of 

data. The next best things are data splitting methods, although many authors have not used 

these techniques (see Araújo et al., 2005). The main problem with these methods is 

autocorrelation (Araújo et al., 2005; Fielding and Bell, 1997). Araújo et al. (2005) attempted 

to determine 1) how well models performed on independent data sets; 2) whether using 

partitioning methods (fitting the data to a randomly selected 70% of the data and testing it on 

the remaining 30%) were good surrogates for accuracy on independent data; and 3) whether 

any modelling technique was any better than the others. They used four modelling techniques 

and variables were chosen through a stepwise procedure using Akaike’s information criterion 

(AIC). Operational validity was tested using Cohen’s Kappa and the area under the curve 

(AUC) of a receiver operating characteristic plot (Fielding and Bell, 1997). They reported 

first, that models’ predictive accuracy was quite good; second, that validation on non-

independent data produced overoptimistic results; and third, that some techniques 

(Generalised Additive Models and Artificial Neural Networks) were consistently best. 

However, this study only tested the viability of one model using each technique discarding 

the environmental variables early on through AIC. Each combination of variables constitutes 

a model and the relationship between AIC, AUC and prediction is not well understood. 

Model selection and model validation is a circular process with the selection of variables a 

central step (Araújo and Guisan, 2006). Further, randomly selecting 70% of the data for 

fitting the model just the once leaves the possibility that the result may not be representative. 

Fitting the model several times to different randomly selected 70% data sub-sets is required 

to assess the reliability and the robustness of a model. 

Many studies have compared techniques for relating variables to species’ 

distributions, but not many have compared how variable selection can affect model validity. 



 
 

45 

Moreover, validity is rarely fully investigated leaving seemingly good models in use when 

they are in fact problematic for their intended use.  Here I investigate these issues in the 

context of developing models for the breeding and non-breeding ranges of Afro-Palaearctic 

migrant birds. These models are built with the purpose of predicting the change in distribution 

of these species under climate change. They need to be able to predict future range change 

and so be capable of extrapolating. Therefore, they must not be overly simple whilst retaining 

some degree of generality. The models consequently need to be able to simulate robustly the 

species’ current distribution and be based on sound theory. 

Predictor variables 
 

Good biogeographical models require a strong link between ecological theory and statistical 

models (Guisan et al., 2006). It is important to incorporate meaningful predictor variables in 

tune with the scale and purpose of the model and express and relate these in such a way that 

they adequately reproduce species’ responses to these variables. Bioclimatic variables are 

ultimate factors constraining a species’ distribution on a coarse scale (Root, 1988a,b; H-

Acevedo and Currie, 2003; Huntley et al., 1995; Lemoine and Böhning-Gaese, 2003). 

Moreover, they have been shown to approximate a variety of species’ distributions very well 

(Huntley et al., 2004). This is because bioclimatic variables affect species directly, for 

instance by imposing physiological limits (temperature), as well as indirectly. This fact and 

the fact that climate models (AOGCMs) and emission scenarios (see Chapter 2) are available 

to use, are why using bioclimatic variables (instead of other variables for which predictions of 

future change are lacking) are at the same time the best option and problematic. Problematic 

because the variables may not describe the entire species-environment relationship, especially 

if species’ realised niche is constrained by biotic factors. Future predictions may therefore be 

uncertain because a realised niche may be different under different climates and also because 

there is no information on how species may respond to novel climates. However, the use of 

bioclimatic variables is currently the most viable option.  

It has been shown that many direct variables such as bioclimatic variables often 

commonly produce unimodal-skewed responses in ecology (Austin, 2007; Austin, 2002), 

which non- or semi-parametric methods reproduce well (Guisan et al., 2006). Therefore 

techniques, such as Generalised Additive Models (GAM) or Climate Response Surfaces 

(CRS), are and have been shown to be viable methods for predictive biogeographical 

modelling (See Chapter 2). 
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Having decided on a viable technique and the broad category of variables to use, the 

questions then become which variables will give the best model and how do these variables 

relate to the response variable, i.e. singly or through interactions? Guisan and Thuiller (2005) 

urge us to consider interaction terms when building SDM as they often improve model fit. 

Although it is possible to try every possible combination of variables in a model, this 

course of action is not sensible. First we must come up with a set of candidate models that we 

think approximates the reality given the data at hand. These models should be based on sound 

ecological theory and when possible on previous studies. The best model(s) (and combination 

of variables) should then be chosen by a valid technique and then the model examined to 

establish whether it makes ultimate sense through a goodness-of-fit test (Burnham and 

Anderson, 2001). 

Model selection 
 

Choosing an appropriate model in ecology has been done in the past through hypothesis 

testing, e.g. variables selected by stepwise regression (Mazerolle, 2004). However, it has been 

argued that this is not the best way of selecting models because it has a number of drawbacks; 

for example, stepwise regression methods can lead to biases in parameter estimation and the 

final model selected changes depending on how the regression is operated (Burnham and 

Anderson, 2001; Johnson and Omland, 2004; Wittingham et al. 2006). In recent years there 

has been a move towards using information-theoretic approaches, especially the Kullback-

Leibler information statistic (K-L) as a basis for making strong inferences in ecology 

(Burnham and Anderson, 2001). 

The information-theoretic paradigm is partially based on four core principles in 

science: 1) there are no true models, 2) the best models are simple and parsimonious, 3) there 

exist at first several working hypotheses and 4) the best models are found through the strength 

of evidence they provide (Burnham and Anderson, 2001). The relationship between K-L and 

maximum likelihood forms the basis for Akaike’s information criterion (AIC; Eq. 3.1) which 

has become one of the best tools for model selection in ecology (Burnham and Anderson, 

2002). 

KdataLAIC 2))|ˆ(log(2 +−= θ                              (3.1) 

Where ))|ˆ(( dataL θ  is the value of the log-likelihood at its maximum point over the unknown 

parameters θ, given the data and K is the number of estimable parameters in the model 

(Burnham and Anderson, 2001, 2002).  
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AIC is essentially an estimate of the expected relative loss of information when a 

model approximates reality (fitted model versus observed data). By minimising AIC, we 

minimise the loss of information and select the model (with the lowest AIC) that is closest to 

the ’truth’ (Burnham and Anderson, 2002). Moreover, AIC takes into account the number of 

parameters in the model and promotes parsimony.  Burnham and Anderson (2002) point out 

that if only poor models are evaluated then AIC will only select the best out of a poor 

selection. Further, the absolute size of the AIC is meaningless, the relative values over all 

models considered being what is important. AIC values are compared between models most 

simply and effectively by taking the difference between each model and the best model (∆ 

AIC; Eq. 3.2): 

 

∆i = AICi – AICmin                                                                                      (3.2) 

 

The larger the ∆  of model i, the less plausible a model and the rule of thumb suggested by 

Burnham and Anderson (2002) is that ∆ i  values between 0-2 provide substantial evidence in 

favour of that model, values between 4-7 provide less support for that model and values over 

10 provide essentially no support for that model.   

In the field of species’ distribution modelling where the response variable is binomial, 

goodness-of-fit measures (which assess the prediction errors of a model) have often been used 

as a support for a model. The main goodness-of-fit measures used are Cohen’s Kappa (Eq. 

3.3; Cohen, 1960) and the area under the curve (AUC) of a receiver operating characteristic 

(ROC) plot (Fielding, 2002; Fielding and Bell, 1997; Zweig and Cambpell, 1993). 

 

)))()(())()(((1
)))()(())()((()(
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+×+++×+−+

=                          (3.3) 

 
Where a represents correctly predicted presences, c incorrectly predicted presence, b correctly 

predicted absences and d incorrectly predicted absences.      

Goodness-of-fit measures are based on the two types of errors that are characterised in 

an error (or confusion) matrix (Table 2.3). Cohen’s Kappa evaluates not only how well a 

model performs in terms of correct proportion of presence and absences (Table 2.3) but also 

the extent to which the model performs better than random. However, as discussed in Chapter 

2, Kappa (K) is a threshold dependent measure which may cause a loss of information when 

assessing the goodness-of-fit of a model (Fielding, 2002; Fielding and Bell, 1997), therefore 

AUC, which is threshold independent, is considered a better alternative when it comes to 

evaluating the performance of a model. A ROC plot (Fig. 3.1) is obtained by plotting, for 
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every threshold, the rate of true positives (y-axis called sensitivity) against the rate of false 

positives (x-axis called 1-specificity). The area under the curve (AUC) forms the index of 

model performance. A straight line would signify a model performance no better than chance 

and an AUC of 0.5. Curves above that line with AUCs > than 0.7 indicate good performance 

with values > 0.9 as excellent (Swets, 1988). Both K and AUC have had criticism levelled at 

them (see section 2.1.4). However, they are still the main measures of model performance 

currently being used. Therefore, their deficiencies will be taken into account in the reporting 

of any results. 
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Figure 3.1: ROC curve for Troglodytes troglodytes for model 7i (see Table 3.2)  
with an AUC value of 0.971. The thin straight line represents the mid section  
under which the area would be 0.5. 

 
 
Goodness-of-fit measures are normally used for evaluation of models (last step of model 

formulation) rather than model selection. These measures evaluate the predictive capability 

(when used in conjunction with cross-validation techniques) of a model and do not take things 

like parsimony into account. It is important therefore to examine the relationship between 

typical model selection measures such as AIC and model evaluation measures such as AUC.  

In this section, I will look at the relationship between AIC and AUC, and examine 

model complexity and robustness through resubstitution and data-splitting methods using 

Generalised Additive Models. I will then examine the effects on prediction through projecting 

a portion of the data onto future climates and onto an independent data set. These results will 

form the basis for selecting the best combination of variables for migratory birds.  
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3.1.2 Methods 

Species data 
 

Extent of occurrence data for the breeding and non-breeding ranges of 229 migrant birds 

(Table 3.15) were taken from BirdLife International (BirdLife International, 2010). They were 

in the form of shapefiles in a Geographic Information System’s database. The original data 

had come from various sources, but had been assembled and corrected by ornithological 

experts. These shapefiles were subsequently gridded to a 0.5 degree grid over Europe and 

North Africa and to a 1 degree grid for sub-Saharan Africa (including Madagascar). Sub-

Saharan Africa was gridded to 1 degree to allow for uncertainties (Guisan et al., 2007) in 

range margins in some regions of sub-Saharan Africa. European breeding data were also 

taken from the European Bird Census Council (EBCC) atlas (Hagemeijer and Blair, 1997) as 

these better quality data were also available. These latter data were available on a 50 x 50 km 

Universal Transverse Mercator (UTM) grid. The area considered in this thesis comprised the 

Western Palaearctic, as defined by Snow and Perrins (1998), as well as Africa, Madagascar 

and the Cape Verde Islands. The taxonomy used was the same as that used in Snow and 

Perrins (1998). 

To test the effects of the different model selection techniques on prediction, the 

breeding ranges of 12 Palaearctic migrant birds were selected so that widespread and range-

restricted species (species with prevalence ≤ 0.1) were represented with passerine s, birds of 

prey and wader groups (Table 3.1). Within these groups a total of 12 species were randomly 

chosen. The number of species selected was the minimum adequate number for this analysis. 

Less would not have been viable and more, although desirable, would have been time costly 

and outside the scope of the thesis, which was mainly concerned with predicting general 

impacts of climate change on species rather than with an in depth methodological study. 

Species’ lists from European Important Bird Areas (IBA) were taken from BirdLife 

International's World Bird Database. There were 1503 sites which contained presence absence 

information for the twelve species. The resolution of these points was one degree.  
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Table 3.1: Selection of species (W indicates the widespread species) and observed prevalence 
(proportion occupied) on the breeding grounds. 
Family Species Common name Prevalence 
Accipitridae Accipiter nisusw  Sparrow hawk 0.38 

Accipitridae Gyps fulvus  Griffon vulture 0.10 
Accipitridae Pernis apivorusw Honey Buzzard 0.28 
Caprimulgidae Caprimulgus ruficollis  Red-necked nightjar 0.05 
Charadriidae Charadrius morinellus  Dotterel 0.03 
Hirundinidae Hirundo rusticaw  Swallow 0.55 
Laniidae Lanius nubicus  Masked shrike 0.03 
Rallidae Porzana porzanaw  Spotted crake 0.17 
Scolopacidae Actitis hypoleucosw  Common sandpiper 0.32 

Scolopacidae Limosa lapponica  Bar-tailed godwit 0.01 
Sylviidae Sylvia communisw  Whitethroat 0.41 
Sylviidae Sylvia undata  Dartford warbler 0.09 
 

Climatic data 
 

Climatic data for the period 1961-90 were taken from the 0.5º longitude x latitude global 

compilation of New et al. (1999). Soil water capacity data were taken from Prentice et al. 

(1992). These data were interpolated for our study area, which comprised 10313 grid cells for 

the non-breeding distribution and 8233 grid cells for the breeding distribution (Europe and 

North Africa only unless species also bred south of the Sahara1), and also to the 1503 grid 

cells for the IBA data set, using an inverse distance weighted bi-linear interpolation (see 

algorithm in Numerical Recipes Software, 1988-19922

                                                 
1 44 species also breed in Sub-Saharan Africa (see digital appendix). For these species, the entire study area 
(10313 cells) was used to build the breeding models. 

). A series of bioclimatic variables was 

derived from the climatic variables (see Huntley et al. 1995 and Prentice et al. 1992 for the 

calculation of these variables). These were the annual temperature sum above 5ºC (GDD5), 

which is the minimum temperature for tree growth (Prentice et al. 1992), the mean 

temperature of the coldest month (MTCO), the mean temperature of the warmest month 

(MTWA), actual/potential evapo-transpiration (APET), difference of precipitation to potential 

evapo-transpiration (PPE) and a dry intensity variable (DRYINT) which is formed by taking 

the negative values of PPE. PPE was divided into three variables: annual mean PPE, PPE 

during the breeding/non-breeding season and PPE during the two months prior to the 

2 In the case where the target cell did not have 4 corner points (e.g. because it was coastal),a window was placed 
around the point and the inverse distance weighted mean using all the data points falling within the window was 
calculated. The weights given to the points within the window were 1/(distance from target  point), so points 
further away got a lower weighting than points closer to the target point. 
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breeding/non-breeding season (see below). PPE was transformed due to the very large values 

at northern latitudes (a result due high wetness and low evapotranspiration). Transformation 

was done by ranking the values then taking the percentile. 

The future climate (derived from the HadCM3 general climate model and the B2 

SRES scenario) for the study area was interpolated from the TYN SC 2.0 0.5º longitude x 

latitude global compilation by Mitchell et al. (2004). This data set provides future climate 

variables derived by adding the climate anomalies for 2070-2099 to the 1961-1990 climate 

values (Mitchell et al., 2004). 

 

Models 

 

Huntley et al. (2004) showed that a variety of species’ distributions could be very well 

modelled using just a few bioclimatic variables. This is because these base variables 

characterise the environment in which the species live. The base model from Huntley et al. 

(2004) is GDD5, MTCO and APET. In another study modelling bird distributions in Africa, 

MTWA was used instead of GDD5 because it was deemed and found to be a better variable 

for Africa (Huntley et al., 2006). These two 3-variable combinations formed the base for all 

the models used (Table 3.2). Models comprising of less than these 3 variables (termed ‘simple 

models’) were also tested (though only on the selected 12 species) using these core variables 

including a null model which was each species’ prevalence. Models with more than four 

variables were never tried because the variables are already correlated (significant Pearson 

correlations from 0.135 to 0.918). Abiotic interactions were taken into account by running the 

main models two times – no interaction and interaction: temperature (MTCO or MTWA) and 

APET. 

Since migrant species spend limited amounts of time in each region (breeding and 

non-breeding) it makes sense to ‘fine tune’ some of the variables rather than using annual 

means. Heikkinen et al. (2006) found that models incorporating fine-tuned variables 

performed better than the base line models. However, they studied a relatively fine-scale (10 

x10 km grid) while I used a half degree grid. It makes no sense, therefore, to fine tune all of 

the variables because, at a coarse scale, an environment in which the species lives is 

characterised by the climate over the year. PPE was chosen as the fine-tuneable variable. 

Moisture variables were deemed especially important for species during the time they were in 

each region, for determining food abundance for instance. Temperature was not considered 
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for fine-tuning because 1) it is important in the base line variable3

  

 and 2) another temperature 

variable would be too highly correlated in the model. I considered it would be worth building 

models with variables adjusted to the period birds were in each region and also to a period 

shortly before the birds’ arrival. The before period was taken as two months before arrival. 

Arrival time in each region is difficult to estimate because all species have different arrival 

times and populations arrive in different parts of the region at different times. Moreover, due 

to the coarse scale of the modelling, a generic arrival time was used. The two months before 

arrival were considered for the breeding range as February-March and September-October for 

the non-breeding range. The “breeding period” was defined as April-August and the “non-

breeding period” as October-February. 

Table 3.2: Main models tested (MTCO= mean temperature of the coldest month; 
MTWA=mean temperature of the warmest month; GDD5=growing degree days over 5ºC; 
APET= actual/potential evapo-transpiration; PPE= difference of precipitation to potential 
evapo-transpiration; PPEBEFORE=PPE before breeding or non-breeding season; PPEDURING=PPE 
during breeding or non-breeding season; DRYINT=dry intensity variable). See appendix IIIa 
for the list of reduced models used for the 12 species. 
Model N° Model 
1 MTCO + MTWA+ APET 
2 MTCO + GDD5+ APET 
3 MTCO + MTWA+ APET + DRYINT 
4 MTCO + GDD5+ APET + DRYINT 
5 MTCO + MTWA+ APET + PPE 
6 MTCO + GDD5+ APET+ PPE 
7 MTCO + MTWA+ APET + PPEBEFORE 
8 MTCO + GDD5+ APET + PPEBEFORE 
9 MTCO + MTWA+ APET + PPEDURING 
10 MTCO + GDD5+ APET + PPEDURING 
N°i Model + (MTCO*APET)+(MTWA/GDD5*APET) 

Modelling technique 
 

Generalised additive models (GAM) are semi-parametric models with the assumption that the 

functions are additive and the components are smooth (Hastie and Tibshirani, 1990), i.e. a 

function is created that captures the pattern in the data whilst eliminating the noise. The 

models make no assumption about the form of the relationship between the response variable 

and the predictor variables, and therefore is data-driven (Guisan et al., 2002). This technique 

aims to maximise the quality of prediction by estimating non-parametric functions of 

predictor variables. GAM are generalisations of the additive models (Eq. 3.5) which in turn 

are generalisations of linear regression. GAM (Eq. 3.6) are a form of likelihood-based 

regression models.  
                                                 
3 Average temperature throughout the year shapes the environmental characteristics. 
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E stands for expected value; Y is the response variable and X1,…Xp is the set of predictor 

variables. si(X), i = 1, ... , p are smooth functions; g(…) is the link function. 

In the additive models, smooth functions replace the regression parameters in a 

regression model and these functions are standardised so that Σsj(Xj) = 0 (Hastie and 

Tibshirani, 1986). These functions are estimated by scatter plot smoothers (Hastie and 

Tibshirani, 1986) of which the most commonly used are splines and locally-weighted 

regression. The amount of smoothing is controlled by the size of the neighbourhood or 

bandwidth (Beck and Jackman, 1997). The larger this is, the more smoothing and the more 

data reduction (eliminating the noise). In locally-weighted regression the amount of 

smoothing is determined by the span (smaller spans result in tighter neighbourhoods, i.e. 

using a smaller subset of data points) and in splines the amount of smoothing is determined by 

the degrees of freedom (d.f.) used (larger d.f. for tighter bandwidths). The form of the 

response data needs to be specified, as in generalised linear models, through a link function. 

GAM were implemented in R (R Development Core Team, 2006) with binomial 

distribution of error and a logistic link function using the GAM package by Hastie (2006). 

The smoother used was splines with four degrees of freedom (the number of d.f. and smoother 

chosen was determined from previous trials and previous studies; Araújo and Luoto, 2007; 

Meynard and Quinn, 2007; Randin et al., 2006). This package also calculates the AIC values 

for each model. AUC values were calculated from resubstitution in R using the limma 

package (Smyth, 2005, 2007). 

Analyses  
 

For each model, AIC was determined and the ∆AIC calculated. As suggested by Burnham and 

Anderson (2002) only the models with a ∆AIC of less than 7 were con sidered. For each 

model, area under the curve (AUC) of a receiver operating plot (Fielding and Bell, 1997) was 

calculated through resubstitution. In the text I will refer to this AUC as AUCrange. The 

relationship between AIC and AUCrange was examined for each model/species. 

For the pseudo-independent data, I randomly split the data in the classic 70% training 

data – 30% testing data. The average AUC (‘Mean AUC’) and standard deviation were taken 
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from 20 fits. The relationship between ‘Mean AUC’, AUCrange and AIC was examined 

through Spearman correlation and Kruskal-Wallis tests. 

Impact on prediction 
 

The models built using all the data were then projected onto the IBA dataset for each of the 12 

species and AUC (AUCIBA) was calculated. Spearman correlations were performed for each 

species with the three AUC values from each evaluation method. This enables the comparison 

between each measure of model goodness-of-fit and level of prediction accuracy. 

Each 70% fit model for all the 10 main models and 10 associated interaction models 

was used to predict future distribution of the 12 species under climate change. This resulted in 

20 possible future predictions to be tested against each future projection built using the full 

model. The difference between the output from the full-built model and the models built with 

70% data was measured using the Mean Absolute Error (MAE, Eq.3.7; Mayer and Butler, 

1993). The average MAE and standard deviation were calculated. MAE is more robust than 

other measures of accuracy such as mean square error (Walther and Moore, 2005). 

 

nPMAE
i

ii 







Π−= ∑                   (3.7) 

Where n is the total number of values; Pi is the predicted value i, in this case the models built 

using 70% of the data, and Πi is the true value of i, in this case the models built using the full 

dataset. 

 

The results of this test show how well each model extrapolates (future predictions on to the 

30% of the data not used to build the model) compared with the ‘truth’ (future predictions 

built with the full data set). 
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3.1.3 Results 

Model selection 
 

AIC varied widely across models for each species, with in most cases only one useful model 

with ∆AIC < 7. The fit of the models (AUCrange) also varied widely from 0.1 to 1 (Tables A1-

A84

Table 3.3 shows the number of species’ distributions each model describes best 

according to the three model selection techniques. The table shows that AIC and 

resubstitution favour similar models, while the data splitting technique chooses different and 

often simpler models, i.e. without an interaction term. Across 220 species, AIC and AUCrange 

were significantly negatively correlated which is what one would expect (Table A9). Indeed 

74% of the time the model with the lowest AIC corresponded exactly with the highest 

AUCrange. In the remaining 26%, the lowest AIC corresponded to a model with an AUC 

difference of between 0-0.02 of that of the highest AUC value. In nine cases (Anas 

platyrhynchos, Falco tinnunculus, Tachybaptus ruficollis, Gallinula chloropus, Rallus 

aquaticus, Tringa totanus, Limicola falcinellus, Scolopax rusticola, and Geronticus eremita) 

there was a slight, non-significant positive correlation for the breeding ground values only.  

). The maximum AUC for each species ranged from 0.826 to 1 for the breeding ground 

models and 0.823 to 0.998 for the non-breeding ground models. Data splitting showed that, 

depending on which random 70% split was used, a very different predictive fit (for the 30%) 

was achieved, ranging from very poor (0.1) to very good (1). This resulted in some models 

having high standard deviations about the Mean AUC (Tables A1-A8). On the breeding 

grounds, the models with an interaction term nearly always showed high standard deviations 

(Tables A1-A4).  

AIC was significantly negatively correlated with Mean AUC for 1% and 43% of 

species for the breeding and non-breeding models respectively (Table A9), while AUC and 

Mean AUC were significantly negatively correlated only for 6% and 2% of species for the 

breeding and non-breeding models respectively (Table A9). Indeed, on the breeding grounds 

only about 6% of the time did all methods agree, whilst on the non-breeding grounds the 

percentage was slightly higher (12%).  

Interaction models (Mi) were chosen less often by the splitting method. Indeed, there 

was a difference in the frequency with which the interaction models were chosen depending 

                                                 
4 Tables and Figures labelled A are in Appendix II. 
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on which method was used (Kruskal Wallis, d.f. = 2 in all cases: Breeding ground X = 14.932, 

p < 0.01, Winter ground X= 8.286, p < 0.05).  

There was also a difference in the frequency with which the non interaction models 

were chosen on the breeding grounds (Kruskal Wallis, X = 9.307, d.f. = 2, p < 0.05) but not 

on the non-breeding grounds (Kruskal Wallis, X = 4.745, d.f. = 2, p = 0.09). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Robustness and generality 
 

 This section deals with the results using the sub-set of 12 species (Table 3.1). The fit of the 

models (AUCrange) ranged from species to species (Table 3.4). The performance of the simple 

models (using either prevalence or one or two variables) ranged from AUCrange 0.495 (a 

performance no different from random) to 0.994 (excellent). However, for each species an 

excellent fit could be found through one of the simple models including a climatic variable 

(See Appendix IIIa). The main models’ AUCrange ranged from 0.624 to 0.997, whilst the 

interaction models’ performance ranged from 0.403 to 0.997 (Table 3.4).  

Table 3.3: Models (refer to Table 3.2) and associated 
number of species for which each model is the “best” as 
measured by three different model selection techniques 
(lowest AIC, highest AUC or highest Mean AUC from the 
data splitting technique). 

 models 
breeding 

 
Non-breeding 

 
  AIC AUCrange split AIC AUCrange split 
M1 1 0 5 4 0 11 
M2 0 0 2 3 0 5 
M3 1 0 40 3 0 47 
M4 1 0 17 2 0 22 
M5 37 39 8 1 2 0 
M6 14 16 6 0 0 3 
M7 16 2 14 2 0 46 
M8 3 1 7 6 5 48 
M9 6 0 99 9 7 0 
M10 1 0 29 4 4 0 
M1i 0 0 0 1 0 11 
M2i 1 1 0 1 0 9 
M3i 3 2 0 20 25 5 
M4i 7 3 1 14 14 13 
M5i 4 7 0 6 7 0 
M6i 7 11 0 10 16 0 
M7i 27 39 0 27 22 0 
M8i 28 31 0 39 43 9 
M9i 40 46 1 30 34 0 
M10i 32 31 0 47 50 0 
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For each species it is possible to select the best model according to the different model 

selection techniques. Table 3.5 shows the results of 20 fits (main models only with their 

associated interaction models) and highlights the model chosen by the other methods. Seven 

out of all the possible models recur as the best models according to resubstitution (Table 3.4 

and 3.5); these are the four variable models with, nine times out of twelve, a model including 

PPE either before or during the breeding season. Also for nine of the species the best model, 

i.e. highest AUCrange, includes an interaction. AIC selected the same model as AUCrange apart 

from in two cases. For all but three species only one model was selected by AIC as the ∆AIC 

for the other models were much larger than 7. 

The 20 70-30 split results (Table 3.5) showed that it is possible to obtain a wide 

variety of AUC depending on the randomly chosen split. The standard deviations show, 

especially for the interaction models, that depending on which split is made, one may get a 

false sense of how well the model performs. With the 20 70-30 splits one can identify the 

most robust model, i.e. high mean AUC and low standard deviation. The most robust model is 

always different from that chosen as ‘best model’ from AIC and resubstitution. Moreover, all 

the interaction models are not robust. This disparity between AUCrange and Mean AUC 

indicates over-fitting. The effect of over-fitting on future predictions is shown in Figure 3.2. 

Figure 3.2 shows for each species the average MAE of each model. All models with an 

interaction term have wide error bars and large MAE. Most of the main models are robust in 

their future projections though models 5 and 6 (including average PPE) are not robust for 

many species. 
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Table 3.4: AUC values for the full models and AUC for IBA data predicted from the full models. Refer to Table 3.2 for model description. 
Full models A. nisus G. fulvus P. apivorus C. ruficollis C. morinellus H. rustica L. nubicus P.porzana A. hypoleucos L. lapponica S. communis S. undata 
m1 0.945 0.838 0.955 0.888 0.975 0.919 0.892 0.947 0.935 0.996 0.980 0.980 
m1i 0.953 0.859 0.962 0.892 0.977 0.926 0.911 0.951 0.944 0.997 0.983 0.981 
m2 0.941 0.843 0.952 0.882 0.970 0.913 0.888 0.946 0.932 0.997 0.979 0.982 
m2i 0.951 0.858 0.960 0.885 0.973 0.922 0.904 0.565 0.240 0.510 0.982 0.985 
m3 0.948 0.846 0.955 0.895 0.976 0.932 0.900 0.954 0.936 0.996 0.982 0.983 
m3i 0.955 0.865 0.963 0.898 0.978 0.937 0.916 0.957 0.946 0.997 0.984 0.984 
m4 0.943 0.849 0.952 0.884 0.971 0.924 0.899 0.952 0.933 0.997 0.981 0.984 
m4i 0.953 0.860 0.961 0.889 0.974 0.932 0.915 0.563 0.545 0.508 0.983 0.987 
m5 0.978 0.838 0.903 0.932 0.980 0.982 0.960 0.800 0.957 0.834 0.960 0.965 
m5i 0.948 0.840 0.870 0.754 0.868 0.952 0.572 0.797 0.768 0.838 0.915 0.912 
m6 0.977 0.826 0.890 0.626 0.976 0.982 0.962 0.951 0.957 0.751 0.927 0.935 
m6i 0.947 0.775 0.894 0.939 0.977 0.961 0.572 0.901 0.835 0.776 0.906 0.964 
m7 0.975 0.920 0.967 0.624 0.982 0.978 0.737 0.955 0.951 0.882 0.985 0.748 
m7i 0.979 0.928 0.969 0.969 0.984 0.981 0.403 0.955 0.958 0.806 0.986 0.887 
m8 0.974 0.922 0.965 0.970 0.978 0.978 0.956 0.631 0.948 0.999 0.984 0.920 
m8i 0.978 0.927 0.968 0.633 0.980 0.981 0.635 0.878 0.958 0.999 0.985 0.930 
m9 0.975 0.919 0.963 0.978 0.978 0.976 0.942 0.955 0.955 0.997 0.984 0.984 
m9i 0.978 0.926 0.967 0.980 0.980 0.979 0.946 0.956 0.962 0.997 0.986 0.984 
m10 0.972 0.917 0.959 0.980 0.975 0.975 0.943 0.954 0.952 0.998 0.983 0.985 
m10i 0.978 0.924 0.964 0.980 0.979 0.979 0.947 0.956 0.962 0.998 0.985 0.987 
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Table 3.4 continued 
IBAmodels A. nisus G. fulvus P. apivorus C. ruficollis C. morinellus H. rustica L. nubicus P.porzana A. hypoleucos L. lapponica S. communis S. undata 
m1 0.611 0.741 0.735 0.923 0.896 0.653 0.887 0.829 0.716 0.987 0.735 0.941 
m1i 0.652 0.585 0.774 0.482 0.911 0.753 0.775 0.838 0.694 0.869 0.731 0.477 
m2 0.597 0.734 0.736 0.934 0.897 0.622 0.906 0.813 0.717 0.780 0.722 0.943 
m2i 0.683 0.555 0.738 0.934 0.909 0.747 0.776 0.815 0.645 0.653 0.699 0.476 
m3 0.611 0.761 0.737 0.921 0.898 0.652 0.913 0.828 0.715 0.985 0.735 0.941 
m3i 0.631 0.553 0.600 0.835 0.752 0.734 0.775 0.844 0.733 0.642 0.741 0.865 
m4 0.595 0.757 0.740 0.930 0.897 0.621 0.918 0.808 0.717 0.985 0.723 0.943 
m4i 0.615 0.580 0.714 0.835 0.902 0.645 0.780 0.720 0.733 0.649 0.756 0.947 
m5 0.601 0.679 0.756 0.808 0.904 0.638 0.894 0.633 0.736 0.676 0.691 0.887 
m5i 0.688 0.656 0.740 0.812 0.717 0.759 0.774 0.827 0.715 0.670 0.740 0.882 
m6 0.594 0.691 0.720 0.482 0.899 0.618 0.907 0.804 0.738 0.647 0.702 0.747 
m6i 0.673 0.578 0.663 0.870 0.911 0.754 0.776 0.822 0.710 0.710 0.732 0.870 
m7 0.616 0.641 0.730 0.767 0.906 0.641 0.914 0.815 0.723 0.806 0.728 0.874 
m7i 0.689 0.673 0.654 0.743 0.684 0.707 0.776 0.644 0.671 0.876 0.710 0.480 
m8 0.608 0.579 0.737 0.937 0.908 0.621 0.774 0.666 0.727 0.854 0.729 0.945 
m8i 0.668 0.760 0.753 0.504 0.918 0.700 0.832 0.640 0.759 0.807 0.724 0.474 
m9 0.611 0.767 0.729 0.933 0.891 0.653 0.905 0.831 0.724 0.987 0.735 0.940 
m9i 0.568 0.659 0.712 0.506 0.867 0.753 0.775 0.716 0.742 0.653 0.718 0.856 
m10 0.597 0.754 0.730 0.939 0.892 0.615 0.916 0.824 0.718 0.645 0.670 0.945 
m10i 0.674 0.589 0.763 0.809 0.909 0.742 0.832 0.825 0.738 0.653 0.739 0.853 
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 Table 3.5: Average AUC and standard deviation for the 20 70-30 splits for each main model for 12 species (W indicates the widespread species). The * denotes the 
most robust model. The + denotes the model chosen as best by resubstitution. The # denotes the model chosen by AIC selection. And ± denotes model chosen by both 
AIC and AUC. Refer to Table 3.2 for description of models.  
  m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 
Models x  σ x  σ x  σ x  σ x  σ x  σ x  σ x  σ x  σ x  σ 
Accipiter nisusw 0.973 0.003 0.972 0.003 0.974 0.003 0.973 0.003 0.946 0.053# 0.938 0.049 0.974 0.003 0.973 0.003 0.975 0.003* 0.974 0.003 
Gyps fulvus 0.905 0.012 0.902 0.012 0.912 0.011 0.911 0.011 0.694 0.161 0.697 0.134 0.644 0.145 0.680 0.163 0.914 0.011* 0.910 0.011 
Pernis apivorusw 0.954 0.004* 0.951 0.005 0.954 0.004 0.952 0.005 0.843 0.098 0.828 0.106 0.897 0.117 0.924 0.057 0.955 0.004 0.953 0.004 
Caprimulgus 
ruficollis 0.965 0.004 0.973 0.002 0.973 0.003 0.977 0.003 0.679 0.213 0.717 0.203 0.760 0.198 0.850 0.200 0.975 0.003 0.978 0.002* 
Charadrius 
morinellus 0.972 0.008 0.968 0.008 0.940 0.143 0.957 0.055 0.967 0.011 0.963 0.010 0.973 0.008 0.969 0.008 0.973 0.007* 0.970 0.007 
Hirundo rusticaw 0.980 0.003 0.980 0.003 0.980 0.003 0.980 0.003 0.980 0.003± 0.980 0.003± 0.980 0.002 0.980 0.002* 0.980 0.003 0.980 0.003 
Lanius nubicus 0.953 0.008 0.957 0.009 0.966 0.008* 0.964 0.008 0.720 0.224± 0.686 0.223± 0.888 0.186 0.586 0.129 0.960 0.008 0.962 0.009 
Porzana porzanaw 0.947 0.006 0.946 0.007 0.953 0.006* 0.952 0.006 0.788 0.168 0.761 0.190 0.918 0.090 0.785 0.179 0.949 0.006 0.949 0.006 
Actitis hypoleucosw 0.950 0.005 0.951 0.005 0.951 0.005 0.951 0.005 0.949 0.020 0.949 0.022 0.952 0.005 0.951 0.005 0.954 0.004* 0.954 0.005 
Limosa lapponica 0.996 0.001 0.896 0.185 0.996 0.002 0.991 0.024 0.799 0.160 0.796 0.173 0.828 0.134 0.827 0.148+ 0.997 0.001* 0.914 0.181 
Sylvia communisw 0.945 0.033 0.880 0.062 0.964 0.004* 0.963 0.004 0.891 0.054 0.861 0.021 0.843 0.130 0.926 0.049 0.959 0.004 0.892 0.050 
Sylvia undata 0.977 0.003 0.976 0.003 0.978 0.003* 0.977 0.003 0.732 0.211 0.666 0.209 0.757 0.223 0.817 0.210 0.977 0.003 0.977 0.003 
With Interaction                     
Accipiter nisusw 0.877 0.114 0.890 0.035 0.898 0.030 0.874 0.130 0.884 0.042 0.892 0.027 0.893 0.028+ 0.888 0.029 0.893 0.049 0.901 0.042 
Gyps fulvus 0.714 0.104 0.681 0.155 0.746 0.135 0.740 0.116 0.691 0.110 0.668 0.120 0.746 0.123± 0.687 0.123 0.683 0.147 0.672 0.120 
Pernis apivorusw 0.827 0.085 0.802 0.157 0.835 0.088 0.847 0.123 0.832 0.058 0.834 0.070 0.827 0.069± 0.827 0.079 0.826 0.077 0.833 0.109 
Caprimulgus 
ruficollis 0.664 0.163 0.768 0.210 0.736 0.205 0.723 0.215 0.697 0.208 0.704 0.218 0.668 0.204 0.725 0.220 0.682 0.212± 0.822 0.195± 
Charadrius 
morinellus 0.741 0.187 0.906 0.142 0.768 0.160 0.764 0.178 0.727 0.106 0.940 0.078 0.735 0.096 0.900 0.116 0.662 0.152 0.818 0.195 
Hirundo rusticaw 0.929 0.031 0.953 0.034 0.882 0.115 0.962 0.033 0.934 0.028 0.937 0.032 0.921 0.028 0.932 0.094 0.923 0.030 0.941 0.044 
Lanius nubicus 0.602 0.180 0.635 0.210 0.586 0.139 0.584 0.125 0.510 0.064 0.607 0.136 0.559 0.123 0.634 0.181 0.554 0.154 0.652 0.186 
Porzana porzanaw 0.795 0.150 0.949 0.006 0.735 0.144± 0.796 0.165 0.778 0.100 0.775 0.110 0.761 0.093 0.763 0.119 0.787 0.142 0.942 0.044 
Actitis hypoleucosw 0.844 0.084 0.855 0.066 0.831 0.096 0.907 0.079 0.871 0.076 0.847 0.074 0.820 0.047 0.816 0.061 0.860 0.120 0.832# 0.068+ 
Limosa lapponica 0.647 0.204 0.816 0.212 0.627 0.163 0.685 0.238 0.799 0.116 0.801 0.135 0.784 0.117 0.738 0.143 0.669 0.198# 0.758 0.223 
Sylvia communisw 0.832 0.072 0.881 0.046 0.866 0.023 0.906 0.103 0.857 0.032 0.861 0.021 0.839 0.051± 0.868 0.032 0.864 0.040 0.865 0.041 
Sylvia undata 0.605 0.182 0.673 0.218 0.743 0.206 0.817 0.200 0.685 0.211 0.744 0.187 0.722 0.207 0.588 0.171 0.636 0.189 0.733 0.216± 
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The independent validation (Table 3.4) shows that in most cases my models are not 

transferable. All models for Accipiter nisus perform very badly (AUC 0.597-0.688). For the 

other species at least one model gives AUCIBA values above 0.7, the threshold for a useful 

model, and for five species some models are excellent (AUCIBA above 0.9). The ‘best model’ 

according to the highest AUCIBA is different to the models chosen by model selection 

methods. However, the highest AUC may not always be the best selector as there is no rule to 

say when an AUC value is different from another one like the delta AIC for example.  

To investigate the relationship between the different AUCs, I correlated all the AUC 

values (AUCrange, AUCIBA and Mean AUC). The results of the Spearman correlations are in 

Table 3.6. Visual appraisals of two of the relationships between AUCs are shown in Figures 

3.3 and 3.4. These figures distinguish between the different models (simple, main and 

interactions). The correlations showed that for most species the full fitted AUCrange and Mean 

AUC are correlated with AUCIBA. For most cases these were (as one would expect) strong 

positive correlations. However, for Accipiter nisus and Hirundo rustica the correlations were 

negative. Although both AUCrange and Mean AUC provided similar correlations coefficients, 

Mean AUC often had a stronger correlation with AUCIBA. Moreover, when comparing Fig. 

3.3 and 3.4, it can be seen that AUCrange often gives a false impression of the performance of 

interaction models (Fig 3.3 b ,d ,h ,j and l) whereas the Mean AUC does not (Fig 3.4 b, d, h, j 

and l) in terms of how well the interaction models extrapolate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.6: Spearman correlation between Resubstitution AUC (R), Mean AUC 
(M) and IBA AUC (I). * indicate level of significance 
Species R-M rho R-I rho M-I rho 
Accipiter nisus 0.301 -0.162 -0.538** 
Gyps fulvus 0.101 0.200 0.775*** 
Pernis apivorus 0.134 0.184 0.237 
Caprimulgus rufficolis 0.327* 0.432** 0.825*** 
Charadrius morinellus 0.183 0.595*** 0.359* 
Hirundo rustica 0.045 -0.320 -0.547*** 
Lanius nubicus 0.299 0.349* 0.729*** 
Porzana porzana 0.367* 0.503** 0.514** 
Actis hypoleucos 0.116 0.394* 0.091 
Limosa lapponica 0.258 0.355* 0.711*** 
Sylvia communis 0.207 0.367* -0.087 
Sylvia undata 0.234 0.438** 0.698*** 
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Figure 3.2: Mean absolute error in future scenario probabilities for models 1-10 with 
(light grey squares) and without interactions (black diamonds) for widespread species 
a) Accipiter nisus, b) Pernis apivorus, c) Porzana porzana, d) Hirundo rustica, e) 
Actis hypoleucos, f) Sylvia communis  
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Figure 3.2: Mean absolute error in future scenario probabilities for models 1-10 with 
(light grey squares) and without interactions (black diamonds) for restricted species 
 g) Gyps fulvus, h) Caprimulgus rufficolis, i) Charadrius morinellus, j) Lanius 
nubicus, k) Limosa lapponica l) Sylvia undata 
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Figure 3.3: Relationship between AUCIBA and  AUCrange for species: a) Accipiter nisus, b) 
Gyps fulvus, c) Pernis apivorus, d) Caprimulgus ruficollis, e) Charadrius morinellus, f) 
Hirundo rustica. Grey dots represent simple models, black dots represent main models and 
white dots represent interaction models. 
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Figure 3.3: Relationship between AUCIBA and  AUCrange for species: g) Lanius nubicus, h) 
Porzana porzana, i) Actis hypoleucos, j) Limosa lapponica, k) Sylvia communis, l) Sylvia 
undata. Grey dots represent simple models, black dots represent main models and white dots 
represent interaction models 
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Figure 3.4: Relationship between AUCIBA and Mean AUC for species: a) Accipiter nisus, b) 
Gyps fulvus, c) Pernis apivorus, d) Caprimulgus ruficollis, e) Charadrius morinellus, f) 
Hirundo rustica.  Grey dots represent simple models, black dots represent main models and 
white dots represent interaction models. 
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Figure 3.4: Relationship between AUCIBA and Mean AUC for species:  g) Lanius nubicus, h) 
Porzana porzana, i) Actis hypoleucos, j) Limosa lapponica, k) Sylvia communis, l) Sylvia 
undata.  Grey dots represent simple models, black dots represent main models and white dots 
represent interaction models. 
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3.1.4 Discussion 
 

In this study, I built 20 models (10 of which included interaction terms) representing the 

potential description of the species-environment relationships. In addition, for 12 species, 

reduced models were built (see Appendix IIIa). The results show that each species can be 

modelled well (AUCrange above 0.8) as long as the appropriate combination of variables for 

each species is used. Finding such good model fits in our sample of 12 species with only one 

or two variables is very surprising and counter to the many-variable models found in the 

literature (Bakkenes et al., 2002; Buckland and Elston, 1993; Corsi et al., 1999). However, as 

these simple variables were chosen to be biologically and ecologically meaningful, this 

finding demonstrates the conceptual validity of our base models (Rykiel, 1996). A recent 

study by Beale et al. (2008) suggested that species may not be entirely constrained by climate. 

They modelled the distribution of bird species using bioclimatic variables and using a null 

model. They found that their null model produced valid simulations of species’ distribution 

and a subsequent power analysis did not reveal that species’ distributions patterns were 

determined by climate. Although some of my null models produced adequate model fits (see 

Appendix IIIa), models including climatic variables performed much better. Beale et al. 

(2008) suggest that maybe other factors, such as biotic interactions, are more important in 

shaping species’ distributions, although they concede that, for some species, climate was 

important in determining their distribution. It may be that the data available may not have 

enough distinguishing power for the addition of even known important factors.  

Many different models performed well in terms goodness-of fit, making it difficult to 

choose among them. The information-theoretic approach (AIC) enables one to choose a 

specific model for each species, especially since in this study, only one model had a good 

delta AIC. AUC and AIC were found to select similar models. However, the data splitting 

method, which aims to reveal the most robust predictive model, highlighted different models 

to those selected by either AIC or AUC. These analyses also showed that more complex 

models, although they perform better (in terms of internal validity found through 

resubstitution), actually over-fit the data (Fielding, 2002). Over-fitting is a problem especially 

when the purpose of a model is to predict or extrapolate (Araújo and Guisan, 2006). Variable 

selection is often used as a regularisation method, i.e. as means of balancing model fit and 

complexity. Reineking and Schröder (2006) examined the effects of variable selection 

through AIC on model predictive performance as compared with other regularization methods 

(least absolute shrinkage and selection operator (lasso), and penalised maximum likelihood 

(ridge)) and found that although AIC was the best among variable selection procedures, it was 
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not as good as ridge. However, no studies have looked at variable selection methods and a 

model’s predictive power. 

It is not only the complexity of the inputted variables that can cause over-fitting but 

also the method chosen for the model which engenders this problem, as Randin et al. (2006) 

highlight. Indeed, GAM have a great flexibility to ‘curve-fit’, which can be problematic if it 

results in overfitting. However, many studies show GAMs’ excellence in species’ distribution 

modelling (Araújo et al., 2005; Elith et al., 2006). It is therefore vital to ensure that any model 

intended for prediction does not over-fit the data and that it is robust. My results show that 

resubstitution and model selection via AIC give no indication of a model’s robustness. The 

fact that AIC and AUC chose similar models is good, however, if one is looking to use the 

models for descriptive or explanatory purposes (Araújo and Guisan, 2006). In this case, AIC 

may be more useful than AUC as it is penalises for the number of parameters used. Moreover, 

GAM have, instead of a parameter for each variable, a smooth function which can increase 

the number of parameters. This fact explains why in some cases AIC and AUC differ. 

However, my results also show that AIC sometimes selects more complex models than AUC. 

This result was also found by Maggini et al. (2006). More research is be needed into AIC and 

prediction. 

All modellers agree that to validate properly a predictive species distribution model, 

an independent data set is required. This is not always available and so a pseudo independent 

data set is created by splitting the data in some way, either through a single split or cross-

validation. However, splitting the data once randomly (as done by many studies, see Chapter 

2) does not show model robustness, generality or transferability. In this study I took 20 

random 70-30 splits. The results showed (standard deviations in Table 3.5 and Tables A1-A8) 

that this can change the predictive performance of the models. Robustness is an important 

quality for models especially if these models are to extrapolate to different areas or time 

periods. The effect of non-robust models on extrapolations into a future time period is shown 

in Fig. 3.2. The interaction models show higher Mean Absolute Error in future predictions 

along with higher standard deviations than the non-interaction models. This was also the case 

for some non-interaction models. This shows that different predictions are generated 

depending on how much data are available, which is a sign that the overall models over-fit. 

Projecting the potential effect of climate change on species’ range is already fraught with 

uncertainty (Araújo et al., 2005; Pearson et al., 2006; Thuiller, 2004) without introducing 

more uncertainty with a non-robust model. Moreover, more often than not the high goodness- 

of-fit of these complex models do not translate to good fits when projecting onto a new data 

set (Fig 3.3 and 3.4). This reinforces the fact that more complex models do not transfer as 
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well. Nevertheless, the right interaction in the right model can provide a better model (Table 

3.4). However, without independent tests, interactions vastly over-fit the data and decrease a 

model’s generality (Vaughan and Ormerod, 2005). 

Validation with an independent data set revealed two things. First, that many of my 

models do not transfer well as Randin et al. (2006) and McAlpine et al. (2008) also found; 

and second that the traditional methods for validating a model without an independent data set 

(resubstitution and a one time split; Fielding & Bell, 1997) do not give the ‘best model’ 

(highest AUCIBA) in terms of transferability. Even the most robust model from the 20 70-30 

splits did not pick out the ‘best model’. This is problematic especially as there are no 

guidelines to goodness-of-fit measures such as with the information-theoretic approach. 

However, my results show that mean AUC is a better determinant of a good predictive model 

than other methods (Fig. 3.3 and 3.4). This result agrees with Maggini et al.’s (2006) 

experiments using GAM. They tested five methods for model selection and found that model 

selection based on cross-validation provided a model that was more stable and parsimonious 

than other methods. My study further shows that this method corroborates with independent 

validation (Table 3.6). 

For the majority of species, a positive correlation between mean AUC and AUCIBA 

was found. Two species (Accipiter nisus and Hirundo rustica), however, had strong negative 

correlations between mean AUC and AUCIBA. The quality of the independent data set or other 

factors may account for this discrepancy. For instance, the time and effort given to collect 

both our original data set and the validation data set may not match. Alternatively, areas may 

be modelled as suitable for the species in which it is actually not found solely due to 

persecution or destruction of habitat. Accipiter nisus is a persecuted raptor and therefore the 

independent data set may contain many false negatives. Hirundo rustica, on the other hand, is 

a widespread species in Europe. Many widespread species are under-recorded in datasets such 

as IBAs as these were set up to protect rarer species and so common species are not recorded. 

These discrepancies highlight the fact that having an appropriate independent data set is 

important. This validation may, therefore, not be useful as a basis for validating all migratory 

bird models, though provides some interesting points on the quality of independent data sets. 

The transferability study although is based only on twelve species, tried to select a mix 

of widespread and range restricted species. The final selection of species may not necessarily 

been the best as highlighted in the discussion above. Furthermore, although the total number 

of species was appropriate for the analyses, the number of widespread and range restricted 

species may have been too few to make any proper assertions. Future study could be done to 



71 
 

get more robust results5

 

. However, my results revealed some differences between widespread 

and less prevalent species. Indeed the correlations between AUC and AUCIBA were stronger 

for less prevalent species and their future predictions were more robust, indicating better 

models. Whether this is a question of ecology or purely due to prevalence is not known. AUC 

is not generally thought to be affected by prevalence (Manel et al., 2001; McPherson, Jetz and 

Rogers, 2004). However, Maggini et al. (2006) found that AUC was affected by very high 

prevalence (above 0.8). 

3.1.5 Conclusion 

 

The ecology of species is important when modelling species’ distributions and the choice of 

variables in the models will affect model fit (Araújo and Guisan, 2006). Although the base 

combination of variables (Huntley et al., 2006; Huntley et al., 2004) chosen modelled 

species’ distributions well (m1 and m2), adding finely tuned variables, i.e. variables measured 

for the time period when the migratory bird is on its breeding grounds (m7-m10), created a 

better model (Heikkinen et al. 2006 also found this). 

The main finding of this section is that goodness-of-fit based on resubstitution 

provided an overoptimistic result and also hid the potential over-fitting of the models. Araújo 

et al. (2005) found that data partitioning provided over-optimistic results in terms of how well 

a model performs on an independent data set. However, my results also highlight the 

problems of taking only one 70-30 split. A more accurate idea of the model’s robustness is 

achieved by selecting multiple fits. However, in light of certain criticisms of AUC, and of the 

dearth of studies that compare model selection and model validation techniques, more 

research is needed in this field. 

 
 
 
 
 
 
 
 
 
 
 
 

                                                 
5 Working on more species for this study was outside the scope of the thesis, as the main point was determining 
the potential impacts of climate change on species (Chapter 4 & 5). 
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3.2 Species distribution models: method selection  

 

3.2.1 Introduction 
 
Choosing an appropriate method to model species’ distribution is difficult in view of the vast 

array of methods now available to the scientific community (Elith and Burgman, 2003; Elith 

et al., 2006; Guisan and Zimmermann, 2000). The choice of method is mainly dependent on 

the type of data (see Chapter 2) and the purpose of the model (mechanistic, descriptive or 

predictive). The data available for this study are presence-absence data, so a choice of 

statistical methods can be used. There is a large evidence base supporting log-likelihood 

regression methods, like generalised linear models (GLM) and generalised additive models 

(GAM), for species distribution models (SDM). These methods have the ability to model 

realistically the species-environment relationships (Austin, 2002) and have been used 

extensively (Balbontin, 2005; Brotons et al., 2004; Randin et al., 2006; Thuiller, 2003). GAM 

were discussed in the previous section and are semi-parametric extensions of GLM. GLM 

(Eq. 3.9) are generalisations of the linear model (Eq.3.8) 

 

kk XbXbXbbY ++++= ...22110                      (3.8) 

[ ]( ) kkk XbXbXbXXXYEg +++= ...,...,,| 221121                                                            (3.9) 

 

Where E stands for expected value; Y is the response variable and X1,…Xk is the set of 

predictor variables; b0 is the regression coefficient for the intercept and the bi values are the 

regression coefficients (for variables 1 through k) computed from the data. The generalised 

form includes a link function for the expected value of Y: g(...). This allows distribution of the 

response variable to be non-normal and not continuous if necessary.  

GLM are less flexible than GAM because the values are predicted from a linear 

combination of predictor variables. However, they are still popular because of their statistical 

grounding and the ease of interpretation of results compared to GAM. Moreover, in a recent 

study by Radin et al. (2006), GLM produced distribution models that were more transferable 

than GAM.  

Despite the popularity of these regression methods, many other methods have 

appeared in recent years (see Elith et al., 2006) that are supposed to surpass the old ones. 

However, it is important to consider the capabilities of the model in conjunction with the 

objectives. For instance, the maximum entropy methods (Phillips, Anderson and Schapire, 
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2006) are designed for sparse presence-only data, and boosted regression trees (Friedman, 

Hastie and Tibshirani, 2000) have a tendency to over-fit (StatSoft Inc., 2007), which is not a 

good trait for a predictive model.  

With presence-absence data there is a strong case to use regression-based methods. 

Another method that has had some success is based on climate envelopes: Climate Response 

Surfaces (CRS; Huntley et al., 1995) or Smoothed Response Surfaces (SRS; Gavin and Hu, 

2005). These techniques develop response surfaces based on the relative frequency of points 

(species’ presences or absences) in climate space. The relationship between the predictor 

variables and the response variable is fitted through locally-weighted regression (LOESS). In 

LOESS simple models are fitted to localized subsets of the data to build a smooth function. 

Using LOESS has the benefit of making no assumption about the form of the species-

environment relationship (Huntley et al., 2007). GAM have a similar advantage in that often 

splines or LOESS are used. In CRS’s use of LOESS, however, the model is fitted as a single 

function of all predictors which is in contrast to GAM where the effects of the terms in the 

model enter the model additively without interactions (Anon., 2001), unless specified. In CRS 

(and similarly in SRS) a moving window is applied within climate space (window size 

dependent on the climatic variable and controlling the smoothness of the function) and 

response surfaces are evaluated at regularly spaced points (depending on the climate 

variables). Each point within the window is weighted so that points near the centre of the 

window are weighed more strongly than those at the edge of the window. The probabilities of 

occurrence are then calculated using inverse distance weighted means of the observed 

probabilities of occurrence in climate space in the window (Gavin and Hu, 2005; Huntley et 

al., 1995; Huntley et al., 2007). CRS have been used successfully to model a variety of 

species’ distributions (Huntley et al., 2004), most notably plants (Gavin and Hu, 2005; 

Huntley et al., 1995) and birds (Huntley et al., 2006; Huntley et al., 2007). Beering et al. 

(1995) suggest that local regression may be a more robust technique for extrapolation beyond 

the area within which the model was built than other methods (see Beering et al. 1995, p.272). 

Each of these three mentioned statistical methods (GLM, GAM and CRS) will be 

tested to find the appropriate method for modelling the distribution of migrant birds with a 

view to predicting the likely response of species’ ranges to climatic change. Multi-model 

approaches such as that adopted by Thuiller (2003) are interesting in that they highlight the 

differences and similarities in models but they also introduce more uncertainty to the results, 

as well as confusing the reader. It is better is to quantify the uncertainty before providing the 

results. Moreover, the differences found between methods in such multi-model studies 

(Thuiller, 2003) are the result of the underlying assumptions of each method and the choice of 



74 
 

predictor variables (Huntley et al., 2007). Here I compared each method with the same set of 

variables. To ensure the validity of the models, it is also important to consider their 

conceptual validity – something that using a multi-model approach does not necessarily do – 

by choosing methods that approximate the form of the expected relationship. For instance 

GAM and CRS provide more realistic relationships between species and their environment so 

it is expected that they should do better at least in terms of describing the relationship.  

 In this section, each method had its predictive ability tested for each species by 

running 20 70-30 fits and examining the resulting mean AUC and standard deviation. The 

methods were also projected on to the IBA data set for 12 species (see section 3.1). The most 

robust method was chosen as a result of these tests. The three methods were further compared 

to look for any systematic differences by examining simulated prevalence and by examining 

differences in simulated presence in distinct climatic zones, i.e. biomes. By using biomes as 

criteria to examine any spatial differences or similarities between outputs one can highlight 

the power of the methods to relate climate to species’ distribution. 

3.2.2 Methods 
 

The combinations of variables found through the splitting technique in section 3.1 were used 

to construct models for all 229 species using three methods – Generalised Additive Models 

(GAM; see previous section), Generalised Linear Models (GLM) and Climate Response 

Surface models (CRS). GLM were implemented in R (R Development Core Team, 2006) 

with a logit link function and a binomial error distribution. Climate Response Surfaces were 

fitted using a program modified by Brian Huntley (2006a; 2006b) from the original program 

written by P.J. Bartlein in Fortran code. Window sizes and number of evaluation points (see 

above for explanation) were different for each variable and in some case also different for the 

breeding and non-breeding models (see Appendix I).  

The fit of the models was quantified with AUC and Kappa (κ). The maximum kappa 

was found by evaluating κ for all possible threshold probabilities between 0.000 and 1.000 at 

intervals of 0.001 (Huntley et al., 2007). If two or more probability of occurrence values gave 

equal maximum kappa, then the lower/lowest of these probabilities of occurrence was taken 

as the threshold. This threshold probability was then used to convert the probability of 

occurrence output to presence-absence maps. 
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Model comparison 
 

Repeated-measures General Linear Models (GLM or one-way ANOVA) on arcsine square-

root transformed AUC and Kappa values were performed with Bonferroni comparisons (Field 

2005) to compare model goodness-of-fit. In repeated-measures GLM, there is an assumption 

that the relationship between pairs of experimental conditions is similar; this is called 

sphericity (Field, 2005). This assumption is tested using Mauchly’s test, which tests whether 

the variances of the differences between conditions are equal. If Mauchly’s test indicated that 

the assumption of sphericity had been violated then either Greenhouse-Geiser or Hynh-Feldt 

corrections were applied to the degrees of freedom (Field, 2005).  Following the advice of 

Girden (1992) if the estimates of sphericity were less than 0.75 Greenhouse-Geiser correction 

were used but if the estimates were than greater than 0.75 then Hynh-Feldt was used since at 

those values the  Greenhouse-Geiser correction is too conservative (Field, 2005). These tests 

are reported in Appendix II. 

