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Abstract

The most general supersymmetric model with minimal particle content and an
additional discrete Z3 symmetry, which allows lepton number violating terms, is
considered. In this model, we calculate at the level of one-loop the resulting Majorana
neutrino masses and the flavour violating radiative decays of charged leptons, { — 'v.

We first study the neutral scalar sector of the model, performing a calculable ro-
tation of the scalar fields to a basis in which the sneutrino vacuum expectation values
are zero. Lagrangian parameters are initialised without recourse to assumptions con-
cerning trilinear or bilinear terms, CP-conservation or intergenerational mixing and
one-loop corrections to the neutrino masses are analysed. We present scenarios in
which the experimental data are reproduced. We find that with bilinear lepton num-
ber violating couplings in the superpotential of the order 1MeV the atmospheric mass
scale can be reproduced. Certain trilinear superpotential couplings, usually of the
order of the electron Yukawa coupling can give rise to either atmospheric or solar
mass scales and bilinear supersymmetry breaking terms of the order 0.1GeV? can set
the solar mass scale.

Taking parameters which correctly describe the neutrino sector, we consider their
repercussions in flavour violating radiative lepton decays. Such decays have not
been observed and upper bounds on their branching ratios exist. We note that
certain parameter sets, which correctly describe the neutrino sector, will also generate
observable branching ratios and suggest four such sets as Benchmarks scenarios.

We present as Appendices the full set of Feynman Rules for the general super-
symmetric standard model with minimal particle content and details of the loop

calculations in the Weyl spinor notation.
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Chapter 1

Introduction

There is now considerable evidence that neutrinos produced in both the Sun and the
upper atmosphere undergo flavour oscillation during their propagation [1]. This ob-
servation suggests that neutrinos, in contradiction with their description in the Stan-
dard Model (SM), are, in fact, massive particles. Through oscillation experiments
it is possible to discern further properties of the neutrino sector; the mass differ-
ences between generations are many orders of magnitude smaller than the masses of
the charge leptons, the mass difference driving the atmospheric oscillations is much
greater than that of the solar oscillations, and the lepton mixing matrix, which ap-
pears at the charged-current weak boson vertex, is most unlike the CKM matrix [2,3],
its analogue in the quark sector. As such, the Standard Model must be extended in
some manner to encompass this new insight.

There remain open questions concerning the nature of the neutrino. It is un-
known, for example, whether the neutrino is a Dirac or a Majorana particle. If

the neutrino is a Dirac particle, a new field must be introduced to the model, the
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right-handed neutrino, which carries a conserved quantum number differentiating
the neutrino from the anti-neutrino. If the neutrino is a Majorana particle, lepton
number must be violated, giving rise to processes, such as neutrinoless double beta
decay, which are as yet unseen by experiment.

Not only does the Standard Model fail to describe these recently observed neu-
trino phenomena, but it is also blighted by the sensitivity of the Higgs potential to
radiative corrections [4]. The mass of the Higgs boson, for example, obtains large
corrections at the order of one-loop. This results in the physical mass of the Higgs
boson being dependent on energy scales introduced to the theory which are higher
than the electroweak scale. As such, we would rely upon an unattractive conspiracy
between Lagrangian parameters, producing a delicate cancellation, for the theory to
work.

This imposition, that Lagrangian parameters take ‘finely-tuned’ values, is known
as the ‘hierarchy problem’, the amelioration of which is a primary reason for incorpo-
rating Supersymmetry (SUSY) into theories which extend the SM [4]. By introducing
SUSY, a symmetry between particles of different spin, the cancellation of large ra-
diative corrections is ensured due to counteracting contributions from scalar and
fermion loops.

In constructing a Supersymmetric model difficulties arise. First, if Supersymme-
try is an unbroken symmetry of the model, the fermions and bosons which it relates
must be degenerate in mass. This is clearly in contradiction with observation and it
follows that supersymmetry must be ‘broken’ in some manner. Secondly, if a model
is constructed as follows: assuming a minimal particle content and including all pos-

sible operators allowed by Lorentz invariance, the Standard Model gauge symmetries
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and renormalizability; it can be seen that tree-level proton decay processes exist. To
constrain the values given to these dangerous Lagrangian parameters enough to en-
sure proton stability is unattractive. Instead, a further discrete symmetry can be
imposed when constructing the model to ensure such processes are absent. For this
study, a Lagrangian in which lepton number is explicitly broken is chosen; later, we
shall fully define this model, the Lepton number-violating Minimal Supersymmetric
Standard Model, the I/-MSSM, and present the superpotential.

This thesis concerns the following proposition. Neutrino masses can arise through
mixing, at both tree-level and higher order, with heavy neutral particles; in this case,
because lepton number is not conserved, the neutrino interaction eigenstates mix with
the neutralinos, the supersymmetric partners of the Higgs and vector bosons. Further
contributions to neutrino masses arise at the level of one-loop, their magnitude being
determined by further lepton number violating parameters in the Lagrangian.

We investigate the J/-MSSM fully. In Chapter 2 we will introduce the algebra
of Supersymmetry and the manner in which a SUSY invariant Lagrangian can be
constructed. We will write down the most general superpotential for a Lorentz and
SUSY invariant, minimal particle content, renormalizable and SU(3)¢ x SU(2), X
U(1)y model and see explicitly the terms which violate lepton number and baryon
number. We then present, in Appendix C, the Lagrangian and Feynman rules of
this, most general, R-parity violating model.

In Chapter 3 we consider the scalar sector of the [,-MSSM. We first consider
the neutral scalar sector and the spontaneous breaking of the electroweak symmetry,
which in turn gives masses to fermions and the weak bosons. In the lepton number

violating model, five complex neutral scalar fields aquire vacuum expectation values
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(vevs). We solve this system and choose a convenient basis for calculation.

Building on this, in Chapter 4 we investigate the fermionic sector. We discuss
the manner in which Lagrangian parameters can be initialised such that the correct
mass and mixing parameters for leptons are reproduced. Because the basis has been
chosen to simplify the neutral scalar sector and also due to the fact that the charged
leptons mix with the charginos, this step deserves careful consideration.

In Chapter 5, renormalisation issues and radiative corrections to the neutrino
masses are considered. By considering all possible loop corrections, we are able to
describe various scenarios in which the current neutrino observations can be repro-
duced within this model.

In Chapter 6 we consider whether the sets of parameters which correctly describe
the neutrino sector will give rise to flavour violating radiative decays of charged
leptons. Such events have not been observed by experiment and, accordingly, strong
bounds exist on the branching ratios which are soon to be further improved.

Supporting material is collected and presented in the Appendices. In Appendix
A, the Weyl spionor notation is defined and notes are presented on diagonalising
matrices, how the resulting mixing matrices arise in vector boson vertices and the
manner in which they can be parameterised.

In Appendices B and C, the Lagrangian for the general Minimal Supersymmetric
Standard Model (MSSM), being the MSSM without the imposition of an additional
discrete symmetry, is presented. In Appendix B, the Lagrangian is presented in terms
of interaction eigenstates and before the neutral scalar fields have been expanded
around the vacuum expectation value; in Appendix C, the neutral scalar fields acquire

vacuum expectation values, and are rotated into the mass eigenbasis. Further, in
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Appendix C, the Feynamn Rules for the vertices of the theory are given in terms of
Lagrangian parameters and the matrices which define the rotation from interaction
eigenstate to mass eigenstate. These rotation matrices are collected and presented
in Appendix D.

Appendix E contains the proof of the Courant-Fisher theorem, which is required
for the analysis of the mass spectrum of neutral scalars. Appendices F and G present
the one-loop results for the self-energies of neutral fermions and the radiative decays

of charged fermions, respectively.
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Chapter 2

Constructing Supersymmetric

Lagrangians

2.1 Superfields

The algebra of Supersymmetry [5] is defined by the following (anti)commutation

relations,
[Qaapu]zo [Q_éupu] =0
{Qa,Qp} =0 {Qa,Qz} =0
[Qa, M™) = ik P Qs {Qa: Qa} = 2056 Pu (2.1)
where p,v = 0,...,3 are Lorentz four-vector indices; o, = 1,2 and & B =12

are indices of the left- and right-handed Weyl spinor representations of the Lorentz

group, repsectively; M* and P* are the generators of the Poincaré group; and, Q.
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and @4 are the generators of the group of Supersymmetric transformations. For
more details on definitions, notation and spinor algebra see Appendix A.1.
An element from the group of finite Supersymmetry transformations, can then

be written as follows,
S(z,0,0) = exp [i (0°Qa + 0aQ% = z*P,)] , (2.2)

where @ and € are anti-communting variables known as Grassman variables. We
denote a superfield, ®(z, 8,0), which depends on these Grassman variables as well as
the spacetime coordinates, z,. It then follows that the infinitessimal transformations

are given by,

_ 9 4 po o 9 o H
P”—'Lau, Qa_ 1874—0' N (9 Qa Zﬁ_e 8 (23)

and covarient derivatives are defined as,

— 9 K po D). — 0 a#
Da——la—ea—a 08 D 280 +9 8 (24)

Because of the Grassman algebra, a power series expansion of the superfield in terms

of 6 and 0 terminates. As such, the general form can be given by,
®(z,0,0) = o(z) + 0(x) + Ox(z) + 00F(z) + 00H(x)

+0040A,(z) + 600X (z) + 000 (x) + 0006 D(z) . (2.5)

This general representation is reducible. We require just two irreducible representa-
tions, one, the chiral superfield, to describe the standard model fermions and Higgs
bosons and their superpartners, the other, the vector superfield, to describe the gauge

bosons and their superpartners.
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The left-handed chiral superfields are defined by the property,
Dy® =0, (2.6)
similarly, the right-handed chiral superfields obey,
D,®=0. (2.7)

As such, the chiral superfields can be expanded into components. For example, the

left-handed chiral superfield can be given by,

&(z,6,) = o(x) + 100"00,0(x) + ieaééauaw(x)

V2

where, as we shall see later, ¢ and 1 are physical scalar and Weyl fermion fields,

V200 () — —=000,%(x)o"8 + 0F (z) (2.8)

respectively, and F' is an auxiliary field.

The important point to note is that under SUSY transformations it can be shown
explicitly that the F-term transforms into a total derivative, bosonic fields transform
into fermionic fields and the fermionic fields transform into bosonic fields.

The vector superfield is defined by the property,
V(z,0,0) =Vi(z,0,0), (2.9)

in addition to this, we require the vector field component of this superfield to be
a gauge boson. To ensure that this is the case, a supersymmetric version of gauge

invariance,

i 1 .
eV — TN gV pioh (2.10)

where A is a chiral superfield and g is the gauge coupling, is demanded. This allows

the choice of Wess-Zumino gauge to be made. The vector superfield can then be
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expanded,
V(z,0,0) = —00,0A¥(x) + i000X(z) — i009\ () + %999_519(1‘) : (2.11)

where A, is a real vector field, A is a Weyl fermion field and D is an auxiliary field
which transforms into a total derivative under SUSY transformations.

We move now to construct a Lagrangian which is invariant under SUSY trans-
formations. As such, we construct the Lagrangian from the F- and D-terms in chiral
and vector superfields, which themselves transform into total derivatives.

First, consider the product ®®', which is itself a vector superfield. The term
given by,

/ d*0d*0dt = FF* — 8,00" 0" — iha"d, , (2.12)

is therefore invariant under SUSY transformations, and contributes kinetic terms for
scalars and their partner fermions to the Lagrangian. The auxiliary field does not
have a kinetic term, and will be integrated out, later, using its equations of motion.
To include the gauge interactions, we make the replacement 8, — D, = 0, +igA;T*

where T are the group generators, g is the gauge coupling and,
/ d*0d*09'd — / d*0d*0dte?" (2.13)

= (Dupi D o} — ithio* D) + 90" Do +igV2(0" Mp — Mpop) + FF* .

The second type of contribution, will come from products of chiral superfields,
®;®;, P08, ... which are themselves chiral superfields. From this we can see that
the contribution

1 1
/d29 [Z ki®; + 5 Zmijdh@j + —?; Zgijk@i(qu)k , (2.14)
B ij i3,k
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is invariant under SUSY transformations and contributes mass terms and scalar-
fermion-fermion interactions to the Lagrangian.
Collecting the two previous contributions, and integrating out the F'[™* term, the

contributions to the Lagrangian can be written,

2 ) .
£> Z (Busp:0*} — ihio"dabi) + (Z aTMz—Z)ijk + H. c.> - ‘GW((’O‘)

m Op;0px 0p; ’
(2.15)
where the interactions are given by the superpotential,
1 1
W= k®+ 3 > om0, + 3 > in®i®; Py (2.16)
i ij i7k

Next, we must add the kinetic terms for gauge bosons to the Lagrangian, we

define a chiral superfield, W,, where
W, = DDe 9 D,e?" . (2.17)

The product W,W* is gauge invariant and can be expanded into component fields

as,

32#92WQW“ = —iF:VF““" + %D“D“ + (—%/\“0“8,‘5\“ + %gf“bcx\“a”AZ/_\c + H. c.) ,

(2.18)

which contributes kinetic terms for the gauge bosons and gauginos and the interaction

between gauginos and gauge bosons. The auxiliary D fields can then be integrated
out.

Finally, we add supersymmetry breaking terms. Because mass degenerate scalar

and fermion pairs have not been observed, it is clear that SUSY must be broken. A

number of mechanisms for this breaking have been suggested, however, it is sufficient
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here merely to add all the terms which could break supersymmetry while maintaining
the cancellation of quadratic divergences to the Lagrangian. As such, we have not
attempted to understand SUSY breaking, but we are able to parameterize its pos-
sible effects. Such ‘soft’ SUSY breaking terms are [6]: scalar mass terms, —m?|¢|?;
gaugino mass terms, —%m,\/\/\; trilinear scalar terms, —A;;kp;p;¢k; bilinear scalar

terms, —B;;p;p;; linear scalar terms, —Cj;.

2.2 Contributions to the Lagrangian

We can now gather all the contributions defined above together, showing the manner
and the origin of terms which appear in the Lagrangian.

Kinetic term for scalar:
(Dup)! (DH¢)
Kinetic term for fermion:
i,/jp(}uﬁpgu?/)p
Both arising from combinations of chiral superfields in the form [ d?6d?60®!

Kinetic term for gaugino:

\Azupp A
iAy a"PPD A,
Kinetic term for gauge bosons:

1 a a v
_ZF’“’F !

Gaugino interactions:
V290 TN, — iV2g M T i)
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The three terms above arise from [ d*0d20W°W, + H.c

Yukawa terms:

= Pl 7.l
2 8y;0¢p; Vi¥se 2 0oy Vis¥s
F-terms:
By |’
. dp;
D-terms:

g xapAa
_Z 9 Z TzA b ?
Arise from combinations of chlral superﬁelds of the form f d?0®;, ®,9;,0,9;0, and

having integrated out auxiliary fields.

SUSY breaking terms:
21 12 1
—mylel® —§m,\/\/\, —Airpivivr v —Bijoip; , —Cip;

We add all possible ‘soft’ terms which do not disrupt the cancellation of quadratic

divergences.

2.3 Constructing the (Z)-Minimal Supersymmetric
Standard Model

We wish to construct a minimal particle content SU(3)¢c x SU(2) x U(1)y model
which is Lorentz invariant, renormalisable and invariant under SUSY transforma-
tions. From the previous section, we know the way in which terms can be added
to the Lagrangian and the relations between them. We now need to define the
superfields of the model, the quantum numbers they carry and the form of the su-

perpotential.
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Chiral Superfield | SU(3)c x SU(2), x U(1)y | Field Components
a,r aiz uii
Qi, (37 2, é) . I
di; di;
Dcz?: (3a 1’ %) J*Ra; ’ dﬁi
Ue? (3,1,-3) UR; 5 U
Uy, Vi
L (1,2,-1) s I
€L €Li
E* (1,1,1) €Ri» R
1 h9 ) RS \
Ht (1,2, —5) , ~
> hi < > hi <
hy hy
Hg (1,2,1) e
\ M) \ ")
Vector Superfield | SU(3)c x SU(2), x U(1)y | Field Components
Vi (1,1,0) B, B,
Vs (1,3,0) W wid
Vs (8,1,0) e

Figure 2.1: Particle content of the Minimal Supersymmetric Standard Model. Where
Q¢E, D7, USE, L, B¢, HY, Hf are the chiral superfield particle content, i =1,2,3
is a generation inder, x = 1,2,3 and a = 1,2 are SU(3) and SU(2) gauge group

indices, respectively.
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Each standard model particle is placed in its own superfield, as defined in Ta-

ble 2.1, and the most general superpotential that contains these fields, is given by
W= YELHlE + YDHlQDC + YUQHQUC - quHQ

+%/\LLE‘C + NLQD® — kLH,
1
+5N'UD°D". (2.19)

The second line will contribute terms to the Lagrangian which violate lepton number
and the last line will give rise to baryon number violation. Such lepton or baryon
number violation does not arise in the SM, however that fact that none of the terms
in the Standard Model violate lepton number (L) is not due to an imposed symme-
try, but merely reflects the fact that all such combinations of SM fields are ruled
out by consideration of gauge invariance and renormalisability [7]. For supersym-
metric extensions of the SM this is no longer true. In the Minimal Supersymmetric
Standard Model [4], lepton number and baryon number (B) violating terms appear
naturally, giving rise to tree-level processes, proton decay for example, which are al-
ready strongly constrained by experiment. Either, bounds can be set on Lagrangian
parameters, or a further discrete symmetry can be imposed on the Lagrangian, such
that these processes are absent.

It has been shown that there are three preferred discrete symmetries which can
be imposed when constructing the model [8,9], and once any of these symmetries
are imposed the proton is stable. The discrete symmetry most commonly imposed
is known as R-parity (Rp) [10-12]. Under R-parity the particles of the Standard
Model including the scalar Higgs fields are even, while all their superpartners are

odd. Imposing this symmetry has a number of effects. First, any interaction terms
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which violate lepton number or baryon number will not appear. Second, the decay
of the lightest supersymmetric particle (LSP) into SM particles would violate Rp;
the LSP is therefore stable. Third, the sneutrino vacuum expectation values (vevs)
are zero; without extending the MSSM field content, spontaneous generation of Rp
violating terms is phenomenologically discounted [13]. The second discrete symmetry
is a unique, Z3 symmetry which results in the MSSM with lepton number violation
but not baryon number violation; denoted here as (I/-MSSM. The third is a Zg
symmetry refered to as proton hexality.

We consider here the [-MSSM !, the superpotential for which is given by

W = €q % Aag L& LY B + Nyji Lo Q%% Do — pa L2 Hy + (Yy)i; QF* Hy Uj o
(2.20)
As lepton number is not conserved, the L and H; superfields have no quan-
tum number to differentiate them. As such, we combine them into L7_, 5 =
(HY, Li_, 5 3) to emphasise the fact that any distinction between the superfields is ar-
bitrary. u, is the generalised dimensionful y-parameter, and Aqpx, /\;jk, Ak (Yu )i
are Yukawa matrices with €4 and €;,, being the totally anti-symmetric tensors, with
€12 = €123 = +1.
The Lagrangian and Feynman rules for the [.-MSSM are obtained by setting the

Baryon number violating couplings, \” and A", to zero in the expressions presented

in Appendices B and C.

See Ref. [14] for a review of the phenomenology of this model, whose notation we follow here.
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Chapter 3

The I,.-MSSM at tree level: Scalar

Sector

If lepton number conservation is not imposed, bilinear terms exist in the Lagrangian
which give rise to mixing between leptons and non-leptons [11,14-21]. In particular,
the neutrinos will mix with the neutralinos and the sneutrinos will mix with the
neutral scalar Higgs fields; cruxially all five complex neutral scalar fields can acquire
vacuum expectation values. Minimising this ten parameter potential in general is
not straightforward, it is more convenient to simplify the problem by choosing an
appropriate basis in the neutral scalar sector. We have introduced the notation
L, = (Hy, L;) where Hy and L; are the chiral superfields containing one Higgs doublet
and the leptons, respectively (o =0,...,3 and ¢ = 1,...,3). Furthermore, starting
from the interaction basis, we are free to rotate the fields and choose the direction
corresponding to that of the ‘Higgs’ field. Assuming that the system defining the five

complex vacuum expectation values of the fields were solved, four complex vevs, v,,
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would define a direction in the four dimensional (H;, L;) space. One can then choose
the basis vector which defines the Higgs fields to point in the direction defined by
these vacuum expectation values. We refer to this basis, in which the ‘sneutrino’ (as
we call the fields perpendicular to the ‘Higgs’ field) vevs are zero, as the ‘vanishing
sneutrino vev basis’ {16,22-24|. This basis has the virtue of simplifying the mass
matrices and vertices of the theory and, thus, is better suited for calculations.

Basis independent parameterisations can be chosen which explicitly show the
amount of physical lepton number violation [25-27]. Values for physical observables
such as sneutrino masses and mass splitting between CP-even and CP-odd sneutrinos
have been derived in the literature in terms of these combinations but usually under
some approximations (for example the number of generations or CP-conservation).
We find this procedure in general complicated for practical applications and we shall
not adopt it here.

Instead, we present in the next section a calculable procedure for framing the most
general MSSM scalar potential in the vanishing sneutrino vev basis. An advantage of
our procedure is to obtain a diagonal ‘slepton’ mass matrix, two real non-zero vacuum
expectation values and the neutral scalar potential determined by real parameters
in the rotated basis. The latter proves that the neutral scalar sector of the most
general L-violating MSSM (and, in fact, R-parity violating MSSM) exhibits neither
spontaneous nor explicit CP-violation in agreement with [28]. In Section 3, the
tree-level masses and mixing of the neutral scalar sector is investigated. Using the
Courant-Fischer theorem for the interlaced eigenvalues, we prove that there is always
at least one neutral scalar which is lighter than the tree-level Z-gauge boson. We

present approximate formulae which relate the Higgs masses, mixing and Higgs-gauge
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boson vertices of the R-parity conserving (RPC) case with the R-parity violating
(RPV) one. In Section 4, the positiveness of the scalar mass matrices and stability

of the vacuum are discussed. The contents of this chapter are based upon Ref. [24].

