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ABSTRACT 

Assessing the importance of river bank erosion for fine sediment delivery 
to Bassenthwaite lake 

Jonathan Hopkins 

Available evidence from lake sediment core records and short-term 

sediment flux sampling programs has suggested increased fine sediment 

deposition and suspended sediment transfers to Bassenthwaite Lake, Cumbria, 

U.K over recent decades. This increase in sedimentation has been associated 

with a decline in water quality in the lake which is thought to have had serious 

consequences for the population of the vendace (Coregonus albula), which also 

declined markedly during the 1990s and into the 21st Century. Recent studies of 

sediment delivery risk in the catchment have suggested that there are potentially 

large sediment sources in the lowland river network, especially the River Derwent 

between Derwent Water and Bassenthwaite Lake. 

The aim of this research is to describe the characteristics of fluvial 

suspended sediment transfers to Bassenthwaite Lake through direct monitoring 

of the River Derwent and Newlands Beck (at the head of Bassenthwaite Lake) in 

order to assess the potential contribution of river bank erosion on the lowland 

River Derwent to fine sediment delivery. 

Three suspended sediment monitoring stations at Portinscale and Low 

Stock Bridge on the River Derwent and at Newlands Beck Bridge are used to 



assess changes in sediment transport along these important river reaches. The 

potential contribution of river bank erosion to fluvial sediment delivery was 

assessed by river bank mapping and surveying of erosion features on the 5.7km 

reach of the River Derwent between Derwent Water and Bassenthwaite Lake, 

along with a detailed study of morphological change on three river banks near 

Low Stock Bridge using a terrestrial laser scanner. 

V 

The main findings of this project suggest that the River Derwent dominates 

suspended sediment transfers to Bassenthwaite Lake. The fine sediment load 

transported on the Derwent is over five times greater than that of Newlands Beck 

and the mean suspended sediment concentration on the lower Derwent is 56% 

higher than that on Newlands Beck. Specific catchment sediment yields for the 

River Derwent and Newlands Beck, based on effective drainage area, are 50.87 t 

km2 a-1 and 35.72 t km2 a-1 respectively. A high proportion of all suspended 

sediment transfers in the lowland Bassenthwaite Lake catchment were observed 

to occur in high-magnitude, low-frequency flow events, with approximately two­

thirds of total suspended sediment transport occurring in just over 10% of the 

time. There is also direct evidence for increased fine sediment supply on the 

lowland River Derwent, as an estimated 1,158 t a-1 increase in the overall 

sediment load was observed on the 3. 7 km reach of the Derwent between 

Portinscale and Low Stock Bridge. Hysteresis analysis and analysis of 

suspended sediment transfers during high flow events on the Derwent support 

this hypothesis. Overall, 21.1% of all river banks on the River Derwent were 



VI 

assessed as eroded, with 9.4% of banks undergoing active river bank erosion. 

Therefore, it is suggested that river bank erosion is a significant fine sediment 

source in the lowland Bassenthwaite catchment, and that it is responsible for a 

large proportion of sediment inputs on the lowland River Derwent (c. 18.9%), and 

ultimately to Bassenthwaite Lake. 
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CHAPTER ONE 

INTRODUCTION AND PROJECT AIM 

Lake sedimentation results from several factors including the physical 

nature of the catchment upstream of the lake (its geography and geology), 

human modifications to natural land use patterns, sources of fine sediment and 

river hydrology, as well as the dynamics of sediment movement in the lake itself 

(Figure 1.1 ). At Bassenthwaite Lake, increased fine sediment deposition during 

the 20th Century to the present day (Section 1.4) is thought to be the result of 

increases in suspended sediment transfers from the catchment upstream of the 

lake. 

The decline in water quality at Bassenthwaite Lake has led to significant 

ecological problems, including the dramatic decline in population of a rare 

species of freshwater fish, the vendace (Coregonus a/bula) (Table 1.2). lt is 

hypothesised that much of the deterioration in water quality is a result of 

increased fine sediment delivery. However, there are significant uncertainties as 

to the nature of suspended sediment transfers in the lowland Bassenthwaite Lake 

catchment, in particular overall sediment loads, the relative importance of the 

River Derwent and Newlands subcatchments, and the spatial distribution of fine 

sediment sources in the catchment. Additionally, recent studies of sediment 

supply risks in the catchment have suggested that the increasing suspended 

sediment input to Bassenthwaite Lake may be caused by greater sediment fluxes 



from the lowland catchments, and that sediment delivery risks in these areas are 

high (Orr et al. 2004). 

The aim of this research project is to describe the characteristics of fluvial 

suspended sediment transfers to Bassenthwaite Lake through direct monitoring 

of the River Derwent and Newlands Beck (at the head of Bassenthwaite Lake) in 

order to assess the potential contribution of river bank erosion on the lowland 

River Derwent to fine sediment delivery. 

This chapter describes Bassenthwaite Lake and its catchment (Sections 

1.1, 1.2) and the present ecological problems in the lake (Section 1.3) that are 

thought to result from a decline in water quality, partly as a result of increased 

sediment deposition (Section 1.4) as well as increased nutrient contents of the 

lake (Section 1.5). The main research questions are outlined at the end of the 

chapter (Section 1.6). 

2 
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Figure 1. 1: Factors which influence the nature of lake sediments and 
sedimentation. Adapted from HI!Jkanson and Jansson (2002). 

1.1 Lake and catchment characteristics 

Bassenthwaite Lake (Figure 1.2) is located in the Lake District, Cumbria, 

3 

I 

and is the most northerly of its major lakes, situated c. 5km to the north-west of 

the town of Keswick. The lake's importance as an ecological habitat, especially to 

the rare vendace (Coregonus albula), is discussed below, and provides the main 

justification for this project. 
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Figure 1.2: Aerial photograph of Bassenthwaite Lake, looking north-west along 
the lake from above Portinscale. The A66 road is visible on the west (left) side of 
the lake. The two main watercourses flowing into the lake are visible flowing 
across the wide floodplain. The River Derwent is visible on the far right of the 
photograph, flowing into the lake to the east of its former delta. Newlands Beck is 
visible flowing in an enclosed channel through the large area of marshes in the 
centre of the f/oodplain. 

Bassenthwaite Lake is notable for having the largest catchment area of 

any of the Lake District's lakes (347 km2
). lt has two main tributaries, the River 

Derwent and Newlands Beck which flow into the south end of the lake, as well as 

minor tributaries including Chapel Beck and Dash Beck which flow into the north-

east sector of the lake. The River Derwent has a much larger total catchment 

area (235 km2 upstream of Portinscale) than Newlands Beck (33.9 km2 upstream 



of Newlands Bridge) (source: National River Flow Archive), and comprises the 

dominant hydraulic input to Bassenthwaite Lake, accounting for c. 80% of the 

total water input (Hall et al. 2001 ). The Derwent has an estimated daily hydraulic 

load of 1 ,097 million litres, compared with loads of 136.9 million litres from 

Newlands Beck and 49.2 million litres from Chapel Beck (Beattie et al. 1996). 

The River Derwent flows from Borrowdale, collecting water from a large area of 

the Lake District's central fells (Figure 1.3). The river flows into Derwent Water, 

and at Portinscale the Derwent has a confluence with its major tributary, the 

River Greta at NY 256 236, before meandering across a wide floodplain and 

flowing into Bassenthwaite Lake. Between the two lakes, the Derwent is 5. 7 km 

long (Figure 1.3). The Greta is a large river in its own right, which drains the 

western and northern slopes of the Helvellyn range, Thirlmere reservoir and a 

large area of the northern fells around Blencathra. Newlands Beck carries the 

drainage of the Newlands Valley, Coledale and several subsidiary valleys of the 

Crag Hill and Dale Head ranges. Chapel Beck drains an area of the fells to the 

north of the Skiddaw massif. 

5 
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Figure 1. 3: Map of the Bassenthwaite Lake catchment showing principal 
settlements, lakes, rivers and mountains, with its position in Northern England 
indicated (top right). 

The main features of Bassenthwaite Lake are summarised in Table 1.1. 

The lake's most notable characteristic is its shallowness, having the smallest 

maximum depth of the major lakes in the region (20 m). The majority of the lake 

basin (66%) is below 5 m in depth (Reynolds 1999), with the northern and 

6 



7 

southern reaches being especially shallow (Ramsbottom 1976). Combined with 

the high volume of water entering the lake, this leads to a regular replacement of 

lake waters, with an average residence time of only 19 days (Reynolds 1999, 

Maberly and Elliot 2002). The shallowness of the lake means that its water level 

has recorded rises of up to 1 m during floods (Stokoe 1983), and renders the lake 

more vulnerable to sedimentation than deeper, higher volume water bodies. 

Bassenthwaite Lake 
Altitude 
Area 
Depth 
Catchment area 
Mean annual hydraulic discharge 
Mean hydraulic residence time 

69m 
5.28 km2 

maximum 20 m, mean 5.3 m 
347 km2 

544,000,000 m3 a-1 

19 days 

Table 1.1: Hydrometrica/ and limnological characteristics of Bassenthwaite Lake. 
Adapted from Reynolds (1999). 

The catchment of Bassenthwaite Lake is dominated by high mountains 

and upland moors. Large areas of the catchment watershed are in excess of 800 

m in height; including Helvellyn (950 m), Skiddaw (931 m) and Blencathra (868 

m), as well as the mountains at the head of Borrowdale and the large area of fells 

to the west of Derwent Water. There are extensive areas of peat moorland in the 

catchment, including the broad ridge between Derwent Water and Thirlmere and 

the moors to the north of Skiddaw. The catchment is dominated by upland areas, 

as open (non-enclosed) fellside covers some 54% of the total catchment area 

(Orr et al. 2004). 



1.2 Geology and glaciation 

Geologically, Bassenthwaite Lake is underlain by Skiddaw slates. These 

are the oldest exposed rocks in the region (Moseley 1978), and were formed 
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c. 500 million years ago. Such rocks are easily eroded, and this characteristic 

has led to the fells in the Skiddaw slate ranges having characteristically smooth 

slopes, with extensive talus and scree deposits. This is especially notable on 

Skiddaw itself and the Grisedale Pike and Eel Crag ranges (Figure 1.3). The 

landscape in the northern part of the catchment is in great contrast to the uplands 

in the region of Borrowdale and the central Lake District fells. This area is 

characterised by a spectacular landscape of high relief, with steep slopes and 

exposed rocks. This is as a result of the more erosion-resistant Borrowdale 

Volcanic rocks composed of andesitic lavas, fine-grained tufts and pyroclastic 

deposits that are the remnants of a volcanic dome which formed c. 50 million 

years ago (Moseley 1978, Smith 1992). The steep slopes are associated with 

poor soils, slope instabilities and extensive areas of bare ground, which leads to 

a high potential for sediment delivery from these areas (Orr et al. 2004). 

The upland areas of the catchment comprise an excellent example of a 

formerly glaciated landscape. There is some debate about the maximum depth of 

ice over the Lake District, but a mapping of weathering limits in the central fells 

suggested a maximum ice depth of c. 870 m during the Last Glacial Maximum (c. 

21 ka BP) (Lamb and Ballantyne 1998). Although the ice was of significant depth, 

and confluent with Scottish ice sources, the Lake District maintained a 



topographic control over ice flow directions, leading to a radial ice discharge 

pattern and several U-shaped valleys descending from what is today the central 

Scafell massif. Glacial scouring led to the production of overdeepenings, which 

are today occupied by lakes. Furthermore, classic glacial features including 

carries are in evidence on the high fells, largely formed during the shorter cold 

period of the Younger Dryas/Loch Lomond Stadial (12.9-11.5 ka BP) (Sissons 

1980, McDougall 2001 ). Also, large volumes of alluvium and debris were 

deposited across the lowlands, creating expanses of low relief that formed the 

basis of floodplain development. Paraglacial slope processes (Ballantyne 2002) 

and fluvial erosion have been important agents of morphological change in the 

region since deglaciation (Boardman 1992, Wilson 2005), notably the formation 

of floodplains by overbank flooding that continues to the present day. Therefore, 

an ongoing transfer of sediment from the catchment uplands to lowland areas is 

occurring, largely through fluvial transport. 

1.3 Lake ecology and vendace decline 

9 

Bassenthwaite Lake is a National Nature Reserve and a Grade 1 Site of 

Scientific Interest. Extensive ecological monitoring of the lake has taken place 

over the last 50 years, and particularly since the 1990s to present, due to growing 

concerns for the population of the freshwater vendace (Table 1.2 below). In 

addition to the vendace, 10 species of fish have been recorded in recent surveys 

of the lake (Thackeray et al. 2006) although the lake is home to few 'native' 

British fish (Winfield and Durie 2004). 
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The vendace (Coregonus albu/a) is a medium-sized coregonid fish which 

is found across Northern European regions, especially Scandinavia, although it is 

very rare in the United Kingdom. Up until the mid-20th Century the fish was found 

in four lakes in the UK, with well-documented populations in south-west Scotland 

at Castle Loch and Mill Loch (Maitland 1966) in addition to the populations in 

Bassenthwaite Lake and Derwent Water. However, the two Scottish populations 

are now thought to be extinct (Winfield et al. 1998) meaning that the two Lake 

District lakes now comprise the only habitat for vendace in the country. The fish 

have a narrow habitat preference, which includes the need for low water 

temperatures (Hamrin 1986), high concentrations of dissolved oxygen 

(Dembinski 1971) and a clean substrate in spawning areas (Wilkonska and 

Zuromska 1992). Threats to the species include its predation by larger species, 

including the roach (Auvinen 1988, Winfield and Durie 2004). However the 

dominant threat to the fishes survival in Bassenthwaite Lake is declining water 

quality, especially increased inorganic fine sediment delivery (Section 1.4), as 

well as increases in nutrients and phosphorus concentrations (Section 1.5). 

Sedimentation in vendace spawning gravels is critical to controlling the vendace 

population, as sediment deposition in such areas prevents the passage of 

oxygenated water to incubating fish eggs, preventing spawning (Greig et al. 

2005). Additions of nutrients to the lake (especially phosphorus) can lead to the 

excessive growth of algae and lake plants, causing eutrophication, which greatly 

reduces the dissolved oxygen content of the water, which constitutes an essential 
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requirement for vendace spawning and survival (Dembinski 1971, Winfield et al. 

2004). 



Study 

Regan 1908 
Maitland 1966 
Broughton 1972 
Mubamba 1989 

Atkinson et al. 1989 

Winfield et al. 1994 

Winfield et al. 1996 

Winfield et al. 1998 

Winfield et al. 2002 

Winfield et al. 2004 

Lyle et al. 2005 

George et al. 2006 

Population details 
First record of species' presence in Bassenthwaite Lake. 

Thriving population. 

Good population, though limited data. 
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Good population although decline in numbers of juveniles and 
young fish - possible link with increased sedimentation from 
the building of the ASS Keswick bypass in the 1980s. 

Large population, "several tens of thousands of fish", but notes 
vulnerability to eutrophication and siltation. "All the evidence 
suggests that continued increases in nutrient loading ... will 
lead inexorably to the extinction of this population (of 
vendace)" 

Population status unclear (initial study in June 1992 suggested 
dominant age group= 4-5 years old, November 1992 study 
suggested dominant class = 2 years old}, but large amounts of 
organic material, siltation of gravel beds and absence of 
macrophytes renders vast majority of lake poorly suited to 
vendace spawning. 

Poor population status. Notably aging population (poor 
recruitment to post-juvenile population, SOO,.{, of all fish age 4 
years}. Low density of post-juvenile vendace when compared 
with sites in Scandinavia. 
Study of spawning grounds suggested poor conditions and 
widespread siltation, reliance upon limited growth of 
macrophytes to provide conditions for spawning rather than 
suitable sediments, need for "direct intervention" to arrest 
population decline. 

Continuing aging of population (all but one of vendace 
sampled S years or older}, decline of numbers resulting from 
siltation of spawning beds and predation (roach}. 

High inter-annual variability in numbers but marked decline in 
population of post-juvenile vendace from in excess of 250,000 
(2000-2001} to less than 100,000 (2002} and less than 50,000 
(2003}. 

Concern for future of vendace in the catchment, attempts to 
translocate population to Bowscale Tarn and other sites. 

Habitat for vendace in Bassenthwaite Lake is now extremely 
limited. 

Table 1.2: A summary of the literature on vendace populations in Bassenthwaite 
Lake and the condition of vendace spawning beds. 
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The studies and surveys summarised above (Table 1.2) indicate a 

dramatic population decline and a markedly deteriorating habitat in 

Bassenthwaite Lake. The population appears to have been healthy until around 

1990, and the studies by Mubamba and Atkinson et al. in 1989 were the first to 

indicate an aging population structure and the increased vulnerability of the 

species to habitat changes, despite the continuing strong population numbers. 

From 1990, regular research was carried out by Winfield and others at the 

Institute of Freshwater Ecology, and throughout the 1990s the population was 

seen to decline with continued aging and low recruitment of young vendace, as a 

result of the extensive sedimentation of spawning beds, leading to an over­

reliance on macrophytes as spawning areas as a result of the lack of suitable 

gravels (Winfield et al. 1998). Over the current decade, the deterioration in the 

vendace populations has continued, with recent studies raising severe concerns 

for the continued survival of the species in Bassenthwaite Lake. This has led to 

an interest in monitoring sedimentation in the lake and sediment delivery from the 

lowland catchment (Section 1.4). 

1.4 Sedimentation rates in Bassenthwaite Lake 

Despite concerns over sedimentation in the catchment, there have been 

relatively few surveys of historical sedimentation rates. Sediment cores have 

been extracted from the lake, providing longer-term records of the past few 

hundred years (e.g. Cranwell et al. 1995, Bennion et al. 2000). Such records 

have provided the most useful information of historical sedimentation rates. The 
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former study used a range of 1 m cores in the deepest part of the lake, and 

carried out diatom analysis as well as isotopic dating. lt suggested an increase in 

sedimentation rates from 0.05 g cm a-1 in the late 19th Century to 0.11 g cm a-1 at 

the present day, along with a decline in water quality. There were correlations 

between periods of railway construction and mining activity with peaks in the 

sediment accumulation rate. Similar overall sedimentation rates were discovered 

by Bennion et al. (2000) who used radiometric dating to analyse changes in 

sedimentation rates, and observed a large increase in accumulation over the first 

40 years of the 20th Century (from 0.05 g cm a-1 to 0.14 g cm a-1
), with the 

increased rate sustained to around the present day (mean rate c. 0.1 g cm a-1
). 

Diatom analysis of this core suggests a reduction in the lake's oxygen levels 

during the same period, supporting the increased sedimentation and also 

possible eutrophication. These longer term studies are by far the most useful 

records of sedimentation rates in Bassenthwaite; shorter-term studies (e.g. 

Parker et al. 1999, Hall et al. 2001) are inconclusive and show large variations in 

sediment accumulation over a relatively short period of time. 

There is some uncertainty as to the overall suspended sediment load 

being carried to the lake by rivers. This is largely due to the short-term nature of 

most river sampling, and the use of inadequate sampling methods that do not 

account for the large volumes of suspended sediment transferred during high 

flow events. However, turbidity monitoring carried out during 2006 for this project 

suggests that the River Derwent dominates the suspended sediment input to the 
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lake (Chapter 4). The use of automatic river water samplers and continuous 

turbidity monitoring has led to an arguably more reliable record than that of 

Parker et al. (1999) whose load calculations were based upon fortnightly samples 

only. Controversially, Hatfield and Maher (2006) have used magnetic 

fingerprinting to argue that Newlands Beck is the main source of sediment 

delivery to Bassenthwaite Lake, arguing that the tributary is transport-dominated 

in comparison with the River Derwent, whose channel and floodplain are storage 

areas for large quantities of sediment. A further hypothesis has suggested that 

sedimentation in the lake basin is a result of fine sediment mobilisation from the 

lake itself, as a result of gale-force winds (Parker et al. 1999). However, the 

majority of the studies described in this section argue that sources of fine 

sediment in the catchment upstream of the lake are most important to the 

increased sedimentation rate, and these sources comprise the focus of this 

project. 

1.5 Nutrients in Bassenthwaite Lake 

Studies of the nutrient status of the water have also been undertaken as 

the removal of dissolved oxygen from the lake by eutrophication (as a result of 

nutrient addition and excessive algal/plant growth) significantly affects the 

vendace population (Dembinksi 1971, Winfield et al. 2004). Atkinson et al. (1989) 

compiled a record of lake surveys between 1920 and 1988 which showed 

increasing concentrations of nitrate-nitrogen and phosphorus in the lake (Table 

1.3), suggesting worsening eutrophication. This corresponds well with longer-
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term sediment records of the lake, whose diatom records suggest a change from 

mesotrophic to eutrophic conditions since 1900 (Cranwell et al. 1995). The 

overwhelming source of phosphorus to the lake in recent years has been 

Keswick Waste Water Treatment Works, which provided nearly 78% of total 

phosphorus load to Bassenthwaite Lake in 1993 (Thackeray et al. 2006). In 1995 

a treatment scheme was implemented at the works, and there is evidence of a 

slight improvement in water quality, suggested by increased Secchi disk depths 

and a reduction in annual phosphorus maxima (Reynolds et al. 2002, Thackeray 

et al. 2004, Maberly et al. 2004, 2006). Now, around 50% of total phosphorus 

input to Bassenthwaite comes from catchment sources (Orr et al. 2004), 

potentially through the erosion of field drains and livestock poaching (Oils and 

Heathwaite 2000). An advantage of the shallow Bassenthwaite Lake is the 

regular turnover and replacement of lake waters (Table 1.1) although this has not 

prevented the phosphorus concentration increase. The impact of such nutrient 

loading has been an increase in populations of phytoplankton, diatoms and algae 

(e.g. Reynolds et al. 1998, 2000), a phenomenon also noted in Derwentwater 

with phytoplankton increases (Maberly et al. 2006). There is little evidence 

however that oxygen concentrations are declining in Bassenthwaite, although 

Thackeray et al. (2004) did note that oxygen concentrations at depth remained 

low in 2004 (<1 mg r1
) for longer than recorded previously. 