Effect size was calculated to provide a measure of the magnitude of the observed 

effect (see Field (2005) for the equations). Overall effect size (ω2), which is a measure of how 

much of the total variation in the response variable is due to the independent variables rather 

than to within group variance, and effect sizes from contrasts (r), which are an estimate of the 

strength of the factor’s effect on the response and relate to the amount of variance explained 

in the result (Field 2005), are reported. An effect size of 0.1 is low, 0.3 is medium and 0.5 is 

large (Field, 2005). The prevalence of each species within the study area (breeding and non-

breeding) was calculated (as the proportion of grid cells occupied versus the proportion of 

grid cells non-occupied by the species) and arcsine square root transformed before performing 

a repeated measures GLM with contrasts comparing the effect of modelling methods against 

observed prevalence.  

To assess how different the model simulations were, the probabilities of occurrence 

for each species were correlated between modelling methods. The mean correlation 

coefficient, as well as the standard deviation, was calculated.  

To assess whether there was any systematic spatial difference between the 

simulations, the study area was divided into biomes to reflect differences in ‘climatic niche’. 

The biomes used were those described by Olson et al. (2001). They described 14 biomes of 

which 13 are found in my study area (Figure 3.5). For each species the proportion of cells in 

their range in each biome was calculated for the observed data and for each of the three 

methods’ simulations. The proportion data were arcsine square root transformed to normalise 
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the data. A two-way repeated measure ANOVA was performed comparing the effect of 

biome, method and the interaction of biome and method on prevalence (proportion present per 

biome).  

 

 

 
 

 
Figure 3.5: Map of the 14 biomes (Olson et al., 2001). In future text, biomes are 
labelled 1-14 in the above order. 

1 
2 
3 
4 
5 
6 
7 
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Robustness of each method 
 

To test the robustness of each method, I used the data splitting method as described in section 

3.1. Each method was used to run 20 70-30 split data fits. The mean and the standard 

deviation of each AUC derived from the 20 evaluations were recorded. The frequency of ‘best 

method’ from all species, i.e. highest mean AUC with the lowest standard deviation6

To test the power of each of the methods on an independent data set, models for 12 

species were built using the full data set and projected on to the IBA data set. As discussed in 

section 3.1.4, this particular means of validation is problematic due to the species selected. 

However, this test still provides some guidance as to how each method extrapolates. For each 

method all 10 models and complimentary interaction models (Table 3.2) were constructed and 

projected. The predicted AUC values were then calculated. A factorial repeated-measure 

GLM was performed on arcsine square-root transformed AUC values for all models, and for 

the main 10 models. The null hypothesis is that there is no significant effect of method, model 

or the interaction between method and model on predictive performance.  

, was 

also recorded. A repeated-measures GLM was performed with Bonferroni comparisons on the 

mean AUC value per model fit to ascertain which modelling method produced the best 

predictive fit. The AUC values were arcsine square root transformed prior to the analyses. 

Log10 transformed standard deviations were compared through a repeated-measures GLM.  

 

3.2.3 Results 

Model comparison 
 

The goodness-of-fit of all three methods revealed that CRS produced the best overall fit, 

followed by GAM and finally GLM (Table 3.7). Maps for all three methods can be found in 

the digital appendix. These show that CRS most closely fit the observed data. GAM and GLM 

both over-predict in comparison to the observed data. GLM in particular over-predicts and 

consequently often produces Kappa values that are worse than random. The spatial aspect of 

the simulations will be further discussed in section 3.3. 

 
 
 
 
 

                                                 
6 There was always only one choice for the ‘best method’ 
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Table 3.7: Descriptive statistics for AUC and Kappa over all species models 
 AUC KAPPA 
 Breeding Non-breeding Breeding Non-breeding 
 GAM GLM CRS GAM GLM CRS GAM GLM CRS GAM GLM CRS 
MIN 0.798 0.550 0.946 0.812 0.643 0.957 0.213 0.014 0.489 0.111 0.020 0.360 
MAX 1.000 0.991 1.000 0.996 0.994 1.000 1.000 0.882 0.955 0.867 0.847 0.933 
MEAN 0.953 0.879 0.986 0.943 0.887 0.987 0.680 0.514 0.814 0.584 0.422 0.787 

 
 

The choice of method affected model performance in terms of AUC on both the 

breeding and non-breeding grounds (Breeding grounds: F(1.43, 327.70) = 420.129, p < 0.0001, ω2 

= 0.448. Non-breeding grounds: F(1.642, 374.29) = 1168.688, p < 0.0001 , ω2 = 0.51). 

Bonferroni post hoc tests showed that all methods performed significantly differently 

from each other (p < 0.0001). Specifically, CRS mean goodness-of-fit was better than GAM 

and GLM, and GAM was better than GLM. All analyses were also performed on Kappa but 

the overall results were the same and so not reported here. 

The observed and simulated7

Bonferroni post hoc tests showed that all methods performed significantly differently 

from each other on the breeding grounds (p < 0.0001) but that CRS did not differ from the 

observed data on the non-breeding grounds. 

 prevalence were all significantly correlated (Fig. 3.6). 

CRS and GAM were more correlated to each other than with GLM (Fig. 3.6). Prevalence was 

affected by method and observed data on both the breeding and non-breeding grounds 

(Breeding grounds: F(1.44, 329.51) = 196.655, p < 0.0001, ω2 = 0.463. Non-breeding grounds: 

F(1.27, 291.02) = 132.460, p < 0.0001 , ω2 = 0.367). 

 

 

 

 

 

 

 

 

 

 

                                                 
7 The terms simulation, prediction and projection are used interchangeably in this thesis. However, the term 
simulation is preferred when referring to the outputs of the species distribution model for the present time period 
and prediction/projection is preferred for the future time period 
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The mean correlation as well as standard deviation can be found in Tables 3.8-3.11. 

These show that there was a greater correlation between GAM and CRS than between the 

other models. 

a) 

 
 b) 

 
Figure 3.6: Relationship between observed and simulated prevalence including a 1:1 
line; The black squares represent the CRS model, grey the GAM model and white the 
GLM model;a) Breeding ground models. Person correlations CRS: 0.959, GAM: 0.953, 
GLM: 0.785; b) Non-breeding ground models. Person correlations CRS: 0.996, GAM: 
0.968, GLM: 0.977. 
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Table 3.8: Mean correlation coefficients 
for the breeding range models  

Table 3.9: Mean standard deviation for 
breeding models correlation coefficients 

 Models GAM GLM CRS   Models GAM GLM CRS 
GAM 1    GAM 1   
GLM 0.696 1   GLM 0.275 1  
CRS 0.851 0.603 1  CRS 0.105 0.276 1 

 

Table 3.10: Mean correlation coefficients 
for the non-breeding range models  

Table 3.11: Mean standard deviation for non-
breeding models correlation coefficients 

 Models GAM GLM CRS   Models GAM GLM CRS 
GAM 1    GAM 1   
GLM 0.738 1   GLM 0.196 1  
CRS 0.817 0.584 1  CRS 0.116 0.212 1 

 

All effects are reported as significant at p ≤ 0. 001 on the simulated prevalence across 

biomes (Fig. 3.7). There was a significant effect of biome for both season models (F(3.23,737.1) = 

297.97, ω2 = 0.567 for the breeding range and F(2.05,467.52) = 273.65 , ω2 = 0.546 for the non-

breeding range). There was a significant effect of method for the breeding range (F(2.13,487.36) = 

32.389, ω2 = 0.124) and the non-breeding range (F(1.82,416.35) = 13.97, ω2 = 0.058). Contrasts 

revealed that GLMs’ spatial simulations were significantly different from the observed data 

for both the breeding (F(1,228) = 43.16, r = 0.159) and non-breeding grounds (F(1,228) = 11.21, r 

= 0.047), as was CRS on the breeding grounds (F(1,228) = 6.64, r = 0.028). However CRS did 

not produce different simulated prevalence from the observed data on the non-breeding 

grounds (F(1,228) = 0.00, r = 0)  and GAM was no different on either the breeding grounds 

(F(1,228) = 0.722, r = 0.003) or the non-breeding grounds ((F(1,228) = 2.26, r = 0.010). There was 

also a significant interaction effect between method and biome (F(5.7,1301.3) = 29.06, ω2 = 

0.115) on the breeding grounds and on the non-breeding grounds (F(2.95,672.65) = 6.01, ω2 = 

0.026). Contrasts revealed that significant differences existed more often between CRS and 

GLM and GAM and GLM (Fig. 3.7).  
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a) 

 
b) 

 
Figure 3.7: Mean and range of confidence interval for the transformed prevalence against 
biome for each method for a) the breeding models and b) the non-breeding methods. Black = 
Climate Response Surface, grey = Generalised Additive Models, blue = Generalised Linear 
Models and red = the Observed Prevalence. See Fig. 3.5 for biome definitions. 
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Robustness of each method 
 

Table 3.12 shows the average, minimum and maximum Mean AUC and standard deviation 

for each of the three methods. This shows that on average CRS was better than other methods 

in terms of the Mean AUC though it also had the lowest Mean AUC of all of the methods.  

 
Table 3.12: Descriptive statistics for the mean AUC and standard deviation produced from the 
20 evaluations. 
 GAM GLM CRS 
 breeding non-breeding breeding non-breeding breeding non-breeding 

 x  σ x  σ x  σ x  σ x  σ x  σ 
MIN 0.824 0.001 0.766 0.001 0.562 0.002 0.664 0.001 0.385 0.001 0.304 0.001 
MAX 0.997 0.207 0.996 0.104 0.991 0.091 0.996 0.130 0.999 0.083 0.993 0.201 
MEAN 0.950 0.006 0.923 0.008 0.876 0.011 0.862 0.010 0.954 0.008 0.933 0.011 

 
 

Method affected the predictive performance (Mean AUC) of the models on both the breeding 

grounds and the non-breeding grounds (breeding grounds: F(1.66, 378.99) = 247.926, p < 0.0001, 

ω2 = 0.234. Non-breeding grounds: F(1.61, 367.2) = 253.540, p < 0.0001, , ω2 = 0.199). 

Bonferroni post hoc tests showed that all methods performed significantly differently 

from each other (p < 0.05). Indeed, CRS mean goodness-of-fit was better than GAM and 

GLM and GAM was better than GLM. Contrasts showed that the effect size was low between 

GAM and CRS (breeding r = 0.175, non-breeding r = 0.256) and high between GAM and 

GLM (breeding r = 0.770, non-breeding r = 0.827) and high between CRS and GLM 

(breeding r = 0.749, non-breeding r = 0.757). 

Method affected the robustness of the predictive performance (standard deviation) on 

both the breeding grounds and the non-breeding grounds (breeding grounds: F(2, 457) = 

101.686, p < 0.0001, ω2 = 0.089 . Non-breeding grounds: F(1.66, 379.23) = 58.544, p < 0.0001, ω2 

= 0.04).  

Bonferroni post hoc tests showed that all methods performed significantly differently 

from each other (p < 0.05). Indeed, GAM standard deviations were lower than both GLM and 

CRS, and CRS’ were lower than GAM (Fig. 3.8). Focused effect size showed that the effect 

size was low between GAM and CRS (breeding r = 0.248, non-breeding r = 0.236) and high 

between GAM and GLM (breeding r = 0.702, non-breeding r =0.690) and high to medium 

between CRS and GLM (breeding r = 0.530, non-breeding r =0.366).  
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a) 

 

b) 

 
c) 

 

d) 

 
Figure 3.8: Box plots of Mean AUC and standard deviation from the 20 70-30 splits for the 3 
modelling approaches; a) and c) breeding models and b) and d) non-breeding models  
 

 

The actual AUC values produced from the independent validation showed that some 

of the models’ predictive ability was worse than random, i.e. AUC ≤ 0.5, but that some were 

excellent, i.e. AUC ≥ 0.9. Excellent mod els were produced for five out of the 12 species (C. 

rufficolis, C. morinellus, P. porzana, L. lapponica and S. undata), whilst good models (AUC 

= 0.79-0.89) were produced for a further three species (G. fulvus, P. apivorus and L. nubicus). 

The independent validation with the IBA data set revealed that GAM and CRS performed 

similarly but GLM were always worse (Table 3.13, 3.14 and Table 3.4) overall. Figure 3.9a) 

shows box plots of AUC for each method across all models for the 12 species. Figure 3.10a) 

shows box plots of AUC for each method and model for the 12 species.  
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There was a significant effect on predictive performance from method (F(2,22) = 7.01, p 

< 0.01, ω2 = 0.392) and from models (F(3.08,33.89) = 3.216 p < 0.05, ω2 = 0.226) but not from the 

interaction between methods and models (F(4.49,49.43) = 2.317, p = 0.063, ω2 = 0.174). The 

contrasts revealed that GAM and CRS performed no differently from each other (F(1,11) = 

4.02, p = 0.07, r = 0.268), GAM and GLM performed no differently from each other (F(1,11) = 

4.11, p = 0.068, r = 0.272), but that CRS and GLM were significantly different from each 

other (F(1,11) = 11.43, p < 0.05, r = 510). 
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Figure 3.9: Box plots for the AUCIBA from each method for 12 species over a) 20 models 
(10 models + 10 interaction models) and b) over 10 models (no interactions). 

 

The results were slightly different if interaction models were excluded from the 

analyses (Fig. 3.9b and 3.10b). There was a significant effect on predictive performance from 

models (F(3.59,39.25) = 2.929, p < 0.05, ω2 = 0.210) and from interaction between methods and 

models (F(4.14,45.56) = 3.081 p < 0.05, ω2 = 0.219) but not from the different methods (F(4.49,49.43) 

= 3.144, p = 0.096, ω2 = 0.222). Contrasts for the interaction between models and methods 

revealed that significant differences existed more often between CRS and GLM and GAM 

and GLM. 
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Table 3.13: AUC values from the predictive models (see Table 3.2)  on the IBA dataset built using GLM 
IBAmodels A. nisus G. fulvus P. apivorus C. ruficollis C. morinellus H. rustica L. nubicus P. porzana A. hypoleucos L. lapponica S. communis S. undata 
m1 0.627 0.421 0.715 0.720 0.878 0.603 0.438 0.757 0.725 0.969 0.679 0.885 
m1i 0.657 0.337 0.642 0.599 0.545 0.722 0.276 0.723 0.641 0.652 0.693 0.824 
m2 0.588 0.414 0.677 0.815 0.873 0.559 0.340 0.735 0.722 0.972 0.642 0.865 
m2i 0.657 0.447 0.701 0.393 0.881 0.727 0.516 0.742 0.722 0.654 0.693 0.529 
m3 0.637 0.545 0.717 0.838 0.545 0.613 0.679 0.759 0.720 0.969 0.682 0.951 
m3i 0.622 0.327 0.649 0.454 0.883 0.611 0.268 0.718 0.724 0.654 0.624 0.809 
m4 0.623 0.396 0.694 0.826 0.874 0.607 0.572 0.755 0.716 0.972 0.674 0.934 
m4i 0.636 0.435 0.644 0.431 0.545 0.729 0.611 0.671 0.719 0.972 0.658 0.455 
m5 0.626 0.701 0.714 0.844 0.696 0.601 0.552 0.764 0.723 0.969 0.680 0.907 
m5i 0.657 0.703 0.644 0.869 0.545 0.727 0.565 0.768 0.646 0.654 0.693 0.931 
m6 0.589 0.768 0.709 0.924 0.873 0.563 0.600 0.764 0.721 0.972 0.661 0.908 
m6i 0.657 0.688 0.710 0.836 0.881 0.727 0.797 0.766 0.723 0.654 0.698 0.852 
m7 0.632 0.494 0.714 0.742 0.879 0.618 0.445 0.769 0.733 0.969 0.691 0.893 
m7i 0.657 0.465 0.643 0.779 0.545 0.700 0.408 0.775 0.627 0.654 0.698 0.902 
m8 0.603 0.560 0.705 0.874 0.873 0.596 0.354 0.773 0.733 0.972 0.681 0.890 
m8i 0.657 0.522 0.713 0.688 0.537 0.727 0.596 0.772 0.646 0.648 0.693 0.732 
m9 0.609 0.439 0.710 0.844 0.878 0.678 0.490 0.760 0.729 0.971 0.676 0.899 
m9i 0.647 0.464 0.674 0.869 0.882 0.634 0.604 0.756 0.733 0.653 0.676 0.899 
m10 0.584 0.580 0.674 0.916 0.876 0.558 0.603 0.749 0.723 0.977 0.646 0.873 
m10i 0.644 0.517 0.644 0.836 0.883 0.615 0.776 0.688 0.725 0.651 0.651 0.843 
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Table 3.14: AUC values from the predictive models (see Table 3.2)  on the IBA dataset built using CRS 
IBAmodels A. nisus G. fulvus P. apivorus C. ruficollis C. morinellus H. rustica L. nubicus P. porzana A. hypoleucos L. lapponica S. communis S. undata 

m1 0.669 0.802 0.790 0.928 0.952 0.590 0.940 0.820 0.740 0.986 0.700 0.949 
m1i 0.669 0.802 0.790 0.928 0.952 0.590 0.940 0.820 0.740 0.986 0.700 0.949 
m2 0.652 0.809 0.785 0.925 0.949 0.589 0.957 0.817 0.746 0.982 0.674 0.946 
m2i 0.652 0.809 0.785 0.925 0.949 0.589 0.957 0.817 0.746 0.982 0.674 0.946 
m3 0.658 0.784 0.776 0.901 0.947 0.592 0.935 0.810 0.742 0.986 0.681 0.943 
m3i 0.658 0.784 0.776 0.901 0.947 0.592 0.935 0.810 0.742 0.986 0.681 0.943 
m4 0.652 0.784 0.776 0.900 0.950 0.593 0.913 0.809 0.745 0.983 0.659 0.938 
m4i 0.652 0.784 0.776 0.900 0.950 0.593 0.913 0.809 0.745 0.983 0.659 0.938 
m5 0.645 0.685 0.785 0.828 0.901 0.607 0.868 0.813 0.722 0.954 0.671 0.929 
m5i 0.645 0.685 0.785 0.828 0.901 0.607 0.868 0.813 0.722 0.954 0.671 0.929 
m6 0.656 0.693 0.792 0.853 0.887 0.600 0.844 0.808 0.723 0.931 0.681 0.919 
m6i 0.656 0.693 0.792 0.853 0.887 0.600 0.844 0.808 0.723 0.931 0.681 0.919 
m7 0.621 0.603 0.771 0.855 0.859 0.616 0.830 0.784 0.713 0.853 0.700 0.899 
m7i 0.621 0.603 0.771 0.855 0.859 0.616 0.830 0.784 0.713 0.853 0.700 0.899 
m8 0.625 0.607 0.770 0.832 0.881 0.607 0.787 0.776 0.699 0.853 0.685 0.900 
m8i 0.625 0.607 0.770 0.832 0.881 0.607 0.787 0.776 0.699 0.853 0.685 0.900 
m9 0.640 0.736 0.765 0.822 0.897 0.610 0.698 0.794 0.768 0.981 0.677 0.849 
m9i 0.640 0.736 0.765 0.822 0.897 0.610 0.698 0.794 0.768 0.981 0.677 0.849 
m10 0.652 0.731 0.777 0.822 0.878 0.624 0.769 0.768 0.752 0.980 0.678 0.798 
m10i 0.652 0.731 0.777 0.822 0.878 0.624 0.769 0.768 0.752 0.980 0.678 0.798 
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Figure 3.10: Box plots of AUCIBA from each method over each model for 12 species 
for a) 20 models (10 models + 10 interaction models) and b) 10 models (no 
interactions). 
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3.2.4 Discussion 
 
The comparison between all three methods revealed a definite order in model fit: CRS – 

GAM – GLM. Indeed the method used significantly affected model fit. This was further 

supported by a large effect size. When dealing with a large number of variables, the strength 

of the relationship could be significant by chance. Testing the strength of the significance 

(effect size tests), therefore, gives a better indication of the strength of the relationship (Field 

2005). All methods over-predict in some way as is often the case with inductive models 

(Walther et al., 2007) though CRS simulates prevalence more accurately than the other 

methods. This is due to its excellent ‘curve-fitting’ ability. The fact that it locally weights 

each point and inputs interactions only when necessary makes this method a fine descriptor of 

the data given. All methods extrapolate as that is part of their purpose: to describe species-

climate relationships and apply them over the study area. GLM extrapolates more than the 

other methods. The differences between GLM’s assumptions with the other methods are 

greater than the differences between GAM and CRS. The worse performance of the GLM 

may be due to it imposing a linear form to the species-environment relationship, which may 

not be valid (Barry and Elith, 2006). 

The results from the biomes analyses indicate that there may be a slight systematic 

difference in how the methods simulate species’ distribution. The results showed that there 

were significant effects of both method and the interaction between method and biome. 

However, these effects were small (ω2 ≤ 0.124). The main effect driving the differences in 

prevalence is biome, which is expected. The contrasts showed that the effect of method and 

the interaction was mainly driven by GLM as GAM and CRS were very similar in their 

simulations as well as to the observed data (p > 0.05). GLM showed systematic differences in 

prevalence in the following biomes: Boreal Forests, Temperate Grassland, Tundra and 

Mediterranean Forests on the breeding grounds and Tropical Forests, Mediterranean Forests 

and Desert on the wintering grounds. These differences are due to GLM often over-predicting 

the prevalence on the non-breeding grounds and under-predicting on the breeding grounds. 

Non-breeding models constructed for three species of birds have, in previous studies showed 

similar over-predictions, resulting in these studies clipping the simulated distribution by 

biomes or ecoregions (Walther et al., 2007; Walther, Wisz and Rahbek, 2004). Under-

predicting prevalence on the European breeding grounds by GLM often occurs in models for 

species that also breed in Africa (see digital appendix). It is possible that the species-climate 

relationship on the African breeding grounds does not fit linearly with the species-climate 

relationship on the European breeding grounds, leading GLM to use mostly the African 
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breeding occurrences, which are more numerous, to build the model. These differences 

between GLM and the other two methods are due to the fact that GLM focus on general 

trends in the species’ response to environmental predictors whilst the other two methods “give 

priority to the empirical behaviour” of the species’ responses (Segurado and Araújo, 2004). 

My study is the first, to my knowledge, that has compared model simulations in this way. 

Errors in simulations are only ever quantified through goodness-of-fit measures which do not 

show the spatial pattern of these errors (Lobo et al., 2007) or differences. Investigating the 

spatial differences among predictions is important when the output is intended to be spatial 

(Barry and Elith, 2006). 

The graph plotting observed prevalence against simulated prevalence (Figure 3.6) is 

interesting for more than its comparison of the different models. It shows that prevalence is, 

on average, overpredicted on the breeding grounds. This indicates that other factors than 

climate may be constraining species’ distribution. Indeed, Europe is a highly modified 

landscape so species are not able to occupy all areas that may be climatically suitable. 

The results of the comparison between methods based purely on fit would indicate that 

CRS is the ‘best’ model in terms of AUC. However, I am concerned with prediction and need 

to take robustness and generalisability (Vaughan and Ormerod, 2005) into account as well. 

The tests done on the results from the splitting technique showed that modelling method had a 

significant effect on predictive performance (mean AUC). However, overall effect size was 

low, indicating that significance could be due to chance. All methods were different from 

each other as shown by the Bonferroni comparisons. Effect size of these differences showed 

that the difference between GLM and the other methods was large (r > 0.7) but that the 

differences between CRS and GAM were low (r < 0.3). Method also affected robustness of 

predictions (standard deviation) and GAM was found to be the most robust method.  

Box plots for Mean AUC (Fig. 3.8) showed that although CRS had smaller standard 

error as well as having a higher mean; its outliers were more spread out than GAM. The 

standard deviation box plots indicated that CRS may be prone to over-fitting, in contrast to 

GAM. However, over-fitting is only one aspect limiting generalisability; transferability on to 

a new data set (independent validation) is the other aspect (Vaughan and Ormerod, 2005).  

Independent validation of the methods, performed on all models for 12 species (see 

section 3.1), indicated that GAM and CRS were similar in their predictive ability. Climate 

response surface models are slightly different in the way interaction terms are included. In 

GAM or GLM an interaction term is included in the model. In CRS, the inclusion of an 

interaction is done locally which allows for more flexibility than having either an interaction 

or no interaction. In the analyses excluding the interaction models, the choice of method no 
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longer affected predictive performance, indicating that CRS must not include many 

interaction terms in its model fitting. Model performance was affected by the interaction 

between method and model with GLM mostly driving those differences. These results, as well 

as the comparisons between methods, all point to excluding GLM as a method for modelling 

the distributions of migratory birds. The results indicate that the response surface is complex 

and hence requires methods that can model these complexities (Barry and Elith, 2006). 

 

3.2.5 Conclusion 

 

The results of this study are not conclusive with regards to which modelling method to 

choose. GAM and CRS are very similar, in their assumptions, their way of relating the 

predictor variables to the response variable, and their simulations. GAM is slightly more 

robust than CRS, whilst CRS fits the data much better than GAM. The decision on which 

method to use will involve a trade-off between model accuracy and robustness/generality. The 

appropriate model is that which has the capabilities that match the objectives of the study 

(Burgman et al., 2005; Van Horne, 2002). Further, whatever modelling frame chosen, it will 

always have its shortcomings (Burgman et al., 2005) as “any modelling implementation will 

include unrealistic biological assumptions, not meet statistical assumptions, omit causal 

relationships, and/or fail to meet the modelling objective” (Van Horne, 2002, p.69). The 

decision strategy suggested by Burgman et al. (2005) is to seek robust and satisfactory 

outcomes rather than those that try to maximise performance. GAM have a large evidence 

base (Guisan et al., 2002) upon which to draw and their strengths and limitations are well 

established. Moreover, they have been shown in many studies to be robust (Elith et al., 2006; 

Graham et al., 2007; Guisan et al., 2007; Meynard and Quinn, 2007; Segurado and Araújo, 

2004). Climate response surfaces have been applied to a range of species (Huntley et al., 

1995; Huntley et al., 2006; Huntley et al., 2004), though their testing in the modelling 

literature has, until my thesis, been limited.  Given the results, I will use both methods to 

model current species’ distributions. 
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3.3 Species distribution models: current breeding and non-breeding ranges 
of European-breeding migrant birds 

 
 

3.3.1 Introduction 
 

Most modelling studies including birds have focused either on their breeding distributions or 

have included birds as part of a plethora of species (Araújo et al., 2005; Austin et al., 1996; 

Brotons et al., 2004; Harrison et al., 2003; Huntley et al., 2006; Jetz et al., 2007; Manel et al., 

1999; Seoane et al., 2005). Models specifically related to migratory birds are few. Heikkinen 

et al. (2006) modelled the breeding ranges of 63 migratory species breeding in Finland and 

tailored the models to the migrants by incorporating predictor variables that covered the 

breeding season rather than annual averages. Two studies model species’ winter range, 

covering three species, to my knowledge (Walther et al., 2007; Walther et al., 2004). This 

scarcity is due mainly to the quality of the data available.  

In this section, I present distribution models for the breeding and non-breeding ranges 

of European-breeding migrant birds. Only migrant species with most of their breeding ranges 

in the Western Palaearctic (Europe and North Africa) were considered; therefore this list is 

not an exhaustive list of European breeding migrants. Species wintering at sea or not 

wintering in either Europe or Africa were excluded from this study. All values presented are 

from Generalised Additive Models (GAM) which were shown to be slightly more robust (see 

section 3.2) than Climate Response Surfaces (CRS). However, CRS results can be found in 

the digital appendix.  

This section also examines how the conceptual model as well as modelling technique 

used affect the quality of the output. Discrepancies between observed data and simulated data 

are, however, unavoidable because 1) the simulations are an imperfect model of the data and 

2) the data used may not reflect ‘reality’. Moreover, some studies suggest that discrepancies 

in modelling performance may be an ecological artefact rather than a modelling one 

(McPherson et al., 2004; Seoane et al., 2005). I therefore also investigate whether any 

ecological factors affect model performance. 
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3.3.2 Current Simulations 
 

Table 3.15 shows the 229 migrant birds used in this study as well as some ecological 

information: prevalence, tolerance, biome, habitat and whether the species is a trans-Saharan 

migrant or not. The habitat specified refers to breeding habitat, which was used because for 

majority of species non-breeding habitat is similar to breeding habitat (Moreau, 1972). Biome 

refers to the biome within which the majority of a species’ breeding and non-breeding range 

falls. Seven of the 14 biomes (Fig. 3.5, Olson et al., 2001) are represented as the main biome 

for the breeding range, and six for the non-breeding range. 

Tolerance describes the breadth of a species’ niche (Segurado and Araújo, 2004), i.e. 

how confined it is to a particular climate space. A species is therefore either a climatic 

specialist, having 80% or more of its range in one biome, or a climatic generalist, its range 

spanning different biomes. Table 3.15 also includes the conceptual model chosen for each 

species (see Section 3.1) and the goodness-of-fit (AUC) of each simulation run with GAM 

(see Section 3.2). Maps of all species with their associated goodness-of-fit measures (AUC 

and Kappa values) can be found in the digital appendix.  
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Table 3.15: Results from the modelling as well as ecological information of the European migrants in this study. For “model” definition, refer to 
Table 3.2, for “Biome” refers to Fig. 3.5. “Tolerance” of 2 is defined for those species where ≥ 80% of their distribution falls within a single biome 
and “tolerance” of 1 everything else.  Habitat categorisation is drawn from Snow and Perrins (1998).  
 Breeding Non-breeding  Trans- 
Species Model AUC Biome Prevalence Tolerance Model AUC Biome Prevalence Tolerance Habitat Saharan 
Accipiter nisus M9 0.976 4 0.379 1 M8 0.903 4 0.400 1 Forest Y 
Acrocephalus arundinaceus M7 0.979 4 0.282 1 M4 0.986 7 0.102 1 Wetland Y 
Acrocephalus paludicola M9 0.979 4 0.010 2 M1 0.987 7 0.001 1 Wetland Y 
Acrocephalus palustris M10 0.965 4 0.233 1 M2i 0.985 7 0.019 1 Wetland Y 
Acrocephalus schoenobaenus M6 0.933 4 0.297 1 M3 0.990 7 0.130 1 Scrub Y 
Acrocephalus scirpaceus M7 0.978 4 0.303 1 M8 0.982 7 0.078 1 Wetland Y 
Actitis hypoleucos M9 0.967 4 0.320 1 M7 0.943 7 0.212 1 Wetland Y 
Alauda arvensis M10 0.982 4 0.442 1 M8 0.946 12 0.193 1 Open habitat N 
Anas acuta M9 0.941 6 0.100 1 M8i 0.864 7 0.158 1 Wetland Y 
Anas clypeata                       M3 0.927 4 0.188 1 M8i 0.847 12 0.121 1 Wetland Y 
Anas crecca                         M5 0.973 4 0.257 1 M8 0.843 4 0.180 1 Wetland Y 
Anas penelope M5 0.987 6 0.132 1 M8i 0.838 13 0.157 1 Coastal N 
Anas platyrhynchos M9 0.987 4 0.479 1 M8i 0.895 4 0.209 1 Wetland N 
Anas querquedula M3 0.957 4 0.234 1 M1i 0.932 7 0.081 1 Wetland Y 
Anthropoides virgo M10 0.987 8 0.010 2 M1 0.870 12 0.055 1 Open habitat Y 
Anthus campestris M9 0.996 4 0.236 1 M4i 0.968 7 0.051 1 Open habitat Y 
Anthus cervinus M1 0.988 11 0.014 1 M4i 0.928 7 0.094 1 Open habitat Y 
Anthus pratensis M9 0.927 4 0.259 1 M8 0.955 12 0.161 1 Open habitat N 
Anthus spinoletta M9 0.964 4 0.085 1 M7 0.927 12 0.128 1 Montane N 
Anthus trivialis M9 0.989 4 0.354 1 M2i 0.984 7 0.083 1 Forest Y 
Apus affinis M9 0.974 7 0.157 1 M4 0.979 7 0.137 1 Open habitat Y 
Apus Apus M3 0.973 4 0.478 1 M3 0.981 7 0.078 1 Open habitat Y 
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 Breeding Non-breeding   

Table 3.15 continued Model 
 

AUC Biome Prevalence Tolerance Model AUC Biome Prevalence Tolerance Habitat Trans- 
Saharan 

Apus pallidus M9 0.929 12 0.085 1 M3 0.926 7 0.022 1 Open habitat Y 
Aquila clanga M4 0.972 4 0.010 1 M4 0.850 13 0.061 1 Forest Y 
Aquila heliaca                      M4 0.945 4 0.033 1 M4 0.825 13 0.059 1 Open habitat Y 
Aquila nipalensis M9 1.000 8 0.003 1 M4 0.993 8 0.006 1 Open habitat Y 
Aquila pomarina M10 0.952 4 0.076 2 M4 0.993 7 0.026 2 Open habitat Y 
Ardea cinerea                       M3 0.895 4 0.457 1 M8 0.922 7 0.316 1 Wetland Y 
Ardea purpurea M3 0.955 7 0.268 1 M1i 0.986 7 0.159 1 Wetland Y 
Ardeola ralloides M3 0.961 7 0.225 1 M4 0.981 7 0.162 1 Wetland Y 
Arenaria interpres M9 0.996 6 0.010 1 M8 0.902 12 0.041 1 Coastal Y 
Asio flammeus M4 0.935 4 0.156 1 M2i 0.896 4 0.114 1 Open habitat Y 
Asio otus M9 0.947 4 0.340 1 M8 0.954 4 0.255 1 Forest N 
Aythya ferina M3 0.948 4 0.221 1 M8i 0.863 12 0.165 1 Wetland N 
Aythya fuligula M5 0.974 4 0.250 1 M4i 0.879 4 0.149 1 Wetland N 
Aythya nyroca M4 0.952 4 0.055 1 M7 0.842 7 0.092 1 Wetland Y 
Botaurus stellaris                  M9 0.798 7 0.253 1 M7 0.832 7 0.147 1 Wetland Y 
Bubulcus ibis M9 0.956 7 0.272 1 M7 0.965 7 0.220 1 Open habitat N 
Burhinus oedicnemus                 M7 0.881 12 0.261 1 M3 0.942 13 0.320 1 Open habitat Y 
Buteo buteo M3 0.981 4 0.297 1 M7 0.937 4 0.305 1 Open habitat Y 
Buteo rufinus M3 0.938 12 0.165 1 M7 0.913 13 0.155 1 Open habitat N 
Calandrella brachydactyla M8 0.939 12 0.234 1 M3 0.921 13 0.140 1 Open habitat Y 
Calidris alpina M9 0.997 4 0.069 1 M7 0.869 12 0.050 1 Coastal N 
Calidris minuta M1 0.991 11 0.003 2 M7 0.962 7 0.201 1 Coastal Y 
Calidris temminckii M2 0.982 11 0.027 1 M1 0.942 7 0.077 1 Wetlands Y 
Caprimulgus europaeus M7 0.950 4 0.367 1 M7 0.963 7 0.036 1 Open habitat Y 
Caprimulgus ruficollis M10 0.980 12 0.054 2 M4i 0.988 7 0.005 1 Open habitat Y 
Carduelis cannabina M10 0.987 4 0.391 1 M8i 0.967 4 0.361 1 Scrub  N 
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 Breeding Non-breeding   

Table 3.15 continued Model 
 

AUC Biome Prevalence Tolerance Model AUC Biome Prevalence Tolerance Habitat Trans- 
Saharan 

Carduelis carduelis M8 0.984 4 0.422 1 M7i 0.968 4 0.355 1 Forest N 
Carduelis chloris M10 0.985 4 0.436 1 M7i 0.959 4 0.365 1 Forest N 
Carpospiza brachydactyla M10 0.924 12 0.002 1 M1i 0.963 13 0.002 1 Montane N 
Cercotrichas galactotes M7 0.987 12 0.130 1 M4 0.990 7 0.031 1 Human Y 
Cettia cetti M9 0.946 12 0.215 1 M8 0.968 12 0.118 1 Scrub N 
Charadrius alexandrinus M10 0.875 12 0.092 1 M7 0.874 13 0.141 1 Coastal Y 
Charadrius dubius M7 0.930 4 0.422 1 M8 0.957 7 0.133 1 Wetland Y 
Charadrius hiaticula M6 0.976 4 0.128 1 M3 0.959 7 0.208 1 Coastal Y 
Charadrius morinellus M9 0.978 11 0.029 1 M8 0.962 12 0.039 1 Montane N 
Childonias niger                    M3 0.919 4 0.116 1 M1i 0.922 12 0.042 1 Coastal Y 
Chlidonais hybridus                 M10 0.983 7 0.087 1 M8 0.909 7 0.186 1 Coastal Y 
Chlidonias leucopterus              M4 0.916 4 0.037 1 M3 0.947 7 0.220 1 Coastal Y 
Cicaetus gallicus M9 0.937 12 0.211 1 M4 0.989 7 0.026 2 Open habitat Y 
Ciconia ciconia M9 0.860 4 0.386 1 M8 0.931 7 0.173 1 Open habitat Y 
Ciconia nigra M9 0.832 4 0.236 1 M3 0.929 7 0.117 1 Forest Y 
Circus aeruginosus M9 0.936 4 0.262 1 M8 0.917 7 0.143 1 Wetlands Y 
Circus cyaneus M3 0.943 4 0.164 1 M7 0.946 4 0.180 1 Open habitat N 
Circus macrourus M10 0.985 8 0.007 1 M7 0.932 7 0.098 1 Open habitat Y 
Circus pygargus M3 0.905 4 0.192 1 M4i 0.979 7 0.076 1 Open habitat Y 
Clamator glandarius M3 0.946 7 0.176 1 M3i 0.969 7 0.082 1 Human Y 
Coccothraustes coccothraustes M9 0.967 4 0.293 1 M8 0.968 4 0.221 1 Forest N 
Columba palumbus M10 0.973 4 0.449 1 M7 0.967 12 0.126 1 Forest N 
Coracias garrulus M10 0.950 4 0.201 1 M3 0.965 7 0.086 1 Forest Y 
Coturnix coturnix M10 0.964 4 0.338 1 M7 0.913 7 0.147 1 Open habitat Y 
Crex crex M4 0.941 4 0.214 1 M7 0.896 7 0.117 1 Open habitat Y 
Cuculus canorus M10 0.989 4 0.490 1 M4 0.989 7 0.096 1 Open habitat Y 
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 Breeding Non-breeding   

Table 3.15 continued Model AUC 
 

Biome Prevalence Tolerance Model AUC Biome Prevalence Tolerance Habitat Trans- 
Saharan 

Delichon urbica M5 0.980 4 0.487 1 M3 0.964 7 0.137 1 Open habitat Y 
Egretta alba                        M9 0.963 7 0.243 1 M7 0.952 7 0.206 1 Wetland Y 
Egretta garzetta M3 0.844 7 0.244 1 M7 0.918 7 0.190 1 Wetland Y 
Embeiza cia M9 0.932 12 0.181 1 M8 0.939 12 0.119 1 Scrub N 
Emberiza caesia M3 0.975 12 0.037 2 M3 0.993 7 0.004 2 Open habitat N 
Emberiza cineracea M3 0.990 12 0.009 1 M1 0.995 13 0.001 1 Scrub N 
Emberiza hortulana M10 0.932 4 0.251 1 M1i 0.964 7 0.007 1 Forest Y 
Emberiza schoeniclus M9 0.975  0.337 1 M8 0.953 4 0.179 1 Wetland N 
Erithacus rubecula M7 0.984 4 0.421 1 M8 0.942 4 0.207 1 Forest Y 
Falco cherrug                       M9 0.969 4 0.032 1 M4i 0.842 13 0.072 1 Open habitat Y 
Falco columbarius M6 0.991 6 0.098 1 M8 0.942 4 0.221 1 Open habitat N 
Falco eleonorae M9 0.961 12 0.013 2 M1i 0.990 1 0.010 1 Coastal Y 
Falco naumanni M9 0.963 12 0.136 1 M1i 0.981 7 0.174 1 Open habitat Y 
Falco peregrinus                    M9 0.877 12 0.199 1 M6 0.894 4 0.364 1 Open habitat Y 
Falco subbuteo M9 0.961 4 0.359 1 M2 0.992 7 0.041 1 Open habitat Y 
Falco tinnunculus M9 0.940 4 0.583 1 M7 0.899 4 0.387 1 Open habitat Y 
Falco vespertinus M4 0.982 4 0.049 1 M3 0.988 7 0.020 1 Open habitat Y 
Ficedula albicollis M10 0.955 4 0.073 1 M4 0.992 7 0.014 2 Open forest Y 
Ficedula hypoleuca M10 0.958 4 0.263 1 M1 0.991 7 0.028 1 Forest Y 
Ficedula semitorquata M9 0.971 4 0.015 1 M4 0.996 7 0.007 1 Forest Y 
Fringilla coelebs M8 0.986 4 0.488 1 M8 0.953 4 0.242 1 Forest N 
Gallinago gallinago M6 0.974 4 0.274 1 M3 0.905 7 0.215 1 Wetland Y 
Gallinago media M1 0.933 4 0.035 1 M3 0.951 7 0.078 1 Wetland Y 
Gallinula chloropus M4 0.950 4 0.350 1 M3i 0.877 13 0.034 1 Wetland Y 
Gelochelidon nilotica               M4 0.843 12 0.024 1 M7 0.889 7 0.093 1 Coastal Y 
Geronticus ermita M10 0.845 12 0.007 2 M4 0.939 13 0.067 1 Open habitat Y 
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Table 3.15 continued Model 
 

AUC Biome Prevalence Tolerance Model AUC Biome Prevalence Tolerance Habitat Trans- 
Saharan 

Glareola praticola  M9 0.870 7 0.071 1 M2i 0.966 7 0.095 1 Scrub Y 
Grus grus                           M10 0.978 4 0.142 1 M2 0.819 12 0.062 1 Open habitat Y 
Gyps fulvus M9 0.922 12 0.102 1 M3 0.812 12 0.063 1 Montane N 
Hieraaetus pennatus M10 0.945 12 0.144 1 M3 0.978 7 0.118 1 Forest Y 
Himantopus himantopus M3 0.897 7 0.261 1 M7 0.932 7 0.170 1 Wetlands Y 
Hippolais icterina M4 0.972 4 0.228 1 M8 0.988 7 0.045 1 Forest Y 
Hippolais languidae M4 0.858 4 0.167 1 M3 0.996 7 0.006 1 Open habitat Y 
Hippolais pallida M9 0.961 12 0.209 1 M8 0.919 7 0.105 1 Scrub Y 
Hippolais polyglotta M9 0.986 12 0.126 1 M1 0.992 7 0.018 1 Forest Y 
Hirundo daurica M3 0.921 12 0.090 1 M3 0.966 7 0.015 1 Open habitat Y 
Hirundo rupestris       M9 0.934 12 0.160 1 M2i 0.887 12 0.068 1 Montane Y 
Hirundo rustica M8 0.981 4 0.548 1 M3 0.967 7 0.127 1 Open habitat Y 
Irania gutturalis M9 0.967 12 0.032 1 M2i 0.996 7 0.002 2 Montane Y 
Ixobrychus minutus M3 0.892 7 0.290 1 M4 0.961 7 0.133 1 Wetland Y 
Jynx torquilla M9 0.939 4 0.341 1 M8 0.978 7 0.058 1 Forest Y 
Lanius collurio M8 0.925 4 0.363 1 M8 0.980 7 0.047 1 Open habitat Y 
Lanius minor M9 0.979 13 0.151 1 M4i 0.955 13 0.030 1 Open habitat Y 
Lanius nubicus M3 0.954 12 0.032 1 M4i 0.974 7 0.014 1 Forest Y 
Lanius senator M9 0.983 12 0.182 1 M4i 0.966 7 0.076 1 Forest Y 
Larus fuscus                        M5 0.956 4 0.086 1 M8 0.904 7 0.021 1 Coastal Y 
Larus genei                         M4 0.950 4 0.018 1 M2i 0.940 12 0.012 1 Coastal Y 
Larus ridibundus                      M5 0.979 4 0.287 1 M8 0.906 4 0.126 1 Wetland Y 
Limicola falcinellus M9 0.997 6 0.026 2 M3 0.993 13 0.000 1 Wetland N 
Limosa lapponica M9 0.975 11 0.008 1 M8 0.933 12 0.019 1 Coastal N 
Limosa limosa M4 0.992 4 0.109 1 M8 0.958 7 0.187 1 Coastal Y 
Locustella fluviatilis M4 0.928 4 0.132 2 M4 0.993 7 0.010 2 Scrub Y 
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Table 3.15 continued Model AUC Biome Prevalence Tolerance Model AUC Biome Prevalence Tolerance Habitat Trans- 
Saharan 

Locustella lusciniodes M10 0.973 4 0.151 1 M2 0.985 7 0.005 1 Wetland Y 
Locustella naevia M3 0.929 4 0.208 2 M3i 0.962 12 0.006 1 Scrub Y 
Lullula arborea M3 0.959 4 0.345 1 M8 0.953 12 0.109 1 Open habitat N 
Luscina megarhynchos M9 0.987 4 0.291 1 M3 0.988 7 0.037 1 Forest Y 
Luscinia luscinia M10 0.862 4 0.156 1 M3 0.993 7 0.012 2 Forest Y 
Luscinia svecica M5 0.917 4 0.161 1 M4 0.880 7 0.071 1 Scrub Y 
Lymnocryptes minimus M1 0.961 6 0.033 2 M3 0.910 7 0.116 1 Wetland Y 
Marmaronetta angustirostris M3 0.944 12 0.021 1 M3 0.928 12 0.019 1 Wetland Y 
Melanocorypha bimaculata M10 0.984 4 0.031 1 M1i 0.957 13 0.007 1 Human N 
Melanocorypha calandra M8 0.963 12 0.182 1 M8i 0.966 12 0.135 1 Open habitat N 
Merops apiaster M8 0.941 12 0.249 1 M1i 0.982 7 0.018 2 Open habitat Y 
Miliaria calandra M10 0.973 4 0.364 1 M8 0.943 4 0.220 1 Open habitat N 
Milvus migrans M9 0.918 7 0.446 1 M3 0.967 7 0.194 1 Open habitat Y 
Milvus milvus M9 0.915 4 0.123 1 M8 0.934 12 0.046 1 Open habitat N 
Monticola saxatilis M9 0.952 12 0.106 1 M2i 0.966 7 0.026 1 Montane Y 
Monticola solitarius                M9 0.972 12 0.159 1 M3 0.874 12 0.102 1 Montane Y 
Motacilla alba M9 0.945 4 0.486 1 M7 0.856 13 0.304 1 Wetland Y 
Motacilla cinerea M9 0.962 4 0.289 1 M8 0.932 13 0.184 1 Wetland Y 
Motacilla flava M9 0.987 4 0.437 1 M3 0.979 7 0.152 1 Open habitat Y 
Muscicapa striata M7 0.976 4 0.451 1 M8 0.968 7 0.116 1 Forest Y 
Neophron percnopterus M9 0.865 12 0.233 1 M3 0.942 7 0.090 1 Montane Y 
Netta rufina M9 0.885 4 0.040 1 M3 0.837 13 0.059 1 Wetland N 
Numenicus arquata M9 0.992 4 0.187 1 M3 0.873 12 0.065 1 Coastal Y 
Numenicus phaeopus M7 0.973 6 0.076 1 M7 0.948 7 0.039 1 Coastal Y 
Nycticorax nycticorax M3 0.844 7 0.240 1 M7 0.916 7 0.150 1 Wetland Y 
Oenanthe hispanica M9 0.984 12 0.187 1 M3 0.944 7 0.064 1 Open habitat Y 
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Table 3.15 continued Model AUC Biome Prevalence Tolerance Model AUC Biome Prevalence Tolerance Habitat Trans- 
Saharan 

Oenanthe isabellina M3 0.972 8 0.069 1 M4i 0.939 7 0.081 1 Open habitat Y 
Oenanthe oenanthe M9 0.979 4 0.439 1 M4i 0.925 7 0.105 1 Montane Y 
Oenanthe pleschanka M9 0.991 8 0.017 1 M4i 0.970 7 0.039 1 Scrub Y 
Oenanthe xanthoprymna M9 0.962 8 0.004 1 M1 0.946 13 0.006 2 Montane Y 
Oriolus oriolus M9 0.929 4 0.364 1 M8 0.973 7 0.077 1 Forest Y 
Otus scops M9 0.964 12 0.285 1 M8 0.978 7 0.123 1 Forest Y 
Pandion haliaetus M3 0.987 6 0.094 1 M7 0.967 7 0.184 1 Wetland Y 
Passer hispaniolensis M9 0.977 12 0.201 1 M4 0.958 13 0.180 1 Scrub N 
Passer montanus M9 0.991 4 0.327 1 M4 0.972 4 0.323 1 Forest N 
Pelecanus onocrotatus M9 0.956 7 0.156 1 M3 0.938 7 0.154 1 Wetland N 
Pernis apivorus M1 0.954 4 0.276 1 M7 0.943 7 0.240 1 Forest Y 
Philomachus pugnax M9 0.997 6 0.102 1 M7 0.963 7 0.181 1 Open habitat Y 
Phoenicurus ochruros                M9 0.970 4 0.318 1 M8 0.935 12 0.137 1 Human Y 
Phoenicurus phoenicurus M9 0.980 4 0.375 1 M4i 0.974 7 0.047 1 Forest Y 
Phylloscopus bonelli M9 0.982 12 0.128 1 M3 0.967 7 0.034 1 Forest Y 
Phylloscopus collybita M9 0.985 4 0.399 1 M4 0.868 13 0.306 1 Forest Y 
Phylloscopus sibilatrix M9 0.988 4 0.288 1 M2 0.994 1 0.032 1 Forest Y 
Phylloscopus trochilus M9 0.985 4 0.290 1 M3 0.977 7 0.108 1 Scrub Y 
Platalea leucorodia M3 0.939 12 0.108 1 M3 0.904 13 0.081 1 Wetland Y 
Plefadis falcinellus M9 0.938 7 0.313 1 M4 0.954 7 0.243 1 Wetland Y 
Pluvialis apricaria M7 0.989 6 0.111 1 M8 0.925 12 0.065 1 Montane N 
Podiceps cristatus M9 0.889 4 0.266 1 M7 0.923 4 0.122 1 Wetland N 
Podiceps nigricollis M9 0.902 4 0.135 1 M8 0.919 12 0.088 1 Wetland N 
Porzana parva                       M4 0.954 4 0.063 1 M3 0.977 13 0.003 1 Wetland Y 
Porzana porzana M3 0.899 4 0.173 1 M8 0.951 7 0.054 1 Wetland Y 
Porzana pusilla M3 0.947 1 0.027 1 M3 0.990 7 0.066 1 Wetland Y 
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Table 3.15 continued Model AUC Biome Prevalence Tolerance Model AUC Biome Prevalence Tolerance Habitat Trans- 
Saharan 

Prunella modularis M9 0.964 4 0.326 1 M8 0.960 4 0.163 1 Forest N 
Rallus aquaticus M3 0.890 4 0.310 1 M8 0.916 12 0.164 1 Wetland N 
Recurvirostra avosetta M9 0.956 4 0.070 1 M7 0.939 7 0.140 1 Coastal Y 
Regulus ignicapillus M9 0.979 4 0.191 1 M7 0.952 12 0.095 1 Forest N 
Regulus regulus M7 1.000 4 0.265 1 M7 0.967 4 0.297 1 Forest N 
Riparia riparia M6 0.951 4 0.398 1 M7 0.977 7 0.089 1 Open habitat Y 
Saxicola rubetra M9 0.953 4 0.352 1 M4 0.975 7 0.037 1 Open habitat Y 
Saxicola torquata M9 0.989 4 0.314 1 M7 0.890 12 0.255 1 Open habitat N 
Scolopax rusticola M10 0.953 4 0.270 1 M8 0.953 12 0.088 1 Forest N 
Serinus serinus M9 0.961 4 0.330 1 M8 0.959 12 0.105 1 Forest N 
Sterna albifrons                    M9 0.878 4 0.094 1 M6 0.900 12 0.022 1 Coastal Y 
Sterna caspia                       M9 0.935 13 0.018 1 M1 0.867 7 0.076 1 Coastal Y 
Sterna hirundo                      M6 0.940 4 0.206 1 M2 0.943 12 0.004 1 Coastal Y 
Sterna sandvicensis                 M4 0.938 8 0.008 1 M2i 0.981 13 0.002 1 Coastal Y 
Streptopelia turtur M9 0.935 4 0.492 1 M3i 0.979 7 0.040 1 Forest Y 
Sturnus vulgaris M7 0.937 4 0.413 1 M6 0.935 4 0.256 1 Open habitat N 
Sylvia artricapilla M9 0.979 4 0.314 1 M8 0.929 12 0.172 1 Forest Y 
Sylvia borin M9 0.956 4 0.338 1 M7 0.983 7 0.098 1 Forest Y 
Sylvia cantillans M3 0.981 12 0.116 2 M3 0.975 7 0.038 1 Scrub Y 
Sylvia communis M3 0.978 4 0.406 1 M3 0.975 7 0.080 2 Forest Y 
Sylvia conspicillata M10 0.997 12 0.061 2 M3 0.936 12 0.059 1 Scrub N 
Sylvia curruca M3 0.936 4 0.309 1 M3 0.949 7 0.040 1 Forest Y 
Sylvia deserticola M3 0.979 12 0.010 2 M3 0.939 13 0.033 1 Scrub N 
Sylvia hortensis M3 0.966 12 0.107 1 M1 0.991 7 0.028 1 Forest Y 
Sylvia melanocephala M3 0.973 12 0.131 2 M3i 0.932 12 0.133 1 Open habitat Y 
Sylvia melanothorax M3 0.983 12 0.001 2 M1i 0.973 13 0.007 2 Scrub N 
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Table 3.15 continued Model AUC Biome Prevalence Tolerance Model AUC Biome Prevalence Tolerance Habitat Trans- 
Saharan 

Sylvia nana M9 0.947 13 0.008 2 M1 0.953 13 0.007 2 Scrub Y 
Sylvia nisoria M4 0.985 4 0.132 1 M3 0.973 7 0.018 1 Scrub Y 
Sylvia rueppelli M4 0.949 12 0.015 2 M1 0.938 13 0.014 1 Scrub Y 
Sylvia sarda M10 0.982 12 0.006 2 M3 0.977 12 0.010 2 Scrub N 
Sylvia undata M3 0.970 12 0.085 1 M4 0.978 12 0.064 1 Scrub N 
Tachybaptus ruficollis M9 0.986 4 0.424 1 M7 0.921 7 0.289 1 Wetland N 
Tachymarptis melba M9 0.899 12 0.149 1 M3 0.973 1 0.019 1 Open habitat Y 
Tadorna ferruginea M7 0.845 13 0.118 1 M8i 0.892 13 0.076 1 Wetland N 
Tadorna tadorna M3 0.921 4 0.103 1 M8i 0.920 4 0.034 1 Wetland N 
Tringa erythropus M9 0.990 6 0.026 2 M8 0.923 7 0.118 1 Coastal Y 
Tringa glareola M9 0.994 6 0.098 1 M7 0.974 7 0.174 1 Forest Y 
Tringa nebularia M7 0.982 6 0.076 1 M7 0.964 7 0.184 1 Open habitat Y 
Tringa ochropus M10 0.980 4 0.156 1 M8 0.937 7 0.243 1 Wetland Y 
Tringa stagnatilis M9 0.929 4 0.012 1 M3 0.974 7 0.174 1 Wetland Y 
Tringa totanus M9 0.994 4 0.240 1 M7 0.953 7 0.211 1 Wetland Y 
Troglodytes troglodytes M3 0.981 4 0.360 1 M8 0.982 8 0.054 1 Open habitat N 
Turdus iliacus M9 0.985 4 0.148 1 M7 0.949 4 0.169 1 Forest N 
Turdus merula M9 0.990 4 0.492 1 M7 0.948 4 0.237 1 Scrub N 
Turdus philomelos M9 0.988 4 0.379 1 M7 0.939 12 0.166 1 Forest N 
Turdus pilaris M9 0.950 4 0.215 1 M7 0.956 4 0.317 1 Forest N 
Turdus torquatus M9 0.966 4 0.101 1 M7 0.941 12 0.049 1 Montane N 
Turdus viscivorus M9 0.950 4 0.372 1 M7 0.963 4 0.186 1 Forest N 
Upupa epos M9 0.915 4 0.359 1 M1i 0.914 12 0.136 1 Forest Y 
Vanellus vanellus M5 0.954 4 0.395 1 M8 0.929 12 0.117 1 Human N 
Xenus cinereus M9 0.973 4 0.006 1 M3 0.963 7 0.058 1 Wetland Y 
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Predictor variables 
 
The main predictor variables used in this study are depicted in Figures 3.11-13. The base 

variables, actual/potential evapo-transpiration (APET), mean temperature of the coldest 

month (MTCO), mean temperature of the warmest month (MTWA) or annual temperature 

sum above 5ºC (GDD5) were chosen because they were thought to characterise the 

environment (Huntley et al., 1995; Huntley et al., 2004). The majority of models selected for 

the breeding range included the difference of precipitation to potential evapo-transpiration 

(PPE) during the breeding season.  The non-breeding range models mainly include either PPE 

before the non-breeding season or the dry intensity variable (DRYINT) (see Section 3.1). This 

selection of variables for migratory birds makes sense and concurs with the conclusion by 

Heikkinen et al. (2006) that the inclusion of seasonal variables in models for migratory 

species improves fit. During the breeding season, available moisture is important for plant 

productivity, which can help successful breeding through provision of enough food. During 

the non-breeding season, ensuring that birds arrive in a ‘lush’ environment may also be 

important (Fry, 1992). The inclusion of seasonal variables in the non-breeding season models 

may be more difficult. It has been shown that many migrants are vagrants throughout their 

non-breeding range, often following the rain (Berthold, 2001; Jones et al., 1996; Salewski and 

Jones, 2006). 
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Figure 3.11: Predictor variables that form the base models of the species distribution models: 
Number of growing days above 5°C (GDD5), Mean temperature of the warmest month (MTWA), 
Mean temperature of the coldest month (MTCO) and actual to potential evapo-transpiration (APET) 
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Figure 3.12: Seasonal predictor variables for the study area: difference of precipitation to potential 
evapo-transpiration (PPE) during the breeding and non-breeding seasons (5 months) and before the 
breeding and non-breeding season (2 months before). See section 3.1 
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Figure 3.13: Annual Mean PPE (difference of precipitation to potential evapo-
transpiration) for the study area 

 

Simulated distributions 
 
Table 3.15 shows that all species have been modelled well, with AUC ranging from 0.798 – 1 

for breeding season models and from 0.812 – 0.996 for non-breeding season models (see 

Section 3.2). Kappa values (see digital appendix) are significantly correlated with AUC 

(Spearman rho = 0.402 for breeding season models, Spearman rho = 0.512 for non-breeding 

season models). The maximum kappa was used to set a threshold to convert the probability 

simulations into presence-absence maps. This was done to enable analyses between present 

and future simulated maps (see Chapter 4). Converting probability maps into presence-

absence, results in a loss of information, which can lead to a poorer quality output (low Kappa 

values). Differences between AUC and Kappa are due to the fact that AUC measures the 

discriminatory ability of the models, i.e. how well presences are distinguished from absences, 

while Kappa measures the overall accuracy of the models’ predictions, in terms of 

commission and omission errors, over the accuracy expected to occur by chance (Allouche et 

al., 2006). However, many authors have criticised Kappa because it is sensitive to prevalence 

(Fielding and Bell, 1997; Manel et al., 2001; McPherson et al., 2004) and the definition of 
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chance is problematic (Vaughan and Ormerod, 2005). Kappa measures the agreement beyond 

chance (von Eye & von Eye, 2005). The problem with the definition of ‘chance’ in Kappa is 

that the specific model of chance chosen can influence the value of Kappa (see Brennan and 

Prediger, 1981). Allouche et al. (2006) recommend using a measure called the True Skill 

Statistic (TSS) to evaluate models rather than Kappa. However, although in itself it is 

independent of prevalence, if used as a means to select a threshold it does affect the predicted 

prevalence of the maps (Freeman and Moisen, 2008). Freeman and Moisen (2008) indicate 

that maximised Kappa is one of the best measures for selecting thresholds. 

