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Abstract

Higgs production via weak boson fusion (WBF) is an interesting and

important process at both the LHC and a future linear collider. Not

only is it a possible Higgs discovery channel, but it also allows us to

study the properties of the Higgs boson and the mechanism of elec-

troweak symmetry breaking. In this thesis this process is studied in

detail for both the LHC and a future linear collider.

Results for light Higgs production via vector boson fusion at a linear

collider, taking the Higgsstrahlung contribution into account, are ob-

tained in the (s)fermion sector of the Standard Model and the MSSM.

Complete one loop results for weak boson fusion at the LHC in the

Standard Model are presented. These include the effects of photon ra-

diation and the full virtual electroweak corrections, as well as the QCD

corrections (the latter are well known in the literature and have been

taken from the code VBFNLO in this work). The electroweak corrections

are found to be as important as the QCD corrections after the applica-

tion of appropriate cuts – they are ∼ O(−5%) in the Higgs mass range

of 100–200 GeV.

We present the dominant supersymmetric one loop corrections to

neutral Higgs production, in the general case where the MSSM includes

complex phases. These results are supplemented by all one loop correc-

tions of Standard Model type and by the propagator type corrections

from the Higgs sector of the MSSM, taking the dominant two loop con-

tributions into account. In this way the most complete available result

for weak boson fusion Higgs production in the MSSM is achieved. In

the decoupling region, MA � MZ , where the light MSSM Higgs boson

becomes Standard Model like, the difference between the MSSM loop

corrections and those in the Standard Model (for an equivalent Higgs
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mass) are, as expected, relatively small – generally O(−0.5%). Larger

SUSY loop corrections occur for the light Higgs in the non-decoupling

regime – in the Mmax
h scenario we see differences of ∼ O(−5%) between

the total SM and MSSM loop corrections, and in the CPX scenario,

differences of O(−5%) are seen in the (s)fermion sector. In some re-

gions of parameter space, production of the heavy MSSM Higgs boson is

dominant, and in these regions loop corrections range between ∼ ±5%.

Our results have been implemented into the public Monte Carlo

program VBFNLO, which should serve as a useful tool for performing

experimental analyses. We make use of an effective Higgs coupling as

a simple (and computationally efficient) method of including the Higgs

vertex corrections, while the Standard Model type box and pentagon

diagrams are incorporated in the standard way using squared matrix

elements.

Finally, we also present parton level studies of (s)fermion corrections

to Z boson production via weak boson fusion, in both the Standard

Model and the MSSM. This process has the potential to be used in order

to “calibrate” WBF Higgs production. Corrections to Z production are

generally smaller than those to Higgs production, and are typically

∼ −0.8%.
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“While I’m still confused and uncertain, it’s on a much higher plane, d’you see, and at

least I know I’m bewildered about the really fundamental and important facts of the

universe.”

— Terry Pratchett

1



Chapter 1

Introduction

“It’s very hard talking quantum mechanics in a language originally de-

signed to tell other monkeys where the ripe fruit is.”

— Terry Pratchett

1.1 Standard Model

The Standard Model (SM) is a quantum field theory that describes the fundamental

particles in nature and the way in which they interact. Over the last four decades it

has been rigorously tested in various collider experiments around the world, and has

been confirmed to an astonishing degree of accuracy. It contains the matter fields –

three generations of quarks and leptons. It also describes three fundamental forces –

the electromagnetic force, the weak force and the strong force, which are carried by the

(bosonic) exchange particles, the photon γ, the W± and Z bosons, and the gluon g

respectively.

Strong interactions between quarks and gluons are described by Quantum Chromo-

dynamics (QCD), which was developed in the 1970s [1–3]. The electromagnetic force

is described by Quantum Electrodynamics (QED) – the manner in which photons and

matter interact. Both QCD and QED rely on the principle of local gauge invariance.

The Lagrangians describing free quarks and leptons are invariant under global phase

rotations for the gauge groups SU(3)C and U(1)em respectively – i.e. under transforma-

tions of the type ψ → eiθψ where ψ is a spinor representing a fermion field and θ a real

2
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number. To obtain the Lagrangians for QCD and QED, these global gauge invariances

are promoted to local gauge invariances – i.e. the Lagrangians are forced to be invariant

under the local transformation ψ → eiθ(x)ψ, where the phase θ is now a function of the

space-time point x. This is achieved by introducing the massless gauge bosons g and

γ which also undergo gauge transformations such as Aµ → Aµ − 1
e
∂µθ, adding kinetic

terms for the gauge bosons to the Lagrangian, and exchanging the partial derivatives

acting on the fermion fields for covariant derivatives.

The Standard Model also contains the Glashow-Weinberg-Salam theory of elec-

troweak interactions [4–6]. The symmetry SU(2)L × U(1)Y is broken at the weak scale

by the Higgs mechanism leaving U(1)em as an unbroken gauge group.

1.1.1 The Higgs mechanism

The principle of local gauge invariance works very well for the strong and electromagnetic

interactions. If we consider the weak force, however, we encounter problems as the gauge

fields – the W± and Z bosons – are massive, but their mass terms in the Lagrangian are

not invariant under local gauge transforms. We therefore need to consider spontaneous

electroweak symmetry breaking, and in particular the Higgs mechanism [7–9], to give

masses to the weak gauge bosons. The Higgs sector of the Lagrangian consists of the

SU(2) complex doublet field φ

φ =
1√
2

 φ1 + iφ2

φ3 + iφ4


where φ†φ =

1

2

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
(1.1)

with the scalar part of the Lagrangian

L =
1

2
(∂µφ)† (∂µφ)− µ2φ†φ− λ

(
φ†φ
)2

(1.2)

This is manifestly invariant under the global U(1) phase transformations, φ→ eiθφ.

We can make this invariant under local gauge transformations in the usual way by

introducing the massless gauge fields, W µ
a (where a = {1, 2, 3}) and Bµ, which transform

such that the derivative below is covariant (note that τa are the SU(2)L generators, equal
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to half of the Pauli matrices)

Dµ = ∂µ − ig2
τa
2
W a

µ − ig1
1

2
Bµ (1.3)

This leads us to the Lagrangian for the Higgs and gauge boson fields1

L =

([
∂µ − ig2

τa
2
W a

µ − ig1
1

2
Bµ

]
φ

)†([
∂µ − ig2

τa
2
W a

µ − ig1
1

2
Bµ

]
φ

)
−µ2φ†φ− λ

(
φ†φ
)2 − 1

4
W a

µνW
µν
a − 1

4
BµνB

µν (1.4)

The field strengths are given by (summation over repeated indices is understood)

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2ε

abcW b
µW

c
ν

Bµν = ∂µBν − ∂νBµ (1.5)

We can now define new fields, H and ξa, that enable us to expand around a particular

ground state that lies on a minimum of the potential (since the symmetry of the La-

grangian is a continuous symmetry, the minima lie on a circle). We choose a particular

minimum along this circle, giving the Higgs doublet a vacuum expectation value (VEV),

v.

φ =
1√
2
exp

[
i
τa · ξa

v

] 0

v +H

 (1.6)

where v2 = −µ
2

λ

This results in a Lagrangian describing a scalar particle (H) with mass M2
H = −2µ2,

massless Goldstone bosons ξa and the couplings between the scalar, the Goldstones and

the gauge bosons. By performing a gauge transformation to a unitary gauge, we can

transform the Goldstone bosons so that ξ
′
a = 0. We also define the fields W±

µ and Zµ

(the mass eigenstate fields) in terms of our original gauge fields W 1,2,3
µ and Bµ.

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
Zµ =

g2W
3
µ − g1Bµ√
g2
2 + g2

1

(1.7)

1Note that g1 and g2 are the coupling constants of U(1)Y and SU(2)L.
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We are then left with

L =

(
1

2
(∂µH)(∂µH)− λv2H2

)
+

(
1

4
g2
2v

2W+
µ W

µ
− +

1

8

(
g2
1 + g2

2

)
v2ZµZ

µ

)
+

(
1

2
g2
2vHW

+
µ W

µ
− +

1

4

(
g2
1 + g2

2

)
vHZµZ

µ

+
1

4
g2
2H

2W+
µ W

µ
− +

1

8

(
g2
1 + g2

2

)
H2ZµZ

µ

−λvH3 − 1

4
λH4

)
+ ... (1.8)

This Lagrangian describes a massive scalar particle, H, the massive gauge bosons, W±
µ

and Zµ, and their interactions (the dots signify the expansion of the gauge boson field

strength tensors).

The original complex doublet has four degrees of freedom. Three of these are “eaten”,

giving masses to the three gauge bosons, W± and Z, and we are left with one degree of

freedom – the Higgs boson H. In the Standard Model the Higgs mechanism is thought

to be responsible not only for giving masses to the gauge bosons, as above, but also for

making the fermions massive. Initially, the fermions are considered to be massless, with

Yukawa couplings to the Higgs. When the Higgs is “shifted”, by the vacuum expection

value v (i.e. by spontaneous symmetry breaking), the Yukawa term splits into two pieces

– one which describes the Higgs–fermion interaction and one which is a mass term for

the fermion.

The Higgs boson is the “missing piece” of the Standard Model – the only particle in

the SM that we have not produced and studied experimentally. Thus far, we have only

been able to put bounds on its properties. The Large Electron Positron collider (LEP)

set a lower mass limit of 114.4 GeV (at the 95% confidence level) [10], and searches are

continuing to be carried out at the Tevatron [11], which have already excluded a Standard

Model Higgs with a mass between 160 GeV and 170 GeV at the 95% confidence level.

Later this year, the Large Hadron Collider (LHC) should switch on and join the search.

There are several excellent text books and introductions to the Standard Model and

gauge field theory. Ref. [12] provides a very basic, pedagogical introduction to elemen-

tary particle physics, and the Higgs Hunter’s Guide [13] gives a good introduction to

Higgs physics. More in-depth, technical and recent texts on the Standard Model and

electroweak symmetry breaking include, for instance, Ref. [14–16].
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1.1.2 Problems with the Standard Model

Despite its numerous successes, it is generally agreed that the Standard Model is not a

“Theory of Everything”, as it includes only three of the four fundamental forces – it does

not include gravity. The Standard Model is instead thought to be an extremely accurate

low energy effective theory, valid at the energy scales that we commonly observe and

have been able to study in collider experiments. There are a large number of problems

with the Standard Model, all of which hint that there is some deeper, high-energy theory

that provides a more complete description of the particle content of the Universe. For

one thing, the Standard Model provides no candidate for a dark matter particle (let

alone any explanation of dark energy) and thus – for all its accuracy – it can only

explain approximately 5% of the Universe’s content (see [17–19] and references therein).

The coupling constants for the strong, weak and electromagnetic forces do not (quite)

unify at high energies in the Standard Model [20]. While CP-violation through the CKM

matrix (which describes quark mixing) can account for a small amount of the observed

matter-antimatter asymmetry, no other mechanism in the Standard Model exists in

order to explain the remainder (see, e.g. [21], and references therein).

For our purposes, however, the most pertinent problem with the Standard Model

is the so-called hierarchy problem. Since the Standard Model is a low energy effective

theory, we must introduce a cut-off scale where gravity becomes important, the Planck

scale. When calculating the one loop corrections to the Higgs mass from fermion dia-

grams, this Planck scale enters the calculation and quadratic divergences emerge. We

can, of course, adjust our renormalisation procedures in order to eliminate these diver-

gences, but the parameters involved then need to be carefully fine tuned in order to

result in loop corrections leading to a weak scale Higgs mass, rather than a Planck scale

Higgs mass, and this is thought to be unnatural.

1.2 Supersymmetry

Supersymmetry (SUSY) is one of the most popular extensions to the Standard Model.

The underlying principle is that there is a symmetry between bosons and fermions

[22–24]2. Theoretically, supersymmetry is a very attractive idea, as it is a uniquely non-

trivial extension of the Poincaré group (which describes external symmetries, such as

2For an excellent short history (and motivation) of SUSY, see [25].
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gravity) to include a Lie algebra (which describes the internal symmetries exploited in

quantum field theory) [26].

Supersymmetry predicts that every SM particle has a superpartner – SM bosons have

fermionic partners, and SM fermions have bosonic partners. Since we have not observed

any of the new SUSY particles, we know that supersymmetry must be broken – if it

were not, the superpartners would have the same mass as their SM counterparts, in

which case we would have already seen them in our experiments. The supersymmetric

particles differ from their partners in two properties – their spin is different by one half,

and their mass is larger. All other quantum numbers are the same.

Practically, supersymmetry has many advantages as well. One of the main attractions

of supersymmetry is that it provides a solution to the hierarchy problem described

above. The quadratic divergence involved in calculating corrections to the Higgs mass is

cancelled out by a “new” divergence from the additional diagrams that are present in a

supersymmetric theory – the divergences originating from top quark loops, for example,

are cancelled by divergences from stop (the superpartner of the top quark) loops – see

Fig. 1.1.

Additionally, supersymmetry introduces new sources of CP violation, and allows

unification of the force coupling constants [20]. Also, since we generally impose R-parity

on our theories (so that fast proton decay does not occur), the new SUSY particles can

not decay only into Standard Model particles. This leaves us with a stable particle as

the lightest supersymmetric particle, which is an excellent candidate for dark matter.

As with the Standard Model, there are many papers and textbooks providing an

introduction to supersymmetry – see, for instance, Ref. [25, 27].

1.2.1 Particle content and parameters of the MSSM

The Minimal Supersymmetric Standard Model (MSSM) [28] is (as the name suggests)

the simplest extension of the Standard Model into a supersymmetric theory. The super-

symmetric partners of the SM matter fields – the fermions – are the sfermions (separated

into sleptons and squarks). These are spin zero scalars, and are described by chiral su-

perfields. The gauginos (superpartners of the gauge bosons) are spin half particles,

described by vector superfields, and can be separated into gluinos, photinos, winos and

zinos. Higgs bosons have spin half partners, called higgsinos. Electroweak symmetry

breaking causes the gauginos and the higgsinos to mix to form the physical eigenstates
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(charginos and neutralinos). These SUSY particles are usually denoted with a tilde –

i.e. the stop squark is t̃, the gluino is g̃ and the charginos and neutralinos are χ̃± and χ̃0

respectively.

The basic structure of the Lagrangian in the MSSM is

LMSSM = Lsuperpotential + Lkinetic + Lsoft + Lgauge−fix + Lghost (1.9)

The mass and interaction terms are contained within the superpotential part of the

Lagrangian. The terms which break SUSY are contained in Lsoft. Much effort has

been put into developing a realistic model of supersymmetry breaking, but the MSSM

simply parametrises how SUSY is broken in a general manner, without describing the

underlying theory (while this allows us to study the phenomenology that results from a

specific theory in a simple way, it does lead to over 100 free parameters). In the MSSM,

supersymmetry is broken softly, so that the relations between the dimensionless couplings

are unchanged and no quadratic divergences are introduced. Scalar and gaugino mass

terms, along with trilinear scalar interactions, are all contained in Lsoft. The final two

terms in the Lagrangian involve the Faddeev-Popov ghosts [29] and the gauge fixing

terms.

Although in general the parameters of the MSSM are taken to be real, there is no a

priori reason why complex parameters cannot be used. For example, the higgsino mass

parameter, µ, and the trilinear coupling parameters At,b,.. can be complex and this leads

to some very interesting and non-excluded phenomenology, particularly in the Higgs

sector. In this thesis, we will study scenarios in the MSSM with both real and complex

parameters.

1.2.2 The Higgs sector in the MSSM

The Higgs sector in the MSSM is somewhat more complicated than that in the Standard

Model. In the SM, the Higgs VEV, together with the Yukawa interaction terms, give rise

to the masses of both the up-type and down-type fermions. These terms, however, de-

pend on the conjugate Higgs field. In a supersymmetric theory, the superpotential (from

which Yukawa terms originate) must be an analytic function of left chiral superfields,

and so this conjugate field is not allowed. Consequently, we need two Higgs doublets

H1 and H2 in the MSSM – one to give masses to the up-type fermions and one to the

down-type. We also need two Higgs doublets to ensure anomaly cancellation. These
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two doublets have 8 degrees of freedom between them – three of which are used to give

masses to the gauge bosons W± and Z. We are left with 5 degrees of freedom and 5

physical Higgs bosons. At lowest order, the Higgs sector is CP conserving and contains

h,H,A,H+, H−

The Higgs bosons h and H are CP even, with Mh < MH , the A Higgs boson is CP

odd and H± are charged. This can give rise to some very interesting phenomenology,

especially when one takes mixing between the neutral Higgs bosons into account. For a

detailed account of the Higgs sector in the MSSM, see for example Ref. [13,30,31].

The Higgs potential VH is given by

VH = m2
1|H1|2 +m2

2|H2|2 −m2
12

(
εabHa

1Hb
2 + h.c

)
1

8

(
g2
1 + g2

2

) (
|H1|2 + |H2|2

)2
+

1

2
g2
2|H

†
1H2|2 (1.10)

where

m1,2,12 = soft SUSY breaking parameters

ε12 = −1

g1 =
e

cos θW

= U(1) coupling constant

g2 =
e

sin θW

= SU(2) coupling constant

The Higgs doublet fields are decomposed as

H1 =

 H0
1

H−
1

 =

 v1 + 1√
2
(φ0

1 + iχ0
1)

−φ−1

 (1.11)

H2 =

 H0
1

H−
1

 =

 φ+
2

v2 + 1√
2
(φ0

2 + iχ0
2)

 (1.12)

The VEVs of the neutral components of the Higgs doublets are v1 and v2.

The tree level Higgs mass spectrum can be defined by two supersymmetric parame-

ters: tan β, the ratio of the vacuum expectation values of the two Higgs doublets (v2/v1),

and MA, the mass of the CP odd Higgs boson (for the real MSSM). In the MSSM with

complex parameters we use MH± , the mass of the charged Higgs boson, instead of MA

as an input parameter. This is because when working in the MSSM with complex pa-



Introduction 10

h h h h h h h h h h
t

t t̃

t̃

t̃

Figure 1.1: Dominant contributions to the lightest Higgs boson mass corrections.

rameters the mass of the CP odd Higgs MA is no longer a mass eigenstate at higher

orders, owing to the mixing between all three of the neutral Higgs bosons.

At tree level, the masses of the neutral CP even Higgs bosons are given by the mass

matrix

m2
h,H =

1

2

 M2
A sin2 β +M2

Z cos2 β −(M2
A +M2

Z) sin β cos β

−(M2
A +M2

Z) sin β cos β M2
A cos2 β +M2

Z sin2 β

 (1.13)

The eigenvalues of this matrix give the tree level masses:

m2
h,H =

1

2

(
M2

A +M2
Z ∓

√
(M2

A +M2
Z)

2 − 4M2
ZM

2
A cos2 2β

)
(1.14)

At first glance, this appears to present a problem as – in the decoupling limit when

the mass of the CP odd Higgs boson MA is large (i.e. MA � MZ) – the upper bound

for the mass of the lightest Higgs boson h is

m2
h < M2

Z cos2 2β

⇒ m2
h < M2

Z (1.15)

Clearly, if the lightest Higgs boson was SM like and had a mass of less than that of

the Z boson, it would have been observed by now [32]. It turns out, however, that the

radiative corrections to the Higgs mass are extremely large. They are dominated by

the diagrams shown in Fig. 1.1 – contributions from the top quark and the stop squark

loops (owing to the large Yukawa coupling involved in this subset of diagrams). Note

that throughout this work, a lower case m for Higgs masses will denote tree level masses,

whereas an upper case M will signify the corrected mass.
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The tree level mass eigenstates (h,H) can be related to the Higgs fields (φ1, φ2) using

the following matrix:  h

H

 =

 − sinα cosα

cosα sinα

 φ0
1

φ0
2

 (1.16)

where the Higgs mixing angle α is given by

tan 2α =
m2

h +m2
H

M2
A −M2

Z

tan 2β

=
M2

A +M2
Z

M2
A −M2

Z

tan 2β (1.17)

The masses of the charged Higgs and the gauge bosons are given by

MH± = M2
A −M2

W

M2
W =

1

2
g2
2

(
v2

1 + v2
2

)
M2

Z =
1

2

(
g2
1 + g2

2

) (
v2

1 + v2
2

)
(1.18)

1.2.3 Sfermions: masses and mixing

In order to define our notation, we briefly outline the masses and mixings in the sfermion

sector of the MSSM. The relevant parts of the Lagrangian are (using the notation in [33])

Lq̃mass

soft = −M2
L

(
ũ†LũL + d̃†Ld̃L

)
−M2

ũR
ũ†LũL −M2

d̃R
d̃†Ld̃L

−
(
λuAuv2ũLũ

†
L + λdAdv1d̃Ld̃

†
L + hermitian conjugate

)
(1.19)

and the squark mass matrix is given by

M2
q̃ = (1.20)M2

L +m2
q +M2

Z cos 2β
(
Iq
3 −Qq sin2 θW

)
mqX

∗
q

mqXq M2
q̃R +m2

q +M2
Z cos 2βQq sin2 θW


Here, ML and Mq̃R are soft SUSY breaking masses, Q is the fermion charge and Iq

3 is

the third isospin component, and (recalling that A is the trilinear coupling and µ the
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higgsino mass parameter, which can – in the complex MSSM – have a non-zero phase)

Xd,τ = Ad,τ − µ∗ tan β

Xu = Au − µ∗ cot β

Id,τ
3 = −1

2

Iu
3 =

1

2
(1.21)

Finding the eigenvalues of this matrix allows us to obtain the sfermion masses:

m2
q̃1,2

= m2
q +

1

2

(
M2

L +M2
q̃R + Iq

3M
2
Z cos 2β∓√(

[M2
L −M2

q̃R +M2
Z cos 2β

(
Iq
3 − 2Qq sin2 θW

)]2
+ 4m2

q|Xq|2
)

(1.22)

The sfermion mass matrix can be diagonalised using the mixing matrix Uq̃: q̃1

q̃2

 = Uq̃

 q̃L

q̃R


=

 cos θq̃ sin θq̃

− sin∗ θq̃ cos θq̃

 q̃L

q̃R

 (1.23)

In this matrix, cos θq̃ is taken to be real and sin θq̃ is complex – they obey the relation

cos2 θq̃ + | sin θq̃|2 = 1. The components of the mixing matrix are given by

cos θq̃ =

√
M2

L +m2
q +M2

Z cos 2β
(
Iq
3 −Qq sin2 θW

)
−m2

q̃2√
m2

q̃1
−m2

q̃2

(1.24)

sin θq̃ =
mqX

∗
q√

M2
L +m2

q +M2
Z cos 2β

(
Iq
3 −Qq sin2 θW

)
−m2

q̃2

√
m2

q̃1
−m2

q̃2

(1.25)

1.3 Theory and experiment: event generators

The study of the Standard Model, and the searches for the Higgs boson and new physics

beyond the Standard Model, have been going on for many years. Later this year, the
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Large Hadron Collider (LHC) at CERN will switch on, allowing us to access higher

energies than ever before. At Fermilab, near Chicago, the Tevatron (completed in 1983)

is colliding protons with antiprotons in pursuit of new physics – in 1995 both detectors at

the Tevatron announced the discovery of the top quark. At CERN, the Large Electron

Positron collider (LEP) made extremely precise measurements of the Standard Model

parameters – most notably the masses of the W± and Z gauge bosons.

There is, however, a large difference between the quantum field theory (and Feynman

diagram calculations) describing the basic interactions between fundamental particles

and the data we get from the experiments. Bremsstrahlung radiation from the particles

involved in the initial interaction (e.g. a photon radiating from an electron e → e + γ,

or a gluon from a quark q → q + g) means that the number of final state particles

(that the detector will see) can be increased. We also need to take into account the fact

that the coloured quarks and gluons are confined – we cannot observe a single quark.

For hadron colliders, the structure of the incoming particle (a proton in the case of the

LHC), from which the quark or gluon that takes part in a “hard” interaction originates,

must be considered, as well as the process of hadronisation (whereby the quarks and

gluons become jets of colourless hadrons).

Consequently, in order to make useful predictions that can be tested in colliders, we

need to use event generators. These provide a link between theory and experiment, and

aim to take a process and generate events from it as they would be seen in a detector.

The basic principle is to split the complete calculation into more manageable pieces: the

fundamental interaction is input, parton showers are generated, and the final products

are allowed to hadronise3.

1.3.1 Monte Carlo

A major challenge involved in calculations is the evaluation of complicated, multi-

dimensional phase space integrals. Computationally, this is achieved using Monte Carlo

techniques – these set each variable randomly (or at least as randomly as possible),

according to an appropriate probability distribution. These techniques also allow us to

perform calculations when the complexity of the situation is increased by the introduc-

tion of cuts. Several general purpose event generators exist – see for instance, Ref. [34]

3In practice, of course, the task of producing suitable code to enable a computer to do this is very
complicated, but the basic structure is relatively simple.
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for an overview. Most of the publicly available event generators do not include any

virtual corrections4.

In its broadest sense, a Monte Carlo (MC) technique is defined as a technique which

makes use of random numbers in order to solve a problem. These techniques are ideal for

simulations of particle physics as they can replicate the random, statistical behaviour

that quantum mechanics describes. Random numbers between 0 and 1 (with a flat

distribution) are generated and used to “choose” a point x such that f(x)dx (where f

is some known distribution function) is proportional to the probability of a given x in

the small interval dx.

As stated, the multi-dimensional phase space integrals occuring in the calculations

of particle physics events are in general evaluated using Monte Carlo integration. Algo-

rithms performing MC integration are effective as they can provide a reliable estimate of

the numerical error involved and the convergence rate is independent of the dimension

of the integral. In addition, non-continuous functions can be evaluated.

Chapter 4 of the Pythia manual [35] provides a good, practical introduction to

Monte Carlo techniques, and Ref. [36] provides a more detailed examination of the

subject.

1.3.2 Jet algorithms

As has been stated, it is well known that coloured partons (quarks and gluons) cannot

be observed singly – instead, they hadronise to form jets (collections of large numbers

of colourless hadrons, photons and leptons). We use jet algorithms to take single par-

ticles (the final–state partons in our calculation, and calorimeter towers or hadrons in

experimental analyses) and group them together into jets. The kinematic properties of

the jet should allow us to deduce the properties of the original partons.

Two of the principle requirements for jet algorithms are that they must be both IR

and collinear “safe”. In other words, the presence of soft radiation in an event should

not affect the jets found by the algorithm, and the same jets must be found for one

particle with energy E as for two collinear particles with a combined energy E.

4The real corrections on their own are not IR finite – cuts are used to avoid the divergent region of
phase space.
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There are many different types of jet algorithms – see Ref. [37] for a review. One

of the most popular classes of algorithms are the “kT algorithms” – in this technique,

pairs of particles are merged successively, in order of their transverse momentum, up to

a certain “size” of jet (determined by the parameter Rjj defined in Section 2.2). The

kT algorithm has the advantage of a close link between theory and experiment – jets

reconstructed from individual hadrons, leptons and photons are closely related to jets

reconstructed from calorimeter data. Several different implementations of this class of

jet algorithm have been proposed (and used) by the community.

1.4 Thesis outline

In this work we focus on a specific Higgs production channel – weak boson fusion (WBF)

– in both the Standard Model and the MSSM (with real and complex parameters). In

Chapter 2 the process of Higgs production via weak boson fusion will be studied in detail,

describing the motivation behind the investigation, the experimental cuts, existing limits

and future experimental capabilities. The work already available in the literature will

be examined here as well.

Chapter 3 will present the details of the higher order calculations. For reference, all

the necessary counterterms and renormalisation constants will be explicitly stated, and

the renormalisation procedure for evaluating quantities involving UV, soft and collinear

divergences will be outlined. In this Chapter we also examine the mixing between the

neutral Higgs bosons, and how these effects can be included in our results (as they must

be in order to make our results phenomenologically relevant).

The following chapter will study weak boson fusion of a Higgs boson at a linear

collider, in both the Standard Model and the MSSM. The total cross sections, including

corrections from the fermion and sfermion sectors, are calculated and analysed.

Chapters 5 and 6 will present the total and partonic cross sections of neutral Higgs

production via weak boson fusion at the LHC, using a Monte Carlo program that has

been modified to include the full one loop corrections in the Standard Model. We also

study the corrections to this important process in the MSSM, in the general case of

complex parameters, and combine the dominant SUSY corrections with the full SM

result.
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In Chapter 7, a possible reference process is investigated, which could help us to iden-

tify and understand Higgs production via WBF. The conclusions reached are presented

in Chapter 8.



Chapter 2

Weak boson fusion

“Research is the process of going up alleys to see if they are blind.”

— Marston Bates

2.1 Motivation and signal process

If all goes according to plan, the Large Hadron Collider will be switching on later this

year and will begin to search for a Higgs boson. Discovering a candidate for the Higgs is,

however, only the first step: we need to study it carefully and determine its properties

– such as its mass, its couplings (especially to gauge bosons), its spin, and its CP

behaviour. Production of a Higgs at the LHC has therefore received a considerable

amount of attention in the literature (see, for example, [38–41] and references therein).

In the Standard Model, the cross sections for the various Higgs production mechanisms

are shown in Fig. 2.1 (reproduced from Reference [41]).

