
Durham E-Theses

Techniques to accelerate boundary element

contributions in elasticity

Scales, Derek

How to cite:

Scales, Derek (2007) Techniques to accelerate boundary element contributions in elasticity, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2525/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2525/
 http://etheses.dur.ac.uk/2525/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Techniques to Accelerate
Boundary Element Contributions

in Elasticity

Derek Scales

The copyright of this thesis rests with the
author or the university to which it was
submitted. No quotation from it, or
information derived from it may be
published without the prior written
consent of the author or university, and
any information derived from it should be
acknowledged.

A Thesis presented for the degree of

Doctor of Philosophy

Advanced Mechanics
School of Engineering
University of Durham

England

March 2007

- 1t MAY 2007

Dedicated to

Pat, Robert and Pete for their continued support throughout my education without

them none of this would have been possible for me. I will be forever grateful.

To Mariko for helping me to see clearly when times were dark and ensuring that I

never lost sight of the important things in life.

Ancora im para

- Michelangelo Buonarroti

Techniques to Accelerate Boundary Element
Contributions in Elasticity

Derek Scales

Submitted for the degree of Doctor of Philosophy

March 2007

Abstract

The problem of rapid re-analysis of small problems in elasticity is investigated. The

aim is to enable updated stress contours to be displayed in real-time as a design

geometry is dynamically modified. The focus of this work is small to medium sized

problems; as a result it cannot be assumed that the solution phase dominates, and

so the evaluation of boundary integrals is considered as well as the equation solution.

Two strategies are employed for acceleration of boundary element integrals: the

use of Look-Up Tables (LUTs) containing precomputed integrals and the use of ap­

proximate analytical expressions derived from surface fits. These may be used in

the matrix assembly and internal point calculations. LUTs are derived for both flat

and circular arc elements for both the displacement and stress boundary integral

equation. Details are provided on suitable LUT refinements and the approach is

benchmarked against conventional Gauss-Legendre quadrature. The surface fit ap­

proach is presented as an alternative to LUTs that does not incur the considerable

memory cost associated with LUTs. This approach has been limited to flat elements.

The equation solution is cast in a re-solution framework, in which we use a GM­

RES iterative solver. Convergence is greatly accelerated by using an approximate

but complete LU preconditioner updated periodically using multi-threading. Con­

sideration of the period of update is investigated with reference to the spread of

iv

eigenvalues in the preconditioned system.

The resulting system achieves the aim of providing real time update of contours

for small to medium size problems on a PC. This development is expected to allow a

qualitative change in the way engineers might use computer aided engineering tools,

in which design ideas may rapidly be assessed immediately as a change is made.

Declaration

The work in this thesis is based on research carried out at the Advanced Mechanics

Group, School of Engineering, Durham, England. No part of this thesis has been

submitted elsewhere for any other degree or qualification and it is all my own work

unless referenced to the contrary in the text.

Parts of this work have been submitted in the following:

Journals

D. J. Scales and J. Trevelyan. Techniques to accelerate BEM computation to provide

virtual reality update of stress solutions. Eng. Anal. with Boundary Elements.

Conferences

J. Trevelyan and D. J. Scales and S. H. Spence. Interactive display of stress contours

in real time. NAFEMS world congress, NAFEMS, May 2007.

J. Trevelyan and D. J. Scales. Rapid re-analysis in BEM elastostatic calculations.

In C. A. Brebbia and J. T. Katsiukadelis, editors, Boundary Elements and other

Mesh Reduction Methods XXVIII, pages 263-272. BEM/MRM 28, WIT Press, May

2006.

V

vi

D. J. Scales and J. Trevelyan. Rapid re-analysis in 2D BEM elastostatic calcula­

tions. In K. Chen, editor, Advances in Boundary Integral Methods: Proceedings of

the 5th UK Conference on Boundary Integral Methods, pages 153-162. UKBIM 5,

University of Liverpool, September 2005.

J. Trevelyan, D. J. Scales, R. Morris, and G. E. Bird. Acceleration of boundary

element computations in reanalysis of problems in elasticity. In Z. H. Yao, M. W.

Yuan, and W. X. Zhong, editors, Computational Mechanics: Abstract (Volume 2},

page 44. WCCM VI in conjunction with APCOM '04, Tsinghua University Press

and Springer-Verlag, September 2004.

Copyright© 2007 by Derek Scales.

"The copyright of this thesis rests with the author. No quotations from it should be

published without the author's prior written consent and information derived from

it should be acknowledged".

Acknowledgements

There are lots of people I would like to thank for a huge variety of reasons.

It is impossible to overstate my appreciation and gratitude towards my PhD

supervisor, Dr. Jon Trevelyan. Without Jon I feel that this work would not have

been possible for me, his enthusiasm towards my work, the ideas and suggestions

on how to deal with the problems that I have faced throughout my PhD have been

inspirational. Without Jon I truly believe that this work would not have been

possible.

Thank you to my examiners, Dr. Charles Augarde (internal) and Prof. Ferri

Aliabadi (external), for managing to read the whole thesis so thoroughly, and for the

feedback and comments that have improved this thesis. I hope that you found the

experience useful and that I have provided an alternative perspective on the area.

Additionally, I would like to thank the staff at BAE SYSTEMS for sponsoring

my PhD work. In particular I would like to thank Stuart Spence and the late Mike

Henningsen for the feedback they gave as my work progressed. I also extend my

thanks to Brian Oldfield and Chris Bingham for making my industrial placement at

BAE Warton an enjoyable and productive experience.

I would also like to thank the many friends that I have made during my time at

the University of Durham both as an undergraduate and more recently as a post­

graduate. Without their continued support and belief in me I would have struggled

vii

viii

immensely. In particular I would like to thank Paul Jaquin for proof reading my

thesis. I hope that my thesis was an enjoyable read and may help towards your own

research.

I would like to thank Mariko. Your unfailing support and love throughout my

PhD has kept me strong. When times seemed dark you always shone for me and

showed me the way forward. You will always have a special place in my heart and

I know that you will be a success in everything that you do.

I cannot end without thanking my family. The constant support offered by my

parents, Pat and Robert, and my brother, Pete, has been unfailing even when times

have been difficult. They have provided the constant encouragement and love that

I have relied on throughout my time at University.

Contents

1 Introduction 1

1.1 Overview. 1

1.2 Background 2

1.2.1 Boundary element method 2

1.2.2 Integration techniques 6

1.2.3 Matrix solution 8

1.2.4 Reanalysis . . . 12

1.2.5 General implementation 16

1.3 Outline of the thesis • 0 0 0 17

1.4 Directions for current work . 18

2 Numerical Methods in Stress Analysis 20

2.1 Finite difference method 21

2.2 Finite element method 23

2.3 Boundary element method 26

2.4 Scaled boundary finite element methods 28

2.5 Meshless methods . . 31

2.6 Concluding remarks . 34

lX

Contents

3 Boundary Element Method

3.1 Derivation of the boundary element method

3.1.1 Elasticity . .

3.1.2 Potential flow

3.1.3 Acoustics

3.2 Concluding remarks .

4 Numerical Integration Techniques

4.1 Newton-Cotes

4.1.1 Rectangular integration

4.1.2 Trapezoidal integration .

4.1.3 Simpson's rule . . .

4.2 Transformation of integrals .

4.3 Gauss quadrature

4.3.1

4.3.2

4.3.3

Gauss-Legendre quadrature

Logarithmic Gauss quadrature .

Gauss-Radau and Gauss-Lobatto quadrature .

4.3.4 Order of integration

4.4 Singular integrals

4.5 Exact integration

4.6 Concluding remarks .

5 Equation Solution Techniques

5.1 Direct solvers

5.1.1

5.1.2

Gaussian elimination

L U factorisation .

5.2 Iterative solvers

5.2.1 Steepest descent methods

5.2.2 Conjugate gradient methods

5.2.3 Generalised minimum residual method

5.2.4 Convergence of iterative solvers

5.2.5 Preconditioning

X

35

36

37

50

52

54

56

56

57

59

62

65

65

66

67

68

69

69

72

72

73

73

74

75

78

79

81

84

87

90

Contents xi

503 Concluding remarks 0 95

6 Acceleration of the Integration Phase 96

601 Look-up tables ••••••••• 0 ••• 97

601.1 Displacement boundary integral equation 0 97

601.2 Stress boundary integral equation 0 102

601.3 Arc elements 104

602 Refinement of L UTs 106

60201 Flat element L UTs 0 108

60202 Arc element L UTs 109

603 Error analysis of L UTs 0 0 111

60301 Non-interpolated LUTs 0 114

60302 Interpolated L UTs 115

60303 Angular refinement 117

6.4 Memory requirements of LUTs 0 117

605 Summary of L UTs 118

6°6 Surface fits 0 0 0 0 0 0 119

60601 Investigation of surface data 120

60602 Surface fit methodology 123

60603 Surface fit equations 125

607 Concluding remarks 0 0 0 0 0 0 127

7 Acceleration of the Solution Phase 129

701 Initial scheme 0 • 0 ••• 0 0 130

702 Improving matrix condition 132

703 Preconditioning 0 133

704 Proposed scheme 138

705 Concluding remarks 0 145

8 Results 146

801 Implementation 0 147

802 Integration 0 0 0 0 148

Contents

80201 Look-up tables 0 0 0 0

80202 Variability of profiling

80203 Surface fit equations 0

802.4 Comparison of integration techniques

803 Equation solution

804 Overall strategy 0

80401 Problem size 0

805 Concluding remarks 0

9 Extension to Other Application Areas

901 Integration 0 0 0 0 0 0

901.1 Potential flow

9 010 2 Acoustics 0 0

901.3 Three-dimensional analysis 0

902 Equation solution 0 0 0 0 0 0 0 0

903 Dual boundary element method

90301 Crack growth

904 Optimisation 0 0 0 0

905 Concluding remarks 0

10 Conclusions and recommendations for future work

1001 Achievements

1002 Conclusions 0

1003 Recommendations for future work

10.4 Summary 0 0 0 0 0 0 0 0 0 0 0 0 0

Appendices

A Surface Plots- g terms

B Surface Plots- h terms

C Surface Plots - s terms

xii

149

151

152

154

0 157

161

162

163

164

164

165

168

169

172

174

175

176

177

179

179

182

183

0 185

200

200

202

204

Contents xiii

D Surface Plots - d terms 206

E Arc Surface Plots - g terms 208

F Arc Surface Plots- h terms 210

G Arc Surface Plots - s terms 212

H Arc Surface Plots - d terms 214

I Surface Fit Equations - g terms 216

1.1 cp = 0, 2 < Rm < 3 0 216

1.2 cp = 0, 3 < Rm < 15 0 0 217

1.3 cp = 90, 2 < Rm < 3 0 0 218

1.4 cp = 90, 3 < Rm < 15 0 219

1.5 cp = 180, 2 < Rm < 3 0 220

1.6 cp = 180, 3 < Rm < 15 0 221

1.7 cp = 270, 2 < Rm < 3 0 222

1.8 cp = 270, 3 < Rm < 15 0 223

J Surface Fit Equations - h terms 224

Jo1 cp = 0, 2 < Rm < 3 0 224

Jo2 cp = 0, 3 < Rm < 15 0 0 226

Jo3 cp = 90, 2 < Rm < 3 0 0 227

Jo4 cp = 90, 3 < Rm < 15 0 229

Jo5 cp = 180, 2 < Rm < 3 0 231

Jo6 cp = 180, 3 < Rm < 15 0 232

Jo7 cp = 270, 2 < Rm < 3 0 234

Jo8 cp = 270, 3 < Rm < 15 0 236

K Surface Fit Equations - s terms 238

K.1 cp = 0, 2 < Rm < 3 0 238

K.2 cp = 0, 3 < Rm < 15 0 0 241

K.3 cp = 90, 2 < Rm < 3 o 0 243

Contents xiv

K.4 </J = 90, 3 < Rm < 15 . 246

K.5 <P = 180, 2 < Rm < 3 . 248

K.6 <P = 180, 3 < Rm < 15 . 251

K.7 <P = 270, 2 < Rm < 3 . 253

K.8 <P = 270, 3 < Rm < 15 . 256

L Surface Fit Equations- d terms 259

1.1 <P = 0, 2 < Rm < 3 . 259

1.2 <P = 0, 3 < Rm < 15 . . 262

1.3 </J = 90, 2 < Rm < 3 . . 264

1.4 </J = 90, 3 < Rm < 15 . 267

1.5 <P = 180, 2 < Rm < 3 . 269

1.6 <P = 180, 3 < Rm < 15 . 271

1.7 <P = 270, 2 < Rm < 3 . 274

1.8 <P = 270, 3 < Rm < 15 . 276

M Variability in Profiling- Non-interpolated LUTs 279

N Variability in Profiling- Interpolated LUTs 281

1.1 Sample problem discretized ...

1.2 Source point - Field element pair

List of Figures

3

4

1.3 Comparison of matrices - Shaded area indicates non-zero matrix terms 12

2.1 Sample problem

2.2 Typical finite difference mesh for the sample problem

2.3 Typical finite element mesh for the sample problem

2.4 Typical 2-dimensional finite elements

2.5 Typical 3-dimensional finite elements

2.6 Quadrilateral element being distorted

2. 7 Typical boundary element mesh for the sample problem .

2.8 Scaled boundary coordinate system

2.9 Different modelling strategies for the SBFEM

2.10 Weighting functions for meshless methods

3.1 General boundary value problem

3.2 Integration in the Cauchy principal value sense .

3.3 Values for Cij (11:)

3.4 Discretised sample problem

3.5 Sample element

XV

22

22

23

24

25

25

27

29

30

32

36

43

44

45

45

List of Figures xvi

3.6 Shape functions for elements with 3 nodes 46

3.7 Matrix terms- Hu = Gt 47

3.8 Matrix terms - Boundary conditions applied 48

3.9 Matrix terms- Matrix rows and columns exchanged 48

3.10 Matrix terms- Ax = b 49

3.11 Example of an infinite domain (Perrey-Debain et al., 2004; Trevelyan,

2006) 0 52

4.1 Splitting techniques for rectangular integration .

4.2 Example integration

4.3 Application of midpoint rule for an individual strip

4.4 Application of trapezoid rule

57

58

60

60

4.5 Error estimation for trapezoidal rule 61

4.6 Plots of equations (4.5) and (4.6) . . 62

4. 7 Absolute error in numerical integration as strip count is varied 63

4.8 Plot off (x) = x4
- 6x3 + llx2

- 8x + 7 64

5.1 Convergence of steepest descent method (Ramage, 2006) 80

5.2 Two one-dimensional search vectors 81

5.3 Convergence of conjugate gradient method (Ramage, 2006) 82

5.4 Eigenvalue distribution for two problems with identical condition

number

5.5 Convergence of GMRES solver for sample matrices

5.6 Sample matrix from the BEM showing diagonal dominance

88

89

91

6.1 Portion of a Steam table (from Haywood, 1998) 97

6.2 Typical source point/field element geometry (showing parameter def-

initions) 99

6.3 LUT integration orientation 101

6.4 Rotations required for arbitrary source point-field element pair 101

6.5 Example circular arc element

6.6 Example circular arc element with defining parameters

6. 7 Distribution of Rm values for the boundary solution . .

105

105

106

List of Figures xvii

6.8 Distribution of Rm values for the internal point solution . . 107

6.9 Plot of h~%T for node 2 108

6.10 Plots of h~%T for end-nodes . 108

6.11 Plot of h~%T for node 2 of an arc element . 110

6.12 Plots of elements for f) = 45o, 135°, 225° and 315° 110

6.13 Plots of h~%T for end-nodes of an arc element . . 111

6.14 Plot of output error from known maximum introduced error . 112

6.15 Percentage errors in coarsely generated LUT term (91)(mid-node) . 113

6.16 Surface plot of h~(for a mid-node 113

6.17 Scatter-plot of error for a non-interpolated LUT . 114

6.18 Error in maximum principal stress for non-interpolated LUT . 115

6.19 Example of linear interpolation 116

6.20 Error in maximum principal stress for interpolated LUT . 116

6.21 Surface plots of integrals 120

6.22 Line plots for variable cp, 0 = 90° 121

6.23 Line plots for variable 0, cp = 90° 121

6.24 Line plots for variable Rm, cp = 90° . 122

6.25 Typical plot of error as the number of basis functions is reduced . 124

7.1 Models used within equation solution analysis

7.2 Current Concept Analyst solution framework .

7.3 Sparsity of ILUT preconditioner

7.4 Computational cost of ILUT preconditioning strategy

7.5 Proposed analysis and reanalysis scheme

7.6 Initial model

. 130

131

136

137

. 139

140

7.7 Deterioration of the LU factorisation after multiple perturbations 141

8.1 Analysis model for integration comparison 149

8.2 Spread of profiling data for non-interpolated LUTs . 152

8.3 Spread of profiling data for interpolated LUTs .

8.4 Example of arbitrary element orientation saving

. 153

. 154

List of Figures xviii

8.5 Time saving as number of applicable elements is varied - Boundary

terms 156

8.6 Time saving as number of applicable elements is varied- Internal points157

8. 7 Models used to analysis proposed equation solution technique 159

8.8 Normalised solve time for a variety of perturbations (Trevelyan et al.,

2004)

8.9 Variation in reanalysis time with problem size

9.1 Surface plots of h

9.2 Surface plots of 9

9.3 Three dimensional element with defining parameters .

9.4 Alternative definition for three dimensional element

9.5 Multi-zone problem

9.6 Co-planar crack surfaces (Aliabadi, 2002)

9.7 Quadratic element types (Aliabadi, 2002)

9.8 Matrix for the reanalysis problem of crack growth

9.9 Interaction within the stress field between two holes in a rectangular

plate

A.1 9TJTJ

A.2 9TJ(which is identical to 9(TJ

A.3 9(7]

A.4 9«

B.1 hTJTJ

B.2 hTJ(

B.3 h(TJ

B.4 h((

C.1 slTJTJ .

C.2 .517](.

C.3 SI((·

C.4 .527]7] .

. 161

. 162

. 166

. 167

170

172

173

. 174

175

176

177

. 200

. 200

. 201

. 201

. 202

. 202

. 203

. 203

. 204

. 204

. 205

. 205

List of Figures xix

C.5 s2TJ(. . 205

C.6 S2((. . 205

D.1 dl7J7J . . 206

D.2 dlTJ(. . 206

D.3 dl((. . 207

D.4 d2TJTJ. . 207

D.5 d27J(. . 207

D.6 d2((. . 207

E.1 g7JII 0 ••• 0 •• 208

E.2 g 17(which is identical to g(17 . 208

E.3 9(TJ . 209

E.4 9((. 209

F.1 hTJTJ . 210

F.2 hTJ(. 210

F.3 h(TJ . 211

F.4 h((. 211

G.1 slTJTJ . . 212

G.2 Slry(. . 212

G.3 Sl((. . 213

G.4 S2ry7J . . 213

G.5 S2ry(. . 213

G.6 82((. . 213

H.1 dl7J1j . . 214

H.2 dlry(. . 214

H.3 dl((. . 215

H.4 d21J1j. . 215

H.5 d2ry(. . 215

H.6 d2((. . 215

4.1 Rectangular integration of J0+
1 x 2dx .

4.2 Trapezoidal integration of J0+
1 x2dx .

4.3 Comparison of Newton-Cotes techniques for integration

6.1 LUT memory requirements (MB) ...

6.2 Final LUT memory requirements (MB)

List of Tables

59

61

64

117

118

7.1 Iteration count and sparsity levels for ILUT preconditioned GMRES . 137

7.2 Function profiles for updating of LU factorisation ..

8.1 Timings for integration using non-interpolated LUTs

8.2 Timings for integration using interpolated LUTs

8.3 Timings for integration using L UTs

8.4 Variability parameters for non-interpolated LUTs

144

150

150

150

151

8.5 Variability parameters for interpolated LUTs . . . 151

8.6 Timings for integration using surface fit equation 152

8. 7 Comparison of timings for fixed rjJ and arbitrary rjJ surface fits 154

8.8 Summary of integration timings and memory requirements 155

8.9 Summary of iteration counts for various preconditioners . . 160

9.1 Three-dimensional memory requirements - No symmetries 171

XX

List of Tables

9.2 Three-dimensional memory requirements - Symmetries

M.1 Timings for non-interpolated variability assessment

M.2 Variability parameters for non-interpolated LUTs

N.1 Timings for interpolated variability assessment .

N.2 Variability parameters for interpolated LUTs ..

xxi

. 171

. 279

. 280

. 281

. 282

-- - -- - --- -- ---------- - -- - ------ - - -- -- -- - -----

5.1 Gaussian elimination of Ax = b

5.2 Partial pivoting

5.3 Partial pivoted Gaussian elimination

5.4 LU decomposition

5.5 Partial pivoted LU decomposition

5.6 Steepest descent method ...

5. 7 Preliminary conjugate gradient method

5.8 Arnoldi's Method

5.9 GMRES

5.10 Sparsity based ILU factorisation .

5.11 Sparsity based ILU(Z) factorisation with fill-in .

5.12 Threshold based ILU factorisation

6.1 Progressive reduction scheme for surface fitting

6.2 Secondary surface fitting stage .

7.1 Row-swapping strategy

7. 2 IL U threshold based G MRES scheme

:xxii

List of Algorithms

74

75

76

76

77

80

82

85

86

93

93

94

123

. 125

133

135

Nomenclature

a Angle in 3D case

L 3D element scale parameter

f3 Angle in 3D case

eo Initial strain vector

~ Dirac delta function

6 Kronecker delta

~A Modification matrix

~b Modification vector

~X Modification vector

'r} Rotated coordinate system

r Problem boundary

I Angular orientation of 3D element

I Euler constant

"" Collocation point

XXlll

Nomenclature xxiv

K, Matrix condition number

,\ Eigenvalue

fl Hessenberg matrix

<1>1 Modal displacements

A' Perturbed version of A

A Matrix of known coefficients

a Vector of coefficients

B FEM Strain-displacement matrix

B Matrix of known coefficients

b Vector of known displacements and tractions

D Material property matrix

f Vector of nodal forces

G Given's rotation matrix

G Influence matrix

H Influence matrix

I Identity matrix

K Global stiffness matrix

L Lower triangular decomposition

M Preconditioning matrix

N Shape functions

Pk Search vector

p SBFEM nodal forces

Nomenclature XXV

p Vector of meshless basis functions

t Traction vector

uh SBFEM analytical functions in ~ coordinate direction

U Upper triangular decomposition

u Displacement vector

x Vector of unknown tractions and displacements

y Vector of known tractions and displacements

£ Error term

K Krylov subspace

J1 Shear modulus

v Poisson's ratio

0 Problem domain

<I> Iterative solver minimisation function

rjJ Angle subtended by the element relative to the .T coordinate

rjJ Meshless methods shape functions

rPi Incident wave

0' Stress tensor

(} Angle subtended by the imaginary line r m

c Error norm

~ Local coordinate variable

~ Scaled boundary finite-element method radial coordinate

(Rotated coordinate system

Nomenclature

a Initial value for geometric progression

b Body force

c Coefficient representing how the surface varies at the source point

C1_ 5 Constants based on material properties

Dkij Stess fundamental solution

E Young's modulus

E0 SBFEM coefficient matrix

E 1 SBFEM coefficient matrix

E 2 SBFEM coefficient matrix

G Green's function

g Influence coefficient

Gij Galerkin tensor

h Finite difference method step size

h Influence coefficient

h Simpson's rule strip width

hi,k Hessenberg matrix component

J (~) Jacobian of integration

J Meshless methods minimisation function

k Wavenumber

K 1 Potential kernel

K2 Potential kernel

L Element length

xxvi

Nomenclature xxvii

L Number of internal nodes

£1 Length of side 1 of 3D element

£2 Length of side 2 of 3D element

N Number of equations in analysis model

N Shape functions

n Normal direction

n Number of basis functions

p ILU sparsity pattern

R Radius of a circular arc element

r Iterative solver residual

Rm Scaling parameter

rm Distance from source point to the mid-point of the field element

S Scaled boundary finite-element method defining curve

s Circumferential coordinate for scaled boundary finite-element method

s Geometric progression value

SkiJ Stess fundamental solution

t Traction

Tij Displacement fundamental solution

U Finite difference solution

u Displacement

UiJ Displacement fundamental solution

wi Gauss quadrature weight

Nomenclature xxviii

X Coordinate variable

X Field Point

.To SBFEM Scaling centre location

Xi Gauss quadrature abscissa

y Coordinate variable

Yo SBFEM Scaling centre location

z ILU fill-in parameter

CHAPTER 1

Introduction

The aim of this thesis is to present a novel technique for accelerating the boundary

element method, in particular with respect to stress analysis problems. The work

will consider extensions to other areas to which the boundary element method has

been applied.

1.1 Overview

Numerical analysis is an essential tool in the engineer's toolbox. It allows the so­

lution of complex structures that do not have an analytical solution. This process

tends to be computationally expensive and as a result a large number of authors

have investigated methods of accelerating these computations.

Typically acceleration techniques have been applied to large problems for which

the solution time is measured in hours, thus even a small reduction in computa­

tional cost within a loop can propagate to a large overall saving in run-time. As a

result small everyday problems that have been considered trivial have been ignored.

However, it is in the early stages of design, when simplifications have been applied

to models for ease of analysis, that defining decisions are usually made. Thus if a

1

1.2. Background 2

large number of alternatives can be tested and examined then late, costly, changes

to a design can be avoided. Accelerating the solution methodology such that con­

tour plots of stress and displacements update as the geometry is perturbed allows a

much higher degree of interaction between user and design. Therefore this thesis will

consider small two-dimensional problems and attempt to accelerate the associated

computations. As a result the techniques employed to accelerate the solution will

differ from those applied to large scale problems in certain aspects.

The solution of large problems is dominated by the solution of large systems of

linear equations (Marburg and Schneider, 2003) and therefore the implementation

of an iterative solver is the typical first step. Iterative solvers can be accelerated by

application of a preconditioner of some form. The effectiveness of a preconditioner is

problem dependent and thus a number of authors have investigated preconditioners

for certain individual types of problem. For small problems, such as those considered

in this work, run-time is no longer dominated by the solution of the global matrices

and therefore an effective acceleration strategy needs to consider other areas of

computational cost.

1.2 Background

To allow the analysis of the overall problem it is necessary to split the problem into

the component parts and improve the computational cost of each segment.

1.2.1 Boundary element method

Although the boundary element method (BEM) is considered to be a relatively young

method for analysing problems the initial work was laid down in a number of part

papers by Somigliana (1885a,b,c,d, 1886a,b,c). After this initial work the method

was slowly developed, primarily by mathematicians, for analytical and hence almost

trivial problems until the 1960s. At this point research in the BEM (as well as other

numerical methods) accelerated due to the more common usage of computing power

at research institutes. This led to a number of key publications including Jaswon

(1963) and Symm (1963) who developed a method of discretisation for the integral

1.2. Background 3

equations. Later work came from Rizzo (1967) and then Cruse and Rizzo (1968)

who extended the method to allow the direct use of tractions and displacements

initially in 2D and then later in 3D (Cruse, 1973).

Application of the BEM involves a number of stages. The first requirement is

to divide the boundary of the object under analysis into elements. Early work by

Jaswon and Symm (1977) used constant elements, however the use of quadratic

iso-parametric elements as proposed by Lachat and Watson (1976) is commonly

used in modern analysis codes. Figure 1.1 shows a sample problem divided into its

constitutive elements with each red dot representing the end of an element.

- - - - - - ~ - -
••

0
·~

••

••

·~
- --
Figure 1.1: Sample problem discretized

To allow the solution of the boundary problem it is necessary to consider points

on the boundary, called collocation or source points, and integrate around the re­

mainder of the boundary. In performing this collocation it is possible to generate

equations consisting of influence coefficients relating how forces applied to the source

point will be transmitted to the boundary at specific locations, namely the elements

(see figure 1. 2).

Equation (1.1) shows the result of integrating at one of the source points around

the remainder of the boundary

where h and g are the influence coefficients and c1 represents the local geometry

at the source point, these factors are all known. u and t are displacements and

1.2. Background

• Source point

Field element

Figure 1.2: Source point - Field element pair

4

tractions respectively. By moving the source point around each of the nodes on the

boundary in turn it is possible to generate a set of equations involving the tractions

and displacements around the boundary. These can be combined into a matrix

equation of the form

Hu=Gt (1.2)

where H and G contain the respective influence coefficient matrices and u and t

are vectors of displacements and tractions. Boundary conditions arc now specified

and rows and columns can be swapped

Ax=By (1.3)

where A and Bare mixtures of Hand G , y is a vector filled with known values of

tractions and displacements, and x is a vector of unknown tractions and displace­

ments. This can be further simplified by performing the matrix-vector multiplication

By=b

Ax=b (1.4)

This is a linear set of equations that can be solved in the user 's preferred manner ,

to produce the remaining displacements and tractions from around the boundary.

To calculate displacements and stresses at points internal to the boundary it is

necessary to collocate at the point of interest in a similar manner to the boundary

problem, producing

1.2. Background 5

where the only unknown is uint· Thus the solution to the problem can be displayed

to the user, and this can lead the user to decide upon developments within the

geometric model. As the new perturbed model will be based on the previous model,

which has already been solved, it is possible to re-use portions of the previous

analysis to accelerate the solution.

Consideration of the overall solution strategy as a number of discrete steps has

allowed each step to be considered in detail. Upon combining these steps together

into the complete strategy the savings are combined.

The main strategy for problem solution within any analysis can be split into the

following main stages,

• Define the problem geometry

• Convert the geometric problem to the numerical form

• Solve the numerical problem

• Convert the numerical solution to a suitable form for display

• Display the solution to the user

A stress analysis program developed in-house (Trevelyan, 2003) has been used as

the basis for this research and therefore only the areas of main concern have been

developed. Definition of problem geometry and the displaying of solutions is a

relatively well developed area in the program.

The main areas that this thesis will consider are the formation of the global

matrix problem and then the solution of this numerical problem. When considered

in relation to the boundary element method the second of these stages can be further

split into two sub-stages,

1. Solution of the boundary problem

2. Solution of the internal point solution

Each of these stages will be considered in turn.

..

1.2. Background 6

1.2.2 Integration techniques

The rapid evaluation of integrals is a relatively un-researched area with most re­

searchers preferring the brute force approach of calculating each stress or displace­

ment on-the-fly.

Gauss-Legendre quadrature (e.g. Davis and Rabinowitz (1984)) is the most com­

monly used form of integration in numerical analysis due to the ability to accurately

and relatively cheaply integrate functions. As a result of this popularity a large

number of authors have investigated general Gauss quadrature rules aiming to im­

prove the computational efficiency whilst maintaining a level of accuracy within the

results obtained. Eberwien et al. (2005) considered the integration for source points

internal to the problem domain. As the points are internal to the domain the inte­

grals considered will not become singular. However, as the source points approach

the boundary they will become near-singular. The order of the singularity depends

on the particular boundary integral kernel being considered. Traditional BEM for­

mulations include weakly and strongly singular integrals. More recent formulations

include hyper-singular integrals. Eberwien et al. (2005) compared the proposed in­

tegration scheme with that of schemes previously proposed by Jun et al. (1985) and

Bu and Davies (1995).

Telles (1987) proposed the use of a second or third degree polynomial transforma­

tion to remove the singular nature of the integral and allow the accurate calculation

of the integral using a much reduced order of Gauss-Legendre integration. Telles

applied the technique to integrals of the form 0 (~) and 0 (/2). However, the

technique can be transferred to integrals of logarithmic or higher order.

The second order transformation can be applied to integrals with logarithmic

singularity at the extremity of the integral range. If the singularity is within the

integral bounds then the integral can be split into two sections and the transforma­

tion applied to each part of the original integral. The third order transformation

does not suffer from this restriction and as a result can be applied to more situations

directly but at added computational cost.

Trevelyan and Wang (2001b) proposed the use oflook-up tables (LUTs) to store

precomputed values of influence coefficients for the displacement equations to allow

1.2. Background 7

rapid compilation of the matrices. Trevelyan and Wang also implemented a scheme

to reduce the size of the LUTs from a 3-parameter table to a 2-parameter table to

describe all configurations of source point and field element in a 2D environment.

More recently work has concentrated on accurately solving near-singular and

hyper-singular integrals using exact integration methods. In particular Zhang and

Zhang (2004a, b) have produced formulae to allow the exact integration for stress

analysis problems for linear and quadratic elements. The exact integration approach

is an attractive idea as it allows the use of a single integration method for both the

internal point problem and for the boundary problem. As the technique involves ex­

act integrations the singularity that occurs during the integration phase is implicitly

included in the resulting formulae. However, this ease of implementation comes at

the additional computational cost that is required to compute the generic integral.

For this reason a method based on exact integration is not suited to the real-time

analysis that is intended in this research.

Tsamasphyros and Theotokoglou (2006) consider the integration of near singular

integrals by modifying the Gauss quadrature scheme. The quadrature formula is

modified by introducing an interpolatory formula and applying this to both regular

and singular integrals where near-singularities are involved. The proposed scheme

involves modification of the Gauss weights and thus the method is computationally

more expensive than classical Gauss quadrature techniques. The advantage of the

technique is the ability to solve the near-singular integrals accurately.

Takahashi et al. (2006) considered medium scale problems (N "" 105
) where

the calculation time is dominated by the integration of the layer potentials in the

Laplace and Helmholtz problem. They employed a specialist computer, MDGRAPE-

2, to perform the integrals. The specialised design of the computer allowed the

integration process to be optimised for the particular case concerned, and thus the

computational cost of the integration phase was reduced dramatically. A standard

PC was used to control MDGRAPE-2, collate the completed integrals and then

perform the final iterative solution.

..

1.2. Background 8

1.2.3 Matrix solution

Evaluation of the boundary integral equations around the problem boundary pro­

duces a linear system of equations. The solution of this matrix problem has been

studied in some depth for a variety of different scenarios. There are two main types

of solver,

• Direct

• Iterative

Direct methods such as Gaussian Elimination and Lower-Upper factorisation

(Kreyszig, 1999; Pozrikidis, 1998; Stroud, 1995; Westlake, 1968) have not been

specifically researched since invention as they guarantee to reach a solution within

a specific number of operations 0 (N3
) where N is the number of equations.

Iterative solvers have been very popular, particularly for large systems of equa­

tions where the the use of a direct solver is not feasible either due to the long

computation time or the high storage cost. Therefore the use of a method that can

quickly come to an approximate solution is very desirable.

The conjugate gradient method (Axelsson, 1994; Kane, 1994; Pozrikidis, 1998;

Prasad et al., 1994) is an iterative solver created for the solution of symmetric

systems commonly produced by methods such as the finite element method. The

creation of conjugate search vectors allows the global minimum to be found for a

particular problem. The derivation of the method (e.g. Kane, 1994) relies on the

assumption of symmetry in the matrix A in the particular problem of Ax = b.

To overcome this assumption of symmetry the normal equations (AAT) can be

used. This makes the method more adaptable but with the disadvantage that the

convergence rate is dependent on the square of the condition number of the original

coefficient matrix.

In a similar vein is the use of a conjugate gradient squared method (Axelsson,

1994; Kane, 1994; Prasad et al., 1994). This is advantageous because it will improve

the performance of a standard conjugate gradient method. However, this is also a

disadvantage, as if the system diverges under the conjugate gradient method, it will

diverge rapidly using the conjugate gradient squared method .

..

1.2. Background 9

Another extension of the conjugate gradient method is the stabilised hi-conjugate

gradient (Bi-CGStab) method (van der Vorst, 1992). This allows for a smoother and

more rapid convergence than standard conjugate gradient methods. The advantage

of a bi-orthogonalisation method as opposed to a Lanczos based method is that the

bi-orthogonal vectors can be used for un-symmetric systems. The methodology of

Bi-CGStab is in a similar vein to that of the conjugate gradient squared method

but instead of squaring the residual polynomials, they are updated with a linear

factor. The introduction of this linear factor allows for information on the local

behaviour to be introduced and introduces a smoothing effect on the convergence of

Bi-CGStab.

An alternative to conjugate gradient based methods is the generalised minimum

residual method, GMRES, proposed by Saad and Schultz (1986). This technique is

efficient as it can be shown (Spencer, 2004) by application of the Cayley-Hamilton

theorem that it will converge within N iterations with each iteration being of order

N 2
, due to a matrix-vector product in the iterative loop. Hence at worst it will

be comparable with a direct solver. However, this relies on perfect precision in the

numerical work. Additionally GMRES is suitable for dense un-symmetric systems

of equations such as those generated through the BEM. Descriptions, including

pseudocodes, of the main iterative methods is available in Axelsson (1994); Kane

(1994) and Saad (1996).

Development with respect to solvers has continued aimed at improving rates of

convergence of solvers under certain conditions. Preconditioning of the equations

has been the most effective way of reducing iteration count and has been investigated

from both a mathematical and an engineering point of view.

From a mathematical point of view the process has been to develop new and

more efficient preconditioners for specific types of problems. Leung and Walker

(1997) considered the use of diagonal preconditioning; they found that although the

preconditioner was efficient it was possible that the basis vectors used in the iterative

process of GMRES could suffer from a loss of orthogonality thus causing the method

to fail. Leung and Walker found that the introduction of full re-orthogonalisation,

proposed by Wang and Semlyen (1990), could delay the onset of divergence signifi-

1.2. Background 10

cantly.

Valente and Pina (1998) have considered row-scaling as a form of precondition­

ing of the conjugate gradient method when applied to boundary element method

matrices. They found that of the solvers implemented only hi-conjugate gradient,

bi-CGStab and the conjugate gradient squared solvers converged. By application

of preconditioning it was possible to accelerate the rate of convergence. The use of

row-scaling as a preconditioner is simple to apply since the intention is to obtain a

unit diagonal. Valente and Pina (1998) compared this technique with an incomplete

factorisation based on a band-diagonal factorisation.

Chen (1998) considered the application of a variety of preconditioners to dense

linear systems such as those produced by the boundary element method. The pre­

conditioners proposed are all sparse preconditioners and therefore benefit from previ­

ously developed sparse techniques for matrix vector products and similar operations.

Gilbert and Toledo (2000) also considered a variety of preconditioners and solvers for

use in a a black box environment. Black box environments raise a number of issues

as preconditioners and iterative solvers tend to be optimal for certain categories of

problems, and so finding a good all round solver and preconditioner is an extremely

challenging task. Gilbert and Toledo (2000) concluded that for a black box envi­

ronment (with no a priori knowledge) it would be more practical to utilise a direct

solver (such as the back slash operator in MatLab (The MathWorks Inc., 2006))

as this will be able to consistently solve a non-singular matrix problem although

potentially not in the optimal solution time.

Application of these methods to engineering problems has also been investigated

by a number of authors. Prasad et al. (1994) looked at a variety of preconditioned

Krylov solvers for the solution of both stress and thermal problems. They studied

the form of the matrix and consider how the matrix terms are affected by different

geometric features. From this it is possible to see that, although the boundary

element method tends to lead to a strong diagonal dominance within the matrix

equations, it is not always possible to employ merely diagonal preconditioning. This

is a result of geometric features leading to cross-diagonal relationships (diagonals in

the opposite direction to the leading diagonal) within the matrix terms.

1.2. Background 11

Merkel et al. (1998) considered the use of iterative solvers for large-scale three­

dimensional industrial problems. From the study of more complex features it was

found that the diagonal dominance that is commonly found in smaller, simpler prob­

lems vanishes and the distribution of eigenvalues is a good indicator for convergence

properties for these types of problems. Clustering of the eigenvalues has been noted

by a number of authors (e.g. Chen (1994); Greenbaum (1979)) to accelerate the

convergence of iterative solvers and as such they are a good overall indicator of con­

vergence rates. Merkel et al. (1998) found that for large problems it was important

to order the equation system to reach convergence.

The use of sparse preconditioners for BEM systems approximating the three­

dimensional Helmholtz problem are presented by Chen and Harris (2001). The

preconditioners are based on mesh-neighbour preconditioners and as a result can

be thought of as a variable width banded matrix type preconditioner. Chen and

Harris (2001) found that the application of these preconditioners resulted in better

clustering of the eigenvalues for the normal equation matrix.

For acoustic problems Marburg and Schneider (2003) and Schneider and Marburg

(2003) presented findings on a number of problems using both a simple diagonal

preconditioner and an incomplete L U factorisation type preconditioner; of these

they found that the diagonal preconditioner showed no benefit, and in some cases

degraded, the rate of convergence of the iterative solver. They did however find that

an incomplete LU factorisation based method was extremely effective at reducing

iteration count. Chen and Waubke (2004) also considered the use of preconditioners

in acoustic problems but using the fast multipole method. Chen found that the use

of an incomplete LU factorisation was an extremely effective method for iteration

count reduction.

It should be noted that the reduction of iteration count is a useful technique to

decrease the overall computational cost as the iterative phase is a relatively costly

stage of the solution. However, if the reduction of iteration count results in the

calculation of an expensive preconditioner, for example the use of the inverse matrix

will reduce the iteration count to only one iteration but the calculation of the inverse

is a computationally prohibitive.

..

1.2. Background 12

The use of sparse matrix methods has been made very popular by a number of

authors including Saad (1996). This is a result of their applicability to the relatively

more mature finite element method, FEM. This applicability is generated by the

FEM producing large symmetric but banded matrices compared with the BEM

which produces small but densely filled matrices, figure 1.3.

DJ

(a) FEM (b) BEM

Figure 1.3: Comparison of matrices - Shaded area indicates non-zero matrix terms

Sparse matrix methods are extremely popular due to the relatively low compu­

tational cost associated with their calculation and implementation. They are also

extremely effective for use with matrices that are already primarily sparse in nature,

such as those generated through application of the FEM.

1.2.4 Reanalysis

Reanalysis is the technique of using information calculated in a previous analysis

to reduce the computational cost in subsequent analyses. Typically in reanalysis

problems an iterative solver such as a BiCG variant or GMRES (Trevelyan and

Wang, 2001a) is implemented. Iterative solvers are efficient in the cases of reanalysis

due to the small difference in the matrix equations. The small difference allows the

previous solution to the matrix equation to be used as the initial solution to the new

perturbed matrix equation. This technique can be applied to both large and small

perturbations with significant acceleration in computation.

Kirsch and Toledano (1983) present a number of techniques for reanalysis for

modifications to the structural geometry of problems. Current techniques are dis-

1.2. Background 13

cussed and a scheme based on a simple iteration with scaling is presented and com­

pared. The computational cost with respect to the accuracy of each technique is

presented. They conclude that the discussed techniques can be divided into three

main bands with respect to accuracy and computational cost.

1. Polynomial fitting.

2. Simple iteration with scaling.

3. Taylor series.

Thus, they conclude that for most cases a scheme based on simple iterations and

scaling is suitable. Kane et al. (1990) also presented an iterative method reanalysis

for BEM systems. The method can be considered as the expansion of the perturbed

system.

Ax=b

(A+ .::lA) (x + ..::lx) = (b + ..::lb)

A..::lx = (..::lb- .::lAx) - ..::lA..::lx (1.6)

The term in brackets is known entirely and as ..::lx is on both sides of the equation

an iterative scheme can be implemented. Kirsch and Toledano (1983) proposed the

scaling of A to improve the convergence properties and hence allow more substantial

changes.

Leu (1999) presented an iterative scheme based on a reduction method for prob­

lems of shape optimisation. The solution vector is composed of a linear combination

of basis vectors in a similar manner to conjugate gradient methods. This is advan­

tageous as only a reduced basis set is required to achieve the desired accuracy.

Both of the methods presented by Kane et al. (1990) and Leu (1999) suffer from

being based on a factorisation of the original matrix. As a result any subsequent

reanalysis is linked back to the original problem and hence as multiple perturba­

tions are applied the solution technique can degrade. It is possible to update the

factorisation in an evolutionary sense. However, this negates the need for such an

iterative scheme.

1.2. Background 14

Trevelyan and Wang (2001a) presented initial work with reanalysis associated

with the boundary element method. The original analysis was organised such that

appropriate rows and columns could easily be updated depending on the relevant

perturbations made to the analysis model. This method is extremely effective as

a means of reducing computational cost whilst being flexible to allow relatively

large changes to be made to the model's geometry. Addition of features, and hence

elements, to the model was achieved by the addition of rows and columns to the

bottom of the matrix equations. This approach has been adopted in the Concept

Analyst software (Trevelyan, 2003). Cervera (2003) used this technique to accelerate

the analysis phase of an evolutionary stress optimisation (ESO) code.

An alternative method for accelerating the solution of the matrix equations,

proposed by Bae et al. (2006), employs the successive matrix inversion (SMI) method

to allow a quick updating of the matrix inverse. This technique considers that the

difference between successive analysis will be small and therefore the matrix A' can

be approximated by

A'=A+~A

where ~A is the modification matrix. As the modification is relatively small the

difference in the inverses of A and A' will also be small, thus, Bae et al. (2006) use

the SMI to accelerate the updating of the matrix inverse and as such the matrix

solution. The SMI method can be employed with an iterative solver to improve the

numerical conditioning of the system and improve the rate of convergence of the

iterative solver.

The use of reanalysis for early design development has also been implemented by

Terdalkar (2003); Terdalkar and Rends (2006) using the FEM and the commercial

package ANSYS@. This work improves the interactivity between engineer and

design from previous solutions by allowing the adjustment of node positions within

the finite element mesh before commencing a reanalysis. Previously this would have

required a second full analysis after the adjustments had been implemented. The

work is, however, linked to a very precise level of interaction where the user must

control nodal positions as opposed to a more global view of the geometry. As such

it is the view of the author that, although the work by Terdalkar and Rends (2006)

1.2. Background 15

is a big step in the right direction of greater interactivity, the work presented in this

thesis moves to another level in interactivity, with contour plots being updated as

the user interacts with the geometry.

Margetts et al. (2005) applied concepts of reanalysis together with parallel pro­

cessing to create an interactive finite element analysis package. To allow the distinc­

tion between levels of analysis Margetts et al. (2005) defined three styles of analysis

• Steering

• Interactive

• Real-time

Steering involves computations that are significant in overall length and on account

of this results are extracted as the analysis runs to consider if the solution is con­

verging in the correct manner. The results extracted can be used to control, steer,

the problem to a good solution. Due to the length of analysis it is also necessary to

have completed extensive background work to allow an educated mesh to be created

or to rely on the user's knowledge base and ability to produce a suitable design and

mesh capable of meeting the design specification.

Real-time solutions of problems can typically be computed within the time it

takes to refresh the visualisation environment, for example computations of order

10-2 s. Interactive simulations lie in-between these two extreme cases and are consid­

ered periods of computation for which the user will be happy to sit and wait for the

analysis to complete. Interactive and real-time analysis promotes decision making

based on the current analysis results. As a result of this, the user can quickly adapt

a model and converge to a finalised product design quicker than relying solely on

the users knowledge base and experience to generate a good design for the provided

specification.

Margetts et al. (2005) found that to achieve the necessary speed of computation

they required the use of large parallel computers over which to spread the compu­

tations. Thus, this technique is limited to organisations that have such facilities.

1.2. Background 16

1.2.5 General implementation

A number of authors have presented object oriented methods applied to the solution

of numerical analysis problems. The advantages of object oriented programming

(OOP) are the ability to apply techniques such as

• Encapsulation

• Inheritance

• Polymorphism

Each of these ideas allows the rapid development of software, whilst maintaining

ease of upgradability within the code. This is a result of the reduction in code

replication within the same code base.

Mackie (1998) proposed the use of OOP for the implementation of a fully inter­

active finite element system aimed at the solution of smaller, computationally less

intensive problems. In particular Mackie (1998) discusses the ability of OOP meth­

ods to allow for the sub-structuring of the finite element problem such that it can

be divided between multiple threads of execution. Use of multiple threads allows

the idle time of the processor to be minimised on single core machines on account

of the ability of the operating system to give time-slices on the processor to any

tasks that are waiting. As soon as a sub-structure has been defined the analysis on

that sub-structure can start whilst the main thread of execution continues to define

other substructures. As a result of this execution style it is necessary to ensure that

threads terminate correctly and within good time otherwise one of three scenarios

can occur,

• the system could crash,

• the user could be kept waiting for a thread to terminate, or

• incorrect values could be used in the calculation resulting in an incorrect an­

swer for a particular geometry.

The use of multi-threading is beneficial for tasks with which multiple items can

be computed simultaneously. If multiple processor cores are available then this will

1.3. Outline of the thesis 17

allow the simultaneous computation, for single core machines tasks will be allocated

time slots on the processor until computed.

Marczak (2004) shows how to implement OOP methodology for boundary in­

tegral equation methods but stresses that the auxiliary classes derived are equally

applicable to other types of problems such as the finite element method. A further

benefit of generic auxiliary classes is that they can be extensively tested in the pro­

duction stage and test functions produced to ensure that the functions perform as

designed, then they can be packaged and employed in larger projects. If a class then

requires further development it can either be used as a base class for a new class;

which will inherit all of the associated features of the original class, or if the exter­

nal facing functions will not be altered (for example improvement of error checking

which can be kept entirely within the class) then the class can be modified directly.

Marczak (2004, 2006) also notes the advantage of using a template based system for

functions such as integration as the system can be implemented such that a variety

of objects can be passed into the function.

The use of 00 techniques has been applied for problems of reanalysis (Trevelyan

and Wang, 200la) where a model is perturbed such that the new model is close to

the original model. Use of OOP allows model data to be related to higher order

abstractions. For example, nodes can be linked to elements which in turn are linked

to geometric shapes. As a consequence, only data that are changed need to be

updated within the new model. These techniques have been implemented within

the Concept Analyst software (Trevelyan, 2003) and form the foundation for the

implementation of the work presented in this thesis.

1.3 Outline of the thesis

In chapter 2 a number of numerical methods will be introduced, indicating the basic

methodology behind each of them, leading to reasons why the boundary element

method has been chosen as the numerical method of choice for this research. Chapter

3 will present the boundary element method in detail introducing notation relevant

for the thesis. Chapters 4 and 5 will introduce additional material required for the

1.4. Directions for current work 18

main portion of the thesis, introducing numerical integration techniques and solution

methods for matrix equations respectively.

Chapters 6 and 7 will introduce material that has been developed through the

research and present the relevant methodologies. Results will be presented in chap­

ter 8 for the newly proposed techniques comparing them with current standard

methodologies for both computational speed-up and numerical accuracy. Chapter 9

will consider extension of the proposed techniques to alternative applications outside

of elasticity.

1.4 Directions for current work

A large amount of previous work has been presented in section 1.2 regarding the

acceleration of the solution phase in particular. However, this work has tended to

be aimed at either large problems or sparse problems; such as those generated by

the finite element method. The main aim of this thesis is to present the techniques

that have been developed to enable a real-time analysis of two dimensional stress

analysis problems.

For small problems which can easily be stored directly in memory the solution

process can be divided into three roughly equal portions:

• Calculation of the terms in the matrix equations

• Solution of the matrix equations

• Solution of the problem at points internal to the problem domain to allow

accurate contour plots to be generated

These portions can be further divided into two main categories:

1. Integration dependent

2. Solver dependent

As such these two tasks will be the main focus of the work presented in this thesis.

In chapter 6 techniques for accelerating the computation of boundary integrals using

1.4. Directions for current work 19

look-up tables will be presented. Chapter 7 will concentrate on the acceleration of

the solution phase by utilising a preconditioned iterative solver.

CHAPTER 2

Numerical Methods m Stress Analysis

Numerical methods are an important part of the engineer's toolkit as they allow

the solution of complicated problems which otherwise could not be solved, i.e. there

is no analytical solution. To allow for the variety of different problems there are a

multitude of different methods that can be employed. Each of these methods have

their advantages and disadvantages making them more or less suitable for certain

types of problems.

Examples of the types of problems that can be solved using numerical meth­

ods for any domain include Poisson's equation (equation (2.1)), Laplace's equation

(equation (2.2)), the Helmholtz equation (equation (2.3)) and Navier's equations

(equation (2.4)). Without the application of approximate numerical methods these

problems could only be solved analytically for very simple cases.

\12c/J = 0

\121/J + e'l/J = o

20

(2.1)

(2.2)

(2.3)

(2.4)

2.1. Finite difference method 21

where 4;, f and 'ljJ are functions defined within Euclidean space. k is the wavenumber,

u are displacements, v is Poisson's ratio, 11 is the shear modulus and fi are the

components of the body force vector. In this chapter a number of methods will be

presented and the associated advantages and disadvantages discussed. The methods

considered are

• Finite Difference Method (FDM)

• Finite Element Method (FEM)

• Boundary Element Method (BEM)

• Scaled Boundary Finite Element Method (SBFEM)

e Meshless Methods

2.1 Finite difference method

The finite difference method involves the devolution of the differential equations

involved to simpler difference equations that can be solved for a grid of points

through the domain of interest. This conversion is achieved by considering the

derivative of a function, f (x)

1
. f (X + h) - f (X) lm .:........:. __ :.....__:__.:........:...

h->0 h
(2.5)

where h is the step size. In the finite difference method h has a finite value rather

than an infinitesimal value.