As seen in Section 3.2, the overestimations in prevalence are systematic. Many species 

whose breeding or non-breeding grounds are found in the Mediterranean region have 

simulated distributions also occurring in South Africa (Fig. 3.14). Some of this over-

prediction can be explained by looking at Fig. 3.5 and Figs 3.11-13. Climatically, South 

Africa is very similar to the Mediterranean region. It therefore makes sense that a model 

relating climate to species’ distributions simulates presence in climatically similar regions.  

a) 

 

b) 

 
Figure 3.14: Distribution of Regulus ignicapillus a) observed and b) simulated. Pink cells 
indicate breeding, blue non-breeding, purple resident or both breeding and non-breeding. 
Yellow represents no data values in the EBCC atlas. (Projection is Lambert-Azimuth) 
 

Some species are simulated to occur on islands with similar climate to their present 

distribution, such as Madagascar, when in fact they are not present (Fig. 3.15). These 
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discrepancies in the climate-species relationship can also be explained through 1) quality of 

observed data: ‘absences’ may not be real absences because failing to detect a species does 

not necessarily mean that it is absent (Gu and Swihart, 2004; Ottaviani, et al., 2004); 2) 

factors such as distance and barriers or dispersal (Davis et al., 1998); 3) historical factors 

(Levin, 1992); 4) biotic interactions/competition, as argued by Hutchinson’s realised niche 

theory (Hutchinson, 1957; Pulliam, 2000). These factors may all contribute to species not 

being able to occupy all areas that are suitable.  

 

a) 

 

b) 

 
Figure 3.15: Distribution of Falco naumanni a) observed and b) simulated. Pink cells 
indicate breeding, blue non-breeding, purple resident or both breeding and non-breeding. 
Yellow represents no data values. (Projection is Lambert-Azimuth) 
 

Descrepancies between the observed and simulated maps may also be due to the modelling 

framework. For example, although many species occur in the Nile region, no simulation 

reproduces this (Figs. 3.16-17); not even in the CRS models which describe the observed data 

best (Section 3.2; c.f. digital appendix). Indeed, there is no large-scale distinct climate along 

this river (Figs. 3.11-13). In these areas, habitat is likely to be key in determining suitability. 

Since habitat was not included in the models, these areas are not simulated as suitable by the 

climatic envelope models. In this instance, the scale at which distributions are modelled is 
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also an issue. Indeed the models also fail to simulate occurrences (Fig. 3.16) in the Sahara 

desert which probably relate to oases. 

 

a) 

 

b) 

 
Figure 3.16: Distribution of Falco tinnunculus a) observed and b) simulated. Pink cells 
indicate breeding, blue non-breeding, purple resident or both breeding and non-breeding, 
yellow represents no data values while the light blue represents wintering in the no data zone. 
a) 

 

b) 

 
Figure 3.17: Distribution of Charadrius hiaticula a) observed and b) simulated. Pink cells 
indicate breeding, blue non-breeding, purple resident or both breeding and non-breeding, 
yellow represents no data. 
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3.3.3 Factors affecting model performance 
 

Other than the errors caused by the model and the modelling method, ecological factors may 

also determine how well a model performs (Hernandez et al., 2006; McPherson et al., 2004; 

Segurado and Araújo, 2004). Consequently, I investigated how certain ecological attributes of 

a species may impact on how well one can model its distribution using climatic variables. 

These ecological traits were distribution extent (widespread or restricted with a cut off 

prevalence of 0.3), tolerance, biome, habitat and migration strategy (whether a species is a 

trans-Saharan migrant or not). To examine whether any of these traits have an effect on model 

performance (AUC), a factorial ANOVA was done with Tukey’s post hoc tests. Before this 

analysis however, AUC was adjusted for prevalence (Eq. 3.10; Huntley et al., 2004; Huntley 

et al., 2007). Although many studies have found that AUC is not affected by prevalence 

compared to Kappa (Fielding and Bell, 1997; Manel et al. , 2001; McPherson et al., 2004), 

recent studies have found that AUC may in fact be affected by prevalence (Huntley et al., 

2004; Lobo et al., 2007; Maggini et al., 2006).  

 

)5.0( pbaAUCadjusted −∗+=                            (3.10) 

 

Where a is the species’ AUC, p is the species’ prevalence and b is the regression coefficient 

from a regression between prevalence and AUC. The regression between prevalence and 

AUC revealed that prevalence did not affect model performance in the breeding season 

models (R2 = 0.001, p = 0.529; Fig. 3.18 a) but that it did in the non-breeding season models 

(R2 = 0.119, p < 0.0001; Fig. 3.18 b). 
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a) 

 
b) 

 
Figure 3.18: Relationship between model performance (AUC) and prevalence with a linear 
trend line on a) the breeding grounds and b) the non-breeding grounds 
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The results showed that the performance of models on the breeding grounds is affected 

by biome (F6 = 7.386, p < 0.0001), though effect size was low (ω2 = 0.173). There was no 

significant effect of migration strategy (F1 = 3.435, p = 0.065), habitat (F6 = 1.723, p = 0.117), 

extent (F1 = 0.554, p = 0.457) or tolerance (F1 = 1.726, p = 0.190). The post hoc tests showed 

that species whose main biome was tropical grasslands (i.e. those migrants also breeding in 

Africa) were less well modelled than other species except those breeding in Mediterranean 

forests or desert. Those species with breeding distributions in Boreal forests were modelled 

best. 

The results showed that the performance of models on the non-breeding grounds were 

affected by biome (F5 = 11.890, p < 0.0001, ω2 = 0.217), habitat (F6 = 6.605, p < 0.001, ω2 = 

0.156), tolerance (F1 = 19.548, p < 0.0001, ω2 = 0.084) and extent (F1 = 6.772, p < 0.05, ω2 = 

0.031). Migration strategy did not affect model performance (F1 = 2.865, p = 0.092, ω2 = 

0.013). Although models for widespread species and generalist species had significantly lower 

performance than for restricted and specialist species, the effect sizes were very small. 

Biomes and habitats to which species belonged to did have an effect on model performance 

albeit with low effects. The post-hoc analyses showed that the distributions of wetlands and 

coastal species were less well modelled than those of forest or scrub species. The ranges of 

species whose main biomes were temperate broad leaf and mixed forest, Mediterranean 

forests or desert were less well modelled that those of other species.  

These results corroborate those of other studies examining the effect of prevalence and 

species’ characteristics on distribution models. Prevalence and sample size have been shown 

to affect the performance of models (Manel et al., 2001; McPherson et al., 2004; Stockwell 

and Peterson, 2002). The effect of prevalence is largely a statistical phenomenon in that it 

affects the measures of performance (Fielding and Bell, 1997; McPherson et al, 2004). 

However, a species’ marginality seems to be an ecological predictor of how well an SDM will 

perform. Here I use ‘marginality’ to mean how distinctive a species’ niche is. This is a 

combination of its major biome and tolerance. Brotons et al. (2004), Seguardo and Araújo 

(2004) and Huntley et al. (2007) all found that more marginal species had better performing 

models. Brotons (2004) suggested two possible reasons why widespread generalist species’ 

models may not perform so well. First, the species may not be limited by the predictor 

variables used at the scale they are used. Second, different populations of the species may 

show regional differences in ecological characteristics meaning that, by modelling them 

together, accuracy is lost. The predictor variables used will also account for how well species’ 

models perform as evidenced by coastal or wetland species’ models performing less well: 

habitat may be more important than climate for these species. 
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3.3.4 Discussion 
 

The species distribution models generally perform well but show some systematic 

discrepancies. Discrepancies with the observed data are in part due to the fact that the species 

have been modelled on a coarse scale relating climate to their distribution. The results indicate 

that climate is not the sole factor limiting species’ distributions. Bioclimatic variables alone 

were used so that the effect of climate change could be investigated (Chapter 4). There are 

other errors and uncertainties in the models which, along with the limitations of the modelling 

approach, will be discussed in the following paragraphs.  

 Prediction errors are inevitable in SDM (Barry and Elith, 2006; Van Horne, 2002). 

These errors can be due to theoretical assumptions, data deficiencies and the model 

framework and specification.  

 

Theoretical assumptions 

 

Species’ distribution modelling is underpinned by two main theoretical concepts: niche and 

equilibrium. SDM rely on the niche concept (Guisan and Zimmermann, 2000) because they 

assume that species respond to environmental factors. Most modellers state that only a 

species’ realised niche can be modelled (Kearney, 2006; Pulliam, 2000; Soberon, 2007) but 

there is in fact no evidence that this is truly the case (Guisan and Thuiller, 2005). 

Nevertheless, the assumption of whether the realised or fundamental niche is the modelled 

niche has consequences when projecting the resulting models into change scenarios. Indeed, if 

the realised niche is modelled, the modelled future distribution may not hold if the realised 

niche changes. 

Species distribution models also implicitly assume that there is equilibrium between 

the environment and species’ distributions (Guisan and Zimmermann, 2000). However, data 

collected represent only a snapshot of reality (Guisan and Thuiller, 2005) and so it is not 

certain that species are in equilibrium. For instance, many bird species are still expanding 

their ranges (Newton, 2003). Equilibrium can potentially be estimated with the collection of 

atlas surveys over time. 

  

Data errors 

 

Uncertainty and errors can be introduced at any stage. Error can be found in the response data 

or the predictor variables. In species’ distribution data, errors can be caused by biases in the 



113 
 

sampling regime, errors in data handling (Graham et al., 2007; Gu and Swihart, 2004; 

Loiselle et al., 2007), species’ detectability and false absences (Barry and Elith, 2006; Gu and 

Swihart, 2004). Biased data result in the modelled relationships being dominated by patterns 

at the sampled sites rather than ‘real’ patterns, which causes spatial error and uncertainty 

(Barry and Elith 2006). Moreover, false absences may lead either to a false estimation of the 

species-environment relationship or a pessimistic view of model performance. Classification 

errors can also occur. For instance, Anthus trivialis, Carduelis carduelis and Carduelis chloris 

were misclassified in this thesis as forest species. These species in fact inhabit open areas with 

trees. The effect of these errors is not known. However, the effect is likely to be small given 

these three species are but 1.3% of the total number. Errors in predictor variables are also 

possible either due to mismeasurement, transformation (Austin, 2002), or interpolation 

(Burrough and McDonnell, 1998). Getting data that concord in space, time (Rushton et al., 

2004) and scale (Guisan et al., 2007; Guisan et al., 2006) may also lead to errors.  

Errors resulting from the data used in this study may be introduced from any of these 

sources. However, everything has been done to minimise the impact of these errors. For 

instance the modelling technique used (GAM) has been shown to be robust to errors in 

distribution data (Graham et al., 2007) and has the flexibility to overcome any oddities in the 

predictor variables (Austin, 2002).  

 

Model framework and specification 

 

The choice of variables used in the modelling process has a big impact on model uncertainty. 

Obtaining relevant proximal variables is difficult which is why many distal variables are used 

in species’ distribution modelling (Austin, 2002; Guisan and Zimmermann, 2000). Moreover 

even if relevant proximal variables are available, our knowledge of species may not be 

sufficient to know which variables to use (Barry and Elith, 2006) which may lead to a poorer 

model. Another problem is that we may not have enough data (power) to distinguish 

meaningful predictors. Missing covariates may not just be due to an imperfect knowledge of 

factors affecting species’ distributions. The aims for a particular model may also cause such 

limitations. For instance, I found that wetland species’ models were poorer and also that the 

occurrence of many species in the Nile Valley region was not simulated correctly. The 

inclusion of habitat variables seems necessary to these models (though the scale of the 

variables could be the issue). However, the aim of this study is to project the models into the 

future. While we have good models of future climates, we do not have good models of future 

land cover. Therefore, this limitation has to be accepted. It was hoped, when this study was 
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started, that modelling at a coarse scale would mitigate the effects of not including land cover. 

Indeed, Thuiller et al. (2004) found that land cover variables in bioclimatic models did not 

improve predictive performance. They hypothesised that this may be either because climate 

explains land cover or that the models were at a coarse resolution (50 km x 50 km) which 

meant that the heterogeneity of the landscape was lost. On a finer grid, however, land cover 

variables become very important (Hill et al., 2002). 

Model specification errors are very common because the “truth” is not known. Barry 

and Elith (2006) suggest that these errors will mainly occur if the “true” model is not 

contained in the model specification, for instance if the true relationship is quadratic but a 

linear model is specified. If the “truth” is contained in the model specification and if there is a 

large enough sample size, then the model estimated will converge towards the “truth” (at least 

when using maximum likelihood techniques; Barry and Elith, 2006; Welsh, 1996).  

How techniques estimate the shape of response surface can also cause uncertainties.  

Some relationships may be linear but others may be more complex (Austin 2002). The 

relative success of flexible techniques compared with more strict techniques, such as logistic 

regression or GLM, in this study shows that species-environment relationships are complex. 

However, overfitting can be an issue when modelling complex relationships. Although this 

study has tried to select the most robust model, without being able to ascertain the validity of 

the models under a variety of independent trials, overfitting may be a problem. Moreover, 

each modelling technique will have its own biases and assumptions making it difficult to 

quantify the uncertainty in the models (Burgman et al., 2005). 

Finally, error in the modelling framework will lead to discrepancies that originate 

from statistical or seemingly ecological artefacts. For instance all niche models are sensitive 

to sample size and bias in the distribution of data (Araújo and Guisan, 2006). Many niche 

models are affected by species’ ecological traits (see section 3.3.3). However, this is more of a 

model specification problem: covariates are missing from the model.  

 

3.3.5 Conclusion 

 

Uncertainty in SDM originates from many sources. It is impossible to eliminate uncertainty 

from models because of the fact that they are models. Moreover, other factors than climate 

affect species’ distributions. This Chapter has shown that good models can be obtained but 

that the models used carry assumptions and limitations. The author would therefore urge the 

reader to keep in mind these limitations and caveats in reference to the results presented in 

this study. 
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4. Projecting species’ ranges into future climate change scenarios 
 

 

Global temperature has increased by about 0.76° C over the last 100 years (Solomon et al., 

2007). Species have responded to this change by shifting their ranges polewards (Walther et 

al., 2002; Parmesan and Yohe, 2003) or by shifting elevation ranges upwards (Shoo et al., 

2005; Wilson et al., 2005). Projected future climate change of between 1.1-6.4° C over the 

next 100 years (Solomon et al., 2007) may therefore have a profound effect on species’ 

ranges.  

 Climate change projections are achieved using General Circulation Models (GCM) 

and emissions scenarios (see Chapter 2). The Fourth Assessment Report of the IPCC (AR4) 

gives a detailed account of the workings and evaluation of these GCM. Although each climate 

model produces different simulations, when combined (termed multi-model mean) they 

closely simulate the current observed climate (Solomon et al., 2007). In this chapter three 

GCMs (Echam5 [Jungclaus et al., 2006], GFDL-CM2.1 [Delaworth et al., 2006] and 

HadGEM1 [Johns et al., 2006] will be used, along with two emissions scenarios (A1B and 

A2; Nakicenovic et al., 2000). These two scenarios represent mid and high range emissions 

and were selected mainly because of the availability of data sets1

These differences cover only part of the uncertainty that exists in GCM. Beaumont et 

al. (2007) analysed the internal variability of climate models which arises from slightly 

different but equally valid initialisations of a climate simulation (each new simulation termed 

“realisation”). They found that although realisations from a single model were similar to each 

other, they differed when projected into the future, contributing further to the uncertainty in 

. Moreover, the great 

increase in CO2 emissions in the last decade, suggests that more ‘extreme’ scenarios may be 

more appropriate than ‘conservative’ scenarios (such as B1 and B2) for future climate change 

projections (Beaumont et al., 2008). Depiction of the anomalies between future and present 

climate for my study area can be found in the digital appendix. In terms of temperature, 

Echam is warmer in the Sahel and the Mediterranean than the multi-model mean, GFDL is 

cooler in West Africa, and HadGEM has higher temperatures in Europe and lower 

temperatures in Africa. In terms of precipitation, Echam is a ‘dry’ model, GFDL a ‘wet’ 

model and HadGEM matches the mutli-model mean quite closely (Solomon et al., 2007). In 

terms of the forecast change in climate (compared with the multi-model mean), Echam 

exhibits a lower change, GFDL a higher change and HadGEM a midrange change compared 

with all GCM (Solomon et al., 2007).  

                                                 
1 Other data sets were not available at the time. 
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simulations of future climate change. To take this uncertainty into account, multiple 

realisations of each GCM should be used, but this is currently unrealistic as these are not yet 

available for many GCM. Uncertainty in projections is a big issue which is why most studies 

reporting the likely effects of climate change provide a range of values resulting from 

different GCM and/or scenarios.  

Uncertainty is further introduced with the use of species distribution models (SDM). 

The analyses in the previous chapter indicated that either GAM or CRS were good choices. 

However, many studies have reported that different modelling techniques produce different 

future projections (Thuiller, 2004; Araújo et al., 2005b; Dormann et al., 2008). The 

discrepancies between projections from different SDM result from the different variables in 

each model or from the different assumptions and forms of each modelling technique. In the 

previous chapter, I showed that Generalised Additive Models (GAM) and Climate Response 

Surfaces (CRS) were very similar in their assumptions and produced very similar simulations. 

In the first part of this chapter, I investigate the potential uncertainty in future projected 

ranges of migrant birds arising from using different SDM.  

In the second part of the chapter, the potential effects of climatic change on European 

breeding migrant birds are reported. Many studies have reported the potential impacts of 

climatic change on birds (Huntley et al., 2006; Jetz et al., 2007; Huntley et al., 2008; Jensen 

et al., 2008), which are similar to the projected impacts on many other species. However, the 

potential effects on migrant birds are likely to be more complex because these species live in 

biogeographically distinct areas at different times of the year.  

In the third part of this chapter, differences between migrant birds will be investigated. 

It is possible that certain groups respond differently to climatic change. For instance, many 

studies have already shown that species with smaller ranges may be more affected by climatic 

change than widespread species (Doswald et al., 2009; Schwartz et al., 2006; Huntley et al., 

2008; Sekercioglu et al., 2008) as small range species often occupy climatically rare space 

(Öhlemüller et al., 2008). Moreover, some species may be more able to adapt to climatic 

change (Jonzén et al., 2006). Berthold (2001) hypothesised that long-distance migrants might 

be more affected than short-distance/resident species. In this section, I investigate these 

possibilities by testing differences between different migratory groups. 
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4.1 Comparisons between models on future climate change projections  
 

 

 

4.1.1 Introduction 
 

Different modelling methods produce simulated distributions, which are often widely 

different (in terms of magnitude and direction) when projected onto new data, i.e. data not 

used during model building, (Thuiller, 2003; Thuiller, 2004; Araújo et al., 2005b). This 

finding has led many authors to advise a multi-model ensemble or a consensus approach, 

where a suit of models is used to determine either a range of expected outcomes or a 

mean/consensus of outcomes (Thuiller, 2004; Araújo and New, 2006; Araújo et al., 2005b; 

Pearson et al., 2006). Multi-model ensemble approaches use a range of different methods to 

model species’ distributions. The results from multi-model ensembles are presented as a range 

of values from the different models, as the mean from all the models, or the results from the 

best model are presented (Thuiller, 2004; Araújo and New, 2006). In consensus modelling, a 

range of methods is used and the similarities and differences between the methods are 

analysed. Those models that are the most similar (as well as proving to be most accurate) are 

then used (Araújo and New, 2006).   Araújo et al. (2005b) investigated the use of consensus 

forecasting. They modelled the breeding ranges of 116 birds and projected these into future 

climate change scenarios. They used four different modelling techniques, two data 

parameterisations and two rules to transform probabilities of occurrence into presence-

absence models resulting in 16 possible different models. They found that consensus models 

(those that differed least from the mean forecast) performed best using AUC and Kappa as the 

performance metrics. Moreover, using the average of the consensus models performed even 

better than using the mean of all models (Araújo et al., 2005b). Pearson et al. (2006) argued 

that differences in projections can be mainly accounted for by the types of data they required 

and the assumptions each made. Indeed they found that techniques could be grouped by these 

characteristics and that those in the same group produced similar projections. All the methods 

used in Araújo et al. (2005b), on the other hand, have different assumptions which may 

explain some of the differences when they are extrapolated onto new data.  

Here I further investigate this issue with three modelling methods to project the 

species’ distributions into a potential future climate, in order compare how different models 

project. It is expected that GAM and CRS will produce similar projections (since they have 

similar assumptions) whilst GLM will be the most different.  



 
 

118 

4.1.2 Methods 

Climate data 
 

Precipitation, temperature and cloudiness anomalies were taken from the GFDL Atmosphere-

Ocean General Circulation model (Delaworth et al., 2006), scenario A1B (Nakicenovic et al., 

2000), for the 2085 time-slice, i.e. mean of 2071-2100. The anomalies (relative to the climatic 

norm of 1961-1990) were fitted to a longitude x latitude grid using a spline surface (method 

describe in Hutchinson, 1989) and then were interpolated to the study area using the spline 

surfaces (using algorithm in Numerical Recipes Software, 1988-1992). These variables, in 

conjunction with soil texture, were transformed to provide the set of bioclimatic variables 

used in Chapter 3.  

Models and analyses 
 

The species distribution models discussed in Chapter 3 were fitted to the recent climate 

(1961-1990) and then projected onto the new ‘future’ bioclimatic variables. The probability of 

occurrence for each model were correlated (Pearson’s correlation) so that a correlation matrix 

similar to that in Chapter 3 could be obtained. The probability values were then transformed 

into presence-absence (p-a) or binomial values using the maximised kappa threshold obtained 

from the present day models. These values were correlated (Spearman correlation) to 

investigate similarities between modelling method. 

The future p-a grids were compared with the present-day p-a grids. Percentage overlap 

(O) was calculated as the proportion of grid cells classified as present in both the current and 

future simulations. Before this was done, the one degree grid cells of the non-breeding range 

were multiplied by four so as to be equivalent to the half degree breeding range. Relative 

change of range extent (R) was calculated by dividing the future range extent (number of cells 

indicated projected as occupied in the future) by the present-day range extent (number of cells 

occupied in the present-day). The centroid of each seasonal distribution range was calculated 

as the mean longitude/latitude. The geodesic distance (D) between the present day centroid 

and the future centroid was calculated using a “Geodesic” program written in Fortran by B. 

Huntley which used the solution of Sodano and Robinson (1963).  This program also 

calculated the first and last azimuth. The first azimuth (θ) gives us the angle of shift of the 

distribution range. The Geodesic program was also used to calculate the average ‘migration 

distance’ (M) by incorporating the centroids of each seasonal range. ‘Migration distance’ is 

here defined as the geodesic distance between the breeding and non-breeding range centres, 
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measured in Kms by a straight line (Doswald et al. 2009 – see Appendix I). Species richness 

(N) per grid square was calculated for both the present day and future simulations. 

Repeated measures ANOVA2

As well as these comparisons between present and future models for each method, 

future maps were also compared between the modelling methods. This was done by collecting 

overlap and relative change in extent between predictions. To assess the difference between 

the future probability maps, the mean absolute error (MAE; Eq. 3.7) for each species between 

each modelling method was taken. A repeated measures ANOVA was performed to assess 

whether MAE differed. MAE was arcsine square root transformed before the analyses to 

normalise the data. To assess the difference between the p-a maps Jaccard’s distance index 

(Jaccard 1901; Eq. 4.1) was calculated for each species. 

 were performed to analyse the effect of the different 

modelling methods on proportion overlap (O) and relative change extent (R). Proportion 

overlap was arcsine square-root transformed, while the relative change of extent was logged 

to normalise the data. Friedman repeated measures tests (Field, 2005) were performed to 

examine the effect of modelling method on the shift in range between present and future and 

migration distance for both the current models and the future models. The Watson-

Williamson test (Zar, 1996) was used to examine whether the mean angle of shift was 

different between modelling methods. Relative change in species richness was calculated and 

differences between models were examined using Friedman’s repeated measures tests. 

 

)(
)(
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baJ
++

+
=                    (4.1) 

 

Where a is all presences for model 1 but not model 2, b is all presences for model 2 but not 

model 1 and c is all presences in both model 1 and model 2.  

This equation measures the difference between models and values close to 0 mean that 

the output is very similar and close to 1 that they are very different. Repeated measures 

ANOVA was performed to assess whether Jaccard’s index differed between methods. The 

index was arcsine square root transformed before the analyses to normalise the data. 

 

 

 

 

                                                 
2 As stated in Chapter 3, page 75, the assumption of sphericity needs to be tested. The results of these tests for 
each ANOVA are reported in Appendix II. 
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4.1.3 Results 
 

Differences between models on present- future measures 
 

Breeding Range 
 

Figure 4.1 shows the relative change in species richness between the present and future 

simulations for each model. This shows that on the breeding range, GAM and CRS simulated, 

on average, reduced species richness in the future but GLM simulates increased species 

richness. All simulations of species richness change were different (χ2= 207.14, p < 0.0001). 

The model used affected species’ range overlap (O) between present and future 

distributions (F(1.84,420.70) = 250.79, p < 0.001, ω2 = 0.524). Bonferroni post hoc tests showed 

all methods were significantly different from each other (p < 0.001) in terms of overlap.  

The models did not differ in their simulations of change in range extent (F(1.53,349.14) = 

1.878, p = 0.164, ω2 = 0.008). 

 
Figure 4.1: Mean and confidence interval range for the relative change in species richness 
between 2085 GFDL AOGCM - scenario A1B simulations and present day simulations for 
each modelling method. Blue represents non-breeding season models and red the breeding 
season models. Horizontal line represents no change between present and future range size. 
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Shift in median centres were significantly different between modelling techniques (χ2 

= 54.93, p < 0.0001). CRS predicted a greater shift than either GAM or GLM. Although all 

methods simulated a north-easterly shift in range (CRS: 11.70º, GAM: 21.27º, GLM: 29.03º), 

the mean direction of shift was statistically different between models (F2 = 7.34 p < 0.05).  

 

Non-breeding Range 
 

All models simulated different changes in species richness between present and future periods 

for the non-breeding range (χ2
 = 3532.09, p < 0.0001). Both CRS and GAM simulated a mean 

increase in species richness (Fig. 4.1), although CRS more so than GAM. GLM simulated a 

decrease in species richness. 

The model type had an effect on overlap (F(1.90,434.16) = 264.222, p < 0.001, ω2 = 

0.537). Bonferroni post hoc tests showed that O for all the methods were significantly 

different from each other (p < 0.001).  

The modelling technique used also affected species’ range extent (F(1.32,87.36) = 6.291, p 

< 0.01, ω2 = 0.027). Bonferroni post hoc tests showed that the change in range was 

significantly different between GAM and CRS (p < 0.03) and GLM and CRS (p < 0.02) but 

not between GAM and GLM.  

The modelled shift in centroids was different between models (χ2
 = 125.52, p < 

0.0001).  CRS predicted a greater shift than either GAM or GLM. Mean direction of shift in 

range was north easterly (CRS: 20.18º, GAM: 39.26º, GLM: 17.05º) but was significantly 

different between models (F2 = 4.57 p < 0.05).  

 

Migration Distance 
 

The Friedman tests analysing the effect of modelling method on migration distance revealed 

that there was a significant effect of method for both the present-day migration distance (χ2
 = 

139.07, p < 0.0001) and the potential future migration distance (χ2
 = 25.52, p < 0.0001). 

 

Future-future differences  
 
 
The correlations coefficients and the standard deviations for the future probability output for 

the models are shown in Tables 4.1-2 and Tables 4.5-6 while the correlation coefficients and 

standard deviations for the p-a output are shown in Tables 4.3-4 and Tables 4.7-8. These show 
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that GAM and CRS had higher mean correlation coefficients and smaller standard deviation 

than the other model combinations. 

 
Table 4.1: Mean Pearson correlation 
coefficients for the breeding range models  

Table 4.2: Standard deviations for the 
breeding range Pearson correlations 

 Models GAM GLM CRS   Models GAM GLM CRS 
GAM 1.000    GAM 1.000   
GLM 0.696 1.000   GLM 0.275 1.000  
CRS 0.851 0.603 1.000  CRS 0.105 0.276 1.000 

 
Table 4.3: Mean Spearman correlation 
coefficients for the breeding range models  

Table 4.4: Standard deviation for the 
breeding range Spearman correlation 

 Models GAM GLM CRS 
 

 Models GAM GLM CRS 
GAM 1.000   GAM 1.000   
GLM 0.561 1.000   GLM 0.266 1.000  
CRS 0.646 0.488 1.000  CRS 0.221 0.247 1.000 

 
Table 4.5: Mean Pearson correlation 
coefficients for the non-breeding range   

Table 4.6: Standard deviations for the 
non-breeding range Pearson correlations 

 Models GAM GLM CRS   Models GAM GLM CRS 
GAM 1.000    GAM 1.000   
GLM 0.738 1.000   GLM 0.196 1.000  
CRS 0.817 0.584 1.000  CRS 0.116 0.212 1.000 

 
Table 4.7: Mean Spearman correlation 
coefficients for the non-breeding range   

Table 4.8: Standard deviation for the non-
breeding range Spearman correlation  

 Models GAM GLM CRS 
 

 Models GAM GLM CRS 
GAM 1.000   GAM 1.000   
GLM 0.471 1.000   GLM 0.267 1.000  
CRS 0.534 0.371 1.000  CRS 0.219 0.254 1.000 

 

The differences between probabilities of occurrence from each model were smaller 

between GAM and GLM for the non-breeding models and between the GAM and CRS for the 

breeding models (Fig.4.2). However, MAE was significantly different between models on 

both the breeding (F(1.48,337.42) = 207.16, p < 0.0001, ω2 = 0.476) and non-breeding grounds 

(F(1.48,338.80) = 185.45, p < 0.0001, ω2 = 0.449).  
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Figure 4.2: Mean Absolute Error (MAE) between probabilities of occurrence 
between the different models. Blue represent the non-breeding season models 
while the green represents the breeding season models 
 

If the future simulations produced by each method were the same, one would expect a 

high percentage overlap between the different future simulations. However, as shown in 

section 3.2.3 prevalence differed between each modelling method. Therefore, overlap will not 

be very high nor will range change be close to null, as different methods will predict more or 

less prevalence. The mean, standard deviation and median overlap and range change between 

each method is shown in Table 4.9. Overlap is highest between CRS and GAM showing that 

the future projections from both methods are similar. Range extent is lowest between GLM 

and GAM meaning these methods project similar magnitude of range change.  
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Table 4.9:  Mean, standard deviation and median values for breeding and non-breeding 
overlap and range change between future simulations from GAM, GLM and CRS 
Models Season Statistic Mean Standard deviation Median 

CRS_GAM 
Breeding Overlap 0.581 0.246 0.637 

Range Change 1.320 1.756 0.978 

Non-breeding Overlap 0.457 0.243 0.444 
Range Change 1.489 1.685 1.083 

CRS_GLM 
Breeding Overlap 0.448 0.250 0.437 

Range Change 0.826 0.616 0.765 

Non-breeding Overlap 0.331 0.261 0.251 
Range Change 1.194 1.319 0.814 

GLM_GAM 
Breeding Overlap 0.512 0.271 0.532 

Range Change 0.859 0.899 0.766 

Non-breeding Overlap 0.391 0.275 0.343 
Range Change 0.962 0.905 0.828 

 

The difference between the p-a grids produced by each method was significantly 

different between models on both the breeding (F(1.64,374.09) = 92.56, p < 0.0001, ω2 = 0.289) 

and non-breeding grounds (F(1.72,393.70) = 73.35, p < 0.0001, ω2 = 0.243). However, GAM and 

CRS have the smallest differences (Fig. 4.3). 

 

 

Figure 4.3: Jaccard’s index for the differences between models. Values close to 0 indicate 
less difference and 1 more difference. Blue represents the non-breeding season models and 
green the breeding season models 
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4.1.4 Discussion 
 
 
The results show that the future projections from each method were different from one 

another in magnitude of change but not necessarily in direction of change. Percentage overlap 

was significantly different for all modelling techniques, as were shift in centroids and 

migration distances. Mean angles of shift were also different among models though were all 

in a northerly direction. Changes in range extent values were different on the non-breeding 

range, except between GAM and GLM; but were similar on the breeding range. Change in 

future species richness showed that both CRS and GAM simulated reduced species richness 

on the breeding grounds and an increase on the non-breeding grounds whilst GLM simulated 

the opposite (Fig 4.1). These differences in results between methods are in part due to the fact 

that, as demonstrated in the last chapter, projected species’ prevalences are different between 

methods. Indeed there is a consistent scale of predicted prevalence, with CRS simulating the 

least number of presences and GLM the most for a given species. The values calculated (e.g. 

Overlap, Relative range extent, Direction of shift, Number of species per grid cell) are 

therefore different among modelling techniques. 

Comparisons of each method’s future simulated output were more revealing, despite 

the influence of prevalence on the results.  Correlation analyses on both the probability of 

occurrence output and the presence-absence output show that GAM and CRS were most 

similar, with higher mean correlation coefficients and lower standard deviations. The mean 

correlation coefficients were higher for the raw probability values than for the presence-

absence maps. This raises the question, how much does the imposition of a threshold change a 

model’s output? Araújo et al. (2005b) found that different rules to transform probabilities into 

presence absence had an effect on variability of the models. Both Lui et al. (2005) and 

Jiménez-Valverde et al. (2007) argued that there has not been enough testing of different rules 

to select thresholds. Both studies analysed different threshold criteria on species’ distribution. 

Lui et al. (2005) compared ten different threshold-determining approaches on two SDM, 

while Jiménez-Valverde et al. (2007) compared four threshold-determining approaches on 

virtual species with differing prevalence data. Assessment of model performance used Kappa, 

sensitivity and specificity. Both studies found that maximised Kappa was deficient as a 

threshold criterion in some instances, while the use of prevalence or more sophisticated 

methods, which correlated with prevalence, were generally best. Whilst these studies are 

exciting in terms of new possibilities, they do not give a clear indication that maximised 

kappa is not good as a threshold decision criterion. Indeed, the number of species, modelling 

and assessments of model performance were limited in both studies. Furthermore, a study by 
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Freeman and Moisen (2008) showed that techniques that maximise kappa were as good as 

thresholds chosen so that predicted prevalence equalled observed prevalence. Moreover, using 

prevalence as a threshold (i.e. using a species’ prevalence value as a cut off point) produced 

present-day maps of species’ distribution which were more different to the observed data than 

when using maximised kappa (Figure A13

Both Mean Absolute Error (between future probability maps) and Jaccard’s index 

(based on presence-absence maps) showed that CRS and GAM have the least differences 

between them. However, all models produced statistically different outputs. Superimposing 

the future presence-absence maps showed again that GAM and CRS were the most similar as 

they overlapped most on both the breeding and non-breeding grounds.  

) and, of course, had lower Kappa values. More 

research is still needed, especially in terms of the use of thresholds in forecasting. Differences 

seen between models could be due to imposing the present day threshold on a future model.  

The differences in projection found between modelling techniques will be influenced 

by the differences in simulated current prevalence and will be due in part to the differences in 

how each technique projects onto novel climates (Williams et al., 2007). Williams et al. 

(2007) showed that new climatic combinations are likely to arise, especially in the tropics and 

subtropics.  Novel climatic conditions will have an unknown effect on species and will also 

provide incomplete information for models. How each modelling method deals with these no-

analogue climates will result in differences among model projections and in prediction errors 

(Saetersdal et al., 1998; Williams and Jackson, 2007). The CRS modelling method allows the 

user to investigate where the model extrapolates. Figure A2 shows that CRS extrapolates in 

Eastern Europe, some areas in the Mediterranean, the Sahara desert and the tropics and sub-

tropics. These findings corroborate other studies investigating the distribution of potential 

novel climates (e.g. Williams et al., 2007). 

To demonstrate differences between SDM methods, Elith and Graham (2009) 

investigated, with the use of artificial species, how five commonly used techniques 

extrapolate. Their paper rightly argues that modellers need to start analysing how their models 

work and ask whether the algorithms chosen extrapolate in a manner that makes ecological 

sense. It is true that, in all studies using SDM, none have properly investigated how their 

models work and therefore why they differ, only being concerned with which model performs 

best. Although the investigations into model performance undertaken in this thesis do not 

investigate these issues as thoroughly as Elith and Graham (2009), they have investigated the 

conceptual and operational validity of the methods (see Chapter 3), and have tested the 

hypothesis that how a model extrapolates is due to its assumptions and how it relates species’ 
                                                 
3 Figures and Tables labelled A are in Appendix II 
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response to climatic variables. Therefore, the investigations undertaken in this thesis are more 

thorough than some studies, but could have been more complete. 

 

4.1.5 Conclusion 

 

It was hypothesised that both GAM and CRS would have similar projections, leading to the 

choice of either as the best model (see Chapter 3). However, the variability among the future 

projections makes this decision difficult. Both techniques were more similar in their 

projections than GLM. A comprehensive review on climate-envelope models concluded that 

the “best model performance has been most often attributed to techniques using complex 

approaches to model fitting” (Heikkinen et al., 2006). Indeed, I found that GAM and CRS 

both outperformed GLM in both current day predictions (see Chapter 3) and in future 

predictions in terms of direction of change (e.g. species richness).  

 Instead of using the best model approach from a multi-model ensemble (Thuiller, 

2003; Thuiller, 2004), a consensus framework (Araújo et al., 2005b; Araújo and New, 2006) 

will be used. However, as Araújo et al. (2005b) suggest, only the best consensus models 

(GAM and CRS), in terms of overall prediction and robustness, will be used in the next 

sections of this chapter.  
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4.2 Potential impact of climate change on European breeding migrant birds 

 
 
4.2.1 Introduction 
 
Many studies have documented the effect of recent climatic change on birds (see Chapter 2). 

Birds have already responded to the global surface temperature rise (IPCC, 2007) by shifting 

their ranges and colonising new areas (Thomas and Lennon, 1999; Böhning-Gaese and 

Lemoine, 2004) as well as adapting to the new climatic conditions (Bearhop et al., 2005; 

Jonzén et al., 2006). 

Projected future temperature rises and precipitation changes are more than likely to 

continue to affect species. Currently, knowledge of how the majority of species might respond 

to these changes can only be achieved through predictive modelling. Many studies have 

already assessed the potential impact of future climatic change on certain species or groups of 

species (see Chapter 2). These studies all show similar projections: a shift of distributions 

northwards (mainly North-east) in Europe (Huntley et al., 1995; Araújo et al., 2004; Huntley 

et al., 2007; Huntley et al., 2008) and an eastwards shift in South Africa (Erasmus et al., 

2002; Simmons et al., 2004). Projected changes in Africa are more complex than those for 

Europe (McClean et al., 2005; Huntley et al., 2006) due to more complex climatic patterns 

originating from large scale ocean-atmosphere circulations such as the El Niňo/Southern 

Oscillation or the African Easterly Jet (Hulme et al., 2001; Nicholson, 2001).  

Huntley et al. (2008) projected that European breeding birds’ potential future (2085) 

ranges would decrease between 11%  and 28% and overlap by an average of only 31-53% 

with their current ranges. Ranges would shift northwards (northwest to northeast) on average. 

Jetz et al. (2007) forecast that, by 2100, over 900 birds would face over 50% range reductions 

from a combination of climatic change and land-use change. To date, all studies of the 

potential consequences of climatic change on birds’ distributions have focused on their 

breeding ranges. These studies do not show the full impact of climatic change on migratory 

birds. In this study, I examine the potential consequences of climatic change on migratory 

birds by modelling future climatic change scenarios on both the breeding and non-breeding 

ranges of European migrant birds. 
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4.2.2 Methods 

Climate data 
 

Precipitation, temperature and cloudiness variables representing the climate anomalies 

between the 1961-1990 climatic norm and the future climates were derived from three 

Atmosphere-Ocean General Circulation models (Echam, HadGEM and GFDL) and two 

scenarios, A1B and A2, (Nakicenovic et al., 2000), and taken from three 30 year means 

centred on 2025, 2055 and 2085. The anomalies were added to the climatic norm (see section 

4.1.2) and were transformed into several bioclimatic variables as described in Chapter 3 for 

all 18 permutations.  

Models and analyses 
 
The consensus species distribution models, GAM and CRS (see section 4.1), were fitted to the 

current climate and then projected onto the new ‘future’ bioclimatic variables. For each time 

period and emission scenario, the measures of projected future change from each modelling 

method and GCM were calculated (see section 4.1). The overall mean for each of these 

measures was also calculated, i.e. the mean values calculated from GAM (and all three GCM) 

and CRS (and all three GCM) averaged. Averages from climatic and SDM ensembles filter 

out biases of individual models and may provide a more accurate description of state (Araújo 

and New, 2006; Beaumont et al., 2008).  The measures of projected future change (see section 

4.1) are future range extent (R), overlap (O), angle of range shift (θ), average geodesic range 

shift (D) and median minimum range shift (Dm; median of the minimum distances between 

present and future ranges), mean potential future species number per grid cell as a proportion 

of present number of species (N) and mean proportion of potential future species (relative to 

present) number per grid cell in overlap areas only (No). Alongside the mean, the 10th and 

90th percentiles were calculated for all values (labelled, for example for R, as R10-R90).  

Changes in range size based on number of grid cells could be problematic since 

latitude will affect the size of a grid cell (that one grid cell changes surface area with latitude). 

However, the forecast changes in species’ range size from a number of studies (Chapter 2) 

indicate that changes in range size are likely to be greater in terms of number of grid cells 

than in the latitudinal shift. Breeding range shifts are expected to average 4° whilst non-

breeding range shifts about 2° (Doswald et al. 2009). Furthermore, the ranges of the species 

modelled do not generally extend from the equator to the poles, where the most discernable 

distance would be seen. Comparing changes in breeding and non-breeding areas with one 

another may be problematic but is not undertaken here. 
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  Potential average, minimum and maximum migration distances were also calculated. 

Average migration distance is the geodesic distance between the breeding and non-breeding 

range centroids. Minimum and maximum migration distances are the geodesic distances 

between the nearest and the furthest edges respectively. Unless otherwise specified all tables 

and figures represent the (overall) mean values. Results for individual species can be found in 

the digital appendices. 

Wilcoxon’s signed rank tests were performed between mean GAM and CRS to test for 

differences in overlap and extent between projections. Friedman tests were also conducted to 

test for differences in range overlap and extent between GCM modelled with both GAM and 

CRS. Post hoc Wilcoxon signed rank tests were conducted with Bonferroni corrections (the 

critical threshold for three comparisons is 0.0167). Effect sizes were calculated (see p. 75 and 

p.88), where appropriate, as described in Field (2005) and measure the magnitude of the 

observed effect. Effect sizes of 0.10 are small, 0.30 medium and 0.50 large (Field, 2005).  

4.2.3 Results 

Range extents 
 
On average, species’ distributions were projected to decrease in area on the breeding range 

and increase on the non-breeding range (Tables 4.10-4.11). In practice there was a large 

variation in relative range extent between species (digital appendix), methods and GCMs 

(Tables 4.12 – 4.17). Species’ breeding ranges were more likely to decrease, with over 50% 

migrants losing range in the future. About 30 of the 229 species were projected to have less 

than 50% of climatically suitable range left in the future. About 62 species were projected to 

increase their climatically suitable breeding areas in the Western Palaearctic. On average, 

species’ non-breeding ranges were projected to increase in the future with just over half of 

species’ ranges increasing. About twenty species were simulated to lose more than half their 

non-breeding ranges, while another twenty species were simulated to double their climatically 

suitable area. Species’ future ranges overlapped with their current range on average by half, 

though this varied once again (Tables 4.10-4.17). For 2025, about fifty out of 229 species 

were simulated to overlap with their current distribution (both ranges) by less than half. In 

2085, this was the case for about 125 species. 
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Table 4.10: Multi-model mean summary of potential impacts on migrant bird’s breeding range. 
Measures of changes between current and future simulations: R = relative change in range extent 
future/present O = proportion overlap future/present; D = range shift (km); Dm = minimum range 
shift (Km); θ = angle of change; N = Average species per grid cell with perfect dispersal; No = 
Average species per grid cell with dispersal failure. Values represent averages (e.g. R) and 10th and 
90th percentile (e.g. R10-R90) 

 2025 A1B 2025 A2 2055 A1B 2055 A2 2085 A1B 2085 A2 
R 0.98 0.98 0.96 0.95 0.96 0.97 

R10-R90 0.50 - 1.23 0.51 - 1.19 0.40 - 1.22 0.40 - 1.30 0.40 - 1.36 0.38 - 1.42 
O 0.68 0.69 0.56 0.57 0.49 0.47 

O10-O90 0.32 - 0.88 0.32 - 0.90 0.19 - 0.82 0.22 - 0.83 0.15 - 0.78 0.14 - 0.76 
D 419 405 577 563 701 744 

D10-D90 148 - 903 136 - 888 238 - 1009 219 - 1011 306 - 1132 335 - 1194 
Dm 136 135 195 183 231 247 

Dm10-Dm90 50 - 200 50 - 190 309 53 - 299 61 - 442 61 - 465 
θ 338.95 342.3 354.92 359.38 4.47 3.83 
N 0.96 0.97 0.95 0.95 0.95 0.94 

No 0.74 0.75 0.67 0.68 0.65 0.63 
 
 
 
Table 4.11: Multi-model mean summary of potential impacts on migrant bird’s non-breeding range. 
Measures of changes between current and future simulations: R = relative change in range extent 
future/present O = mean proportion overlap future/present; D = mean range shift (km); Dm = 
minimum range shift (Km); θ = mean angle of change; N = Average species per grid cell with perfect 
dispersal; No = Average species per grid cell with dispersal failure. Values represent averages (e.g. 
R) and 10th and 90th percentile (e.g. R10-R90) 

 2025 A1B 2025 A2 2055 A1B 2055 A2 2085 A1B 2085 A2 
R 1.21 1.21 1.25 1.26 1.29 1.31 

R10-R90 0.69 -1.89 0.69 - 1.94  0.56 - 1.89 0.56 - 1.89 0.50 - 1.94 0.51 - 2.00 
O 0.68 0.69 0.58 0.59 0.52 0.49 

O10-O90 0.36 - 0.91 0.37 - 0.91 0.18 - 0.86 0.20 - 0.86 0.15 - 0.86 0.10 - 0.84 
D 665 638 908 896 1078 1147 

D10-D90 154 - 1301 151 - 1278 258 - 1765 274 - 1750 364 - 1915 391 - 1906 
Dm 194 181 323 310 411 429 

Dm10-Dm90 17 - 279 19 - 275 30 - 546 28 - 495 42 - 857 49 - 884 
θ 37.7 43.5 28 31.12 20.82 20.7 
N 1.65 1.66 1.92 1.94 2.11 2.19 

No 0.82 0.83 0.76 0.77 0.72 0.70 
 

Mean future overlap with species’ current ranges decreased through time and with 

more extreme emissions scenarios on both the breeding and non-breeding grounds regardless 

of the modelling method or GCM (Fig. 4.4a, c). Mean range extent showed a different pattern 

of change depending on the projected climate (Fig. 4.4 b, d). The GFDL projection gave rise 

to an increase in suitable climate on the breeding grounds and a decrease on the non-breeding 

grounds for migrant birds in 2085. The other GCMs simulated a gradual increase in potential 

range by 2085 on the non-breeding grounds and a decrease on the breeding grounds. A1B and 

A2 scenarios produced very similar results though A2 is a more extreme scenario. 
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a) breeding range 

 

b) breeding range 

 
c) non-breeding range 

 

d) non-breeding range 

 
Figure 4.4: Change in overlap and relative range extent over time for the A1B scenario (A2 
scenario found in Fig. A3; a) and c) mean proportion overlap of all migrants; b) and d) mean 
relative extent of all migrants; Triangles depict the GAM models and squares the CRS models. 
Blue represents Echam, red GFDL, and purple HadGEM. Grey are the model means while the 
black lozenges represent the multi-model mean value. Error bars represent standard error across 
species. 

 

As Fig. 4.4 shows, GAM typically simulated higher overlap (O) and relative range 

extent (R) values than CRS though the patterns of change were in agreement with CRS 

models. Mean GAM O was significantly different to mean CRS O on both breeding and non-

breeding grounds with high effect sizes in all time periods (Table A10).  Mean GAM R was 

significantly different to mean CRS R on the non-breeding grounds in all time periods (Table 

A11). However, on the breeding grounds, there was no significant difference in R between 

mean GAM and mean CRS for the 2025 A2 scenario (z = -1.838, p = 0.066). There was a 
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significant difference for the other time periods though effect sizes were low for 2025, 2055 

and marginally greater for 2085 (Table A11), suggesting GCM differences in prediction 

towards the end of the century. To test this theory, Wilcoxon signed rank tests with 

Bonferroni correction were performed to see the difference between GCMs (for each time 

period and scenario) on range extent values. These tests showed (Table A12) that GCMs were 

either similar (p > 0.0167) or, if significantly different, had very low effect sizes (r < 0.30). In 

terms of overlap all GCMs were different (Table A13). 

Range shifts 
 
The mean geodesic distance between centroids on the breeding ground ranged from 405 km in 

2025 to 744 km in 2085 and on the non-breeding grounds from 638 km in 2025 to 1147 km in 

2085 (Tables 4.10-11). This varied greatly among species, models and GCMs (Tables 4.12-

4.17) though an increase in distance between centroids is obvious through time. Tables 4.10 

to 4.17 also give the average median minimum distance (average Dm) required for a species 

to move to the new suitable climate. These distances also increased through time and ranged 

from 135 km and 191 km in 2025 for the breeding and non-breeding grounds respectively to 

247 km and 429 km in 2085. 

The average angle of shift for migrants’ breeding and non-breeding ranges was 

projected to be in a northerly direction (Tables 4.10-4.17). However, the actual mean values 

do not fully reflect the variation present among species (Fig. 4.14-4.19 in section 4.3.3 and 

Appendix IIIc). For 2025 and 2055, GAM and CRS showed a difference in species’ direction 

of shift on the breeding range, with more species moving north-west according to the CRS 

models and species moving north-east according to GAM models. In 2085, however, both 

modelling methods simulated a north-eastern shift in centroid. GAM and CRS predictions 

were more similar for the non-breeding grounds.  

Theses differences/similarities can be seen by viewing the simulated species richness 

maps (Fig. 4.6 and 4.7) and the simulated future maps in the digital appendix. Direction of 

shift in range was related to the mean latitude of species’ ranges (Figure 4.5 and digital 

appendix).



 
 

134 

 
Table 4.12:  Summary of potential impacts of climate change on migrant birds for 2025 on their breeding range. See Table 4.10 for abbreviations. 

2025 
A1B emissions scenario 

  
A2 emissions scenario 

GFDL ECHAM HadGEM GFDL ECHAM HadGEM 

 GAM CRS GAM CRS GAM CRS  GAM CRS GAM CRS GAM CRS 
R 1.01 0.93 1.03 0.93 1.03 0.94  1.03 0.94 1.03 0.93 1.01 0.94 

R10-R90 0.34-1.40 0.51-1.27 0.32-1.34 0.51-1.19 0.28-1.42 0.46-1.26  0.34-1.33 0.51-1.22 0.28-1.32 0.54-1.11 0.28-1.31 0.45-1.26 
O 0.75 0.58 0.79 0.64 0.75 0.57  0.77 0.61 0.79 0.64 0.74 0.58 

O10-O90 0.26-0.97 0.27-0.80 0.27-0.99 0.32-0.87 0.22-0.98 0.23-0 82  0.31-0.97 0.32-0.83 0.25-0.99 0.33-0.87 0.24-0.97 0.22-0.82 
D 431 413 384 387 448 444  418 400 379 368 441 423 

D10-D90 81-1010 131-875 47-1045 101-774 78-1018 153-830  62-999 125-780 44-1029 99-761 78-1009 146-818 
Dm 131 135 140 112 163 132  155 120 130 111 152 129 

Dm10-Dm90 50-168 50-189 50-181 50-146 50-163 50-201  50-182 50-164 50-167 50-121 50-193 50-199 
θ 7.63 321.31 356.97 314.78 10.11 318.54  7.83 317.65 8.02 312.36 14.71 325.30 
N 0.90 0.99 0.93 1.02 0.94 1.00  0.93 1.00 0.93 1.01 0.93 1.00 

No 0.77 0.69 0.80 0.72 0.78 0.70   0.79 0.72 0.80 0.73 0.77 0.69 
 

Table 4.13: Summary of potential impacts of climate change on migrant birds for 2025 on their non-breeding range. See Table 4.10 for abbreviations. 

2025 
A1B emissions scenario 

  
A2 emissions scenario 

GFDL ECHAM HadGEM GFDL ECHAM HadGEM 
 GAM CRS GAM CRS GAM CRS  GAM CRS GAM CRS GAM CRS 

R 1.81 1.21 1.19 1.23 1.21 1.24  1.2 1.24 1.2 1.23 1.2 1.22 
R10-R90 0.49-1.77 0.71-1.87 0.50-1.76 0.73-1.90 0.50-1.82 0.70-1.98  0.49-1.83 0.72-1.88 0.53-1.84 0.74-1.90 0.51-1.83 0.69-1.94 

O 0.73 0.59 0.77 0.63 0.76 0.61  0.75 0.61 0.78 0.64 0.76 0.61 
O10-O90 0.32-0.97 0.34-0.86 0.39-0.97 0.29-0.88 0.37-0.98 0.26-0.97  0.32-0.97 0.25-0.87 0.41-0.98 0.30-0.89 0.39-0.97 0.27-0.87 

D 707 666 660 588 692 655  680 626 624 565 702 625 
D10-D90 76-1452 141-1282 58-1520 114-1198 86-1476 157-1283  71-1392 146-1207 56-1348 115-1133 76-1531 158-1287 

Dm 187 221 169 194 151 212  204 196 137 170 157 208 

Dm10-Dm90 0-221 0-332 20-221 1-319 48-221 1-348  49-234 0-334 47-193 1-312 49-221 1-333 
θ 47.57 35.84 36 54.73 29.91 23.67  48.32 52.96 41.03 57.38 32.91 39.32 
N 1.27 2.41 1.22 2.38 1.27 2.44  1.27 2.31 1.25 2.56 1.31 2.45 

No 0.56 0.74 0.87 0.75 0.86 0.74   0.87 0.76 0.89 0.77 0.86 0.733 
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Table 4.14: Summary of potential impacts of climate change on migrant birds for 2055 on their breeding range. See Table 4.10 for abbreviations. 

2055 
A1B emissions scenario 

  
A2 emissions scenario 

GFDL ECHAM HadGEM GFDL ECHAM HadGEM 
 GAM CRS GAM CRS GAM CRS  GAM CRS GAM CRS GAM CRS 

R 0.98 0.92 1.00 0.90 1.02 0.91  0.98 0.91 0.99 0.92 0.99 0.92 
R10-R90 0.32-1.37 0.41-1.34 0.25-1.35 0.40-1.68 0.22-1.40 0.32-1.28  0.31-1.30 0.37-1.30 0.29-1.38 0.38-1.36 0.23-1.38 0.31-1.36 

O 0.62 0.48 0.67 0.50 0.63 0.46  0.64 0.50 0.67 0.52 0.62 0.46 
O10-O90 0.21-0.91 0.14-0.75 0.16-0.94 0.18-0.76 0.08-0.93 0.10-0.73  0.21-0.91 0.16-0.76 0.20-0.94 0.16-0.79 0.09-0.93 0.11-0.75 

D 629 542 544 493 677 566  594 502 539 488 665 586 
D10-D90 202-1284 209-968 145-1136 192-939 191-1402 225-1030  166-1229 184-929 132-1133 173-920 183-1308 228-1080 

Dm 175 182 178 160 246 201  139 169 178 160 230 200 

Dm10-Dm90 50-251 50-295 50-228 50-222 50-462 50-322  50-210 50-251 50-237 50-235 50-510 50-315 
θ 11.25 342.92 12.13 333.69 10.29 336.45  16.4 342.41 17.18 339.54 12.5 338.61 
N 0.88 0.93 0.93 0.98 0.97 0.98  0.88 0.95 0.93 0.98 0.96 0.98 

No 0.7 0.612 0.73 0.65 0.71 0.63   0.71 0.63 0.74 0.65 0.71 0.62 
 

Table 4.15: Summary of potential impacts of climate change on migrant birds for 2055 on their non-breeding range. See Table for abbreviations. 

2055 
A1B emissions scenario 

  

A2 emissions scenario 
GFDL ECHAM HadGEM GFDL ECHAM HadGEM 

 GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS 
R 1.24 1.23 1.28 1.25 1.25 1.26  1.25 1.25 1.3 1.25 1.25 1.26 

R10-R90 0.33-1.96 0.61-1.95 0.36-1.88 0.65-1.90 0.40-1.76 0.66-1.96  0.37-1.97 0.61-1.99 0.39-1.88 0.62-1.98 0.36-1.86 0.67-2.02 
O 0.60 0.49 0.65 0.53 0.66 0.53  0.62 0.51 0.67 0.54 0.65 0.53 

O10-O90 0.10-0.93 0.11-0.80 0.19-0.96 0.13-0.86 0.23-0.97 0.13-0.85  0.14-0.93 0.14-0.81 0.20-0.97 0.15-0.86 0.22-0.95 0.16-0.83 
D 994 907 905 899 862 865  931 884 895 877 916 847 

D10-D90 156-2125 254-1617 104-2018 274-1832 108-1787 251-1705  142-2054 254-1624 114-2047 274-1727 142-1957 265-1511 
Dm 328 308 288 352 280 337  278 307 276 320 290 318 

Dm10-Dm90 0-578 1-524 46-411 1-554 49-412 40-542  0-403 1-497 49-350 1-546 48-434 45-513 
θ 40.05 30.71 27.08 27.10 31.75 27.63  40.05 30.71 27.08 27.11 31.73 27.63 
N 1.49 2.86 1.41 2.83 1.48 2.85  1.52 2.86 1.47 2.80 5.51 2.84 

No 0.78 0.69 0.81 0.70 0.81 0.69   0.80 0.70 0.82 0.71 0.80 0.69 
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Table 4.16: Summary of potential impacts of climate change on migrant birds for 2085 on their breeding range. See Table 4.10 for abbreviations. 

