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Abstract 

The problem of rapid re-analysis of small problems in elasticity is investigated. The 

aim is to enable updated stress contours to be displayed in real-time as a design 

geometry is dynamically modified. The focus of this work is small to medium sized 

problems; as a result it cannot be assumed that the solution phase dominates, and 

so the evaluation of boundary integrals is considered as well as the equation solution. 

Two strategies are employed for acceleration of boundary element integrals: the 

use of Look-Up Tables (LUTs) containing precomputed integrals and the use of ap­

proximate analytical expressions derived from surface fits. These may be used in 

the matrix assembly and internal point calculations. LUTs are derived for both flat 

and circular arc elements for both the displacement and stress boundary integral 

equation. Details are provided on suitable LUT refinements and the approach is 

benchmarked against conventional Gauss-Legendre quadrature. The surface fit ap­

proach is presented as an alternative to LUTs that does not incur the considerable 

memory cost associated with LUTs. This approach has been limited to flat elements. 

The equation solution is cast in a re-solution framework, in which we use a GM­

RES iterative solver. Convergence is greatly accelerated by using an approximate 

but complete LU preconditioner updated periodically using multi-threading. Con­

sideration of the period of update is investigated with reference to the spread of 



iv 

eigenvalues in the preconditioned system. 

The resulting system achieves the aim of providing real time update of contours 

for small to medium size problems on a PC. This development is expected to allow a 

qualitative change in the way engineers might use computer aided engineering tools, 

in which design ideas may rapidly be assessed immediately as a change is made. 
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CHAPTER 1 

Introduction 

The aim of this thesis is to present a novel technique for accelerating the boundary 

element method, in particular with respect to stress analysis problems. The work 

will consider extensions to other areas to which the boundary element method has 

been applied. 

1.1 Overview 

Numerical analysis is an essential tool in the engineer's toolbox. It allows the so­

lution of complex structures that do not have an analytical solution. This process 

tends to be computationally expensive and as a result a large number of authors 

have investigated methods of accelerating these computations. 

Typically acceleration techniques have been applied to large problems for which 

the solution time is measured in hours, thus even a small reduction in computa­

tional cost within a loop can propagate to a large overall saving in run-time. As a 

result small everyday problems that have been considered trivial have been ignored. 

However, it is in the early stages of design, when simplifications have been applied 

to models for ease of analysis, that defining decisions are usually made. Thus if a 

1 
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large number of alternatives can be tested and examined then late, costly, changes 

to a design can be avoided. Accelerating the solution methodology such that con­

tour plots of stress and displacements update as the geometry is perturbed allows a 

much higher degree of interaction between user and design. Therefore this thesis will 

consider small two-dimensional problems and attempt to accelerate the associated 

computations. As a result the techniques employed to accelerate the solution will 

differ from those applied to large scale problems in certain aspects. 

The solution of large problems is dominated by the solution of large systems of 

linear equations (Marburg and Schneider, 2003) and therefore the implementation 

of an iterative solver is the typical first step. Iterative solvers can be accelerated by 

application of a preconditioner of some form. The effectiveness of a preconditioner is 

problem dependent and thus a number of authors have investigated preconditioners 

for certain individual types of problem. For small problems, such as those considered 

in this work, run-time is no longer dominated by the solution of the global matrices 

and therefore an effective acceleration strategy needs to consider other areas of 

computational cost. 

1.2 Background 

To allow the analysis of the overall problem it is necessary to split the problem into 

the component parts and improve the computational cost of each segment. 

1.2.1 Boundary element method 

Although the boundary element method (BEM) is considered to be a relatively young 

method for analysing problems the initial work was laid down in a number of part 

papers by Somigliana (1885a,b,c,d, 1886a,b,c). After this initial work the method 

was slowly developed, primarily by mathematicians, for analytical and hence almost 

trivial problems until the 1960s. At this point research in the BEM (as well as other 

numerical methods) accelerated due to the more common usage of computing power 

at research institutes. This led to a number of key publications including Jaswon 

(1963) and Symm (1963) who developed a method of discretisation for the integral 
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equations. Later work came from Rizzo (1967) and then Cruse and Rizzo (1968) 

who extended the method to allow the direct use of tractions and displacements 

initially in 2D and then later in 3D (Cruse, 1973). 

Application of the BEM involves a number of stages. The first requirement is 

to divide the boundary of the object under analysis into elements. Early work by 

Jaswon and Symm (1977) used constant elements, however the use of quadratic 

iso-parametric elements as proposed by Lachat and Watson (1976) is commonly 

used in modern analysis codes. Figure 1.1 shows a sample problem divided into its 

constitutive elements with each red dot representing the end of an element. 

- - - - - - ~ - -
•• 

0 
·~ 

•• 

•• 

·~ 
- --
Figure 1.1: Sample problem discretized 

To allow the solution of the boundary problem it is necessary to consider points 

on the boundary, called collocation or source points, and integrate around the re­

mainder of the boundary. In performing this collocation it is possible to generate 

equations consisting of influence coefficients relating how forces applied to the source 

point will be transmitted to the boundary at specific locations, namely the elements 

(see figure 1. 2). 

Equation (1.1) shows the result of integrating at one of the source points around 

the remainder of the boundary 

where h and g are the influence coefficients and c1 represents the local geometry 

at the source point, these factors are all known. u and t are displacements and 
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• Source point 

Field element 

Figure 1.2: Source point - Field element pair 

4 

tractions respectively. By moving the source point around each of the nodes on the 

boundary in turn it is possible to generate a set of equations involving the tractions 

and displacements around the boundary. These can be combined into a matrix 

equation of the form 

Hu=Gt (1.2) 

where H and G contain the respective influence coefficient matrices and u and t 

are vectors of displacements and tractions. Boundary conditions arc now specified 

and rows and columns can be swapped 

Ax=By (1.3) 

where A and Bare mixtures of Hand G , y is a vector filled with known values of 

tractions and displacements, and x is a vector of unknown tractions and displace­

ments. This can be further simplified by performing the matrix-vector multiplication 

By=b 

Ax=b (1.4) 

This is a linear set of equations that can be solved in the user 's preferred manner , 

to produce the remaining displacements and tractions from around the boundary. 

To calculate displacements and stresses at points internal to the boundary it is 

necessary to collocate at the point of interest in a similar manner to the boundary 

problem, producing 
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where the only unknown is uint· Thus the solution to the problem can be displayed 

to the user, and this can lead the user to decide upon developments within the 

geometric model. As the new perturbed model will be based on the previous model, 

which has already been solved, it is possible to re-use portions of the previous 

analysis to accelerate the solution. 

Consideration of the overall solution strategy as a number of discrete steps has 

allowed each step to be considered in detail. Upon combining these steps together 

into the complete strategy the savings are combined. 

The main strategy for problem solution within any analysis can be split into the 

following main stages, 

• Define the problem geometry 

• Convert the geometric problem to the numerical form 

• Solve the numerical problem 

• Convert the numerical solution to a suitable form for display 

• Display the solution to the user 

A stress analysis program developed in-house (Trevelyan, 2003) has been used as 

the basis for this research and therefore only the areas of main concern have been 

developed. Definition of problem geometry and the displaying of solutions is a 

relatively well developed area in the program. 

The main areas that this thesis will consider are the formation of the global 

matrix problem and then the solution of this numerical problem. When considered 

in relation to the boundary element method the second of these stages can be further 

split into two sub-stages, 

1. Solution of the boundary problem 

2. Solution of the internal point solution 

Each of these stages will be considered in turn. 

.. 
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1.2.2 Integration techniques 

The rapid evaluation of integrals is a relatively un-researched area with most re­

searchers preferring the brute force approach of calculating each stress or displace­

ment on-the-fly. 

Gauss-Legendre quadrature (e.g. Davis and Rabinowitz (1984)) is the most com­

monly used form of integration in numerical analysis due to the ability to accurately 

and relatively cheaply integrate functions. As a result of this popularity a large 

number of authors have investigated general Gauss quadrature rules aiming to im­

prove the computational efficiency whilst maintaining a level of accuracy within the 

results obtained. Eberwien et al. (2005) considered the integration for source points 

internal to the problem domain. As the points are internal to the domain the inte­

grals considered will not become singular. However, as the source points approach 

the boundary they will become near-singular. The order of the singularity depends 

on the particular boundary integral kernel being considered. Traditional BEM for­

mulations include weakly and strongly singular integrals. More recent formulations 

include hyper-singular integrals. Eberwien et al. (2005) compared the proposed in­

tegration scheme with that of schemes previously proposed by Jun et al. (1985) and 

Bu and Davies (1995). 

Telles (1987) proposed the use of a second or third degree polynomial transforma­

tion to remove the singular nature of the integral and allow the accurate calculation 

of the integral using a much reduced order of Gauss-Legendre integration. Telles 

applied the technique to integrals of the form 0 ( ~) and 0 ( /2 ). However, the 

technique can be transferred to integrals of logarithmic or higher order. 

The second order transformation can be applied to integrals with logarithmic 

singularity at the extremity of the integral range. If the singularity is within the 

integral bounds then the integral can be split into two sections and the transforma­

tion applied to each part of the original integral. The third order transformation 

does not suffer from this restriction and as a result can be applied to more situations 

directly but at added computational cost. 

Trevelyan and Wang (2001b) proposed the use oflook-up tables (LUTs) to store 

precomputed values of influence coefficients for the displacement equations to allow 
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rapid compilation of the matrices. Trevelyan and Wang also implemented a scheme 

to reduce the size of the LUTs from a 3-parameter table to a 2-parameter table to 

describe all configurations of source point and field element in a 2D environment. 

More recently work has concentrated on accurately solving near-singular and 

hyper-singular integrals using exact integration methods. In particular Zhang and 

Zhang (2004a, b) have produced formulae to allow the exact integration for stress 

analysis problems for linear and quadratic elements. The exact integration approach 

is an attractive idea as it allows the use of a single integration method for both the 

internal point problem and for the boundary problem. As the technique involves ex­

act integrations the singularity that occurs during the integration phase is implicitly 

included in the resulting formulae. However, this ease of implementation comes at 

the additional computational cost that is required to compute the generic integral. 

For this reason a method based on exact integration is not suited to the real-time 

analysis that is intended in this research. 

Tsamasphyros and Theotokoglou (2006) consider the integration of near singular 

integrals by modifying the Gauss quadrature scheme. The quadrature formula is 

modified by introducing an interpolatory formula and applying this to both regular 

and singular integrals where near-singularities are involved. The proposed scheme 

involves modification of the Gauss weights and thus the method is computationally 

more expensive than classical Gauss quadrature techniques. The advantage of the 

technique is the ability to solve the near-singular integrals accurately. 

Takahashi et al. (2006) considered medium scale problems (N "" 105
) where 

the calculation time is dominated by the integration of the layer potentials in the 

Laplace and Helmholtz problem. They employed a specialist computer, MDGRAPE-

2, to perform the integrals. The specialised design of the computer allowed the 

integration process to be optimised for the particular case concerned, and thus the 

computational cost of the integration phase was reduced dramatically. A standard 

PC was used to control MDGRAPE-2, collate the completed integrals and then 

perform the final iterative solution. 

.. 
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1.2.3 Matrix solution 

Evaluation of the boundary integral equations around the problem boundary pro­

duces a linear system of equations. The solution of this matrix problem has been 

studied in some depth for a variety of different scenarios. There are two main types 

of solver, 

• Direct 

• Iterative 

Direct methods such as Gaussian Elimination and Lower-Upper factorisation 

(Kreyszig, 1999; Pozrikidis, 1998; Stroud, 1995; Westlake, 1968) have not been 

specifically researched since invention as they guarantee to reach a solution within 

a specific number of operations 0 (N3
) where N is the number of equations. 

Iterative solvers have been very popular, particularly for large systems of equa­

tions where the the use of a direct solver is not feasible either due to the long 

computation time or the high storage cost. Therefore the use of a method that can 

quickly come to an approximate solution is very desirable. 

The conjugate gradient method (Axelsson, 1994; Kane, 1994; Pozrikidis, 1998; 

Prasad et al., 1994) is an iterative solver created for the solution of symmetric 

systems commonly produced by methods such as the finite element method. The 

creation of conjugate search vectors allows the global minimum to be found for a 

particular problem. The derivation of the method (e.g. Kane, 1994) relies on the 

assumption of symmetry in the matrix A in the particular problem of Ax = b. 

To overcome this assumption of symmetry the normal equations (AAT) can be 

used. This makes the method more adaptable but with the disadvantage that the 

convergence rate is dependent on the square of the condition number of the original 

coefficient matrix. 

In a similar vein is the use of a conjugate gradient squared method (Axelsson, 

1994; Kane, 1994; Prasad et al., 1994). This is advantageous because it will improve 

the performance of a standard conjugate gradient method. However, this is also a 

disadvantage, as if the system diverges under the conjugate gradient method, it will 

diverge rapidly using the conjugate gradient squared method . 

.. 
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Another extension of the conjugate gradient method is the stabilised hi-conjugate 

gradient (Bi-CGStab) method (van der Vorst, 1992). This allows for a smoother and 

more rapid convergence than standard conjugate gradient methods. The advantage 

of a bi-orthogonalisation method as opposed to a Lanczos based method is that the 

bi-orthogonal vectors can be used for un-symmetric systems. The methodology of 

Bi-CGStab is in a similar vein to that of the conjugate gradient squared method 

but instead of squaring the residual polynomials, they are updated with a linear 

factor. The introduction of this linear factor allows for information on the local 

behaviour to be introduced and introduces a smoothing effect on the convergence of 

Bi-CGStab. 

An alternative to conjugate gradient based methods is the generalised minimum 

residual method, GMRES, proposed by Saad and Schultz (1986). This technique is 

efficient as it can be shown (Spencer, 2004) by application of the Cayley-Hamilton 

theorem that it will converge within N iterations with each iteration being of order 

N 2
, due to a matrix-vector product in the iterative loop. Hence at worst it will 

be comparable with a direct solver. However, this relies on perfect precision in the 

numerical work. Additionally GMRES is suitable for dense un-symmetric systems 

of equations such as those generated through the BEM. Descriptions, including 

pseudocodes, of the main iterative methods is available in Axelsson (1994); Kane 

(1994) and Saad (1996). 

Development with respect to solvers has continued aimed at improving rates of 

convergence of solvers under certain conditions. Preconditioning of the equations 

has been the most effective way of reducing iteration count and has been investigated 

from both a mathematical and an engineering point of view. 

From a mathematical point of view the process has been to develop new and 

more efficient preconditioners for specific types of problems. Leung and Walker 

(1997) considered the use of diagonal preconditioning; they found that although the 

preconditioner was efficient it was possible that the basis vectors used in the iterative 

process of GMRES could suffer from a loss of orthogonality thus causing the method 

to fail. Leung and Walker found that the introduction of full re-orthogonalisation, 

proposed by Wang and Semlyen (1990), could delay the onset of divergence signifi-
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cantly. 

Valente and Pina (1998) have considered row-scaling as a form of precondition­

ing of the conjugate gradient method when applied to boundary element method 

matrices. They found that of the solvers implemented only hi-conjugate gradient, 

bi-CGStab and the conjugate gradient squared solvers converged. By application 

of preconditioning it was possible to accelerate the rate of convergence. The use of 

row-scaling as a preconditioner is simple to apply since the intention is to obtain a 

unit diagonal. Valente and Pina (1998) compared this technique with an incomplete 

factorisation based on a band-diagonal factorisation. 

Chen (1998) considered the application of a variety of preconditioners to dense 

linear systems such as those produced by the boundary element method. The pre­

conditioners proposed are all sparse preconditioners and therefore benefit from previ­

ously developed sparse techniques for matrix vector products and similar operations. 

Gilbert and Toledo (2000) also considered a variety of preconditioners and solvers for 

use in a a black box environment. Black box environments raise a number of issues 

as preconditioners and iterative solvers tend to be optimal for certain categories of 

problems, and so finding a good all round solver and preconditioner is an extremely 

challenging task. Gilbert and Toledo (2000) concluded that for a black box envi­

ronment (with no a priori knowledge) it would be more practical to utilise a direct 

solver (such as the back slash operator in MatLab (The MathWorks Inc., 2006)) 

as this will be able to consistently solve a non-singular matrix problem although 

potentially not in the optimal solution time. 

Application of these methods to engineering problems has also been investigated 

by a number of authors. Prasad et al. (1994) looked at a variety of preconditioned 

Krylov solvers for the solution of both stress and thermal problems. They studied 

the form of the matrix and consider how the matrix terms are affected by different 

geometric features. From this it is possible to see that, although the boundary 

element method tends to lead to a strong diagonal dominance within the matrix 

equations, it is not always possible to employ merely diagonal preconditioning. This 

is a result of geometric features leading to cross-diagonal relationships (diagonals in 

the opposite direction to the leading diagonal) within the matrix terms. 
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Merkel et al. (1998) considered the use of iterative solvers for large-scale three­

dimensional industrial problems. From the study of more complex features it was 

found that the diagonal dominance that is commonly found in smaller, simpler prob­

lems vanishes and the distribution of eigenvalues is a good indicator for convergence 

properties for these types of problems. Clustering of the eigenvalues has been noted 

by a number of authors (e.g. Chen (1994); Greenbaum (1979)) to accelerate the 

convergence of iterative solvers and as such they are a good overall indicator of con­

vergence rates. Merkel et al. (1998) found that for large problems it was important 

to order the equation system to reach convergence. 

The use of sparse preconditioners for BEM systems approximating the three­

dimensional Helmholtz problem are presented by Chen and Harris (2001). The 

preconditioners are based on mesh-neighbour preconditioners and as a result can 

be thought of as a variable width banded matrix type preconditioner. Chen and 

Harris (2001) found that the application of these preconditioners resulted in better 

clustering of the eigenvalues for the normal equation matrix. 

For acoustic problems Marburg and Schneider (2003) and Schneider and Marburg 

(2003) presented findings on a number of problems using both a simple diagonal 

preconditioner and an incomplete L U factorisation type preconditioner; of these 

they found that the diagonal preconditioner showed no benefit, and in some cases 

degraded, the rate of convergence of the iterative solver. They did however find that 

an incomplete LU factorisation based method was extremely effective at reducing 

iteration count. Chen and Waubke (2004) also considered the use of preconditioners 

in acoustic problems but using the fast multipole method. Chen found that the use 

of an incomplete LU factorisation was an extremely effective method for iteration 

count reduction. 

It should be noted that the reduction of iteration count is a useful technique to 

decrease the overall computational cost as the iterative phase is a relatively costly 

stage of the solution. However, if the reduction of iteration count results in the 

calculation of an expensive preconditioner, for example the use of the inverse matrix 

will reduce the iteration count to only one iteration but the calculation of the inverse 

is a computationally prohibitive. 

.. 
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The use of sparse matrix methods has been made very popular by a number of 

authors including Saad (1996). This is a result of their applicability to the relatively 

more mature finite element method, FEM. This applicability is generated by the 

FEM producing large symmetric but banded matrices compared with the BEM 

which produces small but densely filled matrices, figure 1.3. 

DJ 

(a) FEM (b) BEM 

Figure 1.3: Comparison of matrices - Shaded area indicates non-zero matrix terms 

Sparse matrix methods are extremely popular due to the relatively low compu­

tational cost associated with their calculation and implementation. They are also 

extremely effective for use with matrices that are already primarily sparse in nature, 

such as those generated through application of the FEM. 

1.2.4 Reanalysis 

Reanalysis is the technique of using information calculated in a previous analysis 

to reduce the computational cost in subsequent analyses. Typically in reanalysis 

problems an iterative solver such as a BiCG variant or GMRES (Trevelyan and 

Wang, 2001a) is implemented. Iterative solvers are efficient in the cases of reanalysis 

due to the small difference in the matrix equations. The small difference allows the 

previous solution to the matrix equation to be used as the initial solution to the new 

perturbed matrix equation. This technique can be applied to both large and small 

perturbations with significant acceleration in computation. 

Kirsch and Toledano (1983) present a number of techniques for reanalysis for 

modifications to the structural geometry of problems. Current techniques are dis-
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cussed and a scheme based on a simple iteration with scaling is presented and com­

pared. The computational cost with respect to the accuracy of each technique is 

presented. They conclude that the discussed techniques can be divided into three 

main bands with respect to accuracy and computational cost. 

1. Polynomial fitting. 

2. Simple iteration with scaling. 

3. Taylor series. 

Thus, they conclude that for most cases a scheme based on simple iterations and 

scaling is suitable. Kane et al. (1990) also presented an iterative method reanalysis 

for BEM systems. The method can be considered as the expansion of the perturbed 

system. 

Ax=b 

(A+ .::lA) (x + ..::lx) = (b + ..::lb) 

A..::lx = (..::lb- .::lAx) - ..::lA..::lx (1.6) 

The term in brackets is known entirely and as ..::lx is on both sides of the equation 

an iterative scheme can be implemented. Kirsch and Toledano (1983) proposed the 

scaling of A to improve the convergence properties and hence allow more substantial 

changes. 

Leu (1999) presented an iterative scheme based on a reduction method for prob­

lems of shape optimisation. The solution vector is composed of a linear combination 

of basis vectors in a similar manner to conjugate gradient methods. This is advan­

tageous as only a reduced basis set is required to achieve the desired accuracy. 

Both of the methods presented by Kane et al. ( 1990) and Leu ( 1999) suffer from 

being based on a factorisation of the original matrix. As a result any subsequent 

reanalysis is linked back to the original problem and hence as multiple perturba­

tions are applied the solution technique can degrade. It is possible to update the 

factorisation in an evolutionary sense. However, this negates the need for such an 

iterative scheme. 
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Trevelyan and Wang (2001a) presented initial work with reanalysis associated 

with the boundary element method. The original analysis was organised such that 

appropriate rows and columns could easily be updated depending on the relevant 

perturbations made to the analysis model. This method is extremely effective as 

a means of reducing computational cost whilst being flexible to allow relatively 

large changes to be made to the model's geometry. Addition of features, and hence 

elements, to the model was achieved by the addition of rows and columns to the 

bottom of the matrix equations. This approach has been adopted in the Concept 

Analyst software (Trevelyan, 2003). Cervera (2003) used this technique to accelerate 

the analysis phase of an evolutionary stress optimisation (ESO) code. 

An alternative method for accelerating the solution of the matrix equations, 

proposed by Bae et al. (2006), employs the successive matrix inversion (SMI) method 

to allow a quick updating of the matrix inverse. This technique considers that the 

difference between successive analysis will be small and therefore the matrix A' can 

be approximated by 

A'=A+~A 

where ~A is the modification matrix. As the modification is relatively small the 

difference in the inverses of A and A' will also be small, thus, Bae et al. (2006) use 

the SMI to accelerate the updating of the matrix inverse and as such the matrix 

solution. The SMI method can be employed with an iterative solver to improve the 

numerical conditioning of the system and improve the rate of convergence of the 

iterative solver. 

The use of reanalysis for early design development has also been implemented by 

Terdalkar (2003); Terdalkar and Rends (2006) using the FEM and the commercial 

package ANSYS@. This work improves the interactivity between engineer and 

design from previous solutions by allowing the adjustment of node positions within 

the finite element mesh before commencing a reanalysis. Previously this would have 

required a second full analysis after the adjustments had been implemented. The 

work is, however, linked to a very precise level of interaction where the user must 

control nodal positions as opposed to a more global view of the geometry. As such 

it is the view of the author that, although the work by Terdalkar and Rends (2006) 
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is a big step in the right direction of greater interactivity, the work presented in this 

thesis moves to another level in interactivity, with contour plots being updated as 

the user interacts with the geometry. 

Margetts et al. (2005) applied concepts of reanalysis together with parallel pro­

cessing to create an interactive finite element analysis package. To allow the distinc­

tion between levels of analysis Margetts et al. (2005) defined three styles of analysis 

• Steering 

• Interactive 

• Real-time 

Steering involves computations that are significant in overall length and on account 

of this results are extracted as the analysis runs to consider if the solution is con­

verging in the correct manner. The results extracted can be used to control, steer, 

the problem to a good solution. Due to the length of analysis it is also necessary to 

have completed extensive background work to allow an educated mesh to be created 

or to rely on the user's knowledge base and ability to produce a suitable design and 

mesh capable of meeting the design specification. 

Real-time solutions of problems can typically be computed within the time it 

takes to refresh the visualisation environment, for example computations of order 

10-2 s. Interactive simulations lie in-between these two extreme cases and are consid­

ered periods of computation for which the user will be happy to sit and wait for the 

analysis to complete. Interactive and real-time analysis promotes decision making 

based on the current analysis results. As a result of this, the user can quickly adapt 

a model and converge to a finalised product design quicker than relying solely on 

the users knowledge base and experience to generate a good design for the provided 

specification. 

Margetts et al. (2005) found that to achieve the necessary speed of computation 

they required the use of large parallel computers over which to spread the compu­

tations. Thus, this technique is limited to organisations that have such facilities. 
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1.2.5 General implementation 

A number of authors have presented object oriented methods applied to the solution 

of numerical analysis problems. The advantages of object oriented programming 

(OOP) are the ability to apply techniques such as 

• Encapsulation 

• Inheritance 

• Polymorphism 

Each of these ideas allows the rapid development of software, whilst maintaining 

ease of upgradability within the code. This is a result of the reduction in code 

replication within the same code base. 

Mackie (1998) proposed the use of OOP for the implementation of a fully inter­

active finite element system aimed at the solution of smaller, computationally less 

intensive problems. In particular Mackie (1998) discusses the ability of OOP meth­

ods to allow for the sub-structuring of the finite element problem such that it can 

be divided between multiple threads of execution. Use of multiple threads allows 

the idle time of the processor to be minimised on single core machines on account 

of the ability of the operating system to give time-slices on the processor to any 

tasks that are waiting. As soon as a sub-structure has been defined the analysis on 

that sub-structure can start whilst the main thread of execution continues to define 

other substructures. As a result of this execution style it is necessary to ensure that 

threads terminate correctly and within good time otherwise one of three scenarios 

can occur, 

• the system could crash, 

• the user could be kept waiting for a thread to terminate, or 

• incorrect values could be used in the calculation resulting in an incorrect an­

swer for a particular geometry. 

The use of multi-threading is beneficial for tasks with which multiple items can 

be computed simultaneously. If multiple processor cores are available then this will 
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allow the simultaneous computation, for single core machines tasks will be allocated 

time slots on the processor until computed. 

Marczak (2004) shows how to implement OOP methodology for boundary in­

tegral equation methods but stresses that the auxiliary classes derived are equally 

applicable to other types of problems such as the finite element method. A further 

benefit of generic auxiliary classes is that they can be extensively tested in the pro­

duction stage and test functions produced to ensure that the functions perform as 

designed, then they can be packaged and employed in larger projects. If a class then 

requires further development it can either be used as a base class for a new class; 

which will inherit all of the associated features of the original class, or if the exter­

nal facing functions will not be altered (for example improvement of error checking 

which can be kept entirely within the class) then the class can be modified directly. 

Marczak (2004, 2006) also notes the advantage of using a template based system for 

functions such as integration as the system can be implemented such that a variety 

of objects can be passed into the function. 

The use of 00 techniques has been applied for problems of reanalysis (Trevelyan 

and Wang, 200la) where a model is perturbed such that the new model is close to 

the original model. Use of OOP allows model data to be related to higher order 

abstractions. For example, nodes can be linked to elements which in turn are linked 

to geometric shapes. As a consequence, only data that are changed need to be 

updated within the new model. These techniques have been implemented within 

the Concept Analyst software (Trevelyan, 2003) and form the foundation for the 

implementation of the work presented in this thesis. 

1.3 Outline of the thesis 

In chapter 2 a number of numerical methods will be introduced, indicating the basic 

methodology behind each of them, leading to reasons why the boundary element 

method has been chosen as the numerical method of choice for this research. Chapter 

3 will present the boundary element method in detail introducing notation relevant 

for the thesis. Chapters 4 and 5 will introduce additional material required for the 
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main portion of the thesis, introducing numerical integration techniques and solution 

methods for matrix equations respectively. 

Chapters 6 and 7 will introduce material that has been developed through the 

research and present the relevant methodologies. Results will be presented in chap­

ter 8 for the newly proposed techniques comparing them with current standard 

methodologies for both computational speed-up and numerical accuracy. Chapter 9 

will consider extension of the proposed techniques to alternative applications outside 

of elasticity. 

1.4 Directions for current work 

A large amount of previous work has been presented in section 1.2 regarding the 

acceleration of the solution phase in particular. However, this work has tended to 

be aimed at either large problems or sparse problems; such as those generated by 

the finite element method. The main aim of this thesis is to present the techniques 

that have been developed to enable a real-time analysis of two dimensional stress 

analysis problems. 

For small problems which can easily be stored directly in memory the solution 

process can be divided into three roughly equal portions: 

• Calculation of the terms in the matrix equations 

• Solution of the matrix equations 

• Solution of the problem at points internal to the problem domain to allow 

accurate contour plots to be generated 

These portions can be further divided into two main categories: 

1. Integration dependent 

2. Solver dependent 

As such these two tasks will be the main focus of the work presented in this thesis. 

In chapter 6 techniques for accelerating the computation of boundary integrals using 
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look-up tables will be presented. Chapter 7 will concentrate on the acceleration of 

the solution phase by utilising a preconditioned iterative solver. 



CHAPTER 2 

Numerical Methods m Stress Analysis 

Numerical methods are an important part of the engineer's toolkit as they allow 

the solution of complicated problems which otherwise could not be solved, i.e. there 

is no analytical solution. To allow for the variety of different problems there are a 

multitude of different methods that can be employed. Each of these methods have 

their advantages and disadvantages making them more or less suitable for certain 

types of problems. 

Examples of the types of problems that can be solved using numerical meth­

ods for any domain include Poisson's equation (equation (2.1)), Laplace's equation 

(equation (2.2)), the Helmholtz equation (equation (2.3)) and Navier's equations 

(equation (2.4)). Without the application of approximate numerical methods these 

problems could only be solved analytically for very simple cases. 

\12c/J = 0 

\121/J + e'l/J = o 

20 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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where 4;, f and 'ljJ are functions defined within Euclidean space. k is the wavenumber, 

u are displacements, v is Poisson's ratio, 11 is the shear modulus and fi are the 

components of the body force vector. In this chapter a number of methods will be 

presented and the associated advantages and disadvantages discussed. The methods 

considered are 

• Finite Difference Method (FDM) 

• Finite Element Method (FEM) 

• Boundary Element Method (BEM) 

• Scaled Boundary Finite Element Method (SBFEM) 

e Meshless Methods 

2.1 Finite difference method 

The finite difference method involves the devolution of the differential equations 

involved to simpler difference equations that can be solved for a grid of points 

through the domain of interest. This conversion is achieved by considering the 

derivative of a function, f ( x) 

1
. f (X + h) - f (X) lm .:........:. __ :.....__:__.:........:... 

h->0 h 
(2.5) 

where h is the step size. In the finite difference method h has a finite value rather 

than an infinitesimal value. 

The value for the derivative at x can be approximated in three ways, 

• Backward difference 

• Forward difference 

• Central difference 

1 
U' (x) ~ - {U (x)- U (x- h)} 

h 

1 
U' (x) ~ h {U (x +h)- U (x)} 

(2.6) 

(2.7) 
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1 
U' (X) ~ h { u (X + h) - u (X - h)} (2.8) 

Backward (equation (2.6)) and forward (equation (2.7)) difference methods have 

an error 0 (h) whereas the central difference method (equation (2.8)) has an error 

of 0 (h2
). 

0 
Figure 2.1: Sample problem 

Mesh Point rJ 
I 

tt 

Figure 2.2: Typical finite difference mesh for the sample problem 

The use of finite-differences is popular in computational fluid dynamics (CFD) 

(Fletcher, 1988) as it is a quick and easy method to apply a time-stepping formula to, 

as required for efficient analysis under CFD. A disadvantage of the finite difference 

method is the requirement of a structured mesh for the analysis (figure 2.2) and as 

a result meshing of complicated structures can be computationally difficult as the 

mesh needs to be constructed entirely from quadrilateral elements. 
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2.2 Finite element method 

The finite element method (FEM) is a method for solving a large range of problems 

as varied as simple linear static calculations through to highly non-linear impact 

analysis. Due to the large range of problems that can be solved there is also a large 

amount of software available specialising in each of these areas. 

The finite element method works by sub-dividing the domain of interest into 

smaller elements over which the constitutive equations can be applied and solved. 

As the domain is subdivided throughout the volume for a three-dimensional prob­

lem or across the surface for a two-dimensional problem this allows the method to 

approximate the non-linear behaviour that can occur. Additionally this sub-division 

across the domain means that the matrix equations generated will be large; due to 

the high number of elements involved. Figure 2.3 shows a typical finite element 

mesh for the sample problem shown in figure 2.1. 

Element 

-__ ~I - --- ::_--:~ ::_:·: ~-~~:~::--i:-~I - - --: --~ -----0 -----~- : ____ , - - - I ,- ' , I- - - ..,. __ _ _ 
I .... ... I ' ... ... I 

;-.: :. - - .... ~ - - ..+- - - :. ..._ .... 
l ; ; I ' ' ' I .,_-_: --- - -- -- - ~ --- - - -- --.-- - - - - - - _-_ -_ .... 

' ' 

Node 

Figure 2.3: Typical finite element mesh for the sample problem 

The typical form of the global matrix equations generated through the FEM are 

(Zienkiewicz and Taylor, 1989) 

Ku=f (2.9) 

where K is the global stiffness matrix, u is the global displacement vector and f 

is the vector of nodal forces. K is obtained by assembling the individual stiffness 

matrix for each element, Ke (Zienkiewicz and Taylor, 1989) 

Ke = 1 BTDBdO (2.10) 
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where B is the strain-displacement matrix and D is the material property matrix 

(or constitutive matrix). B is dependent on the type of elements employed in the 

modelling procedure. Assembly of the individual stiffness matrices for each element 

causes connectivity to be achieved throughout the mesh. As a result the matrix 

equations that are produced, although large, are of a highly banded nature and 

therefore specialist solvers and preconditioners can be applied to ensure a rapid 

solution. Additionally this banded nature can be exploited to reduce the storage 

requirements of matrices by employing techniques such as compressed row storage 

or compressed column storage (Duff et al., 1986). 

Displacements are converted to strains and then stresses are extracted for display 

e=Bu 

u =De+ u 0 

where u 0 = -Deo and eo is the vector of initial strains. 

(2.11) 

(2.12) 

The most common elements employed in the finite element method are trian­

gular or quadrilateral for 2-dimensional problems (figure 2.4) and tetrahedral or 

hexahedral for 3-dimensional problems (figure 2.5). The most popular element is 

(a) Triangular element (b) Quadrilateral element 

Figure 2.4: Typical 2-dimensional finite elements 

the triangular (or tetrahedron for 3-dimensional problems) as it can be easily con­

formed to a wide variety of geometries without excessively distorting the element 
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(a) Tetrahedral element (b) Hexahedral element 

Figure 2.5: Typical 3-dimensional finite elements 

(figure 2.6 shows a quadrilateral element being greatly distorted). Distortion in an 

element is undesirable as it can cause problems from a numerical point of view. The 

disadvantage of using triangular elements is that typically a much greater number 

of elements is required to reach an appropriate degree of error in the numerical so­

lution. This increase in element count will naturally increase the problem size and 

computational run-time. 

Figure 2.6: Quadrilateral element being distorted 

For each of these types of element they can be further categorised into the number 

of nodes per element , so that elements of different polynomial order can be defined. 

Although the finite element method is an adaptable method, and as such very 
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popular, it requires the domain to be subdivided into small individual elements 

(figure 2.3). When a problem is being remeshed after a reanalysis there is therefore 

a significant computational cost. If the perturbation is small; as would be the case 

in a real-time analysis, then this problem can be minimised by only remeshing areas 

of the domain that are affected. In 3-dimensional problems this is a much more 

complex task. 

The FEM is a widely used technique within the numerical methods field due to 

the ease of application to a wide variety of problems. This is a result of the FEM 

being applied to the solution of almost any differential equation by merely casting 

the problem in the weak form and applying a weighted residual method (Ottosen 

and Petersson, 1992). 

2.3 Boundary element method 

This section presents a greatly condensed overview of the boundary element method 

(BEM) formulation in elastostatics. The material is covered in more detail in chapter 

3. 

The BEM is formed by taking the constitutive equations for a particular problem 

and applying methods to reduce the dimension of the integrals by one; reducing 

volume integrals to surface integrals and thus reducing the complexity of the mesh 

by one dimension. Figure 2. 7 shows a typical boundary element mesh for the sample 

problem in figure 2.1. 

As the number of elements has been reduced the overall size of the problem has 

been decreased. However, as the method now relates all of the problem's elements 

to every other element in the problem, the matrices formed will be fully populated. 

The BEM uses the reciprocal nature, in a virtual work sense, of two load cases to 

calculate displacements and tractions associated with the problem. Betti's reciprocal 

theorem states 

(2.13) 

where n is the problem domain, r is the boundary of the problem domain, u is a 

displacement vector, t is a traction vector and b is a body force vector. To allow 
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£ Element 

0 
~Node 

Figure 2.7: Typical boundary element mesh for the sample problem 

the solution of this problem it is necessary to define a real and a fictitious (denoted 

by * in equation (2.13)) load case. Thus if one load case is known completely then 

we can quickly establish the second more complicated load case. For the BEM we 

choose a fictitious load case to be the Dirac delta function. The Dirac delta function 

has a number of properties that make it useful as the fictitious load case. It 

• reduces one of the volume integrals to a trivial form, and 

• has analytical solutions for use in the remaining integrals. 

As a result in the absence of body forces Betti's reciprocal theorem can be reduced 

to the boundary integral equation. 

(2.14) 

where CiJ is a coefficient dependent on the boundary geometry. Equation (2.14) can 

now be integrated around the boundary by placing the collocation point at each 

node in turn and integrating across all of the elements in the model. This produces 

a set of equations (one for each collocation point) which can be combined into the 

linear set. 

Hu=Gt (2.15) 

Application of boundary conditions will reduce the number of unknowns such that 

there are N unknowns and N equations in the set which can be rearranged into the 
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well known linear form. 

Ax=b (2.16) 

Equation (2.16) can be solved for the unknown displacements and tractions around 

the boundary. To calculate the displacements internal to the problem domain equa­

tion (2.14) is applied at the point of interest. Stresses can be extracted by use of 

the stress form of the boundary integral equation, 

aij + 1 skijUkdr = 1 Dkijtkdr 

where Sand Dare third order tensors. 

(2.17) 

As only the boundary needs to be discretized then meshing of problems is a 

relatively simple task to achieve, for the two-dimensional problem it is merely a 

case of dividing the boundary line into elements. This simplicity is easily extended 

into three-dimensions in which the boundary is represented by a surface area that 

is discretised into surface elements. 

2.4 Scaled boundary finite element methods 

The scaled boundary finite element method (SBFEM) is a semi-analytical method 

that aims to take the best of both worlds from the FEM and BEM. In this method 

a model is converted to a coordinate system in which an analytical solution can be 

fitted in one of the coordinate directions. This coordinate system is called the scaled 

boundary coordinate system. 

The scaled boundary coordinate system is formed by defining a single defining 

curve S. This can then be scaled throughout the domain via a scaling centre. The 

defining curve can be open or closed but must be smooth and C0 continuous. A 

circumferential coordinate .s is defined around the defining curve. A second coordi­

nate ~ is radial in direction from the scaling centre and takes the value ~ = 1 on the 

defining curve. As such any point in the domain can be described in terms of(~, .s). 

There are three main cases that can be considered. The internal boundary ~i 

is taken to zero and as such the domain is bounded ( 0 ::; ~ ::; 1) and contains the 

scaling centre (figure 2.9(a)) or the external boundary ~e tends to infinity and as 
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Figure 2.8: Scaled boundary coordinate system 

such the domain is bounded by (1 S ~ S oo) and does not contain the scaling centre 

(figure 2.9(b)). The third case involves a combination of the previous two cases and 

has both an upper and lower bound (figure 2.9(c), Deeks (2002)). 

The defining curve can be specified by ( x0 + x s ( s) , y0 + Ys ( s)) and so we can 

relate the scaled boundary finite element method coordinates to the Cartesian co­

ordinate set by the following 

where the scaling centre is located at (x0 , y0 ). 

The scaled boundary finite element method aims to find an approximate solution 

of the form, 
n 

u ((, s) = L Ni(s) ui(~) = N (s) u (~) (2.18) 
i= l 

where N ( s) represents the shape functions in the circumferential direction. u ( ~) 

represents the analytical displacements along the node lines as they extend from the 

scaling centre through the nodes on the boundary. 

A finite element approximation is employed in the s coordinate direction. 

Application of virtual work methods leads to the scaled boundary finite-element 

equation in displacement. 
0 1T P = E uh,{ + E uh 

E0euh (~) . .;.; + [ E0 + E 1
r- E 1 J ~uh (~) . .;- E2 uh (~) = 0 

(2.19) 

(2.20) 
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(a) Simple bounded domain (b) Unbounded domain 

(c) Upper and lower bounded domain 

Figure 2.9: Different modelling strategies for the SBFKVI 

where uh is a set of n analytical functions in ~. E0 , E1 and E2 are coefficient 

matrices. 

This produces a weakened form of the governing equations in the circumferential 

direction but keeps a strong form in the radial direction. 

Equations (2.19) and (2.20) can be considered to be a set of Euler-Cauchy dif­

ferential equations, consideration of which yields the quadratic eigenproblem, 

(2.21) 

where 4> is a vector containing the modal displacements at the boundary nodes. This 

can be converted to a standard eigenproblem at the expense of doubling the size 

of the system (Deeks and Wolf, 2002) . The solut ion of this standard eigenproblem 

yields 2n modes. For a bounded domain it is only necessary to consider the modes 

with non-positive real components of >. lead to finite displacements at the scaling 

centre. This subset of modal displacements is designated by <P 1 . For a particular 

set of boundary displacements uh and nodal forces P we can state, 

(2.22) 



2.5. Meshless methods 31 

thus, the stiffness matrix is given by, 

(2.23) 

and equilibrium is reduced to 

Kuh- P = 0 (2.24) 

Application of boundary conditions reduces this problem to a standard linear form 

that can be solved in a standard manner. The displacement field can then be 

calculated by using 
n 

uh (~, s) = N (s) L ~~->.;tPi (2.25) 
i=l 

and the stress field by, 

n 

ah (~, s) = D L ~c>.;-l [ ~-XiB1 (s) + B 2 (s)] tPi (2.26) 
i=l 

where B 1 and B 2 are given by 

B 1 (s) = b1 (s) N (s) (2.27) 

(2.28) 

and b1 and b2 are functions dependent only on the boundary definition (Deeks and 

Wolf, 2002). 

2.5 Meshless methods 

The boundary element method presented briefly in section 2.3 demonstrated that 

reducing the dimension of the problem by one, from volume integrals (as in the 

FEM) to surface integrals, can make the meshing process computationally simpler. 

This is important for both an initial analysis and in subsequent reanalysis where the 

geometry of the problem has been perturbed in some manner and as such the mesh 

will need to be updated. 

Meshless methods remove the need for a mesh around the problem and instead 

use nodes placed across the domain. As there are nodes in the problem it is still 

necessary to link the nodes to nodes situated near-by such that information about 
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the variables of concern can be propagated. However, as there is no mesh in the 

same sense as the finite or boundary element method it is necessary to use other 

techniques to ensure connectivity. The technique used in most meshless methods is 

that of a moving least squares approximation to displacements. It is assumed that 

the variable of interest will vary as a polynomial around each node in the domain. 

The influence from each of the nodes will overlap with nodes in the near vicinity 

and as a result the value of the shape function at a particular node is obtained by 

the weighted summation of these influences. 

Typically simple polynomial basis functions are employed and these are weighted 

by using a symmetric weight function based on a spline or Gaussian function . Figure 

2.10 shows an example of a 1-dimensional (figure 2.10(a)) and 2-dimensional (figure 

2.10(b)) weighting function. 
N 

uh = L<i>i'lli (2.29) 
i=l 

where uh is the approximated displacement, </> are shape functions and ui is the 

fictitious displacement at node ·i. 

,, 
w, 

0.8[ 

0.6 ' 

04 f 

0.2" 

o' -r 

(a) 1-dimensional function (b) 2-dimensional function 

Figure 2.10: Weighting functions for meshless methods 

As equation (2.29) produces a moving least squares approximation to the dis­

placement, uh will not be the same as ui but will approximate it. As a result it can 

be difficult to apply displacement boundary conditions to meshless methods as they 

are defined in terms of ui and not uh. 

Calculation of the shape functions used within meshless methods is achieved by 
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noting that, 

(2.30) 

where p is a vector containing the basis function terms and a is a vector of coeffi­

cients that are unknown. To calculate the coefficients in a we minimise the function, 

N 

J = L Wi [PT a- ui] 2 
(2.31) 

i=l 

The shape functions can then be derived as 

(2.32) 

where 
N 

A= LWiPiPf (2.33) 
i=l 

(2.34) 

It is necessary to derive a weak form of equilibrium and compatibility equations 

and this can be achieved via the use of a test function. The element free Galerkin 

(EFG) (Belytschko et al., 1994) meshless method proposes a global weak form such 

that the integrations are performed over the complete problem domain, similar to 

the finite element method. This causes a problem as the method is no longer a 

true meshless method as it is necessary to incorporate integration cells within the 

problem domain and as a result of this a cell generator is required. 