The value for the derivative at x can be approximated in three ways,

• Backward difference

• Forward difference

• Central difference

1
U' (x) ~ - {U (x)- U (x- h)}

h

1
U' (x) ~ h {U (x +h)- U (x)}

(2.6)

(2.7)

2.1. Finite difference method 22

1
U' (X) ~ h { u (X + h) - u (X - h)} (2.8)

Backward (equation (2.6)) and forward (equation (2.7)) difference methods have

an error 0 (h) whereas the central difference method (equation (2.8)) has an error

of 0 (h2
).

0
Figure 2.1: Sample problem

Mesh Point rJ
I

tt

Figure 2.2: Typical finite difference mesh for the sample problem

The use of finite-differences is popular in computational fluid dynamics (CFD)

(Fletcher, 1988) as it is a quick and easy method to apply a time-stepping formula to,

as required for efficient analysis under CFD. A disadvantage of the finite difference

method is the requirement of a structured mesh for the analysis (figure 2.2) and as

a result meshing of complicated structures can be computationally difficult as the

mesh needs to be constructed entirely from quadrilateral elements.

2.2. Finite element method 23

2.2 Finite element method

The finite element method (FEM) is a method for solving a large range of problems

as varied as simple linear static calculations through to highly non-linear impact

analysis. Due to the large range of problems that can be solved there is also a large

amount of software available specialising in each of these areas.

The finite element method works by sub-dividing the domain of interest into

smaller elements over which the constitutive equations can be applied and solved.

As the domain is subdivided throughout the volume for a three-dimensional prob­

lem or across the surface for a two-dimensional problem this allows the method to

approximate the non-linear behaviour that can occur. Additionally this sub-division

across the domain means that the matrix equations generated will be large; due to

the high number of elements involved. Figure 2.3 shows a typical finite element

mesh for the sample problem shown in figure 2.1.

Element

-__ ~I - --- ::_--:~ ::_:·: ~-~~:~::--i:-~I - - --: --~ -----0 -----~- : ____ , - - - I ,- ' , I- - - ..,. __ _ _
I I ' I

;-.: :. - - ~ - - ..+- - - :. ..._
l ; ; I ' ' ' I .,_-_: --- - -- -- - ~ --- - - -- --.-- - - - - - - _-_ -_

' '

Node

Figure 2.3: Typical finite element mesh for the sample problem

The typical form of the global matrix equations generated through the FEM are

(Zienkiewicz and Taylor, 1989)

Ku=f (2.9)

where K is the global stiffness matrix, u is the global displacement vector and f

is the vector of nodal forces. K is obtained by assembling the individual stiffness

matrix for each element, Ke (Zienkiewicz and Taylor, 1989)

Ke = 1 BTDBdO (2.10)

2.2. Finite element method 24

where B is the strain-displacement matrix and D is the material property matrix

(or constitutive matrix). B is dependent on the type of elements employed in the

modelling procedure. Assembly of the individual stiffness matrices for each element

causes connectivity to be achieved throughout the mesh. As a result the matrix

equations that are produced, although large, are of a highly banded nature and

therefore specialist solvers and preconditioners can be applied to ensure a rapid

solution. Additionally this banded nature can be exploited to reduce the storage

requirements of matrices by employing techniques such as compressed row storage

or compressed column storage (Duff et al., 1986).

Displacements are converted to strains and then stresses are extracted for display

e=Bu

u =De+ u 0

where u 0 = -Deo and eo is the vector of initial strains.

(2.11)

(2.12)

The most common elements employed in the finite element method are trian­

gular or quadrilateral for 2-dimensional problems (figure 2.4) and tetrahedral or

hexahedral for 3-dimensional problems (figure 2.5). The most popular element is

(a) Triangular element (b) Quadrilateral element

Figure 2.4: Typical 2-dimensional finite elements

the triangular (or tetrahedron for 3-dimensional problems) as it can be easily con­

formed to a wide variety of geometries without excessively distorting the element

2.2. Finite element method 25

(a) Tetrahedral element (b) Hexahedral element

Figure 2.5: Typical 3-dimensional finite elements

(figure 2.6 shows a quadrilateral element being greatly distorted). Distortion in an

element is undesirable as it can cause problems from a numerical point of view. The

disadvantage of using triangular elements is that typically a much greater number

of elements is required to reach an appropriate degree of error in the numerical so­

lution. This increase in element count will naturally increase the problem size and

computational run-time.

Figure 2.6: Quadrilateral element being distorted

For each of these types of element they can be further categorised into the number

of nodes per element , so that elements of different polynomial order can be defined.

Although the finite element method is an adaptable method, and as such very

2.3. Boundary element method 26

popular, it requires the domain to be subdivided into small individual elements

(figure 2.3). When a problem is being remeshed after a reanalysis there is therefore

a significant computational cost. If the perturbation is small; as would be the case

in a real-time analysis, then this problem can be minimised by only remeshing areas

of the domain that are affected. In 3-dimensional problems this is a much more

complex task.

The FEM is a widely used technique within the numerical methods field due to

the ease of application to a wide variety of problems. This is a result of the FEM

being applied to the solution of almost any differential equation by merely casting

the problem in the weak form and applying a weighted residual method (Ottosen

and Petersson, 1992).

2.3 Boundary element method

This section presents a greatly condensed overview of the boundary element method

(BEM) formulation in elastostatics. The material is covered in more detail in chapter

3.

The BEM is formed by taking the constitutive equations for a particular problem

and applying methods to reduce the dimension of the integrals by one; reducing

volume integrals to surface integrals and thus reducing the complexity of the mesh

by one dimension. Figure 2. 7 shows a typical boundary element mesh for the sample

problem in figure 2.1.

As the number of elements has been reduced the overall size of the problem has

been decreased. However, as the method now relates all of the problem's elements

to every other element in the problem, the matrices formed will be fully populated.

The BEM uses the reciprocal nature, in a virtual work sense, of two load cases to

calculate displacements and tractions associated with the problem. Betti's reciprocal

theorem states

(2.13)

where n is the problem domain, r is the boundary of the problem domain, u is a

displacement vector, t is a traction vector and b is a body force vector. To allow

2.3. Boundary element method 27

£ Element

0
~Node

Figure 2.7: Typical boundary element mesh for the sample problem

the solution of this problem it is necessary to define a real and a fictitious (denoted

by * in equation (2.13)) load case. Thus if one load case is known completely then

we can quickly establish the second more complicated load case. For the BEM we

choose a fictitious load case to be the Dirac delta function. The Dirac delta function

has a number of properties that make it useful as the fictitious load case. It

• reduces one of the volume integrals to a trivial form, and

• has analytical solutions for use in the remaining integrals.

As a result in the absence of body forces Betti's reciprocal theorem can be reduced

to the boundary integral equation.

(2.14)

where CiJ is a coefficient dependent on the boundary geometry. Equation (2.14) can

now be integrated around the boundary by placing the collocation point at each

node in turn and integrating across all of the elements in the model. This produces

a set of equations (one for each collocation point) which can be combined into the

linear set.

Hu=Gt (2.15)

Application of boundary conditions will reduce the number of unknowns such that

there are N unknowns and N equations in the set which can be rearranged into the

2.4. Scaled boundary finite element methods 28

well known linear form.

Ax=b (2.16)

Equation (2.16) can be solved for the unknown displacements and tractions around

the boundary. To calculate the displacements internal to the problem domain equa­

tion (2.14) is applied at the point of interest. Stresses can be extracted by use of

the stress form of the boundary integral equation,

aij + 1 skijUkdr = 1 Dkijtkdr

where Sand Dare third order tensors.

(2.17)

As only the boundary needs to be discretized then meshing of problems is a

relatively simple task to achieve, for the two-dimensional problem it is merely a

case of dividing the boundary line into elements. This simplicity is easily extended

into three-dimensions in which the boundary is represented by a surface area that

is discretised into surface elements.

2.4 Scaled boundary finite element methods

The scaled boundary finite element method (SBFEM) is a semi-analytical method

that aims to take the best of both worlds from the FEM and BEM. In this method

a model is converted to a coordinate system in which an analytical solution can be

fitted in one of the coordinate directions. This coordinate system is called the scaled

boundary coordinate system.

The scaled boundary coordinate system is formed by defining a single defining

curve S. This can then be scaled throughout the domain via a scaling centre. The

defining curve can be open or closed but must be smooth and C0 continuous. A

circumferential coordinate .s is defined around the defining curve. A second coordi­

nate ~ is radial in direction from the scaling centre and takes the value ~ = 1 on the

defining curve. As such any point in the domain can be described in terms of(~, .s).

There are three main cases that can be considered. The internal boundary ~i

is taken to zero and as such the domain is bounded (0 ::; ~ ::; 1) and contains the

scaling centre (figure 2.9(a)) or the external boundary ~e tends to infinity and as

2.4. Scaled boundary finite element methods 29

Figure 2.8: Scaled boundary coordinate system

such the domain is bounded by (1 S ~ S oo) and does not contain the scaling centre

(figure 2.9(b)). The third case involves a combination of the previous two cases and

has both an upper and lower bound (figure 2.9(c), Deeks (2002)).

The defining curve can be specified by (x0 + x s (s) , y0 + Ys (s)) and so we can

relate the scaled boundary finite element method coordinates to the Cartesian co­

ordinate set by the following

where the scaling centre is located at (x0 , y0).

The scaled boundary finite element method aims to find an approximate solution

of the form,
n

u ((, s) = L Ni(s) ui(~) = N (s) u (~) (2.18)
i= l

where N (s) represents the shape functions in the circumferential direction. u (~)

represents the analytical displacements along the node lines as they extend from the

scaling centre through the nodes on the boundary.

A finite element approximation is employed in the s coordinate direction.

Application of virtual work methods leads to the scaled boundary finite-element

equation in displacement.
0 1T P = E uh,{ + E uh

E0euh (~) . .;.; + [E0 + E 1
r- E 1 J ~uh (~) . .;- E2 uh (~) = 0

(2.19)

(2.20)

2.4. Scaled boundary finite element methods 30

(a) Simple bounded domain (b) Unbounded domain

(c) Upper and lower bounded domain

Figure 2.9: Different modelling strategies for the SBFKVI

where uh is a set of n analytical functions in ~. E0 , E1 and E2 are coefficient

matrices.

This produces a weakened form of the governing equations in the circumferential

direction but keeps a strong form in the radial direction.

Equations (2.19) and (2.20) can be considered to be a set of Euler-Cauchy dif­

ferential equations, consideration of which yields the quadratic eigenproblem,

(2.21)

where 4> is a vector containing the modal displacements at the boundary nodes. This

can be converted to a standard eigenproblem at the expense of doubling the size

of the system (Deeks and Wolf, 2002) . The solut ion of this standard eigenproblem

yields 2n modes. For a bounded domain it is only necessary to consider the modes

with non-positive real components of >. lead to finite displacements at the scaling

centre. This subset of modal displacements is designated by <P 1 . For a particular

set of boundary displacements uh and nodal forces P we can state,

(2.22)

2.5. Meshless methods 31

thus, the stiffness matrix is given by,

(2.23)

and equilibrium is reduced to

Kuh- P = 0 (2.24)

Application of boundary conditions reduces this problem to a standard linear form

that can be solved in a standard manner. The displacement field can then be

calculated by using
n

uh (~, s) = N (s) L ~~->.;tPi (2.25)
i=l

and the stress field by,

n

ah (~, s) = D L ~c>.;-l [~-XiB1 (s) + B 2 (s)] tPi (2.26)
i=l

where B 1 and B 2 are given by

B 1 (s) = b1 (s) N (s) (2.27)

(2.28)

and b1 and b2 are functions dependent only on the boundary definition (Deeks and

Wolf, 2002).

2.5 Meshless methods

The boundary element method presented briefly in section 2.3 demonstrated that

reducing the dimension of the problem by one, from volume integrals (as in the

FEM) to surface integrals, can make the meshing process computationally simpler.

This is important for both an initial analysis and in subsequent reanalysis where the

geometry of the problem has been perturbed in some manner and as such the mesh

will need to be updated.

Meshless methods remove the need for a mesh around the problem and instead

use nodes placed across the domain. As there are nodes in the problem it is still

necessary to link the nodes to nodes situated near-by such that information about

2.5. Meshless methods 32

the variables of concern can be propagated. However, as there is no mesh in the

same sense as the finite or boundary element method it is necessary to use other

techniques to ensure connectivity. The technique used in most meshless methods is

that of a moving least squares approximation to displacements. It is assumed that

the variable of interest will vary as a polynomial around each node in the domain.

The influence from each of the nodes will overlap with nodes in the near vicinity

and as a result the value of the shape function at a particular node is obtained by

the weighted summation of these influences.

Typically simple polynomial basis functions are employed and these are weighted

by using a symmetric weight function based on a spline or Gaussian function . Figure

2.10 shows an example of a 1-dimensional (figure 2.10(a)) and 2-dimensional (figure

2.10(b)) weighting function.
N

uh = L<i>i'lli (2.29)
i=l

where uh is the approximated displacement, </> are shape functions and ui is the

fictitious displacement at node ·i.

,,
w,

0.8[

0.6 '

04 f

0.2"

o' -r

(a) 1-dimensional function (b) 2-dimensional function

Figure 2.10: Weighting functions for meshless methods

As equation (2.29) produces a moving least squares approximation to the dis­

placement, uh will not be the same as ui but will approximate it. As a result it can

be difficult to apply displacement boundary conditions to meshless methods as they

are defined in terms of ui and not uh.

Calculation of the shape functions used within meshless methods is achieved by

2.5. Meshless methods 33

noting that,

(2.30)

where p is a vector containing the basis function terms and a is a vector of coeffi­

cients that are unknown. To calculate the coefficients in a we minimise the function,

N

J = L Wi [PT a- ui] 2
(2.31)

i=l

The shape functions can then be derived as

(2.32)

where
N

A= LWiPiPf (2.33)
i=l

(2.34)

It is necessary to derive a weak form of equilibrium and compatibility equations

and this can be achieved via the use of a test function. The element free Galerkin

(EFG) (Belytschko et al., 1994) meshless method proposes a global weak form such

that the integrations are performed over the complete problem domain, similar to

the finite element method. This causes a problem as the method is no longer a

true meshless method as it is necessary to incorporate integration cells within the

problem domain and as a result of this a cell generator is required.

An alternative technique to the EFG method is the meshless local Petrov­

Galerkin method (MLPG) (Atluri and Zhu, 1998) in which the the aim is not to

satisfy the global weak form directly as in the EFG method. The MLPG aims to

satisfy the weak form on a local level around each node. However, if these zones

overlap throughout the domain and cover the entire domain as a set of zones the

weak form will be satisfied for the global problem.

As a result of the meshless methods presented employing a moving least squares

approximation for the displacement field it is not possible to directly apply dis­

placement boundary conditions as used in other numerical methods. This is a result

that uh is an approximation to ui. Thus it is necessary to use penalty methods or

Lagrange multipliers to impose the conditions (Augarde and Deeks, 2005).

2.6. Concluding remarks 34

2.6 Concluding remarks

Each of the methods presented in this section are extremely powerful in their own

right, be it the adaptability of the finite element method or the ease of re-meshing

a problem under the boundary element method and as such each method has its

place in the engineer's toolbox.

For the purpose of this work the boundary element method will be considered

as the ease of remeshing a problem is extremely important in the process of re­

analysis. The boundary element method is preferred over meshless methods as the

prescription of boundary conditions in the latter is problematic and thus increases

the complexity of the method. However, parts of the work; in particular the section

on preconditioning (section 7) could be applied to alternate numerical methods that

generate matrix equations of the same form.

CHAPTER 3

Boundary Element Method

Following consideration of a number of numerical methods (chapter 2) the use of

the boundary element method (BEM) has been found to have certain advantageous

characteristics for a wide variety of problem types. The boundary element method

has been applied to problems as diverse as fracture mechanics (Mukherjee, 1982),

where the stress field becomes singular at the crack tip, to problems involving infinite

domains for which the BEM is particularly suited since it is only only necessary

discretise the boundary of the domain (Wu, 2000). Finally the BEM is suited to

problems of reanalysis. As the boundary is the only part of the analysis model

required to be discretised it is a relatively quick and easy operation to remesh the

problem after a perturbation (Trevelyan and Wang, 2001a). Other benefits of the

BEM for this particular type of problem will be discussed within the derivation.

This chapter will present the theory behind the boundary element method for

elasticity, heat transfer and acoustics.

35

3.1. Derivation of the boundary element method 36

3.1 Derivation of the boundary element method

The boundary element method will be formulated for a general problem, as shown in

figure 3.1, where the problem domain is indicated by n, with boundary r. Conditions

are typically only prescribed on the boundary r but it is possible to deal with body

forces using a variety of techniques.

Figure 3.1: General boundary value problem

Various forms of condition can be applied on the boundary,

• A prescribed value of unknown function; for example <P = A1

• A prescribed value of the normal derivative of the unknown function </J; for

example ~~ = A2

• A prescribed relationship between <P and ~~, e.g. a linear spring

Boundary conditions of the first type are called Dirichlet conditions, conditions of

the second type are called Neumann conditions and the third type of condition is a

Robin condition. There are further conditions that are non-linear in nature that can

be prescribed on the domain such as contact conditions, as a result of the non-linear

nature these require special treatment as discussed by Aliabadi (2002).

We can write integral equations that relate the boundary functions, <P and ~~,

over the solution domain. It is possible to apply certain integral transformations

to these problems; for example Green's Theorem (equation (3.1)),to reduce the

3.1. Derivation of the boundary element method 37

dimensionality by one such that volume integrals become surface integrals.

1 \7 ° fdn = 1 f . ndr (3.1)

where f is an arbitrary vector function and n is the unit outward pointing normal.

Another useful form of Green's Theorem is Green's second identity (equation (3.2))

which is used in many BE applications to reduce the dimensionality by one.

(3.2)

We will now look at the derivation of the boundary integral equations for specific

types of problems.

3.1.1 Elasticity

To form the boundary integral equation for elasticity directly Betti's reciprocal work

theorem will be applied. Considering a small element of the domain n we can form

the equations of equilibrium

(Jij,j + bi = 0 (3.3)

where (Jij is a stress component and bi the body force vector per-unit volume. From

this we can state the weighted residual form

(3.4)

where u; is an arbitrary weighting function that will be defined completely later in

the derivation. To allow the application of Green's theorem (equation (3.1)) the first

term in the weighted residual form needs to be expanded by the use of the product

rule (equation (3.5)).

(! (x) g (x))' = f (x) g' (x) + f' (x) g (x) (3.5)

Application of the product rule in differentiation (equation (3.5)) produces

1 [((Jiiui),i- (Jiiui,j + biui J dn = 0 (3.6)

It should be noted that as ((Jij'ui) . is the divergence of ((Jij'ui) then we can now
,]

apply Green's theorem (equation (3.1)) to reduce the volume integral to a surface

3.1. Derivation of the boundary element method 38

integral

1 criju;njdr-1 criju;,jdO + 1 biu;dn = 0 (3.7)

where nj are the components of the unit normal on the boundary r. Application of

the Cauchy stress transformation

(3.8)

produces

1 tiu;dr- 1 crijn;,jdn + 1 biu;dn = 0 (3.9)

This statement is now equivalent to the principle of virtual work (PVW).

An equivalent statement to equation (3.9) can be produced where a fictitious

load case does work on the real displacements

(3.10)

Application of Hooke's law* shows that CTijni,j = cr;jni,j· Hence we can state

(3.11)

This is Betti's reciprocal theorem. Betti's reciprocal theorem is an extremely im­

portant theorem as it allows the relation between two physical systems from their

respective displacement fields. This is advantageous if one of the displacement fields

can be obtained relatively conveniently.

Currently, we have not defined the fictitious load case. By defining the fictitious

load case to be the Dirac delta function,

X=K
if

we can use the following property to remove one of the volume integrals,

J ~ (x- r.)dO = 1

0

(3.12)

(3.13)

*Remembering that u;,j = E:;j and that the constitutive fourth order tensor is symmetric we

can state O"ijUi,j = Cijkltkttij = Cijkteijtkl = cklijtijekt = a-i:,luk,l

3.1. Derivation of the boundary element method 39

Thus the fictitious load case is represented by equation (3.14).

aij,j + ~ (x- r,;) ei (x) = 0 (3.14)

where r,; is the sample point under consideration and ei is a unit vector in the

direction of 'i. These properties allow the right hand side of equation (3.11) to be

reduced to

l t;uidr + 1 b:uidn = fr t;uidr + 1 ~ (x- r,;) eiuidn (3.15)

The first term on the right hand side of equation (3.15) is as required but the second

term can now be reduced due to the properties of the Dirac delta function that we

have chosen as the arbitrary load case. Recalling that the integral of the Dirac delta

function is unity (equation (3.13)) we can state that

r ~ (x- r,;) eiuidn = eiui (r,;) ln (3.16)

The term ei is a unit vector in the direction of 'i and the term ui is a displacement

in the same direction thus,

l t;uidr + 1 ~ (x- r,;) eiuidrl = l t;uidr + eiui (r,;)

Hence equation (3.11) can now be written as

Ui (r,;) ei + r t;uidf = r tiu:df + r biu:dfl lr lr ~

(3.17)

(3.18)

By setting the baby force vector to be the Dirac delta function u* is given by the

displacement solution to equation (3.14) known as the Kelvin solution (Thomson,

1848). The displacement solution is related to the free space Green's function by

(3.19)

For 2-dimensional plane strain problems the fundamental solution is given by,

u. =cl {c2ln [~] 8·. + r -r . } tJ r tJ ,t ,1 (3.20)

where r = l.r - r,;l, x is the field point, 8ij is the Kronecker delta given by equation

(3.21) and cl and c2 are functions of material properties defined in equation (3.22).

i=j

i=/=j
(3.21)

3.1. Derivation of the boundary element method 40

c2 = (3- 4v) (3.22)

where J-L is the material shear modulus and v is the Poisson's ratio.

In the case of plane stress we can obtain the fundamental solution by using

modified material properties.

v' = __1:L_
l+v

E' _ E(1+2v)
- (l+v)2

1-L' = fL

For 3-dimensional problems the displacement solution is given by,

C1l
U· · = -- [C26 · · + r -r ·] tJ 2 r tJ ,t ,3

(3.23)

(3.24)

For axi-symmetric problems the displacement solutions are more complicated, the

interested reader can find these in either Becker (1992) or Aliabadi (2002).

We can obtain the traction fundamental solution, t; by differentiating the dis­

placement fundamental solution and applying Hooke's law. Similarly to the dis­

placement case

(3.25)

Thus, for 2-dimensional plane strain,

T· = C3 (~) {r [C46·· + 2r ·r]- C4 [r n·- r n·]} t) r ,n t) ,t ,J ,J t ,t J (3.26)

where n is the unit normal and C3 and C4 are functions of material properties given

by equation (3.27)

c4 = (1 - 2v) (3.27)

For 3-dimensional problems the traction fundamental solution is given by,

(3.28)

For axi-symmetric problems the traction solutions are more complicated, the inter­

ested reader can find these in Becker (1992).

Thus, equation (3.18) can be written as

(3.29)

3.1. Derivation of the boundary element method 41

Equation (3.29) contains a volume integral on the right hand side due to body

forces in the real load case. Body forces complicate the derivation of the boundary

integral equation due to the techniques required deal with the volume integral.

There are a number of techniques that can be employed to compute the volume

integral (Aliabadi, 2002). The simplest method is the introduction of integration

cells throughout the domain though this raises the problem that the method is no

longer a proper boundary only method.

The Galerkin vector approach involves the introduction of a new function called

the Galerkin tensor, Gij· The Galerkin tensor can be related to the fictitious load

case for linear stress analysis by equation (3.30).

U·· = G·kk- CcvG .. k· t} t}, t), J

where Ccv is a constant based on material properties given by,

1
Ccv = 2 (1- v)

(3.30)

Equation (3.30) can be substituted into the body force integral in equation (3.29).

(3.31)

Applying Green's second identity reduces the volume integral to a surface only

integral. For example, a body under acceleration will have a constant body force

hence bi can be taken outside of the integral.

{ bj (Gij,kk - CcvGij,kj) dO = bj { (Gij,kk - CcvGij,kj) dO
~ Jn (3.32)

= b· J. (G .. k- CcvG ..) nkdr J t), t),J
r

(3.33)

The Galerkin vector is given by equation (3.34) for 2-dimensional problems and

equation (3.35) for 3-dimensional problems.

G·· = -ln - b .. r
2 (1)

tJ 81rG r tJ
(3.34)

(3.35)

where G is the shear modulus.

3.1. Derivation of the boundary element method 42

A more complicated approach is to employ dual reciprocity techniques which are

applicable to general forms of body force.

The Dual Reciprocity Method (DRM) (Nardini and Brebbia, 1983) involves the

approximation of the body forces within the volume integral,

N+L

bj-:::: L a7J (xk,x) (3.36)
k=l

where af are a set of initially unknown coefficients, f (xk, x) are approximating

functions, N is the total number of boundary nodes in the discretisation, and L

is the total number of internal nodes. The expansion given in equation (3.36) is a

global expansion as it is valid over the whole domain. Substituting equation (3.36)

into the body force volume integral in equation (3.29) produces

(3.37)

The choice of Jk can be problem dependant, however, a common choice of function

IS

(3.38)

where c is a constant and r (xk, x) is the distance between the points xk and x. The

second integral in equation (3.37) can be substituted by,

(3.39)

where uJ and tJ are particular solutions which are known functions when Jk is

defined. Substituting this into equation (3.29) produces

(3.40)

The solution of the right hand side can be found in a similar manner to the left hand

side. In this work we will assume that there are no body forces in the real case i.e.

bj = 0, for all j and as such equation (3.29) can now be arranged as,

(3.41)

3.1. Derivation of the boundary element method 43

Equation (3.41) now has one term that is not dependent only on the boundary, ui·

To create a completely boundary only solution we simply enforce the condition that

ui must lie on the boundary such that K E r.
Equation (3.41) can now be integrated around the boundary r. Care is required

in the integration phase as the integrations involving the fundamental solutions,

equations (3.20) and (3.26) have terms of the form r~ where a = 1, 2 as a result when

integrating these functions the integrals will be either weakly or strongly singular.

As the Uii integral is weakly singular of the logarithmic form shown in (3.20) this

can be integrated using a logarithmic Gauss quadrature scheme (outlined in section

4.3.2). The Tij term, however, needs to be integrated in the Cauchy principal value

sense.

To perform the integration we surround the collocation point K by a semi-circle

of radius T., the integration is now performed in three parts considering the limit as

T€ ---+ 0. The case considered is represented in figure 3.2.

Figure 3.2: Integration in the Cauchy principal value sense

(3.42)

The first term in equation (3.42) is the Cauchy principal value, the second term will

3.1. Derivation of the boundary element method 44

vanish since as r t ----+ 0 then ui (x) ----+ ui (K:), and the final term can be simplified to

(3.43)

where a can be considered to be representative of the boundary. For a smooth

boundary O:ij (K:) = -~. Thus, equation (3.41) can be rewritten as ,

(3.44)

where Cij (K) varies between 0 and 1. Typical values of cij are represented in figure

3.3. Equation (3.44) is referred to as the boundary integral equation (BIE) and is

the fundamental building block behind the boundary element method.

(a) C;J (~~:) = 0.25 (b) C;j (~~:) = 0.50 (c) c ; j (~~:) = 0.75

Figure 3.3: Values for Cij (K:)

To allow the integration of equation (3.44) it is necessary to discretise the model

into individual elements (figure 3.4). As a result the BIE can now be written in its

discrete form,

(3.45)

where re is the boundary for the element being integrated. Shape functions are

applied to the elements to allow the extraction of displacements and tractions at

discrete locations. Shape functions are typically defined for elements with either 2

or 3 nodes per element for 2-dimensional analysis. For 2 nodes per element,

1-~
N1 (~) = -

2
-

Nz(~) = 1 +c;
2

(3.46)

(3.47)

3.1. Derivation of the boundary element method

- - - - - - - -- - -

0
- - - - - - - -

Figure 3.4: Discretised sample problem

and for 3 nodes per element,

-(
NI(() = 2 (1- ()

N2 (() = 1 - e
NJ(() = ~ (1 + ()

--

-

45

(3.48)

(3.49)

(3.50)

where~ is a local coordinate such that the element is bounded by [-1 , +1] (figure

3.5). In this work elements will have 3 nodes. Figure 3.6 shows the variation of shape

3

+ 1

-1

Figure 3.5: Sample element

functions for elements with three nodes. Similar shape functions can be derived for

3-dimensional problems but involve a second local coordinate(.

Shape functions are used for interpolation of the nodal quantities along the ele­

ment length. Equation (3.51) shows the use of shape functions for the interpolation

3.1. Derivation of the boundary element method

1.2

c 0.8

0

~ c 0.6

.2
Q) c.. 0.4

m
.c
Cl)

-0 .2 '----L___.J.....__.J.....__.J.....__...L..__...L..__...J....__...J...._ _ _L_____J

-1 -0.8 -0.6 -0.4 -0.2 0 .2 0.4 0.6 0.8

Figure 3.6: Shape functions for elements with 3 nodes

of nodal displacements along an element.

46

(3.51)

An iso-parametric element uses the same shape functions for interpolating the co­

ordinates of the nodal locations along the element.

The introduction of a local coordinate system allows the use of Gauss quadrature

schemes of integration (see chapter 4 for more details). As a result it is necessary

to alter the integration to reflect the change in variable and incorporate a Jacobian.

The Jacobian is defined as,

J(~) = ~; (3.52)

Thus, the discretised form of the BIE becomes,

Cij (K:) ui (K:) + L 1 TijNiJ (~) d~uj = L 1 uijNiJ (~) d~tj
elem r e elem r e

(3 .53)

where Uj and ti contain nodal values of the displacement and traction respectively.

Equation (3.53) can now be integrated numerically (see chapter 4 for more de­

tails) by placing the source point at each node and integrating across each element

3.1. Derivation of the boundary element method 47

in turn. Integration at the first node results in the following equation,

(3.54)

where h and g contain the value of the integrals containing t* and u* respectively.

Repeating the integration around the boundary leads to a linear set of equations,

These can be combined into the standard matrix equation.

Hu= Gt (3.55)

where H and G are square matrices containing the respective influence coefficients,

u and t are vectors for the displacements and tractions respectively around the

boundary. Figure 3. 7 shows the form of the matrices after the integration stage with

unknown terms edged with black. Currently, as no boundary conditions have been

applied both the u and t vectors are entirely unknown. Application of boundary

•••••••••• •••••••••• • •••••••••• • ••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • -•••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• •
Figure 3.7: Matrix terms- Hu = Gt

conditions (figure 3.8) fills n terms within the unknown vectors such that the matrix

system consists of n equations with n unknown terms. To allow the problem in

3.1. Derivation of the boundary element method 48

•••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • -•••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• • •••••••••• •••••••••• •
Figure 3.8: Matrix terms- Boundary conditions applied

figure 3.8 to be solved it is necessary to move all of the unknown terms in the

vectors to the left hand side vector such that all of the terms on the right hand

side are known (figure 3.9). Multiplying the right hand side matrix-vector product

•• •••• •• •• •• •••• •• •• • •• •••• •• •• •• •••• •• •• • •• •••• •• •• •• •••• •• •• • •• •••• •• •• •• •••• •• •• • •• •••• •• •• •• •••• •• •• • -•• •••• •• •• •• •••• •• •• • •• •••• •• •• • ••••• •• •• • •• •••• •• •• •• •••• •• •• • •• •••• •• •• •• •••• •• •• • •• •••• •• •• •• •••• •• •• •
Figure 3.9: Matrix terms- Matrix rows and columns exchanged

produces a vector that is completely known (figure 3.10) , producing the well known

linear system ready for solution.

Ax = b (3.56)

where the A is ann x n matrix of known values, b is a known vector of size nand x

are the unknown tractions and displacements to be solved for. Equation (3.56) can

now be solved using a direct or iterative solver (see chapter 5 for more details).

Once the boundary solution has been calculated we can apply the boundary

3.1. Derivation of the boundary element method 49

•• •••• •• •• • •• •••• •• •• • •• •••• •• •• • •• •••• •• •• • •• •••• •• •• • -•• •••• •• •• • •• •••• •• •• • •• •••• •• •• • •• •••• •• •• • •• •••• •• •• •
Figure 3.10: Matrix terms- Ax = b

integral equation to calculate displacements at points internal to the domain 0 .

Moving the point K within the domain and applying equation (3.44) we can calculate

the corresponding displacement throughout the domain allowing the production of

accurate contour plots of displacement. It should be noted that with points internal

to the domain CiJ (K) = 1 due to the integrations not involving singularities , as such

the integrals can be performed using conventional Gauss-Legendre quadrature.

To calculate stresses we can differentiate the boundary integral equation, equa­

tion (3.41), and then apply Hooke's law to produce the stress (a) form of the bound­

ary integral equation.

O"ij + I skijukdr = I Dkijtkdr

r r

where SkiJ and DkiJ are third order tensors.

ni [2vr,Jr,k + C48Jk] + nJ [2vr,ir ,k + C48ik]

+nk [2C4T,iT,j- (1 - 4v) llij]

+2r,n [C40ijr ,k + ll (Ojkr ,i + Oikr,j) - 4T,ir,jT,k]

where c5 is a constant based on material properties given by,

(3.57)

(3.58)

(3.59)

(3 .60)

3.1. Derivation of the boundary element method 50

Equation (3.57) can typically be integrated using a standard Gauss-Legendre

quadrature scheme. Care does need to be taken if the internal points are located in

the vicinity of the boundary as the third order tensors Dkij and Skij will be strongly

singular and hyper-singular integrals respectively when integrated.

3.1.2 Potential flow

For the problem of potential flow we need to consider Laplace 's equation,

(3.61)

where \72 is the Laplacian operator and <P is the potential function, temperature

in heat transfer problems, whilst x and y are Cartesian coordinates. Laplace's

equation is similar to Poisson's equation except that the right hand side in the

Poisson equation is non-zero, typically a function of </J.

The fundamental solution of Laplace's equation is based on the three-dimensional

solution to a concentrated potential

>.(11:,Q) =_!_In [(
1

Q)] 21r r 11:,
(3.62)

where r is as defined for elasticity.

To reduce this problem by one dimension, to make it a boundary-only problem,

we must apply Green's second identity, equation (3.2), with <P representing the

unknown potential and >. the fundamental solution to Laplace's equation, equation

(3.61).

j (q; \72 >. _ >. \72 q;) c1n = j (q; ~~ - >. ~~) dr (3.63)

n r

The potential function 1; satisfies \72</J = 0 everywhere, by definition. The funda-

mental solution, >. however, satisfies \72 >. = 0 everywhere except at the point 11:

itself, as the function is singular. To allow for this singularity we surround the point

11: by a circle of radius r€ and then take the limit as r€ ---+ 0. Thus, equation (3.63)

can now be re-written as,

j (</J\72>.->.\7
2
</J)dn= j (<P~~->.~~)dr (3.64)

n-n, r+r,

3.1. Derivation of the boundary element method 51

As we have now eliminated the point "' from this equation we can see that,

\12f/J = 0 and

thus the left hand side of equation (3.64) becomes zero, and the right hand side

surface integral can be split into two separate surface integrals to be dealt with

separately.

o = J (1Y a>.. - >.. arfJ) dr + J (f/J a>.. - >.. af/J) dr
an an an an

(3.65)

I' I' e

To calculate the integral on the boundary r, we can use the angle o: and substitute

df = r,do:, additionally we can note that,

a>.. a>.. ar 1 -1 1
an= ar an = 27r---:;:- (- 1) = 27rr

Consideration of the second integral of equation (3.65) as we take the limit r, ----+ 0

within the limits 0 < o: < 21r,

(3.66)

(3.67)

(3.68)

Substitution of equation (3.66) into equation (3.65) produces the potential form of

the BIE,

fjJ ("') + j K1 ("', Q) fjJ (Q) df (Q) = J K2 ("', Q) acpa~Q) df (Q) (3.69)

I' I'

where K 1 and K 2 are the kernels such that,

K1 ("', Q) = a>..~: Q)

K 2 ("',Q) = >..("',Q) = 2~ln [r("'~Q)]
(3.70)

(3.71)

Similarly to the elasticity problem, section 3.1.1, we move the point"' to the bound­

ary to make the solution a full boundary-only solution and introduce the jump term

c (K) which is dependent on boundary geometry, see figure 3.3,

c ("') f/J ("') + j Kl(K, Q) f/J (Q) dr (Q) = J K2 (K, Q) a~~~) dr (Q) (3.72)

I' I'

3.1. Derivation of the boundary element method 52

It should be noted that the kernels for potential problems, equations (3.70) and

(3.71) , are entirely functions of geometry.

3.1.3 Acoustics

The boundary element method is ideally suited for problems of acoustics as it is

only necessary to mesh the boundary. As a result if the problem domain can be

considered to be infinite , for example the water waves around the legs of an oil rig

in the ocean (figure 3.11) can be modelled by the Helmholtz equation in water of

constant depth. Then the boundary element method merely meshes the legs whereas

the finite element method would require a false exterior boundary to be included

limiting how far the results are calculated for.

Figure 3.11 : Example of an infinite domain (Perrey-Debain et al. , 2004; Trevelyan,

2006)

In acoustics we can assume that the time variation of response will be of the form

e-iwt. Then the wave equation will reduce to the well known Helmholtz equation

(3.73)

3.1. Derivation of the boundary element method 53

This can be expressed in boundary integral form as

c (!i:) <P (!i:) + j ac ~:, Q) <P (Q) dr (Q) = j c (!i:, Q) aq>a~Q) dr (Q) +<Pi (3.74)

r r

where Re (c (!i:)) is related to the boundary shape and varies between 0 and 1 and

Im (c (!i:)) = 0, <Pi is the incident wave. For this problem it can be shown that the

fundamental solution is given by

BC = ~ Br [Y1 (kr)- iJ1 (kr)]
an 48n

where Hn is the Hankel function which can be calculated as,

Hn (kr) =In (kr)- iYn (kr)

(3. 75)

(3.76)

(3.77)

where In is the Bessel function of the first kind and Yn is the Bessel function of the

second kind.

(3.78)

-n n-1 (1)1
- ~"'"' n- m- . x2m (3.79)

11" L 22m-nm!
m=O

where 'Y is the Euler constant given by

'Y = ;~~ (t ~ -ln n) = 0.57721566 ...
k=l

(3.80)

and hm is given by

ho = 0

m 1
hm = "'"'-;­L,/.

i=O

(3.81)

(3.82)

For 3-dimensional problems the fundamental solution of the Helmholtz equation is

given by,
eikr

G=-
4nr

(3.83)

3.2. Concluding remarks 54

Thus, equation (3.74) can now be integrated by substitution of the fundamental

solutions. Care is required when integrating the Bessel functions as they contain

singularities that need to be integrated using logarithmic Gauss quadrature (see

chapter 4 for more details).

For acoustic problems the mesh density is constrained such that,

A
Element Length < 4

This ensures that the problem can be fully captured by the elements.

Additionally, for problems involving infinite domains it is possible to suffer from

non-uniqueness at the eigenfrequencies of the associated internal problem. Thus it

is necessary to employ additional techniques to overcome this non-uniqueness such

as CHIEF (Schenck, 1968). CHIEF involves the collocation at a number of points

inside the body as additional constraint equations.

3.2 Concluding remarks

In this chapter the boundary element method has been presented for three different

numerical problems. In each case fundamental solutions have been presented.

Details on the integration procedure have been discussed with relation to the

building of matrix equations, the application of appropriate boundary conditions

and the subsequent reduction to the well known linear system

Ax=b (3.84)

which can be solved using either a direct or iterative solver (see chapter 5).

The boundary element method has a number of advantages and disadvantages.

Disadvantages of the boundary element method include the use of complicated and

singular integral equations and the use of fundamental solutions to create a boundary

formulation. The method is not suitable for thin shell analysis. This is because of

the large surface/volume ratio and hence the distance between collocation points

and elements becomes small. This can cause inaccuracies within the numerical

integrations.

3.2. Concluding remarks 55

The main advantages are that it is a boundary only numerical method and as

a result it is particularly good for problems of reanalysis. This is a consequence of

the ease with which a mesh can be generated as it is not necessary to triangulate

throughout the volume. The matrix equations generated are smaller than compara­

ble numerical methods. However, the matrices are fully populated and thus sparse

techniques can not be applied.

The BEM is also known for its accuracy and efficiency in problems such as frac­

ture mechanics, where the solution contains singularities. Additionally, the BEM is

extremely efficient for large problems containing areas of geometric detail because of

the requirement to only mesh the boundary. Moreover, this benefit can be extended

to problems involving infinite domains such as acoustic or wave problems.

CHAPTER 4

Numerical Integration Techniques

The boundary integral equation, repeated in equation (4.1) for completeness from

chapter 3, contains complicated integrals

(4.1)

Due to the complicated nature of the equation it can only be integrated analyti­

cally for simple cases and as a result a numerical integration scheme is typically

used to approximate the integrals. In this chapter a number of different numerical

integration techniques will be presented and considered.

4.1 Newton-Cotes

Newton-Cotes integration is the generic name for an integration technique that

involves taking the value of the function to be integrated at equally spaced points

and weighting it. More commonly it is used to refer to techniques that involve

tabular data at fixed points. More details on these techniques can be found within

any mathematical textbook, for example Kreyszig (1999) or Chapra and Canale

(2002).

56

4.1. Newton-Cotes 57

4.1.1 Rectangular integration

The simplest form of Newton-Cotes integration is rectangular integration. This

technique involves the splitting of the integration into equal width strips and fitting

a constant; order zero, function across the strip. There are three ways of deciding

the height of the strips,

1. Left Riemann approximation

2. Midpoint approximation

3. Right Riemann approximation

Figure 4.1 shows each of the splitting techniques for rectangular integration.

(a) Left Riemann (b) Mid-point

(c) Right Riemann

Figure 4.1: Splitting techniques for rectangular integration

4.1. Newton-Cotes 58

Rectangular integration can be represented by equation (4.2). The width of the

strips used determines the accuracy of the integration.

where E is the error term and

k - 1 if left Riemann approx.

k' = if midpoint approx.

k if right Riemann approx.

1,-----~----~----~----~----~

0.8

NH 0.6

11

~0.4

0.2

0.2 0.4 1
X

Figure 4.2: Example integration

(4.2)

Table 4.1 shows how the accuracy of integrating f (x) = x2
; displayed in figure

4.2, varies with strip count between the limits of 0 and + 1. The accuracy will be

determined against the analytical solution given in equation (4.3).

1

3
(4.3)

Table 4.1 shows that the midpoint splitting technique is the most accurate

method of rectangular integration for this particular integral. This is a result of

the gradient of the equation being integrated. Figure 4.3 shows application of the

midpoint technique and the approximate cancellation areas above and below the

strip.

4.1. Newton-Cotes 59

Left Riemann Midpoint Right Riemann
Strips

Int. Value Error (%) Int. Value Error(%) Int. Value Error(%)

1 0.0000 -100.00 0.2500 -25.00 1.0000 200.00

2 0.1250 -62.50 0.3125 -6.25 0.6250 87.50

3 0.1852 -44.44 0.3241 -2.77 0.5185 55.55

4 0.2188 -34.36 0.3281 -1.57 0.4688 40.64

5 0.2400 -28.00 0.3300 -1.00 0.4400 32.00

6 0.2546 -23.62 0.3310 -0.70 0.4213 26.39

7 0.2653 -20.41 0.3316 -0.52 0.4082 22.46

8 0.2734 -17.98 0.3320 -0.40 0.3984 19.52

9 0.2798 -16.06 0.3323 -0.31 0.3909 17.27

10 0.2850 -14.50 0.3325 -0.25 0.3850 15.50

Table 4.1: Rectangular integration of J
0
+

1
x 2dx

The midpoint integration is an example of an open Newton-Cotes scheme, i.e. it

does not sample at the ends of the interval of integration. This is advantageous in

some circumstances.

4.1.2 Trapezoidal integration

Trapezoidal integration is similar to rectangular integration as the integration area

is split into strips in the same manner. A first order fit is then applied to the strip

such that it becomes a trapezium as opposed to a rectangle, as indicated in figure

4.4.

1b f (x) dx ~ b - a (f (a) + f (b) + ~ f (a + k b - a)) + £ (4.4)
a n 2 n

k=l

An advantage of the trapezium rule is that it is possible to tell if the trapezium

rule will be an over or under estimate of the true integral. If a function is always

concave in nature (fx{ > 0) then the trapezium rule will over estimate the integral,

figure 4.5(a). If the function is convex in nature (£{ < 0) then the integral will be

4.1. Newton-Cotes 60

Figure 4.3: Application of midpoint rule for an individual strip

Figure 4.4: Application of trapezoid rule

4.1. Newton-Cotes 61

an under estimate, figure 4.5(b). If the function contains an inflection point then

the error will be harder to approximate a-priori.

(a) Concave function (b) Convex function

Figure 4.5: Error estimation for trapezoidal rule

As the trapezium rule is an order 1 fit to the function it is commonly seen to be

more accurate than rectangular integration. Table 4.2 shows how the error varies

when performing the integration given in equation (4.3).

Number of Strips Integral Value Error(%)

1 0.5000 50.00

2 0.3750 12.50

3 0.3519 5.57

4 0.3438 3.14

5 0.3400 2.00

6 0.3380 1.40

7 0.3367 1.01

8 0.3359 0.77

9 0.3354 0.62

10 0.3350 0.50

Table 4.2: Trapezoidal integration of J0+
1

x2 dx

Comparing the results of table 4.2 with those in table 4.1 it can be seen that the

trapezium rule is more accurate than both left and right Riemann integration. This

4.1. Newton-Cotes 62

is on account of the higher order of fit that can be achieved when using the trapezium

rule. Comparison with the midpoint rule, however , shows that rectangular integra­

tion is more accurate and this is a result of the cancellation effect demonstrated in

figure 4.3.

The trapezoidal rule exhibits very rapid, exponential, convergence for cases in

which the integrand is periodic in the interval over which the integral is performed.

Figure 4.6 displays plots of equations (4.5) and (4.6) over the range oo < x ~ 360°.

h (x) =sin (47rx) (4.5)

h (x) =sin (3.87rx) (4.6)

Figure 4. 7 compares the number of strips used in the integration with the absolute

O.Sc

-0.5>

-1 f
o~---g=o----1~r~--2=7o~--~~o

(a) h (x) (b) h (x)

Figure 4.6: Plots of equations (4.5) and (4.6)

error in the integral value.

4.1.3 Simpson's rule

Simpson's rule is a method of approximating f (x) by a quadratic function, order 2.

b h 2 2

[

:!!,_1 !! l 1 J(x) dx~ 3 J(a)+2f;J(a+2kh)+4f;J(a+(2k-l)h)+f(b) +£

(4.7)

where his the strip width given by h = b~a .

4.1. Newton-Cotes

10

~
0') 5
<D -c:
c:
L-a
L­
L-

0

<D -5
~
::J
0
~ -10
<(

-15
0

63

I

I
- h(x
- h(x

20 40 60 80 100
Number of integration strips

Figure 4. 7: Absolute error in numerical integration as strip count is varied

Equation (4.7) shows the form of Simpson's rule, due to the quadratic fit the

integration is more complicated. As Simpson's rule is a quadratic fit then it is a

requirement of the method to have an even number of strips for the integration.

Table 4.3 compares Simpson's rule with both rectangular integration (using the

midpoint rule) and the trapezium rule for the problem of,

which has the analytical solution

14

(x
4
-6x

3
+11x

2
-8x+7)dx= [~x5 -~x4 + ~1 x3 -4x2 +7xJ:

= 19.4667

(4.8)

(4.9)

Figure 4.8 shows how the function to be integrated varies over the region of interest.

Table 4.3 shows that Simpson's rule has a higher rate of convergence to the

analytical solution then either rectangular integration or the trapezium rule. This

is a result of the quadratic fit being able to fit the function much more accurately

than either of the previous two techniques.

4.1. Newton-Cotes 64

25

20

..---._15
s

;;::,
10

5

00 2 3 4

X

Figure 4.8: Plot off (x) = x 4
- 6x3 + llx2

- 8x + 7

Strips
Rectangle Trapezium Simpson's

Int. Value Error(%) Int. Value Error (%) Int. Value Error (%)

2 12.0000 -38.36 36.0000 84.93 28.0000 43.84

4 17.2500 -11.39 24.0000 23.29 20.0000 2.74

6 18.4527 -5.21 21.5144 10.52 19.5720 0.54

8 18.8906 -2.96 20.6250 5.95 19.5000 0.17

10 19.0963 -1.90 20.2099 3.82 19.4803 0.07

12 19.2088 -1.32 19.9835 2.65 19.4733 0.03

14 19.2770 -0.97 19.8467 1.95 19.4702 0.02

16 19.3213 -0.75 19.7578 1.50 19.4688 0.01

Table 4.3: Comparison of Newton-Cotes techniques for integration

4.2. Transformation of integrals 65

4.2 Transformation of integrals

Currently all of the integration techniques introduced have had arbitrary limits of

a to b. This has been acceptable as the integration interval has been divided into

separate strips and the appropriate scheme repeated over each of those strips.

It is necessary for certain integration schemes to work between fixed limits for the

integral to be valid. Thus it is necessary to apply a transformation to the original

integral such that it has more suitable limits.

1b f (x) d.r = 1!3 f [x (()] J (~) d(

where J (~) is called the Jacobian and is given by,

J (() = dx
d(

For double integrals the Jacobian is formed in a similar manner

J(~1,6) = a(x,y) = [g~ t6]
8(6,6) 2JL. 2JL.

8€1 86

(4.10)

(4.11)

(4.12)

and since dx = IJ (~)Id~ the determinant of the Jacobian matrix in equation (4.12)

is included in the integral in a similar fashion to equation (4.10).

4.3 Gauss quadrature

Gaussian quadrature is an alternative method of numerically integrating a function

f (x). Gaussian quadrature employs variable abscissae and weights and can be

represented by equation (4.13).

r+l n

}_
1

f (x) dx ~ ~ wd (xi) (4.13)

where wi is the weight associated with the abscissa Xi this is performed over n

Gauss points.

Equation (4.13) shows that the limits of integration are -1 to +1. As a result

it will be necessary to employ a Jacobian of transformation to move from arbitrary

limits of integration to the Gauss limits.

There are a number of techniques for calculating the position of the abscissae.

Three main techniques will be presented in this thesis

4.3. Gauss quadrature 66

1. Gauss-Legendre (including logarithmic Gauss-Legendre quadrature)

2. Gauss-Radau

3. Gauss-Lobatto

In most of the strategies presented abscissae are placed symmetrically about the

origin.

4.3.1 Gauss-Legendre quadrature

Gauss-Legendre quadrature involves the distribution of n abscissae throughout the

integration. To determine the location of the abscissae and their respective weights

it is useful to start with low order cases before moving to higher orders of integration.

Gauss-Legendre quadrature of order n is capable of integrating exactly a polynomial

of order 2n- 1 (Pozrikidis, 1998).

Consideration of n = 2 will allow the exact integration of a cubic function. To

calculate the abscissae and weights it is necessary to consider the following cases,

for which second order Gauss-Legendre quadrature will be exact,

where

ao =1- 0,

h (x) = box2 + b1 x + b2

h(x)=cox+cl

fo (.r,) =do

bo =1- 0,

(4.14)

(4.15)

(4.16)

(4.17)

such that the order of the function being integrated is not altered. Considering

equation (4.13), setting n = 2 and assuming that x1 =1- x 2 E [-1, +1]. It is possible

to show the following four relations,

(4.18)

(4.19)

4.3. Gauss quadrature

2 2 2

3 = x 1w1 + x 2w2

0 = .'r~Wl + .?::~W2

67

(4.20)

(4.21)

Equations (4.18), (4.19), (4.20) and (4.21) now define the weights and abscissae for

the integration. Solving for the weights, wi, and abscissae, .Ti, yields

(4.22)

(4.23)

These are the well known ±ji seen in many finite and boundary element codes for

Gauss-Legendre quadrature.

Gauss-Legendre quadrature can be extended for higher orders of integration al­

lowing accurate fits for more complicated functions. To calculate the abscissae for

the integrations it is possible to use the locations of the roots of the Legendre poly­

nomial with order n (Pozrikidis, 1998). To calculate the associated weights, wi, it

is necessary to calculate (Davis and Rabinowitz, 1984),

(4.24)

where Pn is the Legendre polynomial of order n.

Relevant weights and abscissae tend to be stored within integration routines,

however if a higher order of integration is required than stored it is possible to

calculate weights and abscissae relatively cheaply (Press, 2002). Tables of abscissae

and weights are available by numerous authors, for example (Pozrikidis, 1998) and

(Abramowitz and Stegun, 2002).