Surve~ ~ear Total N03-N (l~g 1",) Total P {l~g r,} 
1928 91.9 2.1 
1946 
1949 151 1 
1955-1956 252 
1971 0.85 
1974-1976 224 
1984 390 1 
1987-1988 370 5 

Table 1.3: Generally increasing nitrate-nitrogen and phosphorus concentrations 
in Bassenthwaite Lake as shown by surveys through the 2(jh Century. Adapted 
from Atkinson et al. (1989). 

1.6 Project aim and research questions 
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The overall aim of this research is to describe the characteristics of fluvial 

suspended sediment transfers to Bassenthwaite Lake through direct monitoring 

of the River Derwent and Newlands Beck (at the head of Bassenthwaite Lake), 

and to assess the potential contribution of river bank erosion on the lowland River 

Derwent to fine sediment delivery. Therefore, the two key research questions are: 

1. What are the characteristics of suspended sediment transfers to 

Bassenthwaite Lake? 

2. To what extent does river bank erosion constitute an important fine 

sediment source on the lowland River Derwent? 

To answer the first research question, the nature of suspended sediment 

transfers on the River Derwent and Newlands Beck had to be assessed, with 

reference to the overall characteristics and spatial variations in suspended 
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sediment transport as well as the calculation of overall sediment loads. The 

second question required an analysis of the overall extent and characteristics of 

river bank erosion on the River Derwent. The following literature review (Chapter 

2) considers the potential suspended sediment sources within the Bassenthwaite 

catchment, including an analysis of the evidence for river bank erosion in the 

lowland catchment and an overview of river bank erosion processes in temperate 

catchments, which was used to plan an appropriate methodology and set of field 

techniques (Chapter 3) to collect data and address the research questions 

above. Results and analysis are reported in Chapter 4. The thesis concludes with 

Chapter 5 and includes recommendations for further research. 
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CHAPTER TWO 

LITERATURE REVIEW 

As the aims of this project are to assess suspended sediment transfers to 

Bassenthwaite Lake and the importance of river bank erosion as a source of fine 

sediment (Section 1.6), this literature review aims to review the current state of 

knowledge in these areas. Section 2.1 outlines the importance of fine sediment 

sources within the Bassenthwaite Lake catchment to suspended sediment 

transfers to the lake itself, and describes the importance of processes of fell 

erosion (Section 2.1.1) and sediment delivery from different land uses (Section 

2.1.2). Section 2.2 describes the evidence for widespread, active river bank 

erosion on the River Derwent. Section 2.3 describes the precipitation input to the 

catchment. Section 2.4 comprises a detailed discussion of the processes and 

mechanisms of river bank erosion, factors influencing river bank stability, 

temporal and spatial trends in bank erosion rates and an analysis of the potential 

contribution of river bank erosion to sediment budgets. 

2.1 Assessment of fine sediment sources within the Bassenthwaite Lake 
catchment 

As a result of the increased sedimentation rate in Bassenthwaite Lake 

observed during the 20th Century (Section 1.4) and the resulting decline in water 

quality and decrease in vendace population (Section 1.3), there has been an 

increase in interest in potential sources of fine sediment in the Bassenthwaite 



20 

Lake catchment. Figure 2.1 shows that sediment sources within the catchment 

are created through the interaction of climate (in particular precipitation inputs), 

the physical characteristics of the catchment, and land use changes. These 

sediment sources become suspended sediment inputs where they interact with 

the fluvial system and are able to be transported by the stream and river network. 

River bank erosion, along with channel erosion, comprises a further suspended 

sediment input. The ecological problems within Bassenthwaite Lake and the 

decline in the vendace population (Section 1.3) result from the deposition and 

storage of this fine sediment in the lake. Lake erosion, and resuspension of fine 

sediment from the lake bed, also produce fine sediment which may be stored or 

transported out of Bassenthwaite Lake (Figure 2.1 ). Therefore, the interactions 

between fine sediment sources and the fluvial system are very important to the 

ecology of Bassenthwaite Lake, but are presently poorly understood, in particular 

the relative importance of individual sediment sources and the contribution of 

suspended sediment from individual sub-catchments, which has been identified 

as a research need (Orr et al. 2004). Previous studies have identified sediment 

losses from source areas but have been unable to determine how much reaches 

Bassenthwaite Lake, and over what time duration. The bank erosion on the lower 

River Derwent was thought to be a potentially significant direct source of fine 

sediment to lake shore gravels and vendace spawning sites. The results from 

newly established suspended sediment monitoring sites and some novel 

approaches to surveying bank erosion are used in this study in an attempt to 

quantify the contribution to overall sediment delivery along the reach of the 
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Derwent immediately upstream of Bassenthwaite Lake. By quantifying 

suspended sediment transfers to Bassenthwaite Lake from the River Derwent 

and Newlands Beck sub-catchments, and further analysing the specific 

contribution of river bank erosion to the sediment budget, it is hoped that this 

project will lead to a greater understanding of fine sediment transfers in the 

Bassenthwaite Lake catchment and therefore inform mitigation measures which 

could be used to reduce fine sediment delivery to the lake. 
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Figure 2. 1: The relationships between fine sediment sources, suspended 
sediment inputs and transfers, the fluvial system and the ecological problems in 
Bassenthwaite Lake. 
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The geomorphological assessment of the Bassenthwaite Lake catchment 

by Orr et al. (2004) suggested that both natural sediment sources and land use 

changes have the potential to provide fine sediment to Bassenthwaite Lake 

(Table 2.1 ). River bank erosion was assessed to be a particularly significant 

source of sediment to the lake, due to the large volume of erosion described as 

taking place and the direct connection to the channel network; although a much 

larger amount of erosion was taking place on the fells, the remoteness of much of 

this erosion from the fluvial system meant that fell erosion was only likely to be a 

significant sediment source to the lowland catchment over longer timescales 

(Table 2.1 ). 

Sediment source 

Fell erosion 
Bank erosion 
Field drainage 
Mine waste 

Quantity (m3
) 

(2004 study) 

4,000,000 
15,000 
Unknown 
10,000 

Direct 
connection to 
channel 
network? 
No 
Yes 
Yes 
Yes 

Impact on 
sedimentation of 
the lake 

Significant* 
Significant 
Significant 
Less significant 

Table 2. 1: A summary of some fine sediment sources and their potential impact 
on the sedimentation of Bassenthwaite Lake, with river bank erosion highlighed. 
*- over longer timescales. Adapted from Orr et al. (2004). 

While catchment fine sediment sources (located upstream of 

Bassenthwaite Lake) are now known to be highly significant to sedimentation rate 

increases, the effects of lake bed erosion have also been thought to be 

significant in fine sediment mobilisation (e.g. Parker et al. 1999). Wave erosion of 

the lake floor is thought to be facilitated by the long fetch of northerly winds, and 

encouraged by the shallowness of large areas of the lake. Additionally, gale-force 



southerly winds with speeds in excess of 20 m s-1 could affect the bed of the 

shallow southern parts of the lake (Parker et al. 1999). Such mechanisms and 

processes are thought to operate in other shallow lakes (Hilton 1985, Bloesch 

1995). The lake's susceptibility to this form of erosion makes it a potentially 

important fine sediment source, however the analysis of catchment suspended 

sediment sources, in particular river bank erosion, are the focus of this project. 

2.1.1 Fell erosion 

24 

Naturally-occurring processes of erosion that may constitute fine sediment 

inputs to the Bassenthwaite Lake catchment include fell erosion and river bank 

erosion. The erosion of sediment from the fells includes landslide and mass 

movement processes and the erosion of mountain torrents and other low order 

streams in the catchment, with the potential for the delivery of large volumes of 

sediment following storms and heavy rain (e.g. Kelsey 1980, Wells and Harvey 

1987). Unstable areas of scree and bare ground can also comprise important 

sources of fine sediment if they are in close proximity to areas of overland flow 

generation and stream networks. Orr et al. (2004) estimated that 20-25% of the 

Bassenthwaite catchment featured soils with a high risk of erosion (Figure 2.2), 

based upon an analysis of areas of bare ground and an assessed high risk of 

poaching, general erosion, water logging and surface run-off. The areas with the 

greatest erosion risk appear to coincide with areas of high relief and altitude, with 

particularly high risks near the mountains of Great Gable, Dale Head, Skiddaw, 

Blencathra and Helvellyn (Figure 1.3, Figure 2.2). However, there are poor 
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linkages between areas of erosion in the catchment uplands and the fluvial 

system, meaning that fell erosion is thought to be only significant as a sediment 

source over long timescales (Orr et al. 2004, Table 2.1 ). 

t 
......... 

/ 

&o.lon R.;;-) 
- Htgh I 

~ I 

t~ 
Figure 2. 2: Soil erosion risks in the Bassenthwaite catchment, showing high 
erosion risks in many of the upland areas in the southern catchment. Adapted 
from Orret al. (2004). 

2.1.2 Land use 

The current pattern of land use in the Bassenthwaite Lake catchment 

reflects centuries of its modification by humans. However, the increased 
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sedimentation rate in the lake observed in core sediments (Cranwell et al. 1995, 

Bennion et al. 2000, Section 1.4) occurred largely during the first half of the 201
h 

Century. This corresponds in particular to a rise in sheep numbers and the 

density of agricultural grazing, the mechanisation of mining in the catchment, 

increased afforestation and a period of population growth and infrastructure 

expansion over the latter part of the 19th Century and early 20th Century. Such 

patterns have been recognised as key factors in determining overall sediment 

delivery in the catchment (Orr et al. 2004). 

The Bassenthwaite Lake catchment is dominated by agriculture, as the 

upland fells (54% of catchment area) are used for extensive, rough grazing and 

an additional 30% of the catchment is comprised of enclosed grazing land (Orr et 

al. 2004). Increasing areas of improved pasture and increased stocking densities 

is frequently associated with greater sediment delivery from these areas, as 

observed by van der Post et al. (1997) at Blelham Tarn in the southern Lake 

District, and in wider catchment studies in the UK (e.g. Francis and Taylor 1989, 

Owens et al. 1999, Sullivan et al. 2004). Grazing, particularly in lowland areas, 

leads to soil compaction, a reduced infiltration capacity and therefore higher 

volumes of potentially erosive surface run-off following rainfall (Heathwaite et al. 

1990). A key impact of grazing in riparian areas is the formation of distinctive 

areas of bare ground and loosened surface material, known as poaching scars 

(Evans 1997, Figure 2.3), which are often found at sheltered river banks and are 

rarely revegetated due to continued grazing (Tallis and Yalden 1983, Anderson 
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and Radford 1994). Such scars frequently form on river banks where agricultural 

land borders the channel (Figure 2.3), and loosened material can be easily 

entrained by high flows. In some upland grazing areas, including the northern 

slopes of Skiddaw (Figure 1.3), the installation of networks of drainage channels 

known as grips has taken place (Figure 2.4) in order to increase the area of 

grazing land. The erosion of such grips has the potential to contribute fine 

sediment to the lowland catchment, with additional increases in peak flows 

following the installation of upland drainage networks (e.g. Conway and Millar 

1960, Knighton 1973). 

Figure 2. 3: Poaching scars at Portinscale (left) and Low Stock Bridge on the 
River Derwent, Cumbria (right) showing trampled, disturbed fine sediment in 
areas of grazing. 



Figure 2.4: Grips at Candleseaves Bog (NY 277 304) near Skiddaw House, 
showing parts of the network of narrow and deep (maximum depth c. 1 m) 
drainage channels cut into the peat bogs on heather moorland close to the 
Derwent!Eden watershed. 

Aside from grazing, other major land uses in the catchment include 

woodland (11% of the catchment area, including 7% of conifer plantations) and 
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urban areas (1 .5% of catchment area), as well as more localised sources of fine 

sediment including former mining areas and eroded footpaths. The soil 

disturbance associated with processes of afforestation and deforestation have 

been known to increase sediment delivery from these areas (e.g. Anderson 1954, 

Megahan 1972, Robinson and Blyth 1982, Battarbee et al. 1985). However, 

mature forest cover is generally thought to reduce sediment erosion risks, and 

the plantation of woodland in 'buffer zones' alongside river channels and near 

areas with high erosion risk has been proposed as a means of reducing fine 
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sediment transfers in the Bassenthwaite Lake catchment (Nisbet et al. 2004, 

AXIS Consultancy 2007). Although only a small area of the catchment is 

urbanised (the largest settlements being Keswick, Portinscale and Braithwaite 

(Figure 1.3)), a major expansion of the road infrastructure in the area occurred 

during the 1970s when the A66 was extended past Keswick and Bassenthwaite 

Lake. Fine sediment release from this road building has been proposed as 

contributing to an increased sedimentation rate in Bassenthwaite Lake 

(Mubamba 1989, Orr et al. 2004). Furthermore, river bank modifications have 

been made at Keswick and Portinscale in the form of stone revetments as a 

means of erosion protection and flood defence, and similarly much of Newlands 

Beck has been straightened and had its banks reinforced and raised (Figure 2.5). 

These modifications can lead to increases in river flow velocity, and therefore a 

greater potential for downstream channel erosion. Importantly, increases in river 

bank height reduce the frequency of overbank flooding, disconnecting the river 

channel from its floodplain and increasing the proportion of suspended sediment 

transported downstream. Finally, wooden revelments were installed on several 

parts of the River Derwent during World War 11. However, many of these 

revetments have since fallen into disrepair, which means that the river channel is 

able to adjust its course, contributing to river bank erosion (Orr et al. 2004, Figure 

2.6). Overall, in addition to natural sediment sources, land use changes in the 

Bassenthwaite Lake catchment have caused additional sediment inputs and 

probable increases in fine sediment transfers to Bassenthwaite Lake. 
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Figure 2. 5: Channel regulation on Newlands Beck, showing channel straightening 
and bank heightening and reinforcement using (left) boulder revelments (NY 238 
221) and (right) wooden revelments at Newlands Bridge (NY 240 263). 

Figure 2. 6: A line of ruinous wooden revetments in the River Derwent's channel 
at erosion study bank 2 near Low Stock Bridge (NY 237 266), showing obvious 
retreat and erosion of the bank back from the revetments. 

2.2 River bank erosion 

A survey of the location and extent of bank erosion in the Bassenthwaite 

Lake catchment was undertaken by Orr et al. (2004), however no calculations 
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have been made to estimate erosion rates, eroded volumes or the susceptibility 

of river banks to further erosion. However, the close proximity of the extensive 

eroded river banks on the River Derwent to the fluvial system and Bassenthwaite 

Lake means that it has been assessed as a potentially significant source of fine 

sediment (Orr et al. 2004, Table 2.1 ). There are three sources of information 

available which suggest that river bank erosion is both extensive and active on 

the Derw~nt floodplain: 

• Field observations of eroded river banks 

• A high assessed risk of sediment delivery, indicated by studies of 

sediment sources and channel typologies 

• Changes to the River Derwent's course, indicated by comparisons of 

modern and historical maps. 

River bank erosion is accentuated on the River Derwent's floodplain due 

to two general factors. Firstly, the composition of the River Derwent's banks, 

which are primarily made up of fine alluvial material and overbank floodplain 

deposits, as well as gravel layers. The properties of these materials render them 

vulnerable to mass failures, in particular by cantilever and rotational mechanisms, 

depending upon variations in local bank structure (Section 2.4.2). Secondly, 

many of the river banks are high and steep, and therefore particularly vulnerable 

to failures by undercutting and slumping (Section 3.1 ). A detailed description of 

processes and mechanisms of river bank erosion is contained in Section 2.4. 
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2.2.1 Field observations of river bank erosion 

Observations of the river banks on the River Derwent suggest that they 

are in the process of active erosion (Figure 2. 7). Several of the river banks show 

evidence of: 

• exposed material 

• undercutting and overhang development 

• slumped material 

• failed block accumulation at the bank foot 

• turf slippage at bank top and tension cracks 

• talus slope accumulation 

Additionally, anecdotal evidence suggests the presence of active bank 

erosion episodes, especially during flood events. A local farmer suggested that a 

river bank near High Stock Bridge had retreated by c. 2-3 m during the flood 

event of December 2006 (Harley 2007, personal communication). Although such 

estimates are difficult to quantify, they are an important source of information as 

they support the field observations listed above. 



33 

Figure 2. 7: Examples of eroded banks on the River Derwent. Top row: at 
Portinscale (left), upstream of Low Stock Bridge (right). Bottom row: eroded river 
banks downstream of Low Stock Bridge. 

2.2.2 Studies of channel typologies and sediment delivery risks 

Estimates of the significance of bank erosion as a sediment source in the 

Bassenthwaite Lake catchment have been made by Orr et al. (2004) (Table 2.1 ), 

which suggests that river bank erosion has a potentially important impact upon 

lake sedimentation. The survey produced a figure of overall sediment volume 

added to the catchment's sediment budget by bank erosion (15,000 m3
), which 

was a potentially significant sediment source due to the direct input to the river 

channel. 
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The research of Orr et al. (2004) also used a classification of bank and 

channel characteristics in order to assess sediment erosion risks from riparian 

areas, suggesting a high risk of sediment erosion on the River Derwent between 

Derwent Water and Bassenthwaite Lake (Figure 2.8). The close proximity of this 

river reach to Bassenthwaite Lake means that it may be an important source of 

sediment to the Lake. Other areas of high erosion risks near Bassenthwaite Lake 

include some parts of Newlands Beck and some upland streams to the north and 

west of Skiddaw (Figure 2.8). 

Erosion Risk 
High 

Medium 

Low 

""'"'- Bassenthwaite Lake 

0 1 2 4 km 
~.._-~, - --+-1 

Figure 2. 8: Soil erosion risks in riparian areas of the lowland Bassenthwaite Lake 
catchment, showing a high erosion risk on the River Derwent between Derwent 
Water and Bassenthwaite Lake. Diagram adapted from Orr et al. (2004). 
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2.2.3 Historic channel change on the River Derwent 

A study of historical channel changes on the River Derwent is useful in 

studying bank erosion, as large changes to the river channel course signify active 

bank erosion. A comparison of composite maps (modern Ordnance Survey data 

and the first edition of the County Series mapping (1863-7)) can be used to 

assess such changes (Figure 2.9). This suggests that the course and planform of 

the River Derwent has significantly changed in some reaches. Figure 2.9 shows 

the Derwent between How Farm (NY 247 243) and High Stock Bridge (NY 243 

259), which suggests considerable change in channel location during the c. 120 

years between the mappings. On the lower half of the map, the modern river 

between How Farm and Cast Rigg footbridge follows a course considerably to 

the east of its position on the original mapping. The river course is also much 

straighter than in the past, as the two sharp bends that once existed to the north­

east of How Farm (approximate position: NY 248 244) are no longer in existence. 

On the northern half of Figure 2.9, the channel at the sharp meander (NY 246 

253) has notably widened, and this meander bend has also become more acute. 

A similar broadening and shift in the channel has occurred at the next shallow 

meander downstream (NY 244 255). The Derwent has also changed its course 

considerably downstream of Low Stock Bridge. Significantly, the position of the 

Derwent's inflow to Bassenthwaite Lake has also changed. The river used to flow 

into the lake at the well-defined delta area at NY 229 272 following a westerly 

meander, however since the 1863-7 mapping the river has bypassed this delta, 
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and instead follows an approximately straight channel into the south-west corner 

of the lake at Derwent Foot (NY 231 273). 

Despite the change on these sections, the course of the Derwent in other 

areas has not moved significantly between the mappings. The position of the 

channel between the Derwent Water outflow and How Farm is very similar on 

both maps. However, the notable changes to channel course listed above imply 

active bank retreat and ongoing river bank erosion over time, and may explain 

the presence of actively eroding riverbanks today (Section 4.2). 
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Figure 2. 9: Channel changes on the River Derwent between How Farm and High 
Stock Bridge, indicated by an ArcMap overlay of County Series First Edition 
mapping (1863-7) and a modem National Grid map (2007) . 
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2.3 Climate and sedimentation 

The climate of a catchment, in particular the precipitation input, is an 

important factor influencing both suspended sediment transfers and the 

characteristics of the fluvial system (Figure 2.1 ). The erosion and transportation 

of sediment from hillslopes strongly depends on volumes of overland flow, and 

high river discharges contribute to increased stream power, which can transport 

larger volumes of suspended sediment and also lead to river bank erosion 

events. Bassenthwaite Lake has an upland maritime catchment, with typically 

cool and wet weather throughout the year. The close proximity of the Lake 

District to the Irish Sea, and associated prevailing south-westerly winds, favours 

high rainfall totals. Precipitation in the Bassenthwaite catchment varies greatly as 

a result of the orographic effects of the high central fells. This leads to average 

rainfall totals regularly in excess of 4,000 mm a-1 in the highest altitude areas in 

the south of the catchment, declining with decreasing altitude to just over 1 ,000 

mm a-1 at Bassenthwaite Lake itself (Figure 2.10). 
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Figure 2.10: Mean annual rainfall distribution (1961-1990) in the Bassenthwaite 
Lake catchment, showing highest rainfall accumulations in the southern part of 
the catchment. Adapted from CEH (Crown Copyright 100017897), downloaded 
from http://www. nwl. ac. uk/ihlnrfa/spatialinfo/Rainfalllrainfa/1075003. html. 

lt is possible that precipitation, and associated river flows, are increasing 
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in the Bassenthwaite catchment. Rain gauge records have been established in 

the Lake District from the mid-19th Century onwards, which suggest increases in 

annual rainfall totals at Dalehead and Sprinkling Tarn in the catchment uplands 

(Orr et al. 2004), and a notable increase in winter rainfall totals at Dalehead 

(although such trends feature high inter-annual variation) (Figure 2.11 ). Malby et 

al. (2007) have shown an increase in winter rainfall totals and rainfall intensities 

at higher altitudes in the Lake District during the latter part of the 20th Century, a 



40 

trend reflected both in an increase in the frequency of high flow events in gauging 

stations in the Bassenthwaite Lake catchment (Orr et al. 2004) and nationwide 

trends of increasing precipitation intensities (Perry 2006, Maraun et al. 2008) and 

increasing river flows over the latter half of the 20th Century (e.g. Robson 2002) . 
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Figure 2. 11: Rainfall totals at rain gauges in the Bassenthwaite catchment 
uplands over the past 150 years, with period trendlines highlighted. Adapted from 
0" et al. (2004). 