As can be seen from Fig. 2.1, the largest Higgs production cross section at the LHC

is expected to be gluon fusion (labelled gg → h) in the Standard Model (and, for a

large region of parameter space, in the MSSM as well). In this process, gluons fuse via

a loop (primarily top loops in the Standard Model, owing to the large Higgs-top quark

coupling, and top and stop loops in the MSSM) to form a Higgs (Fig. 2.2). While gluon

fusion is predicted to produce large numbers of Higgs bosons, it has the disadvantage

of also having relatively large theoretical uncertainties O(10 − 20%), even when the

next-to-next-to-leading order (NNLO) QCD corrections are included –see Ref. [42–46].

17
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Figure 2.1: Production cross sections for a Standard Model Higgs at the LHC, reproduced
from Ref. [41].

u

u

u

Higgs

u

t

t

t

g

g

(a) Standard Model

u

u

u

Higgs

u

t̃

t̃

t̃

g

g

(b) MSSM

Figure 2.2: Leading order diagrams for gluon fusion in the SM and the MSSM.
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Figure 2.3: Leading order diagram for weak boson fusion.

Weak boson fusion (WBF) is one of the most promising methods of Higgs production.

The process, shown in Fig. 2.3 and labelled as qq → qqh in Fig. 2.1, is expected to be

the second largest contributor to Higgs production in the Standard Model at the LHC

(smaller only than gluon fusion). Unlike gluon fusion, however, its QCD NLO corrections

are relatively small – typically O(5%) – and are theoretically well under control, and the

Parton Density Function (PDF) errors and scale variations are not large in the relevant

areas of phase space [47]. WBF also has the advantage of having a very clear signature of

two energetic, strongly forward jets and a central Higgs, which can be used to isolate the

signal from the backgrounds (see Section 2.2). Due to this, we can use weak boson fusion

to study the important trilinear coupling between a Higgs and a pair of weak bosons (see

Section 2.4), thus shedding light on the mechanism of electroweak symmetry breaking.

The amount of hadronic activity between the jets is small due to the fact that weak

boson fusion is a colourless t-channel exchange process. There is therefore a greatly

reduced amount of gluon radiation in the central region. This is in contrast to the gluon

fusion process, which naturally involves the exchange of coloured particles. Gluon fusion

of a Higgs with two additional jets and a large rapidity gap between them experiences

Sudakov suppression (see Ref. [48]), and so has a reduced contribution.

The tagging jets of weak boson fusion are produced predominately at small angles

(i.e. with large rapidity), as the momentum transfer is much less than the quark jets’

energy. The dijet mass spectrum of weak boson fusion is much harder than that of gluon

fusion, as the PDFs mean that the external legs for weak boson fusion are likely to be

quarks (for gluon fusion, the external particles are far more likely to be gluons – hence
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Figure 2.4: Higgsstrahlung contribution to the Higgs + 2 jets process.

the softer dijet mass spectrum). A useful reference describing the kinematics of weak

boson fusion is Ref. [49].

2.2 Backgrounds and cuts

Higgs production via weak boson fusion results in two jets plus the Higgs1. There

are, however, several other process that give rise to the same signature. The most

important of these processes is gluon fusion (shown in Fig. 2.2), as can be seen from

the cross section graph of Fig. 2.1. Another important Higgs plus two jets process is

Higgsstrahlung, shown in Fig. 2.4, an s-channel process where a Higgs is radiated from

a W or Z gauge boson (these channels are labelled qq → Wh and qq → Zh in Fig. 2.1).

In order to extract the WBF signal, various cuts on different observables have to be

made. The coordinate system used in this work (which follows the same conventions

as the LHC detector ATLAS) is shown in Figure 2.5. The z-axis is along the beam

direction, the x-axis points towards the centre of the LHC ring and the y-axis points

upwards. The azimuthal angle φ is measured from the positive x-axis and the polar

angle θ is measured from the z-axis. The transverse momentum pT is defined as the

momentum of a particle perpendicular to the beam direction (the z-axis).

The experimentally measured quantities that are cut on include the transverse mo-

mentum pT of the final jets, the rapidity y (and the pseudorapidity η), and the dijet in-

variant mass Mjj. The magnitude of the transverse momentum pT is given by
√
p2

x + p2
y.

The pseudorapidity η is the coordinate that describes the angle of a particle relative to

1The Higgs will then decay, although this part of the full process is not considered here.
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Figure 2.5: Coordinate system used to define the cuts.

the beam (z-) axis. It is defined as

η = − ln

[
tan

θ

2

]
=

1

2
ln

(
|~p|+ pz

|~p| − pz

)
(2.1)

The rapidity of a particle is given in terms of its 4-momentum pµ by

y =
1

2
ln

(
p0 + pz

p0 − pz

)
(2.2)

In the limit of zero mass, the rapidity and pseudorapidity coincide.

The dijet invariant mass is given by

M2
jj = (pj1 + pj2)

2 (2.3)

where pµ
j1,j2 are the 4-momenta of the two jets. We also make a cut on the observable

Rjj, the separation of the two jets in the pseudorapidity versus azimuthal angle plane,
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which is defined as follows2:

Rjj =
√

∆η2
jj + φ2

jj (2.4)

Weak boson fusion typically has two energetic tagging jets in the forward regions of

the detector (i.e. two jets with a large rapidity gap), with a central Higgs and very little

additional hadronic activity between the tagging jets. As was mentioned in the previous

section, we can use this distinctive signature to devise a set of cuts, using the above

quantities, which will effectively isolate the process from the various backgrounds. This

will allow us not only to study the Higgs production cross section, but also to focus on

the important Higgs–weak boson trilinear coupling.

In order to take advantage of the unique signature of WBF we demand a large

rapidity gap (as there is little central hadronic activity) and a high dijet mass, which

will eliminate much of the QCD background and the gluon fusion (with its soft dijet

mass spectrum) process, as well as avoiding the threshold at the W/Z boson mass in

the Higgsstrahlung channel. We also cut on the rapidity of the tagging jets, since they

generally have a high rapidity in WBF. This leads to the following standard set of cuts

used in the literature (see, e.g. [50]), which are employed throughout this thesis unless

specifically stated otherwise.

pTj
> 20 GeV

|ηj| < 5

Rjj > 0.8

∆ηjj = |ηj1 − ηj2| > 4

ηj1 · ηj2 < 0

Mjj > 600 GeV (2.5)

The cut ηj1 · ηj2 < 0 ensures that the tagging jets lie in opposite detector hemispheres.

2∆ηjj is the difference in rapidity between the two jets, and φjj is the difference in azimuthal angle -
see Figure 2.5.
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2.3 Previous work

Owing to the potential importance of the process of Higgs production via weak boson

fusion at the LHC, it has already received a large amount of attention in the literature.

The next to leading order (NLO) QCD corrections in the Standard Model (which are

typically O(5%) after WBF cuts) have been known for some time (see, for example,

Ref. [47,50,51]), and there are two public Monte Carlo codes – VBFNLO (see Ref. [52,53]

and Section 2.5) and VV2H [54] – available that provide a useful tool enabling predictions

of WBF cross sections and distributions to be made.

In addition, the one loop electroweak corrections in the Standard Model have been

published [55]. These contributions were found to be of approximately the same size as

the QCD corrections, and so should not be neglected in NLO predictions for the LHC.

This paper reported the results of using a Monte Carlo code to study Higgs plus two jets

production, and also included the effects of s-channel contributions (the Higgsstrahlung

process – Fig. 2.4), as well as interference between t- and u-channel processes. The

combined effects of these (s-channel and t-u channel interference) contributions was at

most O(0.6%) at next to leading order and O(0.007%) at leading order after the weak

boson fusion cuts were applied, and are not included in any of the LHC results presented

in this thesis.

The specifically supersymmetric contributions (i.e. loops involving, for example, slep-

tons but not their leptonic partners) to the total cross section of the lightest CP even

Higgs boson h production via gauge boson fusion and Higgsstrahlung have also been

investigated [56]. If we are working in the (s)fermion sector at the one loop level, sep-

arating the Standard Model and SUSY contributions is of course simple as R-parity

conservation ensures that there is no mixing between the SM type particles and their

supersymmetric partners. If, however, we move beyond this sector to the full MSSM,

this trivial separation is not possible owing to the different structure of the Higgs sector

in the MSSM (see Section 1.2.2) – there is not simply one supersymmetric partner for

the SM Higgs. The authors of Ref. [56] have chosen to define the SUSY contribution as:

σSUSY = σMSSM − σSM sin2(β − α) (2.6)

Naturally, the factor sin2(β−α) is only appropriate for the production of the light Higgs

– if we were considering the heavy Higgs boson H, we would need to use cos2(β − α).

This is discussed in more detail in Chapter 6, Section 6.4.1.
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We have studied the complete electroweak corrections to neutral Higgs production

via weak boson fusion in the Standard Model and supplemented these results with the

dominant loop corrections in the MSSM, in the general case where non-vanishing complex

phases are included (thus allowing the study of possible CP violating behaviour). Our

results have been implemented into the public Monte Carlo code VBFNLO, providing a

useful tool for experimental analyses.

A comparison of the published results with our work has been carried out, and

agreement has been found.

2.4 Formfactors and azimuthal angle distributions

2.4.1 Effective Lagrangians and the HV V coupling

In the Standard Model, the tree level trilinear coupling between the Higgs and the

gauge bosons (vHVµV
µ) originates from the kinetic energy term (Dµφ)† (Dµφ) of the

symmetry breaking field φ, when this scalar field acquires a vacuum expectation value

v (φ → 1√
2
(v + H): see Section 1.1.1). Ascertaining the existence of this vacuum

expectation value (VEV) is crucial if we are to confirm the mechanism of electroweak

symmetry breaking. If the VEV were zero, the trilinear term would not be present and

we would be left with only quartic and higher couplings.

A trilinear coupling can also be loop-induced – for instance, the effective coupling

between the gluons and a Higgs that is used when studying gluon fusion. By considering

gauge invariance, however, it can be seen that these loop-induced couplings will involve

a very different structure to the tree level value, and will include the operators

HVµνV
µν , HṼµνV

µν (2.7)

where

V µν = ∂µV ν − ∂νV µ = field strength tensor

Ṽ µν =
1

2
εµνρσVρσ = dual field strength tensor

One would in general expect that a loop-induced coupling should be far smaller than

a tree level coupling, but this is not necessarily the case. For instance, new, unknown
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and unexpected physics could suppress the tree level coupling or enhance the loop-

induced coupling, or the signature observed at the LHC may have a larger Higgs decay

branching ratio than expected. A loop induced coupling is generally expected to lead to

small deviations from the tree level coupling (hence the need for precise measurements

and theoretical predictions), but if the tree level coupling is heavily suppressed (or even

vanishes) – as is the case in several beyond the Standard Model scenarios – the loop

induced coupling can become dominant. Consequently, it is crucial that this coupling

is studied in some detail. To do this, an effective Lagrangian Leff can be written

describing the interaction between the Higgs and a pair of weak bosons (here, V stands

for either the W± or the Z boson), including the corresponding part of the Standard

Model Lagrangian as well as higher dimensional operators O(5)
i and O(6)

i . This can

be used to quantify observed deviations from the Standard Model. The Lagrangian

below describes an effective theory that is valid only up to some energy scale Λ, and is

consequently written as an expansion in 1
Λ

up to the second order.

Leff = LSM +
∑

i

g
(5)
i

Λ
O(5)

i +
∑

i

g
(6)
i

Λ2
O(6)

i (2.8)

The gi quantities are dimensionless coupling constants, generally O(1).

A description of higher dimensional operators, up to dimension 6, is given in [57].

We consider the operators that result in3

Leff = gHWW
SM HW+

µ W
µ
− + gHZZ

SM HZµZ
µ +

gHWW
e

Λe

HW+
µνW

µν
− +

gHWW
o

Λo

HW̃+
µνW

µν
− +

gHZZ
e

2Λe

HZµνZ
µν +

gHZZ
o

2Λo

HZ̃µνZ
µν (2.9)

Since V µν is even under CP transformations, the term HVµνV
µν is also CP even for

a Standard Model (or any other CP even) Higgs boson. Conversely, Ṽ µν is odd under

these transforms and so the fourth and sixth terms in the above equation are also CP

odd for a Standard Model type Higgs4.

Expanding this Lagrangian term by term will allow us to arrive at an effective, general

coupling between the Higgs field and the two weak bosons. In order to keep the formulae

3Note that these are dimension 5 operators, which originate from the corresponding dimension 6
operators when the symmetry breaking scalar field is expanded. Also, in order to be as general as
possible, two scales Λe and Λo are used.

4The subscripts o and e indicate this behaviour.
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as clear as possible (and avoid additional indices), in this derivation the two weak bosons

(either a pair of W bosons, W+W−, or a pair of Z bosons, ZZ) are termed P and Q,

and have momenta p and q respectively. First, considering the CP even term (the arrow

signifies switching to momentum space):

HPµνQ
µν = H (∂µPν − ∂νPµ) (∂µQν − ∂νQµ)

→ −H (pµPν − pνPµ) (qµQν − qνQµ)

= − (Hpµq
µPνQ

ν −Hpµq
νPνQ

µ −Hpνq
µPµQ

ν +Hpνq
νPµQ

µ)

= − ((p · q)gµν − pνqµ − pνqµ + (p · q)gµν)HPµQν

= −2 ((p · q)gµν − qµpν)HPµQν (2.10)

Now turning to the CP odd operator5:

HP̃µνQ
µν =

1

2
HεµνρσP

ρσQµν

=
1

2
Hεµνρσ (∂ρP σ − ∂σP ρ) (∂µQν − ∂νP µ)

→ −1

2
Hεµνρσ (pρP σqµQν − pρP σqνQµ − pσP ρqµQν + pσP ρqνQµ)

= −1

2
(−εµνρσ − εµνρσ − εµνρσ − εµνρσ) pρqσHP µQν

= 2εµνρσp
ρqσHP µQν (2.11)

Putting these two terms together, it can be seen that

Leff = T µνHVµVν (2.12)

where the general, effective coupling T µν is given by

T µν(q1, q2) = a1(q1, q2)g
µν +

a2(q1, q2) ((q1.q2)g
µν − qµ

1 q
ν
2 ) +

a3(q1, q2)ε
µνρσq1ρq2σ (2.13)

Here, q1 and q2 are the momenta of the weak bosons, and a1,2,3 are Lorentz invariant

formfactors, which can be related back to the Lagrangian in Equation 2.9 and expressed

5Several lines of working are not explicitly written, as they involve only index manipulation.
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in the following manner.

a1 = SM type coupling

a2 = − 2

Λe

gHV V
e

a3 =
2

Λo

gHV V
o (2.14)

Using this general form T µν of the HV µVµ coupling, deviations in this coupling from

the Standard Model expectations can easily be parametrised in a simple, gauge invariant

manner.

2.4.2 Determining the structure of the HV V coupling

Studying weak boson fusion at the LHC can in principle provide information not only

about the strength of the coupling HV V between a pair of weak bosons and a Higgs, but

also about its tensor structure. As explained in the previous section, this information

is important, as it will be needed to confirm the mechanism of electroweak symmetry

breaking. One method that has been proposed [58] to enable us to study the structure

of T µν , the effective HV V coupling, is to analyse the azimuthal angle distribution.

A comparison of the differing distributions obtained when the HV V coupling is

described by only a1, only a2 or only a3 is shown in Fig. 2.6, which was generated using

the code VBFNLO (see Section 2.5 and later Chapters)6.

If only a3 (the CP odd formfactor) has a non-zero value, then the coupling (and

hence the cross section) will vanish if the tagging jets are back-to-back or collinear in

the transverse plane as the Levi-Civita symbol εµνρσ will force the coupling to zero.

Consequently, as seen in Fig. 2.6, if the HV V coupling is described only by a CP odd

formfactor there are approximate zeroes at 0 and π in the azimuthal angle distribution7.

If only the anomalous CP even formfactor a2 has a non-zero value, the azimuthal

angle distribution has (approximate) zeroes at ±π
2
. The matrix element in this case is

(note that the lower indices in the following equations indicate which of the particles we

6Note that the values of the couplings were fixed such that they would produce total cross sections of
(roughly) the same size.

7Note that, due to the manner in which the results are binned, the distribution will not go to exactly
zero as the bin at e.g. π spans angles in the range π ± x, where x is some small value.
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Figure 2.6: Azimuthal angle φjj distribution with standard WBF cuts, showing distinctions
between SM type and anomalous CP even and CP odd coupling structures.

are referring to (1 or 2), and upper indices indicate the current or 4-momentum index):

Me ∝ 1

Λe

Jµ
1 J

ν
2 (gµν(q1 · q2)− q2,µq1,ν)

∝ 1

Λe

[(
q0
1q

0
2 − qi

1q
i
2

) (
J0

1J
0
2 − J i

1J
i
2

)
−q0

1J
0
2

(
q0
2J

0
1 − qi

2J
i
1

)
+ qi

1J
i
2

(
q0
2J

0
1 − qi

2J
i
1

)]
(2.15)

Here, q and J are the momentum and current of the weak bosons, the index i =

{1, 2, 3} and is summed over. If we assume that the external quarks only experience

a small energy loss (i.e. we use the approximation that q0,3 = 0), the matrix element

becomes

Me ∝ 1

Λe

[
−qk

1q
k
2

(
J0

1J
0
2 − J i

1J
i
2

)
+ qk

1J
k
2

(
−qk

2J
k
1

)]
(2.16)

Here, the index k = {1, 2} (= x, y) and is summed over. If we then make the further

approximation that the momentum component of the tagging jets in the z (beam) di-

rection is much greater than the components in the x or y directions, |pz| � |px,y| (i.e.

that J1,2 = 0), the matrix element becomes:

Me ∝ 1

Λe

[
−qk

1q
k
2

(
J0

1J
0
2 − J3

1J
3
2

)]
(2.17)
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We can re-write this in terms of the transverse momenta of the tagging jets, which is

ptag
T = (pT,x, pT,y), and will (by momentum conservation) be equal to the transverse

momenta of the weak bosons q1,2 above.

Me ∼ 1

Λe

(
J0

1J
0
2 − J3

1J
3
2

)
ptag1

T · ptag2
T

∼ 1

Λe

(
J0

1J
0
2 − J3

1J
3
2

)
|ptag1

T ||ptag2
T | cosφjj (2.18)

This leads to the distribution shown in red in Fig. 2.6, with zeroes when φjj = ±π
2

(i.e.

where cosφjj = 0).

This distribution cleanly distinguishes between purely anomalous (non zero a2 or

non zero a3) couplings and a purely Standard Model (non zero a1) coupling. It can

also determine whether there is a CP even a2 coupling in addition to a Standard Model

coupling. As it stands, however, a coupling that is a combination of anomalous CP even

and CP odd contributions of similar strengths could easily closely resemble a Standard

Model structure as the dips we observe for purely a2 or purely a3 couplings will cancel

one another out.

Consequently, a new definition of the azimuthal angle was proposed [59] that includes

a sign which takes the correlation of the tagging jets with the beam directions into

account. ∆φ is defined as the azimuthal angle of the “away” tagging jet minus the

azimuthal angle of the “toward” tagging jet8. If we define pT,+ and pT,− as the momenta

of the tagging jets, which point into the same detector hemisphere as the (normalised)

beam momenta b+ and b− respectively (as is shown in Fig. 2.7), then the azimuthal

angle ∆φ is given by:

εµνρσb
µ
+p

ν
+b

ρ
−p

σ
− = 2|pT,+||pT,−| sin (φ+ − φ−)

= 2|pT,+||pT,−| sin (∆φ) (2.19)

|pT,+||pT,−| cos ∆φ = pT,+ · pT,− (2.20)

This allows us to define the sign of ∆φ and, if it is used instead of the “standard” φjj

(which is, effectively, |∆φ|), interference effects between a1, a2 and a3 can be observed.

The Standard Model type and CP even type amplitudes are even functions of the quan-

tity ∆φ, whereas the CP odd type amplitude is odd. If this definition of the azimuthal

8When viewing the azimuthal angles from the opposite beam direction, the “away” and “toward”
tagging jets will obviously be switched, but so too will the forward and backward beam directions,
so the sign of ∆φ will be preserved.
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Figure 2.7: Direction of beam and tagging jet momenta for the new azimuthal angle ∆φ
definition.

angle is used, we can distinguish a coupling that contains contributions from a2 and a3

from a Standard Model type coupling a1.

Since at leading order, gluon fusion can be considered to be governed by an effec-

tive ggH CP even coupling (GµνGµνH), there should be a dip in the azimuthal angle

distribution at ±π
2
. This shape, however, is largely washed out by gluon radiation at

next to leading order. Due to this decorrelation effect, doubts were expressed [60] about

whether the clear structure seen in Fig. 2.6 of the azimuthal angle distribution of weak

boson fusion would survive at NLO. It has been explicitly shown [50], however, that –

due to the colour singlet t-channel exchange of WBF – gluon radiation in the central

region is heavily suppressed and the characteristic dips at ±π
2

are still present at NLO.

2.4.3 Experimental limits and capabilities

At the Large Electron Positron Collider (LEP), the search for a Higgs boson was un-

dertaken primarily by looking for a Higgs produced via Higgsstrahlung (shown in Fig.

2.4). Owing to the energy of the LEP collisions, this channel could (kinematically) only

produce a Higgs if its mass were less than ∼ 115 GeV. Although LEP did not discover a

Higgs boson, the studies performed meant that we could put limits on the properties of

a Higgs. Experimental limits on the anomalous CP even HV V couplings derived from

the LEP data were presented by the L3 collaboration in Ref. [61]. A different effective

Lagrangian was used to the one described in previous sections: the relevant parts of the

parametrisation used in Ref. [61], that contribute to a2, are:

Leff = g
(1)
HWW

(
W+

µνW
µ
−∂

νH +W−
µνW

µ
+∂

νH
)

+ g
(2)
HWWHW

+
µνW

µν
−

+g
(1)
HZZZµνZ

µ∂νH + g
(2)
HZZHZµνZ

µν (2.21)
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where

g
(1)
HWW =

gMW

M2
Z

∆gZ
1

g
(2)
HWW =

g

MW

d

g
(1)
HZZ =

g

MW

(
∆gZ

1 cos 2θw + ∆κγ tan2 θw

)
g

(2)
HZZ =

g

2MW

(
d cos2 θw + dB sin2 θw

)
(2.22)

Here, g is the SU(2)L coupling constant, and d, dB, ∆gZ
1 and ∆κγ are dimensionless

parameters, the latter two of which are used when parametrising the anomalous triple

gauge coupling (for limits set by LEP on these parameters, see Ref. [62]). We have ex-

plicitly verified that this Lagrangian is equivalent to the CP even part of the Lagrangian

displayed earlier in Equation 2.9. The coefficients in each Lagrangian are related in the

following manner:

gHWW
e = Λe

(
g

(2)
HWW + g

(1)
HWW

)
gHZZ

e = Λe

(
2g

(2)
HZZ + g

(1)
HZZ

)
(2.23)

Ref. [63] converted the published L3 limits into limits on gHV V
e for Higgs masses of

120 GeV and 160 GeV, assuming the limits to be uncorrelated, for a scale of Λe = 480

GeV 9. These limits are reproduced in Table 2.1, along with a conversion to limits on

the formfactor a2.

Ref. [63] used these limits from LEP and extrapolated in order to estimate the ability

of the ATLAS detector to identify anomalous couplings between a Higgs candidate and

a pair of weak bosons. The authors used VBFNLO to generate the signal at leading order,

PYTHIA [35,64] to generate the background, and ATLFAST [65] to simulate the detector.

They found that they would have the sensitivity to exclude purely anomalous couplings

for a Higgs of mass 160 GeV (using H → W+W− → llνν) to a level of ∼ 5σ for 10 fb−1

of data10. A lighter Higgs boson presents more difficulties, but using H → τ+τ− a

Higgs of mass 120 GeV with purely anomalous couplings could be excluded at the ∼ 2σ

confidence level with 30 fb−1.

9This scale, with gHWW
e = cos2 θW gHZZ

e = 1, gives a total cross section for a purely anomalous CP
even or CP odd coupling that is approximately equal to the cross section in the Standard Model.

10Note that this analysis was performed assuming an LHC energy of 14 TeV, instead of the 7 TeV that
is likely to be used in the first phase of the LHC.
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Table 2.1: Limits from LEP on anomalous HV V couplings at 95% confidence level, from [63].

MH [GeV] 120 160

d -0.19 .. 0.19 -0.5 .. 0.4

dB -0.06 .. 0.06 -0.13 .. 0.14

∆gZ
1 -0.051 .. 0.034 -0.051 .. 0.034

∆κγ -0.105 .. 0.069 -0.105 .. 0.069

gHW W
e -0.78 .. 0.73 -2.0 .. 1.5

gHZZ
e -0.63 .. 0.55 -1.6 .. 1.3

aHW W
2 -0.00304 .. 0.00325 -0.00625 .. 0.00833

aHZZ
2 -0.00229 .. 0.00263 -0.00542 .. 0.00667

The expected experimental precision for a combination of SM type and anomalous

CP even type HV V couplings was also studied and, with 30 fb−1 of data, the following

values of ∆gHZZ
e (the standard deviation of gHZZ

e ) were reported11:

∆gHZZ
e = 0.11 ⇒ ∆aHZZ

2 = 0.000458 for MH = 160 GeV

∆gHZZ
e = 0.24 ⇒ ∆aHZZ

2 = 0.001 for MH = 120 GeV (2.24)

2.5 The public code VBFNLO

The correction at next to leading order in αs to the inclusive cross section of weak

boson fusion has been known for almost 20 years to have a relatively small K-factor and

scale dependence [51]. Monte Carlo generators (see Section 1.3) are ideal for simulating

weak boson fusion, and have been used to check that these small K-factors and scale

dependences extend to the distributions and phase space regions that will be accessible

at the LHC [47]. VBFNLO [52] is one such publically available code: it is a fully flexible

parton-level program that simulates weak boson fusion at next to leading order in QCD

in the Standard Model. We have used this code as a base on which to implement the

electroweak corrections to neutral Higgs production via weak boson fusion in both the

Standard Model and the MSSM (the production of any of the three neutral Higgs bosons

can be simulated using the adapted code). In this section we will describe the abilities

of the public VBFNLO, as well as outlining the methods used by the code.

11These were converted to the formfactors used in this work using Equation 2.14.
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Figure 2.8: The next to leading order QCD corrections to weak boson fusion that are included
in the public code VBFNLO.

The public VBFNLO includes the implementation of Higgs plus two jet production,

which is described in Ref. [47]. After appropriate cuts, the t-channel exchange of a weak

boson between two external quark lines is the dominant method of production, and

consequently in VBFNLO the s-channel contributions (Higgsstrahlung) are not included.

VBFNLO does not include same flavour quarks on the upper and lower external lines.

The interference contributions between u- and t-channels are also neglected, as these are

strongly kinematically suppressed. The decay of the Higgs is simulated using a narrow

width approximation.

All tree level amplitudes are calculated numerically, using the helicity formalism

described in Ref. [66, 67]. The next to leading order QCD Feynman diagrams that are

incorporated into VBFNLO are shown in Fig. 2.8.

Since the exchanged weak boson is a colour singlet, VBFNLO does not consider inter-

ference between diagrams with a gluon attached to the upper and lower external quark
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lines, as these will be identically zero at O(αs) for non-crossed diagrams. The three

parton phase space integral that occurs when calculating the contribution of the next

to leading order diagrams involves both soft and collinear divergences. In VBFNLO the

divergent phase space integrals are evaluated using the subtraction method of Catani

and Seymour (see Ref. [68]) by subtracting a “counterterm” from the integral, leaving

a finite phase space integral which is integrated numerically in four dimensions. The

divergent terms are integrated analytically using Dimensional Reduction in VBFNLO (see

Section 3.1) in 4 − 2ε dimensions. A broadly equivalent method was implemented to

calculate the photon corrections in our modified VBFNLO, which is described in detail in

Section 3.6.

Two independent Monte Carlo integrations (see Section 1.3) are performed (this is

necessary, of course, because the phase spaces involved in the leading order and next to

leading order diagrams are distinct – the NLO diagrams involve an extra particle) using

the algorithm VEGAS [69]. Jet reconstruction is performed using the kT algorithm (as

described in Ref. [70]).

VBFNLO is a very flexible program, and many options determining its running param-

eters are available. Several relevant processes are coded: as well as Higgs production via

weak boson fusion, it can also simulate production of a W or Z boson via WBF, as well

as double and triple vector boson production. A variety of Higgs and weak boson decays

are included as well. Moving beyond weak boson fusion in the Standard Model, both

CP even and CP odd Higgs production via gluon fusion, in a general two Higgs doublet

model, can be studied at leading order (i.e. one loop level) with the full top/bottom

quark dependence in the loop. Furthermore, a warped Higgsless extra dimension model

can be simulated, and anomalous couplings between a Higgs and a pair of weak bosons

can be included. We use this particular ability to incorporate anomalous HV V couplings

in order to implement the higher order electroweak corrections.