4.3.2 Logarithmic Gauss quadrature

The boundary element method contains integrals with singularities of varying order.

Equation (4.25) repeats one of the integrals from the displacement form of the

boundary integral equation which has a weak singularity due to a logarithmic term.

(4.25)

4.3. Gauss quadrature 68

To integrate this it is possible to use an alternative form of Gauss quadrature, which

has a logarithmic weighting function,

(4.26)

It should be noted that the integral in equation (4.26) has limits of [0, +1] and

as such needs to be transformed appropriately. For cases in the BEM where the

collocation point lies at the mid-node of an element, one can simply use equation

(4.26) separately on the two halves of the element.

It is only necessary to use logarithmic Gauss quadrature to integrate the loga­

rithmic term and the regular part of the integral (C1r,ir,j) can be integrated using

equation (4.13).

Abramowitz and Stegun (2002) contains tables of weights and abscissae that

can be used for the integration of logarithmic functions using this form of Gauss

quadrature.

4.3.3 Gauss-Radau and Gauss-Lobatto quadrature

Gauss-Radau and Gauss-Lobatto integration are similar to Gauss-Legendre integra­

tion as they involve the placing of abscissae and associated weights throughout the

integration domain.

Gauss-Radau integration fixes one of the abscissae at an endpoint ±1 and then

distributes the remaining (n- 1) abscissae symmetrically through the domain. This

reduces the order of polynomial that can be integrated accurately to 2n- 2. Gauss­

Lobatto integration, however involves setting abscissae at both end-points of the

integration (-1 and + 1) and then placing (n - 2) free abscissae through the integral

area. This allows the accurate integration of polynomials of order 2n - 3.

The locations of the free abscissae are found in a similar manner to the abscissae

for Gauss-Legendre quadrature. As one of the abscissa has been placed at one of the

end nodes in Gauss-Radau quadrature it can be shown that the remaining abscissae

are given by the roots of the n- 1 Legendre polynomial, as a further abscissa is fixed

in Gauss-Lobatto it is necessary to find the roots of then- 2 Legendre polynomial

(Pozrikidis, 1998).

4.4. Singular integrals 69

4.3.4 Order of integration

A number of authors have considered the order of Gauss integration required for

particular types of integration problem. As Gauss-Legendre quadrature is designed

to be accurate for polynomials of order 2n- 1, integrating functions such as those

contained in the boundary element method requires generic rules to be created based

on parameters within the integral.

Typically authors consider the generic cases of integrals of 0 C!n) where m > 1.

These can then be used as guidelines for the integrals from numerical methods such

as the boundary element method. Eberwien et al. (2005) considered integrals around

a single element and calculated the required Gauss-Legendre order to ensure that the

error was kept below 0.1 %. Furthermore they compared this result with previously

generated tables for Gauss orders by Jun et al. (1985) and Bu and Davies (1995).

By employing a variable order scheme as proposed by Eberwien et al. (2005) it is

possible to optimise the computational effort required to compute an integral whilst

ensuring that a certain degree of accuracy is maintained within the integral.

4.4 Singular integrals

The evaluation of singular integrals is a necessary problem when using the boundary

element method as it is a requirement to integrate the element that the collocation

point lies within. As a result a number of authors have considered this problem.

For weakly singular integrals it is possible to employ specific integration schemes

such as logarithmic Gauss quadrature (section 4.3.2) but for higher orders of singu­

larity this cannot be used. Telles (1987) devised a technique involving a polynomial

transformation to improve accuracy in numerical evaluation of singular and near­

singular integrals.

Two techniques were proposed by Telles (1987). The first technique employed a

second order polynomial transformation of the form,

(4.27)

4.4. Singular integrals

where the following requirements are met,

17(1) = 1

7](-1) = -1

70

(4.28)

(4.29)

(4.30)

where r; is the value of 17 at a singularity whose effect we seek to minimise. For

near-singular integrals it will be location on the element closest to the singularity.

From these restrictions it can be seen that the coefficients a, b and c are given by

the following,

a= -c

b=1

r; ± J(1J2- 1)
c= ~----::........:....:.....__...:...

2

(4.31)

(4.32)

(4.33)

This transformation can be applied only when -1 ::::; r; ::::; 1. However this restric­

tion limits the applicability of the transformation. A more complicated third order

polynomial transformation can be employed to remove the restriction on location of

the singularity.

1] (I) = a{
3 + b12 + C{ + d (4.34)

In addition to the conditions applied to the second order polynomial, it is necessary

to define an additional parameter,

021] I -
>l 2 - 0
u{ fi

(4.35)

A solution to this problem is given by the following coefficients

1
(4.36) a=-

Q

b=- 3i
Q

(4.37)

3i2
(4.38) c=-

Q

d= -b (4.39)

Q = 1 + 3"?2 (4.40)

4.4. Singular integrals 71

where i is the value of"(such that rJ (i) = fj.

By applying the polynomial transformation it is necessary to introduce a Jaco­

bian, the Jacobian introduced will have the property that it passes through zero at

the point fJ as a result this cancels the singularity that occurs at this point.

The application of these polynomial transformations increases the computational

complexity of the integration process but allows the accurate integration of the small

proportion of integrals that contain singularities. An additional benefit of the third

order polynomial transformation is that it can be applied to an integral without a

singularity without any loss of accuracy. Telles (1987) investigated this effect when

considering near-singular integrals.

Higher order singularities rely on an alternative approach such as the method

proposed by Kutt (1975). Consider the Hadamard finite part integral,

I- tr g (x) dx
- s (x-s)k

It is possible to represent I by a scalar product of the form

N [(k} l
(
. _)1-k""" (·) (k} ci ln lr- si
r s ~g xt wi + (k _ 1)!

t=1

(4.41)

(4.42)

where w}k) are the weights at N equispaced points, xi E [s, r] and elk} are the

coefficients for the (k- 1) numerical derivative of g at the origin. For the case

where the singularity lies within the integral limits, equation (4.43), it is possible to

split the integral into two finite-part integrals, equation (4.44).

tb X- S

I= k+1f(x)dx
a lx- si

(4.43)

t
b x-s k+1t 8

f(x) tb f(x)
---=-k+--.,-1 f (x) dx = (-1) k dx + k dx

a lx- si a (x- s) 8 (x- s)
(4.44)

However, as the strategy proposed by Kutt is developed for the case off: where

(r > s) it is necessary to substitute x = -y for the first finite-part integral.

tb x-s f_-a f(-x) tb f(x) ---;--:--:-! (x) dx = - dx + dx
a 1.-r- slk+1

-8 [x- (-s)]k 8 (.T- s)k
(4.45)

It is now possible to apply equation (4.42) to both of the finite-part integrals.

4.5. Exact integration 72

4.5 Exact integration

Zhang and Zhang (2004a) have considered the use of exact integration techniques

and applied them to a variety of singular and hyper-singular integrals which are

commonly found within the boundary element method. Consideration of this prob­

lem for individual elements allows a single integration routine to be implemented

regardless of the singularity due to the singularity being implicitly included in the

integration.

Unfortunately the freedom that this technique provides is computationally ex­

pensive and the routine required for integrating the relevant functions is not suitable

for the real-time analysis at which this work is aimed.

4.6 Concluding remarks

In this section a number of integration techniques have been presented. The main

techniques currently used in boundary element codes are those of a Gauss quadrature

nature, in particular Gauss-Legendre quadrature and logarithmic Gauss quadrature.

To deal with the singular and hyper-singular integrals it is necessary to combine

high order Gauss-Legendre integration schemes along with a technique to remove

the singularity, such as the schemes proposed by Telles (1987) and Kutt (1975).

CHAPTER 5

Equation Solution Techniques

Numerical integration of the boundary integral equation for elasticity, equation

(3.41), heat transfer, equation (3.72), produces the following matrix equation

Ax=b (5.1)

where the vector x contains the unknown displacements and tractions for the bound­

ary problem. We can use two main types of technique to solve for the unknowns, a

direct solver or an iterative solver. A number of direct and iterative solvers will be

discussed in this chapter highlighting the advantages and disadvantages of each.

5.1 Direct solvers

Using a direct solver ensures that a solution will be reached as long as the matrix

A is not singular. The drawback of this method is that it is a fixed procedure and

as a result can be time-consuming, particularly for large sets of equations. As the

procedure is fixed the solution time does not depend on the condition number or

form of the matrix.

The two main direct solvers employed in the solution of equations such as equa-

73

5.1. Direct solvers 74

tion (5.1) are

• Gaussian Elimination

• Lower-Upper (LU) factorisations

These two methods are related.

5.1.1 Gaussian elimination

Gaussian elimination is a simple method of reducing the square matrix to its upper

triangular form. This can then be used to solve for any b vector, as such it is excep­

tionally quick at evaluating multiple solutions to problems which only vary in the b

vector as it only requires a back-substitution for each solution. This situation occurs

within the BEM for multiple load cases in which the type of boundary condition is

the same but different in magnitude. The Gaussian elimination algorithm is shown

(in pseudo-code) in algorithm (5.1).

Algorithm 5.1: Gaussian elimination of Ax = b

1: for j = 1 to (N- 1) do I I Loop over the matrix rows

2: for i = 0 to (j - 1) do I I Loop over the matrix columns

3: if aii = 0 then

4: return "Error: Singular Matrix"

5: else

6: F = ::~ I I Calculate the scale factor

7: fork= 0 to (N- 1) do

8: ajk = ajk - (Faik)

9: end for

10: bj = bj - (Fbi)

11: end if

12: end for

13: end for

After application of algorithm (5.1) the matrix A is an upper triangular matrix

5.1. Direct solvers 75

which can be solved via a simple back-substitution of the b vector to extract the

unknowns in x.

The algorithm can be written in a number of ways, simply by differing the order

of the i, j and k loops. One problem with algorithm (5.1) is that although it will

always produce a solution (assuming that the matrix is not singular) the solution

can be inaccurate due to numerical rounding. This problem can be reduced by the

use of partial pivoting (Kreyszig, 1999).

The scheme for partial pivoting is listed in algorithm (5.2) Partial pivoting is

Algorithm 5.2: Partial pivoting

1: if laiil < threshold then I I Where threshold is typically 10-6 for our cases

2: Find row l below i where ali = max lamil and ali =/= 0

3: Swap rows l and i in matrix A and vector b

4: end if

effective at ensuring that accuracy is maintained within the solution phase, whilst

increasing the computational cost of the method by a minimal amount. An alter­

native is to employ full pivoting in which the threshold is not checked and rows are

swapped regardless, this is acceptable for algorithms produced in C++ due to the

efficient ability to swap the rows within the matrix.

The full partial-pivoted Gaussian elimination algorithm is listed in algorithm

(5.3). This algorithm has a computational cost of ~N3 where N is the number of

equations to be solved.

5.1.2 LU factorisation

The process of calculating an L U factorisation is similar to Gaussian elimination

discussed in section (5.1.1). It differs in that the end product is two triangular

matrices; one lower and one upper triangular. These can then be solved by a forward

and then back-substitution process (algorithm 5.4).

In this implementation the L and U factors are written over the original A

matrix and it should be noted that the leading diagonal for the L factor is implicitly

5.1. Direct solvers

Algorithm 5.3: Partial pivoted Gaussian elimination

1: for j = 1 to (N- 1) do I I Loop over the matrix rows

2: for i = 0 to (j - 1) do I I Loop over the matrix columns

3: if laiil < threshold then

4: Find row l below i where ali = max lamil and ali =1- 0

5: Swap rows l and -i in matrix A and vector b

6: end if

7: F = ~ I I Calculate the scale factor

8: for k = 0 to (n - 1) do

9: ajk = ajk - (Faik)

10: end for

11: bJ = bJ - (Fbi)

12: end for

13: end for

Algorithm 5.4: LU decomposition

1: fori= 0 to (N- 1) do I I Loop over the matrix rows

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

for j = 0 to (i - 1) do I I Calculate the lower triangular matrix

for k = 0 to (j - 1) do

end for

a··=~
t) Ujj

end for

for j = i to (N - 1) do I I Calculate the upper triangular matrix

for k = 0 to (i - 1) do

end for

end for

13: end for

76

5.1. Direct solvers 77

assumed to be 1 and as a result does not need to be stored. This algorithm can

suffer from numerical rounding during the calculation thus partial pivoting can be

included as indicated in algorithm (5.5)

Algorithm 5.5: Partial pivoted LU decomposition

1: for 'i = 0 to (N- 1) do I I Loop over the matrix rows

2: if lad < threshold then I I Partial pivoting

3: Find row l below i where ali = max !ami! and azi #- 0

4: Swap rows l and i in matrix A and vector b

5: end if

6: for j = 0 to (i - 1) do I I Calculate the lower triangular matrix

7: for k = 0 to (j - 1) do

9: end for

10 ·. a .. - !!:ii 't)-
ajj

11: end for

12: for j = i to (N- 1) do I I Calculate the upper triangular matrix

13: for k = 0 to (i - 1) do

15: end for

16: end for

17: end for

The computational cost of calculating the LU decomposition is ~N3 for a non­

symmetric system. If the system is symmetric then a variant of the L U decompo­

sition can be employed called Cholesky factorisation. In the Cholesky factorisation

A is split into factors of L and LT thus the computation is reduced by a factor of

2 such that the computational cost is ~ N 3 .

5.2. Iterative solvers 78

5.2 Iterative solvers

An alternative to using a direct solver is to employ an iterative solver. This pro­

cess works by using a first approximation to the solution and then adjusting this

approximation according to a particular scheme until the residual, the difference be­

tween the actual solution and the current solution, has been reduced below a certain

threshold; typically w-6 .

The most basic form of iterative solvers are stationary iterative solvers (Ramage,

2006). These require the matrix A to be split.

A=M-N

where M is invertible. The linear system of equations, equation (5.1), can now be

written,

(M -N)x= b

Mx = Nx+ b

This can be formed into a sequence of iterates

Mxk = Nxk-1 + b

Xk = M-1Nxk_1 + M-1b, where k = 1,2, ...

(5.2)

(5.3)

(5.4)

(5.5)

The choice of M and N lead to different iterative methods. Common splittings

include

• Jacobi

(5.6)

• Gauss-Seidel

M=D+L (5.7)

where D is the diagonal of the matrix A and Land U are the strict lower and upper

triangular parts of A.

..

5.2. Iterative solvers 79

Alternatively, the solution of equation (5.1) can be written as the linear combi­

nation of products of A and b (Greenbaum, 1997), leading to the development of

non-stationary iterative solvers.

A -lb:::::: x (s) E K (A, b, s) _span (b, Ab, A 2 b, ... , As- 1b) (5.8)

where K (A, b, s) is the Krylov subspace of degrees formed by A and b. Thus, the

exact solution lies inK (A, b, n) but the approximate solution lies within K (A, b, s)

with s < n. To determine the exact solution it is necessary to minimise,

(5.9)

for symmetric problems or

<I> (x) = (Ax- bf (Ax- b) (5.10)

for unsymmetric systems. Solution of this minimisation problem will yield the linear

combination within K which gives x.
There are a number of iterative schemes that can be applied to solve the min­

imisation problem and they can be split into three main categories:

• Steepest descent methods

• Conjugate gradient methods

• Generalised minimum residual (GMRES) methods

Each of these methods will be presented in turn.

5.2.1 Steepest descent methods

The method of steepest descent is one of the simplest techniques for minimising the

linear function given in equation (5.9). At any point xk the value of <I> decreases in

the direction of negative gradient, i.e.

(5.11)

where rk is called the residual at xk. This is analogous to following the initial

direction that a ball will move when placed on an uneven terrain; if contours are

5.2. Iterative solvers 80

plotted on the terrain then the ball will move in the direction perpendicular to the

contours.

If the residual is non-zero, then <I> can be reduced by travelling in this direction.

The method of steepest descent is shown in algorithm 5.6

Algorithm 5.6: Steepest descent method

1: x0 = 0

2: fork=0 , 1, 2 ... do

3:

4: check for convergence - continue if necessary

5:

6:

7: end for

The method of steepest descent can be effective but suffers if the contours of

<I> are elongated as the direction of steepest descent given by rk. Referring to the

previous analogy of a ball on uneven terrain, this situation can be considered to be

a ball placed on the side of a valley and moving from one side of the valley to the

other side whilst slowly moving toward the minimum at the end of the valley (figure

5.1).

(a) Problem 1 - Fast convergence (b) Problem 2 - Slow convergence

Figure 5.1: Convergence of steepest descent method (Ramage, 2006)

5.2. Iterative solvers 81

5.2.2 Conjugate gradient methods

The steepest descent method can be slow converging to a solution for the minimisa­

tion problem. As a result an alternative method was proposed (Hestenes and Stiefel,

1952).

The conjugate gradient method relies on the principle that the optimum search

direction is not necessarily the direction of the residual rk. Thus, if the search

direction is given by the vector Pk is it possible to find an optimum value for Pk·

As the search direction is now arbitrary it must satisfy two separate requirements

• The new iterate must minimise <I> over all of the possible search directions

• We must be able to find ak that minimises <I> in the appropriate search direction

To find an appropriate search direction Pk it is necessary to consider two one­

dimensional steps. This situation can be represented by figure 5.2. It can be shown

Figure 5.2: Two one-dimensional search vectors

(Kane, 1994) that to meet the two criteria specified then p 1 and p 2 must be A­

conjugate i.e.

j<k (5.12)

This can easily be extended to N-dimensional search vectors that are A-conjugate

such that the N -dimensional space spanned by these vectors is minimised. This

technique yields the conjugate gradient method.

In this version of the conjugate gradient algorithm there is only one matrix-vector

multiplication per iteration. Figure 5.3 shows that by using conjugate search vectors

5.2. Iterative solvers

Algorithm 5.7: Preliminary conjugate gradient method

1: xo = 0; ro = b

2: for k = 1, 2 .. . do

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

check for convergence - continue if necessary

if k = 1 then

P1 = ro

else

Let Pk = rk-1 + f3kPk-1

end if
r;!'_ 1rk- l

Ctk = TA
Pk Pk

Xk = Xk- 1 + CtkPk

rk = rk-1 - akAPk

13: end for

(a) Problem 1 (b) Problem 2

Figure 5.3: Convergence of conjugate gradient method (Ramage, 2006)

82

5.2. Iterative solvers 83

it is possible to find the solution vector in an accelerated manner when compared

with steepest descent techniques. It can be shown by application of the Cayley­

Hamilton theorem (Spencer, 2004) that for exact arithmetic the conjugate gradient

method will converge within N iterations where N is the size of the system to be

solved.

This algorithm is only valid for symmetric systems and as a result it is not

possible to use it directly to solve the matrix equations that the BEM generates.

This limitation is a result of the fact that for unsymmetric systems it is not possible

to create orthogonal residual vectors whilst maintaining a short recurrence. To

overcome this limitation a number of variants on the conjugate gradient technique

have been developed to deal with unsymmetric systems.

One technique for dealing with unsymmetric systems is to form a version in

which the matrix to be solved is symmetric. This can be achieved by solving the

normal equations for the system.

(5.13)

where b = A Tb. Unfortunately this can adversely affect the rate of convergence as

the condition number of the matrix to be solved now depends on the square of the

original coefficient matrix.

An alternative approach employs two mutually orthogonal sequences, however

this is at the cost of finding Xk that minimises 11 Xk- :X IIA, as a result the method

does not guarantee optimal progress at each step. The residuals are provided as the

augmented forms of the standard conjugate gradient residuals,

and the search directions are given by

To ensure orthogonality we use the following relations
-T rk-lrk-1

ak = i>Z'APk

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

..

5.2. Iterative solvers

-T
(3

_ rk rk
k- -T

rk-lrk-1

84

(5.19)

The convergence of the hi-conjugate gradient scheme can be irregular and as a result

it can be difficult to compare with other iterative methods. If A is symmetric posi­

tive definite then the scheme results in the same answer as the standard conjugate

gradient method but at twice the cost per iteration.

To overcome the problems with convergence of the hi-conjugate gradient method

a stabilised version was produced by van der Vorst (1992). The stabilisation occurs

by updating the residual polynomials with a linear factor, the factor is determined

by solving a local steepest descent problem. The addition of this local minimisation

problem causes the convergence of the hi-conjugate gradient stabilised (BiCGStab)

method to be much smoother than the standard hi-conjugate gradient method.

Further variants have been proposed recently to cater for specific types of problem

(Gutknecht, 1993; Sleijpen and Fokkema, 1993).

5.2.3 Generalised minimum residual method

The generalised minimum residual (GMRES) method is an alternative projection

based method for unsymmetric systems (Saad and Schultz, 1986).

As the matrix is unsymmetric it is not possible to employ a Lanczos method di­

rectly to ensure that the search vectors are orthogonal, thus it is necessary to employ

a modified Gram-Schmidt (Schmidt, 1907) process to form the orthonormal basis

for the Krylov sub-space. The modification to the Gram-Schmidt process produces

Arnoldi's method (Arnoldi, 1951). In algorithm 5.8 hi,k is the (i, k) component of

the associated Hessenberg matrix. Equation 5.20 shows the format of a Hessenberg

matrix.

h1,1 h1,2 h1,3 h1,4 h1,m-1 h1,m

h2,1 h2,2 h2,3 h2,4 h2,m-1 h2,m

0 h3,2 h3,3 h3,4 h3,m-1 h3,m

Hm= 0 0 h4,3 h4,4 h4,m-1 h4,m (5.20)

0 0 0 0 hm-1,m-1 hm-1,m

0 0 0 0 hmm-1 hm,m ,

..

5.2. Iterative solvers 85

Algorithm 5.8: Arnoldi's Method

1: ql = ro 11 ro 11-1

2: fork= 1, 2, ... , m do

3: Wk = Aqk

4: fori= 1, 2, ... , k do

5: hi,k = qr Aqk

6: Wk = Wk - hi,kqi

7: end for

8: hk+l,k =11 Wk 11

9: - w
qk+l - hk+l,k

10: end for

By employing Arnoldi's method to produce the orthonormal basis the short term

recurrence featured in the conjugate gradient method is lost and all of the vectors

must be stored. Thus as the number of iterations increases this becomes a major

drawback of the method. However, GMRES does maintain the attractive feature of

the minimisation property.

The minimisation problem to be solved using GMRES is

<I> (y) =11 b- A (xo- V mY) 11=11 fJe1- HmY 11 (5.21)

where V m contains the m orthogonal search vectors, y is a vector to be minimised,

e 1 is the first column vector from an m by m identity matrix and Hm is a Hessenberg

matrix formed in Arnoldi's method (algorithm 5.8). It can be shown (Saad, 1996)

that the minimisation can be obtained from

Xm = Xo + VmYm, where

Ym = argminy 11 {Je1- HmY 11

(5.22)

(5.23)

where argminyf (y) is the value of the given argument, y, for which the the value

of the expression, f (y), attains its minimum value. Thus the GMRES algorithm is

given by algorithm 5.9

..

5.2. Iterative solvers 86

Algorithm 5.9: GMRES

1: ql = ro 11 ro 11- 1

2: for k = 1, 2, ... , m do

3: Wk = Aqk

4: fori= 1, 2, ... , k do

5: hi,k = qr Aqk

6: Wk = Wk- hi,kqi

7: end for

8: hk+l,k =11 Wk 11

9: - w
qk+l - hk+l,k

10: end for

11: Ym = y that minimises 11 f3e1 - HmY 11

12: Xm = Xo + QmYm

The only problem remaining is how to minimise the function 11 f3e1 - HmY 11·

This is an overdetermined system of equations due to the size of the Hessenberg

matrix. As a result it is necessary to solve it in a least squares form. An efficient

method of solving this system of equations is through the use of Given's rotations

to produce a QR factorisation of the matrix. Equation (5.24) shows an example of

a Given's rotation for a 5 x 5 matrix.

1 0 0 0 0

0 m 0 -l 0

G24 = 0 0 1 0 0 (5.24)

0 0 m 0

0 0 0 0 1

where l = sin 0 and m= cos 0. Note that this is an identity matrix with additional

terms added to the (i, k) positions and as a result the matrix is orthonormal.

The Given's rotations are applied in sequence to reduce the matrix to an upper­

triangular rectangular matrix. The sequence is important to ensure that no fill-in

·occurs when applying the Given's rotations. Additionally it should be noted that

the matrix-matrix product is never explicitly formed and the multiplication can

5.2. Iterative solvers 87

be performed on individual matrix coefficients. Moreover as the algorithm iterates

through k and the problem to be minimised increases in size it can be seen that

the previous Given's rotations are identical, thus it is only necessary to apply the

previous Given's rotations to the additional column of Hm and then apply the new

Given's rotation to this column and the last two entries of f3e1 .

Finally, it can be shown that it is not necessary to explicitly calculate Xk at each

iteration to check for convergence due to the relationship, (Kane, 1994),

(5.25)

thus the norm of the residual is the magnitude of the last term in the Gf3e1 vector

generated in the process of computing y. This can then be compared against a

convergence criterion.

As GMRES does not maintain the short recurrence property it is necessary to

store all of the search vectors vk. For small problems this is not an issue. However,

for larger problems the storage requirement for all of the vectors can be an issue. As

a result a restarted form of GMRES, commonly referred to as GMRES(m) (Saad

and Schultz, 1986) where m is the maximum number of iterations before restarting,

can be employed. By restarting the solver with the latest solution as the new initial

starting vector it is possible to converge to the solution. Restarting GMRES should

only be considered for large problems where storage is at a premium due to the loss

of the previous storage vectors.

5.2.4 Convergence of iterative solvers

The convergence of iterative solvers is an important area of research as it is one of

the determining factors that affects the overall computational cost of a particular

iterative solver. As a result it is beneficial to be able to approximate how quickly a

particular matrix system should converge to a solution.

Typically (Greenbaum, 1979) the condition number of a matrix has been used

to estimate the rate of convergence.

/1: (A) = Amax (A)
Amin (A)

(5.26)

..

5.2. Iterative solvers 88

where K, (A) is the condition number of the matrix A and). (A) is an eigenvalue of

the matrix A.

However by only using the condition number the estimate only takes account

of the highest and lowest magnitude eigenvalue, and as a result a large amount of

detail contained within a particular system is ignored. Consider the systems,

2.3050 0.0483 0.1775 0.5269 -0.2903

5.5023 5.2141 -3.0632 -0.2904 -1.8667

-1.1463 0.0261 3.3453 0.5290 -0.0561 (5.27)

-0.8258 0.0326 0.0805 4.2619 -0.1487

7.0867 0.5853 -2.8418 0.1354 -0.1263

1.1727 0.0352 -0.0119 0.0472 -0.0420

5.8307 5.2191 -4.0186 -0.7118 -1.8081

-0.0618 0.0406 1.1974 0.0461 -0.0218 (5.28)

-0.0202 0.0488 -0.0365 1.3180 -0.0343

1.3423 0.5142 -0.7297 -0.0684 0.6928

Both of these systems have identical condition numbers, however the distribution of

eigenvalues for the systems is very different (figure 5.4). Thus, from the condition

0.5,

01

~51
-1

1 2 3 4 5

0.5

0

~.5

(a) Problem 1 (equation (5.27)) (b) Problem 2 (equation (5.28))

Figure 5.4: Eigenvalue distribution for two problems with identical condition number

number alone it is not possible to determine which of these systems would converge

faster.

However, if all of the eigenvalues are considered then it is possible to note that for

the second problem (equation (5.28)), the majority of the eigenvalues are clustered

5.2. Iterative solvers 89

at one end of the eigenvalue spectrum. Greenbaum (1979) stated that the clustering

of eigenvalues improves the rate of convergence. Additionally Ramage (2006) shows

the rate of convergence of a selection of problems with identical condition number

and matrix rank, but with intermediate eigenvalues at a variety of locations. Ramage

(2006) found that the highest rate of convergence was for problems that were heavily

clustered and that the slowest rate of convergence was for problems for which the

eigenvalues are situated on the roots of the Chebyshev polynomial. Thus, if the

eigenvalues can be caused to cluster, in particular about unity, then the rate of

convergence of the iterative solver will be accelerated.

For the matrices in equations (5.27) and (5.28) it is possible to apply a GMRES

solver with the following starting parameters,

1

1

b= 1

1

1

0

0

U= 0

0

0

(5.29)

Figure 5.5 displays the rate of convergence for the two matrices, from this it can be

seen that the effect of clustering of the eigenvalues is to accelerate the convergence

of the iterative solver.

2.51

2l

- I

~ 151

~ 11

-Problem 1

-Problem2

0.5r

%~--~----~2--~=-3---~~4------~5

Iteration

Figure 5.5: Convergence of GMRES solver for sample matrices

..

5.2. Iterative solvers 90

5.2.5 Preconditioning

We can use preconditioning to accelerate the convergence of an iterative solver. The

aim of preconditioning is to alter the equation to be solved (equation (5.1)) into a

simpler form which will be faster to solve.

Preconditioning can be applied in three main ways (Saad, 1996):

• Left preconditioning

• Right preconditioning

• Split preconditioning

For example left preconditioning,

MAx=Mb (5.30)

By pre-multiplying the original matrix, A, by a preconditioning matrix, M, it is

possible to alter the form of the new system to be solved, causing the eigenvalues of

the system to be moved to more desirable locations. Consideration of left precondi­

tioning shows that the inverse of A is the best preconditioner as it will result in the

following matrix equation to be solved

MAx=Mb

A-1Ax = A-1b

Ix = A-1 b

(5.31)

(5.32)

(5.33)

where I is the identity matrix. Noting that the eigenvalues of the identity matrix

are all equal to unity it can be shown that this new system can be solved in a single

iteration. However, the calculation of the inverse is an 0 (N3) operation and as such

is more costly than a direct solver such as Gauss elimination. A good preconditioner

therefore needs to meet a number of requirements:

• Be a good approximation to A -l

• Be computationally cheap to calculate

• Be computationally cheap to apply at each iteration

5.2. Iterative solvers 91

By approximating the inverse matrix the preconditioner acts to cluster the eigenval­

ues about unity and as a result increases the rate of convergence. These requirements

are highly dependent on the matrices being solved. One type of preconditioning that

meets these requirements for a particular type of equation may be of no use when

dealing with an alternative problem. Thus each global case of problem needs to be

studied and its characteristics extracted to allow a good preconditioner to be found.

5.2.5.1 Diagonal preconditioning

The simplest form of preconditioning that can be applied to a matrix equation is

diagonal preconditioning where

M-1 = diag (A) (5.34)

As the matrices formed by application of the BEM exhibit a strong diagonal

dominance (figure 5.6) , then this feature should be an important part of forming

the inverse. As a result using the leading diagonal as the preconditioner is a simple

but potentially effective way of preconditioning the system. It can be seen that

0.6

0.4

0.2

0

-0.2
300

Figure 5.6: Sample matrix from the BEM showing diagonal dominance

although there is a strong diagonal dominance a large amount of detail is contained

within other terms. These additional details are a result of geometric features and

are affected by the application of boundary conditions (Rencis and Mann, 1997).

For example, Dirichlet (displacement) boundary conditions will disturb the diagonal

dominance for the corresponding degrees of freedom.

5.2. Iterative solvers 92

Marburg and Schneider (2003) considered the effect of diagonal preconditioning

on the matrix equations generated for acoustic problems. They found that although

a strong diagonal dominance was involved in the overall problem the effect of di­

agonal preconditioning was negligible and in certain cases increased the number of

iterations to convergence when compared to no preconditioner being employed.

An expansion on the use of a diagonal preconditioner is to increase the band­

width of the preconditioner. Popular forms of this preconditioning are tridiagonal

preconditioning due to the inclusion of the terms that can be shifted off the diagonal

due to boundary conditions. However, by increasing the bandwidth of the precon­

ditioner the computational resources required for the calculation and application of

the preconditioner rapidly increase and as such these are less commonly employed

than a vanilla diagonal preconditioner.

5.2.5.2 Incomplete Lower-Upper preconditioning

It is possible to apply techniques similar to direct solvers such that an approxi­

mation of the direct solver result is obtained but at a reduced computational cost.

Incomplete lower-upper (ILU) factorisations are an example of this technique. In­

stead of calculating a full LU factorisation (section 5.1.2) it is possible to calculate

an approximation to this in some manner (Meijerink and van der Vorst, 1977).

The main method reducing the computational cost of both calculation of the fac­

torisation and the application of the factorisation is to ensure that the factorisation is

sparse in nature. This sparsity can be exploited from both storing the preconditioner

and from employing sparse techniques for applying the preconditioner. There are

two main forms of the IL U factorisation to ensure that the resulting preconditioner

is sparse,

1. Sparsity pattern based.

2. Threshold based.

A sparsity pattern based ILU preconditioner employs a predefined sparsity pattern,

P. This can either be a standard pattern or can be based on the current location

of terms within the original A matrix.

5.2. Iterative solvers

Algorithm 5.10: Sparsity based ILU factorisation

1: for i = 2, ... , N do

2:

3:

4:

5:

6:

7:

fork= 1, ... , 'i- 1 and if (i, k) tf. P do

for j = k + 1, ... , n and for (i, j) tf. P do

end for

end for

8: end for

93

Algorithm 5.10 shows the format of a sparsity based ILU factorisation. From

this it can be seen that the definition of the sparsity pattern P is extremely impor­

tant as this will define the effectiveness of the factorisation as a preconditioner and

the computational cost of the factorisation. A variant of the sparsity based ILU

factorisation that reduces the emphasis of P is a sparsity based factorisation that

allows fill-in (algorithm 5.11). These forms of the ILU are typically designated by

ILU(Z) where Z is the level of fill-in that can occur during the factorisation process.

The original form of the sparsity based ILU factorisation shown in algorithm 5.10

is commonly designated ILU(O). In algorithm 5.11 the term lev is the level of fill

Algorithm 5.11: Sparsity based ILU(Z) factorisation with fill-in

1: For all non-zero elements aij define lev (aii) = 0

2: for i = 2, ... , N do

3:

4:

5:

6:

7:

8:

for k = 1, ... , i- 1 and for lev (aik) :::; Z do

a· - aik
tk - akk

ai* = ai* - aikak* I I where ai* denotes the ith row of the matrix A

Update the levels of fill, levij = min { levij, levik + levkj + 1}

end for

Replace any element in row i with lev (aij) > Z by zero

9: end for

5.2. Iterative solvers

which is initially given by

lev;; = { : if
aij =/= 0, or z = J

otherwise

94

(5.35)

This is then updated every time the element is modified in algorithm 5.11.

Application of a sparsity pattern and regulating the level of fill-in can, however,

cause terms that are important to the factorisation to be dropped prematurely

resulting in an increased number of iterations. As a result a threshold based ILU

factorisation was presented by Saad (1994). The introduction of a thresholding

criterion ensures that elements of the preconditioner that are large in magnitude

will be kept within the preconditioner whereas they could be eliminated using a

sparsity based IL U factorisation.

Algorithm 5.12: Threshold based ILU factorisation

1: for i = 1, ... , N do

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

w = ai* I I where ai* denotes the ith row of the matrix A

for k = 1, ... , i- 1 and when wk =/= 0 do

Apply dropping rule to wk

if wk =!= 0 then

end if

end for

Apply dropping rule to row w

lij = Wj for j = 1, ... , i - 1

Uij = Wj for j = 1, ... , n

w=O

14: end for

A combination of the two ILU factorisation strategies can be employed to limit

the amount of fill-in that can occur during the factorisation process. This involves

performing a standard threshold based factorisation and then ensuring that if there

..

5.3. Concluding remarks 95

are more than Z elements in a row that only the Z terms largest in magnitude are

included in the final factorisation.

Schneider and Marburg (2003) employed a combination form of the ILU fac­

torisation and found that it was extremely effective at reducing the iteration count

associated with exterior acoustic problems. As these authors considered large scale

problems it was found that the additional computation required for calculation of

the ILU factorisation was negligible when compared with other costs within their

analysis. Additionally, they found that convergence was not met if a preconditioner

was not used.

5.3 Concluding remarks

The solution of the matrix equation given in equation (5.1) becomes a non-trivial

task for situations where computational cost is at a premium. As a result it is

essential to exploit the nature of the problem under consideration and to optimise

the techniques employed to solve the problem.

As this thesis is concerned with small two-dimensional problems the use of a

direct solver, such as an LU factorisation is considered to be reasonable. Moreover,

for small two-dimensional problems iterative solvers are considered to be not opti­

mal, however, if an iterative solver can be implemented effectively with a suitable

preconditioner then this will out-perform the direct solver.

Due to the nature of the matrices created by application of the BEM it will be

necessary to employ an iterative solver that is suitable for non-symmetric systems,

thus the standard conjugate gradient method is not suitable. Other conjugate gradi­

ent methods could be employed. However, to deal with the non-symmetric nature of

the matrices involves introducing computational mechanisms (such as matrix-vector

products) which are computationally costly to implement. Thus, a GMRES solver

which contains only one matrix-vector product within the iterative stage will be

used. Preconditioning will be employed to accelerate convergence of the iterative

solver; more details will be provided in chapter 7.

CHAPTER 6

Acceleration of the Integration Phase

The boundary element method involves the integration of fundamental solutions

(previously shown in chapter 3).

Due to the relatively small size of problems under consideration within this

research it has been found that the computational cost is roughly split equally

between the three main parts of the analysis. Thus although for larger problems

equation solution will dominate the overall computational cost, for small problems

the numerical integration of the fundamental solutions equations (3.20) and (3.26) is

considered to be a computationally expensive procedure. Thus, any savings that can

be made in this part of the solution procedure will lead to an increase in performance

allowing the rapid solution of BEM problems.

Two main techniques will be investigated to improve the speed of integration.

The use of look-up tables will be introduced leading to a method which is highly

effective at reducing the time required for integration but at the cost of being mem­

ory intensive and as such only suitable for higher end workstations. The second

technique to be introduced will involve the fitting of equations to the integrated

fundamental solutions allowing the quick computation of an approximation to the

appropriate integrals. This method will be very efficient in its use of RAM and as

96

6.1. Look-up tables 97

such suitable for a wider variety of hardware.

6.1 Look-up tables

The use of look-up tables (LUTs) to increase the rate of computation is not a new

technique. Tables have been implemented for the quick extraction of trigonometric

functions (NASA, 2006a, b) as well as other variables in the form of steam tables

(Haywood, 1998), as illustrated in figure 6.1.

TABLE 7. SATURATED WATER AND STEAM
TEMPERATURES FROM THE TRIPLE POINT TO 100 °C

[100 kN/m1 = 1 bar >;: 1._5 lbf/in1]

Specific volume Specific internal energy Specific enthalpy Specific entropy
Celsius m1/kg

- --k]/kg ___ -k~ kJ/kg K
temp., Pressure: r-~ ~

·c kN/m-,- Water Steam Water Steam Water Evaporation Steam Water Steam
p v, v, u, u, lr, lr,, h, s, s,

0.01 o.6u 0.001000 2.o6.z zero •J?s-6 +o.o 2$01.6 2$01.6 zero 9-157
:a 0.705 0.001000 179·9 8 ... ZJ78.J 8 ~.8 •sos.• O.OJI 9.10$
4 o,813 O.OQIOOO 157·3 16.8 aJ8t.I 16.8 a49a.1 aso8.g o.o6r g.OSJ
6 0.935 0,001000 IJ7.8 ZS.2 238J.8 zs.z 2487-4 2512.6 0.091 9.001
8 1.072 0.001000 121.0 JJ.6 2]86.6)].6 248a.6 2516.2 0.121 8.951

10 1.227 0.001000 ro6.4 ... o 2J8g.J ... 0 2477·9 •s•9·9 O.ISI 8.902
1:1 1.401 0.001000 QJ.8 50-4 2392.1 50-4 2473-2 2523.6 0.18o 8.854 ... 1.597 0.001001 82.9 58.8 2394.8 58.8 2468.s 2.52.7.2 0.210 8.8o6
J6 r.817 0.001001 73·4 67.1 2JQ7.6 6?.1 246].8 2SJO.g 0.2J9 8.759
•8 z.o6z 0,001001 6s.• 15·5 2400.] 15·5 2459·0 2534·5 o.z68 s.713

Figure 6.1: Portion of a Steam table (from Haywood, 1998)

LUTs can be used in a number of techniques. The easiest and fastest is to use

the nearest value in the table as the exact value; this is commonly referred to as a

non-interpolated LUT. The second, slower, but more accurate method, is to perform

some sort of interpolation between a number of points in the LUT. The use of an

interpolated LUT can allow a much less refined table to be used with the same

degree of accuracy as a non-interpolated LUT.

6.1.1 Displacement boundary integral equation

The boundary integral equation can be derived (equation (3.41)) as

Cij (;;;) ·ui (;;;) + fr Tifujdr = fr uijtjdr

where

U·· = C1 {c2 ln [~] 8·· + r -r ·} ~J r tJ ,t ,J

(6.1)

(6.2)

11111

6.1. Look-up tables 98

'T· = C3 (~) {r [C48· + 2r ·r ·]- C4 [r n·- r ·n·]} t} r ,n t} ,t ,] ,J t ,t J (6.3)

where C1_ 4 are constants based on material properties, r is the distance between

the source point and the field point and n is the unit normal.

The following analysis can be applied to both points on the boundary, by appli­

cation directly to equation (6.1), or can be applied to an internal point by setting

~J (~) = 1 in equation (6.1).

We can convert the limits of the integration such that Gauss quadrature can be

performed

+1 +1

Ui (~) + L J ~jNiJ (~) d~ui = L J uijNJ (~) d~ti
elem_ 1 elem_ 1

(6.4)

where J (~) is the Jacobian of transformation associated with the change in variable

and integration limits. It can be shown that for a flat element J (~) = ~' where L

is the element length.

The integrals in equation (6.4) need to be computed at run-time for every

source point/field point pair in the assembly of the matrices, and for every internal

point/field point in the internal point solution. As a result accelerating a single in­

tegration by a small amount will accelerate the overall computation by a significant

amount. It is possible to precompute the integrals from equation (6.4) and build

them into a LUT such that at run-time only a few geometric parameters need to be

calculated, the terms extracted from the LUTs and used directly without the need

to perform a costly integration.

For a typical source point/field element pair, as shown in figure 6.2, Trevelyan

and Wang (2001b) introduced four parameters to define the problem geometrically:

rm, the distance from the source point to the mid-point of the field element in

question, L, the length of the element, cp, the angle subtended by the element to the x

coordinate and (), the angle subtended by the imaginary line of length r m. These four

parameters can be further reduced to a smaller subset of two parameters; Rm = r£,

a scaling parameter, and cp - (), an angle parameter. The use of the dimensionless

parameter Rm can be considered to be a scale factor of t acting on the system and

hence this requires the use of a modified Jacobian Jlt:,) in equation (6.1).

6.1. Look-up tables

Field Element / n~

!i~ /~~:~---
/

Source Point

99

Figure 6.2: Typical source point/field element geometry (showing parameter defini­

tions)

Consideration of the second integral from equation (6.4)

+1

J TiiNJ(~)d~ (6.5)

-1

substituting for Tii

+1

C3 J (~) {r,n [C46"ii + 2r,ir,i]- C4 [r,ini- r,ini]} NJ (~) d~ (6.6)
-1

we may then create a L UT of the form

+1

htur = C3 J (R;;/) {r,n [C4i5ij + 2r,ir,j]- C4 [r,jni- r,ini]} Ni J l~) d~ (6.7)
-1

such that

(6.8)

As a result three L UTs are formed, one for each node, for each of the tensor com­

ponents of Tii. Consideration of the second integral from equation (6.4) a similar

procedure can be followed such that we create a LUT of the form

+1

gtUT = C1 J { C2ln [R;;/] i5ij + r,ir,j} Ni J l~) d~ (6.9)

-1

..

6.1. Look-up tables

so that

where
+1

aiJ = C1C2 J ln (£) 6iJ J l~) Nid~
-1

noting that L and Jij are constants and that Jlf.) = ~ we can write

+1

aiJ = ~C1C2ln (£) 6iJ J Nid~
-1

+1

= constij J Nid~
-1

100

(6.10)

(6.11)

(6.12)

Consideration of the integral in equation (6.12) produces the well known coefficients

for quadratic elements of
C1C2ln (£) 6iJ

0:' = ___ __;____.:....._.=_

12
(6.13)

11=(1 4 1) (6.14)

By using a 2-variable LUT it is necessary to generate the LUT for a particular

orientation of field element and then apply a coordinate transformation to derive

the integration for particular values of cjJ and e. The orientation of the field element

in the generation of the LUT is arbitrary but has been chosen in the current work

to reduce the complexity of generating the LUTs by defining the field element as

being orientated with they-axis (cp = 90°), figure 6.3.

To allow the LUTs to be used for any arbitrarily angled element it is necessary

to perform two separate coordinate transformations. The transformations can be

represented by figure 6.4. The initial transformation applied converts a force applied

to the source point in the (x, y) coordinate system into the (TJ, () coordinate system

used when generating the LUTs, as defined in figure 6.4. This is merely a rotational

transformation and can be represented by equation (6.15). Notation for matrix

terms is provided in the form 9ab where g is the appropriate sub-matrix, a is the

6.1. Look-up tables

Figure 6.3: LUT integration orientation

" "
"(' (}

............................

(a) Unrotated

_-r
········•·--···-·········

(b) Rotated

-........

Figure 6.4: Rotations required for arbitrary source point-field element pair

101

6.1. Look-up tables 102

field point direction and b is the source point direction.

[
9TJX 9TJY l [[m l [gTJTJ

9c,x 9c,y - -m l 9c,TJ

(6.15)

where l = sin rp and m = cos cp. The transformation gives the field displacement

in terms of the (TJ, () coordinate system after application of a force at the source

point in the global (x, y) coordinate system. The resulting displacement can be

transformed back to the original (x, y) coordinate system by application of a further

rotational coordinate transformation.

[

9xx 9xy] [9TJx 9TJY] [l -m]

9yx 9yy - 9c,x 9(,y m l
(6.16)

The transformations in equations (6.15) and (6.16) need to be applied at each node

of the field element, thus we can combine the individual nodal matrix equations into

a 2 x 6 element sub-matrix of the form

[9xxl 9xyl 9xx2 9xy2 9xx3 9xy3]

9yxl 9yyl 9yx2 9yy2 9yx3 9yy3

(6.17)

this can be simplified to

[

9xxk 9xyk]

9yxk 9yyk

(6.18)

where k is the respective node number (k = 1, 2, 3). In summary equations (6.15)

and (6.16) can be combined in the following matrix equation.

[:::: ::::]- [-~ ~][:;:: :;::][~ -~ l (6.19)

6.1.2 Stress boundary integral equation

Consideration of the stress boundary integral equation, equation (6.20), shows that

it is of a similar overall form to the displacement boundary integral equation. For

completeness the stress form of the boundary integral equation is repeated here.

(6.20)

6.1. Look-up tables

where the third order tensors are

ni [2vr,jr,k + C46jk] + nj [2vr,ir,k + C46ik]

+nk [2C4r,ir,j - (1 - 4v) 6ij]

+2r,n [C46ijr,k + v (6Jkr,i + 6ikr,j)- 4r,ir,jr,k]

Dk .. = -C3 (~) [C4 (6·kr · + 6·kr ·- 6·-r k) + 2r ·r r k] tJ r 1 ,t t ,1 tJ , ,t ,1 ,

103

(6.21)

(6.22)

Similarly to the displacement BIE, equation (6.1), we can rearrange the stress

form, equation (6.20), to the following form.

+1 +1

O"ij + L J skijNd (~) d~ui = L J DkijNd (0 d~ti
elem_ 1 elem_1

(6.23)

From here we can precompute the integrals and store in memory for extraction

at run-time.

+1

8tgr = Cs j (R;;n 2

-1

+1

ni [2vr,jr,k + C46Jk] + nj [2vr,ir,k + C46ik]

+nk [2C4r,ir,j - (1 - 4v) 6ij]

+2r,n [C46ijr,k + v (6jkr,i + 6ikr,j)- 4r,ir,jr,k]

N 1 (~) dC
t L "'

(6.24)

dtgr = -C3 j (R;;n [C4 (6jkr,i + 6ikr,j- 6i1r,k) + 2r,ir,jr,k] Ni J i.~~) d~ (6.25)

-1

It can be seen from comparison of equations (6.22) and (6.25) that the Dkij term

is as required but comparing equations (6.21) and (6.24) show that SkiJ needs to be

adjusted to allow for the element length.
LUT

8 kij
8kij = --

L
(6.26)

(6.27)

Similarly to the displacement boundary integral equation case, coordinate trans­

formations need to applied to the LUT value to allow it to be used for an arbitrarily

oriented element. Initially we apply a transformation to relate the boundary trac­

tions and displacements to the LUT (TJ, () coordinate system. Letting l =sin cp and

m= cos cp, we write

81ryx 821/X 811/1/ 827]1/

[: -n:] 81ryy 82ryy = 811,< 8271((6.28)

81(y 82(y 81((82((

6.1. Look-up tables 104

This allows the calculation of stresses within the (TJ, () coordinate system. The final

rotation returns the stresses in the global (x, y) coordinate system by application of

a rotational stress transformation (Timoshenko, 1934).

81xy 82xy

8lyy 82yy -2lm l2

8lryx 821JX

8lryy 82ryy (6.29)

Combining equations (6.28) and (6.29) produces the stress boundary integral equa-

tion transformation.

81xx 82xx
[2 2lm m2 8lryry 821717

[n: -~ l 81xy 82xy -lm (l2 -m2) lm 8117(82ry((6.30)

81yy 82yy m2 -2lm [2 81((82((

The transformation needs to be applied to each node of the field element and as such

this can be presented in a similar manner to equation (6.19) for the displacement

case

81xxk 82xxk
[2 2lm m2 811)ryk 82rp]k

[~ -~ l 8lxyk 82xyk -lm (l2 -m2) lm Slry(k S2ry(k

8lyyk S2yyk m2 -2lm [2
Sl((k S2((k

(6.31)

where k is the node number.

This transformation is identical for the d* term.

6.1.3 Arc elements

LUTs can be extended to cover circular arc elements. However, as the LUTs can

only be used for the type of element that they were initially produced for it is

important that the code that meshes the problem is optimised for this scenario.

In this work the auto-meshing code aims to use circular arc elements that subtend

an angle of 30°. Figure 6.5 shows a sample element for which the meshing and

remeshing code is optimised. Figure 6.6 shows parameter definitions for the circular

arc element. The angle <P is defined as the angle between the horizontal axis and an

imaginary chord line between the end-nodes of the element.

6.1. Look-up tables

...

.. ······
••••••• # ••• t#

.......... ·: 30° .,,"'
······)

.. . , .1.·:: •••••.••••• ,., ·•••••••

Field Element

Source Point

Figure 6.5: Example circular arc element

L- arc length

.. ~ <P ...) .•.......

Figure 6.6: Example circular arc element with defining parameters

105

6.2. Refinement of LUTs 106

LUTs for this element can be generated using equations (6.9), (6.7), (6.24) and

(6.25). For a circular arc element it can be shown that the Jacobian is constant with

J (~) = ~~ where R is the radius of the circular arc element. Similarly they require

adjusting from the LUT form to a form suitable for use within equations (6.4) and

(6.23).

Transformations are applied to allow the use of arc LUTs for arbitrary </J.

6.2 Refinement of LUTs

It is important to ensure that the LUTs produced using the proposed method (sec­

tion 6.1) cover a suitable range of values within the scaling (Rm) direction, such

that the range is wide enough that a large proportion of the integrations can be

completed using the accelerated method but that the range is compact to ensure

that the RAM usage is kept to a minimum.

Initial studies into the sizing of the LUTs consisted of a probabilistic study

into the typical values for Rm. Figures 6. 7 and 6.8 show the distribution for the

integration routine when applied to the boundary and to internal points respectively.

Rm

Figure 6.7: Distribution of Rm values for the boundary solution

From these figures we can see that the majority of integrations are required

within a restricted band of Rm values. The maximum figure of Rm is problem

dependent but by performing the study over a wide range of typical problems a

useful maximum figure can be extracted. For the relatively small problems under

6.2. Refinement of LUTs 107

1800

c 1000 +---- ­
" 8 800

800

400

200

Rm

Figure 6.8: Distribution of Rm values for the internal point solution

consideration in this work a typical maximum value is Rm = 15.

It is also necessary to decide on a lower limit for the LUTs. Considering figures

6.7 and 6.8 it would seem sensible to extend the LUTs down to zero as values are

used in this region for the singular integrals when collocating at element mid-nodes

around the boundary. Difficulties arise, however, due to the singular nature of

the integrals concerned and, since the non-singular integrals account for the vast

majority of the cases , it was decided to use conventional integration methods for the

singular integrals. It is preferable to implement a lower limit. In this work a lower

limit of Rm = 1 has been imposed, allowing the new scheme to be used for almost

all non-singular cases.

Thus, LUTs of the form described in section 6.1 are created within the following

bounds

1 < Rm < 15

Integrations with values of Rm < 1 will be considered to be near-singular and can

be treated using conventional techniques, which may be high order Gauss-Legendre

quadrature or the scheme of Telles (1987). For integrals where Rm > 15 these may

be integrated moderately economically using 2nd Order Gauss-Legendre quadrature.