2.4 Assessment of river bank erosion 

This section of the literature review outlines the literature on river bank 

erosion processes, the factors which influence bank erosion rates and the 

potential for river bank erosion to contribute to suspended sediment transfers. 
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In the Bassenthwaite Lake catchment, bank erosion of the Derwent 

lowlands has been suggested as an important source of fine sediment to the 

Lake (Orr et al. 2004, Section 2.2). This is due to its close proximity to the lake 

and the obvious linkage to the river channel network, especially when compared 

with more remote sediment sources in the catchment uplands. For the purposes 

of this study, the processes operating on the river banks on the River Derwent 

may be regarded as characteristic of those in a temperate river catchment. The 

hydrological and climatic factors which govern bank erosion processes vary 

spatially throughout the catchment and temporally over the course of a year. A 

good understanding of such processes is important in the analysis of sediment 

supply due to river bank erosion events, as they play a major role in determining 

the amount of sediment added to the system by bank erosion. 

2.4.1 Definition and factors influencing river bank stability 

River bank erosion is defined as the removal of material from river banks. 

Erosion occurs as a result of the actions of turbulent, high-velocity river flows 

which attack the river bank and cause the degradation and removal of bank 
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material, either in the form of individual particles or larger blocks of material. The 

actual processes of bank erosion depend upon the structure of the bank and the 

type of materials present. In addition to the effects of the flow, the transport of 

sediment in the flow can cause erosion when it impacts the banks during high 

discharges. 

Bank stability is generally affected by four sets of factors, which operate at 

different spatial scales (Figure 2.12). At the reach scale, the physical 

characteristics of the river bank (the type of material which composes the river 

bank and the morphology of the bank) are the main determinants of overall bank 

stability and the mechanism of river bank collapse. However, river banks are also 

susceptible to weakening by factors operating at larger scales. The local land use 

plays a major role in the delivery of material from the bank to the river, as it 

affects vegetation cover which can increase bank cohesion and stability. Finally, 

climatic factors (precipitation and temperature variations) contribute to both the 

physical strength of the river bank and the erosive power of the river channel. 
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Figure 2. 12: General factors affecting river bank stability. These operate at a 
range of scales, from the bank reach (bank material and morphology) to local and 
regional scales (land use and climate). 

Many studies of bank stability have been reported in the literature (e.g. 

Schofield and Wroth 1968, Thompson 1970, Thorne et al. 1981, Simon and Hupp 

1987, Simon et al. 2000, Dapporto et al. 2003, Rinaldi et al. 2004). In general, 

bank stability is the product of river bank morphology and bank material 

properties. Many studies suggest that bank failures become progressively more 

likely with increasing bank height and steeper bank gradients (Figure 2.13), 

which cause the factor of safety for a river bank to decrease (Lohnes and Handy 

1968, Brunsden and Kesel1973, Thorne 1982, Osman and Thorne 1988). 

Critical bank heights often vary with bank gradients and dimensionless factors of 



stability/safety can be calculated (e.g. Lohnes and Handy 1968, Thorne et al. 

1981, Simon and Hupp 1987). 
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Figure 2. 13: An example of slope-stability analyses, suggesting critical bank 
heights for river banks at certain angles. Adapted from Simon and Hupp (1987). 

~ The role that bank material properties play in bank erosion is very 

important, especially the difference in erosion characteristics between cohesive 

and non-cohesive materials. Increased cohesion of bank materials, generally 
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more prevalent in fine-grained materials with higher clay contents (Thorne 1978, 

Grissinger 1982, Osman and Thorne 1988, Thorne and Osman 1988), greatly 

changes dominant erosion mechanisms. For instance, non-cohesive materials 

are generally more liable to direct mechanical erosion by river flows (Hooke 

1979), and are usually eroded as aggregates or individual particles. The erosion 
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of such materials occurs as a result of forces acting on individual particles and 

the balance between motivating factors (weight, drag and lift forces) and resisting 

factors (friction and interlocking), as well as the mechanical properties of the 

material (angle of internal friction and packing density) (Hooke 1979). 

When materials are more cohesive and bound together, the direct erosive 

actions of river flows are less effective (Thorne 1982). Processes which reduce 

the cohesive strength of the material, including climatic weakening and rises in 

pore-water pressures, lead to a loss of material strength, and often the erosion of 

large blocks of material (Thorne 1982). 

River bank moisture contents (Section 2.4.4.3) and climate-influenced 

mechanisms of bank material preparation and weakening (Sections 2.4.4.1, 

2.4.4.2) play an important role in bank stability. Rises in pore-water pressures 

following wetting of the river banks have been observed to increase the likelihood 

of bank failures due to reductions in shear stresses of bank materials (e.g. Darby 

and Thorne 1996, Dapporto et al. 2003, Rinaldi et al. 2004). The shear stress of 

any material is dependent on the overall cohesion of the material and the angle 

of friction (Taylor 1948, Lamb and Whittman 1969, Thorne 1982, Osman and 

Thorne 1988). 

Fine sediment supply from river banks is determined by how active bank 

erosion events are at a river bank. Bank erosion activity itself is often determined 
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by the concept of basal endpoint control (Thorne 1982, Lawler et al. 1997b). 

When river banks erode, sediment is delivered to the bank toe area and is 

removed over time at a rate dependent upon the erosive power of the river 

channel. If sediment is removed from the bank toe at a faster rate than it is 

delivered from the upper bank and fluvial deposition, then the lower bank is 

eroded and undercutting takes place, increasing bank angles and decreasing 

bank stability, and favouring bank failures and greater sediment inputs (scour 

condition). However if sediment is supplied to the bank toe at a greater rate than 

it is removed, accumulation of sediment occurs and decreases bank heights and 

angles, and buttressing the bank, leading to increased bank stability and lower 

sediment inputs (accumulation condition). In situations where sediment inputs 

and outputs to the bank toe balance each other out, then the river bank form 

remains similar and the bank form remains similar (equilibrium condition). 

Although the morphology and geometry of the river bank play a major role 

in its stability, the land use at the river bank is also important to assessing bank 

erosion risks, as it influences the extent and density of vegetation cover at the 

bank. The presence of vegetation on a river bank usually increases its stability 

and reduces the susceptibility of the bank to flow erosion (Thorne 1990, Table 

2.2), in turn reducing the risk of fine sediment addition to the river channel. 



Reduction of erosion 
• Decreases in near-bank flow 

velocities 
• Reduction of soil erodibility 
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Increased bank stability 
• Improved bank drainage 
• Increased soil tensile strength 
• Slope buttressing 
• Increased surcharge weight 

Table 2.2: A summary of the effects of vegetation upon river banks. Adapted from 
Thome (1990). 

The presence of vegetation on the riverbank reduces erosion by 

increasing the roughness of the near-bank area, therefore reducing the velocity 

and turbidity of flows and associated boundary shear stresses (Table 2.2). The 

presence of vegetation on a bank has been observed to increase erosion 

resistance by 1-2 orders of magnitude (Carson and Kirkby 1972, Kirkby and 

Morgan 1980), depending on root network density, vegetation re-colonisation 

rate, and vegetation extent down the bank (Thorne 1990). Vegetation also 

provides protection from rainsplash erosion, and increases soil cohesion due to 

the presence of roots. lt also increases the infiltration capacity of the bank, 

reducing the volume of erosive surface run-off during storms. 

Several studies of the influence of vegetation upon bank stability (e.g. 

Gray and Leiser 1982, Gray and MacDonald 1989) suggest that well-vegetated 

banks generally have lower moisture contents than banks with less vegetation. 

This is mostly due to interception and the uptake of moisture from the bank by 

the vegetation, as well as secondary evaporation from the bank surface. 

Additionally, well-vegetated banks are usually well drained, with a more open 

drainage structure provided by plant roots. This factor can increase hydraulic 



conductivity and reduce pore~water pressures, reducing in turn the risk of bank 

failure (Thorne 1990). 
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Roots and rhizomes also increase the tensile strength of soils and 

therefore their shear strength through binding. The presence of vegetation offers 

a ten-fold increase in tensile strength (Thorne et al. 1981) and large decreases in 

erosion rate (Smith 1976), although the presence of dead or decaying roots and 

tree stumps can have a negative influence on bank stability and can lead in some 

cases to soil piping (Thorne 1990). Generally, the roots produced by thick grass 

turf are more effective than the larger roots of trees and large shrubs) at 

promoting bank stability, a factor that has been noted in forested areas 

(Murgatroyd and Ternan 1983). The presence of buttressing roots near the bank 

toe also increases bank stability by checking low-angle soil slides in this area, 

and increasing roughness, lowering local flow velocities and encouraging bank 

accretion. Similar effects have been noted in areas of large woody debris 

accumulation (Simon and Hupp 1987). The addition of the surcharge weight of 

large vegetation (especially mature trees) can often have a negative influence on 

bank stability, especially as shearing and turning forces produced provide a 

likelihood of mass failures (Abam 1997a, b), although weight also increases 

resistance to shearing. 

Vegetation has therefore been shown to have a generally positive net 

effect on bank stability, dependent upon vegetation type, density and spacing. 
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This is supported by field evidence of channel stabilisation following vegetation 

growth (e.g. Pizzuto and Meckelnburg 1989, Gurnell and Petts 2006). Reductions 

in vegetation cover therefore can have a negative influence upon bank stability, 

which in turn can lead to increased risk of bank failures and sediment addition. 

2.4.2 Mechanisms of river bank failure 

The two main mechanisms of river bank failure are cantilever failures -

fluvial undercutting leads to the production of overhangs which then collapse into 

the channel, and rotational failures - mass slumping of bank material as a result 

of widespread loss of cohesion and strength. These failure mechanisms may be 

regarded as direct processes of river bank erosion, as they result from the 

erosive actions of the river channel. These mechanisms often cause large-scale 

failures on river banks, and are important as they can deliver large volumes of 

sediment to the river channel in a short period of time. 

2.4.2.1 Cantilever failures 

The key feature governing overhang-generated cantilever failures is a 

composite river bank structure (Figure 2.14). Typically, non-cohesive gravel 

deposits form the lower section of the bank (the remnants of former channel bars 

and other areas of deposition) while cohesive fine-grained sand/silt/clay deposits 

form the upper layer (overbank flow deposition). This bank structure favours high 

erosion rates of the non-cohesive lower bank, a function of the greater 
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susceptibility of non-cohesive materials to fluvial entrainment and corrasion 

(Okagbue and Abam 1986, Simon et al. 2000, Section 2.4.1) as well as its 

greater exposure to river flows as a result of its lower elevation. Bathurst et al. 

(1979) suggested that during bankfull conditions, lower river banks typically 

experience higher water velocities and shear stresses, often leading to increased 

scour and undercutting. Similarly, fluctuating water levels and greater pre-wetting 

of such lower river banks further contribute to the erosion of the lower bank 

(Pizzuto 1984, Abam 1997a, b). Large variations in erosion rate across the bank 

face have been observed in many field studies, including those by Thome (1978) 

and Thome and lewin ( 1978) of bank sections at Morfodion in Wales, where 

lower (non-cohesive) banks retreated by up to 600 mm in an 18-month period 

(average retreat rate= 200-350 mm), with a corresponding retreat of only 15-30 

mm on the upper cohesive banks. The result of such undercutting is the 

production of overhangs, which is exacerbated by the effects of continued wetting 

and cracking (Thome 1982). lt is often the case that eroded material comes to 

rest at the foot of the bank, sometimes forming a talus cone or blocks of cohesive 

material from bank failures (Thome and lewin 1979). Cohesive blocks of material 

have been observed to break down gradually over time and form cohesive 

piedmonts at the bank foot which are can prove difficult to erode, as well as 

reducing bank gradients and can completely stabilise the bank (Brunsden and 

Kesel1973, Thome and Tovey 1981). 
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Figure 2. 14: A well-developed, eroding composite river bank near Portinscale 
Bridge (height c. 2. 5 m). Note the cohesive upper layer of fine-grained sandy 
material overlaying a non-cohesive lower layer of coarse pebbles and gravel. The 
turf slippage and slight overhang development at the bank top, and the 
steepened profile of the lower bank suggest recent active erosion of this bank. 

The overhang continues to develop until an equilibrium state is met, 

generally as a result of the increasing width of the cantilever. At this point the 

tensile strength of the block is exceeded by the increasing width and the block 

topples forward into the channel. This is the most basic form of cantilever failure 

and is known as a beam failure (Figure 2.15). The characteristic failed blocks are 

the best identifying characteristic of this failure type (Pizzuto 1984). 

The development of tension cracks in the cohesive overhang plays a 

major role in supplying material to the channel. Steep bank angles lead to 

gravity-induced cracks (Abam 1997a, b), and occur where tensile stress due to 

the weight of the block overcomes the tensile strength of the soil (Thorne and 

Tovey 1991). Abam (1997b) has provided a factor of safety analysis for such 
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blocks and has proposed a critical block width, above which tension cracks would 

be expected to occur. Such tensile failures result in the lower part of the block 

falling into the channel (Figure 2.15). The third type of cantilever failure is known 

as a shear failure, where the overhanging block shears away from the bank face 

along a vertical shear plane. Such failures occur when the shear stress acting on 

the shear plane as a result of the (increasing) weight of the overhanging block 

exceeds the shear strength of the soil on that shear plane (Figure 2.15). 

Differences in the type of cantilever failure occurring on a bank are the product of 

differences in bank geometry and materials (Thorne and Lewin 1979, Abam 

2001). 

!seam failure about neutral axis I 
I l ' ~ ' I Neutral axis ._ ' 

1-- ··':;;·-~\ 

!Tensile failure across CD I 

7' ~ 
I Shear failure along AB I 

A 

I 

lr~~J I 

B 1--

Figure 2. 15: Mechanisms of cantilever failure: beam failure, tensile failure and 
shear failure. Adapted from Thome and Tovey (1981). 
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Cantilever block failures are extremely significant in sediment supply, as 

they occur suddenly and transfer a large volume of sediment to the river channel. 

Failed blocks of material from the upper bank resting at the foot of the river bank 

are the key indicator of this form of erosion. Although analyses have been 

produced to assess the risk of cantilever failures for eroded river banks {e.g. van 

Eerdt 1985, Abam 2001 ), as a general rule cantilever failures are encouraged by 

steep river bank gradients and an undermined upper bank. 

2.4.2.2 Rotational failures 

Rotational failures of river banks differ from cantilever failures as 

described above, as the failure does not result from instabilities generated by 

changes in bank morphology {oversteepening and undercutting) but a 

widespread weakening of the materials in the river bank, which causes large­

scale slumping and mass failure. As the failure mechanism is dependent upon 

the properties and weaknesses of cohesive materials (Section 2.4.1), the largest 

failures of this type are found in cohesive bank reaches. However, in composite 

banks where cohesive materials overlay coarser, non-cohesive materials, 

rotational failures regularly occur in the cohesive upper bank, as the interface 

between the two materials can ad as a base for failure and plane of weakness 

{Thorne 1982). In this case, rotational failures have been observed to occur 

alongside cantilever/block failures (Brunsden and Kesel1973). Like cantilever 

failures, rotational failures are very important in sediment supply to river 



channels, as they involve the erosion of large volumes of sediment in a short 

period of time. 
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Rotational slumping most often occurs as a result of a loss of shear 

strength in the river bank, normally as a result of increased water contents 

(Hooke 1979). Whenever water drains into a river bank following river level rise 

or precipitation, pore-water pressure rise, accompanied by reductions in shear 

strength, and increases in lubrication along potential failure surfaces (Simon 

1989, Simon et al. 2000). The weakening of river banks by pre-wetting is 

discussed below (Section 2.4.4.3). Failures tend to occur as deep-seated slumps, 

with a curved failure surface located well within the river bank, leading to some 

backwards rotation of the failed material (Thorne 1982, Harris 2003). Rotational 

slumping is also favoured by increases in bank weight as a result of the higher 

water content of the bank following wetting, as well as seepage and piping forces 

and the presence of tension cracks (Bradford and Piest 1977). Rotational failures 

are usually observed in the field as masses of slumped material, which often rest 

at the foot of the river bank in lobate/flow forms (Simon 1989). 

However, not all rotational failures are deep-seated, and smaller 'slip' 

failures often exist on cohesive river banks (Dapporto et al. 2003, Figure 2.16). 

These smaller failures often occur when river banks and cohesive layers are low 

(Sullivan 1972). AHhough the extent of such individual slips is relatively small, 

high frequencies of slip failures can add a substantial amount of material to the 
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channel (Thorne 1982). The majority of such slips occur as a result of tensile 

stresses in the upper bank (Terzaghi 1943), which often arise as a result of 

removal of overburden pressure due to slope excavation or stream erosion 

(Thorne 1982), which causes tension cracks to form in the river bank (Figure 

2.16). Water flows in such cracks weakens the block's effective cohesion, 

eventually causing shallow slips. The likelihood of such slips generally increases 

with higher and steeper river banks, which increase the tension stresses 

responsible for such failures. 

Figure 2. 16: Shallow slip failure on the river bank of St. John's Beck, St. John's­
in-the-Vale, Cumbria. The failed block has not been further eroded and it remains 
well vegetated. An obvious tension crack (indicated by the white arrows) is 
situated between the failed block and the retreated bank face. 



56 

2.4.3 Draw-down failures 

Several studies have observed a tendency for river bank failures to occur 

after, rather than during, flood events. This has been noted by simple field 

observations. For example, Twidale (1964) noted the frequent presence of 

slumped debris at the foot of channel banks, and suggested that it must have 

been formed during the receding/recessional limb after the flood peak, as 

otherwise it would have been washed away. Similar observations have been 

made by Okagbue and Abam (1986), Simon and Hupp (1987) and Thorne 

(1990). Simon et al. (2000) suggest that rapid drawdown is a major conditioning 

factor on river bank erosion. The phenomenon of 'draw-down' failures, where 

bank erosion occurs after the flood peak, was therefore postulated. The most 

likely explanation for such failures is the fact that high water flows maintain a 

supporting, buttressing effect on river banks; after the river level descends, this is 

removed and the heavy, thoroughly pre-wetted banks collapse into the channel. 

This is the mechanism proposed by Lawler et al. (1997a) to explain several 

'delayed' bank erosion events in Wales, where river bank erosion events were 

observed to occur well after the passing of flood peaks. Draw-down failures are 

supported by factor of safety analyses (e.g. Koppejan et al. 1948, Morgenstern 

1963) which suggest that bank materials become susceptible to erosion on the 

recessional limb. Such failures play an important role in causing temporal 

variations in sediment supply. 
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2.4.4 River bank weakening processes 

Although river bank erosion primarily occurs due to the actions of the river 

channel, such processes are more effective if the river bank materials are in a 

weakened state. Weakening can occur by a range of processes, but bank 

materials are especially susceptible to reduction in strength by climatic factors 

(temperature and soil moisture). Therefore, the risk of bank erosion and sediment 

addition is increased when such processes are operating on the bank. There are 

three main processes which are relevant to river banks in temperate climates 

such as north-west England. 

• freeze-thaw weathering 

• desiccation 

• pre-wetting 

Freeze-thaw and dessication processes occur as a result of variations in 

temperature and lead to the production of loosened aggregates that are 

entrained more easily than if the sediment was not weakened. Pre-wetting of 

river banks occurs following rainfall and high river flows, and is especially 

important in reducing bank stability, particularly regarding weight changes and 

increases in pore-water pressures. Such processes may be regarded as indirect 

processes of river bank erosion, as they do not result from direct erosion by the 

river channel but through atmospheric processes. 
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2.4.4.1 Freeze-thaw weathering 

Freeze-thaw weathering is an umbrella term used to describe a range of 

processes that bring about the weakening and breakdown of materials as a result 

of the actions of frost and ground freezing. Freeze-thaw and associated needle­

ice processes are common during the UK winter, as temperatures regularly drop 

below 0 °C (Lawler 1988). In UK rivers, freeze-thaw is a relatively weak process 

of direct erosion. A study on the River llston (South Wales) of the direct 

measurement of freeze-thaw debris accumulations suggested that it only 

contributed 9% of the total amount of bank erosion (Lawler 1987). Freeze-thaw 

generally acts independently of fluvial activity (Twidale 1964, Lawler et al. 