An alternative technique to the EFG method is the meshless local Petrov­

Galerkin method (MLPG) (Atluri and Zhu, 1998) in which the the aim is not to 

satisfy the global weak form directly as in the EFG method. The MLPG aims to 

satisfy the weak form on a local level around each node. However, if these zones 

overlap throughout the domain and cover the entire domain as a set of zones the 

weak form will be satisfied for the global problem. 

As a result of the meshless methods presented employing a moving least squares 

approximation for the displacement field it is not possible to directly apply dis­

placement boundary conditions as used in other numerical methods. This is a result 

that uh is an approximation to ui. Thus it is necessary to use penalty methods or 

Lagrange multipliers to impose the conditions (Augarde and Deeks, 2005). 
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2.6 Concluding remarks 

Each of the methods presented in this section are extremely powerful in their own 

right, be it the adaptability of the finite element method or the ease of re-meshing 

a problem under the boundary element method and as such each method has its 

place in the engineer's toolbox. 

For the purpose of this work the boundary element method will be considered 

as the ease of remeshing a problem is extremely important in the process of re­

analysis. The boundary element method is preferred over meshless methods as the 

prescription of boundary conditions in the latter is problematic and thus increases 

the complexity of the method. However, parts of the work; in particular the section 

on preconditioning (section 7) could be applied to alternate numerical methods that 

generate matrix equations of the same form. 



CHAPTER 3 

Boundary Element Method 

Following consideration of a number of numerical methods (chapter 2) the use of 

the boundary element method (BEM) has been found to have certain advantageous 

characteristics for a wide variety of problem types. The boundary element method 

has been applied to problems as diverse as fracture mechanics (Mukherjee, 1982), 

where the stress field becomes singular at the crack tip, to problems involving infinite 

domains for which the BEM is particularly suited since it is only only necessary 

discretise the boundary of the domain (Wu, 2000). Finally the BEM is suited to 

problems of reanalysis. As the boundary is the only part of the analysis model 

required to be discretised it is a relatively quick and easy operation to remesh the 

problem after a perturbation (Trevelyan and Wang, 2001a). Other benefits of the 

BEM for this particular type of problem will be discussed within the derivation. 

This chapter will present the theory behind the boundary element method for 

elasticity, heat transfer and acoustics. 

35 
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3.1 Derivation of the boundary element method 

The boundary element method will be formulated for a general problem, as shown in 

figure 3.1, where the problem domain is indicated by n, with boundary r. Conditions 

are typically only prescribed on the boundary r but it is possible to deal with body 

forces using a variety of techniques. 

Figure 3.1: General boundary value problem 

Various forms of condition can be applied on the boundary, 

• A prescribed value of unknown function; for example <P = A1 

• A prescribed value of the normal derivative of the unknown function </J; for 

example ~~ = A2 

• A prescribed relationship between <P and ~~, e.g. a linear spring 

Boundary conditions of the first type are called Dirichlet conditions, conditions of 

the second type are called Neumann conditions and the third type of condition is a 

Robin condition. There are further conditions that are non-linear in nature that can 

be prescribed on the domain such as contact conditions, as a result of the non-linear 

nature these require special treatment as discussed by Aliabadi (2002). 

We can write integral equations that relate the boundary functions, <P and ~~, 

over the solution domain. It is possible to apply certain integral transformations 

to these problems; for example Green's Theorem (equation (3.1)),to reduce the 
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dimensionality by one such that volume integrals become surface integrals. 

1 \7 ° fdn = 1 f . ndr (3.1) 

where f is an arbitrary vector function and n is the unit outward pointing normal. 

Another useful form of Green's Theorem is Green's second identity (equation (3.2)) 

which is used in many BE applications to reduce the dimensionality by one. 

(3.2) 

We will now look at the derivation of the boundary integral equations for specific 

types of problems. 

3.1.1 Elasticity 

To form the boundary integral equation for elasticity directly Betti's reciprocal work 

theorem will be applied. Considering a small element of the domain n we can form 

the equations of equilibrium 

(Jij,j + bi = 0 (3.3) 

where (Jij is a stress component and bi the body force vector per-unit volume. From 

this we can state the weighted residual form 

(3.4) 

where u; is an arbitrary weighting function that will be defined completely later in 

the derivation. To allow the application of Green's theorem (equation (3.1)) the first 

term in the weighted residual form needs to be expanded by the use of the product 

rule (equation (3.5)). 

(! (x) g (x))' = f (x) g' (x) + f' (x) g (x) (3.5) 

Application of the product rule in differentiation (equation (3.5)) produces 

1 [((Jiiui),i- (Jiiui,j + biui J dn = 0 (3.6) 

It should be noted that as ( (Jij'ui) . is the divergence of ( (Jij'ui) then we can now 
,] 

apply Green's theorem (equation (3.1)) to reduce the volume integral to a surface 
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integral 

1 criju;njdr-1 criju;,jdO + 1 biu;dn = 0 (3.7) 

where nj are the components of the unit normal on the boundary r. Application of 

the Cauchy stress transformation 

(3.8) 

produces 

1 tiu;dr- 1 crijn;,jdn + 1 biu;dn = 0 (3.9) 

This statement is now equivalent to the principle of virtual work (PVW). 

An equivalent statement to equation (3.9) can be produced where a fictitious 

load case does work on the real displacements 

(3.10) 

Application of Hooke's law* shows that CTijni,j = cr;jni,j· Hence we can state 

(3.11) 

This is Betti's reciprocal theorem. Betti's reciprocal theorem is an extremely im­

portant theorem as it allows the relation between two physical systems from their 

respective displacement fields. This is advantageous if one of the displacement fields 

can be obtained relatively conveniently. 

Currently, we have not defined the fictitious load case. By defining the fictitious 

load case to be the Dirac delta function, 

X=K 
if 

we can use the following property to remove one of the volume integrals, 

J ~ (x- r.)dO = 1 

0 

(3.12) 

(3.13) 

*Remembering that u;,j = E:;j and that the constitutive fourth order tensor is symmetric we 

can state O"ijUi,j = Cijkltkttij = Cijkteijtkl = cklijtijekt = a-i:,luk,l 
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Thus the fictitious load case is represented by equation (3.14). 

aij,j + ~ (x- r,;) ei (x) = 0 (3.14) 

where r,; is the sample point under consideration and ei is a unit vector in the 

direction of 'i. These properties allow the right hand side of equation (3.11) to be 

reduced to 

l t;uidr + 1 b:uidn = fr t;uidr + 1 ~ (x- r,;) eiuidn (3.15) 

The first term on the right hand side of equation (3.15) is as required but the second 

term can now be reduced due to the properties of the Dirac delta function that we 

have chosen as the arbitrary load case. Recalling that the integral of the Dirac delta 

function is unity (equation (3.13)) we can state that 

r ~ (x- r,;) eiuidn = eiui (r,;) ln (3.16) 

The term ei is a unit vector in the direction of 'i and the term ui is a displacement 

in the same direction thus, 

l t;uidr + 1 ~ (x- r,;) eiuidrl = l t;uidr + eiui (r,;) 

Hence equation (3.11) can now be written as 

Ui (r,;) ei + r t;uidf = r tiu:df + r biu:dfl lr lr ~ 

(3.17) 

(3.18) 

By setting the baby force vector to be the Dirac delta function u* is given by the 

displacement solution to equation (3.14) known as the Kelvin solution (Thomson, 

1848). The displacement solution is related to the free space Green's function by 

(3.19) 

For 2-dimensional plane strain problems the fundamental solution is given by, 

u. =cl {c2ln [~] 8·. + r -r . } tJ r tJ ,t ,1 (3.20) 

where r = l.r - r,;l, x is the field point, 8ij is the Kronecker delta given by equation 

(3.21) and cl and c2 are functions of material properties defined in equation (3.22). 

i=j 

i=/=j 
(3.21) 
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c2 = (3- 4v) (3.22) 

where J-L is the material shear modulus and v is the Poisson's ratio. 

In the case of plane stress we can obtain the fundamental solution by using 

modified material properties. 

v' = __1:L_ 
l+v 

E' _ E(1+2v) 
- (l+v)2 

1-L' = fL 

For 3-dimensional problems the displacement solution is given by, 

C1l 
U· · = -- [C26 · · + r -r ·] tJ 2 r tJ ,t ,3 

(3.23) 

(3.24) 

For axi-symmetric problems the displacement solutions are more complicated, the 

interested reader can find these in either Becker (1992) or Aliabadi (2002). 

We can obtain the traction fundamental solution, t; by differentiating the dis­

placement fundamental solution and applying Hooke's law. Similarly to the dis­

placement case 

(3.25) 

Thus, for 2-dimensional plane strain, 

T· = C3 (~) {r [C46·· + 2r ·r ]- C4 [r n·- r n·]} t) r ,n t) ,t ,J ,J t ,t J (3.26) 

where n is the unit normal and C3 and C4 are functions of material properties given 

by equation (3.27) 

c4 = (1 - 2v) (3.27) 

For 3-dimensional problems the traction fundamental solution is given by, 

(3.28) 

For axi-symmetric problems the traction solutions are more complicated, the inter­

ested reader can find these in Becker (1992). 

Thus, equation (3.18) can be written as 

(3.29) 
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Equation (3.29) contains a volume integral on the right hand side due to body 

forces in the real load case. Body forces complicate the derivation of the boundary 

integral equation due to the techniques required deal with the volume integral. 

There are a number of techniques that can be employed to compute the volume 

integral (Aliabadi, 2002). The simplest method is the introduction of integration 

cells throughout the domain though this raises the problem that the method is no 

longer a proper boundary only method. 

The Galerkin vector approach involves the introduction of a new function called 

the Galerkin tensor, Gij· The Galerkin tensor can be related to the fictitious load 

case for linear stress analysis by equation (3.30). 

U·· = G·kk- CcvG .. k· t} t}, t), J 

where Ccv is a constant based on material properties given by, 

1 
Ccv = 2 (1- v) 

(3.30) 

Equation (3.30) can be substituted into the body force integral in equation (3.29). 

(3.31) 

Applying Green's second identity reduces the volume integral to a surface only 

integral. For example, a body under acceleration will have a constant body force 

hence bi can be taken outside of the integral. 

{ bj ( Gij,kk - CcvGij,kj) dO = bj { ( Gij,kk - CcvGij,kj) dO 
~ Jn (3.32) 

= b· J. (G .. k- CcvG .. ) nkdr J t), t),J 
r 

(3.33) 

The Galerkin vector is given by equation (3.34) for 2-dimensional problems and 

equation (3.35) for 3-dimensional problems. 

G·· = -ln - b .. r
2 (1) 

tJ 81rG r tJ 
(3.34) 

(3.35) 

where G is the shear modulus. 
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A more complicated approach is to employ dual reciprocity techniques which are 

applicable to general forms of body force. 

The Dual Reciprocity Method (DRM) (Nardini and Brebbia, 1983) involves the 

approximation of the body forces within the volume integral, 

N+L 

bj-:::: L a7J (xk,x) (3.36) 
k=l 

where af are a set of initially unknown coefficients, f (xk, x) are approximating 

functions, N is the total number of boundary nodes in the discretisation, and L 

is the total number of internal nodes. The expansion given in equation (3.36) is a 

global expansion as it is valid over the whole domain. Substituting equation (3.36) 

into the body force volume integral in equation (3.29) produces 

(3.37) 

The choice of Jk can be problem dependant, however, a common choice of function 

IS 

(3.38) 

where c is a constant and r ( xk, x) is the distance between the points xk and x. The 

second integral in equation (3.37) can be substituted by, 

(3.39) 

where uJ and tJ are particular solutions which are known functions when Jk is 

defined. Substituting this into equation (3.29) produces 

(3.40) 

The solution of the right hand side can be found in a similar manner to the left hand 

side. In this work we will assume that there are no body forces in the real case i.e. 

bj = 0, for all j and as such equation (3.29) can now be arranged as, 

(3.41) 
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Equation (3.41) now has one term that is not dependent only on the boundary, ui· 

To create a completely boundary only solution we simply enforce the condition that 

ui must lie on the boundary such that K E r. 
Equation (3.41) can now be integrated around the boundary r. Care is required 

in the integration phase as the integrations involving the fundamental solutions, 

equations (3.20) and (3.26) have terms of the form r~ where a = 1, 2 as a result when 

integrating these functions the integrals will be either weakly or strongly singular. 

As the Uii integral is weakly singular of the logarithmic form shown in (3.20) this 

can be integrated using a logarithmic Gauss quadrature scheme (outlined in section 

4.3.2). The Tij term, however, needs to be integrated in the Cauchy principal value 

sense. 

To perform the integration we surround the collocation point K by a semi-circle 

of radius T., the integration is now performed in three parts considering the limit as 

T€ ---+ 0. The case considered is represented in figure 3.2. 

Figure 3.2: Integration in the Cauchy principal value sense 

(3.42) 

The first term in equation (3.42) is the Cauchy principal value, the second term will 
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vanish since as r t ----+ 0 then ui ( x) ----+ ui ( K:), and the final term can be simplified to 

(3.43) 

where a can be considered to be representative of the boundary. For a smooth 

boundary O:ij (K:) = -~. Thus, equation (3.41) can be rewritten as , 

(3.44) 

where Cij (K) varies between 0 and 1. Typical values of cij are represented in figure 

3.3. Equation (3.44) is referred to as the boundary integral equation (BIE) and is 

the fundamental building block behind the boundary element method. 

(a) C;J (~~:) = 0.25 (b) C;j (~~:) = 0.50 (c) c ; j (~~:) = 0.75 

Figure 3.3: Values for Cij (K:) 

To allow the integration of equation (3.44) it is necessary to discretise the model 

into individual elements (figure 3.4). As a result the BIE can now be written in its 

discrete form, 

(3.45) 

where re is the boundary for the element being integrated. Shape functions are 

applied to the elements to allow the extraction of displacements and tractions at 

discrete locations. Shape functions are typically defined for elements with either 2 

or 3 nodes per element for 2-dimensional analysis. For 2 nodes per element, 

1-~ 
N1 (~) = -

2
-

Nz(~) = 1 +c; 
2 

(3.46) 

(3.47) 
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- - - - - - - -- - -

0 
- - - - - - - -

Figure 3.4: Discretised sample problem 

and for 3 nodes per element, 

-( 
NI(() = 2 (1- () 

N2 (() = 1 - e 
NJ(() = ~ (1 + () 

--

-

45 

(3.48) 

(3.49) 

(3.50) 

where~ is a local coordinate such that the element is bounded by [-1 , +1] (figure 

3.5). In this work elements will have 3 nodes. Figure 3.6 shows the variation of shape 

3 

+ 1 

-1 

Figure 3.5: Sample element 

functions for elements with three nodes. Similar shape functions can be derived for 

3-dimensional problems but involve a second local coordinate(. 

Shape functions are used for interpolation of the nodal quantities along the ele­

ment length. Equation (3.51) shows the use of shape functions for the interpolation 
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1.2 

c 0.8 

0 

~ c 0.6 

.2 
Q) c.. 0.4 

m 
.c 
Cl) 

-0 .2 '----L___.J.....__.J.....__.J.....__...L..__...L..__...J....__...J...._ _ _L_____J 

-1 -0.8 -0.6 -0.4 -0.2 0 .2 0.4 0.6 0.8 

Figure 3.6: Shape functions for elements with 3 nodes 

of nodal displacements along an element. 

46 

(3.51) 

An iso-parametric element uses the same shape functions for interpolating the co­

ordinates of the nodal locations along the element. 

The introduction of a local coordinate system allows the use of Gauss quadrature 

schemes of integration (see chapter 4 for more details). As a result it is necessary 

to alter the integration to reflect the change in variable and incorporate a Jacobian. 

The Jacobian is defined as, 

J(~) = ~; (3.52) 

Thus, the discretised form of the BIE becomes, 

Cij (K:) ui (K:) + L 1 TijNiJ (~) d~uj = L 1 uijNiJ (~) d~tj 
elem r e elem r e 

(3 .53) 

where Uj and ti contain nodal values of the displacement and traction respectively. 

Equation (3.53) can now be integrated numerically (see chapter 4 for more de­

tails) by placing the source point at each node and integrating across each element 
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in turn. Integration at the first node results in the following equation, 

(3.54) 

where h and g contain the value of the integrals containing t* and u* respectively. 

Repeating the integration around the boundary leads to a linear set of equations, 

These can be combined into the standard matrix equation. 

Hu= Gt (3.55) 

where H and G are square matrices containing the respective influence coefficients, 

u and t are vectors for the displacements and tractions respectively around the 

boundary. Figure 3. 7 shows the form of the matrices after the integration stage with 

unknown terms edged with black. Currently, as no boundary conditions have been 

applied both the u and t vectors are entirely unknown. Application of boundary 

•••••••••• •••••••••• • •••••••••• • ••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • -•••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • 
Figure 3.7: Matrix terms- Hu = Gt 

conditions (figure 3.8) fills n terms within the unknown vectors such that the matrix 

system consists of n equations with n unknown terms. To allow the problem in 



3.1. Derivation of the boundary element method 48 

•••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • -•••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • 
Figure 3.8: Matrix terms- Boundary conditions applied 

figure 3.8 to be solved it is necessary to move all of the unknown terms in the 

vectors to the left hand side vector such that all of the terms on the right hand 

side are known (figure 3.9). Multiplying the right hand side matrix-vector product 

•• •••• •• •• •• •••• •• •• • •• •••• •• •• •• •••• •• •• • •• •••• •• •• •• •••• •• •• • •• •••• •• •• •• •••• •• •• • •• •••• •• •• •• •••• •• •• • -•• •••• •• •• •• •••• •• •• • •• •••• •• •• • ••••• •• •• • •• •••• •• •• •• •••• •• •• • •• •••• •• •• •• •••• •• •• • •• •••• •• •• •• •••• •• •• • 
Figure 3.9: Matrix terms- Matrix rows and columns exchanged 

produces a vector that is completely known (figure 3.10) , producing the well known 

linear system ready for solution. 

Ax = b (3.56) 

where the A is ann x n matrix of known values, b is a known vector of size nand x 

are the unknown tractions and displacements to be solved for. Equation (3.56) can 

now be solved using a direct or iterative solver (see chapter 5 for more details). 

Once the boundary solution has been calculated we can apply the boundary 
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•• •••• •• •• • •• •••• •• •• • •• •••• •• •• • •• •••• •• •• • •• •••• •• •• • -•• •••• •• •• • •• •••• •• •• • •• •••• •• •• • •• •••• •• •• • •• •••• •• •• • 
Figure 3.10: Matrix terms- Ax = b 

integral equation to calculate displacements at points internal to the domain 0 . 

Moving the point K within the domain and applying equation (3.44) we can calculate 

the corresponding displacement throughout the domain allowing the production of 

accurate contour plots of displacement. It should be noted that with points internal 

to the domain CiJ (K) = 1 due to the integrations not involving singularities , as such 

the integrals can be performed using conventional Gauss-Legendre quadrature. 

To calculate stresses we can differentiate the boundary integral equation, equa­

tion (3.41), and then apply Hooke's law to produce the stress (a) form of the bound­

ary integral equation. 

O"ij + I skijukdr = I Dkijtkdr 

r r 

where SkiJ and DkiJ are third order tensors. 

ni [2vr,Jr,k + C48Jk] + nJ [2vr,ir ,k + C48ik] 

+nk [2C4T,iT,j- (1 - 4v) llij] 

+2r,n [C40ijr ,k + ll (Ojkr ,i + Oikr,j) - 4T,ir,jT,k] 

where c5 is a constant based on material properties given by, 

(3.57) 

(3.58) 

(3.59) 

(3 .60) 
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Equation (3.57) can typically be integrated using a standard Gauss-Legendre 

quadrature scheme. Care does need to be taken if the internal points are located in 

the vicinity of the boundary as the third order tensors Dkij and Skij will be strongly 

singular and hyper-singular integrals respectively when integrated. 

3.1.2 Potential flow 

For the problem of potential flow we need to consider Laplace 's equation, 

(3.61) 

where \72 is the Laplacian operator and <P is the potential function, temperature 

in heat transfer problems, whilst x and y are Cartesian coordinates. Laplace's 

equation is similar to Poisson's equation except that the right hand side in the 

Poisson equation is non-zero, typically a function of </J. 

The fundamental solution of Laplace's equation is based on the three-dimensional 

solution to a concentrated potential 

>.(11:,Q) =_!_In [ ( 
1 

Q)] 21r r 11:, 
(3.62) 

where r is as defined for elasticity. 

To reduce this problem by one dimension, to make it a boundary-only problem, 

we must apply Green's second identity, equation (3.2), with <P representing the 

unknown potential and >. the fundamental solution to Laplace's equation, equation 

(3.61). 

j ( q; \72 >. _ >. \72 q;) c1n = j ( q; ~~ - >. ~~) dr (3.63) 

n r 

The potential function 1; satisfies \72</J = 0 everywhere, by definition. The funda-

mental solution, >. however, satisfies \72 >. = 0 everywhere except at the point 11: 

itself, as the function is singular. To allow for this singularity we surround the point 

11: by a circle of radius r€ and then take the limit as r€ ---+ 0. Thus, equation (3.63) 

can now be re-written as, 

j (</J\72>.->.\7
2
</J)dn= j (<P~~->.~~)dr (3.64) 

n-n, r+r, 
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As we have now eliminated the point "' from this equation we can see that, 

\12f/J = 0 and 

thus the left hand side of equation (3.64) becomes zero, and the right hand side 

surface integral can be split into two separate surface integrals to be dealt with 

separately. 

o = J (1Y a>.. - >.. arfJ) dr + J (f/J a>.. - >.. af/J) dr 
an an an an 

(3.65) 

I' I' e 

To calculate the integral on the boundary r, we can use the angle o: and substitute 

df = r,do:, additionally we can note that, 

a>.. a>.. ar 1 -1 1 
an= ar an = 27r---:;:- ( - 1) = 27rr 

Consideration of the second integral of equation (3.65) as we take the limit r, ----+ 0 

within the limits 0 < o: < 21r, 

(3.66) 

(3.67) 

(3.68) 

Substitution of equation (3.66) into equation (3.65) produces the potential form of 

the BIE, 

fjJ ("') + j K1 ("', Q) fjJ (Q) df (Q) = J K2 ("', Q) acpa~Q) df (Q) (3.69) 

I' I' 

where K 1 and K 2 are the kernels such that, 

K1 ("', Q) = a>..~: Q) 

K 2 ("',Q) = >..("',Q) = 2~ln [r("'~Q)] 
(3.70) 

(3.71) 

Similarly to the elasticity problem, section 3.1.1, we move the point"' to the bound­

ary to make the solution a full boundary-only solution and introduce the jump term 

c (K) which is dependent on boundary geometry, see figure 3.3, 

c ("') f/J ("') + j Kl(K, Q) f/J (Q) dr (Q) = J K2 (K, Q) a~~~) dr (Q) (3.72) 

I' I' 
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It should be noted that the kernels for potential problems, equations (3.70) and 

(3.71) , are entirely functions of geometry. 

3.1.3 Acoustics 

The boundary element method is ideally suited for problems of acoustics as it is 

only necessary to mesh the boundary. As a result if the problem domain can be 

considered to be infinite , for example the water waves around the legs of an oil rig 

in the ocean (figure 3.11) can be modelled by the Helmholtz equation in water of 

constant depth. Then the boundary element method merely meshes the legs whereas 

the finite element method would require a false exterior boundary to be included 

limiting how far the results are calculated for. 

Figure 3.11 : Example of an infinite domain (Perrey-Debain et al. , 2004; Trevelyan, 

2006) 

In acoustics we can assume that the time variation of response will be of the form 

e-iwt. Then the wave equation will reduce to the well known Helmholtz equation 

(3.73) 
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This can be expressed in boundary integral form as 

c (!i:) <P (!i:) + j ac ~:, Q) <P (Q) dr (Q) = j c (!i:, Q) aq>a~Q) dr (Q) +<Pi (3.74) 

r r 

where Re (c (!i:)) is related to the boundary shape and varies between 0 and 1 and 

Im (c (!i:)) = 0, <Pi is the incident wave. For this problem it can be shown that the 

fundamental solution is given by 

BC = ~ Br [Y1 (kr)- iJ1 (kr)] 
an 48n 

where Hn is the Hankel function which can be calculated as, 

Hn (kr) =In (kr)- iYn (kr) 

(3. 75) 

(3.76) 

(3.77) 

where In is the Bessel function of the first kind and Yn is the Bessel function of the 

second kind. 

(3.78) 

-n n-1 ( 1)1 
- ~"'"' n- m- . x2m (3.79) 

11" L 22m-nm! 
m=O 

where 'Y is the Euler constant given by 

'Y = ;~~ (t ~ -ln n) = 0.57721566 ... 
k=l 

(3.80) 

and hm is given by 

ho = 0 

m 1 
hm = "'"'-;­L,/. 

i=O 

(3.81) 

(3.82) 

For 3-dimensional problems the fundamental solution of the Helmholtz equation is 

given by, 
eikr 

G=-
4nr 

(3.83) 
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Thus, equation (3.74) can now be integrated by substitution of the fundamental 

solutions. Care is required when integrating the Bessel functions as they contain 

singularities that need to be integrated using logarithmic Gauss quadrature (see 

chapter 4 for more details). 

For acoustic problems the mesh density is constrained such that, 

A 
Element Length < 4 

This ensures that the problem can be fully captured by the elements. 

Additionally, for problems involving infinite domains it is possible to suffer from 

non-uniqueness at the eigenfrequencies of the associated internal problem. Thus it 

is necessary to employ additional techniques to overcome this non-uniqueness such 

as CHIEF (Schenck, 1968). CHIEF involves the collocation at a number of points 

inside the body as additional constraint equations. 

3.2 Concluding remarks 

In this chapter the boundary element method has been presented for three different 

numerical problems. In each case fundamental solutions have been presented. 

Details on the integration procedure have been discussed with relation to the 

building of matrix equations, the application of appropriate boundary conditions 

and the subsequent reduction to the well known linear system 

Ax=b (3.84) 

which can be solved using either a direct or iterative solver (see chapter 5). 

The boundary element method has a number of advantages and disadvantages. 

Disadvantages of the boundary element method include the use of complicated and 

singular integral equations and the use of fundamental solutions to create a boundary 

formulation. The method is not suitable for thin shell analysis. This is because of 

the large surface/volume ratio and hence the distance between collocation points 

and elements becomes small. This can cause inaccuracies within the numerical 

integrations. 
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The main advantages are that it is a boundary only numerical method and as 

a result it is particularly good for problems of reanalysis. This is a consequence of 

the ease with which a mesh can be generated as it is not necessary to triangulate 

throughout the volume. The matrix equations generated are smaller than compara­

ble numerical methods. However, the matrices are fully populated and thus sparse 

techniques can not be applied. 

The BEM is also known for its accuracy and efficiency in problems such as frac­

ture mechanics, where the solution contains singularities. Additionally, the BEM is 

extremely efficient for large problems containing areas of geometric detail because of 

the requirement to only mesh the boundary. Moreover, this benefit can be extended 

to problems involving infinite domains such as acoustic or wave problems. 



CHAPTER 4 

Numerical Integration Techniques 

The boundary integral equation, repeated in equation ( 4.1) for completeness from 

chapter 3, contains complicated integrals 

(4.1) 

Due to the complicated nature of the equation it can only be integrated analyti­

cally for simple cases and as a result a numerical integration scheme is typically 

used to approximate the integrals. In this chapter a number of different numerical 

integration techniques will be presented and considered. 

4.1 Newton-Cotes 

Newton-Cotes integration is the generic name for an integration technique that 

involves taking the value of the function to be integrated at equally spaced points 

and weighting it. More commonly it is used to refer to techniques that involve 

tabular data at fixed points. More details on these techniques can be found within 

any mathematical textbook, for example Kreyszig (1999) or Chapra and Canale 

(2002). 

56 
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4.1.1 Rectangular integration 

The simplest form of Newton-Cotes integration is rectangular integration. This 

technique involves the splitting of the integration into equal width strips and fitting 

a constant; order zero, function across the strip. There are three ways of deciding 

the height of the strips, 

1. Left Riemann approximation 

2. Midpoint approximation 

3. Right Riemann approximation 

Figure 4.1 shows each of the splitting techniques for rectangular integration. 

(a) Left Riemann (b) Mid-point 

(c) Right Riemann 

Figure 4.1: Splitting techniques for rectangular integration 
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Rectangular integration can be represented by equation (4.2). The width of the 

strips used determines the accuracy of the integration. 

where E is the error term and 

k - 1 if left Riemann approx. 

k' = if midpoint approx. 

k if right Riemann approx. 

1,-----~----~----~----~----~ 

0.8 

NH 0.6 

11 

~0.4 

0.2 

0.2 0.4 1 
X 

Figure 4.2: Example integration 

(4.2) 

Table 4.1 shows how the accuracy of integrating f ( x) = x2
; displayed in figure 

4.2, varies with strip count between the limits of 0 and + 1. The accuracy will be 

determined against the analytical solution given in equation ( 4.3). 

1 

3 
(4.3) 

Table 4.1 shows that the midpoint splitting technique is the most accurate 

method of rectangular integration for this particular integral. This is a result of 

the gradient of the equation being integrated. Figure 4.3 shows application of the 

midpoint technique and the approximate cancellation areas above and below the 

strip. 
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Left Riemann Midpoint Right Riemann 
Strips 

Int. Value Error (%) Int. Value Error(%) Int. Value Error(%) 

1 0.0000 -100.00 0.2500 -25.00 1.0000 200.00 

2 0.1250 -62.50 0.3125 -6.25 0.6250 87.50 

3 0.1852 -44.44 0.3241 -2.77 0.5185 55.55 

4 0.2188 -34.36 0.3281 -1.57 0.4688 40.64 

5 0.2400 -28.00 0.3300 -1.00 0.4400 32.00 

6 0.2546 -23.62 0.3310 -0.70 0.4213 26.39 

7 0.2653 -20.41 0.3316 -0.52 0.4082 22.46 

8 0.2734 -17.98 0.3320 -0.40 0.3984 19.52 

9 0.2798 -16.06 0.3323 -0.31 0.3909 17.27 

10 0.2850 -14.50 0.3325 -0.25 0.3850 15.50 

Table 4.1: Rectangular integration of J
0
+

1 
x 2dx 

The midpoint integration is an example of an open Newton-Cotes scheme, i.e. it 

does not sample at the ends of the interval of integration. This is advantageous in 

some circumstances. 

4.1.2 Trapezoidal integration 

Trapezoidal integration is similar to rectangular integration as the integration area 

is split into strips in the same manner. A first order fit is then applied to the strip 

such that it becomes a trapezium as opposed to a rectangle, as indicated in figure 

4.4. 

1b f ( x) dx ~ b - a ( f (a) + f (b) + ~ f (a + k b - a)) + £ ( 4.4) 
a n 2 n 

k=l 

An advantage of the trapezium rule is that it is possible to tell if the trapezium 

rule will be an over or under estimate of the true integral. If a function is always 

concave in nature (fx{ > 0) then the trapezium rule will over estimate the integral, 

figure 4.5(a). If the function is convex in nature (£{ < 0) then the integral will be 
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Figure 4.3: Application of midpoint rule for an individual strip 

Figure 4.4: Application of trapezoid rule 
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an under estimate, figure 4.5(b). If the function contains an inflection point then 

the error will be harder to approximate a-priori. 

(a) Concave function (b) Convex function 

Figure 4.5: Error estimation for trapezoidal rule 

As the trapezium rule is an order 1 fit to the function it is commonly seen to be 

more accurate than rectangular integration. Table 4.2 shows how the error varies 

when performing the integration given in equation ( 4.3). 

Number of Strips Integral Value Error(%) 

1 0.5000 50.00 

2 0.3750 12.50 

3 0.3519 5.57 

4 0.3438 3.14 

5 0.3400 2.00 

6 0.3380 1.40 

7 0.3367 1.01 

8 0.3359 0.77 

9 0.3354 0.62 

10 0.3350 0.50 

Table 4.2: Trapezoidal integration of J0+
1 

x2 dx 

Comparing the results of table 4.2 with those in table 4.1 it can be seen that the 

trapezium rule is more accurate than both left and right Riemann integration. This 
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is on account of the higher order of fit that can be achieved when using the trapezium 

rule. Comparison with the midpoint rule, however , shows that rectangular integra­

tion is more accurate and this is a result of the cancellation effect demonstrated in 

figure 4.3. 

The trapezoidal rule exhibits very rapid, exponential, convergence for cases in 

which the integrand is periodic in the interval over which the integral is performed. 

Figure 4.6 displays plots of equations (4.5) and (4.6) over the range oo < x ~ 360°. 

h (x) =sin (47rx) (4.5) 

h (x) =sin (3.87rx) (4.6) 

Figure 4. 7 compares the number of strips used in the integration with the absolute 

O.Sc 

-0.5> 

-1 f 
o~---g=o----1~r~--2=7o~--~~o 

(a) h (x) (b) h (x) 

Figure 4.6: Plots of equations ( 4.5) and ( 4.6) 

error in the integral value. 

4.1.3 Simpson's rule 

Simpson's rule is a method of approximating f (x) by a quadratic function, order 2. 

b h 2 2 

[ 

:!!,_1 !! l 1 J(x) dx~ 3 J(a)+2f;J(a+2kh)+4f;J(a+(2k-l)h)+f(b) +£ 

(4.7) 

where his the strip width given by h = b~a . 
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Figure 4. 7: Absolute error in numerical integration as strip count is varied 

Equation (4.7) shows the form of Simpson's rule, due to the quadratic fit the 

integration is more complicated. As Simpson's rule is a quadratic fit then it is a 

requirement of the method to have an even number of strips for the integration. 

Table 4.3 compares Simpson's rule with both rectangular integration (using the 

midpoint rule) and the trapezium rule for the problem of, 

which has the analytical solution 

14 

(x
4
-6x

3
+11x

2
-8x+7)dx= [~x5 -~x4 + ~1 x3 -4x2 +7xJ: 

= 19.4667 

(4.8) 

(4.9) 

Figure 4.8 shows how the function to be integrated varies over the region of interest. 

Table 4.3 shows that Simpson's rule has a higher rate of convergence to the 

analytical solution then either rectangular integration or the trapezium rule. This 

is a result of the quadratic fit being able to fit the function much more accurately 

than either of the previous two techniques. 
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Strips 
Rectangle Trapezium Simpson's 

Int. Value Error(%) Int. Value Error (%) Int. Value Error (%) 

2 12.0000 -38.36 36.0000 84.93 28.0000 43.84 

4 17.2500 -11.39 24.0000 23.29 20.0000 2.74 

6 18.4527 -5.21 21.5144 10.52 19.5720 0.54 

8 18.8906 -2.96 20.6250 5.95 19.5000 0.17 

10 19.0963 -1.90 20.2099 3.82 19.4803 0.07 

12 19.2088 -1.32 19.9835 2.65 19.4733 0.03 

14 19.2770 -0.97 19.8467 1.95 19.4702 0.02 

16 19.3213 -0.75 19.7578 1.50 19.4688 0.01 

Table 4.3: Comparison of Newton-Cotes techniques for integration 
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4.2 Transformation of integrals 

Currently all of the integration techniques introduced have had arbitrary limits of 

a to b. This has been acceptable as the integration interval has been divided into 

separate strips and the appropriate scheme repeated over each of those strips. 

It is necessary for certain integration schemes to work between fixed limits for the 

integral to be valid. Thus it is necessary to apply a transformation to the original 

integral such that it has more suitable limits. 

1b f (x) d.r = 1!3 f [x (()] J (~) d( 

where J (~) is called the Jacobian and is given by, 

J (() = dx 
d( 

For double integrals the Jacobian is formed in a similar manner 

J(~1,6) = a(x,y) = [ g~ t6] 
8(6,6) 2JL. 2JL. 

8€1 86 

(4.10) 

(4.11) 

(4.12) 

and since dx = IJ (~)Id~ the determinant of the Jacobian matrix in equation (4.12) 

is included in the integral in a similar fashion to equation (4.10). 

4.3 Gauss quadrature 

Gaussian quadrature is an alternative method of numerically integrating a function 

f (x). Gaussian quadrature employs variable abscissae and weights and can be 

represented by equation ( 4.13). 

r+l n 

}_
1 

f (x) dx ~ ~ wd (xi) (4.13) 

where wi is the weight associated with the abscissa Xi this is performed over n 

Gauss points. 

Equation (4.13) shows that the limits of integration are -1 to +1. As a result 

it will be necessary to employ a Jacobian of transformation to move from arbitrary 

limits of integration to the Gauss limits. 

There are a number of techniques for calculating the position of the abscissae. 

Three main techniques will be presented in this thesis 
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1. Gauss-Legendre (including logarithmic Gauss-Legendre quadrature) 

2. Gauss-Radau 

3. Gauss-Lobatto 

In most of the strategies presented abscissae are placed symmetrically about the 

origin. 

4.3.1 Gauss-Legendre quadrature 

Gauss-Legendre quadrature involves the distribution of n abscissae throughout the 

integration. To determine the location of the abscissae and their respective weights 

it is useful to start with low order cases before moving to higher orders of integration. 

Gauss-Legendre quadrature of order n is capable of integrating exactly a polynomial 

of order 2n- 1 (Pozrikidis, 1998). 

Consideration of n = 2 will allow the exact integration of a cubic function. To 

calculate the abscissae and weights it is necessary to consider the following cases, 

for which second order Gauss-Legendre quadrature will be exact, 

where 

ao =1- 0, 

h ( x) = box2 + b1 x + b2 

h(x)=cox+cl 

fo (.r,) =do 

bo =1- 0, 

(4.14) 

(4.15) 

(4.16) 

( 4.17) 

such that the order of the function being integrated is not altered. Considering 

equation (4.13), setting n = 2 and assuming that x1 =1- x 2 E [-1, +1]. It is possible 

to show the following four relations, 

(4.18) 

(4.19) 
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3 = x 1w1 + x 2w2 

0 = .'r~Wl + .?::~W2 
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( 4.20) 

(4.21) 

Equations (4.18), (4.19), (4.20) and (4.21) now define the weights and abscissae for 

the integration. Solving for the weights, wi, and abscissae, .Ti, yields 

( 4.22) 

( 4.23) 

These are the well known ±ji seen in many finite and boundary element codes for 

Gauss-Legendre quadrature. 

Gauss-Legendre quadrature can be extended for higher orders of integration al­

lowing accurate fits for more complicated functions. To calculate the abscissae for 

the integrations it is possible to use the locations of the roots of the Legendre poly­

nomial with order n (Pozrikidis, 1998). To calculate the associated weights, wi, it 

is necessary to calculate (Davis and Rabinowitz, 1984), 

(4.24) 

where Pn is the Legendre polynomial of order n. 

Relevant weights and abscissae tend to be stored within integration routines, 

however if a higher order of integration is required than stored it is possible to 

calculate weights and abscissae relatively cheaply (Press, 2002). Tables of abscissae 

and weights are available by numerous authors, for example (Pozrikidis, 1998) and 

(Abramowitz and Stegun, 2002). 

4.3.2 Logarithmic Gauss quadrature 

The boundary element method contains integrals with singularities of varying order. 

Equation ( 4.25) repeats one of the integrals from the displacement form of the 

boundary integral equation which has a weak singularity due to a logarithmic term. 

(4.25) 
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To integrate this it is possible to use an alternative form of Gauss quadrature, which 

has a logarithmic weighting function, 

(4.26) 

It should be noted that the integral in equation (4.26) has limits of [0, +1] and 

as such needs to be transformed appropriately. For cases in the BEM where the 

collocation point lies at the mid-node of an element, one can simply use equation 

( 4.26) separately on the two halves of the element. 

It is only necessary to use logarithmic Gauss quadrature to integrate the loga­

rithmic term and the regular part of the integral (C1r,ir,j) can be integrated using 

equation (4.13). 

Abramowitz and Stegun (2002) contains tables of weights and abscissae that 

can be used for the integration of logarithmic functions using this form of Gauss 

quadrature. 

4.3.3 Gauss-Radau and Gauss-Lobatto quadrature 

Gauss-Radau and Gauss-Lobatto integration are similar to Gauss-Legendre integra­

tion as they involve the placing of abscissae and associated weights throughout the 

integration domain. 

Gauss-Radau integration fixes one of the abscissae at an endpoint ±1 and then 

distributes the remaining (n- 1) abscissae symmetrically through the domain. This 

reduces the order of polynomial that can be integrated accurately to 2n- 2. Gauss­

Lobatto integration, however involves setting abscissae at both end-points of the 

integration ( -1 and + 1) and then placing ( n - 2) free abscissae through the integral 

area. This allows the accurate integration of polynomials of order 2n - 3. 

The locations of the free abscissae are found in a similar manner to the abscissae 

for Gauss-Legendre quadrature. As one of the abscissa has been placed at one of the 

end nodes in Gauss-Radau quadrature it can be shown that the remaining abscissae 

are given by the roots of the n- 1 Legendre polynomial, as a further abscissa is fixed 

in Gauss-Lobatto it is necessary to find the roots of then- 2 Legendre polynomial 

(Pozrikidis, 1998). 
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4.3.4 Order of integration 

A number of authors have considered the order of Gauss integration required for 

particular types of integration problem. As Gauss-Legendre quadrature is designed 

to be accurate for polynomials of order 2n- 1, integrating functions such as those 

contained in the boundary element method requires generic rules to be created based 

on parameters within the integral. 

Typically authors consider the generic cases of integrals of 0 C!n) where m > 1. 

These can then be used as guidelines for the integrals from numerical methods such 

as the boundary element method. Eberwien et al. (2005) considered integrals around 

a single element and calculated the required Gauss-Legendre order to ensure that the 

error was kept below 0.1 %. Furthermore they compared this result with previously 

generated tables for Gauss orders by Jun et al. (1985) and Bu and Davies (1995). 

By employing a variable order scheme as proposed by Eberwien et al. (2005) it is 

possible to optimise the computational effort required to compute an integral whilst 

ensuring that a certain degree of accuracy is maintained within the integral. 

4.4 Singular integrals 

The evaluation of singular integrals is a necessary problem when using the boundary 

element method as it is a requirement to integrate the element that the collocation 

point lies within. As a result a number of authors have considered this problem. 

For weakly singular integrals it is possible to employ specific integration schemes 

such as logarithmic Gauss quadrature (section 4.3.2) but for higher orders of singu­

larity this cannot be used. Telles (1987) devised a technique involving a polynomial 

transformation to improve accuracy in numerical evaluation of singular and near­

singular integrals. 

Two techniques were proposed by Telles (1987). The first technique employed a 

second order polynomial transformation of the form, 

( 4.27) 
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where the following requirements are met, 

17(1) = 1 

7](-1) = -1 
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( 4.28) 

( 4.29) 

( 4.30) 

where r; is the value of 17 at a singularity whose effect we seek to minimise. For 

near-singular integrals it will be location on the element closest to the singularity. 

From these restrictions it can be seen that the coefficients a, b and c are given by 

the following, 

a= -c 

b=1 

r; ± J(1J2- 1) 
c= ~----::........:....:.....__...:... 

2 

(4.31) 

( 4.32) 

( 4.33) 

This transformation can be applied only when -1 ::::; r; ::::; 1. However this restric­

tion limits the applicability of the transformation. A more complicated third order 

polynomial transformation can be employed to remove the restriction on location of 

the singularity. 

1] (I) = a{
3 + b12 + C{ + d (4.34) 

In addition to the conditions applied to the second order polynomial, it is necessary 

to define an additional parameter, 

021] I -
>l 2 - 0 
u{ fi 

(4.35) 

A solution to this problem is given by the following coefficients 

1 
( 4.36) a=-

Q 

b=- 3i 
Q 

(4.37) 

3i2 
(4.38) c=-

Q 

d= -b (4.39) 

Q = 1 + 3"?2 ( 4.40) 
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where i is the value of"( such that rJ (i) = fj. 

By applying the polynomial transformation it is necessary to introduce a Jaco­

bian, the Jacobian introduced will have the property that it passes through zero at 

the point fJ as a result this cancels the singularity that occurs at this point. 

The application of these polynomial transformations increases the computational 

complexity of the integration process but allows the accurate integration of the small 

proportion of integrals that contain singularities. An additional benefit of the third 

order polynomial transformation is that it can be applied to an integral without a 

singularity without any loss of accuracy. Telles (1987) investigated this effect when 

considering near-singular integrals. 