3.1 Basis choice in the neutral scalar sector

In this section we develop a procedure connecting a general neutral scalar basis with
the vanishing sneutrino vev basis, the latter being more convenient for practical
applications. The five neutral scalar fields, 71, and hY, from the SU(2) doublets,

Lo = (ULa,€r,)T and Hy = (h, hJ)T, form the most general neutral scalar potential

of the MSSM,
‘/neutral = (m%)aﬁ I;ZQDLB + H‘;:u'ﬂDZaDLﬁ + ﬂ/;uahg*hg + miﬁ hg*hg
~ * ~% * 1 * ~% ~
- baVLahg - baVLahg + g(g2 + gg)[hg h’g - VLaVLa]2 ) (31)

where general complex parameters b,, an hermitian matrix (m?2 and m?, all
p ¥l Hp

L£/a
arise from the supersymmetry breaking sector of the theory. The last term in (3.1)

originates from the D-term contributions of the superfields £, and H;. Defining
(M3) 5 = (m3) 5+ Hops,  and  mj = m, + pipta (3.2)
one can rewrite the potential in (3.1) in a compact form as

‘/neutral =

—

ME) 5 PLaPs + M5 hy" hy — (baipohg + Hee)

+ (0" + @)lh"he — Plaia)’ (3.3)

o\ =
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In order to go to the vanishing sneutrino vev basis, we redefine the ‘Higgs-sneutrino’

fields
Vi = aﬁDILﬁ ) (3-4)
where U is a 4 x 4 unitary matrix, defined as follows,
U = Vdiag(e®)Z, (3.5)

being composed of three other matrices which we define below, V unitary and Z real

orthogonal. The potential in the primed basis becomes,

~ 2 Y *
‘/neutral = [ZT (M/f,) Z:| aﬁVLaVLﬁ + mg hg h'g
1oy =10 I N AT Y A &
|0 2)atahd + He| + 202+ ) (WS = 7ara) o (36)
where
(/\;I’i) = diag(e ") VI (M3) V diag(e”=) , bT = b7V diag(e*®=) . (3.7)

2
The unitary matrix, V, is chosen such that (M’ g) is real and diagonal - the hat (7)
is used to denote a diagonal matrix. The phases ¢, are chosen such that b, is real
and positive [they are equal to the phases of (b7V)%]. The minimisation conditions

for the scalar fields are now derived, to obtain conditions for the vacuum expectation

values,
8V ~ 2 o * ]. * T !
Ey = [ZT (M/c'> Z] Vig— (bIZ)ahg - ‘(92 + 93)(’13 hg - VL'yVL'y) Via
VLOL vac af 4 vac
av % 1 * o
x| = MRS — (W Z)abn + (0% + 93) (R8RS — 5, )HS| =0,
2 vac vac
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where ‘vac’ indicates that the fields have to be replaced by their vevs,

(Fha) = —= (h3) = —=

V2’ V2

The U(1)y symmetry of the unbroken Lagrangian was used to set the phase of v, to

(3.9)

zero, however, at this stage all other vacuum expectation values will be treated as

complex variables. By combining Eqgs. (3.8,3.9) we obtain

~ 2 , 1
[ZT (MIE> Z] aﬁvﬁ — (V'Z)avy — §(92 + g§)(v§ —V0y) % = 0, (3.10)

1
miv, — (V' 2) qua + §(g2 + g2) (v — vy v, = 0. (3.11)

In a general basis, it is difficult to solve the above system with respect to the
vevs without making some approximations, for example assuming small ‘sneutrino’
vevs [14]. In order to simplify calculations we would like to find a basis where the
‘sneutrino’ vevs vanish, v; = vo = v3 = 0. In other words, we are seeking an
orthogonal matrix Z, such that the following equation,

.

v:— 2

2 2
vu+U0

[ZT (M'Z) Z] vo — (H/ Z)atn — — M2 o = 0,  (3.12)

a0 2
holds. If the above system is satisfied, then a solution with zero ‘sneutrino’ vevs
exists. The other solutions, with non-vanishing ‘sneutrino’ vevs will be discussed

later. In Eq. (3.12),

Mz = 7 (9" +92) (vi+ ) (3.13)

AN

is the Z-gauge boson mass squared. It is obvious that when v; = 0, vg is real. It is

now useful to define

tang = 2% (3.14)



To determine Z, multiplying (3.12) by Z,,, summing over a and solving for Z,
yields,
b, tan 3

~ 2 2 '
1~ __lagotan?g—1
(M E) oo 2 MZ tan? 8+1

ZaO = (315)

For given set of model parameters, Z,o depends only on tan 3 which we can now fix

by solving the orthonormality condition,

3

3 '

b2 tan?

§ ZaoZiad = E o~ an”p s = 1. (3.16)
~ 2

w0 [(Mz) -3 M3 e

This equation can be solved numerically for any given set of model parameters.

It is worth noting that when b; = 0 and using notation more typical for this case,
by = mi,, (M’i) = m?, Eq. (3.16) reduces to one of the standard RPC MSSM
00

equations for the Higgs vevs:

1
mva = v [ = 557+ )= )| 317

For some parameter choices Eq. (3.16) may admit multiple solutions for tan f.
Each of the possible tan 3 specify a different basis, and each of these bases has
one solution of the minimisation conditions with vanishing ‘sneutrino’ vevs. The
subtlety highlighted earlier is the following: all possible solutions of the minimisation
conditions can be found in each basis, so, in general, each basis contains a number of
extrema equal to the number of possible solutions for tan 3. Hence, a solution with
v; = 0 in one basis, is a solution with v; # 0 in another basis. The important point
to note is that by considering all possible values of tan 3, and selecting the value
which corresponds to the deepest minima for the solution with vanishing sneutrino

vevs, all the solutions will have been accounted for, and the vanishing sneutrino vev
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basis will have been determined correctly. The value of the potential at the vacuum,

in terms of tan § is given by

M} (tan2ﬁ—1)2‘

V(tanf) = — tan? 8 + 1

(3.18)
2(9% + 63)
The obvious conclusion from the equation above is that the deepest minimum of the
potential is given by the solution for tan 3 or cot # which is greatest.

Knowing tan 3, one should fix m2 using Egs. (3.11,3.13-3.15) (again in the analogy

with RPC MSSM where m3 is usually given in terms of M4 and tan ). Namely

1., tan’*g—1
m% = Zaob;COt,B——MZ an /B

27 % tan2f 41" (3.19)

In this way m2 is chosen to give the correct value of the the Z-boson mass.

Only the first column of the Z matrix, Z,p, is defined by Eq. (3.15). The re-
maining elements of Z must still be determined. Having fixed the first column of the
matrix, the other three columns can be chosen to be orthogonal to the first column
and to each other. This leaves us with an O(3) invariant subspace, such that the

matrix Z is given by
Z=0 , (3.20)

where

Zoo _\/2120 + 2% + Z3 0 0 \

7 YARYA ¥V Z§0+Z§0 0
10 V23 +Z5+2Z, VZ3+2Z5+23,
0= , (3.21)

Z20 ZooZ29 Z10229 _ Z3g
V 23+ 230+ 23, V23t 23\ 220+ 230+ 28, \/Z3,+2Z5
Z30 ZopZ30 210230 Zag
\ VBT VAT AT e )
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and X is an, as yet, undetermined 3 X 3 orthogonal matrix determined by three
~ 2
angles. This remaining freedom can be used to diagonalise [ZT (M’g) Z] , l.e. the
ij
~ 2 -
(real symmetric) ‘sneutrino’ part of the ZT (M'[:) Z matrix, with entries (MZ);. We

have now accomplished our aim of finding the matrices V and Z which, after inserting

into potential of Eq. (3.6) and dropping the primes, reduce the scalar potential to

the form
Viewsr = (M2)ag i 715 + mEHS" G — [Ba 0 b + He
1 * ~% o~ 2
+ (6" +92) (h‘z’ hS—VLavLa) , (3.22)
where
2 _ T 242 Y
(M2)ag = [Z (M/é) Z] , and Ba = (02, (3.23)

with (./\;l’i) and ¥’ given by Eq. (3.7). In this basis the matrix M% adopts a partic-
ularly simple form
Botan 8 — 1M%cos28 B;j tanf

(Mg)aﬁ = ) (3-24)

B; tan g (M‘E)z 0i

where there is no sum over 7 in the down-right part of the matrix. Notice that we
did not only succeed to self-consistently go to a basis where the sneutrino vevs are
zero, but also we managed to have the sneutrino masses (M%)z diagonal and all the
parameters of the scalar potential in Eq. (3.22) real.

As a byproduct of our procedure, we note here that the potential of Eq. (3.22)
exhibits neither spontaneous nor explicit CP-violation at the tree level. The latter is

in agreement with the results of Ref. |28] following a different method. Of course, the
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parameters i, of the superpotential and the soft supersymmetry breaking couplings
stay in general complex. The result that the neutral scalar potential is CP invariant
can also be seen directly from Eq. (3.3). By forming the complex basis (7, h5*)
the first line of the potential can be rewritten as a matrix; a rotation can then be
performed such that the matrix is real and diagonal. After the rotation, the second
line, being the contribution from D-terms, contains complex parameters in general,
but the rotation matrix can be chosen such that these phases are set to zero.

A question arises when we include high order corrections to the potential. Then
the vanishing ‘sneutrino’ vevs will be shifted to non-zero values by tadpoles origi-
nating, for example, from the LQD contribution in the superpotential (2.20). The
‘sneutrino’ vevs maybe set back to zero by a renormalization condition such that a
counterterm for these vevs set their one particle irreducible (1PI) tadpole corrections
to zero.

To conclude, it is worth making a remark about the sign of By. As is clear from

the form of Egs. (3.23,3.7,3.15), if M 3 M2 tan’f-1 0 for all @, By is
L oo Z tan ﬂ+1

always positive in the vanishing sneutrino vev basis.

3.2 Parametrising the neutral scalar mass matrices

The neutral scalar sector of the R-parity violating MSSM is in general very com-

plicated. This is due to the fact that the scalars mix through the lepton number

violating terms proportional to b;, (mi) and unless all of these parameters and vevs

are real one has a 10 x 10 matrix to consider. However, for any given set of model pa-

rameters, one can always perform the basis change described in the previous section
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and arrive at the potential defined by Eq. (3.22), with only real parameters. Conse-
quently, the physical neutral scalars are, at the tree level, exact CP-eigenstates. This
implies that the neutral scalar mass matrix decouples into two 5 x 5 matrices, one for
the CP-odd particles and one for CP-even. In the same manner as in the R-parity
conserving MSSM, once quantum corrections are considered, the CP invariance will
generically be broken [29].

Ultimately, one would like to parametrise the scalar sector resulting from the
potential in (3.22) with as few parameters as possible in order to make contact with
phenomenology. These parameters in the case of the R-parity conserving MSSM are:

the physical mass of the CP-odd Higgs boson

2B
2 0
My = snaf’ (3.25)

and tan 8. An advantage of the form of potential in Eq. (3.22,3.23,3.24) is that, M4
and tan 3 can still be used for parametrising the general Higgs sector in the R-parity
violating MSSM. M2 is the mass of the lightest CP-odd Higgs boson in the R-parity
conserving MSSM; as such, it is used here as a parameter. m? is used to denote
the physical tree-level mass of the lightest CP-odd Higgs in the R-parity violating
MSSM (the convention adopted is that masses in the RPC case, parameters in this

model, are denoted by M, and the masses in the RPV model are denoted by m).
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3.2.1 CP-even neutral scalar masses and couplings

The Lagrangian after spontaneous gauge symmetry breaking contains the terms
Re h2
LD — ( Reh? Revry Revp; )MzEVEN Revr | - (3.26)
Re IJL]'
As such, the scalar CP-even Higgs squared mass matrix becomes

cos? M3 +sin? BM2  —Lsin2B8(M3 + M%) —B;

M%VEN = ——% sin Qﬁ(Mf‘ + M%) sin? ﬁMi + cos? ﬁM% Bjtanf , (3.27)
—B; B;tan g3 M?26;
where
N 1
M} = (M2); + 5 cos 20M3 , (3.28)

are in fact the physical sneutrino masses of the RPC case. It is important here to
notice that the top-left 2 x 2 sub-matrix is identical to the RPC case, for which the

Higgs masses are given by

1

MEy = 5 (M§ + M3 + \/ (M2 + M3)? — AM3 M7 cos? 25) , (3.29)

and will be used as parameters in the RPV model.

The matrix (3.27) always has one eigenvalue which is smaller than M%. This
may be proved as follows: one first observes that the upper left 2 x 2 submatrix
of (3.27), call it A, has at least one eigenvalue smaller than or equal to M%. Then
using the Courant-Fischer theorem [30], details of which are given in Appendix E

applying linear matrix algebra, one proves that, for one flavour, the eigenvalues
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of the 3 x 3 matrix M%ygy, are interlaced with those of A. This means that the
matrix Miypy with 2 = 1 has at least one eigenvalue smaller or equal than M3.
Repeating this procedure twice, proves our statement. Furthermore, it is interesting
to notice that in the region where tan 8 > 1, the eigenvector (sin 3, cosf3,0,0,0)T
corresponds to the eigenvalue with mass approximately M%. Notice that this is the
same eigenvector as in the RPC case which corresponds to the Higgs boson which
couples almost maximally to the Z-gauge boson.

Lepton flavour violating processes have not been observed as yet and therefore,
bearing in mind cancellations, the parameters B; tan 3 have to be much smaller than
min(M2%, M?). To get a rough estimate, which we will refine later, consider the
dominant contribution from neutral scalars and neutralinos in the loop [31-34],

Qe B%tan?p
160 m3

<lev, (3.30)

my

with m = max (M4, M;) and B ~ O(B;). This shows that

Bitan 1.2-1073
m2 NG

With the approximation that —@—f%"—g is small it is not hard to find a matrix Zgr

~0.1%. (3.31)

which rotates the fields into the mass basis, by expanding in this combination of

parameters, such that

Zn " My Zr = diag|ma, mo, (m )i] , (3.32)

Vi

with m2, being the lightest neutral scalar mass and

. __cos{3—a)cosaB; sin(f-—a) sinaB;
cosa S cosﬂ(sz—ME)] + cos B(MJ?—M%)J
— o cos(f—a) sinaB; sin(f—a) cos aB; .
Zr sina  cosa o8 BOT—1T%) + I ﬁ(MJ?—M},)] , (3.33)
cos ﬂPi" B; cos ,HPiH B; y
cos(f—a) sin(f—a) tj

38



where there is no sum over i and (M}, M?, M%) are defined in (3.28,3.29). In

addition,

M3 + M7 and PP — M3 cos® 28 — Mj, 4

tan2a = tan2f —5——= -
an 2« an 203 M2 — M2 i cos? B(ME — ME)(M? — Mf,H) S (

3.34)

(the common convention is to choose 0 < § < 7/2 and —7/2 < a < 0). The mass

eigenstates of the RPV model are therefore given by

hp.
h® ~ cosaReh? —sinaRedg+ M& Revy,; , (3.35)
cos(B — a)
PHB;
H® ~ sinaReh?+cosaReigg+ M Reoy,; ,
sin(8 — a)
(5,): ~ cos(B — a)cosaB; sin(8 — a)B;sinab; Re h2
A cos B(M? — M}?) cos B(M? — MF) ¢
cos(B —a)sinaB; sin(f — a)cosaB;
( COSﬁ(M]-z _ M,%) COSﬁ(Mf _ M2) Revpg+ Revy,;
with corresponding masses,
M2 cos? 23 — M? B? B*
2 ~ M2 Z h )
Mo b7 (ME — MP) cos? § Z w2 T O Geosip) w 339)

12

M2 cos?28 — M3 B!
m2o M% 4+ £ H ZM2 M2 O(———), (3.37)

(M}, — M2)cos? 3 M6 cos* 3
i B? M? — M2 cos?2
() =~ (W2)i+— £ = Mj cos' 2
oS | M — M (M + M) -+ M3 M} cos? 28|
B4

The above expressions, are useful in relating the masses of the neutral scalars in the
RPC and RPV cases in the valid approximation B tan 8 < min(M3, M?). They are

presented here for the first time except the mass in (3.38) which agrees with Ref. [23].
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We note here that these formulae are not valid if some of the diagonal entries in the
mass matrix are closely degenerate - in such case even small B; terms lead to the
strong mixing of respective fields. However in many types of calculations (e.g. various

loop calculations) one can still formally use such expansion. In the final result one

fm1)—f(ma)

. —m, — Which have a well defined and correct

often gets expressions of the type
limit also for degenerate masses, even if the expansion used in the intermediate steps
was, in principle, poorly defined.

It is interesting to note that the rotation matrix U defined in (3.5), although

explicitly calculated in this thesis, does not appear in the neutral scalar vertices. For

example, the vertices of the CP-even neutral scalars with the gauge bosons read as’,

['VVH -

1 g M
5 if)s 02 (coS BZpas + sin BZp1s) 2 Z, HY

1
+ 59 My (cos 8Zpas + sin 8Zr1s) W W, H | (3.39)

aeey

From (3.33) and Lyvy above, it is easy to see that the light Higgs boson coupling to
the vector bosons (V = Z, W), is proportional to sin(8 — @) as in the RPC case?. In
fact, the coupling sum rule,

5
> Govee = Gvve (3.40)

s=1
valid in the RPC case for s = 1, 2, persists also here, where gyyyo are the couplings
appearing in (3.39) and gyv, the corresponding coupling appearing in the Standard

Model.
INote that the matrix Z defined in (3.20) has nothing to do with either Zg or Za defined in

this section.
2We follow the conventions of Ref. [35].
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3.2.2 CP-odd neutral scalar masses and couplings
For the CP-odd case one finds,
Im h2
LD - ( Imh2 Imiy Imby, )M%DD Imigy | » (3.41)
Imuy;
where the CP-odd mass matrix reads,
cos? BM} + Esin® BM%  1sin28(M3 — EME) B,
Mbpp = 1sin28(M3 — €M2)  sin? BM3% + £cos®’ BMZ Bjtanp | ,(3.42)
B; B;tanpf M35,

and £ is the gauge fixing parameter in R¢ gauge. In fact, by using an orthogonal

rotation

sin@ —cosf 0
V= cos sing 0 |, (3.43)
0 0 1

we can always project out the would-be Goldstone mode, of the CP-odd scalar matrix

and thus
EMZ 0 0
VIMEppV = 0 M Z : (3.44)
B M6y

Under the approximation of small bilinear RPV couplings [see Eq. (3.31)], a

solution is determined for the matrix Z, which rotates the fields into the mass basis,
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such that

ZATMQODDZA = diag [méo,mf\o, (mg_){ , (3.45)

sin 3 cos (3 ﬁ,’%@ \

Za=| —cosf sin 3 A—iﬁt_—a% ; (3.46)
2
B;
0 mpuimwn %0 )

with the mass eigenstates given by

G® ~ sinfBImh —cosBImiy,,

. . B; -
A0 ~ COSﬁImh8+SlnﬁImVLO+cosﬁ(Mf—Mﬁ)ImVLi’
N Bijtanf = _ ,
(0_); =~ WI 1 A2+ M2 2 —— —Im 0o+ Imoyg, , (3.47)
with corresponding masses,
3
1 B? B*
o~ M?2-— t _— .
M4 4 cos?f3 — M2 — M2 + O(MG cos“ﬂ) ' (348)
B? Bt
2y, ~ M?- + O(———). A4
(m;._) ' (M2 — M?)cos? ﬂ (M6 cos? ﬂ) (3.49)

The coupling of the Z gauge boson to the CP-even and CP-odd neutral scalar fields

is given by

—192
2CW

Lzya= Z¥ HY AD

3
[(PHQ — DAY (Z ZR(2+a)s ZA(2+a)p — ZR1sZA lp)
a=0
(3.50)
where the four momenta p‘,}g,, pff‘g are incoming and the fields A>_; 4 correspond to
GO, A%, (7)1, (&_)a, (P_)3 respectively. One may check that the coupling Z — G° — h°

derived from (3.50) is proportional to sin(a — 8) as it should be.
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3.3 Positiveness and stability of the scalar potential

3.3.1 Positiveness

In general, one should inspect whether all squared masses in the CP-odd and CP-
even sector are positive. For that, all diagonal square subdeterminants of mass
matrices should be positive. One can easily check that both CP-odd and CP-even
mass matrices in (3.27,3.42) respectively, lead, in the rotated basis, to the same set

of conditions,

)

3
1 B?
2 : . 2 1
Mz > 0 Wlthl—1,2,3 and MA>C—0@§W (351)
Using the form of M% in (3.25), the last equation can be rewritten in the form
3. g2
By >tanfy el (3.52)
i=1 1

Excluding some very singular mass configurations, the above conditions are rather

trivially fulfilled if one takes into account the bound of Eq. (3.31).

3.3.2 Stability

The question of whether the potential is stable, i.e. bounded from below, is far more
complicated. In most cases the quartic (D—)term dominates and there is no problem.
The only exception being when the fields follow the direction |h3|? = 3_7_, |#:|% In
such a case, one should check whether the remaining part of the potential is positive
along this direction.

Denoting R = /Y., |%|? and kg = Re™, where ¢ is a free phase, and using

Egs. (3.19,3.24,3.28), one can write down the scalar potential along this direction in
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the vanishing snueutrino vev basis as

By
Viewsss = —————0o010 + [ME + Bocot 8] 73,0y,
e sin Bcosf L0 10 (M, o cot B] VL

+ Bitan B (0ol + Upolt;) — Ba (V10he + H.c)

7 Qin, — (BT oy Re™™ + He) . (3.53)

where the real symmetric matrix Q is

Q - M Bitanf . (3.54)

Bjtanf [M?+ Bycot 8] 6;;
Finding the stability conditions for the potential (3.53) is difficult, it depends on
nine real variables (4 moduli and five phases of the fields). To simplify the problem,
we perform one more field rotation to the basis in which the matrix Q is diagonal.
This can be done, in general, by numerical routines (routines were already used in
calculating the vanishing sneutrino vev basis, and therefore, finding the stability

conditions for the general scalar potential always has to involve some numerical

analysis). We thus define the matrix P, &, — Piy, as
PfQP = dia,g(Xo,Xl,Xg,X3) . (355)

In fact, Q is real, so we can choose P to be real orthogonal. Also, we denote
Dg = B, P,s. Obviously, the rotation P preserves the value of R = |h]|.

The potential becomes:

3
Vit = Y [XalPpal?* = DaR (F,e™ + Hel)] | (3.56)

a=0

where X, has to be positive, otherwise for ¢ = 0 along the direction #;;, = Im ,, = 0

the potential V... = |Re 7. 4|%[Xo — Dosign(Re ;)] falls to —oo at least for one
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direction along the Re 7,4 axis. In fact the condition on X, is X, > 2|D,|. Thus
our first conclusion is that the matrix Q has to be positively defined. One can write
down appropriate conditions in the same manner as for the scalar mass matrices;
comparing with Eq. (3.51), it can be observed that this condition is automatically
fulfilled if relation (3.51) holds.

With X, positive, one can write down the potential as:

3 3 D2
neutra V - R2 == . (357)
1 ZO V La ™ / v QZZO Xa

To further simplify the problem, denote 7;, = uaei(¢“¢“), where u, > 0 are field

moduli and ¢, are free phases. Then

2 (i \/_U D -¢ i Dz) ( )
‘/neutra = R X 2 ,—- o - =2 s 3.58
I a=0 R a

where R = \/ S22 = \/ S22 ,u?. Phases ¢, can be adjusted independently of

uy. The worst case from the point of view of potential stability, the smallest first
term inside the parenthesis, occurs for D,es = |D,|. Denoting further ¢, = u,/R,

0 < ¢, <1, one can reduce our initial problem to the question whether the function

Z X Z o€t — 2| Dalea) , (3.59)

a=0

9(€a

depending now on four real positive parameters, is non-negative on the unit sphere

Zz _o€2 = 1. In general such problem can be solved numerically using the method

of Lagrange multipliers. For X; > Xy — Dy, the minimum occurs for

| Dal
Xo+ 2’

(3.60)

€a =

where A can be found numerically as a root of the following equation:

3
D2
Z Sy =1. (3.61)

a=
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For smaller X;, the minimum is realized for ¢; = 0 for one or more values of ¢ and
requires analysis of various special cases. Having found the correct minimum, to
prove the stability of the potential one needs to show that the function g at the
minimum is non-negative.

As shown in Eq. (3.31), B; terms and thus also D; terms are usually very small. In
this case one can set approximate, sufficient conditions for the stability of the poten-

tial, without resorting to solving Eq. (3.61), numerically. Denote D = Zle D? and

Xomin = min(X1, Xo, X3). Then, using the inequality D;e; < \/Zf’zl D? \/23 € =

i=1 "1
D+/1 — €3, one has
glea) > Xo€k + Xpmin(1 — €2) + (X; — Xomin)€2 — 2| Doleo — 2D/ 1 — €3 (3.62)

Terms (X; — Xpnin)€? are always non-negative. The worst case being when the vector
(€1, €9, €3) is along the minimal X; axis, where these terms vanish. Other terms are
rotation invariant in the 3-dimensional space (€1, €3, €3), so Eq. (3.62) is equivalent
to finding parameters Xo, Xmin, Do, D for which the expression (3.63), depending on

just one real variable, is positive:
g'(€0) = Xo€t + Xmin(1 — €2) — 2| Doleo — 2D4/1 — 2 >0 . (3.63)

Analysis of (3.63) is further simplified by one more approximation, justified for small

D:
gl(Eo) Z X()C(Z) + Xmin(l — 6(2)) — 2ID0|60 —2D . (364)

The rhs of Eq. (3.64) is now trivial. Following approximate conditions for the stability
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of the potential can be summarized as follows:

Xomin range Stability requires
Xmin 2 XO - DO X() Z 2|D0| + 2D
0< Xmin < XO - DO (XO - Xmin)(Xmin - 2D) Z Dg

Both conditions are sufficient, but not minimal - we have made some approximations
and there may be parameters which do not fall into either of the categories above,
and yet still give a stable potential. For example, if Xy = X; = X3 = X3 = X, one
can easily derive the exact necessary and sufficient condition for potential stability
as X > 2,/D2 + D?, less strict than X > 2(|Do| +|D|) which would be given by the
table above.