1997b); however, the main effect of the process is to loosen bank aggregates 

and increase the susceptibility of the bank surface to erosion (Knighton 1973, 

Thorne and Lewin 1979). Freeze-thaw is therefore especially effective when 

combined with high, powerful river discharges and pre-wetted river banks (Lawler 

1987, Figure 2.17), and when this occurs the weakened river bank is susceptible 

to large-scale failures and the delivery of large volumes of sediment to the river 

channel can occur. 
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Needle ice, a common form of freeze-thaw processes in temperate 

climates, is defined as "the accumulation of slender, bristle-like ice crystals 

practically at, or immediately beneath, the surface of the ground" (Washburn 

1979, Figure 2.18). Such crystals grow in the direction of nocturnal cooling 

(Lawler 1988) and can reach up to 80-1 00 mm in length over longer periods of 

freezing (Outcalt 1971 ), though more typically 20-50 mm long needles which 

develop during daily frost cycles (e.g. Lawler 1986). Field research suggests that 

soil and till structures are important in determining the extent of needle ice 

development, with larger-grained tills having large pore spaces which facilitate 

needle ice formation (Hill1973). During needle-ice events, sediment is 

incorporated into ice crystals when the freezing front descends into the bank. 

Sediment is transported down the bank during thawing by a range of falling, 

meltwater, sliding and toppling mechanisms (Hill1973, Lawler 1993). Increased 

sediment content of the ice has been shown to cause increased stresses and 

further weakening of the bank surface, especially when the bank is fairly dry or 

cooling rates are high (Lawler 1993). After needle ice action, materials are 

notably 'crumbly' in texture, and a loose 'skin' forms on surfaces with a low 

packing density that is readily entrained by river flows (Lawler 1986, 1993, 1999, 

McGreal and Gardiner 1983). After such material is removed, small erosional 

notches at past river flow levels are often present (Wolman 1959, Leopold 1973, 

Lawler 1993). 



61 

Figure 2. 18: Needle ice observed on bare in the upland Bassenthwaite 
catchment on 2ef' December 2006. The crystals in the photograph were around 
50 mm in length. 

Freeze-thaw processes play an important role in bank erosion. Lawler 

(1995) researched climatic conditions at sites on meander bends in South Wales, 

and observed very strong (coefficient>0.9) correlations between mean and 

maximum bank erosion and the duration of air temperatures below 0 °C. As a 

mechanism of sediment delivery to the river channel, needle ice is most effective 

when it is accompanied by high and erosive peak discharges capable of 

transporting large amounts of weakened material. Also, when banks are pre-

wetted (after a period of rain or high river levels), needle ice growth is often 

widespread due to the greater source of moisture. Wolman (1959) suggested that 

the second most erosive flow type (after high flows on pre-wetted banks) was 

moderate stage rises after or during needle ice events. Lawler (1993) also 

observed a tendency for needle ice events to occur at freezing temperatures with 

a high antecedent precipitation index (Gregory and Walling 1973). Overall 
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models of bank erosion have suggested the importance of these factors, and it is 

the coincidence of cold temperatures, high precipitation and large river 

discharges during winter that lead to the dominance of bank erosion events at 

that time of year (Lawler 1987, 1993) (Figure 2.17). 

2.4.4.2 Desiccation 

Desiccation is defined as the weakening of a material due to a deficit of 

moisture. Its role in the erosion of upland peat is well-documented (e.g. Francis 

and Taylor 1989), however its part in river bank erosion is more uncertain. For 

instance, Thorne (1982) states that "Hard, dry banks are highly resistant (to 

erosion)" (when compared to a pre-wetted bank), while field observations in 

Wales have noted the collapse of fine-grained material on river banks during 

drought conditions (Oxley 1974) and widespread cracking of banks during 

summer in Australia (Bello et al. 1978). A lack of river bank temperature datasets 

makes the role of desiccation difficult to quantify (Lawler et al. 1997b), but it is 

postulated that it plays a role similar to that of freeze-thaw processes. 

In temperate catchments such as that of Bassenthwaite Lake, it is difficult 

to quantify the occurrence of high bank temperatures required to cause 

desiccation, although the process has been observed (Figure 2.19). In hot and 

arid climates the role of desiccation in cracking is not in doubt (Abam 1997a, b). 

However, data from southern England indicates that soil temperatures can reach 

in excess of 30 °C (and occasionally 35 °C) during exceptionally hot summers, 
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and rises in temperatures of 7 °C per hour during morning heating (Lawler 1992). 

In this study (of the River Arrow in Worcestershire), bank surfaces became 

strongly desiccated with observations widespread cracking and exfoliation, with 

mini-talus slopes forming at the bank foot. Bank freezing can also lead to 

desiccation if a strong moisture gradient forms in the bank. Dramatic changes 

can result from exfoliating processes in particular which can drastically weaken 

bank surfaces. Desiccation needs to combine rises in river stage to erode away 

weakened materials for it to be considered an effective process of bank erosion, 

and it is therefore similar to freeze-thaw and pre-wetting in that respect. 

Figure 2. 19: A desiccated river bank on the River Derwent near Bassenthwaite 
Lake, showing a dry and crumbly upper bank with deep cracks in the upper bank 
surface. 
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2.4.4.3 Pre-wetting 

Pre-wetting is defined as the increase in bank water content as a result of 

river level rise or precipitation before the main flow event has taken place. lt plays 

an important role in weakening banks, often in conjunction with freeze-thaw and 

other weakening processes. The extent to which banks become saturated is 

largely dependent upon the effectiveness of bank drainage and the duration of 

the supply of water. The intensity and duration of rainfall events are the most 

important characteristics in producing wetting of river banks (Gregory and Walling 

1973). 

Many early engineering studies have observed the decrease in strength in 

soils following increases in water content (e.g. Trask 1959, Sharp 1977), 

particularly in cohesive materials. With low water contents present, pore-water 

pressures are negative and pore-water suction gives river banks an apparent 

cohesion, which is important especially in increasing strength in banks made of 

non-cohesive materials (Thorne 1982). Strength is reduced in wetted banks as a 

result of an increase in positive pore water pressure, which in turn causes a 

reduction in the bank's effective strength (Thome 1982). Especially high 

pressures force soil units apart, increasing friction angles and reducing the 

cohesion of bank materials. Many studies have suggested critical factors of 

safety regarding pore-water pressures for banks of certain heights (e.g. Dapporto 

et al. 2003, Rinaldi et al. 2004). Pre-wetting also results in a large gain in the 

bank's unit weight through the increase in water content, and this is especially 
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important in promoting 'draw-down' failures after the flood peak has passed, and 

the buttressing effect of the high river levels is removed. Simon et al. (2000) 

suggests that prolonged rainfall causes five destabilising effects upon a river 

bank: an increase in bulk unit weight, a loss of apparent cohesion, the generation 

of positive pore-water pressures and therefore a loss of frictional strength, a loss 

of confining pressure, and the entrainment of failed material at the bank toe. 

2.4.5 Temporal variations in river bank erosion 

Many studies have observed that river bank erosion and retreat events are 

not distributed evenly throughout the year, and strong temporal trends are 

present in erosion rates (Table 2.3, Figure 2.20). The climatic and hydrological 

factors that promote these differences in temperate climates are discussed 

below. 



Study reference 

Hill1973 

Hughes 1977 

Thorne and Lewin 
1979 

Lawler 1986 

Wolman 1959 

Twidale 1964 
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Location Findings 

Northern Ireland, 75-90% of annual bank retreat from 
UK October-January. 

Shropshire, UK Mean loss of material highest during 
winter. 

Wales, UK Clear winter peak in bank retreat 
rates (River Severn): 
November-April - 30 mm a·1 

June-October -12 mm a·1 

Wales, UK (Figure 2.20) 

Maryland, USA 85% of observed bank erosion during 
winter months (December-March) 

Adelaide, Australia Winter retreat at study site - 624 mm 
Summer retreat at study site - 16 mm 

Table 2.3: The strong seasonality of river bank erosion, suggested by the findings 
of four key UK studies and two studies from the USA and Australia. 
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Figure 2.20: Bank erosion rates on river banks on sites in South Wales in a study 
period from 1977-1979, showing a strong seasonality of erosion rates. Diagram 
from Law/er (1985). 

Temporal variations in bank erosion over the course of a year are the 

product of variations in precipitation (and associated river stage) as well as a 

range of other variables and processes that influence bank stability (Lawler 

1992). These include patterns of river flows and their influence on both direct 

erosion of banks and bank moisture contents, as well as bank weakening 

processes and vegetation cover. The main cause of enhanced bank erosion in 

the temperate winters and early spring periods is the peak in precipitation values 
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at this time. In the British Isles, cyclonic weather conditions tends to dominate at 

this time, which are exacerbated in the Lake District by orographic effects leading 

to extremely high precipitation totals (Section 2.3). Wilby et al. (1997) argued that 

62% of the variance of historical sediment yields can be explained by the ratio of 

cyclonic: anticyclonic conditions. Cyclonic conditions yield high rainfall intensities, 

longer storm durations and a higher number of extreme events. There is 

evidence that the duration rather than the intensity or volume of rainfall is the key 

factor in producing bank erosion, due to its effects on pre-wetting of river banks. 

Knighton (1973) carried out research in Cheshire which suggested that complex, 

multi-peaked storms featuring high, oscillating discharges were more effective at 

eroding river banks than single-peak events. Similarly, Thorne and Lewin (1979) 

emphasised the effectiveness of a high frequency of small floods in producing 

bank and channel erosion, rather than occasional large floods. Many studies 

have observed the importance of intermediate, fluctuating flows that occur 

several times a year in causing bank retreat (Wolman and Brush 1961, Harvey 

1975, Hooke 1980) and they play a role especially in eroding the lower bank and 

so undercutting (Knighton 1973). Therefore, a strong connection is present 

between climate, river regime and bank erosion patterns. 

Furthermore, the importance of freeze-thaw processes in preparing bank 

material for erosion has been noted. The dominance of needle ice events in 

winter (although such processes do not always coincide with peak discharges), 

leads to the production of weakened aggregates that are readily entrained in low 
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to moderate flows. Lawler's extensive research on bank erosion (Lawler 1986, 

1987, 1993) identifies freeze-thaw as an important contributing factor to temporal 

variations in erosion. Hill (1973) observed widespread frost action in two Northern 

Irish catchments, and supported its role in producing the 75-90% of annual bank 

erosion which occurred between October and January. Other surveys point to 

pre-wetting as the main factor in bank retreat, while Thorne (1990) suggests that 

the decline in vegetation cover in winter reduces cohesion and bank protection; 

conversely the presence of vegetation also reduces sediment transfer in summer 

due to the increased bank stability (e.g. Lawler 1992). In summary, the 

dominance of bank erosion in the winter and early spring is a result of high, 

erosive discharges caused by high precipitation totals, and the presence of 

weakened, erodible banks as a result of pre-wetting, freeze-thaw processes and 

a decreased overall vegetation cover. The strong temporal trend in bank erosion 

events is also reflected in patterns of suspended sediment delivery, which are 

highly episodic in nature (e.g. Thompson and Oldfield 1986, Walling and Webb 

1987) largely as a result of higher river flows during winter. 

2.4.6 River bank erosion and sediment budgets 

The proportion of sediment supplied to a catchment by river bank erosion 

varies greatly between river catchments (Table 2.4). The differences in bank 

erosion contributions to sediment budgets observed between catchments are the 

result of differences in bank properties, river channel dynamics and land use 

patterns. 



Reference 

Russell et al. 2001 
Bull1997 
Ashbridge 1995 
Nelson and Booth 2002 
Odgaard 1987 
Walling et al. 1999 
Lawler et al. 1999 
Sekely et al. 2002 
Wilkin and Hebel 1982 
Duijsings 1987 
Rondeau et al. 2000 
lmeson et al. 1984 
Kronvang et al. 1997 

Study location 

South Wales, UK 
River Severn, UK 
River Culm, UK 
lssaquah Creek, USA 
Iowa, USA 
River Ouse, UK 
River Ouse, UK 
Blue Earth River, USA 
Illinois, USA 
Luxembourg 
St. Lawrence River, Canada 
Luxembourg 
Denmark 

%of total 
sediment load 
from bank 
erosion 
<10 
17 
19 
20 
30-40 
37 
37 
37 
50 
53 
65* 
>80 
92* 
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Table 2. 4: The varying contributions of river bank erosion towards sediment 
budgets in studies from the UK and across the world. * -percentage includes bed 
scour. 

High sediment yields from bank erosion (either at the reach or the 

catchment scale) suggest that the river channel is unstable in its behaviour. This 

is often as a result of a favourable river regime (especially a 'flashy' response to 

precipitation events), active channel morphological changes and channel 

migration, and/or the presence of easily-eroded bank sediments. For instance, 

Walling et al. (1999) observed well-developed, high (>2 m) river banks on the 

River Ouse from which sediment could be readily entrained during high 

discharges. This was a key factor in the high (37%) bank erosion contribution to 

the sediment budget of that river. Duijsings' (1987) sediment budget for a small 

upland stream in Luxembourg suggested a high proportion of sediment (53% of 

total load) is sourced from river banks, the majority of which was removed from 

the bank by corrosion and soil fall as a result of continual active channel incision. 
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Similarly, a very high proportion of sediment in upland British Columbian 

catchments (Canada) is sourced from bank erosion as a result of the presence of 

massive quantities of glacial sediment and debris in river banks and bluffs in 

upland areas. The high sediment flux from these sources reflects the fluvial 

system's long-term adjustment to the glacial era of 10 k a-1 ago (Church and 

Slaymaker 1989). A similar response to past glaciation has been noted in the St. 

Lawrence River (Canada) sediment budget, where large volumes of alluvial 

deposits are being cut through (Rondeau et al. 2000), enhanced by a high 

discharge flow regime and anthropogenic disturbances (including ship generated 

waves, wind-enhanced turbulent currents and bank modifications). Largely 

unmodified upland catchments often feature high bank erosion contributions to 

sediment budgets, as absence of agricultural land (except non-intensive grazing) 

greatly reduces the extent of surface erosion and material sou reed from field 

drains and surface-run off. 

In some catchments, other sources of sediment may be predominant in 

the sediment budget. This has been observed in river basins where a particular 

land use (especially intensive agriculture) covers much of the land area, an effect 

exacerbated in smaller catchments. Russell et al. (2001) used source 

fingerprinting techniques in two small (area<4 km2
) catchments in southern 

Wales and noted a minimal contribution of bank erosion towards the sediment 

budget (<10% of total sediment yield). He attributed this to the dominant 

agricultural land use in the catchments, leading to the largest sediment sources 
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being field drains (30-55% of total sediment yield) and surface erosion (34-65%). 

Similarly, a rapidly-urbanising watershed in Washington, USA (lssaquah Creek) 

had a sediment budget with high proportions of sediment from landslides in 

building areas (50%) and road-surface run-off (15%) compared with the bank 

erosion contribution (20%) (Nelson and Booth 2002). lt is often the case that 

bank erosion can dominate sediment supply at local reach scales, but it is often 

superseded by other sources at the catchment scale (Bull1997). 

2.4.7 Spatial variations in river bank erosion 

While river bank erosion occurs throughout a catchment, the processes 

involved to produce bank erosion vary throughout the system. Lawler (1985) has 

suggested that the processes which cause and contribute to bank erosion 

change throughout the river system. This is because the relative importance of 

bank weakening processes, stream power and bank morphology change 

throughout the river system. 

Processes of sub-aerial preparation (especially freeze-thaw) tend to 

dominate in the upper catchment and decline in importance downstream. In the 

case of freeze-thaw, temperatures are typically lower in higher-altitude uplands 

so needle ice can develop readily, more so than in lowland catchments. 

Direct processes of fluvial entrainment (the erosion of material by the 

action of the river water rather than mechanical failure of the bank) are related to 
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boundary shear stresses in the channel, which vary with stream power. Field 

observations suggest that stream power peaks in the mid-basin river reaches, 

and that stream power is lower upstream (due to smaller discharges) and also 

lower in downstream reaches (due to lower channel gradients) (Lewin 1982). 

However, stream power in extreme floods has been shown to vary greatly (Bull 

1979, Magilligan 1992). The phenomenon of a mid basin peak in stream power 

has been observed on the River Severn where mid-basin reaches have the 

greatest channel mobility (Lewin 1987) and a similar trend in bank erosion 

dominating in middle reaches was found on the rivers Swale, Ouse and Ure 

(Lawler et al. 1999). Research in arid climates has also supported the mid-basin 

peak hypothesis (Graf 1983). Therefore in middle reaches of river basins, a 

majority of bank erosion might be expected to occur as a result of the erosive 

power of river flows. 

Mass failures of river banks (the delivery to the channel of large amounts 

of material) have been discussed in river bank stability analyses (Section 2.4.1 ). 

The key component of these analyses is the factor of safety for slopes, whereby 

the properties of a river bank (slope gradient, mechanical properties, pore-water 

pressures, type of material) contribute to an overall criterion of bank stability. A 

critical bank height can be calculated, above which bank failure can occur. As 

bank heights typically increase downstream (e.g. Leopold and Maddock 1953, 

Prestegaard 1988), it can be postulated that a section of river banks will exist 

where bank heights exceed critical values and therefore mass failures will be the 
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dominant process of bank erosion. Upstream of the lower reaches, the banks are 

too low for mass failures, and therefore bank erosion is dominated by other 

processes. 

The result is a series of "overlapping process domains" (Kirkby 1980) 

where different processes and mechanisms dominate bank erosion at different 

points in the channel network based on variations in climate, flow characteristics 

and changes in bank strength and resistance to erosion (Figure 2.21). The 

increasing likelihood of mass failures in lowland areas suggested by this model 

supports field obseNations of river bank erosion on the lowland River Derwent 

(Section 2.2), and the high potential for it to contribute to suspended sediment 

delivery to Bassenthwaite Lake. 
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Figure 2.21: The distribution of dominant bank erosion processes along a 
hypothetical river system, showing a transition from the dominance of preparation 
processes (especially freeze-thaw) in the uplands of a catchment to fluid 
entrainment processes and mass bank failures at lower river reaches. Adapted 
from Kirkby (1980). 

2.5 Literature review summary 

Suspended sediment transfer in a large catchment such as that of 

Bassenthwaite Lake is clearly a complex process involving inputs from several 

sources. However, previous studies have shown extensive river bank erosion in 

the catchment, particularly on the River Derwent between Derwent Water and 

Bassenthwaite Lake (Section 2.2). The direct linkages that eroding river banks 

have with the fluvial network, particularly in comparison to remote sources of 

sediment on hillslopes, suggest that river bank erosion is a key component of the 

catchment's sediment budget. Furthermore, sediment supply from river bank 
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erosion is governed by several factors and processes which influence the river 

bank. At a given river bank, morphology and material composition are the two 

key factors controlling the risk of bank erosion events and sediment addition to 

the river channel, with land use and climate further influences on the river bank. 

Increases in bank height, gradient and undercutting increase the risk oflarge 

failures, including block failures, which have the potential to deliver considerable 

volumes of fine sediment to the river channel. At the annual scale, the majority of 

river bank erosion over the course of the year occurs during a small number of 

high magnitude failures, usually during winter, which is exacerbated in temperate 

catchments such as that of Bassenthwaite Lake by a wet climate and associated 

high river discharges. Active river bank erosion has the potential to deliver a 

significant proportion of a catchment's sediment budget (Section 2.4.6) which 

makes large river bank failures particularly important. 

The literature review reinforces the importance of measuring and 

quantifying suspended sediment transfer characteristics and the extent of river 

bank erosion in the Bassenthwaite Lake lowland catchment, in order to answer 

the research questions described in the introduction to this thesis (Section 1.6). 

Therefore, the methodology (Chapter 3) describes two sets of field techniques, 

the first being data collection relating to suspended sediment transfers on the 

River Derwent and Newlands Beck, and the second being an assessment of river 

bank erosion on the River Derwent. 



CHAPTER THREE 

METHODOLOGY AND FIELD TECHNIQUES 
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This chapter describes the methods and techniques used to collect data 

on suspended sediment transfers and river bank erosion in the Bassenthwaite 

Lake catchment. The fieldwork that has taken place during this project has been 

directed towards two key areas. The first was a study of suspended sediment 

transfers in the catchment, which was used to assess the sediment transfers to 

Bassenthwaite Lake from the River Derwent and Newlands Beck as well as the 

overall catchment sediment budget (inputs, outputs and lake sediment storage). 

This has been carried out by data collection at four monitoring stations. The 

second task was a related study of river bank erosion on the lowland River 

Derwent between Derwent Water and Bassenthwaite Lake which aimed to 

assess the potential significance of river bank erosion as a source of fine 

sediment within the catchment sediment budget. This was done by mapping the 

extent of bank erosion, and a preliminary survey of bank morphological changes 

on a reach of the River Derwent using a terrestrial laser scanner. · 

3.1 Field monitoring stations 

In order to assess patterns of suspended sediment delivery in the 

Bassenthwaite Lake lowland catchment, the most useful approach is to use a 

basic sediment budget model, thus: 



Inputs= Outputs+ ll. Storage 
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(Equation 3. 1) 

As the main ecological problems of Bassenthwaite Lake are caused by 

fine sediment accumulation (Section 1.3), it was important to quantify the 

suspended sediment transfers to Bassenthwaite Lake as well as the overall 

sediment budget of the lowland catchment (Figure 3.1, Equation 3.1). In order to 

do so, four monitoring stations have been established on the rivers around 

Bassenthwaite Lake (Figure 3.2, 3.3). Three of these stations were installed to 

monitor the suspended sediment inputs to Bassenthwaite Lake. On the River 

Derwent, two stations were installed at Portinscale and Low Stock Bridge. The 

Portinscale station was located to monitor suspended sediment inputs from the 

upland catchment of the River Derwent. The station at Low Stock Bridge was 

situated 3. 7 km downstream of Portinscale and 0.8 km upstream of the 

Bassenthwaite Lake inflow. lt was installed to record the total suspended 

sediment input to Bassenthwaite Lake from the River Derwent, and (in 

comparison with the Portinscale site) to monitor changes in suspended sediment 

storage and transfers in the lowland area of the River Derwent (Figure 3.1 ). To 

monitor suspended sediment transfers from Newlands Beck, the second major 

tributary at the southern end of Bassenthwaite Lake, a station was installed at 

Newlands Bridge, 3.4 km upstream of the Lake. The fourth station was installed 

0.2 km downstream of the Bassenthwaite Lake outflow near Ouse Bridge, with 

the aim to monitor suspended sediment transfer outputs from the Lake. The 
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monitoring equipment at each site comprised an automatic water sampler and a 

datalogger (Figure 3.4), to which a turbidity probe was connected. 