2085 
A1B emissions scenario 

  
A2 emissions scenario 

GFDL ECHAM HadGEM GFDL ECHAM HadGEM 
 GAM CRS GAM CRS GAM CRS  GAM CRS GAM CRS GAM CRS 

R 1.08 0.97 0.96 0.862 1.02 0.86  1.15 0.99 0.96 0.86 1.01 0.86 
R10-R90 0.34-1.60 0.41-1.35 0.18-1.40 0.29-1.32 0.19-1.55 0.26-1.36  0.30-1.67 0.39-1.40 0.17-1.40 0.28-1.39 0.14-1.60 0.19-1.43 

O 0.57 0.46 0.56 0.42 0.56 0.38  0.55 0.45 0.55 0.41 0.51 0.35 

O10-O90 0.16-0.89 0.08-0.76 0.05-0.90 0.07-0.71 0.03-0.90 0.05-0.66  0.14-0.88 0.07-0.74 0.06-0.89 0.08-0.70 0.02-0.88 0.02-0.64 
D 667 640 748 625 826 693  706 662 783 627 922 762 

D10-D90 230-1097 243-1079 225-1513 241-1091 257-1568 317-1263  253-1205 257-1147 257-1563 246-1090 318-1709 341-1351 
Dm 189 224 235 203 269 238  194 231 232 208 324 273 

Dm10-Dm90 50-367 67-470 50-362 50-386 50-560 51-488  50-400 63-462 50-360 50-389 50-689 50-573 
θ 21.27 11.76 17.03 347.09 9.18 335.9  18.62 9.26 15.17 348.53 8.96 339.61 
N 0.91 0.94 0.93 0.95 1.00 0.98  0.91 0.94 0.93 0.95 0.99 0.95 

No 0.72 0.63 0.66 0.59 0.67 0.59   0.71 0.63 0.67 0.58 0.64 0.55 
 

Table 4.17: Summary of potential impacts of climate change on migrant birds for 2085 on their non-breeding range. See Table 4.10 for abbreviations. 

2085 
A1B emissions scenario 

  
A2 emissions scenario 

GFDL ECHAM HadGEM GFDL ECHAM HadGEM 
 GAM CRS GAM CRS GAM CRS  GAM CRS GAM CRS GAM CRS 

R 1.15 1.18 1.51 1.26 1.39 1.28  1.21 1.17 1.54 1.27 1.4 1.27 
R10-R90 0.29-1.78 0.55-1.83 0.26-2.36 0.52-2.07 0.29-2.17 0.50-2.05  0.25-1.90 0.52-1.93 0.25-2.43 0.47-2.17 0.25-2.25 0.55-2.03 

O 0.54 0.49 0.56 0.48 0.59 0.48  0.50 0.47 0.54 0.47 0.54 0.46 

O10-O90 0.10-0.93 0.10-0.85 0.04-0.95 0.05-0.84 0.11-0.97 0.09-0.84  0.05-0.92 0.06-0.86 0.03-0.95 0.04-0.84 0.09-0.95 0.08-0.83 
D 962 977 1223 1193 1064 995  1085 1052 1262 1170 1178 1099 

D10-D90 200-2055 228-1823 201-2675 374-2161 156-2151 323-1607  213-2330 257-1951 202-3042 399-1931 221-2332 359-1968 
Dm 425 363 400 444 365 369  465 396 432 407 385 415 

Dm10-Dm90 50-962 71-653 0-913 49-827 1-748 50-671  50-957 81-755 0-981 50-757 0-852 28-688 
θ 39.59 20.18 11.08 15.04 11.55 21.06  31.84 19.71 17.13 21.03 17.48 17.14 
N 1.34 2.48 1.79 3.26 1.62 3.20  1.41 2.58 1.81 3.29 1.78 3.35 

No 0.73 0.65 0.77 0.67 0.77 0.67   0.72 0.64 0.46 0.66 0.74 0.64 
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a) CRS simulation 

 

b) CRS simulation 

 
c) GAM simulation 

 

d) GAM simulation 

 
Figure 4.5: Direction and distance of shift of species ranges from GFDL 2085 A1B scenario by 
latitude of centroid; a) and c) breeding range – black: 1°-10°, red: 11°-20°, green: 21°-30°, yellow: 
31°-40°, dark blue: 41°-50°, pink: 51°-60° and light blue: 61°-70°; b) and d) non-breeding range 
(with species with split range excluded see section 4.3) – black: -22°- -11°, red: -10°-1°, green: 2°-
11°, yellow: 12°-21°, dark blue: 22°-31°, pink: 32°-41° and light blue: 42°-52°. 
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Species richness 
 

The changes in range extent influence the projections of local avian species richness across 

Europe and Africa (N values in Tables 4.10-4.17), so that species richness during the breeding 

season was projected to decrease, on average, owing to decreased extent of climatically suitable 

areas. On the non-breeding grounds the models predicted an increase in species richness brought 

about by increased extent of climatically suitable areas. On average, the simulations projected a 

decrease of 5% of species per grid cell on the breeding range and a 90% increase on the non-

breeding grounds. However, if species cannot disperse to new areas and persist only in their 

current ranges then species richness is projected to decrease by 30% on average on both ranges. 

Figure 4.6-4.7 shows the multi-model mean species richness in the present and future A1B 

scenario (the A2 scenario can be found in Appendix III b). The bulk of species are simulated to 

shift their ranges northwards in Europe and retreat from southern Europe (Fig. 4.6). African 

breeding migrants dwindle in numbers over time. During the non-breeding season (Fig. 4.7), the 

models projected that species’ numbers would increase in central and northern Europe, as well as 

in the Sahel region but decrease in number in South Africa. Both figures, however, show the 

decreases in species’ numbers in case of ‘dispersal failure’ (Fig 4.6 and 4.7 c, e, g). 

 In Fig 4.8 a) and b), the variance of the current consensus model (GAM and CRS) is 

shown and quantifies the differences between simulations. The models varied mostly around the 

Mediterranean coast and Turkey as well as eastern Africa in the non-breeding models. The 

variation in the future models (Fig 4.8), in regions other than those aforementioned, is likely to be 

due to GCM and interactions between GCM and models. These spatially quantify the uncertainty 

surrounding the projections. For the breeding season models, variation increased dramatically all 

over Europe through time as well as in Africa. For the non-breeding models, variation also 

increased through time. 
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a 

 

b 

 

c 

 

 

d 

 

e 

 
Figure 4.6: Migrant bird 
species richness for current 
breeding range and for future 
time periods for  the A1B 
scenario, assuming a full 
dispersal scenario (N) or 
assuming dispersal failure 
(No) ; 
a) present breed, b) N 2025, c) 
No 2025, d) N 2055, e) No 
2055, f) N 2085 and g) No 
2085  
 

f 

 

g 
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a 

 

b 

 

c 

 

 

d 

 

e 

 
Figure 4.7: Migrant bird 
species richness for current 
non-breeding range and for 
future time periods for  the 
A1B scenario, assuming a 
full dispersal scenario (N) or 
assuming dispersal failure 
(No) ; 
a) present breed, b) N 2025, 
c) No 2025, d) N 2055, e) 
No 2055, f) N 2085 and g) 
No 2085  
 

f 

 

g 
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a)  

 

b)  

 

 

c) 2025 

 

d) 2055 

 

e) 2085 

 
f ) 2025 

 

g) 2055 

 

h) 2085 

 
Figure 4.8: Variance of mean species richness (N) from the consensus models for current; a) 
breeding models, b) non- breeding models; and future (2025, 2055, 2085) A1B scenario; c,d,e) 
breeding models and f,g,h) non-breeding models. 
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Migratory distance 
 
Average simulated current ‘migration distance’ is shown in table 4.18. Average migration 

distances are projected to increase in the future (Table 4.19 and summarised in Fig. 4.9). There 

are differences in prediction of migration distances towards the end of the century between 

GCMs (Fig 4.9), which stems from the increases in non-breeding range extent (Fig. 4.4). 

Migration distance was greater using the GAM methods than CRS. 

 

Table 4.18: Average migration distance (M), 
Minimum and Maximum migration distance (Mmin 
& Mmax) in Km for the present time period as 
projected by GAM and CRS methods. The 10th and 
90th percentile values are also reported. 
  GAM CRS 

M 3346 3211 
M10-M90 717-6204 523-6528 
Mmin 1049 918 

Mmin10-Mmin90 0-3299 0-3306 
Mmax 8426 8532 

Mmax10-Mmax90 6322-9919 7133-9858 
 

 
Figure 4.9: Average mean migration distance (Km) through time for the A1B 
scenario. The A2 scenario shows the same pattern (Fig. A4). Grey represents the 
model mean, black the multi-model mean, red represents GFDL, blue Echam and 
purple HadGEM. Dark colours represent GAM and light colours CRS. Error bars 
represent standard error across species. 
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On average, minimum migration distances are projected to decrease slightly through time (Table 

4.19). Four sample trans-Saharan migrant species’ future distribution maps in Figure 4.10 

illustrate how migration distances may be reduced. Some species are projected to gain suitable 

wintering areas on the North African coast (e.g. Fig 4.10 a, e, b and f), while Acrocephalus 

arundinaceus, for instance, is predicted to gain suitable wintering areas in the Mediterranean 

(Fig. 4.10 c and g).  

Maximum migration distance is simulated to increase in future change scenarios (Table 

4.19). Figure 4.10 b, f, d and h illustrate how an expansion North on the breeding grounds and/or 

an expansion South on the non-breeding grounds may cause greater migration distances. The 

figures also show the diversity in species’ potential range changes that summary statistics for all 

species do not fully capture. 
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Table 4.19:  Average migration distance (M), relative change in migration distance (Pm) and minimum and maximum migration distance in Km. 10th and 90th percentiles are 
also given (M10-M90).   
  A1B emissions scenario A2 emissions scenario 
  GFDL ECHAM HadGEM GFDL ECHAM HadGEM 
   GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS 

20
25

 

M 3618 3348 3566 3331 3575 3346 3585 3363 3533 3306 3560 3336 
M10-M90 696-6711 716-6208 668-6541 767-6172 760-6514 820-6290 700-6558 700-6276 660-6443 769-6185 709-6538 717-6121 

Pm 1.51 1.26 1.48 1.26 1.49 1.27 1.45 1.26 1.46 1.23 1.47 1.28 
Pm10-
Pm90 

0.64-1.57 0.83-1.69 0.65-1.62 0.81-1.61 0.67-1.69 0.81-1.61 0.64-1.53 0.82-1.72 0.64-1.58 0.82-1.58 0.59-1.67 0.83-1.61 

Mmin 1102 720 1040 738 980 691 1028 764 1026 773 987 682 
Mmin10-
Mmin90 

0-3349 0-2699 0-3171 0-2606 0-3026 0-2500 0-3096 0-2771 0-3046 0-2619 0-3190 0-2516 

Mmax 8338 8912 8340 8854 8327 8903 8300 8922 8345 8687 8349 8939 
Mmax10-
Mmax90 

5764-
9928 

7708-
9949 

5948-
9938 

7559-
9939 5725-9955 7678-

9958 
5706-
9945 

7817-
9962 5980-9939 7535-

9682 
6057-
9947 

7859-
9961 

20
55

 

M 3703 3385 3598 3366 3646 3392 3622 3354 3569 3338 3628 3371 
M10-M90 529-6800 680-6214 680-6483 709-6224 678-6581 717-6221 636-6552 657-6190 708-6461 692-6206 723-6490 704-6243 

Pm 1.56 1.29 1.52 1.28 1.55 1.27 1.53 1.27 1.478 1.26 1.55 1.27 
Pm10-
Pm90 

0.53-1.74 0.72-1.86 0.60-1.76 0.71-1.98 0.57-1.69 0.74-1.79 0.54-1.67 0.71-1.76 0.61-1.645 0.71-1.85 0.57-1.66 0.72-1.71 

Mmin 1026 634 966 607 943 527 1010 667 979 600 919 493 
Mmin10-
Mmin90 

0-3515 0-2717 0-3187 0-2699 0-3105 0-1814 0-3346 0-2810 0-3193 0-2522 0-3062 0-1702 

Mmax 8420 9045 8431 8996 8433 9037 8399 8966 8430 8987 8484 9096 
Mmax10-
Mmax90 

5564-
9961 

7996-
9967 

6084-
9948 

7841-
9962 5935-9963 7891-

9971 
5835-
9947 

7723-
9836 6071-9944 7861-

9968 
6270-
9970 

7978-
9972 
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 A1B emissions scenario A2 emissions scenario 
 GFDL ECHAM HadGEM GFDL ECHAM HadGEM 
Table 4.19  
continued GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS 

20
85

 

M 3606 3413 3651 3273 3716 3339 3503 3430 3701 3265 3721 3302 

M10-M90 
 

755-6455 591-6666 664-6714 639-6164 671-6685 720-6283 696-6580 591-6704 656-6698 652-6 
171 

579-
6605 740-6158 

Pm 1.14 1.16 1.57 1.27 1.61 1.31 1.11 1.08 1.58 1.26 1.65 1.32 
Pm10-
Pm90 

0.75-1.53 0.62-1.64 0.53-1.86 0.62-1.85 0.58-1.92 0.66-1.85 0.69-1.48 0.54-1.50 0.53-1.91 0.62-1.75 0.55-
1.94 0.61-1.97 

Mmin 945 514 850 457 872 427 799 461 919 517 846 413 
Mmin10-
Mmin90 

0-3664 0-2143 0-3021 0-1570 0-3180 0-1514 0-2777 0-1788 0-3205 0-2011 0-2891 0-1449 

Mmax 8494 9007 8453 9088 8462 9118 8225 9020 8473 9106 8459 9182 
Mmax10-
Mmax90 

6085-9953 7827-
9978 

5798-
9954 7944-9973 5709-

9962 
8035-
9972 

3985-
9968 

7872-
9977 5560-9963 7913-9976 5602-

9974 
8147-
9975 
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a) CRS simulation 

 

b) CRS simulation 

 

c) CRS simulation 

 

d) CRS simulation 

 
e) GAM simulation 

 

f) GAM simulation 

 

g) GAM simulation 

 

h) GAM simulation 

 
Figure 4.10: Future range change for individual species under GFDL 2085 A1B scenario – Blue = future range only, Yellow = current range 
only, Red = overlapping ranges; darker colours are for breeding range; a) and e) Sylvia communis (Whitethroat); b) and f) Sylvia curruca 
(Lesser Whitethroat); c) and g) Acrocephalus arundinaceus (Great Reed Warbler); d) and h) Ficedula hypoleuca (Pied Flycatcher). 
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4.2.4 Discussion 
 
This study shows how climate change might impact European breeding migrant birds in relation 

to their breeding and non-breeding distributions, and resultant migration distances. In general the 

future simulations project differential change in the European breeding distribution to the non-

breeding distribution: on the breeding grounds, a decrease in climate suitability and a northwards 

shift in range; on the non-breeding grounds, range expansion (as a result of increased climate 

suitability) but at a greater distance from the original range, with a shift eastwards in the core 

ranges of the majority of species. 

 This study also highlights the variation in how species are likely to respond to climate 

change. Species will respond individualistically, as many researchers have already projected 

(Huntley et al., 2006; Devictor et al., 2008). However, individual species’ responses as predicted 

by climate envelope modelling may be incorrect or nonsensical since climate envelope modelling 

does not take into account land use, demography or historical factors. I, therefore, concentrate in 

the first instance on reporting the mean response of a group of species. Taking the mean response 

from a large number of species as well as from a ‘consensus multi-model forecast’ increases the 

robustness of predictions of the likely magnitude and direction of potential change for European 

migrant birds (Huntley et al., 2008).  

GAM and CRS simulated a similar direction of change but depicted different magnitudes 

of change. GAM projected on average greater relative range extent and migration distance values 

than CRS on both the breeding and non-breeding ranges. This difference potentially stems from 

how they relate climate to occurrences. With the uncertainty surrounding the modelling (Barry 

and Elith, 2006), taking the mean forecast is a sensible approach (Thuiller, 2004; Araújo and 

New, 2006).  

In terms of GCM, my results for the breeding range shifts were the same as Huntley et al. 

(2008) in that there was a significant variation in overlap among GCM but not in relative range 

extent. This variation highlights that the different GCMs simulate different patterns of climatic 

change. Differences between GCM interacting with modelling method may also reflect that the 

models project onto novel climates.  
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Distribution change 
  
The models project that, on average, migrant birds’ range extents are likely to decrease by 2-5% 

on the breeding grounds and increase by 20-30% on the non-breeding range. However, potential 

changes in range extent are misleading as species may not expand into the newly suitable climate 

space either because of availability of suitable habitat or simply distance or because of historical 

and genetic factors. For example Sylvia melanothorax, which is endemic to Cyprus, is unlikely to 

expand its range (Böhning-Gaese et al., 2003; Böhning-Gaese et al., 2006). Percentage overlap 

between current and future suitable climate is potentially a more ‘accurate’, albeit pessimistic, 

predictor of climatic impacts. The models predicted that, on average, 50% of original range is 

still suitable in the future for both the breeding and non-breeding ranges. The models projected 

that by 2085 over half the migrants modelled will have less than half their current range. These 

values are similar to other studies (e.g. Huntley et al., 2008).  

Changes through time are simulated to be linear for most species, with a progressive loss 

or gain of range. However, some species are simulated to exhibit a non-linear response. This is 

most notable in terms of relative range extent (Fig. 4.4b) with a simulated decrease in range at 

first then an increase towards the end of the century. These distinctions in shape of response over 

time were also simulated for breeding birds in Britain and Ireland by Harrison et al. (2003). They 

found species either progressively lost/gained climate space or exhibited non-linear responses to 

climate change. Such results highlight that responses to climate change may be complex. 

Species richness of migrants was predicted to decrease on the breeding grounds and 

increase on the non-breeding grounds. However, if species do not expand into new climate space, 

then species richness is forecast to decrease by about 30% on both ranges. On the breeding 

grounds most migrants are expected to shift their ranges northwards in Europe or dramatically 

contract their ranges. For those European migrant species that have populations that breed in 

Africa, area is gradually lost from East Africa. On the non-breeding grounds, species’ numbers 

per grid cell dwindle in Europe over time. Average number per grid cell in Africa, however, is 

predicted to increase under the full dispersal scenario in central, western and the eastern coast and 

decrease in South Africa. Under the no dispersal scenario numbers are reduced everywhere. 

Changes in breeding migrant bird richness in relation to overall breeding bird richness across 

Europe were investigated by Schaefer et al. (2008). Their simulated results suggest that, under 

climate change forecasts, proportion of migrant species would increase in southern Europe due to 
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community reassembly and decrease in the north due to adaptation. They concluded that climate 

change affect migrants less severely than resident species. I investigate this further section 4.3. 

Range shifts and dispersal 
 
The geodesic distance values calculated between current and future centroids of species’ ranges 

show how much species’ ranges might shift under a scenario of perfect dispersal. Shifts were 

simulated to be greater on the non-breeding grounds. Range shifts are expected to increase 

through time by several hundreds of Kms between each time period. Devictor et al. (2008) have 

shown that although birds have already shifted their ranges in response to climate change in 

Europe, species are lagging approximately 182 ± 53 km behind climate change. The sometimes 

large predicted future shifts in climate suitability may therefore considerably increase this lag. 

GAM models simulated a greater shift than for CRS. There were also consistent 

differences between GCM. Greater shifts were simulated by HadGEM on the breeding grounds 

and by GFDL on the non-breeding grounds. The HadGEM GCM simulated higher future 

temperatures in Europe, whilst GFDL exhibited greater differences in future climate projections 

in Africa (more precipitation and different temperature distribution) than the multi-model mean 

(Solomon et al. 2007). The shifts were generally simulated to be in a northerly direction in 

Europe. Potential shifts in Africa were more complex and related to the mean latitude of species’ 

current distributional range (Fig. 4.5). 

If a species can disperse into new climate space, the models project, on average, an 

increased distance of hundreds of Km between current and future suitable range. Even though 

birds are highly mobile species, colonising new range may be limited by dispersal and phenotypic 

plasticity. The average natal dispersal distance for migrants is 22.8 km for migrants with a range 

of 0.7-44.5 km for all birds (Paradis et al., 1998). Limited natal dispersal may create a lag behind 

the projected changes. On the other hand, a few individuals within a population will have longer 

dispersal distances than the average; and it is often these individuals that drive colonisation 

(Newton, 2003). The distances between current and future suitable range are greater on the non-

breeding grounds. Many migrant birds are semi-nomadic on their non-breeding grounds 

(Berthold, 2001), often following rainfall (Jones et al., 1996; Salewski and Jones, 2006) which 

might reduce this impact. On the other hand some species are known to be faithful to their non-

breeding sites (Markovets and Yosef, 2005).  
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The Sahara and Mediterranean represent major obstacles to shifts in species’ ranges. 

These obstacles increase the distances between present and future suitable climate. They may 

also exacerbate conditions if migratory distance increases because of reduced possibilities to 

refuel during crossing of the Sahara desert and Mediterranean Sea. In other migratory systems, 

changes to species’ migratory distance may be lessened without these obstacles. Further, absence 

of obstacles would allow for a more continued habitat to be available for range change. The 

generality of the results for migratory birds from this thesis may, therefore, be limited. Other 

migratory systems would have to be evaluated in their own right to establish climate change 

impacts on migratory species in different systems.  

Migration 
 
Changes in range extent and position also affect how far an obligate migratory species will have 

to migrate between breeding and non-breeding grounds. The migration distance values calculated 

do not represent the ‘true’ migration distances for each species, but the geodesic distances 

between two points. Real migration distances could not be calculated as 1) different populations 

of a species migrate different distances, 2) some species exhibit non-linear migration routes and 

3) I did not have exact distance information for different species. My results showed that average 

migration distance increases steadily from the present to 2055 then stabilises. However, some 

species are simulated to reduce their average migratory distance by 2085. This potential reduction 

in migration distance is the result of the non-breeding areas extending closer to the breeding 

grounds. Generally, the models simulated a reduction in minimum migratory distance and an 

increase in maximum migratory distance.  

 Increases in maximum migration distance may not necessarily be realised. Reduced 

minimum or mean migratory distance is due to newly suitable non-breeding climate space 

occurring closer to the breeding grounds. There is currently evidence of some species over-

wintering closer to their breeding grounds (Valiela and Bowen, 2003; Austin and Rehfisch, 2005) 

as milder winters in Europe allow species to migrate less (Austin and Rehfisch, 2005) or become 

sedentary (Coppack et al., 2003). Potential changes in migratory behaviour are discussed in the 

next section.  
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4.2.5 Conclusion 

 
The potential impacts on European breeding migrant birds are likely to be complex, with 

different factors operating on the breeding and non-breeding grounds. The simulated differences 

on the seasonal ranges make interpretation of the potential impact difficult, because the resultant 

effects can not be as uncoupled as the measures calculated. For instance, climatic suitability is 

likely to decrease on the breeding range according to the simulations but increase on the non-

breeding grounds. An increase on the non-breeding grounds is unlikely to affect species 

positively if increased mortality ensues from decreased suitability during the breeding season. 

Conversely, decreased suitability on the breeding grounds may be offset with a greater proportion 

of species surviving the ‘winters’ on the non-breeding grounds, or from having to travel less far.  

 The predicted impacts of climate change are, furthermore, likely to be underestimated in 

terms of population change, since although range is often used as a correlate of population size 

(Rodrigues et al., 2006), species do not fully occupy the current or projected ranges (Shoo et al., 

2005; Jetz et al., 2007), especially the climatic ranges built on broad atlas data (Jetz et al., 2008). 

Moreover, future impacts on species’ distributions or population change will also be influenced 

by other factors acting upon them either alone or in combination with climate (Simmons et al., 

2004; Sanderson et al., 2006; Jetz et al., 2007).  

 Another confounding effect, which may change the projection of climatic change impacts 

on migrant birds, is that the models relate mean climate to species’ distributions. Although the 

future climate is likely to change in terms of means and has done so (e.g. mean increase in 

temperature, decrease precipitation, etc.), it will also change in terms of frequency of severe 

weather anomalies (Easterling et al., 2000; IPCC, 2001; IPCC, 2007). Severe ‘bad weather’ 

affects species dramatically. For instance, several warbler populations crashed after droughts in 

the Sahel (Peach et al., 1991). Populations of Sylvia communis, Phoenicurus phoenicurus and 

Riparia riparia declined in the West African Sahel region in the late 1960s due to drought (Jones 

et al., 1996) and declines in Acrocephalus schoenobaenus populations in Britain between 1960 

and 1980 can be related to rainfall fluctuations in their West African non-breeding grounds 

(Peach et al., 1991). Weather anomalies are likely to affect Africa most (IPCC, 2007) which 

means that the projected increased climatic suitability for many species may not result in range 

expansion in the future. The effect of increased extreme weather events on populations is 

unknown. However, it is likely that it will affect migrant birds’ phenology and demography 

(Berthold, 2001; Hubalek, 2004; Stokke et al., 2005) more than their underlying distribution. 
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4.3 The influence of migratory strategy on climate change impacts 
 

 

4.3.1 Introduction 
 
Migration is a means for species to escape harsh winters and make use of different locations 

when food abundance is plentiful. The trade-off is that migration is energy demanding and often 

dangerous. Climate change has the potential either to exacerbate this by increasing migration 

distance and reducing food abundance or to improve conditions for some migrants as areas closer 

to the breeding ground become suitable in the non-breeding season.  

Species can be either entirely resident, partially migratory (where part of a population is 

migratory) or obligate migrants. These traits are genetically controlled (see Chapter 2). However, 

climate could affect species’ migratory behaviour through natural selection or phenotypic 

plasticity. For instance, many Sylvia atricapilla have started to winter in Britain (Bearhop et al., 

2005). Furthermore many Turdus merula breeding in central Europe, that until the mid 19th 

century migrated to the Mediterranean, now remain on their breeding grounds throughout the 

year (Birkhead, 2008). 

Migrants can be divided into short-distance or long-distance migrants. Berthold (2001, 

2003) suggested that climate change would affect these groups differently. Seasonal variation in 

temperature is thought to have influenced the proportion of migratory and resident birds through 

a diffuse competitive relationship between these groups (Lemoine and Böhning-Gaese, 2003). 

Analyses of long term population trends at Lake Constance in central Europe showed that long-

distance migrants declined whilst short distance and resident species increased (c.f. Lemoine and 

Böhning-Gaese, 2003). Lemoine and Böhning-Gaese (2003) showed that these long-term trends 

were related to an increase in warmer winters.  

In Europe, many long-distance migrants are currently declining (Sanderson et al., 2006). 

Populations of Afro-Palaearctic migrants fluctuate with precipitation on the Sahelian wintering 

grounds (Baillie and Peach, 1992). Lemoine and Böhning-Gaese (2003) argue that short-term 

fluctuations and long-term trends may not be caused by the same factors. Theoretically, long-

distance migrants are likely to decrease under climatic change because they rely on spatially 

separated areas that are often bio-climatically different (e.g. Eurasia and Africa) and that are 

affected by different processes and drivers of change, such as agricultural intensification in 

Europe and desertification in Africa. In contrast, resident species (and short-distance migrants) 
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should increase in numbers as milder winters increase survival rates (Schaefer et al., 2008). 

Berthold (2001) hypothesised that under climate change partial and short distance migrants 

should become increasingly resident. 

The impacts of climate change on (resident) breeding birds have already been well 

investigated (Harrison et al., 2003; Huntley et al., 2006; Jetz et al., 2007; Huntley et al., 2008). If 

climatic change is likely to affect different types of migrant birds differently it is important to 

investigate what the potential impacts on these groups are and how they differ. In this section, I 

compare the impacts of climate change between species’ groups and also investigated changes in 

migratory strategy. From the literature (those cited here and in Chapter 2), I identified three 

hypotheses to test: 

1) Trans-Saharan migrants will fare worse under climate change, as current population 

declines suggest. I expect, therefore, to show low overlap, low range extent, large 

range shifts and large changes in migration distance for trans-Saharan migrants. I also 

expect some species to newly over-winter north of the Sahara. 

2) Short-distance migrants will fare better than long-distance migrants. The results 

should show larger overlap, range extent and smaller range shifts than for other 

migratory groups. Migratory species richness changes and community reassembly 

should also favour short-distance migrants. 

3) Short-distance and split strategy migrants (see below) will become increasingly 

resident. I expect the results to show an increase in the number of resident areas for 

short-distance and split strategy migrants as well as an increase in short-distance 

strategies. 
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4.3.2 Methods 
 

Although in most of the literature, migrant species have been divided into either short- or long-

distance migrants, some species have a dual strategy. The 229 migrant bird species modelled in 

this thesis were, therefore, separated into three categories depending on their non-breeding 

region: short-distance European and North African migrants (E), long-distance trans-Saharan 

migrants (T) and split strategy migrants (S), i.e. species with non-breeding ranges North and 

South of the Sahara Desert (20° N). These categories were assigned to species from their 

recorded extent of occurrence (digital appendix) and not based on their simulated distribution. 

For each species/category, the multi-model mean measures of future change were calculated (see 

previous sections). There are 49 E migrants, 107 S migrants and 73 T migrants. 

Differences among groups of migrants 
 

Differences among species’ groups were sought by comparing degree of overlap between current 

and future range, relative range extent and range shift (for both breeding and non-breeding 

models) between groups. Logit-transformed relative range extent and arcsine square root overlap 

values were tested for normality. Normally distributed variables were tested with a one-way 

ANOVA with Bonferroni post hoc test if the Levene’s test showed that the variance was 

homogenous. If one or both of these conditions were not met, then Kruskal-Wallis tests were 

performed with Mann-Whitney post hoc tests with Bonferroni correction (α = 0.0167).  

Polar plots depicting species’ direction of range shift for each modelling method and 

GCM were created with the different groups separated. Mean angle of range shift was calculated 

for each group. Average distances of range shift values were tested for normality. A one-way 

ANOVA or a Kruskal-Wallis was performed with relevant post hoc tests.  

Mean proportional change in species richness (N) of each group was compared with 

Kruskal-Wallis tests to investigate changes in the composition of species richness in an area.  The 

proportion of species from each of the migratory groups in each grid cell was also calculated for 

the present and the future. Anomalies between present and future absolute numbers were 

calculated for each category and plotted on to the study area to investigate the spatial pattern of 

change.  
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Kruskal-Wallis tests were performed on proportion change in mean, minimum and 

maximum migration distance with Mann-Whitney post hoc tests with Bonferroni correction (α = 

0.0167) between migratory groups.  

Changes in migration strategy 
 

The number of species in each migratory category was calculated for each simulation. Mean 

GAM, CRS and the multi-model mean were also calculated. A chi-square test was performed 

using the current simulated values as expected frequencies. Simulated values were used rather 

than absolute values so that only future differences were taken into account rather than 

differences arising from creating a model. European migrants with modelled range south of the 

Sahara desert (usually in South Africa) in the present period were re-classified as E migrants in 

the future simulations so as not to bias the results. Changes in categories were examined in terms 

of groups of migrants and as individual species. Consistent changes (among models) in categories 

for certain species were examined. 

Residency 
 

The number of ‘resident’ cells, i.e. number of overlapping breeding and non-breeding cells, for 

each species was counted in both current and future simulations. The proportion of ‘resident’ 

cells for each species’ range was also calculated for the present and the future. From these values, 

anomalies were calculated for each species for each future simulation as well as for the mean 

future simulations. The number of positive, negative and no change anomalies were counted for 

each migrant group. A Kruskall-Wallis test was performed to see if species’ geography (through 

Biome categories – Fig. 3.5 and Table 3.15) affected which species were more or less likely to 

gain/lose resident cells. The proportion of resident cells was used instead of absolute number 

because it was thought that changes in proportion of resident cells in a species’ range would give 

a better indication of whether a species was becoming ‘more’ or ‘less’ resident. Using absolute 

numbers of cells would be misleading because the change in absolute number of resident cells 

could also be due to increases or decreases in range size. 
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4.3.3 Results 

Range extent 
 

Figure 4.11 and Figure A5 show the multi-model mean relative extent for each category of 

species. The breeding range models exhibited some differences between the three groups (Fig. 

4.11 a). There was greater variation among E migrants as can be seen from the larger error bars in 

Fig. 4.11a. For 2025, the groups differed in their range extent in the A1B scenario with European 

(E) migrants having a reduced range extent (0.908) compared to trans-Saharan (T) migrants 

(1.00) according to the post hoc tests (U = 1239.5, p < 0.0167); but not in the A2 scenario. For 

2055, groups only differed in the A1B scenario. Post hoc tests showed that split strategy (S) 

migrants had significantly lower range extent than both E migrants (U = 3107, p < 0.0167) and T 

migrants (U = 1324.5, p < 0.0167). For 2085, groups exhibited differences for both A1B and A2 

scenarios. Bonferroni post hoc tests showed that S migrants had significantly lower range extents 

than T migrants (p < 0.01). For both E and T migrants relative range extent increased through 

time, whereas range extent decreased for S species. 

Migrant groups differed in their relative range extent for the non-breeding range models, 

though all groups increased in range (Fig. 4.11 b). For 2025, all groups were significantly 

different from each other. For 2055, groups also differed. Mann-Whitney post hoc tests showed 

that T migrants were significantly different from both E and S migrants (Fig. 4.11). In 2085, E 

migrants have significantly lower relative range extent than both S and T migrants. For both S 

and T migrants relative range extent increased through time, whereas relative range extent 

decreased for E species. 
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a 

 

b 

 
Figure 4.11: A1B Scenario multi-model mean relative extent for each category of species (blue: 
European, yellow: trans-Saharan and red: split strategy migrants); Error bars represent standard error 
across species. ANOVA or Kruskall Wallis tests for each time period are reported. a) breeding 
ground models (2025: H2 = 7.977, p < 0.05; 2055: H2 = 8.594, p < 0.05; 2085: F2 = 5.679, p < 0.01); 
b) non-breeding ground models (2025:. F2 = 15.003, p < 0.001;  2055: H2 = 23.382, p < 0.000; 2085: 
H2 = 7.668, p < 0.05) 
 

Figure 4.12 and Figure A6 show the multi-model mean overlap for each category of 

species. On the breeding range, there was no difference in overlap between groups for all time 

periods and scenarios. Proportion overlap decreased through time. 

 On the non-breeding grounds, however, species’ groups differed in their overlap between 

current and future range.  Mann-Whitney post hoc tests show that in 2025 E and S had similar 

overlap (A1B: U = 2372.5, p = 0.639; A2: U = 2174.5, p = 0.211) but that E and T were different 

(A1B: U = 1198, p < 0.001; A2: U = 1054.5, p < 0.001) as were S and T (A1B: U = 2937.5, p < 

0.0167; A2: U = 2849.5, p < 0.0167). Results were similar for 2055. In 2085, however, E and T 

migrants had similar overlap values (A1B: U = 1427, p = 0.062; A2: U = 1447, p = 0.078) while, 

E and S were different (A1B: U = 1479, p < 0.001; A2: U = 1397, p < 0.001) as were S and T 

(A1B: U = 2337, p < 0.001; A2: U = 2309, p < 0.001).  
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a 

 

b 

 
Figure 4.12: A1B Scenario multi-model mean proportion overlap for each category of species 
(blue: European, yellow: trans-Saharan and red: split strategy migrants); Error bars represent 
standard error across species. ANOVA or Kruskall Wallis tests for each time period are reported. 
a) breeding ground models (2025: F2 =1.432, p = 0.241; 2055: F2 =1.642, p = 0.196; 2085: F2 = 
0.845, p = 0.431); b) non-breeding ground models (2025: H2 =12.896, p < 0.01;. 2055: H2 
=20.635, p < 0.001; 2085: H2 = 30.369, p < 0.001). 

Range shift 

 
Figure 4.13 and Figure A7 show the multi-model mean average distance between current and 

future centroids. Shift of centroid on the breeding grounds did not differ significantly between 

migrant groups. There were some differences on the non-breeding grounds, however. Mann-

Whitney post hoc tests showed that T migrants had significantly larger distances of shift in 2055 

under the A1B scenario (U = 3105, p < 0.01) than S migrants. In 2085 A1B and A2 scenario, T 

migrants had significantly larger distances of shift than E or S migrants (A1B: US-T = 2429.5, p < 

0.001; UE-T = 1211, p < 0.01; A2: US-T = 2346, p < 0.001; UE-T = 1183, p < 0. 01). 

 

 

 

 

 

 

 

 



 
 

159 

a 

 

b 

 
Figure 4.13: A1B Scenario multi-model mean average distance of range shift for each category of 
species (blue: European, yellow: trans-Saharan and red: split strategy migrants); a) breeding ground 
models, b) non-breeding ground models. Error bars represent standard error across species. 
 

Figures 4.14-4.19 depict the angle of shift for each species’ category on the breeding and 

non-breeding models under the A1B scenario. The A2 scenario can be found in Appendix III c. 

The polar plots also include arrows showing the mean direction of shift for each category. On the 

breeding grounds, the mean angle of shift of species’ ranges is similar between categories; 

whereas on the non-breeding grounds, they are sometimes very different. The mean angles are 

slightly misleading as there is much spread between species. In general, species’ ranges move 

mainly North on the European breeding grounds and North to East on the non-breeding grounds. 

The majority of European-wintering species’ ranges move North-East (30°). For S species, the 

mean angle varies from 1° to 45° with quite a lot of spread. T migrants’ mean angles vary across 

model projections. This shows that there are greater differences in prediction on the African non-

breeding grounds between models. 
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Figure 4.14: Direction of shift of species’ ranges from GAM 2025 A1B scenario; a) 
Echam5 breeding, b) Echam5 non-breeding, c) GFDL breeding, d) GFDL non-breeding, e) 
HadGEM breeding, f) HadGEM non-breeding. Polar plots plotted on a log-scale with 
7000km as the edge. Filled circles represent species with a European winter range and black 
arrow is the mean direction of shift; open circles represent species with a split non-breeding 
range and light grey arrow is the mean direction of shift; triangles represent species with a 
trans-Saharan non-breeding range and grey arrow is mean direction of shift. 
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Figure 4.15: Direction of shift of species’ ranges from CRS 2025 A1B scenario; a) 
Echam5 breeding, b) Echam5 non-breeding, c) GFDL breeding, d) GFDL non-breeding, 
e) HadGEM breeding, f) HadGEM non-breeding. Polar plots plotted on a log-scale with 
7000km as the edge. Filled circles represent species with a European winter range and 
black arrow is the mean direction of shift; open circles represent species with a split non-
breeding range and light grey arrow is the mean direction of shift; triangles represent 
species with a trans-Saharan non-breeding range and grey arrow is mean direction of shift. 
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Figure 4.16: Direction of shift of species’ ranges from GAM 2055 A1B scenario; a) 
Echam5 breeding, b) Echam5 non-breeding, c) GFDL breeding, d) GFDL non-breeding, e) 
HadGEM breeding, f) HadGEM non-breeding. Polar plots plotted on a log-scale with 
7000km as the edge. Filled circles represent species with a European winter range and black 
arrow is the mean direction of shift; open circles represent species with a split non-breeding 
range and light grey arrow is the mean direction of shift; triangles represent species with a 
trans-Saharan non-breeding range and grey arrow is mean direction of shift. 
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Figure 4.17: Direction of shift of species’ ranges from CRS 2055 A1B scenario; a) 

Echam5 breeding, b) Echam5 non-breeding, c) GFDL breeding, d) GFDL non-breeding, 
e) HadGEM breeding, f) HadGEM non-breeding. Polar plots plotted on a log-scale with 
7000km as the edge. Filled circles represent species with a European winter range and 
black arrow is the mean direction of shift; open circles represent species with a split non-
breeding range and light grey arrow is the mean direction of shift; triangles represent 
species with a trans-Saharan non-breeding range and grey arrow is mean direction of 
shift. 
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Figure 4.18: Direction of shift of species’ ranges from GAM 2085 A1B scenario; a) 
Echam5 breeding, b) Echam5 non-breeding, c) GFDL breeding, d) GFDL non-breeding, e) 
HadGEM breeding, f) HadGEM non-breeding. Polar plots plotted on a log-scale with 
7000km as the edge. Filled circles represent species with a European winter range and black 
arrow is the mean direction of shift; open circles represent species with a split non-breeding 
range and light grey arrow is the mean direction of shift; triangles represent species with a 
trans-Saharan non-breeding range and grey arrow is mean direction of shift. 
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Figure 4.19: Direction of shift of species’ ranges from CRS 2085 A1B scenario; a) Echam5 
breeding, b) Echam5 non-breeding, c) GFDL breeding, d) GFDL non-breeding, e) HadGEM 
breeding, f) HadGEM non-breeding. Polar plots plotted on a log-scale with 7000km as the 
edge. Filled circles represent species with a European winter range and black arrow is the 
mean direction of shift; open circles represent species with a split non-breeding range and 
light grey arrow is the mean direction of shift; triangles represent species with a trans-
Saharan non-breeding range and grey arrow is mean direction of shift. 
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Species richness 
 
Under the A1B scenario in 2025, all groups displayed a significantly different change in species 

richness (Fig. 4.20); except between E and T species under the no dispersal projection on the 

non-breeding range (U = 5266000, p = 0.223). In 2055, all groups displayed a significantly 

different change in species richness; except between S and T species under the no dispersal 

projection on the breeding range (U = 52889747, p = 0.486). In 2085, however, there were some 

similarities between groups. S migrants showed similar change in species richness to E and T 

migrants on the breeding grounds assuming full dispersal (U = 52528325, p = 0.122 and U = 

52552808, p = 0.141 respectively), and E and T migrants also had a similar change in species 

richness on the non-breeding grounds assuming full dispersal (U = 53097262, p = 0.844). Figure 

4.20 illustrates these findings by depicting the average proportional change in species richness 

per cell under full and no dispersal for both breeding and non-breeding areas. All statistics and 

figures for the A2 scenario are in Figure A8 and are similar to the AIB scenario results. 

a 

  

b 

 
Figure 4.20: Relative change under the A1B scenario in species richness across cells for each 
category of species (Europe: blue, trans-Saharan: green, split strategy: red) under full dispersal (N; 
darker colours) and dispersal failure (No; lighter colours); Error bars represent standard error. Results 
of Kruskall Wallis test for each time period are also reported; a) breeding grounds (2025: N, H2 = 
184.7, p < 0.001; No, H2 = 3399.9, p < 0.001; 2055: N, H2 = 110.1, p < 0.001, No, H2 = 2804.1, p < 
0.001; 2085: N: H2 =12.2, p <0.01; No, H2 =1951.3, p <0.001); b) non-breeding grounds (2025: N, 
H2 = 2424.5, p < 0.001; No, H2 = 164.2, p < 0.001; 2055: N,H2 = 2959.8, p < 0.001, No,: H2 = 422.4, 
p < 0.001; 2085: N: H2 =3400.6, p < 0.001; No, H2 =632.6, p < 0.001). 
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On the breeding grounds (Fig. 4.20 a), the models projected that all groups were likely to lose 

numbers of species per grid cell relative to the current species richness. S migrants were 

predicted to have a greater number of species per grid cell than in the present in 2025 but 

gradually decreasing in numbers per grid cell over time. E migrants were also simulated to 

decrease in number over time. T migrants, on the other hand, are predicted to increase in number 

over time, although had a lower proportion of species relative to the present than other groups in 

2025 and 2055. Assuming dispersal failure, all groups lost numbers of species in Europe, with S 

and T migrants losing more so than E migrants. 

On the non-breeding grounds, grid cells gained S and T migrants, with S species 

increasing more than the other two groups through time. Grid cells were predicted to lose E 

species through time. Assuming dispersal failure, all groups have reduced numbers of species per 

grid cell relative to the present. 

Figure 4.21 shows that on the breeding grounds, under full dispersal, T migrants increased 

in proportion to E and S migrants on average for the A1B Scenario (A2 Scenario in Fig. A9). On 

the non-breeding grounds, whilst proportions stayed very similar, under both dispersal scenarios, 

S migrants’ proportion increased on average in detriment to E migrant species. T migrants’ 

proportion stayed very similar. The proportion change under the no dispersal scenario is virtually 

the same as under the full dispersal scenario. 

a 

 

b 

 
Figure 4.21: Multi-model average proportion in each grid cell of European, split strategy and 
trans-Saharan migrants in the present and future A1B scenario; a) breeding grounds, b) non-
breeding grounds. Blue = European migrants, Yellow = trans-Saharan migrants and Red = split-
strategy migrants. 
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Figures 4.22-4.24 depict community reassembly in different parts of the range for the 

three time slices for the A1B scenario. Figures A10-A12 show the same for the A2 scenario. On 

the breeding range, split strategy migrants decreased in numbers throughout Europe whilst trans-

Saharan migrants increased in northern Europe. European migrants decreased in southern Europe 

and increased in northern Europe. On the European winter grounds, European migrants increased 

in northern Europe. On the African winter quarters, split strategy migrants gained territory as 

trans-Saharan migrants lost ground.  

Changes in the proportion of migrants in each grid cell can be found in the digital 

appendix and further depict community reassembly. However, because change is reported as 

proportional, increases or decreases for only one species in areas where it was not found before, 

results in inflated anomalies. On the breeding range, the proportion of split strategy migrants 

decreased in the North and increased in the South in opposition to trans-Saharan migrants. The 

proportion of European migrants decreased in southern Europe and increased in central Europe. 

On the European winter grounds, the proportion of European migrants increased in Scandinavia 

but decreased in most areas. On the African winter quarters, the proportional change in migrants 

is the same as the change in absolute numbers. 
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Figure 4.22: Anomalies between current and future numbers of species per grid cell for the 2025 A1B scenario for each category of migrants 
(European, split strategy, trans-Saharan). Blue colours depict reduced number of species, whilst yellow and red represent gains. 
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Figure 4.23: Anomalies between current and future numbers of species per grid cell for the 2055 A1B scenario for each category of migrants 
(European, split strategy, trans-Saharan). Blue colours depict reduced number of species, whilst yellow and red represent gains. 
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Figure 4.24: Anomalies between current and future numbers of species per grid cell for the 2085 A1B scenario for each category of migrants 
(European, split strategy, trans-Saharan). Blue colours depict reduced number of species, whilst yellow and red represent gains. 
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Migration distance 
 

On average, mean migration distances increased under future climate change scenarios (Tables 

4.20-4.22). However, some species are projected to have smaller distances to travel in the future.  

Kruskal-Wallis tests on proportional mean migration distance showed that there was no 

significant difference between migratory groups (Table A14). 

In general, future maximum migration distances were projected to be similar to current 

figures with a multi-model median proportional change of 1.018 for all species and range 0.968-

1.121. For 2025 A2 and 2055 A2, there was also no significant difference between the three 

migrant groups in terms of proportional changes in maximum distances (Table A15). However, 

for 2025 A1B and 2055 A1B, change in maximum distances was different with T migrants 

having a greater increase in distance than S migrants (2025 A1B: U = 2883, p < 0.01; 2055 A1B: 

U = 2405, p < 0.001) but not E migrants (medians: E = 1.022, S = 1.012, T = 1.023 for 2025 

A1B; E = 1.037, S = 1.023, T = 1.058 for 2055 A1B). Under 2085 predicted climatic change, 

proportional change in maximum migration distances was different between migrant groups, with 

E migrants showing no change in distance in the A1B scenario (median proportional change: 

1.02) or a decrease in the A2 scenario (median of 0.952). Trans-Saharan migrants were simulated 

to have greater increases (median of 1.06 and 1.07 for A1B and A2 respectively) in maximum 

distances than the other migrants. 

There was more variation of change in minimum distances among species with some 

species gaining ‘resident’ climate space, i.e. having overlapping breeding and non-breeding grid 

cells, thereby effectively decreasing minimum migration distance to zero, and other species’ 

minimum migration distance increasing by 100%. For 2025, there was no difference between 

migrants’ change in minimum migration distance (Table A16). In 2055, there was a difference 

under the A1B scenario (H2 = 7.146, p < 0.05). The difference was only between E and T 

migrants (U = 1214, p < 0.01) with medians of 1 for E migrants and 0.89 for T migrants. In 2085, 

minimum distances were also different between migrants (A1B: H2 = 14.994, p ≤ 0.001; A2: H 2 

= 24.709, p < 0.000). Under both scenarios, S and E migrants were no different (A1B: U = 3294, 

p = 0.230; A2: U = 3325, p = 0.269) while minimum migration distances decreased for T 

migrants.
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Table 4.20: Migration distances for European, split strategy and trans-Saharan migrants for the present and 2025. Average migration distance (M), relative change in migration 
distance (Pm) and minimum and maximum migration distance in Km. 10th and 90th percentiles are also given (M10-M90).    
    A1B emissions scenario A2 emissions scenario 
  Present GFDL ECHAM HadGEM GFDL ECHAM HadGEM 
   GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS 

Eu
ro

pe
 

M 1347 1160 1506 1379 1534 1396 1542 1433 1425 1354 1501 1391 1515 1437 

M10-M90 
294-
2327 

280-
2060 

325-
2537 

527-
2592 

351-
2604 

566-
2624 

327-
2754 

618-
2619 

222-
2534 

556-
2464 

328-
2475 

590-
2562 

416-
2631 

635-
2644 

Pm n/a n/a 1.19 1.49 1.25 1.53 1.27 1.57 1.12 1.46 1.21 1.53 1.25 1.58 
Pm10-
Pm90 n/a n/a 

0.48-
1.85 

0.67-
3.03 

0.51-
1.81 

0.65-
3.15 

0.56-
1.99 

0.72-
3.29 

0.38-
1.65 

0.67-
2.97 

0.48-
1.72 

0.68-
3.08 

0.52-
1.94 

0.72-
3.24 

Mmin 53 43 138 53 101 42 115 48 115 45 111 45 110 16 
Mmin10-
Mmin90 0-60 0-83 0-464 0-61 0-135 0-50 0-123 0-59 0-107 0-49 0-243 0-62 0-157 0-50 
Mmax 8569 8740 8383 9164 8618 9152 8413 9154 8305 9151 8630 8496 8547 9173 

Mmax10-
Mmax90 

7157-
9748 

7974-
9613 

5126-
9955 

8223-
9975 

7225-
9949 

8029-
9962 

5139-
9978 

8009-
9966 

4179-
9954 

8014-
9963 

7400-
9943 

7452-
9528 

6581-
9968 

8005-
9965 

Sp
lit

 

M 3407 3161 3680 3217 3662 3205 3662 3195 3681 3246 3626 3176 3652 3200 

M10-M90 
1164-
6206 

836-
6174 

1021-
6459 

899-
6006 

1170-
6380 

831-
6074 

935-
6436 

865-
6116 

1008-
6464 

826-
6051 

1082-
6437 

815-
6088 

1082-
6428 

935-
6048 

Pm n/a n/a 1.22 1.14 1.21 1.14 1.21 1.09 1.19 1.15 1.19 1.09 1.20 1.13 
Pm10-
Pm90 n/a n/a 

0.67-
1.63 

0.84-
1.45 

0.67-
1.66 

0.81-
1.36 

0.73-
1.71 

0.79-
1.40 

0.69-
1.64 

0.83-
1.41 

0.65-
1.64 

0.80-
1.34 

0.69-
1.68 

0.81-
1.43 

Mmin 478 316 499 169 458 229 429 189 449 206 469 250 466 217 
Mmin10-
Mmin90 0-1405 0-1024 0-1750 0-595 0-1330 0-750 0-1251 0-718 0-1320 0-670 0-1389 0-808 0-1457 0-735 
Mmax 8880 8945 8805 9124 8769 9077 8805 9117 8772 9114 8768 8616 8809 9135 

Mmax10-
Mmax90 

7758-
9960 

7898-
9960 

7694-
9977 

8223-
9975 

7614-
9960 

8091-
9967 

7761-
9972 

8160-
9972 

7419-
9975 

8138-
9977 

7506-
9960 

7359-
9511 

7783-
9974 

8165-
9970 
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   A1B emissions scenario A2emissions scenario 
 Present GFDL ECHAM HadGEM GFDL ECHAM HadGEM 

Table 4.20 
continued GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS 

Tr
an

s 

M 4496 4547 4839 4748 4702 4704 4726 4740 4786 4770 4660 4672 4729 4702 

M10-M90 
2333-
6456 

1763-
7350 

2346-
7124 

2257-
6678 

2226-
7137 

2139-
6809 

2388-
7045 

2366-
6791 

2473-
7061 

2303-
6791 

2349-
7030 

2024-
6781 

2187-
6987 

2316-
6779 

Pm n/a n/a 2.11 1.29 2.01 1.25 2.02 1.35 2.02 1.28 1.97 1.24 1.99 1.30 
Pm10-
Pm90 n/a n/a 

0.77-
1.35 

0.88-
1.35 

0.72-
1.25 

0.90-
1.27 

0.72-
1.29 

0.90-
1.34 

0.77-
1.39 

0.89-
1.39 

0.72-
1.25 

0.90-
1.32 

0.70-
1.24 

0.90-
1.32 

Mmin 2461 2300 2530 1895 2451 1873 2295 1781 2400 1978 2369 1946 2282 1736 
Mmin10-
Mmin90 

121-
4377 25-3821 53-4461 0-3653 

145-
4346 0-3586 

119-
4391 0-3665 

141-
4223 24-3847 

435-
4242 

130-
3708 15-4382 0-3661 

Mmax 7705 7826 7652 8463 7559 8362 7602 8451 7639 8514 7580 8932 7570 8523 
Mmax10-
Mmax90 

5525-
9496 

5386-
9483 

4751-
9444 

6983-
9614 

4761-
9483 

6989-
9582 

4744-
9453 

6854-
9606 

4725-
9494 

7023-
9575 

4716-
9418 

7818-
9785 

5125-
9539 

6812-
9636 

 
Table 4.21: Migration distances for European, split strategy and trans-Saharan migrants for the present and 2055. Average migration distance (M), relative change in migration 
distance (Pm) and minimum and maximum migration distance in Km. 10th and 90th percentiles are also given (M10-M90).    
    A1B emissions scenario A2 emissions scenario 
  Present GFDL ECHAM HadGEM GFDL ECHAM HadGEM 
   GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS 

Eu
ro

pe
 

M 1347 1160 1376 1335 1405 1288 1446 1396 1305 1281 1350 1276 1433 1392 

M10-M90 
294-
2327 

280-
2060 

236-
2601 

544-
2698 

240-
2724 

569-
2513 

281-
2804 

618-
2828 

217-
2452 

537-
2572 

226-
2615 

554-
2547 

297-
2640 

613-
2592 

Pm n/a n/a 1.07 1.43 1.08 1.42 1.13 1.51 1.00 1.39 1.03 1.41 1.14 1.53 
Pm10-
Pm90 n/a n/a 

0.39-
1.68 

0.67-
2.78 

0.47-
1.80 

0.55-
3.03 

0.49-
1.82 

0.69-
3.05 

0.42-
1.52 

0.57-
2.86 

0.38-
1.62 

0.51-
2.98 

0.54-
1.76 

0.68-
3.00 

Mmin 53 43 151 45 119 42 115 50 144 37 137 41 127 42 
Mmin10-
Mmin90 0-60 0-83 0-297 0-58 0-211 0-59 0-167 0-70 0-392 0-49 0-330 0-73 0-206 0-50 
Mmax 8569 8740 8314 9204 8370 9148 8314 9261 8302 9153 8470 9232 8531 9281 

Mmax10-
Mmax90 

7157-
9748 

7974-
9613 

3981-
9961 

8367-
9958 

4108-
9962 

8150-
9955 

4200-
9957 

8218-
9962 

3979-
9939 

8305-
9734 

5539-
9946 

8031-
9954 

5597-
9978 

8217-
9971 
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   A1B emissions scenario A2 emissions scenario 
 Present GFDL ECHAM HadGEM GFDL ECHAM HadGEM 

Table 4.21  
continued GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS 

Sp
lit

 

M 3407 3161 3780 3290 3702 3262 3753 3251 3686 3216 3650 3237 3721 3218 

M10-M90 
1164-
6206 

836-
6174 

1034-
6802 

800-
6207 

1035-
6442 

930-
6071 

990-
6560 

762-
6105 

981-
6643 

743-
6104 

924-
6443 

887-
6053 

943-
6442 

732-
6053 

Pm n/a n/a 1.27 1.20 1.24 1.19 1.28 1.11 1.23 1.15 1.21 1.15 1.26 1.10 
Pm10-
Pm90 n/a n/a 

0.59-
1.74 

0.77-
1.62 

0.67-
1.74 

0.79-
1.49 

0.58-
1.78 

0.74-
1.51 

0.56-
1.68 

0.74-
1.47 

0.64-
1.66 

0.76-
1.48 

0.57-
1.77 

0.72-
1.49 

Mmin 478 316 417 98 404 120 361 92 427 103 392 128 370 96 
Mmin10-
Mmin90 0-1405 0-1024 0-1029 0-287 0-1150 0-400 0-1303 0-260 0-1205 0-305 0-1220 0-493 0-1185 0-334 
Mmax 8880 8945 8888 9235 8845 9200 8871 9196 8845 8731 8829 9191 8860 9223 

Mmax10-
Mmax90 

7758-
9960 

7898-
9960 

7794-
9989 

8271-
9987 

7755-
9986 

8088-
9981 

7786-
9989 

8091-
9986 

7637-
9988 

7660-
9680 

7739-
9985 

8063-
9984 

7782-
9989 

8195-
9987 

Tr
an

s 

M 4496 4547 5037 4785 4827 4797 4875 4820 44983 4830 4829 4754 4873 4829 

M10-M90 
2333-
6456 

1763-
7350 

2513-
7083 

2448-
6441 

2210-
6885 

2363-
6525 

2497-
6906 

2492-
6696 

2506-
6976 

2350-
6512 

2423-
6925 

2370-
6569 

2619-
6921 

2574-
6586 

Pm n/a n/a 2.26 1.35 2.19 1.33 2.20 1.36 2.26 1.36 2.13 1.31 2.20 1.34 
Pm10-
Pm90 n/a n/a 

0.71-
1.68 

0.76-
1.56 

0.68-
1.57 

0.74-
1.62 

0.75-
1.50 

0.78-
1.63 

0.74-
1.59 

0.83-
1.62 

0.72-
1.42 

0.73-
1.46 

0.75-
1.46 

0.79-
1.46 

Mmin 2461 2300 2408 1741 2284 1630 2278 1417 2370 1835 2311 1598 2184 1332 
Mmin10-
Mmin90 

121-
4377 25-3821 0-4586 0-3995 0-4381 0-3762 0-4415 0-3447 0-4490 0-4045 0-4390 0-3807 0-4198 0-3285 

Mmax 7705 7826 7840 8683 7889 8621 7898 8680 7822 9309 7855 8555 7929 8804 
Mmax10-
Mmax90 

5525-
9496 

5386-
9483 

4502-
9649 

7284-
9798 

4890-
9537 

7057-
9748 

5543-
9583 

7149-
9802 

4427-
9580 

8521-
9904 

4965-
9578 

6838-
9727 

5450-
9718 

7169-
9862 
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Table 4.22: Migration distances for European, split strategy and trans-Saharan migrants for the present and 2085. Average migration distance (M), relative change in migration distance 
(Pm) and minimum and maximum migration distance in Km.. 10th and 90th percentiles are also given (M10-M90).    
   A1B emissions scenario A2 emissions scenario  

  Present GFDL ECHAM HadGEM GFDL ECHAM HadGEM 
   GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS 

Eu
ro

pe
 

M 1347 1160 1244 1039 1355 1261 1491 1278 1187 1061 1369 1265 1561 1334 

M10-M90 
294-
2327 280-2060 347-2071 

324-
1790 193-2927 528-2539 

207-
2981 

591-
2274 

293-
2125 

342-
1782 

215-
3116 

559-
2458 

214-
3394 

654-
2399 

Pm n/a n/a 1.02 0.99 1.03 1.41 1.16 1.45 0.99 0.97 1.03 1.43 1.25 1.49 
Pm10-
Pm90 n/a n/a 0.67-1.32 

0.47-
1.72 0.46-1.68 0.56-3.21 

0.51-
1.96 

0.62-
2.99 

0.51-
1.43 

0.36-
1.53 

0.43-
1.82 

0.56-
3.16 

0.45-
2.16 

0.59-
3.09 

Mmin 53 43 118 12 140 49 158 43 140 14 161 32 163 42 
Mmin10-
Mmin90 0-60 0-83 0-158 0-21 0-179 0-115 0-407 0-71 0-252 0-45 0-294 0-58 0-544 0-49 
Mmax 8569 8740 7221 8523 8234 9201 8326 9219 5959 8588 8723 9243 8296 9299 

Mmax10-
Mmax90 

7157-
9748 

7974-
9613 

3480-
9345 

5983-
9743 

3644-
9956 

8318-
9952 

3947-
9966 

8290-
9963 

3175-
9261 

6352-
9806 

7370-
9968 

8334-
9956 

4397-
9965 

8322-
9956 

Sp
lit

 

M 3407 3161 3606 3360 3762 3229 3836 3242 3563 3390 3750 3207 3815 3173 

M10-M90 
1164-
6206 836-6174 923-6651 

847-
6610 948-6714 768-6134 

991-
6687 

794-
6097 

951-
6689 

818-
6672 

879-
6652 

781-
6121 

989-
6572 

737-
6112 

Pm n/a n/a 1.14 1.18 1.32 1.17 1.34 1.20 1.15 1.07 1.31 1.17 1.39 1.18 
Pm10-
Pm90 n/a n/a 0.79-1.34 

0.75-
1.49 0.63-1.86 0.70-1.62 

0.63-
1.93 

0.67-
1.63 

0.73-
1.38 

0.63-
1.29 

0.65-
1.87 

0.72-
1.59 

0.59-
1.95 

0.64-
1.68 

Mmin 478 316 338 68 358 72 350 70 274 68 338 72 339 59 
Mmin10-
Mmin90 0-1405 0-1024 0-929 0-170 0-957 0-211 0-1246 0-193 0-910 0-163 0-916 0-173 0-1198 0-112 
Mmax 8880 8945 9015 9324 8823 9263 8884 9296 8986 9304 8306 9270 8882 9313 

Mmax10-
Mmax90 

7758-
9960 

7898-
9960 

7917-
9991 

8310-
9994 

7766-
9989 

8159-
9988 

7785-
9989 

8243-
9988 

7912-
9993 

8292-
9995 

4503-
9970 

8198-
9989 

7659-
9990 

8277-
9992 
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   A1B emissions scenario A2 emissions scenario 
 Present GFDL ECHAM HadGEM GFDL ECHAM HadGEM 

Table 4.22  
continued GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS GAM CRS 

Tr
an

s 

M 4496 4547 5067 4923 4921 4578 4944 4767 4851 4922 5063 4581 4946 4710 

M10-M90 
2333-
6456 

1763-
7350 

2545-
6763 

2356-
6843 

2396-
7046 

2165-
6461 

2682-
7038 

2447-
6682 

2135-
6822 

2229-
6936 

2407-
7200 

2087-
6369 

2187-
7014 

2404-
6634 

Pm n/a n/a 1.21 1.23 2.28 1.30 2.25 1.37 1.15 1.17 2.29 1.29 2.25 1.38 
Pm10-
Pm90 n/a n/a 0.79-1.86 

0.68-
1.75 0.57-1.85 0.53-1.77 

0.69-
1.74 

0.69-
1.61 

0.68-
1.74 

0.66-
1.54 

0.57-
2.08 

0.55-
1.53 

0.68-
1.78 

0.61-
1.55 

Mmin 2461 2300 2346 1440 1978 1238 2029 1158 1978 1280 2188 1428 1965 1127 
Mmin10-
Mmin90 

121-
4377 25-3821 0-4676 0-4073 0-4395 0-3460 0-4247 0-3130 0-4442 0-3959 0-5180 0-3982 0-4241 0-3429 

Mmax 7705 7826 8586 8857 8073 8778 7974 8809 8589 8886 8556 8795 7987 8930 
Mmax10-
Mmax90 

5525-
9496 

5386-
9483 

6776-
9899 

7622-
9916 

5028-
9710 

7473-
9869 

4530-
9804 

7330-
9919 

6986-
9917 

7541-
9929 

7100-
9961 

7436-
9877 

4348-
9842 

7792-
9918 
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Changes in migration strategy 
 
The current species distribution models simulated suitable winter quarters above the Sahara 

desert for many trans-Saharan migrants, changing their category from T to S (Table 4.23). The 

modelling techniques produced similar frequencies. However, there were some differences in 

which particular species were modelled as T using one modelling method and S using the other. 