Higher order singularities rely on an alternative approach such as the method 

proposed by Kutt (1975). Consider the Hadamard finite part integral, 

I- tr g (x) dx 
- s (x-s)k 

It is possible to represent I by a scalar product of the form 

N [ (k} l 
(
. _ )1-k""" ( ·) (k} ci ln lr- si 
r s ~g xt wi + (k _ 1)! 

t=1 

(4.41) 

( 4.42) 

where w}k) are the weights at N equispaced points, xi E [s, r] and elk} are the 

coefficients for the (k- 1) numerical derivative of g at the origin. For the case 

where the singularity lies within the integral limits, equation (4.43), it is possible to 

split the integral into two finite-part integrals, equation ( 4.44). 

tb X- S 

I= k+1f(x)dx 
a lx- si 

( 4.43) 

t
b x-s k+1t 8 

f(x) tb f(x) 
---=-k+--.,-1 f ( x) dx = ( -1) k dx + k dx 

a lx- si a (x- s) 8 (x- s) 
(4.44) 

However, as the strategy proposed by Kutt is developed for the case off: where 

(r > s) it is necessary to substitute x = -y for the first finite-part integral. 

tb x-s f_-a f(-x) tb f(x) ---;--:--:-! ( x) dx = - dx + dx 
a 1.-r- slk+1 

-8 [x- ( -s)]k 8 (.T- s)k 
( 4.45) 

It is now possible to apply equation ( 4.42) to both of the finite-part integrals. 
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4.5 Exact integration 

Zhang and Zhang (2004a) have considered the use of exact integration techniques 

and applied them to a variety of singular and hyper-singular integrals which are 

commonly found within the boundary element method. Consideration of this prob­

lem for individual elements allows a single integration routine to be implemented 

regardless of the singularity due to the singularity being implicitly included in the 

integration. 

Unfortunately the freedom that this technique provides is computationally ex­

pensive and the routine required for integrating the relevant functions is not suitable 

for the real-time analysis at which this work is aimed. 

4.6 Concluding remarks 

In this section a number of integration techniques have been presented. The main 

techniques currently used in boundary element codes are those of a Gauss quadrature 

nature, in particular Gauss-Legendre quadrature and logarithmic Gauss quadrature. 

To deal with the singular and hyper-singular integrals it is necessary to combine 

high order Gauss-Legendre integration schemes along with a technique to remove 

the singularity, such as the schemes proposed by Telles (1987) and Kutt (1975). 



CHAPTER 5 

Equation Solution Techniques 

Numerical integration of the boundary integral equation for elasticity, equation 

(3.41), heat transfer, equation (3.72), produces the following matrix equation 

Ax=b (5.1) 

where the vector x contains the unknown displacements and tractions for the bound­

ary problem. We can use two main types of technique to solve for the unknowns, a 

direct solver or an iterative solver. A number of direct and iterative solvers will be 

discussed in this chapter highlighting the advantages and disadvantages of each. 

5.1 Direct solvers 

Using a direct solver ensures that a solution will be reached as long as the matrix 

A is not singular. The drawback of this method is that it is a fixed procedure and 

as a result can be time-consuming, particularly for large sets of equations. As the 

procedure is fixed the solution time does not depend on the condition number or 

form of the matrix. 

The two main direct solvers employed in the solution of equations such as equa-
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tion (5.1) are 

• Gaussian Elimination 

• Lower-Upper (LU) factorisations 

These two methods are related. 

5.1.1 Gaussian elimination 

Gaussian elimination is a simple method of reducing the square matrix to its upper 

triangular form. This can then be used to solve for any b vector, as such it is excep­

tionally quick at evaluating multiple solutions to problems which only vary in the b 

vector as it only requires a back-substitution for each solution. This situation occurs 

within the BEM for multiple load cases in which the type of boundary condition is 

the same but different in magnitude. The Gaussian elimination algorithm is shown 

(in pseudo-code) in algorithm (5.1). 

Algorithm 5.1: Gaussian elimination of Ax = b 

1: for j = 1 to (N- 1) do I I Loop over the matrix rows 

2: for i = 0 to (j - 1) do I I Loop over the matrix columns 

3: if aii = 0 then 

4: return "Error: Singular Matrix" 

5: else 

6: F = ::~ I I Calculate the scale factor 

7: fork= 0 to (N- 1) do 

8: ajk = ajk - (Faik) 

9: end for 

10: bj = bj - (Fbi) 

11: end if 

12: end for 

13: end for 

After application of algorithm (5.1) the matrix A is an upper triangular matrix 
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which can be solved via a simple back-substitution of the b vector to extract the 

unknowns in x. 

The algorithm can be written in a number of ways, simply by differing the order 

of the i, j and k loops. One problem with algorithm (5.1) is that although it will 

always produce a solution (assuming that the matrix is not singular) the solution 

can be inaccurate due to numerical rounding. This problem can be reduced by the 

use of partial pivoting (Kreyszig, 1999). 

The scheme for partial pivoting is listed in algorithm (5.2) Partial pivoting is 

Algorithm 5.2: Partial pivoting 

1: if laiil < threshold then I I Where threshold is typically 10-6 for our cases 

2: Find row l below i where ali = max lamil and ali =/= 0 

3: Swap rows l and i in matrix A and vector b 

4: end if 

effective at ensuring that accuracy is maintained within the solution phase, whilst 

increasing the computational cost of the method by a minimal amount. An alter­

native is to employ full pivoting in which the threshold is not checked and rows are 

swapped regardless, this is acceptable for algorithms produced in C++ due to the 

efficient ability to swap the rows within the matrix. 

The full partial-pivoted Gaussian elimination algorithm is listed in algorithm 

(5.3). This algorithm has a computational cost of ~N3 where N is the number of 

equations to be solved. 

5.1.2 LU factorisation 

The process of calculating an L U factorisation is similar to Gaussian elimination 

discussed in section (5.1.1). It differs in that the end product is two triangular 

matrices; one lower and one upper triangular. These can then be solved by a forward 

and then back-substitution process (algorithm 5.4). 

In this implementation the L and U factors are written over the original A 

matrix and it should be noted that the leading diagonal for the L factor is implicitly 
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Algorithm 5.3: Partial pivoted Gaussian elimination 

1: for j = 1 to (N- 1) do I I Loop over the matrix rows 

2: for i = 0 to (j - 1) do I I Loop over the matrix columns 

3: if laiil < threshold then 

4: Find row l below i where ali = max lamil and ali =1- 0 

5: Swap rows l and -i in matrix A and vector b 

6: end if 

7: F = ~ I I Calculate the scale factor 

8: for k = 0 to ( n - 1) do 

9: ajk = ajk - (Faik) 

10: end for 

11: bJ = bJ - (Fbi) 

12: end for 

13: end for 

Algorithm 5.4: LU decomposition 

1: fori= 0 to (N- 1) do I I Loop over the matrix rows 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

for j = 0 to ( i - 1) do I I Calculate the lower triangular matrix 

for k = 0 to (j - 1) do 

end for 

a··=~ 
t) Ujj 

end for 

for j = i to ( N - 1) do I I Calculate the upper triangular matrix 

for k = 0 to ( i - 1) do 

end for 

end for 

13: end for 
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assumed to be 1 and as a result does not need to be stored. This algorithm can 

suffer from numerical rounding during the calculation thus partial pivoting can be 

included as indicated in algorithm (5.5) 

Algorithm 5.5: Partial pivoted LU decomposition 

1: for 'i = 0 to (N- 1) do I I Loop over the matrix rows 

2: if lad < threshold then I I Partial pivoting 

3: Find row l below i where ali = max !ami! and azi #- 0 

4: Swap rows l and i in matrix A and vector b 

5: end if 

6: for j = 0 to ( i - 1) do I I Calculate the lower triangular matrix 

7: for k = 0 to (j - 1) do 

9: end for 

10 ·. a .. - !!:ii 't)-
ajj 

11: end for 

12: for j = i to (N- 1) do I I Calculate the upper triangular matrix 

13: for k = 0 to ( i - 1) do 

15: end for 

16: end for 

17: end for 

The computational cost of calculating the LU decomposition is ~N3 for a non­

symmetric system. If the system is symmetric then a variant of the L U decompo­

sition can be employed called Cholesky factorisation. In the Cholesky factorisation 

A is split into factors of L and LT thus the computation is reduced by a factor of 

2 such that the computational cost is ~ N 3 . 
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5.2 Iterative solvers 

An alternative to using a direct solver is to employ an iterative solver. This pro­

cess works by using a first approximation to the solution and then adjusting this 

approximation according to a particular scheme until the residual, the difference be­

tween the actual solution and the current solution, has been reduced below a certain 

threshold; typically w-6 . 

The most basic form of iterative solvers are stationary iterative solvers (Ramage, 

2006). These require the matrix A to be split. 

A=M-N 

where M is invertible. The linear system of equations, equation (5.1), can now be 

written, 

(M -N)x= b 

Mx = Nx+ b 

This can be formed into a sequence of iterates 

Mxk = Nxk-1 + b 

Xk = M-1Nxk_1 + M-1b, where k = 1,2, ... 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

The choice of M and N lead to different iterative methods. Common splittings 

include 

• Jacobi 

(5.6) 

• Gauss-Seidel 

M=D+L (5.7) 

where D is the diagonal of the matrix A and Land U are the strict lower and upper 

triangular parts of A. 

.. 
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Alternatively, the solution of equation (5.1) can be written as the linear combi­

nation of products of A and b (Greenbaum, 1997), leading to the development of 

non-stationary iterative solvers. 

A -lb:::::: x (s) E K (A, b, s) _span (b, Ab, A 2 b, ... , As- 1b) (5.8) 

where K (A, b, s) is the Krylov subspace of degrees formed by A and b. Thus, the 

exact solution lies inK (A, b, n) but the approximate solution lies within K (A, b, s) 

with s < n. To determine the exact solution it is necessary to minimise, 

(5.9) 

for symmetric problems or 

<I> (x) = (Ax- bf (Ax- b) (5.10) 

for unsymmetric systems. Solution of this minimisation problem will yield the linear 

combination within K which gives x. 
There are a number of iterative schemes that can be applied to solve the min­

imisation problem and they can be split into three main categories: 

• Steepest descent methods 

• Conjugate gradient methods 

• Generalised minimum residual (GMRES) methods 

Each of these methods will be presented in turn. 

5.2.1 Steepest descent methods 

The method of steepest descent is one of the simplest techniques for minimising the 

linear function given in equation (5.9). At any point xk the value of <I> decreases in 

the direction of negative gradient, i.e. 

(5.11) 

where rk is called the residual at xk. This is analogous to following the initial 

direction that a ball will move when placed on an uneven terrain; if contours are 
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plotted on the terrain then the ball will move in the direction perpendicular to the 

contours. 

If the residual is non-zero, then <I> can be reduced by travelling in this direction. 

The method of steepest descent is shown in algorithm 5.6 

Algorithm 5.6: Steepest descent method 

1: x0 = 0 

2: fork=0 , 1, 2 ... do 

3: 

4: check for convergence - continue if necessary 

5: 

6: 

7: end for 

The method of steepest descent can be effective but suffers if the contours of 

<I> are elongated as the direction of steepest descent given by rk. Referring to the 

previous analogy of a ball on uneven terrain, this situation can be considered to be 

a ball placed on the side of a valley and moving from one side of the valley to the 

other side whilst slowly moving toward the minimum at the end of the valley (figure 

5.1). 

(a) Problem 1 - Fast convergence (b) Problem 2 - Slow convergence 

Figure 5.1: Convergence of steepest descent method (Ramage, 2006) 
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5.2.2 Conjugate gradient methods 

The steepest descent method can be slow converging to a solution for the minimisa­

tion problem. As a result an alternative method was proposed (Hestenes and Stiefel, 

1952). 

The conjugate gradient method relies on the principle that the optimum search 

direction is not necessarily the direction of the residual rk. Thus, if the search 

direction is given by the vector Pk is it possible to find an optimum value for Pk· 

As the search direction is now arbitrary it must satisfy two separate requirements 

• The new iterate must minimise <I> over all of the possible search directions 

• We must be able to find ak that minimises <I> in the appropriate search direction 

To find an appropriate search direction Pk it is necessary to consider two one­

dimensional steps. This situation can be represented by figure 5.2. It can be shown 

Figure 5.2: Two one-dimensional search vectors 

(Kane, 1994) that to meet the two criteria specified then p 1 and p 2 must be A­

conjugate i.e. 

j<k (5.12) 

This can easily be extended to N-dimensional search vectors that are A-conjugate 

such that the N -dimensional space spanned by these vectors is minimised. This 

technique yields the conjugate gradient method. 

In this version of the conjugate gradient algorithm there is only one matrix-vector 

multiplication per iteration. Figure 5.3 shows that by using conjugate search vectors 
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Algorithm 5.7: Preliminary conjugate gradient method 

1: xo = 0; ro = b 

2: for k = 1, 2 .. . do 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

check for convergence - continue if necessary 

if k = 1 then 

P1 = ro 

else 

Let Pk = rk-1 + f3kPk-1 

end if 
r;!'_ 1rk- l 

Ctk = TA 
Pk Pk 

Xk = Xk- 1 + CtkPk 

rk = rk-1 - akAPk 

13: end for 

(a) Problem 1 (b) Problem 2 

Figure 5.3: Convergence of conjugate gradient method (Ramage, 2006) 
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it is possible to find the solution vector in an accelerated manner when compared 

with steepest descent techniques. It can be shown by application of the Cayley­

Hamilton theorem (Spencer, 2004) that for exact arithmetic the conjugate gradient 

method will converge within N iterations where N is the size of the system to be 

solved. 

This algorithm is only valid for symmetric systems and as a result it is not 

possible to use it directly to solve the matrix equations that the BEM generates. 

This limitation is a result of the fact that for unsymmetric systems it is not possible 

to create orthogonal residual vectors whilst maintaining a short recurrence. To 

overcome this limitation a number of variants on the conjugate gradient technique 

have been developed to deal with unsymmetric systems. 

One technique for dealing with unsymmetric systems is to form a version in 

which the matrix to be solved is symmetric. This can be achieved by solving the 

normal equations for the system. 

(5.13) 

where b = A Tb. Unfortunately this can adversely affect the rate of convergence as 

the condition number of the matrix to be solved now depends on the square of the 

original coefficient matrix. 

An alternative approach employs two mutually orthogonal sequences, however 

this is at the cost of finding Xk that minimises 11 Xk- :X IIA, as a result the method 

does not guarantee optimal progress at each step. The residuals are provided as the 

augmented forms of the standard conjugate gradient residuals, 

and the search directions are given by 

To ensure orthogonality we use the following relations 
-T rk-lrk-1 

ak = i>Z'APk 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

.. 
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(5.19) 

The convergence of the hi-conjugate gradient scheme can be irregular and as a result 

it can be difficult to compare with other iterative methods. If A is symmetric posi­

tive definite then the scheme results in the same answer as the standard conjugate 

gradient method but at twice the cost per iteration. 

To overcome the problems with convergence of the hi-conjugate gradient method 

a stabilised version was produced by van der Vorst (1992). The stabilisation occurs 

by updating the residual polynomials with a linear factor, the factor is determined 

by solving a local steepest descent problem. The addition of this local minimisation 

problem causes the convergence of the hi-conjugate gradient stabilised (BiCGStab) 

method to be much smoother than the standard hi-conjugate gradient method. 

Further variants have been proposed recently to cater for specific types of problem 

(Gutknecht, 1993; Sleijpen and Fokkema, 1993). 

5.2.3 Generalised minimum residual method 

The generalised minimum residual (GMRES) method is an alternative projection 

based method for unsymmetric systems (Saad and Schultz, 1986). 

As the matrix is unsymmetric it is not possible to employ a Lanczos method di­

rectly to ensure that the search vectors are orthogonal, thus it is necessary to employ 

a modified Gram-Schmidt (Schmidt, 1907) process to form the orthonormal basis 

for the Krylov sub-space. The modification to the Gram-Schmidt process produces 

Arnoldi's method (Arnoldi, 1951). In algorithm 5.8 hi,k is the (i, k) component of 

the associated Hessenberg matrix. Equation 5.20 shows the format of a Hessenberg 

matrix. 

h1,1 h1,2 h1,3 h1,4 h1,m-1 h1,m 

h2,1 h2,2 h2,3 h2,4 h2,m-1 h2,m 

0 h3,2 h3,3 h3,4 h3,m-1 h3,m 

Hm= 0 0 h4,3 h4,4 h4,m-1 h4,m (5.20) 

0 0 0 0 hm-1,m-1 hm-1,m 

0 0 0 0 hmm-1 hm,m , 

.. 
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Algorithm 5.8: Arnoldi's Method 

1: ql = ro 11 ro 11-1 

2: fork= 1, 2, ... , m do 

3: Wk = Aqk 

4: fori= 1, 2, ... , k do 

5: hi,k = qr Aqk 

6: Wk = Wk - hi,kqi 

7: end for 

8: hk+l,k =11 Wk 11 

9: - w 
qk+l - hk+l,k 

10: end for 

By employing Arnoldi's method to produce the orthonormal basis the short term 

recurrence featured in the conjugate gradient method is lost and all of the vectors 

must be stored. Thus as the number of iterations increases this becomes a major 

drawback of the method. However, GMRES does maintain the attractive feature of 

the minimisation property. 

The minimisation problem to be solved using GMRES is 

<I> (y) =11 b- A (xo- V mY) 11=11 fJe1- HmY 11 (5.21) 

where V m contains the m orthogonal search vectors, y is a vector to be minimised, 

e 1 is the first column vector from an m by m identity matrix and Hm is a Hessenberg 

matrix formed in Arnoldi's method (algorithm 5.8). It can be shown (Saad, 1996) 

that the minimisation can be obtained from 

Xm = Xo + VmYm, where 

Ym = argminy 11 {Je1- HmY 11 

(5.22) 

(5.23) 

where argminyf (y) is the value of the given argument, y, for which the the value 

of the expression, f (y), attains its minimum value. Thus the GMRES algorithm is 

given by algorithm 5.9 

.. 
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Algorithm 5.9: GMRES 

1: ql = ro 11 ro 11- 1 

2: for k = 1, 2, ... , m do 

3: Wk = Aqk 

4: fori= 1, 2, ... , k do 

5: hi,k = qr Aqk 

6: Wk = Wk- hi,kqi 

7: end for 

8: hk+l,k =11 Wk 11 

9: - w 
qk+l - hk+l,k 

10: end for 

11: Ym = y that minimises 11 f3e1 - HmY 11 

12: Xm = Xo + QmYm 

The only problem remaining is how to minimise the function 11 f3e1 - HmY 11· 

This is an overdetermined system of equations due to the size of the Hessenberg 

matrix. As a result it is necessary to solve it in a least squares form. An efficient 

method of solving this system of equations is through the use of Given's rotations 

to produce a QR factorisation of the matrix. Equation (5.24) shows an example of 

a Given's rotation for a 5 x 5 matrix. 

1 0 0 0 0 

0 m 0 -l 0 

G24 = 0 0 1 0 0 (5.24) 

0 0 m 0 

0 0 0 0 1 

where l = sin 0 and m= cos 0. Note that this is an identity matrix with additional 

terms added to the (i, k) positions and as a result the matrix is orthonormal. 

The Given's rotations are applied in sequence to reduce the matrix to an upper­

triangular rectangular matrix. The sequence is important to ensure that no fill-in 

·occurs when applying the Given's rotations. Additionally it should be noted that 

the matrix-matrix product is never explicitly formed and the multiplication can 
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be performed on individual matrix coefficients. Moreover as the algorithm iterates 

through k and the problem to be minimised increases in size it can be seen that 

the previous Given's rotations are identical, thus it is only necessary to apply the 

previous Given's rotations to the additional column of Hm and then apply the new 

Given's rotation to this column and the last two entries of f3e1 . 

Finally, it can be shown that it is not necessary to explicitly calculate Xk at each 

iteration to check for convergence due to the relationship, (Kane, 1994), 

(5.25) 

thus the norm of the residual is the magnitude of the last term in the Gf3e1 vector 

generated in the process of computing y. This can then be compared against a 

convergence criterion. 

As GMRES does not maintain the short recurrence property it is necessary to 

store all of the search vectors vk. For small problems this is not an issue. However, 

for larger problems the storage requirement for all of the vectors can be an issue. As 

a result a restarted form of GMRES, commonly referred to as GMRES(m) (Saad 

and Schultz, 1986) where m is the maximum number of iterations before restarting, 

can be employed. By restarting the solver with the latest solution as the new initial 

starting vector it is possible to converge to the solution. Restarting GMRES should 

only be considered for large problems where storage is at a premium due to the loss 

of the previous storage vectors. 

5.2.4 Convergence of iterative solvers 

The convergence of iterative solvers is an important area of research as it is one of 

the determining factors that affects the overall computational cost of a particular 

iterative solver. As a result it is beneficial to be able to approximate how quickly a 

particular matrix system should converge to a solution. 

Typically (Greenbaum, 1979) the condition number of a matrix has been used 

to estimate the rate of convergence. 

/1: (A) = Amax (A) 
Amin (A) 

(5.26) 

.. 
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where K, (A) is the condition number of the matrix A and ). (A) is an eigenvalue of 

the matrix A. 

However by only using the condition number the estimate only takes account 

of the highest and lowest magnitude eigenvalue, and as a result a large amount of 

detail contained within a particular system is ignored. Consider the systems, 

2.3050 0.0483 0.1775 0.5269 -0.2903 

5.5023 5.2141 -3.0632 -0.2904 -1.8667 

-1.1463 0.0261 3.3453 0.5290 -0.0561 (5.27) 

-0.8258 0.0326 0.0805 4.2619 -0.1487 

7.0867 0.5853 -2.8418 0.1354 -0.1263 

1.1727 0.0352 -0.0119 0.0472 -0.0420 

5.8307 5.2191 -4.0186 -0.7118 -1.8081 

-0.0618 0.0406 1.1974 0.0461 -0.0218 (5.28) 

-0.0202 0.0488 -0.0365 1.3180 -0.0343 

1.3423 0.5142 -0.7297 -0.0684 0.6928 

Both of these systems have identical condition numbers, however the distribution of 

eigenvalues for the systems is very different (figure 5.4). Thus, from the condition 

0.5, 

01 

~51 
-1 

1 2 3 4 5 

0.5 

0 

~.5 

(a) Problem 1 (equation (5.27)) (b) Problem 2 (equation (5.28)) 

Figure 5.4: Eigenvalue distribution for two problems with identical condition number 

number alone it is not possible to determine which of these systems would converge 

faster. 

However, if all of the eigenvalues are considered then it is possible to note that for 

the second problem (equation (5.28)), the majority of the eigenvalues are clustered 
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at one end of the eigenvalue spectrum. Greenbaum (1979) stated that the clustering 

of eigenvalues improves the rate of convergence. Additionally Ramage (2006) shows 

the rate of convergence of a selection of problems with identical condition number 

and matrix rank, but with intermediate eigenvalues at a variety of locations. Ramage 

(2006) found that the highest rate of convergence was for problems that were heavily 

clustered and that the slowest rate of convergence was for problems for which the 

eigenvalues are situated on the roots of the Chebyshev polynomial. Thus, if the 

eigenvalues can be caused to cluster, in particular about unity, then the rate of 

convergence of the iterative solver will be accelerated. 

For the matrices in equations (5.27) and (5.28) it is possible to apply a GMRES 

solver with the following starting parameters, 

1 

1 

b= 1 

1 

1 

0 

0 

U= 0 

0 

0 

(5.29) 

Figure 5.5 displays the rate of convergence for the two matrices, from this it can be 

seen that the effect of clustering of the eigenvalues is to accelerate the convergence 

of the iterative solver. 

2.51 

2l 

- I 

~ 151 

~ 11 

-Problem 1 

-Problem2 

0.5r 

%~--~----~2--~=-3---~~4------~5 

Iteration 

Figure 5.5: Convergence of GMRES solver for sample matrices 

.. 
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5.2.5 Preconditioning 

We can use preconditioning to accelerate the convergence of an iterative solver. The 

aim of preconditioning is to alter the equation to be solved (equation (5.1)) into a 

simpler form which will be faster to solve. 

Preconditioning can be applied in three main ways (Saad, 1996): 

• Left preconditioning 

• Right preconditioning 

• Split preconditioning 

For example left preconditioning, 

MAx=Mb (5.30) 

By pre-multiplying the original matrix, A, by a preconditioning matrix, M, it is 

possible to alter the form of the new system to be solved, causing the eigenvalues of 

the system to be moved to more desirable locations. Consideration of left precondi­

tioning shows that the inverse of A is the best preconditioner as it will result in the 

following matrix equation to be solved 

MAx=Mb 

A-1Ax = A-1b 

Ix = A-1 b 

(5.31) 

(5.32) 

(5.33) 

where I is the identity matrix. Noting that the eigenvalues of the identity matrix 

are all equal to unity it can be shown that this new system can be solved in a single 

iteration. However, the calculation of the inverse is an 0 (N3) operation and as such 

is more costly than a direct solver such as Gauss elimination. A good preconditioner 

therefore needs to meet a number of requirements: 

• Be a good approximation to A -l 

• Be computationally cheap to calculate 

• Be computationally cheap to apply at each iteration 
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By approximating the inverse matrix the preconditioner acts to cluster the eigenval­

ues about unity and as a result increases the rate of convergence. These requirements 

are highly dependent on the matrices being solved. One type of preconditioning that 

meets these requirements for a particular type of equation may be of no use when 

dealing with an alternative problem. Thus each global case of problem needs to be 

studied and its characteristics extracted to allow a good preconditioner to be found. 

5.2.5.1 Diagonal preconditioning 

The simplest form of preconditioning that can be applied to a matrix equation is 

diagonal preconditioning where 

M-1 = diag (A) (5.34) 

As the matrices formed by application of the BEM exhibit a strong diagonal 

dominance (figure 5.6) , then this feature should be an important part of forming 

the inverse. As a result using the leading diagonal as the preconditioner is a simple 

but potentially effective way of preconditioning the system. It can be seen that 

0.6 

0.4 

0.2 

0 

-0.2 
300 

Figure 5.6: Sample matrix from the BEM showing diagonal dominance 

although there is a strong diagonal dominance a large amount of detail is contained 

within other terms. These additional details are a result of geometric features and 

are affected by the application of boundary conditions (Rencis and Mann, 1997). 

For example, Dirichlet (displacement) boundary conditions will disturb the diagonal 

dominance for the corresponding degrees of freedom. 
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Marburg and Schneider (2003) considered the effect of diagonal preconditioning 

on the matrix equations generated for acoustic problems. They found that although 

a strong diagonal dominance was involved in the overall problem the effect of di­

agonal preconditioning was negligible and in certain cases increased the number of 

iterations to convergence when compared to no preconditioner being employed. 

An expansion on the use of a diagonal preconditioner is to increase the band­

width of the preconditioner. Popular forms of this preconditioning are tridiagonal 

preconditioning due to the inclusion of the terms that can be shifted off the diagonal 

due to boundary conditions. However, by increasing the bandwidth of the precon­

ditioner the computational resources required for the calculation and application of 

the preconditioner rapidly increase and as such these are less commonly employed 

than a vanilla diagonal preconditioner. 

5.2.5.2 Incomplete Lower-Upper preconditioning 

It is possible to apply techniques similar to direct solvers such that an approxi­

mation of the direct solver result is obtained but at a reduced computational cost. 

Incomplete lower-upper (ILU) factorisations are an example of this technique. In­

stead of calculating a full LU factorisation (section 5.1.2) it is possible to calculate 

an approximation to this in some manner (Meijerink and van der Vorst, 1977). 

The main method reducing the computational cost of both calculation of the fac­

torisation and the application of the factorisation is to ensure that the factorisation is 

sparse in nature. This sparsity can be exploited from both storing the preconditioner 

and from employing sparse techniques for applying the preconditioner. There are 

two main forms of the IL U factorisation to ensure that the resulting preconditioner 

is sparse, 

1. Sparsity pattern based. 

2. Threshold based. 

A sparsity pattern based ILU preconditioner employs a predefined sparsity pattern, 

P. This can either be a standard pattern or can be based on the current location 

of terms within the original A matrix. 
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Algorithm 5.10: Sparsity based ILU factorisation 

1: for i = 2, ... , N do 

2: 

3: 

4: 

5: 

6: 

7: 

fork= 1, ... , 'i- 1 and if (i, k) tf. P do 

for j = k + 1, ... , n and for ( i, j) tf. P do 

end for 

end for 

8: end for 
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Algorithm 5.10 shows the format of a sparsity based ILU factorisation. From 

this it can be seen that the definition of the sparsity pattern P is extremely impor­

tant as this will define the effectiveness of the factorisation as a preconditioner and 

the computational cost of the factorisation. A variant of the sparsity based ILU 

factorisation that reduces the emphasis of P is a sparsity based factorisation that 

allows fill-in (algorithm 5.11). These forms of the ILU are typically designated by 

ILU(Z) where Z is the level of fill-in that can occur during the factorisation process. 

The original form of the sparsity based ILU factorisation shown in algorithm 5.10 

is commonly designated ILU(O). In algorithm 5.11 the term lev is the level of fill 

Algorithm 5.11: Sparsity based ILU(Z) factorisation with fill-in 

1: For all non-zero elements aij define lev ( aii) = 0 

2: for i = 2, ... , N do 

3: 

4: 

5: 

6: 

7: 

8: 

for k = 1, ... , i- 1 and for lev (aik) :::; Z do 

a· - aik 
tk - akk 

ai* = ai* - aikak* I I where ai* denotes the ith row of the matrix A 

Update the levels of fill, levij = min { levij, levik + levkj + 1} 

end for 

Replace any element in row i with lev ( aij) > Z by zero 

9: end for 
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which is initially given by 

lev;; = { : if 
aij =/= 0, or z = J 

otherwise 

94 

(5.35) 

This is then updated every time the element is modified in algorithm 5.11. 

Application of a sparsity pattern and regulating the level of fill-in can, however, 

cause terms that are important to the factorisation to be dropped prematurely 

resulting in an increased number of iterations. As a result a threshold based ILU 

factorisation was presented by Saad (1994). The introduction of a thresholding 

criterion ensures that elements of the preconditioner that are large in magnitude 

will be kept within the preconditioner whereas they could be eliminated using a 

sparsity based IL U factorisation. 

Algorithm 5.12: Threshold based ILU factorisation 

1: for i = 1, ... , N do 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

w = ai* I I where ai* denotes the ith row of the matrix A 

for k = 1, ... , i- 1 and when wk =/= 0 do 

Apply dropping rule to wk 

if wk =!= 0 then 

end if 

end for 

Apply dropping rule to row w 

lij = Wj for j = 1, ... , i - 1 

Uij = Wj for j = 1, ... , n 

w=O 

14: end for 

A combination of the two ILU factorisation strategies can be employed to limit 

the amount of fill-in that can occur during the factorisation process. This involves 

performing a standard threshold based factorisation and then ensuring that if there 

.. 
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are more than Z elements in a row that only the Z terms largest in magnitude are 

included in the final factorisation. 

Schneider and Marburg (2003) employed a combination form of the ILU fac­

torisation and found that it was extremely effective at reducing the iteration count 

associated with exterior acoustic problems. As these authors considered large scale 

problems it was found that the additional computation required for calculation of 

the ILU factorisation was negligible when compared with other costs within their 

analysis. Additionally, they found that convergence was not met if a preconditioner 

was not used. 

5.3 Concluding remarks 

The solution of the matrix equation given in equation (5.1) becomes a non-trivial 

task for situations where computational cost is at a premium. As a result it is 

essential to exploit the nature of the problem under consideration and to optimise 

the techniques employed to solve the problem. 

As this thesis is concerned with small two-dimensional problems the use of a 

direct solver, such as an LU factorisation is considered to be reasonable. Moreover, 

for small two-dimensional problems iterative solvers are considered to be not opti­

mal, however, if an iterative solver can be implemented effectively with a suitable 

preconditioner then this will out-perform the direct solver. 

Due to the nature of the matrices created by application of the BEM it will be 

necessary to employ an iterative solver that is suitable for non-symmetric systems, 

thus the standard conjugate gradient method is not suitable. Other conjugate gradi­

ent methods could be employed. However, to deal with the non-symmetric nature of 

the matrices involves introducing computational mechanisms (such as matrix-vector 

products) which are computationally costly to implement. Thus, a GMRES solver 

which contains only one matrix-vector product within the iterative stage will be 

used. Preconditioning will be employed to accelerate convergence of the iterative 

solver; more details will be provided in chapter 7. 



CHAPTER 6 

Acceleration of the Integration Phase 

The boundary element method involves the integration of fundamental solutions 

(previously shown in chapter 3). 

Due to the relatively small size of problems under consideration within this 

research it has been found that the computational cost is roughly split equally 

between the three main parts of the analysis. Thus although for larger problems 

equation solution will dominate the overall computational cost, for small problems 

the numerical integration of the fundamental solutions equations (3.20) and (3.26) is 

considered to be a computationally expensive procedure. Thus, any savings that can 

be made in this part of the solution procedure will lead to an increase in performance 

allowing the rapid solution of BEM problems. 

Two main techniques will be investigated to improve the speed of integration. 

The use of look-up tables will be introduced leading to a method which is highly 

effective at reducing the time required for integration but at the cost of being mem­

ory intensive and as such only suitable for higher end workstations. The second 

technique to be introduced will involve the fitting of equations to the integrated 

fundamental solutions allowing the quick computation of an approximation to the 

appropriate integrals. This method will be very efficient in its use of RAM and as 

96 
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such suitable for a wider variety of hardware. 

6.1 Look-up tables 

The use of look-up tables (LUTs) to increase the rate of computation is not a new 

technique. Tables have been implemented for the quick extraction of trigonometric 

functions (NASA, 2006a, b) as well as other variables in the form of steam tables 

(Haywood, 1998), as illustrated in figure 6.1. 

TABLE 7. SATURATED WATER AND STEAM 
TEMPERATURES FROM THE TRIPLE POINT TO 100 °C 

[100 kN/m1 = 1 bar >;: 1._5 lbf/in1] 

Specific volume Specific internal energy Specific enthalpy Specific entropy 
Celsius m1/kg 

- --k]/kg ___ -k~ kJ/kg K 
temp., Pressure: r-~ ~ 

·c kN/m-,- Water Steam Water Steam Water Evaporation Steam Water Steam 
p v, v, u, u, lr, lr,, h, s, s, 

0.01 o.6u 0.001000 2.o6.z zero •J?s-6 +o.o 2$01.6 2$01.6 zero 9-157 
:a 0.705 0.001000 179·9 8 ... ZJ78.J 8 ... ... ~.8 •sos.• O.OJI 9.10$ 
4 o,813 O.OQIOOO 157·3 16.8 aJ8t.I 16.8 a49a.1 aso8.g o.o6r g.OSJ 
6 0.935 0,001000 IJ7.8 ZS.2 238J.8 zs.z 2487-4 2512.6 0.091 9.001 
8 1.072 0.001000 121.0 JJ.6 2]86.6 )].6 248a.6 2516.2 0.121 8.951 

10 1.227 0.001000 ro6.4 ... o 2J8g.J ... 0 2477·9 •s•9·9 O.ISI 8.902 
1:1 1.401 0.001000 QJ.8 50-4 2392.1 50-4 2473-2 2523.6 0.18o 8.854 ... 1.597 0.001001 82.9 58.8 2394.8 58.8 2468.s 2.52.7.2 0.210 8.8o6 
J6 r.817 0.001001 73·4 67.1 2JQ7.6 6?.1 246].8 2SJO.g 0.2J9 8.759 
•8 z.o6z 0,001001 6s.• 15·5 2400.] 15·5 2459·0 2534·5 o.z68 s.713 

Figure 6.1: Portion of a Steam table (from Haywood, 1998) 

LUTs can be used in a number of techniques. The easiest and fastest is to use 

the nearest value in the table as the exact value; this is commonly referred to as a 

non-interpolated LUT. The second, slower, but more accurate method, is to perform 

some sort of interpolation between a number of points in the LUT. The use of an 

interpolated LUT can allow a much less refined table to be used with the same 

degree of accuracy as a non-interpolated LUT. 

6.1.1 Displacement boundary integral equation 

The boundary integral equation can be derived (equation (3.41)) as 

Cij (;;;) ·ui (;;;) + fr Tifujdr = fr uijtjdr 

where 

U·· = C1 {c2 ln [~] 8·· + r -r ·} ~J r tJ ,t ,J 

(6.1) 

(6.2) 

11111 
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'T· = C3 (~) {r [C48· + 2r ·r ·]- C4 [r n·- r ·n·]} t} r ,n t} ,t ,] ,J t ,t J (6.3) 

where C1_ 4 are constants based on material properties, r is the distance between 

the source point and the field point and n is the unit normal. 

The following analysis can be applied to both points on the boundary, by appli­

cation directly to equation (6.1), or can be applied to an internal point by setting 

~J (~) = 1 in equation (6.1). 

We can convert the limits of the integration such that Gauss quadrature can be 

performed 

+1 +1 

Ui (~) + L J ~jNiJ (~) d~ui = L J uijNJ (~) d~ti 
elem_ 1 elem_ 1 

(6.4) 

where J (~) is the Jacobian of transformation associated with the change in variable 

and integration limits. It can be shown that for a flat element J (~) = ~' where L 

is the element length. 

The integrals in equation (6.4) need to be computed at run-time for every 

source point/field point pair in the assembly of the matrices, and for every internal 

point/field point in the internal point solution. As a result accelerating a single in­

tegration by a small amount will accelerate the overall computation by a significant 

amount. It is possible to precompute the integrals from equation (6.4) and build 

them into a LUT such that at run-time only a few geometric parameters need to be 

calculated, the terms extracted from the LUTs and used directly without the need 

to perform a costly integration. 

For a typical source point/field element pair, as shown in figure 6.2, Trevelyan 

and Wang (2001b) introduced four parameters to define the problem geometrically: 

rm, the distance from the source point to the mid-point of the field element in 

question, L, the length of the element, cp, the angle subtended by the element to the x 

coordinate and (), the angle subtended by the imaginary line of length r m. These four 

parameters can be further reduced to a smaller subset of two parameters; Rm = r£, 

a scaling parameter, and cp - (), an angle parameter. The use of the dimensionless 

parameter Rm can be considered to be a scale factor of t acting on the system and 

hence this requires the use of a modified Jacobian Jlt:,) in equation (6.1). 
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Field Element / n~ 

!i~ /~~:~---
/ 

Source Point 
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Figure 6.2: Typical source point/field element geometry (showing parameter defini­

tions) 

Consideration of the second integral from equation (6.4) 

+1 

J TiiNJ(~)d~ (6.5) 

-1 

substituting for Tii 

+1 

C3 J (~) {r,n [C46"ii + 2r,ir,i]- C4 [r,ini- r,ini]} NJ (~) d~ (6.6) 
-1 

we may then create a L UT of the form 

+1 

htur = C3 J (R;;/) {r,n [C4i5ij + 2r,ir,j]- C4 [r,jni- r,ini]} Ni J l~) d~ (6.7) 
-1 

such that 

(6.8) 

As a result three L UTs are formed, one for each node, for each of the tensor com­

ponents of Tii. Consideration of the second integral from equation ( 6.4) a similar 

procedure can be followed such that we create a LUT of the form 

+1 

gtUT = C1 J { C2ln [ R;;/] i5ij + r,ir,j} Ni J l~) d~ (6.9) 

-1 

.. 
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so that 

where 
+1 

aiJ = C1C2 J ln (£) 6iJ J l~) Nid~ 
-1 

noting that L and Jij are constants and that Jlf.) = ~ we can write 

+1 

aiJ = ~C1C2ln (£) 6iJ J Nid~ 
-1 

+1 

= constij J Nid~ 
-1 
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(6.10) 

(6.11) 

(6.12) 

Consideration of the integral in equation (6.12) produces the well known coefficients 

for quadratic elements of 
C1C2ln (£) 6iJ 

0:' = ___ __;____.:....._.=_ 

12 
(6.13) 

11=(1 4 1) (6.14) 

By using a 2-variable LUT it is necessary to generate the LUT for a particular 

orientation of field element and then apply a coordinate transformation to derive 

the integration for particular values of cjJ and e. The orientation of the field element 

in the generation of the LUT is arbitrary but has been chosen in the current work 

to reduce the complexity of generating the LUTs by defining the field element as 

being orientated with they-axis (cp = 90°), figure 6.3. 

To allow the LUTs to be used for any arbitrarily angled element it is necessary 

to perform two separate coordinate transformations. The transformations can be 

represented by figure 6.4. The initial transformation applied converts a force applied 

to the source point in the (x, y) coordinate system into the (TJ, () coordinate system 

used when generating the LUTs, as defined in figure 6.4. This is merely a rotational 

transformation and can be represented by equation (6.15). Notation for matrix 

terms is provided in the form 9ab where g is the appropriate sub-matrix, a is the 
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Figure 6.3: LUT integration orientation 

" " 
"(' (} 

............................ 

(a) Unrotated 

_-r 
········•·--···-········· 

(b) Rotated 

-........ 

Figure 6.4: Rotations required for arbitrary source point-field element pair 

101 



6.1. Look-up tables 102 

field point direction and b is the source point direction. 

[ 
9TJX 9TJY l [ [ m l [ gTJTJ 

9c,x 9c,y - -m l 9c,TJ 

(6.15) 

where l = sin rp and m = cos cp. The transformation gives the field displacement 

in terms of the (TJ, () coordinate system after application of a force at the source 

point in the global (x, y) coordinate system. The resulting displacement can be 

transformed back to the original ( x, y) coordinate system by application of a further 

rotational coordinate transformation. 

[ 

9xx 9xy ] [ 9TJx 9TJY ] [ l -m ] 

9yx 9yy - 9c,x 9(,y m l 
(6.16) 

The transformations in equations (6.15) and (6.16) need to be applied at each node 

of the field element, thus we can combine the individual nodal matrix equations into 

a 2 x 6 element sub-matrix of the form 

[ 9xxl 9xyl 9xx2 9xy2 9xx3 9xy3] 

9yxl 9yyl 9yx2 9yy2 9yx3 9yy3 

(6.17) 

this can be simplified to 

[ 

9xxk 9xyk ] 

9yxk 9yyk 

(6.18) 

where k is the respective node number (k = 1, 2, 3). In summary equations (6.15) 

and (6.16) can be combined in the following matrix equation. 

[ :::: :::: ]- [ -~ ~ ][ :;:: :;:: ][ ~ -~ l (6.19) 

6.1.2 Stress boundary integral equation 

Consideration of the stress boundary integral equation, equation (6.20), shows that 

it is of a similar overall form to the displacement boundary integral equation. For 

completeness the stress form of the boundary integral equation is repeated here. 

(6.20) 
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where the third order tensors are 

ni [2vr,jr,k + C46jk] + nj [2vr,ir,k + C46ik] 

+nk [2C4r,ir,j - (1 - 4v) 6ij] 

+2r,n [C46ijr,k + v (6Jkr,i + 6ikr,j)- 4r,ir,jr,k] 

Dk .. = -C3 (~) [C4 (6·kr · + 6·kr ·- 6·-r k) + 2r ·r r k] tJ r 1 ,t t ,1 tJ , ,t ,1 , 
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(6.21) 

(6.22) 

Similarly to the displacement BIE, equation (6.1), we can rearrange the stress 

form, equation (6.20), to the following form. 

+1 +1 

O"ij + L J skijNd (~) d~ui = L J DkijNd (0 d~ti 
elem_ 1 elem_1 

(6.23) 

From here we can precompute the integrals and store in memory for extraction 

at run-time. 

+1 

8tgr = Cs j (R;;n 2 

-1 

+1 

ni [2vr,jr,k + C46Jk] + nj [2vr,ir,k + C46ik] 

+nk [2C4r,ir,j - (1 - 4v) 6ij] 

+2r,n [C46ijr,k + v (6jkr,i + 6ikr,j)- 4r,ir,jr,k] 

N 1 (~) dC 
t L "' 

(6.24) 

dtgr = -C3 j (R;;n [C4 (6jkr,i + 6ikr,j- 6i1r,k) + 2r,ir,jr,k] Ni J i.~~) d~ (6.25) 

-1 

It can be seen from comparison of equations (6.22) and (6.25) that the Dkij term 

is as required but comparing equations (6.21) and (6.24) show that SkiJ needs to be 

adjusted to allow for the element length. 
LUT 

8 kij 
8kij = --

L 
(6.26) 

(6.27) 

Similarly to the displacement boundary integral equation case, coordinate trans­

formations need to applied to the LUT value to allow it to be used for an arbitrarily 

oriented element. Initially we apply a transformation to relate the boundary trac­

tions and displacements to the LUT (TJ, () coordinate system. Letting l =sin cp and 

m= cos cp, we write 

81ryx 821/X 811/1/ 827]1/ 

[: -n:] 81ryy 82ryy = 811,< 8271( (6.28) 

81(y 82(y 81(( 82(( 
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This allows the calculation of stresses within the (TJ, () coordinate system. The final 

rotation returns the stresses in the global (x, y) coordinate system by application of 

a rotational stress transformation (Timoshenko, 1934). 

81xy 82xy 

8lyy 82yy -2lm l2 

8lryx 821JX 

8lryy 82ryy (6.29) 

Combining equations (6.28) and (6.29) produces the stress boundary integral equa-

tion transformation. 

81xx 82xx 
[2 2lm m2 8lryry 821717 

[ n: -~ l 81xy 82xy -lm (l2 -m2) lm 8117( 82ry( (6.30) 

81yy 82yy m2 -2lm [2 81(( 82(( 

The transformation needs to be applied to each node of the field element and as such 

this can be presented in a similar manner to equation (6.19) for the displacement 

case 

81xxk 82xxk 
[2 2lm m2 811)ryk 82rp]k 

[~ -~ l 8lxyk 82xyk -lm (l2 -m2) lm Slry(k S2ry(k 

8lyyk S2yyk m2 -2lm [2 
Sl((k S2((k 

(6.31) 

where k is the node number. 