Consideration of the angular variable in the LUT is dependent on the type of

element being employed.

6.2. Refinement of LUTs 108

6.2.1 Flat element LUTs

Figure 6.9 shows a contour display for a portion of a LUT (h1717 for a mid-node- node

2). From this and the other plots in appendices A to D it can be seen that there are

a number of lines of symmetry and anti-symmetry that can be exploited. Numerical

analysis was performed upon the LUT data-set to confirm the appropriate symme­

tries and anti-symmetries. Lines of symmetry can be exploited at cp = 90°, 270°

0 8.565117o{l)2

1
6.852093o.(I02
!i 139070o.(l02

·1 71ll23Hm
·l421i047o{l)2

10

i ~=7 .S 139070o.(l02 Rm
.-li852093o.(l02

-8.565117o{l)2

H[0][2]

phi= 90 degr .. s
2

0 phi·th•ta

Figure 6.9: Plot of h*~T for node 2

360

and lines of anti-symmetry at cp = 0°, 180° for all terms. Thus, for mid-nodes the

entire LUT can be regenerated from a stored set over a 90° range. For end-nodes

it becomes more complicated as the shape function causes the surface of the LUT

to be distorted. Figure 6.10 shows the LUTs for nodes 1 and 3 for h1717 • This shows

how the shape functions distort the surface.

(a) Node 1 (b) node 3

Figure 6.10: Plots of h*~T for end-nodes

6.2. Refinement of LUTs 109

Figure 6.10 shows that although the data are distorted in the two end-nodes the

plot for node 3 is a mirror image of the plot for node 1, thus we are only required to

store a LUT for a single end-node. This saving can be further enhanced by noting

that the distortion has only removed the lines of symmetry, but the anti-symmetry

remains, and as such we are only required to store 180° of the end-node LUT.

These savings apply not only to the hLUT terms but can be transferred to all of

the required L UTs for both displacements and stress boundary integral equations

(plots are displayed in full in appendices A, B, C and D).

Further savings can be made in storage by considering the particular case for

which the LUT is generated. Equations (6.3) and (6.22) can be simplified upon

knowing that the field element is aligned with the y-axis.

Noting that,

It can be shown that

To store all of the necessary L UTs for flat elements requires fifteen sets of L UTs,

with each set containing a mid-node LUT covering 90° and an end-node LUT con­

taining 180°.

6.2 .2 Arc element L UTs

Figure 6.11 shows a portion of an LUT (hryry for a mid-node - node 2). It can be

seen, similarly to the case for flat elements, that there are lines of anti-symmetry

that can be exploited.

Appendices E to H include plots for the g, h, s and d terms respectively.

Lines of anti-symmetry at cjJ = oo, 180° can be exploited for all terms. Thus, for

mid-nodes the entire LUT can be regenerated from a stored set over a 180° range.

The loss of symmetry when compared with flat elements is a result of the curvature

of the element. Figure 6.12 compares a flat element and a circular arc element with

6.2. Refinement of LUTs 110

10

H[0](2]

phi • 90 degrees 2

0 phi-theta 360

Figure 6.11: Plot of h*%T for node 2 of an arc element

fixed <Pas e is increased. From this it can be seen that the fiat element can be moved

to any of the other four positions by mirroring along the x or y axis (designated

in blue). However, consideration of a circular arc element shows that the line of

symmetry along the y axis has been eliminated (designated in red). For end-nodes

k /l }-., ,.-)
' ~ '

,
'

,
'

,
'

,
'

,
' ~ '

,
' ~ '

,
,

'
,

' ~ '
,

' ,
'

,
' ~ '

,
' l/

,
' '•,j

,
' }"' ',,)

(a) Flat Element (b) Circular arc element

Figure 6.12: Plots of elements for e = 45°, 135°, 225° and 315°

it becomes more complicated as the shape function causes the surface of the LUT

to be distorted. Figure 6.13 shows the LUTs for nodes 1 and 3 for hTfTf on a circular

arc element. This shows how the shape functions distort the surface. Figure 6.13

shows that although the data are distorted in the two end-nodes the plot for node 3

is a mirror image of the plot for node 1, thus in a similar manner to the fiat element

6.3. Error analysis of LUTs 111

10

·-

phl .. heta ...

(a) Node 1 (b) node 3

Figure 6.13: Plots of h~~T for end-nodes of an arc element

LUTs we are only required to store a LUT for a single end-node. As a result we are

required to store the complete 360° in the LUT but only for one end-node.

These savings apply not only to the hLUT terms but can be transferred to all of

the required L UTs for both displacements and stress boundary integral equations

(plots are displayed in full in appendices E to H).

To store all of the necessary L UTs for circular arc elements requires nineteen sets

of LUTs, with each set containing a mid-node LUT covering 180° and an end-node

L UT covering 360°.

6.3 Error analysis of LUTs

As mentioned in chapter 1 this research is aimed at the real-time analysis for small

stress analysis problems. This acceleration comes at a cost, typically, to the accuracy

of the solution. For this work the maximum error has been set to 2% of the maximum

principal stress, 0'11 . This has been found to be a suitable threshold in consultation

with industry.

The target error of 2% in max1mum principal stress is a global error target

whereas the LUT method works on a matrix term level. It is therefore necessary

to find some relation between errors in the matrix terms and those in the resulting

maximum principal stress. To find this relationship a test along the following lines

was performed. The h and g terms for each source point/field element were calcu­

lated as usual using an adaptive Gauss-Legendre quadrature. Before inserting them

6.3. Error analysis of L UTs 112

into the global matrix equation, random errors were introduced to all terms up to

a prescribed maximum value. The new randomly adjusted matrix equations were

solved and the maximum principal stress compared with a very refined mesh. Due

to the random nature of the errors introduced a probablistic approach is required.

Figure 6.14 displays the relationship between a known maximum introduced error

on a per term basis and the resulting global error; as compared with a model com­

posed of a very refined mesh, in maximum principal stress for a number of model

sizes. The coarse model has 30 elements, standard 46 elements and the fine mesh

72 elements.

Figure 6.14: Plot of output error from known maximum introduced error

From figure 6.14 it can be seen that model size affects the way in which input

error at the integration level propagates through to the output error in maximum

principal stress. This difference can be attributed to the varying number of floating

point operations required for each size of model, for instance the solver used (LU

factorisation) requires 2~3

operations, thus for larger problems addit ional errors will

be introduced due to non-exact arithmetic; faced by all computational techniques.

From figure 6.14 it can be concluded that in order to achieve the stated 2% error

in maximum principal stress it is necessary to have a maximum error within the

integration phase of 0.1 %.

Figure 6.15 shows the percentage errors associated with a coarsely defined LUT.

Areas of low error, as Rm is varied, are a result of the integral parameters coin­

ciding with a point in the LUT data-set . Additionally, the plot indicates that the

6.3. Error analysis of LUTs 113

5

02.28ffi32e.001
• 2.05247So-001
• 1.824426e-001
0 1.5963731HXJ1
0 136831!1e-001

Rm • 1140266e-001
• 9122129&m2
• 6.841597&002
• 4.561 005&002
.2.~2

1.931121o-010

2
0

Figure 6.15: Percentage errors in coarsely generated LUT term (g'lc, mid-node)

percentage error is higher for low values of Rm. This is expected due to the steeper

gradient in the integral as Rm -t 0 due to the singularity. Figure 6.16 displays a

surface plot for the h;c, integral for a mid-node, it can be seen that the integral

becomes near-singular, displaying the associated steeper gradient , as Rm -t 0.

0.1
Q)

.2 0.

~
~
Cl
2-0 .
.E

10

() 0 1

Figure 6.16: Surface plot of h;c, for a mid-node

As a result of the steeper gradient for low values of Rm a refinement scheme

based on a geometric progression has been implemented of the form

(6.32)

where a is the initial value for Rm, noting from section 6.2 that a = 1, s is the

geometric progression value and i is the current step number in the progression.

6.3. Error analysis of LUTs 114

The use of a geometric progression causes the values in the LUT to be more

closely spaced for low values of Rm, where there is a rapid gradient, but as the value

of Rm increases and the gradient of the data decreases the L UT points spread.

The value of s in equation (6.32) determines the refinement and therefore the

accuracy of the L UT in the Rm direction. The accuracy can be further improved by

the use of interpolation within the LUT. Interpolation allows a coarser, and hence

smaller, LUT to be created at additional computational cost at runtime as two

values need to be extracted from the LUTs and then the interpolation performed.

6.3.1 Non-interpolated LUTs

To calculate the required value of s used in generating the LUTs, a number of LUTs

were generated using a variety of values for s . These were then compared against

standard Gauss-Legendre quadrature for distinct values of flm. This was performed

for a variety of values of e. Figure 6.17 shows the relationship between Rm and the

error in maximum principal stress when s = 1.004 as a result of the discrete nature

of the LUT and the continuous nature of Rm the scatter-plot of error varies between

0 and an upper limit. Only the upper limit will be shown in further plots.

0.2

0.18 +----------------------

0.16 +-----------------------

0 2 4 6

Rm
B 10 12

s
• 1.002
• 1.001
• 1.0005

Figure 6.17: Scatter-plot of error for a non-interpolated LUT

Figure 6.18 shows the upper bounds of error in the generated plot for a non-

6.3. Error analysis of L UTs 115

interpolated L UT. To meet the specification of 0.1% error in each term can be seen

to require a geometric progression value of s = 1.001.

04

0 35

03

0 26

g 0 2
L1J

0 15

0 I

0 05

0

0

~

""" ~ ~
~ -------

€
R.,

----- - s
• 1.005 - • 1.004
• 1.003
• 1.002
• 1.001
• 1.0005

10 12

Figure 6.18: Error in maximum principal stress for non-interpolated LUT

6.3.2 Interpolated LUTs

Interpolation can be implemented in a number of manners depending on the accu­

racy j computational cost balance required. In this work as computational cost is a

high priority the simple but relatively effective method of linear interpolation has

been implemented and tested.

Figure 6.19 shows the implementation of linear interpolation. Linear interpola­

tion requires the two values, Zupper and Zlawer, in the LUT that bound our required

point, Zreq, to be extracted. The required value can then be extracted by simply

plotting a straight line between the bounds and moving the required distance along

this line, as

where

Zreq ~ z' = Zlower + Q (Zupper - Zlower)

Xreq - X lower
Q = ----=------

Xupper - X lower

6.3. Error analysis of L UTs

zupper

z'

Zreq

Z lower

................ .. , .. ·

X lower X req X upper

Figure 6.19: Example of linear interpolation

116

When interpolation was used in the LUTs the equivalent errors were distinctly

lower, allowing s to be increased and thereby producing a coarser and smaller LUT.

Figure 6.20 displays the upper bounds on errors for the interpolated LUT. From

this it can be seen that to meet the specification of an error below 0.1 % requires a

geometric progression of s = 1.03.

0 lb

0 ,.

012

0 I

006

o ..

002

0

0

\

~

"' " '------
~
~

-
• R.

10

Figure 6.20: Error in maximum principal stress for interpolated LUT

6.4. Memory requirements of L UTs 117

6.3.3 Angular refinement

Trevelyan et al. (2004) concluded that a refinement in the angular parameter of

0.05° would meet the specification of an error below 0.1%.

Interpolation has not been considered within the angular parameter because of

the additional computational overhead required to perform a 2-dimensional interpo­

lation and the limited benefit offered by reducing the parameter space within this

direction. This is a result of the curvature within the angular parameter being lower

than the curvature within the Rm direction.

6.4 Memory requirements of LUTs

The memory requirement for the L UTs is dependent on the degree of refinement

required to meet the necessary accuracy. As a result of sections 6.3.1 and 6.3.2 we

require a refinement factor of s = 1.001 for non-interpolated LUTs and s = 1.03 for

interpolated LUTs.

By consideration of the memory savings that can be achieved by use of symmetry

and anti-symmetry, we can calculate the required amount of memory for each of the

sets of LUTs. Table 6.1 displays the memory requirement for flat elements.

Non-interpolated LUTs Interpolated L UTs

Flat elements 838 29

Arc elements 2122 73

Table 6.1: LUT memory requirements (MB)

Table 6.1 indicates that to use non-interpolated LUTs for both flat and arc

elements would require approximately 3GB of RAM. As a result it is not possible

to implement non-interpolated LUTs for both flat and arc elements as a typical

6.5. Summary of LUTs 118

personal computer would require the use of swap space* in addition to RAM to

store the L UTs and operating system.

Use of interpolated LUTs for both fiat and arc elements reduces the memory

requirement to 102MB which can be easily accommodated by current hardware

levels. However, as stated in section 6.3.2 the use of interpolated L UTs incurs

additional computational cost. Therefore, it is preferable to use a mix of non­

interpolated and interpolated LUTs for for the final proposed scheme.

In most simple analysis fiat elements will be the predominant type of element,

additionally it should be noted from table 6.1 that the memory requirement for

non-interpolated fiat elements is significantly lower than for arc elements resulting

from the the reduced amounts of symmetry within the arc LUTs. Therefore, the

proposed LUT scheme consists of using non-interpolated LUTs for fiat elements and

using interpolated LUTs for arc elements. Table 6.2 details the required memory

for the propose scheme.

Memory Requirement

Flat elements 838

Arc elements 73

Total 911

Table 6.2: Final LUT memory requirements (MB)

6.5 Summary of LUTs

The ability to use LUTs in place of the integrations within the boundary integral

equation has been presented. An analysis of the necessary refinement has been pre­

sented allowing upper and lower bounds on the LUT to be proposed. Additionally,

*Swap space is the technique of storing data on the hard-drive instead of in RAM. This typically

occurs when a program requires more memory storage than is currently available in RAM. As this

technique requires access to the hard-drive instead of a memory chip it is relatively slow for access

purposes.

6.6. Surface fits 119

an error analysis has been performed allowing the graduation within the LUT to be

defined such that values extracted from the L UT will produce a maximum of 2%

error in maximum principal stress.

Regarding the error analysis it has been noted that using current personal com­

puter hardware it is not possible to implement the technique in an efficient manner

using non-interpolated LUTs, as such a scheme has been proposed such that non­

interpolated L UTs are used for the more commonly used flat elements and interpo­

lated L UTs are used for arc elements. The proposed scheme has a total memory

requirement of 911MB for the LUTs.

6.6 Surface fits

The use of surface fits as opposed to storing LUTs in memory and extracting values

at run-time is an alternative strategy that does not suffer from the high cost in RAM

that is required to store sufficiently refined LUTs. The high RAM cost limits the

applicability of the LUT approach to a high specification computer.

Surface fits are similar in derivation to the LUT scheme. Whereas LUTs are

generated and stored for equations (6.9) and (6.7), surface fits will be generated and

the generated equations evaluated at run-time. Plots of the surfaces to be fitted are

contained within appendices A to D.

Initial investigations will employ surface fits generated for the cases where <P = oo,
90°, 180° and 270°. This is a result of these cases being the most popular in the

analyses that this work is aimed at. The use of a coordinate transformation to

extend this technique to arbitrarily angled elements is identical to the LUT case

(section 6.1).

Figure 6.21 shows two surface plots of integrals that are required for use in

equation (6.4) (appendices A to D contain surface plots for all integrals). It can

be seen that these are smoothly varying functions over the values of interest and as

such fitting appropriate functions to the surfaces should be possible and economical.

6.6. Surface fits

X 10 ..
1-

-3
360

270
180

B 0 1

(a) 9rr'l mid-node

10
180

B 0 1

(b) 9ry(mid-node

Figure 6.21: Surface plots of integrals

6.6.1 Investigation of surface data

120

10

Initial research into the surface fitting of data simplified the problem to the case

of fitting lines through the surface to analyse how each parameter in the integral

affects the overall shape of the surface.

Figures 6.22 and 6.23 show the variation in the surface for cjJ and e respectively

for a variety of values of Rm. From these it should be noted that the variation is

oscillatory in form suggesting a trigonometric basis , in the angular directions , in a

surface fit expression.

Figure 6.24 shows sections through the surface in theRm direction. The effect of

the logarithmic term can be seen in the g;
11

term , figure 6.24(a). As a result a basis

formed from a polynomial based on a logarithmic term has been included in the

basis set. However, a basis set employing logarithmic terms alone was soon found to

be unsatisfactory for all terms. Hence, the basis function was expanded to include

a polynomial fit in R;;,? .

Application of this basis set to a selection of the integral terms confirmed that

the basis set could accurately represent the data in the Rm parameter direction.

From this initial investigation it can be seen that to perform line fitting to the

integral data requires the following basis functions to be used ,

IntegralRm = f (1 , (ln (Rm))q , (Rm) - q) , q = 1 ... 4 (6.33)

Integral0 = f (1 , sin (qO), cos (qO)) , q = 1 ... 6 (6.34)

6.6. Surface fits

20-

-20 u...O ___ _,..go'-----"'80'"----<2:<J.10L--__ ;jljU36Q

~0 ----------------

~ ~ ----------------
~ -80 r----------------

~ -100 -'-' --------------
~ E -120 ----------------

-140 1===============
-160 ----------------

·160 ===============
-200 "

Phi

s 1

3

5
7

-144.8 J

Phi

(a) g,711 mid-node- macro view (b) g1111 mid-node- zoomed view

20

10 / ~

~ 90 18~ 270 __/360[R•1 ~ ·10 - 3

'! - 5
~ -20 t-~~~==~~-------------
~ ~ - 7

- -30 t===.--~~--40 F=
Phi

(c) g1111 end-node

Figure 6.22: Line plots for variable </J, (} = 90°

50-

0---~~-----~~---

~ -50 ~360sR·1
> ~-3
~-100~=~

-150 0 ~ L
~ ~

-200

Theta Theta

(a) g1111 mid-node (b) g1111 end-node

Figure 6.23: Line plots for variable (}, <P = 90°

121

6.6. Surface fits

100 -

!: -0.06
;;;
> -0.08

i -01

.5 -0.12

-0.14

-0.16

-0.18

(a) g.,.,1 mid-node

v- l

//~-----
L / /
I I /
I /
I f
'I
I

(c) h.,,.1 mid-node

"§ - 30

- 45
- 60
- 90

1

30-

20

10 .. 0 " ~ - 10 °
~ -20
~
.5 -30

-40

-50

-SO

-0.01

~ -0.02

~
"ii -003
c.
~ -0.04

(b) g.,,.1 end-node

:..---..-::::
'(/

/!/
Yff

~
I

R.

(d) hryry end-node

Figure 6.24: Line plots for variable Rm, cp = 90°

0 1

122

~ 30
45
60
90

6.6. Surface fits 123

To extend the work to a 2-parameter surface fit a least squares fit can be per­

formed using a basis set formed from the basis sets listed in equations (6.33) and

(6.34).

I~ {1 ~ W(O)X(R,)
W E (1, sin (j e) , cos (j e)) , j = 1, ... , 6 }

XE (1,[lnRmt,R;;,k),k=1, ... ,4
(6.35)

This results in 117 surface basis functions. For any individual matrix term, a

significant proportion of the surface basis functions will have a coefficient close to

zero, allowing the corresponding basis functions to be removed from the surface fit

without reducing the error of the fit significantly. The problem then becomes the

least squares fitting of surfaces of the form of figure 6.21 such that the computational

effort to evaluate the resulting expression is minimised, within a constraint of a 0.1%

upper bound on error.

6.6.2 Surface fit methodology

To achieve the optimum least squares surface fit a number of stages to the fitting

procedure have been implemented. The first stage of surface fitting is a progressive

reduction scheme as outlined in algorithm 6.1,

Algorithm 6.1: Progressive reduction scheme for surface fitting

1: Initialise n = 117

2: while n > 1 do

3: Perform least squares fit using n basis functions

4: Determine the importance of each basis function by weighting the L2 norm of

the basis function by the least squares coefficient

5: Reject the least important basis function

6: n := n -1

7: end while

Application of algorithm 6.1 produces a list of basis functions in order of impor­

tance, this being defined as the L2 norm of the basis function over the area of interest

multiplied by the corresponding least squares coefficient. This takes into account

6.6. Surface fits 124

the difference in magnitude between the various basis functions. For instance, R;;/
could be orders of magnitude different to R;;.4 and as such the importance function

should allow for this. For example, if R;;.1 = 0.1 then R;;.4 = w-4
. The relative im­

portance of these two ba.•;;is functions to the surface fit must include the magnitude

of the terms and not only the surface fit coefficients.

2.0%

1.8%

1.8%

1.4%

~ 1.2%

i! 1.0",(,

w 0.8%

0.6°4

0.4%

0.2%

0.0%
0 20 40 80 80 100 120

Basis Functions

Figure 6.25: Typical plot of error as the number of basis functions is reduced

Figure 6.25 shows how the percentage error in a typical surface fit varies as

the number of basis functions is reduced. It can be seen that, although the least

important function is being eliminated each iteration, there are step changes in the

error level. These step changes imply that a function that is important to the final

surface fit has been eliminated from the set of basis functions. Thus, a second stage

of surface fitting is required to achieve the final fit.

Algorithm 6.2 will produce the optimum surface fit from the functions passed

from the progressive reduction algorithm . This might of course be applied directly

to the original basis functions. However, due to the number of basis functions

involved this brute force approach is not feasible due to the high computational cost

incurred.

Algorithm 6.1 has been combined with algorithm 6.2 to automate the process of

performing a least squares surface fit. Extraction of the important basis functions

from the progressive reduction scheme is achieved by consideration of the difference

in error between successive analysis, if the difference in error is greater than a pre­

scribed level; w-7 was found to be a suitable level for this work, then the basis

77D

6.6. Surface fits

Algorithm 6.2: Secondary surface fitting stage

1: Extract Important Basis functions from progressive reduction scheme

2: while f < 0.1% do

3: for all Basis functions do

125

4: Calculate least squares surface fit with current basis function eliminated

5: Calculate error norm fi

6: end for

7: Find surface fit, k, with lowest error norm

8: f = fk

9: Eliminate basis function with index k

10: end while

11: Return final equation set

function is noted and passed into algorithm 6.2. A low tolerance has been imple­

mented at this stage as the brute force approach of algorithm 6.2 will eliminate all

of the unnecessary terms from the surface fit.

6.6.3 Surface fit equations

Application of the algorithms in section 6.6.2 produces equations for each node for

each of the fundamental solutions. The algorithm is applied to data with values of

<P = oo, 90°, 180° and 270°.

Additionally, the data at low values of Rm vary rapidly, as illustrated, for exam­

ple, in figure 6.24, and as a result the dataset is split into two sections and a least

squares fit applied to the two sub-datasets .

• 2<Rm5:3

• 3 < Rm 5: 15

Appendices I to L contain all of the 408 surface fit equations generated by the

algorithms presented.

Restricting the current analysis to <P = 90° for 3 < Rm 5: 15, a set of surface fit

6.6. Surface fits 126

expressions are presented. The simplest expressions are for the mid-node elements.

9oo2 = [2.166 + 2.158 cos (20)- 8.996ln Rm] x 10-7

9oi2 = 9w2 = [2.166sin (20)- 0.108R~2 (sin (20) +sin (40))] x 10-7

9112 = [2.166 (1 -cos (20)) - 8.996ln Rm] x 10-7

(6.36)

(6.37)

(6.38)

where 9ijk is the expression for the term with source point direction i, field element

direction j for node k where k = 1, 2, 3. Corresponding expressions are formed for

the end-nodes. As a result of the shape functions the dataset is distorted and hence

these expressions are more complicated. However, savings can be made by noting

that all of the end-node expressions can be represented in the following format.

9om =A+ B

9oo3=A-B

where

(6.39)

(6.40)

A= [0.541 (1 +cos (20))- 2.249ln Rm- 0.25R~2 cos (20)] x 10-7 (6.41)

B= [R~1 (1.395sin(0)+0.266sin(30))] x 10-7 (6.42)

Similar savings can be made for the traction kernel, for example

where

ham= C + D

hoo3 =C-D

[

- R~1 (0.03515 cos (0) + 0.00862 cos (30)) l
C = +R~3 (0.00786cos (30) + 0.00373cos (50))

[

- R~2 (0.02188 sin (20) + 0.00862 sin (40)) l
D = +R~4 (0.00458sin (40) + 0.00250sin (60))

(6.43)

(6.44)

(6.45)

(6.46)

In order to accelerate further the evaluation of these expressions, it is effective to

build a look-up table containing values of sin (qO), cos (qO) and ln (R~) for various

arguments, thereby avoiding the lengthy computation times associated with the

evaluation of trigonometric and logarithmic functions.

6. 7. Concluding remarks 127

An arbitrary element orientation, </J, can be considered by applying a coordinate

transformation in exactly the same way as was described for the LUT approach.

However, the author finds it effective to use surface fit expressions directly for the

common cases <P = oo, 90°, 180° and 270° since the coordinate transformations

involve extra computational cost.

Equations (6.36) to (6.46), and the equivalent surface fit expressions for the other

terms included within appendices I to L, may be computed very rapidly and the

results placed directly into the boundary element matrices as a complete replacement

for conventional numerical integration. Apart from the coding of the surface fit

expressions and the small LUTs for trigonometric and logarithmic expressions, this

approach incurs no memory cost and in this respect is advantageous over the LUT

approach

6. 7 Concluding remarks

In this chapter two separate techniques have been proposed to accelerate the com­

putation of the integral terms required for use within the boundary element method

for elastostatics.

The methods are derived from a similar basis in that the integrals can be pre­

computed in some manner and then stored for later retrieval at a low computational

cost. As a result it is possible to use a high order Gauss-Legendre scheme to cal­

culate the original dataset. Thus, storage of this high order data-set will produce a

higher accuracy LUT or surface fit when compared with an adaptive scheme, this

allows a potentially lower refinement in LUT or a reduced number of terms in the

surface fits.

The first technique involves the storage of the integral data within LUTs stored

in memory. Refinement of the L UTs has been discussed to ensure that errors are

kept within 0.1% of the maximum principal stress. Symmetries within the angular

direction in the LUT have been exploited to reduce the amount of data that is

required to be stored. Additionally, terms that repeat due to the orientation of the

field element have been stored only once. The use of interpolation within the Rm

6. 7. Concluding remarks 128

parameter direction has been investigated and two refinement levels suggested; one

for interpolated LUTs and one for non-interpolated LUTs. Moreover, the memory

requirement for the LUTs has been presented as this has a major influence on the

viability of LUTs within the engineering sector.

The second technique proposed involves performing a least squares surface fit

to the dataset and then computing these comparatively simple equations instead of

performing Gauss-Legendre quadrature. As the dataset varies rapidly within the

Rm direction it has been split into multiple intervals and separate least squares fits

performed across these intervals. This has reduced the number of terms required

to accurately describe sections of the dataset. Moreover, the surface fits have been

found to have symmetries within the end-nodes allowing the computation of both

end-nodes at once reducing the overall computational cost.

CHAPTER 7

Acceleration of the Solution Phase

The application of the boundary element method (BEM) results in a system of

equations that can be formulated in the following matrix problem,

Ax=b (7.1)

As a result it is necessary to solve this problem in an efficient manner. Chapter 5

has introduced current techniques that allow the rapid solution of matrices using

both direct and iterative solvers. Of this previous work the use of iterative solvers

in combination with a suitable preconditioner offers the biggest opportunity for

reducing the computational cost in the matrix solution phase. However, as the type

of problems under consideration are small two-dimensional problems, in particular

under reanalysis, the use of a direct solver, if it can be beneficial for future analysis,

will be considered.

In this chapter consideration will be given to suitable preconditioners that can be

applied to the matrices generated by the BEM. The advantages and disadvantages

of each method will then be considered and a new form of preconditioner suitable

for small reanalysis problems will be proposed. This will be combined into an overall

strategy for the solution of matrices under reanalysis conditions.

129

7 .1. Initial scheme 130

In this chapter six models have been used to for comparison purposes; figure 7.1

shows the geometries of the six models.

0
(a) Modell (b) Model 2

0
(c) Model 3 (d) Model 4

0
(e) Model 5 (f) Model 6

Figure 7.1: Models used within equation solution analysis

These models cover two simplistic geometries popular in current literature and

feature three different applications of boundary condition so that the effect of bound­

ary conditions can be considered. Models 3 and 5 as well as models 4 and 6 are

physically identical, however, they are implemented numerically different as a result

of the corresponding boundary conditions.

7.1 Initial scheme

The Concept Analyst software (Trevelyan, 2003) used as a background for this

research is aimed at problems in which reanalysis is likely to occur. As a result a

number of techniques have already been implemented in the software to accelerate

7 .1. Initial scheme 131

the computation and solution of the BEM. Details of these methods can be found

in Trevelyan and Wang (2001a) and Trevelyan and Wang (2001b).

The procedures currently implemented within the Concept Analyst software will

be used as a baseline to establish the effectiveness of proposed techniques. The

Concept Analyst framework for reanalysis can be represented by the flowchart in

figure 7.2. The implementation of a direct solver for the initial solution is considered

Define model

I

Solve model using Gauss Elimination

I

Perturb model I<·

I
Resolve using diagonally

-
preconditioned GMRES iterative solver

I

Final solution

Figure 7.2: Current Concept Analyst solution framework

to be a reasonable assumption as the user may want to take one of a number of

possible routes within the Concept Analyst software, for instance,

• Show a deformed plot of the solution.

o Display contours of displacement.

• Display contours of a particular stress.

As a result, the additional time required to complete a direct solve of the initial

problem is considered insignificant when compared to the time required to decide

upon the next course of action and implement it.

If the geometry is modified when displaying a contour plot the problem becomes

one of reanalysis. It is possible to use the previous solution as an initial estimate for

7.2. Improving matrix condition 132

the current problem in an iterative solver. GMRES is the iterative solver employed

since it can accommodate unsymmetric matrices. As this research is concerned with

problems of reanalysis, and as a result iteration counts will be relatively low, the

loss of the short term recurrence within the orthogonal vectors is not a drawback for

GMRES. To accelerate the rate of convergence of the iterative solver it is necessary

to use a preconditioner within the iterative solver. Due to the ease of calculation

and application a diagonal preconditioner is currently used.

7.2 Improving matrix condition

The application of particular boundary conditions, in particular normal displace­

ment boundary conditions (models 5 and 6), can cause the form of the A matrix

to deteriorate as the eigenvalues separate, thus reducing the, potentially, clustered

nature. This is a result of a 2 x 2 sub-matrix on the leading diagonal being rotated

such that the dominant terms are moved off of the leading diagonal and replaced

with smaller terms.

0.5000 0.0000 0.0000

-0.0058

0.0000

0.0000 -0.0223

0.0000 0.0000

-0.0440 -0.1114

0.0000 0.0000

0.0100

0.0000

0.0000 0.0000 0.0000

0.0722 -0.0699 0.0392

0.5000 0.0000 0.0000

0.0000 -0.0440 0.1114

0.0000 0.0000 0.5000

-0.0699 -0.0392 -0.0223 -0.0722 -0.0058 0.0000

(7.2)

Equation (7.2) displays a 6 x 6 sub-matrix situated on the leading diagonal for a

problem involving normal displacement boundary conditions. The terms in red are

situated on the leading diagonal of the original matrix. However, the terms in blue

are larger and as a result it would be beneficial for a matrix solver if these terms

were moved to the leading diagonal. The rotation of the sub-matrices on the leading

diagonal causes the eigenvalues of the system to spread out and as a result the rate

of convergence of an iterative solver will be reduced.

To improve the rate of convergence it is possible to implement a row swapping

strategy in which rows relating to the same collocation point are exchanged if such an

7.3. Preconditioning 133

exchange leads to the larger terms moving to the leading diagonal. It is necessary to

Algorithm 7.1: Row-swapping strategy

1: if Model contains normal displacement boundary conditions then

2: for i= 0, ... , If - 1 do I I where N is the number of rows.

3: if la2i+l ,2i+ll + la2i+2,2i+2l < la2i+l,2i+21 + la2i+2,2i+ll then

4: Swap rows and store row numbers

5: end if

6: end for

7: end if

store the row numbers that are exchanged so that the same rows can be returned to

the original locations before performing a subsequent reanalysis as this will assume

conventional ordering to the A matrix.

-0.0058

0.0000

0.0000 -0.0223

0.5000 0.0000

-0.0440 -0.1114 0.0100

0.0000 0.0000 0.0000

0.0722 -0.0699 0.0392

0.0000 0.0000 0.0000

0.0000 -0.0440 0.1114

0.5000 0.0000 0.0000

-0.0699 -0.0392 -0.0223 -0.0722 -0.0058 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.5000

(7.3)

Application of algorithm 7.1 causes the terms with high magnitudes to be returned

to the diagonal locations causing the condition number of the matrix, and hence the

overall clustering of the matrix, to be improved. Equation (7.3) shows the effect of

algorithm 7.1 on the matrix shown in equation (7.2).

7.3 Preconditioning

To improve the rate of convergence for the iterative solver it is necessary to imple­

ment a different preconditioner that is more suitable for the matrix problem to be

solved than the currently implemented diagonal preconditioning. Diagonal precon­

ditioning is popular due to the simplicity of calculating and applying the precondi-

7.3. Preconditioning 134

tioner. However, as the preconditioner is merely the leading diagonal of the matrix,

there is a limited amount of information carried into the preconditioner. This has

been noted by Marburg and Schneider (2003) for acoustic BEM problems in which

diagonal preconditioning actually increased the iteration count for the employed

solver.

An alternative to the diagonal preconditioner that includes information off of the

matrix diagonal and as a result carries more information into the preconditioner is

the incomplete lower-upper (ILU) factorisation. This can be applied to an iterative

solver as a split preconditioner as it has two components.

(7.4)

The advantage of applying the preconditioner in the split form is that both the L

and U factors can be applied via a forward or back-substitution and do not require

a matrix-matrix product.

Due to the dense nature of the matrix equations generated by the BEM, it

would be impractical to employ a sparsity pattern based on the current layout of

the matrix as it would become a full LU decomposition. As a result a threshold based

ILU factorisation has been implemented within the reanalysis code. The threshold

technique employs a sparse LU factorisation as the basis, however, upon calculation

of the appropriate l and u terms they are checked against a threshold such that,

_ { Calculated li,j
li,j -

0
if

li,j > threshold

otherwise
(7.5)

An identical drop rule is applied to the u terms. Algorithm 7.2 has been applied to

a number of models with a selection of perturbations. Moreover, the threshold has

been varied to determine if there is a generally acceptable sweet-spot of threshold for

the types of problems under consideration in this thesis. Variation in the threshold

results in variation in the number of terms that are dropped using the strategy. The

number of terms dropped can be normalised with respect to the size of the problem

concerned; this is defined as the sparsity of a matrix and is given by,

S
. Number of terms not dropped

pars1ty = --.,----,------,----=--.:....::....­
Total number of terms

(7.6)

7.3. Preconditioning

Algorithm 7.2: ILU threshold based GMRES scheme

1: for i = 1, ... , N do

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

w = ai* I I where ai* denotes the ith row of the matrix A

for k = 1, ... , i - 1 and when Wk i= 0 do

Apply dropping rule to wk

if wk i= 0 then

end if

end for

Apply dropping rule to row w

lij = Wj for j = 1, ... , i - 1

Uij = Wj for j = 1, ... , n

w=O

end for

Q1 = ro 11 ro 11-1

for k = 1, 2, ... , m do

wk = AL - 1qk u-1

fori= 1, 2, ... , k do

hi k = q?'wk
' 1

Wk = Wk - hi,kQi

end for

hk+l,k =11 Wk 11

- w
Qk+1 - hk+l,k

end for

25: Ym = y that minimises 11 f3e1 - Hmy 11

26: Xm = Xo + L - 1QmYm u-1

135

7.3. Preconditioning 136

Due to the large variation in the threshold level it is typically plotted on a logarithmic

scale. Figure 7.3 shows the classical S shape commonly seen in drop strategies. This

1oo.oo•A.

90.00%

80.00%

~
70.00%

Cii
60.00%

CO c.
t/) .. 50.00%
t:
Gl

40.00% (J
Gl
0.. 30.00%

20.00%

10.00%

0.00%
-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Threshold

Figure 7.3: Sparsity of ILUT preconditioner

-+- Model1
-+- Model2

Model3
- Model4
....... ModelS
-+- ModelS

is a result of the distribution of terms within the matrix. It should be noted that

to avoid the ILU factorisation producing a singular preconditioner it is forced to

include the diagonal terms even if they are smaller in magnitude than the threshold.

Table 7.1 shows the variation of iteration count with threshold for two problems,

where N is the size of the A matrix. As the threshold is applied to the decomposed

system and not the original A it is necessary to have an upper threshold of 40 as this

results in a diagonal preconditioner. For thresholds between 0.1 and 30 (for model

1) the effect of non-exact arithmetic can be seen as the GMRES fails to converge to

a solution within the required number of iterations as expected by Cayley-Hamilton

theorem. This is a result of the orthogonal vectors created in the iterative process not

being orthogonal but as good as they can be within the limitation of the hardware

and software. The reduction in iteration count for low thresholds shows that an

ILU factorisation is very good at meeting the requirements of approximating A-l.

However, a low threshold also means that the factorisation has a low sparsity level

and as such specialist sparse techniques cannot be exploited.

Additionally, the low threshold level means that the computational cost of calcu-

7.3. Preconditioning 137

Model 1 N = 136 Model 2 N = 184
Threshold

Iteration Count Sparsity (%) Iteration Count Sparsity (%)

1 X 10- 4 2 99.43 3 98.29

1 X 10- 3 4 97.15 4 93.50

1 X 10- 2 9 66.99 10 63.23

1 X 10-l FAIL 7.93 FAIL 8.39

1 FAIL 2.14 FAIL 3.42

10 FAIL 0.90 FAIL 1.31

20 FAIL 0.87 FAIL 1.04

30 FAIL 0.80 FAIL 1.00

35 38 0.77 FAIL 0.96

40 35 0.74 40 0.57

Table 7.1: Iteration count and sparsity levels for ILUT preconditioned GMRES

lating the factorisation is high. The effect of non-exact arithmetic and its resultant

effect on computational cost is shown in figure 7.4. This shows the variation in

200".4

180%

~ 160•.4
0
"' 140%

~ 120".4
c
0 100•.4

.. 80%
_c:g>

60% ..
1:! 40%
3..

20".4

Threshold

1- Operation Count
l~ solutionT ""---'

Figure 7.4: Computational cost of ILUT preconditioning strategy

computational cost and actual solve time with respect to threshold level normalised

with respect to a standard direct solver of the same problem. From this it can

be seen that the computational cost of calculating the ILU factorisation causes the

overall computational cost to be more than a direct solver until the threshold is high

7 .4. Proposed scheme 138

enough that the ILU is approximately a diagonal preconditioner.

Thus, the ILU preconditioner meets two of the three criteria for a good precon­

ditioner in that it approximates A -l well at low thresholds and is computationally

reasonable to apply but at low thresholds it is not computationally cheap to calcu­

late. At high thresholds the technique approximates a diagonal preconditioner but

is computationally more expensive. As a result an alternative is required which is

effective at reducing the iteration count in a similar manner to the ILU factorisation

but does not require the computational cost of the IL U factorisation.

To help guide the selection of a suitable preconditioner it is important to note

the facilities available to the preconditioner that can be exploited in the application

of the preconditioner. There are four main points to note.

1. The problems considered are small

2. The computer has a large quantity of RAM available

3. The focus of the work is rapid reanalysis

4. Modern operating systems support multi-threading of processes

By exploiting these factors it is possible to produce a new scheme for preconditioning

small problems under reanalysis situations.

7.4 Proposed scheme

As the problems considered in this work are relatively small problems then storage

of a factorisation is not a critical parameter. As a result it is not a requirement that

the preconditioner is sparse. Additionally it has been found that an ILU threshold

based factorisation is effective at reducing iteration count as long as a low thresh­

old is employed. Thus if a preconditioner can exploit the effectiveness of the ILU

threshold based factorisation at reducing iteration count whilst reducing the com­

putational overhead associated with calculating the factorisation then it will be a

computationally efficient preconditioner.

As a result a new scheme, outlined in figure 7.5, is proposed for the initial analysis

and subsequent reanalysis of problems. By exploiting the fact that a direct solver

7 .4. Proposed scheme 139

Define model

I
If symmetry boundary conditions apply

row swap function

I
Solve model using LU factorisation.

Store factorisation for reanalysis

I

Perturb model fc

I
If symmetry boundary conditions apply

row swap function

I
Resolve using initial LU factorisation

- - - I

as preconditioner for GM RES solver

I

Final solution

Figure 7.5: Proposed analysis and reanalysis scheme

7.4. Proposed scheme 140

is used for the initial solution we can extract and store information for use in later

reanalysis. In particular it is possible to employ an LU preconditioner as the initial

solver and store the L and U factors . These factors can be then implemented as a

preconditioner to the perturbed system in the reanalysis phase. As the factors are

already calculated they are available at zero cost to the reanalysis routine and so

the only computational cost associated with the preconditioner is its application in

each iteration. As the L and U factors closely approximate those for the perturbed

system they will provide a very efficient preconditioner, causing the eigenvalues to

cluster and, as a result , reduce the overall iteration count.

A drawback of this scheme is that the preconditioner is based on the originally

solved matrix system and, as a result, has the potential to deteriorate in efficiency

as multiple perturbations occur; this is similar to the drawback faced by Kane et al.

(1990) and Leu (1999). This deterioration in the preconditioner will have the effect of

increasing iteration count and the computational cost of the iterative scheme. This

can be seen by the spread of the eigenvalues after multiple perturbations. Figure 7.6

is the initial state of a simple BEM problem with eigenvalues given by figure 7.7(a) ,

additionally the geometry after 1, 5 and 10 perturbations is identified within the

model. Figure 7. 7 (b) displays the effectiveness of the L U factorisation at clustering

the eigenvalues together around unity. Figure 7. 7 shows the deterioration of the

~ ~.-.-··· • • • • • • • • • •

1 5 10

Figure 7.6: Initial model

LU factorisation as a preconditioner over multiple perturbations.

As a result it is desirable to employ an update strategy on the preconditioner such

7.4. Proposed scheme

0.81

0.61

0.41

0.2

1 E o-
- I

-02r

-0.41 i I I -0.6r

-0:8:5
I

0 0.5 1.5 2
Re

(a) Original eigenvalues

0.81
I

061
I

04r

0.2,

E ol ' -· + ...
- I ,

-0.2r

-0.4r

-0.6r

-0:8.5 0 0.5 1.5 2
Re

(c) Preconditioned after 5 perturbations

141

0.8,

I
06r

04r

0.2

1 E o-
- I

-02r

-04i

-06r

-0:8.5 0 0.5 1.5 2
Re

(b) Preconditioned after 1 perturbation

0.8,
I

061

041

0.2

1 E o-
- I

-0.2r

-0.4r

-0.6j

I
-0~8.5 0

• ' ... ·+·

0.5
Re

' .

1.5 2

(d) Preconditioned after 10 perturbations

Figure 7.7: Deterioration of the LU factorisation after multiple perturbations

7 .4. Proposed scheme 142

that a recent form of the L and U factors are available for the reanalysis function.

Updating of the preconditioner will maintain the clustering effect identified in figure

7. 7(b). To allow the updating of the preconditioner effectively and efficiently a

separate thread will be initiated. To ensure that the thread operation does not

interfere with the higher priority task of user interaction, it is necessary to enforce

a priority level when initialising the thread. Thread priority can be defined from

highest to lowest priority as one of the following values:

• Realtime

• High

• Above normal

• Normal

• Below normal

• Idle

By default, threads are initialised with a normal priority. As the thread to update

the preconditioner is less important than the main program thread, so that it does

not interfere with the normal operation of the program, it will be initialised with

a thread priority of idle. Thus it will only become active during periods when the

central processing unit (CPU) has no other tasks scheduled. In multi-core machines

this issue is negligible as the main program thread and preconditioner thread can

run in parallel on separate cores.

Due to the deterioration of the effectiveness of the precondition er and the require­

ment of the update scheme, it is necessary to determine the rate of deterioration

such that an appropriate update rate is achieved. By profiling* the specific routines

used within both the factorisation and the iterative solver it is possible to determine

how often it is necessary to update the preconditioner.

*By profiling functions the performance will be degraded and as a result it is not possible to

determine absolute timings for functions. However, as the degradation will be consistent it is

possible to compare functions within individual profile sessions.

7 .4. Proposed scheme

There are two main routines which need to be considered,

• The preconditioned GMRES solver

• Updating of the L and U factors

These functions can be further divided,

• GMRES- Set-up

• GMRES- Iteration

• Update L U - Locked stage

• Update L U - Factorise

143

Set-up costs associated with the GMRES solver cover the initialisation of various

variables, the necessary destruction of variables and the extraction of the solution

from the GMRES iterates, thus these costs are only incurred once per solution. Costs

associated with the iteration phase of the solver are recurring costs associated with

the loop between lines 2 and 10 in algorithm 5.9. Updating of the preconditioner

can be split into two sections.

1. Locked sections.

2. Unlocked sections.

Locked sections are surrounded by software mutexes (mutual exclusive locks) which

prevent other threads of execution accessing the variables associated with the mu­

texes. This is important as it prevents two separate threads attempting to access

the same variable and altering the contents. In the secondary update thread the

locked section is used to copy the A matrix into a local copy, the A matrix is then

unlocked so that the main program thread can still access it while the secondary

thread can factorise the local copy, finally the preconditioning matrix is locked and

the new L and U factors are copied back to the main dataset for use in reanalysis.

Thus, the locked stage of updating the preconditioner allows the thread-safe copying

of variables between threads, whilst the factorisation runs in an unlocked state as

there is no inter-thread communication.

Table 7.2 lists the appropriate timings for the two main routines; the GMRES

iterative solver and updating the LU preconditioner, for a sample problem with

N = 184.

7 .4. Proposed scheme 144

Function Name Profile time (~-ts)

GMRES- Set-up 13131

G MRES - Iteration 4862

Update LU- Complete 171756

Update L U - Locked Stage 6054

Update L U - Factorise 165702

Table 7.2: Function profiles for updating of LU factorisation

Thus on multi-core systems, in which the main program thread and the pre­

conditioner update thread are able to run concurrently, the cost for updating the

preconditioner is the period for which the main program thread is locked from al­

tering the A matrix, 6054p,s in the illustrative example included here. Thus, if the

number of iterations to solve a perturbed model increases by two iterations then it

will be efficient to update the preconditioner. The test case selected for this example

was simply moving a hole in a plate, and so the boundary solution in reanalysis is

likely to be approximated well by the previous solution. The model was also a very

small one. Other, larger, example models are almost certainly going to be more

sensitive to the deterioration of the preconditioner and require a greater number of

iterations. Hence, greater emphasis must be placed on updating the preconditioner.

It is therefore concluded that the L and U factors should be updated on every

perturbation.

For single-core machines the problem becomes more complex. If the reanalysis

is performed in a non real-time format then the cost of updating the preconditioner

is simply the period for which the A matrix is locked, 6054~-ts. However, if the

reanalysis is run in a real-time format then the LU factorisation thread will not

be allocated any time on the CPU due to having an idle priority level. It should

be noted that if the user pauses, and as a result reduces the CPU load, then the

secondary thread will be given time on the CPU and allowed to proceed. Moreover,

7.5. Concluding remarks 145

as the profiled factorisation takes 0.165st then a pause of this duration will allow

the processor to update the preconditioner.

Based on these scenarios it is sensible to update the preconditioner as often as

the computer will allow it such that the most recent version of the factorisation is

available. This is due to the relatively small perturbation required to increase the

iteration count and, as shall be seen in chapter 8, the outstanding effectiveness of a

recently updated preconditioner at reducing iteration count.

7.5 Concluding remarks

In this chapter a new scheme for the analysis and, in particular, reanalysis of small

two-dimensional problems has been proposed. The scheme incorporates the use of

an LU factorisation as the direct solver for the initial problem; these factors are

then stored and recalled during the reanalysis process as a preconditioner for the

perturbed system.

As the preconditioner is based on the original factorisation an update scheme

has been introduced. The update scheme employs a second, low priority, thread

such that updating the preconditioner will not interfere with the primary role of

the software and will only run when there is idle time on a CPU core. The update

scheme has been analysed and it is proposed to update the preconditioner as often

as the CPU will allow. Thus multi-core machines will benefit in particular as the

secondary thread can run on a separate core to the main program thread.

t As this is the profiled case this is an exaggerated time and is expected to be below O.ls for an

unprofiled analysis.

CHAPTER 8

Results

Chapters 6 and 7 have introduced techniques for accelerating the solution of bound­

ary element models of elastostatic problems. In this chapter results will be presented

demonstrating the effectiveness of the proposed solution for the problems of interest.

Additionally, limiting cases will be presented to give an upper bound on the problem

size that allows real-time solution of the problem on current hardware.

To allow a comparison between the proposed methodology and alternative tech­

niques it is necessary to profile the necessary functions under analysis. Profiling

is a technique that allows the comparison of timings within separate functions or

blocks of code. This allows functions that give rise to bottle necks within the pro­

grams process to be targeted and optimised. Alternatively, profiling can be used

to allow the comparison of techniques to conclude which technique is more efficient

for a particular task. The introduction of profiling incurs additional costs and, as a

result, the figures produced can only be used for comparative purposes. Thus, the

integration schemes proposed in chapter 6 have been compared with an adaptive

Gauss-Legendre quadrature scheme, and the equation solution proposed in chapter

7 has been compared with a direct solver and a diagonally preconditioned GMRES

iterative solver.

146

8.1. Implementation 147

A personal computer with a Pentium M 2GHz processor and 2GB of RAM was

used in the profiling study, using Microsoft Visual C++ .NET.

8.1 Implementation

The process of re-analysis on a design change has been accelerated using a variety

of techniques. However, the aim of this work is to enable stress contours to update

dynamically as the model's geometry is modified by some interactive operation.

The Windows operating system sends messages to instances of a program running

in a window. In particular, the message we use here is the WM_MOUSEMOVE

message that is sent when the mouse is moving in the active window. Upon receipt

of this message, if contours are being displayed and a geometric change is being

performed, the program automatically remeshes the changed geometry, ideally with

the same number of elements, and initiates a re-analysis, finally updating the contour

display.

It has been found that the speed of the re-analysis is sufficient to enable this type

of dynamic display. However, for best performance it is recommended to initiate a

re-analysis only once every two times the WM_MOUSEMOVE message is received.

This provides a suitably fast update and achieves the aim of smoothly updating

stress contours.

It is finally worth mentioning one more point about implementation of LUT

integration approaches with respect to different levels of memory cache. The memory

footprint of the L UTs is very much greater than the size of the rapid access memory

cache. As a result, each time an LUT value is extracted it is likely that the run­

time cost is incurred for a retrieval from a random memory address. However, the

performance can be enhanced by a factor of four by structuring the L UTs in RAM

so that values for the different matrix terms, for the same Rm and (<P- 0), appear in

adjacent memory locations. Processors normally retrieve information from remote

memory locations by bringing 64 byte blocks into the rapid access cache; a space

sufficient for four floating point numbers. In this way, when the first LUT value is

required we incur the cost of retrieval from a random memory address, but when

8.2. Integration 148

we subsequently require the next three LUT values for the different matrix terms

they are available in the rapid access cache for an insignificant cost. Without this

structure to the LUT, the method would be less efficient even than a Gauss-Legendre

scheme.

A similar ordering strategy 1s used within the surface fit implementation for

storage of basis functions.

8.2 Integration

It has been seen in chapter 4 that complicated integrals that can not be solved

analytically may be integrated numerically. In the current wor:k, the storage of

precomputed integrals has been used to accelerate the computation by reducing the

necessary computational cost. Two techniques have been proposed for the storage

of precomputed boundary element integrals.

1. Look-up tables.

2. Surface fit equations.

These results will be presented separately and then compared against a Gauss­

Legendre scheme. It should be noted that the Gauss-Legendre scheme is highly

optimised, using an efficient RISP algorithm (Kane et al., 1989) and using only a

2nd order Gauss-Legendre scheme with reuse of Jacobians for the majority of the

integrations. Timings can be scaled to provide an approximate account for imple­

mentations that use a predominantly higher order of Gauss-Legendre quadrature.

Figure 8.1 shows the example problem used in the analysis of the integration

phase. A rectangular plate with a circular hole containing 46 quadratic elements

is used, so that it contains a mixture of fiat elements and circular arc elements.

However, no further details of the problem are presented here nor is the mesh shown

in the figure, because the results are presented in terms of the mean time taken to

perform each integral, so the precise geometry and model size become irrelevant. It

is sufficient to note the mix of 34 fiat and 12 circular arc elements. The internal point

8.2. Integration 149

0
Figure 8.1: Analysis model for integration comparison

solution was isolated for this profiling study, but the timings arc equally applicable

to the integration in the matrix assembly phase of the BEM solution.

8.2.1 Look-up tables

The use of L UTs falls into two main categories.