 
 
Table 4.23: Number of species in each category, for observed data, Climate Response 
Surfaces’ 1960-91 simulation and Generalised Additive Models’ 1960-91  simulation  
 Observed CRS GAM 
European 49 49 49 
Split Strategy 107 146 147 
Trans-Saharan 73 34 33 
Total 229 229 229 

 

 

The simulated future number of species in each category is shown in Table 4.24 while the 

number of species changing between categories can be found in tables 4.25-4.27 for the A1B 

scenario and tables A17-A19 for the A2 scenario. There was a marked difference between CRS 

and GAM. CRS simulated that many T migrants would become S migrants (Table 4.25-4.27). 

GAM, on the other hand, simulated the loss of African winter quarters for many S migrants 

changing their categorisation to E migrants, or simulated losses in the Western Palaearctic 

changing S migrants’ categorisation to T (Table 4.25-4.27). Changes for each individual species 

can be found in the digital appendix.  

Differences between present and future categories were larger for CRS than GAM (Table 

4.16). These differences translate into the majority of Chi-square tests showing significant 

differences (Table A20) between present and all future CRS categorisation but not for GAM. 

There were significant differences (p < 0.05) between observed and expected frequencies only 

under GAM HadGEM 2055 and 2085 (both A1B and A2).  
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Table 4.24: Number of species in each category in the future. E = European migrants; S = Split 
strategy migrants and T = trans-Saharan migrants. 

    CRS GAM 
Multi-
model 

  Category Echam GFDL HadGEM Mean Echam GFDL HadGEM Mean Mean 

20
25

 a
1b

 E 49 49 49 49 58 58 58 58 54 
S 162 163 163 163 141 136 145 141 152 
T 18 17 17 17 29 35 25 30 24 
Total 229 229 229 229 228 229 228 228 229 

20
25

 a
2 E 49 49 49 49 58 58 58 58 54 

S 161 162 162 162 143 139 143 142 152 
T 19 18 18 18 28 32 27 29 24 
Total 229 229 229 229 229 229 228 229 229 

20
55

 a
1b

 E 49 49 49 49 57 57 56 57 52 
S 170 168 171 170 143 140 153 145 157 
T 12 14 12 13 28 32 19 26 20 
Total 229 229 229 229 228 229 228 228 229 

20
55

 a
2 E 49 49 49 49 57 57 56 57 52 

S 169 169 168 168 143 138 152 144 156 
T 13 15 14 14 29 33 20 27 21 
Total 229 229 229 229 229 228 228 228 229 

20
85

 a
1b

 E 49 49 49 49 59 50 58 56 52 
S 171 169 169 170 145 148 151 148 159 
T 9 11 10 10 23 30 19 24 17 
Total 229 229 228 229 227 228 228 228 228 

20
85

 a
2 E 49 49 49 49 58 49 59 55 52 

S 172 172 173 172 146 150 153 150 160 
T 10 11 8 10 24 29 16 23 16 
Total 229 229 228 229 228 228 228 228 228 
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Table 4.25: Contingency table of number of species changing category for mean 
GAM and CRS simulations between Present day (P) and future (F) simulations for 
2025 A1B scenario 
 CRS GAM 
 FEuropean FSplit FTrans-Saharan FEuropean FSplit FTrans-Saharan 
PEuropean 49 0 0 49 0 0 
PSplit 0 145 1 9 135 2 
PTrans-Saharan 0 20 14 0 14 20 

 

Table 4.26: Contingency table of number of species changing category for mean 
GAM and CRS simulations between Present day (P) and future (F) simulations for 
2055 A1B scenario 
 CRS GAM 
 FEuropean FSplit FTrans-Saharan FEuropean FSplit FTrans-Saharan 
PEuropean 49 0 0 49 0 0 
PSplit 0 146 0 8 135 4 
PTrans-Saharan 0 21 13 0 14 19 

 

Table 4.27: Contingency table of number of species changing category for mean 
GAM and CRS simulations between Present day (P) and future (F) simulations for 
2085 A1B scenario 
 CRS GAM 
 FEuropean FSplit FTrans-Saharan FEuropean FSplit FTrans-Saharan 
PEuropean 49 0 0 49 0 0 
PSplit 0 145 1 1 143 3 
PTrans-Saharan 0 26 8 0 20 13 

 

 

Fourteen to seventeen species were consistently simulated to change their migratory 

category (Table 4.28). These species did not differ (or differed very little) between emission 

scenarios or years. Some trans-Saharan migrants were consistently simulated to gain climatically 

suitable non-breeding space above the Sahara, potentially providing a mechanism for those 

species to decrease their migratory distance. Half the models (GAM or CRS) simulated the loss 

of climatically suitable non-breeding space below the Sahara for a few split strategy migrants, 

which may provide a mechanism for selection towards short distance migration for these species. 
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Table 4.28: Species with a consistent change among models in migratory strategy and their 
change. T = Trans-Saharan migrants, S = Split strategy migrants and E = European migrants. 
“Half” indicates that half the models simulates a change in strategy whilst (T) denotes those 
Trans-Saharan migrants that are consistently modelled as S.  

 A1B A2 
 Species Change Species Change 

20
25

 

Aquila pomarina T to S Aquila pomarina T to S 
Apus apus T to S Apus apus T to S 
Caprimulgus europaeus Half S to E Caprimulgus europaeus Half S to E 
Lanius nubicus Half T to S Lanius nubicus Half T to S 
Lanius collurio (T) Half S to E Lanius collurio (T) Half S to E 
Muscicapa striata Half S to E Muscicapa striata Half S to E 
Oriolus oriolus (T) Half S to E Oriolus oriolus (T) Half S to E 
Asio flammeus Half S to E Asio flammeus Half S to E 
Hippolais icterina (T) Half S to E Sylvia borin Half T to S 
Hippolais languidae T to S Sylvia hortensis T to S 
Sylvia borin Half T to S Luscinia luscinia T to S 
Sylvia hortensis T to S Monticola saxatilis T to S 
Luscinia luscinia T to S Tachymarptis melba Half T to S 
Tachymarptis melba Half T to S Sterna albifrons                    Half S to E 
Sterna albifrons                    Half S to E Otus scops Half S to E 
Otus scops Half S to E   

20
55

 

Aquila pomarina T to S Aquila pomarina T to S 
Apus apus T to S Apus apus T to S 
Caprimulgus europaeus Half S to E Caprimulgus europaeus Half S to E 
Streptopelia turtur T to S Streptopelia turtur Half T to S 
Lanius nubicus Half T to S Lanius nubicus Half T to S 
Lanius collurio (T) Half S to E Lanius collurio (T) Half S to E 
Muscicapa striata Half S to E Muscicapa striata Half S to E 
Oriolus oriolus (T) Half S to E Oriolus oriolus (T) Half S to E 
Sterna sandvicensis Half T to S Sterna sandvicensis Half T to S 
Asio flammeus Half S to E Asio flammeus Half S to E 
Hippolais icterina (T) Half S to E Hippolais icterina (T) Half S to E 
Sylvia hortensis T to S Sylvia hortensis T to S 
Luscinia luscinia T to S Luscinia luscinia T to S 
Monticola saxatilis T to S Monticola saxatilis T to S 
Tachymarptis melba Half T to S Tachymarptis melba  T to S 
Sterna albifrons                    Half S to E Sterna albifrons                    Half S to E 
Otus scops Half S to E Otus scops Half S to E 

20
85

 

Aquila pomarina T to S Aquila pomarina T to S 
Apus apus T to S Apus apus T to S 
Streptopelia turtur T to S Streptopelia turtur T to S 
Emberiza hortulana Half T to S Emberiza hortulana  T to S 
Lanius nubicus Half T to S Lanius nubicus Half T to S 
Ficedula hypoleuca T to S Ficedula hypoleuca T to S 
Ficedula semitorquata Half T to S Ficedula semitorquata T to S 
Asio flammeus Half S to E Asio flammeus Half S to E 
Acrocephalus scirpaceus Half T to S Acrocephalus scirpaceus Half T to S 
Sylvia hortensis T to S Sylvia hortensis T to S 
Sylvia nisoria Half T to S Sylvia nisoria Half T to S 
Luscinia luscinia T to S Luscinia luscinia T to S 
Monticola saxatilis T to S Monticola saxatilis T to S 
Tachymarptis melba T to S Tachymarptis melba T to S 
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Residency 
 
Changes in species’ proportion of resident cells can be found in Tables A21-23. These show 

differences in the proportion of each species’ range that resident cells form. The proportions did 

not vary much between different future simulations. The average variation was 2% for both CRS 

and GAM as well as between the two modelling techniques. The anomalies did not vary much 

between simulations either. The multi-model mean anomalies of resident cells for the mean of 

species are shown in Table 4.29. This shows that the change in proportion of resident cells was 

greater for European migrants. For split strategy migrants and trans-Saharan migrants, very little 

range became suitable for both wintering and breeding. Figure 4.25 shows the range of anomaly 

values for each migratory category and shows that European migrants vary much more than the 

other groups. 

 

 

Table 4.29: Mean proportion change in resident cells for all species and for 
each migratory group 
 A1B A2 
All species 2025 2055 2085 2025 2055 2085 
increase 0.17 0.16 0.15 0.18 0.17 0.16 
decrease 0.13 0.13 0.13 0.13 0.13 0.13 
European       
increase  0.27 0.26 0.24 0.27 0.27 0.26 
decrease  0.29 0.31 0.32 0.32 0.31 0.32 
Split strategy       
increase  0.09 0.09 0.09 0.09 0.09 0.09 
decrease  0.09 0.10 0.09 0.09 0.10 0.09 
Trans-Saharan       
increase  0.01 0.01 0.01 0.01 0.01 0.01 
decrease  0.06 0.06 0.06 0.06 0.06 0.06 
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Figure 4.25: Anomalies between present and future proportion resident cells for 2055 A1B. 
The anomalies for the other time periods are virtually the same and, therefore, are not shown 
here. 
 

The proportion of migrants in each group either becoming more resident (positive anomalies), 

less resident (negative anomalies) or no change are shown in Table 4.30. 

 
Table 4.30:  Proportion of species in each migratory group (European, Split strategy and Trans-Saharan 
migrants) that have positive anomalies (more resident), negative anomalies (less resident) and show no 
change in the proportion of resident cells. 
  2025 2055 2085 
  Europe Split Trans Europe Split Trans Europe Split Trans 

A1B 
% more resident 57 20 1 61 20 1 61 20 1 
% less resident 43 39 10 39 38 10 39 38 10 
% no change 0 41 89 0 42 89 0 42 89 

A2 
% more resident 57 20 1 61 21 1 55 20 1 
% less resident 39 39 10 39 36 10 39 37 10 
% no change 4 41 89 0 44 89 6 43 89 

 

The results from Table 4.30 show that European short-distance migrants have a large 

proportion of species potentially becoming more sedentary, with 55-61% of European migrants 

increasing the proportion of resident cells in their range. The majority of trans-Saharan migrants 

(89%) showed no change in the proportion of resident cells. The changes for the remaining 11% 

arise from changes to those species that also have populations that breed south of the Sahara. 

Split strategy migrants showed a fairly equal distribution of change in proportion of resident cells 

though fewer were simulated to become more resident in the future. 
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 The models simulated that eight species (Circus pygargus, Hieraaetus pennatus, Apus 

Apus, Merops apiaster, Motacilla flava, Acrocephalus arundinaceus, Sylvia hortensis, 

Cercotrichas galactotes) would gain ‘resident cells’ where before they had (virtually) none. 

These new areas suitable for both breeding and over-wintering are found either in Portugal, Cape 

Verde islands, or North Africa (Figure 4.26 and digital appendix). 

 

a 

 

b 

 
Figure 4.26: Simulated future resident areas by Climate Response Surface simulations using Echam 
2085 A1B scenario of a) Acrocephalus arundinaceus and b) Sylvia hortensis; Pink = breeding range, 
blue = non-breeding range and purple = resident range 
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Figure 4.27 shows the range of proportional change in resident cells separated by breeding 

biome. In all time periods, change in proportion of residency differed between biomes (A1B: H6 

= 23.09, p < 0.005 for 2025; H6 = 23.87, p < 0.005 for 2055; H6 = 23.70, p < 0.005 for 2085. A2: 

H6 = 24.25, p < 0.001 for 2025; H6 = 25.18, p < 0.001 for 2055; H6 = 23.77, p < 0.005 for 2085). 

Despite some variation, species residing in Temperate Broadleaf and Mixed Forest showed no 

change in the proportion of resident cells. Species residing in dry environments increased their 

resident cells on average (Fig. 4.27: Biome 12 and 13) whilst other species decreased on average 

their number of resident cells. Tundra-residing species decreased their proportion of resident 

cells. 

 

 
Figure 4.27: Anomalies between present and future proportion resident cells for A1B scenario 
separated by biome for the different time-slices. Biomes: 4 = Temperate Broadleaf and Mixed 
Forest; 6 = Boreal Forest/Taiga; 7 = Tropical and Subtropical Grassland, Savannah and 
Scrubland; 8 = Temperate Grassland, Savannah and Scrubland; 11 = Tundra; 12 = Mediterranean 
Forest, Woodland and Scrubland; 13 = Desert and Xeric Scrubland 
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4.3.4 Discussion 
 
The results suggest that long-distance migrants will fare worse than short-distance migrants under 

predicted climate change. The relative range extent of split strategy migrants, those species that 

have populations that overwinter both South of the Sahara and in the Western Palaearctic, 

showed reduced range on the breeding grounds, while trans-Saharan migrants showed the lowest 

increase on the non-breeding grounds (as a mean, all groups increase their non-breeding range 

extents). These two groups also had the lowest overlap between simulated current and future 

range extents. Trans-Saharan migrants also had a greater shift in range on the non-breeding 

grounds. Interestingly, trans-Saharan migrants are projected to lose a greater proportion of their 

current range on their non-breeding grounds, whilst split strategy migrants would lose a greater 

proportion on their breeding grounds. These results suggest that, if the future climate projections 

are part of an on-going trend, the mechanism of current decline of trans-Saharan migrants is the 

climatic conditions on the non-breeding grounds. This hypothesis will be explored in Chapter 5 

as population trends are correlated with current and future climatic change.  

 Changes in mean migration distances showed no systematic variation among migrant 

groups. However, trans-Saharan migrants did have significantly reduced minimum migration 

distances and increased maximum migration distances. Increased maximum distances could have 

severe consequences for migrants as extra energy would be required to fuel the birds (Doswald et 

al., 2009) and more time spent migrating might also decrease fitness.  Reduced minimum 

migration distances, however, would increase a species’ fitness. Reduced migration distance is 

simulated by new suitable non-breeding climate space closer to the breeding grounds. These 

newly suitable areas may be very important for long-distance migrant birds. Indeed, Cotton 

(2003) suggested that long-distance migrant birds would have to shift their non-breeding grounds 

closer to the breeding grounds to receive the right cues on when to migrate under a changing 

climate. Closer non-breeding quarters may also change species’ migratory behaviour. However, 

even if not utilised as non-breeding areas, these new suitable areas in between the breeding and 

non-breeding range may be useful as stopover areas. 

 Changes in simulated future species richness of each migratory group showed similarities 

between groups, though each group exhibited different trajectories through time. Changes in 

species richness of each group, although interesting, does not tell us much about effects on 

turnover or community reassembly. Changes in the proportion of species in each group in each 

grid cell are far more revealing. Overall, trans-Saharan migrants were projected to increase in 
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proportional richness, compared to other groups on the breeding grounds, whilst split strategy 

migrants were projected to increase to the detriment of other groups on the non-breeding grounds. 

There were also marked spatial differences. On the breeding grounds, patterns of change in 

proportion of migrant groups were similar to results found by Lemoine et al. (2007), though they 

only had two groups of migrants:  the proportion of long-distance migrants increased in most of 

Europe, most strongly in Southern Europe, whilst the proportion of short-distance migrants 

decreased in Europe, especially in Scandinavia and Spain. My results showed more specifically 

(digital appendix) that the proportion of trans-Saharan migrants increased in the North of Europe, 

whilst split strategy migrants increased in the South (and on their African breeding grounds); 

European migrants increased in between. On the non-breeding grounds, the proportion of 

European migrants decreased except in Scandinavia and was replaced by split strategy migrants 

and a few trans-Saharan migrants. Trans-Saharan migrants decreased on the African winter 

quarters in proportion to split strategy migrants but increased in proportion in the Mediterranean 

region. These results suggest two mechanisms of change occurring: species’ turnover or 

community reassembly as species’ ranges are shifted, and change in migration strategy 

(adaptation). 

 

Change in migration strategy 

 

My results indicated potential changes in migration strategy for some species. Although the 

different modelling methods showed similarities for some species, they also showed marked 

differences. Under both modelling techniques, though more so for CRS, trans-Saharan migrants 

gained non-breeding climatic space above the Sahara, changing their categorisation to split 

strategy migrants. These simulated changes may not necessarily mean changes in migratory 

behaviour. GAM, on the other hand, predicted that some S migrant species would lose their 

winter quarters across the Sahara and become E migrants, and some S migrants might become 

solely T migrants. Loss of suitable climatic space in an area may be a mechanism for changing 

migratory strategy especially for a partial migrant. However, it may lead to population declines if 

species cannot adapt or evolve.  

 Changes in the number of resident cells in proportion to the rest of their range showed 

that about 60% of short-distance migrants were likely to become more resident. Split strategy 

migrants did not change or decreased the amount of resident range in equal number, while a 
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minority of about 20% increased their proportion of resident range. Trans-Saharan migrants’ 

range proportions did not change for the majority (89%). These results suggest that short-distance 

migrants and some split strategy migrants may become more resident under future climate change 

as conditions become suitable on the breeding grounds all year round. Many Phylloscopus 

collybita, Phoenicurus ochruros and Turdus merula are already showing evidence of changes in 

migratory behaviour arising from milder winters (Birkhead, 2008). My results also suggest that 

species residing in dry environments (Mediterranean region) are more likely to become more 

resident than other species.  

Schaefer et al. (2008) modelled changes in migratory propensity (proportion of 

potentially migratory species in a grid cell) and migratory activity (proportion of potentially 

migratory species that actually migrate) to find out the future proportion of migratory species and 

the mechanisms behind these changes. They used changes in migratory propensity as a measure 

of community reassembly and changes in migratory activity as a measure of adaptation in 

species. Their future simulations produced increases in proportion of migratory species in 

southern Europe, which were due to community reassembly, and decreases in proportion of 

migratory species in the northern Europe attributed to adaptation. My results support these 

findings. However, Schaefer et al. (2008) concluded that community reassembly would lead to a 

more even spread of migrants across Europe and therefore climate change posed no general threat 

to migratory species. This view does not take into account multiple factors such as species’ 

winter range, ability to adapt or even shift ranges. Moreover, Henningsson and Alestram (2008) 

showed that bird community heterogeneity and species’ spatial turnover on the breeding grounds 

was dependant on non-breeding habitat and migratory distance, which might limit how range 

changes occur with climate change. 
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4.3.5 Conclusion 
 
This study compared the impacts of climate change between migrant species’ groups and 

investigated potential changes in migratory strategy. The results from the future simulations 

suggest that: 

 
1) Trans-Saharan migrants may fare worse under climate change. The results showed 

low overlap, lower range extent, large range shifts for trans-Saharan migrants but only 

on their non-breeding grounds, whilst split strategy migrants were simulated to have 

low overlap and low range extent on the breeding grounds. 

2) Short-distance migrants may be better off than long-distance migrants as the measures 

of change were better for these species. However, species richness changes and 

community reassembly did not appear to favour the European short-distance migrants. 

3) Short-distance and split strategy migrants may become more resident. The results 

show an increase in the proportion of resident cells for short-distance and some split 

strategy migrants. Short-distance strategies were simulated to become more 

widespread through new winter ranges in the Western Palaearctic and loss of climatic 

suitability in areas below the Sahara desert. 
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5. Species’ vulnerability to climatic change 
 
 
 
The forecast future range change for many species in response to climate change may have 

important consequences for the survival of many populations. Population abundance and 

range size are not independent (Lawton, 1993) and some studies have documented a link 

between population declines and range contractions (Fuller et al., 1995; Lister and Stuart, 

2008; Treinys et al., 2008), although the rate of decline may be different from the rate of 

range contraction (Shoo et al., 2005; Akçakaya et al., 2006; Rhodes et al., 2008).  

 Species have already responded to the current climatic change by changes in 

phenology and range expansion (Parmesan and Yohe, 2003), as well as range contraction 

(Thomas et al., 2006). It is more difficult, however, to attribute changes in population to 

climatic change because other factors also impact on species’ populations (see Newton, 

1998). A few studies have attempted to find a link between population change and climate. 

These studies demonstrate the association between population change and climate, rather than 

a demonstration of cause and effect. For instance, Juillard et al. (2004) found that birds with 

south-biased distributions were doing better than those with north-biased distributions in 

France. Treinys et al. (2008) also found a north-south gradient in changes in Cicona nigra 

populations in central Europe. Species may differ in their sensitivity to climate change due to 

their ecological characteristics, such as their migratory strategy (see section 4.3) or habitat 

preferences (Juillard et al., 2003). It is important to determine which species are most likely at 

risk. 

  In the first part of this chapter, an index of climate change impact on migratory species 

is developed. This index is a measure of species’ sensitivity to climate change. I investigate 

which species are most likely to suffer from climatic change and which are the least likely to 

do so in relation to their ecological characteristics. This index is based on the projected effects 

of climate change on the distribution of migratory birds. 

 Inferences made using changes in species’ ranges, as projected by species distribution 

models (SDM), are often used as a proxy for changes in species’ populations and extinction 

risk (Bomhard et al., 2005; Thuiller et al., 2005). However, this assumption is rarely tested. 

Finding out whether SDM can be used as a proxy for changes in population is necessary in 

order to: a) validate in part the use of these models (in part only as the primary purpose is to 

depict changes in range not population) and b) to provide a measure of the extent to which 

these models can be used to make inferences on the extinction risk of species. 
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 Green et al. (2008) demonstrated that SDM can be used to retrodict past population 

changes. Furthermore, Gregory et al. (2009) showed that recent population changes reflected 

the projected effects of climatic change. Their analysis provides the basis of an indicator of 

the impact of climate change on birds. However, as seen in the previous chapter, climate 

change may impact on migratory species differently.  

Species’ abundances change for a variety of reasons. Habitat loss or degradation and 

species’ persecution are known to cause decreases in population size. Severe weather is also a 

factor in species’ mortality. Indeed many migratory bird populations suffered during the 

Sahelian drought during the 1970s (Peach et al., 1991). It is reasonable therefore to expect 

that climate change may affect population size to a certain degree.   

 In the second part of this chapter, factors determining recent population trends of 

Afro-Palaearctic migratory birds are examined. Population changes may be associated with 

species-specific characteristics such as habitat, biome, migratory strategy or taxonomy. 

Indeed, both Gregory et al. (2007) and Seosane and Carrascal (2008) showed that bird 

population trends could be explained by species’ ecological traits. Furthermore, Bauer et al. 

(2008) found that passerines and non-passerines differed in their changes in abundance. 

Changes in climatic suitability on both breeding and non-breeding grounds are then related to 

population trends to discover whether climate is a factor in population changes and whether 

climatic models can be used to make inferences about future extinction risk. 

 In the final part of this chapter, future climate change risk is related to recent 

population change. I examine whether current population trends go in the direction predicted 

by the index. Furthermore, the population trends of species most at risk of climate change are 

examined, allowing for a discussion on the likelihood of populations’ vulnerability to climatic 

change. 
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5.1 Index of impact of future climatic change on species 
 

 

1.5.1 Introduction 
 
Climate change is projected to affect species in many different ways, including their 

population size, phenology, demography and distribution (see Chapter 2). In the previous 

chapter, measures of distributional change caused by climatic change were calculated for 

migratory birds. These measures demonstrated the potential impacts of climate change on 

migratory birds in general. Knowing the magnitude and direction of change for the vast 

majority of species is interesting but does not allow for focused conservation efforts, 

especially because there is a great variation in species’ responses to climate change (section 

4.2). Conservationists need to know which species are the most vulnerable to climate change. 

The IPCC (2001) defines vulnerability to climatic change as “the extent to which a natural or 

social system is susceptible to sustaining damage from climate change” (p.21) and states that 

“vulnerability is a function of the character, magnitude and rate of climate change and the 

variation to which a system is exposed, its sensitivity, and its adaptive capacity” (p.21). 

The IUCN Red list uses range size as one of their criteria to assess a species’ 

vulnerability/extinction risk (IUCN, 2001; IUCN, 2006). Consequently, the measures of 

change in species’ distributions as a result of climate change provide us with a measure of 

species’ sensitivity to climatic change. To assess a species’ vulnerability, the likelihood of the 

projected changes impacting on the species has to be taken into account. Assessing this is 

very difficult because information on the adaptive capabilities of many species do not exist. 

Furthermore, much of the projected change has never been experienced before (Overpeck et 

al., 1992; Jackson and Overpeck, 2000; Hobbs et al., 2006; Williams and Jackson, 2007). 

Current evidence suggests that many birds and migrant birds are responding to climatic 

change (see Chapter 2). For example, species are expanding their ranges polewards (Parmesan 

and Yohe, 2003) as models of distribution change project (Chapter 2 and section 4.2) and the 

declines of several bird populations have been linked to climatic change (Baillie and Peach, 

1992; Julliard et al., 2004; Beale et al., 2006; Sanderson et al., 2006).  The projected changes 

resulting from climate change are therefore very likely to affect species, especially when other 

considerations interacting with climate change such as habitat or land-use change are taken 

into account (Erasmus et al., 2002; Bomhard et al., 2005; Okes et al., 2008). 

Sensitivity or vulnerability indices for the impact of climate change on species are rare 

in the literature and no accepted methodological framework exists. Three studies were found 
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that attempted to quantify sensitivity or vulnerability of species to climatic change. Matsui et 

al. (2004) calculated a sensitivity index based on the difference in simulated probability of 

occurrences of Fagus crenata between current and future simulations and then used the 

reciprocal of the predicted probabilities as a vulnerability index. This provides a spatial 

element to a species’ vulnerability to climate change, whereas merely quantifying changes in 

range size for example does not. However, probability of occurrence obtained from a model is 

linked to species’ prevalence (Lui et al., 2005; Jimènez-Valverde and Lobo, 2007) which was 

not taken into account in the study, potentially biasing the results.  

Berry et al. (2006) used measures of range change to calculate four ‘sensitivity 

indicators’. They used a six-point scoring system to create the sensitivity indicators. These 

indicators were then combined to create two vulnerability indices based on whether or not the 

range expansion projected under climatic change was included. Although their conceptual 

index is attractive, it potentially suffers from their use of four highly correlated indicators. All 

the indicators related to an aspect of change in range size (new climate space, lost climate 

space, overlap and overall range size) which were then added together.   

Laidre et al. (2008) quantified the sensitivity of Arctic marine mammals to climate-

induced habitat change, using an expert-based scoring system on variables such as diet, 

migration or site-fidelity, that were likely to influence the response and vulnerability of Arctic 

marine mammals to climate change. Their sensitivity index assumes that all variables have 

equal influence on species. Their study is the first attempt objectively to quantify species’ 

sensitivity to climate change that includes many aspects of species’ ecology. 

Given the paucity of studies that address species’ vulnerability and the variety in their 

methodology, I created a vulnerability index for migrant birds using the measures of change 

calculated in the previous sections. Changes in range size, overlap between simulated current 

and future range, and changes in migration distance are likely to affect migrant birds. 

Reduction in the size of climatically suitable areas can affect populations negatively; 

responses will be seen either through changes in distribution or population numbers. A 

projected increase in range size may allow for population increase as well as range expansion. 

However, species have to be able to make use of new range. Physical, genetic, ecological or 

historical barriers may prevent a species from occupying newly suitable range. Moreover, 

even if a species is capable of expanding its range, vegetation and species may be slow to 

respond (Chapin III and Starfield, 1997; Menendez et al., 2006). Therefore, overlap is an 

important measure of change as it quantifies the amount of current range that is still suitable 

in the future and provides a “worst case scenario” of remaining range. The creation of a 

vulnerability index for migrants is potentially complex as environmental conditions, and how 
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climate change will affect these, may be different on the seasonal ranges. However, 

conditions on either one of their ranges are likely to have impacts on species (Gordo and 

Sanz, 2008) and as argued in section 4.2.3, cannot be independent of each other. Therefore the 

least favourable measure of change between breeding and non-breeding, i.e. the lowest value 

of overlap or relative range extent between the two goal areas, was used for the index.  

Furthermore, migration itself is a risk-filled endeavour because species need to have adequate 

fuel and/or stopover sites (Newton, 2006). Increases in migration distance are thus likely to 

put additional stress on species. The vulnerability index also takes change in migration 

distance into account. Having created a vulnerability index for migrant bird species, the 

questions then are:  

1) Which species are most vulnerable? 

2) Are there groups that are more vulnerable than others?  

3) What elements affect a species’ vulnerability to climate change? 

4) Which factors (overlap, range extent or migratory distance) contribute most to 

species’ vulnerability?  

These questions are investigated in this section by testing the influence of factors on 

vulnerability scores, such as a species’ habitat preference or migration strategy and 

investigating whether certain measures of change contribute more to a species’ vulnerability 

score. Furthermore, I discuss the contribution of climate change impacts on already threatened 

species, i.e. those on the IUCN Red List. The vulnerability index is not, however, used in any 

way to classify or reclassify species in terms of their extinction risk as defined by IUCN red 

list criteria (see Akçakaya et al., 2006). 
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5.1.2 Methods 

Vulnerability index 
 
The multi-model mean measures of projected change due to climate change from section 4.2 

were used to find, for each species, the minimum relative range extent (R), minimum overlap 

(O) and proportional change in migratory distance (PM) between present and future climate 

change for 2025, 2055 and 2085 A1B and A2 (see section 4.2). Minimum values refer to the 

minimum between the breeding and non-breeding measures. Species were then ranked 

separately for these three measures so that the species with the lowest R had the highest 

ranking, the lowest O had the highest ranking and the species with the highest PM had the 

highest rank. These three ranked values were then converted to scores using an ordinal scale 

of 1-10 for species in the 10 deciles such that species with an R, or O or PM score of 10 were 

the most vulnerable. For each species, a Vulnerability score (Vscore) was calculated by 

adding R, O and PM scores. The minimum Vscore was therefore 3 and the maximum Vscore 

30. Species with Vscores of 26-30 can be thought of as extremely vulnerable, Vscores 21-25 

as highly vulnerable, 16-20 as vulnerable, 11-15 as moderately vulnerable, and 3-10 as least 

vulnerable (see Table 5.1).  

Analyses 
 

Vscores were normalised by logit transformation because a Kolmogorov-Smirnov test 

indicated that Vscores were not normal (p < 0.001). Differences in vulnerability scores 

between 2025, 2055 and 2085 time-slices were tested by repeated-measures ANOVA1

The effects of a species’ habitat, biome, tolerance and migratory strategy (defined in 

Table 3.15 and Fig 3.5) and interaction between habitat and biome or tolerance and biome 

were tested using ANOVA for each time-slice and scenario with Tukey’s post hoc tests. 

 to see 

if species as a whole significantly changed their Vscores through time. 

The most important factor contributing to a species’ Vscore, was found by analysing 

which of the three categories or ‘indicators’ (R, O or PM) carried the most weight in the 

score. If either of these categories contributed to the score by a difference of 3 or greater than 

both of the other two factors, it was deemed to be contributing ‘most’ to the Vscore. Chi-

square tests were conducted to examine if the frequency of the most contributing indicator 

was evenly spread out, while Friedman tests examined whether categories changed between 

each time-slice. Chi-square tests were then conducted to determine if the contributing 

                                                 
1 Mauchley’s tests are in Appendix II as stated on p.75. 
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indicators were affected by species’ ecology (habitat, biome, breadth of niche (tolerance), or 

migratory category). 

IUCN Red list and Vscores 
 
Species found on the IUCN red list were examined in terms of their vulnerability to climate 

change. Of the nineteen migratory birds found on the red list in categories above ‘least 

concern’, two species are categorised as “endangered”, five as “vulnerable” and the rest as 

“near threatened”. Endangered (EN) species are those facing a very high risk of extinction in 

the wild, vulnerable (VU) a high risk of extinction and the near threatened (NT) category is 

assigned to species that do not qualify for critically endangered (CR), EN or VU but are close 

to qualifying or are likely to qualify for a threatened category in the near future (IUCN, 2001; 

IUCN, 2006). 

 

5.1.3 Results 

 

The distribution of Vscores showed a larger number of species with mid-range values (Fig. 

5.1). The concentration of high Vscores was slightly less by the end of the century compared 

with beginning and mid 21st century.  The number of species in each category of Vscore 

shows that the majority of migrant birds are potentially only moderately vulnerable to the 

effects of climate change (Table 5.1). Eleven to eighteen species were classified as extremely 

vulnerable according to their Vscores.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1: Number of species in each Vulnerability score category; VU = 
Vulnerable. 
Score Definition 2025 2055 2085 
  A1B A2 A1B A2 A1B A2 
V3-V10 least VU 40 38 31 32 30 31 
V11-V15 moderately VU 73 70 81 78 74 72 
V16-V20 VU 54 56 52 52 68 69 
V21-V25 high VU 45 47 47 50 46 46 
V26-V30 extremely VU 17 18 18 17 11 11 
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a) 

 
b) 
 

 
Figure 5.1: Frequency distribution of Vulnerability Scores for a) the A1B scenario and b) 
the A2 scenario. Blue represents 2025, red 2055 and green 2085. 

 

The indicators which contributed most to species’ low- to mid-range Vscores were not 

evenly spread out among species (Table 5.2). PM was more often important in contributing to 

Vscores than were the other indicators. R and O between current and future simulations 

become more important (in contributing towards a higher Vscore) towards the end of the 

century. However, there were no significant differences in category distribution between 

periods (A1B: χ2 = 1.16, p = 0.560; A2: χ2 = 0.56, p = 0.754). 
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Table 5.2: Number of times an indicator was more important than others in the 
Vulnerability scores and results of Chi-square test. *denotes level of significance. 
Indicator 2025 2055 2085 
 A1B A2 A1B A2 A1B A2 
Proportion migratory 
distance 44 47 43 45 38 40 
Percentage overlap 
(current-future) 11 13 8 10 12 17 
Relative range extent 10 10 11 13 20 17 
χ2 34.55*** 36.20*** 36.41*** 33.20*** 15.20** 14.29** 

 

Certain factors concerning species’ ecology did affect which indicators contributed 

most to a species’ Vscore. The breadth of a species’ niche (tolerance) did not make species 

more vulnerable to a specific indicator. Under the A1B emissions scenario, species’ habitat 

(2025: χ2
18 = 29.14, p = 0.047; 2055: χ2

18 = 35.95, p = 0.007; 2085: χ2
18 = 38.20, p = 0.004) 

contributed to vulnerability for certain indicators. Forest species were more likely to be 

vulnerable due to smaller future range extents, coastal and wetland species were more likely 

to be affected primarily by small overlap, whilst forest and wetland species were more likely 

to be affected by increases in average migratory distance.  

Biome also affected which indicators contributed most to Vscores except for breeding 

biome in 2025 (2025: breeding: χ2
21 = 18.67, p = 0.606, non-breeding: χ2

15 = 38.22, p = 0.001; 

2055: breeding: χ2
21 = 32.93, p = 0.047, non-breeding: χ2

15 = 36.94, p = 0.001; 2085: 

breeding: χ2
21 = 39.51, p = 0.009, non-breeding: χ2

15 = 36.38, p = 0.002). On the breeding 

grounds, species inhabiting temperate broad leaf and mixed forest or taiga were more 

vulnerable to changes in range extent. Species inhabiting temperate coniferous forest or the 

Mediterranean biome were more likely to suffer from low overlap between simulated current 

and future range and greater migration distances. On the non-breeding grounds, species 

inhabiting temperate broadleaf and mixed forests or tropical/subtropical grasslands, savannah 

or scrubland were more affected by changes in relative range extent than species residing in 

other biomes. Species in the drier biomes (Mediterranean forest, woodland and scrub or desert 

and xeric scrubland) were more likely to have high Vscores based on overlap between 

simulated current and future range. Proportional change in migratory distance was a 

contributing indicator mainly to species residing in tropical/subtropical grasslands, savannah 

or scrub.  
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Species’ migratory category influenced which factor contributed most to a species’ 

Vscore for the 2025 and 2055 time-slice but not 2085 (2025: χ2
6 = 18.10, p = 0.006; 2055: χ2

6 

= 13.59, p = 0.035; 2085: χ2
6 = 6.43, p = 0.375). European and split strategy species were 

more likely to have a predominant contributing indicator whilst Trans-Saharan species were 

more likely to have Vscores built with an even spread of indicators.  

 

Under the A2 scenario, species’ habitat characteristics affected which indicators 

contributed most to a species’ Vscore.  Non-breeding biome, however, affected which 

indicator contributed most to the Vscores (2025: χ2
15 = 25.93, p = 0.039; 2055: χ2

15 = 46.79, p 

= 0.000; 2085: χ2
15 = 35.76, p = 0.002) as under the A1B scenario. Breeding biome was only 

important for the 2085 time-slice (χ2
21 = 37.21, p = 0.016) with similar results to the A1B 

scenario. Similarly to A1B scenario, migratory category was important for 2025, 2055 but not 

2085 (2025: χ2
6 = 13.27, p = 0.039; 2055: χ2

6 = 17.59, p = 0.007; 2085: χ2
6 = 5.03, p = 0.542). 

 

Table 5.3-5.5 lists the species found in each Vulnerability category (along with contributing 

indicator) under the A1B scenario whilst the A2 scenario can be found in Tables A24-26. 

There is a mix of species (passerines and non-passerines) in each category, although more 

non-passerines occur in the extremely vulnerable category. Species in each category are 

similar across emission scenarios. Those in the extremely vulnerable category are very similar 

between 2025 and 2055 but are slightly different for 2085: Six species out of eleven for the 

A1B scenario and two out of eleven for the A2 scenario are common to both 2085 and 2055. 
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Table 5.3: Species in each vulnerability (VU) category according to their vulnerability scores (V) for 2025 A1B scenario. Most contributing indicator (R: relative range extent, 
O: overlap, PM: proportional change in  migratory distance) , indicator with a difference of either 3 or more from other indicators,  listed next to relevant species. 
V3-V10: least VU V11-V15: moderately VU V16-V20: VU V21-V25: highly VU V26-V30: extremely VU 
Acrocephalus arundinaceus Acrocephalus paludicola Accipiter nisus  (PM) Anas crecca                         Acrocephalus scirpaceus 
Alauda arvensis             Actitis hypoleucos (R) Acrocephalus palustris Botaurus stellaris                               Anas penelope 
Anas querquedula Anthus campestris Acrocephalus schoenobaenus (R) Calidris minuta Apus affinis 
Anthropoides virgo      (O)                 Anthus trivialis Anas acuta                                    Calidris temminckii Bubulcus ibis           
Ardea cinerea                                   Apus pallidus (PM) Anas clypeata   (PM)                                      Caprimulgus europaeus Charadrius morinellus 
Asio flammeus (R) Aquila clanga              Anas platyrhynchos (PM) Caprimulgus ruficollis Chlidonais hybridus                                                                                                       
Asio otus (PM) Ardea purpurea  (PM)               Anthus cervinus Carpospiza brachydactyla Ciconia nigra 
Calandrella brachydactyla        Ardeola ralloides  (PM)                   Anthus pratensis Charadrius hiaticula Egretta alba                        
Cercotrichas galactotes Aythya nyroca  (PM) Anthus spinoletta Ciconia ciconia Falco columbarius 
Charadrius alexandrinus (O) Burhinus oedicnemus  (PM)               Apus apus (R) Emberiza cia Milvus migrans 
Childonias niger                                                                                                                   Buteo buteo (O) Aquila heliaca                      Emberiza caesia  Neophron percnopterus 
Circus pygargus Buteo rufinus (PM) Aquila nipalensis Emberiza cineracea    Oenanthe xanthoprymna            
Clamator glandarius Carduelis cannabina (PM) Aquila pomarina Falco cherrug                          Pelecanus onocrotatus 
Coccothraustes coccothraustes Carduelis carduelis (PM) Arenaria interpres Ficedula semitorquata Porzana parva                       
Coturnix coturnix Carduelis chloris (PM) Aythya ferina  (PM) Gallinago gallinago    Sterna sandvicensis                 
Delichon urbica Cettia cetti  (PM) Aythya fuligula Geronticus ermita Tachybaptus ruficollis 
Emberiza schoeniclus             Chlidonias leucopterus                                                                                             Calidris alpina                                                                                                  Hippolais icterina Turdus torquatus 
Erithacus rubecula (R) Cicaetus gallicus Charadrius dubius Irania gutturalis  
Falco naumanni               Circus cyaneus Circus aeruginosus Lanius nubicus                                            
Falco peregrinus                    Columba palumbus Circus macrourus Larus fuscus                         
Fringilla coelebs Coracias garrulus Egretta garzetta Larus ribundus                                       
Glareola praticola   (O)       Crex crex  (PM)     Emberiza hortulana Limosa lapponica                                                                                                           
Himantopus himantopus Cuculus canorus Falco eleonorae            Locustella naevia  
Hippolais languidae (PM) Falco subbuteo Falco vespertinus Lymnocryptes minimus                                  
Hippolais pallida (PM) Falco tinnunculus Ficedula albicollis Melanocorypha bimaculata                      
Hirundo rustica                                 Ficedula hypoleuca Gelochelidon nilotica                                                                                    Merops apiaster  
Lanius senator       (PM)                                            Gallinago media               Grus grus                           Monticola saxatilis              
Luscina megarhynchos (PM) Gallinula chloropus                    Hieraaetus pennatus Motacilla cinerea (PM)  
Marmaronetta angustirostris (O) Gyps fulvus Hirundo daurica                                          Muscicapa striata  
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Table 5.3 continued     
V3-V10: least VU V11-V15: moderately VU V16-V20: VU V21-V25: highly VU V26-V30: extremely VU 
Monticola solitarius                Hippolais polyglotta (PM) Jynx torquilla Numenicus phaeopus                                             
Nycticorax nycticorax (PM) Hirundo rupestris                                              Lanius collurio                                                      Oriolus oriolus  
Oenanthe hispanica Ixobrychus minutus (PM) Lanius minor                                           Otus scops  
Oenanthe isabellina Larus genei  (O)                                               Limosa limosa                   Passer hispaniolensis  
Regulus regulus (R) Limicola falcinellus  (O)                                                                                                    Melanocorypha calandra  (PM)                      Pluvialis apricaria  
Streptopelia turtur Locustella fluviatilis Netta rufina Regulus ignicapillus (PM)  
Sturnus vulgaris Locustella lusciniodes (O) Numenicus arquata                                           Saxicola torquata  
Sylvia cantillans (PM) Lullula arborea   (PM)                   Passer montanus Sylvia borin  
Sylvia communis (PM) Luscinia luscinia Philomachus pugnax                                                       Sylvia curruca  
Sylvia melanocephala Luscinia svecica   (PM)     Phoenicurus ochruros                Sylvia deserticola  
Turdus pilaris (R) Miliaria calandra   (PM)             Plefadis falcinellus (PM) Sylvia hortensis  
 Milvus milvus Podiceps cristatus (PM) Sylvia rueppelli  
 Motacilla alba Podiceps nigricollis Tachymarptis melba                                
 Motacilla flava Recurvirostra avosetta Tadorna tadorna (PM)  
 Oenanthe oenanthe Sterna albifrons                                                                        Tringa erythropus                                                                
 Oenanthe pleschanka        Sterna caspia                                                       Tringa nebularia                                                                           
 Pandion haliaetus Sterna hirundo                                     
 Pernis apivorus Sylvia artricapilla   
 Phoenicurus phoenicurus Sylvia nisoria   
 Phylloscopus bonelli (PM) Sylvia sarda   
 Phylloscopus collybita Tadorna ferruginea (PM)   
 Phylloscopus sibilatrix Tringa glareola                                                                     
 Phylloscopus trochilus  (R) Upupa epos   (PM)                            
 Platalea leucorodia (PM) Vanellus vanellus (PM)   
 Porzana porzana (O) Xenus cinereus                                                                                             
 Porzana pusilla    
 Prunella modularis (R)    
 Rallus aquaticus (O)    
 Riparia riparia                                           
 Saxicola ruberta    
 Scolopax rusticola                                                                                                             
 Serinus serinus (PM)    



 202 

 
 
 
Table 5.4: Species in each vulnerability (VU) category according to their vulnerability scores (V) for 2055 A1B scenario. Most contributing indicator (R: relative range extent, O: 
overlap, PM: proportional change in  migratory distance) , indicator with a difference of either 3 or more from other indicators,  listed next to relevant species. 
V3-V10: least VU V11-V15: moderately VU V16-V20: VU V21-V25: high VU V26-V30: extremely VU 
Acrocephalus arundinaceus (PM) Acrocephalus schoenobaenus (R) Accipiter nisus    (PM) Anas crecca                         Acrocephalus scirpaceus 
Alauda arvensis             Actitis hypoleucos (R) Acrocephalus paludicola Anthus cervinus Anas penelope 
Anas querquedula Anthropoides virgo                       Acrocephalus palustris Apus apus Apus affinis 
Ardea cinerea                                   Anthus campestris Anas acuta                                    Aquila nipalensis Bubulcus ibis           
Burhinus oedicnemus   (PM)             Anthus pratensis Anas clypeata    (PM)                                     Botaurus stellaris                               Caprimulgus ruficollis 
Cercotrichas galactotes Anthus trivialis Anas platyrhynchos (PM) Calidris alpina    (PM)                                                                                            Carpospiza brachydactyla 
Charadrius alexandrinus  (O) Ardea purpurea   (PM)           Anthus spinoletta Calidris minuta Charadrius morinellus 
Circus aeruginosus Ardeola ralloides   (PM)                   Apus pallidus Calidris temminckii Chlidonais hybridus                                                                                                       
Clamator glandarius (PM) Asio flammeus Aquila clanga              Charadrius hiaticula Egretta alba                        
Coccothraustes coccothraustes Asio otus (PM) Aquila heliaca                      Ciconia ciconia Emberiza caesia  
Columba palumbus Aythya nyroca  (PM) Aquila pomarina Ciconia nigra Lymnocryptes minimus                                  
Coturnix coturnix Buteo buteo Arenaria interpres Circus macrourus Melanocorypha bimaculata                      
Cuculus canorus Buteo rufinus (PM) Aythya ferina (PM) Emberiza cineracea    Neophron percnopterus 
Delichon urbica Calandrella brachydactyla  (PM)     Aythya fuligula Falco cherrug                          Oenanthe xanthoprymna            
Emberiza schoeniclus             Carduelis cannabina  (PM) Caprimulgus europaeus Falco columbarius Pelecanus onocrotatus 

 
Table 5.3 continued     
V3-V10: least VU V11-V15: moderately VU V16-V20: VU V21-V25: highly VU V26-V30: extremely VU 
 Sylvia conspicillata  (PM)    
 Sylvia melanothorax (O)    
 Sylvia nana    
 Sylvia undata    
 Tringa ochropus                                                                                 
 Tringa stagnatilis                                                                                        
 Tringa totanus                                                                                             
 Troglodytes troglodytes (PM)    
 Turdus iliacus (R)    
 Turdus merula (PM)    
 Turdus philomelos (PM)    
 Turdus viscivorus    
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Table 5.4continued     
V3-V10: least VU V11-V15: moderately VU V16-V20: VU V21-V25: highly VU V26-V30: extremely VU 
Erithacus rubecula (R) Carduelis carduelis (PM) Egretta garzetta Falco vespertinus Porzana parva                       
Fringilla coelebs Carduelis chloris (PM) Embeiza cia (PM) Ficedula semitorquata Sterna sandvicensis                 
Glareola praticola               Cettia cetti (PM) Emberiza hortulana Gallinago gallinago    Tachybaptus ruficollis 
Gyps fulvus Charadrius dubius (PM) Falco eleonorae            Gelochelidon nilotica                                                                                    
Himantopus himantopus Childonias niger                                                                                                                   Falco subbuteo Geronticus ermita  
Hippolais languidae Chlidonias leucopterus                                                                                             Ficedula albicollis Grus grus                            
Hippolais pallida (PM) Cicaetus gallicus (PM) Ficedula hypoleuca Hippolais icterina  
Lanius senator  (PM)                                                 Circus cyaneus Gallinago media               Irania gutturalis  
Larus genei   (O)                                                  Circus pygargus Hieraaetus pennatus Lanius nubicus                                            
Marmaronetta angustirostris (O) Coracias garrulus Jynx torquilla Larus fuscus                         
Oenanthe hispanica Crex crex        Lanius collurio                                                      Larus ribundus                                       
Oenanthe isabellina (PM) Falco naumanni               Limosa limosa                   Limicola falcinellus                                                                                                      
Sturnus vulgaris Falco peregrinus                    Locustella fluviatilis Limosa lapponica                                                                                                           
Sylvia communis  (PM) Falco tinnunculus Locustella lusciniodes Locustella naevia (O)  
Sylvia melanocephala Gallinula chloropus                    Luscinia luscinia Merops apiaster  
Turdus merula Hippolais polyglotta (PM) Monticola saxatilis             Milvus migrans  
 Hirundo daurica                                          Motacilla cinerea (PM) Numenicus phaeopus                                             
 Hirundo rupestris                                              Muscicapa striata Oriolus oriolus  
 Hirundo rustica                                 Netta rufina Otus scops  
 Ixobrychus minutus  (PM) Numenicus arquata                                           Podiceps nigricollis  
 Lanius minor  (O)                                         Pandion haliaetus (R) Porzana pusilla  
 Lullula arborea                      Passer hispaniolensis Saxicola torquata  
 Luscina megarhynchos (PM) Passer montanus (PM) Sterna caspia                                                       
 Luscinia svecica        Philomachus pugnax (R)                                                    Sylvia borin  
 Melanocorypha calandra    (PM)                   Pluvialis apricaria Sylvia deserticola  
 Miliaria calandra   (PM)             Regulus ignicapillus (PM) Sylvia rueppelli  
 Milvus milvus Sterna albifrons   (O)                                                                     Sylvia sarda  
 Monticola solitarius                Sterna hirundo                                    Tachymarptis melba                                
 Motacilla alba Sylvia conspicillata (PM) Tadorna tadorna (PM)  
 Motacilla flava Sylvia curruca Tringa erythropus                                                                
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Table 5.4. continued     
V3-V10: least VU V11-V15: moderately VU V16-V20: VU V21-V25: highly VU V26-V30: extremely VU 
 Nycticorax nycticorax (PM) Sylvia hortensis (PM) Tringa nebularia                                                                           
 Oenanthe oenanthe Sylvia nisoria Turdus torquatus  
 Oenanthe pleschanka        Tadorna ferruginea (PM)   
 Pernis apivorus Tringa glareola   (R)                                                                
 Phoenicurus ochruros                Upupa epos    (PM)                       
 Phoenicurus phoenicurus Vanellus vanellus   
 Phylloscopus bonelli (PM) Xenus cinereus                                                                                             
 Phylloscopus collybita    
 Phylloscopus sibilatrix    
 Phylloscopus trochilus    
 Platalea leucorodia (PM)    
 Plefadis falcinellus    
 Podiceps cristatus    
 Porzana porzana (O)    
 Prunella modularis  (R)    
 Rallus aquaticus    
 Recurvirostra avosetta    
 Regulus regulus    
 Riparia riparia                                           
 Saxicola ruberta    
 Scolopax rusticola                                                                                                             
 Serinus serinus    
 Streptopelia turtur  (PM)    
 Sylvia artricapilla    
 Sylvia cantillans (PM)    
 Sylvia melanothorax (O)    
 Sylvia nana    
 Sylvia undata    
 Tringa ochropus                                                                                 
 Tringa stagnatilis                                                                                        
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Table 5.4. continued     
V3-V10: least VU V11-V15: moderately VU V16-V20: VU V21-V25: highly VU V26-V30: extremely VU 
 Tringa totanus    
 Troglodytes troglodytes     
 Turdus iliacus  (R)     
 Turdus philomelos     
 Turdus pilaris (R)     
 Turdus viscivorus (R)     
 
 
Table 5.5: Species in each vulnerability (VU) category according to their vulnerability scores (V) for 2085 A1B scenario. Most contributing indicator (R: relative range extent, O: 
overlap, PM: proportion migratory distance) , indicator with a difference of either 3 or more from other indicators,  listed next to relevant species. 
V3-V10: least VU V11-V15: moderately VU V16-V20: VU V21-V25: highly VU V26-V30: extremely VU 
Acrocephalus arundinaceus Acrocephalus schoenobaenus Accipiter nisus   (PM)      Anas acuta                                    Anthus cervinus 
Alauda arvensis             Actitis hypoleucos Acrocephalus paludicola Anas crecca                         Calidris minuta 
Ardea cinerea                                   Anas querquedula Acrocephalus palustris Anas penelope (R) Calidris temminckii 
Cercotrichas galactotes Anthus campestris (PM) Acrocephalus scirpaceus Apus affinis Caprimulgus ruficollis 
Charadrius alexandrinus (O) Anthus pratensis (R) Anas clypeata                                         Apus apus Chlidonais hybridus                                                                                                       
Circus aeruginosus Anthus trivialis (R) Anas platyrhynchos Bubulcus ibis           Lymnocryptes minimus                                  
Coccothraustes coccothraustes Ardea purpurea   (PM)             Anthropoides virgo                       Calidris alpina                                                                                                  Melanocorypha bimaculata                      
Columba palumbus Ardeola ralloides  (PM)                   Anthus spinoletta Carpospiza brachydactyla Porzana parva                       
Coturnix coturnix Asio flammeus  (R) Apus pallidus Charadrius morinellus Sterna caspia                                                       
Cuculus canorus Asio otus  (PM) Aquila clanga              Ciconia nigra Sterna sandvicensis                 
Delichon urbica Aythya fuligula (R) Aquila heliaca                      Circus macrourus Sylvia sarda 
Erithacus rubecula (R) Aythya nyroca (PM) Aquila nipalensis (O) Egretta alba                         
Falco tinnunculus (R) Burhinus oedicnemus    (PM)             Aquila pomarina Emberiza caesia   
Fringilla coelebs Buteo buteo Arenaria interpres Emberiza cineracea     
Glareola praticola  (O)          Buteo rufinus (PM) Aythya ferina Emberiza hortulana  
Gyps fulvus Calandrella brachydactyla (PM)     Botaurus stellaris                               Falco cherrug                           
Himantopus himantopus Carduelis cannabina (PM) Caprimulgus europaeus Falco columbarius  
Hippolais pallida (PM) Carduelis carduelis  (PM) Charadrius hiaticula (R) Falco eleonorae             
Luscinia svecica        Carduelis chloris (PM) Chlidonias leucopterus                                                                                             Falco vespertinus  
Marmaronetta angustirostris (O) Cettia cetti Ciconia ciconia Ficedula albicollis  
Oenanthe hispanica (PM) Charadrius dubius (PM) Circus cyaneus Ficedula semitorquata  
Oenanthe isabellina Childonias niger   (O)                                                                                                                Coracias garrulus Gelochelidon nilotica                                                                                    
Pernis apivorus Cicaetus gallicus (PM) Falco peregrinus                    Geronticus ermita  
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Table 5.5. continued     
V3-V10: least VU V11-V15: moderately VU V16-V20: VU V21-V25: highly VU V26-V30: extremely VU 
Phoenicurus ochruros                Circus pygargus Falco subbuteo Grus grus                            
Riparia riparia                                         Clamator glandarius (PM) Ficedula hypoleuca Irania gutturalis  
Sterna albifrons  (O)                                                                   Crex crex        Gallinago gallinago    Lanius nubicus                                            
Streptopelia turtur (PM) Egretta garzetta (PM) Gallinago media               Limicola falcinellus                                                                                                      
Sturnus vulgaris Embeiza cia Hieraaetus pennatus Limosa lapponica                                                                                                           
Sylvia communis (PM) Emberiza schoeniclus           Hippolais icterina Locustella naevia  
Turdus merula (R) Falco naumanni               Hippolais polyglotta (PM) Luscinia luscinia  
 Gallinula chloropus                    Hirundo rupestris                                              Merops apiaster  
 Hippolais languidae Lanius collurio                                                      Numenicus phaeopus                                             
 Hirundo daurica                                          Larus ribundus                                       Oenanthe xanthoprymna             
 Hirundo rustica  (R)                              Locustella fluviatilis Pelecanus onocrotatus  
 Ixobrychus minutus (PM) Locustella lusciniodes Philomachus pugnax  (R)                                                     
 Jynx torquilla Milvus migrans Podiceps nigricollis  
 Lanius minor    (O)                                       Milvus milvus Porzana pusilla  
 Lanius senator   (PM)                                           Monticola saxatilis             Sterna hirundo                                    
 Larus fuscus                        Motacilla cinerea (PM) Sylvia curruca  
 Larus genei   (O)                                                 Muscicapa striata Sylvia deserticola  
 Limosa limosa  (O)            Neophron percnopterus (PM) Sylvia rueppelli  
 Lullula arborea                      Netta rufina  (O) Tachybaptus ruficollis (PM)  
 Luscina megarhynchos (PM) Numenicus arquata                                           Tachymarptis melba                                
 Melanocorypha calandra   (PM)                       Oriolus oriolus Tadorna tadorna  
 Miliaria calandra   (PM)           Otus scops Tringa erythropus                                                                
 Monticola solitarius                Pandion haliaetus (E) Tringa nebularia                                                                           
 Motacilla alba Passer hispaniolensis   
 Motacilla flava Passer montanus  (PM)   
 Nycticorax nycticorax (PM) Phylloscopus bonelli   
 Oenanthe oenanthe Phylloscopus trochilus (R)   
 Oenanthe pleschanka        Pluvialis apricaria   
 Phoenicurus phoenicurus Recurvirostra avosetta (O)   
 Phylloscopus collybita Regulus ignicapillus (PM)   
 Phylloscopus sibilatrix Regulus regulus   
 Platalea leucorodia (PM) Saxicola torquata   
 Plefadis falcinellus  (PM) Sylvia borin (R)   
 Podiceps cristatus Sylvia cantillans (PM)   
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Table 5.5. continued     
V3-V10: least VU V11-V15: moderately VU V16-V20: VU V21-V25: highly VU V26-V30: extremely VU 
 Porzana porzana Sylvia conspicillata  (PM)   
 Prunella modularis  Sylvia hortensis   
 Rallus aquaticus Sylvia nisoria   
 Saxicola ruberta Sylvia undata   
 Scolopax rusticola                                                                                                            Tadorna ferruginea (PM)   
 Serinus serinus Tringa glareola   (R)                                                                
 Sylvia artricapilla Tringa ochropus  (R)                                                                          
 Sylvia melanocephala Tringa stagnatilis                                                                                       
 Sylvia melanothorax (O) Tringa totanus                                                                                            
 Sylvia nana Turdus torquatus   
 Troglodytes troglodytes Xenus cinereus                                                                                             
 Turdus iliacus  (R)    
 Turdus philomelos (R)    
 Turdus pilaris (R)    
 Turdus viscivorus (R)    
 Upupa epos  (PM)                           
 Vanellus vanellus    
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Table 5.6: Species IUCN red list category (EN: endangered; VU: vulnerable; NT: near threatened) and their Vscore category (least VU, 
moderately VU, VU, highly VU and extremely VU) the A1B and A2 emissions scenario and for 3 different time-slices. 