This transformation is identical for the d* term. 

6.1.3 Arc elements 

LUTs can be extended to cover circular arc elements. However, as the LUTs can 

only be used for the type of element that they were initially produced for it is 

important that the code that meshes the problem is optimised for this scenario. 

In this work the auto-meshing code aims to use circular arc elements that subtend 

an angle of 30°. Figure 6.5 shows a sample element for which the meshing and 

remeshing code is optimised. Figure 6.6 shows parameter definitions for the circular 

arc element. The angle <P is defined as the angle between the horizontal axis and an 

imaginary chord line between the end-nodes of the element. 
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# 
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# # # Field Element 

Source Point 

Figure 6.5: Example circular arc element 

L- arc length 

.. ~ <P ... ) .•....... 

Figure 6.6: Example circular arc element with defining parameters 
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LUTs for this element can be generated using equations (6.9), (6.7), (6.24) and 

(6.25). For a circular arc element it can be shown that the Jacobian is constant with 

J (~) = ~~ where R is the radius of the circular arc element. Similarly they require 

adjusting from the LUT form to a form suitable for use within equations (6.4) and 

(6.23). 

Transformations are applied to allow the use of arc LUTs for arbitrary </J. 

6.2 Refinement of LUTs 

It is important to ensure that the LUTs produced using the proposed method (sec­

tion 6.1) cover a suitable range of values within the scaling (Rm) direction, such 

that the range is wide enough that a large proportion of the integrations can be 

completed using the accelerated method but that the range is compact to ensure 

that the RAM usage is kept to a minimum. 

Initial studies into the sizing of the LUTs consisted of a probabilistic study 

into the typical values for Rm. Figures 6. 7 and 6.8 show the distribution for the 

integration routine when applied to the boundary and to internal points respectively. 

Rm 

Figure 6.7: Distribution of Rm values for the boundary solution 

From these figures we can see that the majority of integrations are required 

within a restricted band of Rm values. The maximum figure of Rm is problem 

dependent but by performing the study over a wide range of typical problems a 

useful maximum figure can be extracted. For the relatively small problems under 
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Figure 6.8: Distribution of Rm values for the internal point solution 

consideration in this work a typical maximum value is Rm = 15. 

It is also necessary to decide on a lower limit for the LUTs. Considering figures 

6.7 and 6.8 it would seem sensible to extend the LUTs down to zero as values are 

used in this region for the singular integrals when collocating at element mid-nodes 

around the boundary. Difficulties arise, however, due to the singular nature of 

the integrals concerned and, since the non-singular integrals account for the vast 

majority of the cases , it was decided to use conventional integration methods for the 

singular integrals. It is preferable to implement a lower limit. In this work a lower 

limit of Rm = 1 has been imposed, allowing the new scheme to be used for almost 

all non-singular cases. 

Thus, LUTs of the form described in section 6.1 are created within the following 

bounds 

1 < Rm < 15 

Integrations with values of Rm < 1 will be considered to be near-singular and can 

be treated using conventional techniques, which may be high order Gauss-Legendre 

quadrature or the scheme of Telles (1987). For integrals where Rm > 15 these may 

be integrated moderately economically using 2nd Order Gauss-Legendre quadrature. 

Consideration of the angular variable in the LUT is dependent on the type of 

element being employed. 
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6.2.1 Flat element LUTs 

Figure 6.9 shows a contour display for a portion of a LUT (h1717 for a mid-node- node 

2). From this and the other plots in appendices A to D it can be seen that there are 

a number of lines of symmetry and anti-symmetry that can be exploited. Numerical 

analysis was performed upon the LUT data-set to confirm the appropriate symme­

tries and anti-symmetries. Lines of symmetry can be exploited at cp = 90°, 270° 

0 8.565117o{l)2 

1
6.852093o.(I02 
!i 139070o.(l02 

·1 71ll23Hm 
·l421i047o{l)2 

10 

i ~=7 .S 139070o.(l02 Rm 
.-li852093o.(l02 

-8.565117o{l)2 

H[0][2] 

phi= 90 degr .. s 
2 

0 phi·th•ta 

Figure 6.9: Plot of h*~T for node 2 

360 

and lines of anti-symmetry at cp = 0°, 180° for all terms. Thus, for mid-nodes the 

entire LUT can be regenerated from a stored set over a 90° range. For end-nodes 

it becomes more complicated as the shape function causes the surface of the LUT 

to be distorted. Figure 6.10 shows the LUTs for nodes 1 and 3 for h1717 • This shows 

how the shape functions distort the surface. 

(a) Node 1 (b) node 3 

Figure 6.10: Plots of h*~T for end-nodes 
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Figure 6.10 shows that although the data are distorted in the two end-nodes the 

plot for node 3 is a mirror image of the plot for node 1, thus we are only required to 

store a LUT for a single end-node. This saving can be further enhanced by noting 

that the distortion has only removed the lines of symmetry, but the anti-symmetry 

remains, and as such we are only required to store 180° of the end-node LUT. 

These savings apply not only to the hLUT terms but can be transferred to all of 

the required L UTs for both displacements and stress boundary integral equations 

(plots are displayed in full in appendices A, B, C and D). 

Further savings can be made in storage by considering the particular case for 

which the LUT is generated. Equations (6.3) and (6.22) can be simplified upon 

knowing that the field element is aligned with the y-axis. 

Noting that, 

It can be shown that 

To store all of the necessary L UTs for flat elements requires fifteen sets of L UTs, 

with each set containing a mid-node LUT covering 90° and an end-node LUT con­

taining 180°. 

6.2 .2 Arc element L UTs 

Figure 6.11 shows a portion of an LUT (hryry for a mid-node - node 2). It can be 

seen, similarly to the case for flat elements, that there are lines of anti-symmetry 

that can be exploited. 

Appendices E to H include plots for the g, h, s and d terms respectively. 

Lines of anti-symmetry at cjJ = oo, 180° can be exploited for all terms. Thus, for 

mid-nodes the entire LUT can be regenerated from a stored set over a 180° range. 

The loss of symmetry when compared with flat elements is a result of the curvature 

of the element. Figure 6.12 compares a flat element and a circular arc element with 



6.2. Refinement of LUTs 110 

10 
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0 phi-theta 360 

Figure 6.11: Plot of h*%T for node 2 of an arc element 

fixed <Pas e is increased. From this it can be seen that the fiat element can be moved 

to any of the other four positions by mirroring along the x or y axis (designated 

in blue). However, consideration of a circular arc element shows that the line of 

symmetry along the y axis has been eliminated (designated in red). For end-nodes 
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(a) Flat Element (b) Circular arc element 

Figure 6.12: Plots of elements for e = 45°, 135°, 225° and 315° 

it becomes more complicated as the shape function causes the surface of the LUT 

to be distorted. Figure 6.13 shows the LUTs for nodes 1 and 3 for hTfTf on a circular 

arc element. This shows how the shape functions distort the surface. Figure 6.13 

shows that although the data are distorted in the two end-nodes the plot for node 3 

is a mirror image of the plot for node 1, thus in a similar manner to the fiat element 
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10 
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(a) Node 1 (b) node 3 

Figure 6.13: Plots of h~~T for end-nodes of an arc element 

LUTs we are only required to store a LUT for a single end-node. As a result we are 

required to store the complete 360° in the LUT but only for one end-node. 

These savings apply not only to the hLUT terms but can be transferred to all of 

the required L UTs for both displacements and stress boundary integral equations 

(plots are displayed in full in appendices E to H). 

To store all of the necessary L UTs for circular arc elements requires nineteen sets 

of LUTs, with each set containing a mid-node LUT covering 180° and an end-node 

L UT covering 360°. 

6.3 Error analysis of LUTs 

As mentioned in chapter 1 this research is aimed at the real-time analysis for small 

stress analysis problems. This acceleration comes at a cost, typically, to the accuracy 

of the solution. For this work the maximum error has been set to 2% of the maximum 

principal stress, 0'11 . This has been found to be a suitable threshold in consultation 

with industry. 

The target error of 2% in max1mum principal stress is a global error target 

whereas the LUT method works on a matrix term level. It is therefore necessary 

to find some relation between errors in the matrix terms and those in the resulting 

maximum principal stress. To find this relationship a test along the following lines 

was performed. The h and g terms for each source point/field element were calcu­

lated as usual using an adaptive Gauss-Legendre quadrature. Before inserting them 
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into the global matrix equation, random errors were introduced to all terms up to 

a prescribed maximum value. The new randomly adjusted matrix equations were 

solved and the maximum principal stress compared with a very refined mesh. Due 

to the random nature of the errors introduced a probablistic approach is required. 

Figure 6.14 displays the relationship between a known maximum introduced error 

on a per term basis and the resulting global error; as compared with a model com­

posed of a very refined mesh, in maximum principal stress for a number of model 

sizes. The coarse model has 30 elements, standard 46 elements and the fine mesh 

72 elements. 

Figure 6.14: Plot of output error from known maximum introduced error 

From figure 6.14 it can be seen that model size affects the way in which input 

error at the integration level propagates through to the output error in maximum 

principal stress. This difference can be attributed to the varying number of floating 

point operations required for each size of model, for instance the solver used (LU 

factorisation) requires 2~3 

operations, thus for larger problems addit ional errors will 

be introduced due to non-exact arithmetic; faced by all computational techniques. 

From figure 6.14 it can be concluded that in order to achieve the stated 2% error 

in maximum principal stress it is necessary to have a maximum error within the 

integration phase of 0.1 %. 

Figure 6.15 shows the percentage errors associated with a coarsely defined LUT. 

Areas of low error, as Rm is varied, are a result of the integral parameters coin­

ciding with a point in the LUT data-set . Additionally, the plot indicates that the 
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Figure 6.15: Percentage errors in coarsely generated LUT term (g'lc, mid-node) 

percentage error is higher for low values of Rm. This is expected due to the steeper 

gradient in the integral as Rm -t 0 due to the singularity. Figure 6.16 displays a 

surface plot for the h;c, integral for a mid-node, it can be seen that the integral 

becomes near-singular, displaying the associated steeper gradient , as Rm -t 0. 
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Figure 6.16: Surface plot of h;c, for a mid-node 

As a result of the steeper gradient for low values of Rm a refinement scheme 

based on a geometric progression has been implemented of the form 

(6.32) 

where a is the initial value for Rm, noting from section 6.2 that a = 1, s is the 

geometric progression value and i is the current step number in the progression. 
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The use of a geometric progression causes the values in the LUT to be more 

closely spaced for low values of Rm, where there is a rapid gradient, but as the value 

of Rm increases and the gradient of the data decreases the L UT points spread. 

The value of s in equation (6.32) determines the refinement and therefore the 

accuracy of the L UT in the Rm direction. The accuracy can be further improved by 

the use of interpolation within the LUT. Interpolation allows a coarser, and hence 

smaller, LUT to be created at additional computational cost at runtime as two 

values need to be extracted from the LUTs and then the interpolation performed. 

6.3.1 Non-interpolated LUTs 

To calculate the required value of s used in generating the LUTs, a number of LUTs 

were generated using a variety of values for s . These were then compared against 

standard Gauss-Legendre quadrature for distinct values of flm. This was performed 

for a variety of values of e. Figure 6.17 shows the relationship between Rm and the 

error in maximum principal stress when s = 1.004 as a result of the discrete nature 

of the LUT and the continuous nature of Rm the scatter-plot of error varies between 

0 and an upper limit. Only the upper limit will be shown in further plots. 

0.2 

0.18 +----------------------

0.16 +-----------------------

0 2 4 6 

Rm 
B 10 12 

s 
• 1.002 
• 1.001 
• 1.0005 

Figure 6.17: Scatter-plot of error for a non-interpolated LUT 

Figure 6.18 shows the upper bounds of error in the generated plot for a non-
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interpolated L UT. To meet the specification of 0.1% error in each term can be seen 

to require a geometric progression value of s = 1.001. 
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Figure 6.18: Error in maximum principal stress for non-interpolated LUT 

6.3.2 Interpolated LUTs 

Interpolation can be implemented in a number of manners depending on the accu­

racy j computational cost balance required. In this work as computational cost is a 

high priority the simple but relatively effective method of linear interpolation has 

been implemented and tested. 

Figure 6.19 shows the implementation of linear interpolation. Linear interpola­

tion requires the two values, Zupper and Zlawer, in the LUT that bound our required 

point, Zreq, to be extracted. The required value can then be extracted by simply 

plotting a straight line between the bounds and moving the required distance along 

this line, as 

where 

Zreq ~ z' = Zlower + Q ( Zupper - Zlower ) 

Xreq - X lower 
Q = ----=------

Xupper - X lower 
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Figure 6.19: Example of linear interpolation 
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When interpolation was used in the LUTs the equivalent errors were distinctly 

lower, allowing s to be increased and thereby producing a coarser and smaller LUT. 

Figure 6.20 displays the upper bounds on errors for the interpolated LUT. From 

this it can be seen that to meet the specification of an error below 0.1 % requires a 

geometric progression of s = 1.03. 
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Figure 6.20: Error in maximum principal stress for interpolated LUT 
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6.3.3 Angular refinement 

Trevelyan et al. (2004) concluded that a refinement in the angular parameter of 

0.05° would meet the specification of an error below 0.1%. 

Interpolation has not been considered within the angular parameter because of 

the additional computational overhead required to perform a 2-dimensional interpo­

lation and the limited benefit offered by reducing the parameter space within this 

direction. This is a result of the curvature within the angular parameter being lower 

than the curvature within the Rm direction. 

6.4 Memory requirements of LUTs 

The memory requirement for the L UTs is dependent on the degree of refinement 

required to meet the necessary accuracy. As a result of sections 6.3.1 and 6.3.2 we 

require a refinement factor of s = 1.001 for non-interpolated LUTs and s = 1.03 for 

interpolated LUTs. 

By consideration of the memory savings that can be achieved by use of symmetry 

and anti-symmetry, we can calculate the required amount of memory for each of the 

sets of LUTs. Table 6.1 displays the memory requirement for flat elements. 

Non-interpolated LUTs Interpolated L UTs 

Flat elements 838 29 

Arc elements 2122 73 

Table 6.1: LUT memory requirements (MB) 

Table 6.1 indicates that to use non-interpolated LUTs for both flat and arc 

elements would require approximately 3GB of RAM. As a result it is not possible 

to implement non-interpolated LUTs for both flat and arc elements as a typical 
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personal computer would require the use of swap space* in addition to RAM to 

store the L UTs and operating system. 

Use of interpolated LUTs for both fiat and arc elements reduces the memory 

requirement to 102MB which can be easily accommodated by current hardware 

levels. However, as stated in section 6.3.2 the use of interpolated L UTs incurs 

additional computational cost. Therefore, it is preferable to use a mix of non­

interpolated and interpolated LUTs for for the final proposed scheme. 

In most simple analysis fiat elements will be the predominant type of element, 

additionally it should be noted from table 6.1 that the memory requirement for 

non-interpolated fiat elements is significantly lower than for arc elements resulting 

from the the reduced amounts of symmetry within the arc LUTs. Therefore, the 

proposed LUT scheme consists of using non-interpolated LUTs for fiat elements and 

using interpolated LUTs for arc elements. Table 6.2 details the required memory 

for the propose scheme. 

Memory Requirement 

Flat elements 838 

Arc elements 73 

Total 911 

Table 6.2: Final LUT memory requirements (MB) 

6.5 Summary of LUTs 

The ability to use LUTs in place of the integrations within the boundary integral 

equation has been presented. An analysis of the necessary refinement has been pre­

sented allowing upper and lower bounds on the LUT to be proposed. Additionally, 

*Swap space is the technique of storing data on the hard-drive instead of in RAM. This typically 

occurs when a program requires more memory storage than is currently available in RAM. As this 

technique requires access to the hard-drive instead of a memory chip it is relatively slow for access 

purposes. 
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an error analysis has been performed allowing the graduation within the LUT to be 

defined such that values extracted from the L UT will produce a maximum of 2% 

error in maximum principal stress. 

Regarding the error analysis it has been noted that using current personal com­

puter hardware it is not possible to implement the technique in an efficient manner 

using non-interpolated LUTs, as such a scheme has been proposed such that non­

interpolated L UTs are used for the more commonly used flat elements and interpo­

lated L UTs are used for arc elements. The proposed scheme has a total memory 

requirement of 911MB for the LUTs. 

6.6 Surface fits 

The use of surface fits as opposed to storing LUTs in memory and extracting values 

at run-time is an alternative strategy that does not suffer from the high cost in RAM 

that is required to store sufficiently refined LUTs. The high RAM cost limits the 

applicability of the LUT approach to a high specification computer. 

Surface fits are similar in derivation to the LUT scheme. Whereas LUTs are 

generated and stored for equations (6.9) and (6.7), surface fits will be generated and 

the generated equations evaluated at run-time. Plots of the surfaces to be fitted are 

contained within appendices A to D. 

Initial investigations will employ surface fits generated for the cases where <P = oo, 
90°, 180° and 270°. This is a result of these cases being the most popular in the 

analyses that this work is aimed at. The use of a coordinate transformation to 

extend this technique to arbitrarily angled elements is identical to the LUT case 

(section 6.1). 

Figure 6.21 shows two surface plots of integrals that are required for use in 

equation (6.4) (appendices A to D contain surface plots for all integrals). It can 

be seen that these are smoothly varying functions over the values of interest and as 

such fitting appropriate functions to the surfaces should be possible and economical. 
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Figure 6.21: Surface plots of integrals 

6.6.1 Investigation of surface data 

120 

10 

Initial research into the surface fitting of data simplified the problem to the case 

of fitting lines through the surface to analyse how each parameter in the integral 

affects the overall shape of the surface. 

Figures 6.22 and 6.23 show the variation in the surface for cjJ and e respectively 

for a variety of values of Rm. From these it should be noted that the variation is 

oscillatory in form suggesting a trigonometric basis , in the angular directions , in a 

surface fit expression. 

Figure 6.24 shows sections through the surface in theRm direction. The effect of 

the logarithmic term can be seen in the g;
11 

term , figure 6.24(a). As a result a basis 

formed from a polynomial based on a logarithmic term has been included in the 

basis set. However, a basis set employing logarithmic terms alone was soon found to 

be unsatisfactory for all terms. Hence, the basis function was expanded to include 

a polynomial fit in R;;,? . 

Application of this basis set to a selection of the integral terms confirmed that 

the basis set could accurately represent the data in the Rm parameter direction. 

From this initial investigation it can be seen that to perform line fitting to the 

integral data requires the following basis functions to be used , 

IntegralRm = f (1 , (ln (Rm))q , (Rm) - q) , q = 1 ... 4 (6.33) 

Integral0 = f (1 , sin (qO), cos (qO)) , q = 1 ... 6 (6.34) 
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To extend the work to a 2-parameter surface fit a least squares fit can be per­

formed using a basis set formed from the basis sets listed in equations (6.33) and 

(6.34). 

I~ {1 ~ W(O)X(R,) 
W E ( 1, sin (j e) , cos (j e)) , j = 1, ... , 6 } 

XE (1,[lnRmt,R;;,k),k=1, ... ,4 
(6.35) 

This results in 117 surface basis functions. For any individual matrix term, a 

significant proportion of the surface basis functions will have a coefficient close to 

zero, allowing the corresponding basis functions to be removed from the surface fit 

without reducing the error of the fit significantly. The problem then becomes the 

least squares fitting of surfaces of the form of figure 6.21 such that the computational 

effort to evaluate the resulting expression is minimised, within a constraint of a 0.1% 

upper bound on error. 

6.6.2 Surface fit methodology 

To achieve the optimum least squares surface fit a number of stages to the fitting 

procedure have been implemented. The first stage of surface fitting is a progressive 

reduction scheme as outlined in algorithm 6.1, 

Algorithm 6.1: Progressive reduction scheme for surface fitting 

1: Initialise n = 117 

2: while n > 1 do 

3: Perform least squares fit using n basis functions 

4: Determine the importance of each basis function by weighting the L2 norm of 

the basis function by the least squares coefficient 

5: Reject the least important basis function 

6: n := n -1 

7: end while 

Application of algorithm 6.1 produces a list of basis functions in order of impor­

tance, this being defined as the L2 norm of the basis function over the area of interest 

multiplied by the corresponding least squares coefficient. This takes into account 
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the difference in magnitude between the various basis functions. For instance, R;;/ 
could be orders of magnitude different to R;;.4 and as such the importance function 

should allow for this. For example, if R;;.1 = 0.1 then R;;.4 = w-4
. The relative im­

portance of these two ba.•;;is functions to the surface fit must include the magnitude 

of the terms and not only the surface fit coefficients. 
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Figure 6.25: Typical plot of error as the number of basis functions is reduced 

Figure 6.25 shows how the percentage error in a typical surface fit varies as 

the number of basis functions is reduced. It can be seen that, although the least 

important function is being eliminated each iteration, there are step changes in the 

error level. These step changes imply that a function that is important to the final 

surface fit has been eliminated from the set of basis functions. Thus, a second stage 

of surface fitting is required to achieve the final fit. 

Algorithm 6.2 will produce the optimum surface fit from the functions passed 

from the progressive reduction algorithm . This might of course be applied directly 

to the original basis functions. However, due to the number of basis functions 

involved this brute force approach is not feasible due to the high computational cost 

incurred. 

Algorithm 6.1 has been combined with algorithm 6.2 to automate the process of 

performing a least squares surface fit. Extraction of the important basis functions 

from the progressive reduction scheme is achieved by consideration of the difference 

in error between successive analysis, if the difference in error is greater than a pre­

scribed level; w-7 was found to be a suitable level for this work, then the basis 

77D 
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Algorithm 6.2: Secondary surface fitting stage 

1: Extract Important Basis functions from progressive reduction scheme 

2: while f < 0.1% do 

3: for all Basis functions do 

125 

4: Calculate least squares surface fit with current basis function eliminated 

5: Calculate error norm fi 

6: end for 

7: Find surface fit, k, with lowest error norm 

8: f = fk 

9: Eliminate basis function with index k 

10: end while 

11: Return final equation set 

function is noted and passed into algorithm 6.2. A low tolerance has been imple­

mented at this stage as the brute force approach of algorithm 6.2 will eliminate all 

of the unnecessary terms from the surface fit. 

6.6.3 Surface fit equations 

Application of the algorithms in section 6.6.2 produces equations for each node for 

each of the fundamental solutions. The algorithm is applied to data with values of 

<P = oo, 90°, 180° and 270°. 

Additionally, the data at low values of Rm vary rapidly, as illustrated, for exam­

ple, in figure 6.24, and as a result the dataset is split into two sections and a least 

squares fit applied to the two sub-datasets . 

• 2<Rm5:3 

• 3 < Rm 5: 15 

Appendices I to L contain all of the 408 surface fit equations generated by the 

algorithms presented. 

Restricting the current analysis to <P = 90° for 3 < Rm 5: 15, a set of surface fit 
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expressions are presented. The simplest expressions are for the mid-node elements. 

9oo2 = [2.166 + 2.158 cos (20)- 8.996ln Rm] x 10-7 

9oi2 = 9w2 = [2.166sin (20)- 0.108R~2 (sin (20) +sin (40))] x 10-7 

9112 = [2.166 (1 -cos (20)) - 8.996ln Rm] x 10-7 

(6.36) 

(6.37) 

(6.38) 

where 9ijk is the expression for the term with source point direction i, field element 

direction j for node k where k = 1, 2, 3. Corresponding expressions are formed for 

the end-nodes. As a result of the shape functions the dataset is distorted and hence 

these expressions are more complicated. However, savings can be made by noting 

that all of the end-node expressions can be represented in the following format. 

9om =A+ B 

9oo3=A-B 

where 

(6.39) 

(6.40) 

A= [0.541 (1 +cos (20))- 2.249ln Rm- 0.25R~2 cos (20)] x 10-7 (6.41) 

B= [R~1 (1.395sin(0)+0.266sin(30))] x 10-7 (6.42) 

Similar savings can be made for the traction kernel, for example 

where 

ham= C + D 

hoo3 =C-D 

[ 

- R~1 (0.03515 cos ( 0) + 0.00862 cos (30)) l 
C = +R~3 (0.00786cos (30) + 0.00373cos (50)) 

[ 

- R~2 (0.02188 sin (20) + 0.00862 sin ( 40)) l 
D = +R~4 (0.00458sin (40) + 0.00250sin (60)) 

(6.43) 

(6.44) 

(6.45) 

(6.46) 

In order to accelerate further the evaluation of these expressions, it is effective to 

build a look-up table containing values of sin (qO), cos (qO) and ln (R~) for various 

arguments, thereby avoiding the lengthy computation times associated with the 

evaluation of trigonometric and logarithmic functions. 
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An arbitrary element orientation, </J, can be considered by applying a coordinate 

transformation in exactly the same way as was described for the LUT approach. 

However, the author finds it effective to use surface fit expressions directly for the 

common cases <P = oo, 90°, 180° and 270° since the coordinate transformations 

involve extra computational cost. 

Equations (6.36) to (6.46), and the equivalent surface fit expressions for the other 

terms included within appendices I to L, may be computed very rapidly and the 

results placed directly into the boundary element matrices as a complete replacement 

for conventional numerical integration. Apart from the coding of the surface fit 

expressions and the small LUTs for trigonometric and logarithmic expressions, this 

approach incurs no memory cost and in this respect is advantageous over the LUT 

approach 

6. 7 Concluding remarks 

In this chapter two separate techniques have been proposed to accelerate the com­

putation of the integral terms required for use within the boundary element method 

for elastostatics. 

The methods are derived from a similar basis in that the integrals can be pre­

computed in some manner and then stored for later retrieval at a low computational 

cost. As a result it is possible to use a high order Gauss-Legendre scheme to cal­

culate the original dataset. Thus, storage of this high order data-set will produce a 

higher accuracy LUT or surface fit when compared with an adaptive scheme, this 

allows a potentially lower refinement in LUT or a reduced number of terms in the 

surface fits. 

The first technique involves the storage of the integral data within LUTs stored 

in memory. Refinement of the L UTs has been discussed to ensure that errors are 

kept within 0.1% of the maximum principal stress. Symmetries within the angular 

direction in the LUT have been exploited to reduce the amount of data that is 

required to be stored. Additionally, terms that repeat due to the orientation of the 

field element have been stored only once. The use of interpolation within the Rm 
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parameter direction has been investigated and two refinement levels suggested; one 

for interpolated LUTs and one for non-interpolated LUTs. Moreover, the memory 

requirement for the LUTs has been presented as this has a major influence on the 

viability of LUTs within the engineering sector. 

The second technique proposed involves performing a least squares surface fit 

to the dataset and then computing these comparatively simple equations instead of 

performing Gauss-Legendre quadrature. As the dataset varies rapidly within the 

Rm direction it has been split into multiple intervals and separate least squares fits 

performed across these intervals. This has reduced the number of terms required 

to accurately describe sections of the dataset. Moreover, the surface fits have been 

found to have symmetries within the end-nodes allowing the computation of both 

end-nodes at once reducing the overall computational cost. 



CHAPTER 7 

Acceleration of the Solution Phase 

The application of the boundary element method (BEM) results in a system of 

equations that can be formulated in the following matrix problem, 

Ax=b (7.1) 

As a result it is necessary to solve this problem in an efficient manner. Chapter 5 

has introduced current techniques that allow the rapid solution of matrices using 

both direct and iterative solvers. Of this previous work the use of iterative solvers 

in combination with a suitable preconditioner offers the biggest opportunity for 

reducing the computational cost in the matrix solution phase. However, as the type 

of problems under consideration are small two-dimensional problems, in particular 

under reanalysis, the use of a direct solver, if it can be beneficial for future analysis, 

will be considered. 

In this chapter consideration will be given to suitable preconditioners that can be 

applied to the matrices generated by the BEM. The advantages and disadvantages 

of each method will then be considered and a new form of preconditioner suitable 

for small reanalysis problems will be proposed. This will be combined into an overall 

strategy for the solution of matrices under reanalysis conditions. 

129 
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In this chapter six models have been used to for comparison purposes; figure 7.1 

shows the geometries of the six models. 

0 
(a) Modell (b) Model 2 

0 
(c) Model 3 (d) Model 4 

0 
(e) Model 5 (f) Model 6 

Figure 7.1: Models used within equation solution analysis 

These models cover two simplistic geometries popular in current literature and 

feature three different applications of boundary condition so that the effect of bound­

ary conditions can be considered. Models 3 and 5 as well as models 4 and 6 are 

physically identical, however, they are implemented numerically different as a result 

of the corresponding boundary conditions. 

7.1 Initial scheme 

The Concept Analyst software (Trevelyan, 2003) used as a background for this 

research is aimed at problems in which reanalysis is likely to occur. As a result a 

number of techniques have already been implemented in the software to accelerate 
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the computation and solution of the BEM. Details of these methods can be found 

in Trevelyan and Wang (2001a) and Trevelyan and Wang (2001b). 

The procedures currently implemented within the Concept Analyst software will 

be used as a baseline to establish the effectiveness of proposed techniques. The 

Concept Analyst framework for reanalysis can be represented by the flowchart in 

figure 7.2. The implementation of a direct solver for the initial solution is considered 

Define model 

I 

Solve model using Gauss Elimination 

I 

Perturb model I<· 

I 
Resolve using diagonally 

-
preconditioned GMRES iterative solver 

I 

Final solution 

Figure 7.2: Current Concept Analyst solution framework 

to be a reasonable assumption as the user may want to take one of a number of 

possible routes within the Concept Analyst software, for instance, 

• Show a deformed plot of the solution. 

o Display contours of displacement. 

• Display contours of a particular stress. 

As a result, the additional time required to complete a direct solve of the initial 

problem is considered insignificant when compared to the time required to decide 

upon the next course of action and implement it. 

If the geometry is modified when displaying a contour plot the problem becomes 

one of reanalysis. It is possible to use the previous solution as an initial estimate for 
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the current problem in an iterative solver. GMRES is the iterative solver employed 

since it can accommodate unsymmetric matrices. As this research is concerned with 

problems of reanalysis, and as a result iteration counts will be relatively low, the 

loss of the short term recurrence within the orthogonal vectors is not a drawback for 

GMRES. To accelerate the rate of convergence of the iterative solver it is necessary 

to use a preconditioner within the iterative solver. Due to the ease of calculation 

and application a diagonal preconditioner is currently used. 

7.2 Improving matrix condition 

The application of particular boundary conditions, in particular normal displace­

ment boundary conditions (models 5 and 6), can cause the form of the A matrix 

to deteriorate as the eigenvalues separate, thus reducing the, potentially, clustered 

nature. This is a result of a 2 x 2 sub-matrix on the leading diagonal being rotated 

such that the dominant terms are moved off of the leading diagonal and replaced 

with smaller terms. 

0.5000 0.0000 0.0000 

-0.0058 

0.0000 

0.0000 -0.0223 

0.0000 0.0000 

-0.0440 -0.1114 

0.0000 0.0000 

0.0100 

0.0000 

0.0000 0.0000 0.0000 

0.0722 -0.0699 0.0392 

0.5000 0.0000 0.0000 

0.0000 -0.0440 0.1114 

0.0000 0.0000 0.5000 

-0.0699 -0.0392 -0.0223 -0.0722 -0.0058 0.0000 

(7.2) 

Equation (7.2) displays a 6 x 6 sub-matrix situated on the leading diagonal for a 

problem involving normal displacement boundary conditions. The terms in red are 

situated on the leading diagonal of the original matrix. However, the terms in blue 

are larger and as a result it would be beneficial for a matrix solver if these terms 

were moved to the leading diagonal. The rotation of the sub-matrices on the leading 

diagonal causes the eigenvalues of the system to spread out and as a result the rate 

of convergence of an iterative solver will be reduced. 

To improve the rate of convergence it is possible to implement a row swapping 

strategy in which rows relating to the same collocation point are exchanged if such an 
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exchange leads to the larger terms moving to the leading diagonal. It is necessary to 

Algorithm 7.1: Row-swapping strategy 

1: if Model contains normal displacement boundary conditions then 

2: for i= 0, ... , If - 1 do I I where N is the number of rows. 

3: if la2i+l ,2i+ll + la2i+2,2i+2l < la2i+l,2i+21 + la2i+2,2i+ll then 

4: Swap rows and store row numbers 

5: end if 

6: end for 

7: end if 

store the row numbers that are exchanged so that the same rows can be returned to 

the original locations before performing a subsequent reanalysis as this will assume 

conventional ordering to the A matrix. 

-0.0058 

0.0000 

0.0000 -0.0223 

0.5000 0.0000 

-0.0440 -0.1114 0.0100 

0.0000 0.0000 0.0000 

0.0722 -0.0699 0.0392 

0.0000 0.0000 0.0000 

0.0000 -0.0440 0.1114 

0.5000 0.0000 0.0000 

-0.0699 -0.0392 -0.0223 -0.0722 -0.0058 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 

(7.3) 

Application of algorithm 7.1 causes the terms with high magnitudes to be returned 

to the diagonal locations causing the condition number of the matrix, and hence the 

overall clustering of the matrix, to be improved. Equation (7.3) shows the effect of 

algorithm 7.1 on the matrix shown in equation (7.2). 

7.3 Preconditioning 

To improve the rate of convergence for the iterative solver it is necessary to imple­

ment a different preconditioner that is more suitable for the matrix problem to be 

solved than the currently implemented diagonal preconditioning. Diagonal precon­

ditioning is popular due to the simplicity of calculating and applying the precondi-
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tioner. However, as the preconditioner is merely the leading diagonal of the matrix, 

there is a limited amount of information carried into the preconditioner. This has 

been noted by Marburg and Schneider (2003) for acoustic BEM problems in which 

diagonal preconditioning actually increased the iteration count for the employed 

solver. 

An alternative to the diagonal preconditioner that includes information off of the 

matrix diagonal and as a result carries more information into the preconditioner is 

the incomplete lower-upper (ILU) factorisation. This can be applied to an iterative 

solver as a split preconditioner as it has two components. 

(7.4) 

The advantage of applying the preconditioner in the split form is that both the L 

and U factors can be applied via a forward or back-substitution and do not require 

a matrix-matrix product. 

Due to the dense nature of the matrix equations generated by the BEM, it 

would be impractical to employ a sparsity pattern based on the current layout of 

the matrix as it would become a full LU decomposition. As a result a threshold based 

ILU factorisation has been implemented within the reanalysis code. The threshold 

technique employs a sparse LU factorisation as the basis, however, upon calculation 

of the appropriate l and u terms they are checked against a threshold such that, 

_ { Calculated li,j 
li,j -

0 
if 

li,j > threshold 

otherwise 
(7.5) 

An identical drop rule is applied to the u terms. Algorithm 7.2 has been applied to 

a number of models with a selection of perturbations. Moreover, the threshold has 

been varied to determine if there is a generally acceptable sweet-spot of threshold for 

the types of problems under consideration in this thesis. Variation in the threshold 

results in variation in the number of terms that are dropped using the strategy. The 

number of terms dropped can be normalised with respect to the size of the problem 

concerned; this is defined as the sparsity of a matrix and is given by, 

S 
. Number of terms not dropped 

pars1ty = --.,----,------,----=--.:....::....­
Total number of terms 

(7.6) 
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Algorithm 7.2: ILU threshold based GMRES scheme 

1: for i = 1, ... , N do 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

w = ai* I I where ai* denotes the ith row of the matrix A 

for k = 1, ... , i - 1 and when Wk i= 0 do 

Apply dropping rule to wk 

if wk i= 0 then 

end if 

end for 

Apply dropping rule to row w 

lij = Wj for j = 1, ... , i - 1 

Uij = Wj for j = 1, ... , n 

w=O 

end for 

Q1 = ro 11 ro 11-1 

for k = 1, 2, ... , m do 

wk = AL - 1qk u-1 

fori= 1, 2, ... , k do 

hi k = q?'wk 
' 1 

Wk = Wk - hi,kQi 

end for 

hk+l,k =11 Wk 11 

- w 
Qk+1 - hk+l,k 

end for 

25: Ym = y that minimises 11 f3e1 - Hmy 11 

26: Xm = Xo + L - 1QmYm u-1 

135 
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Due to the large variation in the threshold level it is typically plotted on a logarithmic 

scale. Figure 7.3 shows the classical S shape commonly seen in drop strategies. This 

1oo.oo•A. 
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Figure 7.3: Sparsity of ILUT preconditioner 

-+- Model1 
-+- Model2 
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- Model4 
....... ModelS 
-+- ModelS 

is a result of the distribution of terms within the matrix. It should be noted that 

to avoid the ILU factorisation producing a singular preconditioner it is forced to 

include the diagonal terms even if they are smaller in magnitude than the threshold. 

Table 7.1 shows the variation of iteration count with threshold for two problems, 

where N is the size of the A matrix. As the threshold is applied to the decomposed 

system and not the original A it is necessary to have an upper threshold of 40 as this 

results in a diagonal preconditioner. For thresholds between 0.1 and 30 (for model 

1) the effect of non-exact arithmetic can be seen as the GMRES fails to converge to 

a solution within the required number of iterations as expected by Cayley-Hamilton 

theorem. This is a result of the orthogonal vectors created in the iterative process not 

being orthogonal but as good as they can be within the limitation of the hardware 

and software. The reduction in iteration count for low thresholds shows that an 

ILU factorisation is very good at meeting the requirements of approximating A-l. 

However, a low threshold also means that the factorisation has a low sparsity level 

and as such specialist sparse techniques cannot be exploited. 

Additionally, the low threshold level means that the computational cost of calcu-
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Model 1 N = 136 Model 2 N = 184 
Threshold 

Iteration Count Sparsity (%) Iteration Count Sparsity (%) 

1 X 10- 4 2 99.43 3 98.29 

1 X 10- 3 4 97.15 4 93.50 

1 X 10- 2 9 66.99 10 63.23 

1 X 10-l FAIL 7.93 FAIL 8.39 

1 FAIL 2.14 FAIL 3.42 

10 FAIL 0.90 FAIL 1.31 

20 FAIL 0.87 FAIL 1.04 

30 FAIL 0.80 FAIL 1.00 

35 38 0.77 FAIL 0.96 

40 35 0.74 40 0.57 

Table 7.1: Iteration count and sparsity levels for ILUT preconditioned GMRES 

lating the factorisation is high. The effect of non-exact arithmetic and its resultant 

effect on computational cost is shown in figure 7.4. This shows the variation in 
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1- Operation Count 
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Figure 7.4: Computational cost of ILUT preconditioning strategy 

computational cost and actual solve time with respect to threshold level normalised 

with respect to a standard direct solver of the same problem. From this it can 

be seen that the computational cost of calculating the ILU factorisation causes the 

overall computational cost to be more than a direct solver until the threshold is high 
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enough that the ILU is approximately a diagonal preconditioner. 

Thus, the ILU preconditioner meets two of the three criteria for a good precon­

ditioner in that it approximates A -l well at low thresholds and is computationally 

reasonable to apply but at low thresholds it is not computationally cheap to calcu­

late. At high thresholds the technique approximates a diagonal preconditioner but 

is computationally more expensive. As a result an alternative is required which is 

effective at reducing the iteration count in a similar manner to the ILU factorisation 

but does not require the computational cost of the IL U factorisation. 

To help guide the selection of a suitable preconditioner it is important to note 

the facilities available to the preconditioner that can be exploited in the application 

of the preconditioner. There are four main points to note. 

1. The problems considered are small 

2. The computer has a large quantity of RAM available 

3. The focus of the work is rapid reanalysis 

4. Modern operating systems support multi-threading of processes 

By exploiting these factors it is possible to produce a new scheme for preconditioning 

small problems under reanalysis situations. 

7.4 Proposed scheme 

As the problems considered in this work are relatively small problems then storage 

of a factorisation is not a critical parameter. As a result it is not a requirement that 

the preconditioner is sparse. Additionally it has been found that an ILU threshold 

based factorisation is effective at reducing iteration count as long as a low thresh­

old is employed. Thus if a preconditioner can exploit the effectiveness of the ILU 

threshold based factorisation at reducing iteration count whilst reducing the com­

putational overhead associated with calculating the factorisation then it will be a 

computationally efficient preconditioner. 

As a result a new scheme, outlined in figure 7.5, is proposed for the initial analysis 

and subsequent reanalysis of problems. By exploiting the fact that a direct solver 
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Define model 

I 
If symmetry boundary conditions apply 

row swap function 

I 
Solve model using LU factorisation. 

Store factorisation for reanalysis 

I 

Perturb model fc 

I 
If symmetry boundary conditions apply 

row swap function 

I 
Resolve using initial LU factorisation 

- - - I 

as preconditioner for GM RES solver 

I 

Final solution 

Figure 7.5: Proposed analysis and reanalysis scheme 
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is used for the initial solution we can extract and store information for use in later 

reanalysis. In particular it is possible to employ an LU preconditioner as the initial 

solver and store the L and U factors . These factors can be then implemented as a 

preconditioner to the perturbed system in the reanalysis phase. As the factors are 

already calculated they are available at zero cost to the reanalysis routine and so 

the only computational cost associated with the preconditioner is its application in 

each iteration. As the L and U factors closely approximate those for the perturbed 

system they will provide a very efficient preconditioner, causing the eigenvalues to 

cluster and, as a result , reduce the overall iteration count. 

A drawback of this scheme is that the preconditioner is based on the originally 

solved matrix system and, as a result, has the potential to deteriorate in efficiency 

as multiple perturbations occur; this is similar to the drawback faced by Kane et al. 

(1990) and Leu (1999). This deterioration in the preconditioner will have the effect of 

increasing iteration count and the computational cost of the iterative scheme. This 

can be seen by the spread of the eigenvalues after multiple perturbations. Figure 7.6 

is the initial state of a simple BEM problem with eigenvalues given by figure 7.7(a) , 

additionally the geometry after 1, 5 and 10 perturbations is identified within the 

model. Figure 7. 7 (b) displays the effectiveness of the L U factorisation at clustering 

the eigenvalues together around unity. Figure 7. 7 shows the deterioration of the 

~ .... ~.-.-··· • • • • • • • • • • 

1 5 10 

Figure 7.6: Initial model 

LU factorisation as a preconditioner over multiple perturbations. 

As a result it is desirable to employ an update strategy on the preconditioner such 
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that a recent form of the L and U factors are available for the reanalysis function. 

Updating of the preconditioner will maintain the clustering effect identified in figure 

7. 7(b). To allow the updating of the preconditioner effectively and efficiently a 

separate thread will be initiated. To ensure that the thread operation does not 

interfere with the higher priority task of user interaction, it is necessary to enforce 

a priority level when initialising the thread. Thread priority can be defined from 

highest to lowest priority as one of the following values: 

• Realtime 

• High 

• Above normal 

• Normal 

• Below normal 

• Idle 

By default, threads are initialised with a normal priority. As the thread to update 

the preconditioner is less important than the main program thread, so that it does 

not interfere with the normal operation of the program, it will be initialised with 

a thread priority of idle. Thus it will only become active during periods when the 

central processing unit (CPU) has no other tasks scheduled. In multi-core machines 

this issue is negligible as the main program thread and preconditioner thread can 

run in parallel on separate cores. 

Due to the deterioration of the effectiveness of the precondition er and the require­

ment of the update scheme, it is necessary to determine the rate of deterioration 

such that an appropriate update rate is achieved. By profiling* the specific routines 

used within both the factorisation and the iterative solver it is possible to determine 

how often it is necessary to update the preconditioner. 

*By profiling functions the performance will be degraded and as a result it is not possible to 

determine absolute timings for functions. However, as the degradation will be consistent it is 

possible to compare functions within individual profile sessions. 
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There are two main routines which need to be considered, 

• The preconditioned GMRES solver 

• Updating of the L and U factors 

These functions can be further divided, 

• GMRES- Set-up 

• GMRES- Iteration 

• Update L U - Locked stage 

• Update L U - Factorise 
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Set-up costs associated with the GMRES solver cover the initialisation of various 

variables, the necessary destruction of variables and the extraction of the solution 

from the GMRES iterates, thus these costs are only incurred once per solution. Costs 

associated with the iteration phase of the solver are recurring costs associated with 

the loop between lines 2 and 10 in algorithm 5.9. Updating of the preconditioner 

can be split into two sections. 

1. Locked sections. 

2. Unlocked sections. 

Locked sections are surrounded by software mutexes (mutual exclusive locks) which 

prevent other threads of execution accessing the variables associated with the mu­

texes. This is important as it prevents two separate threads attempting to access 

the same variable and altering the contents. In the secondary update thread the 

locked section is used to copy the A matrix into a local copy, the A matrix is then 

unlocked so that the main program thread can still access it while the secondary 

thread can factorise the local copy, finally the preconditioning matrix is locked and 

the new L and U factors are copied back to the main dataset for use in reanalysis. 

Thus, the locked stage of updating the preconditioner allows the thread-safe copying 

of variables between threads, whilst the factorisation runs in an unlocked state as 

there is no inter-thread communication. 