All of the cut parameters can be determined by the user (although, of course, if these

are altered too much from the set of “standard” weak boson fusion cuts described in

Section 2.2, they will not give an accurate idea of what to expect from the LHC), and

renormalisation and factorisation scales can also be chosen. VBFNLO can be interfaced

with lhapdf [71] to supply the PDFs, and the CTEQ6 [72] parton density functions are

“hard-wired” into the code as well. The Standard Model parameters (such as the Higgs

mass and value of the electromagnetic coupling constant) can obviously be controlled,

and the Higgs width and branching ratios are calculated. Additionally, the effects of

external bottom quarks can be included for the neutral currents (Z boson fusion).
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(a) (b)

Figure 2.9: Example interference diagrams between gluon fusion and Z boson fusion, at one
loop level.

Finally, the total cross section and a range of distributions is output, in a format

that can be easily analysed by ROOT, gnuplot or topdrawer.

2.6 Higher order QCD-type contributions

In the Standard Model, higher order QCD contributions that are not considered in

the present work have been studied and found to be negligible. These include two

loop contributions from gluon induced weak boson fusion [73, 74] and the loop level

interference effects between weak boson fusion and gluon fusion [75,76].

Generally, the interference effects between gluon fusion and weak boson fusion are

neglected in predictions for the LHC. At leading order, these contributions require a t

↔ u channel crossing and so suffer a kinematic suppression and moreover only occur

when we have identical quarks. The kinematic suppression comes about as a result of

the structure of weak boson fusion (and the WBF cuts that are used to exploit that

structure) filter out all but high energy, very forward jets. The contribution from an

uncrossed diagram behaves like 1
t2

or 1
u2 , whereas the crossed diagram is ∝ 1

tu
. Since the

cuts mean that t and u cannot both be small, the crossed diagram is always suppressed

with respect to the uncrossed diagram.

At loop level O(α2α3
s), however, these restrictions are lifted and interference diagrams

between gluon fusion and Z boson fusion survive that are not suppressed by flavour or

crossing, and are not forbidden by colour conservation. Examples of these diagram types

are shown in Fig. 2.9.

These diagrams are of orderO(α2α3
s) and could potentially be numerically important,

as the arguments that allowed us to neglect the interference contribution at lower orders
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(a) (b)

(c) (d)

Figure 2.10: Gluon initiated NNLO QCD corrections to weak boson fusion.

do not apply here. The authors of Ref. [75] explicitly calculated these contributions, and

found them to be small. This smallness was the result of a combination of a cancellation

between flavours and helicities12, the complex phases of the full one loop calculation and

an accidental cancellation between sea and valence quarks. The authors concluded that

the loop level interference contributions are not sufficient to destroy the purity of the

obtained weak boson fusion signal.

Ref. [73] considers various categories of next to next to leading order (NNLO) QCD

corrections and focuses on the subset of diagrams consisting of gluon induced processes

(examples of which are shown in Fig. 2.10). This subset can be considered separately

because it is gauge invariant, as well as both UV and IR finite (without the need for

real radiation to cancel the IR divergences). The high gluon luminosity expected at

the LHC means that these diagrams are potentially important and – since they involve

a net colour exchange that is not suppressed by crossing – could lead to additional

sources of hadronic activity, thus polluting the WBF sample. It was found, however,

that owing to the kinematic structure of these types of diagrams, the weak boson fusion

cuts strongly suppress the NNLO contribution from gluon induced weak boson fusion13,

which is formally O(α3α2
s). Other sets of NNLO corrections are not expected to have a

significant effect on either the total cross section or the shapes of the distributions.

12Since the interference term is not squared, but is rather ∝ 2Re(MloopM∗
tree), the sign of the coupling

between the external quark pair and the Z boson becomes relevant.
13The WBF cuts suppress this NNLO contribution by a factor of ∼ 30, compared to a factor of ∼ 2−3

for the LO and NLO corrections shown in Fig. 2.8.
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(a) (b)

(c)

Figure 2.11: Quark loops, quark vertex and gluon exchange NNLO QCD corrections to weak
boson fusion.

Diagrams of the type shown in Fig. 2.11(a), with closed quark loops, do not in-

volve any net colour exchange between the external particles and so, following earlier

arguments, additional hadronic activity in the central region is expected to be minimal.

Another set of NNLO virtual diagrams are analogous to those considered at NLO -

corrections to the quark vertex, as seen in Fig. 2.11(b). The authors of Ref. [73] postulate

that these can be estimated from corrections to the deep inelastic scattering process [77]

and are thought to cause no appreciable reduction in the purity of the WBF signal.

As has been explained, at next to leading order diagrams of gluon exchange between

the external quark lines are neglected in VBFNLO, as these are heavily suppressed by the

necessity of crossing amplitudes. At NNLO, however, because the two exchanged gluons

can form a colour singlet, interference with an uncrossed tree amplitude is possible and

this suppression does not occur (see Fig. 2.11(c)). The authors of Ref. [73] postulate

that, since the net colour exchange is zero (the two exchanged gluons form a colour

singlet), there should be no significant increase in jet activity in the important central

region of the detector, thus leaving the WBF signal relatively pure.

These investigations into the higher order QCD type contributions show that the

theoretical uncertainty involved in calculating weak boson fusion is well under control,

and the likelihood of NNLO corrections causing significant deviations from the predicted

cross sections and distributions is slim. The NNLO diagrams calculated in Ref. [73]
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amount to less than 0.3% of the leading order cross section after WBF cuts have been

applied. The interference at one loop level between gluon fusion and weak boson appears

to be even smaller, having less than a 0.03% effect on the ∆φ distribution.

Using these results as guidelines, it appears safe to assume that these higher order

contributions are small and consequently they are not taken into account in this work.



Chapter 3

Higher order calculations

“Here there be dragons.”

— Anon

In this chapter we review the procedures used to renormalise all the processes con-

sidered in this thesis, explicitly stating all relevant counterterms and renormalisation

constants. We will also discuss the methods used to implement the various higher order

calculations into a modified version of the public code VBFNLO, as well as the checks

imposed on the final results.

3.1 Renormalisation in the Standard Model and the

MSSM

The calculation of loop corrections to weak boson fusion will involve tensor integrals

over the loop momentum, which can be simplified via Passarino–Veltman reduction

into scalar integrals [78]. These scalar integrals contain quadratic, linear and loga-

rithmic divergences. Several schemes have been developed that allow us to analyse

these divergences. The most well known of these methods is dimensional regularisation

(DREG) [79], where we analytically continue the integrals into D = 4 − 2ε dimensions

in order to perform the integration, where ε is some infinitesimal value. The original

39
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divergence is regained in the limit of 4 dimensions – i.e. ε→ 0. In other words∫
d4q

(2π)4 → µ4−D
ren

∫
dDq

(2π)D
(3.1)

Here µren is the regularisation scale – an arbitrary reference mass, which is needed to

keep the couplings dimensionless. For the scalar integral A0, the pole at D = 4 can be

seen in the following:

A0(m
2) =

(2πµren)4−D

iπ2

∫
dDq

1

q2 −m2 + iε

= m2

(
∆− ln

(
m2

µ2
ren

)
+ 1

)
+O(D − 4) (3.2)

where

∆ =
2

4−D
− γE + ln(4π) (3.3)

and γE = Euler-Mascheroni constant

Dimensional regularisation is commonly used when working in the Standard Model,

as it preserves both Lorentz and gauge invariance. Since the fields considered are

D-dimensional rather than 4-dimensional, the number of bosons no longer equals the

number of fermions – in other words, dimensional regularisation does not respect super-

symmetry.

An alternative to DREG, which is normally used when supersymmetric calculations

are being performed, is Dimensional Reduction (DRED)1. In this method, the fields are

kept four-dimensional, while the loop integration is again performed in D dimensions,

thus avoiding explicit SUSY breaking. It has been shown that DRED is mathematically

consistent and that it preserves supersymmetry up to at least the two loop level for

matter fields [80].

The divergences that occur during loop calculations are cancelled using a renormal-

isation procedure. The original parameters in the Lagrangian are considered to be the

“bare” parameters, which are divergent (and hence unphysical). Renormalisation both

allows us to eliminate the divergences that occur when calculating higher order correc-

tions, and also allows us to define the physical meaning of a parameter beyond lowest

1Note that it is possible to use DREG in supersymmetric calculations, but in this case symmetry
restoring counterterms must be used.
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order. The bare parameters are replaced by physical parameters (which are finite, and

referred to as “renormalised” parameters), plus a counterterm. Thus, for a parameter p

and a field φ, the renormalisation transformation is typically:

pbare = pren + δp (3.4)

φbare = φren (1 + δZφ) (3.5)

The renormalised parameters are fixed by the choice of renormalisation scheme, of which

there are several. One choice is the Minimal Subtraction (MS) scheme, which makes

use of DREG and cancels out only the divergences in the loop integrals (i.e. the first

term in Equation 3.3), leaving all finite pieces alone. In the modified Minimal Subtrac-

tion (MS) scheme, dimensional regularisation is again used, but in this case all terms

proportional to ∆ (defined in Equation 3.3) are cancelled by the counterterms, not only

the divergences. The modified Dimensional Reduction (DR) scheme is similar to MS,

as it is concerned with the terms in ∆, but makes use of dimensional reduction. One fur-

ther scheme that is commonly used is the on-shell (OS) scheme. Here, all renormalised

masses correspond directly to the physical masses (i.e. the real part of the pole of the

particle’s propagator), and the residue of the propagator is required to be 1.

We use the program LoopTools [81, 82] to evaluate the loop integrals that occur in

our calculations.

3.2 Corrections to weak boson fusion

There are both real and virtual corrections to weak boson fusion that need to be consid-

ered. These corrections have been divided into groups in order to make the calculations

clearer.

Firstly, there are real corrections to weak boson fusion, shown in Fig. 3.1. These

consist of both gluon and photon emission from the external quark lines, as well as photon

or gluon induced processes. While the QCD contributions have been studied in detail

previously [47, 83], and the publicly available VBFNLO code includes these corrections,

the QED contributions have only been studied in Ref. [55]. The real photonic corrections

have now been included into our modified VBFNLO [84].

The virtual corrections to weak boson fusion fall into five different categories, shown

in Fig. 3.2. These include corrections to the Higgs–weak boson vertex (HV V ), correc-
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Figure 3.1: Examples of real corrections to the weak boson fusion process.

tions to the weak boson self energy (V V ), corrections to the vertex between the external

quarks and the weak bosons (qqV ), and box and pentagon diagrams.

When only fermion (and sfermion) loop corrections are being considered, no box or

pentagon diagrams contribute, and there are no loops present at the qqV vertex between

the external quarks and the weak boson, although there is a counterterm diagram here.

In the full Standard Model, or MSSM, these types of diagram (boxes, pentagons, loops

at the qqV vertex) need to be considered as well.

Throughout this work, the external quarks are considered to be light and conse-

quently radiation of a Higgs from the external legs is not considered. Non-zero masses

are kept only where they are needed to regulate divergences at intermediate steps.

3.3 Renormalisation transformations and constants

In the following section we describe the renormalisation transformations and conditions

we impose, along with the renormalisation constants to which they lead. We follow the

SM conventions of [85]. One thing that should be noted is that the MSSM typically

uses a different sign convention for the SU(2) covariant derivative (Equation 1.3) to the

Standard Model as described in Ref. [85]. In practice, this means that any sin θW in the

Standard Model is replaced by (− sin θW ) in the MSSM, and a minus sign is included

for every Higgs field in the MSSM couplings. Unless it is specifically stated otherwise,

the renormalisation constants here use the MSSM convention – for completeness, the

corresponding constants in the Standard Model are stated in Appendix A.
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Figure 3.2: Types of virtual corrections to the weak boson fusion process.
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In this work, a renormalisation scheme is used where the electroweak sector is renor-

malised on-shell, which means that the renormalised transverse self energies and the

derivative of the renormalised self energy with respect to the square of the momentum p

must vanish at p2 = m2
ren. For the field renormalisation constants, an on-shell condition

means that, for external particles that are on-shell, the one particle irreducible two point

functions are diagonal once renormalised. In this way we ensure that all renormalised

masses of the gauge bosons correspond to the physical, measured masses and their prop-

agators’ poles are equal to 1. The renormalisation transforms of the gauge bosons are

given by (where V stands for either the W or the Z boson):

M2
V → M2

V + δM2
V (3.6)

W →
(

1 +
1

2
δZWW

)
W (3.7) Z

γ

 →

 (
1 + 1

2
δZZZ

)
1
2
δZZγ

1
2
δZγZ

(
1 + 1

2
δZγγ

)
 Z

γ

 (3.8)

Imposing the on-shell renormalisation conditions described above, the renormalisa-

tion constants are seen to be

δM2
V = Re

(
ΣT

V V (M2
V )
)

(3.9)

δ sin θW = −1

2

cos2 θW

sin θW

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
(3.10)

δZV V = −Re
(
Σ

′

V V (M2
V )
)

(3.11)

δZγZ = − 2

M2
Z

Re
(
ΣγZ(M2

Z)
)

(3.12)

δZZγ =
2

M2
Z

ΣT
γZ(0) (3.13)

Here, the prime (Σ
′
) signifies that the derivative with respect to momentum p2 is taken,

and the superscript T denotes the transverse part of the self energy. The transverse (and

longitudinal – denoted by the superscript L) parts of a self energy are defined according

to:

Σµν(p) = ΣT (p2)

(
−gµν +

pµpν

p2

)
− pµpν

p2
ΣL(p2) (3.14)
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Note that the renormalisation constant for the electroweak mixing angle (δ sin θW )

is found by considering the relation MZ cos θW = MW – i.e. it is not an independent

parameter and thus does not need to receive its own renormalisation transform.

The field renormalisation of the fermions is also performed on-shell, with a transform

and constant given by:

fX → fX

(
1 +

1

2
δZfX

)
(3.15)

δZfX
= −ReΣX

ff −m2
f

∂

∂p2
Re
[
ΣL

ff (p
2) + ΣR

ff (p
2) + 2ΣS

ff (p
2)
] ∣∣∣

p2=m2
f

(3.16)

Here, the superscripts L,R and S denote the left, right and scalar parts, and X is either

L or R.

3.3.1 Higgs renormalisation

For the Higgs transform we impose one renormalisation transformation for each Higgs

doublet, following Ref. [31]:

Hi →
(

1 +
1

2
δZHi

)
Hi where i = 1, 2 (3.17)

This means that the field renormalisation matrix (in the basis of the mass eigenstates)

is given by:

tan β → tan β (1 + δ tan β) = tan β

(
1 +

1

2
[δH2 − δH1]

)
(3.18)

h

H

A

 →


(
1 + 1

2
δZhh

)
1
2
δZhH

1
2
δZhA

1
2
δZhH

(
1 + 1

2
δZHH

)
1
2
δZHA

1
2
δZhA

1
2
δZHA

(
1 + 1

2
δZAA

)



h

H

A

 (3.19)
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Note that we are neglecting mixing between the neutral Higgs bosons and the Goldstone

bosons2. The field renormalisation constants themselves are thus:

δZhh = sin2 α δZH1 + cos2 α δZH2 (3.20)

δZHH = cos2 α δZH1 + sin2 α δZH2 (3.21)

δZAA = sin2 β δZH1 + cos2 β δZH2 (3.22)

δZhH = sinα cosα (δZH2 − δZH1) (3.23)

The renormalisation constants δZhA and δZHA are both zero, due to the fact that the

Higgs sector is CP conserving at tree level.

We renormalise the Higgs fields using the DR scheme in the following manner, where

the superscript div signifies those terms which are proportional to ∆ (see Equation 3.3).

The DR scheme has been shown to be numerically stable [86] and has been found to

be a convenient choice for Higgs field renormalisation when considering higher order

corrections to the Higgs masses. The correct on-shell properties of the external Higgs

are ensured by finite wavefunction normalisation factors. These so-called “Z-factors”

are a convenient way of taking higher order corrections (which are, in the Higgs sector,

typically large) into account, and are described in detail in Section 3.4. Since tan β

corresponds directly to no obvious physical observable, there is no problem using DR

for the field renormalisation.

δZhh = −
[
ReΣ′

hh(m
2
h)
]div

(3.24)

δZHH = −
[
ReΣ′

HH(m2
H)
]div

(3.25)

δZhH = δZHh =
sinα cosα

cos 2α
(δZhh − δZHH) (3.26)

δ tan β =
1

2 cos 2α
(δZhh − δZHH) (3.27)

Note that the Higgs masses used in these formulae are the tree level masses3. In the

Standard Model, the Higgs field renormalisation is defined in the on-shell scheme:

δZHH = −Re
(
Σ′

HH(m2
H)
)

(3.28)

2In general, of course, this contribution cannot be neglected. In our case, as we are only interested in
weak boson fusion and there is no coupling between a pair of weak bosons and a Goldstone boson,
it is safe to neglect it.

3Recall that, throughout this work, lower case mHiggs will refer to tree level masses, while upper case
MHiggs refers to loop corrected masses.
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The renormalisation transformation for the Higgs masses, for the original φ and χ

fields, is

Mφφχ →Mφφχ + δMφφχ (3.29)

Switching to the basis of mass eigenstates of the lowest order Higgs field, we obtain:

δMhHA = UδMφφχU
†

=


δm2

h δm2
hH δm2

hA

δm2
hH δm2

H δm2
HA

δm2
hA δm2

HA δm2
A

 (3.30)

The Higgs mass renormalisation constants are then

δm2
h = δm2

A cos2 (β − α) + δM2
Z sin2 (α+ β) +

e

2MZ sin θW cos θW

(
δTH cos(α− β) sin2(α− β)+

δTh sin(α− β)
[
1 + cos2(α− β)

])
+

δ tan β sin β cos β
[
m2

A sin (2 (α− β)) +M2
Z sin (2 (α+ β))

]
(3.31)

δm2
H = δm2

A sin2 (β − α) + δM2
Z cos2 (α+ β)−

e

2MZ sin θW cos θW

(
δTH cos(α− β)

[
1 + sin2(α− β)

]
+

δTh sin(α− β) cos2(α− β)
)
−

δ tan β sin β cos β
[
m2

A sin (2 (α− β)) +M2
Z sin (2 (α+ β))

]
(3.32)

δm2
hH =

1

2

[
δm2

A sin (2 (α− β))− δM2
Z sin (2 (α+ β))

]
+

e

2MZ sin θW cos θW

(
δTH sin3(α− β)− δTh cos3(α− β)

)
−

δ tan β sin β cos β
[
m2

A cos (2 (α− β)) +M2
Z cos (2 (α+ β))

]
(3.33)

The renormalisation constants δTh and δTH are the tadpole renormalisation. The

tadpoles Th,H are the coefficients of the linear terms in the Higgs potential, and must

vanish at zeroth order to ensure that the VEVs of the Higgs potential are stationary

points. Their renormalisation transform is given by

Th,H → Th,H + δTh,H (3.34)



Higher order calculations 48

Since the tadpole coefficients are required to vanish, it follows that

T 1−loop
h,H + δTh,H = 0 (3.35)

In the MSSM with real parameters, the CP odd Higgs boson A is renormalised on-

shell, whereas in the complex MSSM the charged Higgs H± is required to be on-shell.

This follows the decision of which of the two masses is used as the independent parameter

input – in the MSSM with complex parameters, MA is not a mass eigenstate at higher

orders, due to mixing with the other neutral Higgs bosons, and consequently MH± is

used as the input. Thus, for i = A for the real MSSM and i = H± for the complex

MSSM:

δm2
i = ReΣii(M

2
i ) (3.36)

and

δm2
A = δm2

H+ − δM2
W (3.37)

3.3.2 Charge renormalisation

The counterterms needed4 for the calculation of higher order corrections to weak boson

fusion include the charge renormalisation constant, δZe. A renormalisation condition

for the charge can be arrived at by defining the electric charge e as being equal to the

full eeγ vertex for on-shell external particles when the photon momentum tends to zero

(this is known as the Thompson limit). The renormalisation transformation is

e −→ e (1 + δZe) (3.38)

The renormalised charge is then identified with the physical charge in the Thompson

limit

e(0) =
√

4πα(0) (3.39)

where α(0) is the fine structure constant [87]:

α(0) =
1

137.035999679
(3.40)

4The counterterms are described in Section 3.5.
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The precise form of the renormalisation constant δZe is derived (for the derivation,

see, for example, Reference [85]), by imposing the condition that the loop corrections

to the vertex eeγ vanish in the Thompson limit. Note that during this section we will

work with the Standard Model convention for the SU(2) covariant derivative.

δZe =
1

2
Πγ(0)− sin θW

cos θW

∑T
γZ(0)

M2
Z

=
1

2

∂

∂q2

∑
γγ

(
q2
)
|q2=0 −

sin θW

cos θW

∑T
γZ(0)

M2
Z

(3.41)

Difficulties can be encountered, however, when calculating Πγ(0), as it involves large

contributions from a logarithmic term involving the fermion masses. This leads to prob-

lems as the masses of the light quarks are not well defined. In order to avoid dependence

on the light quark masses, the quantity ∆α can be used.

∆α = Πlight
γ (0)− ReΠlight

γ (M2
Z)

⇒ Πlight
γ (0) = ∆α+ ReΠlight

γ (M2
Z)

= ∆α+
1

M2
Z

Re
(
Σlight

γγ

(
M2

Z

))
(3.42)

The Πγ(0) in Equation 3.41 can thus be split into its light (i.e. all leptons and all quarks

except the top) and heavy (the top quark, bosons and any SUSY particles) parts and

∆α can be used to replace the light particles’ contribution to Πγ(0) in the following way.

δZe =
1

2
Πlight

γ (0) +
1

2
Πheavy

γ (0)− sin θW

cos θW

∑T
γZ(0)

M2
Z

=
1

2

(
∆α+ ReΠlight

γ (M2
Z)
)

+
1

2
Πheavy

γ (0)− sin θW

cos θW

∑T
γZ(0)

M2
Z

=
1

2

(
∆α+

1

M2
Z

Re
[∑light

γγ
(M2

Z)
])

+
1

2
Πheavy

γ (0)− sin θW

cos θW

∑T
γZ(0)

M2
Z

(3.43)

∆α can be split into its component parts – the contribution from the leptons, which

has been calculated at three loop level [88] to be ∆αleptons = 0.031497686, plus the

contributions from the light quarks (i.e. all quarks but the top). The quark contribu-

tion has been determined experimentally using a dispersion relation, and is given by

∆αhadron
5flav = 0.02755± 0.0023 [89].
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We can also choose to absorb the ∆α contribution into the tree level matrix element

and parametrise using α(M2
Z):

α(M2
Z) =

α(0)

1−∆α
(3.44)

This means that δZe needs to be replaced by δZ
α(M2

Z)
e in the following way (up to

higher order terms)

e −→ e(0) (1 + δZe)

= e(0)

(
1 +

∆α

2

)(
1 + δZe −

1

2
∆α

)
= e(M2

Z)
(
1 + δZ

α(M2
Z)

e

)
where

δZ
α(M2

Z)
e = δZe −

1

2
∆α (3.45)

In this way, ∆α drops out of the charge renormalisation constant δZ
α(M2

Z)
e . Note that an

alternative method of evaluating the charge renormalisation constant when the lowest

order coupling has been reparametrised to α(M2
Z) is to use effective masses for the light

quarks. These masses are set to values that will reproduce δZ
α(M2

Z)
e as above when the

quantity Πγ(0) is calculated.

A third option is to parametrise the lowest order coupling via the Fermi constant

GF . The Fermi constant, determined from muon decay, is related to the fine structure

constant α(0) according to

GF =
α(0)π√

2M2
W sin2 θW

(1 + ∆r) (3.46)

The quantity ∆r summarises the higher order corrections to muon decay and at one

loop order it can be written as

∆r = ∆α− cos2 θW

sin2 θW

∆ρ+ (∆r)remainder (3.47)

In this equation, ∆α contains the large logarithmic corrections from the light fermions

and ∆ρ involves the leading quadratic correction from the large mass of the top quark.

The dependence on the Higgs mass originates from the remainder term.
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The reparametrisation of the lowest order coupling in terms of the Fermi constant

yields a corresponding shift in the charge renormalisation constant.

δZGF
e = δZe −

1

2
∆r (3.48)

When only loop contributions from fermions (or fermions and sfermions in the MSSM)

are being considered, only counterterms and the loop diagrams for the W boson self en-

ergy in muon decay contribute to ∆r, as there are no vertex or box loop diagrams. In

this approximation, we arrive at the simple expression below, which comes directly from

Equation 3.46:

δZGF ,(s)fermion
e =

δ sin θW

sin θW

− 1

2

(∑T
WW (0)− δM2

W

M2
W

)
(3.49)

In the full Standard Model, however, once the vertex and box diagrams have been

computed, the expression for ∆r (and hence δZGF
e ) is more complicated (owing to the

additional diagrams), although it is still relatively compact [90–92].

∆r1−loop,SM = Πγ(0)− cos2 θW

sin2 θW

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
+

∑
WW (0)− δM2

W

M2
W

+2
cos θW

sin θW

∑T
γZ(0)

M2
Z

+
α

4π sin2 θW

(
6 +

7− 4 sin2 θW

2 sin2 θW

ln
(
cos2 θW

))
= Πγ(0)− 2

δ sin θW

sin θW

+

∑
WW (0)− δM2

W

M2
W

+
cos θW

sin θW

δZZγ +

α

4π sin2 θW

(
6 +

7− 4 sin2 θW

2 sin2 θW

ln
(
cos2 θW

))
(3.50)

Accordingly, in the Standard Model, reparametrisation of the lowest order coupling

by the Fermi constant yields the corresponding replacement of the charge renormalisation



Higher order calculations 52

constant by:

δZGF ,SM
e =

1

2
Πγ(0)− sin θW

cos θW

δZZγ −
1

2
Πγ(0) +

δ sin θW

sin θW

−
∑

WW (0)− δM2
W

M2
W

−

cos θW

sin θW

δZZγ −
α

8π sin2 θW

(
6 +

7− 4 sin2 θW

2 sin2 θW

ln
(
cos2 θW

))
=

δ sin θW

sin θW

−
∑

WW (0)− δM2
W

M2
W

− 1

sin θW cos θW

δZZγ −

α

8π sin2 θW

(
6 +

7− 4 sin2 θW

2 sin2 θW

ln
(
cos2 θW

))
(3.51)

Due to the extra diagrams that need to be considered in the full MSSM (see, for

example, Ref. [93]), the expression corresponding to Equation 3.51 in the MSSM has

a somewhat more complicated structure. It is not needed in this thesis, since here we

consider the parametrisation of the lowest order coupling in terms of the Fermi constant

only for the special case of pure (s)fermionic loop corrections.

3.4 Higgs mixing in the MSSM

In order to perform phenomenologically relevant studies of the Higgs sector of the MSSM,

the masses and mixings of the Higgs particles need to be accurately known. In the

Feynman diagrammatic approach, in the real MSSM, the full one loop correction is

known, as well as two loop results for the O(αsαt), O(α2
t ), O(αsαb), O(αtαb) and O(α2

b)

contributions5. In the complex MSSM the full one loop corrections are also known, as is

the O(αsαt) contribution at two loop level. These corrections are incorporated into the

public code FeynHiggs [31,94–97], which in this work we use to calculate the properties

of the MSSM Higgs sector. In the improved effective potential approach, the complete

two loop result is known [98,99].

The corrected masses of the Higgs bosons are found by calculating the poles of the

Higgs propagator matrix ∆(p2) in the h, H, A basis. Since these poles are in general

complex, the physical mass is taken to be the real part of the pole (Equation 3.62,

below). When calculating the loop corrected masses, the effects of mixing between the

neutral Higgs bosons needs to be taken into account6. This corresponds to finding the

5Note that αt,b = h2
t,b

4π , where ht,b are the Yukawa couplings of the top and bottom quarks.
6Note that, strictly speaking, mixing between the Higgs bosons and the Z boson and Goldstone boson

should be considered, but since these are sub-leading at the two loop level they are neglected here.
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three solutions to

1

|∆(p2)|
= 0 (3.52)

The propagator matrix ∆(p2) is related to the 2-point functions Γ̂hHA(p2) via

−1

∆(p2)
= Γ̂hHA(p2) = i

(
p2 −M(p2)

)
(3.53)

where the mass matrix is written in terms of the renormalised Higgs self energies, Σ̂:

M(p2) =


m2

h − Σ̂hh(p
2) −Σ̂hH(p2) −Σ̂hA(p2)

−Σ̂hH(p2) m2
H − Σ̂HH(p2) −Σ̂HA(p2)

−Σ̂hA(p2) −Σ̂HA(p2) m2
A − Σ̂AA(p2)

 (3.54)

The renormalised self energies are calculated from the following formulae (in the first

equation, i = h,H or A):

Σ̂ii(p
2) = Σii(p

2) + δZi

(
p2 −m2

i

)
− δm2

i (3.55)

Σ̂hH(p2) = ΣhH(p2) + δZhH

(
p2 − 1

2

[
m2

h +m2
H

])
− δm2

hH (3.56)

Σ̂hA(p2) = ΣhA(p2) + δm2
hA (3.57)

Σ̂HA(p2) = ΣHA(p2) + δm2
HA (3.58)

Inverting the mass matrix gives the (diagonal) Higgs propagator in the same form

as if there were no mixing, but with the usual self energy replaced by an effective self

energy:

∆ii =
i

p2 −m2
i + Σ̂eff

ii (p2)
(3.59)

Σ̂eff
ii (p2) = Σ̂ii(p

2)− i

(
2Γ̂ijΓ̂jkΓ̂ki − Γ̂2

kiΓ̂jj − Γ̂2
ijΓ̂kk

Γ̂jjΓ̂kk − Γ̂2
jk

)
(3.60)

The irreducible vertex functions Γij are defined in Equation 3.53, using the mass matrix

of Equation 3.54. Note that Γij are functions of momentum p2, although this is not

explicitly stated in the equation above, simply due to space considerations.
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The complex poles (Mi) of the propagator are solutions of the equation:

Mi −m2
i + Σ̂eff

ii (M2
i ) = 0 (3.61)

We can write the complex pole as

M2 = M2 − iMΓ (3.62)

where M is the real (loop corrected) mass of the Higgs boson, and Γ is the width

parameter. Expanding around M2 we obtain an equation for the corrected, physical

mass in terms of the real and imaginary parts of the effective self energy.