For complementary work the reader is referred to Ref. [36].

3.4 Summary

In this chapter, based on Ref. [24], we have presented a procedure for calculating the
rotation matrix which brings the neutral scalar fields of the general lepton number
violating MSSM into the vanishing sneutrino vev basis. In doing so, we have made no
assumption about the complexity of the parameters. We consider the case of three
generations, but our approach immediately applies to other cases, apart from obvious
modifications of the form of Z matrix defined in (3.20.3.21). As a byproduct of basis
change, we prove that the tree level MSSM potential does not exhibit any form
of CP-violation, neither explicit nor spontaneous. Consequently, the neutral scalar
fields can be divided into CP-even and CP-odd sectors with the 5 x 5 neutral scalar

squared mass matrices, taking a very simple form with only small lepton number
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violating mass terms sitting on their off diagonal elements. We can thus expand
along small / mass terms and find analytic approximate formulae which relate the
scalar masses in the R-parity conserving model with the J/-MSSM . Furthermore we
also find, that in general there is always at least one neutral scalar field with mass
lighter than Mz which couples maximally to the Z-gauge boson in the case of large
tan 8 and large M4.

This analysis is an important first step towards our study of the neutrino proper-
ties in this model. Having studied the neutral scalar sector, we are now in a position
to consider the masses of the fermions at tree level. The vacuum expectation values
determined in this chapter give rise to the lepton masses and it is the manner in

which lepton masses arise in this model, which is considered in the next chapter.
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Chapter 4

The I,-MSSM at tree level: Fermionic

sector

In the [/-MSSM a single neutrino mass arises at tree level due to the mixing between
neutrinos, gauginos and higgsinos [11,16,18,37,38]. This tree level mass is propor-
tional to square of the bilinear lepton number violating superpotential parameter, pu;,
which is assumed to be of order of MeV, and is suppressed by the ‘TeV’ supersymme-
try breaking gaugino masses, resulting in a low energy see-saw mechanism with light
neutrino and heavy neutralino masses. The other two neutrino masses arise from
quantum loop corrections made up from lepton number violating superpotential or
supersymmetry breaking vertices. We shall refer to neutrinos which only acquire
masses due to radiative corrections using the term ‘massless neutrinos’.
Calculations for neutrino masses in the J/-MSSM have been addressed many times
in the literature. The tree level set-up of the model was first given in [37], and details

worked out later in.[16, 18, 38]. Calculations of the one-loop neutrino masses, which
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we shall address in full in the next chapter, including only the bilinear superpotential
term are given in [17,20,32,33,39]. Corrections involving the trilinear superpotential
Yukawa couplings A, A’ have been considered, mostly in the mass insertion approx-
imation [13,23, 31,40] and under the assumption of CP-conservation and flavour
diagonal soft SUSY breaking terms. Renormalization group induced corrections to
neutrino masses have been studied in [14,41,42]. There is of course a vast number of
articles using these calculations, or simplified versions of them, in order to describe
the solar and atmospheric neutrino puzzles [43-52].

In this chapter, based on work presented in [53] we show how to define the
Lagrangian parameters in the fermion sector of the theory, by starting out with the

physical input parameters, being the lepton masses and mixing angles.

4.1 Basis Choice

Physical masses of the fermion fields depend on appropriate A, N, 4 and Yy couplings
multiplied by the vevs of the neutral scalar fields. As it has been shown in the
previous chapter, by unitary rotation in the 4-dimensional space of the neutral scalar
components of £, it is possible to set three of the four vacuum expectation values
of the £, fields to zero, leaving two real non-zero vevs in the neutral scalar sector
and, simultaneously, significantly simplifying its structure. It is convenient to apply

such a transformation not just to scalars, but to the whole chiral superfield,

L, ="UapLy, (4.1)
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and redefine the Lagrangian parameters to absorb the matrix U in Eq. (4.1) such

that it does not appear explicitly in the Lagrangian,

)"yéj = )\aﬁjUa—yUgg,

Nyij = /aijUa’Y’ (4.2)

By = HaUay .

The tildes and primes on the fields are then dropped.

In a standard way, both isospin components of @) superfield and of U¢, D¢ super-
fields can each be redefined by a unitary rotation in the flavour space. As such, it is
possible to diagonalise the Yukawa couplings (Yp), (Yu) (note that (Yp) = A,
in the basis with two non-vanishing scalar vevs) and absorb the rotation matrices in
field redefinitions such that they do not appear explicitly in the Lagrangian, apart
from a specific combination of rotation matrices which appear in the gauge and
Higgs charged currents which is identified as the CKM matrix. In this basis, it is
cléar how to initialise the Lagrangian parameters, as the diagonal values are then
proportional to the measured values for the up- and down-type quarks. For more
details concerning this point the reader should consult Appendix C.

In the lepton sector, however, the same approach cannot be adopted for two
reasons. Firstly, even with a diagonal Yukawa matrix, the charged lepton masses are
given by three eigenvalues of the larger (5 X 5) mass matrix which includes mixing
between the charged fermionic components of the £, E° and the charged gauginos
and higgsinos. Thus, the diagonal entries in the Yukawa matrix would not correspond
exactly to the masses of the physical mass eigenstates which describe the charged

leptons. Secondly, the L-basis has already been fixed by the property that three
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neutral scalar vevs should be zero, so we are not free to absorb a rotation matrix!.
Still, there is some freedom remaining due to the fact that the £°-basis has not,
as yet, been fixed. Flavour rotation in the F°-space can be used to remove some of
the unphysical degrees of freedom in Yy, = Ag;; coupling?®. As every general, complex
matrix, Ag;; can be uniquely decomposed (polar decomposition theorem [30]) into a

product of positive semi-definite Hermitian matrix o and unitary matrix Vg :
Moij = Aoie (VE)k) (4.3)

Vg can be then absorbed in the chiral superfield E redefinition and the ‘hat’ over A
is dropped.

After all the transformations described above, we arrived at the form of the
superpotential (2.20) where (Yp),; = Ay, and (Yu),; are flavour-diagonal and
(Yo), ; = Aoy 1s hermitian. Other coupling constants are free and, in general, complex

parameters.

'This is not entirely true: it is actually possible to perform a rotation into the vanishing sneutrino
vev basis and to diagonal Yukawa couplings [22]; it is possible to use the freedom in the 3-dimensional
lepton space, which we used in the previous chapter to diagonalise the sneutrino masses, in order
to make the lepton Yukawa couplings diagonal. But then one will have a 10 x 10 mass matrix for
the neutral scalars because this 3 x 3 rotation is, in general, complex (unitary). We want to avoid

this complication by all means.
21f the decomposition is unique, then all unphysical degrees of freedom will be removed, because

then the full U(3) rotation is absorbed into E and every rotation in the £_-space will “destroy”

some of the properties we want to keep.
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4.2 Block Diagonalising

In the following sections we outline the procedure by which the parameters of the
general hermitian matrix (YL)ij can be initialised such that the correct values are
obtained for the charged lepton masses and the MNS mixing matrix [54]. In order
to do that, it will be convenient to diagonalise the neutralino-neutrino and chargino-
charged lepton mass matrices in two stages. First an approximate, unitary or bi-
unitary transformation will result in matrices in block diagonal form; the standard
model and supersymmetric fermion masses being split into separate blocks. Then, a
second transformation will diagonalize the blocks.

The block diagonalisation can be performed for any complex matrix. Every gen-

eral matrix M can be diagonalised by two unitary matrices V, U:

) M, 0
VIMU = M = diag(my, my, -+, my) = , (4.4)

0 M

where m? are eigenvalues of MM' and M, M, are two diagonal sub-matrices of a,

chosen size. Hence, one can always rewrite M in the form
M =VMU' = VATAMB!BU' (4.5)

where A and B are some unitary matrices of the form

A= , B= , (4.6)
0 A2 0 B2

with sub-matrices A; 2, B1 2 which are also unitary. Thus we can write

M = QMgP', (4.7)
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where
) A M, B! 0
Mp = AMB' = , (4.8)
0  AyM,B}
is block diagonal in form and Q = VA!, P = UB!. Of course, Mg is not uniquely
defined.
Block diagonalisation is particularly useful the in case of hierarchical matrices,
when one can find analytical approximate formulae for P, Q matrices in eq.(4.7).

Consider for example a hermitian matrix (other cases can be considered analogously)

of the form:

maqa Mpg
M= , (4.9)

mg mg

where my = ml,, m¢ = mb and ||ma|| > |lmsl||,||mc||. In such a case, the

approximately (up to the terms O(||mp c||?/|/mal|?)) unitary matrix U,

1 —(ma) " 'm
mi(ma)™! 1

transforms M into approximately block-diagonal form:

1

_ t ~1 -1
ma+(ma) " 'mpmb + mpmb(ma) (ma)~'mpmc m 3
e it +o ()
m‘ém%(m,;)‘1 me — mg(mA)‘lmB A

m 0 2
~ A +O (M> . (4.11)
0 meg-— mL(mA)_lmB “mAH
We kept explicitly the O Imecl®) torm in (22) element of block-diagonalised form
[lmall

of M as in many models m¢ = 0 and in this case it will be the only term which
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survives (the see-saw mechanism [55,56] for neutrino masses being the most famous
example of this hierarchical structure).

As a next step one needs to find matrices that diagonalise the sub-blocks in
eq.(4.11). We employ this method in the next sections where we present explicit
perturbative (first order) results for analogues of the matrices @ and P in Eq. (4.7),
in both neutral and charged fermion masses in the J.-MSSM . It should be noted
at this point that, although we use only the approximate analytical expressions for
the see-saw type expansions above, in our numerical analysis we perform exact block

diagonalization, iteratively finding the correct, and strictly unitary, matrices P, @ of

eq.(4.7).

4.3 Fermion masses and mixing

In the following section we shall present the tree level phenomena of the fermion
sector in the I/-MSSM. We consider in turn, the neutral and charged fermion sec-
tors and the patterns of the mass matrices. We consider the tree level eigenvalues,
particularly for the neutral sector and the approximate block diagonalisation of the
matrices. In section 4.4, we use the approximate block diagonalisation to consider
the way in which the MNS matrix appears in this model. The MNS matrix is now
a sub-block of a larger unitary matrix and therefore the MNS matrix itself is not
unitary.

This analysis is then used to ensure the correct low energy parameters are repro-
duced, despite mixing between the leptons and heavy fermion fields.

In section 5.1 we consider the effect of radiative corrections at the order of one-
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loop. After setting out the renormalisation framework, we present in turn various
loop diagrams and highlight the important contributions. The full numerical analysis
has been completed, however approximate expression are presented for each contri-
bution which demonstrate from where the important effects arise. We will consider
the case where the tree-level effect dominates and gives rise to the larger, atmospheric
mass squared difference, in which case the solar mass squared difference is generated
by the loop effects. We also show that it is possible for loop effects to be greater
than the tree level affects, in which case both mass squared differences are generated

at the level of one-loop.

4.3.1 Neutral fermion sector

In the lepton number violating extension of the minimal supersymmetric standard
model (L-MSSM) the neutrinos (v, 5 3), neutral higgsinos (v, and h9) and neutral
colourless gauginos (WO and E) mix. To transform the fields into the mass basis,

the 7 x 7 neutralino mass matrix must be diagonalised. In the interaction basis,

—iB

1 . — - _ZWO
£> -3 ( —iB, —iW,, hY, v, )MN 3 + Hec, (4.12)
h
Vig

where the full 7 x 7 mass matrix reads

MN4X4 dN4><3

My = , (4.13)

T
dysxa  Osxs
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and the sub-blocks are, in the basis (—iB, —iW,, kY, v, = h%, ;)

[ M 0
0 My
MN4><4:

g _ g2vu

2 3

\ _ g 2Ug

2 2

and
[0 o
0 0
dnaxs =
—H1 TH2

\ 0 0

—H3

0

JVu _9Y%
2 2
_ g2V 2Vd
2 2
0 —Ho
—Ho 0 )

, (4.14)

(4.15)

There is no quantum number to differentiate between neutralinos and neutrinos, the

states of definite mass do not have definite lepton number and, as such, there is no

reason to think of neutrinos and neutralinos separately. However, for realistic values

of parameters, four of the mass eigenstates are heavy and three are very light, so it is

convenient to refer to them as to neutralinos and neutrinos, respectively. In addition

to this, it can be seen that the mixing is sufficiently small that these three light

neutral states are the states which dominantly appear in the decay of the W boson

to charged leptons, differentiating between the eigenstates we refer to as neutrinos

from those we refer to as neutralinos.

The matrix, Zy, which rotates the fields in (4.12) from the interaction basis to
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the mass eigenstate basis is given by
[ —iB

—iWO
—zvl|l 1. (4.16)

Via )

.....

The matrix My, as it has been split in eq.(4.13), contains block diagonal terms
that conserve lepton number and off-diagonal blocks which violate lepton number.
The latter are expected to be very small, as they are strongly constrained by the
bounds on neutrino masses or other lepton number violating processes. Thus, one
can use the block diagonalization procedure of section 4.2, neglecting terms of the

2
order %’;, and consider Zy to be of the form
N

1 —Mytd Zyv 0
Iy = N N . (4.17)

i, Mt 1 0 2,
The first matrix on the RHS of eq.(4.17) which is the analogue of the matrix Q' in

(4.7) block diagonalises the neutrino-neutralino mass matrix:

1 MItar 1 —M3Sldy Myaxa O
N My o ~ " (4.18)
a1 dot 0wl

where the ‘TeV’ see-saw suppressed effective 3 x 3 neutrino mass matrix is given
by [16, 18, 38]
1 pape paps

Migi + Mag?) .
4Det[My] Hipl2 Mg H2M3

T 'Ug(
melf = —d5Mytdy = (4.19)
pfs pops
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Physical neutralino masses and mixing matrix Zx can be found in a standard manner
by numerical diagonalization of the matrix My. Diagonalization on m¢// can be
easily done analytically, leading to two massless and one massive neutrino, with its
mass given by:

va(Mig3 + Mag?)

tree 2 2 2
m, = pa|” + (p2|” + p3 4.20)
: Tt G+l + ). (
and the mixing matrix Z, is
2 [ [la] 1]
VI P+Hpzl? VP2l /1 2+ 2] 2+ s ? V2 2P+ us]? X
Z, = —lpalm p1p3pal , |1 |23 2x2
po/Im 222 |yl 2 Hea 2/l P+ u 2+ a2 w3/l P+ p22+psl 0 ‘ 1

0 _ sl |2 +pe|? [ lpy

palialy/lpa |2+l pa |2+ us | 1/ |1 [+ 2] 2+ a2

where Xayo is an SU(2) rotation. At tree level, the five massive eigenstates are
unambiguously defined by diagonalising the mass matrix. The two massless eigen-
states, due to the fact that they are degenerate in mass, are not fully defined. The
eigenstates are chosen to be orthogonal, but it is still possible to perform a rotation
on the eigenstates. As such, statements about the lightest neutrinos, v; 2, are basis
dependent. Because of this, the one loop contributions to My ,, are also basis de-
pendent. By choosing a different linear superposition of the tree level eigenstates, the
one-loop contributions to the 2 x 2 sub-block M N (5.6)(5,6) Teferring to the massless
neutrinos would be redistributed between themselves. This freedom of basis choice is
only present at tree level and is not physical. Thus, we start from Xsxo = 142 and
after calculating the radiative corrections to the neutralino-neutrino mass matrix we
adjust Xy« such that the off-diagonal one-loop contribution d My 56 is approximately

zero (this can be done iteratively). As such the effect of rediagonalising the neutrino
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sector after loop corrections are added is small. As we discuss in section 4.4, choosing
the basis in this manner helps also to define the lepton Yukawa couplings in terms
of measured quantities like lepton masses and the Uy ng mixing matrix.

The result that two of the neutrino masses vanish at the tree level is not the
effect of the approximations made [16,18,38]. The explicit calculation of the secular

equation for the full neutralino-neutrino mass matrix My, results in

det(My — ) = —A?[Adet(My—2)\) (4.22)
— ) (A0 - 00— )+ B s -+ L0 - )|

Hence, My always has at least two zero modes. This can be seen directly, by noting
that the final three columns of the 7 x 7 mass matrix are proportional to each other.
Finally, the physical eigenstates of neutralinos and neutrinos are approximately

given by, respectively:

K9 \ —iB
K9 —iW,
zv| =1 " |+ Mytdaes, (4.23)
0 hO
k3 2

\”"2/ \Vw)

and
[ _iB
Ko .
t 1| W
Z, K9 = —dyMy 5 +v,, (4.24)
h
K7

\ Vio

with v;, = h?, the down type Higgsino.
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4.3.2 Charged fermion sector

In a similar fashion to the neutral sector, charged leptons, gauginos and higgsinos
mix. The full 5 x 5 chargino mass matrix in the zero sneutrino mass basis is given
by

M, 0
Mo=|  ¥? , (4.25)

dcsxz Meaxs

with the lepton number conserving sub-blocks

M2 g2Vu

v
Mcoxe = vz ) mci; = —d)\Oij ’ (4~26)
g%, V2
V2 0

and the lepton number violating being
0
deaxe= | 0 py | - (4.27)
0 us
The rotation matrices which transform between interaction eigenstates and mass

eigenstates are given by

— Wt ki
o=z |, (4.28)
€pR; 5;
— Ky
—iW-
=7Z* : , (4.29)
eLoz
.

and, as such, the mass matrix is diagonalised
Mce=2Z' M2, , (4.30)
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where the ‘hat’ denotes that the matrix is diagonal.

The matrices Z, and Z_ can be determined by the requirement that they should
diagonalise the Hermitian matrices MEMC and MCME, respectively. The off-
diagonal blocks in the latter two combinations are small comparing to the diagonal
ones, so one can again use block-diagonalising approximation of section 4.2. Keeping

just the leading terms in 1/M¢ expansion, one obtains

1 ML Z 0
7~ c Gc ,
chal 1 0 Z-
Z, 0
Z, = ‘ (4.31)
0 Zs

Substitution of (4.31) in (4.30) results in the physical effective mass matrix

" ZIMoZ, + 0 (52) O (%me) Mz, 0
c= ~
O (%—) Z;’_ch” + O (%T%c_‘) 0 Zlf_mCZH

(4.32)
Then the matrices Z,, Z_ can be again determined as diagonalising matrices for
the MéMC, McMé products, with the additional requirement that physical fermion

masses are real and positive. Matrix m¢ in our basis is hermitian and as such

2+ = Z- = 2. Furthermore, physical eigenstates of fermion fields are given by
kT — W
Z+ % - 3
Ky hy
Ky €R1
= ~ €rs | > (4.33)
Ky €R3
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and

T €r1
K —1
z | R +MGTdE | ey, |
Ko €Lo
€r3
K3 T €r1
ZH | ks ~ —dEMG™ ’ + 1 e (4.34)
4 L2
B €ro
K €r3

For a quick view of the full charged fermion mass matrix see Appendix B.

4.4 Constructing the MINS matrix

The lepton mixing matrices appear in the charged current gauge boson vertex.
Whereas in the lepton number conserving case the Upyns matrix is a 3 X 3 ma-
trix describing the mixing of three charged leptons into three neutral leptons, the
R-parity violating case has the mixing of five charged fermions into seven neutral

fermions, of which the Upsns is a 3 X 3 sub-matrix, only approximately unitary. Thus,

Lo 2 Wi oter; + He= 92 Wk 6" (Unns)pe K, + He, (4.35)

V2 V2

where primes refer to interaction eigenstates, and the MNS matrix,

d.d
— 1' * cWN
Unins = 2120 + O ( 7 MN) , (4.36)

is defined in terms of the mixing matrices introduced in (4.21) and below (4.32).

As the first term in Eq. (4.36) is unitary, unitarity violation in Uyys is at most of

tree pf _ . . NI
the order of Afé‘jv’}’N ~ T _TSUSY tan? B ~ 10~ "2 tan® §, which is well below sensitivity
z

of current (or planned) experiments determining the MNS matrix.
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4.5 Input parameters

The parameters characterising the light charged fermions are already very well known;
masses are measured with very good accuracy. In contrast to this, the neutrino sector
is not, as yet, known with the same precision. There is however, information about
the mass square difference between neutrinos and the mixing between different inter-
action states, and upcoming experiments should improve our knowledge of neutrino
parameters in the near future. Furthermore, supersymmetric fermions have not yet
been discovered, and their masses and couplings (those which are not determined by
supersymmetric structure of the model) are entirely unknown. In the J--MSSM both
sectors mix, and thus the question of effective and convenient parameterisation arises.
In this section, we will consider the parameters in the Lagrangian which effect the
tree level masses and mixing. In the next chapter, we discuss parameters which affect
the neutral fermions at the order of one loop.

As the SUSY sector has not been measured directly, it is convenient to take as an
input the following set of Lagrangian parameters: My, My, tan 3, u = uo. With y;
of the order of MeV, corrections to the supersymmetric sector from the light fermion
sector are see-saw suppressed and negligible. Chargino and neutralino masses and
lepton-number conserving couplings are thus, to a very good accuracy, determined by
the above four parameters. Reconstructing their values from the actual experimental
measurements has already been discussed in the literature [57).

In the next step, neutrino masses can be parameterised at tree level by setting
the lepton-number violating parameters p;, ¢ = 1,2,3. In the future, when the
neutrino mass matrix is known to better accuracy, it could become more convenient

to reconstruct p; from the experimental data - for that, the knowledge of radiative
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corrections to the neutrino masses would be vital.
To initialize the Lagrangian parameters in the light charged lepton sector, one
needs to input the lepton masses, m., m,, m, and the mixing matrix Uuns. The

lepton rotation matrix Z; can be then calculated from (4.36)
2% 2 Ulyns - (4.37)

As we have seen from (4.21), the neutrino mixing matrix, Z, is defined at tree
level up to a U(2) rotation for a given set of ;. The same matrix is then defined
completely at one-loop where all the neutrinos are no longer degenerate. Thus,
a complete definition of Z; requires a one-loop corrected neutrino mixing matrix.
Then, the light charged fermion mass matrix m¢ in (4.26), which is hermitian and

proportional to the Yukawa matrix Agi; = ‘U/—fmcﬁ is given by:
me = 2, diag(me, my, m,) 2/ . (4.38)

Eq. (4.38) holds under the assumption that one-loop corrections to Z; are small.
Otherwise, one needs to find m¢ iteratively, such that physical (i.e. loop corrected)
Z, and 2Z; produce the correct experimentally measured Uy ys matrix of eq.(4.37).

As we have repeatedly mentioned so far, it is important to notice that the matrix
m¢ is not diagonal.

Having understood and parameterised the model at tree-level, we now look to cal-
culate the radiative corrections. For the neutrino masses and mixing, this is essential.
We cannot generate two distinct mass differences at tree-level, and the degenerate
neutrinos cause the mixing angle to be undefined. We show in the proceding chapter

that the inclusion of radiative corrections at one-loop ameliorates these problems.
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Chapter 5

The I,-MSSM at one-loop: Neutral

fermion masses

In this chapter, we shall calculate the complete set of the one-loop corrections to
the massless neutrinos without assuming CP-conservation or bilinear superpoten-
tial operator dominance. In section 5.1 we describe our renormalization procedure
and present analytical results for the one-loop corrections together with approximate
formulae for individual diagrams. We compare with the current literature. In sec-
tion 5.2 we present numerical results which show the size of the input parameters

required to account for the neutrino experimental data.
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5.1 One-loop neutrino masses in }-MSSM

5.1.1 Renormalization issues

As we have already seen in the previous section, the presence of the bilinear lepton
number violating mass term in the superpotential, p;, triggers the mixing between
neutrinos and neutralinos. Diagonalization of the full 7 X 7 neutralino mass matrix
generates four heavy ‘neutralino’ masses and one ‘neutrino’ mass at tree level. Fur-
thermore, the two remaining neutrinos become massive at the one-loop level due to
the presence of other lepton-number violating couplings and masses.