Table 7.2 lists the appropriate timings for the two main routines; the GMRES 

iterative solver and updating the LU preconditioner, for a sample problem with 

N = 184. 
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Function Name Profile time (~-ts) 

GMRES- Set-up 13131 

G MRES - Iteration 4862 

Update LU- Complete 171756 

Update L U - Locked Stage 6054 

Update L U - Factorise 165702 

Table 7.2: Function profiles for updating of LU factorisation 

Thus on multi-core systems, in which the main program thread and the pre­

conditioner update thread are able to run concurrently, the cost for updating the 

preconditioner is the period for which the main program thread is locked from al­

tering the A matrix, 6054p,s in the illustrative example included here. Thus, if the 

number of iterations to solve a perturbed model increases by two iterations then it 

will be efficient to update the preconditioner. The test case selected for this example 

was simply moving a hole in a plate, and so the boundary solution in reanalysis is 

likely to be approximated well by the previous solution. The model was also a very 

small one. Other, larger, example models are almost certainly going to be more 

sensitive to the deterioration of the preconditioner and require a greater number of 

iterations. Hence, greater emphasis must be placed on updating the preconditioner. 

It is therefore concluded that the L and U factors should be updated on every 

perturbation. 

For single-core machines the problem becomes more complex. If the reanalysis 

is performed in a non real-time format then the cost of updating the preconditioner 

is simply the period for which the A matrix is locked, 6054~-ts. However, if the 

reanalysis is run in a real-time format then the LU factorisation thread will not 

be allocated any time on the CPU due to having an idle priority level. It should 

be noted that if the user pauses, and as a result reduces the CPU load, then the 

secondary thread will be given time on the CPU and allowed to proceed. Moreover, 
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as the profiled factorisation takes 0.165st then a pause of this duration will allow 

the processor to update the preconditioner. 

Based on these scenarios it is sensible to update the preconditioner as often as 

the computer will allow it such that the most recent version of the factorisation is 

available. This is due to the relatively small perturbation required to increase the 

iteration count and, as shall be seen in chapter 8, the outstanding effectiveness of a 

recently updated preconditioner at reducing iteration count. 

7.5 Concluding remarks 

In this chapter a new scheme for the analysis and, in particular, reanalysis of small 

two-dimensional problems has been proposed. The scheme incorporates the use of 

an LU factorisation as the direct solver for the initial problem; these factors are 

then stored and recalled during the reanalysis process as a preconditioner for the 

perturbed system. 

As the preconditioner is based on the original factorisation an update scheme 

has been introduced. The update scheme employs a second, low priority, thread 

such that updating the preconditioner will not interfere with the primary role of 

the software and will only run when there is idle time on a CPU core. The update 

scheme has been analysed and it is proposed to update the preconditioner as often 

as the CPU will allow. Thus multi-core machines will benefit in particular as the 

secondary thread can run on a separate core to the main program thread. 

t As this is the profiled case this is an exaggerated time and is expected to be below O.ls for an 

unprofiled analysis. 



CHAPTER 8 

Results 

Chapters 6 and 7 have introduced techniques for accelerating the solution of bound­

ary element models of elastostatic problems. In this chapter results will be presented 

demonstrating the effectiveness of the proposed solution for the problems of interest. 

Additionally, limiting cases will be presented to give an upper bound on the problem 

size that allows real-time solution of the problem on current hardware. 

To allow a comparison between the proposed methodology and alternative tech­

niques it is necessary to profile the necessary functions under analysis. Profiling 

is a technique that allows the comparison of timings within separate functions or 

blocks of code. This allows functions that give rise to bottle necks within the pro­

grams process to be targeted and optimised. Alternatively, profiling can be used 

to allow the comparison of techniques to conclude which technique is more efficient 

for a particular task. The introduction of profiling incurs additional costs and, as a 

result, the figures produced can only be used for comparative purposes. Thus, the 

integration schemes proposed in chapter 6 have been compared with an adaptive 

Gauss-Legendre quadrature scheme, and the equation solution proposed in chapter 

7 has been compared with a direct solver and a diagonally preconditioned GMRES 

iterative solver. 

146 
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A personal computer with a Pentium M 2GHz processor and 2GB of RAM was 

used in the profiling study, using Microsoft Visual C++ .NET. 

8.1 Implementation 

The process of re-analysis on a design change has been accelerated using a variety 

of techniques. However, the aim of this work is to enable stress contours to update 

dynamically as the model's geometry is modified by some interactive operation. 

The Windows operating system sends messages to instances of a program running 

in a window. In particular, the message we use here is the WM_MOUSEMOVE 

message that is sent when the mouse is moving in the active window. Upon receipt 

of this message, if contours are being displayed and a geometric change is being 

performed, the program automatically remeshes the changed geometry, ideally with 

the same number of elements, and initiates a re-analysis, finally updating the contour 

display. 

It has been found that the speed of the re-analysis is sufficient to enable this type 

of dynamic display. However, for best performance it is recommended to initiate a 

re-analysis only once every two times the WM_MOUSEMOVE message is received. 

This provides a suitably fast update and achieves the aim of smoothly updating 

stress contours. 

It is finally worth mentioning one more point about implementation of LUT 

integration approaches with respect to different levels of memory cache. The memory 

footprint of the L UTs is very much greater than the size of the rapid access memory 

cache. As a result, each time an LUT value is extracted it is likely that the run­

time cost is incurred for a retrieval from a random memory address. However, the 

performance can be enhanced by a factor of four by structuring the L UTs in RAM 

so that values for the different matrix terms, for the same Rm and (<P- 0), appear in 

adjacent memory locations. Processors normally retrieve information from remote 

memory locations by bringing 64 byte blocks into the rapid access cache; a space 

sufficient for four floating point numbers. In this way, when the first LUT value is 

required we incur the cost of retrieval from a random memory address, but when 
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we subsequently require the next three LUT values for the different matrix terms 

they are available in the rapid access cache for an insignificant cost. Without this 

structure to the LUT, the method would be less efficient even than a Gauss-Legendre 

scheme. 

A similar ordering strategy 1s used within the surface fit implementation for 

storage of basis functions. 

8.2 Integration 

It has been seen in chapter 4 that complicated integrals that can not be solved 

analytically may be integrated numerically. In the current wor:k, the storage of 

precomputed integrals has been used to accelerate the computation by reducing the 

necessary computational cost. Two techniques have been proposed for the storage 

of precomputed boundary element integrals. 

1. Look-up tables. 

2. Surface fit equations. 

These results will be presented separately and then compared against a Gauss­

Legendre scheme. It should be noted that the Gauss-Legendre scheme is highly 

optimised, using an efficient RISP algorithm (Kane et al., 1989) and using only a 

2nd order Gauss-Legendre scheme with reuse of Jacobians for the majority of the 

integrations. Timings can be scaled to provide an approximate account for imple­

mentations that use a predominantly higher order of Gauss-Legendre quadrature. 

Figure 8.1 shows the example problem used in the analysis of the integration 

phase. A rectangular plate with a circular hole containing 46 quadratic elements 

is used, so that it contains a mixture of fiat elements and circular arc elements. 

However, no further details of the problem are presented here nor is the mesh shown 

in the figure, because the results are presented in terms of the mean time taken to 

perform each integral, so the precise geometry and model size become irrelevant. It 

is sufficient to note the mix of 34 fiat and 12 circular arc elements. The internal point 
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0 
Figure 8.1: Analysis model for integration comparison 

solution was isolated for this profiling study, but the timings arc equally applicable 

to the integration in the matrix assembly phase of the BEM solution. 

8.2.1 Look-up tables 

The use of L UTs falls into two main categories. 

• Non-Interpolated LUTs. 

• Interpolated L UTs. 

The type of LUT chosen for each element type, flat or circular arc elements, will 

affect the overall performance of the technique but will also alter the memory re­

quirement for storing the LUT. 

The results presented in this section have a degree of variability on account of 

the nature of profiling software. This variability will be investigated in section 8.2.2. 

Table 8. 1 shows the relevant timings for the use of non-interpolated LUTs to 

calculate all 60 terms for the displacement and stress boundary integral equations 

as required for quadratic elements. As they are not interpolated these are faster but 

at a much higher memory cost, 2.89GB, and as a result are not feasible with current 

technology. Timings in table 8.1 are stated on a per integration basis. Additionally, 

timings for an adaptive Gauss-Legendre scheme are presented for comparison. 

The use of interpolated LUTs increases the computational cost as it is necessary 

to extract two values from the LUT and interpolate between them for every term 

required. This is a result of the interpolation only being required in the Rm param­

eter. Table 8.2 shows the additional cost required for the interpolation. However, 
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Technique Mean run time (J.Ls) 

Adaptive Gauss-Legendre 57.8 

L UT - Flat element 30.6 

L UT - Circular arc element 31.5 

Table 8.1: Timings for integration using non-interpolated LUTs 

interpolation leads to a much reduced memory requirement of 102MB. 

Technique Mean run time (J.Ls) 

Adaptive Gauss-Legendre 57.8 

L UT - Flat element 34.5 

L UT - Circular arc element 35.6 

Table 8.2: Timings for integration using interpolated L UTs 

As a result it would seem prudent, based on timings in tables 8.1 and 8.2, to 

employ only non-interpolated LUTs. However, as noted in chapter 6 the memory 

requirement makes this impractical with current hardware. 

To optimise the LUT technique for small everyday problems a scheme that 

utilises both non-interpolated LUTs for flat elements and interpolated LUTs for 

circular arc elements is proposed. Table 8.3 shows the relevant timings for the use 

of L UTs under the proposed scheme. 

Technique Mean run time (J.Ls) 

Adaptive Gauss-Legendre 57.8 

L UT - Flat element 30.6 

L UT - Circular arc element 35.6 

Table 8.3: Timings for integration using LUTs 

From these timing it can be seen that the use of LUTs outperform adaptive 

Gauss-Legendre quadrature by 38% for interpolated L UTs and by 4 7% for non­

interpolated L UTs. 
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The difference in timing between fiat and circular arc elements shown in tables 

8.1 and 8.2 is due to the additional computational cost of ensuring that a non-fiat 

element is suitable for use with the circular arc L UTs. 

8.2.2 Variability of profiling 

Profiling of software contains a number of variables which can influence the resultant 

timings. These include factors such as, 

• Number of processes running. 

• Type of processes running. Typically, system processes will run at a higher 

priority than user processes and as a result a system process may interrupt a 

user process, causing a degradation in performance. 

Thus, it is necessary to assess the variability within the profiling operation. 

Profiling of the Concept Analyst software has been performed 20 times for both 

interpolated and non-interpolated LUTs; the data for the profile runs are listed in 

appendices M and N. From these data it is possible to extract appropriate means 

and standard deviations, listed in tables 8.4 and 8.5. Figures 8.2 and 8,3 display 

Technique Mean run time (J-ts) Standard Deviation 

Adaptive Gauss-Legendre 57.8 0.78 

L UT - Flat element 30.6 0.48 

LUT- Circular arc element 31.5 0.55 

Table 8.4: Variability parameters for non-interpolated LUTs 

Technique Mean run time (~-ts) Standard Deviation 

Adaptive Gauss-Legendre 57.8 0.78 

L UT - Flat element 34.5 0.33 

L UT - Circular arc element 35.6 0.53 

Table 8.5: Variability parameters for interpolated LUTs 
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box and whisker plots representing the spread of data from the analyses. The lower 

and upper box limits are set to the lOth and 90th percentile respectively. From 

these figures it can be seen that the variability within the profiling data is low and 

as a result the factors mentioned previously have a limited effect on the variability. 
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Figure 8.2: Spread of profiling data for non-interpolated LUTs 

8.2.3 Surface fit equations 

Surface fits have only been implemented for flat elements. In order to accelerate the 

computation of the surface fits , values for each basis function (sin (q()), cos (q()) etc) 

have been precomputed at initial start-up and stored such that they can be easily 

extracted at computation time. Thus the memory requirement for this technique is 

5.8MB. 

Technique Mean run time (J-Ls) 

Adaptive Gauss-Legendre 57.9 

Surface fit ( <P = oo, 90°, 180°, 270°) 15.1 

Surface fit (arbitrary <P) 27.4 

Table 8.6: Timings for integration using surface fit equation 
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Figure 8.3: Spread of profiling data for interpolated LUTs 
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Table 8.6 displays timings for the integration using surface fits for two cases. 

The first case is for particular values of c/J, indicating integration over horizontal 

and vertical elements. This has been implemented as the problems of particular 

interest are, almost without exception, formed from an initially rectangular shape 

and, as a result , a large proportion of the elements will be applicable to the surface 

fits implemented. It can be seen that by hard-coding these particular surface fits of 

interest the computational cost is reduced by 74% over conventional Gauss-Legendre 

quadrature. However, this reduces the applicability of the method to a proportion 

of the elements within the model. 

To overcome the limitation imposed by calculating surface fits for specific values 

of cp it is possible to implement a coordinate transformation scheme as used within 

the LUT scheme. In this scheme it is only necessary to calculate surface fits for 

cp = 90° and then apply the coordinate transformation given in equation (6.19) for 

the displacement boundary integral equation. The additional cost of implement­

ing the coordinate transformation has been calculated as 12.3p,s. Hence, the cost 

of implementing surface fits for arbitrary cp becomes 27.4f.LS. This outperforms the 

variable Gauss-Legendre quadrature scheme by 53%. Table 8.7 details the compu­

tational cost for the example given in figure 8.4. From this it can be seen that 
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Figure 8.4: Example of arbitrary element orientation saving 

although the computational cost is higher on a per integration basis when coordi­

nate transformations are implemented, as more elements can be integrated using 

the proposed technique then the overall computational cost is lower. 

Element Type Fixed ifJ Arbitrary ifJ 

Applicable element 4.68 14.57 

Non-applicable element 25.00 12.00 

Total Cost 29.68 26.57 

Table 8. 7: Comparison of timings for fixed ifJ and arbitrary ifJ surface fits 

8.2.4 Comparison of integration techniques 

Two main factors need to be considered when comparing the proposed integration 

techniques with current employed techniques. 

1. Computational cost. 

2. Memory cost. 
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The main aim of this work is the minimisation of the computational cost subject 

to current constraints provided by memory. As a result it is necessary for both of 

these points to be considered together. This is a result of the ability of operating 

systems to use not only RAM (very fast memory) to store items but also to use 

swap space (specially defined space on a hard disk drive, potentially bigger than 

RAM but significantly slower). Thus, if a process requests more memory than is 

currently available in RAM the operating system will designate some of the RAM 

to the process and then a proportion of swap space. Swap space can not be accessed 

directly by the CPU but the values must be loaded in and out of RAM (hence the 

term swap space) when accessed. This process causes a significant delay to the 

access of values. As the aim of this work is to deal with real-time analysis and 

updating of contours the accessing of swap-space is unfeasible. 

Technique Mean run time (J-Ls) Memory Cost (GB) 

Adaptive Gauss-Legendre 57.8 0.000 

Int. LUT- Flat element 34.5 0.029 

Non-int. LUT- Flat element 30.6 0.818 

Int. L UT - Circular arc element 35.6 0.071 

Non-int. LUT - Circular arc element 31.5 2.072 

Surface fit ( cfJ = oo, 90°, 180°, 270°) 15.1 0.006 

Surface fit (arbitrary cfJ) 27.4 0.006 

Table 8.8: Summary of integration timings and memory requirements 

Table 8.8 displays a summary of run time and memory requirement for each 

of the proposed techniques. All timings have been made assuming that there is 

enough RAM to store the L UTs, running programs and operating system entirely 

without the need for swap space. From table 8.8 it can be seen that the use of 

non-interpolated LUTs for circular arc elements is currently unreasonable due to 

the high memory requirement. These L UTs alone would require the use of swap 

space for storage causing the run time to be increased dramatically and preventing 

real-time analysis. However, it is expected that the memory available on PCs will 
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increase, and as a result it will be necessary to re-evaluate this stance as technology 

improves. 

The remaining techniques do not have the same limitation due to the much re­

duced memory requirement. Thus, computational cost becomes the deciding factor. 

Based on this, if a model is dominated by fiat elements orientated with the horizon­

tal and vertical then the use of specific surface fits produces the best performance 

gain. Additionally, if particular orientations of element are popular, for example 

<P = 45°, then surface fits can be generated for these particular values of <P extending 

the benefits to these elements. 

Figures 8.5 and 8.6 show the relative performance of the surface fit technique 

as the number of applicable elements varies. As expected, the relationship between 

the number of applicable elements and the overall time saving is linear. Figures 
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Figure 8.5: Time saving as number of applicable elements is varied - Boundary terms 

8.5 and 8.6 include offsets from the origin for two reasons. Firstly, the use of fast 

integration techniques such as those presented within this work rely on particular 

types of element. As a result there is additional computation required to ensure that 

an element is of a suitable type, and this will lead to a slight computational overhead 

to the technique. The second reason is a result of variability within profiling of the 

functions. This will have the effect of spreading the data around the relationship. 
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Figure 8.6: Time saving as number of applicable elements is varied - Internal points 

However, if elements are arbitrary in orientation then the use of a coordinate 

transformation, at additional computational cost, is necessary. Use of surface fits 

with a coordinate transformation is computationally cheaper than the associated 

LUT method but is only currently applicable to flat elements. Extension of surface 

fits to circular arc elements should present few technical challenges, but remains a 

subject for further investigation. 

8.3 Equation solution 

It has been seen in chapter 5 that systems of linear equations may be solved using a 

variety of techniques. In the current work, the emphasis on the solution within the 

reanalysis problem has focused attention on iterative methods, specifically a pre­

conditioned GMRES algorithm, as the approach of choice. The reader is reminded 

at this stage that we benefit from a good first approximation to the solution vec­

tor and, furthermore, the algorithm proposed in chapter 7 makes available an LU 

decomposition of an approximation to the matrix A. 

Computational efficiency of the solution of the matrix equation, 

Ax=b (8.1) 

can be defined by two main parameters. 
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1. Iteration count. 

2. Overall computational time. 

Iteration counts should not be compared between different form of precondition­

ing without additional information due to the lack of detail regarding the computa­

tional cost of calculating and applying the preconditioner. The greater the degree 

of sparsity of the preconditioning matrix, the greater the computational efficiency 

in its application at each iteration. However, comparison of runs with the same pre­

conditioner, for example investigating different degrees of perturbation or different 

types of perturbation, is a fair comparison as the preconditioner will have the same 

computational cost to calculate and apply at each iteration. 

Figure 8.7 shows five models used to test the proposed equation solution tech­

nique for a variety of perturbations. Three main classes of perturbation have been 

considered. 

1. Moving a point on an object. 

2. Moving a shape (for instance a circle that represents a hole in the model). 

3. Resizing of a fillet. 

These three perturbations are the main perturbations implemented by users that 

can be solved using reanalysis techniques. The resizing of a fillet has been further 

divided into three classes exhibiting different severity of stress concentration. 

1. Convex fillet. 

2. Concave right angle fillet. 

3. Concave acute angled fillet. 

The fillets have been resized both increasing the radius of the fillets and decreasing 

the radius of the fillets. Consideration of both increasing and decreasing is important 

as the initial stress pattern affects the initial solution within the iterative solver and 

as a result can affect the rate of convergence. Moreover, as the fillet radius is 

varied elements can be moved or transferred from the fillet to adjacent lines on 
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(a) Model 1 (b) Model 2 

(c) Model 3 (d) Model 4 

(e) Model 5 

Figure 8.7: Models used to analysis proposed equation solution technique 
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the boundary, or vice versa. This allows the total number of elements within the 

model to remain constant whilst ensuring that the elements are suitably placed. The 

transferring of elements between boundary lines causes a distinct change within the 

matrix equations. 

In chapter 7 the use of an approximate but complete LU preconditioner has been 

proposed for problems of reanalysis. The models presented in figure 8. 7 will be con­

sidered and the iteration counts for resolution using no preconditioning, diagonal 

preconditioning and a complete but approximate LU preconditioner presented in 

table 8.9. The low iteration counts for the complete but approximate LU precondi-

Preconditioner 
Perturbation Type 

Move Point Move Shape Ext Fillet Resize Int Fillet Resize 

None 30- 50 31- 49 36- 48 34- 53 

Diagonal 39- 53 36- 47 36- 44 43- 50 

Full LU 2- 17 2 - 9 3 - 9 3- 13 

Table 8.9: Summary of iteration counts for various preconditioners 

tioner are a result of the preconditioner being close to the inverse of the perturbed 

matrix, A'. Moreover, as there is a zero computational cost to calculating the pre­

conditioner, and the application of the preconditioner is 0 (N2
) but is only applied 

a small number of times, the overall computational cost and hence run-time is low. 

Normalising the computational cost with respect to a direct solver is represented by 

figure 8.8. This shows the effectiveness of the proposed equation solution technique 

for cases of non real-time analysis i.e. the problem has been solved, a perturbation 

is made to the model and then the reanalysis occurs. This shows that the use of a 

complete but approximate LU factorisation is effective at reducing the overall com­

putational cost of solving the matrix system even for both relatively large geometric 

perturbations and perturbations in which a large number of elements are altered. 

By way of putting these results into context, a diagonal preconditioner typically 

reduces the normalised solution time to 70% of a direct solver for small everyday 

problems. 
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Perturbation 

Figure 8.8: Normalised solve time for a variety of perturbations (Trevelyan et al. , 

2004) 

The aim of this work is to perform real-time reanalysis of elastostatic problems 

and as a result the geometric perturbations involved will typically be less than 

20%. On account of this small geometric perturbation it can be surmised that the 

variation in displacements and tractions will similarly be relatively small leading to 

rapid convergence from the first approximation. 

Typically, only a relatively small part of the model will be perturbed at each 

user interaction. Thus most perturbations will involve less than 30% of the total 

number of elements in the model, but might potentially be as high as 50%. Thus 

the typical saving within the equation solution can be seen to vary between 75% 

and 85%. 

8.4 Overall strategy 

The techniques proposed within this thesis provide the ability of real-time elasto­

static analysis of small two-dimensional problems. Moreover , the techniques can be 

applied to larger problems as an acceleration technique although it is clear that, 

for any given computational resources, there will be an upper bound on problem 
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size beyond which the re-analysis will fail to have a real-time character. As a result, 

although the initial target market is small two-dimensional problems, the techniques 

proposed have advantages for larger problems in both two and three dimensions. 

8.4.1 Problem size 

As the problem size increases, the overall computational cost associated with both 

integration and the solution of the matrix equations increases. As a result any 

method aimed at producing a real-time solution will have a maximum problem size 

for which real-time analysis is possible. 

The computational cost of solving the matrix equation given by equation (8.1) is 

related to the overall problem size and , to a lesser extent, the number of computer 

cores on the personal computer (a multi-core will be able to update the precon­

ditioner more often than a single core machine, thus improving performance). A 

number of variables affect the computational cost of the integration routine. 

• Overall problem size. 

• Number of elements to which the integration scheme can be applied. 

• Number of elements being perturbed in each step. 
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Figure 8.9: Variation in reanalysis time with problem size 
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Figure 8.9 shows the variation in reanalysis time for a variety of problem sizes 

under a single core machine and a hyper-threaded core machine*. As the problem 

size increases the computational cost per reanalysis increases. This is a result of the 

additional integrations required to prepare the matrix equations for solution, and 

additionally a larger size problem will typically take longer to solve with an iterative 

solver. 

Additionally figure 8.9 shows the performance for a hyper-threaded enabled core 

(Pentium 4 3.6GHz processor). It is difficult to compare these times directly as the 

CPU cores run at different clock speeds and are of different general architectures. 

It is the author's belief that the use of a hyper-threaded core will enable a small 

performance gain over a single core machine but will also allow a user to have 

additional applications open whilst performing an analysis. If a true multi-core 

machine were utilised it is the author's belief that this performance gain would be 

larger as a result of the preconditioner being updated on the separate core. 

It is the author's experience that a problem consisting of at maximum 85 quadratic 

elements can be analysed in a real-time manner such that contour plots are updated 

as the geometry is perturbed. Lagging within the update of contours occurs when 

larger problems are analysed. 

8.5 Concluding remarks 

In this chapter results have been presented showing the effectiveness of the pro­

posed techniques. Additionally, results have been presented showing limitations 

with respect to problem size for both single and dual core machines. This shows the 

advantage that multi-core machines have for this implementation. 

Details on implementation, to optimise computational cost and usability, have 

also been presented within this chapter for both the integration and equation solu­

tion schemes. 

*Hyper-threading is an Intel specific technique for utilising idle components on a single CPU 

core in separate threads. As only a proportion of the components are replicated it can pretend to 

be a separate core but is not in the true multi-processor definition. 



CHAPTER 9 

Extension to Other Application Areas 

The techniques proposed within this thesis have currently only been applied to elas­

tostatic problems being analysed with the boundary element method. In this chapter 

a number of extensions will be considered for applying the proposed techniques to 

different forms of analysis. 

Extensions will be considered with respect to the two areas targeted for acceler­

ation within this thesis, 

1. Integration. 

2. Equation Solution 

9.1 Integration 

Techniques for accelerating the integration phase can be extended to different ap­

plications of the boundary element method by consideration of the appropriate fun­

damental solutions. Additionally, consideration of three dimensional problems is 

presented. 

164 
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9.1.1 Potential flow 

Heat transfer for boundary element formulations has been presented in chapter 3. 

The boundary integral equation for potential flow is given by (Becker, 1992), 

4>(~) + j Kd~,Q)r/>(Q)dr(Q) = j K2(~,Q) ar~>a~Q)dr(Q) (9.1) 

r r 

where 4> is the potential and K 1 and K2 are the fundamental solutions and are given 

by 
1 

K1 (~, Q) = 2·wr (~, Q) (9.2) 

K2 (~,Q) = 2~ ln [r(~~Q)] (9.3) 

Thus, discretising equation (9.1), 

+1 +1 

4> (~) + L J K1NT J (~) d~cp = L J K2NT J (~) d~~~ (9.4) 
elem_ 1 elem_ 1 

L UTs can now be created of the form 

(9.5) 

(9.6) 

Since the elements we are dealing with (both flat and circular arc lines) are of 

constant Jacobian with J (~) = ~ we can write equations (9.5) and (9.5) as, 

(9.7) 

(9.8) 

From these it can be seen that the following adjustments need to be made before 

the values in the LUT can be used in equation (9.4). 

(9.9) 
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g = (gLUT _ a) L (9.10) 

where h and g are matrix coefficients and, 

(9.11) 

Moreover, we can follow the same procedure as chapter 6 and noting that all of the 

terms except for NT are constants 

+1 

= const j NT d~ 
-1 

= af3 

(9.12) 

Consideration of the integral in equation (9.12) produces the well known coefficients 

for quadratic elements of 
ln (L) 

a=--
247r 

(9.13) 

!3= (1 4 1) (9.14) 

In the same way as was described for elastostatics, the LUTs in equations (9.7) 

and (9.8) can be used as a direct replacement for Gauss-Legendre integration of 

equation (9.4). 

Figures 9.1 and 9.2 display surface plots for the integrals . It can be seen that 

02 

10 \0 

80 - ----· 01 Rm 

(a) End-node 1 (b) Mid-node (c) End-node 2 

Figure 9.1: Surface plots of h 

the functions are smoothly varying. As a result it is possible to fit basis functions 

to the surfaces to allow the rapid computation of the integrals. 
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(c) End-node 2 

Equations 9.15 to 9.20 show the surface fit equations for hand g for 2 ~ Rm ~ 3 

subscripts designate the appropriate node. The associated error with each fit is less 

than 0.1%. 

2.658R~1 + R~2 (1.340 sin (t9) - 0.061 cos (2t9)) 

h1 = +R~4 ( 0.163- 0.126sin(3t9)- 0.367cos(2t9)) x 10
2 

+0.018 cos ( 4t9) 

h2 = [ R~1 (1.059 + 0.007 cos (2t9)) + R~2 (0.011 - 0.034 cos (2t9)) ] X 10 

2.658R~1 - R~2 (1.340sin (t9) + 0.061 cos (2t9)) 

+ R~4 ( 0.163 + 0.126 sin (3t9) - 0.367 cos (2t9) ) 

+0.018 cos ( 4t9) 

[ 

-2.653ln Rm_ + 1.326R~1 sin (t9)- 0.199R~2 cos (2t9) ] 

-0.066R~3 sm (3t9) 

g2 = [ -1.061ln Rm - 0.027 R~1 cos (2t9)] x 10 

[ 

-2.653 ln Rm_- 1.326R~1 sin (t9)- 0 . 199R~2 cos (2t9) ] 

+0.066R~3 sm (3t9) 

(9.15) 

(9 .16) 

(9.17) 

(9 .18) 

(9. 19) 

(9 .20) 

Similarly to the stress analysis case the end-node surfaces can be calculated in an 

optimised manner due to the simplification of 

and 

h1 =A+ B 

h3 =A - B 

gl = C + D 

g3 =C - D 

(9 .21) 

(9.22) 

(9.23) 

(9.24) 
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Considering figures 9.1 and 9.2 it should be noted that the gradient for the range 

1 :::;: Rm :::;: 3 is much higher than for terms with higher Rm values. Equation 9.25 

shows the surface fit for h2 with 3 :::;: Rm :::;: 10, 

h2 = [ 1.062R;;/ - 0.040R~3 cos (20)] X 10 (9.25) 

Moreover further reduction in the interval considered in the Rm direction either 

increases the accuracy of the surface fit or reduces the number of terms required to 

fit accurately over the dataset. For example, equation (9.26) shows the h2 surface fit 

for the interval 5 :::;: Rm :::;: 10 and equation (9.27) shows the same for 9 :::;: Rm :::;: 10. 

h2 = [1.061R~1 - 0.230R~4 cos(20)] x 10 (9.26) 

(9.27) 

This emphasises the importance of choosing a suitable strategy for splitting the Rm 

direction, to reduce the computational cost at run-time whilst ensuring that the 

code is easy to maintain and implement. More research is warranted in this area. 

9.1.2 Acoustics 

Acoustic analysis for boundary integral formulations has been presented in chapter 

3. The boundary integral equation for acoustics is given by, 

<P (~) + J ac 1: Q) <P (Q) dr (Q) = j c (~, Q) 
8<P8~~) dr (Q) +<Pi (9.28) 

r r 

where <P is the acoustic pressure and is complex since it contains both magnitude 

and phase components, </Ji is the incident wave and G and ~~ are the fundamental 

solutions given by 
z 

G = 4Ho (kr) (9.29) 

oG kor 
on = 4" on [Y1 (kr)- i11 (kr)] (9.30) 

where H0 is a Hankel function of the first kind given by, 

Ho= lo + iYo (9.31) 

In and Yn are Bessel functions of the first and second kind respectively. 
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Following a similar procedure as for heat transfer problems, 

+1 +1 

</> ( ~) + L J ~~ NT J ( 0 d~ 4> = L J GNT J ( 0 d~ :: + </>i 
e!em_ 1 elem_ 1 

(9.32) 

Thus it is necessary to create the following LUTs. 

+1 

GLUT= j ~Ho (kr) NT J (~) d~ (9.33) 

-1 

+1 

(
ac)Lur j k a on = 4 a: [Y1 (kr) - iJ1 (kr)] NT J (~) d~ (9.34) 

-1 

However, as a result of the Bessel functions within the fundamental solutions it is 

not possible to convert the LUT form into the required form for use within equation 

(9.32) without integrating a Bessel function in the adjustment. 

One technique for potentially overcoming the problem of Bessel functions within 

the fundamental solutions is to approximate the Bessel function by a high order 

polynomial (Press, 2002). This technique has been applied by Honnor et al. (2007) 

for the rapid integration of acoustic problems using the partition of unity boundary 

element method (PUBEM). The ability to describe the Bessel functions in terms of a 

high order polynomial potentially allows the conversion of the fundamental solutions 

to a form that can be evaluated at low computational cost. 

9.1.3 Three-dimensional analysis 

Extension of the proposed integration techniques for 3-dimensional problems suffers 

from the associated increase in parameters required to describe a 3-dimensional 

boundary element. 

For the initial assessment of 3-dimensional problems it seems necessary to place 

restrictions on the type of element. Figure 9.3 shows a rectangular element and the 

parameters necessary to define this particular case in space when integrating over 

this element and considering a given collocation point location. It can be seen that 

there are 8 main independent parameters that define the 3-dimensional quadrilateral 

case. 

.. 
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Figure 9.3: Three dimensional element with defining parameters 

• a - Angle between x axis and r m. 

• f3 - Angle between xy plane and r m. 

• r m - Distance between source point and field element midpoint. 

• £ 1 - Length of side 1 of the element. 

• £ 2 - Length of side 2 of the element. 

• 'Y - Angular orientation of side 1 of the element. 

• nx - Element normal in the x coordinate direction. 

• ny - Element normal in the y coordinate direction. 

These parameters can be reduced by consideration of an element scale parameter 

L = f;- and by rotating the element around the z axis such that a = oo. Thus the 

parameter set has been reduced from 8 to 6 parameters. 

Table 9.1 shows the memory requirements for LUTs generated for these param­

eter sets assuming that a similar refinement is implemented for the L UTs in the 

3-dimensional case as implemented in the two-dimensional scheme. No assumptions 

on symmetry have been included in the memory requirements although it is probable 

that in the angular directions symmetries will exist thus reducing the actual memory 
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Memory Requirement 

Non-Interpolated 9.93YB 

Interpolated 11.71ZB 

Table 9.1: Three-dimensional memory requirements- No symmetries 

cost. A yottabyte (YB) is defined as 280 bytes (rv 1012 terabytes), a zettabyte (ZB) 

is defined as 270 bytes ('""' 109 terabytes) and an exabyte (EB) is defined as 260 bytes 

('""' 106 terabytes). If symmetries are assumed within the angular parameters such 

that only 180° need to be stored for corner nodes and only 90° need to be stored for 

mid-side nodes. These memory requirements are unreasonable for the foreseeable 

Memory Requirement 

Non-Interpolated 337.48ZB 

Interpolated 398.28EB 

Table 9.2: Three-dimensional memory requirements- Symmetries 

future and as a result the use of LUTs as a means to accelerate the integration 

phase for 3-dimensional problems is not possible. However, the use of surface fitting 

techniques could be applied to the 6 parameter space to produce equations for each 

of the required functions. 

Difficulties arise within the use of surface fits in that they need to be compu­

tationally cheaper than the associated variable Gauss-Legendre quadrature. For 

the proposed 2 parameter fit for 2-dimensional problems they are 53% faster. The 

introduction of an additional 4 parameters could cause this computational cost to 

increase significantly. As a result careful analysis will be required in the preliminary 

stages to ensure that appropriate basis functions are chosen. 

Another alternative is to place additional restrictions on the element. It is possi­

ble to ensure that elements are formed as squares by adapting the meshing routine 

to favour elements of this type. Additionally, a large number of elements in a typical 

analysis will be aligned with one of the coordinate planes. These assumptions reduce 

the number of parameters to 3 (figure 9.4). 

.. 
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z 

Figure 9.4: Alternative definition for three dimensional element 

• a - Angle between y axis and r m 

• (3 - Angle between xy plane and r m 

where r m is the distance between the source point and the centre of the field element 

and Lis the length of the element sides. The reduction in parameter count, although 

limiting of the number of cases that the technique can be applied, will ease initial 

assessment of the technique. 

9.2 Equation solution 

The use of a complete but approximate LU preconditioner as part of a GMRES 

iterative solver can be applied to any matrix problem of the form, 

Ax=b (9.35) 

However, although this technique should be effective for a wide range of problems; 

as a result of the preconditioner being close to the inverse matrix, it may not be the 

optimum solution strategy. It is important to consider the specific attributes of the 

problem under consideration, for instance, 
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• Is the A matrix banded in any way? 

• Is the A matrix a sparse matrix? 

• Is the problem small? 

If the matrix is banded or sparse an alternative preconditioner may be cheaper 

to apply than a complete LU factorisation as a result of the sparsity that can be 

achieved within the preconditioner. Moreover if the problem cannot be considered 

small then the storage and application of the preconditioner may be of concern. 

Multi-zone problems feature block sparsity as a result of the interlinking nature 

between the sub-matrices within the global A matrix. It is possible to enclose par­

ticular features , which are likely to be perturbed in some manner, within individual 

zones. Thus, upon reanalysis only blocks associated with that zone need to be re­

computed into the global A matrix. This is beneficial from a solution point of view 

because the matrix blocks can be ordered such that a large part of a triangular 

decomposition can be stored from the previous solution phase and hence, reduce the 

time taken to calculate the overall factorisation. 

Figure 9.5 shows an example problem with zones indicated and the associated 

matrix configuration. The fillet zone is small in comparison with the main body 

(a) Model (b) Matrix layout 

Figure 9.5: Multi-zone problem 

of the problem. Thus if the fillet is increased or reduced in size only the relatively 

small sections A 12 , A 21 and A 22 need to be recalculated. Moreover the previous 

factorisation of A 11 can be reused ensuring a large saving in computational cost. 
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9.3 Dual boundary element method 

The dual boundary element method (DBEM) developed by Portela and Aliabadi 

(1992) for 2-dimensional problems, and by Mi and Aliabadi (1992) for 3-dimensional 

problems, is a computationally efficient approach for the analysis of crack problems. 

Consideration of eo-planar crack surfaces allows the derivation of displacement 

and traction integral equations similar in form to those derived in chapter 3. The 

r· 

Figure 9.6: Go-planar crack surfaces (Aliabadi, 2002) 

boundary of the problem is defined as r~ referring to upper and lower crack surfaces 

and f* being the rest of the boundary. 

Cij (x+) Uj (x+) + Cij (x-) Uj (x-) = l Uij (x+,x) tj (x)df 

-i TiJ (x+,x) u1 (x)dr (9.36) 

The DBEM uses the displacement integral equation (equation (9.36)) to collocate on 

x+ on the upper crack surface, r+. Whereas the traction integral equation (equation 

(9.37)) is collocated on x- on the lower crack surface, r-. 

Issues arise within the DBEM for the integration of the necessary Cauchy and 

Hadamard integrals in equation (9.37). Conditions assumed during the derivation 
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of the DBEM require certain conditions to be imposed on the shape functions for 

the crack surfaces used within the DBEM. It is necessary that the displacement 

components and the derivatives of the displacement components have continuity, 

the use of discontinuous elements along the crack surface fulfils this requirement. 

As continuous elements are employed around the remainder of the boundary it is 

necessary to have semi-discontinuous elements at the intersection between a crack 

and the edge, this prevents common nodes being placed at the intersection. 
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\ ' Geometry node 
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(c) Discontinuous 

Figure 9. 7: Quadratic element types (Aliabadi, 2002) 

The use of the proposed integration routines is possible for situations where Rm 

is in the appropriate range. It is necessary, however, to have separate datasets for 

continuous, semi-discontinuous and discontinuous elements because of the differ-

ent shape functions required for each case. For situations where Rm is out of the 

data-set's bounds it will be necessary to perform the integrations using alternative 

techniques such as Gauss-Legendre quadrature possibly employing the techniques of 

Telles (1987) and Kutt (1975) to compensate for the singular nature of the integrals. 

9.3.1 Crack growth 

Crack growth within the DBEM can be accommodated by the addition of elements 

at the crack tip as it extends. The addition of these elements will cause the linear 

.. 
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system of equations to be increased, however, to allow a rapid re-solution to the 

problem it is possible to add the extra terms to the bottom corner of the original 

matrix problem, figure 9.8. Thus, it is possible to use the previous L and U factors 

and then complete the remaining part of the factorisation. It is important to ensure 

Figure 9.8: Matrix for the reanalysis problem of crack growth 

that an appropriate level of grading is implemented within the additional elements, 

and as a result for small increments in crack growth it may be necessary to merely 

increase the length of particular elements. 

9.4 Optimisation 

The acceleration of computations can be exploited for other situations, for example, 

in evolutionary stress optimisation. Algorithms such as those proposed by Cervera 

(2003) require an iterative procedure within the geometric structure, as a result 

the geometry undergoes a large number of small perturbations for which the use 

of a good preconditioner is essential. Cervera used non-uniform rational B-splines 

within the geometry definition and because of this it is not possible to employ the 

fast integration techniques proposed for the spline sections of geometry. However, 

the problem will still result in a linear system of equations. 

The real-time analysis and dynamic update of contours that has been presented 

within this thesis changes the design paradigm that currently exists within the early 

stages of design for components. The rapid analysis allows a quick comparison of 



9.5. Concluding remarks 177 

multiple designs and the ability to allow the original design to be quickly driven to 

an optimum by aid of visual feedback from the dynamically updated contours. 

The alteration to the design paradigm is paramount to this work and highlights 

the benefits of the proposed techniques. Mathematical optimisations suffer from 

the potential of having multiple minima within the solution space and as a result 

a mathematical optimisation can converge to a local minimum but not a global 

minimum. By utilising the experience of an engineer to help guide the design it is 

possible to avoid local minima and investigate the complete solution space quickly. 

Moreover, the ease and speed of reanalysis allows inexperienced engineers to 

rapidly gain knowledge of complicated structures and the interactions that can occur 

between geometric features. Figure 9.9 identifies the interaction between two holes 

within a rectangular plate under uniaxial tension, with a real-time update of contours 

it is possible for the student engineer to vary the distance between the holes and see 

how the stress field is affected. 
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Figure 9.9: Interaction within the stress field between two holes in a rectangular 

plate 

9.5 Concluding remarks 

In this chapter a number of extensions to the current work have been examined with 

suggestions on techniques to implement the strategies. The use of LUTs and surface 

fits for alternative problems is possible assuming that the fundamental solutions 
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can be manipulated into the appropriate form without excessive cost of extracting 

particular values. For 3-dimensional problems it is necessary to make assumptions 

about the element shape (to reduce the overall parameter count). However, this 

results in 3 parameters and as a result it is not feasible to store LUTs for this type 

of problem. The use of surface fits could be the solution to this problem but a 

detailed analysis is necessary to determine the most efficient basis functions for the 

dataset. 

The proposed technique for equation solution can be applied to a wide variety 

of problems and, as a result of the preconditioner being a good approximation to 

the inverse the solution, should be effective. However, specific attributes of the A 

matrix may make alternative preconditioners and solvers more efficient. 



CHAPTER 10 

Conclusions and recommendations for future work 

In this thesis techniques have been presented for the acceleration of the analysis 

and in particular reanalysis of elastostatic problems modelled using the boundary 

element method. The problem has been tackled in two main parts. Consideration 

of the integration phase of the analysis and the solution of the resulting matrix 

equations. Each of the techniques has been presented and discussion of the main 

advantages and drawbacks of each method presented within the respective chap­

ters. This final chapter summarises the main points of these conclusions and gives 

suggestions for future work. 

10.1 Achievements 

The main achievements of the current work can be stated as follows 

• Implemented within the in-house Concept Analyst software a real-time analy­

sis and dynamic updating of contours for both displacement and stress forms 

of the boundary integral equation. 

• Profiled the current scheme for analysis and reanalysis to determine areas 

requiring improvement. 

179 
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• Targeted two main areas for improvement: the integration routine and the 

solution of the matrix equation generated from the boundary element method. 

• Integration can be accelerated by computing the integrals and storing them in 

some manner. These can then be extracted at run-time at a lower computa­

tional cost than equivalent Gauss-Legendre quadrature. 

• Implemented look-up tables (LUTs) to store precomputed integral values for 

flat and circular arc elements. 

• Coordinate transformations were developed to allow the use of L UTs for arbi­

trarily angled elements. 

• The use of interpolation within the Rm parameter presented. The use of 

interpolation allows smaller size L UTs to be employed. 

• The refinement of LUTs was investigated to determine the appropriate refine­

ment level to meet error requirements. Suggested refinement is 0.05° in the 

angular direction and a geometric progression for the scaling direction, Rm. 

For interpolated LUTs a geometric progression factor of s = 1.03 is required 

and for non-interpolated LUTs s = 1.001. 

• The total memory requirement for non-interpolated LUTs is approximately 

3GB. Use of interpolated LUTs reduces this to only 102MB. 

• The strategy proposed on current hardware is a combination of both the non­

interpolated and interpolated LUTs with a memory requirement of 911MB. 

Implementation of this strategy allows a feasible memory requirement for cur­

rent hardware whilst optimising the efficiency of the proposed technique. 

• LUTs have been structured within memory to optimise the use ofrapid caching 

of memory addresses, resulting in an approximately 75% increase in memory 

access times with repect to non-orientated LUTs. This seemingly trivial factor 

is essential to effective use of LUTs for this application. 

• The use of L UTs produce savings of 4 7% for flat elements using non-interpolated 

LUTs and 38% for circular arc elements using interpolated LUTs 
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• Implemented least squares surface fits for integrals data for flat elements, ori­

entated for fixed angles of if;. 

• Two stage least squares surface fit routine employed to allow optimum fits 

to be found for particular error requirement. The initial stage reduces the 

basis functions to important terms for a particular boundary integral, while 

the second stage is a brute force approach to find the optimum fit. 

• Investigated the use of a coordinate transformation to allow the application 

to arbitrary if;. 

• The use of small look-up tables for values of sin ( qif;) and other basis func­

tions, to accelerate the computation of trigonometric and logarithmic terms. 

Memory requirement for the surface fit basis LUTs is 5.8MB. 