M2
i −m2

i + ReΣ̂eff
ii (M2

i ) +
ImΣ̂eff

ii (M2
i ) ImΣ̂eff ′

ii (M2
i )

1 + ReΣ̂eff ′

ii (M2
i )

= 0 (3.63)

If we are considering a process with an external Higgs boson (such as weak boson

fusion), we need to ensure that the outgoing Higgs has the correct on-shell properties

and the S matrix is properly normalised by insisting that the propagator residues are

equal to 1. In order to achieve this, we include finite wavefunction renormalisation

factors (known as Z factors), which are composed of the renormalised self energies of the

Higgs bosons7. These finite Z factors can be arranged into a (non-unitary) matrix. The

one-particle vertex functions are thus modified for the physical Higgs bosons (h1,2,3) as

given in Equation 3.648


Γ̂h1

Γ̂h2

Γ̂h3

 = Ẑ


Γ̂h

Γ̂H

Γ̂A

 =


Ẑhh ẐhH ẐhA

ẐHh ẐHH ẐHA

ẐAh ẐAH ẐAA




Γ̂h

Γ̂H

Γ̂A



=


√
Zh

√
ZhZhH

√
ZhZhA

√
ZHZHh

√
ZH

√
ZHZHA

√
ZAZAh

√
ZAZAH

√
ZA




Γ̂h

Γ̂H

Γ̂A

 (3.64)

7These Z factors are an approximation that is used in an effort to compensate for the fact that we’re
treating the unstable Higgs as an external particle. Technically, the entire production and decay
process should be considered. In principle, we could avoid the need for the Z factors by using an
on-shell renormalisation for the Higgs fields, but – as mentioned previously – the DR scheme turns
out to be more convenient.

8For convenience, we define the factors Ẑij here too.



Higher order calculations 55

If we consider, for instance, the vertex between the lightest Higgs boson and a pair

of W bosons, h1WW 9,

Γ̂h1WW =
√
Zh

(
Γ̂hWW + ZhH Γ̂HWW + ZhAΓ̂AWW

)
(3.65)

The factor
√
Zh here gives an overall normalisation factor, which is dependent on the 3-

particle mixing corrected hh propagator. The factors Zij are calculated from
∆ij

∆ii
. These

factors take account of diagrams where an h2 or h3 tree level propagator is connected

directly to the W bosons, as opposed to an h1 tree level propagator.

Explicitly, we can write the Z factors in terms of the Higgs self energies [31]. For

the real MSSM, we only need to consider mixing between h and H, the CP even Higgs

bosons (i, j = h,H: these indices are not summed over).

Zi =

1 + Re
(
Σ̂′

ii(p
2)
)
− Re


(
Σ̂ij(p

2)
)2

p2 −m2
j + Σ̂jj(p2)


′
−1

∣∣∣
p2=M2

i

(3.66)

Zij = − Σ̂ij(M
2
i )

M2
i −m2

j + Σ̂jj(M2
i )

(3.67)

In the complex MSSM, the mixing of h and H with the CP odd Higgs boson A also

needs to be considered, so the formulae become more complicated (i, j, k = h,H,A).

Zi =
1

1 +
(
ReΣ̂eff

ii

)′
(M2

i )
(3.68)

Zij =
Σ̂ij(M

2
i )
(
M2

i −m2
k + Σ̂jk(M

2
i )Σ̂ki(M

2
i )
)

Σ̂2
jk(M

2
i )−

(
M2

i −m2
j + Σ̂jj(M2

i

)(
M2

i −m2
k + Σ̂kk(M2

i

) (3.69)

The Higgs masses and Z factors used in the numerical analysis presented here have

been obtained using the code FeynHiggs, working at two loop level.

9Note that the coupling AWW is of course zero - it is included in this equation in order to show the
general form of the propagator corrections.
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3.4.1 Effective couplings using the UHiggs matrix

One can define effective couplings of the Higgs bosons in a p2 = 0 approximation [31],

where

Σ̂ii(p
2) → Σ̂ii(0)

Σ̂ij(p
2) → Σ̂ij(0) (3.70)

In this approximation, a unitary matrix UHiggs can be defined that will diagonalise the

Higgs mass matrix M (given in Equation 3.54), i.e.

UHiggsRe [M(0)]U †
Higgs =


M2

h1,p2=0 0 0

0 M2
h2,p2=0 0

0 0 M2
h3,p2=0

 (3.71)

An effective coupling can then be defined as in Equation 3.65, where UHiggs is used

instead of the Z matrix.

The Z factors are needed for external Higgs bosons in order to ensure the correct on

shell properties. Since the Z matrix is not unitary, however, it cannot be used if one

wants effective couplings for internal particles (in particular within loops). The UHiggs

matrix can be used for these effective couplings, but in this case one must be careful

that UV finiteness and gauge cancellations are maintained.

3.5 Counterterms for vertices and self energies in

WBF

In order to produce the matrix elements needed for the calculations performed in this

thesis, the public programs FeynArts [100–102] and FormCalc [103–106] are used.

For the main process of Higgs production via WBF, three sets of counterterms need

to be considered – for the weak boson self energy V V , the vertex between the quarks and

the weak bosons qqW , and the vertex between the Higgs and the weak bosons HV V .

Additionally, a counterterm for the vertex between two W bosons and a Z boson is

needed, as well as the vertex between two leptons and a weak boson. We neglect quark
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mixing, and consequently the CKM matrix is assumed to be diagonal throughout this

work. We follow the conventions used in [85], as implemented in FeynArts.

The FeynArts model files contain the counterterms in the Standard Model, but not

in the MSSM. Consequently, the MSSM model file was altered to include the neces-

sary counterterms, following the convention for the SU(2) covariant derivative described

previously. The counterterms used are given below in the MSSM convention – the cor-

responding counterterms in the Standard Model are stated in Appendix A.

The first two sets of counterterms have equivalent forms in the Standard Model and

the MSSM. The following equations give the couplings for the weak boson self energy,

where V can be either W or Z and p is the momentum of the weak bosons

ΓCT
V V = i


δZV V

M2
V δZV V + δM2

V

−δZV V

 ·


gµνp1 · p2

gµν

pν
1p

µ
2

 (3.72)

In the notation used in this work (following the conventions of FeynArts), the cou-

pling between the quarks and the weak bosons is denoted by

Γqq̄Vµ =

 γµ
1
2
(1− γ5)

γµ
1
2
(1 + γ5)

 (3.73)

Following this notation, the left and right handed parts of the coupling between the

external quarks and a W boson at tree level (indicated by the superscript 0) and the

counterterm (superscript CT ) are given by10

Γ0
ud̄W =

 −ie√
2 sin θW

0

 (3.74)

ΓCT
ud̄W =


−ie√

2 sin θW

(
δZe + δ sin θW

sin θW
+ 1

2
δZWW + 1

2

(
δZ∗

fL(d̄) + δZfL(u)
))

0

(3.75)

The explicit form of the renormalisation constants used above was given in Section

3.3. The only difference between this coupling and the coupling dūW is that the quark

10Note that this coupling describes the interaction u + d̄ → W−.
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field renormalisation constants (δZf ) in the equation above need to be conjugated. The

coupling between the external quarks and a Z boson is given by

Γ0
q̄qZ = ie

 gLq

gRq

 (3.76)

ΓCT
q̄qZ = ie


gLq

2
δZZZ + δgLq − 1

3
δZAZ + 1

2
gLq

(
δZfL(q) + δZ∗

fL(q)
)

gRq

2
δZZZ + δgRq − 1

3
δZAZ + 1

2
gRq

(
δZfR(q) + δZ∗

fR(q)
)
 (3.77)

where q can be either up-type or down-type and

gRu =
2

3

sin θW

cos θW

(3.78)

gRd = −1

3

sin θW

cos θW

(3.79)

gLu = − 1

sin θW cos θW

(
1

2
− 2

3
sin2 θW

)
(3.80)

gLd = − 1

sin θW cos θW

(
−1

2
+

1

3
sin2 θW

)
(3.81)

and

δgRu =
2 sin θW

3 cos θW

(
δZe −

1

sin θW cos2 θW

δ sin θW

)
(3.82)

δgRd = − sin θW

3 cos θW

(
δZe −

1

sin θW cos2 θW

δ sin θW

)
(3.83)

δgLu = − 1

2 sin θW cos θW

(
δZe −

(
sin2 θW − cos2 θW

sin θW cos2 θW

)
δ sin θW

)
+

2 sin θW

3 cos θW

(
δZe −

1

sin θW cos2 θW

δ sin θW

)
(3.84)

δgLd =
1

2 sin θW cos θW

(
δZe −

(
sin2 θW − cos2 θW

sin θW cos2 θW

)
δ sin θW

)
− sin θW

3 cos θW

(
δZe −

1

sin θW cos2 θW

δ sin θW

)
(3.85)

The supersymmetric counterterm for the Higgs vertex, however, is different from

that in the Standard Model, owing to the increased complexity of the Higgs sector in
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the MSSM. In the Standard Model, the couplings and counterterms are given by

Γ0
HSMWW =

ieMW

sin θW

(3.86)

Γ0
HSMZZ =

ieMW

sin θW cos2 θW

(3.87)

ΓCT
HSMWW =

ieMW

sin θW

(
δZe −

δ sin θW

sin θW

+
δM2

W

2M2
W

+
1

2
δZHH + δZWW

)
(3.88)

ΓCT
HSMZZ =

ieMW

sin θW cos2 θW

(
δZe +

(
2 sin2 θW − cos2 θW

)
sin θW cos2 θW

δ sin θW

+
δM2

W

2M2
W

+
1

2
δZHH + δZZZ

)
(3.89)

In the MSSM, counterterms need to be considered for both the light and heavy CP-

even Higgs bosons, h and H. In general, in the complex MSSM, we would need to

include mixing between all three neutral Higgs bosons, but in the process studied in this

thesis – since there is no tree level coupling between the CP odd Higgs and a pair of

weak bosons – there is no AV V counterterm that needs to be considered.

Γ0
hWW =

ieMW sin (β − α)

sin θW

(3.90)

Γ0
HWW =

ieMW cos (β − α)

sin θW

(3.91)

ΓCT
hWW =

ieMW

sin θW

sin(β − α)

(
δZe +

1

2

δM2
W

M2
W

+ δZWW

+
δ sin θW

sin θW

+
1

2
δZhh + sin β cos β

cos(β − α)

sin(β − α)
δ tan β

)
+

1

2

ieMW

sin θW

cos(β − α)δZHh (3.92)

ΓCT
HWW =

ieMW

cos θW

cos(β − α)

(
δZe +

1

2

δM2
W

M2
W

+ δZWW

+
δ sin θW

sin θW

+
1

2
δZHH − sin β cos β

sin(β − α)

cos(β − α)
δ tan β

)
+

1

2

ieMW

sin θW

sin(β − α)δZhH (3.93)
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Similarly, for the coupling of the CP even Higgs bosons to a pair of Z bosons

Γ0
hZZ =

ieMW sin (β − α)

sin θW cos2 θW

(3.94)

Γ0
HZZ =

ieMW cos (β − α)

sin θW cos2 θW

(3.95)

ΓCT
hZZ =

ieMW

sin θW

sin(β − α)

(
δZe +

1

2

δM2
W

M2
W

+ δZWW

+
δ sin θW

sin θW

+
1

2
δZhh + sin β cos β

cos(β − α)

sin(β − α)
δ tan β

)
+

1

2

ieMW

sin θW

cos(β − α)δZHh (3.96)

ΓCT
HZZ =

ieMW

cos θW

cos(β − α)

(
δZe +

1

2

δM2
W

M2
W

+ δZWW

+
δ sin θW

sin θW

+
1

2
δZHH − sin β cos β

sin(β − α)

cos(β − α)
δ tan β

)
+

1

2

ieMW

sin θW

sin(β − α)δZhH (3.97)

These are the counterterms needed to study Higgs production via weak boson fusion

at the LHC. If we consider weak boson fusion and Higgsstrahlung at a linear collider

(see Chapter 4), we also need counterterms for the vertices between a gauge boson and

a pair of leptons. Firstly, for the Z bosons,

Γ0
l̄lZ =

 gLl

gRl

 (3.98)

ΓCT
l̄lZ =


gLl

2
δZZZ + δgLl + Ql

2
δZAZ + 1

2
gLl

(
δZfL(l) + δZ∗

fL(l)
)

gRl

2
δZZZ + δgRl + Ql

2
δZAZ + 1

2
gRl

(
δZfR(l) + δZ∗

fR(l)
)
 (3.99)

Here l can represent either an electron e or an electron neutrino νe, Ql is the lepton l

charge and the g functions are given by:

gRν = 0 (3.100)

gRe = − sin θW

cos θW

(3.101)

gLν = − 1

2 sin θW cos θW

(3.102)

gLe = − 1

sin θW cos θW

(
−1

2
+ sin2 θW

)
(3.103)



Higher order calculations 61

and

δgRν = 0 (3.104)

δgRe = − sin θW

cos θW

(
δZe −

1

sin θW cos2 θW

δ sin θW

)
(3.105)

δgLν = − 1

2 sin θW cos θW

(
δZe −

(
sin2 θW − cos2 θW

sin θW cos2 θW

)
δ sin θW

)
(3.106)

δgLe =
1

2 sin θW cos θW

(
δZe −

(
sin2 θW − cos2 θW

sin θW cos2 θW

)
δ sin θW

)
− sin θW

cos θW

(
δZe −

1

sin θW cos2 θW

δ sin θW

)
(3.107)

The tree level and counterterm couplings between a neutrino, an electron and a W boson

are given by

Γ0
eν̄eW =

 −ie√
2 sin θW

0

 (3.108)

ΓCT
eν̄eW =


−ie√

2 sin θW

(
δZe + δ sin θW

sin θW
+ 1

2
δZWW + 1

2

(
δZ∗

fL(ν̄e) + δZfL(e)
))

0

(3.109)

This coupling describes the process e+ ν̄ → W+, and the corresponding vertex νēW is

found by conjugating the fermion field renormalisation constants – i.e. the only difference

is that the electron field renormalisation constant is conjugated, rather than the neutrino

field renormalisation constant.

Finally, if we are considering Z production via weak boson fusion (see Chapter 7), we

also need to study the coupling between a pair of W bosons and a Z boson.

Γ0
ZWW = −ie cos θW

sin θW

(3.110)

ΓCT
ZWW = −ie cos θW

sin θW

(
δZe +

δ sin θW

sin θW cos2 θW

+ δZWW +
1

2
δZZZ+

sin θW

2 cos θW

δZAZ

)
(3.111)
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3.6 Soft and collinear divergences

In this section, we will focus on the QED corrections to weak boson fusion, as the QCD

corrections are already part of the public VBFNLO. Since weak boson fusion involves

charged external particles, bremsstrahlung processes (where a photon is attached to

one of the external legs) need to be considered. If the photon is soft (i.e. the photon

momentum k → 0, and we cannot experimentally distinguish a process with the photon

from one without the photon), the integral over the phase space contains an infra-red (IR)

logarithmic divergence proportional to α ln(mγ) for a small regulating photon mass mγ.

The Bloch-Nordsieck theorem (Ref. [107]) states, however, that these singularities are

cancelled in the cross section order-by-order in perturbation theory by IR singularities

arising from the virtual photonic corrections.

Another type of singularity that can occur in weak boson fusion happens when a

collinear photon is emitted, if the external quarks are regarded as having vanishing mass

(as is the case throughout this work). The singular limit in this case is pf ·k → 0, where

pf is the emitting quark’s momentum.

Although these divergences vanish in the total cross section when the real and virtual

corrections are combined, in practice there is still the problem of numerically integrating

over the singular regions of phase space. There are two principle methods commonly

used to achieve this.

3.6.1 Phase space slicing

The phase space slicing method involves introducing a cut-off in the energy E (for soft

divergences) or the emission angle θ (for the collinear divergences) and only performing

the numerical integration over phase space up to that cut-off11. The soft or collinear

parts are then calculated analytically. This is possible as these divergent pieces fac-

torise from the Born cross section. For example, in the soft photon approximation, the

bremsstrahlung diagrams are proportional to the Born level diagrams, as is seen from

this relation for the bremsstrahlung (denoted with the subscript soft, brem) and Born

(denoted with the subscript Born) matrix elements (derived, for example, in Ref. [85]):

Msoft,brem = −eMBorn

∑
i

(σiQi)
ε · pi

k · pi

(3.112)

11This method is described in Ref. [108], and was developed in [109].
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where

Qi = charge on ithexternal particle

pi = momentum of ith external particle

ε = polarisation vector of γ

k = momentum of γ

σi = sign factor for particle i

Owing to this form of the IR-divergent parts of the matrix element, a factor can

be calculated (using Equation 3.112) that, when multiplied with the Born element, will

contain all of the singular pieces. This is then included in the complete calculation, thus

eliminating the divergences.

3.6.2 Dipole subtraction

An alternative to phase space slicing is known as the subtraction method, which is

outlined in Ref. [68, 110]. In this procedure, we add and subtract the integral of a

subtraction function |Msub|2 (Equation 3.113) to our calculation in order to avoid any

singular numerical integration.

∫
dφ1

∑
λγ

|M1|2 =

∫
dφ1

∑
λγ

|M1|2 − |Msub|2
+

∫
dφ1|Msub|2 (3.113)

Note that φ1 represents the phase space of the diagram with a radiated photon. The

subtraction function is chosen such that it has the same behaviour as the sum over all

photon polarisations (λγ) of the loop matrix element
∑

λγ
|M1|2 in the singular limits –

i.e.

|Msub|2 behaves like
∑
λγ

|M1|2 for k → 0 or pi · k → 0 (3.114)

Consequently, the divergences cancel in the first integral on the right hand side

of Equation 3.113, which means it can be performed numerically (with no regulatory

quark or photon masses). All of the singularities reside in the second integral, which
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can be analysed analytically (Msub is chosen specifically so that it is simple enough to

be integrated in this fashion).

The phase space integral for the process with a radiated photon (
∫
dφ1) is factorised

into the photon phase space integral (
∫

[dk]) and an integral of a phase space closely re-

lated to the Born phase space (
∫
dφ̃Born), where

⊗
symbolises that the “multiplication”

also involves convolutions and summations:∫
dφ1 =

∫
dφ̃Born

⊗∫
[dk] (3.115)

As we have seen previously, in the singular limits the loop level matrix squared

element is proportional to the Born level matrix squared element, i.e.

|M1(φ1)|2singular limit ∼ |MBorn(φBorn)|2 (3.116)

Here φBorn represents the phase space of the tree level diagram. This relation means

that the subtraction term can be factorised into two parts – one of which depends on the

momenta in the phase space φBorn, and the second of which depends on the integration

variables of
∫

[dk]. Thus, Equation 3.113 can be re-written as

∫
dφ1

∑
λγ

|M1|2 =

∫
dφ1

∑
λγ

|M1|2 − |Msub|2
+

∫
dφ̃Born

⊗(∫
[dk] |Msub|2

)
(3.117)

Only the integral over [dk] contains any singular pieces. This integral is completely

process-independent, which means that the analytical integration need only be per-

formed once (and has been calculated in Ref. [110]).

The subtraction function itself is constructed from auxiliary functions gsub, which are

labelled by pairs of different fermions (f 6= f ′), in the following manner

|Msub|2 = −
∑
f 6=f ′

QfσfQf ′σf ′e
2g

(sub)
ff ′,τ (pf , pf ′ , k) |MBorn|2 (3.118)

Only the kinematics of the fermion f lead to divergent contributions in the subtraction

function, so f is termed the emitter and f ′ the spectator. The subscript τ is summed
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i

j

(a) Final-Final Pair, gij

i

a

(b) Final-Initial Pair, gia

a

i

(c) Initial-Final Pair, gai

a

b

(d) Initial-Initial Pair, gab

Figure 3.3: Possible combinations of emitter–spectator pairs.

over and represents a helicity flip of the emitter. The integral of the auxiliary function

g
(sub)
ij,τ over the photonic phase space is G

(sub)
ij,τ .

Applying the dipole subtraction method to weak boson fusion is relatively simple.

The first step is to group the external fermions (i.e. the charged legs) into pairs of one

emitter and one spectator. There are four categories, shown in Fig. 3.3. The subscripts

a, b always refer to initial state fermions, and i, j to final state fermions.

For weak boson fusion, there are thus eight diagrams that need to be considered. In

the first category of diagrams, there are two initial-initial contributions (Fig. 3.4).

In this case, the subtraction factor (which multiplies the Born matrix element squared)

for an emitter a and a spectator b is given by

δab
sub =

−α
2π

QaQbσaσb

(
Gsub

ab,+(s) +Gsub
ab,−(s)

)
(3.119)
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a i

jb

a

b j

i

Figure 3.4: The initial–initial photon radiation pairs for weak boson fusion.

where the integrals of the auxiliary functions are [110]

Gsub
ab,+(s) = L(s,m2

a)−
π2

3
+

3

2

Gsub
ab,−(s) =

1

2
ma = mass of fermion a

s = centre of mass energy = (pa + pb)
2 = 2pa · pb (3.120)

The function L is given by

L(r,m2) = ln

(
m2

r

)
ln

(
m2

γ

r

)
− 1

2
ln2

(
m2

r

)
+

1

2
ln

(
m2

r

)
(3.121)

Since there are two cases (see Fig. 3.4), ab and ba, then

δinit−init
sub = − α

2π
QaQbσaσb

(
2L(2pa · pb,m

2
a)−

2π2

3
+ 4

)
(3.122)

Note that the auxiliary functions (and, indeed, the whole subtraction procedure) are

considerably simplified as we assume that the external quarks have vanishing mass.

The second category of diagrams consists of initial-final and final-initial pairs of

emitters and spectators, as shown in Fig. 3.5.
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i

jb

a

b j

ia

b

a i

j

a

b j

i

Figure 3.5: The initial–final and final–initial photon radiation pairs of emitters and spectators
for weak boson fusion.
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Figure 3.6: The final–final photon radiation pairs of emitters and spectators for weak boson
fusion.

This gives the contributions ai, ia, bi, ib, aj, ja, bj and jb. In this case the integrals

of the auxiliary functions are given by

Gsub
ia,+(P 2

ia) = L(|P 2
ia|,m2

i )−
π2

2
+ 1

Gsub
ai,+(P 2

ia) = L(|P 2
ia|,m2

i ) +
π2

6
− 3

2

Gsub
ii,−(P 2

ia) = Gsub
ii,−(P 2

ia) =
1

2
(3.123)

where

Pia = pi − pj ⇒ |P 2
ia| = 2pi · pj

Thus, the total initial-final and final-initial contribution to the subtraction factor is

given by

δini−fin
sub = − α

2π

(
QaQiσaσi

[
2L(2pi · pa,m

2
q)−

π2

3
+

1

2

]
+ QaQjσaσj

[
2L(2pa · pj,m

2
q)−

π2

3
+

1

2

]
+ QbQiσbσi

[
2L(2pb · pi,m

2
q)−

π2

3
+

1

2

]
+ QbQjσbσj

[
2L(2pb · pj,m

2
q)−

π2

3
+

1

2

])
(3.124)

The third category of contributions comprises the final-final emitter-spectator pairs

(Fig. 3.6).
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The two diagrams give contributions ij and ji. Here, the integrated auxiliary func-

tions are

Gsub
ij,+ = L(P 2

ij,m
2
i )−

π2

3
+ 1 (3.125)

Gsub
ij,− =

1

2
(3.126)

where

P 2
ij = (pi + pj)

2 → 2pi · pj (3.127)

Thus, the subtraction factor is given by

δfin−fin
sub =

−α
2π

QiQjσiσj

(
2L(2pi · pj,m

2
q)−

2π2

3
+ 3

)
(3.128)

These contributions are added together to give the total subtraction factor

δsub = δini−ini
sub + δini−fin

sub + δfin−fin
sub (3.129)

The dipole subtraction formalism has been shown [55] to be more numerically stable

for the process of weak boson fusion than phase space slicing, with an integration error

which is an order of magnitude smaller. In addition, it is less computationally expensive,

and is consequently used for all of the results presented here.

3.7 Implementation in VBFNLO

The results obtained in this work have been implemented into the public Monte Carlo

code VBFNLO. The total cross section and a range of distributions are calculated, although

in this thesis we focus exclusively on the azimuthal angle distribution. The modified

code is set up such that the user can choose whether to work in the Standard Model

or the MSSM, and which higher order contributions they want to be included. The

code can be used to study either the third generation quark (and squark) contributions,

corrections for all fermions (and sfermions), the full set of Standard Model diagrams, or

the dominant SUSY corrections supplemented by the SM type boxes and pentagons.

The various types of corrections to weak boson fusion are implemented in different

ways in the adapted VBFNLO code. Firstly, the corrections to the weak boson self energy
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Figure 3.7: An “effective coupling” Tµν for the Higgs vertex, symbolised by the blue square.
The circle with a cross in it signifies the counterterm contribution.

and the Higgs vertex are interpreted as an effective coupling T µν between the Higgs and

the weak bosons, as is shown in Fig. 3.7.

All loop and counterterm diagrams in these categories are calculated using code

derived from FormCalc and the result is separated into its component formfactors a1,

a2 and a3, according to Equation 2.13. Appendix C details an example calculation of

the corrections to the HV V vertex in the top / bottom quark sector, to demonstrate

the origin of each of the formfactors that are involved in the effective coupling.

In this manner formfactors are calculated and fed into VBFNLO. This is a much simpler

(and computationally more efficient) method than calculating the full matrix squared

element for each phase space point. Since these subroutines are self-contained, it is also

possible to run them separately and perform fast scans over the parameter space (which

can be very useful in the MSSM). As the corrections contained within the formfactors

are where we would expect interesting Higgs phenomenology to occur, interesting regions

of parameter space can be identified quickly.

The method used to implement the corrections to the quark vertex depends on the

sector in which we are working. If only fermion and sfermion contributions are being

considered, there are no loop diagrams to calculate, only a counterterm. This countert-

erm is used as an effective coupling in the VBFNLO code. If, however, the full Standard

Model is needed, the loop diagrams change the structure of the qqV coupling from its

tree level configuration. In this case, we have calculated the full matrix element squared.

The pentagon and box diagram contributions are also included by calculating the

full 2 → 3 matrix element squared (summed over all allowed helicity combinations). All

of the matrix elements are coded in a suitably general manner, so that the same code

can be used to calculate each different pattern of external quarks and anti-quarks.
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Each of the three options commonly used for parametrising the lowest order electro-

magnetic coupling (α(0), α(M2
Z), via GF ) are included in the modified code and, in the

MSSM, Higgs propagator corrections can be included.

There is a second version of the code that studies only the corrections to the Higgs

vertex in the MSSM, and has been specially tuned in order to compare our results with

results presented in the literature (Ref. [56]). In this version, the loop contributions

from the Standard Model particles and those from the SUSY particles can be studied

separately, as well as the complete set of MSSM diagrams, in each of the sectors described

above (i.e. (s)top / (s)bottom corrections, (s)fermion corrections, and full corrections).

This is described in more detail in Section 6.4.1.

Appendix B contains details of the structure and options in the modified VBFNLO.

3.8 Checks

Once the renormalisation procedure has been carried out, the results must of course be

UV-finite. In order to ensure this, a variety of checks have been performed at every

stage of the calculation. The renormalisation and regularisation parameters (the UV

divergence, the photon mass and the external quark mass) can all be manually varied,

to confirm that the final result yielded by the code is not dependent on them (indicating

a finite result).

If only fermions (and sfermions) are considered, each type of correction (i.e. correc-

tions to the qqV vertex, the V V self energy and the HV V vertex – see Section 3.2)

should be separately finite12. It has been explicitly verified that the corrections to the

qqV vertex, the weak boson self energy corrections, and the Higgs vertex corrections are

all finite. Additionally, in this sector the gauge boson field renormalisation constants

drop out, and have no effect on the final result, which has been checked by altering the

values of the renormalisation constants δZWW and δZZZ by hand.

These checks have been performed for the formfactors, at the partonic level, and

for the total cross section results produced by VBFNLO. The top / bottom (and stop

12When moving beyond the purely (s)fermionic corrections, these are not gauge invariant quantities,
and the virtual corrections need to be combined with the real corrections in order to achieve an IR
finite result.
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/ sbottom) corrections to the Higgs vertex have also been studied analytically using

Mathematica [111], and all divergences have been shown to cancel.