Physical neutralino masses are defined as poles of the inverse propagator and the

definition for the one-particle irreducible (1PI) self-energy functions are as follows,

=1 5“ qll' Efqu(qu) ’ (51)
K0 _»@-4— K2
= —i Sy (@) (5.2)

where the momentum ¢* flows from left to right, and o# are the Pauli matrices!.
The requirement that the determinant of the inverse propagator is zero, leads to the

expression for the physical neutralino mass matrix

m?\?;z = mII)\}a(;e(/"’R)dpq + [%eEqu(m?vp) - mNP Z]l\l/pq(m%lp)] ) (53)

D,L

Ngq the 1PI contributions to the effective

where up is the renormalization scale and X

action defined (5.1,5.2). my, are the diagonal tree level neutrino masses (they are

'We use Weyl spinor notation in our calculation. The corresponding formulae for Weyl-

propagators and vertices are defined in Appendix C and in [58].
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zero for the two massless neutrinos). Our renormalization analysis is similar to the

one in Ref. [17]. We have also studied an on-shell renormalization analogous to the

one in [59]. In this scheme, the physical mass formula is similar to (5.3).

Some additional remarks are important at this stage:

a)

The two one-loop induced neutrino masses are perfectly defined at one-loop
through Eq. (5.3). We have proven both analytically and numerically that
these masses are finite and numerically that they are gauge independent at
one-loop order. This result remains valid also when one takes into account

mixing between them.

The one-loop formula for neutralino masses (5.3), receives, in addition to di-

pole pole

agonal corrections, off diagonal ones, my,, — mpy.,. Physical neutralino

pole

and neutrino masses are then obtained from the diagonalization of my,,

as
Mma® = (1 + 6Z),)mP'®(1 + 6Zx). Then the corrected mixing matrix Zy
has to be replaced by Zy — (1 4+ §Zn)Zy everywhere in our expressions for
the self energies. However, the corrections to Zy matrix are of the order
0ZNpg ~ OMppg/(MNpp — Mnge) and are small if the tree level masses are not
degenerate. In our case this happens only for the two massless neutrinos, so
we include off-diagonal corrections, shifting 2, — (1+ 62,)2Z, where 62, has

only the upper 2 x 2 block non-trivial?>. As discussed previously in section 4.3,

this is actually necessary to fix the neutrino basis. The resulting corrections

2Possible exception is the case when u; parameters are very small, so that one-loop corrections

to the neutrino masses are of the order of tree level neutrino mass or bigger. In this case one needs

to rediagonalise the full 3 x 3 neutrino mass matrix. This is done numerically in section 5.2 when

presenting our results for u; = 0.
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to lighter neutrino masses are formally two-loop, but numerically important
and have to be taken into account. One should note that, as mentioned in the
previous point, one-loop corrections to the light neutrino mass sub-matrix are
finite - going beyond the approximation described above would require per-
forming formal renormalization on the neutral fermion mass matrix. Finally,
similar considerations apply to the case of the charged fermion mixing matrix

Z, in (4.37).

As we have already mentioned, in our neutral scalar basis the sneutrino vevs
are zero at tree level. Non-zero sneutrino vevs will appear, in general, at one-
loop. As a result, the neutrino tree level mass in Eq. (4.20) should be corrected.
However, loop induced vev contributions do not arise for the massless neutrinos
— they are generated outside the 2 x 2 light neutrino mass matrix — which is

the case we are interested in.

We choose iz = Mz as renormalization scale in (5.3) were we input the DR
parameters for m‘,’va;e(ug) at tree level. These parameters are taken after diag-

onalising the full neutralino mass matrix in Eq. (4.13).

The infinities which arise in the calculation of the one loop corrections, must be
absorbed in parameters of the tree-level Lagrangian. It is possible to check that
there are no infinities which must be absorbed where the mass matrix contains
zero entries. The divergent parts of the integrals do not depend on the masses
of the particles in the loop integral and as such the infinities only arise when
a diagram exists in the interaction picture with only a mass insertion on the

fermion in the loop. That is, the symmetry which prevents a term existing in
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the classical Lagrangian also causes the divergent part to cancel in the mass
basis. This guarantees that it is always possible to absorb the infinite part of

the integral in the bare parameters of the classical Lagrangian.

Having considered the above points we find that for the calculation of the one-
loop corrections to the eigenstates that are massless at tree level, it is sufficient to
consider corrections to the bilinear terms purely between these eigenstates. We find
that it is possible to neglect the one-loop effects which correct other entries of the
neutral fermion mass matrix, describing neutralino masses or neutralino-neutrino

mixing.

5.1.2 One loop contributions to the massless neutrino eigen-

states

The mixing of neutrino, neutral Higgsino and neutral gaugino interaction eigenstates
has been shown to result in two mass eigenstates with zero mass. It is important
to note the composition of the massless eigenstates; they consist solely of neutrino
interaction states, not containing any contribution from the fermionic components of
the gauge supermultiplets or the Higgs supermultiplets. This can be stated, entirely

equivalently as the rotation matrix in Eq. (4.17) becomes [38]

Zn(1—4}{5—6} = 0. (5.4)

Radiative corrections at one-loop will affect all three of the light mass eigenstates
(‘neutrinos’) and will lift the degeneracy between the massless eigenstates. The pos-
sibility that the hierarchy of mass differences in the neutrino sector can be explained

in the [/-MSSM is considered. If the ‘atmospheric’ mass difference were to result
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from the tree level splitting and the ‘solar’ mass difference originated from loop ef-
fects, the distinct hierarchy could be accommodated within the model. If the solar
mass difference is to originate purely from loop corrections to massless eigenstates,
we must find loop corrections from diagrams with external legs comprised purely of
neutrino interaction states. A small caveat is required to compare with the literature.
In a general basis where the sneutrino vacuum expectation values are not zero, the
massless neutrinos are comprised of interaction state neutrinos and the interaction
state Higgsino that carries the same quantum numbers. In the ‘mass insertion’-type
diagrams, this means that only diagrams without mass insertion or with a mass in-
sertion which changes the original neutrino external leg to the down-type Higgsino
can contribute to the solar mass [32], if the assumption is made that the solar mass
arises purely from loop corrections to eigenstates which were massless at tree level.

T hé one-loop, one-particle irreducible self energies needed in (5.3) are calculated
in Appendix F, see (F-1,F-2,F-5F-6). Results are presented for general vertices and
for a general It gauge. One then has to simply replace these vertices with the
appropriate Feynman rules given in Appendix C in order to obtain 2L, Since this
rather trivial replacement leads to rather lengthy formulae for the self energies, we
refrain for presenting the full expressions here. Instead we examine in detail the
dominant contributions to the massless neutrinos, which are the contributions to
P, Of course, the numerical analysis exploits the full expressions.

From the expressions (F-1,F-2), it can be seen that these corrections are propor-
tional to the mass of the fermion in the loop. As such, the diagrams that give a large
contribution are the diagrams with sufficiently heavy fermions compared to any sup-

pression from the vertices. In addition, standard model neutral fermion masses arise
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entirely due to Supersymmetry breaking in the [/-MSSM so corrections are expected
to be large for individual diagrams or a certain amount of fine tuning is required for
large SUSY soft breaking masses.

In the next section of this chapter we analyze all the possible contributions to
¥L for the massless neutrinos, isolating the dominant ones. For simplicity, we shall
confine ourselves only to the diagonal parts of £, although our numerics account

also for the off diagonal effects in the massless neutrino sub-block.

5.1.3 Neutral fermion - neutral scalar contribution

Diagrammatically this contribution reads as:

0 0
'HS AS
T~ N -~
/ N /; \
0 0 0 0
K U " E _.—\_j_‘— "
0 0 0 0
KT K"T m?" HT

This can be easily calculated by using the formula (F-1) and with the Feynman rules

read from Appendix C. The result for the full contribution to the massless neutrinos,

p=q={56},is:

7
DD Gy ™

1 s=114,5=1

vD = —

T

e e e e
[EZN(le)pZNn - EZNZTZN@H-I')})] [EZN(4+J')I)ZN1T - EZNZrZN(4+j)P]

[ZR(2+i)sZR(2+j)sBO(mig7m%{g,mig) - ZA(2+i)sZA(2+j)sBO(mig,ng>mig)] , (5.5)
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tively, each containing a mixture of Higgs and sneutrino fields. The matrices Zy, Zr, Z4
are those that diagonalize the neutralino, CP-even, and CP-odd Higgs boson mass
matrices and are defined in (4.21) and (C.7,C.7), respectively (for analytic expres-
sions for Zg, Z 4 see Eq. (3.32) and (3.45)). Individually, the neutral fermion - neutral
scalar diagrams in (5.5) are large, however, if there were no splitting between the
mass of CP-even and CP-odd neutral scalar eigenstates there would be an exact
cancellation between the two diagrams. Notice also that the whole contribution is
multiplied by a neutralino mass which is generically of the order of the electroweak

scale. It is rather instructive to simplify Eq. (5.5) by expanding around m?%, and
§>2

m2, as
A%sy &
73 3 2 2
D } :} : Mo o € € Amg, My
ENPP >~ — 44 QZuip _ZNlr - ZNQT- 5 2 \o In 2\5.6)
o o A cw Sw (mg; — mng) M
where Am2, = m} —m?__ is the CP even - CP odd sneutrino square mass difference.

Its analytical form can be derived from Egs. (3.37) and (3.48) of [24] to be

B?tan’j3
Ami =
VT MI- P

+ O(B{/M}), (5.7)
where M, is the CP-odd Higgs mass and M; the soft breaking slepton masses which
are diagonal in our basis, as discussed in Section 3. A similar expression has been
derived in Ref. [23]. Z, and Zy are defined in (4.17) and (4.21). The contribution
(5.6) is driven by the lepton number violating terms in the soft supersymmetry
breaking sector, B; and the whole expression for the neutral scalar contribution
collapses approximately to

o me\2 B? tan?p

20~ () me (57) G e -
an m,o M (mio — M2)2 (5 8)
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where M is the sneutrino or Higgs and m,oe the neutralino masses in the loop, re-
spectively. The importance of this contribution has already been pointed out in

Refs. [13,32]. The mass insertion approximation diagram reads as
hy ha
7 g4
vy M v
B/WO B/w?°

where the ‘blobs’ indicate insertions of B;s, scalar and gaugino masses. The neutral
scalar-fermion contribution is thus a) suppressed from the CP-even-CP odd sneu-
trino mass square difference, i.e, the lepton number violating soft SUSY breaking
parameter B;, b) is enhanced by tan? 3, and finally ¢) suppressed by three powers of
SUSY breaking masses.

The approximate formula (5.6) does not, in general, capture the full neutral
fermion-scalar correction. There are other corrections of the same order of magni-
tude, including the Higgs bosons in s = 1,2 states. This expansion is more compli-
cated than (5.6) and is given explicitly in section 5.2, Eq. (5.30), where we discuss
our numerical results and compare with approximate formulae of this chapter.

Ignoring possible accidental cancellations from other diagrams, [B; tan 3] must be
smaller than the 0.1% of the sneutrino mass squared, M2, in order to have m, < 1eV.
On the other hand, numerically, if the ‘solar’ neutrino mass difference were to be
generated by this diagram, then B; ~ O(1)GeV?. Because B; is in principle not
constrained from above by other means, we conclude that this diagram dominates

the whole contribution especially when the trilinear couplings, A, \’, are negligible.
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5.1.4 Charged fermion - charged scalar contribution

This contribution reads diagrammatically as:

Using the generic formula the self energy, (F-1), the Feynman rules from Appendix C,

and also by applying Eq. (5.4), we find that the full diagonal contribution for p =

g =1{5,6},is:

8 5 3 3
m,
Npp ZZ Z Z (477 alkZH(2+a) Z+(2+k)rZN(4+l)p)

e
[S ZH 2+z)sZ—1rZN(4+z /\ﬁzJZH 5+])SZ (2+ﬁ)7~ZN (4+i)p BO( ,go) H+ami—) )

where Zy, Z,Z_, Zy are rotation matrices in the neutral fermion, charged fermion,
and charged scalar sectors, and defined in (4.17), (4.30), and (C.8), respectively. It
is important to notice that following (4.30) we obtain, Z o1k =~ Zikr, with 7 > 2
and hence the contribution (5.9) is proportional to the mass of a light fermion, m,-
In addition, since Znwa1ip = Zu1p, (4.17) shows that the contribution (5.9) contains
the rotation mixing matrix Z,, which has been presented analytically in (4.21). In
order to analyze the dominant pieces from the charged scalar - fermion contribution,
it is instructive to consider two cases : A;;;, =0 and A;; # 0.

In the case where the trilinear superpotential couplings are absent the charged

lepton loop has a small contribution to the massless neutrino eigenstates. From the
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discussion above and (5.9), we obtain at the limit of small lepton masses (compared

to the SUSY breaking ones)

Npp ZZZ

s=1 1,j,k,l= 1r>2

Zl kr Zulp) X

0lk

e
I:EZH(NJ)SZ*IT vip )‘Oz]ZH 5+J)SZ 2TZV1P BO(O mH+a )7(510)

where Ajo; = —Agi; is the lepton Yukawa coupling obtained from Eq. (4.26). We can
analyse further equation (5.10) by Taylor expansion with respect to m? H (commonly
named “Mass Insertion Approximation”, or MIA, see, for example, review in Ref. [60])

and using (4.27,4.30) and (C.8,C.8) ,

d} i
Z_, ~ |[X£2)] ~I- 5.11
1 (MC ) e 511
Z;,stH(ngi)sm?{: = M?{+ 2,244 =~ uimy tanﬁ y (512)
Z;I2SZH(5+1')Sm§1; = M?ﬁ 2,5+ = B;tan g, (5.13)

where m; is the lepton mass and M a generic gaugino mass. Hence, the neutrino
couples to either the right handed component of the electron, the W~ or the Higgsino
with couplings proportional to u;. All the above can be diagrammatically depicted

with mass insertions as :

hl_ PE IS éL hl_ L @~ éR
' v
1 /
! V ’ "’ w :
17— e T
€R "% R h
pi B
~mEl 2l tang, (5.14) Wi pm
Mc M2, ~ L 5.15
C my MC M12{+ anﬁ, ( )

where M7, is a generic charged Higgs mass. Obviously, both the fermion and the

scalar propagator are suppressed by lepton number violating couplings. This contri-
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bution is then compared with the one previously considered with neutral particles
in the loop. Indeed, in order to account for the atmospheric neutrino mass scale
it must be u; << v/B; ~ O(1 GeV) and hence the charged particle contribution is
always smaller than the neutral one. Our finding here is in general agreement with
the discussion in Refs. [13,21]. Finally, notice the Goldstone contribution vanishes
since this always conserves lepton number.

If the trilinear superpotential lepton number violating coupling A;j is turned on,
then a lepton - slepton loop contribution is generated. In contrast with the pure
bilinear case, the trilinear contribution may dominate depending on the magnitude

of A. In this case the full contribution in (5.9) results in

8 5 3

mn; *
22 wp Z Z Z (47!')2 X [/\mik ZH(2+m)s Z+(2+k)7' ZN(‘H"i)P] x
1

s=1 r=1 i,j,kl,mn=

[Mnj Z+i)s 22 pnyr Zn(asip] Bo(mgg, miy o, mi._) . (5.16)

Kr

Again, making use of (4.21, 4.30) we see that the contribution is proportional to the
light lepton masses and involves the neutrino mixing matrix. We can go a little bit

further and perform MIA expansion of (5.16) as we did before. The contribution

then reads,
3 m
ikl mn=1 ( 7T)
(MigsJosmss In (M3 )atm (5.17)

(M%]+)2+m - (M%+)5+J’ (M%{+)5+j
where my, is a light charged lepton mass, (M?%.) is the charged scalar mass ma-
trix in the interaction basis and is given by (C.8). In our notation (/\}lf,+)5+j =

(Mf,+)5+j,5+j, and so on. In the denominator and logarithm of (5.17) one has the
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difference of diagonal elements mm and 77 of LL and RR slepton mass matrices, re-
spectively. The approximation (5.17) is proportional to the mixing matrix elements
(M2, )o4m5+; which is nothing other than the LR mixing elements of the charged
slepton mass matrix (C.8). These matrix elements are (almost) unbounded from
experiments when m = j in contrast to the case m # j.

This contribution has been discussed largely in the literature, see for instance [13,
21,23, 31,41,43,47|. It is instructive to draw the mass insertion approximation
diagram corresponding to (5.17) :
€Lm T éRj

é vl

1
ULP v VLP
[ e

Rk Ln

In the case of dominant A, coupling,

» Hotan f + A

»h ~ Xm e : (5.18)

with A; being a trilinear SUSY breaking coupling and M a generic soft SUSY break-
ing mass for a slepton. Comparing (5.18) with (5.14,5.15) of the previous case with
A — 0, we see that the latter is suppressed with at least a factor p;/M. In the case
where the final two indices are different, A, £ # [ there is an extra suppression from
slepton intergenerational mixing and the couplings must be stronger if the lepton
in the loop is lighter. Our calculation is general enough to allow for these effects
too. Furthermore, it is obvious from (5.17) that the 7 — 7-contribution, A;35, is the

dominant one and this coupling tends usually to be strongly bounded.
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5.1.5 Quark - squark contribution

In general, this contribution originates from up and down quarks and squarks in the

loop:
iy ds
—D -
’ \‘\ ’” N\
0 0 0 0
uLT uR'r dLT dRT

The up-quark-squark contribution vanishes identically, for the mass eigenstates
which are massless at tree level. This can be easily seen by applying the master
equation (5.4) to the corresponding [neutralino-up-quark-up-squark] vertex given
explicitly in the Appendix C.

The case of down quark-squark contribution (the right Feynman diagram above)
can be divided in two cases depending on the dominance of the trilinear superpoten-
tial contribution : If A’ — 0 and the only source of lepton number violation is the
bilinear term then the contribution vanishes. Note that this does not necessarily dis-
agree with the findings of Refs. [20,39] where apparently this contribution is claimed
to be the dominant one. Recall that we are working in the basis where the sneutrino
vevs are zero and thus we cannot directly compare, at least graph by graph with this
work. In the case of Ref. [39] for example, the bilinear term, p;L; H, is rotated away.
This rotation generates new, non-negligible superpotential trilinear couplings which
is the case we are about to consider. Hence, if A};; # 0, then the situation changes

dramatically. Following (F-1), the Feynman rules for the down type quarks of the

Appendix C, we find that the most general contribution to the massless neutrinos,
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p =q = {5,6}, reads as,

3 6
3md
ENpp = ' Z Z (47T)’; [ zk)‘nkm dlde(3+m)sZN(4+J)PZN(4+71 ] BO( Ko,md )mgk) )
(5,19)

where the rotation matrix in the down squark sector, Zj, is defined in (C-6), and Zy
n (4.17). It is much more instructive to Taylor expand the full contribution (5.19)
around a constant SUSY breaking mass into parameters of the original Lagrangian.

In the limit of small neutrino and quark masses, this results in
3

Z,ip Zun ' (Mz)i,3+m (M%)l
ENW’ Z ) JZ 2 = 3m /\ zk/\nkm N _d o In — . d
(4r) (M2 = MDsim (MDspm

d

(5.20)

Jm,k,m=1

where the mass matrix M?i is defined in (C-7). Notice that (M *)i3+m are the
elements of the LR mixing block of M2 and our notation reads (Md)i = (M%)

The Feynman diagram with quark and squark mass insertions representing (5.20) is:

Some remarks are in order : First the quark-squark contribution is proportional to
neutrino mixing through the matrix (4.21), and hence to possible hierarchies between
iis. Second, it is proportional to squark flavour mixing. Experimental results for
K — K, and B — B mass difference set severe constraints in the intergenerational
squark mixings in the lepton number conserving MSSM [(M )13+m must be small
for i # m]. Although, our calculation is as general as possible and allows for these
effects we shall assume (MZ')i,San = 0,7 # m in our numerical results below. The

quark-squark contribution may be dominant for sufficient large A’ couplings.
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5.1.6 Neutral fermion - Z gauge boson contribution

The corresponding Feynman diagram is :

Due to the approximate unitarity of the neutrino sub-block of Zy, the contribution
of this diagram is suppressed either by the lightness of the particle in the loop or by
the value of the coupling. However, as we obtain from Eq. (F-2) and Appendix F,
this contribution is gauge dependent. The dependence again cancels the neutral
fermion-scalar contribution in (5.5) with the Goldstone boson (s = 1) in the loop.

Although we prove this cancellation numerically, it can be also shown analytically.

5.1.7 Charged fermion - W gauge boson contribution

The Feynman diagram for this contribution is:

Following (5.4) and the Feynman rules of Appendix C, when the external legs are
purely neutrino interaction eigenstates (p,r = 5 or 6), there is no xk%-k* vertex.

Hence, the contribution of this diagram vanishes identically.

81



5.1.8 Summary of the one-loop radiative corrections to mass-

less neutrinos

The total one-loop contribution to massless neutrino masses is given by the sum of
the neutral scalar loop in (5.5), the charged scalar loop in (5.9), and the squark
loop in (5.19). The gauge boson contributions are negligible. If the trilinear super-
potential couplings are tiny then the dominant contribution arises from the neutral
scalar fermion loop and is proportional to CP-even — CP-odd sneutrino mixing [see
Eq. (5.6)|. If trilinear couplings are not small, then depending upon their nature A

or A dominate through lepton — slepton [see Eq. (5.16)] and quark — squark [see

Eq. (5.20)] diagrams.

5.1.9 Comparison with Literature

Our work improves on other work which can be found in the literature as no as-
sumptions or approximations need to be made. Calculations can be performed in
the most general supersymmetric model with minimal particle content, without any
assumption that matrices are flavour diagonal, or that any complex phases are set to
zero. We have not neglected any terms or phases in the neutral scalar sector, a basis
was chosen in which to perform the calculation that had a decoupled CP-odd and
CP-even sector and two real vevs. In choosing this basis, it is clear that the lepton
Yukawa matrix is not, in general, diagonal and the lepton mixing matrix does not
come purely from the neutrino sector. This is in contrast to previous work where,
in whatever basis the calculation is performed, the lepton Yukawa is chosen to be

diagonal. In [33] assumptions are made in the soft sector, such as intergenerational
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mixing being zero, which allows a basis to be chosen where the Yukawa matrices
are diagonal. Similarly, in {13, 23] there is the assumption of CP conservation in the
neutral scalar sector.

Many diagrams are suggested in the literature as being important in generating
a correct solar mass difference. Under the assumption that the solar mass difference
comes solely from loop corrections to eigenstates which are massless at tree level,
in a general basis the external legs must consist purely of neutrino and down-type
Higgsino interaction eigenstates (in the basis with sneutrino vevs rotated to zero
the external legs must consist purely of interaction state neutrinos). As such, when
diagrams are presented with ‘mass insertions’, it is clear that any diagrams with in-
sertions coupling the neutrino to an up-type Higgsino or gaugino on the external leg
will not contribute to the solar mass difference at one-loop. In a basis where sneu-
trino vevs are not zero, the diagrams with an insertion mixing between interaction
state neutrinos and the down-type Higgsino contribute to the radiative correction
of massless tree level eigenstates. In the basis where sneutrino vevs are zero this
contribution is included in the trilinear vertex, A\().

Many papers [13,21,23,31,41] note the contribution of the loops driven by trilinear
couplings A() and produce expressions, often with flavour mixing suppressed, that
agree with the expressions given here.

The contribution to the charged scalar loop from bilinear couplings is also widely
noted. Whether a contribution is due to bilinear or trilinear couplings is a basis
dependent statement [31]. We agree with the results in [13,33, 39], however in our
basis the diagrams in [33,39] are accounted for in the trilinear loops.