• It was found that savings of 74% are possible using surface fits for cases of 

fixed if; = oo, 90°, 180° and 270°. Employing coordinate transformations to 

allow the extension to arbitrary if; the time saving is reduced to 53% of an 

adaptive Gauss-Legendre quadrature scheme. However, the additional terms 

to which the proposed technique can now be applied increase the potential for 

computational saving. 

• Investigated the use of preconditioners with a GMRES iterative solver. 

• Eigenvalue distributions have been investigated that demonstrate the cluster­

ing ability of the proposed complete but approximate LU preconditioner. 

• Multiple perturbations to the problem degrade the preconditioner and as a 

result an update strategy has been implemented in a secondary low priority 

thread. 

• Effectiveness of the preconditioning strategy has been investigated for a variety 

of types and degree of perturbation. 

• It was found that typical savings of between 75% and 85% are achieved in the 

equation solution stage with respect to a direct solver. 
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10.2 Con cl us ions 

The techniques developed and presented in this thesis allow the solution in real­

time and the dynamic update of contour plots for both two dimensional stress and 

displacement problems presented within the boundary element method. As this work 

is aimed at the reanalysis of problems and the real-time updating of contours the 

implementation within the boundary element method framework allows for the fast 

and reliable updating of the problem mesh after each perturbation. The techniques 

presented have been implemented within the in-house Concept Analyst software. 

This implementation has been performed in Visual C++. Approximately 7500 lines 

of code have been written within the Concept Analyst framework in the development 

of the LUT version and 15000 lines for the least squares surface fit version. 

The techniques proposed within this thesis have been made based on the cur­

rently available hardware within the average engineering office. As a result it may 

be necessary to adjust the recommendations as hardware develops. For example, 

the use of non-interpolated LUTs requires a approximately 3GB of memory and as 

a result these cannot be currently implemented without the use of swap space and 

hence an additional computational cost. As technology improves and the average 

personal computer improves the use of non-interpolated LUTs will become feasible. 

It it prudent to note that within a large organisation the hardware that the average 

engineer employs is a costly asset to the organisation and as a result have a long shelf 

life with respect to the rate of change in technology. Margetts et al. (2005) employ 

specialised hardware and supercomputing power within their analysis, technology 

that potentially is not available within an organisation. It is the author's belief 

that LUTs should be re-investigated in the future with respect to implementation 

of non-interpolated LUTs. 

Surface fits are the fastest technique for evaluating the boundary element inte­

grals and as a result are the scheme recommended from this thesis. However, this 

speed of computation comes at the cost of accuracy, 0.1% of the integral value. As 

hardware develops surface fits will be consistently faster at evaluating the boundary 

element integrations as they are not affected by the increase in memory available 

on PCs. LUTs, however, although slower, will improve in accuracy as the memory 

.. 
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available on PCs increases. Thus if a higher degree of accuracy is required then the 

use of L UTs is recommended. 

Splitting the main problem of accelerating the analysis and reanalysis of elas­

tostatic problems into two sections has allowed the development of two separate 

but compatible techniques. As the techniques are distinct they have the ability to 

be developed separately for use within alternative areas. This modular behaviour 

is similar to the concept of object orientated programming, with the definition of 

interfaces such that modules can be switched as long as the interfaces match. This 

ability lends itself to the development for alternative applications such as potential 

flow because the matrices will be of a similar form to those found in elastostatics; 

diagonally dominant but fully populated; as a result it should only be necessary 

to alter the integration routine. In this way, existing boundary element codes can 

readily be modified to take advantage of the acceleration strategies developed in this 

work. 

10.3 Recommendations for future work 

The techniques implemented within this thesis have shown good performance. The 

aims of this PhD have also been accomplished with the production of a real-time 

elastostatic analysis package. However, whilst working on this topic a number of 

areas for future research have arisen; these areas have been discussed within chapter 

9. 

The extension of the least squares surface fits to circular arc elements would 

allow a larger proportion of elements to be integrated using the proposed technique. 

However, as has been noted for the LUTs the introduction of a circular arc elements 

complicates the integral data. As a result it is expected that the surface fit equations 

generated would be more complicated than those currently implemented so careful 

selection of basis functions will be required to optimise the surface fits. 

Additionally, the extension to alternative types of problem such as potential 

flow shows great promise. The integrals can be transformed into a form suitable for 

LUTs and surface fitting techniques. More complicated forms of problems, such as 

.. 
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acoustics, have more complicated fundamental solutions and as a result conversion to 

a form suitable for implementing LUTs or surface fits may not be possible. However, 

the use of an eighth order polynomial as a representation for Bessel functions (Press, 

2002) shows that there is potential for this technique. 

The current implementation is aimed at the real-time analysis of problems in 

two dimensions. However, the use of similar techniques could be used to accelerate 

the solution of problems within three dimensions. An initial investigation scheme 

has been outlined, reducing the required number of parameters required to fully 

describe elements within a 3-dimensional model. The implementation of LUTs for 

three dimensions will require a large amount of memory and as a result it is the 

author's belief that these, using current hardware, are unfeasible. Hence, the use of 

a least squares surface fit will be the most successful line of research. 

If the real-time reanalysis ideas proposed in this thesis are to be adopted for gen­

eral mechanical design, it is important that they not be restricted, in the long term, 

to the small sized problems considered in this work. Extension to larger problems 

will occur naturally with further developments in computer hardware, as well as 

some of the ideas presented above. Careful analysis will have to be performed into 

the way errors in matrix terms propagate through the solution process to errors in 

the stress results that are the outcome of the analysis that will be used by engineers. 

Such an analysis has been performed in this work but a considerably more extensive 

programme should be carried out for more substantially sized problems. 

It has been found that reanalysis times are dependent on the number of elements 

that are changed in a geometric design change as a result of the consequent remesh­

ing. There is considerable scope within three dimensional reanalysis for research 

into techniques for meshing and remeshing that minimise the number of changed 

elements. This might involve, for example, automatic feature recognition and en­

closing of important design features in small zones. 
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10.4 Summary 

The need for rapid analysis within the early conceptual design stage is essential 

for maintaining the necessary competitive edge to succeed. Changing the design 

paradigm through real-time analysis has caused the landscape for the conceptual 

engineer to be changed completely. The ability to rapidly experiment with a design 

allows a more fluid development cycle, essential within the formative stages of a 

product. 

We will always be asked to push the boundaries to the problems that we face 

and only by continually testing and probing will we know where these boundaries 

lie. It is only through the innovative use of technology that engineers will be able 

to maintain the competitive advantage required to succeed. As a result the learning 

process never ends, however far we progress we can always move forward. 

Ancora imparo 

- Michelangelo Buonarroti 
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APPENDIX I 

Surface Fit Equations - g terms 

The notation used in this section is 9ijk where i is the source point direction, j is 

the field element direction and k is the node number on the field element. 

I.l c/J = 0, 2 < Rm < 3 

0.541 (1 +cos (211)) - 2.249ln Rm 

9om = + R;;/ (0.854 cos ( 11) + 0.273 cos (311)) 

+ R;;? (0.087 cos (211) + 0.081 cos ( 411)) + 0.040R~3 cos (511) 

X 10-7 

9oo2 = [2.166 + 2.185 cos (211) - 8.996ln Rm + 0.108R~2 cos ( 411)] x 10-7 

0.541 (1 +cos (211)) - 2.249ln Rm 

9oo3 = -R~1 (0.854cos (11) + 0.273cos (311)) x 10-7 

+ R~2 (0.087 cos (211) + 0.081 cos ( 411)) - 0.040R~3 cos (58) 

5.414sin (20)- 2.707R~1 (sin (11)- sin (311)) 

9on = -R~2 (0.812sin(2B)- 0.785sin(4B)) X 10-S 

- R~3 (0.406 sin (30) - 0.392 sin (50)) + 0.139R~4 sin (68) 
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1.2. <P = o, 3 < Rm < 15 

9012 =[sin (20) (2.166- 0.108R~2 ) + 0.106R~2 sin (40)] X w-7 

5.414sin (20) + 2.707R~1 (sin (0)- sin (30)) 

9013 = - R~2 (0.812 sin (20) - 0. 785 sin ( 40)) 

9111 = 

+R~3 (0.406sin (30)- 0.392sin (50))+ 0.139R~4 sin (60) 

0.541 (1- cos (20)) - 2.249ln Rm 

+ R;;,1 (1.395 cos ( 0) - 0.271 cos (30)) 

+ R;;,2 (0.250 cos (20) - 0.076 cos ( 40)) 

+ R;;,3 (0.097 cos (30) - 0.038 cos (50)) 

x w-7 

[ 

2.166 - 8.996ln Rm - 0.104R;;,2 cos ( 40) l _7 
9112 = X 10 

9113 = 

-cos (20) (0.903ln Rm + 4.415R;;,1 - 3.009R;;,2 ) 

0.541 (1- cos (20))- 2.249ln Rm 

- R;;,1 (1.395 cos ( 0) - 0.271 cos (30)) 

+ R;;,2 (0.250 cos (20) - 0.076 cos ( 40)) 

- R~3 (0.097 cos (30) - 0.038 cos (50)) 

x w-7 

1.2 c/J = 0, 3 < Rm < 15 

X 10-7 
9001 = 

[ 

0.541 + 0.543 cos (20) - 2.249ln Rm l 
+ R;;,1 (0.854 cos ( 0) + 0.271 cos (30)) 

9002 = [2.166+2.168cos(20) -8.996lnfim] X 10-7 

[ 

0.541 + 0.543 cos (20) - 2.249ln Rm l _7 
9003 = X 10 

-R~1 (0.854cos (0) + 0.271 cos (30)) 

x w-8 

9o11 = x w-8 

[ 

5.414 sin (20) - R~1 (2. 707 sin ( 0) - 2.688 sin (30)) ] 

- R~2 (0.812 sin (20) - 0.802 sin ( 40)) + 0.400R~3 sin (50) 

9012 = [2.166sin (20)- 0.108R~2 (sin (20)- sin (40))] X w-7 
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1.3. <P = 90, 2 < Rm < 3 

[ 

5.414 sin (20) + R-;;.1 (2. 707 sin ( 0) - 2.688 sin (30)) ] _
8 

9013 = X 10 
- R-;;.2 (0.812 sin (20) - 0.802 sin ( 40)) - 0.400R;;.3 sin (50) 

[ 

0.541 - ln Rm (2.249 + 0.345 cos (20)) + 0.060 ln R~ cos (20) ] _
7 

9111 = X 10 
+R-;;.1 (1.395cos(O)- 0.644cos(20)- 0.266cos(30)) 

9112 = [2.166- 2.158cos(20)- 8.996lnRm] x 10-7 

[ 

0.541 - ln Rm (2.249 + 0.345 cos (20)) + 0.060 ln R~ cos (20) ] _
7 

9113 = X 10 
- R-;;.2 (1.395 cos ( 0) + 0.644 cos (20) - 0.266 cos (30)) 

I.3 rP = 90, 2 < Rm < 3 

9001 = 

0.541 (1 +cos (20))- 2.249ln Rm 

+ R-;;.1 (1.395 sin ( 0) + 0.271 sin (30)) 

- R-;;.2 (0.250 cos (20) + 0.076 cos ( 40)) 

-R-;;.3 (0.097sin (30) + 0.038sin (50)) 

X 10-7 

[

2.166(1+cos(20))-8.996lnRm l _7 
9002 = X 10 

-R-;;.2 (0.333cos (20) + 0.104cos (40)) 

9003 = 

9011 = 

0.541 (1 +cos (20))- 2.249lnRm 

- R-;;.1 (1.395 sin (B) + 0.271 sin (30)) 
X 10-7 

- R-;;.2 (0.250 cos (20) + 0.076 cos ( 40)) 

+ R-;;.3 (0.097 sin (30) + 0.038 sin (50)) 

5.414 sin (20) - 2. 707 R-;;.1 (cos ( 0) +cos (30)) 

- R-;;.2 (0.812 sin (20) + 0. 785 sin ( 40)) 

+R-;;.3 (0.406 cos (30) + 0.392 cos (50)) 

+0.139R;;.4 sin (60) 

X 10-8 
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9 012 = [sin (20) (1.825ln Rm - 0.490 ln R~ + 2.220R;;.1) - 0.106R;;.2 sin ( 40)] x 10-7 



1.4. <P = 90, 3 < Rm < 15 

9013 = 

5.414sin (20) + 2.707R;;/ (cos (0) +cos (30)) 

- R~2 (0.812 sin (20) + 0. 785 sin ( 40)) 

- R~3 (0.406 cos (30) + 0.392 cos (50)) 

+0.139R~4 sin ( 60) 

0.541 (1- cos (20)) - 2.249ln Rm 

9ll1 = + R~1 (0.854 sin ( 0) - 0.273 sin (30)) 

X 10-8 

- R~2 (0.087 cos (20) - 0.081 cos ( 40)) + 0.040R~3 sin (50) 

X 10-7 

9ll2 = X 10-7 

[ 

2.166- 8.996ln Rm + 0.108R~2 cos (40) l 
-cos (20) (1. 751ln Rm - 0.451ln R~ + 2.397 R~1 ) 

0.541 (1- cos (20)) - 2.249ln Rm 

9n3 = -R~1 (0.854sin(O)- 0.273sin(30)) 

- R~2 (0.087 cos (20) - 0.081 cos ( 40)) - 0.040R~3 sin (50) 

I. 4 cj; = 90, 3 < Rm < 15 

9001 = 
[ 

0.541 (1 +cos (20)) - 2.249ln Rm l 
+R~1 (1.395sin (0) + 0.266sin (30))- 0.250R~2 cos (20) 

9oo2 = [2.166 + 2.158 cos (20) - 8.996ln Rm] x 10-7 

[ 

0.541 (1 +cos (20))- 2.249lnl4n l 
9003 = 

- R~1 (1.395 sin ( 0) + 0.266 sin (30)) - 0.250R~2 cos (20) 

9on = 
[ 

5.414 sin (20) - R~1 (2. 707 cos ( 0) + 2.688 cos (30)) ] 

- R~2 (0.812 sin (20) + 0.802 sin ( 40)) + 0.400R~3 cos (50) 

90l2 = [2.166sin (20)- 0.108R~2 (sin (20) +sin (40))] x 10-7 

X 10-7 

X 10-7 

X 10-7 

X 10-8 

9013 = X 10-8 

[ 

5.414sin(20) + R~1 (2.707cos(O) + 2.688cos(30)) ] 

- R~2 (0.812 sin (20) + 0.802 sin ( 40)) - 0.400R~3 cos (50) 

219 



1.5. c/J = 180, 2 < Rm < 3 

[ 

0.541 - 0.543 cos (20) - 2.249ln Rm l _7 9111 = X 10 
+R~1 (0.854sin(O)- 0.271sin(30)) 

911 2 = [2.166 (1- cos (20))- 8.996ln Rm] x 10-7 

9113 = X 10-7 

[ 

0.541 - 0.543 cos (20) - 2.249ln Rm l 
-R~1 (0.854sin (0)- 0.271 sin (30)) 

I. 5 cP = 180, 2 < Rm < 3 

0.541 (1 +cos (20))- 2.249lnRm 

9om = - R~1 (0.854 cos (e) + o.273 cos (30)) X 10-7 

+ R~2 (0.087 cos (20) + 0.081 cos ( 40)) - 0.040R~3 cos (50) 

9oo2 = [2.166+2.185cos(20) -8.996lnRm+0.108R~2 cos(40)] x 10-7 

0.541 (1 +cos (20)) - 2.249ln Rm 

9oo3 = + R~1 (0.854 cos (e) + o.273 cos (3e)) X 10-7 

+ R~2 (0.087 cos (20) + 0.081 cos ( 40)) + 0.040R~3 cos (50) 

5.414sin (20) + 2.707 R~1 (sin (0)- sin (30)) 

9ou = -R~2 (0.812sin (20)- 0.785sin (40)) X 10-8 

+ R~3 (0.406 sin (30) - 0.392 sin (50)) + 0.139R~4 sin (60) 

9012 =[sin (20) (2.166- 0.108R~2 ) + 0.106R~2 sin (40)] x 10-7 

5.414 sin (20) - 2. 707 R;;/ (sin (e) - sin (30)) 

9o13 = - R~2 (0.812 sin (20) - 0. 785 sin ( 40)) x 10-8 

9111 = 

- R~3 (0.406 sin (30) - 0.392 sin (50)) + 0.139R~4 sin (60) 

0.541 (1- cos(20))- 2.249lnRm 

- R~1 (1.395 cos (e) - 0.211 cos (30)) 

+R~2 (0.250cos(20)- 0.076cos(40)) 

-R~3 (0.097cos(30)- 0.038cos(50)) 

X 10-7 

220 



I.6. cjJ = 180, 3 < Rm < 15 

9n2 = x w-7 

[ 

2.166- 8.996ln Rm - 0.104R~2 cos ( 48) l 
-cos (28) (0.903ln Rm + 4.415R~1 

- 3.009R~2 ) 

9ll3 = 

0.541 (1 - cos (28)) - 2.249ln Rm 

+ R~1 (1.395 cos (e) - 0.211 cos (38)) 

+R~2 (0.250cos(28)- 0.076cos(48)) 

+R~3 (0.097 cos (38) - 0.038 cos (58)) 

1.6 cp = 180, 3 < Rm < 15 

x w-7 

9oo1 = x w-7 

[ 

0.541 + 0.543 cos (28) - 2.249ln Rm l 
-R~1 (0.854cos (B)+ 0.271 cos (38)) 

9002 = [2.166+2.168cos(28) -8.996lnRm] X 10-7 

[ 

0.541 + 0.543 cos (28) ~ 2.249ln Rm l _7 
9003 = X 10 

+ R~1 (0.854 cos (B) + 0.271 cos (38)) 

5.414 sin (28) + R~1 (2. 707 sin (B) - 2.688 sin (38)) 

9o11 = -R~2 (0.812sin (28)- 0.802sin (48)) 

-0.400R~3 sin (58) 

9012 = [2.166sin (28)- 0.108R~2 (sin (28)- sin (48))] x 10-7 

5.414 sin (28) - R~1 (2. 707 sin (B) - 2.688 sin (38)) 

9013 = -R~2 (0.812sin (28)- 0.802sin (48)) 

+0.400R~3 sin (58) 

x w-8 

x w-8 

_ [ 0.541- ln Rm (2.249- 0.345 cos (28)) + 0.060 ln R~ cos (28) l 
9111-

- R~1 (1.395 cos (B) + 0.644 cos (28) - 0.266 cos (38)) 

9112 = [2.166- 2.158cos(28)- 8.996lnRm] X 10-7 
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x w-8 



I. 7. t/J = 270, 2 < Rm < 3 

[ 

0.541 -ln Rm (2.249 + 0.345 cos (20)) + 0.060 ln R~ cos (20) ] _
8 

9113 = X 10 
+R;;,I (1.395cos (0)- 0.644cos (20)- 0.266cos (30)) 

I. 7 c/J = 270, 2 < Rrn < 3 

0.541 (1 +cos (20)) - 2.249ln Rm 

- R-;;,1 (1.395 sin ( 0) + 0.271 sin (30)) 

- R-;;,2 (0.250 cos (20) + 0.076 cos ( 40)) 
9001 = x w-7 

+R-;;,3 (0.097sin (30) + 0.038sin (50)) 

9oo2 = x w-7 

[ 

2.166 (1 +cos (20))- 8.996ln Rm l 
9003 = 

- R-;;,2 (0.333 cos (20) + 0.104 cos ( 40)) 

0.541 (1 +cos (20)) - 2.249ln Rm 

+ R-;;,1 (1.395 sin ( 0) + 0.271 sin (30)) 

- R-;;,2 (0.250 cos (20) + 0.076 cos ( 40)) 

- R-;;,3 (0.097 sin (30) + 0.038 sin (50)) 

x w-7 

5.414 sin (20) + 2. 707 R-;;,1 (cos ( 0) +cos (30)) 

9o11 = -R-;;,2 (0.812sin (20) + 0.785sin (40)) 

- R-;;,3 (0.406 cos (30) + 0.392 cos (50)) + 0.139R;;,4 sin (60) 

x w-8 
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9012 = [sin(20) (1.825lnRm- 0.490lnR~ + 2.220R;;,1)- 0.106R;;,2 sin (40)] X w-7 

5.414 sin (20) - 2. 707 R-;;,1 (cos ( 0) +cos (30)) 

9013 = - R-;;,2 (0.812 sin (20) + 0. 785 sin ( 40)) 

+R-;;,3 (0.406 cos (30) + 0.392 cos (50))+ 0.139R;;,4 sin (60) 

0.541 (1- cos (20))- 2.249ln Rm 

9111 = - R-;;,1 (0.854 sin ( 0) - 0.273 sin (30)) 

- R-;;,2 (0.087 cos (20) - 0.081 cos ( 40)) - 0.040R;;,3 sin (50) 

[ 

2.166- 8.996ln Rm + 0.108R;;,2 cos (40) l _7 
9112 = X 10 

-cos (20) (1.751ln Rm - 0.451ln R~ + 2.397 R-;;,1) 

x w-8 

x w-7 



1.8. 4J = 270, 3 < Rm < 15 

0.541 (1 - cos (20)) - 2.249ln Rm 

9113 = +R~1 (0.854sin (0)- 0.273sin (30)) 

- R~2 (0.087 cos (20) - 0.081 cos ( 40)) + 0.040R~3 sin (50) 

1.8 c/J = 270, 3 < Rm < 15 

x w- 7 

9001 = [ 0.541 (1 +cos (20))- 2.249ln Rm- 0.250R;;_.
2 

cos (20) l X w-7 

- R~1 (1.395 sin ( 0) + 0.266 sin (30)) 

9002 = [2.166+2.158cos(20) -8.996lnRm] X 10-7 

_ [ 0.541 (1 +cos (20)) - 2.249ln Rm- 0.250R;;_.2 cos (20) l 
9oo3- x w-7 

+ R;;_.1 (1.395 sin ( 0) + 0.266 sin (30)) 

9o11 = x w-8 

[ 

5.414 sin (20) + R;;_.1 (2. 707 cos ( 0) + 2.688 cos (30)) l 
- R;;? (0.812 sin (20) + 0.802 sin ( 40)) - 0.400R;;_.3 cos (50) 

9012 = [2.166sin (20)- 0.108R~2 (sin (20) +sin (40))] x 10-7 

9o13 = x w-8 

[ 

5.414 sin (20) - R;;_.1 (2. 707 cos (e) + 2.688 cos (30)) l 
- R;;_.2 (0.812 sin (20) + 0.802 sin ( 40)) + 0.400R;;_.3 cos (50) 

[ 

0.541 - 0.543 COS (20) - 2.249ln Rm l _
7 9lll = X 10 

- R;;_.1 (0.854 sin ( 0) - 0.271 sin (30)) 

9112 = [2.166(1-cos(20)) -8.996lnRm] X 10-7 

[ 

0.541 - 0.543 cos (20) - 2.249ln Rm l _7 
9113 = X 10 

+R;;-.1 (0.854sin (0)- 0.271 sin (30)) 
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APPENDIX J 

Surface Fit Equations - h terms 

The notation used in this section is hijk where i is the source point direction, j is 

the field element direction and k is the node number on the field element. 

J .1 c/J = 0, 2 < Rm < 3 

ho01 = 

R-;;,1 (1. 790 sin ( 0) + 0.864 sin (30)) + 0.379R;;,3 sin (50) 

+ R;;,2 (0.464 sin (20) + 0.862 sin ( 40)) 

-R-;;,4 ( 0.060sin (40)- 0.252sin (60) ) 

-0.050 sin (70) - 0.014 sin (80) 

X 10-2 

h002 = [R-;;,1 (7.162sin (0) + 3.451 sin (30)) + 0.510R;;,3 sin (50)] x 10-2 

hoo3 = 

R-;;,1 (1. 790 sin ( 0) + 0.864 sin (30)) + 0.379R;;_,3 sin (50) 

- R-;;,2 (0.464 sin (20) + 0.862 sin ( 40)) 

4 

( 

0.060sin (40)- 0.252sin (60) ) 
+R-

m +0.050 sin (70)- 0.014sin (80) 
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X 10-2 



J .1. <P = 0, 2 < Rm < 3 

- R;;/ (0.663 cos ( 8) + 8.621 cos (38)) 

+ R;;? (3.979 cos (28) - 8.621 cos ( 48)) 

hou = + R~3 (2.487 cos (38) - 4.042 cos (58)) x 10-3 

-4 ( 1.890 cos ( 48) + 0. 773 cos (58) - 2.471 cos (68) ) 
+Rm 

-0.492 cos (78) - 0.133 cos (88) 

ho12 = x 10 
[ 

- R~1 (0.265 cos ( 8) + 3.448 cos (38)) - 0.040R~4 cos (78) ] _
2 

+ R~3 (0.332 cos (38) - 0.503 cos (58)) 

-R~1 (0.663cos(8) + 8.621cos(38)) 

-R~2 (3.979cos(28)- 8.621cos(48)) 

ho13 = +R~3 (2.487cos(38)- 4.042cos(58)) x 10-3 

+R~4 ( -1.890 cos (48) + 0.773 cos (50)+ 2.471 cos (60) ) 

-0.492 cos (78) + 0.133 cos (88) 

R~1 (1.790cos (B)- 0.862cos (38)) 

+ R;;t2 (1.326 cos (28) - 0.862 cos ( 48)) 

hw1 = +R~3 (0.527cos(38) -0.361cos(5B)) x 10-2 

+ R~4 ( 0.328 cos ( 48) - 0.242 cos (68) - 0.048 cos (78) ) 

-0.013 cos (88) 

h
102 

= [ R~1 (7.162 cos ( 8) - 3.569 cos (38)) + 0.587 R~2 cos (38) l x 
10

_2 

-0.495R~3 cos (58) 

R~1 (1. 790 cos ( 8) - 0.862 cos (38)) 

- R~2 (1.326 cos (28) - 0.862 cos ( 48)) 

hw3 = +R~3 (0.527 cos (38) - 0.361 cos (58)) x 10-2 

hu1 = 

+ R~4 ( -0.328 cos ( 48) + 0.242 cos (68) - 0.048 cos (78) ) 

+0.013 cos (88) 

R~1 (3.515 sin (B) - 0.862 sin (38)) 

+ R~2 (2.188 sin (28) - 0.862 sin ( 48) + 0.035 sin ( 68)) 

+R~3 (0.786sin (38)- 0.352sin (58)- 0.186sin (68)) 

+ R~4 (0.458 sin ( 48) - 0.048 sin (78)) 

X 10-2 
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J .2. c/J = 0, 3 < Rm < 15 

hu2 = x 10 
[ 

R;;,i (1.406 sin ( 0) - 0.345 sin (30)) ] _
1 

hu3 = 

+R~3 (0.105sin (30)- 0.049sin (50)) 

R~1 (3.515 sin (B) - 0.862 sin (30)) 

-R~2 (2.188sin(2B)- 0.862sin(4B) + 0.035sin(6B)) 

+R~3 (0.786sin (30)- 0.352sin (50)+ 0.186sin (60)) 

- R~4 (0.458 sin ( 40) + 0.048 sin (70)) 

J .2 c/J = 0, 3 < Rm < 15 

R~1 (1. 790 sin (B) + 0.863 sin (30)) 

hom = + R~2 (0.464 sin (20) + 0.858 sin ( 40)) X w-2 

+0.384R~3 sin (50)+ 0.256R~4 sin (60) 

x w-2 

hoo2 = [R~1 (7.162 sin (B)+ 3.449 sin (30)) + 0.514R~3 sin (50)] X w-2 

R~1 (1.790sin (B)+ 0.863sin (30)) 

hoo3 = - R~2 (0.464 sin (20) + 0.858 sin ( 40)) X w-2 

hou = 

+0.384R~3 sin (58) - 0.256R~4 sin (68) 

- R~1 (0.663 cos (e) + 8.621 cos (3B)) 

+R~2 (3.979cos(2B)- 8.621cos(4B)) 

+R~3 (2.487 cos (30)- 3.807 cos (58)) 

+ R~4 (1.890 cos ( 40) - 2.537 cos ( 60) - 0.330 cos (70)) 

ho12 = X 10-2 
[ 

- R~1 (0.265 cos (B) + 3.448 cos (38)) l 
+R~3 (0.332 cos (30) - 0.511 cos (50)) 

- R~1 (0.663 cos (B) + 8.621 cos (30)) 

ho13 = 
- R~2 (3.979 cos (28) - 8.621 cos ( 40)) 

+ R~3 (2.487 cos (30) - 3.807 cos (50)) 

-R~4 (1.890 cos (40)- 2.537 cos (60) + 0.330cos (70)) 

x w-3 

x w-3 
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J .3. q; = 90, 2 < Rm < 3 

R~1 (1. 790 cos (e) - o.862 cos (38)) 

+ R~2 (1.326 cos (28) - 0.862 cos ( 48)) 

+ R~3 (0.527 cos (38) - 0.377 cos (58)) 

+R;;t4 (0.328cos(48)- 0.252cos(68)) 

X 10-2 

hw2 = x 10-2 

[ 

R~1 (7.162 cos (e) - 3.449 cos (3e)) l 
+R~3 (0.703cos(38)- 0.508cos(58)) 

R~1 (1. 790 cos (e) - o.862 cos (3e)) 

-R~2 (1.326cos(28)- 0.862cos(48)) 

+R~3 (0.527cos(38)- 0.377cos(58)) 

-R~4 (0.328cos(48)- 0.252cos(68)) 

R~1 (3.515sin (8)- 0.862sin (38)) 

+ R~2 (2.188 sin (28) - 0.862 sin ( 48)) 

+ R~3 (0. 786 sin (38) - 0.373 sin (58)) 

+R~4 (0.458sin (48)- 0.250sin (68)) 

X 10-2 

X 10-2 

hu2 = x 10-1 

[ 

R~1 (1.406sin (8)- 0.345sin (38)) l 
+ R~3 (0.105 sin (38) - 0.051 sin (58)) 

R~1 (3.515sin (8)- 0.862sin (38)) 

- R~2 (2.188 sin (28) - 0.862 sin ( 48)) 

+R~3 (0.786sin (38)- 0.373sin (58)) 

-R~4 (0.458sin (48)- 0.250sin (68)) 

X 10-2 

J. 3 c/J = 90, 2 < Rm < 3 

ho01 = 

- R~1 (3.515 cos (e) + o.862 cos (38)) 

-R~2 (2.188sin (28) + 0.862sin (48) + 0.035sin (68)) 

+R~3 (0.186sin (68) + 0.786cos (38) + 0.352cos (58)) 

+R~4 (0.458sin (48)- 0.048cos (78)) 

hoo2 = x 10 
[ 

-R~1 (1.406cos(8)+0.345cos(38)) l _1 

+ R~3 (0.105 cos (38) + 0.049 cos (58)) 
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X 10-2 



J .3. cjJ = 90, 2 < Rm < 3 

hoo3 = 

- R;;/ (3.515 cos (B) + 0.862 cos (30)) 

+ R;2 (2.188 sin (20) + 0.862 sin ( 40) + 0.035 sin (60)) 

-R;3 (0.186sin (60)- 0.786cos (30)- 0.352cos (50)) 

- R;4 (0.458 sin ( 40) + 0.048 cos (70)) 

-R;1 (1.790 sin (B)+ 0.862 sin (30)) 

+R;2 (1.326cos(2B) + 0.862cos(4B)) 

X 10-2 

hou = + R;3 (0.527 sin (38) + 0.361 sin (50)) x 10-2 

_ R;4 ( 0.048 sin (70) + 0.328 cos ( 40) ) 

+0.242 cos (60) - 0.013 cos (80) 

[ 

-R;1 (7.162sin (B)+ 3.448sin (30)) l 
ho12 = x 10-2 

+ R;3 (0. 703 sin (30) + 0.495 sin (50)) 

-R;1 (1.790sin (B)+ 0.862sin (38)) 

- R;2 (1.326 cos (20) + 0.862 cos ( 40)) 

ho13 = - R;3 (0.527 sin (30) + 0.361 sin (50)) x 10-2 

_ R;4 ( 0.048 sin (70) - 0.328 cos ( 40) ) 

-0.242 cos (60) + 0.013 cos (80) 

R;1 (0.663sin (B)- 8.621 sin (30)) 

+R;2 (3.979cos (20) + 8.621 cos (40)) 

hw1 = +R;3 (2.487sin (30) + 4.042sin (50)) x 10-3 

_ R;4 ( 0. 773 sin (50) + 0.492 sin (70) + 1.890 cos ( 40) ) 

+2.471 cos (60) - 0.133 cos (80) 

[ 

R~1 (0.265 sin (B) - 3.448 sin (30)) l _2 hw2 = x 10 
+ R;3 (0.332 sin (30) + 0.503 sin (50)) - 0.040R~4 sin (70) 

- R~1 (0.663 sin (e) - 8.621 sin (30)) 

- R;2 (3.979 cos (20) + 8.621 cos ( 40)) 

hw3 = - R;3 (2.487 sin (30) + 4.042 sin (50)) X w-3 

_ R;4 ( 0. 773 sin (50) + 0.492 sin (70) - 1.890 cos ( 40) ) 

-2.471 cos (60) + 0.133 cos (80) 
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J .4. q; = 90, 3 < Rm < 15 

- R~1 (1. 790 cos ( 0) - 0.864 cos (30)) 

- R~2 (0.464 sin (20) - 0.862 sin ( 40)) - 0.379R~3 cos (50) 

-R~4 ( 0.060sin (40) + 0.252sin (60)- 0.014sin (80) ) 

-0.050 cos (70) 

X 10-2 

h112 = [-R~1 (7.162cos(O) -3.452cos(30)) -0.510R~3 cos(50)] x 10-2 

-R~1 (1.790cos (0)- 0.864cos (30)) 

- R~2 (0.464 sin (20) - 0.862 sin ( 40)) - 0.379R~3 cos (50) 

-R~4 ( 0.060sin (40) + 0.252sin (60)- 0.014sin (80) ) 

-0.050 cos (70) 

J .4 cP = 90, 3 < Rm < 15 

ho01 = 

-R~1 (3.515cos(O) + 0.862cos(30)) 

- R~2 (2.188 sin (20) + 0.862 sin ( 40)) 

+R~3 (0.786 cos (30) + 0.373 cos (50)) 

+R~4 (0.458sin (40) + 0.250sin (60)) 

X 10-2 

hoo2 = x 10-1 
[ 

- R~1 (1.406 cos ( 0) + 0.345 cos (30)) ] 

ho03 = 

hou = 

+R~3 (0.105cos(30) + 0.051cos(50)) 

- R~1 (3.515 cos ( 0) + 0.862 cos (30)) 

+ R~2 (2.188 sin (20) + 0.862 sin ( 40)) 

+R~3 (0.786cos (30) + 0.373cos (50)) 

-R~4 (0.458sin (40) + 0.250sin (60)) 

-R~1 (1.790sin (0) + 0.862sin (30)) 

+ R~2 (1.326 cos (20) + 0.862 cos ( 40)) 

+R~3 (0.527sin (30) + 0.377sin (50)) 

-R~4 (0.328cos (40) + 0.252cos (60)) 

X 10-2 

X 10-2 

ho12 = x 10-2 
[ 

-R~1 (7.162sin(0)+3.448sin(30)) l 
+ R~3 (0. 703 sin (30) + 0.508 sin (50)) 

X 10-2 
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J .4. ifJ = 90, 3 < Rm < 15 

ho13 = 

-R:;;/ (1.790sin(B) + 0.862sin(3B)) 

- R:;;? (1.326 cos (28) + 0.862 cos ( 48)) 

+ R~3 (0.527 sin (38) + 0.377 sin (58)) 

+R~4 (0.328cos (48) + 0.252cos (68)) 

R~1 (0.663 sin (B)- 8.621 sin (38)) 

+ R~2 (3.979 cos (28) + 8.621 cos ( 48)) 

+ R~3 (2.487 sin (38) + 3.807 sin (58)) 

x w-2 

-R~4 (0.330sin (70) + 1.890cos (40) + 2.537 cos (60)) 

h102 = X 10-2 

[ 
R~1 (0.265 sin (B) - 3.448 sin (38)) l 
+R~3 (0.332 sin (38) + 0.512sin (58)) 

R~1 (0.663sin(B)- 8.621sin(3B)) 

- R~2 (3.979 cos (28) + 8.621 cos ( 48)) 

+R~3 (2.487sin (38) + 3.807sin (58)) 

- R~4 (0.330 sin (78) - 1.890 cos ( 48) - 2.537 cos ( 68)) 

-R~1 (1.790cos(B)- 0.862cos(3B)) 

hm = -R~2 (0.464sin (20)- 0.858sin (48)) X 10-2 

-0.384R~3 cos (58) - 0.256R~4 sin (68) 

x w-3 

x w-3 

hu2 = [-R~1 (7.162cos(B)- 3.449cos(3B))- 0.514R~3 cos(5B)] X 10-2 

-R~1 (1.790cos(O)- 0.862cos(30)) 

hu3 = + R~2 (0.464 sin (28) - 0.858 sin ( 48)) X 10-2 

-0.384R~3 cos (58) + 0.256R~4 sin (68) 
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J .5. cp = 180, 2 < Rm < 3 

J. 5 cp = 180, 2 < Rm < 3 

hoo1 = 

- R;;/ (1. 790 sin (B) + 0.864 sin (30)) 

+R;;,2 (0.464sin (20) + 0.862sin (40))- 0.379R;;,3 sin (50) 

_ _ 4 ( 0.060 sin ( 40) - 0.252 sin (60) + 0.050 sin (70) ) 
Rm 

-0.014 sin (88) 

X 10-2 

h002 = [-R;;,1 (7.162 sin (0) + 3.451 sin (38)) - 0.510R;;,3 sin (50)] x 10-2 

hoo3 = 

-R;;,1 (1.790sin(O) +0.864sin(38)) 

- R;;,2 (0.464 sin (20) + 0.862 sin ( 40)) - 0.379R;;,3 sin (50) 

+R;;,4 ( 0.060sin(40)- 0.252sin(68)- 0.050sin(78)) 

-0.014 sin (80) 

R;;,1 (0.663 cos (e) + 8.621 cos (38)) 

+R;;,2 (3.979cos(20)- 8.621cos(40)) 

hou = - R;;,3 (2.487 cos (30) - 4.042 cos (50)) 

ho12 = 

+R;;,4 ( 1.890cos (48)- 0.773cos (58)- 2.471 cos (60) ) 

+0.492 cos (78) - 0.133 cos (80) 

[ 
R;;,I (0.265 cos (e) + 3.448 cos (38)) l 
- R;;~3 (0.332 cos (38) - 0.503 cos (50)) + 0.040R;;,4 cos (70) 

R;;,1 (0.663 cos ( 0) + 8.621 cos (30)) 

- R;;,2 (3.979 cos (20) - 8.621 cos ( 40)) 

X 10-2 

X 10-3 

X 10-2 

ho13 = -R;;,3 (2.487cos(30)- 4.042cos(50)) x 10-3 

_ R;;,4 ( 1.890 cos ( 48) + 0. 773 cos (50) + 2.4 71 cos ( 60) ) 

-0.492 cos (78) + 0.133 cos (80) 

-R;;,1 (1.790cos (0)- 0.862cos (30)) 

+R;;,2 (1.326cos(20)- 0.862cos(40)) 

hw1 = -R;;,3 (0.527cos(30)- 0.361cos(50)) x 10-2 

+ R;;,4 ( 0.328 cos ( 40) - 0.242 cos (60) + 0.048 cos (70) ) 

-0.013 cos (80) 
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J.6. q; = 180, 3 < Rm < 15 

-
[ 

-R;;/ (7.162cos(8)- 3.569cos(38))- 0.587R~2 cos(38) l 
hw2- x 10-2 

+0.495R~3 cos (58) 

-R:;;,1 (1.790cos(8)- 0.862cos(38)) 

- R~2 (1.326 cos (28) - 0.862 cos ( 48)) 

hw3 = - R~3 (0.527 cos (38) - 0.361 cos (58)) x 10-2 

_ R~4 ( 0.328 cos ( 48) - 0.242 cos (68) - 0.048 cos (78) ) 

-0.013 cos (88) 

- R~1 (3.515 sin (B) - 0.862 sin (38)) 

+R:;;,2 (2.188sin (28)- 0.862sin (48) + 0.035sin (68)) 

-R~3 (0.786sin (38)- 0.352sin (58)+ 0.186sin (68)) 

+ R:;;,4 (0.458 sin ( 40) + 0.048 sin (70)) 

hu2 = x 10-1 

[ 

- R~1 (1.406 sin ( 8) - 0.345 sin (38)) l 
- R:;;,3 (0.105 sin (30) - 0.049 sin (58)) 

-R~1 (3.515sin (B)- 0.862sin (38)) 

hu3 = 
-R:;;,2 (2.188sin (28)- 0.862sin (48) + 0.035sin (68)) 

-R:;;,3 (0.786sin (30)- 0.352sin (58)- 0.186sin (68)) 

- R:;;,4 (0.458 sin ( 40) - 0.048 sin (70)) 

J. 6 c/J = 180, 3 < Rm < 15 

-R~1 (1.790sin (B)+ 0.863sin (38)) 

ho01 = + R~2 (0.464 sin (20) + 0.858 sin ( 40)) x 10-2 

-0.384R~3 sin (50) + 0.256R:;;,4 sin (68) 

X 10-2 

X 10-2 

h002 = [-R~1 (7.162sin (8) + 3.449sin (38))- 0.514R~3 sin (58)] x 10-2 

- R~1 (1. 790 sin (B) + 0.863 sin (30)) 

hoo3 = - R;;? (0.464 sin (28) + 0.858 sin ( 48)) x 10-2 

-0.384R~3 sin (50) - 0.256R~4 sin (68) 
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J .6. cp = 180, 3 < Rm < 15 

hou = 

R;;,_I (0.663 cos (B) + 8.621 cos (38)) 

+ R~2 (3.979 cos (28) - 8.621 cos ( 48)) 

- R~3 (2.487 cos (38) - 3.807 cos (58)) 

+ R~4 (1.890 cos ( 48) - 2.537 cos (68) + 0.330 cos (78)) 

ho12- x 10-2 -
[ 

R~1 (0.265 cos (B) + 3.448 cos (38)) l 
ho13 = 

-R~3 (0.332cos(3B)- 0.511cos(5B)) 

R~1 (0.663 cos (B)+ 8.621 cos (38)) 

- R~2 (3.979 cos (28) - 8.621 cos ( 40)) 

-R~3 (2.487cos(38)- 3.807cos(5B)) 

- R~4 (1.890 cos ( 48) - 2.537 cos (60) - 0.330 cos (70)) 

-R~1 (1.790cos (B)- 0.862cos (38)) 

+R~2 (1.326cos(2B)- 0.862cos(48)) 

-R~3 (0.527cos(3B)- 0.377cos(5B)) 

+R~4 (0.328cos (48)- 0.252cos (68)) 

X 10-2 

hw2 = x 10-2 

[ 

-R~1 (7.162cos(B)- 3.448cos(38)) l 
- R~3 (0. 703 cos (38) - 0.508 cos (58)) 

- R~1 (1. 790 cos (B) - 0.862 cos (38)) 

- R~2 (1.326 cos (20) - 0.862 cos ( 40)) 

- R~3 (0.527 cos (30) - 0.377 cos (58)) 

-R~4 (0.328cos (40)- 0.252cos (60)) 

- R~1 (3.515 sin (B) - 0.862 sin (38)) 

+R~2 (2.188sin (20)- 0.862sin (40)) 

- R~3 (0. 786 sin (38) - 0.373 sin (58)) 

+ R~4 (0.458 sin ( 40) - 0.250 sin (68)) 

X 10-2 

X 10-2 

hu2 = x 10-1 

[ 

- R~1 (1.406 sin (B) - 0.345 sin (38)) l 
-R~3 (0.105sin(38)- 0.051sin(5B)) 
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X 10-3 



J. 7. cp = 270, 2 < Rm < 3 

- R:;;,! (3.515 sin (B) - 0.862 sin (30)) 

hu3 = 
-R:;;? (2.188sin (20)- 0.862sin (40)) 

X 10-2 

-R~3 (0.786sin (30)- 0.373sin (50)) 

-R~4 (0.458sin (40)- 0.250sin (60)) 

J. 7 cjJ = 270, 2 < Rm < 3 

R~1 (3.515 cos (B)+ 0.862 cos (30)) 

hool = 
-R~2 (2.188sin (20) + 0.862sin (40) + 0.035sin (60)) 

-R~3 (0.186sin (60) + 0.786cos (30) + 0.352cos (50)) 

+ R~4 (0.458 sin ( 40) + 0.048 cos (70)) 

hoo2 = x 10-1 
[ 
R~1 (1.406 cos (e) + o.345 cos (3B)) l 

ho03 = 

- R~3 (0.105 cos (30) + 0.049 cos (50)) 

R~1 (3.515 cos (B) + 0.862 cos (30)) 

+ R~2 (2.188 sin (20) + 0.862 sin ( 40) + 0.035 sin (60)) 

-R~3 (0.186sin (60) + 0.786cos (30) + 0.352cos (50)) 

-R~4 (0.458sin (40)- 0.048cos (70)) 

R~1 (1. 790 sin (B) + 0.862 sin (30)) 

+R~2 (1.326cos(2B)- 0.862cos(4B)) 

X 10-2 

X 10-2 

hon = - R~3 (0.527 sin (38) + 0.361 sin (58)) x 10-2 

+ R~4 ( 0.048 sin (70) - 0.328 cos ( 40) - 0.242 cos ( 60) ) 

+0.013 cos (80) 

[ 

R~1 (7.162 sin ( 8) + 3.448 sin (38)) l 
ho12 = x 10-2 

-R~3 (0.703sin (30) + 0.495sin (50)) 

R~1 (1.790sin (8) + 0.862sin (30)) 

-R~2 (1.326cos (28) + 0.862cos (40)) 

ho13 = - R~3 (0.527 sin (30) + 0.361 sin (50)) x 10-2 

_ 4 ( 0.048 sin (78) + 0.328 cos ( 40) + 0.242 cos (60) ) 
+Rm 

-0.013 cos (80) 
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J. 7. ifJ = 270, 2 < R-m < 3 

- R~1 (0.663 sin (B) - 8.621 sin (30)) 

+ R~2 (3.979 cos (20) + 8.621 cos ( 40)) 

h101 = - R~3 (2.487 sin (30) + 4.042 sin (50)) x 10-3 

+ R~4 ( 0. 773 sin (50) + 0.492 sin (70) - 1.890 cos ( 40) ) 

-2.471 cos (60) + 0.133 cos (80) 

h102 = x 10-2 

[ 
- R~1 (0.265 sin (B) - 3.448 sin (30)) l 
-R~3 (0.332 sin (30) + 0.503 sin (50)) + 0.040R~4 sin (70) 

- R~1 (0.663 sin (B) - 8.621 sin (30)) 

- R~2 (3.979 cos (20) + 8.621 cos ( 40)) 

hw3 = - R~3 (2.487 sin (30) + 4.042 sin (50)) x 10-3 

+R~4 ( 0.773sin(50)+0.492sin(70)+1.890cos(4B)) 

+2.471 cos (60) - 0.133 cos (80) 

R;;/ (1. 790 cos (B) - 0.864 cos (38)) 

- R~2 (0.464 sin (20) - 0.862 sin ( 40)) + 0.379R~3 cos (50) 

-R~4 ( 0.060sin (40) + 0.252sin (60)- 0.014sin (80) ) 

+0.050 cos (70) 

X 10-2 

h112 = [R~1 (7.162 cos (B)- 3.451 cos (30)) + 0.510R~3 cos (50)] x 10-2 

R~1 (1.790cos(B)- 0.864cos(30)) 

+ R~2 (0.464 sin (20) - 0.862 sin ( 40)) + 0.379R~3 cos (50) 

+ R~4 ( 0.060 sin ( 40) + 0.252 sin (60) - 0.014 sin (80) ) 

-0.050 cos (70) 

X 10-2 
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J .8. cj; = 270, 3 < Rm < 15 

J .8 cP = 270, 3 < Rm < 15 

R;;/ (3.515 cos (8) + 0.862 cos (38)) 

hoo1 = 
- R~2 (2.188 sin (28) + 0.862 sin ( 461)) 

X 10-2 

- R~3 (0. 786 cos (361) + 0.373 cos (561)) 

+ R~4 (0.458 sin ( 461) + 0.250 sin ( 661)) 

hoo2 = x 10-1 
[ 

R~1 (1.406cos(61)+0.345cos(38)) l 
hoo3 = 

hou = 

-R~3 (0.105cos(361) + 0.051cos(50)) 

R~1 (3.515 cos ( 61) + 0.862 cos (38)) 

+ R~2 (2.188 sin (261) + 0.862 sin ( 461)) 

- R~3 (0.786 cos (361) + 0.373 cos (50)) 

-R~4 (0.458sin (40) + 0.250sin (661)) 

R~1 (1.790sin (0) + 0.862sin (30)) 

+ R~2 (1.326 cos (20) + 0.862 cos ( 40)) 

- R~3 (0.527 sin (30) + 0.377 sin (561)) 

- R~4 (0.328 cos ( 40) + 0.252 cos (60)) 

X 10-2 

X 10-2 

ho12 = x 10-2 
[ 

R~1 (7.162sin(0)+3.448sin(30)) l 
- R~3 (0. 703 sin (30) + 0.508 sin (50)) 

R~1 (1. 790 sin ( 0) + 0.862 sin (30)) 

h013 = 
- R~2 (1.326 cos (20) + 0.862 cos ( 40)) 

X 10-2 

- R~3 (0.527 sin (30) + 0.377 sin (50)) 

+R~4 (0.328 cos (40) + 0.252cos (60)) 

- R~1 (0.663 sin ( 0) - 8.621 sin (30)) 

- R~2 (3.979 cos (20) + 8.621 cos ( 40)) 

- R~3 (2.487 sin (30) + 3.807 sin (50)) 

+ R~4 (0.330 sin (78) - 1.890 cos ( 40) - 2.537 cos (60)) 

[ 

- R~1 (0.265 sin (B) - 3.448 sin (30)) l _2 hw2 = X 10 
- R~3 (0.332 sin (30) + 0.512 sin (50)) 
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J .8. cP = 270, 3 < Rm < 15 

-R~1 (0.663sin(O)- 8.621sin(30)) 

-R~2 (3.979cos(20) + 8.621cos(40)) 

- R~3 (2.487 sin (30) + 3.807 sin (50)) 

+R~4 (0.330 sin (70) + 1.890 cos ( 40) + 2.537 cos (60)) 

R~1 (1.790cos(O) ~ 0.863cos(30)) 

h111 = -R~2 (0.464sin (20)- 0.858sin (40)) 

+0.384R~3 cos (50)- 0.256R~4 sin (60) 

X 10-2 

X 10-3 

h112 = [R~1 (7.162cos (B)- 3.449cos (30)) + 0.514R~3 cos (50)] x 10-2 

R~1 (1. 790 cos (e) - o.863 cos (3e)) 

hu3 = +R~2 (0.464sin (20)- 0.858sin (40)) 

+0.384R~3 cos (50)+ 0.256R~4 sin (60) 

X 10-2 
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APPENDIX K 

Surface Fit Equations- s terms 

The notation used in this section is slijk where l, i and j are the tensor terms and 

k is the node number on the field element. 