• Non-Interpolated LUTs.

• Interpolated L UTs.

The type of LUT chosen for each element type, flat or circular arc elements, will

affect the overall performance of the technique but will also alter the memory re­

quirement for storing the LUT.

The results presented in this section have a degree of variability on account of

the nature of profiling software. This variability will be investigated in section 8.2.2.

Table 8. 1 shows the relevant timings for the use of non-interpolated LUTs to

calculate all 60 terms for the displacement and stress boundary integral equations

as required for quadratic elements. As they are not interpolated these are faster but

at a much higher memory cost, 2.89GB, and as a result are not feasible with current

technology. Timings in table 8.1 are stated on a per integration basis. Additionally,

timings for an adaptive Gauss-Legendre scheme are presented for comparison.

The use of interpolated LUTs increases the computational cost as it is necessary

to extract two values from the LUT and interpolate between them for every term

required. This is a result of the interpolation only being required in the Rm param­

eter. Table 8.2 shows the additional cost required for the interpolation. However,

8.2. Integration 150

Technique Mean run time (J.Ls)

Adaptive Gauss-Legendre 57.8

L UT - Flat element 30.6

L UT - Circular arc element 31.5

Table 8.1: Timings for integration using non-interpolated LUTs

interpolation leads to a much reduced memory requirement of 102MB.

Technique Mean run time (J.Ls)

Adaptive Gauss-Legendre 57.8

L UT - Flat element 34.5

L UT - Circular arc element 35.6

Table 8.2: Timings for integration using interpolated L UTs

As a result it would seem prudent, based on timings in tables 8.1 and 8.2, to

employ only non-interpolated LUTs. However, as noted in chapter 6 the memory

requirement makes this impractical with current hardware.

To optimise the LUT technique for small everyday problems a scheme that

utilises both non-interpolated LUTs for flat elements and interpolated LUTs for

circular arc elements is proposed. Table 8.3 shows the relevant timings for the use

of L UTs under the proposed scheme.

Technique Mean run time (J.Ls)

Adaptive Gauss-Legendre 57.8

L UT - Flat element 30.6

L UT - Circular arc element 35.6

Table 8.3: Timings for integration using LUTs

From these timing it can be seen that the use of LUTs outperform adaptive

Gauss-Legendre quadrature by 38% for interpolated L UTs and by 4 7% for non­

interpolated L UTs.

8.2. Integration 151

The difference in timing between fiat and circular arc elements shown in tables

8.1 and 8.2 is due to the additional computational cost of ensuring that a non-fiat

element is suitable for use with the circular arc L UTs.

8.2.2 Variability of profiling

Profiling of software contains a number of variables which can influence the resultant

timings. These include factors such as,

• Number of processes running.

• Type of processes running. Typically, system processes will run at a higher

priority than user processes and as a result a system process may interrupt a

user process, causing a degradation in performance.

Thus, it is necessary to assess the variability within the profiling operation.

Profiling of the Concept Analyst software has been performed 20 times for both

interpolated and non-interpolated LUTs; the data for the profile runs are listed in

appendices M and N. From these data it is possible to extract appropriate means

and standard deviations, listed in tables 8.4 and 8.5. Figures 8.2 and 8,3 display

Technique Mean run time (J-ts) Standard Deviation

Adaptive Gauss-Legendre 57.8 0.78

L UT - Flat element 30.6 0.48

LUT- Circular arc element 31.5 0.55

Table 8.4: Variability parameters for non-interpolated LUTs

Technique Mean run time (~-ts) Standard Deviation

Adaptive Gauss-Legendre 57.8 0.78

L UT - Flat element 34.5 0.33

L UT - Circular arc element 35.6 0.53

Table 8.5: Variability parameters for interpolated LUTs

8.2. Integration 152

box and whisker plots representing the spread of data from the analyses. The lower

and upper box limits are set to the lOth and 90th percentile respectively. From

these figures it can be seen that the variability within the profiling data is low and

as a result the factors mentioned previously have a limited effect on the variability.

60

55

(i)
.: 50
Cll
E
j:: 45

.!!
'5 40 ...
0..

35

30

Adaptive G-L Flat LUT

Technique

Arc LUT

Figure 8.2: Spread of profiling data for non-interpolated LUTs

8.2.3 Surface fit equations

Surface fits have only been implemented for flat elements. In order to accelerate the

computation of the surface fits , values for each basis function (sin (q()), cos (q()) etc)

have been precomputed at initial start-up and stored such that they can be easily

extracted at computation time. Thus the memory requirement for this technique is

5.8MB.

Technique Mean run time (J-Ls)

Adaptive Gauss-Legendre 57.9

Surface fit (<P = oo, 90°, 180°, 270°) 15.1

Surface fit (arbitrary <P) 27.4

Table 8.6: Timings for integration using surface fit equation

8.2. Integration

60

55

Ui'
2:: 50
Gl
E
j:: 45

.!!
'S 40 ...
0..

35

30

Adaptive G- L Flat LUT

Technique

Arc LUT

Figure 8.3: Spread of profiling data for interpolated LUTs

153

Table 8.6 displays timings for the integration using surface fits for two cases.

The first case is for particular values of c/J, indicating integration over horizontal

and vertical elements. This has been implemented as the problems of particular

interest are, almost without exception, formed from an initially rectangular shape

and, as a result , a large proportion of the elements will be applicable to the surface

fits implemented. It can be seen that by hard-coding these particular surface fits of

interest the computational cost is reduced by 74% over conventional Gauss-Legendre

quadrature. However, this reduces the applicability of the method to a proportion

of the elements within the model.

To overcome the limitation imposed by calculating surface fits for specific values

of cp it is possible to implement a coordinate transformation scheme as used within

the LUT scheme. In this scheme it is only necessary to calculate surface fits for

cp = 90° and then apply the coordinate transformation given in equation (6.19) for

the displacement boundary integral equation. The additional cost of implement­

ing the coordinate transformation has been calculated as 12.3p,s. Hence, the cost

of implementing surface fits for arbitrary cp becomes 27.4f.LS. This outperforms the

variable Gauss-Legendre quadrature scheme by 53%. Table 8.7 details the compu­

tational cost for the example given in figure 8.4. From this it can be seen that

8.2. Integration 154

0

Figure 8.4: Example of arbitrary element orientation saving

although the computational cost is higher on a per integration basis when coordi­

nate transformations are implemented, as more elements can be integrated using

the proposed technique then the overall computational cost is lower.

Element Type Fixed ifJ Arbitrary ifJ

Applicable element 4.68 14.57

Non-applicable element 25.00 12.00

Total Cost 29.68 26.57

Table 8. 7: Comparison of timings for fixed ifJ and arbitrary ifJ surface fits

8.2.4 Comparison of integration techniques

Two main factors need to be considered when comparing the proposed integration

techniques with current employed techniques.

1. Computational cost.

2. Memory cost.

8.2. Integration 155

The main aim of this work is the minimisation of the computational cost subject

to current constraints provided by memory. As a result it is necessary for both of

these points to be considered together. This is a result of the ability of operating

systems to use not only RAM (very fast memory) to store items but also to use

swap space (specially defined space on a hard disk drive, potentially bigger than

RAM but significantly slower). Thus, if a process requests more memory than is

currently available in RAM the operating system will designate some of the RAM

to the process and then a proportion of swap space. Swap space can not be accessed

directly by the CPU but the values must be loaded in and out of RAM (hence the

term swap space) when accessed. This process causes a significant delay to the

access of values. As the aim of this work is to deal with real-time analysis and

updating of contours the accessing of swap-space is unfeasible.

Technique Mean run time (J-Ls) Memory Cost (GB)

Adaptive Gauss-Legendre 57.8 0.000

Int. LUT- Flat element 34.5 0.029

Non-int. LUT- Flat element 30.6 0.818

Int. L UT - Circular arc element 35.6 0.071

Non-int. LUT - Circular arc element 31.5 2.072

Surface fit (cfJ = oo, 90°, 180°, 270°) 15.1 0.006

Surface fit (arbitrary cfJ) 27.4 0.006

Table 8.8: Summary of integration timings and memory requirements

Table 8.8 displays a summary of run time and memory requirement for each

of the proposed techniques. All timings have been made assuming that there is

enough RAM to store the L UTs, running programs and operating system entirely

without the need for swap space. From table 8.8 it can be seen that the use of

non-interpolated LUTs for circular arc elements is currently unreasonable due to

the high memory requirement. These L UTs alone would require the use of swap

space for storage causing the run time to be increased dramatically and preventing

real-time analysis. However, it is expected that the memory available on PCs will

8.2. Integration 156

increase, and as a result it will be necessary to re-evaluate this stance as technology

improves.

The remaining techniques do not have the same limitation due to the much re­

duced memory requirement. Thus, computational cost becomes the deciding factor.

Based on this, if a model is dominated by fiat elements orientated with the horizon­

tal and vertical then the use of specific surface fits produces the best performance

gain. Additionally, if particular orientations of element are popular, for example

<P = 45°, then surface fits can be generated for these particular values of <P extending

the benefits to these elements.

Figures 8.5 and 8.6 show the relative performance of the surface fit technique

as the number of applicable elements varies. As expected, the relationship between

the number of applicable elements and the overall time saving is linear. Figures

25%

~ 150,(,

1:11 c
i 10%+----------------?~----------------------~
Cl)
Cll
E
~ 5%+-------~~--------------------------------,

-5•.4

Applicable Elements (%)

Figure 8.5: Time saving as number of applicable elements is varied - Boundary terms

8.5 and 8.6 include offsets from the origin for two reasons. Firstly, the use of fast

integration techniques such as those presented within this work rely on particular

types of element. As a result there is additional computation required to ensure that

an element is of a suitable type, and this will lead to a slight computational overhead

to the technique. The second reason is a result of variability within profiling of the

functions. This will have the effect of spreading the data around the relationship.

8.3. Equation solution

50%

45%

40%

-35%
~
~ 30%
c i 26%
Ill
Gl 20%
E
j:: 15%

10%

5%

0%

/+
V

./
~

/
~

I

I

/ r

/ I

i

/ i

I

I
I

0% 10% 20'k 30'k 40'k 50% 60'k 70% 80'k 90% 1 OO'k

Applicable Elements (%)

157

Figure 8.6: Time saving as number of applicable elements is varied - Internal points

However, if elements are arbitrary in orientation then the use of a coordinate

transformation, at additional computational cost, is necessary. Use of surface fits

with a coordinate transformation is computationally cheaper than the associated

LUT method but is only currently applicable to flat elements. Extension of surface

fits to circular arc elements should present few technical challenges, but remains a

subject for further investigation.

8.3 Equation solution

It has been seen in chapter 5 that systems of linear equations may be solved using a

variety of techniques. In the current work, the emphasis on the solution within the

reanalysis problem has focused attention on iterative methods, specifically a pre­

conditioned GMRES algorithm, as the approach of choice. The reader is reminded

at this stage that we benefit from a good first approximation to the solution vec­

tor and, furthermore, the algorithm proposed in chapter 7 makes available an LU

decomposition of an approximation to the matrix A.

Computational efficiency of the solution of the matrix equation,

Ax=b (8.1)

can be defined by two main parameters.

8.3. Equation solution 158

1. Iteration count.

2. Overall computational time.

Iteration counts should not be compared between different form of precondition­

ing without additional information due to the lack of detail regarding the computa­

tional cost of calculating and applying the preconditioner. The greater the degree

of sparsity of the preconditioning matrix, the greater the computational efficiency

in its application at each iteration. However, comparison of runs with the same pre­

conditioner, for example investigating different degrees of perturbation or different

types of perturbation, is a fair comparison as the preconditioner will have the same

computational cost to calculate and apply at each iteration.

Figure 8.7 shows five models used to test the proposed equation solution tech­

nique for a variety of perturbations. Three main classes of perturbation have been

considered.

1. Moving a point on an object.

2. Moving a shape (for instance a circle that represents a hole in the model).

3. Resizing of a fillet.

These three perturbations are the main perturbations implemented by users that

can be solved using reanalysis techniques. The resizing of a fillet has been further

divided into three classes exhibiting different severity of stress concentration.

1. Convex fillet.

2. Concave right angle fillet.

3. Concave acute angled fillet.

The fillets have been resized both increasing the radius of the fillets and decreasing

the radius of the fillets. Consideration of both increasing and decreasing is important

as the initial stress pattern affects the initial solution within the iterative solver and

as a result can affect the rate of convergence. Moreover, as the fillet radius is

varied elements can be moved or transferred from the fillet to adjacent lines on

8.3. Equation solution 159

0

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

(e) Model 5

Figure 8.7: Models used to analysis proposed equation solution technique

8.3. Equation solution 160

the boundary, or vice versa. This allows the total number of elements within the

model to remain constant whilst ensuring that the elements are suitably placed. The

transferring of elements between boundary lines causes a distinct change within the

matrix equations.

In chapter 7 the use of an approximate but complete LU preconditioner has been

proposed for problems of reanalysis. The models presented in figure 8. 7 will be con­

sidered and the iteration counts for resolution using no preconditioning, diagonal

preconditioning and a complete but approximate LU preconditioner presented in

table 8.9. The low iteration counts for the complete but approximate LU precondi-

Preconditioner
Perturbation Type

Move Point Move Shape Ext Fillet Resize Int Fillet Resize

None 30- 50 31- 49 36- 48 34- 53

Diagonal 39- 53 36- 47 36- 44 43- 50

Full LU 2- 17 2 - 9 3 - 9 3- 13

Table 8.9: Summary of iteration counts for various preconditioners

tioner are a result of the preconditioner being close to the inverse of the perturbed

matrix, A'. Moreover, as there is a zero computational cost to calculating the pre­

conditioner, and the application of the preconditioner is 0 (N2
) but is only applied

a small number of times, the overall computational cost and hence run-time is low.

Normalising the computational cost with respect to a direct solver is represented by

figure 8.8. This shows the effectiveness of the proposed equation solution technique

for cases of non real-time analysis i.e. the problem has been solved, a perturbation

is made to the model and then the reanalysis occurs. This shows that the use of a

complete but approximate LU factorisation is effective at reducing the overall com­

putational cost of solving the matrix system even for both relatively large geometric

perturbations and perturbations in which a large number of elements are altered.

By way of putting these results into context, a diagonal preconditioner typically

reduces the normalised solution time to 70% of a direct solver for small everyday

problems.

8.4. Overall strategy

40.00% -r----------------------------,

~ 30 OOo/o +------c:c-::;;;.-=:::::::~======'~===~=---=-~~~-~
i=

~
0

• •
~ 20 00% t--.--------.;:::=~:___/"'"~=~~-"=~===:::::::::=--<L--=--------i
Q)

-~
iii
!§ --+- Move point - Model I
o 10.00% .j....,._.:~t::::...__..""""'=~=-----------l--- Move shape- Model 2 z _._ External fillet- Model 3

161

Internal fillet I enlarge- Model 4

O.OO% +------r--------.------,--~--- Internal fillet I reduce- Model4
-- Internal fillet 2 enlarge - Model 5

0.0% 20 Oo/o 40 0% 60 0% ~ Internal fillet 2 reduce- Model 5

Perturbation

Figure 8.8: Normalised solve time for a variety of perturbations (Trevelyan et al. ,

2004)

The aim of this work is to perform real-time reanalysis of elastostatic problems

and as a result the geometric perturbations involved will typically be less than

20%. On account of this small geometric perturbation it can be surmised that the

variation in displacements and tractions will similarly be relatively small leading to

rapid convergence from the first approximation.

Typically, only a relatively small part of the model will be perturbed at each

user interaction. Thus most perturbations will involve less than 30% of the total

number of elements in the model, but might potentially be as high as 50%. Thus

the typical saving within the equation solution can be seen to vary between 75%

and 85%.

8.4 Overall strategy

The techniques proposed within this thesis provide the ability of real-time elasto­

static analysis of small two-dimensional problems. Moreover , the techniques can be

applied to larger problems as an acceleration technique although it is clear that,

for any given computational resources, there will be an upper bound on problem

8.4. Overall strategy 162

size beyond which the re-analysis will fail to have a real-time character. As a result,

although the initial target market is small two-dimensional problems, the techniques

proposed have advantages for larger problems in both two and three dimensions.

8.4.1 Problem size

As the problem size increases, the overall computational cost associated with both

integration and the solution of the matrix equations increases. As a result any

method aimed at producing a real-time solution will have a maximum problem size

for which real-time analysis is possible.

The computational cost of solving the matrix equation given by equation (8.1) is

related to the overall problem size and , to a lesser extent, the number of computer

cores on the personal computer (a multi-core will be able to update the precon­

ditioner more often than a single core machine, thus improving performance). A

number of variables affect the computational cost of the integration routine.

• Overall problem size.

• Number of elements to which the integration scheme can be applied.

• Number of elements being perturbed in each step.

1.4

• Single Core

1.2 -t-----------------1 • Hyper-threaded Core 1--:----~

u;
~ 1.0 -t----------------------:fl-----'
VI

~
~ 0.8 -1-----------------~;t-L---------o

nl
!!
Qj 0.6 +--------------------,#'-------!
Q,

41

.E 0.4 -t-------------__,..~-----------c
~

0.0 -t----.----,------.----,------,--,-----,--,----,
0 20 40 60 80 100 120 140 160 180

Number of Quadratic Elements

Figure 8.9: Variation in reanalysis time with problem size

8.5. Concluding remarks 163

Figure 8.9 shows the variation in reanalysis time for a variety of problem sizes

under a single core machine and a hyper-threaded core machine*. As the problem

size increases the computational cost per reanalysis increases. This is a result of the

additional integrations required to prepare the matrix equations for solution, and

additionally a larger size problem will typically take longer to solve with an iterative

solver.

Additionally figure 8.9 shows the performance for a hyper-threaded enabled core

(Pentium 4 3.6GHz processor). It is difficult to compare these times directly as the

CPU cores run at different clock speeds and are of different general architectures.

It is the author's belief that the use of a hyper-threaded core will enable a small

performance gain over a single core machine but will also allow a user to have

additional applications open whilst performing an analysis. If a true multi-core

machine were utilised it is the author's belief that this performance gain would be

larger as a result of the preconditioner being updated on the separate core.

It is the author's experience that a problem consisting of at maximum 85 quadratic

elements can be analysed in a real-time manner such that contour plots are updated

as the geometry is perturbed. Lagging within the update of contours occurs when

larger problems are analysed.

8.5 Concluding remarks

In this chapter results have been presented showing the effectiveness of the pro­

posed techniques. Additionally, results have been presented showing limitations

with respect to problem size for both single and dual core machines. This shows the

advantage that multi-core machines have for this implementation.

Details on implementation, to optimise computational cost and usability, have

also been presented within this chapter for both the integration and equation solu­

tion schemes.

*Hyper-threading is an Intel specific technique for utilising idle components on a single CPU

core in separate threads. As only a proportion of the components are replicated it can pretend to

be a separate core but is not in the true multi-processor definition.

CHAPTER 9

Extension to Other Application Areas

The techniques proposed within this thesis have currently only been applied to elas­

tostatic problems being analysed with the boundary element method. In this chapter

a number of extensions will be considered for applying the proposed techniques to

different forms of analysis.

Extensions will be considered with respect to the two areas targeted for acceler­

ation within this thesis,

1. Integration.

2. Equation Solution

9.1 Integration

Techniques for accelerating the integration phase can be extended to different ap­

plications of the boundary element method by consideration of the appropriate fun­

damental solutions. Additionally, consideration of three dimensional problems is

presented.

164

9.1. Integration 165

9.1.1 Potential flow

Heat transfer for boundary element formulations has been presented in chapter 3.

The boundary integral equation for potential flow is given by (Becker, 1992),

4>(~) + j Kd~,Q)r/>(Q)dr(Q) = j K2(~,Q) ar~>a~Q)dr(Q) (9.1)

r r

where 4> is the potential and K 1 and K2 are the fundamental solutions and are given

by
1

K1 (~, Q) = 2·wr (~, Q) (9.2)

K2 (~,Q) = 2~ ln [r(~~Q)] (9.3)

Thus, discretising equation (9.1),

+1 +1

4> (~) + L J K1NT J (~) d~cp = L J K2NT J (~) d~~~ (9.4)
elem_ 1 elem_ 1

L UTs can now be created of the form

(9.5)

(9.6)

Since the elements we are dealing with (both flat and circular arc lines) are of

constant Jacobian with J (~) = ~ we can write equations (9.5) and (9.5) as,

(9.7)

(9.8)

From these it can be seen that the following adjustments need to be made before

the values in the LUT can be used in equation (9.4).

(9.9)

9.1. Integration 166

g = (gLUT _ a) L (9.10)

where h and g are matrix coefficients and,

(9.11)

Moreover, we can follow the same procedure as chapter 6 and noting that all of the

terms except for NT are constants

+1

= const j NT d~
-1

= af3

(9.12)

Consideration of the integral in equation (9.12) produces the well known coefficients

for quadratic elements of
ln (L)

a=--
247r

(9.13)

!3= (1 4 1) (9.14)

In the same way as was described for elastostatics, the LUTs in equations (9.7)

and (9.8) can be used as a direct replacement for Gauss-Legendre integration of

equation (9.4).

Figures 9.1 and 9.2 display surface plots for the integrals . It can be seen that

02

10 \0

80 - ----· 01 Rm

(a) End-node 1 (b) Mid-node (c) End-node 2

Figure 9.1: Surface plots of h

the functions are smoothly varying. As a result it is possible to fit basis functions

to the surfaces to allow the rapid computation of the integrals.

9.1. Integration

0.1

~ 005 .

~ o,'-

f .oosi

180 ..
0 0 1

_-:--- 10

----- 7 4

(a) End-node 1

01 .
~ ~: 11
f -'l2

180 IilO_ -

01

(b) Mid-node

01

i oos ,

- o ,

I-005j
& ·

Figure 9.2: Surface plots of g

167

210' _-:--- ,o
180 ·-,._ ----- 7 fiiO ..,__ - 4

0 0 1 R...

(c) End-node 2

Equations 9.15 to 9.20 show the surface fit equations for hand g for 2 ~ Rm ~ 3

subscripts designate the appropriate node. The associated error with each fit is less

than 0.1%.

2.658R~1 + R~2 (1.340 sin (t9) - 0.061 cos (2t9))

h1 = +R~4 (0.163- 0.126sin(3t9)- 0.367cos(2t9)) x 10
2

+0.018 cos (4t9)

h2 = [R~1 (1.059 + 0.007 cos (2t9)) + R~2 (0.011 - 0.034 cos (2t9))] X 10

2.658R~1 - R~2 (1.340sin (t9) + 0.061 cos (2t9))

+ R~4 (0.163 + 0.126 sin (3t9) - 0.367 cos (2t9))

+0.018 cos (4t9)

[

-2.653ln Rm_ + 1.326R~1 sin (t9)- 0.199R~2 cos (2t9)]

-0.066R~3 sm (3t9)

g2 = [-1.061ln Rm - 0.027 R~1 cos (2t9)] x 10

[

-2.653 ln Rm_- 1.326R~1 sin (t9)- 0 . 199R~2 cos (2t9)]

+0.066R~3 sm (3t9)

(9.15)

(9 .16)

(9.17)

(9 .18)

(9. 19)

(9 .20)

Similarly to the stress analysis case the end-node surfaces can be calculated in an

optimised manner due to the simplification of

and

h1 =A+ B

h3 =A - B

gl = C + D

g3 =C - D

(9 .21)

(9.22)

(9.23)

(9.24)

9.1. Integration 168

Considering figures 9.1 and 9.2 it should be noted that the gradient for the range

1 :::;: Rm :::;: 3 is much higher than for terms with higher Rm values. Equation 9.25

shows the surface fit for h2 with 3 :::;: Rm :::;: 10,

h2 = [1.062R;;/ - 0.040R~3 cos (20)] X 10 (9.25)

Moreover further reduction in the interval considered in the Rm direction either

increases the accuracy of the surface fit or reduces the number of terms required to

fit accurately over the dataset. For example, equation (9.26) shows the h2 surface fit

for the interval 5 :::;: Rm :::;: 10 and equation (9.27) shows the same for 9 :::;: Rm :::;: 10.

h2 = [1.061R~1 - 0.230R~4 cos(20)] x 10 (9.26)

(9.27)

This emphasises the importance of choosing a suitable strategy for splitting the Rm

direction, to reduce the computational cost at run-time whilst ensuring that the

code is easy to maintain and implement. More research is warranted in this area.

9.1.2 Acoustics

Acoustic analysis for boundary integral formulations has been presented in chapter

3. The boundary integral equation for acoustics is given by,

<P (~) + J ac 1: Q) <P (Q) dr (Q) = j c (~, Q)
8<P8~~) dr (Q) +<Pi (9.28)

r r

where <P is the acoustic pressure and is complex since it contains both magnitude

and phase components, </Ji is the incident wave and G and ~~ are the fundamental

solutions given by
z

G = 4Ho (kr) (9.29)

oG kor
on = 4" on [Y1 (kr)- i11 (kr)] (9.30)

where H0 is a Hankel function of the first kind given by,

Ho= lo + iYo (9.31)

In and Yn are Bessel functions of the first and second kind respectively.

9.1. Integration 169

Following a similar procedure as for heat transfer problems,

+1 +1

</> (~) + L J ~~ NT J (0 d~ 4> = L J GNT J (0 d~ :: + </>i
e!em_ 1 elem_ 1

(9.32)

Thus it is necessary to create the following LUTs.

+1

GLUT= j ~Ho (kr) NT J (~) d~ (9.33)

-1

+1

(
ac)Lur j k a on = 4 a: [Y1 (kr) - iJ1 (kr)] NT J (~) d~ (9.34)

-1

However, as a result of the Bessel functions within the fundamental solutions it is

not possible to convert the LUT form into the required form for use within equation

(9.32) without integrating a Bessel function in the adjustment.

One technique for potentially overcoming the problem of Bessel functions within

the fundamental solutions is to approximate the Bessel function by a high order

polynomial (Press, 2002). This technique has been applied by Honnor et al. (2007)

for the rapid integration of acoustic problems using the partition of unity boundary

element method (PUBEM). The ability to describe the Bessel functions in terms of a

high order polynomial potentially allows the conversion of the fundamental solutions

to a form that can be evaluated at low computational cost.

9.1.3 Three-dimensional analysis

Extension of the proposed integration techniques for 3-dimensional problems suffers

from the associated increase in parameters required to describe a 3-dimensional

boundary element.

For the initial assessment of 3-dimensional problems it seems necessary to place

restrictions on the type of element. Figure 9.3 shows a rectangular element and the

parameters necessary to define this particular case in space when integrating over

this element and considering a given collocation point location. It can be seen that

there are 8 main independent parameters that define the 3-dimensional quadrilateral

case.

..

9.1. Integration 170

Figure 9.3: Three dimensional element with defining parameters

• a - Angle between x axis and r m.

• f3 - Angle between xy plane and r m.

• r m - Distance between source point and field element midpoint.

• £ 1 - Length of side 1 of the element.

• £ 2 - Length of side 2 of the element.

• 'Y - Angular orientation of side 1 of the element.

• nx - Element normal in the x coordinate direction.

• ny - Element normal in the y coordinate direction.

These parameters can be reduced by consideration of an element scale parameter

L = f;- and by rotating the element around the z axis such that a = oo. Thus the

parameter set has been reduced from 8 to 6 parameters.

Table 9.1 shows the memory requirements for LUTs generated for these param­

eter sets assuming that a similar refinement is implemented for the L UTs in the

3-dimensional case as implemented in the two-dimensional scheme. No assumptions

on symmetry have been included in the memory requirements although it is probable

that in the angular directions symmetries will exist thus reducing the actual memory

9.1. Integration 171

Memory Requirement

Non-Interpolated 9.93YB

Interpolated 11.71ZB

Table 9.1: Three-dimensional memory requirements- No symmetries

cost. A yottabyte (YB) is defined as 280 bytes (rv 1012 terabytes), a zettabyte (ZB)

is defined as 270 bytes ('""' 109 terabytes) and an exabyte (EB) is defined as 260 bytes

('""' 106 terabytes). If symmetries are assumed within the angular parameters such

that only 180° need to be stored for corner nodes and only 90° need to be stored for

mid-side nodes. These memory requirements are unreasonable for the foreseeable

Memory Requirement

Non-Interpolated 337.48ZB

Interpolated 398.28EB

Table 9.2: Three-dimensional memory requirements- Symmetries

future and as a result the use of LUTs as a means to accelerate the integration

phase for 3-dimensional problems is not possible. However, the use of surface fitting

techniques could be applied to the 6 parameter space to produce equations for each

of the required functions.

Difficulties arise within the use of surface fits in that they need to be compu­

tationally cheaper than the associated variable Gauss-Legendre quadrature. For

the proposed 2 parameter fit for 2-dimensional problems they are 53% faster. The

introduction of an additional 4 parameters could cause this computational cost to

increase significantly. As a result careful analysis will be required in the preliminary

stages to ensure that appropriate basis functions are chosen.

Another alternative is to place additional restrictions on the element. It is possi­

ble to ensure that elements are formed as squares by adapting the meshing routine

to favour elements of this type. Additionally, a large number of elements in a typical

analysis will be aligned with one of the coordinate planes. These assumptions reduce

the number of parameters to 3 (figure 9.4).

..

9.2. Equation solution 172

z

Figure 9.4: Alternative definition for three dimensional element

• a - Angle between y axis and r m

• (3 - Angle between xy plane and r m

where r m is the distance between the source point and the centre of the field element

and Lis the length of the element sides. The reduction in parameter count, although

limiting of the number of cases that the technique can be applied, will ease initial

assessment of the technique.

9.2 Equation solution

The use of a complete but approximate LU preconditioner as part of a GMRES

iterative solver can be applied to any matrix problem of the form,

Ax=b (9.35)

However, although this technique should be effective for a wide range of problems;

as a result of the preconditioner being close to the inverse matrix, it may not be the

optimum solution strategy. It is important to consider the specific attributes of the

problem under consideration, for instance,

9.2. Equation solution 173

• Is the A matrix banded in any way?

• Is the A matrix a sparse matrix?

• Is the problem small?

If the matrix is banded or sparse an alternative preconditioner may be cheaper

to apply than a complete LU factorisation as a result of the sparsity that can be

achieved within the preconditioner. Moreover if the problem cannot be considered

small then the storage and application of the preconditioner may be of concern.

Multi-zone problems feature block sparsity as a result of the interlinking nature

between the sub-matrices within the global A matrix. It is possible to enclose par­

ticular features , which are likely to be perturbed in some manner, within individual

zones. Thus, upon reanalysis only blocks associated with that zone need to be re­

computed into the global A matrix. This is beneficial from a solution point of view

because the matrix blocks can be ordered such that a large part of a triangular

decomposition can be stored from the previous solution phase and hence, reduce the

time taken to calculate the overall factorisation.

Figure 9.5 shows an example problem with zones indicated and the associated

matrix configuration. The fillet zone is small in comparison with the main body

(a) Model (b) Matrix layout

Figure 9.5: Multi-zone problem

of the problem. Thus if the fillet is increased or reduced in size only the relatively

small sections A 12 , A 21 and A 22 need to be recalculated. Moreover the previous

factorisation of A 11 can be reused ensuring a large saving in computational cost.

9.3. Dual boundary element method 174

9.3 Dual boundary element method

The dual boundary element method (DBEM) developed by Portela and Aliabadi

(1992) for 2-dimensional problems, and by Mi and Aliabadi (1992) for 3-dimensional

problems, is a computationally efficient approach for the analysis of crack problems.

Consideration of eo-planar crack surfaces allows the derivation of displacement

and traction integral equations similar in form to those derived in chapter 3. The

r·

Figure 9.6: Go-planar crack surfaces (Aliabadi, 2002)

boundary of the problem is defined as r~ referring to upper and lower crack surfaces

and f* being the rest of the boundary.

Cij (x+) Uj (x+) + Cij (x-) Uj (x-) = l Uij (x+,x) tj (x)df

-i TiJ (x+,x) u1 (x)dr (9.36)

The DBEM uses the displacement integral equation (equation (9.36)) to collocate on

x+ on the upper crack surface, r+. Whereas the traction integral equation (equation

(9.37)) is collocated on x- on the lower crack surface, r-.

Issues arise within the DBEM for the integration of the necessary Cauchy and

Hadamard integrals in equation (9.37). Conditions assumed during the derivation

9.3. Dual boundary element method 175

of the DBEM require certain conditions to be imposed on the shape functions for

the crack surfaces used within the DBEM. It is necessary that the displacement

components and the derivatives of the displacement components have continuity,

the use of discontinuous elements along the crack surface fulfils this requirement.

As continuous elements are employed around the remainder of the boundary it is

necessary to have semi-discontinuous elements at the intersection between a crack

and the edge, this prevents common nodes being placed at the intersection.

//2 /12

: .. "ry& /0>-----o-­
Collocation node

(a) Continuous

//2

~ I

Geometry& /

Collocation node

Geometry& /

Collocation node

//2

\ 'Geometry node

Collocation node

(b) Semi-discontinuous

//2

\ ' Geometry node

Collocation node

(c) Discontinuous

Figure 9. 7: Quadratic element types (Aliabadi, 2002)

The use of the proposed integration routines is possible for situations where Rm

is in the appropriate range. It is necessary, however, to have separate datasets for

continuous, semi-discontinuous and discontinuous elements because of the differ-

ent shape functions required for each case. For situations where Rm is out of the

data-set's bounds it will be necessary to perform the integrations using alternative

techniques such as Gauss-Legendre quadrature possibly employing the techniques of

Telles (1987) and Kutt (1975) to compensate for the singular nature of the integrals.

9.3.1 Crack growth

Crack growth within the DBEM can be accommodated by the addition of elements

at the crack tip as it extends. The addition of these elements will cause the linear

..

9.4. Optimisation 176

system of equations to be increased, however, to allow a rapid re-solution to the

problem it is possible to add the extra terms to the bottom corner of the original

matrix problem, figure 9.8. Thus, it is possible to use the previous L and U factors

and then complete the remaining part of the factorisation. It is important to ensure

Figure 9.8: Matrix for the reanalysis problem of crack growth

that an appropriate level of grading is implemented within the additional elements,

and as a result for small increments in crack growth it may be necessary to merely

increase the length of particular elements.

9.4 Optimisation

The acceleration of computations can be exploited for other situations, for example,

in evolutionary stress optimisation. Algorithms such as those proposed by Cervera

(2003) require an iterative procedure within the geometric structure, as a result

the geometry undergoes a large number of small perturbations for which the use

of a good preconditioner is essential. Cervera used non-uniform rational B-splines

within the geometry definition and because of this it is not possible to employ the

fast integration techniques proposed for the spline sections of geometry. However,

the problem will still result in a linear system of equations.

The real-time analysis and dynamic update of contours that has been presented

within this thesis changes the design paradigm that currently exists within the early

stages of design for components. The rapid analysis allows a quick comparison of

9.5. Concluding remarks 177

multiple designs and the ability to allow the original design to be quickly driven to

an optimum by aid of visual feedback from the dynamically updated contours.

The alteration to the design paradigm is paramount to this work and highlights

the benefits of the proposed techniques. Mathematical optimisations suffer from

the potential of having multiple minima within the solution space and as a result

a mathematical optimisation can converge to a local minimum but not a global

minimum. By utilising the experience of an engineer to help guide the design it is

possible to avoid local minima and investigate the complete solution space quickly.

Moreover, the ease and speed of reanalysis allows inexperienced engineers to

rapidly gain knowledge of complicated structures and the interactions that can occur

between geometric features. Figure 9.9 identifies the interaction between two holes

within a rectangular plate under uniaxial tension, with a real-time update of contours

it is possible for the student engineer to vary the distance between the holes and see

how the stress field is affected.

·= ~ ,_-
11 ,__ ·­·-·= 1·:= 1.17-... _,
.~, ..__

max.prtnc:.tlrts~1

-m""2) ii

Figure 9.9: Interaction within the stress field between two holes in a rectangular

plate

9.5 Concluding remarks

In this chapter a number of extensions to the current work have been examined with

suggestions on techniques to implement the strategies. The use of LUTs and surface

fits for alternative problems is possible assuming that the fundamental solutions

9.5. Concluding remarks 178

can be manipulated into the appropriate form without excessive cost of extracting

particular values. For 3-dimensional problems it is necessary to make assumptions

about the element shape (to reduce the overall parameter count). However, this

results in 3 parameters and as a result it is not feasible to store LUTs for this type

of problem. The use of surface fits could be the solution to this problem but a

detailed analysis is necessary to determine the most efficient basis functions for the

dataset.

The proposed technique for equation solution can be applied to a wide variety

of problems and, as a result of the preconditioner being a good approximation to

the inverse the solution, should be effective. However, specific attributes of the A

matrix may make alternative preconditioners and solvers more efficient.

CHAPTER 10

Conclusions and recommendations for future work

In this thesis techniques have been presented for the acceleration of the analysis

and in particular reanalysis of elastostatic problems modelled using the boundary

element method. The problem has been tackled in two main parts. Consideration

of the integration phase of the analysis and the solution of the resulting matrix

equations. Each of the techniques has been presented and discussion of the main

advantages and drawbacks of each method presented within the respective chap­

ters. This final chapter summarises the main points of these conclusions and gives

suggestions for future work.

10.1 Achievements

The main achievements of the current work can be stated as follows

• Implemented within the in-house Concept Analyst software a real-time analy­

sis and dynamic updating of contours for both displacement and stress forms

of the boundary integral equation.

• Profiled the current scheme for analysis and reanalysis to determine areas

requiring improvement.

179

10.1. Achievements 180

• Targeted two main areas for improvement: the integration routine and the

solution of the matrix equation generated from the boundary element method.

• Integration can be accelerated by computing the integrals and storing them in

some manner. These can then be extracted at run-time at a lower computa­

tional cost than equivalent Gauss-Legendre quadrature.

• Implemented look-up tables (LUTs) to store precomputed integral values for

flat and circular arc elements.

• Coordinate transformations were developed to allow the use of L UTs for arbi­

trarily angled elements.

• The use of interpolation within the Rm parameter presented. The use of

interpolation allows smaller size L UTs to be employed.

• The refinement of LUTs was investigated to determine the appropriate refine­

ment level to meet error requirements. Suggested refinement is 0.05° in the

angular direction and a geometric progression for the scaling direction, Rm.

For interpolated LUTs a geometric progression factor of s = 1.03 is required

and for non-interpolated LUTs s = 1.001.

• The total memory requirement for non-interpolated LUTs is approximately

3GB. Use of interpolated LUTs reduces this to only 102MB.

• The strategy proposed on current hardware is a combination of both the non­

interpolated and interpolated LUTs with a memory requirement of 911MB.

Implementation of this strategy allows a feasible memory requirement for cur­

rent hardware whilst optimising the efficiency of the proposed technique.

• LUTs have been structured within memory to optimise the use ofrapid caching

of memory addresses, resulting in an approximately 75% increase in memory

access times with repect to non-orientated LUTs. This seemingly trivial factor

is essential to effective use of LUTs for this application.

• The use of L UTs produce savings of 4 7% for flat elements using non-interpolated

LUTs and 38% for circular arc elements using interpolated LUTs

10.1. Achievements 181

• Implemented least squares surface fits for integrals data for flat elements, ori­

entated for fixed angles of if;.

• Two stage least squares surface fit routine employed to allow optimum fits

to be found for particular error requirement. The initial stage reduces the

basis functions to important terms for a particular boundary integral, while

the second stage is a brute force approach to find the optimum fit.

• Investigated the use of a coordinate transformation to allow the application

to arbitrary if;.

• The use of small look-up tables for values of sin (qif;) and other basis func­

tions, to accelerate the computation of trigonometric and logarithmic terms.

Memory requirement for the surface fit basis LUTs is 5.8MB.

• It was found that savings of 74% are possible using surface fits for cases of

fixed if; = oo, 90°, 180° and 270°. Employing coordinate transformations to

allow the extension to arbitrary if; the time saving is reduced to 53% of an

adaptive Gauss-Legendre quadrature scheme. However, the additional terms

to which the proposed technique can now be applied increase the potential for

computational saving.

• Investigated the use of preconditioners with a GMRES iterative solver.

• Eigenvalue distributions have been investigated that demonstrate the cluster­

ing ability of the proposed complete but approximate LU preconditioner.

• Multiple perturbations to the problem degrade the preconditioner and as a

result an update strategy has been implemented in a secondary low priority

thread.

• Effectiveness of the preconditioning strategy has been investigated for a variety

of types and degree of perturbation.

• It was found that typical savings of between 75% and 85% are achieved in the

equation solution stage with respect to a direct solver.

10.2. Conclusions 182

10.2 Con cl us ions

The techniques developed and presented in this thesis allow the solution in real­

time and the dynamic update of contour plots for both two dimensional stress and

displacement problems presented within the boundary element method. As this work

is aimed at the reanalysis of problems and the real-time updating of contours the

implementation within the boundary element method framework allows for the fast

and reliable updating of the problem mesh after each perturbation. The techniques

presented have been implemented within the in-house Concept Analyst software.

This implementation has been performed in Visual C++. Approximately 7500 lines

of code have been written within the Concept Analyst framework in the development

of the LUT version and 15000 lines for the least squares surface fit version.

The techniques proposed within this thesis have been made based on the cur­

rently available hardware within the average engineering office. As a result it may

be necessary to adjust the recommendations as hardware develops. For example,

the use of non-interpolated LUTs requires a approximately 3GB of memory and as

a result these cannot be currently implemented without the use of swap space and

hence an additional computational cost. As technology improves and the average

personal computer improves the use of non-interpolated LUTs will become feasible.

It it prudent to note that within a large organisation the hardware that the average

engineer employs is a costly asset to the organisation and as a result have a long shelf

life with respect to the rate of change in technology. Margetts et al. (2005) employ

specialised hardware and supercomputing power within their analysis, technology

that potentially is not available within an organisation. It is the author's belief

that LUTs should be re-investigated in the future with respect to implementation

of non-interpolated LUTs.

Surface fits are the fastest technique for evaluating the boundary element inte­

grals and as a result are the scheme recommended from this thesis. However, this

speed of computation comes at the cost of accuracy, 0.1% of the integral value. As

hardware develops surface fits will be consistently faster at evaluating the boundary

element integrations as they are not affected by the increase in memory available

on PCs. LUTs, however, although slower, will improve in accuracy as the memory

..

10.3. Recommendations for future work 183

available on PCs increases. Thus if a higher degree of accuracy is required then the

use of L UTs is recommended.

Splitting the main problem of accelerating the analysis and reanalysis of elas­

tostatic problems into two sections has allowed the development of two separate

but compatible techniques. As the techniques are distinct they have the ability to

be developed separately for use within alternative areas. This modular behaviour

is similar to the concept of object orientated programming, with the definition of

interfaces such that modules can be switched as long as the interfaces match. This

ability lends itself to the development for alternative applications such as potential

flow because the matrices will be of a similar form to those found in elastostatics;

diagonally dominant but fully populated; as a result it should only be necessary

to alter the integration routine. In this way, existing boundary element codes can

readily be modified to take advantage of the acceleration strategies developed in this

work.

10.3 Recommendations for future work

The techniques implemented within this thesis have shown good performance. The

aims of this PhD have also been accomplished with the production of a real-time

elastostatic analysis package. However, whilst working on this topic a number of

areas for future research have arisen; these areas have been discussed within chapter

9.

The extension of the least squares surface fits to circular arc elements would

allow a larger proportion of elements to be integrated using the proposed technique.

However, as has been noted for the LUTs the introduction of a circular arc elements

complicates the integral data. As a result it is expected that the surface fit equations

generated would be more complicated than those currently implemented so careful

selection of basis functions will be required to optimise the surface fits.

Additionally, the extension to alternative types of problem such as potential

flow shows great promise. The integrals can be transformed into a form suitable for

LUTs and surface fitting techniques. More complicated forms of problems, such as

..

10.3. Recommendations for future work 184

acoustics, have more complicated fundamental solutions and as a result conversion to

a form suitable for implementing LUTs or surface fits may not be possible. However,

the use of an eighth order polynomial as a representation for Bessel functions (Press,

2002) shows that there is potential for this technique.

The current implementation is aimed at the real-time analysis of problems in

two dimensions. However, the use of similar techniques could be used to accelerate

the solution of problems within three dimensions. An initial investigation scheme

has been outlined, reducing the required number of parameters required to fully

describe elements within a 3-dimensional model. The implementation of LUTs for

three dimensions will require a large amount of memory and as a result it is the

author's belief that these, using current hardware, are unfeasible. Hence, the use of

a least squares surface fit will be the most successful line of research.

If the real-time reanalysis ideas proposed in this thesis are to be adopted for gen­

eral mechanical design, it is important that they not be restricted, in the long term,

to the small sized problems considered in this work. Extension to larger problems

will occur naturally with further developments in computer hardware, as well as

some of the ideas presented above. Careful analysis will have to be performed into

the way errors in matrix terms propagate through the solution process to errors in

the stress results that are the outcome of the analysis that will be used by engineers.

Such an analysis has been performed in this work but a considerably more extensive

programme should be carried out for more substantially sized problems.

It has been found that reanalysis times are dependent on the number of elements

that are changed in a geometric design change as a result of the consequent remesh­

ing. There is considerable scope within three dimensional reanalysis for research

into techniques for meshing and remeshing that minimise the number of changed

elements. This might involve, for example, automatic feature recognition and en­

closing of important design features in small zones.

10.4. Summary 185

10.4 Summary

The need for rapid analysis within the early conceptual design stage is essential

for maintaining the necessary competitive edge to succeed. Changing the design

paradigm through real-time analysis has caused the landscape for the conceptual

engineer to be changed completely. The ability to rapidly experiment with a design

allows a more fluid development cycle, essential within the formative stages of a

product.

We will always be asked to push the boundaries to the problems that we face

and only by continually testing and probing will we know where these boundaries

lie. It is only through the innovative use of technology that engineers will be able

to maintain the competitive advantage required to succeed. As a result the learning

process never ends, however far we progress we can always move forward.

Ancora imparo

- Michelangelo Buonarroti

Bibliography

M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formu­

las, graphs and mathematical tables. Dover Publications, New York, 9th edition,

2002.

A. I. Abreu, W. J. Mansur, and J. A. M. Carrer. Initial conditions contribution in a

BEM formulation based on the convolution quadrature method. Int. J. for Num.

Meths. in Eng., 67:417-434, 2006.

F. Ahmad. A system of equations with a tridiagonal coefficient matrix. Applied

Mathematics and Computation, 159:435-438, 2004.

M. H. Aliabadi. The boundary element method: Applications in solids and structures,

volume 2. John Wiley & Sons Inc., 2002.

W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix

eigenvalue problem. Quarterly of Applied Mathematics, 9:17-29, 1951.

S. N. Atluri and T. Zhu. A new meshless local Petrov-Galerkin (MLPG) approach

in computational mechanics. Comput. Mech., 22:117-127, 1998.

C. E. Augarde and A. J. Deeks. On the effects of nodal distributions for imposition

of essential boundary conditions in the MLPG meshfree method. Comm. in Num.

Meths. in Eng., 21:389-395, 2005.

186

BIBLIOGRAPHY 187

0. Axelsson. Iterative solution methods. Cambridge University Press, 1994.

E. Babolian, M. MasjedJamei, and M. R. Eslahchi. On numerical improvement of

Gauss-Legendre rules. Applied Mathematics and Computation, 160:779-789, 2005.

H. Bae, R. V. Grandhi, and R. A. Canfield. Accelerated engineering design opti­

mization using successive matrix inversion method. Int. J. for Num. Meths. in

Eng., 66:1361-1377, 2006.

J. Baglama, D. Calvetti, G. H. Golub, and L. Reichel. Adaptively preconditioned

GMRES algorithms. SIAM J. Sci. Comput., 20(1):243-269, 1998.

R. Beauwens. Iterative solution methods. Applied Num. Mathematics, 51:437-450,

2004.

A. A. Becker. The boundary element method in engineering: A complete course.

McGraw Hill, London, 1992.

T. Belytschko, Y. Y. Lu, and L. Gu. Element-free Galerkin methods. Int. J. for

Num. Meths. in Eng., 37:229-256, 1994.

M. Bollhofer. A robust and efficient ILU that incorporates the growth of the inverse

triangular factors. SIAM J. Sci. Comput., 25(1):86-103, 2003.

M. Bollhofer and V. Mehrmann. Algebraic multilevel methods and sparse approxi­

mate inverses. SIAM J. Matrix Anal. Appl., 24(1):191-218, 2002.

C. A. Brebbia. The boundary element method for engineers. Pentech Press, London,

1978.

C. A. Brebbia and J. Dominguez. Boundary elements - An Introductory Course.

Computational Mechanics Publications, Southampton, 1989.

C. A. Brebbia and S. Walker. Boundary element techniques in engineering. Butter­

worths & Co. (Publishers) Ltd., 1980.

S. Bu and T. G. Davies. Effective evaluation of non-singular integrals in 3D BEM.

Advances in Engineering Software, 23:121-128, 1995.

BIBLIOGRAPHY 188

Z. Cao and X. Yu. A note on weighted FOM and GMRES for solving nonsymmetric

linear systems. Applied Mathematics and Computation, 151:719-727, 2004.

B. Carpentieri, I. S. Duff, and L. Giraud. Robust preconditioning of dense problems

from electromagnetics. In L. Vulkov, J. Wasniewski, and P. Yalamov, editors, Nu­

merical Analysis and Its Applications. Lecture Notes in Computer Science 1988,

pages 170-178. Springer, 2000.

E. Cervera. Evolutionary structural optimisation based on boundary element repre­

sentation of B-spline geometry. PhD thesis, University of Durham, 2003.

E. Cervera and J. Trevelyan. Evolutionary structural optimisation based on bound­

ary representation of NURBS. Part I: 2D algorithms. Computers and Structures,

83:1902-1916, 2005a.

E. Cervera and J. Trevelyan. Evolutionary structural optimisation based on bound­

ary representation of NURBS. Part II: 3D algorithms. Computers and Structures,

83:1917-1929, 2005b.

S. C. Chapra and R. P. Canale. Numerical methods for engineers. McGraw Hill,

4th edition, 2002.

K. Chen. Efficient iterative solution of linear systems from discretizing singular

integral equations. Electronic Trans. on Num. Anal., 2:76-91, 1994.

K. Chen. On a class of preconditioning methods for dense linear systems from

boundary elements. SIAM J. Sci. Comput., 20(2):684-698, 1998.

K. Chen and P. J. Harris. Efficient preconditioners for iterative solution of the

boundary element equations for the three-dimensional Helmholtz equation. Ap­

plied Num. Mathematics, 36:475-489, 2001.

Z-S. Chen and H. Waubke. A Burton-Miller collocation formulation of FMM for

acoustic problems. In Z. H. Yao, M. W. Yuan, and W. X. Zhong, editors, Com­

putational Mechanics: Abstract (Volume 1}, page 216. WCCM VI in conjunction

with APCOM '04, Tsinghua University Press and Springer-Verlag, September

2004.

BIBLIOGRAPHY 189

T. A. Cruse. Numerical solutions in three dimensional elastostatics. Int. J. Solids

Structures, 5:1259-1274, 1969.

T. A. Cruse. Application of the boundary-integral equation method to three dimen­

sional stress analysis. Computers and Structures, 3:509-527, 1973.

T. A. Cruse. An improved boundary-integral equation method for three dimensional

elastic stress analysis. Computers and Structures, 4:7 41-754, 197 4.

T. A. Cruse and F. J. Rizzo. A direct formulation and numerical solution of the

general transient elastodynamic problem. I. J. of Math. Anal. and Apps., 22:

244-259, 1968.

T. A. Cruse and W. Vanburen. Three-dimensional elastic stress analysis of a fracture

specimen with an edge crack. Int. J. Fracture Mechanics, 7(1):1-15, 1971.

P. J. Davis and P. Rabinowitz. Methods of numerical integration. Academic Press,

Orlando, 2 edition, 1984.

A. J. Deeks. Semi-analytical analysis of two-dimensional domains with similar

boundaries. Structural Engineering and Mechanics, 14:99-118, 2002.

A. J. Deeks. Scaled boundary methods: Advantages for elastostatics. In Z. H. Yao,

M. W. Yuan, and W. X. Zhong, editors, Computational Mechanics, pages 288-

293. WCCM VI in conjunction with APCOM '04, Tsinghua University Press and

Springer-Verlag, September 2004.

A. J. Deeks and J. P. Wolf. A virtual work derivation of the scaled boundary finite­

element method for elastostatics. Comput. Mech., 28:489-504, 2002.

L. M. Delves and J. L. Mohamed. Computational methods for integral equations.

Cambridge University Press, Cambridge, 1985.

I. S. Duff. The impact of high-performance computing in the solution of linear

systems: Trends and problems. J. of Camp. and App. Mathematics, 123:515-530,

2000.

BIBLIOGRAPHY 190

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices.

Clarendon Press, Oxford, 1986.