The modified VBFNLO can either regularise the IR divergences using the phase space

slicing approach or the dipole subtraction method, both of which have been checked

numerically and found independent of the photon mass. The default mode of the code

uses dipole subtraction.

To check internal consistency, the tree level cross section and the corrections to the

Higgs vertex (in the top / bottom sector) have been calculated using both the formfactor

method, as well as by calculating the full matrix squared elements, to ensure that the

results agree.

The wavefunction normalisation factors (the Z factors) were implemented in two

ways: first, the FeynHiggs output was used, and secondly the value of each Z factor

was calculated at one loop level using only FeynArts and FormCalc (with Equations

3.67 and 3.66) in the MSSM with real parameters, and the two results were compared.

These checks were all successful, obtaining agreement to within the numerical accu-

racy of the code.



Chapter 4

Weak boson fusion at linear colliders

“A journey of a thousand miles begins with a single step.”

— Lao Tzu

4.1 Higgs production at a linear collider

The LHC is expected to be able to find a Higgs boson if it is Standard Model like.

Discovering a Higgs candidate is, however, only the first step. In order to understand

the Higgs sector, and the mechanism of electroweak symmetry breaking, we also need to

determine the properties of the particle. For instance, by measuring the coupling of the

Higgs candidate to the gauge bosons, we can experimentally verify the mass relations

described in Chapter 1. It is also vital to determine the spin and CP properties of the

particle, as well as the number of Higgs states that exist. While the LHC should be able

to start studying these properties, the greater precision that can be obtained at a future

linear collider will enable us to make further progress in the complete determination

of the Higgs sector. The LHC and a linear collider should complement one another in

various ways, and combining the data obtained from each experiment could lead to great

advantages.

For instance, in the MSSM, the CP violation in the Higgs sector comes solely from

loop effects and so can depend strongly on the particle content of the theory. By com-

bining high precision measurements of the Higgs sector from a linear collider with infor-

mation gathered at the LHC regarding the SUSY particle spectrum, we can study the

73
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CP structure of the Higgs sector. For a review of this and other synergies between the

LHC and a linear collider see, for instance, References [112,113].

At a linear collider, the principle Higgs production channels in the Standard Model

are W boson fusion and the Higgsstrahlung process, described in Section 4.2, as well as

tt̄H production. In the MSSM, associated Higgs pair production (e+e− → h(H)A) and

Yukawa processes can also be important. One of the principle advantages of a linear

collider is that it is able to detect a Higgs boson independently of the Higgs decay mode

by studying the Higgsstrahlung process where the Z boson decays into a pair of leptons

(e+e− or µ+µ−), because the distribution of the invariant mass (of the recoil against

the Z) peaks at the Higgs mass [114]. Both the Higgsstrahlung process and W boson

fusion provide direct access to the important coupling between the gauge bosons and

the Higgs. Additionally, the W boson fusion channel can be used to determine the total

Higgs width with both a high level of accuracy and – crucially – a low model dependence

(see Reference [115] for a discussion of the evaluation of the Higgs width).

4.2 Corrections to the process e+e− → νeνeH

The corrections to the process e+e− → νeνeH have been investigated in the literature

[116–119]. In particular, Ref. [119] studied the fermionic and sfermionic corrections

to the process e+e− → νeνeH via the combined W boson fusion and Higgsstrahlung

channels in the MSSM. These corrections include contributions from the Higgs vertex

and the weak boson self energy, as well as a counterterm contribution at the lepton–weak

boson vertex (this is analogous to the case for weak boson fusion with external quarks at

the LHC, described in Section 3.2, Fig. 3.2). We first successfully reproduce the results

presented in Ref. [119], and then go on to study each separate contribution in detail.

This also provides us with an additional check of our renormalisation procedures, as well

as investigating the simpler case where we have leptonic external particles, rather than

hadronic.

Following Ref. [119], in this chapter we consider not only weak boson fusion itself,

but also the Higgsstrahlung process, both of which are shown in Fig. 4.1 for a linear

collider.

At low energies the Higgsstrahlung diagrams will give the dominant contribution

to the combined process, owing to the enhanced cross section at the threshold
√
s ∼
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Figure 4.1: Principle leading order diagrams for Higgs production at a linear collider.

MH + MZ (when the second Z boson goes on shell). As the centre of mass energy

rises, however, the 1
s

suppression in the Higgsstrahlung process, combined with the ln(s)

enhancement of the WBF channel, means that the W boson fusion becomes dominant.

In this (high energy) limit, the combined process yields, at leading order, a cross section

of [120]

σ → G3
FM

4
W

4
√

2π3

[(
1 +

M2
H

s

)
ln

(
s

M2
H

)
− 2

(
1− M2

H

s

)]
(4.1)

4.2.1 Finite width

There is an additional issue that needs to be considered when calculating the Higgsstrahlung

process. As mentioned previously, the second Z boson (that is connected to the two neu-

trinos) will become resonant when we integrate over phase space. We therefore need to

include a width Γ into the Z boson propagator, as follows:

1

s−M2
Z

→ 1

s−M2
Z − iΓMZ

(4.2)

In this work, we include a running width (Γrun), which incorporates the known kinematic

dependences and the experimentally measured finite width Γfin (the value of which is

taken from the Particle Data Book [87]).

Γfin = 2.4952 GeV (4.3)

Γrun =

(
s

M2
Z

)
Γfin (4.4)
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We also disregard all imaginary parts of the contributions from the light fermions to the

Z boson self energy, in order to avoid double counting. This is the procedure followed

by Ref. [119].

4.3 Results in the Standard Model

As a starting point, we discuss the total cross section, at tree level and with corrections

from the third generation fermions or from all fermions, of the combined W boson

fusion and Higgsstrahlung channels in the Standard Model. Note that no cuts have

been performed on these partonic cross sections. The parameters used are set to match

those of Ref. [119] – in particular, the top mass is set to mt = 174.3 GeV, and the

electromagnetic coupling constant is parametrised via the Fermi constant (with the

appropriate renormalisation – see Section 3.3.2). The graphs are shown in Figures 4.2

and 4.3, as a function of the centre of mass energy,
√
s, and the Higgs mass, MH

respectively. These results compare well to the results presented in Ref. [119]. As can

be seen, for a Higgs mass of MH = 115 GeV (Fig. 4.2), there is a threshold behaviour at
√
s ∼ 210 GeV, which is caused by the Z boson that couples to the two neutrinos going

on shell in the Higgsstrahlung process. The cross section increases with centre of mass

energy, following the form of Equation 4.1. Looking at the percentage loop corrections as

a function of energy (Fig. 4.2(b)), we can see that in the threshold region the corrections

cause a quite significant enhancement in the cross section, whereas for higher centre of

mass energies, above ∼ 300 GeV, the loop corrections reduce the total cross section. The

contributions from the third generation fermions are significant, especially away from

the threshold region, but they are not dominant.

The cross section in Fig. 4.3, at a high centre of mass energy, shows the expected

behaviour – production decreases smoothly as the Higgs mass increases (again, following

Equation 4.1). The threshold observed in the percentage loop correction at a Higgs mass

of MH ≈ 350 GeV (see Fig. 4.3) stems from the Higgs field renormalisation in the HV V

counterterm, when the two top quarks in the Higgs self energy go on shell.

The interference between the two processes involved can play an important rôle in

the final cross section, as can be seen from Fig. 4.4. This interference is most relevant

in the region where the cross section of weak boson fusion becomes larger than that of

Higgsstrahlung. The spikes seen in Fig. 4.4(d) are of course at centre of mass energies

where the total loop correction, ∆σ, becomes zero as the corrections from weak boson
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Figure 4.2: Cross section for the process e+e− → νeν̄eH at a linear collider in the Standard
Model with MH = 115 GeV. The red and blue curves show the loop corrections
from third generation fermions and all fermions respectively.
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Figure 4.3: Cross section for the process e+e− → νeν̄eH at a linear collider in the SM as a
function of MH , with

√
s = 800 GeV (solid lines) and 1000 GeV (dotted lines).
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(c) Tree level cross sections for weak boson fu-
sion, Higgsstrahlung and the interference, as a
fraction of the total tree level cross section.
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of the total loop correction.

Figure 4.4: Cross section graphs showing the relative effect of weak boson fusion,
Higgsstrahlung, and interference in the process e+e− → νeν̄eH at MH = 115 GeV
when corrections from third generation fermions are included. (∆)σcomponent is
the contribution to the total (∆)σfull from either WBF, Higgsstrahlung or inter-
ference. Plots (a) and (c) are at tree level, (b) and (d) show loop effects.

fusion, Higgsstrahlung and the interference cancel out. Fig. 4.4 shows the corrections

arising from third generation fermion loops – adding in the complete fermion corrections

does not alter the general shape of the graphs, although it does slightly shift the value

of the centre of mass energy where the corrections to weak boson fusion become more

important than the corrections to Higgsstrahlung (by ∼ 50 GeV). This is because, as

we will see (Fig. 4.6), the first and second generation fermion loop corrections have a

bigger impact on Higgsstrahlung processes than they do on WBF processes.
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At a high fixed centre of mass energy of
√
s = 1000 GeV, we can see (Fig. 4.5) that,

as expected, the weak boson fusion process completely dominates the Higgsstrahlung

process. As a function of the Higgs mass, we can once more see a pronounced dip at

MH = 350 GeV, and the contribution from the interference is very small. (Again, the

kinks occur when the sign of the loop corrections – from all fermion contributions in the

case of Fig. 4.5 – switches from positive to negative.) The lower centre of mass energy

of 800 GeV was also investigated, and displays the same features as seen at 1000 GeV –

the only differences are a smaller cross section and a slightly larger relative contribution

from the Higgsstrahlung process. Fig. 4.4 and 4.5 show that, if we choose a high enough

centre of mass energy, the effects of the Higgsstrahlung process can be neglected.

Since each of the three types of corrections considered here (the Higgs vertex HV V ,

the weak boson self energy V V and lepton–weak boson vertex llV ) are separately finite,

we consider each one individually, in order to see where the dominant contribution to the

total loop correction originates1. Fig. 4.6 studies the HV V , llV and V V contributions

for weak boson fusion, Higgsstrahlung and the combined process for a Higgs of mass

MH = 115 GeV as a function of the centre of mass energy.

Fig. 4.6 shows that, for low energies, the most important contribution to the loop

correction is the result of the counterterm correction at the lepton vertex. The Higgs ver-

tex correction and the weak boson self energy corrections are seen to cancel one another

out to a large extent in the threshold region when only third generation fermion loop

diagrams are considered. When all fermions are included in the loops, the size of the

corrections increases at low energies and we no longer see this cancellation at resonance.

As the energy moves above the Z resonance, the Higgs vertex correction increases in im-

portance until it is the dominant contribution for third generation fermion corrections.

When all fermions are included in the loop, the Higgs vertex loses importance (even at

high energies). For all contributions except the Higgs vertex loop (and the renormalisa-

tion constants δZH and δ sin θW ), the large top quark mass suppresses the correction, so

the Higgs vertex (which is, of course, enhanced by the large Higgs–top coupling) is the

dominant piece. The light fermions’ contributions to (for instance) the W / Z boson self

energy correction is larger than the contribution from the top quark, and we therefore

see an increase in the size of this correction when we include all fermions (instead of only

the third generation). Note that the llV vertex corrections to WBF and Higgsstrahlung

are of course independent of the centre of mass energy
√
s – the small fluctuations seen

1In general, of course, this is not gauge invariant, but there is no issue here as we are working solely
in the (s)fermion sector.
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(c) Tree level cross sections for weak boson fu-
sion, Higgsstrahlung and the interference, as a
fraction of the total cross section.
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Figure 4.5: Cross section graphs showing the relative effect of the weak boson fusion,
Higgsstrahlung, and interference contributions in the process e+e− → νeν̄eH
at a centre of mass energy

√
s = 1000 GeV as a function of the Higgs mass when

corrections from all fermions are included. The first column, Graphs (a) and (c),
shows the tree level cross sections, and the second column (Graphs (b) and (d))
shows the relative loop effects.
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bined process when all fermions are considered.
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third generation fermions are considered.

llV vertex

VV self energy

HVV vertex

full process
∆σcomponent

σtree
[%]

√

s [GeV]
1000900800700600500400300200

2

1

0

−1

−2

−3

−4

(d) Percentage loop corrections for WBF when
all fermions are considered.
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(e) Percentage loop corrections for
Higgsstrahlung when third generation fermions
are considered.
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(f) Percentage loop corrections for
Higgsstrahlung when all fermions are consid-
ered.

Figure 4.6: Percentage loop corrections for the individual HV V , V V and llV contributions
for MH = 115 GeV. The top row contains the full process e+e− → νeν̄eH, the
second row presents results from weak boson fusion, and the third row focuses
on Higgsstrahlung.
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for this correction in the Higgsstrahlung process (Fig. 4.6 (e) and (f)) are the result of

numerical instability. In the combined process, the relative weights of the llV vertex

corrections to weak boson fusion and Higgsstrahlung is dependent on the centre of mass

energy, resulting in the energy dependence of the llV vertex correction seen in Fig. 4.6

(a) and (b).

For weak boson fusion, the dominant piece in the third generation fermion approxi-

mation is the Higgs vertex at all energies, although its importance again decreases when

the contributions from the light fermions are included. For Higgsstrahlung, on the other

hand, although always an important correction, the Higgs vertex is never truly domi-

nant. For the Higgsstrahlung process, the Z boson self energy corrections increase with

energy. With increasing energy, the Higgs vertex corrections go from negative to posi-

tive between energies of ∼ 200 GeV and ∼ 450 GeV, before decreasing and becoming

negative once again.

Fig. 4.7 again looks at these individual contributions, but for a fixed centre of mass

energy (of
√
s = 800 GeV, where weak boson fusion is the dominant contribution rather

than Higgsstrahlung) as a function of the Higgs mass.

The self energy corrections and corrections to the vertex between the weak boson and

the external leptons do not depend on the mass of the Higgs boson. The Higgs vertex cor-

rection, however, does vary with Higgs mass, as it enters via the Higgs field renormalisa-

tion constant. The threshold behaviour in the loop correction at MH = 350 GeV ∼ 2mt

is now clearly seen to originate from the Higgs vertex correction. For weak boson fusion

(and hence, at this high centre of mass energy, for the full e+e− → νeν̄eH process),

the Higgs vertex correction is the dominant contribution, although it does become less

important when all fermions are included in the loop diagrams. This dominance is

enhanced by the fact that the self energy corrections are cancelled out, to a large ex-

tent, by the lepton vertex corrections. For the Higgsstrahlung contribution, on the

other hand, the Higgs vertex corrections only become dominant at relatively high Higgs

masses when third generation quarks are considered, and when all fermions are included

in the loop diagrams the HV V corrections are never truly dominant. Additionally, for

the Higgsstrahlung diagrams there is no cancellation between the Z boson self energy

diagrams and the lepton vertex diagrams.
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(a) Percentage loop corrections for the com-
bined process when third generation fermions
are considered.
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(b) Percentage loop corrections for the com-
bined process when all fermions are considered.
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(c) Percentage loop corrections for WBF when
third generation fermions are considered.
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(d) Percentage loop corrections for WBF when
all fermions are considered.
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(e) Percentage loop corrections for
Higgsstrahlung when third generation fermions
are considered.
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(f) Percentage loop corrections for
Higgsstrahlung when all fermions are consid-
ered.

Figure 4.7: Percentage loop corrections for the individual HV V , V V and llV contributions
for

√
s = 800 GeV. The first row shows the combined process, the second row

shows weak boson fusion, and the third row shows Higgsstrahlung.
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Table 4.1: Fixed parameters of the benchmark scenarios in the MSSM

Mmax
h no-mixing gluophobic small αeff

MSUSY 1 TeV 2 TeV 350 GeV 800 GeV

µ 200 GeV 200 GeV 300 GeV 2.5 MSUSY

M2 200 GeV 200 GeV 300 GeV 500 GeV

Xt 2 MSUSY 0 -750 GeV -1100 GeV

mg̃ 0.8 MSUSY 0.8 MSUSY 500 GeV 500 GeV

4.4 Results in the MSSM

The parameter space in the MSSM is obviously far larger than in the Standard Model,

with many more free parameters. Consequently, when studying cross sections in the

MSSM, we investigate the four benchmark scenarios described in Ref. [121], where MA

(the mass of the CP odd Higgs boson) and tan β (the ratio of the Higgs VEVs) are taken

as input parameters, and all other parameters are fixed. We consider four benchmark

scenarios: the Mmax
h scenario, the no-mixing scenario, the gluophobic scenario and

the small αeff scenario, described in Table 4.1. Note that M2 is the SU(2) gaugino

mass parameter, Xt is related to the trilinear Higgs–t̃ couping At by Equation 1.21 and

At = Ab = Aτ . For simplicity, the same trilinear couplings are used for all generations

and MSUSY – a common soft SUSY breaking parameter – is used in the diagonal entries

of the sfermion mass matrix of Equation 1.21.

We study the effect of the centre of mass energy, as well as varying tan β and MA. In

this Section we define our leading order (LO) result by including the Higgs propagator

corrections (see Section 3.4) at Born level – i.e. the interference term between the loop

level diagrams and Born level diagrams is as is shown in Fig. 4.8. This means that graphs

of the loop correction percentages do not include the effect of propagator corrections,

but are instead the genuine vertex corrections.

As in the Standard Model, we first study the production process for the light Higgs

boson (including both vector boson fusion contributions and Higgsstrahlung diagrams)

as a function of the centre of mass energy
√
s. In Fig. 4.9, as in Ref. [119], we examine

the cross section (and, additionally, the percentage loop corrections) with a fixed CP

odd Higgs mass (MA = 500 GeV) at tan β = 3 and 40. Note that this value of the CP
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Figure 4.8: Corrections to the Higgs propagator are included at leading order.

odd Higgs mass is well within the decoupling regime, and so we expect to see Standard

Model like behaviour. All fermion loop corrections are included.

The comparison of Fig. 4.9 with the results presented in Ref [119] shows good agree-

ment. It can also be seen that, as expected, the threshold region where the Z boson

is produced on shell shifts to higher energies with higher values of tan β as this – for

these benchmarks at any rate – causes the mass of the light Higgs, Mh, to increase. It

can be seen that the value of tan β has a larger effect in the small αeff scenario than

in the other benchmarks. This is because, owing to the large value of µ, the higgsino

mass parameter, the masses of the sfermions are more affected by tan β, causing the

loop corrections to change more drastically with altered tan β.

Fig. 4.10 compares the loop corrections obtained considering only third generation

(s)fermions with those obtained when all fermions are included. The behaviour seen in

the Standard Model – where light fermion corrections are as important as third genera-

tion fermion corrections at resonance – is seen to be repeated. The small αeff scenario’s

dependence on the first and second generation sfermions is far more pronounced than

the other scenarios’, even at high centre of mass energies.

Fig. 4.11 focuses on the Mmax
h scenario, showing the behaviour of the total cross

section and loop corrections as functions of tan β and MA. These graphs show the

leading order and corrected cross section at
√
s = 800 GeV as a function of MA and

tan β, and compare the percentage corrections at
√
s = 800 GeV and

√
s = 1000 GeV.

Due to this high energy, although both Higgsstrahlung and weak boson fusion diagrams

are included, the weak boson fusion process is dominant, as is the case in the Standard

Model. The cross section and loop corrections depend on MA in the manner that we

would expect. At large values of the CP odd Higgs mass, the loop corrections are fairly

constant at approximately −2%. This is in the decoupling regime (where the light Higgs

becomes Standard Model like), where the light Higgs mass is ∼ 129 GeV. By looking
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and loop level for the gluophobic sce-
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gluophobic scenario.

Figure 4.9: Production of the light CP even Higgs boson for process e+e− → νeν̄eH at a
linear collider in the MSSM with MA = 500 GeV at tanβ = 3 (red curve) and
tanβ = 40 (blue curve). All (s)fermion corrections are included.
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(c) Percentage loop corrections in the small
αeff scenario.

(s)fm corn, tan beta = 40

3rd gen (s)fm corns, tan beta = 40

(s)fm corn, tan beta = 3

3rd gen (s)fm corns, tan beta = 3
∆σ

σLO
[%]

√

s [GeV]
1000900800700600500400300200

6

5

4

3

2

1

0

−1

−2

(d) Percentage loop corrections in the gluo-
phobic scenario.

Figure 4.10: A comparison of loop corrections obtained from third generation (s)fermions
with those from all (s)fermions in the benchmark scenarios as a function of the
centre of mass energy. The CP odd Higgs mass is set to 500 GeV, and tanβ = 3
(red curve) or tanβ = 40 (blue curve).
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Figure 4.11: Cross sections and loop corrections for the combined process at a linear collider
in the Mmax

h scenario, with third generation fermion corrections included in the
loop diagrams.
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at Fig. 4.3, we can see that in the Standard Model at
√
s = 800 GeV for this value of

MH , the loop corrections are also ∼ −2%. In the non–decoupling regime, with low MA,

the corrections can reach up to ∼ −8%. The percentage corrections increase slightly at

higher centre of mass energies.

The tan β behaviour is less intuitive. The dip we observe in the cross section at

tan β ∼ 5 is caused by a combination of two effects. As tan β increases, the mass of the

light Higgs boson, Mh, also increases, causing the term in square brackets of Equation 4.1

(containing the mass and energy dependence) to decrease. The hV V coupling, however,

is proportional to the factor sin(β−α) in the MSSM (see Section 3.5, Equations 3.86 and

3.90). Thus, in the MSSM, the right hand side of Equation 4.1 needs to be multiplied

by sin2(β−α). This additional factor increases with tan β and – for values of tan β over

∼ 5 – it is this behaviour that dominates at high energies of
√
s = 800 GeV or 1000

GeV. Percentage loop corrections range from ∼ −2% to ∼ −1.6% over this range of

tan β with MA = 150 GeV.



Chapter 5

Results for WBF Higgs production

at the LHC in the Standard Model

In this Chapter we present an analysis of weak boson fusion Higgs production in the

Standard Model. The Chapter starts by examining the W and Z boson fusion channels

at the partonic level, and examining the dominant sources of loop corrections when all

fermions and only top / bottom quarks are considered. Results for the formfactors are

then examined as a function of the Higgs mass, and compared to the partonic results.

We go on to the complete results, obtained by implementing our result for the complete

electroweak one loop contributions (including QED contributions) to weak boson fusion

into the Monte Carlo program VBFNLO, yielding in this way a theoretical prediction

incorporating the full electroweak and QCD one loop corrections in the Standard Model.

We first compare our results with the available literature [55] and then present both total

cross sections and the important azimuthal angle distributions discussed in Chapter 2.

5.1 Parameters

The Standard Model parameters used in this chapter are those found in the Parti-

cle Data Book [87] unless specifically stated otherwise, excepting the top quark mass,

where mt = 172.6 GeV has been used, as reported in [122]. The default cuts imposed

upon the cross sections are described in Section 2.2, Equation 2.5, and the PDF set

MRST2004QED [123] is used as this includes distributions for the photon, allowing

photon-induced processes to be considered in the calculations1. The electromagnetic

1Where an alternative PDF set is used, the entry for the photon is set to zero, thus neglecting photon
induced processes.

90
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Figure 5.1: MRST2001lo PDF for up and down quarks, produced with the online HEPDATA
[125] tool.

coupling α is parametrised in terms of the Fermi constant (Equation 3.46), yielding a

shift in the charge renormalisation constant of 1
2
∆r.

5.2 Partonic cross sections

We investigate the partonic cross section and percentage loop correction for Higgs pro-

duction via weak boson fusion2, for the leading subprocess

u+ d→ d+H + u (5.1)

This process includes both Z and W boson fusion (the Z fusion is a u-channel process,

while the W fusion is in the t-channel). In contrast to Chapter 4, the Higgsstrahlung

contribution is neglected here.

A partonic centre of mass energy of
√
ŝ = 500 GeV is used for this and all subsequent

partonic cross sections. This energy sits on the “plateau” region of the PDF of the up

quark, which is shown in Fig. 5.1 (which also shows the PDF of the down quark) for

MRST2001lo [124]. This energy also allows us (kinematically) to create a Higgs boson,

and is high enough that we know (from the results of Chapter 4) that we can safely

neglect the Higgsstrahlung contribution, even without imposing cuts.

2Note that no cuts are implemented on the partonic cross sections.
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(a) Total cross section at tree and loop level.
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(b) Percentage loop corrections from the 3rd gen-
eration quarks and from all fermion contributions.

Figure 5.2: Partonic cross section for H production via weak boson fusion in the SM at√
ŝ = 500 GeV. Corrections from the top / bottom quarks are shown in red, with

the full fermionic corrections shown in blue.

Fig. 5.2 shows the partonic cross section and percentage loop correction for Higgs

production via weak boson fusion. It can be seen that the production cross section of

the Higgs boson decreases quite rapidly as the Higgs mass increases, until it becomes

practically zero. Loop correction percentages range from ∼ −0.5% → −4%, but are rea-

sonably constant between MH = 100 → 300 GeV at −1.5% for all fermion contributions

and −2% for third generation quark contributions. A threshold in the loop correction

percentage is again seen at MH ∼ 350 GeV (∼ 2mt) (in Fig. 5.2) stemming from the

Higgs field renormalisation constant, as in WBF at the linear collider (Chapter 4, see

Fig. 4.3).

The dominant contribution is from the W boson fusion process, as can be seen in

Fig. 5.3, where all fermion contributions are included3. The interference between W and

Z boson fusion is minimal, and will in any case be greatly suppressed by the WBF cuts

(because the interference is a crossed diagram), as described in Section 2.2 and 2.6.

Looking in more detail at the contributions to the loop correction (Fig. 5.4), we can

see that, when only top / bottom quark contributions are considered, the dominant

correction arises from the Higgs vertex, as is expected (due to the large Higgs–top

coupling). When all fermion corrections are included, however, the diagrams involving

the weak boson self energy and the quark vertex become far more important. Since the

3The relative contributions from W and Z fusion when only top and bottom quarks are considered are
practically identical to the case shown here when all fermions are considered.



Results for WBF Higgs production at the LHC in the Standard Model 93

Z boson fusion

W boson fusion

W and Z boson fusionσloop [pb]

MH [GeV]
500450400350300250200150100

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(a) Corrected partonic cross section for W (red
curve), Z (blue curve) and weak boson fusion
(black curve).
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Figure 5.3: A comparison of W (red curve) and Z (blue curve) boson fusion contributions to
the corrected cross section for H production via weak boson fusion at

√
ŝ = 500

GeV when corrections from all fermions are considered.

weak boson self energy and the renormalisation constants (and hence counterterms) do

not experience any enhancement to their couplings caused by the top mass (except for

the Higgs field renormalisation constant and δ sin θW ), they are actually suppressed by

the large top mass and so receive larger contributions from the lighter fermions. For the

Z boson fusion process, the Higgs vertex contribution is less important than for the W

fusion case, although it is still the dominant contribution when only third generation

quarks are considered.

5.3 Formfactors

As explained in Section 3.7, the formfactor calculations can be performed separately in

order to obtain a “first approximation” to the size and behaviour of the loop corrections.

They are also useful since they provide an additional check on the procedures used. Fig.

5.5 shows the formfactors a1, a2 and a3 for the couplings HWW and HZZ as a function

of the Higgs mass. The general form of the effective coupling T µν is given in Equation

2.13.

The momenta q, which need to be input into these calculations, are given generic

values generated by VBFNLO, which pass all of the weak boson fusion cuts. Note that the

coupling HZZ has no a3 component as terms involving the Levi-Civita ε tensor from
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Figure 5.4: A comparison of individual contributions to loop corrections for H production
via weak boson fusion at

√
ŝ = 500 GeV in the Standard Model.
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the two diagrams with opposite fermion flow involving (for instance) the top quark will

cancel one another out (this is shown explicitly in the calculation in Appendix C). The

formfactors for HWW with the full Standard Model loop contribution are not shown

as these are IR divergent (as the W field renormalisation enters them) and need to be

combined with the other virtual and real corrections in order to achieve a finite result4.

The relative effects of the corrections for theHZZ formfactor are larger than those for

the HWW formfactor (due to the increased importance of the Z boson self energy) when

only top and bottom quark loops are considered. The corrections to the formfactor a1 are

seen to be larger when all fermions are considered, although a significant proportion of

the contribution does come from the third generation quarks. The anomalous formfactors

a2 and a3 are seen to be extremely small in the Standard Model – smaller than the

level that is expected to be observable at the LHC (see Section 2.4.3). At tree level,

aHWW
1 ≈ 52 and the loop correction ∆a1 is O(1) – i.e. a2 and a3 are smaller than ∆a1

by approximately 5 and 10 orders of magnitude respectively.

Fig. 5.6 shows the relative importance of the self energy and vertex corrections to the

formfactor a1. As can be seen, the relative importance of the Higgs vertex corrections

decreases when all fermions are included in the loop diagrams, as the weak boson self

energy contributions (as well as the counterterm at the Higgs vertex) for light fermions

are not suppressed by the large top mass. The familiar threshold behaviour at ∼ 2mt

is joined in the full corrections by two more features at ∼ 2MW and ∼ 2MZ , which are

similarly the result of the W / Z boson going on shell in the calculation of the Higgs

field renormalisation constant.