  A1B Vscore category A2 Vscore category 
Species IUCN 

category 2025 2055 2085 2025 2055 2085 

Falco cherrug EN Highly VU Highly VU Highly VU Highly VU Highly VU VU 
Neophron percnopterus EN Extremely VU Extremely VU VU Extremely VU Extremely VU VU 
Acrocephalus paludicola VU Moderately VU VU VU Moderately VU VU VU 
Aquila clanga VU Moderately VU VU VU VU Highly VU VU 
Aquila heliaca VU VU VU VU VU VU VU 
Falco naumanni VU Least VU Moderately VU Moderately VU Least VU Moderately VU Moderately VU 
Marmaronetta angustirostris VU Least VU Least VU Least VU Least VU Least VU Least VU 
Aythya nyroca NT Moderately VU Moderately VU Moderately VU Moderately VU Moderately VU Moderately VU 
Circus macrourus NT VU Highly VU Highly VU VU Highly VU Highly VU 
Coracias garrulous NT Moderately VU Moderately VU VU Moderately VU Moderately VU VU 
Crex crex NT Moderately VU Moderately VU Moderately VU Moderately VU Moderately VU Moderately VU 
Emberiza cineracea NT Highly VU Highly VU Highly VU Highly VU Highly VU Highly VU 
Falco vespertinus NT VU Highly VU Highly VU VU Highly VU Highly VU 
Ficedula  semitorquata NT Highly VU Highly VU Highly VU Highly VU Highly VU Highly VU 
Gallinago media NT Moderately VU VU VU Moderately VU VU VU 
Limosa limosa NT VU VU Moderately VU VU VU VU 
Milvus milvus NT Moderately VU Moderately VU VU Moderately VU Least VU VU 
Numenicus arquata NT VU VU VU VU VU VU 
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Species that are extremely vulnerable in all scenarios, such as Sterna sandvicensis, are 

predicted to lose much of their range and have little or no overlap between simulated current and 

future range (digital appendix).  Acrocephalus scirpaceus is a species that is classified as 

extremely vulnerable in 2025 and 2055 but only as vulnerable in 2085. Although the models 

project a steady decrease in range on the breeding grounds, climatic suitability on the non-

breeding grounds improves in 2085 (digital appendix). This species is projected to lose much of 

its non-breeding range in 2025 and 2055 but increase it in 2085. Contrary to this non-linear 

temporal response to climate change, other species, like Sylvia sarda, are projected steadily to 

increase their vulnerability score (Tables 5.3-5.5). Many species in the extremely vulnerable 

category have small ranges (either breeding or non-breeding) which are known to make species 

more vulnerable to stressors. 

Factors affecting species’ Vulnerability Scores 
 

Differences in (logged) raw Vscores for species did not differ among future time periods 

(A1B: F(1.32, 300.97) = 0.478, p = 0.542; A2: F(1.48, 338.03) = 0.189, p = 0.761). 

 No factors affected Vscore in 2025 under either the A1B or the A2 scenario. However, 

under the A1B scenario, Vscores were affected in the 2055 time-slice by species’ habitat (F6 = 

2.65, p = 0.018), migratory category (F2 = 3.54, p = 0.031) and the interaction between habitat 

and winter biome (F17 = 1.78, p = 0.034). Species inhabiting predominantly coastal or upland 

environments (Figure 5.2) had significantly greater Vscores than those inhabiting open habitat or 

forests. Trans-Saharan migrants (Figure 5.3) had significantly greater Vscores than European 

migrants. Post hoc tests also revealed that species in tropical/subtropical grassland, savannah and 

scrubland or desert and xeric scrubland were significantly more vulnerable than those in 

temperate broadleaf and mixed forests. 
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Figure 5.2: Box plots of species’ vulnerability score by species’ habitat for 2055 A1B 
scenario. Numbers of species in each category: Open = 59; Forest=52; Upland = 14; 
Wetland = 52; Human = 5; Coastal = 23; Scrub = 24. 
 

 
Figure 5.3: Box plots of species’ vulnerability score by species’ migratory category for 
2055 A1B scenario. Numbers of species in each category (see section 4.3) 
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Under the A1B scenario, Vscores were affected in the 2085 time-slice by species’ habitat 

(F6 = 2.39, p = 0.031), migratory category (F2 = 5.01, p = 0.008), the interaction between habitat 

and non-breeding biome (F17 = 2.161, p = 0.007) and the interaction between non-breeding biome 

and non-breeding tolerance (F2 = 4.51, p = 0.012). Species found predominantly in coastal or 

upland environments (Figure 5.4) had significantly greater Vscores than those inhabiting forests 

or human environments. Trans-Saharan migrants (Figure 5.5) had significantly greater Vscores 

than European and Split-strategy migrants. Post hoc tests also revealed that species in desert and 

xeric scrubland were significantly more vulnerable than those in temperate broadleaf and mixed 

forests. 

 

 

 
Figure 5.4: Box plots of species’ vulnerability score by species’ habitat for 
2085 A1B scenario. Numbers of species in each category: Open = 59; 
Forest=52; Upland = 14; Wetland = 52; Human = 5; Coastal = 23; Scrub = 24. 
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Figure 5.5: Box plots of species’ vulnerability score by species’ migratory category 
for 2085 A1B scenario. Numbers of species in each category (see section 4.3) 

 

 

Under the A2 scenario, Vscores were affected in the 2055 scenario by species’ migratory 

category (F2 = 3.11, p = 0.047) and the interaction between non-breeding biome and non-

breeding tolerance (F2 = 3.26, p = 0.041). Trans-Saharan migrants were significantly more 

vulnerable than European migrants (Figure 5.6) while those species in tropical/subtropical 

grassland, savannah and scrubland were more vulnerable that those in temperate broadleaf and 

mixed forests. 
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Figure 5.6: Box plots of species’ vulnerability score by species’ migratory category 
for 2055 A2 scenario. Numbers of species in each category (see section 4.3) 

 

 

Under the A2 scenario, Vscores were affected in the 2085 time-slice by species’ habitat 

(F6 = 2.40, p = 0.030), migratory category (F2 = 5.49, p = 0.005) and the interaction between 

habitat and non-breeding biome (F17 = 1.86, p = 0.025). Species inhabiting predominantly coastal 

areas (Figure 5.7) had significantly greater Vscores than those associated with open habitat, forest 

or human habitat. Trans-Saharan migrants (Figure 5.8) had significantly greater Vscores than 

European and Split-strategy migrants. Post hoc tests also revealed that species in desert and xeric 

scrubland were significantly more vulnerable than those in temperate broadleaf and mixed 

forests. 
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Figure 5.7: Box plots of species’ vulnerability score by species’ habitat for 
2085 A2 scenario. Numbers of species in each category: Open = 59; 
Forest=52; Upland = 14; Wetland = 52; Human = 5; Coastal = 23; Scrub = 24. 

 
 

 
Figure 5.8: Box plots of species’ vulnerability score by species’ migratory 
category for 2085 A1B scenario. Numbers of species in each category (see 
section 4.3) 
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IUCN Red list and Vscores 
 
Table 5.6 (p.208) shows species’ red list categories and their Vscores. Most species' climate 

sensitivity increases through time. The A2 scenario projects virtually the same classification as 

the A1B scenario. 

  Falco cherrug and Neophron percnopterus are currently classified as endangered and are 

at a very high risk of extinction. Falco cherrug is classified as EN mainly because of the 

falconary trade, habitat degradation and pesticides (Birdlife International, 2004). Neophron 

percnopterus is classified as EN with severe declines in India, Europe and Africa (Birdlife 

International, 2004). Both these species are also projected to suffer from the impact of climate 

change. Falco cherrug is classified as highly vulnerable in all time periods. Neophron 

percnopterus is classified as extremely vulnerable for 2025 and 2055, but only as vulnerable for 

2085, although it is likely that sustained pressure from the first part of the century may inhibit 

recovery in the more favourable conditions predicted in the latter part of the century.  

 In the IUCN VU category, three of the five species are classified as either moderately 

vulnerable to climate change or vulnerable to climate change. Falco naumanni is classified as 

least vulnerable in 2025, however, and Marmaronetta angustirostris as least vulnerable in all 

time periods. Marmaronetta angustirostris’ populations have declined throughout their winter 

range due to extensive habitat destruction (Birdlife International, 2004). Habitat was not taken 

into account in the modelling process so it may be that the climate model projections are not 

enough to project species' true climate sensitivity because climatic change may interact with 

habitat change. Falco naumanni is also declining due to habitat loss (Birdlife International, 

2004). 

In the IUCN NT category, the majority of species are categorised as either moderately VU 

or VU. Falco vespertinus and Circus macrourus are classified as highly VU from 2055 onwards 

and Ficedula semitorquata and Emberiza cineracea as highly VU in all time periods.  Habitat 

loss and degradation are thought to be contributing to decline of these species’ populations 

(Birdlife International, 2004). These species’ climate sensitivities are such that the IUCN 

categorisation may require upgrading if species’ populations further decline due to climate 

change. Akçakaya et al. (2006) suggest that species could be upgraded to VU (but not EN or CR) 

due to climate change threat under criterion D (defined as “Population with a very restricted area 

of occupancy (typically less than 20 km2) or number of locations (typically five or fewer) such 
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that it is prone to the effects of human activities or stochastic events within a very short time 

period in an uncertain future”, p.23) of the Red list criteria (IUCN, 2001). 

 Only 19 migratory birds are currently listed as threatened or near threatened. The 

vulnerability index however, shows that some species (Tables 5.3-5.5) are likely to be severely 

affected by climate change and may need to be classified as NT until the relevant conditions are 

met for species to be listed as threatened on the Red list (Akçakaya et al., 2006). 

 

5.1.4 Discussion   

 

The results suggest that 6% of the migrant bird species analysed are extremely vulnerable to 

climate change and that a further 20% are highly vulnerable. These migrants are projected to lose 

much of their current range without new range becoming available on either their breeding or 

non-breeding grounds, along with a lengthening of their average migratory distance. Most of the 

species that are extremely vulnerable to climate change are non-passerine species with narrow 

ranges. Many of these species will also be dependent on particular habitat requirements that may 

be further degraded by climate change impacts. The results presented are continent-wide. 

However, species may be regionally exposed to different conditions and so their response may be 

more plastic than projected (Laidre et al., 2008). On the other hand, the results may be 

conservative, because measures from only one of the seasonal ranges are used. Moreover, as 

Harte et al. (2004) suggest, evolutionary adaptation may make species less vulnerable than 

previously thought, with responses being mediated through ecological, physiological and 

population dynamic processes. Indeed Thomas et al. (2001) showed plastic responses to climate 

change by four insect species, with two species increasing the variety of habitats they could 

colonise and two species increasing the number of dispersive phenotypes so as to colonise newly 

suitable areas. However, insects have rapid population turnover and high numbers which 

facilitates rapid selection. This may not be the case for bird species. Moreover, under the 

precautionary principle, it has to be assumed that species may not be able to adapt. 

The results also revealed differential changes in species’ vulnerability through time. Some 

species’ vulnerability is projected to change linearly whilst other species exhibited a non-linear 

response. This non-linear response, often seen as amelioration in conditions towards the end of 

the century, can be technically explained by the movement of a species’ climatic envelope 

through time across the fragmented space that makes up the study area. The space is fragmented 
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because the underlying climate, upon which the climate models are built, fit a global space, 

whilst the species distribution models fit a restricted space. The effects of non-linearity in future 

climatic suitability may be evidenced through population fluctuations. Amelioration in climatic 

suitability for some species towards the end of the century may provide a mechanism for species’ 

survival. Indeed, change in climatic suitability is unlikely to impact species instantaneously. In a 

recent study, Devictor et al. (2008) showed that birds were lagging behind climate change. 

Currently, the majority of European birds are not listed as threatened on the IUCN Red 

list. IUCN are looking at ways to incorporate future climate change impacts into their decision 

criteria but have not done so yet because “the understanding of the response of any specific 

species to future climate change is not sufficiently robust to provide quantitative estimates”2

Thuiller et al. (2005b) evaluated future extinction risk from climate change for 1350 plant 

species in Europe for 2065, using a combination of range loss, overlap and new range. Under a 

no migration scenario, their results indicated that over 50% of species would be classified as VU 

or above, whilst under the full migration scenario about 30% of species would fall into a 

threatened category. Thuiller et al.’s (2005b) study was criticised by IUCN in a press release 

(Parmesan and Hilton-Taylor, 2005) whilst all the above mentioned studies were criticised in a 

paper by Akçakaya et al. (2006). Akçakaya et al. (2006) argue that all these studies misapplied 

the IUCN criteria, that have stringent rules (Rodrigues et al., 2006), and hence introduce bias and 

uncertainty. Specifically, Akçakaya et al. (2006) find five areas of fault. First of all, quantitative 

estimates of extinction risk can only be obtained if enough data, such as demographic data, are 

 

(Parmesan and Hilton-Taylor, 2005). However, a handful of studies have tried to do so. Thomas 

et al. (2004) used changes in range extent as a proxy for extinction risk and found that 5-16% 

species were projected to lose all range by 2050 and 15-40% to lose 90% of their range by that 

date (Thomas et al., 2004). Loosely using the IUCN criteria, Bomhard et al. (2005) calculated the 

current threat status of Proteaceae taxa in the Cape Floristic region and then calculated the future 

threat status using future overlap range extents for 2020 climate change and land-use change 

scenarios. They concluded that, although the threat category of the majority of the study taxa did 

not change in the future, between 3.5% and 29.1% of taxa would be uplisted, and 1.7% of taxa 

would be down listed. My results also indicate some amelioration in vulnerability status to 

climate change for some species. However, amelioration in climate space may or may not 

translate to population changes.  

                                                 
2 http://intranet.iucn.org/webfiles/doc/SSC/SSCwebsite/News/Climate_change_editorial.pdf 
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available. Second, the IUCN criteria have a clear temporal scale of 10 years or 3 generations. All 

the studies used different time-scales that do not match the criteria. Third, is the issue of spatial 

scale. The IUCN Red List is made from a global assessment, to take into account species’ entire 

range. All the studies concentrate on only part of species’ ranges such as Europe in Thuiller et 

al.’s (2005) study. My results, for the most part, take species’ entire range into account. However, 

this is not the case for some species. For example, Neophron percnopterus also resides in India 

which was not modelled. Fourth, is the question of resolution and spatial measures. My study like 

many studies on climate change impact is of too coarse a resolution accurately to portray 

extinction risk. The IUCN uses two spatial measures: extent of occurrence and area of 

occupancy. My study like many others only examines extent of occurrence which does not 

necessarily equate to area of occupancy. Moreover, changes in population size can occur at a 

faster rate than changes in range extent (Shoo et al., 2005b) and rate of change in occupancy can 

also accelerate with reduced range size (Rhodes et al., 2008). Fifth, climate change impact 

studies often assume that the relationship between distribution and population size is linear. 

Although this is sometimes the case, it is not always valid, and nor will species decline at the 

same rate that area declines (Akçakaya et al., 2006). Because of all these factors, using climate 

impact modelling studies to estimate extinction risk is difficult. However, Akçakaya et al. (2006) 

suggest that they might be used to classify species currently not at risk as NT or potentially as 

VU using criterion D (IUCN, 2001; IUCN, 2006). Because of all these difficulties, this study has 

not attempted to estimate species’ extinction risk but, rather, to highlight species’ vulnerability to 

climate change and explore whether species currently on the Red List index are also vulnerable to 

climate change. This study finds that many species projected to be the most vulnerable to climate 

change are not currently on the Red List and may therefore need to be monitored. Furthermore, 

those already on the red list are mostly sensitive to future climate change. 

 

Factors affecting species’ sensitivity to climate change 

  

Many studies have sought to find correlates of “extinction risk” or any ecological traits that might 

predispose species to changes in range as a result of environmental modification. Sekercioglu 

(2007) analysed extinction risk of birds in the Amazon from fragmentation. He found that 

specialist bird species were more vulnerable than generalists to habitat modifications, even if they 

were mobile. Thuiller et al. (2005a) analysed whether species’ niche properties or niche extent 

were related to species’ sensitivity to projected climate change. They found that some niche 
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characteristics contributed to sensitivity but that exposure to climate change was the determining 

factor. They concluded that niche characteristics were powerful indicators of sensitivity. 

Specifically they found that boreo-alpine species were highly sensitive while Mediterranean 

species with medium niche breath and size were not, as they potentially benefited from climatic 

change. My study found that overall vulnerability of migratory species, as defined by range loss, 

little overlap and increasing migratory distance, was greatest among species from dry 

environments. However, like Thuiller et al. (2005), who used only range extent, boreo-alpine 

species were projected to have reduced range sizes in the future. 

 Two previous studies examined the ecological and life-history traits that might be 

correlated with observed range changes. Amano and Yamaura (2007) used a phylogenetic 

generalised least squares model and an ordinary least squares model to find the traits that were 

associated with the contracting ranges of breeding birds in Japan. Both models found that species 

with medium body-size, low annual productivity, solitary breeding, farmland habitat and long-

distance migrants all experienced severe range contractions. The similar results obtained from 

their two models showed that “comparative data were not so dependent on phylogeny” (Amano 

and Yamaura, 2007, p.278). Jetz et al. (2008) also found phylogeny to be of negligible 

importance in the analyses of their comparative data. These findings give greater confidence in 

my results that do not attempt to include such comparative analyses. 

Okes et al. (2008) examined how habitat use and life history affected water bird responses 

to habitat change in South Africa. They found that species that had expanded their ranges were 

mobile species capable of long-distance migration. However, they did not find that any life-

history traits predisposed water birds to range change in response to habitat change. An 

interesting finding of this study was that anthropogenically mediated habitat change was more of 

an influential driver in range change than climate change. Indeed some bird species responded to 

the creation and/or destruction of wetlands by expanding or contracting their ranges. Climate 

change impacts could therefore be mitigated by the creation of species-specific habitats or as a 

result of certain land-use changes. Indeed it is possible that irrigation in the southern margin of 

species’ ranges is the reason why some predicted contractions of range have not been seen 

(Böhning-Gaese and Oberrath, 2003). 

My results show that species' ecology (habitat, migratory category and biome) affects 

species' vulnerability to projected climate change. Coastal and upland species are projected to be 

more vulnerable, as are grassland, savannah and desertic species. Coastal and upland species are 

more likely to have smaller ranges, constrained by geography. Moreover, these areas are 
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generally climatically different to the surrounding landscape, making it difficult for species to 

find contiguous climate space in the future.  

The results also show trans-Saharan migrants to be more vulnerable to climate change 

than European and split strategy migrants. This finding may support the hypothesis put forward 

in the literature that climate has contributed to the current declines in long-distance migrants 

(Sanderson et al., 2006; Amano and Yamaura, 2007). However, this interpretation of my results 

relies on the assumptions of the modelling techniques used (see Chapter 3), which are not always 

met (see Chapter 3 & 6). Moreover, it assumes that climate is the overarching factor determining 

species’ distributions and population change which may not be true (see section 5.2). Finally it is 

likely that other factors, such as habitat loss, have also played an important role in driving trans-

Saharan migrants’ population declines. Long-distance migrants may also be more vulnerable than 

the index calculated here suggests because it takes no account of the changes in phenology that 

have been reported to be affecting migrants (Both et al., 2006).  

The results indicated that niche breadth did not impact on the vulnerability scores. It is 

often thought that niche breadth should be important in terms of sensitivity to environmental 

change (Thuiller et al., 2005a; Sekercioglu, 2007). However, Thuiller et al. (2005a) also did not 

find a clear signal that niche breadth affected species’ sensitivity to climate change. One of the 

reasons why this might be the case is that ranges of specialised species with narrow geographic 

distributions are often overestimated in broad scale atlas data (Jetz et al., 2008). This would mean 

that the estimates of species’ sensitivity to climate change are over-optimistic.  

As well as characterising which species were most vulnerable to the effects of climate 

change, this study also looked at the relationship between species’ ecology and specific measures 

of change in distribution: changes in range extent, loss of current climate space (overlap), and 

changes in average migratory distance. The results indicate that forest species are more likely to 

experience contractions in range extent in the future. Wetland and coastal species are more likely 

to experience low overlap between current and future suitable climate. Forest and wetland species 

are more likely to experience greater proportional change in migratory distance in the future. 

In terms of biome, which is also a proxy for latitude, forest/taiga species are more likely 

to experience contractions in range extent, which is a result of pole-ward squeeze of biomes in 

their European breeding areas. Drier biome species are more likely to experience low overlap 

between current and future areas of suitable climate; whilst forest, Mediterranean and grassland 

species are more likely to experience greater proportional change in migratory distance in the 

future. 
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5.1.5 Conclusion 

 

The results of this study suggest that trans-Saharan migrants, coastal species, upland species and 

those currently living in drier biomes are most likely to be vulnerable to the impacts of climatic 

change. However, uncertainty surrounding these results is still large despite using all the 

methodology available to reduce the uncertainty, such as testing the robustness of the models, 

using a consensus model and using a multi-model average.  

An important area of uncertainty is how population dynamics and changes in numbers of 

individuals relate to geographical distribution changes. Although potential range changes are 

interesting and important for the management of populations, knowledge of how populations 

might change, or whether they will change, in response to climate change is vital for 

conservationists. Indeed species may be sensitive to climate change, but population dynamic 

processes may buffer changes in species’ numbers (Ådal et al., 2006). In the next section, 

changes in climatic suitability, as modelled by the species distribution models used throughout 

this thesis, will be used to investigate these questions. 
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5.2 Recent population changes and climate 
 
 
 
 
5.2.1 Introduction 
 
Changes in the number of birds within different countries across Europe have been documented 

in a number of studies. The most comprehensive Europe-wide studies have been undertaken by 

the Pan-European Common Bird Monitoring Scheme with data from 1980-2004, and by BirdLife 

International for the period 1970-1990 (Tucker and Heath, 1994) and the period 1990-2000 

(Birdlife International, 2004). These censuses highlight widespread declines of forest and 

farmland specialists (Gregory et al., 2007), as well as of long-distance migrants (Sanderson et al., 

2006).  

 Various factors have been proposed to explain these declines. Habitat loss and 

degradation, land-use change and persecution account for the majority of the declines. Indeed the 

20th century saw major changes to the European landscape. Much semi-natural habitat has been 

destroyed since 1945: wetlands were drained and forests, hedgerows and heath lands cleared for 

intensive agriculture (Fuller and Ausden, 2008; Dallimer et al., 2009). Agricultural intensification 

caused declines of many species. In the UK, declines in farmland birds coincided with the main 

period of agricultural intensification between 1970-1988 (Chamberlain et al., 2000; Newton, 

2004). Changes in woodland management, especially reduction of coppicing as well as natural 

succession, were also the cause of some bird population changes (Fuller et al., 2007; Holmes, 

2007). By contrast, in the latter part of the 20th century, conservation of bird habitats and the 

creation of man-made water-bodies, as well as species’ protection measures, have resulted in the 

recovery of some bird populations (Birdlife International, 2004; Bauer et al., 2008; Ausden and 

Fuller, 2009). 

 Changes on the African non-breeding grounds may also have contributed to population 

changes. Agricultural intensification and desertification have impacted on species’ non-breeding 

habitats (Sanderson et al., 2006). Moreover, drought in Sub-Saharan Africa between 1960 and 

1990 caused many trans-Saharan bird populations to decline (Peach et al., 1991; Baillie and 

Peach, 1992; Marchant, 1992; Jones et al., 1996). Clearly, severe climatic and weather-realted 

changes can have important consequences for bird populations. 
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Climatic change as a driver of population change 
 

Climatic change has been suggested as a cause of some population declines (Birdlife 

International, 2004; Beale et al., 2006; Sanderson et al., 2006; Mac Nally et al., 2009). However, 

“the mechanisms behind how environmental change translates into population change are poorly 

understood” (Ådahl et al., 2006, p.1627) and the amount climate change contributes to population 

change is also unknown. Analyses of historical analogues may give some insight into how 

populations respond to a period of climatic change. Lister and Stuart (2008) analysed the 

response of large mammals to climate change in the late Quaternary. Following climate-mediated 

changes to their habitat, large mammals’ ranges and abundances contracted which, coupled with 

human intervention (hunting), ultimately led to species’ extinction.  

 Several studies have sought a direct link (though not a causal link) between population 

change in birds or some other demographic parameter and climate. Saether et al. (2000) showed 

that variation in reproductive rate in Cinclus cinclus populations in southern Norway was 

influenced by population density and mean winter temperature. Barbraud and Welmerskirsh 

(2001) showed that annual average sea temperature in the Sourthern Ocean accounted for most of 

the yearly survival of Aptenodytes forsteri. Beale et al. (2006) suggest that the decline of Turdus 

torquatus populations in Britain may be due to changes in climate, as the decline in territory 

occupancy was related to climatic variables, specifically to summer temperature and rainfall and 

winter rainfall. Finally, MacNally et al. (2009) suggest that the collapse of the avifauna of the 

interior Eucalyptus woodlands of South-East Australia may be in part climate driven, as they 

found no other factor contributing to species’ decline in their analysis.  The studies mentioned 

here are a few examples from the literature but are by no means intended to be representative or 

exhaustive. 

Jonzén et al. (2002) used population models to analyse changes in migratory populations 

with winter quarters in Europe. They found that winter climate affected rate of population change 

of migratory birds. Sillett et al. (2000) investigated the effect of El Niño Southern Oscillation on 

Dendroica caerulescens by correlating Southern Oscillation Index (SOI) with annual survival on 

the breeding and non-breeding range. They found a strong correlation between SOI and annual 

survival on the non-breeding range but not on the breeding range. However, annual fecundity was 

also correlated with SOI and affected species’ demography in the subsequent year (Sillett et al., 

2000). This indicates that climatic change may have time-lagged effects on species’ populations. 

Sandvik et al. (2008) also found the presence of time lagged climatic effects on breeding success 
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in their study of 13 seabirds. Anders and Post (2006) quantified the relationship between climate 

and population dynamics of Coccyzus americanus. They found that macroclimate affected 

population densities with a one year time lag. Furthermore, their analysis indicated that “the 

strength of the effect of local temperatures was predictive of long-term population decline” 

(Anders and Post, 2006, p.226).  This indicates that climate impact studies such as this thesis may 

therefore be useful in determining the effects of climate change on species’ populations as well as 

on their distribution. However, other factors than climate, such as habitat availability, affect 

species’ populations. 

Climate envelopes and population change 
  

The use of species’ climate envelope models (CEM) to infer future population change or 

extinction risk has been heavily criticised (see previous section), mainly because the link between 

range change, which is what CEM project, and species’ populations is not necessarily 

straightforward. However, it is not unreasonable to use changes in climatic suitability as 

projected by CEM to infer population changes. Indeed, it can be argued that climatic suitability is 

just as relevant an index to species (if not more, as CEM are tailored to represent species’ niches) 

as SOI or the North Atlantic Oscillation. Green et al. (2008) demonstrated this by using trends in 

climatic suitability as modelled by Climate Response Surfaces to predict past bird population 

trends (1980-2002) in the UK. They found a positive association between population trends and 

climatic suitability, although there was considerable unexplained variation in the models. They 

concluded that these results provided greater confidence in CEM as well as the possibility of 

using CEM to explore the impacts on populations as well as range changes. 

 In this study, I will explore which factors, including breeding and non-breeding climatic 

suitability trends as projected by CEM, contribute to migratory bird population trends during the 

periods 1970-1990 and 1990-2000. It is expected that habitat may be an important factor for the 

1970-1990 period when landscape change was greatest both in Europe (Chamberlain et al., 2000) 

and Africa (Olson et al. 2004). Passerines and non-passerines may also differ in their population 

trends and in which factors are important, because differences in mean body size may affect, for 

example, population growth rate and species’ vulnerability to threats. Bauer et al. (2008) found 

significant diverging trends in species richness of passerines and non-passerines in central Europe 

between 1980-1990 and 1990-2000. Non-passerines, on the other hand may be more habitat 
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dependent as many are wetland or coastal birds. Therefore, the analysis will be done separately 

for the two taxonomic groups as well as for all species as a group. 

5.2.2 Methods 

Climate data 
 
Precipitation, temperature and cloudiness data were taken from the CRU TS 2.1 data set 

(Mitchell and Jones, 2005). This data set comprises monthly values from climate observations 

from 1901-2002 that are gridded at a global level at 0.5 º longitude x latitude. These variables 

interpolated to the grids used in the study using spline surfaces (method describe in Hutchinson, 

1989) for each year from 1960-2000. These variables, in conjunction with soil texture, were 

transformed to provide the set of bioclimatic variables as described in Chapter 3.  

Population data 
 
Bird population trend data for the 1970-1990 period (Tucker and Heath, 1994) and 1990-2000 

period (Birdlife International, 2004) were gathered for each of the 229 species used in this thesis. 

Data for the 1970-1990 period were scarcer than for 1990-2000. In the first time series, 

population trends were available for 141 species and, in the second time series, for 205 species. 

Average European population trends were categorised as large decline, small decline, stable, 

small increase and large increase for the first time period and as large decline, moderate decline, 

small decline, stable, small increase, moderate increase and large increase for the second (Tucker 

and Heath, 1994; BirdLife International, 2004). These were coded on ordinal scales ranging from 

-2 to +2 for the 1970-90 period and -3 to +3 for the 1990-2000 period. No data values, as well as 

those categorised as fluctuating populations (nine species in each time period) were coded as 

missing data and omitted from the analyses. 

Models and analyses 
  

Climate Response Surfaces (CRS) and Generalised Additive Models (GAM) were fitted for each 

species to the climatic norm (see Chapter 3) and then run for each year (1960-2000) for every 

species for both the breeding and non-breeding grounds. 

Species’ average climate suitability (probability of occurrences) was calculated separately 

for the breeding grounds and non-breeding grounds for each year. For each time period, a 
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regression was performed on logit transformed annual averages. The slope of the regression was 

termed the climatic suitability trend (CST).  

 

All species 

 

The relationship between GAM and CRS breeding climatic suitability trend (CSTb) and non-

breeding climate suitability trend (CSTnb) was tested using Pearson’s correlation for the entire 

time period. Kruskall-Wallis tests were conducted with population trend as the response and 

habitat, migration category, order, breeding biome and winter biome as the independent 

variables. 

To model the effect of these factors and climate on population trends, a particular class of 

logistic regression models was used. Because the dependent variable is ordinal, using a model 

that incorporates the ordinal nature of the variable is necessary. Ordinal regression was developed 

by McCullough (1980) based on the idea that the response categories are seen as adjacent cut-offs 

on a continuous scale. The odds of the response falling within a category or lower categories are 

described by (Eq. 5.1; McCullagh, 1980; Johnson and Albert, 1999): 

 

Log[γj(x)/(1- γj(x))] = θj – βx      (1≤ j<k)                                                                                  (5.1) 

 

Where [γj(x)/(1- γj(x))] is the odds of getting score j (with k number of categories); x is the given 

covariate, β is a vector of unknown parameters and θj is the cut-off for category j of k.  

 

Equation 5.1 is called the proportional odds model and uses a log link function. Another type of 

ordinal regression models is the proportional hazards model which uses a complementary log-log 

link function (Eq. 5.2; McCullagh, 1980): 

 

Log[-log(1- γj(x))] = θj – βx                                    (5.2) 

 

This model is based on conditional, rather than cumulative, probabilities used in the proportional 

odds model (Harrell, 2001). The complementary log-log link function is useful if the response 

variable is skewed (SPSS Inc., 2006). In the proportional odds model, the logit link function 

assumes the response variable is evenly distributed whilst using a probit link function (ordinal 

probit model) assumes a normal distribution (SPSS Inc., 2006). 
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Ordinal regression was performed in R using the polr function in the MASS package (R 

Development Core Team, 2006) with population trend as the response variable and a 

complementary log-log link function (proportional hazards model). This link function was chosen 

because the response variable was skewed. Other link functions were also tried but model fit 

indicated that the complementary log-log link function was indeed better suited.  

Twenty-four models in total were run for each time period and Akaike’s Information 

Criterion (AIC) was used to select the best models. The first model was a null model (containing 

only 1 as the predictor variable). The subsequent models included climate variables (CSTb and 

CSTnb) as well as significant confounding variables, such as habitat (see Table 3.15), biome (see 

Fig. 3.5), taxonomic grouping (passerine or non-passerine) or migratory strategy. A step-wise 

AIC procedure was used to determine the minimum adequate model (MAM). The MAM was 

termed the ‘base model’ and contained only the variables that that had been shown (by Kruskal 

Wallis tests) to significantly affect species’ population trends. Stepwise regression procedures 

have been shown to have several flaws, one of which is the final chosen model – MAM, which is 

not generally the best model (Johnson and Omland, 2004; Whittigham et al., 2006), and 

consequently many authors have advised against their use (Whittigham et al., 2006; Mundry & 

Nunn, 2009). However, the reason for the use of stepwise regression and MAM, in this thesis, 

was to find a baseline model to control for major effects, an approach which has been recently 

suggested as an instance where the use of stepwise procedures is appropriate (Garamszegi et al., 

2009). 

The next group of models included the base model and either CSTb or CSTnb or both 

(here after called ‘climate’). In the following models, CSTb and CSTnb with either a two- year or 

a one-year time lag were included. Many studies have found a one- or two-year time lag in bird 

population responses to inter-annual climatic variability (Sillett et al., 2000; Anders and Post, 

2006; Thingstad et al., 2006; Sandvik et al., 2008). The final models tested included, as well as 

the base model, CSTb with one-year time lag and CSTnb with two-year time lag or CSTb and 

CSTnb with a one-year time lag. Models were built using GAM and CRS climate suitability 

trends. The final models considered for comparisons were those with a ∆AIC of less than 7 

(Burnham and Anderson, 2002). Furthermore, only models better than the null model (smaller 

∆AIC) or within 2 ∆AIC of the null model (Burnham and Anderson, 2002) were considered.  

GAM and CRS fitted ordinal models were compared using likelihood ratio tests to 

establish whether the two models were significantly different from each other. Likelihood ratio 

tests were also used to compare the null model against the base model, and the base model 
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against the other models. Comparison with the null model tests whether the model without 

predictors is significantly different from a model with predictors and gives an indication of model 

fit. 

 Goodness-of-fit of ordinal regressions is given by the residual deviance and follows a χ2 

distribution. Residual deviance divided by the degrees of freedom gives the over-dispersion of 

the model (Johnson and Albert, 1999). Analyses of residual deviance (likelihood ratio tests) can 

be used in model selection like AIC and determines, for example, the fit of the model versus the 

null model.  Both analyses of residual deviance and AIC were used to select the best model(s). To 

test whether an independent variable had a statistically significant relationship with the dependent 

variable, the Wald statistic was calculated and compared against the Chi-square distribution 

(SPSS Inc., 2006). However, both analyses of residual deviance and the Wald test need to be 

corrected for over-dispersion (see Johnson and Albert, 1999).  

 Chi-square tests were undertaken to determine goodness-of-fit for each species using the 

predicted trend values (highest probability) for each species from the models and the observed 

trend. The predicted trend values for each species were also transformed into 3 trend direction 

values (sum of decreasing probabilities, stable probabilities, sum of increasing probabilities). 

Chi-squares tests were then undertaken using observed direction of trend (decrease, stable, or 

increase) against predicted direction of trend. 

Non-passerines and passerines 
 

Kruskall-Wallis tests were conducted for both time periods with population trend as the response 

and habitat, migration category, order, breeding biome and winter biome as the independent 

variables for each taxonomic group separately.  

For non-passerines, ordinal regression models were built as above with up to a five-year 

time lag in CST. Thompson and Ollason (2001) showed a five year time lag in Fulmarus 

glacialis population response to environmental change, in terms of summer temperature 

anomalies and winter NAO index, due to their delayed reproduction. Non-passerines were further 

split depending on age of first breeding (one-two years; and above two years) before redoing the 

analyses.  

For passerines, ordinal regression models were built as detailed in the ‘all species’ 

analysis. ‘Base models’ were only built if any of the non-climatic variables proved to have an 



 229 

effect on population trends. Otherwise, models including only the climate suitability trends were 

built. 

5.2.3 Results 

Climatic suitability 
 

Climatic suitability varied greatly among years and species (Tables A27-29). Figures 5.9-5.10 

show annual variation in mean climatic suitability for Erithacus rubecula and Sylvia atricapilla 

respectively. These show that the scatter in climatic variability produces very weak trends. In 

some cases, as for Erithacus rubecula, both GAM and CRS produce similar trend values (in the 

same direction), but in other cases, such as for Sylvia atricapilla, there are subtle differences 

(GAM and CRS have a different direction of trend for the breeding models). However, 

correlations between 1960-2000 GAM CST and CRS CST (Fig. 5.11) were significant (Breeding: 

rho = 0.838, p<0.0001; Non-breeding: rho = 0.666, p<0.0001) showing that climatic suitability 

trends were similar for both modelling techniques. Trends were slightly stronger during the 1990-

2000 period than for the 1970-90 period (Table 5.7). 

 

Table 5.7: Median,  minimum and maximum  breeding climatic suitability trends (CSTb) and non-
breeding climatic suitability (CSTnb)  as modeled by GAM and CRS for two time periods 

 1970-1990 1990-2000 
 CSTb  CSTnb CSTb  CSTnb 

 GAM CRS GAM CRS GAM CRS GAM CRS 
Median -0.0001 -0.0007 -0.0005 -0.0012 -0.0008 0.0006 0.0012 0.0028 

Minimum -0.0509 -0.0293 -0.0156 -0.0167 -0.0446 -0.0263 -0.0529 -0.0176 
Maximum 0.0250 0.0124 0.0055 0.0067 0.0274 0.0489 0.0293 0.0556 
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Figure 5.9: Logit average climate suitability and trend for Erithacus rubecula for a) GAM breeding 
model, b) GAM non-breeding model, c) CRS breeding models and d) CRS non-breeding model 
 

 

 

 

 

 



 231 

 

 

 

 

a) 
y = -0.0003x + 3.2047

R2 = 0.0234

2.63

2.64

2.65

2.66

2.67

2.68

2.69

2.70

2.71

2.72

2.73

2.74

1960 1965 1970 1975 1980 1985 1990 1995 2000

Lo
gi

t a
ve

ra
ge

 c
lim

at
e 

su
ita

bi
lit

y

 

b) 
y = 0.0008x + 0.4259

R2 = 0.0238

1.80

1.85

1.90

1.95

2.00

2.05

2.10

2.15

2.20

2.25

1960 1965 1970 1975 1980 1985 1990 1995 2000

Lo
gi

t 
av

er
ag

e 
cl

im
at

e 
su

it
ab

ili
ty

 
c) 

y = 0.0001x + 2.3542
R2 = 0.0019

2.52

2.54

2.56

2.58

2.60

2.62

2.64

2.66

2.68

2.70

1960 1965 1970 1975 1980 1985 1990 1995 2000

Lo
gi

t a
ve

ra
ge

 c
lim

at
e 

su
ita

bi
lit

y

 

d) 

y = 0.0004x + 1.4105
R2 = 0.012

2.05

2.10

2.15

2.20

2.25

2.30

2.35

1960 1965 1970 1975 1980 1985 1990 1995 2000

Lo
gi

t a
ve

ra
ge

 c
lim

at
e 

su
ita

bi
lit

y

 
Figure 5.10: Logit average climate suitability and trend for Sylvia atricapilla for a) GAM breeding 
model, b) GAM non-breeding model, c) CRS breeding model and d) CRS non-breeding model 
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Figure 5.11: Relationship between GAM and CRS a) breeding climate suitability trend and b) non-
breeding climate suitability trend across species 
 

Population change 
 
Figure 5.12 shows that the majority of species’ populations were either stable or declining in 

Europe during the two time periods. A Kruskal-Wallis test showed that species’ habitat affected 

species’ categorisation for the 1970-1990 period (H6= 15.36, p < 0.05) but not for the 1990-2000 

period (H6= 6.24, p = 0.397). A greater proportion of species residing in open habitat and wetland 

habitat declined during the first time period, whilst the majority of forest species’ populations 

remained stable (Fig.5.12). Grouping (passerine or non-passerine) affected species’ 

categorisation for both time periods (1970-1990 period: H1= 5.29, p < 0.05; 1990-2000 period: 

H1= 4.99, p < 0.05) with a greater proportion of non-passerines declining. Migratory category 

affected species’ categorisation for the 1990-2000 period (H2= 6.09, p < 0.05) but the effect was 

not statistically significant for the 1970-1990 period (H2= 5.38, p = 0.068). Short-distance 

migrant population trends tended to stay stable (50% stable, 30% declining and 20% increasing), 

trans-Saharan migrants declined (60% declining) and split-strategy migrants varied in their 

response (49% declining, 31% stable; 20% increasing; Fig. 5.13). Neither breeding biome nor 

non-breeding biome affected species’ population trend (1970-1990 period: breeding biome: H6 = 

9.82, p = 0.133, non-breeding: H5 = 10.64, p = 0.059; 1990-2000 period: breeding biome: H6 = 

1.40, p = 0.965, non-breeding: H5 = 5.23, p = 0.389). 
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a) 

 

b) 

 
Figure 5.12: Frequency of species in each population trend category by habitat category for a) 1970 to 1990 where -2= large decline, -1= 
small decline, 0= stable, 1= small increase and 2= large increase; b) 1990-2000 where -3= large decline, -2= moderate decline, -1= small 
decline, 0= stable, 1= small increase, 2= moderate increase and 3= large increase. 
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Figure 5.13: Number of species in each migratory category for the 1990-2000 trend where -3= 
large decline, -2= moderate decline, -1= small decline, 0= stable, 1= small increase, 2= moderate 
increase and 3= large increase. Blue = European migrants, red = split-strategy migrants and 
yellow = Trans-Saharan migrants. 
 
 
Separate Kruskall-Wallis tests revealed that none of the tested variables was significant for late 

breeding non-passerines in either time period. Early breeding non-passerines, those that breed 

within the first two year, were affected by migratory strategy (H2= 6.41, p <0.05) and non-

breeding biome (H4= 10.45, p < 0.05) for the 1970-1990 period. For passerines, habitat had an 

effect on population trends for the 1970-1990 period (H4= 11.80, p < 0.05). 

 

Models of population change 
 

All species 
 
Models that were retained for the 1970-1990 data included either both breeding and non-breeding 

climate trends together or non-breeding climate trends alone, along with the base models (Table 

5.8). Analyses of deviance (log-likelihood tests) revealed that GAM and CRS climatic models 

were not significantly different from each other. The base model was significantly better than the 

null model (LR6 = 21.64, p < 0.01) and all models were significantly better than the null model.  
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AIC model selection showed that the best model was the base model plus GAM CSTnb 

with a two-year time lag, closely followed by the equivalent CRS model (Table 5.8). Residual 

deviance analysis also confirmed that the inclusion of these climatic variables improved the base 

model (Table 5.8). 
 

Table 5.8: Ordinal regression Statistics for all species with 1970-1990 population trend as the 
response variable. CRS = Climate Response Surface; GAM = Generalised Additive Models; b = 
breeding; nb = non-breeding; CST = climate suitability trend; climate = CSTb+CSTnb;  Null∆dev is 
the difference in deviance with the null model and Base∆dev is the difference in deviance with the 
base model. * denotes 0.05 significance level; ** denotes significance at 0.001 level. 

Model 
Residual 
Deviance 

no. 
Estim. d.f. 

Over- 
dispersion Null∆dev 

Base 
∆dev AIC ∆AIC 

Base +  GAM CSTnb t = -2 342.95 11 121 2.83 27.30** 5.66* 364.95 0.00 
Base + CRS CSTnb t=-2 344.11 11 121 2.84 26.14** 4.50* 366.11 1.16 
Base +  GAM climate  t = -2 342.65 12 120 2.86 27.60** 5.96* 366.65 1.70 
Base + GAM CSTbt=-1+ CSTnbt=-2 342.91 12 120 2.86 27.34** 5.70* 366.91 1.96 
Base + CRS CSTb t=-1+ CSTnb t=-2 342.94 12 120 2.86 27.31** 5.67 366.95 2.00 
 Base +CRS climate  t = -2 343.06 12 120 2.86 27.19** 5.55* 367.06 2.11 
Base + CRS CSTnb t=-1 345.33 11 121 2.85 24.92** 3.28 367.39 2.44 
Base + GAM CSTnb t = -1 346.11 11 121 2.86 24.14** 2.50 368.11 3.16 
Base + GAM CSTbt=0 + CSTnbt=-1 344.16 12 120 2.87 26.09** 4.45 368.16 3.21 
 Base + CRS climate  t = -1 344.20 12 120 2.87 26.05** 4.41 368.20 3.25 
Base  (Habitat + Order) 348.61 10 122 2.86 21.64**  368.61 3.66 
Base + CRS CSTb t=0 + CSTnb t=-1 344.99 12 120 2.87 25.26** 3.62 368.99 4.04 
Base +  CRS CSTnbt = 0 348.09 11 121 2.88 22.16** 0.52 370.09 5.14 
Base + GAM CSTnb t = 0 348.09 11 121 2.88 22.16** 0.52 370.09 5.14 
Base +  GAM climate  t = -1 346.10 12 120 2.88 24.15** 2.51 370.09 5.14 
Base+ GAM climate  t = 0 346.55 12 120 2.89 23.70** 2.06 370.58 5.63 
Base + CRS climatet = 0 347.93 12 120 2.90 22.32** 0.68 371.93 6.98 
Null 370.25 4 128 2.89   378.25 13.30 

 
 

For the best full model, the coefficients and associated standard error and Wald statistic 

are shown in Table 5.9.  CSTnb showed an effect on population trend. However, the standard 

error was large. In fact, the over-dispersion in the model (Table 5.8) was very high, which 

suggests that the predictor variables do not explain the population trends very well. Correcting 

the values for over-dispersion (Johnson and Albert, 1999) in the models revealed that none of the 

models was significantly different from the base model (though they were better than the null 

model). 
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Table 5.9: Estimated coefficients for the ordinal regression (population trend ~ GAM 
climate (t = -2) + habitat + order) 
Variables Value Std. Error t value Wald p 
GAM CSTb t = -2 14.57 28.25 0.52 0.27 > 0.05 
GAM CSTnb t = -2 -94.25 39.62 -2.38 5.65 < 0.05 
Forest species  0.84 0.31 2.71 7.32 < 0.01 
Upland species 1.02 0.49 2.05 4.18 < 0.05 
Wetland species 0.44 0.37 1.19 1.42 > 0.05 
Coastal species 1.09 0.45 2.41 5.79 < 0.05 
Scrub species 0.56 0.39 1.43 2.05 > 0.05 
Order 0.72 0.26 2.74 7.53 < 0.01 

 
 

  Table 5.10 shows the distribution of predicted values (highest probability) from the null 

model and the best model. Both of these were significantly different from the observed trend 

(Null: χ2
3=255.2, p< 0.0001; Best model: χ2

3= 66.02, p<0.001). The null model predicted correct 

trends for 45 species and wrong trends for 87 species. The best model predicted 61 correct trends 

and 71 wrongly predicted trends. Chi-square showed that the best model was significantly better 

than the null model (χ2
1= 8.63, p<0.01). Examining only trends (decrease/stable/increase), the 

null model correctly predicted 71 (53%) trends and the best model 82 (62%). In this case the best 

model was marginally better than the null model (χ2
1= 3.69, p=0.05). Out of those wrongly 

predicted, eleven species were predicted to have opposite trends: Gyps fulvus, Falco eleonorae, 

Falco peregrinus, Grus grus, Pandion haliaetus, Ciconia nigra, Netta rufina, Larus fuscus, 

Chlidonias hybridus, Hippolais pallid and Sylvia melanothorax all show overall small increases 

during that time, but were predicted to decrease.  

 
 
 
 
 
 
 
 
 
 

 

 

 

 

Table 5.10: Frequency of population category for the 1970-1990 period, in 
truth and as predicted by the null model and the best model (see Table 5.8) 
Population trend Observed Null Best model 
Large decrease 43 0 65 
Small decrease 28 0 0 
Stable 45 132 67 
Small increase 16 0 0 
Large increase 0 0 0 
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Models that were retained for the 1990-2000 data included either both breeding and non-breeding 

climate trends or non-breeding climate trends along with the base models (Table 5.11). Models 

using GAM or CRS climates with time lags were different according to the log-likelihood tests 

(LR stat climate  t = -1 = 3.25, p< 0.001; LR stat CSTb  t = -1 = 3.26, p< 0.001; LR stat climate  t = -2 = 2.57, 

p< 0.001; LR stat CSTb  t = -2 = 2.60, p< 0.001; LR stat CSTb  t = -1 + CSTnb  t= -2 = 3.26, p< 0.001). The 

base model was significantly different from the null model (LR3=17.45, p < 0.001) and 

consequently all models were significantly better than the null model (Null∆dev in Table 5.11). 

AIC model selection showed that the best model was the base model plus CRS CSTb with 

a two-year time lag, closely followed by base model plus CRS CSTb with one-year time lag 

(Table 5.11). Residual deviance analyses also confirmed that the inclusion of these climatic 

variables improved the base model (Base∆dev in Table 5.11). 

 
Table 5.11: Ordinal regression Statistics for all species with 1990-2000 population trend as the 
response variable. CRS = Climate Response Surface; GAM = Generalised Additive Models; b = 
breeding; nb = non-breeding; CST = climate suitability trend; climate = CSTb+CSTnb; Null∆dev 
is the difference in deviance with the null model and Base∆dev is the difference in deviance with 
the base model. * denotes 0.05 significance level; ** denotes significance at 0.001 level. 

Model Deviance 
no. 
Estim d.f. 

Over 
dispersion Null∆dev 

Base 
∆dev AIC ∆AIC 

Base + CRS  CSTb t = -2 640.34 10 186 3.44 21.98** 4.52* 660.35 0.00 
Base + CRS CSTb t = -1 640.40 10 186 3.44 21.92** 4.46* 660.40 0.05 
Base + CRS climate t = -2 640.25 11 185 3.46 22.07** 4.61* 662.25 1.90 
Base + CRS CSTbt=-1+ CSTnbt=-2 640.29 11 185 3.46 22.03** 4.57* 662.29 1.94 
Base +CRS climate t = -1 640.35 11 185 3.46 21.97** 4.51* 662.35 2.00 
Base + GAM CSTb t = 0 642.83 10 186 3.46 19.49** 2.03 662.83 2.48 
Base  (Migratory strategy + order) 644.86 9 187 3.45 17.46**  662.86 2.51 
Base + GAM  CSTb t = -2 642.95 10 186 3.46 19.37** 1.91 662.95 2.60 
Base +  GAM CSTb t = -1 643.66 10 186 3.46 18.66** 1.20 663.66 3.31 
Base + CRS CSTb t = 0 644.35 10 186 3.46 17.97** 0.51 664.35 4.00 
Base + GAM climate t = 0 642.63 11 185 3.47 19.69** 2.23 664.63 4.28 
Base + GAM climate t = -2 642.83 11 185 3.47 19.49** 2.03 664.83 4.48 
Base + GAM CSTbt=-1+ CSTnbt=-2 643.52 11 185 3.48 18.80** 1.34 665.52 5.17 
Base + GAM climate t = -1 643.59 11 185 3.48 18.73** 1.27 665.59 5.24 
Base + CRS climate t = 0 644.34 11 185 3.48 17.98** 0.52 666.34 5.99 
Null 662.32 6 190 3.49   674.32 13.97 

 

For the best full model, the coefficients and associated standard error and Wald statistic 

are shown in Table 5.12. Breeding CST showed an effect on population trend. The over-

dispersion in the model (Table 5.11) was very high which suggests that the predictor variables are 

not explaining the population trends very well. Correcting the values for over-dispersion 
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(Johnson and Albert, 1999) in the models revealed that none of the models was significantly 

different from the base model (though they were better than the null model).  

 

Table 5.12: Estimated coefficients for the ordinal regression (population trend ~ CRS 
climate (t = -2) + migratory category + order) 
 Value Std. Error t value Wald p 
CRS CSTb t = -2 -1.71 0.57 -3.00 9.01 <0.01 
CRS CSTnb t = -2 3.90 13.56 0.29 0.08 >0.05 
Split strategy migrants -0.39 0.23 -1.69 2.88 >0.05 
Trans-Saharan migrants -0.61 0.25 -2.44 5.96 <0.05 
Order 0.50 0.17 2.91 8.47 <0.01 

 

Table 5.13 shows the distribution of predicted values (highest probability) from the null 

model and the best model. Both of these were significantly different from the true trends (Null: 

χ2
6=395.01, p< 0.0001; Best model: χ2

6= 148.98, p<0.001). The null model predicted correct 

trends for 65 species and wrong trends for 131 species. The best model predicted 71 correct 

trends and 125 wrongly assigned trends. Chi-square showed that the best model was not 

significantly better than the null model (χ2
1= 0.828, p= 0.362). Examining only trends 

(decrease/stable/increase), the null model correctly predicted 97 (49%) trends and the best model 

106 (54%). In this case, the best model was not significantly better than the null model (χ2
1= 

3.14, p=0.07). 