The importance of the neutral scalar loop has also been noted previously. We
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agree with the general result of [40,61] that a sneutrino mass difference will give rise
to a radiative correction in the neutrino sector and with [13] that this loop can be the
dominant contribution. The neutral scalar contribution is included in the analysis
presented in [20], but is not discussed in [33].

The role of tadpole corrections is stressed in [20]. If we assume the solar mass
difference arises from the loop corrected ‘massless’ neutrinos, we can see that the
tadpoles do not play a role the determining its magnitude. In the interaction picture,
there is no v,-v,-Higgs vertex, so the tadpole contributions vanish. Of course, the
tadpoles will affect the other heavy neutral fermions.

A certain class of two-loop diagrams and resulting effects on bounds for lepton

number violating couplings have been considered [62]

5.2 Numerical Results

In this section we present our numerical results for the neutrino masses. As we have
already explained, in our most general analysis we use the MNS matrix defined by
neutrino oscillations as an input. Of course this matrix is not accurately known, but
its general ‘picture’ has been emerging during the last five or so years with angles
and the 30 allowed ranges of the neutrino oscillation parameters from a combined,

global data, analysis [63], reading,
sin®0;, = 0.24 — 0.40 , sinfy3 = 0.34 — 0.68 , sin®f;3 < 0.046, (5.21)

AmZ = (7.1 -8.9) x 107° eV?, |Am2 | = (1.4 —3.3) x 1073 eV? . (5.22)
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In our analysis we fix the neutrino mixing angles to reproduce the tri-bimaximal

mixing scenario of Ref. [64] ,

1 1
Sil’l2 912 = § y sin2 923 = 5 , SiIl2 913 =0 y (523)

in agreement with (5.21); the resulting predictions for neutrino mass squared differ-
ences are then compared with (5.22), to see whether the values chosen for the input
parameters give results in agreement with current experimental limits. At present,
there is no experimental evidence for CP-violation in the leptonic sector; as such, al-
though our analysis is general enough to accommodate these effects, in what follows,
we shall assume that they are negligible.

In addition to the experimental inputs for the quark and lepton fermion masses
and mixings, soft supersymmetry breaking masses and couplings must also be ini-

tialised. We follow the benchmark SPS1a [65] where
My =100 GeV, M/, =250GeV, A= -100GeV, tanf=10, po>0,
(5.24)
and read the low energy SUSY breaking and superpotential parameters at low ener-
gies using the code of Ref. [66]. The input parameters of primary interest are those
which violate lepton number. In the zero neutrino vev basis, these are,
i B;, Aijk + Aijk » hijk Rijk » (5.25)

where the last two, h and h’ are the trilinear lepton number violating parameters
in the supersymmetry breaking part of the Lagrangian. Apart from these latter
parameters, which concern trilinear couplings of scalar particles, all others can be
used to set the atmospheric neutrino mass? difference or the solar mass? difference.

There are two main cases:
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e Tree level dominance : the atmospheric mass? difference originates from tree

level contributions to neutrino masses (Fig. 5.1).

Atm

1 — loop corrections 92

Solar

Figure 5.1: Neutrino mass scales : tree level dominance

e Loop level dominance : The atmospheric mass? difference originates from one-

loop contributions to neutrino masses (Fig. 5.2).

3
Atm
1 — loop corrections )
—_—
Solar
3
2 1
1

Figure 5.2: Neutrino mass scales : loop-level dominance

In either case, the solar mass? difference originates from loop effects from the lepton
number violating parameters in (5.25).

The correct neutrino mass hierarchy can be always generated by the proper choice
of just two of the lepton number violating parameters from the list of (5.25) — one of
which sets the scale of the atmospheric mass? difference, the second setting the solar

mass? difference. Of course, in the most general case all parameters can contribute.
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After choosing the lepton number violating (LNV) parameters, the method de-
scribed in section 4.5 is then employed to determine the charged lepton Yukawa
matrix. In general it needs to be non-diagonal, in order to reproduce correct masses
of both neutral and charged leptons and the Uy ys mixing matrix. The non-diagonal
Yukawa matrix (thus also non-diagonal charged lepton mass matrix), may easily give
rise to effects which are already subject to strong experimental bounds; tree level
lepton flavour processes, such as y — ey or u — eee, are not suppressed and loop
corrections to the electron mass will have contributions proportional to the tau mass.
To avoid such problems, the specific cases considered in the next sections are those
for which the large mixing in the lepton sector, as seen in the MNS matrix, has its
origin purely in the neutral sector, and the charged lepton Yukawa couplings remain
flavour-diagonal. The formalism we have described thus far allows the correct masses
and mixing of charged leptons to be initialised. However, this will lead, in general, to
an off-diagonal lepton Yukawa matrix. These, less natural, initial parameters are not
necessarily ruled out and within the framework set out above, it is entirely possible
to perform the calculations as described. However, we now prefer to consider a set
of parameters for which we do not rely on cancellations in the charged lepton sector
to make the model phenomenologically viable. The simplest way in which this can
be achieved, is to find LNV parameters for which lepton Yukawas are diagonal.

From Eq. (4.36), for the case where the lepton Yukawa is diagonal and therefore

Z; is the unit matrix, we see that
2,=Ulns, (5.26)

up to higher order terms. Using the MNS matrix as an input, it is possible to see

which ratios of entries in the mass matrix give rise to the correct leptonic mixing,
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being,

eff __

m;t = 2} diag(m;, ma, m3) Z,t =mk Umunski Umnse; - (5.27)

For example, to set the atmospheric scale at tree level, we can see from Eq. (4.19)
that as long as the hierarchy of p; matches the ratios of any of the rows in the MNS
matrix, the mass matrix follow the correct pattern to be consistent with the observed
mixing matrix. If a second mass scale is set up using the pattern dictated by one
of the other rows of the MNS matrix, the full MNS matrix will be produced upon
diagonalisation.

It is worth noting the nontrivial fact that such an approach, i.e. generating
correct structure of neutrino masses and mixings, while keeping FCNC processes in

charged lepton sector suppressed, is at all possible.

5.2.1 Tree level dominance scenario

At tree level, the mass of a neutrino can be set using u; parameters (4.20). The top
left panel in Fig. 5.3 shows how the value of (Am3.y) varies with u; only, setting
p23 = 0. The grey (or red in color) line is the result given by diagonalising the
full neutralino matrix in (4.13) and the dark (blue in color) line is given by (4.20).
They agree perfectly in Fig. 5.3a and thus only one line is shown. The shaded band
shows the current 30 limits. From Eq. (4.20) it can be seen, however, that it is
|p|? + |u2)? + |p3]? which sets the mass of the tree level neutrino and as such it is
straightforward to set any hierarchy between the p; and still maintain the same value

for the atmospheric difference. To correctly reproduce the MNS matrix, we choose
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as an input a very simple hierarchy between the u; parameters,

Hierarchy (A) : = % = % :

The scale of all three pu; is set such that a tree level neutrino of the correct mass is

(5.28)

generated which result in the observed atmospheric mass difference, being,
p1 =147 MeV,  py=vV2x147MeV,  pu3=+vV3x147MeV. (5.29)

At tree level, this choice of hierarchy gives rise to the MNS matrix, up to the SU(2)
rotation described earlier, being driven solely by the neutral sector; the charged
lepton mass matrix is diagonal, and as such we have chosen a set of parameters
within this basis which avoids the possible phenomenological problems.

A further, single lepton number violating parameter can then be chosen to set the
scale of the solar mass? difference. The question of the arbitrariness of the tree level
neutrino basis is complicated by the requirement that once the loop corrected mass
matrix is diagonalised, Z; being the unit matrix is consistent with the experimentally
observed MNS matrix. As only one further lepton number violating coupling is
initiated, the ratios in which the loop effects are distributed in the loop corrected
mass matrix are approximately determined by the tree level mixing matrix. As such
we can determine an approximate expression for the extra contribution to the full
rotation matrix from rediagonalising the loop effects. The further condition that the
full rotation must reproduce the MNS matrix allows us to fix the tree level basis.

The three further Figs. 5.3(b,c,d) show the range of possible parameters in this
scenario. In each of these plots, the set of y; are given the values (5.29) and another,
single lepton number violating coupling is varied. In each case, the gray (or red) line

shows the full result and the dark (blue) line is the result predicted by the approx-
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imate solutions. The fact that Aj33 and M35 give the correct solar mass difference
over a similar range of parameters is a numerical coincidence. For this example,
the factors from the different fermion masses in the quark loop, colour counting and
scalar mixing cancel each other.

The contribution of the neutral scalar loop discussed in section 5.1, results from
cancellations between the CP-even and the CP-odd diagrams and may includes con-
tributions of approximately the same order. As such, the approximation presented
earlier in the text, Eq. (5.6), does not agree well with the full result. The discrep-
ancy between the full result and the approximate result reflects the fact that various
contributions arise from different places in the full calculation (e.g. the effect on the
mixing matrices, the effect on the sneutrino masses). The approximate result plotted

in Fig. 5.3b is given by

" S M0 22 2 2 m2,Am?, m?
ENpp ~ ;1; 4"47ru1p [%ZN r = %ZNzr] (!(mngTlgzig) — (mgjg_ mig)Q In m?j) di;
L[ BEsin*(B - o) Bicos’(B—a)  Bicos’ } M7 In M —mg, Inmg
Lcos? B(ME — M?)? * cos? B(ME — M?)?2  (M2% — M2)? M2 — m?
N B;B; cos?(f — a) ] M3 In M} — mi% Inm,
ot BOME — MPME M| M
N B;B;sin(f — a) ] My In Mf; — miy InmZ,
| cos? B(M} — M) (M? — MF) ME — ”0
I B;B,; M3In M2 —m lnmio
- | cos? B(M, MQ)(Mf _ ME&)} M3~ Ko r) . (5.30)

The approximate result for the charged scalar loop, given by Eq. (5.17) agrees well
with the full result (Fig. 5.3c). However, as Aj33 = —A313, there are other diagrams
which contribute to the full result which are not included in the approximation. The

approximate expression captures the important effect. The agreement between the
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full result and the approximate result, given by Eq. (5.20) when varying X33 (see
Fig 5.3d) is very good, as the diagram highlighted in the text is the only diagram

which contributes.

5.2.2 Loop level dominance scenario

It is possible for both the solar and the atmospheric scales to be set by loop correc-
tions. This happens if the bilinear parameters p; are small enough. In this section
we analyse this case setting strictly yu; = po = psz = 0, so that the one-loop correc-
tions to the full 3 x 3 neutrino mass matrix are finite. Otherwise a more involved
renormalisation scheme has to be implemented.

Again, we would like to set the Lagrangian parameters such that one can generate
the correct structure of the MNS matrix while keeping the charged Yukawa couplings
flavour-diagonal. This can be achieved if the neutrino mass hierarchy is governed by
the trilinear A and )\ couplings. For the diagrams dominated by trilinear couplings
the flavour of the external legs of the loop can be “swapped independently” of the
flavour of the particles in the loop, just changing the appropriate indices of the A, A’
matrices in the loop vertices. Setting the A and )\’ entries which control the couplings
of the external legs in certain hierarchies, one can ensure that also the ratios of the
various entries in the one-loop corrected neutrino mass matrix are such that they
give rise to the correct Upsng rotation matrix.

The possible hierarchies are given by the rows of the MNS matrix and are, with
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a generic coupling A;;; as follows?,

Hierarchy (B) : Ajj = /\Tl%l = /\Tg%l (5.31)
: A Ay

Hierarchy (C) : yi= H=—H (5.32)

Hierarchy (D) . /\ljj = —\/5)\2”' s )\3_7'_7' =0. (533)

Due to the antisymmetry of the first two indices of A it can only be chosen to follow
hierarchy (D) described above.

As the nature of the loop corrections due to B; means that the external legs cannot
be swapped without affecting the flavour structure inside the loop, it is difficult to fix
a hierarchy of B; in the Lagrangian which will automatically give rise to the correct
ratios in the one-loop corrected mass matrix.

We consider first, the case where the atmospheric mass? difference is set by A;33 in
hierarchy (D). The range of values for which the correct atmospheric mass difference
is given is plotted in Fig. 5.4a. Note that although we plot on the x-axis A;33, the
coupling Aq33 is also varying to keep the hierarchy (D) fixed. The fact that both A;33
and Ag33 contribute is the reason the value of the coupling is only a little greater
than the value of Ay33 which correctly reproduces the solar mass difference in the
tree-level dominated scenario.

The further three panels [Fig. 5.4(b-d)] have a fixed set of A;33 in hierarchy (D)

giving the atmospheric difference. Being,

6.7 x 1075
\/5 )

with j # k have only negligible contributions to neutrino masses and

)\133 =6.7x 10_5 ) /\233 = - /\333 =0. (534)

0

3Couplings with A,

excluded from our hierarchy list.
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As33 = 0 due to the antisymmetry between the first two indices, fitting hierarchy
(D). In addition to this, Fig. 5.4b varies |}, 51, 3;; in hierarchy (B) giving the solar
mass?® difference. Again, we plot the solar mass? difference against the value of X},
however X5}, 5;, are being varied at the same time. The two remaining panels take in
turn different sets of three A’ couplings, A5, and A35. The final two indices determine
which particle is produced in the loop. As such, with a lighter particle in the loop,
the couplings must be greater to compensate. We see that, in moving from one
panel to the next Fig. 5.4(b— d), to produce the same mass difference, a smaller
value of the coupling is required with a heavier particle in the loop. With the down
quark in the loop (Fig. 5.4b) the value needed for the coupling may result in large
contributions to the neutrinoless double beta decay rate as it is already approaching
the excluded regime [67].

Finally, Fig. 5.5a, we show how the atmospheric mass? difference can be set by the
three A5 couplings in hierarchy (B), plotting the result for the atmospheric mass?

difference against \j;5. Next, we set Al3; to take the following values

la3 = 3.25 x 107°, Loy = V2 x 325 x 1075, tes = V3 x 3.25 x 1075 .

(5.35)

The remaining three plots, Fig. 5.5(b,c,d), show the change in solar mass? difference,

as sets of either A, ;o, in hierarchy (C) or the set A;33 in hierarchy (D) are varied.

5.3 Summary

An increasingly accurate picture of the neutrino sector, with masses much smaller

than the charged leptons and a distinctive mixing matrix in the W-vertex, is being
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discerned by current experiments. We note that there are three preferred Zy symme-
tries in the supersymmetric extension of the Standard Model with minimal particle
content. Imposing a Z; symmetry results in the widely studied R-parity conserving
MSSM, however another preferred symmetry, Z3, gives rise to a Lagrangian which
explicitly violates lepton number. These interactions lead to neutrino masses, both
through a ‘see-saw’ type suppression at tree level and through radiative corrections.
We have considered the most general scenario in this model; no assumptions have
been made concerning CP-violation or intergenerational mixing, for example.

In the basis set out in Chapter 3, we find that a non-zero neutrino mass will
arise at tree level unless all u; are zero and analyse in detail, the further contribu-
tions to masses that come from loop corrections. We show that the magnitude of
the contributions due to neutral fermion loops, examined in section 5.1.3 are deter-
mined by the size of the bilinear supersymmetry breaking parameter, B;; that loops
with charged fermions, described in section 5.1.4, have a contribution due to tri-
linear lepton number violating couplings in the superpotential, A;;x; and that quark
loops, section 5.1.5, are determined by the trilinear lepton number violating coupling
Ak Bach of these contributions can be dominant. In sections 5.1.6 and 5.1.7, we
consider the gauge loops and why they do not give large contributions to neutrinos
which are massless at tree level. We derive expressions for the full calculation, which
form the basis of our numerical analysis. We also present approximate expressions
in each section, which are simple, compact formulas encoding the important infor-
mation pertaining to each diagram. In our presentation of the results, as seen in
Figs. 5.3,5.4,5.5 these simple expressions are shown to be in good agreement with

the full result.

94



The lepton sector in the J/-MSSM is much more involved than the lepton number
conserving MSSM. Mixing between leptons, gauginos and higgsinos ensures the ques-
tion of initialising Lagrangian parameters must be carefully considered. A framework
has been constructed in section 4 to correctly reproduce the charged lepton masses
and MNS matrix for any set of lepton number violating couplings.

In constructing the framework in which to perform the calculation it is clear that
there will be, in general, large intergenerational mixing in the lepton Yukawa matrix,
this allows the possibility of unsuppressed tree level flavour violating processes, al-
ready subjected to strong bounds. To circumvent this problem we considered sets of
Lagrangian parameters for which the MNS matrix has its origin solely in the neutral
sector, the lepton Yukawa matrix being diagonal. The three rows of the MNS matrix
correspond to three sets of ratios between entries in the loop corrected mass matrix
which will give the correct MNS angles. It is possible to set these ratios by setting
hierarchies in the couplings between generations. With the condition that it must be
possible to change the flavour of the external legs of the diagram without affecting
the flavour structure of the loop, there is some freedom in choosing which group of
Lagrangian parameters we set in each hierarchy.

Lepton number conserving parameters were fixed to be the SPSla benchmark
point, and we have investigated the effect of varying the lepton number violating
couplings, as seen in Figs. 5.3,5.4,5.5. We have shown that values for lepton num-
ber violating couplings exist, which give the correct atmospheric and solar mass?
difference, charged lepton masses and mixing, which are not already excluded by
existing studies of low energy bounds. There are two distinct scenarios that achieve

this: the tree level dominance scenario, in which the atmospheric scale is set at tree
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level and the solar scale set by radiative effects, and another, the loop level domi-
nance scenario, in which both the atmospheric and solar scales are set by radiative
corrections.

In the tree level dominance scenario, we choose the u; parameters to be of the
order of 1 MeV, such that the correct result for the atmospheric mass? difference is
obtained. They are chosen to obey a certain hierarchy, which ensures the mixing
matrix is consistent with observed MNS.

In addition to this, a further, single lepton number violating coupling can set the
scale of the solar mass? difference by determining the contribution of the appropriate
loop diagram. It is possible to generate loop diagrams of the appropriate scale, by
including either a non-zero A\,A\’ or B coupling. We find that the correct solar scale

can then be set by any of

2
B, ~ 0.21GeV?~ [300u1] ,
)\133 ~ 3.4 x 10_5 ~ Ye ,

Naz ~ 3.2x107° ~0.1y,, (5.36)

where v, 4 is the Yukawa coupling of either the electron or the down quark, presented
here merely for the sake of comparison.

In the second case, the correct masses and mixing for both charged and neutral
fermions can be achieved without a massive neutrino at tree level. The solar and
atmospheric mass? differences both arise from radiative corrections at one-loop, using
loop contributions whose value is determined by sets of A or A\’ couplings in given
hierarchies, such that the observed MNS is generated. Firstly, we show that we can

set the atmospheric scale with a set of A couplings of the order of the electron Yukawa
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coupling, then find the solar scale is correctly set by A’ couplings of the order of the
down quark Yukawa coupling.

Alternatively, the atmospheric scale can be set by A’ couplings,

/ /
! 233 333 -5
= e—— = ——= = 3_25 X 10 ~s 0.1 s 5-37
B2 B v (537

and the solar mass? difference can be generated by another set of X' couplings,

? !
Ny = \%2 - _% ~6.5x 107% ~ 2y , (5.38)

or a set of A couplings of the order of the electron Yukawa.

The study of neutrino masses provides the basis for further work concerning lep-
ton number violating phenomena. The ranges of values for lepton number violating
parameters required to produce the correct masses and mixing, will be reflected in
processes such as tree level lepton flavour violating decays and will have repercussions
concerning rare events such as neutrinoless double beta decay and measurements of
electric and magnetic dipole moments. In fact, it has been shown in [68] that contri-
butions to the electric dipole moments of the electron and neutron from trilinear R-
parity violating superpotential terms only contribute at the two-loop level; however,
for Majorana particles they will give rise to one-loop effects leading to constraints
on R-parity violating parameters by neutrino electric and magnetic dipole moment
bounds. Such correlations make a valuable link between collider experiments and
upcoming neutrino experiments. In the next chapter, we examine a particular set
of decays, the radiative flavour-violating charged lepton decays. If these decays are
driven solely by the neutrino sector, the resulting branching ratio will be too small
to measure, however in many extensions of the Standard Model, particularly su-

persymmetric extensions, decays of this type can become large. We investigate the
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possibility that the type and magnitude of operators required to generate neutrino
masses in the J-MSSM will also generate observable decay rates for radiative lepton

decays.
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Chapter 6

The J-MSSM at one loop: Radiative

decays

Processes which do not conserve lepton flavour, the flavour oscillations in the neutrino
sector, have been observed [69]. This is in contrast with the charged sector, where
no such observation has been made. The decays 7 — uvy,ey and 4 — ey can
be driven solely by the known lepton flavour violation in the neutral sector, the
branching ratio will be small [70], however, well below current experimental limits,
due to the magnitude of the neutrino mass. Noticing that in many extensions of

the Standard Model this branching ratio increases greatly,! together with the fact

IThe effect of lepton flavour non-conservation from the charged slepton mass matrix in super-
symmetric extensions of the Standard Model where a seesaw mechanism results in light Majorana
neutrinos is noted in Ref. [71], this work is extended in Ref [72], where bounds for off-diagonal
terms are calculated. In Ref. [73] the results for this model are correlated with neutrino masses
and the (g, —2) data and in Ref. [74] the possibility of discriminating between different supersym-
metric seesaw models is investigated. A bottom-up approach is considered in Ref. [75], resulting

in predictions for the y — ey branching ratio. Methods for discerning models with heavy right
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that experimental bounds for these decays will soon be improved by several orders of
magnitude, suggests that these decays are a valuable place to scrutinise the Standard
Model and test theories which extend it.

In the previous chapter, it has been shown that the current experimental values
of neutrino mass squared differences and mixing can be accommodated within the
model, being determined by the value of lepton number violating couplings in either
the superpotential, or the supersymmetry breaking terms of the Lagrangian.

Crucially, the operators which give rise to neutrino masses in this model may
also give rise to lepton flavour violation in the charged sector. In this chapter, based
on [77], we shall consider combinations of lepton number violating parameters that
correctly reproduce the observations made in oscillation experiments. For these sets
of parameters we shall investigate whether they would result in branching ratios of
rare leptonic decays which would already have been observed, or would be observed
by forthcoming experimental studies. If the rare leptonic decays are not observed, the
improving bound will be valuable in precluding certain scenarios. We select scenarios
in which the off-diagonal terms in the supersymmetry breaking scalar mass matrices
are zero. It is possible, of course, even in the R-parity conserving MSSM, that this is
not the case and that these terms will lead to large branching ratios for lepton flavour
violating decays [72]. The aim of this study is to examine, specifically, the effects
of lepton number violating terms in the Lagrangian and the interplay between the

charged and neutral sector. As such, we will examine the scenarios which are only

handed neutrinos from R-parity violating models using a number of decays are studied in Ref. [76].
Renormalisation group effects due to R-parity violating couplings and their effect on the p — evy

branching ratio are considered in Ref. [41].
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present in the I/-MSSM and will not examine phenomena which have their origin in

the R-parity conserving part of the Lagrangian.

6.1 Experimental Results, Bounds and Prospects

The results from oscillation experiments combine to describe the mass squared dif-
ferences and mixing angles of the neutrino sector increasing accurately. The current?

3o allowed ranges are [69]

sin? 6, = 0.24 — 0.40 , sin? 0,3 = 0.34 — 0.68 sinf;3 <0.041, (6.1)
AmZ = (7.1 -8.9) x 107° eV?, |AmZ | = (1.9 -32) x 1073 eV2.  (6.2)

In our analysis we choose Lagrangian parameters such that the neutrino mixing

angles match the tri-bimaximal mixing scenario of Ref. [64],
.2 1 .2 1 .2
sin® 0,y = 3 Sin® fy3 = 3 sin“f;3 =0. (6.3)

The following bounds have been set on the branching ratios of u — ey [78], 7 —

wy [79] and 7 — ey [80].