When comparing these formfactor results with the partonic cross sections shown in

Section 5.2, and the total cross section in Section 5.4, it is important to remember that

the formfactor correction should be (as indeed it is) approximately half of the cross

section correction, because:

∆σ = 2Re
[
M∗

treeMloop

]
(5.2)

Another significant point is that the corrections to the quark vertex are obviously not

included in the formfactor calculations. When only the top / bottom quark contributions

are considered this does not make a large difference (due to the dominance of the HV V

4Since the formfactor calculation and the squared matrix elements (which are calculated completely
independently) need to be combined to give an IR finite result, we have a stringent check on the
implementation of our renormalisation procedures.
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Figure 5.5: HV V formfactors for W and Z boson fusion in the Standard Model. For compar-
ison, note that aHWW

1,tree ≈ 52 and aHZZ
1,tree ≈ 68 – i.e. ∆a1 is O(1). The red curves

are the top / bottom quark contributions, the blue curves show the fermion
contributions and the green curves display the full SM correction.
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Figure 5.6: Vertex and self energy contributions to the formfactor a1 in the Standard Model
for HWW and HZZ. The first row concentrates on top / bottom quark correc-
tions, the second row displays all fermion corrections and the third row shows the
full corrections. The red curves show the correction from the Higgs vertex HV V ,
the blue curves show the V V self energy contribution and the black curves are
the combined correction (HV V plus V V ).
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Figure 5.7: Feynman diagram of t-u channel interference.

corrections), but when the lighter fermions are included the size of the quark vertex

correction increases and partially cancels out the increased correction from the weak

boson self energy.

5.4 Total cross sections

5.4.1 Comparison with the literature

Reference [55] studied the electroweak and QCD corrections to Higgs production via

vector boson fusion in the Standard Model. The results of our modified VBFNLO were

compared with the results presented in Ref. [55] and found to be in agreement to within

the numerical accuracies of the code.

The basic method used in Ref. [55] is to consider the QCD and electroweak correc-

tions to the decay H → qq̄qq̄ (as detailed in Ref. [126, 127]), and relate the amplitudes

found in that process to the weak boson fusion Higgs production process using crossing

symmetries. The calculation in Ref. [55] includes several of the NLO contributions that

are customarily neglected (and are neglected in our calculation using VBFNLO). Princi-

pally, both s-channel (Higgsstrahlung) diagrams and t-u interference diagrams (shown

in Fig. 5.7) are considered.

The parameters we use for the comparison are set to match those of Ref. [55]. In

particular, a top mass mt = 174.3 GeV is used, and the cuts differ slightly from our

default set (Equation 2.5), in that no cut is made on the dijet mass. For the comparison,
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we use the cuts:

pTj
> 20 GeV

|ηj| < 5

Rjj > 0.8

∆ηjj = |ηj1 − ηj2| > 4

ηj1 · ηj2 < 0 (5.3)

The electromagnetic coupling constant is defined using the Fermi constant (Equation

3.46) and the renormalisation and factorisation scales are set to M2
W .

Another difference between the approaches in VBFNLO and Ref. [55] is the manner in

which the produced Higgs boson is treated. In VBFNLO, an isotropic decay of the Higgs

boson into two massless particles is generated (see [47]). The matrix element is evaluated

with an invariant Higgs mass given by a Breit-Wigner distribution. Ref. [55] evaluates

the matrix element for an on shell Higgs boson and our code has been modified so that

it is capable of reproducing this at leading order.

Table 5.1 compares the results presented in Ref. [55] with those obtained using the

modified VBFNLO. Note that the results quoted here are a combination of the results

presented in Ref. [55] – their total cross section after WBF cuts have been applied (Table

2 in Ref. [55]) and the contribution from s-channel and t-u channel interference diagrams

(given in Table 4, Ref. [55]). Since we do not include these contributions, the results we

give here are the total cross section of Ref. [55] minus these s and t-u diagram types.

At NLO, the correction caused by Higgsstrahlung and crossing suppressed diagrams is

always less than 0.55% of the NLO cross section.

5.4.2 New results and distributions

We now move on to examine the results obtained using our modified VBFNLO in the

Standard Model using our default settings. Figure 5.8 shows the total cross section as

a function of the Higgs mass at a collider energy of 14 TeV (the “design energy” of the

LHC). The cross section is shown at leading order and with various NLO corrections:

QCD corrections (which have been checked against results obtained using the pub-

lic VBFNLO), QCD corrections plus virtual corrections involving top and bottom quark

loops, QCD corrections plus loop contributions from all fermions and the full QCD and
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Table 5.1: Comparison of our results with those presented in Ref. [55] for the weak boson
fusion channel only. Note that the errors quoted here are numerical uncertainties.
We compare results for the LO cross section (with both our default settings –
labelled “Breit-Wigner”, and the on shell variant of our code – labelled “on shell”),
for the QCD corrections at NLO, and for the full result (containing both QCD
and electroweak corrections).

MH [GeV] 120 150 200

σLO, Ref [55] [fb] 1876.42±0.5 1589.89±0.4 1221.16±0.3

σLO, VBFNLO [fb] (Breit-Wigner) 1872.27±0.93 1586.63±0.77 1218.95±0.58

σLO, VBFNLO [fb] (on shell) 1876.25±0.93 1590.00±0.77 1221.31±0.58

σQCD, Ref [55] [fb] 1787.18 ± 0.75 1507.61 ± 0.64 1151.99 ± 0.49
∆σQCD

σLO
[%], Ref [55] -4.75 ± 0.04 -5.17 ± 0.04 -5.66 ± 0.04

σQCD, VBFNLO [fb] 1783.24 ± 3.07 1505.41 ± 3.08 1152.17 ± 1.70
∆σQCD

σLO
[%], VBFNLO -4.76 ± 0.16 -5.12 ± 0.19 -5.48 ± 0.14

σNLO, Ref [55] [fb] 1656.3 ± 1 1402.12 ± 0.8 1088.21 ± 0.5

σNLO, VBFNLO [fb] 1653.93±5.96 1407.69±5.09 1091.76±5.98

electroweak corrections. Also shown is the corrected cross section (with QCD and full

electroweak corrections) at 10 TeV, the energy that the LHC will (hopefully) run at in

the near future. Very recently it was announced [128] that the collider will initially run

at an energy of 7 TeV, which will cause a further reduction in the cross section shown

in Figure 5.8.

The QCD corrections are seen to be nearly independent of the Higgs mass, remaining

at a value of ∼ −5% over the entire range considered here, as are the fermion corrections.

As was seen in the partonic cross section, the percentage loop corrections for top and

bottom quark diagrams is greater than that when all fermions are included. The total

electroweak corrections are, on average, about the same size as the QCD corrections

– they are larger than the QCD corrections for MH ∼ 100 → 150 GeV and smaller

at higher masses. The thresholds at MH ∼ 2MW and MH ∼ 2MZ , which were seen

previously in the formfactor calculations for the HZZ coupling (Fig. 5.5), are visible

here as well – the curve is more jagged here as the cross section was calculated for far

fewer Higgs masses than the formfactor, as the cross section calculation naturally takes

more time to run than the simpler formfactor calculation. We have explcitly verified that

our partonic cross sections, our formfactors, and our total cross sections are consistent



Results for WBF Higgs production at the LHC in the Standard Model 101

tree + full corrections at 10TeV
tree + full corrections

tree + QCD + fermion corrections
tree + QCD + t/b corrections

tree + QCD corrections
tree

σ [fb]

MH [GeV]
200180160140120100

2200

2000

1800

1600

1400

1200

1000

800

600

(a) Total cross section.

tree + full corrections
tree + QCD + fermion corrections

tree + QCD + t/b corrections
tree + QCD corrections

∆σ

σ
[%]

MH [GeV]
200180160140120100

−4

−5

−6

−7

−8

−9

−10

−11

−12

−13

−14

(b) Percentage higher order corrections.

Figure 5.8: Higgs production via WBF in the Standard Model at 14 TeV and 10 TeV at
leading order and with QCD, t/b, fermion and full electroweak corrections.
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Figure 5.9: Azimuthal angle distribution for Higgs production via WBF in the Standard
Model, at

√
ŝ = 14 TeV with MH = 120 GeV.

for both W and Z boson fusion individually, and each of the correction types (HV V ,

V V and qqV ).

Figure 5.9 shows the azimuthal angle distribution of WBF forMH = 120 GeV. As can

be seen, although the corrections alter the value of the distribution, the shape remains

unaffected by the higher order corrections. This is as expected, considering the small

values of the formfactors a2 and a3 that were calculated in Section 5.3.



Chapter 6

Results for WBF Higgs production

at the LHC in the MSSM

In this Chapter we study the weak boson fusion process in the MSSM with both real

and complex parameters. As in the previous Chapter, we start by examining the leading

partonic subprocess, and then move on to look at the formfactors, as a function of both

tan β and MA (or MH± for the case of the complex MSSM). We then turn to the full

results obtained by implementing the dominant SUSY loop corrections, supplemented

by the full SM result, into the Monte Carlo program VBFNLO. These results include the

complete MSSM corrections to the Higgs vertex and weak boson self energy, as well as the

sfermion corrections to the quark–weak boson vertex. We first compare our results with

the “pure SUSY” corrections available for the real MSSM in the literature [56], before

studying the results in the MSSM – both the total cross sections and the important

azimuthal angle distribution.

6.1 Parameters

As in the previous Chapter, unless otherwise stated the Standard Model parameters

used are from the Particle Data Book, the top mass is 172.6 GeV, the cuts of Section

2.2 are imposed and the PDF set MRST2004QED is employed. If we are working solely

in the fermion / sfermion sector, the electromagnetic coupling is parametrised in terms

of the Fermi constant, GF . If, however, we are going beyond this sector and including

the full MSSM corrections, we express our result in terms of α(M2
Z).

103



Results for WBF Higgs production at the LHC in the MSSM 104

Table 6.1: Parameters of the CPX scenario

MSUSY µ |mg̃| φmg̃
M2 |At| φAt

500 GeV 2000 GeV 1000 GeV π
2

200 GeV 900 GeV π
2

As in Chapter 4, in the MSSM we study the so-called benchmark scenarios, as de-

scribed in Ref. [121] and Table 4.1, and take MA and tan β as our input parameters.

In this Chapter, we also investigate the MSSM with complex parameters. The complex

benchmark – the CPX scenario (originally proposed in [129], we use the parameters as

described in [33], which are shown in Table 6.1) – is especially interesting as it leads to

the so-called “LEP hole”: an area of MSSM parameter space leading to a light Higgs of

mass ∼ 40 GeV, which the experimental searches at LEP could not exclude [130]. In this

scenario, the gluino mass parameter and the trilinear couplings are entirely imaginary,

leading to large CP violation. Note that, in the complex MSSM, the physical Higgs

bosons are no longer CP eigenstates – they are referred to as h1, h2 and h3, and are

combinations of all three neutral Higgs particles. We also investigate weak boson fusion

for the SPS benchmark points (described in Ref. [131]).

Typically, in this Chapter we define our leading order cross section to be the tree level

cross section combined with the well known effect of the Higgs propagator corrections

(Z factors – see Section 3.4).

6.2 Partonic cross sections

Partonic cross sections were generated using FeynArts, FormCalc, LoopTools, and

FeynHiggs for the leading partonic subprocess

u+ d→ d+ h+ u (6.1)

Processes involving both Z and W boson exchange were included, and loop diagrams

involving all (s)fermions or only third generation (s)quarks were considered. Corrections

to the Higgs propagator are included at tree level – consequently, the loop correction

percentages shown below do not include the well known propagator effects, but are

instead the genuine vertex corrections.
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Fig. 6.1 shows the corrected cross section of light Higgs production via weak boson

fusion in the four real MSSM benchmarks, for fixed tan β = 10 as a function of MA,

and for fixed MA = 150 GeV as a function of tan β. We can see that, at high values

of the (input) CP odd Higgs mass (over MA ∼ 180 GeV), the cross section and loop

corrections are reasonably flat. This is because at large MA the light Higgs becomes

Standard Model like, and the ratio of the MSSM hWW coupling to the Standard Model

coupling sin(β − α) ≈ 1 (see Section 3.5). At low MA, the differences between the

benchmarks are more pronounced, and the cross sections and loop corrections vary more

dramatically. Loop corrections in the non-decoupling regime can be up to O(10%).

Studying the sensitivity of the cross section and loop corrections to tan β (the right

hand plot of the first row, and the third row respectively), we see that the cross section

decreases up to tan β ∼ 5 before beginning to increase. This behaviour was also seen

when considering weak boson fusion at a linear collider, with external electrons and

neutrinos rather than quarks (see Section 4.4), and is due to the combination of an

enhancement caused by the increasing factor sin2(β − α) and a suppression due to the

increasing Higgs mass. For the benchmarks other than the small αeff scenario, the loop

corrections are reasonably insensitive to the value of tan β. In the small αeff scenario,

however, because the masses of the sfermions are more strongly dependent on tan β, the

loop corrections are also more sensitive to variations of this input parameter.

Figure 6.1 shows that, although the contribution from third generation (s)quarks is

important, the loop diagrams involving other fermions and sfermions are not negligible

and should be included in higher order calculations. The corrections when all (s)fermion

contributions are included are smaller than the corrections when only third generation

(s)quarks are considered.

6.3 Formfactors

As in the Standard Model, we examine the formfactors (the Standard Model like a1, and

the anomalous a2 and a3), before calculating the total cross sections and distributions.

We scan over the two input parameters that describe the tree level Higgs sector (tan β

and MA or MH±). We also run a further check on the renormalisation procedures.

The Higgs propagator corrections are included at tree level (see Figure 4.8), where

they form part of the a1 formfactor. At loop level triangle diagrams at the Higgs vertex
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Figure 6.1: Partonic cross section of h production in the MSSM with real parameters at√
ŝ = 500 GeV. The first row shows the loop corrected cross section, the second

row shows the loop correction percentages as a function of MA, and the third
row shows the loop correction percentages as a function of tan β.
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and weak boson self energy diagrams are included in the formfactors, along with the

corresponding counterterms.

First, in Fig. 6.2, we examine the formfactor a1 for the vertices hWW and hZZ in

the four benchmarks in the MSSM with real parameters, as a function of tan β. As was

seen in the earlier partonic cross sections, the small αeff scenario displays the highest

sensitivity to the value of tan β, owing to greater changes in the masses of the sfermions

– for the other benchmarks, the percentage corrections to a1 are nearly independent of

tan β. For the values of tan β shown here, the light Higgs mass varies from ∼ 90 GeV to

∼ 120 GeV (or∼ 130 GeV in theMmax
h scenario). Comparing the percentage corrections

shown in Fig. 6.2 to those obtained in the Standard Model for a Higgs of this mass (see

Fig. 5.5), we see that there is very little deviation between the MSSM formfactors and the

SM formfactors. The corrections to the formfactors are larger when contributions from

all (s)fermions are considered than when only third generation (s)quarks are included,

and again, the percentage corrections to the hZZ formfactor are slightly larger than

those for the hWW formfactor.

The formfactors a2 and a3 are – as in the Standard Model – much smaller than a1.

Values of these formfactors corresponding to the results for a1 in Fig. 6.2 are shown in

Fig. 6.3 and Fig. 6.4 respectively.

We observe larger discrepancies between the MSSM and the Standard Model when

studying the anomalous formfactors a2 and a3. The formfactor a2 in the gluophobic

scenario is smaller than in the other benchmarks, which are more SM like here. a2 also

has a stronger dependence on tan β than a1, changing fairly rapidly below tan β ∼ 10.

This behaviour is repeated by the formfactor a3, which doubles in value between tan β =

3 and tan β = 10. The sign of a3 is different in the MSSM than in the SM for the (s)top

/ (s)bottom contributions, and is larger by a factor of 2 in the MSSM1. These differences

in the anomalous formfactors, however, are still very small compared to the size of the

SM like formfactor a1.

The formfactor a1 is shown in Fig. 6.5 for the case where tan β is constant and MA

is allowed to vary. The expected decoupling behaviour can be clearly seen – at low

values of MA, the corrections are generally large and change rapidly. When we move

to heavier CP odd Higgs bosons, the corrections become practically constant, as the

1Note that the value of a3 (which is only non-zero for the coupling between the W bosons and the
Higgs – see Appendix C) does not depend on the benchmark we are studying. This is because the
additional sfermion loops have no effect on the value of a3 and – since we use the tree level value of
the Higgs mixing angle α – the value of sin(β − α) does not alter between benchmarks.
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Figure 6.2: Correction to the formfactor a1 as a percentage of the leading order formfactor
with MA = 150 GeV in the MSSM with real parameters. The first row contains
the formfactors for the coupling hWW , the second for the coupling hZZ.
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Figure 6.3: Corrections to the formfactor a2 with MA = 150 GeV in the MSSM with real
parameters. Results for the hWW and hZZ couplings are presented in the first
and second rows respectively.
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Figure 6.4: Corrections to the formfactor a3 with MA = 150 GeV in the MSSM with real
parameters.

model becomes more SM like. Generally, the largest corrections occur in the no-mixing

scenario, and the smallest in the gluophobic scenario.

Turning to the production of the heavy CP even Higgs boson H, Fig. 6.6 and 6.7

show the formfactors for the coupling HWW . In Fig. 6.6 the first row shows the leading

order values of the formfactor a1, and the decoupling behaviour at high MA is shown

clearly here – a1,LO becomes negligible for large MA > 200 GeV. In this region, the light

Higgs becomes more Standard Model like and the factor sin(β − α) (which modifies the

light Higgs coupling in the MSSM) approaches 1. This means that the factor cos(β−α)

(which modifies the heavy Higgs coupling in the MSSM) approaches 0, so the production

of heavy Higgs bosons becomes negligible. The formfactors a2 and a3 (the second row

of Fig. 6.6 show different behaviour as a function of tan β when describing the heavy

and light CP even Higgs bosons, but since the size of a2 does not change, and a3 only

increases by one order of magnitude, this behaviour is (in this scenario) unlikely to

produce an observable effect.

Since in the decoupling regime a1 is extremely small, the loop correction becomes

the dominant contribution – consequently, in Fig. 6.7 we show the loop correction as a

percentage of the leading order value for MA = 100 → 200 GeV. The loop percentage

correction also becomes very large in the small αeff scenario for high tan β, but again

this is due to the leading order value of a1 approaching zero (see Fig. 6.6(b)). The first

and second generation (s)fermions have a very large effect on a1.
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Figure 6.5: Correction to the formfactor a1 as a percentage of the leading order formfactor
with tanβ = 10 for the benchmark scenarios in the MSSM with real parameters.
The first row contains the formfactors for the coupling hWW , the second for the
coupling hZZ.
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Figure 6.6: Formfactors for the coupling HWW for the heavy CP even Higgs in the MSSM
with real parameters. The first row shows the leading order value of a1 and the
second row shows the formfactors a2 and a3 with tanβ = 10.
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Figure 6.7: Formfactors for the coupling HWW for the heavy CP even Higgs in the MSSM
with real parameters. The first and second rows show percentage corrections to
a1 for tan β = 10 and MA = 150 GeV respectively.
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Figure 6.8: Inclusion of the corrections to the Higgs propagator at loop level as well as at
Born level.

Since the leading order values of a1 (and hence the cross sections) are so small in the

decoupling regime, in the calculation of the matrix squared elements we do not neglect

the term |Mloop|2, i.e. the loop correction term is

∆σ = 2 Re [M∗
LOMloop] + |Mloop|2 (6.2)

6.3.1 The inclusion of higher order corrections in the MSSM

with complex and real parameters

The above results comprise the leading order – which includes the tree level and the

propagator corrections – and the corrected level, which is the leading order plus the

genuine vertex corrections. This is described in Chapter 4, Figure 4.8. A more complete

picture may be obtained by applying the propagator Z factors to both the tree level and

one loop level. This will incorporate more of the known higher order corrections, and is

illustrated in Fig. 6.8, which shows the diagram content of the NLO virtual corrections

(i.e. the term 2 Re [M∗
LOMloop]). This does not give rise to double counting – these

corrections are formally of higher order but, since they’re universal (and one knows that

they will also appear in the next order), they can be included here.

We use the formfactor calculations as a simple way to look at the effect of these

higher order corrections. Figure 6.9 compares each formfactor for h1WW and h1ZZ in

the CPX scenario, both with and without the inclusion of wave function normalisation

factors at the loop level according to Fig. 6.8. The effect of also incorporating the Z

factors at loop level is, for the CPX scenario, quite large in the non-decoupling regime of

low MH± (below ∼ 200 GeV) – deviations exist in all of the formfactors. The correction

to a1 changes sign when the new effects are included, changing by a value of ∼ 1.5%.

The formfactor a2 for the effective coupling of h1WW also changes sign as the result

of these higher order corrections. The effect of including Z factors at loop level is most
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Figure 6.9: Effect on the formfactors of incorporating wavefunction normalisation factors at
both loop level and tree level for the CPX scenario, with tan β = 10.
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significant, however, in the formfactor a3, for the h1WW coupling, which is greatly

enhanced2.

In the MSSM with real parameters, the effect of including the Z factors at loop level

is not as dramatic, as the mixing between the neutral Higgs bosons is not as extreme as

in the CPX scenario, since no mixing occurs between the CP even Higgs bosons h and

H and the CP odd Higgs boson A. As an example, Figure 6.10 shows the formfactors

for the coupling hWW with the extra corrections included. (This should be compared

to Figures 6.2 – 6.4, which show the same formfactors without the additional propagator

corrections.) For a1 the inclusion of Z factors at loop level has the largest effect for the

small αeff scenario, but even here the alteration is less than ∼ 2%. The effect is more

significant for the anomalous formfactors a2 and a3: a2 is “shifted” by ∼ 10%, and a3

changes by an order of magnitude.

6.4 WBF Higgs production cross sections and

distributions

6.4.1 Comparison with the literature

In the literature, an examination of the “pure SUSY” loop contributions to the total

cross section of h production with two forward jets in the MSSM with real parameters

has been carried out in Ref. [56]. In order to compare with these results, we have

produced a special version of our code to study these SUSY corrections, which we can

tune to fit the procedure followed by [56].

In the fermion / sfermion sector, it is simple to separate the Standard Model correc-

tions from their supersymmetric counterparts at the one loop level, as R-parity ensures

that there is no mixing between fermions and sfermions within the loops. Moving be-

yond the (s)fermion contributions, however, this distinction is not so clear-cut owing

to the increased complexity of the Higgs sector in the MSSM. The authors of Ref. [56]

define the SUSY corrections as follows for production of the light CP even Higgs boson

h:

σSUSY = σMSSM − sin2(β − α) σSM (6.3)

2It should be noted, however, that the value of a3 is still very small, even after the enhancement of
∼ 4 orders of magnitude.
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Figure 6.10: Corrections to the formfactors for the case where the wavefunction normalisa-
tion factors are incorporated both at tree level and at loop level for the coupling
hWW in the real MSSM. The loop corrections contain contributions from all
(s)fermions.
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Figure 6.11: SUSY corrections to weak boson fusion.

The factor sin2(β − α) is the ratio of the squared lowest order coupling of the light CP

even Higgs to two weak bosons over the corresponding coupling of a Standard Model

Higgs. This definition of the SUSY corrections ensures that σSUSY contains only IR-finite

virtual contributions. The bremsstrahlung contributions and the IR-divergent pieces of

the virtual corrections are proportional to the squared lowest order matrix element,

which in turn depends on the coupling of the Higgs to two weak bosons. Thus, the

inclusion of the factor sin2(β − α) leads to a cancellation of these IR divergent terms

between the MSSM and the SM in Equation 6.3. Using this definition, the authors

of Ref. [56] find a value that estimates the effect of the supersymmetric corrections to

WBF without having to calculate the full set of diagrams in the MSSM (e.g. the real

corrections – Fig. 3.1 – do not need to be calculated).

It is obvious that the simple proportionality with sin2(β − α) between the SM cross

section and the MSSM cross section is modified once loop corrections to the Higgs–weak

boson vertex are taken into account. The procedure adopted in Ref. [56] for extracting

the pure SUSY loop corrections can therefore be considered only as an approximation

of the full result. For the SPS scenarios considered in Ref. [56] this is unlikely to have

a large effect as they are all in the decoupling limit of large MA, where the couplings of

the light Higgs become Standard Model like and sin2(β−α) ≈ 1, but the approximation

may be less well motivated when more extreme scenarios are studied.

For the purposes of studying the pure SUSY contributions (and comparing with

Ref. [56]), we do not incorporate the Z factors into the lowest order contribution, as is

done elsewhere in this thesis, but instead we consider the Z factors as an additional NLO

correction. In other words, the correction to the cross section is taken to be the sum of

the loop diagrams, the counterterm and the propagator correction (Z factors), as shown

in Fig. 6.11. The Z factors Ẑhh and ẐhH are defined in Section 3.4 and are taken at two

loop level from FeynHiggs.
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The parameters used in Ref. [56] differ from our standard set of parameters. The

PDF set MRST2002nlo [132] is used, with the following cuts [133]:

yj < 4.5

pTj
> 20 GeV

yj1 · yj2 < 0

∆yjj = |yj1 − yj2| > 4.5

Mjj > 600 GeV (6.4)

Additionally, no jet algorithms have been used in Ref. [56] – it is assumed that the final

partons are jets. We have written a variation of our modified VBFNLO that performs

the cuts specified in Equation 6.4 on the final state partons, rather than using the kT

algorithm and then imposing the cuts, as is our standard practice.

For comparison with Ref. [56] the electromagnetic coupling constant used is α(0) =

(137.0359895)−1, and the appropriate charge renormalisation is employed (see Section

3.3.2). The third generation quark masses are taken to be mt = 170.9 GeV and mb = 4.7

GeV – all other quark and lepton masses are set to zero. Reference [56] takes the high

energy definitions of the SPS points and then evolves them down using SOFTSUSY [134] to

arrive at low energy parameters. These low energy parameters [133] are used throughout

this comparison. The Higgs masses and mixings are, as usual, calculated by FeynHiggs3.

There are several differences between our approach to evaluating WBF and that

followed by Ref. [56]. We use the tree level Higgs mixing angle α in all couplings, as

this allows for the compensation of the UV divergences in the renormalised self energies,

whereas Ref. [56] uses corrected couplings obtained from FeynHiggs. The masses of the

internal Higgs bosons (present in the loop correction diagrams) are, in this work, at tree

level, but Ref. [56] always uses the higher order corrected value of the Higgs mass. An

especially important difference is the way in which the Higgs propagator corrections are

implemented: we take the Z factors from FeynHiggs at two loop level, while Ref. [56]

calculates them independently, as described below. Using both the corrected couplings

and the Z factors (in the diagrams in square brackets in Fig. 6.11) leads to double

counting (see Section 3.4).

3Note, however, that different versions of FeynHiggs have been used in this work and in Ref. [56],
which will lead to slight deviations.



Results for WBF Higgs production at the LHC in the MSSM 120

Additionally, Ref. [56] includes top / bottom loops in both the MSSM and SM cross

sections of Equation 6.3, but we do not include these contributions in our calculation

of the “pure SUSY” corrections. For the SPS parameters, this is unlikely to cause large

deviations as the Higgs–top and Higgs–bottom couplings are Standard Model like in the

decoupling limit, and so the top / bottom contributions in σMSSM will, to a large extent,

be cancelled by the top / bottom contributions in sin2(β − α)σSM . Difficulties may

arise, however, if we move into more extreme scenarios. Finally, our calculations focus

on purely weak boson fusion, whereas the authors of [56] also include Higgsstrahlung

contributions and t-channel photons (as opposed to purely W or Z boson fusion). This

is unlikely to cause large discrepancies, however, as the WBF cuts should substantially

reduce the extra contributions.

Our code has been tuned as far as possible to resemble the procedure followed in Ref.

[56]. In Ref. [56] FeynHiggs has been used to determine the value of all the couplings,

employing the function FHCouplings. These higher order, corrected values are used

for every coupling. For the purposes of comparing with Ref. [56], our tuned VBFNLO

was further altered to include the UHiggs matrix (see Section 3.4) in the couplings at

both Born and loop level, except when evaluating the propagator type corrections (the

diagrams in square brackets), thus avoiding any double counting. For the tuned version

of our code we also use the corrected Higgs masses everywhere, following the procedure

of Ref. [56]. In our tuned code, we include third generation quark loops in both the

Standard Model and the MSSM corrections of Equation 6.3 (as in [56]).

As stated, the propagator corrections to the external Higgs are calculated in a dif-

ferent manner in Ref. [56] to that which we normally use (see Section 3.4). To examine

the differences between the two approaches, we first define

A = −ReΣ′
hh(M

2
h) (6.5)

B =
2

M2
H −M2

h

(
ReΣhH(M2

h)− δmhH

)
(6.6)

The Higgs field renormalisation constants δZhh and δZhH are taken in Ref. [56] to be the

divergent parts of A and B respectively. Consequently, these renormalisation constants

agree with those defined earlier, in Chapter 3.