Twenty-one species were predicted to have opposite trends to those observed for the 

species: Gyps fulvus, Accipiter nisus, Buteo buteo, Falco peregrinus, Circus aeruginosus, Circus 

pygargus, Egretta alba, Egretta garzetta, Anthropoides virgo, Grus grus, Larus fuscus, Pandion 

haliaetus, Ardea cinerea, Netta rufina, Sterna caspia, Bubulcus ibis, Carpospiza brachydactyla, 

Merops apiaster, Tachymarptis melba, Hippolais languida and Saxicola torquatus all have 

increasing population trends but were predicted to decrease. 

 
 
 
 
 
 
 
 
 
 
 
 

Table 5.13:  Frequency of population category for the 1990-2000 period, in 
truth and as predicted by the null model and the best model (see Table 5.11). 

Population trend Observed Null Best model 
Large decrease 14 0 0 
Moderate decrease 48 0 98 
Small decrease 35 0 0 
Stable 65 196 97 
Small increase 17 0 0 
Moderate increase 10 0 0 
Large increase 7 0 1 
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Non-passerines 
 
 
Models that were retained for the 1970-1990 data for all non-passerine species included either 

both breeding and non-breeding climate trends or non-breeding climate trends (Table 5.14). 

Analyses of deviance revealed that GAM and CRS climatic models were not significantly 

different.  

AIC model selection showed that the best model was GAM climate with a four-year time 

lag, followed by GAM CSTb with a four-year time lag. Analyses of residual deviance confirmed 

that these models were different from the null model (Table 5.14).  

The Wald statistic indicated that GAM CSTb with a four-year time lag had an effect on 

non-passerines population (Wald = 4.27, p < 0.05) as did GAM CSTnb with a four-year time lag 

(Wald = 4.49, p < 0.05). However, all models were not significantly better than the null model 

when over-dispersion is taken into account. Furthermore, the standard errors for the two above 

variables are large (55.63 and 82.48 respectively).  
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Table 5.14: Ordinal regression statistics for non-passerines with 1970-1990 population 
trend as the response variable. CRS = Climate Response Surface; GAM = Generalised 
Additive Models; b = breeding; nb = non-breeding; CST = climate suitability trend; 
climate = CSTb+CSTnb; Null∆dev is the difference in deviance with the null model. .* 
denotes 0.05 significance level. 

Model Deviance 
no. 
Estim d.f. 

Over- 
dispersion Null∆dev AIC ∆AIC 

GAM climatet = -4 178.95 6 70 2.56 8.71* 188.95 0.00 
GAM CSTbt= -4 181.78 5 71 2.56 5.88* 189.79 0.84 
GAM climatet = -3 180.52 6 70 2.58 7.14* 190.52 1.57 
GAM CSTnbt= -4 183.43 5 71 2.58 4.23 191.43 2.48 
GAM CSTbt= -5 183.15 5 71 2.58 4.51 191.85 2.90 
GAM climatet = -5 181.88 6 70 2.60 5.78 191.88 2.93 
GAM CSTnbt= -3 184.05 5 71 2.59 3.61 192.05 3.10 
GAM CSTbt= -3 184.51 5 71 2.60 3.15 192.51 3.56 
GAM  CSTnbt= -2 184.74 5 71 2.60 2.92 192.75 3.80 
GAM CSTnbt= -5 184.81 5 71 2.60 2.85 192.81 3.86 
GAM CSTbt=0 185.40 5 71 2.61 2.26 193.40 4.45 
CRS CSTnbt= -1 185.59 5 71 2.61 2.07 193.59 4.64 
Null 187.66 4 72 2.61  193.66 4.71 
CRS CSTnbt= -2 185.66 5 71 2.61 2.00 193.66 4.71 
CRS climatet = -1 183.85 6 70 2.63 3.81 193.85 4.90 
GAM  CSTnbt= -1 186.06 5 71 2.62 1.60 194.06 5.11 
CRS CSTbt= -1 186.26 5 71 2.62 1.40 194.26 5.31 
CRS climatet = -2 184.31 6 70 2.63 3.35 194.31 5.36 
GAM climatet = -2 184.40 6 70 2.63 3.26 194.40 5.45 
CRS CSTbt= -2 186.43 5 71 2.63 1.23 194.43 5.48 
CRS CSTbt= -5 186.58 5 71 2.63 1.08 194.58 5.63 
CRS CSTbt= -4 186.59 5 71 2.63 1.07 194.59 5.64 
CRS CSTnbt= -4 186.69 5 71 2.63 0.97 194.69 5.74 
CRS CSTnbt= -3 186.72 5 71 2.63 0.94 194.72 5.77 
CRS CSTbt= -3 186.84 5 71 2.63 0.82 194.84 5.89 
GAM  CSTbt= -2 186.91 5 71 2.63 0.75 194.91 5.96 
CRS CSTnbt= -5 186.99 5 71 2.63 0.67 194.99 6.04 
GAM climatet = 0 185.32 6 70 2.65 2.34 195.32 6.37 
GAM  CSTbt= -1 187.35 5 71 2.64 0.31 195.35 6.40 
CRS climatet = -5 185.94 6 70 2.66 1.72 195.44 6.49 
CRS CSTbt=0 187.47 5 71 2.64 0.19 195.47 6.52 
CRS CSTnbt=0 187.49 5 71 2.64 0.17 195.49 6.54 
GAM  CSTnbt=0 187.58 5 71 2.64 0.08 195.58 6.63 
CRS climatet = -3 185.86 6 70 2.66 1.80 195.66 6.71 
CRS climatet = -4 185.68 6 70 2.65 1.98 195.68 6.73 
GAM climatet = -1 186.06 6 70 2.66 1.60 196.06 7.11 
CRS climatet = 0 187.27 6 70 2.68 0.39 197.27 8.32 
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Despite considerable variation there was a significant positive correlation between GAM 

CSTb with a four-year time lag and population trend (Fig. 514a; Spearman rho = 0.26, p<0.05). 

However, there was no significant correlation between GAM CSTnb with a four-year time lag 

and population trend (Fig. 514b; Spearman rho = -0.11, p = 0.30).  

 
 
a) 

 

b) 

 
Figure 5.14: Non-passerine population trend during the 1970-1990 period and Climate Suitability 
Trend (CST) as modeled by GAM with a 4-year time lag; a) breeding CST and b) non-breeding CST. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 242 

Table 5.15 shows the models retained for non-passerine species that breed in the first two 

years for the 1970-1990 period. Analyses of deviance revealed that GAM and CRS climatic 

models were not significantly different. However, AIC selection indicated that CRS climate 

models were not useful (∆AIC>7). All retained models were significantly different from the null 

model. ∆AIC values show that the best model was non-breeding biome plus GAM climate with a 

five-year time lag. This model was significantly different from the null and the base model when 

over-dispersion is taken into account.  

 
 
Table 5.15: Ordinal regression statistics for 1-2 year breeding non-passerines with 1970-1990 population 
trend as the response variable. CRS = Climate Response Surface; GAM = Generalised Additive Models; b 
= breeding; nb = non-breeding; CST = climate suitability trend; climate = CSTb+CSTnb; Null∆dev is the 
difference in deviance with the null model. .** denotes 0.001 significance level, . 

Model Deviance 
no. 
Estim d.f. 

Over- 
dispersion Null∆dev AIC ∆AIC 

Base + GAM climatet = -5 81.44 12 34 2.46 27.57** 99.43 0.00 
Base + GAM climatet = -3 83.88 12 33 2.54 25.13** 101.88 2.44 
Base + GAM climatet = -4 83.90 12 34 2.54 25.11** 101.90 2.46 
Base + GAM CSTnbt= -4 86.52 11 33 2.54 22.49** 102.51 3.07 
Base + GAM CSTnbt= -3 86.77 11 33 2.55 22.23** 102.77 3.33 
Base + GAM CSTnbt= -5 87.48 11 33 2.57 21.52** 103.48 4.04 
Base + GAM CSTnbt= -2 89.20 11 34 2.62 19.81** 105.20 5.76 
Base + GAM CSTbt= -3 91.45 11 34 2.62 17.56** 107.45 7.56 
Base + GAM CSTbt= -5 92.09 11 33 2.71 16.92** 108.09 8.65 
Base (Non-breeding biome)  94.38 7 39 2.42 17.24** 108.38 8.94 
Base + GAM CSTbt= -4 92.54 11 33 2.72 16.47** 108.54 9.11 
Null 109.01 3 42 2.60  115.01 15.57 

 
 

Table A27 details each species’ individual climatic suitability trend for the best model 

time frame showing how weak individual species’ trends are (see above) with only four species 

having significant trends. Nycticorax nycticorax had a near significant negative CSTnb. Falco 

subbuteo had a near significant negative CSTb, Falco peregrinus had a negative CSTb whilst its 

population is increasing, and Vanellus vanellus had a significant positive CSTb. 
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Table 5.16 shows the models retained for late breeding non-passerine species (those that 

breed after the first two years) for the 1970-1990 period. Analyses of deviance reveal that GAM 

and CRS climatic models were not significantly different. ∆AIC values showed that the best 

model was GAM CSTb with a four-year time lag, followed by GAM CSTb with a three-year time 

lag (Table 5.16). However, all models were not significantly better than the null model when 

over-dispersion is taken into account.  

 
Table 5.16: Ordinal regression statistics for above 2 year breeding non-passerines with 
1970-1990 population trend as the response variable. CRS = Climate Response Surface; 
GAM = Generalised Additive Models; b = breeding; nb = non-breeding; CST = climate 
suitability trend; climate = CSTb+CSTnb; Null∆dev is the difference in deviance with the 
null model. * denotes 0.05 significance level. 

Model Deviance 
no. 
Estim d.f. 

Over- 
dispersion Null∆dev AIC ∆AIC 

GAM CSTbt= -4 69.54 4 26 2.67 5.30* 77.55 0.00 
GAM CSTbt= -3 70.65 4 26 2.72 4.19* 78.65 1.11 
GAM CSTbt= -5 70.72 4 26 2.72 4.12* 78.72 1.17 
GAM climatet = -5 68.90 5 25 2.76 5.94* 78.90 1.35 
GAM climatet = -4 69.50 5 25 2.78 5.34 79.50 1.95 
GAM climatet = -3 69.73 5 25 2.79 5.11 79.72 2.17 
Null 74.84 3 27 2.77  80.84 3.29 
CRS CSTnbt= -4 74.07 4 26 2.85 0.77 82.07 4.52 
CRS CSTbt= -4 74.09 4 26 2.85 0.75 82.09 4.54 
CRS CSTbt= -5 74.09 4 26 2.85 0.75 82.09 4.54 
CRS CSTbt= -3 74.13 4 26 2.85 0.71 82.13 4.58 
GAM CSTnbt= -3 74.64 4 26 2.87 0.20 82.64 5.09 
CRS CSTnbt= -5 74.68 4 26 2.87 0.16 82.68 5.14 
GAM CSTnbt= -5 74.85 4 26 2.88 -0.01 82.85 5.30 
GAM CSTnbt= -4 75.03 4 26 2.89 -0.19 83.03 5.48 
CRS CSTnbt= -3 75.05 4 26 2.89 -0.21 83.06 5.51 
CRS climatet = -4 73.40 5 25 2.94 1.44 83.40 5.85 
CRS climatet = -5 73.84 5 25 2.95 1.00 83.84 6.29 
CRS climatet = -3 74.37 5 25 2.98 0.46 84.38 6.83 

 
Table A28 details each species’ individual climatic suitability trend for the best model 

time frame. For CSTb, only Larus genei had a significant CST which is positive. For CSTnb only 

Burhinus oedicnemus had a significant CST which is positive while the population is currently 

declining.           
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Models that were retained for all non-passerines for the 1990-2000 data included either breeding 

and non-breeding climate trends together or non-breeding climate trends alone (Table 5.17). 

Analyses of deviance revealed that GAM and CRS climatic models were not significantly 

different from each other.  

AIC model selection showed that the best model was GAM CSTb with a five-year time 

lag, followed GAM CSTb with a two-year time lag (Table 5.17). Analyses of residual deviance 

confirmed that these models were different from the null model. 

 The Wald statistic indicated that GAM CSTb with a five-year time lag had an effect on 

non-passerine populations (Wald = 4.84, p < 0.05) though GAM CSTnb with a five-year time lag 

did not (Wald = 0.62, p >0.05). However, all models were not significantly better than the null 

model when correcting for over-dispersion.  

 

Table 5.17: Ordinal regression statistics for non-passerines with 1990-2000 population 
trend as the response variable. CRS = Climate Response Surface; GAM = Generalised 
Additive Models; b = breeding; nb = non-breeding; CST = climate suitability trend; climate 
= CSTb+CSTnb; Null∆dev is the difference in deviance with the null model. * denotes 
significance at the 0.05 level. 

Model Deviance 
no. 
Estim d.f. 

Over-
dispersion null∆dev AIC ∆AIC 

GAM CSTbt= -5 391.30 7 106 3.69 5.13* 405.30 0.00 
GAM CSTbt= -2 391.45 7 106 3.69 4.98* 405.45 0.15 
CRS CSTbt= -2 390.10 7 106 3.68 6.33* 406.10 0.80 
GAM CSTbt=0 393.15 7 106 3.71 3.28 407.15 1.85 
CRS CSTbt= -1 393.17 7 106 3.71 3.26 407.17 1.87 
GAM climatet = -5 391.24 8 105 3.73 5.19* 407.24 1.94 
GAM climatet = -2 391.35 8 105 3.73 5.08 407.35 2.05 
CRS climatet = -3 393.47 8 105 3.75 2.96 407.47 2.17 
GAM CSTbt= -1 394.00 7 106 3.72 2.43 408.00 2.70 
GAM CSTbt= -4 394.12 7 106 3.72 2.31 408.12 2.82 
GAM climatet = -3 392.22 8 105 3.74 4.21 408.22 2.92 
Null 396.43 6 107 3.70  408.43 3.13 
CRS CSTbt=0 394.54 7 106 3.72 1.89 408.54 3.24 
GAM climate t = 0 392.71 8 105 3.74 3.72 408.71 3.41 
CRS climatet = -2 392.92 8 105 3.74 3.51 408.92 3.62 
CRS climatet = -1 393.00 8 105 3.74 3.43 409.00 3.70 
GAM climatet = -1 393.40 8 105 3.75 3.03 409.40 4.10 
GAM climatet = -4 393.70 8 105 3.75 2.73 409.70 4.40 
GAM CSTbt= -3 396.00 7 106 3.74 0.43 410.00 4.70 
CRS climatet = 0 394.02 8 105 3.75 2.41 410.02 4.72 
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There was considerable variation in 5 year lagged CST within each population trend 

category and the trends were centred around zero, showing no significant correlation (Fig 5.15; 

breeding: Spearman rho = 0.085, p=0.370; non-breeding Spearman rho = 0.046, p=0.624).  

 

a) 

 

b) 

 
Figure 5.15: Non-passerine population trend during the 1990-2000 period and Climate 
Suitability Trend (CST) as modelled by GAM with a 5-year time lag: a) breeding CST and b) 
non-breeding CST. 
 

 

Table 5.18 shows the models retained for early breeding non-passerine species for the 1990-2000 

time period. Analyses of deviance revealed that GAM and CRS climatic models were not 

significantly different. ∆AIC values showed that the best model was GAM CSTnb with a three-

year time lag (Table 5.18). However, all models were not significantly better than the null model 

when over-dispersion, which was high, is taken into account.  

Table A27 details each species’ individual climatic suitability trend for the best model 

time frame. No species had a significant CST. This is unsurprising given the climate models’ 

deviances were very close to the null model. 
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Table 5.18: Ordinal regression statistics for early breeding non-passerines with 1990-
2000 population trend as the response variable. CRS = Climate Response Surface; 
GAM = Generalised Additive Models; b = breeding; nb = non-breeding; CST = 
climate suitability trend; climate = CSTb+CSTnb; Null∆dev is the difference in 
deviance with the null model. * denotes significance at the 0.05 level. 

Model Deviance 
no. 
Estim d.f. 

Over-
dispersion Null∆dev AIC ∆AIC 

GAM CSTnbt= -3 215.74 6 65 3.36 2.57 230.29 0.00 
Null 218.30 5 66 3.31  228.31 0.57 
GAM climatet = -3 214.98 7 64 3.36 3.32 230.30 1.25 
CRS CSTnbt=0 217.40 6 65 3.34 0.27 229.42 1.67 
CRS CSTnbt= -1 217.40 6 65 3.34 0.27 229.48 1.74 
CRS CSTnbt= -2 217.82 6 65 3.35 0.15 229.82 2.08 
GAM CSTbt= -1 217.99 6 65 3.35 0.32 231.99 2.25 
CRS CSTnbt= -3 218.09 6 65 3.36 0.07 230.00 2.26 
CRS CSTbt= -1 218.03 6 65 3.35 0.08 230.03 2.29 
GAM CSTnbt= -4 218.00 6 65 3.36 0.31 230.19 2.32 
CRS CSTbt= -2 218.07 6 65 3.36 0.07 230.07 2.33 
GAM CSTbt=0 218.08 6 65 3.36 0.23 231.93 2.34 
CRS CSTbt= -3 218.08 6 65 3.36 0.07 230.09 2.35 
CRS CSTnbt= -5 218.15 6 65 3.36 0.05 230.16 2.42 
GAM CSTbt= -4 218.10 6 65 3.35 0.21 231.99 2.45 
CRS CSTnbt= -4 218.20 6 65 3.36 0.03 230.20 2.46 
GAM CSTnbt=0 218.23 6 65 3.36 0.08 230.08 2.50 
CRS CSTbt=0 218.25 6 65 3.36 0.01 230.25 2.51 
GAM CSTbt= -2 218.24 6 65 3.36 0.06 232.20 2.51 
GAM CSTnbt= -1 218.28 6 65 3.36 0.03 229.99 2.54 
CRS CSTbt= -5 218.29 6 65 3.36 0.01 230.29 2.55 
GAM CSTbt= -3 218.29 6 65 3.52 0.02 228.99 2.55 
CRS CSTbt= -4 218.30 6 65 3.36 0.00 230.30 2.56 
GAM CSTnbt= -2 218.30 6 65 3.36 0.00 230.25 2.56 
GAM CSTbt= -5 218.30 6 65 3.36 0.01 232.30 2.57 
GAM CSTnbt= -5 218.30 6 65 3.36 0.01 230.31 2.57 
CRS climatet = -1 216.84 7 64 3.39 0.43 230.84 3.10 
CRS climatet = -2 217.28 7 64 3.40 0.30 231.28 3.54 
CRS climatet = 0 217.30 7 64 3.40 0.30 231.40 3.66 
CRS climatet = -3 217.85 7 64 3.40 0.13 231.86 4.12 
GAM climatet = 0 217.92 7 64 3.41 0.38 228.31 4.19 
GAM climatet = -1 217.99 7 64 3.41 0.32 230.24 4.25 
GAM climatet = -4 217.99 7 64 3.37 0.32 227.74 4.25 
CRS climatet = -5 218.11 7 64 3.41 0.06 232.10 4.36 
CRS climatet = -4 218.10 7 64 3.41 0.06 232.19 4.45 
GAM climatet = -2 218.23 7 64 3.41 0.07 230.28 4.46 
GAM climatet = -5 218.30 7 64 3.41 0.01 230.06 4.56 
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Table 5.19 shows the models retained for late breeding non-passerine species for the 1990-2000 

period. Analyses of deviance revealed that GAM and CRS climatic models were not significantly 

different. ∆AIC values showed that the best model was CRS CSTb with a two-year time lag, 

followed by GAM CSTb with a five-year time lag (Table 5.19). However, all models were not 

significantly better than the null model when over-dispersion is taken into account. Indeed the 

over-dispersion was very high indicating poor model fit. Table A28 shows that only two species 

have significant CSTnb: Circus aeruginosus and Egretta alba with significant positive trends 

concurring with the population increases during that time period. 

 
Table 5.19: Ordinal regression statistics for late breeding non-passerines with 1990-
2000 population trend as the response variable. CRS = Climate Response Surface; GAM 
= Generalised Additive Models; b = breeding; nb = non-breeding; CST = climate 
suitability trend; climate = CSTb+CSTnb; Null∆dev is the difference in deviance with 
the null model. * denotes significance at the 0.05 level. 

Model Deviance 
no. 
Estim d.f. 

Over-
dispersion null∆dev AIC ∆AIC 

CRS CSTbt= -2 148.46 7 35 4.24 6.44* 162.46 0.00 
GAM CSTbt= -5 149.51 7 35 4.27 5.39* 163.51 1.05 
CRS climatet = -2 147.85 8 34 4.35 7.05* 163.85 1.39 
GAM CSTbt= -4 150.29 7 35 4.29 4.61* 164.29 1.82 
GAM climatet = -5 149.05 8 34 4.38 5.85* 165.05 2.59 
GAM CSTbt= -2 151.55 7 35 4.33 3.35 165.55 3.09 
GAM climatet = -4 150.22 8 34 4.42 4.68 166.22 3.76 
CRS climatet = -5 152.35 8 34 4.48 2.55 166.30 3.84 
CRS CSTnbt= -3 152.83 7 35 4.37 2.07 166.83 4.37 
Null 154.90 6 36 4.30  166.97 4.50 
CRS climatet = -3 151.22 8 34 4.45 3.68 167.22 4.76 
CRS CSTnbt= -4 153.23 7 35 4.38 1.67 167.23 4.77 
CRS CSTbt= -3 153.39 7 35 4.38 1.51 167.39 4.93 
CRS climatet = -4 151.40 8 34 4.45 3.50 167.41 4.95 
CRS CSTbt= -4 153.49 7 35 4.39 1.41 167.50 5.04 
GAM climatet = -2 151.54 8 34 4.46 3.36 167.54 5.08 
CRS CSTnbt= -2 153.58 7 35 4.39 1.32 167.59 5.13 
CRS CSTnbt= -5 153.78 7 35 4.39 1.12 167.78 5.32 
GAM CSTnbt= -3 153.78 7 35 4.39 1.12 167.78 5.32 
GAM CSTnbt= -2 154.34 7 35 4.41 0.56 168.34 5.87 
GAM CSTnbt= -4 154.42 7 35 4.41 0.48 168.42 5.96 
GAM CSTbt= -3 154.46 7 35 4.41 0.44 168.46 6.00 
CRS CSTbt= -5 154.72 7 35 4.42 0.18 168.70 6.24 
GAM CSTnbt= -5 154.99 7 35 4.43 -0.09 168.99 6.53 
GAM climatet = -3 153.56 8 34 4.52 1.35 169.56 7.09 
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Passerines 
 
Models that were retained for the 1970-1990 data included either breeding and non-breeding 

climate trends together or alone along with habitat (Table 5.20). Log-likelihood tests revealed 

that GAM and CRS climatic models were not significantly different. AIC model selection 

showed that the best model was habitat plus GAM CSTnb with a two-year time lag (Table 5.20). 

Analyses of residual deviance confirmed that these models were different from the null model. 

However, all models were not significantly better than the null model when correcting for over-

dispersion. 

 
Table 5.20: Ordinal regression statistics for Passerines with 1970-1990 population trend as the 
response variable. CRS = Climate Response Surface; GAM = Generalised Additive Models; b = 
breeding; nb = non-breeding; CST = climate suitability trend; climate = CSTb+CSTnb; Null∆dev 
is the difference in deviance with the null model. * denotes significance at the 0.05 level. 

Model Deviance 
no. 
Estim d.f. 

Over-
dispersion Null∆dev AIC ∆AIC 

Base + GAM CSTnbt = -2 133.20 9 49 2.72 12.04* 149.20 0.00 
Base (Habitat) 136.06 8 50 2.72 9.18* 150.09 0.89 
Base + CRS CSTnbt = -2 134.40 9 49 2.74 10.84* 150.40 1.20 
Base + GAM CSTnbt = -1 134.50 9 49 2.74 10.74* 150.50 1.30 
Base + CRS CSTnbt = -1 134.61 9 49 2.75 10.63 150.61 1.41 
Base + GAM climatet = -2 132.72 10 48 2.77 12.52* 150.72 1.52 
Base + GAM CSTnbt = 0 134.81 9 49 2.75 10.43 150.81 1.61 
Base + CRS CSTbt = -2 135.00 9 49 2.76 10.24 151.00 1.80 
Base + GAM CSTbt = -1+ CSTnbt = -2 133.03 10 48 2.77 12.21* 151.03 1.83 
Base + CRS CSTbt = -1 135.21 9 49 2.76 10.03 151.21 2.01 
Null 145.24 4 54 2.69  151.24 2.04 
Base + CRS climate t = -2 133.32 10 48 2.78 11.92 151.32 2.12 
Base + CRS CSTnbt = 0 135.53 9 49 2.77 9.71 151.53 2.33 
Base + CRS CSTbt = -1+ CSTnbt = -2 133.54 10 48 2.78 11.70 151.54 2.34 
Base + CRS CSTbt = 0 135.84 9 49 2.77 9.40 151.84 2.64 
Base + CRS climatet = -1 133.84 10 48 2.79 11.40 151.84 2.64 
Base + GAM CSTbt = -2 135.95 9 49 2.77 9.29 151.95 2.75 
Base + GAM CSTbt = -1 136.04 9 49 2.78 9.20 152.04 2.84 
Base + GAM CSTbt = 0 136.08 9 49 2.78 9.16 152.08 2.88 
Base + GAM climatet = -1 134.25 10 48 2.80 10.99 152.25 3.05 
Base + CRS CSTbt = 0+ CSTnbt = -1 134.32 10 48 2.80 10.92 152.32 3.12 
Base + GAM CSbt = 0+ CSTnbt = -1 134.49 10 48 2.80 10.75 152.48 3.28 
Base + GAM climatet = 0 134.83 10 48 2.81 10.41 152.83 3.63 
Base + CRS climatet = 0 135.41 10 48 2.82 9.83 153.41 4.21 
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There was a non-significant positive correlation between breeding CST with a two-year 

time lag and population trend (Fig. 5.16a; Spearman rho = 0.04, p=0.738) but a significant 

negative correlation between non-breeding CST with a two-year time lag and population trend 

(Fig. 5.16b; Spearman rho = -0.38, p<0.01).  

 
a) 

 

b) 

 
Figure 5.16: Passerines’ population trend during the 1970-1990 period and Climate Suitability 
Trend; a) GAM breeding CST with a two-year time lag; b) GAM non-breeding CST with a two-
year time lag. 
 

 

Table A29 details each species’ individual climatic suitability trend. This shows how 

weak the trends are. Twenty-two species have significant CSTnb and four species have 

significant CSTb. This is much greater than non-passerine CST significance. 
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Models that were retained for the 1990-2000 data included either both breeding and non-breeding 

climate trends together or alone (Table 5.21). Log-likelihood tests revealed that GAM and CRS 

climatic models were not significantly different.  

AIC model selection showed that the best model was GAM CSTnb with a one-year time 

lag, closely followed by GAM climate with a two-year time lag (Table 5.21). Analyses of 

residual deviance showed, however, that the model consisting of GAM climate with a two-year 

time lag was the best. Analyses of residual deviance confirmed that these models are different 

from the null model. However, all models were not significantly better than the null model when 

correcting for over-dispersion.  

 
Table 5.21: Ordinal regression statistics for Passerines with 1990-2000 population trend as 
the response variable. CRS = Climate Response Surface; GAM = Generalised Additive 
Models; b = breeding; nb = non-breeding; CST = climate suitability trend; climate = 
CSTb+CSTnb; Null∆dev is the difference in deviance with the null model. 

Model Deviance 
no. 
Estim d.f. 

Over-
dispersion Null∆dev AIC ∆AIC 

GAM CSTnbt = -1 237.32 7 76 3.12 5.22* 251.32 0.00 
GAM climatet = -2 235.71 8 75 3.14 6.83* 251.71 0.39 
GAM CSTnbt = -2 238.02 7 76 3.13 4.52* 252.02 0.70 
GAM climatet = -1 236.63 8 75 3.16 5.91* 252.63 1.31 
GAM CSTbt = 0+ CSTnbt = -1 236.64 8 75 3.16 5.90* 252.64 1.32 
GAM CSTbt = -1+ CSTnbt = -2 237.32 8 75 3.16 5.22* 253.32 2.00 
CRS CSTnbt = -1 239.88 7 76 3.16 2.66 253.88 2.56 
CRS CSTnbt = -2 239.96 7 76 3.16 2.58 253.96 2.64 
CRS CSTbt = 0+ CSTnbt = -1 238.52 8 75 3.18 4.02 254.52 3.20 
Null 242.54 6 77 3.15  254.54 3.22 
CRS climatet = -1 239.02 8 75 3.19 3.52 255.02 3.70 
CRS CSTbt = -1+ CSTnbt = -2 239.28 8 75 3.19 3.26 255.28 3.96 
CRS climatet = -2 239.59 8 75 3.19 2.95 255.59 4.27 
GAM CSTnbt = 0 241.75 7 76 3.18 0.79 255.75 4.43 
CRS CSTnbt = 0 241.77 7 76 3.18 0.77 255.77 4.45 
GAM CSTbt = -2 242.35 7 76 3.19 0.19 256.35 5.03 
CRS CSTbt = 0 242.40 7 76 3.19 0.14 256.4 5.08 
CRS CSTbt = -1 242.51 7 76 3.19 0.03 256.51 5.19 
CRS CSTbt = -2 242.52 7 76 3.19 0.02 256.52 5.20 
GAM CSTbt = 0 242.54 7 76 3.19 0.00 256.54 5.22 
GAM CSTbt = -1 242.54 7 76 3.19 0.00 256.54 5.22 
CRS climatet = 0 241.32 8 75 3.22 1.22 257.32 6.00 
GAM climate t = 0 241.72 8 75 3.22 0.82 257.72 6.40 
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Figure 5.17 shows GAM CSTb with a two-year time lag (Fig.5.17a) and GAM CSTnb 

with a two-year time lag (Fig.5.17b) for the 1990-2000 population trends. Fig. 5.17a suggests 

that, despite considerable variation, there is a positive relationship between breeding CST and 

population trend. The population trend category 3 has only one species (Carpospiza 

brachydactyla) and so cannot be counted as representative. However, the positive correlation was 

not significant (Spearman correlation minus that one species: rho = 0.02; p = 0.84). There was a 

significant negative relationship between non-breeding CST and population trend (Fig. 5.17b; 

Spearman rho = -0.27, p < 0.05).  

 

 
a) 

 

b) 

 
Figure 5.17: Passerine population trend during the 1990-2000 period and Climate Suitability 
Trend (CST) as modeled by GAM with a 2-year time lag; a) breeding CST and b) non-breeding 
CST. 
 

Table A29 details each species’ individual climatic suitability trend. This shows how 

weak the trends are. Twelve species had significant CSTnb. Four decreasing species’ populations 

had negative CST, while five increasing populations had negative CST. The remaining three 

species had stable population trends. Six species had significant CSTb, four of which had stable 

populations; the remaining two had negative CST and decreasing populations.  
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5.2.4 Discussion 
 
The climate suitability trends (CST) derived from the GAM and CRS models were very similar, 

and in most case produced models that were not significantly different in their predictions. GAM 

CST was, nevertheless, more often a better fitting model than CRS CST in terms of AIC at least. 

The CST calculated were very weak (Tables A27-29) and hid much of the annual variation. This 

was also the case for the trends calculated by Green et al. (2008) and Gregory et al. (2009). 

Gregory et al. (2007) found significant correlations between population trend and winter weather 

for only five out of 18 species. My results indicate that passerine species had more significant 

trends than non-passerine species.  

My results show that for all species, species’ grouping (passerine or non-passerine) was 

an important factor in determining population trends. Bauer et al. (2008) found that there were 

diverging trends in passerine and non-passerine species richness in central Europe between 1980-

1990 and 1990-2000. The differences were probably due to differences in body size, habitats and 

migratory strategies. Habitat was found to be an important factor in population trends during the 

1970-1990 period. In the separate analyses of passerines and non-passerines, only passerines 

were affected by their habitat characteristics. It is not surprising that habitat should be important 

during that time period because the European landscape was changing rapidly (Chamberlain et 

al., 2000; Fuller et al., 2007; Fuller and Ausden, 2008; Dallimer et al., 2009) and agricultural 

intensification led to many bird population declines (Newton, 2004). Migratory strategy was also 

found to be a factor in the analyses of population trends of all species for 1990-2000. Long-

distance migrants were found to decline more on average than the other groups. These results are 

comparable to the findings of Sanderson et al. (2006) and Gregory et al.(2007).  

 In the analyses separating non-passerines into early/late breeders, the results showed that 

better models could be constructed for the earlier breeders. This is not surprising since species 

with later broods tend to be of larger body size, longer-lived and hence prone to different 

pressures such as persecution and demographic effects (Pimm et al., 1988). Non-breeding biome 

was found to improve the models for early breeding non-passerine species. Furthermore, either 

both breeding and non-breeding CST (1970-1990) or non-breeding CST (for 1990-2000) affected 

these species. For late breeding non-passerine species, breeding CST was highlighted as the best 

explanatory climatic variable. For passerine species, non-breeding CST was chosen in both time 

periods. There has been some debate on whether the “tap or tub” hypothesis regulates bird 

population densities. In the tap-hypothesis, annual survivorship is determined by (weather) 
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conditions on the breeding grounds, while in the tub-hypothesis population size is regulated by 

conditions during the non-breeding season in combination with density-dependence (Saether et 

al., 2004). The literature points to both hypotheses having support, though there are some general 

trends. In particular, a review by Saether et al. (2004) found that northern temperate altrical bird 

populations seem to be influenced by weather during the non-breeding season, while many 

nidifugous species, species that leave the nest shortly after hatching, as well as those residing in 

arid conditions are affected by conditions during the breeding season. The analysis done here is 

not powerful enough, however, to provide support for any of these hypotheses due to the coarse 

nature of the analysis (see below). It may be that dividing the species into the broad groups 

according to the findings of Sather et al. (2004) improves the models (but see below). 

 The ordinal models produced for the 1970-1990 period were better than for the 1990-2000 

period as shown by larger over-dispersion in the models for the latter time frame. It is possible 

that the second time period is too short for effects on populations to be discerned. However, the 

over-dispersion in all the models was large suggesting that either the variables are not important, 

or some other important factor(s) has/have been excluded. Studies examining factors impacting 

on species’ demography, have found that although climate is important, the majority of the 

variation in population size could be explained by density-dependence (Ådahl et al., 2006; Beale 

et al., 2006; Pellet et al., 2006; Holmes, 2007). Pellet et al. (2006) evaluated the relative 

importance of intrinsic density-dependence and extrinsic factors, such as weather, either alone or 

in combination, for population growth. They used a 22 year time series of an isolated population 

of Hyla arborea that was not declining. They found that density-dependence alone explained the 

majority of the variance in the models. However, the best model also included rainfall with a 

two-year time lag. They concluded that density dependence affects population growth rate 

directly but that it also acts in combination with lagged climatic variables. Density dependence is 

also important in bird populations. Holmes’ (2007) review of factors affecting migratory bird 

abundances revealed that abundances of migratory passerines on their temperate breeding 

grounds are regulated by density-dependent fecundity. Fecundity is regulated in turn by various 

other factors including weather-induced food limitation. However, density-dependence is 

unlikely to explain the absence of relationship between climate and population trends or be the 

factor explaining long-term population trends. 

 My results also indicated time lagged climatic effects. For non-passerines, the results 

indicated a significant positive correlation between breeding CST with a four-year time lag and 

population trend during the 1970-1990 period. Separating non-passerines in that period revealed a 
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four- to five-year lag for both groups in concurrence with the analyses for all non-passerines 

during that time frame. There was no significant correlation between population trend and 

climate during the 1990-2000 period, although model selection indicated that models including 

breeding CST and a five-year time lag were best. The non-significant relationship may be an 

artefact of the large variation between ‘best’ models. For early breeding non-passerines, a three-

year time lagged climate model was selected, followed by a one-year lagged CST. For late 

breeding non-passerines, two-, five- and four-year time lagged CST models were selected. The 

presence of large time lags for non-passerines may be due either to the time of reproductive 

maturity (Thompson and Ollason, 2001) or to an indirect climatic lagged effect on these species. 

For instance, habitat may be affected by a series of bad years, which may in turn affect the food 

source (Sandvik et al., 2008), which eventually affects bird populations. 

 For passerine species, a two-year time lag in CST was found in both periods. 

Furthermore, model selection suggested that non-breeding CST or the combination of both 

breeding and non-breeding CST was important. Breeding CST showed non-significant positive 

correlations with population trends, while non-breeding CST was significantly negatively 

correlated with population trend. Gregory et al. (2009) found a near significant positive 

correlation (p = 0.05) between CST and population trend when confounding variables were 

accounted for, otherwise the correlation was not significant. 

The significant negative correlation with non-breeding CST is surprising. However, there 

are a number of possible explanations. First, if increased climate suitability on the non-breeding 

grounds equates to more favourable climate in general, then competition between resident and 

migratory birds may be increased (Bohning-Gaese and Lemoine, 2004). Suttle et al. (2007) 

showed that species interactions could reverse the expected outcome of climate change in their 

experiment of species diversity in grassland plots. Moreover, a negative relationship between 

long-term bird population trends and productivity has been observed (Siriwarden et al., 2000). 

Second, disease may be increased in favourable climates (McCarty, 2001). Third, there may also 

be a confounding effect of land-use. Areas that are more climatically favourable may also be 

areas with high human disturbance, thus impacting on bird abundance. Fourth, the combined 

effects of changes in CST on the breeding grounds and non-breeding grounds, may act in a non-

linear way. Changes in leaving and arrival dates in migratory species may interact with changes 

in CST, leading to changes in cohort size due to competition for territories or an asynchrony 

between arrival to the breeding grounds and insect emergence (see Chapter 2). Fifth, decreased 

abundance in opposition to improved climate is a signal of range expansion. Monahan and 
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Hijmans (2008) found that for Spizella pusilla, as the non-breeding range expanded polewards 

between 1940 and 1997, population abundance appeared to decrease, because the species 

occupied new sites further north where it had never occurred before and, hence, was not 

monitored. 

Chi-square tests showed that inclusion of climate as an explanatory variable significantly 

improved the fit of the models for many species for the 1970-1990 data sets. For 1990-2000, the 

models utilising climate increased the proportion of correctly predicted trends, compared with the 

null model, but the models were not significantly different from the null model. Eleven species’ 

trends (8%) for the 1970-1990 period and twenty-one species’ trends (11%) for the 1990-2000 

period were wrongly predicted. The models indicated that these species should decline, even 

though they fact increased. Conservation measures or improved habitat might account for these 

changes which over-ride climate effects. Okes et al. (2008) showed that human-mediated habitat 

change was more of an influential driver in water bird range change in South Africa than climate 

change. Anthropogenic changes in land-use may, therefore, over-ride the natural indirect effects 

of climate change for some species.  Other extrinsic factors may also be more important in 

determining population trends during the two time periods, such as hunting pressure, land-use 

change or conservation efforts. 

Overall, my results suggest that, despite the coarseness of the data, there is a detectable 

climate signal, albeit weak, in the population trends. The weak signal may be in part due to the 

fact that climate has not changed markedly over the time-scale analysed. Moreover, the climate 

trends hide the huge inter-annual variability. Population-climate relationships might be better 

examined by taking the inter-annual trends into account. Furthermore, noticeable changes in 

species’ abundance may be more influenced by extreme climatic events. Indeed, Newton (2007) 

reports unseasonal weather incidents causing reductions in population size which may take 

several years to recover.  

McRae et al. (2008) also found a disparity between population numbers and habitat 

suitability. They constructed a framework of models to predict wildlife population trends in 

response to habitat and climate change. Their results indicated that population trends changed 

more than their habitat suitability indices. Furthermore, their results indicated that, although 

climate change impacts habitat, it had negligible consequences for simulated bird populations 

(McRae et al., 2008). Another possibility is that fluctuations or extreme events were modelled by 

the climate envelope models (CEM), and that these biased the CST values. Gregory et al. (2009) 

state that, “as calculated, CST is sensitive to extreme annual values of meteorological variables 
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and often has relatively low precision as a result” (p.4); they suggest, therefore, that this might be 

a cause for the poor correlation with bird trends. 

 Green et al. (2008) found a positive correlation between breeding bird trends in the UK 

and CST. Their study was conducted at the edge of birds’ ranges, and was fine-scale enough to 

exclude species that were known to have declined in the UK due to persecution. Comparison with 

the results of this study indicates that my models may be too coarse to detect a clear signal. 

Climate affects species differently at the range centre versus the edge of range (Jarema et al., 

2009), as well as differently between the leading and trailing edge (Foden et al., 2007); 

furthermore, species are not evenly distributed within their ranges (Lawton, 1993). Bird 

population trends vary widely across Europe (Tucker et al., 1997; Birdlife International, 2004) 

and trends in different parts of Europe may be affected by different mechanisms. Moreover, 

average population trends may not necessarily match average climate suitability because 

population trends were weighted according to population size (Tucker et al., 1997; Birdlife 

International, 2004), whereas average CST takes into account the entire study area equally. 

Overall pan-European population trends hide much of the variation in population trends 

across Europe. Analysing population trends and climate suitability by region or countries may be 

more revealing in terms of the strength of the relationship between climate and population trends 

(Appendix III d). Foreseeable problems with this are that, first, the quality of population trend 

data varies across Europe. Second, information about where species from different countries 

spend their non-breeding seasons, is severely deficient and, for some species, conditions on the 

non-breeding grounds are known to be important. Third, different processes have affected species 

in different parts of their range, such as differing land-use on an East-West basis across Europe. 

Fourth, at finer scales, current research has shown that land cover (Pearson and Dawson, 2003; 

Pearson, et al. 2004; Thuiller et al., 2004; Luoto et al., 2007) and biotic interactions (Heikkinen 

et al., 2007)  become important. Finally, demographic factors, as well as past population trends, 

are still likely to account for much of the fluctuation in population size. Results presented in 

Appendix III d show that, for some species, there is a (clear) climate signal underlying population 

change. However, there is still much unexplained variance in the data set confirming the above 

reservations and the conclusions from the analysis presented in this section. 

A note of caution on the analyses undertaken in this section is the possible over-

interpretation of my results. Indeed multiple-hypothesis testing, testing at the same time many 

different models and many species, will greatly increase the likelihood of false positive results 

(Whittingham et al., 2006; Mundry and Nunn, 2009). This means that the relationship between 
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climatic trends and population trends, as shown by my results, is uncertain and warrants further 

research. 

5.2.5 Conclusion 
 
Despite the use of coarse scale data and the limitations of this study, the results of my study are 

encouraging in the light of Green et al. (2008) and Gregory et al. (2009) studies. Together, our 

results indicate that CEM are modelling relevant changes in climate that are affecting species to 

some degree. The assessment of the effect of climate on populations is rendered difficult by the 

weak climatic trends during the time periods considered. Future climate change is predicted to be 

more dramatic and, therefore, a more direct link between climatic suitability and population 

numbers may be seen. Moreover, palaeoecological evidence suggests that species’ numbers have 

changed due to climate mediated range contraction (Lister and Stuart, 2008). I would, however, 

use caution when inferring changes in population numbers solely from CEMs because species’ 

numbers are affected by factors other than climate, as my results show. 

  Indeed, the models depicting population trends are clearly missing some important 

factor(s). Nest predation, breeding success (Holmes, 2007), competition (Lemoine and Böhning-

Gaese, 2003), and weather3

The effect of climate change on bird populations may not necessarily be direct. Climate 

may impact on species’ food sources (Both et al., 2006; Holmes, 2007; Sandvik et al., 2008) or 

change habitat quality (Treinys et al., 2008). Changes due to climate in arrival time onto the 

breeding/non-breeding grounds may also affect species (Both et al., 2006). Furthermore, 

population responses to direct and indirect effects of climate change may not be linear due to 

demographic regulation and density-dependence (Ådahl et al., 2006; Holmes, 2007). More 

research is needed into how climate influences population abundances.  

 (Newton, 2006) have been shown to affect population size. 

Furthermore, migratory birds are also affected by factors in between their breeding and non-

breeding grounds, which were not taken into account. Changes along the migratory route can be 

very important in terms of survivorship (Newton, 2006). Holmes (2007) reported that 85% of 

apparent annual mortality of the migratory Dendroica caerulescens occurred during migration 

rather than during the stationary periods. Adequate habitat areas, food supply and weather 

conditions all affect species’ migration (see Chapter 2). 

 

                                                 
3 Weather is not the same as climate (see page 7). 
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5.3 Populations’ vulnerability to climatic change 
 
 

5.3.1 Introduction 
 
 
The previous section linked past population changes to average change in climate suitability 

during the same period. The results showed a weak association between climate and population 

change. Other factors confound the effects of climatic change and studies indicate that 

populations may respond to climatic change in a complex manner (Ådahl et al., 2006; Holmes, 

2007; Suttle et al., 2007).  

Future changes in climate are projected to be more dramatic than in the past (IPCC, 

2007), so future population change may more clearly be linked to climate. However, 

distinguishing between climatic effects and other effects on population numbers may still be 

difficult unless there is a direct change in mortality/survivorship or fecundity. Indirect effects 

may be much slower to operate due to lags in the system and, hence, may not correlate well with 

recorded climatic changes. Changes in species’ ranges appear to be attributable to climatic 

change more than to population changes. Human-induced range changes not relating to climate, 

such as from habitat alteration (Okes et al., 2008), have also been observed. 

Although the link between population size and range size is not necessarily 

straightforward (Lawton, 1993), it is agreed that changes in range, whether due to contraction or 

fragmentation, must (eventually) have an impact on species’ numbers (IUCN, 2001; Lister and 

Stuart, 2008), though not necessarily on extinction risk (Shoo et al., 2005a; Akçakaya et al., 

2006). Shoo et al. (2005a) examined the extinction risk of rainforest birds in Australia. They 

found that species varied in their response (population trajectory) to increasing temperature and 

had lower extinction rates that those reported from similar studies using changes in range size.  

Species have already started to adjust their ranges due to climatic change (Parmesan and 

Yohe, 2003) though some studies report a lag in this adjustment (Menendez et al., 2006; Devictor 

et al., 2008). Many studies, including my results, have found lagged population responses to 

climate (see previous section). Population responses may, moreover, change at a different rate to 

range size. Shoo et al. (2005b) showed that decreases in population size can occur at a faster rate 

than decline in range size. Rhodes et al. (2008) suggest that species may exhibit threshold 

responses to habitat loss and, furthermore, that the threshold may vary across a species’ range. 
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 Alternatively, population responses to current subtle changes in climate may not be 

detectable in the present time period though their trajectory may tend in the direction of projected 

change. Moreover, as climate change has been more pronounced in the latter part of the 20th 

century and beginning of 21st century than previously (Dore, 2005), population trends covering 

this latter time-frame may exhibit a clear climatic signal.  Gregory et al. (2009) found that future 

climate change projections matched current population trends. They found a significant positive 

relationship between observed bird population trends and the projection of change in species’ 

range extent. They used this as a basis for an indicator of climate change effects on species. 

However, migratory birds are subject to changes not only on their breeding and non-breeding 

ranges but also to changes in migratory distance. I, therefore, used both breeding and non-

breeding range changes to produce an index of impact of climate change (section 5.1). In this 

section, I explore the relationship between recent population change and future climate change 

vulnerability. If climate has been a strong driver of recent population change, I would expect a 

negative relationship between population change and species’ vulnerability categorisation (see 

below). However, as discussed in the previous section, the effects of climate change may not 

necessarily be direct or may be overwhelmed by other factors. This indicates that I may not find 

an association between climate and population trend. 

 

5.3.2 Methods 
 
The Vulnerability index outlined in section 5.1 is a pressure index in that it always has a negative 

connotation, going from least vulnerable to extremely vulnerable. To account for this, the 

positive measures of population change were coded into one category so that “stable” to 

“increasing” population trend categories were coded as 0. The other categories were coded in the 

same way as in section 5.2.  Vulnerability categories were coded as 1 = least vulnerable, 2 = 

moderately vulnerable, 3 = vulnerable, 4 = highly vulnerable and 5 = extremely vulnerable (see 

section 5.1). 

The degree of correspondence between population trends (for the periods 1970-1990 and 

1990-2000) and future climate change sensitivity, as determined by each species’ Vulnerability 

category (see section 5.1) was measured using Kendall's τ test. Kendall’s τ has values ranging 

from −1 (100% negative association) to +1 (100% positive association). A value of zero indicates 

the absence of association (SPSS Inc., 2006). Migratory strategy, species’ grouping (passerine 

and non-passerine) and habitat (see Table 3.15) were taken into account for this test because 



 260 

these factors were shown to be important for those two measures (see sections 5.1 and 5.2). The 

analysis was done separately and in combination. Non-passerines were not further split into 

early/late breeders as there were not enough species in each habitat category to give reliable 

results. 

Species in the extremely vulnerable category (see Tables 5.3-5.5 and A24-26) were 

examined using Chi-square tests to see if current population trends were more likely to be 

decreasing than increasing or having a stable population. In order to do so, species were assigned 

an increasing, stable or decreasing category if the population trend was consistent through both 

time periods. Species with differing trends (34 species in total – see table A27-29) were excluded 

for the analysis 

 

5.3.3 Results 
 

Analysis of correspondence between the 1970-1990 population trends and future Vulnerability 

category for the A1B scenario is shown in Tables 5.22 and 5.23 and in table A30 and A31 for the 

A2 scenario, which gives similar results. There was no significant association between 

Vulnerability category and population trend for European and trans-Saharan migrants, meaning 

that there was no significant difference in the distribution of Vscores among species’ trends 

(Table 5.22). However, split strategy migrants had a positive association with the 2025 and 2055 

index. This indicates that currently stable/increasing populations are projected to be at greater 

risk from future climatic change than currently declining populations. 

 

Table 5.22: Analysis of correspondence between the 1970-1990 population trends of the 
different migratory groups and future Vulnerability category according to the A1B 
scenario. N is the number of species in each category.  
  2025  2055  2085  
Species N Kendall τ  p Kendall τ  p Kendall τ  p 
European 26 0.071 0.389 0.008 0.938 -0.158 0.217 
Split-strategy 55 0.285 0.007 0.289 0.010 0.178 0.120 
Trans-Saharan 51 -0.138 0.220 -0.103 0.360 0.078 0.524 

 

 Table 5.23 shows that upland species had a strong negative association between 

Vulnerability category and population trend. Splitting into passerines and non-passerines revealed 

no association between population trend and the index for passerine species. For non-passerines, 

forest species had a significant negative association with the 2085 index. This means that 
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declining species have a tendency to have higher Vscores than stable/increasing species. 

However, sample sizes were small in some cases (Table 5.23), which may result in unreliable 

results (Hill and Lewick, 2005). 

 
Table 5.23: Analysis of correspondence between the 1970-1990 population trends and 
future Vulnerability category by habitat according to the A1B scenario. N is the number of 
species in each category.  
  2025  2055  2085  
All Species N Kendall τ  p Kendall τ  p Kendall τ  p 
Open habitat 36 0.138 0.329 0.158 0.250 0.165 0.216 
Forest 37 -0.018 0.854 -0.117 0.209 -0.127 0.298 
Upland 7 -0.544 0.005 -0.762 0.000 -0.367 0.178 
Wetland 25 0.119 0.394 0.273 0.034 0.222 0.115 
Passerine        
Open habitat 15 0.160 0.551 0.173 0.475 0.240 0.169 
Forest 27 0.033 0.818 -0.041 0.772 -0.078 0.582 
Upland 3 0.000 1.000 0.000 1.000 -0.444 0.221 
Wetland 3 0.444 0.221 0.444 0.221 0.444 0.221 
Scrub 15 -0.187 0.387 -0.080 0.707 -0.187 0.345 
Non-passerine        
Open habitat 21 0.211 0.217 0.218 0.186 0.231 0.173 
Forest 10 -0.090 0.765 -0.210 0.501 -0.450 0.041 
Upland 4 -0.750 0.083 -0.750 0.083 -0.250 0.317 
Wetland 22 0.105 0.559 0.341 0.048 0.260 0.139 
Coastal 11 0.372 0.242 0.198 0.547 0.149 0.591 

 

Analysis of correspondence between the 1990-2000 population trends and future Vulnerability 

category for the A1B scenario showed no linear trend among the different migratory categories 

(Table 5.24). 

 

Table 5.24: Analysis of correspondence between the 1990-2000 population trends of the 
different migratory groups and future Vulnerability category according to the A1B 
scenario. N is the number of species in each category.  
  2025  2055  2085  
Species N Kendall τ  p Kendall τ  p Kendall τ  p 
European 40 0.033 0.725 0.053 0.646 -0.033 0.776 
Split-strategy 91 0.112 0.128 0.109 0.203 0.082 0.325 
Trans-Saharan 65 -0.078 0.444 -0.115 0.206 -0.015 0.876 
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Upland species showed a significant negative relationship between their sensitivity to 

future climate change and current population trend (Table 5.25). For passerine species, forest 

dwellers had a significant negative association between population trend and vulnerability 

category (Table 5.25).  

 
Table 5.25: Analysis of correspondence between the 1990-2000 population trends and 
future Vulnerability category by habitat according to the A1B scenario. N is the number 
of species in each category. 
  2025  2055 2085 
All Species N Kendall τ  p Kendall τ  p Kendall τ  p 
Open habitat 50 0.001 0.993 0.059 0.632 0.140 0.238 
Forest 49 -0.086 0.443 -0.135 0.276 -0.191 0.101 
Upland 13 -0.503 0.000 -0.473 0.036 -0.205 0.420 
Wetland 45 0.100 0.341 0.058 0.596 -0.014 0.902 
Passerine        
Open habitat 21 -0.020 0.909 0.042 0.825 0.075 0.557 
Forest 35 -0.269 0.032 -0.274 0.040 -0.313 0.020 
Upland 8 -0.375 0.131 -0.234 0.388 -0.188 0.433 
Wetland 7 0.490 0.003 0.367 0.173 0.306 0.324 
Scrub 16 0.035 0.872 -0.082 0.704 -0.188 0.380 
Non-passerine        
Open habitat 29 0.117 0.462 0.120 0.465 0.212 0.141 
Forest 14 0.184 0.309 0.153 0.407 0.015 0.949 
Upland 5 -0.720 0.000 -0.960 0.000 -0.360 0.312 
Wetland 38 0.102 0.425 0.079 0.531 0.015 0.909 
Coastal 18 0.165 0.282 0.132 0.424 0.198 0.238 

 
 

Table 5.26 shows species with consistent trends throughout the 1960-2000 period that are 

classified as extremely vulnerable to future climate change. Although in each time period the 

majority of species’ population trends are either decreasing or stable, there was no significant 

difference in the number of decreasing, stable or increasing species  (A1B scenario: for 2025 χ2
2 

= 1.6, p=0.449; for 2055 χ2
2 = 1.6, p=0.449; for 2085 χ2

2 = 0.25, p=0.882. A2 scenario: for 2025 

χ2
2 = 1, p=0.606; for 2055 χ2

2 = 0.4, p=0.818; for 2085 χ2
2 = 1.75, p=0.416). 
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Table 5.26: Species and population trend for the 1960-2000 period in 
the extremely vulnerable to climate change category for three time 
periods of the A1B scenario 

20
25

 
Anas penelope stable 
Apus affinis decreasing 
Bubulcus ibis increasing 
Charadrius morinellus decreasing 
Chlidonais hybridus                 increasing 
Egretta alba                        increasing 
Falco columbarius stable 
Milvus migrans decreasing 
Neophron percnopterus decreasing 
Oenanthe xanthoprymna decreasing 
Pelecanus onocrotatus stable 
Porzana parva                       decreasing 
Sterna sandvicensis                 decreasing 
Tachybaptus ruficollis stable 
Turdus torquatus stable 

20
55

 

Anas penelope stable 
Apus affinis decreasing 
Bubulcus ibis increasing 
Carpospiza brachydactyla increasing 
Charadrius morinellus decreasing 
Chlidonais hybridus                 increasing 
Egretta alba                        increasing 
Lymnocryptes minimus decreasing 
Melanocorypha bimaculata increasing 
Neophron percnopterus decreasing 
Oenanthe xanthoprymna decreasing 
Pelecanus onocrotatus stable 
Porzana parva                       decreasing 
Sterna sandvicensis                 decreasing 
Tachybaptus ruficollis stable 

20
85

 

Calidris minuta stable 
Calidris temminckii stable 
Chlidonais hybridus                 increasing 
Lymnocryptes minimus decreasing 
Melanocorypha bimaculata increasing 
Porzana parva                       decreasing 
Sterna sandvicensis                 decreasing 
Sylvia sarda stable 
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5.3.4 Discussion 
 
 
The results show that for the majority of cases there is no significant association between current 

population trends and species’ sensitivity to future climatic change. This result is not particularly 

surprising because the data and analyses used were much coarser than those used by Gregory et 

al. (2009). However, my results show some significant negative associations. Separating species 

into migratory category did not reveal any significant associations except for split-strategy 

migrants. This suggests that either other factors than climate are important in shaping these 

species’ population trends or that climatic effects are interacting with other factors producing 

complex responses (see Shuttle et al., 2007).  Interestingly, Kendall’s τ for trans-Saharan 

migrants was nearly always negative. Trans-Saharan migrants are generally declining and climate 

change has been suggested as a potential driver (Sanderson et al., 2006). The non-significant 

association, however, suggests that climate may be a driver for some but not all species. 

For passerine species inhabiting forest and upland, currently declining populations were 

more likely to be classified as at higher risk from climate change than increasing populations. 

This indicates that, for some of these species, climate may be an important factor underlying their 

population changes. Furthermore, the results presented in Appendix III d show that, for 

individual species, clear climatic signals can be found. These results indicate that the underlying 

causes of population fluctuations are species-specific rather than general and suggest that future 

research should concentrate on species-specific investigations including all relevant and 

confounding factors (see section 5.2.4). 

Gregory et al. (2007) examined population changes across Europe among forest birds 

during 1980-2003 and found that common forest birds had declined by 13% and forest specialists 

by 18%. Among these species, long-distance migrants and resident species were more likely to be 

declining than partial migrants. However, Gregory et al. (2007) found that nest type was the only 

significant explanatory variable. They also examined whether winter weather was associated with 

population trends and, although there was a weak correlation between the two, the correlation 

was only significant for five species. My analysis, however, takes into account potential changes 

in range extent, range conservatism and migratory distance. The results presented in section 5.1 

indicated that forest species were more likely to be assigned their position in the sensitivity index 

due to contracting ranges and greater future migratory distance. Muscicapa striata, Ficedula 

hypoleuca and Sylvia hortensis are examples of forest species currently declining and classified 
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as either “Vulnerable” or “highly Vulnerable” to climatic change. English Nature (1998) suggests 

that Muscicapa striata is declining due to climatic factors or changes in agricultural practice and 

loss of nest sites. It has been suggested that Ficedula hypoleuca declines are due to climate 

induced phenological mis-matching (Both et al., 2006). The species’ climate sensitivities, along 

with the possibilities that current declines are climate-related, suggest that climate is a driver in 

these species declines. 