U. Eberwien, C. Duenser, and W. Moser. Efficient calculation of internal results in

2D elasticity BEM. Eng. Anal. with Boundary Elements, 29:447-453, 2005.

Y. A. Erlangga, C. Vuik, and C. W. Oosterlee. On a class of preconditioners for

solving the Helmholtz equation. Applied Num. Mathematics, 50:409-425, 2004.

R. T. Fenner. Finite element methods for engineers. MacMillan, London, 1975.

C. A. J. Fletcher. Computational techniques for fluid dynamics, volume 1. Springer­

Verlag, Berlin, 1988.

J. R. Gilbert and S. Toledo. An assessment of Incomplete-LU preconditioners for

nonsymmetric linear systems. Informatica, 24:409-425, 2000.

P. Gonza.1ez, T. F. Pena, J. C. Cabaleiro, and F. F. Rivera. Dual BEM for crack

growth analysis on distributed-memory multiprocessors. Advances in Engineering

Software, 31:921-927, 2000.

P. Gonzalez, T. F. Pena, and J. C. Cabaleiro. Parallel sparse approximate pre­

conditioners applied to the solution of BEM systems. Eng. Anal. with Boundary

Elements, 28:1061-1068, 2004.

A. Greenbaum. Comparison of splittings used with the conjugate gradient algorithm.

Numerische Mathematik, 33:181-194, 1979.

A. Greenbaum. Iterative methods for solving linear systems. Society for Industrial

and Applied Mathematics, Philadelphia, 1997.

A. El Guennouni, K. Jbilou, and H. Sadok. The block Lanczos method for linear

systems with multiple right-hand sides. Applied Mathematics and Computation,

51:243-256, 2004.

M. H. Gutknecht. Variants of BiCGStab for matrices with complex spectrum. SIAM

J. Sci. Comput., 14(5):1020-1033, 1993.

BIBLIOGRAPHY 191

W. Hackbusch. Iterative solution of large sparse systems of equations. Springer­

Verlag, 1994.

R. W. Haywood. Thermodynamic tables in SI (metric) units. Cambridge University

Press, 1998.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear

systems. J. of Res. of the National Bureau of Standards, 49(6):409-436, 1952.

M.E. Honnor, J. Trevelyan, and D. Huybrechs. Numerical evaluation of 2D partition

of unity boundary integrals for Helmholtz problems. Comput. Methods Appl.

Mech. Eng., 2007. Submitted.

S. R. Idelsohn and E. Oiiate. To mesh or not to mesh. that is the question ... Comput.

Methods Appl. Mech. Eng., 195:4681-4696, 2006.

N. I. Ioakimidis. On the Gaussian quadrature rule for finite-part integrals with a

first-order singularity. Comm. in Num. Meths. in Eng., 2:123-132, 1986.

M. A. Jaswon. Integral equation methods in potential theory- I. Proc. Royal Society

London, A275:23-32, 1963.

M. A. Jaswon and G. T. Symm. Integral equation methods in potential theory and

elastostatics. Academic Press, London and New York, 1977.

L. Jun, G. Beer, and J. L. Meek. Efficient evaluation of integrals of order l, 1
2 , r r

r
1
3 using Gauss quadrature. Eng. Anal. with Boundary Elements, 2(3):118-123,

1985.

J. H. Kane. Boundary element analysis in engineering continuum mechanics. Pren-

tice Hall, 1994.

J. H. Kane, A. Gupta, and S. Saigal. Reusable intrinsic sample point (RISP) algo­

rithm for the efficient numerical integration of three dimensional curved boundary

elements. Int. J. for Num. Meths. in Eng., 28:1661-1676, 1989.

BIBLIOGRAPHY 192

J. H. Kane, B. L. Keshava Kumar, and R. H. Gallagher. Boundary element iterative

reanalysis for continuum structures. J. of Engineering Mechanics, 116(10):2293-

2309, 1990.

U. Kirsch and G. Toledano. Approximate reanalysis for modifications of structural

geometry. Computers and Structures, 16(1):269-277, 1983.

E. Kreyszig. Advanced engineering mathematics. Wiley, 8th edition, 1999.

A. R. Krommer and C. W. Ueberhuber. Computational integration. Society for

Industrial and Applied Mathematics, Philadelphia, 1998.

H. R. Kutt. The numerical evaluation of principal value integrals by finite-part

integration. Numerische Mathematik, 24:205-210, 1975.

J. C. Lachat and J. 0. Watson. Effective numerical treatment of boundary integral

equations: a formulation for three-dimensional elastostatics. Int. J. for Num.

Meths. in Eng., 10:991-1005, 1976.

L. Leu. Shape optimization by the boundary element method with a reduced basis

reanalysis technique. Structural Engineering and Mechanics, 8(1):73-84, 1999.

C. Y. Leung and S. P. Walker. Iterative solution of large 3D BEM elastostatic

analyses using the GMRES technique. Int. J. for Num. Meths. in Eng., 40:2227-

2236, 1997.

R. W. Lewis, K. Morgan, and 0. C. Zienkiewicz. Numerical methods in heat transfer.

John Wiley & Sons Inc., Chichester, 1981.

R. I. Mackie. An object-orientated approach to fully interactive finite element soft­

ware. Advances in Engineering Software, 29(2):139-149, 1998.

S. Marburg and S. Schneider. Performance of iterative solvers for acoustic problems.

Part 1: Solvers and effect of diagonal preconditioning. Eng. Anal. with Boundary

Elements, 27:727-750, 2003.

R. J. Marczak. An object-orientated programming framework for boundary integral

equation methods. Computers and Structures, 82:1237-1257, 2004.

BIBLIOGRAPHY 193

R. J. Marczak. Object-orientated numerical integration- a template scheme for FEM

and BEM applications. Advances in Engineering Software, 37:172-183, 2006.

L. Margetts, R. Ford, and C. Smethurst. Interactive finite element analysis. In

NAFEMS World Congress, pages 1-12. NAFEMS World Congress, NAFEMS,

May 2005.

J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear

systems of which the coefficient matrix is a symmetric m-matrix. Mathematics of

Computation, 31(137):148-162, 1977.

M. Merkel, V. Bulgakov, R. Bialecki, and G. Kuhn. Iterative solution of large-scale

3D BEM industrial problems. Eng. Anal. with Boundary Elements, 22:183-197,

1998.

Y. Mi and M. H. Aliabadi. Dual boundary element method for three-dimensional

fracture mechanics analysis. Engineering Analysis, 10(2):161-171, 1992.

R. C. Mittal and A. H. Al-Kurdi. An efficient method for constructing an ILU pre­

conditioner for solving large sparse nonsymmetric linear systems by the GMRES

method. Computers and Mathematics with Applications, 45:1757-1772, 2003.

R. Morris. Acceleration of the integration phase of the boundary element method.

Master's thesis, University of Durham, 2004.

K. W. Morton and D. F. Mayers. Numerical solution of partial differential equations.

Cambridge University Press, Cambridge, 2005.

S. Mukherjee. Boundary element methods in creep and fracture. Applied Science

Publishers, London and New York, 1982.

NAFEMS. A finite element primer. NAFEMS, Glasgow, 1992a.

NAFEMS. A finite element dynamics primer. NAFEMS, Glasgow, 1992b.

D. Nardini and C. A. Brebbia. A new approach to free vibration analysis using

boundary elements. Applied Mathematical Modeling, 7(3):157-162, 1983.

BIBLIOGRAPHY 194

NASA. Table of cos(a), 2006a. URL http://www.grc.nasa.gov/WWW/K-12/

airplane/tablcos.html.

NASA. Table of sin(a), 2006b. URL http://www.grc.nasa.gov/WWW/K-12/

airplane/tablsin.html.

H. Niki, K. Harada, M. Morimoto, and M. Sakakihara. The survey of preconditioners

used in accelerating the rate of convergence in the Gauss-Seidel method. J. of

Camp. and App. Mathematics, 164-165:587-600, 2004.

N. S. Ottosen and H. Petersson. Introduction to the finite element method. Pearson

Education Ltd., 1992.

E. Perrey-Debain, 0. Laghrouche, P. Bettess, and J. Trevelyan. Plane wave basis

finite elements and boundary elements for three dimensional wave scattering. Phil.

Trans. Royal Society London A, 362(1816):561-577, 2004.

A. Portela and M. H. Aliabadi. The dual boundary element method: Effective

implementation for crack problems. Int. J. for Num. Meths. in Eng., 33:1269-

1287, 1992.

A. Portela, M. H. Aliabadi, and D. P. Rooke. Efficient boundary element analysis

of sharp notched plates. Int. J. for Num. Meths. in Eng., 32:445-470, 1991.

K. G. Pozrikidis. Numerical computation in science and engineering. Oxford Uni­

versity Press, 1998.

K. G. Prasad, J. H. Kane, D. E. Keyes, and C. Balakrishna. Preconditioned Krylov

solvers for BEA. Int. J. for Num. Meths. in Eng., 37:1651-1672, 1994.

W. H. Press. Numerical recipes in C++: The art of scientific computing. Cambridge

University Press, 2002.

A. Ramage. An introduction to iterative solvers. In R. Crouch, editor, Mathemat­

ics for engineers: The nonlinear deformation of solids, EPSRC Summer School.

Durham University, September 2006.

BIBLIOGRAPHY 195

J. J. Rencis and K. C. Mann. The effect of essential boundary conditions on the

convergence of iterative equation solvers in BEM. Boundary Elements Commu­

nications, 9:11-13, 1997.

J. A. Rice. Mathematical statistics and data analysis. Duxbury Press, 2nd edition,

1995.

F. J. Rizzo. An integral equation approach to boundary value problems of classical

elastostatics. Quarterly of Applied Mathematics, 25:83-95, 1967.

Y. Saad. ILUT: a dual threshold incomplete LU factorization. Numerical Linear

Algebra with Applications, 1(4):387-402, 1994.

Y. Saad. Iterative methods for sparse linear systems. PWS Publishing, Boston,

1996.

Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for

solving non-symmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856-869,

1986.

H. A. Schenck. Improved integral formulation for acoustic radiation problems. Jour­

nal of the acoustical society of America, 44(1):41-58, 1968.

E. Schmidt. Zur theorie der linearen und nichtlinearen integralgleichungen. Mathe­

matische Annalen, 63:433-476, 1907.

S. Schneider and S. Marburg. Performance of iterative solvers for acoustic problems.

Part 2: Acceleration by ILU-type preconditioner. Eng. Anal. with Boundary

Elements, 27:751-757, 2003.

H. R. Schwarz. Finite element methods. Academic Press, London, 1988.

G. L. G. Sleijpen and D. R. Fokkema. BiCGStab(Z) for linear equations involving

unsymmetric matrices with complex spectrum. Electronic Trans. on Num. Anal.,

1:11-32, 1993.

C. Somigliana. Sopra l'equilibrio di un corpo elastica isotropo. Il Nuovo Cimento

(Serie 3}, 17:140-148, 1885a.

BIBLIOGRAPHY 196

C. Somigliana. Sopra l'equilibrio di un corpo elastica isotropo. Il Nuovo Cimento

(Serie 3}, 17:272-276, 1885b.

C. Somigliana. Sopra l'equilibrio di un corpo elastica isotropo. Il Nuovo Cimento

(Serie 3), 18:91-96, 1885c.

C. Somigliana. Sopra l'equilibrio di un corpo elastica isotropo. Il Nuovo Cimento

(Serie 3), 18:161-166, 1885d.

C. Somigliana. Sopra l'equilibrio di un corpo elastica isotropo. Il Nuovo Cimento

(Serie 3), 19:84-90, 1886a.

C. Somigliana. Sopra l'equilibrio di un corpo elastica isotropo. Il Nuovo Cimento

(Serie 3), 19:278-282, 1886b.

C. Somigliana. Sopra l'equilibrio di un corpo elastica isotropo. Il Nuovo Cimento

(Serie 3), 20:181-185, 1886c.

A. J. M. Spencer. Continuum Mechanics. Dover Publications, 2004.

K. A. Stroud. Engineering Mathematics. MacMillan, 4th edition, 1995.

E. Stili and D. F. Mayers. An introduction to numerical analysis. Cambridge Uni­

versity Press, Cambridge, 2003.

G. T. Symm. Integral equation methods in potential theory- II. Proc. Royal Society

London, A275:33-46, 1963.

T. Takahashi, A. Kawai, and T. Ebisuzaki. Accelerating boundary integral equation

method using a special-purpose computer. Int. J. for Num. Meths. in Eng., 66:

529-548, 2006.

J. C. F. Telles. A self-adaptive coordinate transformation for efficient numerical

evaluation of general boundary element integrals. Int. J. for Num. Meths. in

Eng., 24:959-973, 1987.

S. S. Terda:lkar. Graphically driven interactive stress reanalysis for machine elements

in the early design stage. PhD thesis, Worcester Polytechnic Institute, 2003.

BIBLIOGRAPHY 197

S. S. Terdalkar and J. J. Rencis. Graphically driven interactive finite element stress

reanalysis for machine elements in the early design stage. Finite Elements in

Analysis and Design, 42:884-899, 2006.

The MathWorks Inc. MatLab manual, 2006.

E. E. Theotokoglou and G. Tsamasphyros. A modified gauss quadrature formula

with special integration points for evaluation of quasi-singular integrals. Eng.

Anal. with Boundary Elements, 30:758-766, 2006.

W. Thomson. On a mechanical representation of electric, magnetic and galvanic

forces. Cambridge and Dublin Math. J., 2:61-65, 1847. Reprinted in Math. and

Phys. Papers, 76-80.

W. Thomson. Note on the integration of the equations of equilibrium of an elastic

solid. Cambridge and Dublin Math. J., 3:87-89, 1848. Reprinted in Math. and

Phys. Papers, 97-99.

S. Timoshenko. Theory of elasticity. McGraw Hill, New York, 1 edition, 1934.

M. Tournour, J-P. Rossion, L. Bricteux, and C. McCulloch. Getting useful FEM and

BEM vibro-acoustic solutions faster, using new solution methodologies. Technical

report, LMS International, 2001.

J. Trevelyan. Concept Analyst 1.6. Concept Analyst Ltd., 2003.

J. Trevelyan. Private communication. Plane wave basis results. Results from appli­

cation of the plane wave boundary element method, 2006.

J. Trevelyan. Boundary Elements for Engineers: Theory and Application. Compu­

tational Mechanics Publications, Southampton, 1994.

J. Trevelyan and P. Wang. Interactive re-analysis in mechanical design evolution.

Part 1: Background and implementation. Computers and Structures, 79:929-938,

2001a.

BIBLIOGRAPHY 198

J. Trevelyan and P. Wang. Interactive re-analysis in mechanical design evolution.

Part 2: Rapid evaluation of boundary element integrals. Computers and Struc­

tures, 79:939-951, 2001b.

J. Trevelyan, D. J. Scales, R. Morris, and G. E. Bird. Acceleration of boundary

element computations in reanalysis of problems in elasticity. In Z. H. Yao, M. W.

Yuan, and W. X. Zhong, editors, Computational Mechanics: Abstract (Volume

2}, page 44. WCCM VI in conjunction with APCOM '04, Tsinghua University

Press and Springer-Verlag, September 2004.

G. Tsamasphyros and E. E. Theotokoglou. A quadrature formula for integrals with

nearby singularities. Int. J. for Num. Meths. in Eng., 67:1082-1093, 2006.

F. P. Valente and H. L. G. Pina. Iterative solvers for BEM algebraic systems of

equations. Eng. Anal. with Boundary Elements, 22:117-124, 1998.

A. van der Ploeg. Reordering strategies and LU-decomposition of block tridiagonal

matrices for parallel processing. Technical report, Centrum voor Wiskunde en

Informatica, 1996.

H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG

for the solution of non-symmetric linear systems. SIAM J. Sci. Statist. Comput.,

13(2):631-644, March 1992.

L. Wang and A. Semlyen. Application of sparse eigenvalue techniques to the small

signal stability analysis of large power systems. IEEE Trans. Power Systems, 5:

635-642, 1990.

J. R. Westlake. A Handbook of Numerical Matrix Inversion and Solution of Linear

Equations. John Wiley & Sons Inc., New York, 1968.

J. P. Wolf and C. Song. The scaled boundary finite-element method - a primer:

derivations. Computers and Structures, 78:191-210, 2000.

J. P. Wolf and C. Song. Finite-element modelling of unbounded media. John Wiley

& Sons Inc., Chichester, 1996.

BIBLIOGRAPHY 199

T. W. Wu. Boundary element acoustics: Fundamentals and computer codes. WIT

Press, Southampton, 2000.

M. J. Young. Mastering Visual C++ 6. Sybex, Alameda, 1998.

W. Yu, Z. Wang, and X. Hong. Preconditioned multi-zone boundary element anal­

ysis for fast 3D electric simulation. Eng. Anal. with Boundary Elements, 28:

1035-1044, 2004.

X. Zhang and X. Zhang. Exact integrations of two-dimensional high-order discon­

tinuous boundary elements of elastostatics problems. Eng. Anal. with Boundary

Elements, 28:725-732, 2004a.

X. Zhang and X. Zhang. Exact integration for stress evaluation in the boundary

element analysis of two-dimensional elastostatics. Eng. Anal. with Boundary El­

ements, 28:997-1004, 2004b.

0. C. Zienkiewicz and G. S. Holister. Stress analysis: Recent developments in

numerical and experimental methods. John Wiley & Sons Inc., New York, 1965.

0. C. Zienkiewicz and R. L. Taylor. The finite element method. Vol. 1. Basic

formulation and linear problems, volume 1. McGraw Hill, New York, 1989.

(a) End-node 1

(a) End-node 1

11 10 ..

,., --=--- 10
---;- 7

,-, 90

0

(b) Mid-node

Figure A.l: 9rr'l

------- 10
.....--· 1 .-.

(b) Mid-node

APPENDIX A

Surface Plots - g terms

------ 10 ~ 1

(c) End-node 2

1110-1

------- 10

----- 1 "' ,-, •

(c) End-node 2

Figure A.2: 911 c; which is identical to 9c;11

200

Appendix A. Surface Plots- 9 terms

~-
270

_.---, -.
Rm

(a) End-node 1

10

180
----- 10

~ 7
oo ··

0 . 1 ---.

(a) End-node 1

X 10_,

•
~ 2 •

i.:
~-

270 ~
180 ... 80 ~

o' 1

(b) Mid-node

Figure A.3: 9c,11

I(10""

(b) Mid-node

Figure A.4: 9c,c,

10

x1o·'
1

i05 ~ ~!::i'-"' j .. :l
270

180 -. --7
Rm

(c) End-node 2

x10 ..

•
!
~ 0

I! r
~-

270
180 iO ~ ,,
(c) End-node 2

201

10

10

"
~ 005 t

!! e o~

f.o 05 1

~---
270-,.

100 '
(J 90

0._ 1

(a) End-node 1

00<

(a) End-node 1

01

~10

Rm

(b) Mid-node

Figure B .1: hTJTJ

~10
-~ 7 .

(b) Mid-node

Figure B. 2: hTJc;

202

APPENDIX B

Surface Plots - h terms

01

180·-. 90'
~10

---;-- 7

8 0 1 Rm

(c) End-node 2

---::--- 10
- 7 .

(c) End-node 2

Appendix B. Surface P lots- h terms

002

~ 001

~ e o
j' -001
£

004

002

-002

(a) End-node 1

___-:;--- 10
- 7 .

(a) End-node 1

004

------ 10

--- 7 .
(b) Mid-node

Figure B.3: hc, ry

01

~005
!: -~--
!' 0

f-0.05

~10
-· 7 .

8

(b) Mid-node

Figure B.4: hc,c,

0.02

004

.!!o02
!: e o
f ..o02.

180

8 go o,

(c) End-node 2

180 ~

oo"'~ 0 0 1

------ 10 ~ 7 .
(c) End-node 2

203

:w to•
2 -

j 1 1

~
e
f-1 ~

-2 ,
360

270 ... --- 10

xto• ,,

180 ill... - ----· -- 7
0 , R.n

(a) End-node 1

~10
- 1

(a) End-node 1

1!10.

2

~ ol
e
j ·2

"
oo · 0-,

------- 10 ~ 1 .
R~

(b) Mid-node

Figure C.l: s11m

xto• ,,

0 0-,
..------ ,0

---- 1 .
(b) Mid-node

Figure C.2 : s 117(

204

APPENDIX (

Surface Plots - s terms

, to•
2

~ 1 !

~
~ o,

f

(c) End-node 2

oo' 0-,
..------ 10

----- 7 .
(c) End-node 2

Appendix C. Surface Plots- s terms

------- 10

------- 7 .
R,,

(a) End-node 1

x 1o•

------ 10
------ 7 .

(a) End-node 1

(a) End-node 1

(a) End-node 1

x1o•
2

(b) Mid-node

Figure C.3: s1<<

x10°
2

------ 10 -----:; --7
Rn.

(b) Mid-node

Figure C.4: s2,.,,.,

. ,o•
2

(b) Mid-node

Figure C.5: s2,.,<

------- 10

--· 7 .
(b) Mid-node

Figure C.6: s2((

X 10•

ll10.
2

205

----- 10

----- 7 ..
Rm

(c) End-node 2

(c) End-node 2

90 . --~10
8 o"1 ~ • Rn.

(c) End-node 2

(c) End-node 2

0.1-

" 2 0.05

~
~ 0 -

~-0.05 -
£

(a) End-node 1

(a) End-node 1

02

(b) Mid-node

Figure D.l: d1TJTJ

(b) Mid-node

Figure D.2: d1TJ(

206

APPENDIX D

Surface Plots - d terms

01

~ 0

~
m o ~

loosJ
£

-C.1l_
360

27~ ~10
180-~--. 7

(} 0 1 Rm

(c) End-node 2

(c) End-node 2

Appendix D. Surface Plots- d terms

0.02

<>
~ 0.01 i

~ o,

f-() .01

-<l02 J
360

(a) End-node 1

270 -...

180 ~--
(} 0 1

(a) End-node 1

0.04

~ 002 ,

~
jij 0~ t .().02 1

.()04 ,
360 '--
270~~10 180 7

90 4
0 0 1 Rm

0 15·

~ 01 -

~ e o05.

l

(a) End-node 1

(a) End-node 1

0 .04 ~

004-

~ o.o2J
~
I! O'

(b) Mid-node

Figure D.3: du,(

f-()02 1

-~(

270 ~~;;;'--,
90

-------- 10

02

~ 0.1 -

~

-------;--- 7

(} 0 1 R,n

(b) Mid-node

Figure D .4: d2ry11

(b) Mid-node

Figure D.5: d2ry(

180
90

(}

~10
- 7

·----- 4
0 1 Rm

(b) Mid-node

Figure D.6: d2((

0.02 ..

~ 001 -

~
I!
f-<l01

.OJ~ ,.

002

0.04

" ~ 0.02 1

~ I
1! 0 ~

f-<l.02 '

-0.()4 ..

207

270 160' ____----7--- 10

90 ~- 4
(} 0 1 Rm

(c) End-node 2

(c) End-node 2

360 ,

270 "-- ~10
180 7

90 . "'----· 4
0 0 1 Rm

(c) End-node 2

0 . 1 ~

~
270 ~ -------- 10

180 -------- 7 90 - 4
(} 0 1 Rm

(c) End-node 2

(a) End-node 1

(a) End-node 1

APPENDIX E

Arc Surface Plots - g terms

xtO ..
1

210
180

~10
-- 7 .

Rm

(b) Mid-node

Figure E.l: 9ryry

x10-l' .
_!l, .
~
1! 0

I-2j
~-

270 ~
180

------- 10 ----- 7
go 0.._ 1 .

(b) Mid-node

ll10.1

2

~ 0

~-2 1
f~ ·
368' "-.

210
180

--.:----- 10
---- 7 .

Rm

(c) End-node 2

(c) End-node 2

Figure E.2: 9TJ(which is identical to 9 (1J

208

Appendix E. Arc Surface Plots- g terms

------ 10
- . . 7

Rm

(a) End-node 1

xto""
5

(a) End-node 1

(b) Mid-node

Figure E.3: 9(.,

(b) Mid-node

Figure E.4: 9((

.l!o
:':

i~

209

xto"' ,

270
U!O
~10

- 7 00 o· , 0
.

(c) End-node 2

(c) End-node 2

004

.llo02-
:!!
~ 0

1-<>02
.5

.{)04.
360

270' ~ ------ 10
180 · 90 - -~ 7

() 0 1 R m

(a) End-node 1

002

~ 001

:!! --- --~ 0

f-oo,
~-

270 ----- 10

90.... - · -- 7 9 0._ 1 Rm

(a) End-node 1

004

APPENDIX F

Arc Surface Plots - h terms

(b) Mid-node

Figure F .1: h1111

(b) Mid-node

Figure F. 2: h11c,

210

004

~ 0.021
~ 0

f-0.02,

"",&l· •

002

! 001 .

~ 0

f.o.Q1
£

~l

270 .-...
180 ' --......

8
90

0 1

(c) End-node 2

270
180'.

0 90~ 0..._ 1

(c) End-node 2

Appendix F. Arc Surface Plots - h terms

00<

i 002

!! 0 , .. .,
.o,&l-

015

0 1.

270
180

8 90
0 1

. -- 10
--.. ----1

R...

(a) End-node 1

(a) End-node 1

(b) Mid-node

Figure F.3 : hc;11

0.2

(b) Mid-node

Figure F.4: hc;c;

211

0.0<

~ 0021

j .. ; j
10 -. ---- 10 7

(c) End-node 2

(c) End-node 2

.!! ,.
~
!! 0

f.os

•10'

(a) End-node 1

x10'

,.aJ
270-..

180. ;o ..

, -'

(a) End-node 1

APPENDIX G

Arc Surface Plots - s terms

lf10
4

2

~ '
~
!! f-1

36&1

(b) Mid-node

F igure G.l: s11J17

---------- '' ---- 7

'

(b) Mid-node

Figure G.2: s 117<

212

.,o•

IC 10'

'

~-;
---~ 10

R.,.

(c) End-node 2

---------- 10 --- 7 '

(c) End-node 2

Appendix G. Arc Surface Plots- s terms

x to'

xto"
2

~ 1j
't

i

(a) End-node 1

180~_
90

0

(a) End-node 1

---------- 1 0
90 ~ ---- --.------ 7

6 0 t Rm

(a) End-node 1

(a) End-node 1

xto'
4

--------- 10 180 go ' ----- 1 4

(b) Mid-node

Figure G.3: s1((

X 10°
2

90 o1
---- 10

--- 7 4

Rm

(b) Mid-node

Figure G.4: s2TJTJ

------ 10

----- 7 4

(b) Mid-node

Figure G.5: s2ry(

xto'
2

-2

.. ,
380 2~-

180~
00 -

____--:;-- 10

0 --- · 0 1 Rm

(b) Mid-node

Figure G.6: s2((

213

xto'
2

~1
e
f·1

(c) End-node 2

xto'

--------- 10
_..,---· 7

90 ol 4

Rm

(c) End-node 2

180 90

(} o1

(c) End-node 2

------ 10 ---- 1
4

(c) End-node 2

01 -

.!!o05

~
""[!! Q.

"' ~.0.05 -

-<>.1......______ •
380

270 :-::::-...__ ...------ 10

180 ~--; 7

(} 0 1 Rm

(a) End-node 1

004

" .2 002-

~ e o.

f

(a) End-node 1

APPENDIX H

Arc Surface Plots - d terms

0

.!! 01 -

~ e a.,

f..o1 ,
~'----270~'---......... ~10

90 . -~---- 4
(} 0 1 R.n

(b) Mid-node

Figure H.l: d1rm

01

:ll.l -.......

270~~10 160 7
90 . 4

(} 0 1 Rn,

(b) Mid-node

Figure H.2: d111c,

214

0.1,

-0.1 -
380_

270 1;;,......______

90 . -.._ --
(} 0 1

...--::--- 10
---- 7 4

(c) End-node 2

004

" ~ 002 -

~ e a ~

I -002 ~
.{)04 ,

360
270'_ ~10

160 90........_ ~ 4

(} 0 1 Rn,

(c) End-node 2

Appendix H. Arc Surface Plots- d terms

0.02 ')

~ 001 -

~
-e
~-()01 -
£

"

-0.02 .<.
360

002

~ O.Q1 ;

tij Q.

f-0.01

(a) End-node 1

-0~ ·
270~

180 90~
e o 1

0.04 ,

0.15

.!! 0.1

~
Ci 0.05

f

(a) End-node 1

(a) End-node 1

(a) End-node 1

0.04

~ 0.02 ,

~ oi
f-().02 1

~;

(b) Mid-node

Figure H.3: dlC,(,

0.04

~ 0.02i
-e o

f-()02 j

-().04 -
360 ' 270

180 --~~ 10
---- 4 e 0 1 Rm

(b) Mid-node

Figure H.4: d2 .,TJ

01 -

~ 005
~ -. -~
e
f..o.05 t

~!____
270~~10

0 0 1 R,,.

(b) Mid-node

Figure H. 5: d2TJc,

02

180 90

e

(b) Mid-node

Figure H.6: d2c,c.