The propagator Z factors (which we usually take from FeynHiggs and are defined

according to Equation 3.67) in Ref. [56] involve the finite parts of the terms A and B, as

follows (recall that a hat, Σ̂, signifies the renormalised self energy, defined in Equations
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3.55 – 3.58, and a prime, Σ
′
indicates the derivative of a self energy with respect to the

external momentum squared):

Zh =

(
1 +

1

2
Afin

)2

=

(
1− 1

2
Σ̂′

hh(M
2
h)

)2

(6.7)

ZhH = Bfin =
2

M2
H −M2

h

Σ̂hH(M2
h) (6.8)

The propagator corrections (i.e. the diagrams in the square bracket of Fig. 6.11) are

then described in Ref. [56] by:

Γprop = Γborn

(√
Zh − 1 +

1

2

cos(β − α)

sin(β − α)

√
ZhZhH

)
(6.9)

= Γh

(√
Zh − 1

)
+

1

2

√
ZhZhHΓH (6.10)

=
1

2
ΓhA

fin +
1

2
ΓH

(
1 +

1

2
Afin

)
Bfin (6.11)

= −1

2
ΓhReΣ̂′

hh(M
2
h)− ΓH

M2
h −M2

H

ReΣ̂hH(M2
h)−

1

2

ΓH

M2
H −M2

h

ReΣ̂hH(M2
h)ReΣ̂′

hh(M
2
h) (6.12)

These propagator corrections have been implemented into the tuned version of our code.

Since the Z factors are finite by construction, we cannot simply check our code by

ensuring that the final result is finite. We have therefore explicitly checked that the

divergent parts of the new Z factors agree with the divergent parts of the Higgs field

renormalisation4.

If we look at the strictly one loop part of Equation 6.12 only the first two terms

survive:

Γprop = −1

2
ΓhReΣ̂′

hh(m
2
h)−

ΓH

m2
h −m2

H

ReΣ̂hH(m2
h) (6.13)

This is equal to a strict, one-loop expansion of our standard propagator corrections,

which can be arrived at using Equation 3.67 together with Equation 3.65.

A summary of the differences between our default code for this comparison, which

produces our best results, with our tuned code (which we use in order to reproduce the

4For this check, in order to ensure UV-finiteness, tree level Higgs masses and mixing angle need to be
used for the particles appearing in the loops.
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Table 6.2: Summary of the procedures used in our tuned code (used for the comparison with
Ref. [56]) with those used in our default code, which gives our best results.

Default code Tuned code

Couplings Couplings are defined at tree Couplings incorporate higher

level – i.e. the Higgs mixing order corrections using the

angle αtree is used. UHiggs matrix. Couplings in

the propagator corrections

are taken to be at tree level.

Higgs masses Tree level masses Corrected masses

in loops

t/b in loops Not included Included

Higgs propagator 2 loop Z factors from Calculated from Equation 6.12

corrections FeynHiggs

results of [56]) is given in Table 6.2. Note that, even in our tuned code, we use tree

level couplings in the propagator correction pieces (the diagrams in square brackets,

Fig. 6.11), as to do otherwise leads to double counting. We have, however, explicitly

verified that, in the SPS points considered here, the effect of this is negligible. It is

also important to note that in the “Default code” column, the settings are not quite the

same as those used in the rest of this thesis. In particular, elsewhere we incorporate the

Z factors into the Born level cross section.

Table 6.3 compares the percentage SUSY loop corrections to WBF using our default

code with the tuned version of our code and the values reported in Ref. [56]. As can be

seen, good agreement is found between the tuned code and the results in the literature.

The remaining differences are likely due to a combination of small factors (such as

the extra diagrams in [56], and slightly different values for Higgs sector parameters)

and numerical uncertainties in the integration procedures. The differences between our

tuned code and our best results are partially the result of the higher order contributions

to the Z factors that are included in our best results, as well as the use of different values

of the Higgs mass for internal particles in the loops5.

5Using corrected Higgs masses in the loops will in general spoil the UV finiteness of the renormalised
self energies.
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Table 6.3: Comparison of percentage loop corrections for the pure SUSY contributions calcu-
lated here with those presented in Ref. [56]. The first results column give our best
results, using FeynHiggs Z factors to incorporate Higgs propagator corrections
(as described by Column 2, Table 6.2). The second column gives the result we
obtain using our tuned code (described in Column 3, Table 6.2). The final column
reproduces the results presented in Ref. [56].

SPS This work Tuned result Ref. [56]

1a -0.184 -0.362 -0.329

1b -0.057 -0.202 -0.162

2 -0.026 -0.220 -0.147

3 -0.004 -0.211 -0.146

4 -0.074 -0.271 -0.258

5 -0.526 -0.612 -0.606

6 -0.087 -0.277 -0.226

7 -0.058 -0.244 -0.206

8 -0.010 -0.214 -0.157

9 -0.051 -0.189 -0.094

Table 6.4 presents our result for the leading order cross sections calculated for all

the SPS parameter points, along with a comparison of the mass of the lightest CP even

Higgs boson used in our result and in Ref. [56]. Note that Ref. [56] reports a leading

order cross section of 706 fb for SPS1a. We have checked our leading order result with

the results produced by MadGraph [135] at SPS1a and found agreement to within the

numerical accuracies of the code. We also checked that the LO cross section in the

Standard Model for an equivalent Higgs mass was very close to our MSSM LO cross

section (as it should be, since it is in the decoupling regime). This SM result was found

to be in agreement with the value produced in the Standard Model using MadGraph,

as well as the results presented in [55]. The difference we observe in the leading order

cross section is unlikely to affect the percentage loop corrections by a large amount. The

(typically small) differences between the Higgs masses are probably due to the different

versions of FeynHiggs being used to calculate Mh.
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Table 6.4: Leading order cross sections and Higgs masses at the SPS points.

SPS LO σ [fb] Mh [GeV] Mh [GeV] Ref [56, 133]

1a 1247.56 110.789 111.000

1b 1224.86 114.112 114.196

2 1238.31 112.149 112.173

3 1231.52 113.135 113.260

4 1238.11 112.178 112.192

5 1265.90 107.970 108.397

6 1243.90 111.382 111.487

7 1259.16 109.144 109.237

8 1248.76 110.641 110.719

9 1211.73 116.054 116.114

6.4.2 New results

We now move on to results obtained using our full code, which includes both Standard

Model and SUSY particles. Fig. 6.12 shows the total cross section of the production of

a light Higgs boson, h, via WBF in the Mmax
h scenario as a function of both the CP odd

Higgs mass (left plot) and the light CP even Higgs mass (right plot). Here we include the

propagator type corrections at leading order, meaning that the loop effects we observe

are the genuine vertex corrections. For comparison, the Standard Model cross section

with a Higgs mass equal to that in the Mmax
h scenario is also shown. This plot clearly

demonstrates the decoupling behaviour of the MSSM scenario. At low values of the

CP odd Higgs mass, the cross section in the MSSM is very different from that in the

Standard Model: it is much smaller, owing to mixing between the three neutral Higgs

bosons. As MA increases, the Standard Model and MSSM cross sections become close

– at MA = 400 GeV, the difference between them is less than a percent of the total

cross section. Also shown in Fig. 6.12 are the loop correction precentages for the QCD

corrections, the QCD plus (s)top / (s)bottom corrections and the QCD plus (s)fermion

corrections. The (s)top / (s)bottom corrections and full (s)fermion loop corrections are

∼ −2% and ∼ −1.5% respectively in the decoupling regime, but these rise to almost

∼ −9% at very low values of MA. These loop corrections differ from the Standard

Model loop corrections by ∼ −0.2% in the decoupling regime, and ∼ −4.5% in the non-

decoupling regime. The behaviour of the total cross section obtained using Monte Carlo
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production as a function of MA.

Figure 6.12: Cross sections of light Higgs production via weak boson fusion in the Mmax
h

scenario with tanβ = 10, and in the Standard Model, at leading order and with
QCD, third generation (s)quark and all (s)fermion corrections.

techniques is very similar to that of the partonic cross sections presented earlier (see

Fig. 6.1), demonstrating that the cuts (which are applied to these total cross sections,

but not to the partonic cross sections) have little effect on these loop corrections.

In addition, Figure 6.13 shows the azimuthal angle distribution in the decoupling

regime (with large MA – Plots (a) and (b)), where the distribution is similar to that

in the Standard Model (as is, of course, expected), and in the non-decoupling regime

(with low MA) where large deviations from the SM occur (Plots (c) and (d)). In the

non-decoupling regime, the distribution can be seen to be much smaller (although the

shape is not significantly altered here) due to a suppression of the coupling between the

Higgs and the pair of weak bosons. Note that Plots (c) and (d) of Fig. 6.13 present the

same MSSM data – the axis scale has been altered in Plot(d) to provide an enlarged

version of the MSSM results.
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(b) Azimuthal angle distribution with MA =
400 GeV, compared with the distribution in
the Standard Model for a Higgs of equal mass.
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(c) Azimuthal angle distribution with MA =
100 GeV, compared with the distribution in
the Standard Model for a Higgs of equal mass.
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Figure 6.13: Azimuthal angle distributions in the Mmax
h scenario with tanβ = 10, at leading

order and with QCD, third generation (s)quark and all (s)fermion corrections
in the decoupling regime (Plots (a) and (b)) and in the non-decoupling regime
(Plots (c) and (d)). For comparison, the Standard Model distributions (with
equivalent Higgs mass) are also shown in blue (except in Plot (d), which repro-
duces only the MSSM results of Plot(c)).
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Figure 6.14: A comparison of light and heavy CP even Higgs boson production in the Mmax
h

scenario with tan β = 10, with QCD plus (s)fermion loop corrections.

Figure 6.14 shows a comparison of the production cross sections in the Mmax
h scenario

of a light and a heavy CP even Higgs, as a function of the mass of the CP odd Higgs,

with tan β = 10. As can be seen, at low values of MA, in the non-decoupling regime,

production of the heavy Higgs is the dominant process. This cross section rapidly

decreases with increasing MA, and becomes close to zero in the decoupling regime as the

light Higgs h becomes SM like. Due to this near-zero leading order cross section, the

percentage corrections to heavy Higgs production become very large in the decoupling

regime, although the total cross section is still, of course, small6. For the heavy Higgs the

loop corrections act to increase the cross section and there is a cancellation between the

electroweak loop corrections and the QCD corrections (leading to a very small combined

correction at MA = 100 GeV). The feature at MA = 110 GeV for the heavy Higgs stems

from the behaviour of the propagator corrections at this point in parameter space.

The azimuthal angle distributions for production of the heavy Higgs boson are shown

in Fig. 6.15, for two values of MA. As expected from studying the total cross section

graphs (Fig. 6.14), the distribution is far more Standard Model like for low MA in the

non-decoupling regime. In the decoupling regime the scale of the distribution is reduced

and the loop effects are seen to be large, although they do not alter the distribution’s

shape.

6Note that the left plot of Fig. 6.14 only presents percentage loop corrections for the range MA =
100 → 200 GeV, where the production cross section of the heavy Higgs is non-negligible.
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Figure 6.15: Azimuthal angle distribution for production of the heavy CP even Higgs bo-
son in the Mmax

h scenario with tanβ = 10 for QCD, (s)top / (s)bottom and
(s)fermion loop corrections.

Moving on to the MSSM with complex parameters, the situation in the CPX scenario

is different to that seen above in the Mmax
h scenario, as is expected since CPX was

designed to describe an “extreme” region of MSSM parameter space in which the effects

of complex phases are maximised. Figure 6.16 shows the light Higgs (h1) production

cross section as a function of the charged Higgs mass7 MH+ for tan β = 10. In this

scenario, the behaviour at low values of MH± is more extreme than in the real MSSM –

mixing can now occur between all three neutral Higgs bosons (in the real MSSM, only

the CP even states h and H mix), and at low MH± the values of the Z factors mean that

principle component of the lightest Higgs is the CP odd state, which does not couple

to weak bosons. Consequently, the leading order cross section for values of MH± < 170

GeV is practically zero, leading to extremely large percentage loop corrections.

The azimuthal angle distribution found for production of the lightest Higgs h1 in

the CPX scenario is presented in Figure 6.17. The distributions in the CPX scenario

deviate from those expected in the Standard Model in the non-decoupling regime, just

as the total cross sections are different. The shape of the azimuthal angle distribution,

however, is not significantly affected. While at this low value of MH± the lightest Higgs

7Recall that, when working in the complex MSSM, we use MH± as an input parameter, as MA is not
a mass eigenstate at higher orders. We also refer to the neutral Higgs bosons as h1, h2 and h3 (in
order of lightest to heaviest mass), rather than h, H and A, because the physical Higgs bosons are
not CP eigenstates in the complex MSSM.
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Figure 6.16: Production of the lightest Higgs boson h1 in the CPX scenario with tanβ = 10
with QCD, (s)top / (s)bottom and (s)fermion loop corrections.

is primarily composed of the CP odd A Higgs boson (and one might therefore naively

expect a shift towards the purely a3 behaviour of the azimuthal angle distribution, as

shown in Fig. 2.6), because the lowest order coupling AV V is zero, the mixing manifests

itself principally as a decrease in the leading order cross section, rather than a change

in the shape of the azimuthal angle distribution.

Figure 6.18 shows the production of the Higgs boson h2 in the CPX scenario, and

compares it to production of the lightest Higgs h1. Between charged Higgs masses of

∼ 130 GeV and ∼ 170 GeV, production of h2 has a larger cross section than production

of the lighter Higgs boson h1, rising to its maximum value at MH± ≈ 160 GeV, where

the loop corrections (from QCD plus (s)fermion loops) are ∼ −5%. As the charged

Higgs mass increases, the loop corrections become positive, causing an enhancement of

the cross section.

As with the formfactors, we now consider applying Higgs propagator corrections (Z

factors) to the loop diagrams, as well as to the tree level (as shown in Fig. 6.8). These

additional, higher order corrections have been implemented into the modified VBFNLO.

Figure 6.19 compares two cases (where propagator corrections are included at loop and

Born level, and only at Born level) for the Mmax
h scenario, and includes the cross section

as a function of MA as well as azimuthal angle distributions. In this scenario, the

additional corrections are seen to make very little difference, even for low values of MA.
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Figure 6.17: Azimuthal angle distributions for light Higgs production in the CPX scenario
at the LHC, with tan β = 10.
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Figure 6.18: Production of the Higgs boson h2 in the CPX scenario with tanβ = 10, and a
comparison with light Higgs production.

Figure 6.20 examines the effect of incorporating the Z factors at loop level (as well

as at Born level) in the MSSM with complex parameters, in the CPX scenario. Here,

the effects of the additional corrections are far more noticeable. At low values of the

charged Higgs mass, the total cross section is increased by these additional contributions

(relative to the corrected cross section when propagator corrections are only applied at

Born level). The azimuthal angle distribution undergoes some change as well – for

small MH± , the shape of the distribution changes owing to the importance of the loop

connecting to a CP odd Higgs boson. Despite these enhancements, however, the cross

sections remain small. It must also be kept in mind that in the region of parameter

space described by the CPX scenario, the theoretical uncertainties remain relatively

large, even with the inclusion of higher order corrections.

6.4.3 Full result: supplementing the MSSM cross section with

Standard Model corrections

We now combine all of our previous results to arrive at our best predictions for MSSM

Higgs production via weak boson fusion at the LHC. Moving beyond the (s)fermion

corrections, the full MSSM contributions to the V V h vertex and the V V self energy

have been calculated. These are supplemented by the MSSM sfermion corrections to the

qqV vertex, and the complete Standard Model contributions to the qqV vertex as well

as the SM boxes and pentagons, and the real photon radiation. The SM contributions
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(c) Azimuthal angle distributions with MA =
400 GeV including QCD plus (s)top /
(s)bottom or (s)fermion loop corrections, with
and without Z factors applied at loop level.

Figure 6.19: Total cross section and aximuthal angle distributions in the Mmax
h scenario with

tanβ = 10 for h production, demonstrating the effect of including Z factors at
both loop level and tree level.
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Figure 6.20: Results in the CPX scenario with tanβ = 10 for h1 production, demonstrating
the effect of including Z factors at loop level as well as at tree level.

are modified by a factor sin2(β − α) to account for the different value of the V V h

coupling – see Section 3.5. Special care must be taken here to ensure that the sign of

the SU(2) covariant derivative is consistent. It is important to note that in this section

we parametrise the electromagnetic coupling using α(M2
Z), rather than GF , as has been

our practice previously.

There is an approximation involved in this procedure as we are neglecting boxes

and pentagons involving charginos and neutralinos. No diagrams involving Higgs or

Goldstone bosons coupling to the external quarks are present, as we assume our external

quarks to be massless. Consequently, using the multiplicative factor sin2(β−α) (for the

SM boxes etc.) is not an approximation here, as the only couplings involved in these

diagrams that change between the SM and the MSSM are modified by exactly this factor.

In Fig. 6.21 we present our full results8: the complete SM type one loop correc-

tions (including real photon radiation and NLO QCD corrections), supplemented by the

sfermion loop corrections and the remaining MSSM contributions for the Higgs vertex

and the weak boson self energy. We compare the cross section when the complete V V h

and V V corrections are included with the cross section that includes sfermion and SM

type (i.e. all particles except charginos and neutralinos) contributions, as well as the

8Note that the cuts used to produce this graph are not our default cuts, but are rather those described
in Section 5.4.1.
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Figure 6.21: Light Higgs boson h production as a function of MA in the Mmax
h scenario, with

tanβ = 10, with MSSM corrections supplemented with SM type corrections.

Standard Model cross section, and the cross section with NLO QCD corrections. When

including the loop effects from SUSY particles other than the sfermions, it is difficult

to gauge the effect of these additional particles when compared to the Standard Model,

because – as explained in Section 6.4.1 – beyond the (s)fermion sector there is no clear

separation between SM and SUSY particles. We gauge the effect of the SUSY contri-

butions by comparing the percentage loop corrections in the MSSM with those in the

SM, for a Standard Model Higgs mass equal to the light MSSM Higgs mass9. In the

decoupling regime, the difference between the SM loop corrections and the MSSM loop

corrections is small (∼ −0.3%), but in the non-decoupling regime this difference rises to

∼ −5%.

The right hand plot of Fig. 6.21 shows the contribution of the charginos and neu-

tralinos as a percentage of the total loop correction 2 Re [M∗
LOMloop]. As can be seen,

the effect of these SUSY particles is small – they contribute only ∼ 3.5% of the total

correction in the non-decoupling regime, and this decreases to ∼ 1.5% in the decoupling

regime. Since the charginos and neutralinos only have a small effect on the loop cor-

rections at the Higgs vertex and weak boson self energy, it is reasonable to assume that

they will have a similarly small effect on the boxes and pentagons. The calculation and

implementation of the full result in the MSSM is in progress, but we believe the result

presented here to be a good approximation of the complete result.

9We must of course be careful not to choose an MSSM parameter point with a vanishingly small LO
cross section.



Chapter 7

Z production via weak boson fusion

at the LHC

“Only show me where to stand ...”

— Archimedes

7.1 The practicality and desirability of a calibration

process

Although Higgs production via weak boson fusion has many helpful properties that

should allow us to identify and study it at the LHC, the success of our investigations

will of course depend not only on our knowledge of the process itself, but also on our

understanding of backgrounds and the detector’s behaviour. It would therefore be helpful

if we were able to study a well understood process that would allow us to verify that

the methods we plan to use to isolate weak boson fusion Higgs production are effective.

A promising process is Z boson production via weak boson fusion, shown at tree

level in Fig. 7.1. This seems an ideal process with which to “calibrate” Higgs production

because, for one thing, the Feynman diagrams involved are analogous for Z and Higgs

boson production, and for another if MH ∼ MZ , as the precision data from LEP seems

to indicate [32], the kinematics of the tagging jets will be similar. If we further study

Z production with subsequent leptonic decay, there is a clean resonance in the dilepton

135
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Figure 7.1: Leading order Z boson production via weak boson fusion.

spectrum to assist with identification as well. By comparing Z and Higgs production,

we can confirm that the theoretical uncertainties are well under control.

In order to assess whether this method of Z boson production will be useful as

a calibration process, however, we need to ascertain whether the weak boson fusion

production of Z plus two jets can be separated from the various backgrounds to this final

state. This question was studied in Ref. [136]1, which considered four major background

processes, examples of which are shown in Fig. 7.2.

With no cuts, the weak boson fusion channel is lost in the backgrounds, having a

smaller cross section by a factor ∼ 2000. By imposing a set of four cuts, however, the

signal to background ratio can be improved to approximately 1. These cuts (as for

the Higgs process) include a rapidity cut (which improves the signal to background by

∼ 10) and a cut on the invariant mass of the tagging jets. The invariant mass cut, for

all backgrounds except the scattering of two valence quarks – Fig. 7.2(b) – improves

the signal to background ratio further by a factor of ∼ 100, as the momentum of the

t-channel W boson from the external quarks is soft, so the tagging jets’ kinematics are

very similar to those of the initial quarks. There is also a cut ensuring that the Z boson

is well separated from the final jets, as well as a cut on the transverse momentum of

the Z boson (in WBF, the Z boson receives a large amount of transverse momentum,

whereas the background processes involve the Z radiating from low mass partons). The

specific details of the cuts used here are slightly different to the cuts used elsewhere in

1The program CompHEP [137,138] was used to generate cross sections at leading order, assuming the
final state partons were jets.
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Figure 7.2: Major backgrounds to Z production via weak boson fusion.

Table 7.1: Leading order cross sections for Z + 2 jet production for WBF and background
processes before and after cuts, from Ref. [136].

Process Fig. 7.2(a) Fig. 7.2(b) Fig. 7.2(c) Fig. 7.2(d) WBF

Uncut σ [pb] 3000 20,000 340 1700 13.4

Cut σ [pb] 0.15 1.3 0.91 0.20 2.4

this thesis for Higgs production (see Equation 2.5). Here, there is no cut on Rjj (the

separation of the jets in the azimuthal angle versus rapidity plane), and the cuts on the

dijet mass and transverse momentum of the tagging jets are significantly more stringent.

The cut on the rapidity gap, however, is less stringent here than in our standard cuts.

The leading order cross sections calculated in Ref. [136] before and after cuts are shown

in Table 7.1.

As can be seen from Table 7.1, the most persistent background is the strong scattering

of initial valence quarks (Fig. 7.2(b)), since this leads to very forward emission of the

final state partons, which of course to some extent mimics the weak boson fusion signal.
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At leading order, the cuts described reduce the background to manageable levels, which

means that this process has the potential to provide a good calibration against which to

measure Higgs production.

The rapidity gap cuts described here and in Section 2.2 significantly improve the

signal to background ratio (for both the Higgs and the Z boson). It is important to be

certain, however, that we have properly accounted for the possibility that another pair

of initial partons will interact in the same event. This interaction could cause more QCD

radiation and fill the rapidity gap. Although the probability that the gap will survive

can in theory be calculated, confirming these predictions with observations of Z boson

production will help decrease uncertainty when Higgs production is being studied. The

idea of measuring the rapidity gap survival probability using Z production via WBF was

proposed in References [139,140], and studied in detail in Ref [48].

In this Chapter we will study the (s)fermionic (and specifically third generation

(s)quark) corrections to the partonic cross section for Z boson production via WBF in

both the Standard Model and the MSSM, and compare these to the Higgs production

case as a function of tan β. We will also briefly discuss an anomalous WWZ coupling,

and the alterations needed to include electroweak corrections to Z production in VBFNLO.

7.2 Partonic cross sections

As in the previous chapters, here we use masses from the Particle Data Book [87] with

the exception of mt = 172.6 GeV, and parametrise the electromagnetic coupling α by the

Fermi constant. In the MSSM, we study the benchmark scenarios described in Ref. [121],

varying tan β (varying MA will have no effect on the cross sections studied here, as we

only consider (s)fermionic corrections to WBF). Note that no cuts have been performed

on the partonic cross sections.

7.2.1 Results in the Standard Model

We investigate the production of a Z boson through the WBF process

u+ d→ d+ Z + u (7.1)
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Figure 7.3: Cross section for Z production via WBF in the Standard Model.

Note that, in contrast to the Higgs production case, only W bosons mediate this process

as (in the Standard Model and MSSM) there is no tree level triple Z boson vertex. The

corrections are studied in detail for the cases where all fermions are included in the

loops, and where only contributions from top and bottom quarks are considered. Fig.

7.3 shows the partonic cross section at a Higgs mass MH = 120 GeV in these two cases,

as well as the percentage loop corrections as a function of the centre of mass energy2.

Fig. 7.3 shows that the cross section for Z boson production is larger than that for

Higgs boson production in the WBF channel (compare Fig. 7.3 to Fig. 5.2) and increases

with the centre of mass energy. The loop corrections when only the top and bottom

quark loops are included have a larger effect than the corrections when all fermions are

considered, and are nearly independent of the centre of mass energy. The size of the full

fermion corrections, on other hand, decrease with increasing centre of mass energy.

Fig. 7.4 shows the individual contributions to the total loop correction from the

WWZ vertex, the WW self energy and the qqW vertex, again as a function of
√
ŝ with

MH = 120 GeV. Unlike the situation with Higgs production described in Chapter 5,

the third generation quarks receive no enhancement from a large coupling value, and

consequently all corrections increase in magnitude when light fermions are included. As

with Higgs production, however, these corrections largely cancel one another out (due

in part to the W boson field renormalisation constant, which naturally acts in opposite

directions in the different contributions, so that overall it has no effect), and we are

2We use the centre of mass energy as the variable here because the partonic cross section for Z boson
production via WBF is independent of the Higgs mass if only fermion loops are included in the
corrections.
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Figure 7.4: Individual contributions for Z production via WBF in the Standard Model. ∆σx

signifies either the corrections to the WWZ vertex (in red), the corrections to
the WW self energy (in blue) or the quark–weak boson qqW vertex corrections
(in green).

left with a smaller total loop correction when all fermions are taken into account than

when only top and bottom quarks are considered. Corrections to the WWZ vertex are

dominant at all energies when only top and bottom quark corrections are considered, but

if we include all fermions in our loop diagrams at low energies this WWZ contribution

is practically zero.

Fig. 7.5 compares the corrections to Higgs and Z boson production via weak boson

fusion. As can be seen, the cross section for Z production is approximately 10 times

larger than that for Higgs production, and has no dependence on the Higgs mass. The

loop corrections to Higgs production are (for Higgs masses of less than ∼ 380 GeV)

larger than those for the calibration process, but both sets of corrections reduce their

respective cross sections.

7.2.2 Results in the MSSM

We also studied the production of Z bosons via weak boson fusion in the MSSM, as a

function of tan β. Although the WWZ coupling is the same in both the Standard Model

and the MSSM, the new SUSY particles that are present in the loop corrections mean

that different correction patterns are observed, as can be seen in Fig. 7.6, which presents
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Figure 7.5: Comparison of Higgs and Z boson production via weak boson fusion at a centre
of mass energy

√
ŝ = 500 GeV in the Standard Model.
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Figure 7.6: Z boson production via W boson fusion at
√

ŝ = 500 GeV for the Standard Model
and the benchmark scenarios in the MSSM with real parameters.

the loop corrected partonic cross section and percentage loop corrections for

u+ d→ d+ Z + u

For comparison, the Standard Model cross section and loop corrections are also shown.

As was the case for Higgs production in the MSSM, the small αeff scenario demonstrates

the greatest sensitivity to tan β, owing to the stronger dependence of the sfermion masses

on tan β in this benchmark. The Mmax
h scenario is seen to most closely resemble the

Standard Model, and the inclusion of all fermions and sfermions in the loop corrections

results in smaller corrections than if only third generation quarks are considered.
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Figure 7.7: Individual contributions to Z boson production via W boson fusion as a function
of tan β with MA = 150 GeV at

√
ŝ = 500 GeV in the MSSM. Here, ∆σx signifies

the either the WWZ, the WW or the qqW correction.

Fig. 7.7 shows the individual contributions for the WW self energy, the ZWW vertex

and the qqW vertex for the small αeff scenario and the Mmax
h scenario. In both the

gluophobic and the no-mixing benchmarks, the relative contributions from each type of

correction are very similar to those in the Mmax
h scenario. The pattern of contributions

can be seen to be similar to that found in the Standard Model (see Fig. 7.4). When

all (s)fermions are included in the calculation of the loop corrections, the corrections to

the WW self energy are seen to be a good approximation of the full correction, whereas

if only top and bottom quarks are considered, the WWZ vertex gives the dominant

contribution to the loop correction.

Finally, Fig. 7.8 compares the production of a light Higgs boson, h, with a Z boson

in the small αeff and Mmax
h benchmarks3, as a function of either MA (with a fixed

tan β = 10) or a function of tan β (with MA = 150 GeV). As in the Standard Model, the

cross section for Z boson production is larger than that for h production, by a factor

3The no-mixing scenario and the gluophobic scenario are similar to the Mmax
h scenario.
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Figure 7.8: Comparison of h (solid lines) and Z (dotted lines) production via weak boson
fusion at

√
ŝ = 500 GeV in the MSSM.

of ∼ 10. The loop corrections are, in general, larger for light Higgs production in the

MSSM and are (as expected) more sensitive to the parameters MA and tan β.
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Figure 7.9: Azimuthal angle distribution for Higgs and Z boson production via weak boson
fusion, with subsequent decay into a pair of τ leptons, produced with the public
VBFNLO.