Both Gregory et al. (2007) and BirdLife International (2004) indicate that birds primarily 

associated with boreal and temperate forests are declining. My results, however, suggest that 

many southern-biased species should be vulnerable to climate change (Tables 5.3-5.5 and A24-

26). However, if their projected distributional change is due to future water limitation, changes in 

distribution or population declines may not take place (and may not be currently experienced) 

due to human intervention (Böhning-Gaese and Lemoine, 2004). Declining northern populations 

could be climate induced since climate change projections indicate that many species’ breeding 

ranges are likely to shift northwards (section 4.2), which could mean increased inter-specific 

competition leading to declines. However, it is likely that these declines are not climate change 

caused as much as land-use change related.  

Scrub species’ population trends exhibited a very weak negative association with the 

vulnerability index. This is not surprising since scrub species have a wide range of Vulnerability 

scores (see section 5.1). Some species’ predicted future vulnerability matches the current 

population trend for example: Sylvia melanothorax increased or was stable during the 1960-2000 

period and is classified as least/moderately vulnerable to climate change, whilst Locustella naevia 

is currently declining and projected to be highly vulnerable to climate change. In contrast, Sylvia 

undata was strongly declining during the 1970-1990 period and yet is only classified as either 

moderately vulnerable or vulnerable to climate change. Here lack of data (unknown trend for the 

1990-2000 period due to the unknown trend of the greater part of the population in Spain), as 

well as the scale of data used, are limiting my analysis. For example, this species is currently 

increasing in Britain where my models indicate increased climatic suitability in the future (see 

digital appendix).  

Upland species exhibited a strong negative association between population trend and 

future climate change vulnerability. Climate change has been shown to cause species’ 

distributions to move to higher elevations (Wilson et al., 2005). Oenanthe xanthoprymna for 

example is currently declining and is projected to be highly vulnerable to climate change. 

Oenanthe oenanthe is currently decreasing and projected to be moderately vulnerable, whereas 
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Monticola solitarus is currently stable and projected to be least vulnerable to climate change. 

Shoo et al. (2005b) found that species’ populations that occupied territories at mid elevation were 

more likely to decline than those species’ populations at higher altitudes. This is an interesting 

observation that indicates potentially complex processes operating that analyses such as 

undertaken in this Chapter cannot capture, thereby showing its limited application. 

Stronger associations were found between the 1990-2000 population trend and future 

climate change impacts than the 1970-1990 period. The results in the previous section indicated a 

stronger relationship between population change and climate during the 1970-1990 period than 

for the 1990-2000 period. However, climate changed rapidly during the latter part of the 20th 

century (Dore, 2005; Hulme et al., 2002), which may not have shown in the smoothed climate 

trends calculated for the 1990-2000 period (Gregory et al., 2009). Populations, however, may 

have started to respond to these changes. Juillard et al. (2004) examined the relationship between 

bird productivity during a particularly warm spring (as an indicator of future conditions) and 

population trends. They found a positive relationship between productivity during that year and 

population trends, concluding that long-term population dynamics was therefore related to global 

warming. Their conclusion is far too simple and does not necessarily follow on from their results. 

Nevertheless, their study suggests that the occurrence of climatic extremes, which are projected 

to increase in the future, may be more relevant to population changes than mean changes in 

climate. 

 

5.3.5 Conclusion 

 

Despite a few climate-vulnerability associations, the results are not conclusive in demonstrating a 

general effect of climate on species’ population trends. The results are based on projected future 

changes in species’ distribution. This may be misleading since changes in species’ range size or 

location will also be determined by species’ ability to disperse, whether the changes occur at the 

core of species’ range or at its edge (Jarema et al., 2009), and whether other factors interact or 

override projected climatic changes (such as habitat degradation or enhancement).  

Fluctuations in population size may not be independent of long-term trends or even short-

term trends. Indeed, a declining population may continue to decline, even if conditions improve, 

due to the effects from what is known as the ‘extinction vortex’ (Gilpin and Soulé, 1986; Fagan 

and Holmes, 2006).  Fagan and Holmes (2006) analysed ten wild vertebrate populations’ descent 

into extinction, to test theoretical predictions about the process of extinction. They found that 
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populations followed a logarithmic relationship between population size and time-to-extinction, 

and that the bird populations in the study followed this theory more closely than the other 

vertebrates in the study.  

The results from these two sections show that a general climatic change effect on 

migratory bird populations is not observed. There was high over-dispersion in the ordinal 

regression models indicating that the models were missing important explanatory factors. The 

analyses indicate, however, that there is a large variation between species and that climate may be 

a factor in the population trends of some species. However, more detailed analyses would need to 

be undertaken to find the main drivers of population change. These results demonstrate that 

generalised statements may not always be applicable when dealing with complex processes such 

as population fluctuations.  
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6. Synthesis & Discussion 

 

 

Macroecological theory as well as empirical evidence from a plethora of studies suggests that 

ultimately, at broad scales, species’ distributions are determined by climate. At finer scales 

and within climatic constraints, species’ distributions are constrained by abiotic and biotic 

factors. There is much debate amongst ecologists about the exact scale at which different 

factors become important. It has been argued that at coarse resolutions and over large scales, 

biotic factors as well as some abiotic factors become less important than climatic controls 

(Chapter 2). This has led to the widespread use of climate envelope models, niche models or 

species distribution models (SDM).  These techniques for studying species’ distributions have 

become more prevalent in recent years, in part because of the ease of such studies, and also 

because they are one of the most useful ways to predict the impact of climate change on 

species’ distributions. 

 Climate change is now a mainstream concern as evidence grows of its occurring and 

of its noticeable effect on many aspects of species’ ecology. Birds are one of the most studied 

taxa and a wealth of evidence shows that climate change is impacting on their phenology, 

ecology, distribution, and numbers (Chapter 2). 

 Migration is a common strategy for many bird populations (Berthold, 2001; Newton, 

2008). Although, migration enables species to make use of the seasonal nature of certain parts 

of the globe, it is energy demanding and perilous. Migratory species may be more at risk from 

climate change than their resident counterparts, a concern heightened with the widespread 

decline of many long-distance migrants (Sanderson et al., 2006); in particular because 

migrants rely on bioclimatically different areas, which may not change in the same way in 

response to climate change.  

Many studies have examined the effect of current climate change on the timing of 

migration and breeding in birds, reporting earlier arrival on the breeding grounds and earlier 

egg laying in many short/medium-distance migrants, as well as some (but not all) long-

distance migrants (Crick et al., 1997; Gordo et al., 2005). Similarly, many studies have 

forecast potential consequences of climate change on species’ breeding ranges, including 

birds (Erasmus et al., 2002; Huntley et al. 2006, 2007). However, as yet, no-one has 

examined the potential impact of climate change on the distribution of migratory birds in both 

their breeding and non-breeding ranges. Most modelling studies relating migratory bird 

species’ distributions to climate have concentrated on the breeding ranges, with little research 

undertaken on wintering ranges (but see Martinez-Meyer et al., 2004). However, weather 
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conditions, i.e. the fluctuations in climate, on the wintering grounds are crucial in determining 

population fluctuations and trends of several trans-Saharan migrant birds (Baillie & Peach, 

1992; Gordo et al., 2005; Jones et al., 1996; Saino et al., 2004a, 2004b). Changes in the 

extent and, particularly, the location of the wintering range could have marked effects on the 

future viability of populations of migratory species. For example, species believed to have 

relatively stable breeding ranges might decline as a result of large changes in the extent of the 

wintering range. In addition, a progressive shift apart of the breeding and wintering ranges 

might entail increased migratory distances and altered migration routes. 

This thesis aimed to examine the potential impacts of climate change on the 

distribution and migration of Afro-Palaearctic migrant birds. This study was not exhaustive in 

the species used, concentrating on those migrants that have a large part of their breeding range 

in the Western Palaearctic and winter within the Western Palaearctic and in Africa. Moreover, 

only species’ breeding and non-breeding distributions were examined, with no attempt to 

quantify changes along the migratory route or to their phenology. Finally, only broad scale 

changes in terms of magnitude and direction of shift in the face of climate changed were 

examined. The results are therefore coarse in nature as were the data used. This work entailed 

three main aims: 

 

1) Model the present distribution of Afro-Palaearctic birds on their breeding and non-

breeding grounds.  

2) Project the distributions into future climate change scenarios and examine the 

potential impacts of climate change.  

3) Assess the vulnerability of migrant birds to climatic change.  

 

The first part of this Chapter recapitulates the findings of the thesis by answering and 

discussing the questions attached to these aims (section 2.2). The second part sets the results 

in the wider context, by discussing the likelihood of changes in an evolutionary context, and 

discusses the uncertainties and limitations of the study. Finally, future challenges are outlined. 
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6.1 Synthesis 

 
6.1.1 Species distribution models: breeding and non-breeding ranges of Afro-Palaearctic 

migratory birds 

 

Model selection 

 

The development of species distribution models (SDM) is, to some extent, driven by the kinds 

of data available and the purpose of the models. Their performance will, in part, be the result 

of the accuracy and precision of the data used, the ability of the technique to describe the 

species-environment relationship, and the validity of the captured relationship (Guisan and 

Thuiller, 2005). Performance of a model is, in itself, an uncertainty because the definition of 

what constitutes a well performing model is subjective and depends on the ultimate purpose 

of the model. Moreover, because models are simplistic approximations of a “reality” (once 

again this depends on many things including the conceptions of the modeller), they are a 

balancing act between generality and accuracy (Heikkinen et al., 2006).  

 All the questions researched in the first part of the thesis stem from one broad 

question: Which model? This question can be further broken down into: which variables 

describe the species-environment relationship best; and how are these variables related to 

species’ distributions? This second question directly refers to the technique used to model 

species’ distributions. There have been many studies comparing different modelling 

techniques (e.g. Elith et al., 2006) but no clear cut answer has emerged, leaving model testing 

an important part of the creation of SDM (Austin, 2007). Few studies have examined the 

importance of variable choice in SDM building though there have been some exceptions (e.g. 

Heikkinen et al., 2006). Choice of predictor variable has many implications, including the 

conceptual validity of the model and its applicability over space and time (Araújo and Guisan, 

2006). 

 These questions have to be tested and answered within the framework of the purpose 

of the model. Indeed, the validity of a model will differ if its purpose is merely to describe the 

species-environment relationship or if it is to be used in a predictive capacity (Araújo and 

Guisan, 2006). The aim of this thesis was to predict the potential effects of climatic change on 

migratory birds. Therefore, the models need to perform well in their predictive ability. The 

difficulty in measuring predictive ability (see Chapter 2 & 3), however, means that proxy 

qualities need to be used. Robustness (stability of a model) and generalisability, which entails 

making sure the models do not over-fit, are consequently important.  
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 In section 3.1, the question of how model section affects robustness and predictive 

ability was investigated. Answering this question is a multi-step process. First, the choice of 

variables will be important because it determines the conceptual validity of a model. Second, 

performance of the models needs to be compared. This in itself is difficult, because there are 

many ways to select (and evaluate) a model. 

 The first step in this process was to determine a set of candidate predictor variables 

and then models, which should be ecologically meaningful in determining species’ 

distributions and relevant to the purpose and scale of the model. Huntley et al. (2004) 

demonstrated that a small set of bioclimatic variables could produce an adequate depiction of 

the species-environment relationship at coarse resolutions. This choice of predictor variables 

in SDM has also been successfully used in other studies (e.g. Bakkenes et al., 2002; Thuiller 

et al., 2005a). The results from section 3.1, including the excellent fits of the models and the 

analysis from the simple models, corroborate the use of these bioclimatic variables and 

demonstrate the conceptual validity of this approach. However, my results showed that choice 

of predictor variables is species dependent, with the inclusion of seasonal variables important 

for migratory birds. Moreover, different explanatory variables are needed for the breeding or 

non-breeding grounds. Many studies incorporating vast numbers of species have used the 

same set of predictor variables for each species. I believe this is too simplistic and can 

introduce error and uncertainty into the predictions. 

The results of the analyses undertaken in section 3.1 indicate that choice of model 

seriously affects robustness and generalisability. Choice of model is usually done via a model 

selection technique (see section 3.1.1). Analyses undertaken using a variety of commonly 

used techniques in model selection, more specifically AIC, AUC, data partitioning and 

independent data, revealed that these methods differed in their model selection. Furthermore, 

certain methods did not necessarily choose the most robust model in terms of precision and 

accuracy (Walther and Moore, 2005). The approach which selected the most robust models 

was cross-validation (partitioning the data several times to find the most precise and accurate 

model), a result also found by Maggini et al. (2006). These models were shown to reduce 

uncertainty when extrapolating. Indeed, comparisons of the future projections built on part of 

the data to those built on the entire data set, showed that robust models were more precise and 

accurate (Fig. 3.2 & 3.3). Moreover, these models were better in extrapolating onto 

independent data sets (Table 3.6).  

 One incidental finding from section 3.1, however, was that, in the ecological literature, 

there is a lack of studies investigating the relationship between model selection procedures 

and predictive ability. Furthermore, most studies using SDM do not concern themselves with 
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a proper evaluation of their models. Consequently, there is no set evaluation framework. In a 

recent paper, Elith and Graham (2009) voiced this concern and called for modellers to start 

asking more questions about their models and methods. Their concerns mainly involved the 

modelling techniques used. However, I think their concerns apply more widely to the entire 

framework of species’ distribution modelling. 

 The choice of modelling technique for SDM is still difficult because there is a vast 

choice of methods available and the choice of method(s) should take into account the data 

available, the purpose of the model and ecological theory, so that the shape of the modelled 

response is rational (Austin, 2007). With these caveats in mind, methods were sought that not 

only fulfilled these criteria but also had a large evidence base surrounding their use, to enable 

acknowledgement of their limitations, thereby minimising uncertainty. 

 Regression-based techniques that can model complex responses have been shown to 

be among the best for predicting species’ distributions (Elith et al., 2006; Heikkinen, et al., 

2006), as niche theory and empirical evidence show that unimodal response curves are 

prevalent (Austin, 2007). Generalised Additive Models (GAM) and Climate Response 

Surfaces (CRS) are two such techniques. In the ecological literature, however, GAM have a 

larger evidence base than CRS and have been shown to perform well under a variety of 

circumstances and for a variety of purposes. Generalised Linear Models (GLM) are another 

regression based technique that has been shown in some studies to be more transferable 

(Radin et al., 2006), despite it being more restrictive in its ability to model complex 

relationships. 

In sections 3.2 and 4.1, I examined the performance of these different modelling 

techniques and looked for differences in simulation and projections. Testing the performance 

of each method was secondary, as all these techniques have been shown to perform well. My 

main questions were how the methods differed; and whether different modelling methods 

produce different future projections? These questions are necessary to quantify the 

uncertainty in the modelling procedure and choose the method(s) that minimise that 

uncertainty. 

Araújo et al. (2005b) and Pearson et al. (2006) also examined these questions. Both 

found prediction and performance differences between methods, though Pearson et al. (2006) 

found that these stemmed from the type of data input and the assumptions of each modelling 

technique. Therefore, I expected that there would be differences in performance and output 

and that the differences would be minimised between similar techniques. 

In section 3.2, I explored differences in simulations in terms of their performance (fit, 

robustness and predictive ability) and in terms of their output (raw values, simulated 



 273 

prevalence and spatial differences). The results showed that model performance and output 

differed among methods. Specifically, the results showed that CRS had better model fit 

(higher AUC values) than the other methods (Table 3.7). This is because CRS employs 

locally weighted regression, which makes it excellent for describing the data available. One 

concern with this is that it over-fits the data, making it less robust as well as less transferable. 

CRS produced robust models, though GAM was the more robust of the two methods (Fig. 

3.8). The distinction between the two in this case was difficult as it involved a trade-off 

between precision and accuracy. GAM and CRS performed equally well in predicting to an 

independent data set (Fig. 3.9). CRS’s curve-fitting did not seem to affect its robustness in 

extrapolation negatively, corroborating the study by Beering et al. (1995). GAM have been 

shown in numerous studies to perform well, not only in simulating current distributions (e.g. 

Araújo et al., 2005a; Elith, et al., 2006) but also in projecting onto new data (Hijmans and 

Graham, 2006). GLM, by contrast, consistently performed worse than the other two methods 

despite its demonstrated usefulness in some studies (Radin, et al., 2006; Elith and Graham, 

2009). The differences in performance are slightly misleading because different methods 

performed better for certain species. Although different predictor variables were used for 

different species, one over-arching technique was sought for all species. The reasons for 

choosing one technique for all species were 1) for simplicity, 2) to conform to other studies 

and 3) to keep the assumptions and uncertainties limited. 

Comparisons of the outputs of each method have rarely been investigated in the 

literature but are nevertheless important in determining sources of error (Barry and Elith, 

2006; Lobo et al., 2007) and in giving a better understanding of the models’ workings (Elith 

and Graham, 2009). In terms of raw output, GAM and CRS were more similar than GLM. 

This was the case with current (section 3.2) and future simulations (section 4.1). Species’ 

simulated prevalence was compared between each method and with observed data. GLM 

greatly over-predicted prevalence in most cases and CRS closely simulated observed 

prevalence (Fig. 3.6). The biome analysis undertaken in section 3.2, aimed to investigate how 

well each method characterised climatic niche and whether there were any systematic spatial 

differences between methods. There were systematic differences (Fig. 3.7). On the breeding 

grounds, all methods underestimated prevalence in temperate broadleaf and mixed forests, 

temperate coniferous forest, and Mediterranean forests and scrub, and overestimated 

prevalence in boreal forest/taiga. On the non-breeding grounds, all methods underestimated 

prevalence in Mediterranean forests and scrub and overestimated in tropical and sub-tropical 

dry broadleaf forests and boreal forest/taiga. Overall, GLM simulations of prevalence in 

different biomes was different to the observed data whilst GAM and CRS were generally 
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more in agreement with the observed data and with one another. The sum of these results 

broadly concur with the conclusion by Pearson et al. (2006) that differences stem from the 

assumptions of each modelling technique. These differences in characterisation of the species-

environment relationship are also, in all likelihood, what generate the different future 

projections (section 4.1). The differences in future projections were analysed by comparing 

the different measures of change between future and present simulations commonly used in 

climate impact studies (e.g. changes in range extent and overlap between current and future 

simulated distributions) and by comparing the output of the future simulations. Statistically, 

the values of each measure of change obtained from each method were significantly different 

(section 4.1.3). However, the magnitude of change as well as the direction of change was 

generally the same between CRS and GAM, whilst GLM was sometimes different. When 

testing such a large number of models and species, it is possible to over interpret the statistical 

significance of results. It is, therefore, useful to examine statistical effect size (Field, 2005) 

but more valuable to compare actually differences in the models output. Comparison of the 

future simulated maps also indicated that GAM and CRS were more similar in their 

projections than GLM (Tables 4.1-4.8). These findings are not surprising and are consistent 

with other research (Thuiller, 2003; 2004; Araújo et al., 2005b; Pearson et al., 2006). 

Unfortunately, these differences contribute to the uncertainty in future projections and point to 

caution in interpreting the potential impacts of climate change as projected by such methods.  

There are three ways of dealing with this variability and reduce the uncertainty in 

model specification. First, is to select the best model from the framework of models chosen 

(Thuiller, 2003; 2004). In this case, either GAM or CRS could be chosen. When presenting 

the species distribution models in section 3.3, I chose to present results from GAM but 

provide results from CRS and GLM in the digital appendix. Second, is to undertake model 

averaging. Model averaging involves “calculating a weighted average of parameter estimates” 

(Johnson and Omland, 2004; p.104) and is a common practice in ecology and evolution, 

though has yet to feature in the SDM field. Model averaging reduces model selection bias and 

reduces the burden of reporting of numerous results. Future SDM studies may wish to explore 

this option. The third approach, which I chose, when presenting the results for the potential 

effects of climatic change, is the consensus approach. Using a multi-model ensemble or a 

consensus approach (Araújo and New, 2006) is an effective way deal with uncertainty in 

extrapolation. This approach has been shown to be effective not only for SDM (Araújo et al., 

2005b) but also for global climate models (IPCC, 2007). Moreover, averaging model 

projections increase the accuracy of forecasts when better models rather than more models are 

used (Araújo et al., 2005b).  
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Species distribution models for Afro-Palaearctic migrant birds 

 

Having decided upon a framework for modelling the breeding and non-breeding ranges of 

Afro-Palaearctic migrants, the question then is can good SDM be constructed for the breeding 

and non-breeding ranges of Afro-Palaearctic migrant birds? The answer to this question 

involves examination not only of measures of goodness-of-fit but also a spatial comparison 

between observed and simulated data. In terms of goodness-of-fit, breeding distribution 

models’ AUC ranged from 0.798 to 1.00 and non-breeding distribution models’ AUC ranged 

from 0.812 to 0.996, indicating that good models can be built (AUC values from 0.70-0.80 are 

fair, 0.80-0.90 are good whilst 0.90-1.00 are excellent (Swets, 1988)). AUC describes the 

discrimination ability of the models and is a threshold independent measure. However, to use 

the models’ output effectively, a threshold needs to be placed on the raw probability values so 

that presence-absence maps can be generated. Imposing a threshold necessarily results in loss 

of information, and generates some classification errors which are measured by Cohen’s 

Kappa (Cohen, 1960). The models’ kappa values ranged from poor to excellent (see digital 

appendix).  

 In general, breeding range models were better than non-breeding range models. 

Overlapping breeding and non-breeding models resulted in accurately depicting areas where 

species were resident. I did not set out to model areas of residency but it is gratifying that 

these areas match up (see digital appendix). The better breeding models may be due to better 

quality data or a more constrained breeding climatic niche. Indeed, many researchers have 

found that more marginal climatic niches are better modelled (Brotons et al., 2004; Segurado 

and Araújo, 2004). The quality of the non-breeding ground distribution maps varies, and in 

sub-Saharan Africa is coarse. The difficulty with the non-breeding distribution of migratory 

birds is that, although they may have a wide potential distribution, they may not occupy the 

entire suitable area; this is because, during the season, some species move around with 

favourable conditions or occupy specific areas at different times of the non-breeding season 

(Newton, 2008).   

 There are some systematic discrepancies between observed and simulated spatial 

distributions. These discrepancies arise from the fact that species’ distributions are evidently 

not entirely constrained by climate. The models, therefore, often simulate species’ 

distributions in areas from which, although climatically similar to areas where birds are 

present, the species is absent due either to historical factors, ecological and physical barriers 

or population size/dispersal issues (Newton, 2003). An example of this is that, for 

Mediterranean species, the models also simulate suitable areas in South Africa (Fig. 3.14). 
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The models also under-predict some species’ distributions, most notably in the Nile region 

(Fig. 3.16). It is evident that habitat or meso/micro climatic variables, which have not been 

included in the models, are important. Although many authors have argued that climate is the 

overriding factor in determining species’ distribution at large spatial scales (Huntley et al., 

2007; Luoto et al., 2007; Thuiller et al., 2004a), it is clear from these results that this 

conclusion may be too general.  

 Many authors have also questioned what affects the performance of SDM? I 

investigated this question in section 3.3.3. I looked at various aspects of species’ ecology 

which might impact on how well they were modelled, including their prevalence across the 

range, the major biome in which they were found and preferred habitat type. I found that 

species with high prevalence were less well modelled, as were wetland and coastal species. 

Species residing in distinct climatic/vegetation areas (biomes) such as boreal forests were best 

modelled. These results corroborate findings in the literature (see section 3.3.3). 

 It has been argued that ecological/geographical attributes significantly affect model 

performance and therefore should be taken into account when making use of SDM. Although 

the concluding part of that view is correct, I believe the first part of the argument is false: it is 

not the ecological/geographical attributes that affect model performance but model 

specification which is at fault. Clearly, those models are lacking important factors explaining 

species’ distributions or are built on the wrong variables all together. I acknowledge that for 

some species, models based purely on climate create a partially inaccurate simulation. 

However, the models are still good overall, and a perfect model is an oxymoron. Moreover, 

for the purpose of the model, which is to project future range change due to climatic change, 

as well as the scale, a bioclimatic model is necessary. Projections of future land-use/land 

cover change, once they become more widespread and realistic, will make welcome additions 

to species’ distribution modelling. 
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6.1.2 Potential impacts of climate change on the distribution and migration of Afro-

Palaearctic migrant birds 

 

Variations in the output of species distribution models are due to the models and methods 

used to build SDM and the result of the models used for the creation of the environmental 

data (Peterson and Nakazawa, 2008); more specifically, due to the future climate models and 

scenarios (Beaumont et al., 2008). Because we don’t know what the future climate will be 

like, a range of potential future scenarios are generated which (hopefully) span the range of 

plausible future climates. This range of future climates is the product of different emission 

scenarios and different general circulation models (GCM) (Chapter 2). The combination of 

the different climate models quantifies the uncertainty in how climate works whilst the 

different emission scenarios accommodate the uncertainty surrounding future social, 

technological and political change. 

I chose A1B and A2 emission scenarios, which are medium and extreme in the 

spectrum of emissions scenarios (Nakicenovic et al., 2000). Aside from data availability 

issues, these scenarios were preferred because recent evidence is that greenhouse gas 

emissions are increasing at a faster rate than in previous decades which may mean that current 

estimates of future emissions have been underestimated (Canadell et al., 2007; Raupach et al., 

2007). 

 To reduce the uncertainty surrounding the climatic element, the AR4 report uses 

different climate models as an ensemble; both to present the range of possibilities but also as a 

multi-model mean (IPCC, 2007). Ensemble forecasts quantify the uncertainty in forecasts by 

providing a range of values and reduce the uncertainty in model projections (when using 

consensus models and multi-model means) because the multi-model average reduces bias 

caused by individual models (Araújo and New, 2006; Beaumont et al., 2008; Meehl et al., 

2007; Randall et al., 2007). I have, therefore, presented results in Chapter 4 first as a multi-

model mean (average of both SDM and three GCM), then as individual results to show the 

range of possible outcomes.  

Given the variation in possible outcomes and the effort undertaken to minimise the 

uncertainty (use of consensus models and robust models and techniques), how will the 

projected climate change affect migratory birds? The individual species’ results in the digital 

appendix show the huge variation amongst species in potential distributional changes due to 

climate change. Evidence from palaecological studies show that species have responded 

individualistically to past climatic change (Huntley, 1991; Stewart, 2008; Willis et al., 2007) 

and are therefore likely to do so in the future. Despite these variations general trends can be 
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found and are reported in section 4.2. In section 4.3 the differences between migratory groups 

were investigated. Species were split into short-distance migrants (European or E migrants), 

long-distance trans-Saharan (T) migrants, and ‘split-strategy’ (S) migrants, those species with 

non-breeding ranges above and below the Sahara desert. This last classification is, of course, a 

simplification, since it takes into account partial migrants or species that have populations that 

migrate to different areas. If time and necessary data had been available, it may have been 

useful to undertake more detailed analyses for this group. However, as stated in the 

introduction to this Chapter, this is not an exhaustive work on migrant birds and climate 

change. In the following paragraphs, I summarise the results presented in Chapter 4. 

 

Differences between future projections of climate change and trajectory of responses 

 

There are consistent differences in future projections made using the different SDM, GCM 

and emission scenarios (e.g. Fig. 4.4 & A3). Generally, GAM and CRS project climate 

change effects in a similar direction of change but different magnitudes. Predictions of 

relative range extent assuming full dispersal (R) and overlap between future/present 

distribution (O;  also seen as relative range extent assuming no dispersal), were more 

‘positive’ for GAM than CRS, showing less reduction in O and a greater variation in R values 

with a higher mean value. Consequently, GAM project greater shifts in range as well as 

greater future ‘migration distances’. Mean direction of range shift is in the same direction 

(North for the most part on the breeding and non-breeding grounds) but is of different 

magnitude (East-West tendencies) depending on the method and climate data used. GCM also 

contributes to these differences with GAM and CRS having more similarities using GFDL 

than with the Echam or HadGEM (Fig. 4.14-4.19). GFDL generally projects the most impact 

with greater migration distances, lower O and R values. HadGEM provides a middle of the 

road projection and Echam the most ‘positive’ projection. These differences are consistent 

with the observations from the AR4 report (Solomon et al., 2007). 

The results stemming from the different emission scenarios (A1B and A2) were very 

similar especially for the 2025 time-slice. In Beaumont et al.’s (2008) review of the use of 

future climate change scenarios in SDM, the authors report that during the early part of the 

21st century, the projections from different emissions scenarios are similar. For the 2085 time-

slice, A2 generally produces a ‘worse’ scenario in terms of overlap and shift in range. 

The results also showed different trajectories of species’ response to climate change 

through time. Changes in species’ ranges were either linear (progressively worse; e.g. Fig. 

4.4a) or non-linear (e.g. range reduction for 2025 and 2055 then increase in range in 2085; see 
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Fig 4.4b). Harrison et al. (2003) also report this finding. The Millennium Ecosystem 

Assessment (MA, 2005) reports on the common occurrence of non-linear changes in 

ecosystems and services. Non-linear effects can be generated by climate change if there are 

different land-atmosphere feedbacks (MA, 2005). Another explanation of non-linear 

trajectories is based on the movement of the suitable climatic window across space (see 

section 5.1.4). However, it is difficult to predict species’ responses to such changes. Indeed 

species may respond to improving conditions after they have declined by either new range 

changes or population increases. Lister and Stuart (2008) report that, during the late 

Pleistocene, Megaloceros giganteus did not succeed in recovering all its former range during 

improving climatic conditions. 

 

Projected distribution change 

 

Breeding distribution 

 

For the majority of species, range extent (R) is projected to decrease (Fig. 4.4b), by between 

2-5% on average with maximum range reductions of 50% (Table 4.10). Individual model 

predictions forecast potentially greater range reductions than the average (Table 4.12, 4.14 

and 4.16). For about 27% of species, however, climatic suitability on the breeding grounds 

increases, resulting in projected increased range extent. There were differences between 

migratory groups with S migrants having great reductions in R, while S and E migrants either 

had no change or increasing range extents (Fig. 4.11). 

 Evidence of range contractions due to current climatic change is scarce but has been 

documented for some butterfly species (Franco et al., 2006; Thomas et al., 2006). Southern 

range boundaries of some birds are limited by temperature and water availability. Böhning-

Gaese and Lemoine (2004) suggest that anthropogenic activities such as irrigation and man-

made water bodies effectively alter this limitation on birds’ southern range margins. 

 Although some studies have documented range expansion of birds’ breeding ranges 

(reviews:  Newton, 2008; Parmesan and Yohe, 2003), there are a number of reasons why 

species may not expand their ranges, even if climatic conditions are favourable. The reasons 

include demographic factors, genetic factors, ecological factors, such as habitat availability or 

species interactions, and physical barriers. Another important point is that range expansion 

usually requires contiguous suitable range. The European landscape is highly fragmented and 

may curtail any potential range expansion. Travis (2003) used a simulation to show that 

fragmentation will exacerbate climate change. Furthermore, some of my models simulate 
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newly suitable ranges far from current distribution. This is mainly the case for species with 

small ranges. For these species, values of R may therefore exaggerate range change. This is 

one of the reasons why it is useful to look at the overlap areas between current and future 

suitable range. Overlap values show that, on average, about 50% (with a range of 10-90%) of 

species’ current range remains suitable in the future (Table 4.10). 

 Species’ breeding range, regardless of species’ migratory behaviour, is projected to 

shift northwards, except for species with a breeding range centroid lying between 1° and 10° 

latitude that are expected to shift south-east (Fig. 4.5). This finding is similar to all studies 

projecting future climate change scenarios. Although climate may indeed provide suitable 

conditions further north, photoperiod may limit the extent to which species will be able to 

make use of these areas (see Coppack & Pulido, 2004). 

 The distances between current and future centres of range are projected to be about 

130-1200 km (Table 4.10) regardless of migratory group. Current evidence is that birds’ 

distributions have moved northwards by 19 km in the UK in the period 1970-1990 (Thomas 

and Lennon, 1999), 18.8 km in Finland for the same period (Brommer, 2004) and by about 91 

km in France between 1989-2006 (Devictor, 2008). Devictor et al. (2008) showed that this 

polewards shift was lagging behind climate change by about 183 km.  

 

Non-breeding range 

 

For the majority of species, R is projected to increase in future time period (Fig. 4.4d), with 

non-breeding ranges for some species expected to double. However, some species are 

projected to have non-breeding range extents half the size of their current extent. Most 

notably, many areas in East and South Africa are projected to become unsuitable for many 

species (digital appendix). East Africa is currently a ‘hotspot’ for Afro-Palaearctic migrants 

(Fig. 4.7) so range contractions in that area may have dire consequences. For many species 

(though not all) the Sahel region is projected to remain favourable. There were differences 

between migratory groups in the magnitude of this projected range change with different 

trajectories for each group through time (Fig 4.11b).  

There are a number of valid reasons why I think the projected future range expansion 

(greater climatic suitability to be more accurate) may be overestimated. The first reason is 

data driven. The distributions of non-breeding areas were coarse and covered large areas, 

potentially due to the uncertainty in where these species actually spend the non-breeding 

season. The SDM may not, therefore, capture species-environmental limits, leading to 

overestimation of range. Second is the issue of itinerancy of many species within Africa. 
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Certain species spend predetermined amounts of time in different parts of Africa whilst others 

follow favourable conditions (following rainfall for example). Therefore the use of annual and 

even seasonal climatic factors may not describe species’ distributional limits. Finally, many 

species show non-breeding site fidelity, which may preclude these species from altering their 

non-breeding ranges. Indeed, the literature documents examples of species that, having 

expanded their breeding ranges, have conserved their non-breeding ranges, despite increases 

in migration distance (Sutherland, 1998; Newton, 2008). 

Overlap values for the non-breeding areas are similar to those of the breeding areas 

(Table 4.11). However, there are differences between migratory groups. T migrants have less 

overlapping range than other species for the 2025 and 2055 time-slice projections (Fig. 

4.12b). Unfavourable climatic conditions on the non-breeding grounds have been blamed for 

the decline of trans-Saharan migrants. My results provide further evidence that climate change 

may be in part responsible for these species’ declines. 

Range shifts are also projected to be greater for T migrants than for other species, 

ranging from 700 km to 1800 km (Fig. 4.13b). Direction of shift on the non breeding grounds 

depends on species’ latitudinal distribution and therefore varies greatly among species. 

However, many species are projected to move in a northerly direction. Recently, the National 

Audubon Society has published a report detailing the changes in non-breeding distribution of 

American birds (National Audubon Society, 2009). They found a northwards shift of, on 

average, 56 km between 1966 and 2006 (National Audubon Society, 2009). However, they 

report greater range shift for some species; for example, Megrus serrator shifted 510 km and 

Carpodacus purpureus 504 km. It is possible, therefore, that species may extend their non-

breeding ranges due to climatic change. However, many species’ ability to winter further 

north is also due to human intervention, such as provision of food in gardens (Newton, 1998). 

In the Palaearctic- African migratory system, a further limit to northwards range expansion of 

the non-breeding range are the Sahara Desert and Mediterranean Sea, which pose formidable 

barriers to northwards range expansion, which do not exist in other migratory systems. 

However, in other systems, other barriers to dispersal may exist, such as mountain ranges.  

 

Species richness and community turnover 

 

The centre of species richness on the breeding range, under the full dispersal scenario, was 

projected to shift northwards in the future. For the intermediate periods of the current century  

(2025 and 2055) S migrants are projected to increase in number per grid cell compared with 

the present, whilst E and T migrants decline (Fig. 4.20). 
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 On the non-breeding grounds, the results showed a general increase in species’ 

numbers throughout the African non-breeding areas due to the projected increased climatic 

suitability. Centres of current winter avian species richness in Europe are to become more 

fragmented with more homogenisation in the rest of Europe (Fig. 4.7), with S migrants 

increasing more than other groups. This indicates that partial migrants may be clear ‘winners’ 

from projected climatic change.   

I also examined migrant species’ community turnover, by examining the different 

proportion of migratory categories per grid cell (Fig. 4.21-4.24). The results indicate changes 

in the composition of migratory avifauna in Europe and Africa. Increases are projected in 

northern Europe for E migrants for both breeding and non-breeding periods and increases in 

southern Europe and Africa for S migrants.   

These results are coarse and are potentially only interesting as stepping stones for the 

formulation of hypotheses of change in species richness and community. Indeed, although 

species are likely to move individualistically, changes in community composition will depend 

on factors not taken into account in the analyses. First, it would make sense to include the 

entire avifauna in such an analysis, because resident species are likely to be important. 

Lemoine et al. (2007) examined changes in bird species richness at various sites within 

Europe for the period covering 1962-1992. They found an increase in proportion of long-

distance migrants, a decrease in short-distance migrants and no change for resident species. 

Second, there are other controls to the formation of species’ communities, such as species’ 

niches, which are ignored in such an analysis. Finally, the results do not take into account the 

potential change in species’ migratory behaviour (many species have become more resident 

over recent decades - see discussion below). Generally, most northerly breeding species are 

migratory, and the current and projected results are consistent with this. However, this is an 

area which warrants more research. 

 

Migration distance 

 

Average migration distances are projected to increase in the future compared with the present 

(Table 4.19). However, 2085 distances are projected to be smaller that those of 2055, which is 

due to an amelioration in climate suitability for many species in 2085. Distances vary among 

species but do not differ in terms of proportional change between migratory groups (Table 

4.20-22). There were differences in minimum and maximum migration distances for trans-

Saharan (T) migrants compared with the other groups. Indeed change in maximum migratory 
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distance was greater for T migrants in 2085 than other groups.  In general most species’ 

maximum distance increased.  

Increases in migratory distance have been documented for some species (see Newton, 

2008). However, migration distance is limited by 1) the amount of fuel a bird can carry, 2) 

suitable stopover sites, 3) genetic controls and 4) time. Therefore, increasing migratory 

distances from a progressive shift apart of the breeding and wintering ranges might have 

serious implications for migratory birds. 

Minimum migration distances varied widely among species but, in general, distances 

decreased through either gaining “resident” cells or new non-breeding areas closer to their 

breeding grounds. There have been many reports of species wintering closer to their breeding 

grounds thereby reducing their migration distance (e.g. Valiela and Bowen, 2003; Austin and 

Rehfisch, 2005). Newton (2008) provides additional examples, as well as listing seven species 

(Ardeola ralloides, Ciconia ciconia, Delichon ubrica, Falco naumanni, Motacilla flava, 

Nycticorax nycticorax and Pandion halietus) that formally wintered in sub-Saharan Africa 

that now also winter in the Mediterranean region. The future models of non-breeding 

distributions for these species project newly suitable climate space in the Mediterranean 

region for all these species (digital appendix), giving credence to the models. 

Projected changes in migratory distance, with the potential of new areas closer to the 

breeding grounds led me to the next question: Will climate change impact on species’ 

migratory behaviour? Although potential changes to migratory behaviour are likely to depend 

on factors such as species’ history and genetics, the analysis undertaken provides a start point 

for future investigation.  

  

Changes in migration strategy 

 

Change in migratory strategy was defined by gains or losses of non-breeding areas above and 

below the Sahara desert. Furthermore change in the proportion of ‘resident’ cells was also 

quantified and interpreted as changes in sedentary behaviour. 

 Depending on which SDM/GCM combination was used (Tables 4.25-27), one to four 

split-strategy migrants were predicted to lose their non-breeding areas in the Western 

Palaearctic, providing a possible selection pressure for these species to become solely trans-

Saharan migrants. Another one to nine S migrants are projected to lose their African non-

breeding quarters; this renders these species to be classified as solely short-distance migrants 

in the future. 
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 About half of current obligate trans-Saharan migrants are simulated to gain non-

breeding areas around the Mediterranean region. Species may establish new non-breeding 

areas and cut their migration distances and there is evidence of this occurring (see above). 

Changes in non-breeding location, however, may be in part determined by species’ genotype. 

Indeed evidence from bird breeding range expansion shows that genetic change parallels 

successful range expansion (Berthold, 2001). Furthermore, species establishing new non-

breeding areas also seem to have different genotypes (Bearhop et al., 2005). 

 There is a lot of uncertainty surrounding these results on changes in migratory 

strategy, since different models simulated different changes on different species. I therefore, 

sought to see whether there were any consistent simulations. Table 4.28 lists species for 

which the models predict consistent non-breeding changes. Fourteen to seventeen species 

(depending on time-slice and emissions scenario) were consistently projected to change their 

‘migratory behaviour’ from either trans-Saharan migrants to split-strategy migrants or split-

strategy migrants to solely short-distance E migrants. However, these results only suggest that 

new climatically suitable areas will become available or that current areas are likely to 

become unsuitable. What the species do in response to these projections will depend on so 

many factors that it is difficult to provide even an informed guess. 

 Analyses of the changes in proportion of “resident cells” suggest that 55-61% of short-

distance migrants may become more sedentary (Table 4.30). About half the split strategy 

migrants are projected to increase their proportion of resident cells. There is evidence of a 

trend towards reduced migratoriness in many bird species (Pulido and Berthold, 2004). My 

results also indicate that differences between species depend on where they reside. Species 

living in dry environments are projected to gain resident cells, as are those residing in 

temperate broad leaf and mixed forest; however, variation is considerable. 
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6.1.3 Species’ vulnerability to climate change 

 

Vulnerability 

 

The ultimate questions for ecologists examining the potential effects of climate change on 

species are which species are vulnerable, how are they vulnerable, why are they vulnerable, 

where are they vulnerable, and what can be done to reduce the vulnerability? Before 

attempting to answer these questions, defining vulnerability is necessary. Turner et al. (2003) 

define vulnerability as “the degree to which a system, subsystem, or system component is 

likely to experience harm due to exposure to a hazard, either a perturbation or stress/stressors” 

(p. 8074). The vulnerability index created in the first part of Chapter 5 fulfils this definition 

by scaling species’ vulnerability to climate change.  

 There are many ways that one could assess species’ vulnerability to climatic change. 

Section 5.1.1 details examples of how this has been achieved in various studies. The 

prevailing finding was that there was no agreed framework to assess species’ vulnerability to 

climate change. However, most studies utilise projected changes in distribution. Migratory 

species provide an extra complication because they utilise different areas during their life 

cycle and are prone to experience the effects of climate change on their breeding range, non-

breeding range and during migration. Moreover, the effects of climate change on the breeding 

and non-breeding areas, such as loss of suitable areas, in either area are unlikely to be 

independent of each other.  Indeed, in terms of population fluctuations, events in one area can 

result in changes in population size depending on what occurs in the other area (Sutherland, 

1996). Furthermore, migration itself can result in population declines (Newton, 2006). The 

Vulnerability index was therefore created using changes in range extent and overlap of the 

area most affected by climate change, as well as the proportional change in migration 

distance. Before detailing which species are most vulnerable, it is of interest to ask what 

makes species vulnerable or what factors impact on species vulnerability? This question 

enables an examination of how the index quantifies vulnerability and also outlines, in general 

terms, what part of a species’ ecology creates increased sensitivity to climate change. 

 For many species, increases in migratory distance contributed strongly to their 

vulnerability score (Table 5.2). Although there are examples of species lengthening their 

migratory route (see Newton, 2008), there is little evidence of the consequences thereof. 

Moreover, for the majority of Afro-Palaearctic migrants, their migration (route, stopovers, 

time, etc) is unknown. Much more is known of their spring phenology and the consequences 

of changes or non changes in arrival dates. However, if species do expand their breeding 
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ranges northwards, there is a very good chance of species facing greater migration distances 

which have the potential at least to impact negatively on species. 

 Reduction in range extent due to projected climate change contributed most to the 

vulnerability of forest dwelling species as well as those species breeding at high latitudes 

(boreal forest/taiga). This is worrying since forested areas already suffer pressure from habitat 

destruction. Furthermore, many forest birds are already declining (Gregory, et al., 2007).  

 Low overlap between current and future climatic suitability, is projected to affect 

wetland, coastal and Mediterranean species more than other species. Schröter et al. (2005) 

also found that Mediterranean species were more sensitive to climate change than other 

species due to low overlap between current and future range. Their models, indicated 

similarly to mine, that although Mediterranean species were projected to show high range 

expansion, expansion was unlikely to be unimpeded. Furthermore, they report that these 

results were consistent with recent observations.  

My results therefore go some way to address the why, where and how species could be 

classed as vulnerable to climate change. The next question is which species are most 

vulnerable? The results indicate that those species most at risk (i.e. those with the highest 

vulnerability scores) are upland or coastal species; trans-Saharan migrants; non-passerines; 

and species residing in tropical grassland, savannah/scrub or desert species (section 5.1.3).  

In a recent study of the extinction risk of tropical rainforest vertebrates in Australia, 

Isaac et al. (2009) found that birds scored high on their vulnerability index which was based 

on range size, local abundance and habitat specificity. However, they also created a resilience 

index, based on reproductive output, climatic niche marginality and potential for long distance 

dispersal, and birds were one of the taxa most resilient to environmental change. Resilience is 

an important aspect of vulnerability analysis but is often overlooked in studies examining the 

potential extinction risk to climatic change.  

 

Climate, population trends and resilience 

 

Turner et al. (2003) suggest that there are three important concepts in vulnerability analysis: 

“entitlement” which can be interpreted as species’ sensitivity, “coping through diversity” 

which entails species’ responses and “resilience”, a well known concept in ecology which 

takes into account the amount of perturbation a system can handle and its adaptive capacity.  

 Assessing species’ vulnerability to climate change, therefore, needs to go beyond mere 

listing or projecting species’ sensitivity to climatic change. We need to start achieving an 

understanding of how species respond, by examining 1) their response to climatic change, 2) 
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how important the stressor is to species (i.e. are other factors more important?), 3) the 

threshold at which the stressor becomes important, and 4) species’ ability to adapt. Examining 

these aspects will enable a better understanding of species’ responses and resilience to the 

projected stressor. The final two sections of Chapter 5 start to address these questions and 

give a better understanding of what climate impact studies using SDM can and cannot do. 

Indeed, many authors have used SDM to project species’ vulnerability to climate change and 

infer their extinction risk (Bomhard et al., 2005; Thomas et al., 2004; Thuiller et al., 2006).  

 Species’ extinction risk will depend on population and metapopulation dynamics. It is 

pertinent, therefore, to ask how much can be inferred from SDM in terms of population 

change?  Answering this question also enables the examination of 1) how species respond to 

climate, since bioclimatic SDM aim to measure species’ climatic tolerance, and 2) how 

important climate is in shaping population trends. But not the above questions 3) and 4). 

 In section 5.2, recent population change was correlated with trends in climatic 

suitability as modelled by the SDM. Ecological correlates potentially impacting on population 

trends such as habitat or migratory category were also included in the analysis. Analyses were 

performed for all species and separately for passerines and non-passerines (as well as for a 

few individual species - Appendix IIId), linking breeding and/or non-breeding climatic 

suitability with and without time lags. The results (section 5.2.3) demonstrated that 1) climate 

suitability on breeding and non-breeding grounds was associated with population trends 

(improvement over null model), 2) time lags were evident, and 3) other factors were likely to 

be more important in some cases than climate (high over-dispersion in the models).  

 The overarching conclusion from this section is that bioclimatic models can be used in 

ways other than merely plotting species’ simulated and potential distributions, though care 

needs to be taken not to over-interpret the results especially if testing multiple hypotheses. My 

results show that bioclimatic models cannot predict population change (see below), but can be 

used to explore the relationships between climate and population. 

 The results showed that breeding ground climate suitability was significantly 

positively correlated with non-passerine population trends (Fig. 5.14a). This was the expected 

relationship. Four to five years time lagged climatic suitability correlated with population 

trends (Table 5.14-15). Many authors have found evidence of lagged responses to climate 

change (see section 5.2). Analyses of passerine species, however, revealed a significant 

negative relationship between population trend and climatic suitability on the non-breeding 

grounds (Fig. 5.16b & 5.17b). Section 5.2.4 discussed the possible reasons this could occur.

  Factors, such as change in habitat, will contribute to species’ population trends; 

indeed, I found that habitat was an important factor in explaining population trend. 
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Furthermore populations are limited by a whole host of factors such as competition, disease, 

predators, as well as climate events (Newton, 1998). Although specific climate events such as 

a spell of unseasonal weather have resulted in changes in bird numbers (e.g. Baillie & Peach, 

1992, Newton, 2007), multiple factors contribute to long-term population trends, making the 

contribution of climate change to change in population numbers difficult to discern.  

 Two related factors could explain the weak relationship between climate and 

population trends (apart from the explanation that climate may be important only for some 

species). First is the weakness of the climatic trends themselves and, second is the amount 

climate changed during the time period. Jiguet et al. (2007) tested whether species-specific 

variables, including climate envelope measures, and ecological and life history variables 

could predict recent bird population trends in France. They found that the climate envelope 

component important in population trend was the “thermal maximum” which captured 11.9% 

of the variance in the model. In section 5.2, average climatic suitability was used rather than 

any other measure. This may confound results since changes are unlikely to be even over a 

species’ range.  

Furthermore, climate has not changed that much between 1960 and 2000, but is 

projected to change much more according to the future climate change projections (IPCC, 

2007). Following the results of Gregory et al. (2009), I investigated whether there is any 

relation between past population change and projected future climatic change impacts. It is 

possible that current species’ population trends are tending in the direction of future climatic 

change. My results showed that, for some species, the 1990-2000 population trend was 

associated with future climate change vulnerability. Upland species and forest passerine 

species had significant negative associations with the vulnerability index (Table 5.25), 

indicating that declining species were also those more vulnerable to climate change and 

increasing/stable species were also those least vulnerable to climate change. This means that 

for those species, climate change may be having a noticeable effect on population numbers. It 

has been suggested that climatic change may be a driver of the decline of trans-Saharan 

migrants. The results do not reveal a significant association between the index and recent 

population trends of trans-Saharan migrants as a group (Table 5.22 & 5.24). However, the 

association was negative and, furthermore, the Vulnerability index rates trans-Saharan 

migrants as more vulnerable than other species (section 5.1.3). This indicates that climate is 

likely to be a factor contributing to population declines. 

These results indicate that the picture is more complex than SDM use and analyses can 

portray. Species’ population sizes are determined by a number of factors, climate being one of 

them. However, not all species are necessarily going to be affected by climate change. SDM 
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can portray species’ potential sensitivity to climate change, and may be able to address 

species’ response to climate change up to a certain point. However, used on their own they do 

not and can not address species’ resilience or adaptive capacity to climatic change, nor can 

they answer the question how likely the projected changes are. Jiguet et al. (2006, 2007) 

attempted to find the threshold at which the stressor becomes important, and the ability of 

species to adapt. They used the heat wave in France during the summer of 2003 to examine 

birds’ responses in terms of population change. They found that species’ thermal range was a 

good predictor of population growth rates: species with broad thermal ranges had a greater 

resilience (of population growth) to high-temperature anomalies than species with narrow 

thermal ranges (Jiguet et al., 2006). They also showed that climate envelopes could be used to 

deduce the important climate suitability component (thermal maximum) to population change 

(Jiguet et al., 2007). 
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6.2 Discussion 
 

The distributions of organisms on the globe are a result of ecology and history and 

consequently cannot be fully understood in isolation (Crisci and Katinas, 2009). Bioclimatic 

models describe but a component of species’ distributions. They may not capture the true 

relationship between species and their environment because they lack some of the 

fundamental elements that shape distribution patterns and, also because the assumptions they 

are based upon are not always valid.  

  A fundamental tenet of niche modelling is that species are in equilibrium with their 

environment. Many bird species have expanded their ranges during the last few years 

(Newton, 2003). Therefore, some species may not yet be in equilibrium with their 

environment. Furthermore, species’ niches are constrained by other factors than climate, such 

as species interactions or barriers, which, if these change, could also invalidate the estimated 

bioclimatic niche (Davis et al., 1998). The consequence is that the entire species-environment 

relationship has not been captured. Species may therefore be able to reside in more areas than 

they currently do. The impact of this error is that the projections of future climatic change will 

be exaggerated for these species. The projections may also be spurious if, for instance, a 

species requires certain species (e.g. host plant) to survive. In these cases, these interactions 

need to be included in the analyses. However, Merrill et al. (2008) showed that, in butterfly 

species’ distribution over an elevational gradient, lack of host plants at the high elevations 

constrained species’ distributions, whereas climate at the lower range margin and not host 

plant availability constrained species’ distributions. Factors affecting species’ distributions are 

therefore more complex than niche modelling can capture. Habitat, or the presence (or 

absence) of other species, may, therefore, be important in shaping and determining species’ 

ranges. Some studies clearly show that changes in species’ distributions are related to change 

in land-use and land cover rather than climatic change (Kerbiriou et al., 2009; Okes et al., 

2008). Bioclimatic models are based on the assumption that at coarse scales climate is the 

overriding factor and, hence, do not include habitat variables. Many studies have shown this 

to be the case (see Chapter 2). However, modelling at coarse scales also means that results are 

coarse in nature and, as such, have limited use.  

 SDM are useful in giving insight into how species may respond to climate change 

(Chapter 4) and allowing examination of the relationship between species and climate 

(Chapter 5). My results report different changes on the breeding and non-breeding grounds for 

migratory birds. It is difficult to project the actual responses of species to these changes 

because the impacts on the breeding and non-breeding grounds are not uncoupled. 
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Furthermore, changes along the migratory route will affect species. Although the findings 

reported in this thesis concentrate on, and are based on, potential changes of range size and 

range position, the responses of species to climatic change are likely to involve not only 

changes in distribution, but also changes in population size and genetics. The link between 

population and climate is not straightforward as my results clearly demonstrate and, as such, 

warrants more research.  

Many pessimistic results are reported in the literature (Chapter 2) and in this thesis 

(Chapter 4), but some species will profit from climatic change. My results show that, for some 

species, range expansion and reduction of migratory distances may occur. Furthermore, 

theoretical models suggest that environmental fluctuations may enhance biodiversity through 

the creation of new ordered states (D’Odoric et al., 2008). The difficulty is that the 

consequences of individualistic responses to change cannot be forecast, because SDM cannot 

capture inter-species relationships. The fossil record shows that species’ distribution 

trajectories are asymmetric – they rise to a peak very rapidly then gradually diminish (Liow 

and Stenseth, 2007). The decline is caused by novel community-level interactions (Shuttle et 

al., 2006). This pattern of change (range expansion followed by decline) has also been shown 

for genera of extant birds (Webb and Gaston, 2000). However, the lessons from the fossil 

record may not be valid for future time periods as novel climates which have no modern 

analogue are predicted to occur (Williams and Jackson, 2007). 

 The likelihood of niche shifts to climatic change is the biggest uncertainty in studies 

examining the potential impacts of climate change. The evidence from the past (Lister & 

Stuart) as well as from current studies (see Pearman et al., 2007) is mixed: some species have 

shifted their ranges whereas, in others, niche conservatism has prevailed (Pearman et al., 

2007; Willis et al., 2007). For those species that are likely to shift their range due to climatic 

change, evidence from empirical studies (Devictor et al., 2008; Menedez et al., 2006) as well 

as from simulation studies (Mustin et al., 2009) indicates that time lags will occur. If the 

modelled niche is correct and if the landscape is not fragmented, the likelihood of niche shifts 

in response to climatic change will depend on genetics, demography and dispersal.  

 The majority of SDM studies fail to incorporate realistic dispersal scenarios, including 

either an all or none scenario such as in this thesis. Scientists are starting to address this issue, 

which will be a continual challenge in the future. Recent studies have demonstrated that 

dispersal is complex, depending on dispersal ability along with, and also interacting with, 

demographic factors (Massot et al., 2008) and/or inter-specific interactions (Brooker et al., 

2007). 
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 Studies into the genetics of environmental change are in their infancy (Pulido and 

Berthold, 2004). In response to environmental change, surviving species will respond in a 

variety of ways. First, they may adapt through phenotypic adjustment. The ecological 

literature is full of examples of this occurring with changes in bird and migration phenology 

being the best researched taxa (Chapter 2). However, phenotypic plasticity may not always be 

sufficient and may be limited for long-distance migrants (Pulido and Berthold, 2004). Second, 

species may adapt through genetic selection. Empirical evidence indicates that some species 

may change under a strong selective pressure (Berthold et al., 1992). Furthermore, Pulido and 

Berthold (2004) report that many authors have found extreme climatic events to be important 

as “selective agents” in bird populations. Given the current (albeit scant) evidence, they 

further suggest that birds have a high potential for adaptive evolutionary change (Pulido and 

Berthold, 2004). However, the potential of a species to evolve is dependent on a myriad of 

factors (De Mazancourt et al., 2008; Hellman & Pineda-Krch, 2007) and is limited by the 

amount of genetic variability within a population (which may be small if populations are 

declining; Gilpin and Soulé, 1986), the potential for gene flow and time for mutations to arise. 

Finally, in the face of environmental change, species may move to areas where conditions are 

favourable; even in that case, microevolution may still be important (Berthold, 2001). The 

potential for adaptability (or not) will ultimately determine species’ vulnerability and 

resilience to climate change. This fact contributes to uncertainty in the likelihood of future 

projections as determined by SDM. 

There is still great uncertainty surrounding future projections of change. We do not 

know how the climate will change. This is the reason for so many climatic models and 

scenarios. Furthermore, all SDM and analyses of future change are based on changes in 

average climate. However, the frequency of extreme climatic events is also projected to 

increase in the future (Easterling et al., 2000). It is frequently these extreme events that affect 

population size. The majority of climate assessments do not consider unlikely but high 

consequence events, such as the collapse of the “conveyor belt”, the major ocean circulation 

systems (Schneider, 2003). These are events with low probability but are still worth 

quantifying since any risk assessment should include such events.  
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6.3 Conclusion and future challenges 
 

 

This study provided the first broad analysis of the likely direction and magnitude of 

change of the distribution of migratory birds in response to climate change. It indicates 

different responses on the breeding and non-breeding grounds for many species. Further, it 

showed that for many migratory birds, a progressive shift apart of the breeding and wintering 

ranges is likely to increase migratory distances in future. Trans-Saharan migrants are 

projected to fare worse than other migratory groups from climate change. However, for many 

species newly suitable climatic areas may provide non-breeding areas closer to the breeding 

range, potentially allowing changes in migratory behaviour to evolve and enabling species to 

adapt to climatic change. 

This study also shows the limits of climate impact studies using SDM. There is an 

urgent need to move away from coarse scale static modelling to new approaches including 

finer scale analysis, dynamic modelling and models incorporating population dynamics and 

changing land-use/land-cover (Anderson et al., 2009; Mustin et al., 2009; Willis et al., 2009). 

Hierarchical modelling frameworks, using a set of models from coarse scale to fine scale, are 

also novel approaches which should be further extended as they allow more realistic 

projections of change including dispersal scenarios and even population change to be 

examined (del Barrio et al., 2006; McRae et al., 2008).  

There is also a need to move to fine scale, species-specific analyses, incorporating life 

history elements, occupancy estimates, land cover and land-use change. We also need a better 

understanding of the physiological limits and adaptive capacity of species to climatic change. 

This understanding would enable analyses of species’ vulnerability and resilience to climate 

change. Resilience of ecosystems is a well researched area in marine conservation (Gibbs, et 

al., 2009; Hughes et al., 2003) but is underrepresented for terrestrial ecosystems.   

Finally, there is a need for climate change threats to be incorporated into IUCN Red 

List assessments. It is clear that many species are going to suffer from climatic change and 

including this threat in these assessments will allow for conservation action. 
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