K.l cjJ = 0, 2 < Rm < 3 

SlQOl = 

R~2 ( 2.745 (sin (20) +sin (40)) + 0.061 sin (50) ) 

+0.124 sin (70) - 0.015 sin (90) 

1.373 sin (30) + 3.896 sin (50) + 0.057 sin (60) 

-0.927 sin (70) - 0.159 sin (80) 

2.269 sin (60) + 2.347 sin (70) + 0.572 sin (80) 

+0.145 sin (90) + 0.016 sin (100) 

s1002 = [1.098R~2 (sin (20) +sin (40)) + R~4 (0.324sin (60) + 0.017sin (80))] x 104 
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K.l. <P = 0, 2 < Rm < 3 

S1Q03 = 

SlQll = 

R;;? ( 2.745 (sin (28) +sin (48))- 0.061 sin (58) ) 

-0.124 sin (78) + 0.015 sin (98) 

1.373 sin (38) + 3.896 sin (58) - 0.057 sin (68) 

-0.927 sin (78) + 0.159 sin (88) 

2.269 sin (60) - 2.347 sin (70) + 0.572 sin (80) 

-0.145 sin (98) + 0.016 sin (108) 

-0.016 cos (68) - 0.012R;;/ cos (88) 

2.745cos (48)- 0.090cos (50)- 0.652cos (68) ) -R-2 
m 

+0.106 cos (78) 

1.373 cos (38) - 4. 768 cos (58) - 2.316 cos (68) ) 
+R-3 

m 
+0.823 cos (78) + 0.352 cos (88) + 0.071 cos (98) 

1.235 cos ( 48) + 1.558 cos (58) - 2.180 cos (78) ) 
+R-4 

m 
-0.867 cos (88) - 0.227 cos (98) - 0.016 cos (108) 

81012 = X 10 
[ 

-1.098R~2 cos ( 48) + 0.013R~3 cos (88) l 4 

Suu = 

+ R~4 (0.165 cos ( 48) - 0.318 cos (68) - 0.046 cos (88)) 

-0.016 cos (68) - 0.012R~1 cos (88) 

-R~2 2.745cos(48) + 0.090cos(58)- 0.652cos(68)) 

-0.106 cos (78) 

-R~3 1.373cos(30)-4.768cos(58)+2.316cos(68) ) 

+0.823 cos (78) - 0.352 cos (88) + 0.071 cos (90) 

1.235 cos ( 40) - 1.558 cos (50) + 2.180 cos (70) ) 
+R-4 

m 

-0.867 cos (811) + 0.227 cos (911) - 0.016 cos (lOB) 

-R~1 (0.093sin (60) + 0.143sin (70)) 

2.745 (sin (28)- sin (411)) + 0.149sin (58) ) 
+R-2 

m 
+0. 776 sin (68) + 0.955 sin (78) 

4.118sin(38)- 5.202sin(58)- 2.278sin(68) ) 
+R-3 

m 
-1.802sin (78) + 0.147sin (80) + 0.069sin (98) 

2.471 sin ( 48) + 2.597 sin (50) - 0.538 sin (80) ) 
+R-4 

m 
-0.222 sin (98) - 0.016 sin (108) 
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K.l. cjJ = 0, 2 < R= < 3 

[ 

1.098R~2 (sin (20) - sin ( 40)) l 
81112 = X 104 

+ R~4 (0.329 sin ( 40) - 0.312 sin (60) - 0.017 sin (80)) 

-R~1 (0.093sin (60)- 0.143sin (70)) 

2.745 (sin (20)- sin (40))- 0.149sin (50) ) 
+R-2 

m 
+0.776sin (60)- 0.955sin (70) 

4.118sin (30)- 5.202sin (50)+ 2.278sin (60) ) 
-R-3 

m 
~1.802sin (70)- 0.147sin (80) + 0.069sin (90) 

2.471 sin ( 40) - 2.597 sin (50) - 0.538 sin (80) ) 
+R-4 

m 
+0.222 sin (90) - 0.016 sin (100) 

82002 = 81012 

82003 = 81Ql3 

0.140 cos (60)- 0.962R~1 cos (60) 

-R-2 
m 

5.491cos(20)- 2.745cos(40) -1.889cos(60) 

+0.014 cos (90) 

6.864 cos (30) - 4.637 cos (50) + 0.271 cos (70) 

+0.141 cos (80) 

3. 706 cos ( 40) + 2.460 cos (50) - 1.442 cos (70) ) 

-0.520 cos (80) - 0.136 cos (90) - 0.015 cos (100) 
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K.2. cjJ = 0, 3 < Rm < 15 

82112 = X 104 

[ 

-0.010R;;,l cos (60)- R~2 (2.196 cos (20) - 1.098 cos ( 40)) l 
+ R~3 (0.186 cos (60) + 0.007 cos (80)) - 0.494R~4 cos ( 40) 

0.140 cos (60)- 0.962R~1 cos (60) 

5.491cos(20)- 2.745cos(40) -1.889cos(60) 

-0.014 cos (90) 

6.864 cos (30) - 4.637 cos (50) + 0.271 cos (70) 

-0.141 cos (80) 

3. 706 cos ( 40) - 2.460 cos (50) + 1.442 cos (70) ) 

-0.520 cos (80) + 0.136 cos (90)- 0.015 cos (100) 

K.2 cp = 0, 3 < Rm < 15 

2.745R~2 (sin (20) +sin (40)) 

+ R~3 ( 1.373 sin (30) + 4.143 sin (50) - 0.120 sin (70) ) 

-0.034 sin (80) 

_ R~4 ( 0.207 sin (50) ~ 2.439 sin (60) - 1.010 sin (70) ) 

-0.211 sin (80) 

s1002 = [1.098R~2 (sin (20) +sin (40)) + 0.327R~4 sin (60)] x 104 

S1QQ3 = 

swu = 

2.745R~2 (sin (20) +sin (40)) 

~R-3 
m 

1.373 sin (30) + 4.143 sin (50) - 0.120 sin (70) 

+0.034 sin (80) 

0.207 sin (50) + 2.439 sin (60) - 1.010 sin (70) 

+0.211 sin (80) 

-R~2 (2.745cos (40) + 0.016cos (70)) 

1.373cos(30)- 4.192cos(50)- 0.023cos(60)) 
+R-3 

m 
+0.255 cos (70) + 0.033 cos (80) 

1.235 cos ( 40) + 0.620 cos (50) - 2.327 cos (60) ) 
+R-4 

m 
-1.282 cos (70) - 0.209 cos (80) - 0.020 cos (90) 
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K.2. cjJ = 0, 3 < Rm < 15 

s 1012 = [-1.098R~2 cos (40) + R;;_.4 (0.165cos (40)- 0.324cos (60))] x 104 

S1Q13 = 

sun = 

-R~2 (2.745cos(48)- 0.016cos(78)) 

1.373 cos (38)- 4.192 cos (58)+ 0.023 cos (68) ) 
-R-3 

m 
+0.255 cos (78) - 0.033 cos (88) 

1.235 cos ( 48) - 0.620 cos (58) - 2.327 cos ( 68) ) 
+R-4 

m 
+ 1.282 cos (78) - 0.209 cos (88) + 0.020 cos (98) 

R;;_.2 (2. 7 45 (sin (28) - sin ( 40)) + 0.017 sin (58)) 

4.118sin (38)- 4.393sin (58)- 0.034sin (68) ) 
+R-3 

m 
+0.114sin (78) 

2.471sin(48) + 1.347sin(58)- 2.255sin(68) ) 
+R~4 

-0.980 sin (78) - 0.092 sin (88) - 0.019 sin (98) 
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s1112 = [1.098R~2 (sin (28)- sin (48)) + R~4 (0.329sin (48)- 0.322sin (60))] x 104 

R~2 (2.745 (sin (28)- sin (48))- 0.017 sin (58)) 

s1113 = 

4.118sin (38)- 4.393sin (58)+ 0.034sin (68) ) 
-R-3 

m 
+0.114sin (78) 

2.471 sin (48)- 1.347sin (58)- 2.255sin (68) ) 
+R-4 

m 
+0.980 sin (78) - 0.092 sin (88) + 0.019 sin (98) 

Szool = swn 

Szooz = s1012 

Szoo3 = s1013 

Szon = sun 

s2012 = su12 



K.3. <P = 90, 2 < Rm < 3 

- R;,2 (5.491 cos (28) - 2. 7 45 cos ( 48) + 0.024 cos (58)) 

-R~3 (6.864cos(3B)- 4.502cos(58) + O.lllcos(7B)) 

-R~4 ( 3.706cos(4B) + 1.886cos(58)- 2.343cos(6B)) 

-0.964 cos (78) - 0.092 cos (88) 

82112 = X lQ 
[ 

-R~2 (2.196cos(2B) -1.098cos(4B)) l 4 

- R~4 (0.494 cos ( 48) - 0.319 cos (68)) 

- R~2 (5.491 cos (28) - 2. 745 cos ( 48) - 0.024 cos (58)) 

+R~3 (6.864cos (38)- 4.502cos (58)+ 0.111 cos (78)) 

_ R~4 ( 3. 706 cos ( 48) - 1.886 cos (58) - 2.343 cos (68) ) 

+0.964 cos (78) - 0.092 cos (88) 

K.3 cp = 90, 2 < Rm < 3 

cos (68) (0.034- 0.185R~1 ) - R~2 (5.491 cos (28) + 2.745 cos ( 48)) 

6.864 sin (38) + 4.637 sin (58) + 0.271 sin (78) ) -R-3 
m 

-0.067 sin (98)- 1.519 cos (68)- 0.141 cos (88) 81001 = 

2.460 sin (58) + 1.442 sin (78) - 0.217 sin (98) ) 
+R-4 

m 
+3. 706 cos ( 48) - 0.520 cos (88) + 0.015 cos (lOB) 

- [ -0.010R~1 cos (68) + 0.186R~3 cos (68) + 0.494R~4 cos (48) l X 104 
S1Q02-

- R~2 (2.196 cos (28) + 1.098 cos ( 48) + 0.003 cos (88)) 

cos ( 68) (0.034 - 0.185R~1 ) - R~2 
( 5.491 cos (28) + 2. 7 45 cos ( 48)) 

6.864 sin (38) + 4.637 sin (58) + 0.271 sin (78) ) 
+R-3 

m 
-0.067 sin (98) + 1.519 cos (68) + 0.141 cos (88) 

2.460 sin (58) + 1.442 sin (78) - 0.217 sin (98) ) 
-R-4 

m 
-3.706 cos ( 48) + 0.520 cos (88) - 0.015 cos (lOB) 
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K.3. rP = 90, 2 < Rm < 3 

swn = 

0.043 sin (60) + 0.057ln Rm cos (50) 

- R;;,l (0.227 sin (60) + 0.908 cos (50)) 

2.745 (sin (20) +sin (40))- 3.460cos (50) ) -R-2 
m 

+0.014 cos (90) 

1.655 sin (6fJ) + 0.147 sin (80) + 4.118 cos (30) ) 
+R-3 

m 
+0.293 cos (70) 

2.4 71 sin ( 40) - 0.538 sin (80) + 0.016 sin (lOO) ) 
+R-4 

m 
-1.512 cos (70) + 0.139 cos (90) 

81012 = X 104 

[ 

-R~2 (1.098 (sin (20) +sin (40)) + 0.049sin (60)) l 

S1Q13 = 

snn = 

+0.251R~3 sin (60) + R~4 (0.329 sin ( 40) - 0.017 sin (80)) 

0.043 sin (60) - 0.057ln Rm cos (50) 

-R~1 (0.227sin (60)- 0.908cos (50)) 

~ R~2 2.745 (sin (20) +sin ( 40)) + 3.460 cos (50) ) 

-0.014 cos (90) 

1.655sin (60) + 0.147sin (80)- 4.118cos (30) ) 
+R-3 

m 
-0.293 cos (70) 

2.471 sin ( 40) - 0.538 sin (80) + 0.016 sin (lOB) ) 
+R-4 

m 
+ 1.512 cos (70) - 0.139 cos (90) 

-0.016 cos (60) + 0.005 cos (80) 

0.090sin (50)+ 0.106sin (70)- 2.745 cos (40) ) -R-2 
m 

-0.652 cos (6fJ) + 0.088 cos (8fJ) 

1.373 sin (30) + 4. 768 sin (50) + 0.823 sin (70) ) 
+R-3 

m 
-0.071 sin (90) - 2.316 cos (60) 

-R-4 ( 1.558sin (50)+ 2.180sin (70)- 0.227sin (90) ) 

m + 1.235 COS ( 40) - 0.530 COS (80) + 0.016 COS (lOO) 

R~2 (1.098cos (40) + 0.052cos (60)) 

sm2 = - R~3 (0.260 cos (60) + 0.013 cos (80)) x 104 

- R~4 (0.165 cos ( 40) - 0.046 cos (80)) 
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K.3. <P = 90, 2 < Rm < 3 

81113 = 

-0.016 cos (60) + 0.005 cos (80) 

0.090 sin (50) + 0.106 sin (70) + 2. 7 45 cos ( 40) ) 
+R-2 

m 
+0.652 cos (60) - 0.088 cos (80) 

1.373 sin (30) + 4.768 sin (50)+ 0.823 sin (70) ) -R-3 
m 

-0.071 sin (90) + 2.316 cos (60) 

4 

( 

1.558sin (50)+ 2.180sin (70)- 0.227sin (90) ) 
+R-

m -1.235 cos ( 40) + 0.530 cos (80) - 0.016 cos (lOB) 

82002 = 81012 

82003 = 81013 

82012 = 81112 

82013 = 81113 

0.053R;;/ cos (70) 

2. 7 45 (sin (20) - sin ( 40)) + 0.033 sin (80) ) -R-2 
m 

+0.260 cos (70) 

0.057 sin (60)- 1.373 cos (30) + 4.192 cos (50) ) -R-3 
m 

-0.073 cos (90) 

2.269 sin (60) - 0.384 sin (80) + 0.016 sin (lOB) ) 
-R-4 

m 
-0.351 cos (50) - 1.606 cos (70) + 0.232 cos (90) 
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8 2112 = [-1.098R;2 (sin (20)- sin (40))- R;4 (0.324sin (60)- 0.017sin (80))] x 104 



K.4. <P = 90, 3 < R-m < 15 246 

-0.053R~1 cos (70) 

-R-2 
m 

2. 745 (sin (20) -sin (40)) + 0.033 sin (80) ) 

-0.260 cos (70) 

82113 = 0.057 sin (60) + 1.373 cos (30) - 4.192 cos (50) ) X 103 

-R-3 
m 

+0.073 cos (90) 

-R-4 
2.269 sin ( 60) - 0.384 sin (80) + 0.016 sin ( 100) ) 

m 
+0.351 cos (50) + 1.606 cos (70) - 0.232 cos (90) 

K.4 cp = 90, 3 < Rm < 15 

R~2 (0.024sin(50)- 5.491cos(20)- 2.745cos(40)) 

-R~3 (6.864sin (30) + 4.502sin (50)+ 0.111 sin (70)) 
X 103 

SlQQl = 
+ R;,.' ( 1.886 sin (50) + 0. 964 sin (70) + 3. 706 cos ( 40) ) 

+0.234 cos (60) - 0.092 cos (80) 

[ - R;;;' (2.196 cos {20) + 1.098 cos ( 40)) ] 4 
81002 = X 10 

+R~4 (0.494cos (40) + 0.319cos (60)) 

- R~2 (0.024 sin (50) + 5.491 cos (20) + 2. 7 45 cos ( 461)) 

+ R~3 (6.864 sin (361) + 4.502 sin (50) + 0.111 sin (761)) 
X 103 swo3 = 

_ R;,.' ( 1.886 sin (50) + 0.964 sin (70) - 3.706 cos ( 40) ) 

-0.234 cos (60) + 0.092 cos (861) 

-R~2 (2.745 (sin (20) +sin (40)) + 0.017 cos (50)) 

_ 3 ( 0.034 sin ( 60) + 4.118 cos (30) + 4.393 cos (50) ) 
+Rm 

X 103 
SlQll = +0.114cos (70) 

+R;,.' ( 2.471 sin (40) + 2.255sin (60) - 0.092 sin (80) ) 

-1.347 cos (50) - 0.980 cos (70) + 0.019 cos (961) 

s 1012 = [-1.098R~2 (sin (20) +sin (40)) + R~4 (0.329sin (40) + 0.322sin (661))] x 104 



K.4. cjJ = 90, 3 < Rm < 15 

81013 = 

8uu = 

-R;;? (2.745 (sin (20) +sin (40))- 0.017 cos (50)) 

0.034sin(60)- 4.118cos(30)- 4.393cos(50)) 
+R-3 

m 
-0.114cos (70) 

2.4 71 sin ( 40) + 2.255 sin (60) - 0.092 sin (80) ) 
+R-4 

m 
+ 1.347 cos (50) + 0.980 cos (70) - 0.019 cos (90) 

- R~2 (0.016 sin (70) - 2. 7 45 cos ( 40)) 

1.373 sin (30) + 4.192 sin (50) + 0.255 sin (70) ) 
+R-3 

m 
-0.023 cos (60) - 0.033 cos (80) 

-R-4 
m 

0.620 sin (50) + 1.282 sin (70) - 0.020 sin (90) ) 

+ 1.235 cos ( 40) + 2.327 cos (60) - 0.209 cos (80) 

s1112 = [1.098R~2 cos (40)- R~4 (0.165cos (40) + 0.324cos (60))] x 104 

81113 = 

R~2 (0.016sin(70) + 2.745cos(40)) 

1.373 sin (30) + 4.192 sin (50) + 0.255 sin (70) ) -R-3 
m 

+0.023 cos (60) + 0.033 cos (80) 

+R-4 
m 

0.620 sin (50) + 1.282 sin (70) - 0.020 sin (90) ) 

-1.235 cos ( 40) - 2.327 cos (60) + 0.209 cos (80) 

82013 = Sn13 
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K.5. cjJ = 180, 2 < Rm < 3 

-2.745R~2 (sin (20)- sin (40)) 

0.034 sin (80)- 1.373 cos (30) + 4.143 cos (30) ) 
-R-3 

m 
+0.120 cos (70) 

2.439 sin (60) - 0.211 sin (80) - 0.207 cos (50) ) 
-R-4 

m 
-1.010 cos (78) 

s2112 = [-1.098R~2 (sin (20)- sin (40))- 0.327R~4 sin (60)] x 104 

-2.745R~2 (sin (20)- sin (40)) 

( 

0.034 sin (80) + 1.373 cos (30) - 4.143 cos (30) ) 
-R-3 

m 
-0.120 cos (7(}) 

_ R~4 ( 2.439 sin (60) - 0.211 sin (80) + 0.207 cos (50) ) 

+ 1.010 cos (70) 

K.5 cjJ = 180, 2 < Rm < 3 

SlQQl = 

- R~2 (2. 7 45 (sin (20) + sin ( 40)) - 0.061 sin (50) - 0.124 sin (70)) 

+R~3 ( 1.373 sin (30) + 3.896 sin (50)- 0.057 sin (60) ) 

-0.927 sin (70) + 0.159 sin (80) - 0.073 sin (90) 

-R~4 ( 2.269sin(60)- 2.347sin(70) + 0.572sin(80)) 

-0.232 sin (90) + 0.016 sin (100) 
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s1002 = [1.098R~2 (sin (20) +sin ( 40)) - R~4 (0.324 sin (60) + 0.017 sin (80))] x 104 

S1QQ3 = 

- R~2 (2. 745 (sin (28) +sin ( 40)) + 0.061 sin (50) + 0.124 sin (70)) 

1.373 sin (30) + 3.896 sin (50) + 0.057 sin (60) ) -R-3 
m 

-0.927 sin (70)- 0.159 sin (80)- 0.073 sin (90) 

2.269 sin (60) + 2.347 sin (70) + 0.572 sin (80) ) -R-4 
m 

+0.232 sin (90) + 0.016 sin (100) 



K.5. cl> = 180, 2 < Rm < 3 

swn = 

-0.016 cos (60)- 0.047 R~1 cos (70) 

+R-3 
m 

2. 7 45 cos ( 40) + 0.090 cos (50) - 0.652 cos ( 60) 

+0.234 cos (70) + 0.085 cos (80) 

1.373 cos (30) - 4.768 cos (50) + 2.316 cos (60) 

-0.557 cos (80) + 0.071 cos (90) 

_ R_4 ( 1.235 cos ( 40) - 1.558 cos (50)+ 1.523 cos (70) ) 

m -1.031 COS (80) + 0.227 COS (90) - 0.016 COS (100) 

81012 = X 104 

[ 

1.098R~2 cos ( 40) - 0.013R~3 cos (80) l 

sun = 

su12 = 

+R~4 (0.165cos (40)- 0.318cos (60)- 0.046cos (80)) 

-0.016 cos (60) + 0.047 R~1 cos (70) 

+R~2 ( 2.745cos(40)- 0.090cos(50)- 0.652cos(6B) 

-0.234 cos (70) + 0.085 cos (80) 

1.373 cos (30) - 4.768 cos (50) - 2.316 cos (60) 
-R-3 

m 
+0.557 cos (80) + 0.071 cos (90) 

1.235cos(40) + 1.558cos(50) -1.523cos(70) ) 

-1.031 cos (80) - 0.227 cos (90) - 0.016 cos (lOO) 

0.093R~1 sin (60) 

2.745 (sin (20)- sin (40))- 0.149sin (50) ) -R-2 
m 

+0. 776 sin (60) - 0.003 sin (100) 

4.118 sin (30) - 5.202 sin (50) + 2.278 sin (60) ) 
+R-3 

m 
+0.293 sin (70) - 0.147 sin (80) + 0.069 sin (90) 

2.471 sin ( 40) - 2.597 sin (50)+ 1.512 sin (70) ) -R-4 
m 

-0.538 sin (80) + 0.222 sin (90) 

-0.023R~1 sin ( 40) 

- R~2 (1.098 sin (20) - 1.269 sin ( 40) + 0.049 sin (60)) 

- R~3 (0.413 sin ( 40) - 0.251 sin (60)) + 0.017 R~4 sin (80) 
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K.5. 4J = 180, 2 < Rm < 3 

81113 = 

0.093R~1 sin (68) 

2. 7 45 (sin (28) - sin ( 48)) + 0.149 sin (58) ) -R-2 
m 

+0.776sin (68)- 0.003sin (108) 

4.118sin(38)- 5.202sin(50)- 2.278sin(68) ) -R-3 
m 

+0.293 sin (70) + 0.14 7 sin (88) + 0.069 sin (90) 

_ R~4 2.4 71 sin ( 48) + 2.597 sin (58) - 1.512 sin (78) ) 

-0.538 sin (80) - 0.222 sin (98) 

82003 = 81013 

82011 = 81111 

82012 = 81112 

82013 = 81113 

-0.015R~1 cos (78) 

+R-2 
m 

5.491cos(2B)- 2.745cos(4B)- 0.209cos(5B) 

+0.294cos (68) 

6.864cos (38)- 5.635cos (58)+ 1.633cos (68) 

-0.141 cos (88) + 0.067 cos (98) 

3.706cos(4B)- 3.636cos(5B) + 1.013cos(7B) ) 

-0.520 cos (88) + 0.217 cos (98) - 0.015 cos (108) 

[ 

R~2 (2.196 cos (28) - 1.098 cos ( 48) + 0.04 7 cos ( 68)) l X 104 
82112 = 

-0.242R~3 cos (68) + R~4 (0.494cos (48)- 0.017 cos (80)) 
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K.6. cjJ = 180, 3 < Rm < 15 

0.015R;;/ cos (70) 

5.491 cos (20) - 2. 7 45 cos ( 40) - 0. 209 cos (50) 

+0.294cos (60) 

6.864 cos (30) - 5.635 cos (50) - 1.633 cos (60) 

+0.141 cos (80) + 0.067 cos (9t'J) 

3. 706 cos ( 40) - 3.636 cos (50) + 1.013 cos (70) ) 

-0.520 cos (80) + 0.217 cos (90) - 0.015 cos (100) 

K.6 cp = 180, 3 < Rm < 15 

81001 = 

-2.745R~2 (sin (20) +sin (40)) 

3 
( 1.373 sin (30) + 4.142 sin (50) - 0.120 sin (70) 

+R~ 
+0.034 sin (80) 

_ R~4 ( 0.207 sin (5t'J) + 2.439 sin (60) - 1.010 sin (70) 

+0.211 sin (80) 

s1002 = [-1.098R~2 (sin (20) +sin (40))- 0.327R~4 sin (60)] x 104 

swn = 

-2.745R~2 (sin (20) +sin ( 40)) 

1.373 sin (30) + 4.142 sin (50) - 0.120 sin (70) 

-0.034 sin (80) 

0.207 sin (50) - 2.439 sin (60) - 1.010 sin (70) 

-0.211 sin (80) 

R~2 (2. 7 45 cos ( 40) - 0.016 cos (70)) 

1.373 cos (30)- 4.192 cos (50)+ 0.023 cos (60) ) 
+R-3 

m 
+0.255 cos (70) - 0.033 cos (80) 

1.235 cos ( 40) - 0.620 cos (50) - 2.327 cos (60) ) -R-4 
m 

+ 1.282 cos (70) - 0.209 cos (80) + 0.020 cos (90) 

s1012 = [1.098R~2 cos (4t'J)- R~4 (0.165cos (40)- 0.324cos (60))] x 104 
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K.6. cjJ = 180, 3 < Rm < 15 

81013 = 

suu = 

R;;.2 (2. 7 45 cos ( 40) + 0.016 cos (70)) 

1.373 cos (30)- 4.192 cos (50)- 0.023 cos (60) ) -R-3 
m +0.255 COS (70) + 0.033 COS (80) X 103 

_ R;;.
4 

1.235 cos ( 40) + 0.620 cos (50) - 2.327 cos (60) ) 

-1.282 cos (70) - 0.209 cos (80) - 0.020 cos (90) 

- R;;.2 (2. 7 45 (sin (20) - sin ( 40)) - 0.017 sin (50)) 

4.118 sin (30)- 4.393 sin (50)+ 0.034sin (60) ) 
+R-3 

m +0.114sin (70) X 103 

-R-4 
m 

2.471sin(40) -1.347sin(50)- 2.255sin(60) ) 

+0.980 sin (70) - 0.092 sin (80) + 0.019 sin (90) 
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sm2 = [ -1.098R;;.2 (sin (28) -sin ( 40)) - R;;.4 (0.393 sin ( 48) - 0.322 sin (60) )] x 104 

- R;;.2 (2. 745 (sin (20) - sin ( 40)) + 0.017 sin (50)) 

-R;;.3 4.118sin (30)- 4.393sin (50)- 0.034sin (60) ) 

+0.114sin (70) 

2.471sin(40) + 1.347sin(50)- 2.255sin(60) ) -R-4 
m 

-0.980 sin (70) - 0.092 sin (80) - 0.019 sin (90) 

82002 = 81012 

82003 = 81013 



K.7. <P = 270, 2 < Rm < 3 

cos (60) (0.0014- 0.040R~1 ) 

+R~2 (5.491 cos (20)- 2.745cos (40) + 0.394cos (60)) 

-R-3 
m 

+R-4 
m 

6.864 cos (30) - 4.291 cos (50) + 1.624 cos (60) 

+0.111 cos (70) 

3. 706 cos ( 40) - 1.447 cos (50) + 0.964 cos (70) 

-0.092 cos (80) 

82112 = X 104 

[ 

R~2 (2.196 cos (20) - 1.098 cos ( 40)) l 
+ R~4 (0.494 cos ( 40) - 0.319 cos ( 60)) . 

cos (60) (0.0014- 0.040R~1 ) 

+R~2 (5.491 cos (20)- 2.745cos (40) + 0.394cos (60)) 

( 

6.864cos(30) -4.291cos(50) -1.624cos(60)) +R-3 
m 

+0.111 cos (70) 

+R~4 ( 3.706cos(40) + 1.447cos(50)- 0.964cos(70)) 

-0.092 cos (80) 

K. 7 cjJ = 270, 2 < Rm < 3 

R~2 (5.491 cos (20) + 2.745 cos ( 40) + 0.294 cos (60)) 

6.864 sin (30) + 4.637 sin (50) + 0.271 sin (70) ) -R-3 
m 

-0.067 sin (90) + 1.633 cos (60) + 0.141 cos (80) 

2.460 sin (50) + 1.442 sin (70) - 0.217 sin (90) ) 
+R-4 

m 
-3.706 cos ( 40) + 0.520 cos (80) - 0.015 cos (100) 

SlQQl = 

81002 = X 10 
[ 

R~2 (2.196cos(20)+1.098cos(40)) l 4 

S1QQ3 = 

-R~4 (0.494cos(40) + 0.306cos(60)- 0.017cos(80)) 

R~2 (5.491 cos (20) + 2.745cos (40) + 0.294cos (60)) 

6.864 sin (30) + 4.637 sin (50) + 0.271 sin (70) ) 
+R-3 

m 
0.067sin(90) -1.633cos(60) -0.141cos(80) 

2.460 sin (50) + 1.442 sin (70) - 0.217 sin (90) ) -R-4 
m 

+3. 706 cos ( 40) - 0.520 cos (80) + 0.015 cos (100) 
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K.7. rjJ = 270, 2 < Rm < 3 

swn = 

S1Ql3 = 

sun = 

0.030ln R~ cos (50)- R;;/ (0.093sin (60) + 0.772cos (50)) 

2.745(sin(2B) +sin(4B)) +0.776sin(6B)) +R-2 
m 

+3.287 cos (50) - 0.038 cos (90) 

2.278 sin (60) + 0.147 sin (80)- 4.118 cos (30) ) -R-3 
m 

-0.293 cos (70) - 0.117 cos (90) 

__ 4 ( 2.471sin(4B)- 0.538sin(8B) +0.016sin(10B)) 
Rm 

+ 1.512 cos (70) 

-0.023R~1 sin ( 40) 

+R~2 (1.098sin (20) + 1.269sin (40) + 0.049sin (60)) 

- R~3 (0.413 sin ( 40) + 0.251 sin (60)) + 0.017 R~4 sin (80) 

-0.030lnR~cos(5B)- R~1 (0.093sin(6B)- 0.772cos(5B)) 

+R~2 ( 2.745(sin(2B)+sin(4B))+0.776sin(6B)) 

-3.287 cos (50) + 0.038 cos (90) 

2.278 sin (60) + 0.147 sin (80) + 4.118 cos (30) ) -R-3 
m 

+0.293 cos (70) + 0.117 cos (90) 

2.471 sin ( 40) - 0.538 sin (80) + 0.016 sin (lOB) ) -R-4 
m 

-1.512 cos (70) 

+R-3 
m 

0.090 sin (50) + 0.106 sin (70) + 2. 7 45 cos ( 40) ) 

+0.085 cos (80) 

1.373sin (38) + 4.768sin (50)+ 0.823sin (70) ) 

-0.071 sin (90) + 0.114cos (60) + 0.557 cos (80) 

1.558 sin (50) + 2.180 sin (70) - 0.227 sin (90) 

- R~4 -1.235 cos ( 40) - 2.066 cos (60) + 1.031 cos (80) 

-0.016 cos (lOB) 

81112 = X 10 
[ 

- R~2 (1.098 cos ( 40) - 0.003 cos (80)) l 4 

+R~4 (0.165cos (40) + 0.318cos (60)- 0.031 cos (80)) 

254 



K.7. <P = 270, 2 < Rm < 3 

81113 = 

R~2 ( 0.090 sin (50) + 0.106 sin (70) - 2. 7 45 cos ( 40) ) 

-0.085 cos (80) 

1.373 sin (30) + 4. 768 sin (50) + 0.823 sin (70) ) -R-3 
m 

-0.071sin(90)- 0.114cos(60)- 0.557cos(80) 

1.558 sin (50) + 2.180 sin (70) - 0.227 sin (90) 

+ R~4 + 1.235 cos ( 40) + 2.066 cos (60) - 1.031 cos (80) 

+0.016 cos (100) 

82012 = 81112 

0.038 cos (50) 

2.745 (sin (20)- sin (40))- 0.011 sin (100) 

-1.318 cos (50) + 0.124 cos (70) + 0.040 cos (90) 

0.057 sin ( 60) + 0.159 sin (80) + 0.033 sin ( 100) 

+ 1.373 cos (30) - 0.927 cos (70) - 0.122 cos (90) 

2.269 sin (60) - 0.572 sin (80) - 3.370 cos (50) ·) 

+2.347 cos (70) 
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8 2112 = [1.098R~2 (sin (20)- sin(40)) + R~4 (0.324sin (60)- 0.017sin(80))] x 104 



K.8. <f; = 270, 3 < Rm < 15 

-0.038 cos (50) 

+R-2 
m 

2.745 (sin (20)- sin (40))- 0.011 sin (100) 

+ 1.318 cos (50) - 0.124 cos (70) - 0.040 cos (90) 

0.057 sin (60) + 0.159 sin (80) + 0.033 sin (100) 

-1.373 cos (30) + 0.927 cos (70) + 0.122 cos (90) 

2.269 sin (60) - 0.572 sin (80) + 3.370 cos (50) ) 

-2.347 cos (70) 

K.8 cp = 270, 3 < Rm < 15 

R;;,2 (0.024 sin (50) + 5.491 cos (20) + 2. 7 45 cos ( 40)) 

- R~3 (6.864 sin (30) + 4.502 sin (50) + 0.111 sin (70)) 

+ R~4 ( 1.886 sin (50) + 0.964 sin (70) - 3. 706 cos ( 40) ) 

-2.343 cos (60) + 0.092 cos (80) 

swo2 = x 10 
[ 

R~2 (2.196 cos (20) + 1.098 cos ( 4!9)) l 4 

swo3 = 

swn = 

- R~4 (0.494 cos ( 40) + 0.319 cos (60)) 

- R~2 (0.024sin (50) - 5.491 cos (20) - 2.745 cos ( 40)) 

+R~3 (6.864sin (30) + 4.502sin (50)+ 0.111 sin (70)) 

_ R~4 ( 1.886 sin (58) + 0.964 sin (70) + 3. 706 cos ( 40) ) 

+2.343 cos (60) - 0.092 cos (80) 

R~2 (2. 7 45 (sin (20) +sin ( 40)) - 0.017 cos (50)) 

0.034sin (60)- 4.118 cos (30)- 4.393 cos (50) ) -R-3 
m 

-0.114cos (70) 

2.471 sin ( 40) + 2.255 sin (60) - 0.092 sin (80) ) -R-4 
m 

+ 1.347 cos (50) + 0.980 cos (70) - 0.019 cos (90) 
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s1012 = [1.098R~2 (sin (20) +sin (40))- R~4 (0.329sin (40)- 0.322sin (6!9))] x 104 



K.8. rjJ = 270, 3 < Rm < 15 

Suu = 

R;;_.2 (2. 745 (sin (20) +sin ( 40)) + 0.017 cos (50)) 

-R:;;-.3 0.034sin(60) +4.118cos(30) +4.393cos(50)) 

+0.114cos (70) 

2.471 sin (40) + 2.255sin (60)- 0.092sin (80) ) 
-R-4 

m 
-1.34 7 cos (50) - 0.980 cos (70) + 0.019 cos (90) 

- R:;;-.2 (0.016 sin (70) + 2. 7 45 cos ( 40)) 

+R:;;-.3 ( 1.373sin (30) + 4.192sin (50)+ 0.255sin (70) ) 

+0.023 cos (60) + 0.033 cos (80) 

_ _ 4 ( 0.620 sin (50) + 1.282 sin (70) - 0.020 sin (90) ) 
Rm 

-1.235 cos ( 40) - 2.327 cos (60) + 0.209 cos (80) 

sm2 = [-1.098R;;_.2 cos (40) + R:;;-.4 (0.165cos (40) + 0.324cos (60))] x 104 

su13 = 

R;;_.2 (0.016sin (70)- 2.745cos (40)) 

_ R:;;-.3 1.373 sin (30) + 4.192 sin (50) + 0.255 sin (70) ) 

-0.023 cos (60) - 0.033 cos (80) 

0.620 sin (50) + 1.282 sin (70) - 0.020 sin (90) ) 
+R-4 

m 
+1.235cos(40) + 2.327cos(60)- 0.209cos(80) 
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K.8. c/J = 270, 3 < Rm < 15 

2. 7 45R~2 (sin (20) - sin ( 40)) 

0.034sin (80) + 1.373cos (30)- 4.143cos (50) ) 
+R-3 

m 
-0.120 cos (70) 

2.439 sin (60) - 0.211 sin (80) + 0.207 cos (50) ) 
+R-4 

m 
+ 1.010 cos (70) 

s2112 = [1.098R~2 (sin (20) - sin ( 40)) + 0.327 R~4 sin ( 60)] x 104 

2.745R~2 (sin (20)- sin (40)) 

0.034 sin (80) - 1.373 cos (30) + 4.143 cos (50) ) 
+R-3 

m 
+0.120 cos (70) 

2.439 sin (60) - 0.211 sin (80) - 0.207 cos (50) ) 
+R-4 

m 
-1.010 cos (70) 
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APPENDIX l 

Surface Fit Equations - d terms 

The notation used in this section is dtijk where l, i and j are the tensor terms and 

k is the node number on the field element. 