7.3 Outlook: Implementation of higher order

corrections to Z production into VBFNLO

As has been mentioned, VBFNLO is capable of simulating the production of a Z boson plus

two jets via WBF, incorporating the NLO QCD corrections to this possible calibration

process. For example, Fig. 7.9 shows the azimuthal angle distributions for the Standard

Model processes

p+ p→ H/Z + j + j → τ+ + τ− + j + j

This was produced at leading order and with QCD NLO corrections using the public

VBFNLO, with our usual set of parameters and cuts (Equation 2.5). For this analysis,

however, the PDF set is different – here we use CTEQ6L [72]. A Higgs mass of MH =

120 GeV was chosen (this of course does not affect the Z boson production). The
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corresponding cross sections are

σLO(pp→ Hjj → τ+τ−jj) = 87.48± 0.02 pb

σNLO(pp→ Hjj → τ+τ−jj) = 90.13± 0.09 pb

σLO(pp→ Zjj → τ+τ−jj) = 186.54± 0.39 pb

σNLO(pp→ Zjj → τ+τ−jj) = 200.22± 1.42 pb

As can be seen, the process of Z production has a larger total cross section than Higgs

production, and the azimuthal angle distribution shown in Fig. 7.9 covers a wider range.

At low values of ∆φ, however, the Higgs boson distribution is larger than Z production.

The large difference between the partonic cross sections for Higgs and Z production (Fig.

7.5) is reduced here – partly because the branching ratio for H → τ+τ− is larger than

that for Z → τ+τ−, and partly because the cuts (which are applied here but not to the

partonic cross sections) have a greater effect on Z production than on Higgs production.

Anomalous couplings between the weak bosons have received considerable study –

both theoretical and experimental – in the literature (see, for instance Ref. [141–143]).

As when studying anomalous HV V couplings, we describe the anomalous interaction in

terms of an effective Lagrangian. For the WWZ vertex that we are interested in here,

the effective Lagrangian is given by [143]

LWWZ
eff = − ie cos θW

sin θW

(
∆gZ

1

[
W+

µνW
−µ −W+µW−

µν

]
Zν + κZW

+
µ W

−
ν Z

µν+

λZ

M2
W

W+
µ W

−ρ
ν Z µ

ρ

)
(7.2)

In the Standard Model, ∆gZ
1 = κZ = 1 and λZ = 0. These will, however, be modified by

the loop diagrams. The terms ∆gZ
1 and κZ are involved in the second parametrisation

of the HV V effective Lagrangian detailed in Section 2.4.3.

VBFNLO can also produce predictions for Z boson production via WBF when the

trilinear coupling WWZ is not described by the Standard Model coupling, but rather

by some anomalous coupling, in terms of the Lagrangian in Equation 7.2. Consequently,

it will be possible to include the electroweak corrections to Z production via weak boson

fusion into VBFNLO in the same way as the Higgs production corrections were included.

This would mean that one could compare the signal and calibration processes at the same

high level of accuracy. Although new code would have to be developed to calculate the

parameters of the anomalous WWZ coupling (or alternatively, to implement the matrix
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squared elements for the WWZ corrections), as well as the box and pentagon diagrams,

the W self energy, quark vertex and real (photonic) corrections are all the same for Z and

Higgs production and could be re-used. An additional set of corrections, however, may

need to be considered for Z production – diagrams where the Z boson is radiated from

one of the external quark lines. For Higgs production, this contribution was neglected as

we work in the approximation of massless external quarks (which consequently have zero

coupling to the Higgs boson). It is unlikely that this contribution would have a large

effect of Z boson production either, as the kinematics are different and consequently the

WBF cuts will suppress these diagrams.

Z boson production via weak boson fusion, besides being interesting in its own right,

has the potential to be useful as a calibration process for Higgs production. Implementing

Standard Model and MSSM loop corrections for this process into VBFNLO would provide

the community with a useful tool with which to perform comparisons. This would be

possible using the methods developed here, but the actual implementation is beyond the

scope of this thesis.



Chapter 8

Conclusions

“While the Universe is under no obligation to make sense, students in

pursuit of a PhD are.”

— Robert Kishner

The search for the Higgs boson, and for supersymmetry, has been underway for

decades and – with the advent of the LHC – we may soon receive confirmation of our

theories. This thesis has looked at a very promising channel of Higgs boson production,

weak boson fusion (WBF), which could not only serve as a discovery channel, but could

also shed light on the properties of the Higgs, and through them on electroweak symmetry

breaking as well. The techniques that need to be employed in order to calculate the

electroweak corrections to weak boson fusion are described in detail in this work.

Initially, in this work, the process of weak boson fusion (including the Higgsstrahlung

contribution) at a linear e+e−collider was studied in the Standard Model and MSSM. The

fermion / sfermion one loop corrections were calculated, combined with propagator type

corrections in the Higgs sector up to two loop level. Results previously reported in the

literature [119] were confirmed, and the individual contributions to the complete process

were studied in detail. It was found that (as expected), the Higgsstrahlung process is

dominant at low centre of mass energies, while at high centre of mass energies weak

boson fusion is dominant. The interference between the two processes is also important

at low energies – particularly in the region where the cross sections from WBF and

Higgsstrahlung are equal. While the (s)top / (s)bottom loop diagram contributions

were seen to be a significant part of the corrections, they are not completely dominant,

especially at the threshold centre of mass energy. Here, the corrections resulting from

148
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the first and second generation (s)fermions were seen to be equally important, owing to

the significance of the weak boson self energy and lepton–weak boson vertex corrections.

We then moved on to the main topic of this thesis: weak boson fusion Higgs pro-

duction at the LHC. In the Standard Model, the full one loop electroweak corrections

to WBF at the LHC have been calculated. We used formfactors describing an effective

coupling T µν between the Higgs and a pair of weak bosons to include weak boson self

energy corrections and Higgs vertex corrections. This is a simpler – and computationally

more efficient – method than calculating these corrections in the full 2 → 3 process. The

effective coupling was combined with the complete calculation of box and pentagon type

diagrams, the corrections to the quark–weak boson vertex in the full 2 → 3 process,

the corrections from real photon radiation and the (already existing) NLO QCD con-

tributions. The complete one loop result was implemented into the public Monte Carlo

event generator VBFNLO so that cross sections can be studied, as well as a range of dis-

tributions. The electroweak corrections were found to be ∼ O(−5%) for Higgs masses

of between 100 GeV and 200 GeV. This is approximately the same size as the QCD

NLO corrections in this region of parameter space, leading to a full NLO correction of

∼ −10%. We found good agreement with the available literature [55].

We also examined the relative importance of the loop corrections from third gen-

eration quarks and from all fermions to the WBF process. These were seen to give

corrections of ∼ −2% and ∼ −1.5% respectively. While certainly a significant pro-

portion of the total correction, the contribution from the top loop diagrams is not as

dominant as is often seen in Higgs processes. In this case, the corrections from the

weak boson self energy, and the quark–weak boson vertex become more important as

we include more particles in the loops.

Weak boson fusion production of a neutral Higgs was studied in the MSSM, for the

general case where the parameters are allowed to be complex. Our result consists of

the complete one loop corrections to the Higgs vertex HV V and the weak boson self

energy V V , supplemented by the two loop propagator type corrections in the Higgs sector

(which are included in the Born level), the sfermion corrections to the quark–weak boson

vertex qqV and the Standard Model boxes, pentagons, and full SM type corrections to

the qqV vertex (i.e. we neglect only the effects of charginos and neutralinos in the box,

pentagon and quark vertex diagrams). Implementation of these additional diagrams is

in progress, but – as we have shown that the charginos and neutralinos have very little

effect on the Higgs vertex and weak boson self energy corrections, and there is no reason
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to suppose that this will be any different for the boxes – it is expected that the result

presented here is a good approximation of the complete one loop result in the MSSM.

While studying the “pure SUSY” corrections to weak boson fusion we found differ-

ences O(0.5%) between our results and the values reported in the literature [56]. We

believe this difference to be partially caused by the implementation of the propagator

type corrections in the Higgs sector – we use Z factors at the two loop level, obtained

from FeynHiggs, to give the most complete result available. Using a specially tuned

version of our code we followed the procedure used in [56], and found good agreement.

We investigated the formfactors, cross sections and distributions for the light CP even

Higgs boson in the MSSM (i.e. including both SM particles and their superpartners). In

general – as is expected – in the decoupling regime the differences between the MSSM

predictions for the light Higgs production and the SM prediction for production of a

Higgs with the same mass are small. When we move out of the decoupling regime into

more extreme regions of parameter space, the differences between the MSSM and SM

predictions can be sizeable. In the decoupling regime, the difference between the SM

loop corrections and MSSM loop corrections is typically O(−0.3%), but in the non-

decoupling regime, with low MA, this difference was found to be up to O(−5%) in our

most complete study of the Mmax
h scenario.

Production of the other two neutral Higgs bosons was also studied in the MSSM

with real and complex parameters. Although generally these have much smaller cross

sections than the lightest Higgs boson, there are regions of parameter space where they

make a sizeable (or even dominant) contribution – here, loop corrections from the QCD

and (s)fermion corrections vary between ∼ ±5% in the Mmax
h scenario. This is due in

large part to the mixing that occurs between the Higgs bosons, which we include at Born

level via propagator corrections. Applying these propagator corrections at loop level was

found to produce significant effects in the CPX scenario, even altering the shape of the

azimuthal angle distribution in some regions of parameter space.

The results obtained in this thesis have been implemented into the public Monte

Carlo code VBFNLO, and the modified program will be made available to the community.

Using the new code, production of a Standard Model Higgs can be simulated including

the full QCD and electroweak next to leading order corrections. In addition, various

approximations can be made in order to speed up the running of the code – the elec-

troweak corrections can be set to include only top and bottom quark loops, or only

fermion loops, or the full correction.
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The new code has also been designed to study the production of neutral Higgs bosons

in the MSSM with complex parameters. The dominant SUSY one loop corrections have

been included in the program, and these can be supplemented with the two loop level

propagator type corrections in the Higgs sector, as well as the contribution from the

Standard Model box and pentagon type diagrams. The results obtained go beyond

those available in the literature, as they include loop corrections from both SUSY and

SM particles, implemented in a Monte Carlo event generator that produces cross sections

and a range of distributions. Included with the full Monte Carlo code are separate

subroutines that calculate the formfactors involved in the effective coupling between

a Higgs and a pair of weak gauge bosons. Restricting the calculation to just these

formfactors is much quicker than calculating the full 2 → 3 process, and the results of

such a calculation are often sufficient to identify interesting regions of parameter space

in the MSSM.

The process of Z boson production via weak boson fusion was also studied at the

partonic level in both the Standard Model and the MSSM. This process could be used

for calibration of Higgs production (and possibly background suppression), as it will

provide us with information about the detector performance, and the extent to which

we can identify a clear weak boson fusion signal. Electroweak corrections to Z boson

production were found to be generally smaller than those for Higgs production, although

in both cases the NLO contributions reduce the cross section.

Weak boson fusion is an interesting and important process to study for the LHC and a

future e+e− linear collider as not only does it have potential as a Higgs discovery channel,

but it also could allow us to study the properties of the Higgs boson, as well as the

mechanism of electroweak symmetry breaking. It is important that precise theoretical

predictions for this process are made, such as those presented in this thesis, to match

the expected experimental accuracy of the LHC.



Appendix A

Renormalisation constants and

counterterms in the Standard Model

As explained in Chapter 3, the sign conventions used in this thesis (following the

FeynArts conventions) for the SU(2) covariant derivative (Equation 1.3) differ between

the Standard Model and the MSSM. Chapter 3 describes the renormalisation constants

and counterterms using (in most cases) the MSSM convention. For completeness, in this

Appendix we briefly state the necessary counterterms and constants using the other,

Standard Model, convention.

A.1 Renormalisation constants

The renormalisation constants for the field and mass of the gauge bosons and fermions

are not affected by the sign of the SU(2) covariant derivative. The constant δ sin θW ,

however, becomes

δ sin θW =
1

2

cos2 θW

sin θW

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
(A.1)

Note that Chapter 3 explicitly states the necessary renormalisation constants for the

Higgs field in both the Standard Model and MSSM conventions, and so they do not need

to be stated again here.
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A.1.1 Charge renormalisation

In Chapter 3 the section describing charge renormalisation (Section 3.3.2) uses the Stan-

dard Model convention for the SU(2) covariant derivative, due to the inclusion of the

full, Standard Model calculation of the quantity ∆r. Consequently, in this section we

state the necessary constants using the MSSM convention.

When parametrising the lowest order coupling by α(0), the form of the charge renor-

malisation constant δZe is

δZe =
1

2
Πγ(0) +

sin θW

cos θW

∑T
γZ(0)

M2
Z

(A.2)

The procedure for parametrising the electromagnetic coupling by α(M2
Z), thereby shift-

ing the renormalisation constant by ∆α, and avoiding difficulties encountered whilst

calculating Πγ(0), is not altered by the change in conventions.

In this thesis, when working in the MSSM the lowest order coupling is parametrised

via the Fermi constantGF in the special case when only loop contributions from (s)fermions

are considered. In this case, the charge renormalisation constant is

δZGF ,(s)fermion
e = − δ sin θW

sin θW

− 1

2

(∑T
WW (0)− δM2

W

M2
W

)
(A.3)

A.2 Counterterms

In this section we give the counterterms needed in this work using the SM conventions

for the SU(2) covariant derivative. Note that the counterterms for the HV V vertex

are given in Chapter 3 for both the Standard Model and the MSSM (as the form of

these terms is different owing to the increased complexity of the MSSM Higgs sector)

and so are not stated here. The V V counterterm coupling is also not presented in this

Appendix, as it is unaffected by the change in convention.

Looking first at the qqV coupling between the external quarks and the weak boson,

the structure of the coupling (given in Equation 3.73) is of course unchanged, but the
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left and right handed parts of the qqW coupling are now given by

Γ0
ud̄W =

 ie√
2 sin θW

0

 (A.4)

ΓCT
ud̄W =


ie√

2 sin θW

(
δZe − δ sin θW

sin θW
+ 1

2
δZWW + 1

2

(
δZ∗

fL(d̄) + δZfL(u)
))

0

 (A.5)

The coupling between the external quarks and a Z boson is still of the form given in

Equation 3.77, but the quantities gR, δgR etc. are now seen to be

gRu = − 2

3

sin θW

cos θW

(A.6)

gRd =
1

3

sin θW

cos θW

(A.7)

gLu =
1

sin θW cos θW

(
1

2
− 2

3
sin2 θW

)
(A.8)

gLd =
1

sin θW cos θW

(
−1

2
+

1

3
sin2 θW

)
(A.9)

and

δgRu = − 2 sin θW

3 cos θW

(
δZe +

1

sin θW cos2 θW

δ sin θW

)
(A.10)

δgRd =
sin θW

3 cos θW

(
δZe +

1

sin θW cos2 θW

δ sin θW

)
(A.11)

δgLu =
1

2 sin θW cos θW

(
δZe +

(
sin2 θW − cos2 θW

sin θW cos2 θW

)
δ sin θW

)
−

2 sin θW

3 cos θW

(
δZe +

1

sin θW cos2 θW

δ sin θW

)
(A.12)

δgLd = − 1

2 sin θW cos θW

(
δZe +

(
sin2 θW − cos2 θW

sin θW cos2 θW

)
δ sin θW

)
+

sin θW

3 cos θW

(
δZe +

1

sin θW cos2 θW

δ sin θW

)
(A.13)



Renormalisation constants and counterterms in the Standard Model 155

Similarly, for the coupling l̄lZ, the form remains as in Equation 3.99, but the terms

gLν etc. are affected by the change in convention.

gRν = 0 (A.14)

gRe =
sin θW

cos θW

(A.15)

gLν =
1

2 sin θW cos θW

(A.16)

gLe =
1

sin θW cos θW

(
−1

2
+ sin2 θW

)
(A.17)

and

δgRν = 0 (A.18)

δgRe =
sin θW

cos θW

(
δZe +

1

sin θW cos2 θW

δ sin θW

)
(A.19)

δgLν =
1

2 sin θW cos θW

(
δZe +

(
sin2 θW − cos2 θW

sin θW cos2 θW

)
δ sin θW

)
(A.20)

δgLe = − 1

2 sin θW cos θW

(
δZe +

(
sin2 θW − cos2 θW

sin θW cos2 θW

)
δ sin θW

)
+

sin θW

cos θW

(
δZe +

1

sin θW cos2 θW

δ sin θW

)
(A.21)

The tree level and counterterm couplings between a neutrino, an electron and a W

boson are also affected by the sign convention for the SU(2) covariant derivative and in

the Standard Model are given by

Γ0
eν̄eW =

 ie√
2 sin θW

0

 (A.22)

ΓCT
eν̄eW =


ie√

2 sin θW

(
δZe − δ sin θW

sin θW
+ 1

2
δZWW + 1

2

(
δZ∗

fL(ν̄e) + δZfL(e)
))

0

(A.23)
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Finally, the coupling between a pair of W bosons and a Z boson with the Standard

Model convention is

Γ0
ZWW =

ie cos θW

sin θW

(A.24)

ΓCT
ZWW =

ie cos θW

sin θW

(
δZe −

δ sin θW

sin θW cos2 θW

+ δZWW +
1

2
δZZZ−

sin θW

2 cos θW

δZAZ

)
(A.25)



Appendix B

Implementation of the higher order

electroweak corrections into the

Monte Carlo program VBFNLO

“It’s not a bug, it’s a feature.”

— David Lubar

In this Appendix, we briefly describe the additions made to the existing VBFNLO

code in order to incorporate the higher order corrections. To make these additions more

transparent (and to facilitate debugging!), the additions are contained within entirely

separate subroutines and files that are simply added to the existing code’s structure.

All modifications to the existing code have been kept to a minimum, and the original

structure of the code is not affected. As has been explained previously (see Chapter 2,

Section 2.5), VBFNLO is already able to analyse WBF with anomalous couplings between

a Higgs and a pair of weak bosons (see Ref. [52] and [59]), by using the formfactor

formalism described in Section 2.4. This pre-existing structure was used in order to

incorporate the loop corrections to the Higgs vertex and the weak boson self energy.

Other corrections are included by calculating the matrix squared element.

Several options are provided for the evaluation of the NLO electroweak corrections

to Higgs production via WBF, which are detailed in Table B.1.

The user can, of course, choose whatever supersymmetric parameters they wish. For

ease of use, however, the benchmark scenarios (described in Ref. [121]) have been pre-
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Table B.1: Description of inputs to the version of VBFNLO including the results of this thesis.

input name input value description

susy Choice of which model VBFNLO will work in

1 Standard Model

2 MSSM

ivirt Choice of whether to include electroweak corrections

0 Leading order calculation only

1 Electroweak corrections included in the calculation

charge Method of parametrising the electromagnetic coupling

constant α (see Section 3.3.2)

1 Parametrised by α(0)

2 Parametrised by α(M2
Z)

3 Parametrised by GF

sector Choice of which set of corrections the code will calculate

1 Only (s)top and (s)bottom corrections

2 All (s)fermion corrections

3 All corrections (not yet available in MSSM)

bench Choice of pre-defined parameter points

1 Gluophobic Higgs benchmark

2 Mmax
h benchmark

3 No-mixing benchmark

4 Small αeff benchmark

5 CPX scenario

6 User defined scenario

7 – 16 SPS points 1a - 9, as defined in Ref. [144]

HiggsType Choice of which of the neutral Higgs bosons is produced

1 Light CP even Higgs h (or h1 in the complex MSSM)

2 Heavy CP even Higgs H (or h2 in the complex MSSM)

3 CP odd Higgs A (or h3 in the complex MSSM)

prop Choice of propagator corrections

0 No propagator corrections are included

1 U matrix is used at Born level

2 Z matrix is used at Born level

4 Z matrix is used at Born and loop level
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programmed into the code. The first four benchmarks – gluophobic, Mmax
h , no-mixing,

and small αeff – are all for the real MSSM. The mass of the CP odd Higgs boson MA and

the value of tan β are not set in these scenarios, but are input values to be chosen by the

user. All other parameters are fixed. The fifth benchmark is the CPX scenario, which

has been designed as an “extreme” scenario in the complex MSSM (Ref. [129]). Here,

tan β and the mass of the charged Higgs mH± are taken as free parameters, and the

other parameters have been chosen to maximise the effects of complex phases. Also, the

SPS benchmark points [131], as described in Ref. [144], have been included as options in

the modified VBFNLO. When working in the Standard Model, if a set of supersymmetric

parameters has been defined, the Higgs sector is calculated by FeynHiggs (see Section

3.4) and the Standard Model Higgs mass and width are set to equal those of the chosen

MSSM Higgs. Alternatively, the Standard Model Higgs mass and width can be input

straight into the code, bypassing FeynHiggs entirely.

As stated earlier, the additions to the code are primarily in the form of new, separate

subroutines, which are called from the main, original code. These new subroutines are

contained in the following files.

parameters.F contains subroutines that set and calculate all the parameters of the

chosen parameter point (defined by the input bench). These parameters (and in particu-

lar those of the Higgs sector – the masses of each Higgs boson and the matrix containing

propagator corrections) are calculated using calls to FeynHiggs. This file also contains

subroutines that calculate all necessary renormalisation constants in either the Standard

Model or the MSSM, for whichever particles the user has chosen to include (using the

input sector), and whichever parametrisation of the electromagnetic coupling has been

input. It is here that the renormalisation and regularisation parameters (the UV diver-

gence, and the regulatory quark and photon masses - see Chapter 3) are set, and can be

varied in order to check that the final result is finite.

The file virtual.F is the interface to the subroutines that calculate the loop cor-

rections. It calls and combines the individual parts of the formfactors for either the

Standard Model or the MSSM, and feeds these values back into the main code. It also

provides the connection to subroutines calculating the matrix element squared values for

the boxes and pentagons, converting the necessary momentum information into a suit-

able format. Importantly, both procedures for treating the IR divergences are stored in

this file (see Chapter 3, Section 3.6). By default (as stated in the text), the subtraction

method is used, but this can be (manually) altered to the phase space slicing method in

order to provide an additional check on the procedures.
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Finally, the file formfactors.F, together with mat elNC+.F and mat elCC+.F, calcu-

lates the formfactors and the matrix elements for the boxes and pentagons for neutral and

charged currents respectively. formfactors.F also contains the calculation of the coun-

terterm coupling between the external quarks and the internal weak boson, which is used

if only the contribution arising from (s)fermions are being considered (if the complete

one loop corrections.are being studied, these are implemented via 2 Re|M∗
treeMloop|).



Appendix C

Example formfactor calculation

In this Appendix we explicitly calculate the top quark loop diagrams (involving the

coupling tt̄H) to the V + V → H interaction in order to see where each component of

the anomalous coupling T µν originates, recalling that:

T µν(q1, q2) = a1(q1, q2)g
µν +

a2(q1, q2) (q1.q2g
µν − qµ

1 q
ν
2 ) +

a3(q1, q2)ε
µνρσq1ρq2σ (C.1)

The formfactors for the HV V coupling involve Feynman diagrams of the type shown

in Figure C.1 for the W and Z bosons.

W

W

b

t

t

H

(a)

Z

Z

t

t

t

H

(b)

Z

Z

t

t

t

H

(c)

Figure C.1: Top quark loop correction diagrams to the HV V coupling.
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These all have the same general form, for which the relevant part (for the formfactor

calculation) is the trace:

Tr[X] = Tr

[
(mt + ��k)

(
−iemt

MW sin θW

)
(mt + �q) γ

µ (A+Bγ5) (mx + ��Q)

γν (A+Bγ5)]

Here, mx signifies the mass of the bottom quark mb for the HWW coupling, and the

mass of the top quark mt for HZZ. k, q and Q are the momenta of the three particles

in the loop. Additionally, A and B are the left- and right-hand pieces of the coupling

qq̄V (i.e. Γqq̄V = Aγµ +Bγµγ5). Discarding the constant coefficients, this leads to

Tr[X] = Tr
[(
m2

t +mt(��k + �q) + ��k�q
)
(Aγµ +Bγµγ5) (mxγ

ν + ��Qγ
ν) (A+Bγ5)

]
= Tr

[(
Am2

tγ
µ +Bm2

tγ
µγ5 + Amt(��k + �q)γ

µ +Bmt(��k + �q)γ
µγ5+

A��k�qγ
µ +B��k�qγ

µγ5) (Amxγ
ν +Bmxγ

νγ5 + A��Qγ
ν +B��Qγ

νγ5)]

= Tr
[
A2m2

tmxγ
µγν + ABm2

tmxγ
µγ5γ

ν+

A2mtmx (��k + �q) γ
µγν + ABmtmx (��k + �q) γ

µγ5γ
ν+

A2mx��k�qγ
µγν + ABmx��k�qγ

µγ5γ
ν+

BAm2
tmxγ

µγνγ5 +B2m2
tmxγ

µγ5γ
νγ5+

BAmtmx (��k + �q) γ
µγνγ5 +B2mtmx (��k + �q) γ

µγ5γ
νγ5+

BAmx��k�qγ
µγνγ5 +B2mx��k�qγ

µγ5γ
νγ5+

A2m2
tγ

µ
��Qγ

ν + ABm2
tγ

µγ5��Qγ
ν+

A2mt (��k + �q) γ
µ
��Qγ

ν + ABmt (��k + �q) γ
µγ5��Qγ

ν+

A2
��k�qγ

µ
��Qγ

ν + AB��k�qγ
µγ5��Qγ

ν+

BAm2
tγ

µ
��Qγ

νγ5 +B2m2
tγ

µγ5��Qγ
νγ5+

BAmt (��k + �q) γ
µ
��Qγ

νγ5 +B2mt (��k + �q) γ
µγ5��Qγ

νγ5+

BA��k�qγ
µ
��Qγ

νγ5 +B2
��k�qγ

µγ5��Qγ
νγ5

]
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where, as is normal, �q = qργ
ρ. Recalling the standard relations for the traces of the

gamma matrices:

Tr [γµγν ] = 4gµν

Tr [γµγνγ5] = 0

Tr [odd number of γ] = 0

{γ5, γ
µ} = 0

γ2
5 = 1

Tr [γµγνγργσ] = 4 (gµνgρσ − gµρgνσ + gµσgνρ)

Tr [γµγνγργσγ5] = −4iεµνρσ (C.2)

we see that most of the terms in the trace vanish and we are left with

Tr[X] = Tr
[
m2

tmx

(
A2 −B2

)
γµγν +

(
A2 −B2

)
mx��k�qγ

µγν+(
A2 +B2

)
mt (��k + �q) γ

µ
��Qγ

ν + 2ABmt (��k + �q) γ
µ
��Qγ

νγ5

]
(C.3)

Focussing first on the HWW loop diagrams, the coupling bt̄W is given by (ignoring

universal constant factors)

A = 1

B = −1

This means that, for momenta pρ, qσ and Qα the trace reduces to:

Tr[X] =
∑

β=ρ,σ

8mt

(
gµβgαν − gβαgµν + gβνgµα − iεβµαν

)
jβQα

This expression can clearly be seen to lead to the three components of the general

coupling T µν : the second term (in red) leads to contributions to the formfactor a1, the

first and third terms (in blue) contribute to a2, and the final term (in green) to a3.

Moving on to the calculation of the ZZH loop, the coupling tt̄Z for Figure C.1(b)

is defined by:

Γtt̄Z =
2ie sin θWγ

µ

3 cos θW

(1− γ5)−
ie

sin θW cos θW

(
1

2
− 2 sin2 θW

3

)
γµ (1 + γ5)



Example formfactor calculation 164

This leads to (again, ignoring universal factors)

A =
4 sin θW

3
− 1

2 sin θW

B = − 1

2 sin θW

When adding the diagrams in Figure C.1(b) and C.1(c) together, we must remember

that the fermion flow in Fig. C.1(b) is opposite to that in Fig. C.1(c) – this means that

the final AB term in Equation C.2 vanishes when Figures C.1(b) and C.1(c) are added

together. See also the FeynArts manual and Ref. [145].

Substituting these values into the general form of the trace (Equation C.2), we arrive

at

Tr[X] = 2Tr

[
m3

t

(
16 sin2 θW

9
+

1

2 sin2 θW

− 4

3

)
γµγν +mt

(
16 sin2 θW

9
− 4

3

)
��k�qγ

µγν

mt

(
16 sin2 θW

9
+

1

2 sin2 θW

− 4

3

)
(��k + �q) γ

µ
��Qγ

ν

]
= 8m3

t

(
16 sin2 θW

9
+

1

2 sin2 θW

− 4

3

)
gµν +

8mt

(
16 sin2 θW

9
− 4

3

)
kkqq

(
gkqgµν + gkµgqν − gkνgqµ

)
+

8mt

(
16 sin2 θW

9
+

1

2 sin2 θW

− 4

3

)
kkQQ

(
gkµgQν + gkQgµν − gkνgµQ

)
+

8mt

(
16 sin2 θW

9
+

1

2 sin2 θW

− 4

3

)
qqQQ

(
gqµgQν + gqQgµν − gqνgµQ

)
(C.4)

The contribution to a3 from quark loops at the HZZ vertex is thus exactly zero, as the
opposite fermion flow around the loops in the two diagrams causes the a3 terms to have
opposite signs.
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Colophon

This thesis was made in LaTeX, using the hepthesis class [146]. Graphs were produced

using gnuplot [147] and Compare [148], a ROOT [149] interface.
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