I Inputs 11 liStorage I I liStorage I I Output• I 

ssc 1 
Newtands Beck Turbid~y 

Discharge I H;sc ~ Bassentnwaote Lake TUibidily 

SSC I I Rover bank mapping I ~~SC }-
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Discharge I I Laser scannong I [Discharge 

Figure 3. 1: The monitoring framework and fieldwork tasks undertaken during 
fieldwork for this research project, showing their place in the sediment budget of 
the Bassenthwaite catchment. 

Two of the stations (Portinscale and Newlands Bridge) had been operating 

since November 2004 and had collected 22 months of data prior to the start of 

this project. The stations at Ouse Bridge and Low Stock Bridge were established 

in January and December 2005, respectively, and therefore have shorter data 

records. However, the record of turbidity measurements is not fully continuous 

due to a period of maintenance following flooding in December 2007, which 

caused damage to the dataloggers and water samplers at Ouse Bridge and Low 

Stock Bridge, and the turbidity probes and cabling at Newlands Bridge and 

Portinscale. Furthermore, drift in background turbidity values has occurred when 

the wiper cleaning mechanism on turbidity probes has not functioned, leading to 

unreliable values being recorded during some short periods. The turbidity record 

at Ouse Bridge is incomplete due to extensive repairs and repositioning of the 

station (as a result of the damage detailed above) and extensive drift, and 

therefore it is not used in the analysis of suspended sediment transfers (Section 
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4.1 ). These are relatively minor limitations and a sufficient number of values have 

been recorded to establish long-term trends, suspended sediment loads, and 

turbidity variations during large events. 
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Figure 3. 2: Map of the Bassenthwaite Lake area, showing the four monitoring 
stations used for data collection in this project, in addition to the river bank 
erosion study area near Low Stock Bridge. 



Figure 3. 3: Monitoring stations used to collect turbidity data and river water 
samples: 
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Top row: left- Portinscale (River Derwent inflow, NY 251 239), right- Low Stock 
Bridge (River Derwent inflow, NY 236 268). 
Bottom row: left- Newlands Bridge (Newlands Beck inflow, NY 240 239), right­
Ouse Bridge (River Derwent outflow, NY 199 321 ). 
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Figure 3.4: Field monitoring station at Ouse Bridge. The elevated cage (1) 
contains the automatic water sampler and datalogger (not visible). The black pipe 
(2) leading down the bank contains the turbidity probe wire, water sampler tube, 
sampler float switch and pressure transducer. The turbidity probe and water 
sampler tube are attached to the bank face at the stifling well (3). The two solar 
panels on the cage supply power to the datalogger battery. The hut close to the 
cage is an Environment Agency river level and flow gauging site, which collects 
river stage and discharge data. 

3.2 Monitoring suspended sediment transfers: river water samples and 
turbidity data collection 

Suspended sediment concentration data has been collected throughout 

the research period of this project, to add to the database of concentrations 

established prior to October 2006. These samples have been taken by river 

water samplers at each monitoring station and additional samples have been 

collected at the monitoring stations by hand or using the sampler during field 

visits. The automatic water samplers can be programmed to sample at either 

regular time intervals or at a particular river level, as a float switch is attached to 

the sampler. This latter feature has proved useful in recording suspended 
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sediment concentrations at high river flows during storms. The main purpose of 

additional hand/grab samples was to obtain further useful samples (e.g. at higher 

river flows), as well as for calibration purposes. Over the monitoring period, an 

attempt has been made to sample a larger proportion of high flow events and 

high suspended sediment concentrations, by using flow-dependent sampling at 

the automatic water samplers and collecting grab samples during high flow 

events. The reason for this is because high-magnitude, low-frequency pulses of 

sediment play a major role in sedimentation and are therefore important to 

quantify. In total, 463 river water samples were collected at the four monitoring 

stations during the period November 2004- May 2007, of which 154 samples 

were collected during the field monitoring period of this research project (October 

2006 - May 2007). 

The samples were then filtered and weighed to calculate the suspended 

sediment concentration of each sample. To work out the suspended sediment 

concentration of a water sample, a Buchner filtration system was used. The 

sample is drained through a pre-weighed, desiccated filter paper (retention time = 

431Jm), before being placed in an oven at 105 °C for 24 hours. The filter paper is 

then placed into a desiccator for ea. 15 minutes to remove moisture, and then 

weighed. The difference between this weight and the pre-filtration weight equals 

the sediment weight, which can then be divided by the volume of water in the 

sample to calculate the suspended sediment concentration of the sample (mg r1
). 
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A database of suspended sediment concentrations has therefore been compiled 

for the four monitoring stations. 

Logistically, it was not possible to continuously sample river water at short 

time intervals. Therefore, indirect estimation of suspended sediment 

concentrations were made using turbidity measurements, which were measured 

using turbidity probes at the four monitoring stations. Turbidity is defined as "an 

expression of the optical property of a medium which causes light to be scattered 

and absorbed rather than transmitted in straight lines through the sample" 

(lawler 2005, Lawler et al. 2006). This scattering takes place due to the 

presence of particulates in the water, which include suspended sediment 

particles. The unit of turbidity measurements is the Nepholometric Turbidity Unit 

(NTU). The association of high turbidity values with high suspended sediment 

concentrations enables turbidity values to be used for estimating suspended 

sediment loads during periods when river water is not directly sampled. To 

calculate suspended sediment loads from turbidity values, an approximate 

conversion (1.1 NTU = 1 mg r1
) was used, based upon observations in 

suspended sediment monitoring in other studies. Relative values are unaffected 

by this conversion as all four turbidity meters were calibrated to the same NTU 

standards. River discharge data is also collected by the Environment Agency 

from its gauging stations at Portinscale, Newlands Bridge and Ouse Bridge. As 

river discharge is an important detenninant upon suspended sediment transfers 

(e.g. Walling and Webb 1981), it is important to compare the river discharge 
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records during the main period of continuous turbidity monitoring that was used 

to calculate suspended sediment loads (April-November 2006) with the longer­

term flow records from the gauging stations on the River Derwent and Newlands 

Beck. Comparative flow duration curves for Ouse Bridge, Portinscale and 

Newlands Bridge monitoring stations are shown below (Figure 3.5). At Ouse 

Bridge, both high and low flows are over-represented in the period of turbidity 

monitoring, while at Portinscale although the flow duration curves are 

approximately parallel, high flows in particular appear more over-represented 

(Figure 3.5). By contrast, the Newlands Bridge flow duration curves are similar for 

discharges exceeded less than 30% of the time, but moderate-lower flows 

appear to be represented less over the turbidity monitoring period than in the full 

record. Overall, events exceeded more than 20% of the time are more prevalent 

at Portinscale and Ouse Bridge in particular. This would tend to. increase the 

relative importance of suspended sediment delivery on the River Derwent during 

this period. However, it is notable that the full discharge records of Portinscale 

and Ouse Bridge began in 1976, in comparison with the Newlands Bridge record 

which was established in 2004, so this comparison is not a balanced one. 
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Figure 3. 5: Flow duration curves for the gauging stations at Ouse Bridge, 
Portinscale and Newlands Beck, for both the main turbidity monitoring period 
(April-November 2006) and the full discharge record at the stations (Ouse Bridge 
and Portinscale 1976-present, Newlands Bridge 2004-present). Discharge data 
provided by the Environment Agency. 

The datalogger at each monitoring station recorded turbidity data at 15 

minute intervals. This data was downloaded onto a laptop during field visits. 

Aside from these data collection tasks, regular routine maintenance of the sites 

took place throughout the year (replacing batteries and turbidity probe wipers). 

Following the flooding of November-December 2006, two samplers and two 

dataloggers (at Ouse Bridge and Low Stock Bridge) were damaged by flooding 

and turbulent water flows, in addition to the turbidity probe cabling at Newlands 
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Bridge was snapped by debris accumulation. The sites were repaired during the 

winter and were in working order by March 2007. 

3.3 River bank erosion survey 

The presence of widespread river bank erosion on the 5. 7km reach of the 

River Derwent between Derwent Water and Bassenthwaite Lake has been 

identified by sediment supply risk analyses, field surveys, studies of historical 

channel change and field observations (Section 2.2). This section of river was 

therefore selected as the river bank erosion study area for the project. 

Following the consideration of river bank erosion mechanisms (Section 

2.4.2), the key task during field surveying was to map the extent of overall bank 

erosion on the River Derwent, and identify areas of the river channel that are 

either undergoing or at risk of mass bank failures. Therefore, the study into bank 

erosion on the River Derwent comprised two main areas: a river bank 

reconnaissance survey of bank erosion on the Derwent between Derwent Water 

and Bassenthwaite Lake, and a survey of river bank erosion rates and 

morphological change. 

3.3.1 River bank erosion extent survey: bank reconnaissance and mapping 

To assess the extent of river bank erosion on the River Derwent, it was 

important to produce an accurate reconnaissance survey and mapping of river 
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bank erosion features, especially on the 5. 7km lowland reach between Derwent 

Water and Bassenthwaite Lake which has been identified by Orr et al. (2004) as 

having a large area of eroding river banks. Therefore, a survey of eroded river 

bank features was undertaken using a differential GPS unit (model: Leica GPS 

1200) in May-July 2007. GPS point data of erosion features was collected using 

a mobile rover unit and transferred to ArcMap, producing an overall map of river 

bank erosion extent. Field mapping was used in areas where overhanging tree 

cover prevented the use of the GPS. In addition, photographs were taken in order 

to add detail to the riverbank mapping. 

Various features of river bank were identified and mapped using a set of 

identifying criteria (Table 3.1 ). The mapping feature code was determined by 

important features of bank erosion suggested by the review of river bank erosion 

mechanisms and processes (Section 2.4), and was designed to assess the 

extent of river bank erosion by identifying large areas of the bank that were 

eroding (eroded river banks and poaching scars) whilst also identifying additional 

features (failed blocks, talus slopes) that indicate active river bank erosion and 

sediment supply. In addition, areas of river bank management (e.g. revetments, 

gabions) were also mapped, as they represent attempts to prevent riverbank 

erosion. Furthermore, structures present which may influence river bank stability 

(e.g. bridges, walls) were included in the river bank mapping. 



Mapping feature 

Eroded river bank 

Identifying criteria 

Large area of bank erosion, entire bank height and 
majority of bank face composed of exposed soil. 
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Poaching scar Large area of bank erosion caused by grazing animals. 
Exposed soil and evidence of trampling, often diversion 
of fencing at larger scars. 

Failed block 

Crack 

Talus slope 

Revetments 

Block of material collapsed from river bank. Distinction 
between vegetated and non-vegetated blocks. 

Tension crack sub-parallel to the bank line, suggesting 
potential block failure. 

Slope of coarse material at foot of river bank, formed by 
erosion of the bank. 

Man-made river bank defences. Typically of stone or 
wooden construction. 

Table 3. 1: The definitions used to map river bank erosion. 

The mapping definitions used during the mapping survey (Table 3.1) were 

designed to identify the extent of river bank erosion, as well as to map the 

location of features which show direct inputs of sediment to the river channel. 

Sections of river bank erosion included exposed river bank faces and poaching 

scars in agricultural areas. Failed blocks of material are Important as they are 

clear evidence of the active delivery of material from the river bank and are 

indicative of large bank failures, especially cantilever failures (Section 2.4.2.1) In 

addition, areas of bank reinforcement (e.g. stone revelments) were also 

surveyed, as they represent attempts to manage erosion. 
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At eroded river bank sections, measurements were taken of the river bank 

profile. In all, 77 bank profiles were recorded. Measurements were taken at 

eroded reaches, at locations representative of the eroded river bank as a whole. 

These are extremely important in assessing the areas of river bank which are 

susceptible to large bank failures, as bank geometry (river bank height, gradient, 

and the amount of undercutting) plays an important role in affecting bank stability 

(Section 2.4.1) and therefore the susceptibility of the bank to further erosion and 

sediment addition to the river channel. The measurements taken are shown in 

Figure 3.6. Additionally, the bank structure at such profiles was noted, as the 

composition of a river bank can play a major role in determining overall bank 

stability and failure mechanisms (Sections 2.4.1, 2.4.2). 

vegetation 

Maximum undercut depth 

Zero datum 

Figure 3.6: Bank profile measurements collected during mapping. H1 =maximum 
bank height, H2 = height of eroded part of bank, H3 = height of bank to maximum 
undercut depth. 
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3.3.2 River bank morphological change survey: laser scanning 

lt is very difficult to quantify the total volume of material eroded from river 

banks along an entire river length, which (on the Derwent) would require several 

surveys of over 11 km of river banks. Therefore, this project decided to study in 

detail the rate of erosion and morphological change on three river banks between 

Low and High Stock Bridges (Figure 3.7, Table 3.2). Over a four month period 

between 13th March 2007 and 15th June 2007, three bank reaches (Figures 3.2, 

3. 7) were surveyed twice using a terrestrial laser scanner (Trimble GS200). The 

scanner was used to produce virtual profiles of the river bank surface in the form 

of a point cloud. When the banks were re-surveyed, it was possible to compare 

scans and identify areas of material removal and bank morphological change. 

The study of river bank erosion using the laser scanner was carried out as 

a pilot study. The study period (3 months) proved too short to document any 

large bank changes, particularly as no scans were taken during winter when a 

large volume of material is typically eroded from river banks (Section 2.4.5). 

However, the aim of this study was to asses the usefulness of the laser scanning 

technique for the study of river bank erosion. The key advantages of the use of a 

laser scanner are the ability to calculate volumes of sediment removed from the 

river bank, as well as visualise landforms of bank erosion and assess failure 

mechanisms. The scanner is potentially a considerable improvement over 

previous fieldworl< methods for analysing river bank erosion, which were typically 



in the form of field observations (e.g. Wolman 1967) and estimations of bank 

retreat rate at erosion pins (e.g. Lawler et al. 1997). 
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The use of laser surveying to measure soil erosion was developed in the 

early 1990s, with some relatively basic techniques using video camera 

recordings of laser positions (Konstant 1991). Later, laser scanners were used to 

create instantaneous profiles of soil microtopography (Darboux and Huang 

2004), and further techniques using airborne laser scanning to create digital 

terrain models of stream bank form (Witte et al. 2001) and bank erosion (Thoma 

et al. 2005). The use of laser scanning to create virtual models of river bank 

faces has been a relatively recent development, however aerial laser scanning of 

eroded banks in Minnesota (Thoma et al. 2001, 2002) and Virginia (Pizzuto et al. 

2007) have taken place. Therefore, the use of a terrestrial, ground-based laser 

scanner to monitor river bank erosion is a comparatively new technique. 
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Figure 3. 7: The three river bank sections analysed in the river bank erosion study 
in this project, showing bank 1 (top), bank 2 (middle) and bank 3 (bottom). 
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Bank Derwent Length Maximum Mean Maximum 
number channel (m) height angle(, undercut 

bank {m} {mm} 
1 East bank 53 1.95 54 340 
2 East bank 24 1.54 42 0 
3 West bank 14 1.8 80 270 

Table 3. 2: Summary of the morphological characteristics of the eroded bank 
sections monitored in this project. 

The three river banks (Figure 3. 7) comprising the bank erosion rate study 

area were selected as they are generally representative of the River Derwent's 

bank types in terms of composition, land use and vegetation. Dominant bank 

materials are fine, cohesive overbank deposits with some sections of coarser 

gravels. Bank 1 is a dominantly cohesive river bank, while bank 2 is partly 

composite with a clear layer of gravel overlain by cohesive material at the 

upstream end of the section. Bank 3 meanwhile is a composite bank with non-

cohesive coarse material dominating the bank face. All the banks are in excess 

of 1.5 m in height (Table 3.2). River banks 1 and 2 are located on the outside of a 

meander bend, a planforrn characteristic generally associated with high erosion 

rates (e.g. Hooke 1979, 1980). River bank 3 is situated on an approximately 

straight river reach. 

The dominant land use in the bank erosion study area, grazing, is also 

representative of the reach as a whole. The western river bank is protected from 

poaching by a fence, therefore the river channel on this bank cannot be accessed 

by animals, except at a restricted point upstream of bank 3. The eastern bank is 

not protected and animals (sheep and cattle) can graze up to the bank face. The 
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dominant vegetation type on the areas adjacent to the river bank is grass (longer 

on the western bank), although the western bank has been planted with young 

trees on the bank top. There are some small trees and bushes on the east bank, 

although none at the two bank erosion sites. The downstream river reaches close 

to Low Stock Bridge are fenced off from the grazing land, and there is an area of 

large, mature trees and bushes on the east bank, and there is also a small area 

of trees in the field above the west bank at the Low Stock Bridge monitoring 

station. 

Before the erosion study began, reference points for scan comparisons 

were installed at the erosion sites. Threaded rods (c. 1 m length, 20 mm 

diameter) were inserted into the river bank faces, onto which reference targets 

(200 mm x 200 mm) were mounted during scanning (Figure 3.8). Twelve 

reference points are used at the sites, with five used at the longest bank reach 

(bank 1 ), four used at bank 2 and three used at bank 3. The scanner was set at a 

resolution of 30 mm at a distance of approximately 20 m from the surface being 

scanned. 

The base scans for the bank erosion study were carried out on the 13th 

March 2007 (Figure 3.8). To carry out a bank scan, the scanner was set up on 

the opposite river bank, which enables the clearest view of the surface to be 

scanned (Figures 3.8). The laser scanner firstly scans the reference points at 

each bank section, before carrying out a detailed scan of the whole section. One 
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scan was carried out at banks 2 and 3; however, the greater length of bank 1 

necessitated two scans, hence four benchmarks were established at the survey 

sites. Following the base scans, a second laser scan took place on the 15th June 

2007. 

Figure 3.8: The laser scanner taking the first base scan of river bank 1, 13th 
March 2007. The laser scanner is mounted on the yellow tripod. The scan targets 
used for referencing the scans are indicated (circled) . 

Once all data was collected, processing of the point cloud data was 

undertaken using ReaiWorks software. Following georeferencing, the point 

clouds could be overlain where necessary (at bank 1, where two separate scans 

of the bank were taken due to the bank's length). Once the two scans from the 

two dates were overlain, areas of erosion or morphological difference between 

the scans could be identified. Errors in scan matching were less than 0.001 m. 
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3.4 Summary 

The methods and techniques described here aimed to collect accurate 

data relevant to the aims and research questions of the project (Section 1.6). A 

key theme is the sediment budget concept, as suspended sediment inputs to 

Bassenthwaite Lake and sediment storage play a large role in the ecological 

problems in the lake basin, and therefore analysing the potential sources of fine 

sediment and the characteristics of suspended sediment transfers to 

Bassenthwaite Lake are very important. The Bassenthwaite sediment budget is 

assessed through both the suspended sediment transfer monitoring and the river 

bank erosion study. The suspended sediment monitoring therefore aimed to 

quantify the suspended sediment transfers to Bassenthwaite Lake, as well as the 

overall lowland catchment sediment budget including suspended sediment 

storage in Bassenthwaite Lake; with the bank erosion survey aiming to assess 

the potential for river bank erosion to contribute to such sediment inputs. 

The data collected was used in three ways: Firstly, an analysis of the 

suspended sediment concentration data was undertaken in order to assess 

trends in suspended sediment transfers, as well as to identify the most important 

parts of the catchment sediment budget, including the nature of suspended 

sediment inputs and the relative importance of the River Derwent and Newlands 

Beck for sediment transfers. Secondly, the river bank mapping and 

reconnaissance information was used to calculate the extent of river bank 

erosion on the lowland River Derwent and analyse risks of sediment delivery in 
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such areas. Thirdly, the laser scanning data from the banks of the River Derwent 

was used to assess the processes of river bank erosion operating on a reach of 

the Derwent. 



CHAPTER FOUR 

RESULTS 

This chapter comprises data analysis, results and discussion in order to 

answer the two research questions in this project (Section 1.6). The chapter is 

comprised of two main sections, which correspond to the initial research 

questions: 

• Section 4.1: The characteristics of suspended sediment transfers to 

Bassenthwaite Lake. 

• Section 4.2: Assessment of river bank erosion on the lowland River 

Derwent between Derwent Water and Bassenthwaite Lake. 

4.1 The characteristics of suspended sediment transfers to 
Bassenthwaite Lake 

This section presents results of suspended sediment concentrations 
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(SSC) from the river water samples and turbidity monitoring data collected during 

the course of this project (Sections 3.1, 3.2). The literature review suggests the 

presence of several potential sources of sediment in the catchment (Sections 2.1, 

2.2). Furthermore, there is a lack of knowledge of the overall sediment load being 

transported to Bassenthwaite Lake and uncertainty as to the relative importance 

of different tributaries to sediment delivery to the lake (Section 2.1 ). The data 

collection and structure of the analysis is described below (Section 4.1.1 ). 
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4.1.1 Suspended sediment monitoring data collection 

As described in the methodology, suspended sediment monitoring in the 

Bassenthwaite Lake lowland catchment took place between November 2004 and 

May 2007 at four monitoring stations located on the lowland rivers near 

Bassenthwaite Lake (Section 3.1 ). The monitoring itself has involved the 

collection of two sets of data: direct measurements of the concentration of 

sediment being transported in river water samples, and measurements of 

turbidity, which gives an indication of the particulate content of river water 

(Section 3.2). Both methodologies have been used to assess characteristics of 

sediment transfers in the Bassenthwaite lowland catchment, in particular the 

nature of material delivery to the lake, which is crucial to the ecological problems 

faced there (Section 1.3). 