215

270 ... 180 ___----:;----- 10

90 . -.... --- 4
0 0 1 Rm

(c) End-node 2

0.02

~-10
- 4

0 R,,

(c) End-node 2

(c) End-node 2

01

i oos i

~ 0

f-a os ~

~~~ ---------- 10 
180 ------ 7 90 4 

0 o 1 Rm 

(c) End-node 2 



APPENDIX I 

Surface Fit Equations - g terms 

The notation used in this section is 9ijk where i is the source point direction, j is 

the field element direction and k is the node number on the field element. 

I.l c/J = 0, 2 < Rm < 3 

0.541 (1 +cos (211)) - 2.249ln Rm 

9om = + R;;/ (0.854 cos ( 11) + 0.273 cos (311)) 

+ R;;? (0.087 cos (211) + 0.081 cos ( 411)) + 0.040R~3 cos (511) 

X 10-7 

9oo2 = [2.166 + 2.185 cos (211) - 8.996ln Rm + 0.108R~2 cos ( 411)] x 10-7 

0.541 (1 +cos (211)) - 2.249ln Rm 

9oo3 = -R~1 (0.854cos (11) + 0.273cos (311)) x 10-7 

+ R~2 (0.087 cos (211) + 0.081 cos ( 411)) - 0.040R~3 cos (58) 

5.414sin (20)- 2.707R~1 (sin (11)- sin (311)) 

9on = -R~2 (0.812sin(2B)- 0.785sin(4B)) X 10-S 

- R~3 (0.406 sin (30) - 0.392 sin (50)) + 0.139R~4 sin (68) 

216 



1.2. <P = o, 3 < Rm < 15 

9012 =[sin (20) (2.166- 0.108R~2 ) + 0.106R~2 sin (40)] X w-7 

5.414sin (20) + 2.707R~1 (sin (0)- sin (30)) 

9013 = - R~2 (0.812 sin (20) - 0. 785 sin ( 40)) 

9111 = 

+R~3 (0.406sin (30)- 0.392sin (50))+ 0.139R~4 sin (60) 

0.541 (1- cos (20)) - 2.249ln Rm 

+ R;;,1 (1.395 cos ( 0) - 0.271 cos (30)) 

+ R;;,2 (0.250 cos (20) - 0.076 cos ( 40)) 

+ R;;,3 (0.097 cos (30) - 0.038 cos (50)) 

x w-7 

[ 

2.166 - 8.996ln Rm - 0.104R;;,2 cos ( 40) l _7 
9112 = X 10 

9113 = 

-cos (20) (0.903ln Rm + 4.415R;;,1 - 3.009R;;,2 ) 

0.541 (1- cos (20))- 2.249ln Rm 

- R;;,1 (1.395 cos ( 0) - 0.271 cos (30)) 

+ R;;,2 (0.250 cos (20) - 0.076 cos ( 40)) 

- R~3 (0.097 cos (30) - 0.038 cos (50)) 

x w-7 

1.2 c/J = 0, 3 < Rm < 15 

X 10-7 
9001 = 

[ 

0.541 + 0.543 cos (20) - 2.249ln Rm l 
+ R;;,1 (0.854 cos ( 0) + 0.271 cos (30)) 

9002 = [2.166+2.168cos(20) -8.996lnfim] X 10-7 

[ 

0.541 + 0.543 cos (20) - 2.249ln Rm l _7 
9003 = X 10 

-R~1 (0.854cos (0) + 0.271 cos (30)) 

x w-8 

9o11 = x w-8 

[ 

5.414 sin (20) - R~1 (2. 707 sin ( 0) - 2.688 sin (30)) ] 

- R~2 (0.812 sin (20) - 0.802 sin ( 40)) + 0.400R~3 sin (50) 

9012 = [2.166sin (20)- 0.108R~2 (sin (20)- sin (40))] X w-7 

217 



1.3. <P = 90, 2 < Rm < 3 

[ 

5.414 sin (20) + R-;;.1 (2. 707 sin ( 0) - 2.688 sin (30)) ] _
8 

9013 = X 10 
- R-;;.2 (0.812 sin (20) - 0.802 sin ( 40)) - 0.400R;;.3 sin (50) 

[ 

0.541 - ln Rm (2.249 + 0.345 cos (20)) + 0.060 ln R~ cos (20) ] _
7 

9111 = X 10 
+R-;;.1 (1.395cos(O)- 0.644cos(20)- 0.266cos(30)) 

9112 = [2.166- 2.158cos(20)- 8.996lnRm] x 10-7 

[ 

0.541 - ln Rm (2.249 + 0.345 cos (20)) + 0.060 ln R~ cos (20) ] _
7 

9113 = X 10 
- R-;;.2 (1.395 cos ( 0) + 0.644 cos (20) - 0.266 cos (30)) 

I.3 rP = 90, 2 < Rm < 3 

9001 = 

0.541 (1 +cos (20))- 2.249ln Rm 

+ R-;;.1 (1.395 sin ( 0) + 0.271 sin (30)) 

- R-;;.2 (0.250 cos (20) + 0.076 cos ( 40)) 

-R-;;.3 (0.097sin (30) + 0.038sin (50)) 

X 10-7 

[

2.166(1+cos(20))-8.996lnRm l _7 
9002 = X 10 

-R-;;.2 (0.333cos (20) + 0.104cos (40)) 

9003 = 

9011 = 

0.541 (1 +cos (20))- 2.249lnRm 

- R-;;.1 (1.395 sin (B) + 0.271 sin (30)) 
X 10-7 

- R-;;.2 (0.250 cos (20) + 0.076 cos ( 40)) 

+ R-;;.3 (0.097 sin (30) + 0.038 sin (50)) 

5.414 sin (20) - 2. 707 R-;;.1 (cos ( 0) +cos (30)) 

- R-;;.2 (0.812 sin (20) + 0. 785 sin ( 40)) 

+R-;;.3 (0.406 cos (30) + 0.392 cos (50)) 

+0.139R;;.4 sin (60) 

X 10-8 

218 

9 012 = [sin (20) (1.825ln Rm - 0.490 ln R~ + 2.220R;;.1) - 0.106R;;.2 sin ( 40)] x 10-7 



1.4. <P = 90, 3 < Rm < 15 

9013 = 

5.414sin (20) + 2.707R;;/ (cos (0) +cos (30)) 

- R~2 (0.812 sin (20) + 0. 785 sin ( 40)) 

- R~3 (0.406 cos (30) + 0.392 cos (50)) 

+0.139R~4 sin ( 60) 

0.541 (1- cos (20)) - 2.249ln Rm 

9ll1 = + R~1 (0.854 sin ( 0) - 0.273 sin (30)) 

X 10-8 

- R~2 (0.087 cos (20) - 0.081 cos ( 40)) + 0.040R~3 sin (50) 

X 10-7 

9ll2 = X 10-7 

[ 

2.166- 8.996ln Rm + 0.108R~2 cos (40) l 
-cos (20) (1. 751ln Rm - 0.451ln R~ + 2.397 R~1 ) 

0.541 (1- cos (20)) - 2.249ln Rm 

9n3 = -R~1 (0.854sin(O)- 0.273sin(30)) 

- R~2 (0.087 cos (20) - 0.081 cos ( 40)) - 0.040R~3 sin (50) 

I. 4 cj; = 90, 3 < Rm < 15 

9001 = 
[ 

0.541 (1 +cos (20)) - 2.249ln Rm l 
+R~1 (1.395sin (0) + 0.266sin (30))- 0.250R~2 cos (20) 

9oo2 = [2.166 + 2.158 cos (20) - 8.996ln Rm] x 10-7 

[ 

0.541 (1 +cos (20))- 2.249lnl4n l 
9003 = 

- R~1 (1.395 sin ( 0) + 0.266 sin (30)) - 0.250R~2 cos (20) 

9on = 
[ 

5.414 sin (20) - R~1 (2. 707 cos ( 0) + 2.688 cos (30)) ] 

- R~2 (0.812 sin (20) + 0.802 sin ( 40)) + 0.400R~3 cos (50) 

90l2 = [2.166sin (20)- 0.108R~2 (sin (20) +sin (40))] x 10-7 

X 10-7 

X 10-7 

X 10-7 

X 10-8 

9013 = X 10-8 

[ 

5.414sin(20) + R~1 (2.707cos(O) + 2.688cos(30)) ] 

- R~2 (0.812 sin (20) + 0.802 sin ( 40)) - 0.400R~3 cos (50) 

219 



1.5. c/J = 180, 2 < Rm < 3 

[ 

0.541 - 0.543 cos (20) - 2.249ln Rm l _7 9111 = X 10 
+R~1 (0.854sin(O)- 0.271sin(30)) 

911 2 = [2.166 (1- cos (20))- 8.996ln Rm] x 10-7 

9113 = X 10-7 

[ 

0.541 - 0.543 cos (20) - 2.249ln Rm l 
-R~1 (0.854sin (0)- 0.271 sin (30)) 

I. 5 cP = 180, 2 < Rm < 3 

0.541 (1 +cos (20))- 2.249lnRm 

9om = - R~1 (0.854 cos (e) + o.273 cos (30)) X 10-7 

+ R~2 (0.087 cos (20) + 0.081 cos ( 40)) - 0.040R~3 cos (50) 

9oo2 = [2.166+2.185cos(20) -8.996lnRm+0.108R~2 cos(40)] x 10-7 

0.541 (1 +cos (20)) - 2.249ln Rm 

9oo3 = + R~1 (0.854 cos (e) + o.273 cos (3e)) X 10-7 

+ R~2 (0.087 cos (20) + 0.081 cos ( 40)) + 0.040R~3 cos (50) 

5.414sin (20) + 2.707 R~1 (sin (0)- sin (30)) 

9ou = -R~2 (0.812sin (20)- 0.785sin (40)) X 10-8 

+ R~3 (0.406 sin (30) - 0.392 sin (50)) + 0.139R~4 sin (60) 

9012 =[sin (20) (2.166- 0.108R~2 ) + 0.106R~2 sin (40)] x 10-7 

5.414 sin (20) - 2. 707 R;;/ (sin (e) - sin (30)) 

9o13 = - R~2 (0.812 sin (20) - 0. 785 sin ( 40)) x 10-8 

9111 = 

- R~3 (0.406 sin (30) - 0.392 sin (50)) + 0.139R~4 sin (60) 

0.541 (1- cos(20))- 2.249lnRm 

- R~1 (1.395 cos (e) - 0.211 cos (30)) 

+R~2 (0.250cos(20)- 0.076cos(40)) 

-R~3 (0.097cos(30)- 0.038cos(50)) 

X 10-7 

220 



I.6. cjJ = 180, 3 < Rm < 15 

9n2 = x w-7 

[ 

2.166- 8.996ln Rm - 0.104R~2 cos ( 48) l 
-cos (28) (0.903ln Rm + 4.415R~1 

- 3.009R~2 ) 

9ll3 = 

0.541 (1 - cos (28)) - 2.249ln Rm 

+ R~1 (1.395 cos (e) - 0.211 cos (38)) 

+R~2 (0.250cos(28)- 0.076cos(48)) 

+R~3 (0.097 cos (38) - 0.038 cos (58)) 

1.6 cp = 180, 3 < Rm < 15 

x w-7 

9oo1 = x w-7 

[ 

0.541 + 0.543 cos (28) - 2.249ln Rm l 
-R~1 (0.854cos (B)+ 0.271 cos (38)) 

9002 = [2.166+2.168cos(28) -8.996lnRm] X 10-7 

[ 

0.541 + 0.543 cos (28) ~ 2.249ln Rm l _7 
9003 = X 10 

+ R~1 (0.854 cos (B) + 0.271 cos (38)) 

5.414 sin (28) + R~1 (2. 707 sin (B) - 2.688 sin (38)) 

9o11 = -R~2 (0.812sin (28)- 0.802sin (48)) 

-0.400R~3 sin (58) 

9012 = [2.166sin (28)- 0.108R~2 (sin (28)- sin (48))] x 10-7 

5.414 sin (28) - R~1 (2. 707 sin (B) - 2.688 sin (38)) 

9013 = -R~2 (0.812sin (28)- 0.802sin (48)) 

+0.400R~3 sin (58) 

x w-8 

x w-8 

_ [ 0.541- ln Rm (2.249- 0.345 cos (28)) + 0.060 ln R~ cos (28) l 
9111-

- R~1 (1.395 cos (B) + 0.644 cos (28) - 0.266 cos (38)) 

9112 = [2.166- 2.158cos(28)- 8.996lnRm] X 10-7 

221 

x w-8 



I. 7. t/J = 270, 2 < Rm < 3 

[ 

0.541 -ln Rm (2.249 + 0.345 cos (20)) + 0.060 ln R~ cos (20) ] _
8 

9113 = X 10 
+R;;,I (1.395cos (0)- 0.644cos (20)- 0.266cos (30)) 

I. 7 c/J = 270, 2 < Rrn < 3 

0.541 (1 +cos (20)) - 2.249ln Rm 

- R-;;,1 (1.395 sin ( 0) + 0.271 sin (30)) 

- R-;;,2 (0.250 cos (20) + 0.076 cos ( 40)) 
9001 = x w-7 

+R-;;,3 (0.097sin (30) + 0.038sin (50)) 

9oo2 = x w-7 

[ 

2.166 (1 +cos (20))- 8.996ln Rm l 
9003 = 

- R-;;,2 (0.333 cos (20) + 0.104 cos ( 40)) 

0.541 (1 +cos (20)) - 2.249ln Rm 

+ R-;;,1 (1.395 sin ( 0) + 0.271 sin (30)) 

- R-;;,2 (0.250 cos (20) + 0.076 cos ( 40)) 

- R-;;,3 (0.097 sin (30) + 0.038 sin (50)) 

x w-7 

5.414 sin (20) + 2. 707 R-;;,1 (cos ( 0) +cos (30)) 

9o11 = -R-;;,2 (0.812sin (20) + 0.785sin (40)) 

- R-;;,3 (0.406 cos (30) + 0.392 cos (50)) + 0.139R;;,4 sin (60) 

x w-8 

222 

9012 = [sin(20) (1.825lnRm- 0.490lnR~ + 2.220R;;,1)- 0.106R;;,2 sin (40)] X w-7 

5.414 sin (20) - 2. 707 R-;;,1 (cos ( 0) +cos (30)) 

9013 = - R-;;,2 (0.812 sin (20) + 0. 785 sin ( 40)) 

+R-;;,3 (0.406 cos (30) + 0.392 cos (50))+ 0.139R;;,4 sin (60) 

0.541 (1- cos (20))- 2.249ln Rm 

9111 = - R-;;,1 (0.854 sin ( 0) - 0.273 sin (30)) 

- R-;;,2 (0.087 cos (20) - 0.081 cos ( 40)) - 0.040R;;,3 sin (50) 

[ 

2.166- 8.996ln Rm + 0.108R;;,2 cos (40) l _7 
9112 = X 10 

-cos (20) (1.751ln Rm - 0.451ln R~ + 2.397 R-;;,1) 

x w-8 

x w-7 



1.8. 4J = 270, 3 < Rm < 15 

0.541 (1 - cos (20)) - 2.249ln Rm 

9113 = +R~1 (0.854sin (0)- 0.273sin (30)) 

- R~2 (0.087 cos (20) - 0.081 cos ( 40)) + 0.040R~3 sin (50) 

1.8 c/J = 270, 3 < Rm < 15 

x w- 7 

9001 = [ 0.541 (1 +cos (20))- 2.249ln Rm- 0.250R;;_.
2 

cos (20) l X w-7 

- R~1 (1.395 sin ( 0) + 0.266 sin (30)) 

9002 = [2.166+2.158cos(20) -8.996lnRm] X 10-7 

_ [ 0.541 (1 +cos (20)) - 2.249ln Rm- 0.250R;;_.2 cos (20) l 
9oo3- x w-7 

+ R;;_.1 (1.395 sin ( 0) + 0.266 sin (30)) 

9o11 = x w-8 

[ 

5.414 sin (20) + R;;_.1 (2. 707 cos ( 0) + 2.688 cos (30)) l 
- R;;? (0.812 sin (20) + 0.802 sin ( 40)) - 0.400R;;_.3 cos (50) 

9012 = [2.166sin (20)- 0.108R~2 (sin (20) +sin (40))] x 10-7 

9o13 = x w-8 

[ 

5.414 sin (20) - R;;_.1 (2. 707 cos (e) + 2.688 cos (30)) l 
- R;;_.2 (0.812 sin (20) + 0.802 sin ( 40)) + 0.400R;;_.3 cos (50) 

[ 

0.541 - 0.543 COS (20) - 2.249ln Rm l _
7 9lll = X 10 

- R;;_.1 (0.854 sin ( 0) - 0.271 sin (30)) 

9112 = [2.166(1-cos(20)) -8.996lnRm] X 10-7 

[ 

0.541 - 0.543 cos (20) - 2.249ln Rm l _7 
9113 = X 10 

+R;;-.1 (0.854sin (0)- 0.271 sin (30)) 

223 



APPENDIX J 

Surface Fit Equations - h terms 

The notation used in this section is hijk where i is the source point direction, j is 

the field element direction and k is the node number on the field element. 

J .1 c/J = 0, 2 < Rm < 3 

ho01 = 

R-;;,1 (1. 790 sin ( 0) + 0.864 sin (30)) + 0.379R;;,3 sin (50) 

+ R;;,2 (0.464 sin (20) + 0.862 sin ( 40)) 

-R-;;,4 ( 0.060sin (40)- 0.252sin (60) ) 

-0.050 sin (70) - 0.014 sin (80) 

X 10-2 

h002 = [R-;;,1 (7.162sin (0) + 3.451 sin (30)) + 0.510R;;,3 sin (50)] x 10-2 

hoo3 = 

R-;;,1 (1. 790 sin ( 0) + 0.864 sin (30)) + 0.379R;;_,3 sin (50) 

- R-;;,2 (0.464 sin (20) + 0.862 sin ( 40)) 

4 

( 

0.060sin (40)- 0.252sin (60) ) 
+R-

m +0.050 sin (70)- 0.014sin (80) 

224 

X 10-2 



J .1. <P = 0, 2 < Rm < 3 

- R;;/ (0.663 cos ( 8) + 8.621 cos (38)) 

+ R;;? (3.979 cos (28) - 8.621 cos ( 48)) 

hou = + R~3 (2.487 cos (38) - 4.042 cos (58)) x 10-3 

-4 ( 1.890 cos ( 48) + 0. 773 cos (58) - 2.471 cos (68) ) 
+Rm 

-0.492 cos (78) - 0.133 cos (88) 

ho12 = x 10 
[ 

- R~1 (0.265 cos ( 8) + 3.448 cos (38)) - 0.040R~4 cos (78) ] _
2 

+ R~3 (0.332 cos (38) - 0.503 cos (58)) 

-R~1 (0.663cos(8) + 8.621cos(38)) 

-R~2 (3.979cos(28)- 8.621cos(48)) 

ho13 = +R~3 (2.487cos(38)- 4.042cos(58)) x 10-3 

+R~4 ( -1.890 cos (48) + 0.773 cos (50)+ 2.471 cos (60) ) 

-0.492 cos (78) + 0.133 cos (88) 

R~1 (1.790cos (B)- 0.862cos (38)) 

+ R;;t2 (1.326 cos (28) - 0.862 cos ( 48)) 

hw1 = +R~3 (0.527cos(38) -0.361cos(5B)) x 10-2 

+ R~4 ( 0.328 cos ( 48) - 0.242 cos (68) - 0.048 cos (78) ) 

-0.013 cos (88) 

h
102 

= [ R~1 (7.162 cos ( 8) - 3.569 cos (38)) + 0.587 R~2 cos (38) l x 
10

_2 

-0.495R~3 cos (58) 

R~1 (1. 790 cos ( 8) - 0.862 cos (38)) 

- R~2 (1.326 cos (28) - 0.862 cos ( 48)) 

hw3 = +R~3 (0.527 cos (38) - 0.361 cos (58)) x 10-2 

hu1 = 

+ R~4 ( -0.328 cos ( 48) + 0.242 cos (68) - 0.048 cos (78) ) 

+0.013 cos (88) 

R~1 (3.515 sin (B) - 0.862 sin (38)) 

+ R~2 (2.188 sin (28) - 0.862 sin ( 48) + 0.035 sin ( 68)) 

+R~3 (0.786sin (38)- 0.352sin (58)- 0.186sin (68)) 

+ R~4 (0.458 sin ( 48) - 0.048 sin (78)) 

X 10-2 

225 



J .2. c/J = 0, 3 < Rm < 15 

hu2 = x 10 
[ 

R;;,i (1.406 sin ( 0) - 0.345 sin (30)) ] _
1 

hu3 = 

+R~3 (0.105sin (30)- 0.049sin (50)) 

R~1 (3.515 sin (B) - 0.862 sin (30)) 

-R~2 (2.188sin(2B)- 0.862sin(4B) + 0.035sin(6B)) 

+R~3 (0.786sin (30)- 0.352sin (50)+ 0.186sin (60)) 

- R~4 (0.458 sin ( 40) + 0.048 sin (70)) 

J .2 c/J = 0, 3 < Rm < 15 

R~1 (1. 790 sin (B) + 0.863 sin (30)) 

hom = + R~2 (0.464 sin (20) + 0.858 sin ( 40)) X w-2 

+0.384R~3 sin (50)+ 0.256R~4 sin (60) 

x w-2 

hoo2 = [R~1 (7.162 sin (B)+ 3.449 sin (30)) + 0.514R~3 sin (50)] X w-2 

R~1 (1.790sin (B)+ 0.863sin (30)) 

hoo3 = - R~2 (0.464 sin (20) + 0.858 sin ( 40)) X w-2 

hou = 

+0.384R~3 sin (58) - 0.256R~4 sin (68) 

- R~1 (0.663 cos (e) + 8.621 cos (3B)) 

+R~2 (3.979cos(2B)- 8.621cos(4B)) 

+R~3 (2.487 cos (30)- 3.807 cos (58)) 

+ R~4 (1.890 cos ( 40) - 2.537 cos ( 60) - 0.330 cos (70)) 

ho12 = X 10-2 
[ 

- R~1 (0.265 cos (B) + 3.448 cos (38)) l 
+R~3 (0.332 cos (30) - 0.511 cos (50)) 

- R~1 (0.663 cos (B) + 8.621 cos (30)) 

ho13 = 
- R~2 (3.979 cos (28) - 8.621 cos ( 40)) 

+ R~3 (2.487 cos (30) - 3.807 cos (50)) 

-R~4 (1.890 cos (40)- 2.537 cos (60) + 0.330cos (70)) 

x w-3 

x w-3 

226 



J .3. q; = 90, 2 < Rm < 3 

R~1 (1. 790 cos (e) - o.862 cos (38)) 

+ R~2 (1.326 cos (28) - 0.862 cos ( 48)) 

+ R~3 (0.527 cos (38) - 0.377 cos (58)) 

+R;;t4 (0.328cos(48)- 0.252cos(68)) 

X 10-2 

hw2 = x 10-2 

[ 

R~1 (7.162 cos (e) - 3.449 cos (3e)) l 
+R~3 (0.703cos(38)- 0.508cos(58)) 

R~1 (1. 790 cos (e) - o.862 cos (3e)) 

-R~2 (1.326cos(28)- 0.862cos(48)) 

+R~3 (0.527cos(38)- 0.377cos(58)) 

-R~4 (0.328cos(48)- 0.252cos(68)) 

R~1 (3.515sin (8)- 0.862sin (38)) 

+ R~2 (2.188 sin (28) - 0.862 sin ( 48)) 

+ R~3 (0. 786 sin (38) - 0.373 sin (58)) 

+R~4 (0.458sin (48)- 0.250sin (68)) 

X 10-2 

X 10-2 

hu2 = x 10-1 

[ 

R~1 (1.406sin (8)- 0.345sin (38)) l 
+ R~3 (0.105 sin (38) - 0.051 sin (58)) 

R~1 (3.515sin (8)- 0.862sin (38)) 

- R~2 (2.188 sin (28) - 0.862 sin ( 48)) 

+R~3 (0.786sin (38)- 0.373sin (58)) 

-R~4 (0.458sin (48)- 0.250sin (68)) 

X 10-2 

J. 3 c/J = 90, 2 < Rm < 3 

ho01 = 

- R~1 (3.515 cos (e) + o.862 cos (38)) 

-R~2 (2.188sin (28) + 0.862sin (48) + 0.035sin (68)) 

+R~3 (0.186sin (68) + 0.786cos (38) + 0.352cos (58)) 

+R~4 (0.458sin (48)- 0.048cos (78)) 

hoo2 = x 10 
[ 

-R~1 (1.406cos(8)+0.345cos(38)) l _1 

+ R~3 (0.105 cos (38) + 0.049 cos (58)) 

227 

X 10-2 



J .3. cjJ = 90, 2 < Rm < 3 

hoo3 = 

- R;;/ (3.515 cos (B) + 0.862 cos (30)) 

+ R;2 (2.188 sin (20) + 0.862 sin ( 40) + 0.035 sin (60)) 

-R;3 (0.186sin (60)- 0.786cos (30)- 0.352cos (50)) 

- R;4 (0.458 sin ( 40) + 0.048 cos (70)) 

-R;1 (1.790 sin (B)+ 0.862 sin (30)) 

+R;2 (1.326cos(2B) + 0.862cos(4B)) 

X 10-2 

hou = + R;3 (0.527 sin (38) + 0.361 sin (50)) x 10-2 

_ R;4 ( 0.048 sin (70) + 0.328 cos ( 40) ) 

+0.242 cos (60) - 0.013 cos (80) 

[ 

-R;1 (7.162sin (B)+ 3.448sin (30)) l 
ho12 = x 10-2 

+ R;3 (0. 703 sin (30) + 0.495 sin (50)) 

-R;1 (1.790sin (B)+ 0.862sin (38)) 

- R;2 (1.326 cos (20) + 0.862 cos ( 40)) 

ho13 = - R;3 (0.527 sin (30) + 0.361 sin (50)) x 10-2 

_ R;4 ( 0.048 sin (70) - 0.328 cos ( 40) ) 

-0.242 cos (60) + 0.013 cos (80) 

R;1 (0.663sin (B)- 8.621 sin (30)) 

+R;2 (3.979cos (20) + 8.621 cos (40)) 

hw1 = +R;3 (2.487sin (30) + 4.042sin (50)) x 10-3 

_ R;4 ( 0. 773 sin (50) + 0.492 sin (70) + 1.890 cos ( 40) ) 

+2.471 cos (60) - 0.133 cos (80) 

[ 

R~1 (0.265 sin (B) - 3.448 sin (30)) l _2 hw2 = x 10 
+ R;3 (0.332 sin (30) + 0.503 sin (50)) - 0.040R~4 sin (70) 

- R~1 (0.663 sin (e) - 8.621 sin (30)) 

- R;2 (3.979 cos (20) + 8.621 cos ( 40)) 

hw3 = - R;3 (2.487 sin (30) + 4.042 sin (50)) X w-3 

_ R;4 ( 0. 773 sin (50) + 0.492 sin (70) - 1.890 cos ( 40) ) 

-2.471 cos (60) + 0.133 cos (80) 

228 



J .4. q; = 90, 3 < Rm < 15 

- R~1 (1. 790 cos ( 0) - 0.864 cos (30)) 

- R~2 (0.464 sin (20) - 0.862 sin ( 40)) - 0.379R~3 cos (50) 

-R~4 ( 0.060sin (40) + 0.252sin (60)- 0.014sin (80) ) 

-0.050 cos (70) 

X 10-2 

h112 = [-R~1 (7.162cos(O) -3.452cos(30)) -0.510R~3 cos(50)] x 10-2 

-R~1 (1.790cos (0)- 0.864cos (30)) 

- R~2 (0.464 sin (20) - 0.862 sin ( 40)) - 0.379R~3 cos (50) 

-R~4 ( 0.060sin (40) + 0.252sin (60)- 0.014sin (80) ) 

-0.050 cos (70) 

J .4 cP = 90, 3 < Rm < 15 

ho01 = 

-R~1 (3.515cos(O) + 0.862cos(30)) 

- R~2 (2.188 sin (20) + 0.862 sin ( 40)) 

+R~3 (0.786 cos (30) + 0.373 cos (50)) 

+R~4 (0.458sin (40) + 0.250sin (60)) 

X 10-2 

hoo2 = x 10-1 
[ 

- R~1 (1.406 cos ( 0) + 0.345 cos (30)) ] 

ho03 = 

hou = 

+R~3 (0.105cos(30) + 0.051cos(50)) 

- R~1 (3.515 cos ( 0) + 0.862 cos (30)) 

+ R~2 (2.188 sin (20) + 0.862 sin ( 40)) 

+R~3 (0.786cos (30) + 0.373cos (50)) 

-R~4 (0.458sin (40) + 0.250sin (60)) 

-R~1 (1.790sin (0) + 0.862sin (30)) 

+ R~2 (1.326 cos (20) + 0.862 cos ( 40)) 

+R~3 (0.527sin (30) + 0.377sin (50)) 

-R~4 (0.328cos (40) + 0.252cos (60)) 

X 10-2 

X 10-2 

ho12 = x 10-2 
[ 

-R~1 (7.162sin(0)+3.448sin(30)) l 
+ R~3 (0. 703 sin (30) + 0.508 sin (50)) 

X 10-2 

229 



J .4. ifJ = 90, 3 < Rm < 15 

ho13 = 

-R:;;/ (1.790sin(B) + 0.862sin(3B)) 

- R:;;? (1.326 cos (28) + 0.862 cos ( 48)) 

+ R~3 (0.527 sin (38) + 0.377 sin (58)) 

+R~4 (0.328cos (48) + 0.252cos (68)) 

R~1 (0.663 sin (B)- 8.621 sin (38)) 

+ R~2 (3.979 cos (28) + 8.621 cos ( 48)) 

+ R~3 (2.487 sin (38) + 3.807 sin (58)) 

x w-2 

-R~4 (0.330sin (70) + 1.890cos (40) + 2.537 cos (60)) 

h102 = X 10-2 

[ 
R~1 (0.265 sin (B) - 3.448 sin (38)) l 
+R~3 (0.332 sin (38) + 0.512sin (58)) 

R~1 (0.663sin(B)- 8.621sin(3B)) 

- R~2 (3.979 cos (28) + 8.621 cos ( 48)) 

+R~3 (2.487sin (38) + 3.807sin (58)) 

- R~4 (0.330 sin (78) - 1.890 cos ( 48) - 2.537 cos ( 68)) 

-R~1 (1.790cos(B)- 0.862cos(3B)) 

hm = -R~2 (0.464sin (20)- 0.858sin (48)) X 10-2 

-0.384R~3 cos (58) - 0.256R~4 sin (68) 

x w-3 

x w-3 

hu2 = [-R~1 (7.162cos(B)- 3.449cos(3B))- 0.514R~3 cos(5B)] X 10-2 

-R~1 (1.790cos(O)- 0.862cos(30)) 

hu3 = + R~2 (0.464 sin (28) - 0.858 sin ( 48)) X 10-2 

-0.384R~3 cos (58) + 0.256R~4 sin (68) 

230 



J .5. cp = 180, 2 < Rm < 3 

J. 5 cp = 180, 2 < Rm < 3 

hoo1 = 

- R;;/ (1. 790 sin (B) + 0.864 sin (30)) 

+R;;,2 (0.464sin (20) + 0.862sin (40))- 0.379R;;,3 sin (50) 

_ _ 4 ( 0.060 sin ( 40) - 0.252 sin (60) + 0.050 sin (70) ) 
Rm 

-0.014 sin (88) 

X 10-2 

h002 = [-R;;,1 (7.162 sin (0) + 3.451 sin (38)) - 0.510R;;,3 sin (50)] x 10-2 

hoo3 = 

-R;;,1 (1.790sin(O) +0.864sin(38)) 

- R;;,2 (0.464 sin (20) + 0.862 sin ( 40)) - 0.379R;;,3 sin (50) 

+R;;,4 ( 0.060sin(40)- 0.252sin(68)- 0.050sin(78)) 

-0.014 sin (80) 

R;;,1 (0.663 cos (e) + 8.621 cos (38)) 

+R;;,2 (3.979cos(20)- 8.621cos(40)) 

hou = - R;;,3 (2.487 cos (30) - 4.042 cos (50)) 

ho12 = 

+R;;,4 ( 1.890cos (48)- 0.773cos (58)- 2.471 cos (60) ) 

+0.492 cos (78) - 0.133 cos (80) 

[ 
R;;,I (0.265 cos (e) + 3.448 cos (38)) l 
- R;;~3 (0.332 cos (38) - 0.503 cos (50)) + 0.040R;;,4 cos (70) 

R;;,1 (0.663 cos ( 0) + 8.621 cos (30)) 

- R;;,2 (3.979 cos (20) - 8.621 cos ( 40)) 

X 10-2 

X 10-3 

X 10-2 

ho13 = -R;;,3 (2.487cos(30)- 4.042cos(50)) x 10-3 

_ R;;,4 ( 1.890 cos ( 48) + 0. 773 cos (50) + 2.4 71 cos ( 60) ) 

-0.492 cos (78) + 0.133 cos (80) 

-R;;,1 (1.790cos (0)- 0.862cos (30)) 

+R;;,2 (1.326cos(20)- 0.862cos(40)) 

hw1 = -R;;,3 (0.527cos(30)- 0.361cos(50)) x 10-2 

+ R;;,4 ( 0.328 cos ( 40) - 0.242 cos (60) + 0.048 cos (70) ) 

-0.013 cos (80) 

231 



J.6. q; = 180, 3 < Rm < 15 

-
[ 

-R;;/ (7.162cos(8)- 3.569cos(38))- 0.587R~2 cos(38) l 
hw2- x 10-2 

+0.495R~3 cos (58) 

-R:;;,1 (1.790cos(8)- 0.862cos(38)) 

- R~2 (1.326 cos (28) - 0.862 cos ( 48)) 

hw3 = - R~3 (0.527 cos (38) - 0.361 cos (58)) x 10-2 

_ R~4 ( 0.328 cos ( 48) - 0.242 cos (68) - 0.048 cos (78) ) 

-0.013 cos (88) 

- R~1 (3.515 sin (B) - 0.862 sin (38)) 

+R:;;,2 (2.188sin (28)- 0.862sin (48) + 0.035sin (68)) 

-R~3 (0.786sin (38)- 0.352sin (58)+ 0.186sin (68)) 

+ R:;;,4 (0.458 sin ( 40) + 0.048 sin (70)) 

hu2 = x 10-1 

[ 

- R~1 (1.406 sin ( 8) - 0.345 sin (38)) l 
- R:;;,3 (0.105 sin (30) - 0.049 sin (58)) 

-R~1 (3.515sin (B)- 0.862sin (38)) 

hu3 = 
-R:;;,2 (2.188sin (28)- 0.862sin (48) + 0.035sin (68)) 

-R:;;,3 (0.786sin (30)- 0.352sin (58)- 0.186sin (68)) 

- R:;;,4 (0.458 sin ( 40) - 0.048 sin (70)) 

J. 6 c/J = 180, 3 < Rm < 15 

-R~1 (1.790sin (B)+ 0.863sin (38)) 

ho01 = + R~2 (0.464 sin (20) + 0.858 sin ( 40)) x 10-2 

-0.384R~3 sin (50) + 0.256R:;;,4 sin (68) 

X 10-2 

X 10-2 

h002 = [-R~1 (7.162sin (8) + 3.449sin (38))- 0.514R~3 sin (58)] x 10-2 

- R~1 (1. 790 sin (B) + 0.863 sin (30)) 

hoo3 = - R;;? (0.464 sin (28) + 0.858 sin ( 48)) x 10-2 

-0.384R~3 sin (50) - 0.256R~4 sin (68) 

232 



J .6. cp = 180, 3 < Rm < 15 

hou = 

R;;,_I (0.663 cos (B) + 8.621 cos (38)) 

+ R~2 (3.979 cos (28) - 8.621 cos ( 48)) 

- R~3 (2.487 cos (38) - 3.807 cos (58)) 

+ R~4 (1.890 cos ( 48) - 2.537 cos (68) + 0.330 cos (78)) 

ho12- x 10-2 -
[ 

R~1 (0.265 cos (B) + 3.448 cos (38)) l 
ho13 = 

-R~3 (0.332cos(3B)- 0.511cos(5B)) 

R~1 (0.663 cos (B)+ 8.621 cos (38)) 

- R~2 (3.979 cos (28) - 8.621 cos ( 40)) 

-R~3 (2.487cos(38)- 3.807cos(5B)) 

- R~4 (1.890 cos ( 48) - 2.537 cos (60) - 0.330 cos (70)) 

-R~1 (1.790cos (B)- 0.862cos (38)) 

+R~2 (1.326cos(2B)- 0.862cos(48)) 

-R~3 (0.527cos(3B)- 0.377cos(5B)) 

+R~4 (0.328cos (48)- 0.252cos (68)) 

X 10-2 

hw2 = x 10-2 

[ 

-R~1 (7.162cos(B)- 3.448cos(38)) l 
- R~3 (0. 703 cos (38) - 0.508 cos (58)) 

- R~1 (1. 790 cos (B) - 0.862 cos (38)) 

- R~2 (1.326 cos (20) - 0.862 cos ( 40)) 

- R~3 (0.527 cos (30) - 0.377 cos (58)) 

-R~4 (0.328cos (40)- 0.252cos (60)) 

- R~1 (3.515 sin (B) - 0.862 sin (38)) 

+R~2 (2.188sin (20)- 0.862sin (40)) 

- R~3 (0. 786 sin (38) - 0.373 sin (58)) 

+ R~4 (0.458 sin ( 40) - 0.250 sin (68)) 

X 10-2 

X 10-2 

hu2 = x 10-1 

[ 

- R~1 (1.406 sin (B) - 0.345 sin (38)) l 
-R~3 (0.105sin(38)- 0.051sin(5B)) 

233 

X 10-3 

X 10-3 



J. 7. cp = 270, 2 < Rm < 3 

- R:;;,! (3.515 sin (B) - 0.862 sin (30)) 

hu3 = 
-R:;;? (2.188sin (20)- 0.862sin (40)) 

X 10-2 

-R~3 (0.786sin (30)- 0.373sin (50)) 

-R~4 (0.458sin (40)- 0.250sin (60)) 

J. 7 cjJ = 270, 2 < Rm < 3 

R~1 (3.515 cos (B)+ 0.862 cos (30)) 

hool = 
-R~2 (2.188sin (20) + 0.862sin (40) + 0.035sin (60)) 

-R~3 (0.186sin (60) + 0.786cos (30) + 0.352cos (50)) 

+ R~4 (0.458 sin ( 40) + 0.048 cos (70)) 

hoo2 = x 10-1 
[ 
R~1 (1.406 cos (e) + o.345 cos (3B)) l 

ho03 = 

- R~3 (0.105 cos (30) + 0.049 cos (50)) 

R~1 (3.515 cos (B) + 0.862 cos (30)) 

+ R~2 (2.188 sin (20) + 0.862 sin ( 40) + 0.035 sin (60)) 

-R~3 (0.186sin (60) + 0.786cos (30) + 0.352cos (50)) 

-R~4 (0.458sin (40)- 0.048cos (70)) 

R~1 (1. 790 sin (B) + 0.862 sin (30)) 

+R~2 (1.326cos(2B)- 0.862cos(4B)) 

X 10-2 

X 10-2 

hon = - R~3 (0.527 sin (38) + 0.361 sin (58)) x 10-2 

+ R~4 ( 0.048 sin (70) - 0.328 cos ( 40) - 0.242 cos ( 60) ) 

+0.013 cos (80) 

[ 

R~1 (7.162 sin ( 8) + 3.448 sin (38)) l 
ho12 = x 10-2 

-R~3 (0.703sin (30) + 0.495sin (50)) 

R~1 (1.790sin (8) + 0.862sin (30)) 

-R~2 (1.326cos (28) + 0.862cos (40)) 

ho13 = - R~3 (0.527 sin (30) + 0.361 sin (50)) x 10-2 

_ 4 ( 0.048 sin (78) + 0.328 cos ( 40) + 0.242 cos (60) ) 
+Rm 

-0.013 cos (80) 

234 



J. 7. ifJ = 270, 2 < R-m < 3 

- R~1 (0.663 sin (B) - 8.621 sin (30)) 

+ R~2 (3.979 cos (20) + 8.621 cos ( 40)) 

h101 = - R~3 (2.487 sin (30) + 4.042 sin (50)) x 10-3 

+ R~4 ( 0. 773 sin (50) + 0.492 sin (70) - 1.890 cos ( 40) ) 

-2.471 cos (60) + 0.133 cos (80) 

h102 = x 10-2 

[ 
- R~1 (0.265 sin (B) - 3.448 sin (30)) l 
-R~3 (0.332 sin (30) + 0.503 sin (50)) + 0.040R~4 sin (70) 

- R~1 (0.663 sin (B) - 8.621 sin (30)) 

- R~2 (3.979 cos (20) + 8.621 cos ( 40)) 

hw3 = - R~3 (2.487 sin (30) + 4.042 sin (50)) x 10-3 

+R~4 ( 0.773sin(50)+0.492sin(70)+1.890cos(4B)) 

+2.471 cos (60) - 0.133 cos (80) 

R;;/ (1. 790 cos (B) - 0.864 cos (38)) 

- R~2 (0.464 sin (20) - 0.862 sin ( 40)) + 0.379R~3 cos (50) 

-R~4 ( 0.060sin (40) + 0.252sin (60)- 0.014sin (80) ) 

+0.050 cos (70) 

X 10-2 

h112 = [R~1 (7.162 cos (B)- 3.451 cos (30)) + 0.510R~3 cos (50)] x 10-2 

R~1 (1.790cos(B)- 0.864cos(30)) 

+ R~2 (0.464 sin (20) - 0.862 sin ( 40)) + 0.379R~3 cos (50) 

+ R~4 ( 0.060 sin ( 40) + 0.252 sin (60) - 0.014 sin (80) ) 

-0.050 cos (70) 

X 10-2 

235 



J .8. cj; = 270, 3 < Rm < 15 

J .8 cP = 270, 3 < Rm < 15 

R;;/ (3.515 cos (8) + 0.862 cos (38)) 

hoo1 = 
- R~2 (2.188 sin (28) + 0.862 sin ( 461)) 

X 10-2 

- R~3 (0. 786 cos (361) + 0.373 cos (561)) 

+ R~4 (0.458 sin ( 461) + 0.250 sin ( 661)) 

hoo2 = x 10-1 
[ 

R~1 (1.406cos(61)+0.345cos(38)) l 
hoo3 = 

hou = 

-R~3 (0.105cos(361) + 0.051cos(50)) 

R~1 (3.515 cos ( 61) + 0.862 cos (38)) 

+ R~2 (2.188 sin (261) + 0.862 sin ( 461)) 

- R~3 (0.786 cos (361) + 0.373 cos (50)) 

-R~4 (0.458sin (40) + 0.250sin (661)) 

R~1 (1.790sin (0) + 0.862sin (30)) 

+ R~2 (1.326 cos (20) + 0.862 cos ( 40)) 

- R~3 (0.527 sin (30) + 0.377 sin (561)) 

- R~4 (0.328 cos ( 40) + 0.252 cos (60)) 

X 10-2 

X 10-2 

ho12 = x 10-2 
[ 

R~1 (7.162sin(0)+3.448sin(30)) l 
- R~3 (0. 703 sin (30) + 0.508 sin (50)) 

R~1 (1. 790 sin ( 0) + 0.862 sin (30)) 

h013 = 
- R~2 (1.326 cos (20) + 0.862 cos ( 40)) 

X 10-2 

- R~3 (0.527 sin (30) + 0.377 sin (50)) 

+R~4 (0.328 cos (40) + 0.252cos (60)) 

- R~1 (0.663 sin ( 0) - 8.621 sin (30)) 

- R~2 (3.979 cos (20) + 8.621 cos ( 40)) 

- R~3 (2.487 sin (30) + 3.807 sin (50)) 

+ R~4 (0.330 sin (78) - 1.890 cos ( 40) - 2.537 cos (60)) 

[ 

- R~1 (0.265 sin (B) - 3.448 sin (30)) l _2 hw2 = X 10 
- R~3 (0.332 sin (30) + 0.512 sin (50)) 

236 

X 10-3 



J .8. cP = 270, 3 < Rm < 15 

-R~1 (0.663sin(O)- 8.621sin(30)) 

-R~2 (3.979cos(20) + 8.621cos(40)) 

- R~3 (2.487 sin (30) + 3.807 sin (50)) 

+R~4 (0.330 sin (70) + 1.890 cos ( 40) + 2.537 cos (60)) 

R~1 (1.790cos(O) ~ 0.863cos(30)) 

h111 = -R~2 (0.464sin (20)- 0.858sin (40)) 

+0.384R~3 cos (50)- 0.256R~4 sin (60) 

X 10-2 

X 10-3 

h112 = [R~1 (7.162cos (B)- 3.449cos (30)) + 0.514R~3 cos (50)] x 10-2 

R~1 (1. 790 cos (e) - o.863 cos (3e)) 

hu3 = +R~2 (0.464sin (20)- 0.858sin (40)) 

+0.384R~3 cos (50)+ 0.256R~4 sin (60) 

X 10-2 

237 



APPENDIX K 

Surface Fit Equations- s terms 

The notation used in this section is slijk where l, i and j are the tensor terms and 

k is the node number on the field element. 

K.l cjJ = 0, 2 < Rm < 3 

SlQOl = 

R~2 ( 2.745 (sin (20) +sin (40)) + 0.061 sin (50) ) 

+0.124 sin (70) - 0.015 sin (90) 

1.373 sin (30) + 3.896 sin (50) + 0.057 sin (60) 

-0.927 sin (70) - 0.159 sin (80) 

2.269 sin (60) + 2.347 sin (70) + 0.572 sin (80) 

+0.145 sin (90) + 0.016 sin (100) 

s1002 = [1.098R~2 (sin (20) +sin (40)) + R~4 (0.324sin (60) + 0.017sin (80))] x 104 

238 



K.l. <P = 0, 2 < Rm < 3 

S1Q03 = 

SlQll = 

R;;? ( 2.745 (sin (28) +sin (48))- 0.061 sin (58) ) 

-0.124 sin (78) + 0.015 sin (98) 

1.373 sin (38) + 3.896 sin (58) - 0.057 sin (68) 

-0.927 sin (78) + 0.159 sin (88) 

2.269 sin (60) - 2.347 sin (70) + 0.572 sin (80) 

-0.145 sin (98) + 0.016 sin (108) 

-0.016 cos (68) - 0.012R;;/ cos (88) 

2.745cos (48)- 0.090cos (50)- 0.652cos (68) ) -R-2 
m 

+0.106 cos (78) 

1.373 cos (38) - 4. 768 cos (58) - 2.316 cos (68) ) 
+R-3 

m 
+0.823 cos (78) + 0.352 cos (88) + 0.071 cos (98) 

1.235 cos ( 48) + 1.558 cos (58) - 2.180 cos (78) ) 
+R-4 

m 
-0.867 cos (88) - 0.227 cos (98) - 0.016 cos (108) 

81012 = X 10 
[ 

-1.098R~2 cos ( 48) + 0.013R~3 cos (88) l 4 

Suu = 

+ R~4 (0.165 cos ( 48) - 0.318 cos (68) - 0.046 cos (88)) 

-0.016 cos (68) - 0.012R~1 cos (88) 

-R~2 2.745cos(48) + 0.090cos(58)- 0.652cos(68)) 

-0.106 cos (78) 

-R~3 1.373cos(30)-4.768cos(58)+2.316cos(68) ) 

+0.823 cos (78) - 0.352 cos (88) + 0.071 cos (90) 

1.235 cos ( 40) - 1.558 cos (50) + 2.180 cos (70) ) 
+R-4 

m 

-0.867 cos (811) + 0.227 cos (911) - 0.016 cos (lOB) 

-R~1 (0.093sin (60) + 0.143sin (70)) 

2.745 (sin (28)- sin (411)) + 0.149sin (58) ) 
+R-2 

m 
+0. 776 sin (68) + 0.955 sin (78) 

4.118sin(38)- 5.202sin(58)- 2.278sin(68) ) 
+R-3 

m 
-1.802sin (78) + 0.147sin (80) + 0.069sin (98) 

2.471 sin ( 48) + 2.597 sin (50) - 0.538 sin (80) ) 
+R-4 

m 
-0.222 sin (98) - 0.016 sin (108) 

239 



K.l. cjJ = 0, 2 < R= < 3 

[ 

1.098R~2 (sin (20) - sin ( 40)) l 
81112 = X 104 

+ R~4 (0.329 sin ( 40) - 0.312 sin (60) - 0.017 sin (80)) 

-R~1 (0.093sin (60)- 0.143sin (70)) 

2.745 (sin (20)- sin (40))- 0.149sin (50) ) 
+R-2 

m 
+0.776sin (60)- 0.955sin (70) 

4.118sin (30)- 5.202sin (50)+ 2.278sin (60) ) 
-R-3 

m 
~1.802sin (70)- 0.147sin (80) + 0.069sin (90) 

2.471 sin ( 40) - 2.597 sin (50) - 0.538 sin (80) ) 
+R-4 

m 
+0.222 sin (90) - 0.016 sin (100) 

82002 = 81012 

82003 = 81Ql3 

0.140 cos (60)- 0.962R~1 cos (60) 

-R-2 
m 

5.491cos(20)- 2.745cos(40) -1.889cos(60) 

+0.014 cos (90) 

6.864 cos (30) - 4.637 cos (50) + 0.271 cos (70) 

+0.141 cos (80) 

3. 706 cos ( 40) + 2.460 cos (50) - 1.442 cos (70) ) 

-0.520 cos (80) - 0.136 cos (90) - 0.015 cos (100) 

240 



K.2. cjJ = 0, 3 < Rm < 15 

82112 = X 104 

[ 

-0.010R;;,l cos (60)- R~2 (2.196 cos (20) - 1.098 cos ( 40)) l 
+ R~3 (0.186 cos (60) + 0.007 cos (80)) - 0.494R~4 cos ( 40) 

0.140 cos (60)- 0.962R~1 cos (60) 

5.491cos(20)- 2.745cos(40) -1.889cos(60) 

-0.014 cos (90) 

6.864 cos (30) - 4.637 cos (50) + 0.271 cos (70) 

-0.141 cos (80) 

3. 706 cos ( 40) - 2.460 cos (50) + 1.442 cos (70) ) 

-0.520 cos (80) + 0.136 cos (90)- 0.015 cos (100) 

K.2 cp = 0, 3 < Rm < 15 

2.745R~2 (sin (20) +sin (40)) 

+ R~3 ( 1.373 sin (30) + 4.143 sin (50) - 0.120 sin (70) ) 

-0.034 sin (80) 

_ R~4 ( 0.207 sin (50) ~ 2.439 sin (60) - 1.010 sin (70) ) 

-0.211 sin (80) 

s1002 = [1.098R~2 (sin (20) +sin (40)) + 0.327R~4 sin (60)] x 104 

S1QQ3 = 

swu = 

2.745R~2 (sin (20) +sin (40)) 

~R-3 
m 

1.373 sin (30) + 4.143 sin (50) - 0.120 sin (70) 

+0.034 sin (80) 

0.207 sin (50) + 2.439 sin (60) - 1.010 sin (70) 

+0.211 sin (80) 

-R~2 (2.745cos (40) + 0.016cos (70)) 

1.373cos(30)- 4.192cos(50)- 0.023cos(60)) 
+R-3 

m 
+0.255 cos (70) + 0.033 cos (80) 

1.235 cos ( 40) + 0.620 cos (50) - 2.327 cos (60) ) 
+R-4 

m 
-1.282 cos (70) - 0.209 cos (80) - 0.020 cos (90) 

241 



K.2. cjJ = 0, 3 < Rm < 15 

s 1012 = [-1.098R~2 cos (40) + R;;_.4 (0.165cos (40)- 0.324cos (60))] x 104 

S1Q13 = 

sun = 

-R~2 (2.745cos(48)- 0.016cos(78)) 

1.373 cos (38)- 4.192 cos (58)+ 0.023 cos (68) ) 
-R-3 

m 
+0.255 cos (78) - 0.033 cos (88) 

1.235 cos ( 48) - 0.620 cos (58) - 2.327 cos ( 68) ) 
+R-4 

m 
+ 1.282 cos (78) - 0.209 cos (88) + 0.020 cos (98) 

R;;_.2 (2. 7 45 (sin (28) - sin ( 40)) + 0.017 sin (58)) 

4.118sin (38)- 4.393sin (58)- 0.034sin (68) ) 
+R-3 

m 
+0.114sin (78) 

2.471sin(48) + 1.347sin(58)- 2.255sin(68) ) 
+R~4 

-0.980 sin (78) - 0.092 sin (88) - 0.019 sin (98) 

242 

s1112 = [1.098R~2 (sin (28)- sin (48)) + R~4 (0.329sin (48)- 0.322sin (60))] x 104 

R~2 (2.745 (sin (28)- sin (48))- 0.017 sin (58)) 

s1113 = 

4.118sin (38)- 4.393sin (58)+ 0.034sin (68) ) 
-R-3 

m 
+0.114sin (78) 

2.471 sin (48)- 1.347sin (58)- 2.255sin (68) ) 
+R-4 

m 
+0.980 sin (78) - 0.092 sin (88) + 0.019 sin (98) 

Szool = swn 

Szooz = s1012 

Szoo3 = s1013 

Szon = sun 

s2012 = su12 



K.3. <P = 90, 2 < Rm < 3 

- R;,2 (5.491 cos (28) - 2. 7 45 cos ( 48) + 0.024 cos (58)) 

-R~3 (6.864cos(3B)- 4.502cos(58) + O.lllcos(7B)) 

-R~4 ( 3.706cos(4B) + 1.886cos(58)- 2.343cos(6B)) 

-0.964 cos (78) - 0.092 cos (88) 

82112 = X lQ 
[ 

-R~2 (2.196cos(2B) -1.098cos(4B)) l 4 

- R~4 (0.494 cos ( 48) - 0.319 cos (68)) 

- R~2 (5.491 cos (28) - 2. 745 cos ( 48) - 0.024 cos (58)) 

+R~3 (6.864cos (38)- 4.502cos (58)+ 0.111 cos (78)) 

_ R~4 ( 3. 706 cos ( 48) - 1.886 cos (58) - 2.343 cos (68) ) 

+0.964 cos (78) - 0.092 cos (88) 

K.3 cp = 90, 2 < Rm < 3 

cos (68) (0.034- 0.185R~1 ) - R~2 (5.491 cos (28) + 2.745 cos ( 48)) 

6.864 sin (38) + 4.637 sin (58) + 0.271 sin (78) ) -R-3 
m 

-0.067 sin (98)- 1.519 cos (68)- 0.141 cos (88) 81001 = 

2.460 sin (58) + 1.442 sin (78) - 0.217 sin (98) ) 
+R-4 

m 
+3. 706 cos ( 48) - 0.520 cos (88) + 0.015 cos (lOB) 

- [ -0.010R~1 cos (68) + 0.186R~3 cos (68) + 0.494R~4 cos (48) l X 104 
S1Q02-

- R~2 (2.196 cos (28) + 1.098 cos ( 48) + 0.003 cos (88)) 

cos ( 68) (0.034 - 0.185R~1 ) - R~2 
( 5.491 cos (28) + 2. 7 45 cos ( 48)) 

6.864 sin (38) + 4.637 sin (58) + 0.271 sin (78) ) 
+R-3 

m 
-0.067 sin (98) + 1.519 cos (68) + 0.141 cos (88) 

2.460 sin (58) + 1.442 sin (78) - 0.217 sin (98) ) 
-R-4 

m 
-3.706 cos ( 48) + 0.520 cos (88) - 0.015 cos (lOB) 

243 



K.3. rP = 90, 2 < Rm < 3 

swn = 

0.043 sin (60) + 0.057ln Rm cos (50) 

- R;;,l (0.227 sin (60) + 0.908 cos (50)) 

2.745 (sin (20) +sin (40))- 3.460cos (50) ) -R-2 
m 

+0.014 cos (90) 

1.655 sin (6fJ) + 0.147 sin (80) + 4.118 cos (30) ) 
+R-3 

m 
+0.293 cos (70) 

2.4 71 sin ( 40) - 0.538 sin (80) + 0.016 sin (lOO) ) 
+R-4 

m 
-1.512 cos (70) + 0.139 cos (90) 

81012 = X 104 

[ 

-R~2 (1.098 (sin (20) +sin (40)) + 0.049sin (60)) l 

S1Q13 = 

snn = 

+0.251R~3 sin (60) + R~4 (0.329 sin ( 40) - 0.017 sin (80)) 

0.043 sin (60) - 0.057ln Rm cos (50) 

-R~1 (0.227sin (60)- 0.908cos (50)) 

~ R~2 2.745 (sin (20) +sin ( 40)) + 3.460 cos (50) ) 

-0.014 cos (90) 

1.655sin (60) + 0.147sin (80)- 4.118cos (30) ) 
+R-3 

m 
-0.293 cos (70) 

2.471 sin ( 40) - 0.538 sin (80) + 0.016 sin (lOB) ) 
+R-4 

m 
+ 1.512 cos (70) - 0.139 cos (90) 

-0.016 cos (60) + 0.005 cos (80) 

0.090sin (50)+ 0.106sin (70)- 2.745 cos (40) ) -R-2 
m 

-0.652 cos (6fJ) + 0.088 cos (8fJ) 

1.373 sin (30) + 4. 768 sin (50) + 0.823 sin (70) ) 
+R-3 

m 
-0.071 sin (90) - 2.316 cos (60) 

-R-4 ( 1.558sin (50)+ 2.180sin (70)- 0.227sin (90) ) 

m + 1.235 COS ( 40) - 0.530 COS (80) + 0.016 COS (lOO) 

R~2 (1.098cos (40) + 0.052cos (60)) 

sm2 = - R~3 (0.260 cos (60) + 0.013 cos (80)) x 104 

- R~4 (0.165 cos ( 40) - 0.046 cos (80)) 

244 



K.3. <P = 90, 2 < Rm < 3 

81113 = 

-0.016 cos (60) + 0.005 cos (80) 

0.090 sin (50) + 0.106 sin (70) + 2. 7 45 cos ( 40) ) 
+R-2 

m 
+0.652 cos (60) - 0.088 cos (80) 

1.373 sin (30) + 4.768 sin (50)+ 0.823 sin (70) ) -R-3 
m 

-0.071 sin (90) + 2.316 cos (60) 

4 

( 

1.558sin (50)+ 2.180sin (70)- 0.227sin (90) ) 
+R-

m -1.235 cos ( 40) + 0.530 cos (80) - 0.016 cos (lOB) 

82002 = 81012 

82003 = 81013 

82012 = 81112 

82013 = 81113 

0.053R;;/ cos (70) 

2. 7 45 (sin (20) - sin ( 40)) + 0.033 sin (80) ) -R-2 
m 

+0.260 cos (70) 

0.057 sin (60)- 1.373 cos (30) + 4.192 cos (50) ) -R-3 
m 

-0.073 cos (90) 

2.269 sin (60) - 0.384 sin (80) + 0.016 sin (lOB) ) 
-R-4 

m 
-0.351 cos (50) - 1.606 cos (70) + 0.232 cos (90) 

245 

8 2112 = [-1.098R;2 (sin (20)- sin (40))- R;4 (0.324sin (60)- 0.017sin (80))] x 104 



K.4. <P = 90, 3 < R-m < 15 246 

-0.053R~1 cos (70) 

-R-2 
m 

2. 745 (sin (20) -sin (40)) + 0.033 sin (80) ) 

-0.260 cos (70) 

82113 = 0.057 sin (60) + 1.373 cos (30) - 4.192 cos (50) ) X 103 

-R-3 
m 

+0.073 cos (90) 

-R-4 
2.269 sin ( 60) - 0.384 sin (80) + 0.016 sin ( 100) ) 

m 
+0.351 cos (50) + 1.606 cos (70) - 0.232 cos (90) 

K.4 cp = 90, 3 < Rm < 15 

R~2 (0.024sin(50)- 5.491cos(20)- 2.745cos(40)) 

-R~3 (6.864sin (30) + 4.502sin (50)+ 0.111 sin (70)) 
X 103 

SlQQl = 
+ R;,.' ( 1.886 sin (50) + 0. 964 sin (70) + 3. 706 cos ( 40) ) 

+0.234 cos (60) - 0.092 cos (80) 

[ - R;;;' (2.196 cos {20) + 1.098 cos ( 40)) ] 4 
81002 = X 10 

+R~4 (0.494cos (40) + 0.319cos (60)) 

- R~2 (0.024 sin (50) + 5.491 cos (20) + 2. 7 45 cos ( 461)) 

+ R~3 (6.864 sin (361) + 4.502 sin (50) + 0.111 sin (761)) 
X 103 swo3 = 

_ R;,.' ( 1.886 sin (50) + 0.964 sin (70) - 3.706 cos ( 40) ) 

-0.234 cos (60) + 0.092 cos (861) 

-R~2 (2.745 (sin (20) +sin (40)) + 0.017 cos (50)) 

_ 3 ( 0.034 sin ( 60) + 4.118 cos (30) + 4.393 cos (50) ) 
+Rm 

X 103 
SlQll = +0.114cos (70) 

+R;,.' ( 2.471 sin (40) + 2.255sin (60) - 0.092 sin (80) ) 

-1.347 cos (50) - 0.980 cos (70) + 0.019 cos (961) 

s 1012 = [-1.098R~2 (sin (20) +sin (40)) + R~4 (0.329sin (40) + 0.322sin (661))] x 104 



K.4. cjJ = 90, 3 < Rm < 15 

81013 = 

8uu = 

-R;;? (2.745 (sin (20) +sin (40))- 0.017 cos (50)) 

0.034sin(60)- 4.118cos(30)- 4.393cos(50)) 
+R-3 

m 
-0.114cos (70) 

2.4 71 sin ( 40) + 2.255 sin (60) - 0.092 sin (80) ) 
+R-4 

m 
+ 1.347 cos (50) + 0.980 cos (70) - 0.019 cos (90) 

- R~2 (0.016 sin (70) - 2. 7 45 cos ( 40)) 

1.373 sin (30) + 4.192 sin (50) + 0.255 sin (70) ) 
+R-3 

m 
-0.023 cos (60) - 0.033 cos (80) 

-R-4 
m 

0.620 sin (50) + 1.282 sin (70) - 0.020 sin (90) ) 

+ 1.235 cos ( 40) + 2.327 cos (60) - 0.209 cos (80) 

s1112 = [1.098R~2 cos (40)- R~4 (0.165cos (40) + 0.324cos (60))] x 104 

81113 = 

R~2 (0.016sin(70) + 2.745cos(40)) 

1.373 sin (30) + 4.192 sin (50) + 0.255 sin (70) ) -R-3 
m 

+0.023 cos (60) + 0.033 cos (80) 

+R-4 
m 

0.620 sin (50) + 1.282 sin (70) - 0.020 sin (90) ) 

-1.235 cos ( 40) - 2.327 cos (60) + 0.209 cos (80) 

82013 = Sn13 

247 



K.5. cjJ = 180, 2 < Rm < 3 

-2.745R~2 (sin (20)- sin (40)) 

0.034 sin (80)- 1.373 cos (30) + 4.143 cos (30) ) 
-R-3 

m 
+0.120 cos (70) 

2.439 sin (60) - 0.211 sin (80) - 0.207 cos (50) ) 
-R-4 

m 
-1.010 cos (78) 

s2112 = [-1.098R~2 (sin (20)- sin (40))- 0.327R~4 sin (60)] x 104 

-2.745R~2 (sin (20)- sin (40)) 

( 

0.034 sin (80) + 1.373 cos (30) - 4.143 cos (30) ) 
-R-3 

m 
-0.120 cos (7(}) 

_ R~4 ( 2.439 sin (60) - 0.211 sin (80) + 0.207 cos (50) ) 

+ 1.010 cos (70) 

K.5 cjJ = 180, 2 < Rm < 3 

SlQQl = 

- R~2 (2. 7 45 (sin (20) + sin ( 40)) - 0.061 sin (50) - 0.124 sin (70)) 

+R~3 ( 1.373 sin (30) + 3.896 sin (50)- 0.057 sin (60) ) 

-0.927 sin (70) + 0.159 sin (80) - 0.073 sin (90) 

-R~4 ( 2.269sin(60)- 2.347sin(70) + 0.572sin(80)) 

-0.232 sin (90) + 0.016 sin (100) 

248 

s1002 = [1.098R~2 (sin (20) +sin ( 40)) - R~4 (0.324 sin (60) + 0.017 sin (80))] x 104 

S1QQ3 = 

- R~2 (2. 745 (sin (28) +sin ( 40)) + 0.061 sin (50) + 0.124 sin (70)) 

1.373 sin (30) + 3.896 sin (50) + 0.057 sin (60) ) -R-3 
m 

-0.927 sin (70)- 0.159 sin (80)- 0.073 sin (90) 

2.269 sin (60) + 2.347 sin (70) + 0.572 sin (80) ) -R-4 
m 