Br(p —ey) < 1.2 x 107 at 90% CL (6.4)
Br(t — py) < 6.8 x 1078 at 90% CL (6.5)
Br(t — ey) < 1.1 x 1077 at 90% CL (6.6)

2During the completion of this final chapter, the updated results of [69] were published. As such,

the ranges for neutrino masses and angles differ from the results quoted in (5.21,5.22)
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Future experiments will probe these decays further. It is suggested [81-83] that

13,-14 "and that the sensitivities

the sensitivity to ;4 — ey will be improved to ~ 10~
to 7 — wy and 7 — ey will reach ~ 107%~°, To conclude, we present the current
experimental values for the branching ratios of 7 — puv.v,, 7 — ev.v, and p —

ev, e (1],

Br(r — uv,5,) = 0.1736 £ 0.0005 (6.7)
Br(r — ev,7,) = 0.1784 + 0.0005 (6.8)
Br(y — ev,7.) = 1 (6.9)

6.2 Generic Diagrams for [; — [;y

At the level of one loop, three basic types of diagram contribute to the decay l; — [;7
and in each case, there is a fermion - boson loop. Details of this calculation are
presented in Appendix G. The external photon can be attached either to the fermion
in the loop, the boson in the loop or the external leg (Fig. 6.1). The calculation,

as shown in Fig. 6.1, was performed in Weyl notation. In this notation, the four-

€L

component spinor e = , where e; and er are two-component left-handed
ER

spinors and the four-component spinor, f = denotes a generic fermion. The

n
factors associated with the vertices are denoted by either A;is or Bjxs as shown in the

diagrams, the charges of the particles are given by @y, (for example Q., = e), the
masses of the particles in the loop are my , and the masses of the charged leptons

on the external legs are given by m; ;. For more information concerning calculations
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using two-component spinors, see Ref. [58]. Taking all possible combinations of
arrows and neglecting diagrams with gauge bosons? it can be seen that, in agreement

with Ref. [84,85], at leading order the branching ratio is given by

4872 _
F(lz - lj’)’) = W [lAL'z -+ |AR|2] F(l, — ljl/il/j) y (610)
where
1 m;‘; — 3m<2;s mf}) me
Ap = —AusBjksQu, My, | — . = + > In .
(4m)? I R 4(md —-mi )2 (ml —m3)® My,
1 m3 + mi 2m?, mj M
+——5 Aiks BjksQo, My, | — . ~— + t = —1In -
2(4m)? J 1 2(md —m3)?  (ml — més)3 My,
1 mf/, - 5m,2p mi - 2m‘}¢> m3, mé my
. B: SB st'(/) mi k k 3 3 + k 3 lIl El
2(4m)? ks ™7 k [ 12(mfpk — mg,s)3 (mfpk — mis)4 My,
4 2 .2 4
_—.1 B*k: B'k Q¢ ms m¢s - 5m'¢’km¢s - 2m¢k _ mism:lbk 1n |:m¢s]
2(4m)2 eI : 12(71112/,,c - mis)3 (mfbk — mis)4 My,
and

1 ms m
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Figure 6.1: The final state photon can be attached to either of the external fermions,
the fermion in the loop, or the scalar in the loop. All combinations of helicities of

fermions should be included in the calculation.

The contribution from each Feynman diagram was expanded under the assump-
tion m?, m; <« m2,mj. On-shell conditions could then be applied and terms pro-
portional to m; were neglected. The resulting expression can then be re-arranged to

be seen to contribute to effective operators of the form*

ﬁeg ) 2AR,‘j€R]‘O'/’W€L,‘FuU + 2ALijéLj5'uuéRiFw, . (611)

Individually, diagrams produce terms contributing to different effective operators,

but these cancel when all possible diagrams are considered. Following Ref. [84] and

31t can be seen that diagrams will be suppressed either by the magnitude of the neutrino mass
or, in diagrams which contain lepton number violating operators, by the amount of mixing between

the neutrinos/neutralinos and charged leptons/charginos.

4We define 0¥ = 1(o#5" — 0*6*) and 6# = }(6"0” — 6¥o")
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Figure 6.2: The various possible combinations of particles which can be produced in
the loop: chargino and neutral scalar; neutralino and charged scalar; down quark and

up-type squark, up quark and down-type squark.

inserting the experimental values given in Egs. (6.7,6.8,6.9), it is then possible to
move from this effective operator to a branching ratio for the rare decay, given by

Eq. (6.10).

6.3 Specific Diagrams for [; — [;y

The following combinations of particles can be produced inside the loop: chargino
and neutral scalar; neutralino and charged scalar; quark and squark, as shown in

Fig. 6.2. In the [/-MSSM , mixing occurs between charged leptons/charginos and
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between neutrinos/neutralinos. For example, there are five charged fermions,

where ¢ = 3,4, 5 are the charged leptons e, 1t and 7. Similarly, there are seven neutral

fermions,
0
K>
= "1,i=1,...7,
R7
where ¢ = 5,6,7 are the neutrinos. The two-component spinors comprising the
quarks are denoted,
dr ,
dl - _ 3 Z = 1’ ?3 3
dR;
Uur i \ .
Uy = , =1, »3

URi )

Each of the diagrams in Fig. 6.2 are in the same form as outlined in Sec. 6.2.
The generic vertices Ak, and Bjxs can be replaced by the appropriate Feynman rule,
which are presented in the Appendix. The calculation is performed in the mass
eigenbasis. The full mass matrices are diagonalised and the appropriate rotation
matrices are calculated numerically and without approximation. In understanding
the important physical contributions it is more useful, however, to present diagrams
in the mass insertion approximation containing interaction state particles. The plots
are based on a Fortran code which computes the full result.

We will consider the role played by combinations of lepton number violating pa-
rameters by, first, investigating the case in which the bilinear lepton number violating

coupling in the superpotential correctly produces the atmospheric mass difference
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Figure 6.3: Diagram contributing to | — U'y with the only source of lepton number

violating being the bilinear lepton number violating couplings in the superpotential,

M-

(and the ratios between the three components ensure the mixing angles are repro-
duced correctly) and another, single, lepton number violating coupling sets the solar
mass difference. Both sources of lepton number violation will then combine to pro-
duce a diagram which contributes to a lepton flavour violating decay. Second, we
will consider the scenario in which both the scale of the atmospheric mass difference
and the solar scale are set by radiative corrections, and the bilinear lepton number

violating parameters are set to zero.

6.3.1 Atmospheric scale set by p1,23

With only 123 # 0 and all other lepton number violating couplings set to zero
the atmospheric mass squared difference can be correctly reproduced; the solar mass
squared difference is not generated and no observable branching ratios for [ — I’y are
generated. The non-zero p; 23 do bring about a branching ratio for [ — I+, through
the diagram shown in Fig. 6.3. The fermion inside the loop is a mixture of the heavy
neutralinos and the interaction state neutrinos. The amount of mixing between these

interaction states is dependent on g » 3, and also determines the mass of the tree level
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Figure 6.5: Feynman diagrams generated when, firstly, p; induces mizing of interac-
tion state neutrinos with gauginos and higgsinos and secondly, Mijr # 0 generating

neutrino masses radiatively.

scale is varied and the resulting mass squared difference and branching ratio for
7 — wy are calculated and shown in Fig. 6.4. The light grey band (and right hand
axis) shows the current 3o allow region for the atmospheric mass squared difference
as given by Eq. (6.2). All other lepton number violating couplings are set to zero,
and R-parity conserving parameters are fixed to be the SPS1a benchmark point [65].
We note that, in agreement with Ref. [86], the branching ratios for {; — [;v are
well below current experimental limits, as given in Eq. (6.5), and show the resulting

branching ratio for 7 — uy in Fig. 6.4.

6.3.2 Atmospheric scale set by p; 23 — Solar scale set by A

For the remaining examples, the bilinear lepton number couplings take the values,

_ B

=R T3

which reproduce correctly the atmospheric mass squared difference, as shown in

= 1.47MeV , (6.14)

Fig. 6.4. A single, further lepton number violating coupling Ajx(= —Akix) is then

varied. The branching ratio for lepton flavour violating decays when this coupling
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correctly generates the observed solar flavour oscillation are calculated numerically
using a Fortran code.> We find that there are scenarios of this form which correctly
reproduce all neutrino data and give rise to branching ratios for [ — I’y which are,
or will be, observable in experimental studies.

When g 23, Aike 7# 0 then diagrams shown in Fig. 6.5 are generated. It can be
seen that the amount of mixing on the fermion line inside the loop, again, corre-
sponds directly to the amount of mixing between interaction state neutrinos and
gauginos/higgsinos. It is this mixing which determines the mass of the neutrino
produced at tree level and is determined by the values given to the bilinear lep-
ton number violating parameters, x;. The left hand vertex is determined by the A
coupling from the superpotential, as defined in Eq. (2.20). This term in the superpo-
tential generates both couplings in the second diagram of Fig. 6.5. In fact, if Ay # 0,
that is, any A coupling with the final two indices the same, a single A coupling will
generate this diagram. The branching ratio is approximately given by the following
expression,

2
3 |hikkl? €2 1 MUy _
P =)~ G Gamz & M0 | () (g, )| D= b (629
1 w XO

€

In the following sections, we shall consider in turn all A couplings with symmetric

final indices.

H1,2,3 and Azq;

The first example considered is Ag;;. As Ag; is varied, Fig. 6.6 shows the resulting

solar mass squared difference, given by the dashed line, and the 4 — ey branching

5The same code was used earlier to calculate the neutrino masses.
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ratio, given by the full line. The light grey strip shows the current experimental value
for the solar mass squared difference and the dark grey area is the area presently
excluded by p — ev searches.

The value of Ayy; required to generate the correct value for the solar mass dif-
ference must be comparatively large to compensate for the smallness of the mass
of the electron induced in the loop. The y — ey diagram generated has a large
mass in the loop, and there is no suppression in the slepton part of the graph due
to intergenerational, or left-right, mixing. As such, it can be seen that this scenario,
although correctly explaining neutrino masses, is ruled out as it predicts a p — ey
branching ratio which would have been observed already. Furthermore, it is shown
in Ref. [67,87], that a Ag;; coupling of this magnitude would violate charged current

universality.

H1,2,3 and Aj22

In the top right plot of Fig. 6.6, it is shown that the value of A\;55 required to correctly
generate the solar mass squared difference is smaller; a muon is now produced in the
loop contributing to the neutrino mass. The lower value of Ajgq, in turn, makes the
¢ — ey branching ratio produced lower than the previous example, however it is still
at the edge of the region ruled out by experiment with 90% confidence level. For
scenarios with slightly heavier scalar masses than the SPS1a benchmark point this
would not be ruled out. In the two bottom plots of Fig. 6.6 the mass of the scalars
has been increased, such that the mass of the charged scalar which is mostly jig
is 143 GeV (bottom left) and 265 GeV (bottom right) compared to approximately

145 GeV which is produced by the SPS1la benchmark values of R-parity conserving
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parameters. We note how sensitive the resulting branching ratio is to the mass of
the scalar in the loop. As shown in Eq. (6.15), the Br(l — I'y) ~ 1/mj. Because
this scenario is at the edge of current limits, and because of this sensitivity to the
value of scalar masses, it is a particularly interesting scenario which can be studied

in future experiments.

12,3 and )\311,133

In the first plot of Fig. 6.7, we note the effect on the branching ratio of 7 — ey by
varying Asz;;. The values for Aszy; which correctly reproduce the neutrino data are
not ruled out by current rare decay searches. Not only is the experimental bound
less stringent, but the branching ratio is suppressed by a factor of (m2/m2)(Br(u —
ev, ) /Br(t — ev,7,)) ~ 1600 compared to the that of Sect. 6.3.2 and the fact that
the A coupling itself is smaller. The predicted branching ratio generated by the A;33
coupling that correctly generates the solar mass squared difference, is even smaller

due to the lower value of the coupling.

H1,2,3 and A3az 233

The right hand plots of Fig. 6.7 demonstrate that the values of A3z3 or Ags3z which
reproduce the neutrino results are not excluded and well below current experimental
sensitivity. We note that the values for A3z which produce the neutrino mass are

smaller than for A9;; due to mass of the 1 produced in the loop and Ag33 smaller still.
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Figure 6.8: Feynman diagrams generated when X, generates neulrino masses ra-

diatively and pi; 23 induce mizing on the external leg.

6.3.3 Atmospheric scale set by 11,23 — Solar scale set by A},

When g, Ajy, # 0 the diagrams shown in Fig. 6.8 are generated. In this case, the
mixing on the external leg is driven by the p; term, again being determined such
that the atmospheric mass difference is produced correctly at tree level. In a similar
fashion to the previous section, the A’ coupling on the left hand vertex is varied
and the resulting solar mass squared difference considered. The branching ratio is

approximately given by

2
3 Ml 1 [k M3 _
Ll — liy) = (4w)2ﬁ |(Y0) kel m2, [3 (W) ( -y * ﬁz_— Ll — L)
iR L

d xt
(6.16)

where M2 and M3 are diagonal entries in the squark mass matrices and M2 _ is
the off-diagonal term which determines the mixing between the scalar partners of the
left and right handed quarks. We note that the mixing between e and charginos is
much smaller than the mixing of v and neutralinos, and as such there is a suppression
relative to the A-driven diagrams. Furthermore, at the SPSla benchmark point,

the squarks are heavier than the charged sleptons; the branching ratios are highly

sensitive to the scalar mass and this further suppresses A’ contributions in comparison
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is approximately given by,

3 |)\0jj|2 e’ 1 B; HjigUy 2 _
C— L) & 120431 € A
L(li = ly) @r2Gam? ez |\ m2, ) \m2, Mo I 3Vil;)

(6.17)

As such, we see that these diagrams are not ruled out by current experimental

bounds, as shown in Fig. 6.11, and are not within reach of upcoming studies.

6.3.5 Atmospheric scale set by A — Solar scale set by \’

In the following sections, both the atmospheric and solar mass scales are set by
radiative corrections. Again, we can find combinations of parameters which correctly
describe the neutrino sector and also givé rise to experimentally attainable branching
ratios for [ — {'y.

We first consider the case in which A;33 and Ag33 are varied over the following
range,

Asz = —V2Xg33 =5 x 1075 — 8 x 1072 . (6.18)

The ratio ensures the correct mixing between neutrino interaction states is repro-
duced and the magnitude sets in atmospheric masses squared difference. In addition
to this, the contribution of the first diagram in Fig. 6.12 to the branching ratio of

[ — 'y is approximately given by,

Ll — ly) ~
TV (4m) G

3 Pl Mgrel? [1 177 7
| Xikk] |] i F(li_’ljl/il/j)' (6.19)

The results are given in the upper left panel on Fig. 6.13. The dashed line (and
right hand axis) show the atmospheric mass squared difference and the light grey

band shows the values for which A;33 233 generate an atmospheric mass difference in
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Figure 6.12: Feynman diagrams which contribute to l; — l;7y, in the case where

trilinear lepton number violating couplings are dominant.

agreement with current experimental observations. The full line (and left hand axis)
show the corresponding branching ratio for 4 — ey. The resulting branching ratio
is well below current or future experimental sensitivity.

To generate the solar mass squared difference, Aixk kk 36k are varied in the fol-
lowing hierarchy, ensuring the resulting mixing matrix takes the form observed by

experiment,

/! !

The second diagram in Fig. 6.12, produces a contribution to the !; — ;7 branching

ratio of approximately,

Ll — ly) =

3 Wikl® el 11 2 _

(47]')2 G% 5"7121 F(lz — ljl/il/j) . (621)
The results for the three possible cases, that is £ = 1,2, 3, are shown in the re-

maining panels of Fig. 6.13. We note that while ¥ = 2,3 are well below current or

planned experimental sensitivity, the scenario in which X}}; 5;; 31, generate the solar

mass squared difference would be discernible by upcoming experimental studies, al-
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though we note that bounds from i —e conversion in nuclei already strongly constrain
this set of parameters [88]. When the solar mass squared difference is generated by
A133.233,333, bottom right panel of Fig. 6.12, the branching ratio is of the same order
as that given by Ai33 233, setting the solar scale, and contributes with opposite sign.

Resulting in the negative gradient shown.

6.3.6 Atmospheric scale set by A’ — Solar scale set by A()

Again, both the atmospheric and solar mass scales are set by radiative corrections.
First, we consider the scenario in which the atmospheric mass squared difference is

set by Al1;911311- The parameters are given by,

! AI
Ny = \751 = % (6.22)

The resulting atmospheric mass squared difference and resulting branching ratio

for 4 — ey are shown in Fig. 6.14, from which it can be seen that the parameter
space which brings about the correct atmospheric mass difference is already ruled
out by the rare decay searches.

In a similar fashion, we consider the scenario in which the atmospheric mass

squared difference is set by )33 233 333, as follows,

/\,233 /\333
gy = =2 = =22 6.23
W= T s (623

The results are given in the upper left panel of Fig. 6.15. In this case, we note that
the values of |33 433 333 Which give the correct value for the neutrino mass, generate
negligible rates for u — ey.

The solar mass squared difference must now be generated. It can be set either

by Ai33233 or by a different set of X' couplings. First we examine A , which
y , y 1kk,2kk,3kk
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well below both current and future experimental bounds.

6.4 Benchmarks

Benchmark scenarios for studying R-parity violating models have been suggested [89),
for which the mass spectrum, nature of the lightest supersymmetric particle and de-
cays have been studied. The benchmarks presented in [89] are selected as they pro-
duce interesting signatures at future colliders and are constrained by measurements
of (g — 2),, the b — s decay and mass bounds from direct particle searches.

In addition to these benchmarks, we suggest some other interesting scenarios.
Our motivation being that neutrino data is known and we demand that the model
correctly reproduces these results. As there are numerous combinations of lepton
number violating parameters which satisfy this requirement, we consider scenarios
for which the upcoming [ — [’y searches will constrain the Lagrangian parameters.

The following combinations of lepton number violating parameters are considered,

where all R-parity conserving parameters are set at the SPS1a benchmark point,

e Benchmark Scenario 1 -

= % - \‘;—% — 147MeV |, Mgy = 7.4 x 1074

e Benchmark Scenario 2 -

(= % - % = 1.47MeV , gy, = 3.7 x 1072

e Benchmark Scenario 3 -

AI /
Mgz = —V2Ag33 = 6.5 x 1075 | N, = % = — \%_1 = 1.05 x 1072

126






e Benchmark Scenario 4 —

/ ! ! /
N 28 _ 388 _325%x107° ) N, =2 = T3 _105x%x1072.

W2 VB V2 3

In the first two benchmark scenarios the observed flavour oscillations of atmo-
spheric neutrinos are driven by the bilinear lepton number violating term in the
superpotential giving rise to a mass difference at tree level. For this to occur, the
1; parameters are of the order 1 MeV. In Benchmark Scenario 1, the solar mass
squared difference is then generated by setting Ay;; = 7.4 x 107%. Merely for com-
parison, we note that this is approximately Aoy, ~ 25v., where y. is the Yukawa
coupling associated with a given particle, in this case being the electron. This will
give rise to branching ratios for 4 — ey which can be probed by upcoming exper-
imental studies. In Benchmark 2 the solar mass squared difference is determined
by As;1 = 3.7 x 1072 ~ 1200%,. This combination of parameters will generate a
branching ratio for 7 — ey which may be probed by future studies of 7 decays.

In the Benchmark Scenarios 3 and 4 both the atmospheric and solar mass squared
differences are set by radiative corrections. The bilinear lepton number violating
terms are set to zero, and the neutrinos are all massless at tree-level. In Benchmark
Scenario 3, |A133.233| ~ 3y set the atmospheric mass difference and |A}; 511 31;] ~
40yq sets the solar mass squared difference. In Benchmark Scenario 4, | X33 933 333| ~
0.1yq sets the atmospheric scale and | X} 415 311 | ~ 40 yq gives the solar scale. In both
Benchmarks 3 and 4, p — ey would give branching ratios which will be observed by

future experimental studies.
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6.5 Summary

That lepton flavour violating decays of charged particles have not been observed is
worthy of note. The suppressed branching ratios arise automatically in the Standard
Model, but this is not the case in Supersymmetric extensions where it already puts
strong bounds on certain parameters. In this chapter, we have examined the effects
of lepton number violating couplings on these branching ratios. Combinations of
parameters which describe the neutrino sector were chosen to be examined and their
subsequent effect on the rare decays considered.

We first investigated the case in which R-parity conserving parameters are set to
the SPS1a benchmark point and the bilinear lepton number violating term in the
superpotential, u; generates the atmospheric mass difference. We showed that the
values of u; which correctly describe the atmospheric mass difference and mixing
angles are not ruled out by the current bounds on 7 — u, ey or 4 — evy. As such,
the bounds from lepton decays are less stringent than the bounds from neutrino data.
We then considered the case in which a further lepton number violating parameter
correctly reproduces the solar mass difference and considered the combined effect on
the [ — 'y decays. We note that in this scenario these decays can impose constraints
on one of the trilinear lepton number violating parameters in the superpotential, A.
We considered all the examples in which the A coupling has symmetric final indices,
which generate the solar neutrino mass with just one non-zero coupling. As;; and
A122 are excluded by experimental searches for p1 — e7y; Asz11, A133, Asze, Aasz are not.
We note, however, that the branching ratios are sensitive to the masses of the scalar
particles in the loop. As such, in scenarios where the scalar masses are heavier than

those in SPS1a, the branching ratios can be greatly suppressed.
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In this scenario, the limits on [ — I’y do not place useful constraints on X', or
the bilinear lepton number violating terms in the supersymmetry breaking part of
the Lagrangian, B;; generally, the current constraints from the neutrino sector are
stronger.

Second, we considered the scenario in which trilinear lepton number violating
couplings are dominant. We set all bilinear lepton number violating couplings to
zero, and again set R-parity conserving parameters to the SPS1a benchmark point.
In this scenario, both neutrino mass scales are determined by radiative corrections
and in order to generate the correct mixing matrix in the lepton sector, more than
one lepton number violating coupling must be non-zero for each mass scale. Because
of this, diagrams which contribute to { — [’y are generated. We note that limits
already exist when (), 511 3;; are used to generate mass differences in this scenario.

!
In general however, for /\5532‘7333 the constraints from the neutrino masses are stringent.
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Chapter 7

Conclusions

The [/-MSSM is well-motivated and worthy of study. As a SUSY model, it solves the
hierarchy problem and also generates neutrino masses in an attractive fashion. In
this thesis, we have determined the different sets of parameters which produce the
observed neutrino patterns. The effect of lepton number violating parameters in this
range on the branching ratios for [ — [’y has also been considered.

In Chapter 2, supersymmetry was introduced in the superfield notation. The
(anti)commutation relations which define the supersymmetry algebra and the gen-
erators of infinitesimal transformations were noted (Eq. 2.1). Properties and field
components of the chiral and vector superfields were given (Eqs. 2.6-2.11); noting
that the F- and D-terms transform into total derivatives, combinations of terms
invariant under SUSY transformations were constructed and used to build a SUSY-
invariant Lagrangian. This procedure enabled us to define an invariant Lagrangian
in terms of the superpotential (Sec. 2.2). The superpotential for a minimal particle

content model can then be written down (Eq. 2.19). The immediate phenomeno-

131



logical difficulties — the absence of degenerate scalars and fermions in the observed
mass spectrum, and the instability of the proton — were discussed. The former being
solved by adding ‘soft’ SUSY-breaking terms to the Lagrangian and the latter by
imposing a discrete symmetry when constructing the model. Motivated by the phe-
nomenology of the neutrino sector, we considered a superpotential (and soft breaking
terms) which explicitly allow lepton number violation (Eq. 2.20).

In Appendix B, the Lagrangian for the full R-parity violating MSSM is included;
that is, the Lagrangian as constructed without an additional discrete symmetry being
imposed. The J/-MSSM Lagrangian is a subset of this Lagrangian, which can be easily
derived by setting the parameters which determine baryon number violation to zero.