In total, 463 river water samples have been collected during the overall 

suspended sediment monitoring period (November 2004- May 2007). An 

analysis of the suspended sediment concentrations of these samples is detailed 

below (Section 4.2). Sampling was biased towards higher suspended sediment 

concentrations in order to quantify sediment pulses, which has elevated average 

concentrations above background values; however, differences in concentrations 

between the monitoring stations are valid. Some sites were established earlier 

than others, and so there are differences in the number of samples collected. For 

example, the Portinscale station was established in November 2004 and 2005 

samples have been collected, while the Low Stock Bridge station was set up in 
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December 2005 and only 67 samples have been taken at that station. On the 2"d 

September 2006, 24 river water samples were taken from all four monitoring 

stations during a high flow event, enabling an analysis of sediment transfer 

characteristics to be made over a shorter time scale. 

The turbidity record analysed below complements the suspended 

sediment data as it enables a more continuous and complete record of sediment 

transfer monitoring, as the 15-minute sampling enables data collection during 

periods of time between water sampling. The values have been converted to 

suspended sediment concentration values (in mg r1
) using the conversion of 1.1 

NTU = 1 mg r1
, which has been shown to be a good approximate conversion 

between the two measures of fine sediment transport, based upon monitoring in 

other studies. There have been periods of disruption to the record due to some 

equipment damage, particularly during the flooding of December 2006 -January 

2007, and turbidity drift, with the most incomplete record being at Ouse Bridge. 

However, there is a continuous record of turbidity values at 15-minute intervals at 

the three inflow monitoring stations between 181 April and 30th November 2006. 

This is the most complete record of turbidity values during monitoring and is the 

one which is used in the analysis below. 

The river water sample and turbidity records described above are 

integrated in the analysis of suspended sediment transfers in the Bassenthwaite 

Lake lowland catchment (Table 4.1 ). The longer river water sample record is 
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used to analyse overall characteristics of suspended sediment transfers in the 

lowland Bassenthwaite Lake catchment (Section 4.1.2), and spatial variations in 

suspended sediment transfers between the four monitoring stations (Section 

4.1.3.1 ). The continuous monitoring of turbidity between April and November 

2006 is used to calculate the suspended sediment transfers to Bassenthwaite 

Lake, including the overall sediment loads being transported on the River 

Derwent and Newlands Beck (Section 4.1.3.2), the characteristics of suspended 

sediment transfers on the River Derwent (Section 4.1.3.3) and hysteresis 

analysis of relationships between flow discharge and suspended sediment 

concentration variations during high discharge events (Section 4.1.3.4). A 

summary of the conclusions of this analysis are included in Section 4.1.4. 



Section 

4.1.2 Overall characteristics of 
suspended sediment transfers in 
the lowland Bassenthwaite Lake 
catchment 

4.1.3.1 Spatial variations in 
suspended sediment transfers, 
2004-7 

4.1.3.2 Suspended sediment load 
estimates, April-November 2006 

4.1.3.3 Suspended sediment 
transfer characteristics on the 
River Derwent 

4.1.3.4 Hysteresis analysis and 
suspended sediment transfers 
during discharge events 

Water samples 
(November 2004-
May 2007) 

j 

j 

Turbidity data 
(April-November 
2006) 

j 

j 

j 
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Table 4. 1: The structure of the data analysis, showing the integration of the water 
sample and turbidity data records into the analysis. 

4.1.2 Overall characteristics of suspended sediment transfers in the 
lowland Bassenthwaite Lake catchment 

During the monitoring period (November 2004 to May 2007), suspended 

sediment transport on the River Derwent and Newlands Beck has been highly 

episodic. 65% of all water samples had suspended sediment concentrations 

below 10 mg r1
, with just below 44% of samples containing less than 5 mg r1 

(Figure 4.1, Table 4.2). In contrast, a very small proportion of samples (5.4%) 

featured concentrations in excess of 50 mg r1
. The dominance of low suspended 

--·--· 
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sediment conditions in the catchment is further shown by the disparity between 

the overall mean (13.4 mg r1
) and median (6.3 mg r1

) concentrations in the 

catchment, which suggests the presence of a large frequency of low suspended 

sediment concentrations and a small number of much higher concentrations. This 

is supported by the fact that less than a third (28%) of all samples are above the 

catchment mean. 
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Figure 4. 1: The distribution of suspended sediment concentrations recorded at 
the four monitoring stations during the whole monitoring period (2004-7) . 

Overall water sample record 
Number of water samples 463 
Mean SSC (mg r1

) 13.4 
Median SSC 6.3 
Standard deviation 20.3 
% of samples below mean 72% 
% of samples above mean 28% 

Table 4.2: Average suspended sediment concentrations recorded at all 
monitoring stations (2004-7). 



4.1.3 Spatial variations in suspended sediment transfers in the lowland 
Bassenthwaite Lake catchment 
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The following section is an analysis of suspended sediment concentration 

(SSC) characteristics of both the river water sample and turbidity data records, 

over the 2004-7 and April-November 2006 monitoring periods respectively. 

4.1.3.1 
2004-7 

Spatial variations in suspended sediment concentrations, 

Over the entire monitoring period, the River Derwent is seen to dominate 

the suspended sediment input to Bassenthwaite Lake (Table 4.3). The mean 

suspended sediment concentration recorded at Newlands Bridge on Newlands 

Beck (9.6 mg r1
), was nearly 56% lower than that of Low Stock Bridge on the 

Derwent (21.7 mg r1
), with a similar 58% disparity in median concentrations. 

Peak sediment fluxes on the River Derwent were also much greater than those 

on Newlands Beck; the maximum sediment peak recorded on the Derwent 

(184.45 mg r1 at Portinscale) is nearly three times the peak concentration at 

Newlands Bridge (64.25 mg r1
). Twelve concentrations recorded on the Derwent 

are higher than the Newlands Bridge maximum, and of all flows above 50 mg r1
, 

only 3 were recorded at Newlands Bridge (compared with 12 on the two River 

Derwent stations). Furthermore, 71% of all samples at Newlands Beck contained 

low (<10 mg r1
) suspended sediment concentrations, compared with 52% of 

samples at Low Stock Bridge, the dominance of low suspended sediment 
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concentrations there is also indicated by the low median concentration (3.9 mg r 
1
) (Figure 4.2). 

There is also a considerable difference in suspended sediment 

concentrations between the two River Derwent monitoring stations. The mean 

concentration at Low Stock Bridge is over 8 mg r1 higher than the Portinscale 

mean (Table 4.3). This reflects a greater proportion of higher concentrations 

recorded at Low Stock Bridge, especially the highest concentrations in excess of 

50 mg r1
, which were observed in c. 15% of water samples from Low Stock 

Bridge but only 4% of Portinscale samples (Figure 4.2). Between the two sites, 

Portinscale also has a greater number of low concentration samples, particularly 

in the 2-5 mg r1 range. The greater variation in concentrations at Low Stock 

Bridge is also reflected in the much larger standard deviation at the site (30.5 

compared with 18.8 at Portinscale) (Table 4.3). 

The suspended sediment record at Newlands Bridge is one of 

predominantly low concentrations, with few high concentrations and low 

variability of values. The mean SSC (9.6 mg r1
), median SSC (3.9 mg r1

) and 

maximum recorded concentration (64.25 mg r1
) at Newlands Bridge are the 

lowest recorded at all the monitoring stations. lt is significant that well over a third 

(37%) of all samples taken at the station contained very low concentrations 

(below 2 mg r\ a proportion much greater than at the other monitoring stations 

(average proportion in this range = 9-11 %) . 
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At Ouse Bridge, low suspended sediment concentrations dominate the 

record, with over 80% of all recorded concentrations containing below 10 mg r1 

of sediment (Figure 4.2), and a median concentration of just over 4 mg r1 (Table 

4.3). Despite this, the mean value and standard deviation at the site are elevated 

by a set of four very high values in excess of 80 mg r1 recorded on the 11th 

November 2006 which shows a significant sediment pulse from Bassenthwaite 

Lake. If the sum of the Newlands Bridge and Low Stock Bridge mean 

concentrations may be regarded as the average sediment input to the lake, then 

the Ouse Bridge mean concentration (12.19 mg f 1
) is only 39% of the total input. 

The implication of this calculation is that suspended sediment inputs to 

Bassenthwaite Lake are greater in volume than suspended sediment outputs 

from the lake, and therefore it appears that there is considerable storage of 

sediment in the lake basin, which supports the findings of several studies of 

sedimentation characteristics within the lake (Section 1.4). 
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Portinscale Low Stock Newlands Ouse Bridge 
Bridge Bridge 

Number of 
samples 205 67 139 52 
Mean SSC 
(mg r1

) 13.6 21.7 9.6 12.2 
Median SSC 7.3 9.3 3.9 4.1 
Maximum 
ssc 184.45 163.77 64.25 91.65 
Minimum SSC 0.26 0.43 0.11 0.60 
Standard 
deviation 18.8 30.5 12.8 23.5 

Table 4.3: Suspended sediment concentration (SSC) characteristics from water 
samples taken at the four monitoring stations between November 2004 and May 
2007. 
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Figure 4. 2: Histogram showing the distribution of suspended sediment 
concentrations at the four monitoring stations. 
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The suspended sediment concentrations described above could be biased 

if the proportion of water samples collected at higher flows was greater at some 

monitoring stations than others. However, the mean discharges recorded at the 

time of water sample collection are similar at Portinscale, Low Stock Bridge and 

Ouse Bridge (Table 4.4), although the standard deviations of the three stations 
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are slightly different, suggesting a greater range of flows was sampled at Ouse 

Bridge than at the two inflow stations. lt is notable that the Newlands Bridge 

mean discharge at time of sample collection is considerably lower than the River 

Derwent stations; this reflects the smaller catchment area and naturally lower 

discharge at Newlands Beck reflected in the literature (Beattie et al. 1996, Hall et 

al. 2001). 

Monitoring station 
Portinscale 
Low Stock Bridge 
Newlands Bridge 
Ouse Bridge 

Mean discharge (m3 s"1
) 

25.6 
27.7 
6.2 
27.5 

Standard deviation 
14.4 
16.0 
3.4 
19.1 

Table 4.4: Mean discharges at times of water sample collection at the four 
monitoring stations. 

On the afternoon of the 2nd September 2006, the four automatic water 

samplers each collected 24 samples on a flow-dependent basis during a high 

flow event. Discharge records from Portinscale gauging station suggest that 

discharges were high for much of the day, with a peak discharge of 31.5 m3 s-1 at 

19:30. The Newlands Bridge discharge record suggests an earlier peak of 14.7 

m3 s-1 at 16:00. Samples were taken from all stations at 15 minute intervals. The 

sampler at Newlands Bridge collected its samples between 12:00 and 17:45, 

while the three other samplers operated between 18:00 and 23:45. These 

samples provide a record of the high suspended sediment concentrations at the 

three inflow monitoring stations, several large suspended sediment peaks at Low 

Stock Bridge, and an unusual response of suspended sediment concentrations at 

Ouse Bridge (Table 4.5, Figure 4.3). The mean concentrations recorded on the 
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2"d September at Portinscale, Low Stock Bridge and Newlands Bridge were 

greater than double the stations' mean concentrations over the long term 

monitoring period, suggesting a large pulse of sediment flowing into the lake 

(Table 4.5). However, the responses of the two River Derwent inflow stations 

were considerably different (Figure 4.3). The suspended sediment concentrations 

at Portinscale were moderately high across the 6 hour period, with the highest 

value of 53.77 mg r1 recorded at 18:00, after which concentrations steadily 

declined to below 20 mg r1 from 21:30 onwards. However, the Low Stock Bridge 

record is markedly different showing a complex and multi-peaked response. Until 

21 :00, suspended sediment concentrations were generally low apart from two 

pulses, during which very high and extreme concentrations (96.16 mg r1 and 

163.77 mg r1 are recorded. The difference in maximum concentrations recorded 

on the day is remarkable, as the Low Stock Bridge peak value of 163.77 mg r1 is 

over three times the maximum recorded at Portinscale. Unlike the response at 

Portinscale, there is no general decline in concentrations in the latter half of the 

monitoring period at Low Stock Bridge, and further sediment pulses were 

recorded in excess of 80 mg r1 at 23:00 and 23:45. lt is also apparent that a 

greater volume of sediment was recorded at Low Stock Bridge than Portinscale 

over this period, given that the mean concentration at Low Stock Bridge is 17.06 

mg r1 higher than that of Portinscale. In addition, the strong variability in 

concentrations is reflected in the standard deviation of concentrations being 

nearly three times higher at Low Stock Bridge than at Portinscale. 
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During its earlier sampling period, Newlands Beck recorded a lower mean 

concentration than at Portinscale and especially Low Stock Bridge (Table 4.5), 

and therefore acted in accordance with the longer-term trend at the sites. 

Throughout the day, concentrations were moderately high, with a peak of 38.73 

mg r1 and 4 other values above 30 mg r1 although such concentrations are well 

below the maximum and average values recorded at Low Stock Bridge. Three 

concentrations below 10 mg r1 were recorded, but otherwise the record is one of 

fluctuating, moderately high sediment concentrations. Converted turbidity values 

suggest that suspended sediment concentrations steadily declined to low values 

during the final 6 hours of the day. 

The suspended sediment concentration characteristics recorded at Ouse 

Bridge are drastically different to the other three stations, with Ouse Bridge the 

only monitoring station to have a lower mean concentration on the 2"d September 

2006 than the station's long term average (4.68 mg r1 compared with 12.19 mg r 
1
) (Table 4.5). All but two suspended sediment concentrations were below 10 mg 

r1
, with very low variability in concentrations (standard deviation= 3.23 mg r1

). 

The implication of these figures is that the flux of suspended sediment recorded 

at the inflow stations did not reach, or was not recorded, at Ouse Bridge. The 

Ouse Bridge mean concentration, 4.68 mg r1
, is only 7% of the average sediment 

input on the 2nd September. This suggests that a larger volume of suspended 

sediment was stored in the lake than under normal flow conditions. 
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Portinscale Low Stock Newlands Ouse Bridge 
Bridge Bridge 

Mean SSC 28.60 45.66 20.98 4.68 
(mg r1

) 

Median SSC 23.96 31.57 19.17 3.47 
Maximum 53.77 163.77 38.73 13.89 
ssc 
Standard 13.31 38.62 10.25 3.23 
deviation 

Table 4.5: Suspended sediment concentrations at the four monitoring stations 
recorded on ~d September 2006 (at all sites n = 24). 

Suspended sediment concentrations. 2nd September 2006 
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Figure 4. 3: Graph showing variations in suspended sediment concentrations 
recorded at the four monitoring stations during sampling on the ~ September 
2006. Note that the second half of the Newlands Bridge record (18:00-23:45) was 
retrieved from the turbidity data rather than from water samples. 
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4.1.3.2 Suspended sediment load estimates, April-November 2006 

The continuous turbidity monitoring between April and November 2006 

(Section 4.1.1) means that total suspended sediment loads transferred to 

Bassenthwaite Lake can be quantified for that 8-month period, as well as an 

estimate of total annual suspended sediment inflows (Table 4.6). The load 

calculations support the trends indicated by the direct water samples above 

(Section 4.1.3.1 ). Over the period, the River Derwent contributed over 80% of 

fine sediment load to Bassenthwaite Lake, and is again seen to dominate 

sediment transfer inputs at the south end of Bassenthwaite Lake. Furthermore, 

there is a notable downstream increase in fine sediment load between the two 

River Derwent stations of 772 t, which can be extrapolated to an annual 1,158 t 

increase in suspended sediment load on this reach over a year. The calculations 

of annual suspended sediment loads (Table 4.6) are estimates as the 8-month 

turbidity monitoring period did not encompass winter. 

These sediment loads support the disparity in mean concentrations 

between Portinscale and Low Stock Bridge found in the water sample record 

(Table 4.2), and suggests that sediment addition is taking place on the lowland 

River Derwent. This trend is supported by the cumulative sediment loads 

throughout the year (Figure 4.4), which indicate that increases in cumulative 

sediment load occurred during short periods of time, as evidenced by the 

stepped profiles of the graphs (Figure 4.4), suggesting the importance of high-
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magnitude, low-frequency events in sediment transfers described below (Section 

4.1.3.3) 

Monitoring station Suspended Estimated load (t) 
sediment load (t) (Annual) 
(8 months) 

River Derwent at 
Portinscale 3,305 4,958 

River Derwent at Low 
Stock Bridge 4,077 6,116 

Newlands Beck at 
Newlands Bridge 807 1,211 

Table 4. 6: Overall suspended sediment load calculations for the three inflow 
monitoring stations for a) the 8-month turbidity monitoring period between 1st 
April and 3cfh November 2006, b) an estimated annual (12-month) period. 

Figure 4. 4: Cumulative sediment curves during the 8-month turbidity monitoring 
period in 2006. Diagram from Warburton (2007). 
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The above calculations of suspended sediment loads can be compared 

with the effective catchment areas and stream lengths of the River Derwent and 

Newlands Beck in order to compare suspended sediment productivity between 

the subcatchments (Table 4.7). This analysis shows that, even when allowing for 

the catchment's smaller area and the shorter length of streams within the 

catchment, the Newlands Beck subcatchment supplies less sediment per km2 

and km of stream than the River Derwent subcatchment. During the extrapolated 

annual monitoring period, the Derwent catchment (upstream of Low Stock 

Bridge) produces an estimated 42% more suspended sediment per km2 than the 

Newlands Beck catchment upstream of Newlands Bridge, with a comparative 

23% difference in productivity per km of stream length (Table 4.7). Furthermore, 

the reach of the River Derwent between Portinscale and Low Stock Bridge (and 

its tributaries and their catchment area) produces an estimated 1 01 t km2 of 

suspended sediment over a 12-month period, with a productivity per km of 

stream length 227% that of the overall effective River Derwent catchment. These 

observations support the findings of the water sample analysis above (Section 

4.1.3.1) and the sediment loads for the River Derwent and Newlands Beck (Table 

4.6), as the greater suspended sediment load on the River Derwent results from 

an overall higher suspended sediment productivity, in addition to a larger 

catchment area and greater hydraulic input. 



Catchment River 

Effective* 
catchment 

Derwentat 
Portinscale 

area (km2
) 108.83 

Effective* 
stream length 
(km) 194.58 
Suspended 
sediment load 
{annual 
estimate) 
(t a·1

) 4,958 
Suspended 
sediment yield 
(area) 
{t km~ a·1

) 45.55 
Suspended 
sediment yield 
(stream 
length) 
(t km a·1) 25.48 

River 
Derwentat 
Low Stock 
Bridge 

120.23 

208.85 

6,116 

50.87 

29.28 

River 
Derwent 
(Portlnscale 
to Low Stock 
Bridge)** 

11.4 

14.27 

1,158 

101.58 

81.15 

Newlands 
Beck at 
Newlands 
Bridge 

33.9 

50.68 

1,211 

35.72 

23.9 
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Table 4. 7: Suspended sediment productivity related to effective catchment size 
and stream lengths of the three inflow monitoring stations on the River Derwent 
and Newlands Beck, as well as the Portinscale-Low Stock Bridge reach of the 
Derwent. * - the River Derwent's effective catchment area is that downstream of 
Derwent Water and Thirlmere, on the assumption that these lakes act as 
suspended sediment sinks. -- The stream length and catchment area for the 
River Derwent between Portinscale and Low Stock Bridge includes all streams as 
well as the main trunk. Catchment area/stream length data from Bassenthwaite 
GIS Viewer CD (Environment Agency/Forestry Commission 2005). 

4.1.3.3 
Derwent 

Suspended sediment transfer characteristics on the River 

The continuous turbidity monitoring between April 1st and November 30th 

2006 has been converted to suspended sediment concentration data (Section 



118 

4.1.1) which has enabled a record of concentrations at 15-minute intervals to be 

compiled. This is useful for an analysis of sediment transfers over this period, 

particularly the quantification of sediment inputs and delivery patterns on the 

River Derwent. This analysis complements the analysis of the water sample 

record above (Section 4.1.3.1 ). 

The suspended sediment transfers during April-November 2006 had 

similar overall characteristics to the river water samples (Section 4.1.3.1) as 

during the majority of the period, concentrations are low (Figure 4.5). For over 

three-quarters of the duration of the turbidity monitoring period, suspended 

sediment concentrations were below 10 mg r1
• Only 11% of all samples were in 

excess of 20 mg r1
, and very high concentrations (in excess of 50 mg r1

) were 

only recorded during 3% of measurements. However, such high flows were 

responsible for transferring a very high proportion of the overall inflow suspended 

sediment load. The 3% of the period where concentrations were above 50 mg r1 

transported 41% of the entire sediment inflow to the lake. The 11% of 

measurements with concentrations above 20 mg r1 transported nearly two-thirds 

(64%) of the overall sediment load. The low concentrations (SSC<10 mg r1
) were 

only responsible for the transport of just over a fifth (21.2%) of total sediment 

load. Therefore, a large volume of overall suspended sediment transfers on the 

Derwent and Newlands Beck occurred during low-frequency large sediment 

pulses. This pattern of suspended sediment transfer is highlighted in the literature 

(e.g. Thompson and Oldfield 1986, Walling and Webb 1987). 
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Sediment transport characteristics on the River Derwent 
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Figure 4. 5: Sediment transfer characteristics on the River Derwent between April 
and November 2006, showing the importance of high concentrations in overall 
sediment transfers. 