+0.232 sin (90) + 0.016 sin (100) 



K.5. cl> = 180, 2 < Rm < 3 

swn = 

-0.016 cos (60)- 0.047 R~1 cos (70) 

+R-3 
m 

2. 7 45 cos ( 40) + 0.090 cos (50) - 0.652 cos ( 60) 

+0.234 cos (70) + 0.085 cos (80) 

1.373 cos (30) - 4.768 cos (50) + 2.316 cos (60) 

-0.557 cos (80) + 0.071 cos (90) 

_ R_4 ( 1.235 cos ( 40) - 1.558 cos (50)+ 1.523 cos (70) ) 

m -1.031 COS (80) + 0.227 COS (90) - 0.016 COS (100) 

81012 = X 104 

[ 

1.098R~2 cos ( 40) - 0.013R~3 cos (80) l 

sun = 

su12 = 

+R~4 (0.165cos (40)- 0.318cos (60)- 0.046cos (80)) 

-0.016 cos (60) + 0.047 R~1 cos (70) 

+R~2 ( 2.745cos(40)- 0.090cos(50)- 0.652cos(6B) 

-0.234 cos (70) + 0.085 cos (80) 

1.373 cos (30) - 4.768 cos (50) - 2.316 cos (60) 
-R-3 

m 
+0.557 cos (80) + 0.071 cos (90) 

1.235cos(40) + 1.558cos(50) -1.523cos(70) ) 

-1.031 cos (80) - 0.227 cos (90) - 0.016 cos (lOO) 

0.093R~1 sin (60) 

2.745 (sin (20)- sin (40))- 0.149sin (50) ) -R-2 
m 

+0. 776 sin (60) - 0.003 sin (100) 

4.118 sin (30) - 5.202 sin (50) + 2.278 sin (60) ) 
+R-3 

m 
+0.293 sin (70) - 0.147 sin (80) + 0.069 sin (90) 

2.471 sin ( 40) - 2.597 sin (50)+ 1.512 sin (70) ) -R-4 
m 

-0.538 sin (80) + 0.222 sin (90) 

-0.023R~1 sin ( 40) 

- R~2 (1.098 sin (20) - 1.269 sin ( 40) + 0.049 sin (60)) 

- R~3 (0.413 sin ( 40) - 0.251 sin (60)) + 0.017 R~4 sin (80) 

249 



K.5. 4J = 180, 2 < Rm < 3 

81113 = 

0.093R~1 sin (68) 

2. 7 45 (sin (28) - sin ( 48)) + 0.149 sin (58) ) -R-2 
m 

+0.776sin (68)- 0.003sin (108) 

4.118sin(38)- 5.202sin(50)- 2.278sin(68) ) -R-3 
m 

+0.293 sin (70) + 0.14 7 sin (88) + 0.069 sin (90) 

_ R~4 2.4 71 sin ( 48) + 2.597 sin (58) - 1.512 sin (78) ) 

-0.538 sin (80) - 0.222 sin (98) 

82003 = 81013 

82011 = 81111 

82012 = 81112 

82013 = 81113 

-0.015R~1 cos (78) 

+R-2 
m 

5.491cos(2B)- 2.745cos(4B)- 0.209cos(5B) 

+0.294cos (68) 

6.864cos (38)- 5.635cos (58)+ 1.633cos (68) 

-0.141 cos (88) + 0.067 cos (98) 

3.706cos(4B)- 3.636cos(5B) + 1.013cos(7B) ) 

-0.520 cos (88) + 0.217 cos (98) - 0.015 cos (108) 

[ 

R~2 (2.196 cos (28) - 1.098 cos ( 48) + 0.04 7 cos ( 68)) l X 104 
82112 = 

-0.242R~3 cos (68) + R~4 (0.494cos (48)- 0.017 cos (80)) 

250 



K.6. cjJ = 180, 3 < Rm < 15 

0.015R;;/ cos (70) 

5.491 cos (20) - 2. 7 45 cos ( 40) - 0. 209 cos (50) 

+0.294cos (60) 

6.864 cos (30) - 5.635 cos (50) - 1.633 cos (60) 

+0.141 cos (80) + 0.067 cos (9t'J) 

3. 706 cos ( 40) - 3.636 cos (50) + 1.013 cos (70) ) 

-0.520 cos (80) + 0.217 cos (90) - 0.015 cos (100) 

K.6 cp = 180, 3 < Rm < 15 

81001 = 

-2.745R~2 (sin (20) +sin (40)) 

3 
( 1.373 sin (30) + 4.142 sin (50) - 0.120 sin (70) 

+R~ 
+0.034 sin (80) 

_ R~4 ( 0.207 sin (5t'J) + 2.439 sin (60) - 1.010 sin (70) 

+0.211 sin (80) 

s1002 = [-1.098R~2 (sin (20) +sin (40))- 0.327R~4 sin (60)] x 104 

swn = 

-2.745R~2 (sin (20) +sin ( 40)) 

1.373 sin (30) + 4.142 sin (50) - 0.120 sin (70) 

-0.034 sin (80) 

0.207 sin (50) - 2.439 sin (60) - 1.010 sin (70) 

-0.211 sin (80) 

R~2 (2. 7 45 cos ( 40) - 0.016 cos (70)) 

1.373 cos (30)- 4.192 cos (50)+ 0.023 cos (60) ) 
+R-3 

m 
+0.255 cos (70) - 0.033 cos (80) 

1.235 cos ( 40) - 0.620 cos (50) - 2.327 cos (60) ) -R-4 
m 

+ 1.282 cos (70) - 0.209 cos (80) + 0.020 cos (90) 

s1012 = [1.098R~2 cos (4t'J)- R~4 (0.165cos (40)- 0.324cos (60))] x 104 

251 



K.6. cjJ = 180, 3 < Rm < 15 

81013 = 

suu = 

R;;.2 (2. 7 45 cos ( 40) + 0.016 cos (70)) 

1.373 cos (30)- 4.192 cos (50)- 0.023 cos (60) ) -R-3 
m +0.255 COS (70) + 0.033 COS (80) X 103 

_ R;;.
4 

1.235 cos ( 40) + 0.620 cos (50) - 2.327 cos (60) ) 

-1.282 cos (70) - 0.209 cos (80) - 0.020 cos (90) 

- R;;.2 (2. 7 45 (sin (20) - sin ( 40)) - 0.017 sin (50)) 

4.118 sin (30)- 4.393 sin (50)+ 0.034sin (60) ) 
+R-3 

m +0.114sin (70) X 103 

-R-4 
m 

2.471sin(40) -1.347sin(50)- 2.255sin(60) ) 

+0.980 sin (70) - 0.092 sin (80) + 0.019 sin (90) 

252 

sm2 = [ -1.098R;;.2 (sin (28) -sin ( 40)) - R;;.4 (0.393 sin ( 48) - 0.322 sin (60) )] x 104 

- R;;.2 (2. 745 (sin (20) - sin ( 40)) + 0.017 sin (50)) 

-R;;.3 4.118sin (30)- 4.393sin (50)- 0.034sin (60) ) 

+0.114sin (70) 

2.471sin(40) + 1.347sin(50)- 2.255sin(60) ) -R-4 
m 

-0.980 sin (70) - 0.092 sin (80) - 0.019 sin (90) 

82002 = 81012 

82003 = 81013 



K.7. <P = 270, 2 < Rm < 3 

cos (60) (0.0014- 0.040R~1 ) 

+R~2 (5.491 cos (20)- 2.745cos (40) + 0.394cos (60)) 

-R-3 
m 

+R-4 
m 

6.864 cos (30) - 4.291 cos (50) + 1.624 cos (60) 

+0.111 cos (70) 

3. 706 cos ( 40) - 1.447 cos (50) + 0.964 cos (70) 

-0.092 cos (80) 

82112 = X 104 

[ 

R~2 (2.196 cos (20) - 1.098 cos ( 40)) l 
+ R~4 (0.494 cos ( 40) - 0.319 cos ( 60)) . 

cos (60) (0.0014- 0.040R~1 ) 

+R~2 (5.491 cos (20)- 2.745cos (40) + 0.394cos (60)) 

( 

6.864cos(30) -4.291cos(50) -1.624cos(60)) +R-3 
m 

+0.111 cos (70) 

+R~4 ( 3.706cos(40) + 1.447cos(50)- 0.964cos(70)) 

-0.092 cos (80) 

K. 7 cjJ = 270, 2 < Rm < 3 

R~2 (5.491 cos (20) + 2.745 cos ( 40) + 0.294 cos (60)) 

6.864 sin (30) + 4.637 sin (50) + 0.271 sin (70) ) -R-3 
m 

-0.067 sin (90) + 1.633 cos (60) + 0.141 cos (80) 

2.460 sin (50) + 1.442 sin (70) - 0.217 sin (90) ) 
+R-4 

m 
-3.706 cos ( 40) + 0.520 cos (80) - 0.015 cos (100) 

SlQQl = 

81002 = X 10 
[ 

R~2 (2.196cos(20)+1.098cos(40)) l 4 

S1QQ3 = 

-R~4 (0.494cos(40) + 0.306cos(60)- 0.017cos(80)) 

R~2 (5.491 cos (20) + 2.745cos (40) + 0.294cos (60)) 

6.864 sin (30) + 4.637 sin (50) + 0.271 sin (70) ) 
+R-3 

m 
0.067sin(90) -1.633cos(60) -0.141cos(80) 

2.460 sin (50) + 1.442 sin (70) - 0.217 sin (90) ) -R-4 
m 

+3. 706 cos ( 40) - 0.520 cos (80) + 0.015 cos (100) 

253 



K.7. rjJ = 270, 2 < Rm < 3 

swn = 

S1Ql3 = 

sun = 

0.030ln R~ cos (50)- R;;/ (0.093sin (60) + 0.772cos (50)) 

2.745(sin(2B) +sin(4B)) +0.776sin(6B)) +R-2 
m 

+3.287 cos (50) - 0.038 cos (90) 

2.278 sin (60) + 0.147 sin (80)- 4.118 cos (30) ) -R-3 
m 

-0.293 cos (70) - 0.117 cos (90) 

__ 4 ( 2.471sin(4B)- 0.538sin(8B) +0.016sin(10B)) 
Rm 

+ 1.512 cos (70) 

-0.023R~1 sin ( 40) 

+R~2 (1.098sin (20) + 1.269sin (40) + 0.049sin (60)) 

- R~3 (0.413 sin ( 40) + 0.251 sin (60)) + 0.017 R~4 sin (80) 

-0.030lnR~cos(5B)- R~1 (0.093sin(6B)- 0.772cos(5B)) 

+R~2 ( 2.745(sin(2B)+sin(4B))+0.776sin(6B)) 

-3.287 cos (50) + 0.038 cos (90) 

2.278 sin (60) + 0.147 sin (80) + 4.118 cos (30) ) -R-3 
m 

+0.293 cos (70) + 0.117 cos (90) 

2.471 sin ( 40) - 0.538 sin (80) + 0.016 sin (lOB) ) -R-4 
m 

-1.512 cos (70) 

+R-3 
m 

0.090 sin (50) + 0.106 sin (70) + 2. 7 45 cos ( 40) ) 

+0.085 cos (80) 

1.373sin (38) + 4.768sin (50)+ 0.823sin (70) ) 

-0.071 sin (90) + 0.114cos (60) + 0.557 cos (80) 

1.558 sin (50) + 2.180 sin (70) - 0.227 sin (90) 

- R~4 -1.235 cos ( 40) - 2.066 cos (60) + 1.031 cos (80) 

-0.016 cos (lOB) 

81112 = X 10 
[ 

- R~2 (1.098 cos ( 40) - 0.003 cos (80)) l 4 

+R~4 (0.165cos (40) + 0.318cos (60)- 0.031 cos (80)) 

254 



K.7. <P = 270, 2 < Rm < 3 

81113 = 

R~2 ( 0.090 sin (50) + 0.106 sin (70) - 2. 7 45 cos ( 40) ) 

-0.085 cos (80) 

1.373 sin (30) + 4. 768 sin (50) + 0.823 sin (70) ) -R-3 
m 

-0.071sin(90)- 0.114cos(60)- 0.557cos(80) 

1.558 sin (50) + 2.180 sin (70) - 0.227 sin (90) 

+ R~4 + 1.235 cos ( 40) + 2.066 cos (60) - 1.031 cos (80) 

+0.016 cos (100) 

82012 = 81112 

0.038 cos (50) 

2.745 (sin (20)- sin (40))- 0.011 sin (100) 

-1.318 cos (50) + 0.124 cos (70) + 0.040 cos (90) 

0.057 sin ( 60) + 0.159 sin (80) + 0.033 sin ( 100) 

+ 1.373 cos (30) - 0.927 cos (70) - 0.122 cos (90) 

2.269 sin (60) - 0.572 sin (80) - 3.370 cos (50) ·) 

+2.347 cos (70) 

255 

8 2112 = [1.098R~2 (sin (20)- sin(40)) + R~4 (0.324sin (60)- 0.017sin(80))] x 104 



K.8. <f; = 270, 3 < Rm < 15 

-0.038 cos (50) 

+R-2 
m 

2.745 (sin (20)- sin (40))- 0.011 sin (100) 

+ 1.318 cos (50) - 0.124 cos (70) - 0.040 cos (90) 

0.057 sin (60) + 0.159 sin (80) + 0.033 sin (100) 

-1.373 cos (30) + 0.927 cos (70) + 0.122 cos (90) 

2.269 sin (60) - 0.572 sin (80) + 3.370 cos (50) ) 

-2.347 cos (70) 

K.8 cp = 270, 3 < Rm < 15 

R;;,2 (0.024 sin (50) + 5.491 cos (20) + 2. 7 45 cos ( 40)) 

- R~3 (6.864 sin (30) + 4.502 sin (50) + 0.111 sin (70)) 

+ R~4 ( 1.886 sin (50) + 0.964 sin (70) - 3. 706 cos ( 40) ) 

-2.343 cos (60) + 0.092 cos (80) 

swo2 = x 10 
[ 

R~2 (2.196 cos (20) + 1.098 cos ( 4!9)) l 4 

swo3 = 

swn = 

- R~4 (0.494 cos ( 40) + 0.319 cos (60)) 

- R~2 (0.024sin (50) - 5.491 cos (20) - 2.745 cos ( 40)) 

+R~3 (6.864sin (30) + 4.502sin (50)+ 0.111 sin (70)) 

_ R~4 ( 1.886 sin (58) + 0.964 sin (70) + 3. 706 cos ( 40) ) 

+2.343 cos (60) - 0.092 cos (80) 

R~2 (2. 7 45 (sin (20) +sin ( 40)) - 0.017 cos (50)) 

0.034sin (60)- 4.118 cos (30)- 4.393 cos (50) ) -R-3 
m 

-0.114cos (70) 

2.471 sin ( 40) + 2.255 sin (60) - 0.092 sin (80) ) -R-4 
m 

+ 1.347 cos (50) + 0.980 cos (70) - 0.019 cos (90) 

256 

s1012 = [1.098R~2 (sin (20) +sin (40))- R~4 (0.329sin (40)- 0.322sin (6!9))] x 104 



K.8. rjJ = 270, 3 < Rm < 15 

Suu = 

R;;_.2 (2. 745 (sin (20) +sin ( 40)) + 0.017 cos (50)) 

-R:;;-.3 0.034sin(60) +4.118cos(30) +4.393cos(50)) 

+0.114cos (70) 

2.471 sin (40) + 2.255sin (60)- 0.092sin (80) ) 
-R-4 

m 
-1.34 7 cos (50) - 0.980 cos (70) + 0.019 cos (90) 

- R:;;-.2 (0.016 sin (70) + 2. 7 45 cos ( 40)) 

+R:;;-.3 ( 1.373sin (30) + 4.192sin (50)+ 0.255sin (70) ) 

+0.023 cos (60) + 0.033 cos (80) 

_ _ 4 ( 0.620 sin (50) + 1.282 sin (70) - 0.020 sin (90) ) 
Rm 

-1.235 cos ( 40) - 2.327 cos (60) + 0.209 cos (80) 

sm2 = [-1.098R;;_.2 cos (40) + R:;;-.4 (0.165cos (40) + 0.324cos (60))] x 104 

su13 = 

R;;_.2 (0.016sin (70)- 2.745cos (40)) 

_ R:;;-.3 1.373 sin (30) + 4.192 sin (50) + 0.255 sin (70) ) 

-0.023 cos (60) - 0.033 cos (80) 

0.620 sin (50) + 1.282 sin (70) - 0.020 sin (90) ) 
+R-4 

m 
+1.235cos(40) + 2.327cos(60)- 0.209cos(80) 

257 



K.8. c/J = 270, 3 < Rm < 15 

2. 7 45R~2 (sin (20) - sin ( 40)) 

0.034sin (80) + 1.373cos (30)- 4.143cos (50) ) 
+R-3 

m 
-0.120 cos (70) 

2.439 sin (60) - 0.211 sin (80) + 0.207 cos (50) ) 
+R-4 

m 
+ 1.010 cos (70) 

s2112 = [1.098R~2 (sin (20) - sin ( 40)) + 0.327 R~4 sin ( 60)] x 104 

2.745R~2 (sin (20)- sin (40)) 

0.034 sin (80) - 1.373 cos (30) + 4.143 cos (50) ) 
+R-3 

m 
+0.120 cos (70) 

2.439 sin (60) - 0.211 sin (80) - 0.207 cos (50) ) 
+R-4 

m 
-1.010 cos (70) 

258 



APPENDIX l 

Surface Fit Equations - d terms 

The notation used in this section is dtijk where l, i and j are the tensor terms and 

k is the node number on the field element. 

L.l cp = 0, 2 < Rm < 3 

dw01 = 

R~1 (3.515 cos (B) + 0.182 cos (2B) + 0.862 cos (3B)) 

+R~2 (0.875cos(4B)- 0.044cos(6B)) 

+R~3 ( 3.194cos(2B)+0.269cos(3B)+0.388cos(5B)) 

+0.215 cos (6B) + 0.022 cos (7B) 

-2.544R~4 cos (20) 

X 10-2 

- [ R~1 (1.406 cos (B)+ 0.339 cos (3B)) + 0.030R~2 cos (3B) l X 10-1 
dwo2 -

+0.052R~3 cos (50) 

R~1 (3.515 cos (B) - 0.182 cos (2B) + 0.862 cos (3B)) 

- R~2 (0.875 cos ( 40) - 0.044 cos (60)) 

( 

3.194cos(20)- 0.269cos(30)- 0.388cos(50)) -R-3 
m 

+0.215 cos (60) - 0.022 cos (70) 

+2.544R~4 cos (20) 

259 

X 10-2 



L.l. cP = 0, 2 < Rm < 3 

dwn = 

R~1 (1.790sin (0) + 0.864sin (30)) 

+ R~2 (0.464 sin (20) + 0.862 sin ( 40)) + 0.379R~3 sin (58) 

_ R~4 ( 0.060 sin ( 48) - 0. 252 sin ( 60) - 0.050 sin (70) ) 

-0.014sin (80) 

d1012 = [R~1 (7.162 sin (0) + 3.451 sin (30)) + 0.510R~3 sin (58)] x 10-2 

R~1 (1.790sin (0) + 0.864sin (38)) 

- R~2 (0.464 sin (20) + 0.862 sin ( 48)) + 0.379R~3 sin (50) 

_ R~4 ( 0.060 sin ( 40) + 0.252 sin (60) - 0.050 sin (78) ) 

+0.014 sin (88) 

- R~1 (0.663 cos (e) + 8.621 cos (30)) 

+ R~2 (3. 979 cos (28) - 8.621 cos ( 48) + 0.158 cos (78)) 

X 10-2 

X 10-2 

dnu = +R~3 (2.487cos(30)- 4.042cos (58)- 0.578cos(70)) x 10-3 

+ R~4 ( 1.890 cos ( 40) + 0. 773 cos (50) - 2.471 cos (60) ) 

-0.133 cos (80) 

[ 

- R~1 (0.265 cos ( 0) + 3.448 cos (30)) ] 
du12 = x 10-2 

+R~3 (0.332 cos (30)- 0.503 cos (50)) - 0.040R~4 cos (70) 

- R~1 (0.663 cos (B) + 8.621 cos (38)) 

-R~2 (3.979cos (20)- 8.621 cos (40)- 0.158cos (78)) 

du13 = +R~3 (2.487 cos (30)- 4.042 cos (58)- 0.578 cos (78)) X 10-3 

_ R~4 ( 1.890 cos ( 40) - 0. 773 cos (58) - 2.4 71 cos ( 68) ) 

-0.133 cos (88) 

- R~1 (0.663 sin ( 0) - 8.621 sin (38)) 

- R~2 
( 4.642 sin (20) - 8.971 sin ( 40)) 

d2oo1 = -R~3 (2.686sin (30) + 1.680sin (40)- 4.049sin (50)) x 10-3 

_ R~4 ( 0.803 sin (5B) - 2.468 sin (68) - 0.492 sin (78) ) 

-0.133 sin (88) 

260 



L.l. cf; = 0, 2 < Rm < 3 

d2oo2 = x w-2 

[ 

- R~1 (0.265 sin (B) - 3.510 sin (30) - 0.030 sin (50)) ] 

+0.299R~2 sin (30) + R~4 (0.772sin (50)+ 0.040sin (70)) 

-R~1 (0.663sin (B)- 8.621 sin (30)) 

+ R~2 
( 4.642 sin (20) - 8.971 sin ( 40)) 

d2003 = - R~3 (2.686 sin (30) - 1.680 sin ( 40) - 4.049 sin (50)) X w-3 

_ R~4 ( 0.803 sin (50) + 2.468 sin (60) - 0.492 sin (70) ) 

+0.133sin (80) 

R~1 (1.790cos (B)- 0.862cos (30)) 

+R~2 (1.326cos(2B)- 0.862cos(40)) 

d2011 = +R~3 (0.527cos(30)- 0.413cos(50)- 0.021cos(70)) X 10-2 

+R~4 ( 0.328cos (40) + 0.120cos (50)- 0.242cos (60) ) 

-0.013 cos (80) 

_ [ R;;/ (7.162 cos (e) - 3.569 cos (3B)) + o.587 R~2 cos (30) ] x 
10

_2 
d2012 -

-0.495R~3 cos (50) 

R~1 (1.790cos (B)- 0.862cos (30)) 

-R~2 (1.326cos (20)- 0.862cos (40)) 

d2o13 = +R~3 (0.527 cos (3B)- 0.413 cos (50) - 0.021 cos (70)) x w-2 

-R~4 ( 0.328cos(40)- 0.120cos(50)- 0.242cos(60)) 

-0.013 cos (80) 

R~1 (3.515 sin (B) - 0.862 sin (30)) 

+ R~2 (2.188 sin (20) - 0.862 sin ( 40)) 

+ R~3 (0. 786 sin (30) - 0.352 sin (50)) 

+R~4 (0.458sin (40)- 0.237sin (60)- 0.048sin (70)) 

x w-2 

[ 

R~1 (1.406 sin (e) - 0.345 sin (30) + 0.008 sin (50)) ] _1 
d2112 = X 10 

-0.039R~2 sin (50)+ 0.105R~3 sin (30) 

261 



L.2. <P = 0, 3 < Rm < 15 

R;;/ (3.515sin (B)- 0.862sin (30)) 

+R:;;? (2.188sin(2B)- 0.862sin(4B)) 

+R~3 (0.786sin(3B)- 0.352sin(5B)) 
X 10-2 

+R~4 (0.458sin (40)- 0.237sin (60)- 0.048sin (70)) 

L.2 cjJ = 0, 3 < Rm < 15 

R~1 (3.515 cos (B)+ 0.862 cos (30)) 

dw01 = + R~2 (1.326 cos (20) - 0.867 cos ( 40)) 

+R~3 (0.269cos (30) + 0.388 cos (50))+ 0.258R~4 cos (60) 

[ 
R~1 (1.406cos(B) + 0.345cos(3B)) l 

dwo2 = x 10-1 

+R~3 (0.036 cos (30) + 0.052 cos (50)) 

R~1 (3.515 cos (B) + 0.862 cos (30)) 

dwo3 = - R~2 (1.326 cos (20) - 0.867 cos ( 40)) 

+ R~3 (0.269 cos (30) + 0.388 cos (50)) - 0.258R~4 cos (60) 

R~1 (1.790sin (B)+ 0.863sin (30)) 

dwn = + R~2 (0.464 sin (20) + 0.858 sin ( 40)) x 10-2 

+0.384R~3 sin (50)+ 0.256R~4 sin (60) 

d1012 = [R~1 (7.162sin (B)+ 3.449sin (30)) + 0.514R~3 sin (50)] x 10-2 

R~1 (1. 790 sin (B) + 0.863 sin (30)) 

dw13 = - R~2 (0.464 sin (20) + 0.858 sin ( 40)) x 10-2 

+0.384R~3 sin (50) - 0.256R~4 sin (60) 

- R~1 (0.663 cos (B) + 8.621 cos (30)) 

X 10-2 

X 10-2 

dnn = 
+R~2 (3.979cos (20)- 8.621 cos (40)) 

+ R~3 (2.487 cos (30) - 3.807 cos (50)) 
X 10-3 

+ R~4 (1.890 cos ( 40) - 2.537 cos ( 60) + 0.330 cos (70)) 

[ 

- R~1 (0.265 cos (B) + 3.448 cos (30)) l _2 dm2 = x 10 
+R~3 (0.332 cos (30) - 0.511 cos (50)) 

262 



L.2. cjJ = 0, 3 < R.n < 15 

- R-;;,1 (0.663 cos (e) + 8.621 cos (3e)) 

du13 = 
-R-;;,2 (3.979cos(20)- 8.621cos(4B)) 

+R-;;,3 (2.487 cos (30)- 3.807 cos (50)) 

-R-;;,4 (1.890cos(40)- 2.537cos(60)- 0.330cos(70)) 

- R-;;,1 (0.663 sin (B) - 8.621 sin (30)) 

- R-;;,2 
( 4.642 sin (20) - 8.621 sin ( 40)) 

-R-;;,3 (2.686sin (30)- 3.804sin (50)) 

-R-;;,4 (1.989sin (40)- 2.535sin (60)- 0.330sin (70)) 

d2002 = X 10-2 

[ 

- R-;;,1 (0.265 sin (B) - 3.448 sin (30)) l 
- R-;;,3 (0.358 sin (30) - 0.511 sin (50)) 

- R-;;,1 (0.663 sin (B) - 8.621 sin (30)) 

+ R-;;,2 
( 4.642 sin (20) - 8.621 sin ( 40)) 

- R-;;,3 (2.686 sin (30) - 3.804 sin (50)) 

+ R-;;,4 (1.989 sin ( 40) - 2.535 sin (60) + 0.330 sin (70)) 

R-;;,1 (1. 790 cos (e) - o.862 cos (3e)) 

+ R-;;,2 (1.326 cos (20) - 0.862 cos ( 40)) 

+R-;;,3 (0.527 cos (30)- 0.377 cos (50)) 

+R;;,4 (0.328cos(40)- 0.252cos(60)) 

X 10-2 

d2012 = X 10-2 

[ 

R-;;,1 (7.162 cos (e) - 3.448 cos (3e)) l 
+ R-;;,3 (0. 703 cos (30) - 0.508 cos (50)) 

R-;;,1 (1. 790 cos (e) - o.862 cos (30)) 

- R-;;,2 (1.326 cos (20) - 0.862 cos ( 40)) 

+ R-;;,3 (0.527 cos (30) - 0.377 cos (50)) 

- R-;;,4 (0.328 cos ( 40) - 0.252 cos (60)) 

R-;;,1 (3.515 sin (B) - 0.862 sin (30)) 

+ R-;;,2 (2.188 sin (20) - 0.862 sin ( 40)) 

+ R;;t3 (0. 786 sin (30) - 0.373 sin (50)) 

+R-;;,4 (0.458sin (40)- 0.250sin (60)) 

X 10-2 

X 10-2 

263 

X 10-3 

X 10-3 

X 10-3 

.. 



L.3. qy = 90, 2 < Rm < 3 

d2112 = X 10-1 

[ 
R;;/ (1.406 sin (e) - 0.345 sin (38)) l 
+ R~3 (0.105 sin (38) - 0.051 sin (58)) 

R~1 (3.515sin (B)- 0.862sin (38)) 

- R~2 (2.188 sin (28) - 0.862 sin ( 48)) 

+R~3 (0.786sin (38)- 0.373sin (58)) 

-R~4 (0.458sin (48)- 0.250sin (68)) 

L .3 cjJ = 90, 2 < Rm < 3 

X 10-2 

R~1 (0.007 sin (68) + 3.515 cos (e)+ 0.862 cos (38)) 

dwm = 
+ R~2 (2.188 sin (28) + 0.862 sin ( 48)) 

X 10-2 

-R~3 (0.144sin (68) + 0.786cos (38) + 0.352cos (58)) 

-R~4 (0.458sin (48)- 0.048cos (78)) 

dwo2 = x 10 
[ 

R~1 (1.406 cos (e)+ o.345 cos (38)) l _1 

dw03 = 

dw11 = 

- R~3 (0.105 cos (38) + 0.049 cos (58)) 

-R~1 (0.007sin(68)- 3.515cos(B)- 0.862cos(38)) 

-R-;;,2 (2.188 sin (28) + 0.862 sin (48)) 

+ R~3 (0.144sin (68) - 0. 786 cos (38) - 0.352 cos (58)) 

+ R~4 (0.458 sin ( 48) + 0.048 cos (78)) 

R~1 (1.790sin (B)+ 0.862sin (38)) 

- R~2 (1.326 cos (28) + 0.862 cos ( 48) + 0.038 cos (68)) 

_ R-;;,3 ( 0.527 sin (38) + 0.361 sin (50) - 0.193 cos (60) ) 

+0.006 cos (88) 

+ R-;;,4 (0.048 sin (78) + 0.328 cos ( 40)) 

d1012 = X 10-2 

[ 

R-;;,1 (7.162sin (B)+ 3.448sin (30)) l 
-R-;;,3 (0.703sin (38) + 0.495sin (50)) 

X 10-2 

X 10-2 

264 



L.3. 4> = 90, 2 < Rm < 3 265 

R-;;..1 (1. 790 sin (B) + 0.862 sin (38)) 

+R-;;..2 (1.326cos (28) + 0.862cos (48) + 0.038cos (68)) 

-R-;;..3 ( 0.527sin (38) + 0.361 sin (58)+ 0.193cos (68) ) 

-0.006 cos (88) 

d1013 = x w-2 

+ R-;;..4 (0.048 sin (70) - 0.328 cos ( 40)) 

- R-;;..1 (0.663 cos (e) + 8.621 cos (3B)) 

-R-;;..2 (4.642sin (20) + 8.621 sin (48) + 0.399sin (60)) 

duu = +R-;;..3 (2.003 sin (60) + 2.686 cos (30) + 4.049 cos (50)) X 10-3 

4 ( 1.989 sin ( 48) - 0.133 sin (88) - 0.803 cos (58) ) 
+R;;.. 

-0.492 cos (78) 

[ 
-R;;..1 (0.265cos(B)+3.448cos(3B)) ] 

d1112 = X 10-2 

+R-;;..3 (0.358 cos (38) + 0.503 cos (58)- 0.017 cos (78)) 

- R-;;..1 (0.663 cos ( 0) + 8.621 cos (38)) 

- R-;;..2 
( 4.642 sin (28) + 8.621 sin ( 48) + 0.399 sin (68)) 

du13 = +R-;;..3 (2.003sin (68) + 2.686cos (38) + 4.049cos (58)) X w-3 

+R-;;..4 ( 1.989sin(48)- 0.133sin(8B)- 0.803cos(58)) 

-0.492 cos (78) 

-0.085ln Rm sin (58) 

-R;;..1 (0.663sin(B) -8.621sin(3B) -1.164sin(58)) 

d2001 = -R;;..2 (3.916sin(58)+3.979cos(28)+8.621cos(4B)) X w-3 

- R-;;..3 (2.487 sin (38) + 0.181 sin (78) - 0.058 cos (88)) 

+R-;;..4 (0.901 sin (78) + 1.890cos (48) + 2.471 cos (68)) 

[ 

- R-;;..1 (0.265 sin (B) - 3.448 sin (38)) ] _
2 

d2002 = X 10 
- R-;;..3 (0.332 sin (38) + 0.503 sin (58)) + 0.040R;;._4 sin (78) 



L.3. rp = 90, 2 < Rm < 3 

-0.085ln Rm sin (50) 

- R;;/ (0.663 sin (B) - 8.621 sin (30) - 1.164 sin (50)) 

d2oo3 = - R~2 (3.916 sin (50) - 3.979 cos (20) - 8.621 cos ( 40)) x 10-3 

- R~3 (2.487 sin (30) + 0.181 sin (70) + 0.058 cos (80)) 

+ R~4 (0.901 sin (70) - 1.890 cos ( 40) - 2.471 cos (60)) 

R~1 (0.064sin(28) + 1.790cos(8)- 0.864cos(30)) 

-0.862R~2 cos (40) 

d2o11 = + R~3 ( 1.118 sin (20) + 0.379 cos (50)) x 10-2 

-R~4 ( 0.890sin (20)- 0.060sin (40)- 0.252sin (60) ) 

+0.014 sin (80) + 0.050 cos (70) 

d2012 = [R~1 (7.162 cos (0)- 3.451 cos (30)) + 0.510R~3 cos (50)] X 10-2 

- R~1 (0.064 sin (20) - 1. 790 cos (B) + 0.864 cos (30)) 

+0.862R~2 cos ( 40) 

d2o13 = -R~3 (1.118sin(20)- 0.379cos(50)) x 10-2 

_ R~4 ( 0.890 sin (20) - 0.060 sin ( 40) - 0.252 sin (68) ) 

+0.014sin (80) + 0.050 cos (70) 

R~1 (3.515sin (B)- 0.862sin (30)- 0.182cos (20)) 

+0.875R~2 cos ( 40) 

- R~3 (0.269 sin (30) - 0.388 sin (50) + 3.194 cos (20)) 

- R~4 (0.051 sin (70) - 2.544 cos (20) + 0.256 cos (60)) 

X 10-2 

d2112 - X 10-l -
[ 
R~1 (1.406 sin (B) - 0.345 sin (30) + 0.009 sin (50)) l 
+0.043R~2 sin (50) - 0.036R~3 sin (30) 

R~1 (3.515sin (B)- 0.862sin (30) + 0.182cos (20)) 

-0.875R~2 cos ( 40) 

- R~3 (0.269 sin (30) - 0.388 sin (58) - 3.194 cos (20)) 

- R~4 (0.051 sin (70) + 2.544 cos (20) - 0.256 cos (60)) 

X 10-2 

266 



L.4. 4; = 90, 3 < Rm < 15 

L.4 cjJ = 90, 3 < Rm < 15 

dlOOl = 

R;;,l (3.515 cos ( fJ) + 0.862 cos (3fJ)) 

+ R~2 (2.188 sin (28) + 0.862 sin ( 48)) 

- R~3 (0. 786 cos (38) + 0.373 cos (58)) 

- R~4 (0.458 sin ( 40) + 0.250 sin (68)) 

X 10-2 

_ [ R~l (1.406cos (B)+ 0.344cos (30))- 0.051R~3 cos (58) ] x 
10

_1 
d1002-

-0.307 R~4 cos (38) 

R~1 (3.515 cos (e) + o.862 cos (3e)) 

d1003 = 
- R~2 (2.188 sin (28) + 0.862 sin ( 48)) 

X 10-2 

- R~3 (0. 786 cos (38) + 0.373 cos (58)) 

+R~4 (0.458sin (48) + 0.250sin (68)) 

R~1 (1.790sin (B)+ 0.862sin (38)) 

d10ll = 
- R~2 (1.326 cos (28) + 0.862 cos ( 48)) 

X 10-2 

- R~3 (0.527 sin (38) + 0.377 sin (58)) 

+R~4 (0.328cos (40) + 0.252cos (68)) 

d1012 = X 10-2 

[ 
R~1 (7.162sin (B)+ 3.448sin (38)) l 

dl013 = 

dun = 

-R~3 (0.703sin (30) + 0.508sin (58)) 

R~1 (1.790sin (e)+ 0.862sin (38)) 

+R~2 (1.326cos(28) + 0.862cos(48)) 

- R~3 (0.527 sin (38) + 0.377 sin (58)) 

-R~4 (0.328cos (48) + 0.252cos (68)) 

- R~1 (0.663 cos (e) + 8.621 cos (38)) 

- R~2 
( 4.642 sin (28) + 8.621 sin ( 48)) 

+R~3 (2.686cos(38) + 3.804cos(58)) 

X 10-2 

+R~4 (1.989sin (48) + 2.535sin (60)- 0.330cos (70)) 

dm2 = x 10 
[ 

-R~1 (0.265cos(B)+3.448cos(30)) l _2 

+R~3 (0.358cos (30) + 0.511 cos (58)) 

X 10-3 

267 



L.4. cjJ = 90, 3 < Rm < 15 

du13 = 

- R~1 (0.663 cos (0) + 8.621 cos (30)) 

+ R~2 
( 4.642 sin (20) + 8.621 sin ( 40)) 

+R-;;,_3 (2.686cos (30) + 3.804cos (50)) 

- R-;;,4 (1.989 sin ( 40) + 2.535 sin (60) + 0.330 cos (70)) 

- R~1 (0.663 sin ( 0) - 8.621 sin (30)) 

d2001 = 
- R-;;,_2 (3.979 cos (20) + 8.621 cos ( 40)) 

- R~3 (2.487 sin (3e) + 3.807 sin (5e)) 

+R-;;,4 (0.330sin(7B) + 1.890cos(4B) + 2.537cos(6B)) 

d2002 = X 10-2 

[ 
-R~1 (0.265sin(e)- 3.448sin(30)) ] 

d2003 = 

- R-;;,_3 (0.332 sin (30) + 0.511 sin (50)) 

- R~1 (0.663 sin ( 0) - 8.621 sin (30)) 

+R~2 (3.979 cos (20) + 8.621 cos ( 40)) 

- R-;;,_3 (2.487 sin (3e) + 3.807 sin (50)) 

+ R-;;,4 (0.330 sin (70) - 1.890 cos ( 40) - 2.537 cos (60)) 

R-;;,_1 (1. 790 cos (e) - o.863 cos (30)) 

d2o11 = +R~2 (0.464sin (20)- 0.858sin (40)) 

+0.384R~3 cos (50) + 0.256R-;;,_4 sin (60) 

X 10-2 

X 10-3 

X 10-3 

X 10-3 

d2o12 = [R~1 (7.162cos (e)- 3.449cos (3e)) + 0.514R~3 cos (5e)] x 10-2 

R-;;,_1 (1. 790 cos (B) - 0.863 cos (30)) 

d2013 = - R~2 (0.464 sin (20) - 0.858 sin ( 40)) 

+0.384R-;;,_3 cos (50) - 0.256R~4 sin (60) 

R-;;,1 (3.515sin (0)- 0.862sin (30)) 

d2m = +R~2 (0.867cos(40) -1.326cos(20)) 

X 10-2 

- R-;;,_3 (0.269 sin (30) - 0.388 sin (50)) - 0.258R~4 cos (60) 

[ 

R-;;,_1 (1.406 sin ( 0) - 0.345 sin (30)) ] 
1 d2112 = X 10-

- R~3 (0.036 sin (30) - 0.052 sin (50)) 

X 10-2 

268 



L.5. cj; = 180, 2 < Rm < 3 

R;;,1 (3.515 sin (11)- 0.862 sin (311)) 

d2113 = - R;;,2 (0.867 cos ( 411) - 1.326 cos (211)) X 10-2 

- R;;,3 (0.269 sin (311) - 0.388 sin (50)) + 0.258R;;,4 cos (60) 

L. 5 cjJ = 180, 2 < Rm < 3 

dwm = 

dwo2 = 

dw03 = 

dwu = 

R;;,1 (3.515 cos (B) + 0.862 cos (30)) 

- R;;,2 (1.326 cos (20) + 0.875 cos ( 40)) 

+ R;;,3 (0.269 cos (30) + 0.388 cos (50) + 0.022 cos (70)) 

-0.256R;;,4 cos (60) 

X 10-2 

[ 

cos (30) (0.163 - (0.067ln Rm)) + 1.406R;;,1 cos (B) l 
+ R-;;,2 (0.243 cos (30) + 0.011 cos (50)) + 0.061R-;;_,4 cos (50) 

X 10-l 

R;;,1 (3.515 cos (B) + 0.862 cos (30)) 

+ R;;,2 (1.326 cos (20) + 0.875 cos ( 40)) 

+R;;,3 (0.269cos(3B) + 0.388cos(5B) + 0.022cos(7B)) 

+0.256R;;,4 cos (60) 

R;;,1 (1. 790 sin (B) + 0.864 sin (30)) 

- R;;,2 (0.464 sin (20) + 0.862 sin ( 40)) 

+ R;;,3 (0.379 sin (50) - 0.006 sin (80)) 

+R;;,4 (0.060sin (40)- 0.252sin (60) + 0.050sin (70)) 

X 10-2 

X 10-2 

d1012 = [R;;,1 (7.162sin (B)+ 3.451sin (30)) + 0.510R-;;_,3 sin (50)] x 10-2 

dun = 

R;;,1 (1.790sin (11) + 0.864sin (30)) 

+ R;;,2 (0.464 sin (20) + 0.862 sin ( 411)) 

+ R;;,3 (0.379 sin (50) + 0.006 sin (80)) 

-R-;;_,4 (0.060sin (40)- 0.252sin (611)- 0.050sin (711)) 

- R;;,1 (0.663 cos (B) + 8.621 cos (30)) 

- R;;,2 (3.979 cos (2B) - 8.621 cos ( 40)) 

+R;;,3 (2.487 cos (30)- 4.042 cos (50)) 

- R-;;,4 (1.890 cos ( 40) - 2.4 71 cos (60) - 0.133 cos (80)) 

X 10-2 

X 10-3 

269 



L.5. cp = 180, 2 < Rm < 3 

dn12 = X 10-2 

[ 
- R~1 (0.265 cos (e) + 3.448 cos (38)) l 

dl113 = 

+ R~3 (0.332 cos (38) - 0.503 cos (58)) - 0.040R~4 cos (78) 

- R~1 (0.663 cos (e) + 8.621 cos (38)) 

-R~2 (3.979cos(28)- 8.621cos(48)) 

+ R~3 (2.487 cos (38) - 4.042 cos (58)) 

-R~4 (1.890cos (48)- 2.471 cos (68)- 0.133cos (88)) 

- R~1 (0.663 sin (8)- 8.621 sin (38) + 0.249 sin (58)) 

+ R~2 ( 4.642 sin (28) - 8.621 sin ( 48) + 1. 7 45 (58) ) 

+0.399sin (68) 

-R~3 (2.686sin (38) + 2.003sin (68)) 

+ R~4 ( 1.989 sin ( 48) + 2.302 sin (58) + 0.492 sin (70) ) 

-0.133 sin (88) 

X 10-3 

X 10-3 

d2002 = X 10-2 

[ 

- R~1 (0.265 sin ( 8) - 3.448 sin (38) - 0.082 sin (58)) ] 

+0.410R~2 sin (58) - 0.358R~3 sin (38) + 0.040R~4 sin (78) 

- R~1 (0.663 sin ( 8) - 8.621 sin (38) + 0.249 sin (58)) 

-R~2 ( 4.642sin(28) -8.621sin(48) -1.745(58)) 

+0.399sin (60) 

-R~3 (2.686sin (38)- 2.003sin (68)) 

_ R~4 ( 1.989 sin ( 48) - 2.302 sin (58) - 0.492 sin (78) ) 

-0.133sin (88) 

-0.037 cos (28) + 0.862R~2 cos ( 48) 

+R~1 (1.790cos(8)- 0.862cos(38)- 0.008cos(68)) 

X 10-3 

4.259 cos (28) - 0.527 cos (38) + 0.413 cos (58) ) 
-R-3 X 10-2 

m 
-0.148cos (68) + 0.021 cos (78) 

3.816 cos (28)- 0.328 cos (48) + 0.120 cos (58) ) 
+R-4 

m 
+0.013 cos (88) 

[ 

R~1 (7.162 cos (e) - 3.448 cos (38)) l _2 
d2012 = X 10 

+ R~3 (0. 703 cos (38) - 0.495 cos (58)) 

270 

.. 



L.6. 4J = 180, 3 < Rm < 15 

0.037 cos (20) - 0.862R;;? cos ( 40) 

+R~1 (1.790cos (0)- 0.862cos (30) + 0.008cos (60)) 

+Rm
-3 ( 4.259 cos (20) + 0.527 cos (30) - 0.413 cos (50) ) 

d2013 = 
-0.148 cos (60)- 0.021 cos (70) 

_ R~4 ( 3.816 cos (20) - 0.328 cos ( 48) - 0.120 cos (50) ) 

+0.013 cos (80) 

R~1 (3.515 sin (8) - 0.862 sin (30)- 0.032 sin (60)) 

X 10-2 

-R~2 (2.188sin (20)- 0.943sin (40)- 0.120sin (60)) 

+ R~3 (0. 786 sin (30) - 0.386 sin ( 40) - 0.352 sin (50)) 

-0.048R~4 sin (70) 

X 10-2 

_ [ R~1 (1.406 sin ( 0) - 0.345 sin (30) + 0.008 sin (50)) l x 
10

_1 
d2112 -

-0.039R~2 sin (50)+ 0.105R~3 sin (30) 

R~1 (3.515 sin (8) - 0.862 sin (30) + 0.032 sin (68)) 

+R~2 (2.188sin (20)- 0.943sin (40)- 0.120sin (60)) 

+R~3 (0.786sin (30) + 0.386sin (40)- 0.352sin (50)) 

-0.048R~4 sin (70) 

X 10-2 

L. 6 cjJ = 180, 3 < Rm < 15 

R~1 (3.515 cos ( 0) + 0.862 cos (30)) 

dwo1 = - R~2 (1.326 cos (20) + 0.867 cos ( 40)) 

+R~3 (0.269cos (30) + 0.388cos (50))- 0.258R~4 cos (60) 

[ 

R~1 (1.406 cos ( 0) + 0.345 cos (30)) l 
dwo2 = x 10-1 

+R~3 (0.036cos (30) + 0.052cos (50)) 

R~1 (3.515 cos ( 0) + 0.862 cos (30)) 

dw03 = +R~2 (1.326cos (20) + 0.867cos (40)) 

+R~3 (0.269 cos (30) + 0.388 cos (50))+ 0.258R~4 cos (60) 

X 10-2 

X 10-2 

271 



L.6. cp = 180, 3 < Rm < 15 

R;1 (1. 790 sin (B) + 0.863 sin (30)) 

dwn = - R~2 (0.464 sin (20) + 0.858 sin ( 40)) 

+0.384R;3 sin (50) - 0.256R;4 sin (60) 

X 10-2 

d 1012 = [R~1 (7.162sin(B) +3.449sin(3B)) +0.514R;3 sin(5B)] x 10-2 

R~1 (1.790sin (B)+ 0.863sin (30)) 

d1013 = +R~2 (0.464sin (20) + 0.858sin (40)) 

+0.384R;3 sin (50) + 0.256R;4 sin (60) 

- R;1 (0.663 cos (e) + 8.621 cos (3B)) 

dun = 
- R;2 (3.979 cos (20) - 8.621 cos ( 40)) 

+ R~3 (2.487 cos (30) - 3.807 cos (5fJ)) 

X 10-2 

- R~4 (1.890 cos ( 40) - 2.537 cos ( 60) + 0.330 cos (70)) 

du12 = x 10-2 

[ 

- R;1 (0.265 cos (B) + 3.448 cos (30)) l 
du13 = 

+R~3 (0.332cos (3fJ)- 0.511 cos (50)) 

- R~1 (0.663 cos (B) + 8.621 cos (30)) 

+ R;2 (3.979 cos (20) - 8.621 cos ( 40)) 

+R;3 (2.487 cos (3fJ)- 3.807 cos (50)) 

+R~4 (1.890 cos ( 40) - 2.537 cos (60) - 0.330 cos (70)) 

- R;1 (0.663 sin (B) - 8.621 sin (30)) 

+ R~2 
( 4.642 sin (20) - 8.621 sin ( 40)) 

-R~3 (2.686sin (30)- 3.804sin (50)) 

+R~4 (1.989sin (40) + 2.535sin (60) + 0.330sin (7fJ)) 

d
2002 

= [ -R~1 (0.265s~n(B)- 3.448si~(3B)) l x 10_2 

- R;3 (0.358 sm (30) - 0.511 sm (50)) 

X 10-3 

X 10-3 

X 10-3 

272 



L.6. <P = 180, 3 < Rm < 15 

d2003 = 

- R;;/ (0.663 sin ( 0) - 8.621 sin (30)) 

- R~2 
( 4.642 sin (20) - 8.621 sin ( 40)) 

-R~3 (2.686sin(30)- 3.804sin(50)) 

-R~4 (1.989sin (40) + 2.535sin (60)- 0.330sin (70)) 

R~1 (1.790cos(O)- 0.862cos(30)) 

- R~2 (1.326 cos (20) - 0.862 cos ( 40)) 

+R~3 (0.527 cos (30)- 0.377 cos (50)) 

-R~4 (0.328 cos (40)- 0.252cos (60)) 

x 10-2 

d2012 = X 10 
[ 

R~1 (7.162 cos (e) - 3.448 cos (30)) l _2 

+R~3 (0.703cos(30)- 0.495cos(50)) 

R~1 (1. 790 cos ( 0) - 0.862 cos (30)) 

+ R~2 (1.326 cos (20) - 0.862 cos ( 40)) 

+R;;,3 (0.527 cos (30) - 0.377 cos (50)) 

+R~4 (0.328cos (40)- 0.252cos (60)) 

R~1 (3.515 sin (0)- 0.862 sin (30)) 

-R~2 (2.188sin(20)- 0.862sin(40)) 

+ R~3 (0. 786 sin (30) - 0.373 sin (50)) 

-R~4 (0.458sin (40)- 0.250sin (60)) 

x 10-2 

x 10-2 

[ R~
1 (1.406sin(0)-0.345sin(30)) l _1 

d2112 = X 10 
+R;;,3 (0.105 sin (30)- 0.051 sin (50)) 

R~1 (3.515 sin ( 0) - 0.862 sin (30)) 

+ R~2 (2.188 sin (20) - 0.862 sin ( 40)) 

+R~3 (0.786sin (30)- 0.373sin (50)) 

+R~4 (0.458sin (40)- 0.250sin (60)) 

x 10-2 

273 

x 10-3 



L.7. cP = 270, 2 < Rm < 3 

L. 7 cjJ = 270, 2 < Rm < 3 

0.036 cos (B)+ 0.086R;;/ cos (38) 

- R~2 (0.219 sin (28) + 0.086 sin ( 48) - 1.282 cos ( 0)) 

dw01 = - R~3 (2.065 cos (B) + 0.079 cos (30) + 0.035 cos (58)) x 10-1 

+R~4 ( 0.046sin (40) + 0.024sin (6B) + 1.240cos (0) ) 

+0.005 cos (70) 

_ [ cos (38) (0.188 - (0.081ln Rm)) + 1.406R~1 cos (B) ] x 
10

_1 dwo2-
+0.111R~2 - 0.049R~3 cos (50) 

0.036cos (B)+ 0.086R~1 cos (30) 

+R~2 (0.219sin (20) + 0.086sin (4B) + 1.282cos (B)) 

dwo3 = -R~3 (2.065cos (B)+ 0.079cos (38) + 0.035cos (50)) x 10-1 

-R~4 ( 0.046sin(40) +0.024sin(6B) -1.240cos(B)) 

-0.005 cos (78) 

R~1 (1.790 sin (0) + 0.862 sin (30) + 0.033 cos (60)) 

dwn = 
+R~2 (1.326cos (20) + 0.920cos (40) + 0.123cos (60)) 

- R~3 (0.527 sin (30) + 0.413 sin (58) + 0.277 cos ( 4B)) 

+ R~4 (0.120 sin (58) + 0.048 sin (7&) + 0.013 cos (8&)) 

X 10-2 

d1012 = X 10 
[ 

R~1 (7.162sin(B)+3.448sin(3B)) ] _
2 

dl013 = 

dnn = 

-R~3 (0.703sin (38) + 0.495sin (50)) 

R~1 (1. 790 sin (B) + 0.862 sin (30) - 0.033 cos ( 60)) 

- R~2 (1.326 cos (28) + 0.920 cos ( 48) + 0.123 cos (60)) 

- R~3 (0.527 sin (3B) + 0.413 sin (50) - 0.277 cos ( 40)) 

+ R~4 (0.120 sin (5&) + 0.048 sin (7B) - 0.013 cos (8B)) 

- R~1 (0.663 cos (B) + 8.621 cos (3B)) 

+ R~2 
( 4.642 sin (28) + 8.621 sin ( 4B) + 0.157 cos (7&)) 

+R~3 ( 0.057sin(8B) +2.686cos(3B) +4.049cos(5fJ)) 

-0.577 cos (78) 

-R;;t4 (1.989sin (48) + 2.468sin (60)- 0.803cos (58)) 

X 10-2 

X 10-3 

274 



L.7. <P = 270, 2 < Rm < 3 

dm2 = X 10-2 

[ 

- R;1 (0.265 cos ( 8) + 3.448 cos (38)) l 
+ R;3 (0.358 cos (38) + 0.503 cos (58)) - 0.040R;4 cos (78) 

- R;1 (0.663 cos (e) + 8.621 cos (38)) 

- R;2 
( 4.642 sin (28) + 8.621 sin ( 48) - 0.157 cos (78)) 

_ R;3 ( 0.057 sin (88) - 2.686 cos (38) - 4.049 cos (58) ) 

+0.577 cos (78) 

+R-;;_.4 (1.989sin (48) + 2.468sin (68) + 0.803cos (58)) 

-0.173 sin (38) - R;1 (0.663 sin ( 8) - 9.893 sin (38)) 

- R;2 (3.094 sin (38) - 3.979 cos (28) - 8.621 cos ( 48)) 

d2oo1 = -4.042R;3 sin (58) 

d2002 = 

+R;4 ( 0.773sin (50)+ 0.492sin (70)- 1.890cos (40) ) 

-2.471 cos (60) + 0.133 cos (80) 

[ 

-R;1 (0.265sin(O)- 3.448sin(30)) ] 

- R;3 (0.332 sin (38) + 0.503 sin (50)) + 0.040R;4 sin (70) 

-0.173 sin (30) - R;1 (0.663 sin ( 0) - 9.893 sin (30)) 

-R;2 (3.094sin (30)- 3.979cos (20)- 8.621 cos (40)) 

x w-3 

x w-3 

x w-2 

d2003 = -4.042R;3 sin (50) X w-3 

_
4 

( 0. 773 sin (50) + 0.492 sin (70) - 1.890 cos ( 40) ) 
+Rm 

-2.471cos(60) + 0.133cos(80) 

R;1 (1. 790 cos ( 8) - 0.864 cos (30)) 

- R;2 (0.464 sin (20) - 0.862 sin ( 40) - 0.042 sin (60)) 
x w-2 

- R;3 (0.208 sin (60) - 0.006 sin (88) + 0.379 cos (50)) 

- R;4 (0.060 sin ( 40) + 0.050 cos (70)) 

d2o12 = [R;1 (7.162 cos (e) - 3.451 cos (30)) + o.510R;3 cos (50)] x w-2 

275 



L.8. cjJ = 270, 3 < Rm < 15 

R~1 (1.790cos(O)- 0.864cos(30)) 

+R~2 (0.464sin (20)- 0.862sin (40)- 0.042sin (60)) 

+R~3 (0.208sin (60)- 0.006sin (80)- 0.379cos (50)) 

+ R~4 (0.060 sin ( 40) - 0.050 cos (70)) 

R~1 (3.515 sin ( 0) - 0.862 sin (30)) 

+R~2 (1.326cos(20)- 0.875cos(40)) 

- R~3 (0.269 sin (30) - 0.388 sin (50) + 0.022 sin (70)) 

+0.256R~4 cos (60) 

d2112 = X 10-1 

[ 

R~1 (1.406sin (0)- 0.345sin (30)) l 
+ R~3 (0.036 sin (30) - 0.052 sin (50)) 

R~1 (3.515 sin (0)- 0.862 sin (30)) 

+R~2 (1.326cos(20)- 0.875cos(40)) 

- R~3 (0.269 sin (30) - 0.388 sin (50) + 0.022 sin (70)) 

+0.256R~4 cos (60) 

L.8 cjJ = 270, 3 < Rm < 15 

R~1 (3.515 cos (e) + o.862 cos (3e)) 

dw01 = 
-R~2 (2.188sin (20) + 0.862sin (40)) 

X 10-2 

- R~3 (0. 786 cos (30) + 0.373 cos (50)) 

+R~4 (0.458sin (40) + 0.250sin (60)) 

dwo2 = x 10-1 

[ 

R~1 (1.406 cos (e) + o.345 cos (30)) l 
dwoa = 

-R~3 (0.105cos (30) + 0.013cos (50)) 

R~1 (3.515 cos (t'J) + 0.862 cos (30)) 

+R~2 (2.188sin(20) + 0.862sin(40)) 

-R~3 (0.786cos(30) + 0.373cos(50)) 

-R~4 (0.458sin (40) + 0.250sin (60)) 

X 10-2 

276 

X 10-2 

X 10-2 

X 10-2 



L.8. </J = 270, 3 < Rm < 15 

dwn = 

R;;/ (1. 790 sin ( 8) + 0.862 sin (38)) 

+R~2 (1.326 cos (28) + 0.862cos (48)) 

- R~3 (0.527 sin (38) + 0.377 sin (58)) 

-R~4 (0.328cos (48) + 0.252cos (68)) 

X 10-2 

d1012 = X 10 
[ 

R~1 (7.162sin(8)+3.448sin(38)) l _2 

dl013 = 

dun = 

- R~3 (0. 703 sin (38) + 0.508 sin (58)) 

R~1 (1. 790 sin ( 8) + 0.862 sin (38)) 

- R~2 (1.326 cos (28) + 0.862 cos ( 48)) 

- R~3 (0.527 sin (38) + 0.377 sin (58)) 

+R~4 (0.328cos (48) + 0.252cos (68)) 

- R~1 (0.663 cos ( 8) + 8.621 cos (38)) 

+ R~2 
( 4.642 sin (28) + 8.621 sin ( 48)) 

+R~3 (2.686cos(38) + 3.804cos(5fJ)) 

X 10-2 

-R~4 (1.989sin (48) + 2.535sin (68) + 0.330cos (78)) 

d1112 = X 10-2 

[ 

-R~1 (0.265cos(8) + 3.448cos(38)) l 
+R~3 (0.358cos(3fJ) + 0.5llcos(58)) 

- R~1 (0.663 cos ( 8) + 8.621 cos (38)) 

d1113 = 
- R~2 

( 4.642 sin (28) + 8.621 sin ( 48)) 

+R~3 (2.686cos(38) + 3.804cos(58)) 

+R~4 (1.989sin (48) + 2.535sin (68)- 0.330cos (78)) 

- R~1 (0.663 sin ( fJ) - 8.621 sin (38)) 

+ R~2 (3.979 cos (28) + 8.621 cos ( 48)) 

- R~3 (2.487 sin (38) + 3.807 sin (58)) 

+ R~4 (0.330 sin (78) - 1.890 cos ( 48) - 2.537 cos ( 68)) 

[ 

-R~1 (0.265sin (8)- 3.448sin (38)) l _
2 

d2002 = X 10 
- R~3 (0.332 sin (38) + 0.511 sin (58)) 

277 

X 10-3 

X 10-3 

X 10-3 



L.8. cp = 270, 3 < Rm < 15 

-R~1 (0.663sin(B)- 8.621sin(3B)) 

- R~2 (3.979 cos (20) + 8.621 cos ( 40)) 
X 10-3 

- R~3 (2.487 sin (30) + 3.807 sin (50)) 

+R~4 (0.330 sin (70) + 1.890 cos ( 40) + 2.537 cos (60)) 

R~1 (1. 790 cos (B) - 0.863 cos (30)) 

d2o11 = -R~2 (0.464sin (20)- 0.858sin (40)) 

+0.384R~3 cos (50) - 0.256R~4 sin (60) 

X 10-2 

d2012 = [R~1 (7.162 cos (B)- 3.449 cos (30)) + 0.514R~3 cos (50)] X 10-2 

R~1 (1.790cos(O)- 0.863cos(30)) 

d2o13 = + R~2 (0.464 sin (20) - 0.858 sin ( 40)) 

+0.384R~3 cos (50) + 0.256R~4 sin (60) 

R~1 (3.515 sin (e)- 0.862 sin (30)) 

d2m = + R~2 (1.326 cos (2e) - 0.867 cos ( 4e)) 

X 10-2 

-R~3 (0.269sin (30)- 0.388sin (50))+ 0.258R~4 cos (60) 

[ 

R~1 (1.406 sin (e) - 0.345 sin (3e)) l 
d2112 = X 10-l 

- R~3 (0.036 sin (30) - 0.052 sin (50)) 

R~1 (3.515sin (0)- 0.862sin (30)) 

d2u3 = - R~2 (1.326 cos (2e) - 0.867 cos ( 4e)) 

- R~3 (0.269 sin (30) - 0.388 sin (50)) - 0.258R;;-,4 cos (60) 

X 10-2 

X 10-2 

278 



APPENDIX M 

Variability in Profiling - Non-interpolated LUTs 

Table M.1: Timings for non-interpolated variability assessment 

Run Number 
Technique Timings (fls) 

Adaptive Gauss-Legendre Flat LUTs Circular Arc L UTs 

1 57.7 30.5 31.9 

2 57.5 30.4 31.6 

3 59.1 30.7 31.5 

4 57.2 30.5 31.4 

5 57.9 30.4 31.3 

6 58.4 30.6 31.9 

7 58.0 30.5 31.5 

8 57.2 30.4 31.4 

9 60.2 32.0 32.9 

10 58.0 30.5 32.5 

11 58.2 30.4 31.6 

12 58.3 30.3 31.3 

Continued on next page 

279 



Appendix M. Variability in Profiling- Non-interpolated LUTs 280 

Table M .1 - continued from previous page 

Run Number 
Technique Timings (11-s) 

Adaptive Gauss-Legendre Flat LUTs Circular Arc L UTs 

13 59.6 31.7 32.9 

14 57.7 30.3 31.1 

15 57.3 30.2 31.1 

16 57.0 30.4 31.5 

17 57.5 30.5 31.7 

18 56.8 30.2 31.0 

19 57.6 30.5 31.2 

20 57.9 31.2 31.5 

Analysis of this data shows the following properties for the variability of timings 

within the profiling of non-interpolated LUTs. 

Table M.2: Variability parameters for non-interpolated LUTs 

Technique Mean run-time (f.Ls) Standard Deviation 

Adaptive Gauss-Legendre 58.0 0.90 

Flat LUTs 30.6 0.48 

Circular arc L UTs 31.6 0.55 



APPENDIX N 

Variability in Profiling - Interpolated LUTs 

Table N .1: Timings for interpolated variability assessment 

Run Number 
Technique Timings (JLS) 

Adaptive Gauss-Legendre Flat LUTs Circular Arc L UTs 

1 57.0 34.3 35.2 

2 57.3 34.7 35.3 

3 57.0 34.7 35.2 

4 57.4 34.5 35.2 

5 57.4 34.3 35.9 

6 57.0 34.3 35.8 

7 58.1 34.4 35.3 

8 57.9 34.6 35.2 

9 57.5 34.4 35.9 

10 58.0 34.8 35.2 

11 57.8 34.3 35.7 

12 56.9 34.2 35.0 

Continued on next page 

281 



Appendix N. Variability in Profiling- Interpolated LUTs 282 

Table N .1 - continued from previous page 

Run Number 
Technique Timings (J-Ls) 

Adaptive Gauss-Legendre Flat LUTs Circular Arc L UTs 

13 59.5 35.7 36.9 

14 57.3 34.4 35.8 

15 57.2 34.3 35.5 

16 59.4 34.3 35.3 

17 57.3 34.4 35.6 

18 58.7 34.6 36.4 

19 58.3 34.4 35.4 

20 58.7 34.4 36.7 

Analysis of this data shows the following properties for the variability of timings 

within the profiling of interpolated LUTs. 

Table N.2: Variability parameters for interpolated LUTs 

Technique Mean run-time (J-Ls) Standard Deviation 

Adaptive Gauss-Legend re 57.8 0.78 

Flat LUTs 34.5 0.33 

Circular arc L UTs 35.6 0.53 