Starting from this Lagrangian, in Chapter 3, we study the neutral scalar sector
and the spontaneous breaking of the electroweak symmetry. The lepton number
violating terms compel us to treat the sneutrinos and the ‘down-coupling’ Higgs
boson equally; further mixing with the neutral ‘up-coupling’ Higgs gives rise to a
system of five complex scalars. We have described a procedure, originally presented in
[24], which allows us to control this problem and parameterise the Higgs sector. The
procedure allows us to select a basis in which the sneutrino interaction eigenstates
do not acquire a non-zero vacuum expectation value, and the two neutral Higgs
interaction states acquire real non-zero vacuum expectation values. In this basis,
the mass spectrum of the neutral scalar sector is considered, which requires the
Courant-Fischer theorem, the derivation of which is given in Appendix E.

Having understood the Higgs sector, it is possible to derive the Feynman rules of
the model. Many fields now mix and the vertices contain rotation matrices, them-

selves determined by the mass matrices of the theory; the definitions of these rotation
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matrices are collected together in Appendix D. In Appendix C, we provide the La-
grangian in this mass basis and define the Feynman Rules for vertices of the theory.

We performed all the calculations using Weyl spinors, which we define in Ap-
pendix A. Although not as widely used as Dirac notation, in my opinion, for cal-
culations of this nature they are more convenient and demonstrate more clearly the
underlying physics. This is, of course, a matter of taste.

The neutrino sector, the phenomenology of which was a primary motivation for
this study, was then considered. The tree-level phenomena are presented in Chapter
4 and the effects of radiative corrections are added in Chapter 5. This work was first
presented in [53].

Questions concerning the initialisation of Lagrangian parameters, such that the
charged lepton masses and MNS matrix are initialised correctly are addressed. To
accomplish this, approximate formulae (Eq. 4.18) are derived which allow the mass
matrices to be block diagonalised, making use of the large hierarchy between the
known leptons and the heavy higgsinos and gauginos. From this analysis we note that
two neutrinos are, without approximation, massless at tree level and an approximate
expression (Eq. 4.19) for the massive neutrino is determined, making explicit the
observation that its mass has a seesaw-like suppresion; the high mass scale being
provide by the higgsinos and gauginos.

In Chapter 5, we calculate the neutrino masses completely at the order of one-
loop. First, the relevant renormalisation issues were addressed and the physical
neutrino masses defined to be the poles of the inverse propagator. Generic expres-
sions, given explicitly in Appendix F, for the one-loop contributions were derived

and then the effect due to the different possible particles appearing in the loop were
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considered.

We were successful in showing that all neutrino parameters could be accommo-
dated in the model using various different sets of parameters, and interesting bounds
could be put on these parameters. Computer code for their calculation was produced.

Finally, in Chapter 6, the flavour violating radiative decays of leptons were con-
sidered; this calculation was first presented in [77]. We note that some of the op-
erators which drive the neutrino masses in the previous chapter, can also give rise
to flavour violating processes in the charged lepton sector. The branching ratios for
these process are calculated, explicit results are noted in Appendix G, and the nu-
merical results for the parameter sets noted earlier are plotted. We see that scenarios
which describe the neutrino sector are precluded due to bounds from experimental
searches for these rare decays. Certain sets of parameters are highlighted as Bench-
mark Scenarios, which correctly reproduce the neutrino sector and would give rise to
observable charged lepton flavour violating events at experiments in the near future.

To extend this work a number of other observables could have been considered.
Neutrinoless double-beta decay is widely discussed in the literature and a number of
new experiments are planned to probe this process further and confirm or repudiate
current experimental claims. As such, although the result at tree-level is well-known,
a full one-loop study may be of value.

A further extension of this work would be to set it within a unified model and
consider the running of parameters from a high scale using renormalisation group
methods. The unification of the gauge couplings suggests that supersymmetry is
embedded in a unified model. In the simplest such model, the breaking of super-

symmetry occurs in a sector decoupled from the Standard Model gauge interactions.
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The large number of parameters in the Minimal Supersymmetric Standard Model
can be restricted by making well-motivated simplifying assumptions at the unifi-
cation scale. It would be interesting to see how many high-energy parameters are
required to reproduce the observed, low-energy, neutrino parameters.

It is the aim of future experimental and theoretical study to understand physics
beyond that described by the Standard Model. Many models have been, and will be,
suggested. To discern the models, the correlations between physical observables are
identified, calculated and measured. In this thesis we selected a model that is well-
motivated from theoretical considerations, and calculated two correlated physical
observables: the neutrino mass and mixing parameters on one hand, and branching
ratios for radiative flavour-violating decays on the other. We have shown that there
are certain cases in which this appealing description of the neutrino masses may be

supported or ruled out by searches for rare decays.
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Appendix A

Weyl Spinors

A.1 Notation

The following conventions will be adopted. Dotted indicies transform under (0, 3)
representation and undotted indicies transform under (,0) representation of the

Lorentz group. Indices can be raised and lowered using the antisymmetric €,3 tensor.

enm=e=1, ¢*=eYg, thy=cap? .

[2 4

Spinors are contracted using the convention ® , for undotted indices and 4 ¢ for
dotted indices. A four-component Dirac spinor, ¥ can then be constructed in the

form,

T = g‘f

ill

X

The projection operators P, and Pg are given by,

U, =PU=1(1-v)¥, Ug=Pr¥=1(1+)7,
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and charge conjugation can be represented as follows,
TC = 420" .

Using the above definitions, we see that the operations can be understood easily

in terms of Weyl spinors,

€a 0 0 Xa
\I’L - ) \IIR = ) \Ili = ) ‘Il?{ = 3

0 x° 3 0

w-(08) w=(v0). u=(c0). m-(oe)
A.2 Kinetic Terms and Mass Matrices

Consider a Lagrangian in the form,
L = i€’ 40" 0Ll + X 550" Ou X + (Ml)ij XI?XIja + (Ma),; )E'm‘)g'?
+ (M3)ij EI?flja + (M4)ij gldig,? + (MS),']‘ X/?gja + (MG)ij ildigl?
We have written down all possible bilinear combinations of two families of Weyl

spinors, X; and &;, and parameterised them in the most general way. We can now

derive constraints on the parameters, such that the condition, £ = £, is satisfied.

M1='M;, M3=MI, M5=Mg
We further note that the terms involving (M 234) can be re-arranged, such that,

1 1

(Ml)ij X;X; =132 (Ml)z'j + 9 (Ml)ji XéX;' = (Ml)ij X;X;‘ .

That is, we can always rearrange paramters such that,
MiT:Ml, M;FZMg, Mg‘ZM;;, MI=M4,
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without any loss of generality. Substituting these results into the Langrangian gives

the most general Lagranian,

L= if_/diaudaaﬂgéﬂ + i)z,diaﬂdaauxgi + (Ml)ij X/?XIja + (Mf)ij i'mi'?

+ (M3); €7 jo + (M3); €575 + (Ms)yy X'7€ ja + (M3); X i’ (A-1)
In general, (M;) and (M3) are complex, symmetric matrices (and as such, can be
defined by n(n + 1) real parameters); (Ms) is a complex matrix (can be defined by

2n? real parameters.) The nature of these mass matrices determine the manner in

which the matrices can be diagonalised, as discussed in the next section.

A.3 Diagonalising matrices

Consider a general n x n complex matrix, M, with eigenvectors é; and corresponding

eigenvalues A;. If a matrix, P is constructed to have the form
P=(é1 €y €3 €1 - én>

MP:()\lél /\262 /\3é3 /\454 )\nén>

then

/\10000---\

0 A 0 0 0
P'MP=1 0 0 X 0 0

0 0 0 0 - A, )
If M were an Hermitian matrix (M! = M), the eigenvalues, and therefore the di-

agonal elements, would be real and non-negative and P would be a unitary matrix
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(Pt = P~1). However, we must find a method to diagonalise the general complex
mass matrices and self-transpose mass matrices highlighted in the previous section
by unitary transformations, which leave kinetic terms unaffected.

Consider a general, complex matrix A. The product A'A is Hermitian, and, as

such, it is possible to diagonalise it with a unitary matrix in the following manner,
U'ATAU = D?,

where D? is diagonal, with real, non-negative elements. A new hermitian matrix, H,
is defined to take the form,

H=UFDF'U',

where F = diag(e'¥!, €"¥2,¢'%3,.-.) and D is chosen such that it is a diagonal matrix
with entries which are the positive square roots of the diagonal elements of D?. We

consider the product,
H? =UFDF'U'UFDF'U' = UFD*F'UT .
As D and F are both diagonal in form, the F comfnutes past D? to give
H?=AlA

We define unitary matrices, W = AH~! and V = WU. Rearranging and substituting

for H gives,
A=WH=WUFDF'U'=VFDFU! = V' DU"

VTAU' = D
Hence, U’ and V' are unitary matrices which diagonalise the general complex matrix,

A, such that the diagonal entries are real and non-negative. Also,
VIAU' =FD =D
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Where D' is a diagonal matrix with complex entries.

The specific case where A = AT is now considered. If
VTAU' = D= UTAV" =D

= VI* — U/

A.4 Dirac and Majorana Particles

If 9’ carries a conserved quantum number it must be contracted with a spinor which
carries the opposite quantum number, 7’. The ¢’ and the 1’ do not mix as they can
be differentiated by the quantum number. In this case, terms such as ¢’y and n'n/

do not appear in the Lagrangian. The Lagranian for Dirac particles takes the form:
Lp= Z-J,/diguda@#w;i + iﬁ’dia"d‘a@“ngi + (M5)ij W?n'ja + (Mg)ij ‘paiﬁ'? (A-2)

If none of the quantum numbers v’ carries are unbroken, 1)’ can be contracted
with similar spinors. Terms such as ¥y ¢/'¢’', €€ all appear in the Lagrangian.
Having noted all such terms, they are then brought together as x;, where x; = ¥,
X2 = £ etc. There is no quantum number to differentiate between the fields, in general
therefore, they will mix. The Lagrangian for such Majorana particles is given by:

Ly = 10X i OuXn; + (Ml)ij XI?XIja + (Mf)ij i/diil? (A-3)

The following transformations are now defined

U .. . W — ¥ Lo
Xai = UxijXaj »  Xai = Uxijxa] )
P T oo = VI
ai Uun'anj ’ 1/) ai Ul/”]Xa] s

(A W _ * =
Noi = UnijXaj v Mai = UnijXaj -
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Substituting this into the Langrangian, gives
L = iU Xeno" 0, UsitXat + Upir ek 0, U et + iU, 7165 0 uUnik o

+ (Ml)ij UxikX(J:ijlea+(Mf)ij U;ikxde;le?+(M5)ij U;ikngnjmla"“ (Mg)ij U;ikﬁakUdzj”Z’? )

which can be simplified as follows,
L = iX6i0"**0uXai + Wai0"**Outhai + 160 Mg

+ [UF (M) Uy XXt + (UL (M) Uy ek + U] (M) Uy | it [UF (1) U] sl
We observe that the unitary matrices can be defined such that the matrices are

diagonal, following the procedure defined above.

A.5 CKM- and PMNS-like matrices

Consider the following Langrangian which is composed of a single family of Majorana
particles, three different families of Dirac particle and two gauge bosons defined as

follows,

Xao Yo Aa Pa
XX = , Wyy = , Tpe=| _ Pe=1 _ Xu Y
X* n* 3 ¢

Resulting in a (diagonalised) Lagrangian in the following form,
L = ixio"8uxi + 1o Oy + ifio*Oum;
+z’5\,-a"‘8ﬂ)\,- + iéa“@u& + ip_ia“aﬂpi + ’1:61'0'“8“(1'

+ (Mx)ij XiXj + (Mx)ij XiX; + (Mwn)ij vin; + (Mdm) ; i

i
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+ (1\;[,\5) ’ Aigj + (MA5> jgij‘j + (Mpc) ’ piCj + (MPC> ; C_iﬁj

i i i i
+gl>ku;kiauX#U12imwm + QQﬁkUpT;ciU”YHU:im)‘m
Here, it can be seen that by moving to the mass eigenstates there will be flavour

mixing in the gauge interaction.

. 4] _ 7T *
VDM - kaiUIZim VDD - UpkiU/\im

Both Vpur and Vpp are unitary matrices. We can specify a general n x n complex
matrix by 2n? real parameters; the condition of unitarity removes n?; an orthogonal
matrix is specified by 3n(n — 1) angles, leaving the remaining in(n + 1) paramters
as phases. However, not all of these phases are physically observable. It is possible

to redefine the phase of the Dirac spinors
Wy — e¥Wyn = P — e, n — e *¥n

An overall phase is not observable, so 2n — 1 phases can be removed from Vpp,
leaving 3(n —1)(n—2). It is not possible to redefine the phase of a Majorana spinor,
so only n phases can be removed from Vpyy, leaving 3n(n — 1). The CKM matrix is
of the form VpD; we have § x 3 x (3—1) = 3 CKM angles and 1 x (3—1) x (3—2)
and one phase. The PMNS matrix of the lepton sector takes the same form as the
VoM, leaving 3 x 3 x (3 — 1) = 3 PMNS angles and § x 3 x (3 — 1) = 3 phases. It is
conventional to describe the 3 PMNS phases as one ‘Dirac’ phase and two ‘Majorana’

phases.
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Appendix B

I.-MSSM Lagrangian: Interaction

Basis

The [/-MSSM Lagrangian contains the following kinetic and interactions terms.

Kinetic term for scalar:

(Dup)' (DHy)
Kinetic term for fermion:

ilﬁp&“ﬁpDﬂwp
Kinetic term for gaugino:

iAja* D, A}

Kinetic term for gauge bosons:

1 a a v
-ZI_F‘“’F Iz

Gaugino interactions:
V29 TYIN) — iV2g M3 T 0!
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Yukawa terms:

1w, 1 2wt
P oy B-
F-terms:
W |?
- Z ‘ Op; (B—7)
D-terms:

_Zgz Z 1aTlAab ? (B-8)

SUSY breaking terms:
—m2lel® —%m,\/\)\ , —Aijrpipior , —Bijoip; , —Cip; (B-9)
The covariant derivative is defined as,
D,=0, - igAﬁTA ,

where p,v = 0,...,3 are Lorentz indices; p, p,0,0 = 1,2 are Weyl indices; ¢,j =
1,2,... are generational indices; and, A = 1,...,n? — 1 labels the generators of the
SU(N) group.

The derivation of these terms is presented in Sec. 2, which is based upon the

introductions and reviews of Supersymmetry presented in Refs. 4, 5].
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B.1 Kinetic term for fermion

i&d&“ daDuwa

/e =uppmyab pb S TIC =L P c ST Gy p ab b,
‘CKinetic, Fermion —— Zﬁapo' P D“ Acap + 'LEipU”ppDuEip + ZHszuppDu HQPZ
:)OT = pppabnbr | e zppp CT 4 STTCT =fipp cr
+iQiy 747Dy Qyy +1D56" D, Dy + iU "D U
where

D = §,1% — \1/95 (WiT*e + W ™) — COZSQ;W Z, (T3 — sin® 0w Q™) — ieQ™ A,

=+ ~ =0 ~
T = L . _ + T 0
Liinetic, Fermion = o001, + 1€1,0"0 e, + 1€p;0"Opep; + thy 7 0,hg + ihyG" 0, hy
+iu}, 510 0}, + id5,0"0,d%,; + iU, 5" 0 uk,; + id5,5"0,d%;

~+ ~
—eé; 0" Ayer, + et Ayep; + ehy M A RS

2e e - 2e e

Stz —p z _ Y3 -pu z _ ‘Yoz —pu z z =p T
T3 UL Auut, 3910 Audy; 3 Uri0 Ayup; + gdma Audp;

92 — — [ 92 ]' 2 - — - —
+_2c Vpa0" ZuVpe — ow \2 7 $w | €La0" Zyera — 9Swepi0" Zyep

g2 (1 st L, i+ 92 30
+§ (5 — s%v> hy " Z, b — 2o 2G*Z, A3

g2 (1 2 g2 (1 1 -
+— (5 - 5331/) uy 0" Z,ug; — o (5 - 53?4/ 10" Z,d7;

Cw w
2 =T =l T 1 JTr — T

g2 _

—V
\/§ La

=0 ~
+ W ey + 22, Wivye + Lhy " WHRS + L byt W bt

V2 e \/5 V2

92 _z —py+
.y
+-==ur;, 0" W, di, 2.6 W, ul;

V2 \/§

+%—r —uG(R))\(R)zy y +923dr —MG(R))\ R)zydy +923 %, 5"G R)/\*(R TY, Y +g3dm MG}(LR)A*(R)Iyd%i

145



B.2 Kinetic term for gaugino

NAZnpp A
z)\p.a Dﬂ)\p

B —uppp R 50 o 5P sy AR
EKinetic, Gaugino = ZBPU 'D“Bp‘*'ZW/] g D#Wp +1»Gp am DuGP

= , ~ ~0 , —~—
— iR & ; =1L pp 0
Liinetic, Gangino = 18,070, B, +iW ,07°9, W,

=t —~ == ~ =R ~(R
+W , GO W +iW 540, W; +iG, 54#°9,G)

~+ —~ - —_—
+gos,W HAWT — gos,W G*A W~
—~4 —~ —~ —~
+gocuW *Z,WT — goc, W 4 Z, W™
P =~ -+ =
+gW W, W° — oW W IW

-0 —~ =0 o~
+g.W *WIW™ — g W *W, W

=(R) ~
+7;g3€RSQG 5'MGLS) G(Q)
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B.3 Kinetic term for scalar

(Dup)! (DHp)

Lriroicsonw = (DPEL)' (D#4£8) + (D, B5)" (D#Bp) + (3t b)! (D)
(o) (pet) « (2.00) (5) + (57) (05

~ % ~ ~% ~ ~ ~%
EKinetic. Scalar — +6#VL(16“I/LQ + a#eLaaueLa + 8}46}%6“6}%

+0,h3* 0"k + 0,h RS + O, U 2T, + 9,diEOMdE,
+8,U%,0" W% + 0,d%,0MdE
€0, 8} o AP e, — 1eA, 8} OPE, — 10,8 APER; + 1eA,E R O,

—ied,hI* APRY + ieAuhj*a"h'{

% 9 .
S AT + A0, — SO, AN, - A0,
2ie 2i - - ~ ‘ - -
+ 5 Ot A, %A 02,0, — audgiA“d;zg; + %Aﬂdgiaud;gg

192 192 Z92 1 igs (1 e o
~2CW8u LaZ ULa‘*’E I Laa La J (5 - S'?u) 0 eLaZ La——; (5 - S?U) Z#eLaaueLa

g (1 ) igs /1 )
—zgswZueRi(?“eRi—Hgsw@uemZ"eRi—% <§ - sﬁ,) Auhd Z“h;%—% (5 - sﬁ,) Z,h3*o*hy
w w

+ 5220, 2V ;92 Z,hg 3"

ng 1 2 ~ %I ~ g2 1 2
- <§ - 533;) altuLiZ#uLz + — (5 - 53124; #uLzauuLz

] 1 1 ~ - ) 1 1 ~ -
2 (G- g adzzd - (G- 1) ndzed,
Cw

21 . 21 ) - -, i ~ -
—ggswa Up 2y, + 3 — 8w 2,050 Uy, — ggst“dfﬁ(?“d,{ﬁ + ggswaﬂd%Z“dei
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+%WJ6203“5LQ - %@DZQW*“% + %Wﬁla@“ém - %8ﬂézaW_MDLa
+%W;h3*aﬂh; — %auh;*w+”h3 + %W;h;*aﬂhg - i\/i;_a#hg*w—ﬂh;
W dgorns, - R adiw i, + W ueed;, - Raanw e,
+%GLR)112§/\T(R)”8“&; - %aua;fc:“(”‘um)wazi

+%GLR) GNP _ E% 2GR AR gy
+%G§R>a;ix<’*>”aﬂa;; - %auagicﬂmw@zya;z

193 (R) 5z \(Rzzaujrr _ 2935 Tz ~u(R) yH(R)zy j*
+7G“ dR?./\ 8 dRi _— —faudeG )\ dR’L

2 A, APE, L + e A B p APEY + €2 A RS APRY

de? ~XT AU~T e? T*xT Ap JT 4e? ~T Al ET e’ JT AW J*T
+?A#UL1'A ur; + EA,udLiA dp; + TA#uRiA Up; + _g'AMdRiA dr;
2 2 2
92 =~k -~ g ]‘ ~% ~
+EZ#VLQZ“VLQ + C_22 (5 - 830) ZlieLaZueLa
w w
2.2 9%
+g stll'éRiZ“é;ﬁ + @‘Zuhg*zuhg
w

g (1 ? g (1 2,\°
+22 (5 - sﬁ,) Z.h3* 2 + (5 - gsﬁ,) 2,08 M2,

w

g% 1 1 2 ? T 7 JT 4 2,2 ~T  r7iL~*T
+— 5~ 3% Z,di; ZMdL; + 99 SwZulip; 4" U
1 - .
5% 2 2V
1 2 2 ~% ws €92 1 2 ? ~% I ~ Ho* ~ o
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B.4 Kinetic term for gauge bosons

‘Ckinetic. gauge boson =
1
-1 (8.B, — 8,B,) (0"B" — 8" B*)
1
-3 (3#[/[/51“) — auW,EF) + 925F6HW;59)W:SH)) (B#W(F)” — 3wk 4 gzsrenw(e)uw(ﬂ)'/)

1
-1 (8uG,(,R) — 3quLR) + g3fRSQG;(AS)G1(/Q)) (3ug(R)V —rGWRm g3fRSQG(S)uG(Q)V)

1

W; = —\/—E(W: -+ WN_) WS = CwZ“ + SwA“
2 __ ¢ - —
Wﬂ = E(W: — Wl‘ ) BH = —SwZ“ + CwAu

Liinetic, gauge boson =
—% (0,2, - 0,2,) (0"Z" — 8" Z") — % (8,4, — 0,A,) (O A” — 8" A*)
5 (@ — W) (0w — W)

+29253, 0, AW TFW ™0 —2058,0, A, W T*W ¥ +20,5,,0, W, W H A, —2g95,0, W} A, W™
+2095,0,W,] A*W™ — 2g45,,0,W, W+ A"

+292¢ 0, Z, W W = =204, 0, Z, W T*W 4294, 0, W, W T+ Z,—2g5¢,,0,W;F Z,W
+292c, O, W, ZFW Y — 2g9c,,0, W, WHHZY
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B.5 Gaugino interactions
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B.6 Superpotential
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B.7 Yukawa terms
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B.8 F-terms
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B.9 D-terms
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B.10 Soft Breaking terms
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Appendix C

I.-MSSM Lagrangian: Mass Basis

In Section 3 we have defined the basis in which the sneutrino vevs are zero, and we
apply this rotation to the whole chiral superfield £. We choose the basis in the quark
sector as follows. We rotate the four quark superfields to a basis where both Ay, and

J

(Yu),; are diagonal

D), — Z} Dy, D — Z;.D,
U, — Zy,, Uy, U — z;,U. (C-1)

By absorbing a rotation matrix into the Lagrangian parameters, one can write down

the superpotential (2.20) as

1

W = Esab/\aﬂj Z‘C%Ej + )‘,az]‘C'tl)zQ?fo - :kaK:k‘C?JngDJI - sab/J'Ot‘CZzHQb
+ (Yu),; QiFH"US — (Yu) KuQH,' U} , (C-2)

162



where Xy, and (Yy),; are diagonal matrices and £' (£?) is the neutrino (electron)
component of the SU(2) doublet. The charged current part of the Lagrangian,

e

EW = ———'L_LLiKija'“W;dLj + H.c R (C-3)
w

diagrammatically reads (in Weyl spinor notation) as,

ie
dy .

DKot
! \/QSW Y

(C-4)
W, (%

with Kj; = Z; 1,23, «; being the CKM matrix. We rotate all fields in the basis where

sneutrino vevs are zero. Then the soft supersymmetry breaking terms are,

_ 2 ~* -~ 2 ~% 2 0x10 2 +xp 4+
Lssp = — (Mﬁ)ag ViaVLg — (Mi)aﬂ €Lafrp — M, hy hy — mi, hy™hy

— (), Enien — (md), Kk, - (mg) Iadi,
- (m3), Fidy — (w2, i
[_ (hu ) “Llth*Ry] (hu)kj Kkid%lh;aﬂy] h‘aﬂkDLaéLﬂé;{k - h;jkDLaij ~72k
+hik; K;kéLaaLiJ;ij + Balpoh) — Baéprohg

+ %Mlﬁﬁ + MWW + %MﬁOWO + %MgéRéR + H.c.] , (C-5)

where B, is the four-component bilinear term B, = (By, B;) and h,h’ are trilinear
soft breaking couplings.