4.1 .3.4 Hysteresis analysis and suspended sediment transfers during 
high discharge events 

Hysteresis is defined by Williams (1989) as the relationships between 

suspended sediment concentrations (SSC) and discharge (Q) during a flow 

event. The nature of the SSC-Q ratio at given discharges on the rising and falling 

limbs is used to analyse the relationships and interations between suspended 

sediment transfer and river flows (Bogen 1980). Williams (1989) suggested that 

the nature of hysteresis depends upon the timing and amount of suspended 

sediment arriving at a monitoring station, the speed of the water wave carrying 

the sediment, and the proximity of sediment sources to the monitoring station. As 

a result, an analysis of hysteresis is useful in this project as it can potentially 
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indicate likely suspended sediment sources within the Bassenthwaite Lake 

catchment. The converted continuous turbidity measurements between April and 

November 2006 at the three inflow monitoring stations comprise the raw data for 

the analysis below. 

The two basic relationships between discharge and suspended sediment 

concentrations are described as positive/clockwise hysteresis (where the SSC 

peak arrives at the monitoring station before the discharge peak), and 

negative/anti-clockwise hysteresis (where the SSC peak arrives at the monitoring 

station after the discharge peak). On some occasions, the two peaks arrive at the 

monitoring station at approximately the same time, and therefore hysteresis is 

weak and sediment transport appears to be strongly controlled by discharge 

(Williams 1989). Clockwise hysteresis has been noted in catchments where 

dominant sediment sources are situated close to the river channel (Bogen 1980, 

Carson et al. 1973), and positive HI values have been associated with channel 

erosion (diCenzo and Luk 1997, Jansson 2002). Counter-clockwise SSC-Q 

relationships have been observed when dominant sediment sources are more 

remote, as the later arrival of the SSC peak suggests a longer sediment travel 

time (e.g. Hamilton 1991, Lenzi and Marchi 2000). Additionally, counter­

clockwise hysteresis can occur as the result of sediment addition after the flood 

peak (Stott and Grove 2001 ). Hysteresis frequently varies over time in the same 

catchment. For instance, Seeger et al (2004) have observed anti-clockwise 

hysteresis during floods in a small catchment in the Pyrenees, Spain, as a result 
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of large volumes of suspended sediment transported from overland flow in the 

catchment uplands. At other times of the year, clockwise loops dominated. 

Where suspended sediment concentration peaks occur after discharge peaks in 

anti-clockwise hysteresis events, the lag-time between the peaks is dependent 

upon distance from sediment sources and the efficiency of suspended sediment 

transport on the river (Williams 1989). 

During the following analysis, the Hysteresis Index (HI) method of 

calculating hysteresis has been used (Lawler et al. 2006) (Equations 4.1, 4.2). 

This method of analysis is beneficial due to its simplicity, and the production of 

one data value that reflects both hysteresis direction and strength. To calculate 

hysteresis strength and direction, the suspended sediment concentrations on the 

rising and falling discharge limbs are compared at the mid-point discharge (mid­

way between the discharge at the start of the flow event and the peak discharge). 

The two SSC values at the mid-point discharges on the rising limb (SSCRL) and 

falling limb (SSCFL) are then recorded. If SSCRL>SSCFL. then hysteresis is 

clockwise and the following calculation is used to work out hysteresis strength: 

HI= ( SSCRL/ SSCFL)- 1 (HI value= positive) (Equation 4. 1) 

If SSCRL <SSCFL. hysteresis is counter-clockwise, and the following 

calculation is then used: 

HI= ( -1/ (SSCRL/ SSCFL)) +1 (HI value= negative) (Equation 4. 2) 
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At Portinscale, Low Stock Bridge and Newlands Bridge, discharge peaks 

were identified in the continuous discharge record and used for the analysis 

below (Table 4.8). Discharge events were defined subjectively, wherever a 

distinct peak with a rising and falling limb was present in the discharge record 

and where discharge values rose c. 50% above background values close to the 

peak. 



Date of peak Peak 
discharge (Omax) 

Portinscale 

11/04/2006 25.32 
22105/2006 24.45 
22/06/2006 14.86 
09/07/2006 7.61 
02/0912006 31.54 
06/09/2006 32.88 
21/09/2006 17.08 
28/09/2006 16.38 
06/10/2006 38.52 
11/10/2006 33.82 
22110/2006 31.10 
28/10/2006 49.76 
11/11/2006 28.06 
20/1112006 85.11 
25/11/2006 53.47 

Low Stock Bridge 
11/04/2006 25.32 
22105/2006 24.45 
22106/2006 14.86 
05/07/2006 16.49 
09/07/2006 7.61 
02109/2006 31.54 
06/09/2006 32.88 
21/09/2006 17.08 
28/0912006 16.38 
06/1 0/2006 38.52 
11/1 0/2006 33.82 
2211012006 31.10 
28/10/2006 49.76 
11/11/2006 28.06 
20/11/2006 85.11 
25/11/2006 53.47 

Newlands Bridge 

02/04/2006 13.62 
23/05/2006 6.48 
20/0612006 13.48 
03/07/2006 3.68 
09/0712006 4.2 
02109/2006 14.67 
21/09/2006 13.28 
27/09/2006 12.67 
03/10/2006 8.95 
05110/2006 11.78 
22110/2006 10.75 
26/10/2006 13.97 
28/10/2006 14.9 
10/11/2006 15.4 
15/11/2006 25.46 
19/11/2006 44.12 
24/11/2006 1 0.4 7 

Start 
(0mi1) 

10.49 
11.85 
5.45 
2.83 

15.36 
19.31 
8.00 
5.09 

15.58 
15.98 

7.23 
24.33 
18.13 
33.73 
25.44 

10.49 
11.85 
5.45 
3.28 
2.83 

15.36 
19.31 
8.00 
5.09 

15.58 
15.98 
7.23 

24.33 
18.13 
33.73 
25.44 

4.89 
2.7 

0.25 
0.3 

0.28 
2.87 
1.37 
0.73 
4.99 
3.43 
1.15 
7.46 
4.85 
0.65 
2.35 
5.14 
2.54 

Mid-point 
(Qmkll 

17.91 
18.58 
10.15 
5.22 

23.45 
26.10 
12.54 
10.73 
27.05 
24.90 
19.17 
37.04 
23.10 
59.40 
39.46 

17.91 
18.58 
10.15 

9.88 
5.22 

23.45 
26.10 
1~.54 

10.73 
27.05 
24.90 
19.17 
37.04 
23.10 
59.40 
39.46 

9.26 
4.59 
6.87 
1.99 
2.24 
8.77 
7.32 

6.7 
6.97 

7.6 
5.95 

10.71 
9.97 
8.03 

13.91 
24.63 

6.5 

ssc (mg r1
) at Om1<1 

on rising limb (SSCRLl 

11.4 
3.46 

3.2 
3.7 

8 
5.5 

4.05 
106.64 
24.61 

12.6 
17.46 
2.62 

32.18 
127.4 
28.6 

10.1 
20.6 
18.1 
18.7 

33 
11.4 
4.3 

17.1 
8.5 
9.1 
8.8 
9.7 
5.6 
6.7 

20.3 
20.3 

27.3 
11.7 
48.5 
48.4 

7.7 
12.9 
26.6 
30.5 

8.8 
5.6 

37.8 
20.6 

12 
33.7 
21.1 
78.7 
10.7 

SSC (rng r1
) at Om1<1 on 

falling limb (SS~L) 

7.8 
8.32 

0.9 
3.1 
1.5 

7.02 
1.9 

22.03 
11.15 
28.47 
23.07 

2.72 
63.04 

12.3 
6.5 

10.6 
33.3 

8.3 
28.9 
20.6 
3.4 
5.3 

15.9 
7.9 
3.3 

20.3 
7 

5.4 
12.3 
66.1 
38.5 

18 
15.9 
16.8 
12.9 
1.5 

10.3 
12 

11.3 
8 

7.9 
37.4 
37.4 

1.4 
8.1 

10.6 
28.5 
6.9 
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Hysteresis 
Index (HI) 

0.46 
-1.40 
2.56 
0.19 
4.33 

-0.28 
1.13 
3.84 
1.21 

-1.26 
-0.32 
-0.04 
-0.96 
9.36 
3.40 

-0.05 
-0.62 
1.18 

-0.55 
0.38 
2.35 

-0.23 
0.08 
0.08 
1.76 

-1.31 
0.39 
0.04 

-0.84· 
-2.26 
-0.90 

0.52 
-0.36 
1.89 
2.75 
4.13 
0.25 
1.22 
1.70 
0.10 

-0.41 
0.01 

-0.82 
7.57 
3.16 
0.99 
1.76 
0.55 

Table 4.8: Hysteresis indices for discharge events at Portinsca/e, Low Stock 
Bridge and High Stock Bridge (all figures to 2 d.p). 
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At the two River Derwent monitoring stations, the characteristics of 

hysteresis at the 16 discharge events that occurred on the river are slightly 

different (Table 4.8). Although the ratio between clockwise and anti-clockwise 

hysteresis events is similar at both monitoring stations (9 clockwise events at 

Portinscale compared with 8 at Low Stock Bridge), hysteresis at Low Stock 

Bridge tends to be much weaker than at Portinscale. The mean hysteresis index 

(HI) at Portinscale is 1.48, while the average HI at Low Stock Bridge is -0.03. At 

11 out of 16 flow events, the Low Stock Bridge HI is closer to 0 than the 

counterpart index at Portinscale. In all, 69% of hysteresis indices at Low Stock 

Bridge have values between +1 and -1, compared with only 38% at Portinscale. 

The weaker, more anti-clockwise hysteresis at Low Stock Bridge suggests that 

SSC peaks typically occur later in discharge events than at Portinscale. This 

supports the characteristics of suspended sediment transport revealed in the 

turbidity monitoring period above, where the Low Stock Bridge peak occurs later 

as there is a lag time in suspended sediment transport between the two 

monitoring stations. Additionally, high concentrations have been observed on the 

receding discharge limb at Low Stock Bridge, in the form of brief pulses in SSC 

values. 

Hysteresis at Newlands Bridge is dominated by positive HI values and 

therefore clockwise hysteresis (Table 4.8). HI values are above zero at 13 out of 

17 discharge events, with a mean HI of 1.47, suggesting the rapid rise of 

sediment concentrations to peak, typically, before the maximum discharge. This 



may reflect the extensively modified channel form of Newlands Bridge (Figure 

2.5), which has been straightened and deepened along much of its length, 

therefore favouring relatively fast and efficient sediment transfers. 
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The water sample record at all four monitoring stations supports the role of 

high flow events in transferring large volumes of sediment. At all four stations, the 

mean suspended sediment concentration of the highest 25% of discharges has 

been higher than that of the lowest 25% of discharges recorded at each 

monitoring station (Figure 4.6). At the inflow stations, the average of the highest 

discharges was greater than double that of the lowest discharges, although at 

Ouse Bridge the difference was considerably smaller. 

30 

~.:- 20 
Q 

s. 
u 

"' "' 10 

P ortl nsceie L!JIII' Stock New1ards OJse Br1dge 
Br1dge Brtdge 

Figure 4. 6: Mean suspended sediment concentrations of the water samples 
(2004-7) taken at the 25% highest and lowest discharges at each monitoring 
station. 

The characteristics of large (SSC>50 mg r1
) suspended sediment pulses 

(Figure 4.5) recorded on the River Derwent are notably different at the two 

monitoring stations (Table 4.9). Over the April-November monitoring period, 25 

large sediment pulses were recorded at Portinscale, compared with 105 at Low 
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Stock Bridge. However the pulses at Portinscale were much longer on average 

than those at Low Stock Bridge. The mean duration of a suspended sediment 

pulse at Portinscale is more than 4.5 times longer than the average pulse at Low 

Stock Bridge; similarly, over half of the pulses at Portinscale were longer than 

two hours in length, compared with just a fifth of suspended sediment transfer 

events at Low Stock Bridge. These include an exceptionally long transfer event of 

nearly 39 hours on the 1st and 2nd October 2006. The Low Stock Bridge record is 

one of short suspended sediment pulses and therefore high variability in 

concentrations over relatively short periods of time, while suspended sediment 

delivery events at Portinscale tend to be longer with lower variations in 

concentrations. 

Portinscale Low Stock Bridge 
Number of sediment 25 105 
pulses (>50 mg r1

) 

Mean length of sediment 6:05 1:20 
pulse (hrs:mins) 
% of pulses of 28% 69.5% 
duration<1 hour 
% of pulses of 56% 20% 
duration>2 hours 
Longest three sediment 38:45 (01-02/1 0/06) 15:30 (20/11/06) 
pulses (hrs:mins) 12:30 (04/1 0/06) 11:00 (05-06/07/06) 

11 :15 (27 -28/09/06) 7:30 (24108/06) 

Table 4.9: Summary of the characteristics of suspended sediment transport 
events on the River Derwent monitoring stations. 

In some cases, an SSC peak at Portinscale is followed by a second SSC 

peak of similar magnitude and duration at Low Stock Bridge (Figure 4. 7). This 

suggests that a wave of sediment is being transported down the river, frequently 
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following a flow event (Figure 4.7). In such cases, a lag time of 1-2 hours has 

been observed between the sediment pulse arriving at Portinscale and 

registering at Low Stock Bridge, 3.7 km downstream (Table 4.10). 

Turbidity event 
peak date 
11tn April 
5th July 
6th September 
11th November 
19th November 

Portinscale NTU 
peak 
13:00 
21:15 
09:45 
19:30 
00:00 

Low Stock 
Bridge NTU peak 
15:00 
23:00 
11:30 
21:00 
01:00 

Lag time 
(hrs:mins) 
2:00 
1:45 
1:45 
1:30 
1:00 

Table 4.10: Lag times for suspended sediment transfer events during continuous 
turbidity monitoring, April-November 2006. NTU = Nephlometric turbidity unit. 

The turbidity records of such events suggest that the rising SSC limbs at 

both sites are similar in gradient, and the peak sediment concentrations are 

approximately equivalent (e.g. Figure 4.7). However during some flow events the 

Low Stock Bridge record indicated an increased suspended sediment load 

between the two monitoring stations. Good examples of such events include a 

large discharge in November 2006 (Figure 4.8). On the 20th November, a large 

flow event was recorded at Portinscale gauging station, with a peak discharge of 

85m3 s-1 at 02:45. A sediment pulse associated with this rise in flow was 

observed at both monitoring stations just before the peak discharge. Peak 

concentrations of 304.8 mg r1 (Portinscale, number 1 on Figure 4.8) and 381.5 

mg r1 (Low Stock Bridge, number 2) were recorded an hour apart at 00:00 and 

01 :00 respectively. Suspended sediment transfers were notably different at the 

two stations during the falling discharge limb. At Portinscale, suspended 

sediment concentrations declined smoothly and rapidly from the peak discharge. 
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The Low Stock Bridge record suggests that, converse to this decline, five short­

lived, rapid rises in suspended sediment transport were recorded (3). Five of 

these additional peaks have concentrations above 200 mg r1
. One of the peaks 

was higher than the peak in concentrations at the time of the discharge event, 

recording 436 mg r1 at 05:00. The longest such rise in concentrations was just 

over 1 hour long. As the suspended sediment peaks were not observed at 

Portinscale, and there are no indications of rises in discharge at the time of such 

peaks, it is suggested that they represent the rapid supply of large volumes of 

sediment to the channel between the two monitoring stations. Following the 

peaks, suspended sediment concentrations remained elevated (30-60 mg r1
) for 

a period of c. 15 hours (4). lt is likely that further sediment addition occurred 

during this period, although in this case, fine sediment delivery to the channel 

was relatively slow over a longer period of time. This may represent the 

reworking of recently eroded sediment within the river channel. 

The pattern of contrasting suspended sediment transport at the Derwent 

monitoring stations also occurred during September 2006 (Figure 4.9). In this 

case, a relatively small flow event with a peak discharge of 17m3 s-1 led to a 

moderate suspended sediment pulse at Portinscale with a peak of 31.6 mg r1 

(number 1 on Figure 4.9) before concentrations declined to fluctuating single-digit 

concentrations. At Low Stock Bridge, suspended sediment concentrations were 

elevated before the discharge peak (2) and there is no evidence of a rise in 

suspended sediment transport following the discharge peak. On the falling 
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discharge limb, seven brief pulses of suspended sediment were recorded {3), 

with all peaks in excess of 40 mg r1 and lasting no more than half an hour. The 

peaks are similar to those observed in the November flow event as they are 

independent of discharge and/or suspended sediment transport at Portinscale. 

Therefore, it is again likely that they represent brief 'injections' of suspended 

sediment to the channel. Peaks in suspended sediment transport at Low Stock 

Bridge have also happened when flow events have not occurred. This is shown 

by a set of fluctuating moderate-high concentrations at the end of June 2006 

{Figure 4.1 0), where SSC values peaked above 30 mg r1 on 13 occasions over a 

two-day period, despite concentrations remaining consistently below 10 mg r1 at 

Portinscale and the fact that a flow event had not occurred during the period. 

Interestingly, the more variable nature of the Low Stock Bridge record was also 

observed in the river water sampling on 2"d September 2006 {Section 4.1.3.1, 

Figure 4.3). lt is possible that these extremely short-lived suspended sediment 

pulses are the result of the addition of small volumes of sediment from sources 

close to Low Stock Bridge, potentially from sediment poaching and run-off from 

the watering point upstream of Low Stock Bridge, which has been observed to 

occur following rainfall {Figure 4.11). Therefore, sediment addition had taken 

place between the two monitoring stations on the River Derwent independent of 

increases to background suspended sediment load and river discharge 

increases. 
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Sediment transport, 6th-6th July 2006. River Derwent 
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Figure 4. 7: A large suspended sediment pulse observed between the 5th and &" 
July 2006 at Portinscale and Low Stock Bridge. The discharge values (peak: 16.4 
m3 s-1

) and sediment transport peaks at Portinscale and Low Stock Bridge are 
shown, as is the Jag time (1 hour 15 minutes) between the peak sediment 
transport at the monitoring stations. 

Sediment transport. 19th-21st November 2006. River Derwent 
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Figure 4. 8: Suspended sediment transfers on the River Derwent at Portinscale 
and Low Stock Bridge, 19th-21st November 2006. As with Figures 4.9 and 4.10 
below, numbers on the graph are referred to in the text in Section 4. 1. 3. 4. 
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Sediment transport. 20th-23rd September 2006. River Derwent 
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Figure 4. 9: Suspended sediment transfers on the River Derwent at Portinscale 
and Low Stock Bridge, 2cl' -2:fd September 2006. 

-0> 

.§. 
u 
(/) 
(/) 

Sediment transport, 29th-30th June 2006, River Derwent 
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Figure 4. 10: Suspended sediment transfers on the River Derwent at Portinscale 
and Low Stock Bridge, 29th-3(/' June 2006. 
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Figure 4. 11: Suspended sediment addition to the River Derwent from an area of 
bare soil in the large poaching scar c. 150 m upstream of Low Stock Bridge (NY 
244 257) following heavy rain, 2~d June 2007. 

lt is highly possible that the suspended sediment peaks observed in the 

above two events represent river bank failures. The rapid addition of large 

volumes of sediment that occurs during large bank failure events (Section 2.4.2) 

would support to the dramatic, brief rises in sediment transport observed. 

Additionally, the position of such peaks on the falling discharge limb would 

support river bank erosion, which often occur during declining river flows as 

'draw-down' failures (Section 2.4.3). Alternatively, other sources of the 

suspended sediment delivery include small streams and field drains. As many of 

the sediment transport peaks are represented only at Low Stock Bridge and not 

at Portinscale (e.g. Figures 4.8, 4.9, 4.10), the source of such sediment peaks 

must be the lowland River Derwent between the two monitoring stations, and not 

the upland catchment. These patterns of suspended sediment transport at 

Portinscale and Low Stock Bridge are also supported by the analysis of sediment 
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pulse magnitude/frequency (Table 4.9), which suggests that suspended sediment 

transfer events at Low Stock Bridge are more numerous and shorter on average 

than those at Portinscale. 

4.1.4 Summary and conclusions 

lt is clear that suspended sediment transfers to Bassenthwaite Lake occur 

predominantly during relatively infrequent high flow events, during which high 

suspended sediment concentrations were recorded. This is demonstrated in the 

overall mean concentrations of water samples taken from the four monitoring 

stations (Section 4.1.3.1, Table 4.3) and the characteristics of the turbidity record 

(Section 4.1.3.3). The importance of such high-magnitude, low-frequency events 

to overall sediment transport is well known (e.g. Thompson and Oldfield 1986, 

Walling and Webb 1987). 

Support is also given to the presence of considerable sediment storage in 

the lake basin. This is suggested by the relatively low amount of suspended 

sediment recorded leaving the lake at Ouse Bridge, compared with the average 

sediment inputs at Low Stock Bridge and Newlands Beck, revealed from the 

water sample record (Section 4.1.3.1, Table 4.3). lt is likely that the attenuating 

and storage effects of the lake, especially a long residence time of 19 days 

(Reynolds 1999), means large suspended sediment inflows do not translate to 

immediate outflows. 
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Based upon the average suspended sediment concentrations of the inflow 

monitoring stations (Section 4.1.3.1) and overall suspended sediment loads 

(Section 4.1.3.2), the dominant source of suspended sediment to Bassenthwaite 

Lake is the River Derwent. The total suspended sediment load carried by the 

Derwent during the 8-month turbidity monitoring period in 2006 was 4,077 t, 

compared with an 807 t load carried by Newlands Beck. This reflects a greater 

suspended sediment productivity (per unit area) of the catchment (Table 4. 7) as 

well as a larger overall catchment area and a higher transport capacity resulting 

from a higher annual discharge (Hall et al. 2001 ). Although higher discharges on 

the River Derwent were slightly more prevalent during the turbidity monitoring 

period than across the long-term discharge record (Figure 3.5), the above 

characteristics of the River Derwent and its catchment mean that it would be 

expected to dominate suspended sediment supply to Bassenthwaite lake over 

longer periods. There is no support for the hypothesis of Hatfield and Maher 

(2006) which identified Newlands Beck as the most important suspended 

sediment input to the lake. The suspended sediment concentrations recorded in 

this study suggest that Newlands Beck plays only a minor role in suspended 

sediment transfers to Bassenthwaite lake. 