L.l cp = 0, 2 < Rm < 3 

dw01 = 

R~1 (3.515 cos (B) + 0.182 cos (2B) + 0.862 cos (3B)) 

+R~2 (0.875cos(4B)- 0.044cos(6B)) 

+R~3 ( 3.194cos(2B)+0.269cos(3B)+0.388cos(5B)) 

+0.215 cos (6B) + 0.022 cos (7B) 

-2.544R~4 cos (20) 

X 10-2 

- [ R~1 (1.406 cos (B)+ 0.339 cos (3B)) + 0.030R~2 cos (3B) l X 10-1 
dwo2 -

+0.052R~3 cos (50) 

R~1 (3.515 cos (B) - 0.182 cos (2B) + 0.862 cos (3B)) 

- R~2 (0.875 cos ( 40) - 0.044 cos (60)) 

( 

3.194cos(20)- 0.269cos(30)- 0.388cos(50)) -R-3 
m 

+0.215 cos (60) - 0.022 cos (70) 

+2.544R~4 cos (20) 
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X 10-2 



L.l. cP = 0, 2 < Rm < 3 

dwn = 

R~1 (1.790sin (0) + 0.864sin (30)) 

+ R~2 (0.464 sin (20) + 0.862 sin ( 40)) + 0.379R~3 sin (58) 

_ R~4 ( 0.060 sin ( 48) - 0. 252 sin ( 60) - 0.050 sin (70) ) 

-0.014sin (80) 

d1012 = [R~1 (7.162 sin (0) + 3.451 sin (30)) + 0.510R~3 sin (58)] x 10-2 

R~1 (1.790sin (0) + 0.864sin (38)) 

- R~2 (0.464 sin (20) + 0.862 sin ( 48)) + 0.379R~3 sin (50) 

_ R~4 ( 0.060 sin ( 40) + 0.252 sin (60) - 0.050 sin (78) ) 

+0.014 sin (88) 

- R~1 (0.663 cos (e) + 8.621 cos (30)) 

+ R~2 (3. 979 cos (28) - 8.621 cos ( 48) + 0.158 cos (78)) 

X 10-2 

X 10-2 

dnu = +R~3 (2.487cos(30)- 4.042cos (58)- 0.578cos(70)) x 10-3 

+ R~4 ( 1.890 cos ( 40) + 0. 773 cos (50) - 2.471 cos (60) ) 

-0.133 cos (80) 

[ 

- R~1 (0.265 cos ( 0) + 3.448 cos (30)) ] 
du12 = x 10-2 

+R~3 (0.332 cos (30)- 0.503 cos (50)) - 0.040R~4 cos (70) 

- R~1 (0.663 cos (B) + 8.621 cos (38)) 

-R~2 (3.979cos (20)- 8.621 cos (40)- 0.158cos (78)) 

du13 = +R~3 (2.487 cos (30)- 4.042 cos (58)- 0.578 cos (78)) X 10-3 

_ R~4 ( 1.890 cos ( 40) - 0. 773 cos (58) - 2.4 71 cos ( 68) ) 

-0.133 cos (88) 

- R~1 (0.663 sin ( 0) - 8.621 sin (38)) 

- R~2 
( 4.642 sin (20) - 8.971 sin ( 40)) 

d2oo1 = -R~3 (2.686sin (30) + 1.680sin (40)- 4.049sin (50)) x 10-3 

_ R~4 ( 0.803 sin (5B) - 2.468 sin (68) - 0.492 sin (78) ) 

-0.133 sin (88) 
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L.l. cf; = 0, 2 < Rm < 3 

d2oo2 = x w-2 

[ 

- R~1 (0.265 sin (B) - 3.510 sin (30) - 0.030 sin (50)) ] 

+0.299R~2 sin (30) + R~4 (0.772sin (50)+ 0.040sin (70)) 

-R~1 (0.663sin (B)- 8.621 sin (30)) 

+ R~2 
( 4.642 sin (20) - 8.971 sin ( 40)) 

d2003 = - R~3 (2.686 sin (30) - 1.680 sin ( 40) - 4.049 sin (50)) X w-3 

_ R~4 ( 0.803 sin (50) + 2.468 sin (60) - 0.492 sin (70) ) 

+0.133sin (80) 

R~1 (1.790cos (B)- 0.862cos (30)) 

+R~2 (1.326cos(2B)- 0.862cos(40)) 

d2011 = +R~3 (0.527cos(30)- 0.413cos(50)- 0.021cos(70)) X 10-2 

+R~4 ( 0.328cos (40) + 0.120cos (50)- 0.242cos (60) ) 

-0.013 cos (80) 

_ [ R;;/ (7.162 cos (e) - 3.569 cos (3B)) + o.587 R~2 cos (30) ] x 
10

_2 
d2012 -

-0.495R~3 cos (50) 

R~1 (1.790cos (B)- 0.862cos (30)) 

-R~2 (1.326cos (20)- 0.862cos (40)) 

d2o13 = +R~3 (0.527 cos (3B)- 0.413 cos (50) - 0.021 cos (70)) x w-2 

-R~4 ( 0.328cos(40)- 0.120cos(50)- 0.242cos(60)) 

-0.013 cos (80) 

R~1 (3.515 sin (B) - 0.862 sin (30)) 

+ R~2 (2.188 sin (20) - 0.862 sin ( 40)) 

+ R~3 (0. 786 sin (30) - 0.352 sin (50)) 

+R~4 (0.458sin (40)- 0.237sin (60)- 0.048sin (70)) 

x w-2 

[ 

R~1 (1.406 sin (e) - 0.345 sin (30) + 0.008 sin (50)) ] _1 
d2112 = X 10 

-0.039R~2 sin (50)+ 0.105R~3 sin (30) 
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L.2. <P = 0, 3 < Rm < 15 

R;;/ (3.515sin (B)- 0.862sin (30)) 

+R:;;? (2.188sin(2B)- 0.862sin(4B)) 

+R~3 (0.786sin(3B)- 0.352sin(5B)) 
X 10-2 

+R~4 (0.458sin (40)- 0.237sin (60)- 0.048sin (70)) 

L.2 cjJ = 0, 3 < Rm < 15 

R~1 (3.515 cos (B)+ 0.862 cos (30)) 

dw01 = + R~2 (1.326 cos (20) - 0.867 cos ( 40)) 

+R~3 (0.269cos (30) + 0.388 cos (50))+ 0.258R~4 cos (60) 

[ 
R~1 (1.406cos(B) + 0.345cos(3B)) l 

dwo2 = x 10-1 

+R~3 (0.036 cos (30) + 0.052 cos (50)) 

R~1 (3.515 cos (B) + 0.862 cos (30)) 

dwo3 = - R~2 (1.326 cos (20) - 0.867 cos ( 40)) 

+ R~3 (0.269 cos (30) + 0.388 cos (50)) - 0.258R~4 cos (60) 

R~1 (1.790sin (B)+ 0.863sin (30)) 

dwn = + R~2 (0.464 sin (20) + 0.858 sin ( 40)) x 10-2 

+0.384R~3 sin (50)+ 0.256R~4 sin (60) 

d1012 = [R~1 (7.162sin (B)+ 3.449sin (30)) + 0.514R~3 sin (50)] x 10-2 

R~1 (1. 790 sin (B) + 0.863 sin (30)) 

dw13 = - R~2 (0.464 sin (20) + 0.858 sin ( 40)) x 10-2 

+0.384R~3 sin (50) - 0.256R~4 sin (60) 

- R~1 (0.663 cos (B) + 8.621 cos (30)) 

X 10-2 

X 10-2 

dnn = 
+R~2 (3.979cos (20)- 8.621 cos (40)) 

+ R~3 (2.487 cos (30) - 3.807 cos (50)) 
X 10-3 

+ R~4 (1.890 cos ( 40) - 2.537 cos ( 60) + 0.330 cos (70)) 

[ 

- R~1 (0.265 cos (B) + 3.448 cos (30)) l _2 dm2 = x 10 
+R~3 (0.332 cos (30) - 0.511 cos (50)) 
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L.2. cjJ = 0, 3 < R.n < 15 

- R-;;,1 (0.663 cos (e) + 8.621 cos (3e)) 

du13 = 
-R-;;,2 (3.979cos(20)- 8.621cos(4B)) 

+R-;;,3 (2.487 cos (30)- 3.807 cos (50)) 

-R-;;,4 (1.890cos(40)- 2.537cos(60)- 0.330cos(70)) 

- R-;;,1 (0.663 sin (B) - 8.621 sin (30)) 

- R-;;,2 
( 4.642 sin (20) - 8.621 sin ( 40)) 

-R-;;,3 (2.686sin (30)- 3.804sin (50)) 

-R-;;,4 (1.989sin (40)- 2.535sin (60)- 0.330sin (70)) 

d2002 = X 10-2 

[ 

- R-;;,1 (0.265 sin (B) - 3.448 sin (30)) l 
- R-;;,3 (0.358 sin (30) - 0.511 sin (50)) 

- R-;;,1 (0.663 sin (B) - 8.621 sin (30)) 

+ R-;;,2 
( 4.642 sin (20) - 8.621 sin ( 40)) 

- R-;;,3 (2.686 sin (30) - 3.804 sin (50)) 

+ R-;;,4 (1.989 sin ( 40) - 2.535 sin (60) + 0.330 sin (70)) 

R-;;,1 (1. 790 cos (e) - o.862 cos (3e)) 

+ R-;;,2 (1.326 cos (20) - 0.862 cos ( 40)) 

+R-;;,3 (0.527 cos (30)- 0.377 cos (50)) 

+R;;,4 (0.328cos(40)- 0.252cos(60)) 

X 10-2 

d2012 = X 10-2 

[ 

R-;;,1 (7.162 cos (e) - 3.448 cos (3e)) l 
+ R-;;,3 (0. 703 cos (30) - 0.508 cos (50)) 

R-;;,1 (1. 790 cos (e) - o.862 cos (30)) 

- R-;;,2 (1.326 cos (20) - 0.862 cos ( 40)) 

+ R-;;,3 (0.527 cos (30) - 0.377 cos (50)) 

- R-;;,4 (0.328 cos ( 40) - 0.252 cos (60)) 

R-;;,1 (3.515 sin (B) - 0.862 sin (30)) 

+ R-;;,2 (2.188 sin (20) - 0.862 sin ( 40)) 

+ R;;t3 (0. 786 sin (30) - 0.373 sin (50)) 

+R-;;,4 (0.458sin (40)- 0.250sin (60)) 

X 10-2 

X 10-2 
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X 10-3 

X 10-3 

X 10-3 
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L.3. qy = 90, 2 < Rm < 3 

d2112 = X 10-1 

[ 
R;;/ (1.406 sin (e) - 0.345 sin (38)) l 
+ R~3 (0.105 sin (38) - 0.051 sin (58)) 

R~1 (3.515sin (B)- 0.862sin (38)) 

- R~2 (2.188 sin (28) - 0.862 sin ( 48)) 

+R~3 (0.786sin (38)- 0.373sin (58)) 

-R~4 (0.458sin (48)- 0.250sin (68)) 

L .3 cjJ = 90, 2 < Rm < 3 

X 10-2 

R~1 (0.007 sin (68) + 3.515 cos (e)+ 0.862 cos (38)) 

dwm = 
+ R~2 (2.188 sin (28) + 0.862 sin ( 48)) 

X 10-2 

-R~3 (0.144sin (68) + 0.786cos (38) + 0.352cos (58)) 

-R~4 (0.458sin (48)- 0.048cos (78)) 

dwo2 = x 10 
[ 

R~1 (1.406 cos (e)+ o.345 cos (38)) l _1 

dw03 = 

dw11 = 

- R~3 (0.105 cos (38) + 0.049 cos (58)) 

-R~1 (0.007sin(68)- 3.515cos(B)- 0.862cos(38)) 

-R-;;,2 (2.188 sin (28) + 0.862 sin (48)) 

+ R~3 (0.144sin (68) - 0. 786 cos (38) - 0.352 cos (58)) 

+ R~4 (0.458 sin ( 48) + 0.048 cos (78)) 

R~1 (1.790sin (B)+ 0.862sin (38)) 

- R~2 (1.326 cos (28) + 0.862 cos ( 48) + 0.038 cos (68)) 

_ R-;;,3 ( 0.527 sin (38) + 0.361 sin (50) - 0.193 cos (60) ) 

+0.006 cos (88) 

+ R-;;,4 (0.048 sin (78) + 0.328 cos ( 40)) 

d1012 = X 10-2 

[ 

R-;;,1 (7.162sin (B)+ 3.448sin (30)) l 
-R-;;,3 (0.703sin (38) + 0.495sin (50)) 

X 10-2 

X 10-2 
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L.3. 4> = 90, 2 < Rm < 3 265 

R-;;..1 (1. 790 sin (B) + 0.862 sin (38)) 

+R-;;..2 (1.326cos (28) + 0.862cos (48) + 0.038cos (68)) 

-R-;;..3 ( 0.527sin (38) + 0.361 sin (58)+ 0.193cos (68) ) 

-0.006 cos (88) 

d1013 = x w-2 

+ R-;;..4 (0.048 sin (70) - 0.328 cos ( 40)) 

- R-;;..1 (0.663 cos (e) + 8.621 cos (3B)) 

-R-;;..2 (4.642sin (20) + 8.621 sin (48) + 0.399sin (60)) 

duu = +R-;;..3 (2.003 sin (60) + 2.686 cos (30) + 4.049 cos (50)) X 10-3 

4 ( 1.989 sin ( 48) - 0.133 sin (88) - 0.803 cos (58) ) 
+R;;.. 

-0.492 cos (78) 

[ 
-R;;..1 (0.265cos(B)+3.448cos(3B)) ] 

d1112 = X 10-2 

+R-;;..3 (0.358 cos (38) + 0.503 cos (58)- 0.017 cos (78)) 

- R-;;..1 (0.663 cos ( 0) + 8.621 cos (38)) 

- R-;;..2 
( 4.642 sin (28) + 8.621 sin ( 48) + 0.399 sin (68)) 

du13 = +R-;;..3 (2.003sin (68) + 2.686cos (38) + 4.049cos (58)) X w-3 

+R-;;..4 ( 1.989sin(48)- 0.133sin(8B)- 0.803cos(58)) 

-0.492 cos (78) 

-0.085ln Rm sin (58) 

-R;;..1 (0.663sin(B) -8.621sin(3B) -1.164sin(58)) 

d2001 = -R;;..2 (3.916sin(58)+3.979cos(28)+8.621cos(4B)) X w-3 

- R-;;..3 (2.487 sin (38) + 0.181 sin (78) - 0.058 cos (88)) 

+R-;;..4 (0.901 sin (78) + 1.890cos (48) + 2.471 cos (68)) 

[ 

- R-;;..1 (0.265 sin (B) - 3.448 sin (38)) ] _
2 

d2002 = X 10 
- R-;;..3 (0.332 sin (38) + 0.503 sin (58)) + 0.040R;;._4 sin (78) 



L.3. rp = 90, 2 < Rm < 3 

-0.085ln Rm sin (50) 

- R;;/ (0.663 sin (B) - 8.621 sin (30) - 1.164 sin (50)) 

d2oo3 = - R~2 (3.916 sin (50) - 3.979 cos (20) - 8.621 cos ( 40)) x 10-3 

- R~3 (2.487 sin (30) + 0.181 sin (70) + 0.058 cos (80)) 

+ R~4 (0.901 sin (70) - 1.890 cos ( 40) - 2.471 cos (60)) 

R~1 (0.064sin(28) + 1.790cos(8)- 0.864cos(30)) 

-0.862R~2 cos (40) 

d2o11 = + R~3 ( 1.118 sin (20) + 0.379 cos (50)) x 10-2 

-R~4 ( 0.890sin (20)- 0.060sin (40)- 0.252sin (60) ) 

+0.014 sin (80) + 0.050 cos (70) 

d2012 = [R~1 (7.162 cos (0)- 3.451 cos (30)) + 0.510R~3 cos (50)] X 10-2 

- R~1 (0.064 sin (20) - 1. 790 cos (B) + 0.864 cos (30)) 

+0.862R~2 cos ( 40) 

d2o13 = -R~3 (1.118sin(20)- 0.379cos(50)) x 10-2 

_ R~4 ( 0.890 sin (20) - 0.060 sin ( 40) - 0.252 sin (68) ) 

+0.014sin (80) + 0.050 cos (70) 

R~1 (3.515sin (B)- 0.862sin (30)- 0.182cos (20)) 

+0.875R~2 cos ( 40) 

- R~3 (0.269 sin (30) - 0.388 sin (50) + 3.194 cos (20)) 

- R~4 (0.051 sin (70) - 2.544 cos (20) + 0.256 cos (60)) 

X 10-2 

d2112 - X 10-l -
[ 
R~1 (1.406 sin (B) - 0.345 sin (30) + 0.009 sin (50)) l 
+0.043R~2 sin (50) - 0.036R~3 sin (30) 

R~1 (3.515sin (B)- 0.862sin (30) + 0.182cos (20)) 

-0.875R~2 cos ( 40) 

- R~3 (0.269 sin (30) - 0.388 sin (58) - 3.194 cos (20)) 

- R~4 (0.051 sin (70) + 2.544 cos (20) - 0.256 cos (60)) 

X 10-2 
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L.4. 4; = 90, 3 < Rm < 15 

L.4 cjJ = 90, 3 < Rm < 15 

dlOOl = 

R;;,l (3.515 cos ( fJ) + 0.862 cos (3fJ)) 

+ R~2 (2.188 sin (28) + 0.862 sin ( 48)) 

- R~3 (0. 786 cos (38) + 0.373 cos (58)) 

- R~4 (0.458 sin ( 40) + 0.250 sin (68)) 

X 10-2 

_ [ R~l (1.406cos (B)+ 0.344cos (30))- 0.051R~3 cos (58) ] x 
10

_1 
d1002-

-0.307 R~4 cos (38) 

R~1 (3.515 cos (e) + o.862 cos (3e)) 

d1003 = 
- R~2 (2.188 sin (28) + 0.862 sin ( 48)) 

X 10-2 

- R~3 (0. 786 cos (38) + 0.373 cos (58)) 

+R~4 (0.458sin (48) + 0.250sin (68)) 

R~1 (1.790sin (B)+ 0.862sin (38)) 

d10ll = 
- R~2 (1.326 cos (28) + 0.862 cos ( 48)) 

X 10-2 

- R~3 (0.527 sin (38) + 0.377 sin (58)) 

+R~4 (0.328cos (40) + 0.252cos (68)) 

d1012 = X 10-2 

[ 
R~1 (7.162sin (B)+ 3.448sin (38)) l 

dl013 = 

dun = 

-R~3 (0.703sin (30) + 0.508sin (58)) 

R~1 (1.790sin (e)+ 0.862sin (38)) 

+R~2 (1.326cos(28) + 0.862cos(48)) 

- R~3 (0.527 sin (38) + 0.377 sin (58)) 

-R~4 (0.328cos (48) + 0.252cos (68)) 

- R~1 (0.663 cos (e) + 8.621 cos (38)) 

- R~2 
( 4.642 sin (28) + 8.621 sin ( 48)) 

+R~3 (2.686cos(38) + 3.804cos(58)) 

X 10-2 

+R~4 (1.989sin (48) + 2.535sin (60)- 0.330cos (70)) 

dm2 = x 10 
[ 

-R~1 (0.265cos(B)+3.448cos(30)) l _2 

+R~3 (0.358cos (30) + 0.511 cos (58)) 

X 10-3 
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L.4. cjJ = 90, 3 < Rm < 15 

du13 = 

- R~1 (0.663 cos (0) + 8.621 cos (30)) 

+ R~2 
( 4.642 sin (20) + 8.621 sin ( 40)) 

+R-;;,_3 (2.686cos (30) + 3.804cos (50)) 

- R-;;,4 (1.989 sin ( 40) + 2.535 sin (60) + 0.330 cos (70)) 

- R~1 (0.663 sin ( 0) - 8.621 sin (30)) 

d2001 = 
- R-;;,_2 (3.979 cos (20) + 8.621 cos ( 40)) 

- R~3 (2.487 sin (3e) + 3.807 sin (5e)) 

+R-;;,4 (0.330sin(7B) + 1.890cos(4B) + 2.537cos(6B)) 

d2002 = X 10-2 

[ 
-R~1 (0.265sin(e)- 3.448sin(30)) ] 

d2003 = 

- R-;;,_3 (0.332 sin (30) + 0.511 sin (50)) 

- R~1 (0.663 sin ( 0) - 8.621 sin (30)) 

+R~2 (3.979 cos (20) + 8.621 cos ( 40)) 

- R-;;,_3 (2.487 sin (3e) + 3.807 sin (50)) 

+ R-;;,4 (0.330 sin (70) - 1.890 cos ( 40) - 2.537 cos (60)) 

R-;;,_1 (1. 790 cos (e) - o.863 cos (30)) 

d2o11 = +R~2 (0.464sin (20)- 0.858sin (40)) 

+0.384R~3 cos (50) + 0.256R-;;,_4 sin (60) 

X 10-2 

X 10-3 

X 10-3 

X 10-3 

d2o12 = [R~1 (7.162cos (e)- 3.449cos (3e)) + 0.514R~3 cos (5e)] x 10-2 

R-;;,_1 (1. 790 cos (B) - 0.863 cos (30)) 

d2013 = - R~2 (0.464 sin (20) - 0.858 sin ( 40)) 

+0.384R-;;,_3 cos (50) - 0.256R~4 sin (60) 

R-;;,1 (3.515sin (0)- 0.862sin (30)) 

d2m = +R~2 (0.867cos(40) -1.326cos(20)) 

X 10-2 

- R-;;,_3 (0.269 sin (30) - 0.388 sin (50)) - 0.258R~4 cos (60) 

[ 

R-;;,_1 (1.406 sin ( 0) - 0.345 sin (30)) ] 
1 d2112 = X 10-

- R~3 (0.036 sin (30) - 0.052 sin (50)) 

X 10-2 
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L.5. cj; = 180, 2 < Rm < 3 

R;;,1 (3.515 sin (11)- 0.862 sin (311)) 

d2113 = - R;;,2 (0.867 cos ( 411) - 1.326 cos (211)) X 10-2 

- R;;,3 (0.269 sin (311) - 0.388 sin (50)) + 0.258R;;,4 cos (60) 

L. 5 cjJ = 180, 2 < Rm < 3 

dwm = 

dwo2 = 

dw03 = 

dwu = 

R;;,1 (3.515 cos (B) + 0.862 cos (30)) 

- R;;,2 (1.326 cos (20) + 0.875 cos ( 40)) 

+ R;;,3 (0.269 cos (30) + 0.388 cos (50) + 0.022 cos (70)) 

-0.256R;;,4 cos (60) 

X 10-2 

[ 

cos (30) (0.163 - (0.067ln Rm)) + 1.406R;;,1 cos (B) l 
+ R-;;,2 (0.243 cos (30) + 0.011 cos (50)) + 0.061R-;;_,4 cos (50) 

X 10-l 

R;;,1 (3.515 cos (B) + 0.862 cos (30)) 

+ R;;,2 (1.326 cos (20) + 0.875 cos ( 40)) 

+R;;,3 (0.269cos(3B) + 0.388cos(5B) + 0.022cos(7B)) 

+0.256R;;,4 cos (60) 

R;;,1 (1. 790 sin (B) + 0.864 sin (30)) 

- R;;,2 (0.464 sin (20) + 0.862 sin ( 40)) 

+ R;;,3 (0.379 sin (50) - 0.006 sin (80)) 

+R;;,4 (0.060sin (40)- 0.252sin (60) + 0.050sin (70)) 

X 10-2 

X 10-2 

d1012 = [R;;,1 (7.162sin (B)+ 3.451sin (30)) + 0.510R-;;_,3 sin (50)] x 10-2 

dun = 

R;;,1 (1.790sin (11) + 0.864sin (30)) 

+ R;;,2 (0.464 sin (20) + 0.862 sin ( 411)) 

+ R;;,3 (0.379 sin (50) + 0.006 sin (80)) 

-R-;;_,4 (0.060sin (40)- 0.252sin (611)- 0.050sin (711)) 

- R;;,1 (0.663 cos (B) + 8.621 cos (30)) 

- R;;,2 (3.979 cos (2B) - 8.621 cos ( 40)) 

+R;;,3 (2.487 cos (30)- 4.042 cos (50)) 

- R-;;,4 (1.890 cos ( 40) - 2.4 71 cos (60) - 0.133 cos (80)) 

X 10-2 

X 10-3 
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L.5. cp = 180, 2 < Rm < 3 

dn12 = X 10-2 

[ 
- R~1 (0.265 cos (e) + 3.448 cos (38)) l 

dl113 = 

+ R~3 (0.332 cos (38) - 0.503 cos (58)) - 0.040R~4 cos (78) 

- R~1 (0.663 cos (e) + 8.621 cos (38)) 

-R~2 (3.979cos(28)- 8.621cos(48)) 

+ R~3 (2.487 cos (38) - 4.042 cos (58)) 

-R~4 (1.890cos (48)- 2.471 cos (68)- 0.133cos (88)) 

- R~1 (0.663 sin (8)- 8.621 sin (38) + 0.249 sin (58)) 

+ R~2 ( 4.642 sin (28) - 8.621 sin ( 48) + 1. 7 45 (58) ) 

+0.399sin (68) 

-R~3 (2.686sin (38) + 2.003sin (68)) 

+ R~4 ( 1.989 sin ( 48) + 2.302 sin (58) + 0.492 sin (70) ) 

-0.133 sin (88) 

X 10-3 

X 10-3 

d2002 = X 10-2 

[ 

- R~1 (0.265 sin ( 8) - 3.448 sin (38) - 0.082 sin (58)) ] 

+0.410R~2 sin (58) - 0.358R~3 sin (38) + 0.040R~4 sin (78) 

- R~1 (0.663 sin ( 8) - 8.621 sin (38) + 0.249 sin (58)) 

-R~2 ( 4.642sin(28) -8.621sin(48) -1.745(58)) 

+0.399sin (60) 

-R~3 (2.686sin (38)- 2.003sin (68)) 

_ R~4 ( 1.989 sin ( 48) - 2.302 sin (58) - 0.492 sin (78) ) 

-0.133sin (88) 

-0.037 cos (28) + 0.862R~2 cos ( 48) 

+R~1 (1.790cos(8)- 0.862cos(38)- 0.008cos(68)) 

X 10-3 

4.259 cos (28) - 0.527 cos (38) + 0.413 cos (58) ) 
-R-3 X 10-2 

m 
-0.148cos (68) + 0.021 cos (78) 

3.816 cos (28)- 0.328 cos (48) + 0.120 cos (58) ) 
+R-4 

m 
+0.013 cos (88) 

[ 

R~1 (7.162 cos (e) - 3.448 cos (38)) l _2 
d2012 = X 10 

+ R~3 (0. 703 cos (38) - 0.495 cos (58)) 
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L.6. 4J = 180, 3 < Rm < 15 

0.037 cos (20) - 0.862R;;? cos ( 40) 

+R~1 (1.790cos (0)- 0.862cos (30) + 0.008cos (60)) 

+Rm
-3 ( 4.259 cos (20) + 0.527 cos (30) - 0.413 cos (50) ) 

d2013 = 
-0.148 cos (60)- 0.021 cos (70) 

_ R~4 ( 3.816 cos (20) - 0.328 cos ( 48) - 0.120 cos (50) ) 

+0.013 cos (80) 

R~1 (3.515 sin (8) - 0.862 sin (30)- 0.032 sin (60)) 

X 10-2 

-R~2 (2.188sin (20)- 0.943sin (40)- 0.120sin (60)) 

+ R~3 (0. 786 sin (30) - 0.386 sin ( 40) - 0.352 sin (50)) 

-0.048R~4 sin (70) 

X 10-2 

_ [ R~1 (1.406 sin ( 0) - 0.345 sin (30) + 0.008 sin (50)) l x 
10

_1 
d2112 -

-0.039R~2 sin (50)+ 0.105R~3 sin (30) 

R~1 (3.515 sin (8) - 0.862 sin (30) + 0.032 sin (68)) 

+R~2 (2.188sin (20)- 0.943sin (40)- 0.120sin (60)) 

+R~3 (0.786sin (30) + 0.386sin (40)- 0.352sin (50)) 

-0.048R~4 sin (70) 

X 10-2 

L. 6 cjJ = 180, 3 < Rm < 15 

R~1 (3.515 cos ( 0) + 0.862 cos (30)) 

dwo1 = - R~2 (1.326 cos (20) + 0.867 cos ( 40)) 

+R~3 (0.269cos (30) + 0.388cos (50))- 0.258R~4 cos (60) 

[ 

R~1 (1.406 cos ( 0) + 0.345 cos (30)) l 
dwo2 = x 10-1 

+R~3 (0.036cos (30) + 0.052cos (50)) 

R~1 (3.515 cos ( 0) + 0.862 cos (30)) 

dw03 = +R~2 (1.326cos (20) + 0.867cos (40)) 

+R~3 (0.269 cos (30) + 0.388 cos (50))+ 0.258R~4 cos (60) 

X 10-2 

X 10-2 
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L.6. cp = 180, 3 < Rm < 15 

R;1 (1. 790 sin (B) + 0.863 sin (30)) 

dwn = - R~2 (0.464 sin (20) + 0.858 sin ( 40)) 

+0.384R;3 sin (50) - 0.256R;4 sin (60) 

X 10-2 

d 1012 = [R~1 (7.162sin(B) +3.449sin(3B)) +0.514R;3 sin(5B)] x 10-2 

R~1 (1.790sin (B)+ 0.863sin (30)) 

d1013 = +R~2 (0.464sin (20) + 0.858sin (40)) 

+0.384R;3 sin (50) + 0.256R;4 sin (60) 

- R;1 (0.663 cos (e) + 8.621 cos (3B)) 

dun = 
- R;2 (3.979 cos (20) - 8.621 cos ( 40)) 

+ R~3 (2.487 cos (30) - 3.807 cos (5fJ)) 

X 10-2 

- R~4 (1.890 cos ( 40) - 2.537 cos ( 60) + 0.330 cos (70)) 

du12 = x 10-2 

[ 

- R;1 (0.265 cos (B) + 3.448 cos (30)) l 
du13 = 

+R~3 (0.332cos (3fJ)- 0.511 cos (50)) 

- R~1 (0.663 cos (B) + 8.621 cos (30)) 

+ R;2 (3.979 cos (20) - 8.621 cos ( 40)) 

+R;3 (2.487 cos (3fJ)- 3.807 cos (50)) 

+R~4 (1.890 cos ( 40) - 2.537 cos (60) - 0.330 cos (70)) 

- R;1 (0.663 sin (B) - 8.621 sin (30)) 

+ R~2 
( 4.642 sin (20) - 8.621 sin ( 40)) 

-R~3 (2.686sin (30)- 3.804sin (50)) 

+R~4 (1.989sin (40) + 2.535sin (60) + 0.330sin (7fJ)) 

d
2002 

= [ -R~1 (0.265s~n(B)- 3.448si~(3B)) l x 10_2 

- R;3 (0.358 sm (30) - 0.511 sm (50)) 

X 10-3 

X 10-3 

X 10-3 
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L.6. <P = 180, 3 < Rm < 15 

d2003 = 

- R;;/ (0.663 sin ( 0) - 8.621 sin (30)) 

- R~2 
( 4.642 sin (20) - 8.621 sin ( 40)) 

-R~3 (2.686sin(30)- 3.804sin(50)) 

-R~4 (1.989sin (40) + 2.535sin (60)- 0.330sin (70)) 

R~1 (1.790cos(O)- 0.862cos(30)) 

- R~2 (1.326 cos (20) - 0.862 cos ( 40)) 

+R~3 (0.527 cos (30)- 0.377 cos (50)) 

-R~4 (0.328 cos (40)- 0.252cos (60)) 

x 10-2 

d2012 = X 10 
[ 

R~1 (7.162 cos (e) - 3.448 cos (30)) l _2 

+R~3 (0.703cos(30)- 0.495cos(50)) 

R~1 (1. 790 cos ( 0) - 0.862 cos (30)) 

+ R~2 (1.326 cos (20) - 0.862 cos ( 40)) 

+R;;,3 (0.527 cos (30) - 0.377 cos (50)) 

+R~4 (0.328cos (40)- 0.252cos (60)) 

R~1 (3.515 sin (0)- 0.862 sin (30)) 

-R~2 (2.188sin(20)- 0.862sin(40)) 

+ R~3 (0. 786 sin (30) - 0.373 sin (50)) 

-R~4 (0.458sin (40)- 0.250sin (60)) 

x 10-2 

x 10-2 

[ R~
1 (1.406sin(0)-0.345sin(30)) l _1 

d2112 = X 10 
+R;;,3 (0.105 sin (30)- 0.051 sin (50)) 

R~1 (3.515 sin ( 0) - 0.862 sin (30)) 

+ R~2 (2.188 sin (20) - 0.862 sin ( 40)) 

+R~3 (0.786sin (30)- 0.373sin (50)) 

+R~4 (0.458sin (40)- 0.250sin (60)) 

x 10-2 
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L.7. cP = 270, 2 < Rm < 3 

L. 7 cjJ = 270, 2 < Rm < 3 

0.036 cos (B)+ 0.086R;;/ cos (38) 

- R~2 (0.219 sin (28) + 0.086 sin ( 48) - 1.282 cos ( 0)) 

dw01 = - R~3 (2.065 cos (B) + 0.079 cos (30) + 0.035 cos (58)) x 10-1 

+R~4 ( 0.046sin (40) + 0.024sin (6B) + 1.240cos (0) ) 

+0.005 cos (70) 

_ [ cos (38) (0.188 - (0.081ln Rm)) + 1.406R~1 cos (B) ] x 
10

_1 dwo2-
+0.111R~2 - 0.049R~3 cos (50) 

0.036cos (B)+ 0.086R~1 cos (30) 

+R~2 (0.219sin (20) + 0.086sin (4B) + 1.282cos (B)) 

dwo3 = -R~3 (2.065cos (B)+ 0.079cos (38) + 0.035cos (50)) x 10-1 

-R~4 ( 0.046sin(40) +0.024sin(6B) -1.240cos(B)) 

-0.005 cos (78) 

R~1 (1.790 sin (0) + 0.862 sin (30) + 0.033 cos (60)) 

dwn = 
+R~2 (1.326cos (20) + 0.920cos (40) + 0.123cos (60)) 

- R~3 (0.527 sin (30) + 0.413 sin (58) + 0.277 cos ( 4B)) 

+ R~4 (0.120 sin (58) + 0.048 sin (7&) + 0.013 cos (8&)) 

X 10-2 

d1012 = X 10 
[ 

R~1 (7.162sin(B)+3.448sin(3B)) ] _
2 

dl013 = 

dnn = 

-R~3 (0.703sin (38) + 0.495sin (50)) 

R~1 (1. 790 sin (B) + 0.862 sin (30) - 0.033 cos ( 60)) 

- R~2 (1.326 cos (28) + 0.920 cos ( 48) + 0.123 cos (60)) 

- R~3 (0.527 sin (3B) + 0.413 sin (50) - 0.277 cos ( 40)) 

+ R~4 (0.120 sin (5&) + 0.048 sin (7B) - 0.013 cos (8B)) 

- R~1 (0.663 cos (B) + 8.621 cos (3B)) 

+ R~2 
( 4.642 sin (28) + 8.621 sin ( 4B) + 0.157 cos (7&)) 

+R~3 ( 0.057sin(8B) +2.686cos(3B) +4.049cos(5fJ)) 

-0.577 cos (78) 

-R;;t4 (1.989sin (48) + 2.468sin (60)- 0.803cos (58)) 

X 10-2 

X 10-3 
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L.7. <P = 270, 2 < Rm < 3 

dm2 = X 10-2 

[ 

- R;1 (0.265 cos ( 8) + 3.448 cos (38)) l 
+ R;3 (0.358 cos (38) + 0.503 cos (58)) - 0.040R;4 cos (78) 

- R;1 (0.663 cos (e) + 8.621 cos (38)) 

- R;2 
( 4.642 sin (28) + 8.621 sin ( 48) - 0.157 cos (78)) 

_ R;3 ( 0.057 sin (88) - 2.686 cos (38) - 4.049 cos (58) ) 

+0.577 cos (78) 

+R-;;_.4 (1.989sin (48) + 2.468sin (68) + 0.803cos (58)) 

-0.173 sin (38) - R;1 (0.663 sin ( 8) - 9.893 sin (38)) 

- R;2 (3.094 sin (38) - 3.979 cos (28) - 8.621 cos ( 48)) 

d2oo1 = -4.042R;3 sin (58) 

d2002 = 

+R;4 ( 0.773sin (50)+ 0.492sin (70)- 1.890cos (40) ) 

-2.471 cos (60) + 0.133 cos (80) 

[ 

-R;1 (0.265sin(O)- 3.448sin(30)) ] 

- R;3 (0.332 sin (38) + 0.503 sin (50)) + 0.040R;4 sin (70) 

-0.173 sin (30) - R;1 (0.663 sin ( 0) - 9.893 sin (30)) 

-R;2 (3.094sin (30)- 3.979cos (20)- 8.621 cos (40)) 

x w-3 

x w-3 

x w-2 

d2003 = -4.042R;3 sin (50) X w-3 

_
4 

( 0. 773 sin (50) + 0.492 sin (70) - 1.890 cos ( 40) ) 
+Rm 

-2.471cos(60) + 0.133cos(80) 

R;1 (1. 790 cos ( 8) - 0.864 cos (30)) 

- R;2 (0.464 sin (20) - 0.862 sin ( 40) - 0.042 sin (60)) 
x w-2 

- R;3 (0.208 sin (60) - 0.006 sin (88) + 0.379 cos (50)) 

- R;4 (0.060 sin ( 40) + 0.050 cos (70)) 

d2o12 = [R;1 (7.162 cos (e) - 3.451 cos (30)) + o.510R;3 cos (50)] x w-2 
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L.8. cjJ = 270, 3 < Rm < 15 

R~1 (1.790cos(O)- 0.864cos(30)) 

+R~2 (0.464sin (20)- 0.862sin (40)- 0.042sin (60)) 

+R~3 (0.208sin (60)- 0.006sin (80)- 0.379cos (50)) 

+ R~4 (0.060 sin ( 40) - 0.050 cos (70)) 

R~1 (3.515 sin ( 0) - 0.862 sin (30)) 

+R~2 (1.326cos(20)- 0.875cos(40)) 

- R~3 (0.269 sin (30) - 0.388 sin (50) + 0.022 sin (70)) 

+0.256R~4 cos (60) 

d2112 = X 10-1 

[ 

R~1 (1.406sin (0)- 0.345sin (30)) l 
+ R~3 (0.036 sin (30) - 0.052 sin (50)) 

R~1 (3.515 sin (0)- 0.862 sin (30)) 

+R~2 (1.326cos(20)- 0.875cos(40)) 

- R~3 (0.269 sin (30) - 0.388 sin (50) + 0.022 sin (70)) 

+0.256R~4 cos (60) 

L.8 cjJ = 270, 3 < Rm < 15 

R~1 (3.515 cos (e) + o.862 cos (3e)) 

dw01 = 
-R~2 (2.188sin (20) + 0.862sin (40)) 

X 10-2 

- R~3 (0. 786 cos (30) + 0.373 cos (50)) 

+R~4 (0.458sin (40) + 0.250sin (60)) 

dwo2 = x 10-1 

[ 

R~1 (1.406 cos (e) + o.345 cos (30)) l 
dwoa = 

-R~3 (0.105cos (30) + 0.013cos (50)) 

R~1 (3.515 cos (t'J) + 0.862 cos (30)) 

+R~2 (2.188sin(20) + 0.862sin(40)) 

-R~3 (0.786cos(30) + 0.373cos(50)) 

-R~4 (0.458sin (40) + 0.250sin (60)) 

X 10-2 
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L.8. </J = 270, 3 < Rm < 15 

dwn = 

R;;/ (1. 790 sin ( 8) + 0.862 sin (38)) 

+R~2 (1.326 cos (28) + 0.862cos (48)) 

- R~3 (0.527 sin (38) + 0.377 sin (58)) 

-R~4 (0.328cos (48) + 0.252cos (68)) 

X 10-2 

d1012 = X 10 
[ 

R~1 (7.162sin(8)+3.448sin(38)) l _2 

dl013 = 

dun = 

- R~3 (0. 703 sin (38) + 0.508 sin (58)) 

R~1 (1. 790 sin ( 8) + 0.862 sin (38)) 

- R~2 (1.326 cos (28) + 0.862 cos ( 48)) 

- R~3 (0.527 sin (38) + 0.377 sin (58)) 

+R~4 (0.328cos (48) + 0.252cos (68)) 

- R~1 (0.663 cos ( 8) + 8.621 cos (38)) 

+ R~2 
( 4.642 sin (28) + 8.621 sin ( 48)) 

+R~3 (2.686cos(38) + 3.804cos(5fJ)) 

X 10-2 

-R~4 (1.989sin (48) + 2.535sin (68) + 0.330cos (78)) 

d1112 = X 10-2 

[ 

-R~1 (0.265cos(8) + 3.448cos(38)) l 
+R~3 (0.358cos(3fJ) + 0.5llcos(58)) 

- R~1 (0.663 cos ( 8) + 8.621 cos (38)) 

d1113 = 
- R~2 

( 4.642 sin (28) + 8.621 sin ( 48)) 

+R~3 (2.686cos(38) + 3.804cos(58)) 

+R~4 (1.989sin (48) + 2.535sin (68)- 0.330cos (78)) 

- R~1 (0.663 sin ( fJ) - 8.621 sin (38)) 

+ R~2 (3.979 cos (28) + 8.621 cos ( 48)) 

- R~3 (2.487 sin (38) + 3.807 sin (58)) 

+ R~4 (0.330 sin (78) - 1.890 cos ( 48) - 2.537 cos ( 68)) 

[ 

-R~1 (0.265sin (8)- 3.448sin (38)) l _
2 

d2002 = X 10 
- R~3 (0.332 sin (38) + 0.511 sin (58)) 
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X 10-3 

X 10-3 

X 10-3 



L.8. cp = 270, 3 < Rm < 15 

-R~1 (0.663sin(B)- 8.621sin(3B)) 

- R~2 (3.979 cos (20) + 8.621 cos ( 40)) 
X 10-3 

- R~3 (2.487 sin (30) + 3.807 sin (50)) 

+R~4 (0.330 sin (70) + 1.890 cos ( 40) + 2.537 cos (60)) 

R~1 (1. 790 cos (B) - 0.863 cos (30)) 

d2o11 = -R~2 (0.464sin (20)- 0.858sin (40)) 

+0.384R~3 cos (50) - 0.256R~4 sin (60) 

X 10-2 

d2012 = [R~1 (7.162 cos (B)- 3.449 cos (30)) + 0.514R~3 cos (50)] X 10-2 

R~1 (1.790cos(O)- 0.863cos(30)) 

d2o13 = + R~2 (0.464 sin (20) - 0.858 sin ( 40)) 

+0.384R~3 cos (50) + 0.256R~4 sin (60) 

R~1 (3.515 sin (e)- 0.862 sin (30)) 

d2m = + R~2 (1.326 cos (2e) - 0.867 cos ( 4e)) 

X 10-2 

-R~3 (0.269sin (30)- 0.388sin (50))+ 0.258R~4 cos (60) 

[ 

R~1 (1.406 sin (e) - 0.345 sin (3e)) l 
d2112 = X 10-l 

- R~3 (0.036 sin (30) - 0.052 sin (50)) 

R~1 (3.515sin (0)- 0.862sin (30)) 

d2u3 = - R~2 (1.326 cos (2e) - 0.867 cos ( 4e)) 

- R~3 (0.269 sin (30) - 0.388 sin (50)) - 0.258R;;-,4 cos (60) 

X 10-2 

X 10-2 
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APPENDIX M 

Variability in Profiling - Non-interpolated LUTs 

Table M.1: Timings for non-interpolated variability assessment 

Run Number 
Technique Timings (fls) 

Adaptive Gauss-Legendre Flat LUTs Circular Arc L UTs 

1 57.7 30.5 31.9 

2 57.5 30.4 31.6 

3 59.1 30.7 31.5 

4 57.2 30.5 31.4 

5 57.9 30.4 31.3 

6 58.4 30.6 31.9 

7 58.0 30.5 31.5 

8 57.2 30.4 31.4 

9 60.2 32.0 32.9 

10 58.0 30.5 32.5 

11 58.2 30.4 31.6 

12 58.3 30.3 31.3 

Continued on next page 
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Appendix M. Variability in Profiling- Non-interpolated LUTs 280 

Table M .1 - continued from previous page 

Run Number 
Technique Timings (11-s) 

Adaptive Gauss-Legendre Flat LUTs Circular Arc L UTs 

13 59.6 31.7 32.9 

14 57.7 30.3 31.1 

15 57.3 30.2 31.1 

16 57.0 30.4 31.5 

17 57.5 30.5 31.7 

18 56.8 30.2 31.0 

19 57.6 30.5 31.2 

20 57.9 31.2 31.5 

Analysis of this data shows the following properties for the variability of timings 

within the profiling of non-interpolated LUTs. 

Table M.2: Variability parameters for non-interpolated LUTs 

Technique Mean run-time (f.Ls) Standard Deviation 

Adaptive Gauss-Legendre 58.0 0.90 

Flat LUTs 30.6 0.48 

Circular arc L UTs 31.6 0.55 



APPENDIX N 

Variability in Profiling - Interpolated LUTs 

Table N .1: Timings for interpolated variability assessment 

Run Number 
Technique Timings (JLS) 

Adaptive Gauss-Legendre Flat LUTs Circular Arc L UTs 

1 57.0 34.3 35.2 

2 57.3 34.7 35.3 

3 57.0 34.7 35.2 

4 57.4 34.5 35.2 

5 57.4 34.3 35.9 

6 57.0 34.3 35.8 

7 58.1 34.4 35.3 

8 57.9 34.6 35.2 

9 57.5 34.4 35.9 

10 58.0 34.8 35.2 

11 57.8 34.3 35.7 

12 56.9 34.2 35.0 

Continued on next page 
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Appendix N. Variability in Profiling- Interpolated LUTs 282 

Table N .1 - continued from previous page 

Run Number 
Technique Timings (J-Ls) 

Adaptive Gauss-Legendre Flat LUTs Circular Arc L UTs 

13 59.5 35.7 36.9 

14 57.3 34.4 35.8 

15 57.2 34.3 35.5 

16 59.4 34.3 35.3 

17 57.3 34.4 35.6 

18 58.7 34.6 36.4 

19 58.3 34.4 35.4 

20 58.7 34.4 36.7 

Analysis of this data shows the following properties for the variability of timings 

within the profiling of interpolated LUTs. 

Table N.2: Variability parameters for interpolated LUTs 

Technique Mean run-time (J-Ls) Standard Deviation 

Adaptive Gauss-Legend re 57.8 0.78 

Flat LUTs 34.5 0.33 

Circular arc L UTs 35.6 0.53 