In the following sections, we bring together terms of the same form, containing

interaction states which mix. We first collect bilinear terms: the kinetic terms and

mass terms, which determine the mixing between the fields which carry the same

quantum numbers after the spontaneous breaking of the electroweak symmetry oc-

curs.
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Figure C.1: Vertices on the left arise from Ly = Arst¢twsnr+A:st¢{d—)sﬁ, and vertices

on the right arise from L = B,szzsé“V,mr + B -0tV s,

For the mass terms, we present the mass matrices and define the rotation matr-
cies which describe the transformation between the ‘interaction’ eigenstates and the
‘mass’ eigenstates.

For interaction terms, we gather the appropriate terms and display the Feynman
rule for the vertex in terms of Lagrangian parameters and rotation matrices. In
Fig. C.1, we manner in which Feynman rules for Weyl fermions are defined. In the
following Feynman rules we only note the rule for ingoing Weyl fermions for scalar-
fermion-fermion vertices and one example for each gauge boson-fermion-fermion ver-

tex. In each case, however all the combinations shown in Fig. C.1 exist.
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C.1 Kinetic Terms for Gauge Bosons
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C.2 Kinetic Terms for Scalars
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C.3 Kinetic Terms for Colourless Fermions
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C.4 Kinetic Terms for Quarks/Gluino

L D iuk, et ok, +id%,510,d%, + iu%,6"0,ub,; + id5,6"0,d%,
=~(R) ~
+iG  5"9,G"
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C.5 Kinetic Terms for Ghosts

L D 8,770y + 8,700 + 8,7iz0"nz + Ouiiad*na + 8,70 0#nl)

C.6 Mass Terms for Gauge Bosons

2
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w
93 9
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From these terms we see that the masses given to the vector bosons are as follows:

Mi=0, M§—49622(v0+v), My = 2 +v2).

C.7T Mass Terms for Neutral Scalars
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We have moved to the basis in which sneutrino vevs vanish £ — UL, as described
in Section. 3. As such, the sector decouples into exact CP-odd and CP-even mass

eigenstates,

Re h2
E D ( Rehg R,E!I;Lo ReDLi ) Z;{ZIEMIZLIZRZ}{ RGDLO )

Revy;
where
cos? AM3 +sin® BM%  —1sin28(M5+ M%) —B;
My = —3sin26(M3 + M%) sin® BM3 + cos® BM% Bjtanf | »
—B; B;tan 3 M325;;
and
M2 = [U* ((m%) + u;uﬁ) U] ii% cos26M2,  Bn=0bgUse and M2 = % ,

where M, is the value the lightest CP-odd neutral scalar would have in the R-parity

conserving limit. The rotation matrix is then given by

ZpM§ Zg = diagmjo, mio, (m? )i . i=1,..3.

167



Imh3

L D —<1mhg Im 7 ImDLi)Z,XZZ{MiZAZL Imig |

Im oy
where
cos? BM} + Esin® BMZ  1sin28(M3 — EMZ) B;
M = $sin28(M3 — EM32)  sin® BM3 + Ecos? BMZ  Bjtanf |
B; B;tan 3 MZ25;;
ZAM3E Z 4 = diag[moe, m3o, (m2 )], i=1,..3.

C.8 Mass Terms for Charged Scalars
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C.9 Mass terms for down-type squarks
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Mass terms and rotation matrices for down-type squarks arise from the following

terms in the Lagrangian:

L d S di
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Recall that A, = Yk Okm are diagonal down-quark Yukawa couplings.

C.10 Mass terms for up-type squarks
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Recall that (Yy);; = Y d;; are diagonal up quark Yukawa couplings.

C.11 Mass terms for quarks
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171



C.12 Mass terms for neutrino-neutralino
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Mass terms for charged lepton-chargino
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C.14 Mass terms for gluino
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C.15 Fermion-Fermion-Photon interactions
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C.16 Fermion-Fermion-Z interactions
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C.17 Fermion-Fermion-W interactions
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C.18 Fermion-Fermion-Gluon interactions
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C.19 Scalar-Scalar-Photon interactions
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C.23 Scalar-Scalar-A-A
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C.26 Scalar-Scalar-W-W
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C.31 Scalar-Scalar-G-W

+ 2B G apAR= gy, 4 P8 G0 g\ Ry gy,

V2 V2

—_— — -

’1:693 (R) * *
GRBNANAARNNANAW T fog, N 2 259

!
t
|
|

"t ¥4
u'f‘

C.32 Scalar-Scalar-G-G

2 2
93 ~(R) 7%z (R S)\(S)zy ~ 93 ez 5)\(S)zy F
+—4-G,§ VAR GO \Emugy 4 ZGLWL,\(R)”G; ISy gy

2 2 - -
+%GEAR),&"IZﬁ)‘*(R)ZIGLS))‘*(S)Iy’a;%{i + _g4—3G;(4R) d;i)\*(R)za: GLS))‘*(S)xyd;{yi

189



%/\(R)zx/\(s)zya,.
GBEBANANAAIRNNANANGEY 4 1
I
Y
[~
1 dy?
C.33 Scalar-Z-7Z
+_1_i22_zv2#1; +Lg_%z A 9 527 v, ZPh+ l g5 527 %z
\/54012” u0 Lo \/540%0 LYLO 0 \/*42 \/—42 U
IHO 62
: s M(’Udzlﬂs + vuZRls)glw
|
|
ZH ANNANANAINNNN 2V
C.34 Scalar-W-W
+L—W+UOW AN 92W+ WHy +ig—2w W THRI+ W hYW tHy
\/_ 2 Lo \/_ 2 LOo 0 f 2 \/— 2 U
|H0 62
: # ﬁ(vdzRZﬁ + 'UuZRls)glw
w
|
|

190



C.35 Scalar-A-W
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C.39 Neutral Scalar - Neutral Fermion - Neutral

Fermion interactions
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Appendix D

Summary of rotation martrix

definitions

We draw together the definitions of the rotation matrices, which describe the trans-
formation from interaction basis to mass eigenbasis, as determined by the forms of
the mass matrices.
Charged scalars

h»;_ - ZquH;_

+ +
h’2 Hl
e = . ot —_ +
€La Zn : €La = ZH(2+Q)qu
bt +
€Ri Hyg

~*

Eri = Zr+igHy
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Neutral scalars

Reh) 1
2 S
Rev;,, V2
1
=—Z
/2 R
Im A
LI LZA
Imvo;, V2

hO
HO

Vi
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h

Via

—

V2

1
V2

(ZrigHy +1Z a14A7)

(ZR(2+a)‘IH¢? + Z'ZA(2+a)qu)



Charginos
Wt =iZpgk)

—iWH ny )
~ | N__ . * -
iy . | W™ =iZ" K,
+
e \ K3 ) 7+ +
hy = Zy 9k,
W .
=7 : B i
ep; = Zy(2+i)gkqg
€lLa -
\ s
— * 0
era = 2 (21a)qkq
Neutralinos
B = iZn1gk®
Nlgfvg
[ —iB
0
,i — .
—iWO0 oo
= ZN
h9 ~
2 a 0
. hy = Zn3gk,
\ Via /
-7z ;
Via = ZN(+a)gRy
Up-type Squarks
~r __ _ . T
ULi = Zaigliy
(G
. Ug; = Za(3+5)qlq
i )
uRj ~T
Ug

Down-type Squarks
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~ii =27 JI

dig 9

Rj = Z3(3+j)qd§

Quarks

'z _ T ' _ % T
Up; = ZuLij“Lj , dp = Zdu'j Lj

'z __ 7% z ‘e _ gz
Up; = ZuRijuRj v Opi = Zugij Rj
where ‘primed’ fields are the quarks in the interaction basis and ‘unprimed’ fields

give the fields in the mass basis.
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Appendix E

Courant-Fischer theorem

Consider A an n x n, hermitian matrix, with real eigenvalues \; > Ay > ... > )\,

and U defined such that
UTAU = D = diag(\1, Ay, . .., An) (E-1)

Consider two subspaces; F is the subspace spanned by the basis vectors {ey, ..., e;}
and V an unspecified subspace which has dimension (n — i + 1). Sy is the set of all
unit vectors in V. Sj, is the set of all unit vectors which live in both F and V.

Consider a particlular V and any unit vector from S3,,y
i i
y'Dy = Z AjYTY; > A Zy;yj =\ for any unit vector in S}, (E-2)
j=1 j=1

It is possible to find the specific y from S}, which gives the greatest value for y' Dy

and as all the elements of S}, also appear in Sy, it is clear that
Sy {y'Dy} > S, {y'Dy} > A (E-3)

Now, each possible V is considered and the specific V which gives the lowest value
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for g:( {y' Dy} is selected.

minmax

VSy {y'Dy} > N (E-4)

V is defined to be the subspace spanned by all the basis vectors orthogonal to

{e1,...,ei_1}. Sy is the set of unit vectors in V. Consider y, a unit vector from
S
n n
y'Dy = Z MYy < A Zy]*y] =\ for any unit vector in S; (E-5)
=i =i

As all y satisfy this relation, the particular y which gives the greatest value for y' Dy
satisfies

max

Sy {y'Dy} < N (E-6)

Noting that V is a specific V and comparing with (E-4)

minmax mininax

VS {viDy} < Syl <h  — VS {¥'Dyt=XN (BT

The process can be repeated, choosing F to be the subspace spanned by {e;1,...,n}

and V to be the subspace orthogonal to {ei+1,...,n}. To obtain

maxmin

Vv Sy {yTDy} = A (E-8)

It is now possible to perform a basis rotation y = U'z, leaving

m

VoiniSy {2t Az} = )\ (E-9)

maxmin

ViSv {l‘TAI} = >\i (E-IO)
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E.1 Interlaced eigenvalues

Consider two hermitian matrices; A, n x n with eigenvalues A} > Ay... > A, and B,

(n+1) x (n+ 1) with eigenvalues 5; > 8, > ... > Bny1.

U o
UtAU = D =diag(A;, Ao, ., \n) V=
0 1
A ¢ . D Ute
B = B=VIBV = (E-11)
d « AU«

The eigenvalues of B are equal to those of B as the transformation is unitary.
Consider an i-dimension subspace, F, defined as being the space spanned by
basis vectors {ej, ..., e;} where ¢ < n. Choose any unit vector, z, which lives in this

subspace, then find the x which gives the smallest value for 2t Bz
' Br = Z MTITy > N Z:v;:v] — gl;- {zTB’x} >\ (E-12)
j=1 j=1

Using the Courant-Fischer theorem for (3;, noting F is a particlular V and comparing

with (E-12) shows

maxmin

Gi =V Sy {JITBiE} > g'; {wTBa?} — Bi 2 Ai (E-13)

Consider an (n —i)-dimensional subspace, 7, defined to be the subspace spanned by

{€i—1,...,€en}. Choose any unit vector which lives in the subspace, z.
n n
z'Bz = Z Azizy < A Z T;T;
j=i—1 j=i—1
g’;t {:ETB.T} < o1 (E-14)

Using the Courant-Fischer theorem for f;, noting 7 is a specific V and comparing
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with (E-14) gives

B =VSy {ziBr} < S7{z'Bz} — A5 (E-15)

Consider a 1-dim subspace, K which spans {e,} and any unit vector in this subspace

T.
g: {xff)’x} =\, (E-16)
Using the Courant-Fischer theorem for 3; implies
Bus1 =V Sy {a'Bz} < Sg{a'Bz}  — A2 fan

Combining the results

Bh>M2B>2X > .2 0202\ (E-17)
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Appendix F

Self-energy one-loop corrections

We now proceed in calculating the general self energies of (5.1,5.2). The 1PI self
energy, L7, obtains corrections from diagrams which have either gauge particles
or scalar particles in the loop. The scalar contributions for general scalar-fermion

vertices 1Ags and iBp, s is

bs
, - N
0 Agrs ¢ \ Bprs 0 2P (m2,) =
qu K,p Pq Kg
. i’ 2 2 2
Yr Tir ZBprsAqrsmwanBO(mng, Mg, Moy, ) s

(F-1)

where my, denotes the physical mass of the mass eigenstate which is composed
out of the interaction eigenstates ¥, and 7n,. The corresponding neutrino self energy

arising from vector boson contributions with generic vertices i{Cy.0* and iDg 0" is
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Yy Nr
Dy, 2 . i’ 2 2 2
Ypo(mig) = 'LDpqurmwan (€ + 3)Bo(mygg, my, my,, ) +
+ (£- 1)§m%,Co(0,mig,mig,m%,,ém@,mfpm)} , (F-2)

where £ is the gauge fixing parameter, my is the mass of the vector boson and By, Cy

are the Passarino-Veltman functions [90] in the notation of Ref. [91],

2 2 2y _ (2m)*pt-P dk 1 -
Bo(q®, mg,my,) = 2 / (2m)D (k2 — mé) ([q + k]2 — mfb) ' (F-3)

(2m)4ud-P / dPk 1
(

2 2 2 2 2
Colb. @ Eminme) = g | (s ) (B g (a4 B i)

(F-4)

Finally, self energy corrections to the Weyl fermion kinetic terms read as

bs
/<\\ *
AqT‘s // \ Aprs
”2 Kp L 2 . in? 2 .2 2
Tpa(mao) = ZAprsAqTSWBl (mig, My, y,)
Ur
(F-5)
and
Vl‘
qu C;r L/ 2\ __ o im?
KO K Ypg(mig) = lequrW
Yr {—(§+1)Bg(mi3,m‘2,,mfpr)—ZBl(mig,mf,,mfﬂr)
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- (£ - 1)5771%/00(0, mig, mig, m%/a ém%/’ m?ﬁ:ig_l)(mig_m?j)r)CZ(O’ miga miga m%/a §m%/7 m?pr)} )

(F-6)

where By, C, are defined in [91].
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Appendix G

One-loop calculation for radiative

decays

In this appendix, details of the calculation of the radiative decay of charged leptons
are presented.

We first consider all terms which are proportional to the product A;xsBjs, where
A is the Feynman rule associated with the ep-fermion-scalar vertex and B is the rule
associated with the egp-fermion-scalar vertex. Terms of this nature arise from seven
diagrams. Two diagrams where the photon is attached to the internal fermion G.1;
one diagram where the photon is attached to the scalar in the loop G.2; and four
diagrams where the photon vertex appears on an external leg G.3.

We assume that m; < m; < m,, my, where m; is the mass of the initial state
lepton, m; is the mass of the final state lepton, m,, is the mass of the scalar in the
loop, and m, is the mass of the fermion in the loop. We further impose that the

initial and final state particles are on-shell, ¢*> = m?, (p—¢)* = m? and p® = 0, where

234



// — /, —
\ \
,{/)k \ /{bk \
€L €Rj €Li €Rj
Aiks TR Tk Bijks Ajs TR Tk Bijis
Y v

Figure G.1: Two diagrams with the photon attached to the internal fermion which

give a contribution proportional to AixsBjks

Figure G.2: The diagram with the photon attached to the internal scalar which gives

a contribution proportional to AixsBijks

erq €Rj

Figure G.3: One of the diagrams with the photon attached to the external leg which
give a contribution proportional to AysBjks. The photon can be attached to the other

leg, and the arrow on the initial/final state fermion can be reversed for each leg.
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p is the photon momentum and q is the momentum of the inital state fermion. Under
these conditions, we write down the contributions for the seven Feynman diagrams.
The contribution from the diagrams where the photon is attached to the internal

fermion is given by,

d'k y(p — q) [2k - € — 20""p,e,] z(q)

(2m)* ([k — qI* — my)(k? — m3)([k — p|* —m3) -

M = AiksBjstwmw/ (G-1)

The contribution from the diagram where the photon is attached to the internal

scalar is given by,

d*k y(p—q) [2k - €] z(q) ,
2m)* ([k — p]> — m3) (k2 — m3)([k — q]> —m2)

My = AiksBjstcpmw/ (G-2)

Finally, the contribution from attaching the photon to the external leg is given by,

Mg = AiksBjks[Q¢ + Q&p]mqp/ d*k l:(m y(p — q) [g . EG - q] .’B(q)

(2m)* [(m? — m)(k% — m3)([k — q]> — m2)
s y(p—q)lo-€o-q]z(q)

(mF —mZ)(k? — mi)([k — g+ p]*> — m?)

(G-3)

To evaluate these contributions we determine the integrand as a Taylor series. Under

the assumption p?, ¢> < m2,m2, we can expand expressions as follows,

1 _ L ek Akp)?  p
(k2 —m2)([k —p|2—m}) AB AB? AB3 AB?
A(k-p)p® | 8(k-p)*

T AR T Apt (G-4)

and, similarly,

1 1 2p-k  2q-k

(& = m) (e —pP — m2)(k—aP —mf) _ 2B 4B ' A°B?

_P Ak ¢ Ala k) A(k-p)(k-q)
MAB T TA'B T A°B? ' ABB A3pz

(G-5)
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where A = k? — m2 and B = k? — m?.

Expanding the contributions M 33 in this manner gives,

| d'k —20"pe, | € gk®

My = AiksBjstwmw/ (27T)4y(p_ q) ( U2 "+ 22 ) I(q) ,
| d'k e-qk’

1M2 = ——AiksBjsttpmw/ (271’)4 (p - q) ( (1)2\112 ) x(q) ’

, dik ) k? 1
iMs = AusBirs[Qy + Qglmy / Wy(p —q)[2g- € — 20" p.e,)z(q) (5@—3 - W) ,

where ® = k* —m?2 and ¥ = k*> —m3. We can evaluate integrals of this form

using the following change of variables,

> di k2)" i & k|

B ) (2m)? (|k]2 = ma) ... (|k|> —ms)
u::[k|2 _1\n —002—7]-21 U v
= (-1 /o (2m)4 2du (—u—m)...(—u—m)
) i —co 1 duun+1
= [ ey

Before deriving explicit expressions for integrals of this form, we note that rela-

tions between such integrals can be produced by employing integration by parts,

/ &k K /—°° du 1 u?
(27)4 P22 o (4m)?(u+m2)? (u+md)?

__/_°° du —2u? N 2u ___/ dk 2k2+ 2
Jo (@m)?(u+ m2)(u+m3)®  (u+m2)(u+mj)? B (2r)4 ®U3 QY2 ’

Finally, we note the explicit form of two particular integrals of this type.

/ kK / o _du u?
(m)d 4232~ " ), @m)i(ut a)(utb)?

__/_°° du —2ab ( 11 )+ a? 1 N b2 1
~ Jo @n)2(b-aP \u+a u+b) (b-a)(u+a)® (b—a)?(u+b)?
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G F} R

Similarly, it can be shown that,

/d“k N T )
@m)f A2B~ (b—a) |a] T b-a’

Combining all these results allows us to write down a contribution to the following

effective Lagrangian,
v = —uvs
£eﬂ‘ D ZARijeR]‘O'“ GL,'F”,, + 2AL,~jeLja“ eRiFu,, )

where the contribution to Ag is,

1 m2 —3m§ mé M
AR D ——— Aiks BiksQuy My, | ———2—— %o 4 s In s
(4m)2 TR Ty (mE —m2 )2 (m, —m? )3

1 m2, +m? 2m2 m?2 m
+—_A B _ Vi s Y Ps 1 Ps )
2(4m)? iks BikeQosmy, [ 2(m;"mc — més)2 + (m?p,c — m:‘z’,s)3 n My,

We now consider contributions proportional to B}, Bjis, which also contribute
to Ag. Terms proportional to A% B, and A}, Au, contribute to Ar. Again, we
consider the contributions from diagrams in which the photon is attached to the

fermion in the loop, My, the scalar in the loop, Ms, and the external legs, Mg and

expand as before, giving,

o, d'k . K % ke
ZM4 - §BiksBjst“f1 Wy(p_q)mlk Upgsaqu 3@2@3 - 2\112(1)2 + 6\113@2

-1 k? m? k*m?  2k'm?  K'm? k*m? k*m?

+y(p—q)o-ey(q) <_\IE + 202H + PP 2p2y2 + 3P2PH3 + 3P3P2 YPd W22
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k)4

, . dik K k?
iMs = — B BjrsQy / Wy(p—q)mikza-pa-wqu ( —

30208 20202 | 0302

k? k*m?  2k*m?  k'm?

+y(p =)o £hla) (2@2\1/ T 3ryr T 3uEe T 3<1>3\1:2> !

and,

k*m?

)

- ) d4k B 1 k2 m?  2m?k?
iMg = BiksBjstw/ WH/(Z’—Q)U'E?J(Q) (

o 2020 120 T We | Uio

)

We use integration by parts in a similar manner as before to determine three

further relations between integrals of this form,

/d“k k2_/d4k _k2+i

(2r)t @20 (27)t QU2 OV’

/d“k 2k* _/ d'k k2%
(2m)4 |3®3W2 | (271)% 202 3H203 |’

/d“k k4 _/d“k k? k*
(2m)4 30203/ (27)4 @3 QW4 |

One further explicit expression must also be determined,

a

/d4k k* 3a%b 1 [b]_ a? b2—3ab_ b

2n) 2283~ (b—a) " b—aP " h—af 2b—a)"

Combining these results gives a contribution to the branching ratio in the form.

2

r

1 mi — Smfp ms, — 2m3, m?p mj, me
AR D ———— B BjksQu,mi | ———— ko > k ® __In s
2(4m)2 e k 12(m12p,c — mis)3 (mfpk - mg)s)4 | My,
1 B BooiQ m‘}m — 5mikmés — 2mfpk mismfpk 1 [me, 1
- D m. - n )
2(4mr)2 ks ghsosTH 12(m3, —mj )3 (m2, —mj ) My, |
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It can be seen that the terms proportional to A} and A;ksAiks take the same

jks zks

form as AixsBjks and B}, Bjis, respectively. As such, the result for A; can be seen

immediately to be,

1 mfp — 3m§S mg me
4] QM - : — ——1n 2
(4m)? Jks ks @ Tl 4(mfpk - mgg)2 (mfmc — més)3 My,

AL =

1
20am)? ;kthstmmwk! 2

m2 +m?2 2m2 m?2 m
+ 'l/)k ¢s + 11)/: d’s ln |: ¢s j|

m?ﬁk B mis)Q (m?#k - mis)g My,

1. [ my, —5my,m§, —2mf,  mim, Mg,
—2(47T)2AjksAik5Q¢kmi — Yk k + E In

| 12(my, —mg, )P (mG, —mg,) " Lmy,
[,,4 2 2 4 2,4
.. M Qayms | T Sy, My, — 2Mly, My, My, | [mqss]
] IKS 3 1 .
2(4m)2" s 12(m3, —mj )3 (m2, —m2 ) [my,

Finally, we calculate the resulting branching ratio of the process. The effective

vertex is given by,
L.x D 2Agijerjo*’er i Fu, + 2Ap i ;0" eRiF,
from which it follows that the matrix element takes the form,
iM = 2Arpuey(p — q)0"5"x(q) + 2ALpuc.F(p — q)%0"Z(q) -
The matrix element is then squared, averaging over inital spin states to give,
1 2 2 2 2
§|M| =16 (|Arl* + |AL]®) (- q)
The general result for the decay A — 1 + 2 is given by [92],

F(A — 1 + 2) 32 2 / |Mspm averaged|2dQ
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where py is the momentum of a final state particle in the centre-of-mass frame. For

the radiative decay of charged leptons, the resulting branching ratio is given by,
m; 2 2
Ll = ly) = . (IARI* +1ALI?) -

It is convenient to present this in terms of the following branching ratio [92],

Gim;
19273 ’

F(lz — ljl/,'ljj) =

resulting in the following expression for the decay rate I; — l;~,

4872 _
Dl = 159) = Gz Al + 1ARP| D = izy).
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