The difference between the suspended sediment concentration records of 

the two monitoring stations on the River Derwent is especially significant, in 

suggesting likely sediment sources. Over the 2004-7 monitoring period and water 

sample record (Section 4.1.3.1), the downstream station (Low Stock Bridge) 
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recorded a higher mean concentration and a greater variability and range of 

concentrations. This is supported by the 772 t increase in overall sediment load 

at Low Stock Bridge (Table 4.6), as indicated in the 8-month turbidity monitoring 

period. This suggests that the change in storage in the catchment sediment 

budget (Section 3.1) is considerable, and sediment addition is contributed in the 

lowland areas of the River Derwent between the two monitoring stations. The 

differing na~ure of suspended sediment transport at the two stations further 

supports this hypothesis (Section 4.1.3.3, 4.1.3.4), as suspended sediment 

transfers at Low Stock Bridge have been seen to occur during brief rises to high 

concentrations, which are not represented at Portinscale, where single-peaked 

response to flow rises dominate. The importance of such events in suspended 

sediment transport at Low Stock Bridge is suggested in the hysteresis analysis 

(Section 4.1.3.4), where sediment peaks often occurred later relative to discharge 

peaks than at Portinscale (e.g. Figures 4.8, 4.9, 4.10). lt is suggested that 

suspended sediment transfers at Portinscale largely reflect sediment delivery 

from the upper catchment, while the suspended sediment peaks observed at Low 

Stock Bridge are a result of the addition of sediment in short events on the 

lowland River Derwent between the two monitoring stations. lt is possible that 

these events are caused by river bank failures, which typically transfer large 

volumes of sediment to the river channel almost instantaneously. Furthermore, 

the spatially-limited nature of the sediment addition in an area of widespread river 

bank erosion strongly implies that the bank erosion is the main source of 

suspended sediment, especially given the absence of significant fluvial inputs on 
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the lowland River Derwent. The following section will assess the potential for river 

bank erosion to contribute to fine sediment inputs on the River Derwent (Section 

4.2). 

Based upon the extrapolated annual estimates of suspended sediment 

loads at Low Stock Bridge and Newlands Bridge (Table 4.6), it is estimated that 

over a 12 month period, 7,327 t of suspended sediment is transferred to 

Bassenthwaite Lake from the River Derwent and Newlands Beck. Based upon 

comparisons of mean water sample suspended sediment concentrations 

between inflow and outflow monitoring stations, (Section 4.1.3, Table 4.3), the 

estimated annual suspended sediment outflow at Ouse Bridge is 2,858 t. Lake 

sediment storage can therefore be approximated at 4,469 t over 12 months. 

Given a lake area of 5.28 km2 (Reynolds 1999), this suggests an average annual 

sedimentation rate in Bassenthwaite Lake of 0.08 g cm a-1
. This rate is 

comparable with several published estimates of sediment deposition rates from 

sediment cores retrieved from Bassenthwaite Lake (Section 1.4). However, as 

sediment deposition is known to be uneven in water bodies, with higher 

deposition rates in deeper, lower velocity areas (Hakanson and Jansson 2002), 

sediment deposition in some sectors of Bassenthwaite Lake could be 

considerably greater. In addition, unquantified autochthonous sources in 

Bassenthwaite Lake and suspended sediment transfers from unmeasured small 

streams may increase the sedimentation rate further. 
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4.2 Assessment of river bank erosion on the lowland River Derwent 
between Derwent Water and Bassenthwaite Lake 

This section describes the nature of river bank erosion occurring on the 

River Derwent between Derwent Water and Bassenthwaite Lake, and the 

potential for it to contribute to the Bassenthwaite Lake catchment's sediment 

budget. Recent observations and field assessments (Section 2.2) suggest high 

sediment delivery risks in this area, with a strong possibility that river bank 

erosion constitutes a significance source of sediment in the Bassenthwaite 

lowland catchment. Furthermore the literature review of river bank erosion 

processes (Section 2.4) suggests that active river bank failures and extensive 

bank erosion have the potential to deliver a large volume of sediment to the river 

and the catchment's sediment budget. Here, the mapping of river bank erosion 

features on the Derwent (Figure 4.12, Section 4.2.1) is used to assess the extent 

of river bank erosion (Section 4.2.2), as well as the relationship between bank 

erosion and historical channel activity (Section 4.2.3). The composition (Section 

4.2.4) and morphology (Section 4.2.5) of eroded river banks are also described. 

A detailed assessment of the extent and morphology of actively eroding river 

banks follows (Section 4.2.6), which is compared with the morphology of semi-

active river banks (Section 4.2. 7). Sediment delivery risks from poaching scars 

(Section 4.2.8) and from river bank weakening/preparation processes (Section 

4.2.9) are described. The findings of the laser scanner survey of river bank 

erosion rates and bank morphological change (Section 3.3.2) is summarized in 

Section 4.2.10. Finally, a brief overview of the bank management techniques 



currently in use on the River Derwent (Section 4.2.11) is presented before the 

chapter summary (Section 4.2.12). 

4.2.1 River bank erosion map of the River Derwent 
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The map of river bank erosion on the River Derwent (Figure 4.12) was 

compiled from a GPS survey (Section 3.3.1 ). Therefore, it shows the extent of 

erosion in Spring (May-June) 2007. Indicated on the map are lengths of eroded 

river banks and poaching scars. Boulder revelments and bridges are also 

mapped, to indicate their distribution. 
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Figure 4. 12: Map of eroded river banks on the River Derwent between Derwent Water and Bassenthwaite Lake. 
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4.2.2 Extent and distribution of river bank erosion on the River Derwent 

In total, 21.1% of the River Derwent's banks are assessed as eroded, with 

78.9% of banks not eroded (Table 4.11). Some 19.2% of river banks are typical 

exposed river bank faces as an apparent result of fluvial erosion, while 1.9% of 

banks are poached (eroded by grazing animals). Significantly, 9.4% of the banks 

had features which suggested that erosion was presently active, and that 

material was being transferred to the channel in the form of block failures. The 

fact that over 2.4 km of banks are eroded on the River Derwent, over 40% of 

which are actively eroding at the time of survey, suggests that river bank erosion 

has the potential to be a significant source of sediment in the lowland 

Bassenthwaite catchment, and therefore a potentially important sediment input to 

Bassenthwaite Lake itself. 

Category Length of banks in Proportion of overall 
category (m) River Derwent bank 

length (11,400 m)(%) 
Not eroded 8,998 78.9 

Eroded 2,188 19.2 
(Actively eroding) (980) (9.4) 
Poached 214 1.9 

All eroded banks 2,402 21.1 

Table 4. 11: The extent of eroded river banks on the River Derwent, Spring 2007. 

The river bank erosion map (Figure 4.12) suggests that eroded river banks 

are distributed unevenly throughout the River Derwent's lowland channel. 

Significant areas of river bank erosion are located between the A66 road bridge 
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(NY 251 241) and High Stock Bridge (NY 243 259), and on the west bank of the 

Derwent downstream of Low Stock Bridge (NY 236 268). These extensive areas 

of river bank erosion are shown on Figure 4.13 as the rapid increases in the 

gradient of cumulative river bank erosion between 2-3 km and downstream of 5 

km respectively. Conversely, some reaches of the Derwent are notably stable 

with sparse or absent bank erosion, e.g. the c. 800 m reach downstream of High 

Stock Bridge. Such reaches are shown as horizontal plateaus on the cumulative 

erosion graph (Figure 4.13). Figure 4.13 also shows that river bank erosion is 

considerably more extensive on the west bank of the River Derwent (total erosion 

= 1 ,580 m) than on the east bank (822 m). This difference is largely a result of 

the extensive erosion downstream of Low Stock Bridge, which is overwhelmingly 

concentrated on the west bank (Figure 4.12). This is shown by the greater 

gradient of the cumulative erosion line graph for the west bank of the Derwent 

from 5 km downstream to Bassenthwaite Lake (Figure 4.13). An important 

reason for the uneven distribution of bank erosion on the Derwent is the pattern 

of historical river activity and channel change (Section 4.2.3), which shows 

significant channel migration in several areas of the river. 
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Figure 4. 13: Cumulative lengths of eroded river banks on the River Derwent 
between Derwent Water and Bassenthwaite Lake. 

4.2.3 A comparison of historical channel change and river bank erosion 

A comparison of the River Derwent's course on historical and 

contemporary maps (Section 2.2.3) provides evidence for the presence of river 

bank erosion along certain reaches of the River Derwent. Significant changes in 

channel position between the 1863-7 County Series mapping and contemporary 

map data suggests that the channel has been active and that bank retreat, and 
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therefore bank erosion, has taken place. A comparison of the two maps between 

How Farm and High Stock Bridge (Figure 2.9) suggests several areas of channel 

position change, which were identified in Section 2.2.3. Figure 4.14 shows a 

comparison of the position of the River Derwent on a 2 km reach between 

Portinscale and High Stock Bridge on six maps released between 1863 and 

2007. This mapping comparison (Figure 4.14) suggests that much modern-day 

bank erosion is occurring in areas of significant channel migration. For instance, 

the lengthy sections of river bank erosion on the west bank upstream of How 
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Farm near the south of the section (at meanders 1 and 2 on Figure 4.14) are 

situated in an area where the channel planform has changed and migration has 

occurred, leading to river bank erosion. At both meander 1 (NY 248 244) and 2 

(NY 249 249), there is evidence of active river bank failure (Section 4.2.5). River 

bank erosion is extensive and active in particular on the outside banks of the two 

meanders upstream of High Stock Bridge at NY 246 253 (3) and NY 244 255 (4), 

where a clear shift in the channel position has occurred (Figure 4.14). Aside from 

this central section of the river, the extensive, actively-eroding river banks near 

Derwent Foot (NY 232 272, Figure 4.12) are located at an area of significant 

channel migration (Section 2.2.3). Therefore, it is likely that large historical 

channel form changes are a contributing factor towards current river bank 

erosion. 
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Figure 4. 14: The relationship between modem-day river bank erosion and areas 
of significant river channel migration, on a reach of the River Derwent between 
Portinscale and High Stock Bridge. Numbering corresponds to bank areas 
referred to in the text (Section 4. 2. 3). 
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4.2.4 Composition of eroded river banks 

The banks of the River Derwent are typically composed of an upper layer 

of cohesive clay and silt, and a lower, non-cohesive layer of coarse gravel. The 

lower, non-cohesive layer was found to occur at varying elevations on the river 

banks. This means considerable variations in river bank composition can occur 

over relatively short distances. A good example of this is on the west bank of the 

Derwent, upstream of Low Stock Bridge, where the exposed west bank (NY 236 

267) is predominantly non-cohesive. Upstream of this, the gravel layer declines in 

elevation, and within c. 1 OOm it is at the elevation of the river bed, rendering the 

bank above it entirely cohesive (e.g. at NY 236 264) (Figure 4.15). This short 

section is representative of changes in bank composition along the Derwent as a 

whole. Eroded sections near Portinscale are generally composite in form with a 

thick non-cohesive layer, while the lengthy eroded sections between High Stock 

Bridge and Low Stock Bridge are predominantly made up of cohesive fine 

sediment. At the extremes of the river close to Derwent Water and Bassenthwaite 

Lake, the banks are mostly cohesive. Composite river banks are important in the 

generation of overhangs on the upper bank, as undercutting regularly occurs at 

the lower, more easily-eroded lower bank (Section 2.4.2.1 ). For instance, at the 

eroded bank at Portinscale described below (Figure 4.21) (NY 252 238), the 

maximum undercut is situated at an elevation of 1.68 m on the bank face, near 

the boundary of the cohesive and non-cohesive material layers. Therefore the 

composite bank structure favours bank instability and therefore increased 

sediment delivery risks. 
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Figure 4. 15: Comparison of river bank composition between High and Low Stock 
Bridges: a composite bank with a thick non-cohesive layer (left), and an almost 
completely cohesive bank (right). 

4.2.5 Geometry and morphology of eroded river banks on the River 
Derwent 

The geometry of a river bank plays a major role in its stability, in particular 

the river bank's height and gradient (Section 2.4.1 ). Higher, steeper river banks 

are generally more susceptible to erosion, particularly by cantilever and rotational 

failure mechanisms (Section 2.4.2). Furthermore, the presence of an undercut 

bank profile means that the material above the overhang has the potential to 

collapse directly into the channel. During fieldwork, 77 bank profiles were 

measured on the River Derwent at eroded river banks between Derwent Water 

and Bassenthwaite Lake (Section 3.3.1) at representative eroded bank sections. 

These measurements are used to assess the characteristics of eroded banks on 

the River Derwent and the potential of bank erosion for sediment delivery at 

eroded bank sections. 
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The average bank height of all 77 eroded bank sections surveyed was 

1.42 m, with the mean bank angle just over 69°. Among the eroded banks, there 

are considerable variations in bank height (Figure 4.16). Over two-thirds of all 

bank profiles were above 1 m in height (55 of the 77 banks), but less than a fifth 

of eroded sections were in excess of 2 m high. The highest bank recorded in the 

survey was 3.5 m in height. As may be expected, eroded river banks on the 

Derwent tended to have steep gradients. Only five bank profiles out of 77 were 

below 45°, while nearly a third (31%) of all banks had very steep profiles above 

80°. Five banks were measured as being of 90° or greater, suggesting a vertical 

bank face or overhang development. lt is interesting to note that no overall trend 

exists between bank height and bank angle, reflecting the fact that, despite 

varying bank heights, the vast majority of eroded banks are relatively steep. This 

characteristic results from the nature of erosion processes (erosion of the lower 

bank, removal of material from the bank face and undercutting) which leads to 

higher gradients, compared with non-eroded banks. 

The vast majority of eroded river bank profiles (88%) showed some 

undermining of a portion of the river bank. Of the banks that were undercut, the 

mean maximum undercut depth (into the bank underneath the overhang) was 

280 mm. However, over four-fifths of overhanging bank profiles had undercut 

depths lower than 300 mm. The mean undercut depth is somewhat biased by a 

few bank profiles with very large overhangs, especially four banks with undercut 

depths greater than 700 mm. 
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Figure 4. 16: The geometry of eroded bank sections measured on the River 
Derwent, showing average geometry and centroids. 

4.2.6 The form of actively eroding river banks on the River Derwent 
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Out of the 77 profiles recorded at eroded banks, 23 profiles were taken on 

river banks that were currently undergoing active erosion, as indicated by the 

presence of failed blocks at the foot of the bank. Other evidence of active erosion 

includes the presence of tension cracks at the bank top (suggesting imminent 

block detachment in the event of further bank retreat) and the undermining of 

structures on the upper river bank (e.g. fences). In other reaches, river banks are 

obviously eroded, as they have a bank face composed of exposed soil. However, 

the banks themselves do not have features suggesting recent sediment delivery 

to the channel and appear relatively stable. 54 profiles fell into this latter 
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category. lt is important to note river bank erosion and sediment delivery may 

well occur at a presently stable eroded bank, and for this reason these 54 profiles 

are referred to as 'semi-active' river banks. The analysis of river banks presently 

undergoing active erosion is very important to the aims of this project, as such 

banks represent areas of current sediment delivery. 

4.2.6.1 
Derwent 

The geometry of actively eroding river banks on the River 

In general, actively eroding river banks on the River Derwent are 

consistently steeper than semi-active river banks. The average profile angle of 

eroding banks is 12.8° steeper than that of stable/semi-active banks (Table 4.12) 

which is seen by the clustering of actively eroding banks at steeper gradients 

(Figure 4.17). Of the 24 bank profiles with mean angles greater than 80°, 54% 

are eroding; by contrast, only 19% of profiles below 80° are eroding. 

Furthermore, the maximum undercut is typically slightly greater in depth on 

eroding river banks by 11 mm. These observations are consistent with the theory 

present in the literature review on bank stability, which suggests that steeper river 

banks are less stable (Section 2.4.1) and more prone to larger bank failures 

(Section 2.4.2). 
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Bank type Height (m) Angle (0
) Maximum 

undercut (mm) 
Semi-active 
mean 1.45 65.6° 278 
standard deviation 0.70 14.5° 145 
Actively eroding 
mean 1.37 78.4° 289 
standard deviation 0.46 10.7° 184 

Table 4. 12: Summary of the geometry of actively eroding and semi-active river 
bank profiles. 
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Figure 4. 17: Geometry comparison of presently actively eroding and semi-active 
banks profiles showing average geometry with centroids for both categories. 

Although an increase in river bank height generally has a negative 

influence on river bank stability (e.g. Lohnes and Handy 1968, Brunsden and 

Kesel 1973, Thorne 1982, Osman and Thorne 1988, Section 2.4.1 ), several high 

banks on the River Derwent are at present relatively stable and conversely 

several relatively low river banks are actively eroding. Indeed, actively eroding 

banks are, on average, very slightly lower than semi-active banks (Table 4.12). 
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4.2.6.2 Extent and morphology of actively eroding river banks on the 
River Derwent 

Actively eroding river banks (those undergoing bank failure at the time of 

survey) are distributed throughout the length of the River Derwent (Figure 4.18). 

The total length of river banks with evidence of active erosion was 980 m, 

accounting for 9.4% of the total length of the River Derwent's banks (Table 4.11 ). 

Active river bank erosion is distributed unevenly along the River Derwent, 

although the most extensive block failures are occurring on the west bank of the 

Derwent downstream of Low Stock Bridge, and on several banks between 

Portinscale and High Stock Bridge. This section aims to describe the morphology 

of these banks, and the evidence for active erosion. 
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Figure 4. 18: Map of the River Derwent channel between Derwent Water and 
Bassenthwaite Lake, highlighting the bank lengths currently in the process of 
active erosion (block failures). Numbered bank reaches are used as examples in 
the text below. 
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The river banks near Portinscale suspension footbridge (NY 252 238) are 

notable for some lengths of active river bank erosion and large block failures. 

Upriver of the bridge are two bank lengths with block failures. Bank 1 (Figure 

4.19) is a 47 m cohesive section on the outside (east bank) of the slight meander 

at NY 255 238. The bank features several large failed blocks at the bank foot, 

many in excess of 1 m2 in size. Active erosion is also indicated by an extensively 

undermined banktop fence and the presence of tension cracks at the bank top. 

The bank is above 2 m in height and has a relatively low angle of 56°, and is 

composed entirely of fine-grained, cohesive material. However, a key component 

in the bank's extensive block failures is the significantly undermined upper bank, 

with a very large maximum undercut depth of 700 mm. Some of the failed blocks 

are slab-shaped and have their tops facing upwards, resting against the bank 

face. This suggests that the blocks had slumped downwards along a failure plane 

at the back of the block, suggesting rotational failure (Section 2.4.2.2). 

Downstream of this bank on the opposite side of the channel is bank 2 (Figure 

4.20), where several small blocks of cohesive material were found at the base of 

the bank. The 42 m section of bank has a steep overall gradient of 85° and a 

large undercut of 340 mm, a morphology which has contributed to the block 

failures occurring at the bank. 

Figure 4. 19: Bank 1 (East bank, NY 255 238, river flow right-left). 
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Figure 4.20: Bank 2 (West bank, NY 255 237, looking downstream). 

Approximately 80 m downstream of Portinscale suspension bridge is a 

49 m eroded bank section (bank 3, NY 252 238) (Figure 4.21 ). The river bank is 

a classic high (maximum height = 2.08 m) composite river bank, with an upper 

layer composed of fine-grained silt and a lower layer of gravels. The river bank 

face has undergone several changes in form, as high river flows have eroded the 

tal us slope at the bank foot and caused retreat of the lower bank, causing 

oversteepening (Figure 4.22). Active block failures have been observed on the 

bank throughout the course of the fieldwork, with the frequent delivery of 

cohesive material from the upper bank to the bank foot (Figure 4.23). Much of the 

upper bank is therefore considerably undermined, with extensive overhang 

development and turf slippage. The maximum undercut depth is 700 mm, 

suggesting considerable instability of the upper bank. Therefore, significant 

undermining of the upper bank is the key destabilising influence on this bank. 
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The composite river bank structure, which favours high erosion rates on the lower 

bank (Section 2.6.2.2), is also a contributing factor towards bank failures. 

Figure 4.21: Bank 3 (East bank, NY 252 238, river flow right-left). 

Figure 4. 22: Considerable undercutting (indicated) at bank 3 following a rise in 
river levels, a/so note the oversteepened profile of the lower bank. 

An example of the active nature of block failures occurred during early 

2007 (Figure 4.23). On the 19th February 2007, a photograph of the eroded bank 

section showed several failed blocks of material resting on the lower bank and on 

the river channel edge. However, when the bank was photographed on the 5th 

March 2007, the failed blocks were no longer present at the base of the bank, 

and had been entrained by a rise in river levels. Significantly, the lower (non-
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cohesive) bank is much steeper than in the photograph taken on the 19th 

February. lt is likely that the rise in river flows eroded the base of the bank, 

creating a steeper profile and undercutting. A photograph taken of this river bank 

six days later on the 11th March 2007 shows that a fresh failure had occurred, as 

large blocks of cohesive material had collapsed from the upper bank and were 

resting on the lower bank. These observations suggest active cantilever failures. 
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Figure 4. 23: Block failure events and material removal from bank 3 near 
Portinscale suspension footbridge (looking upstream). Photograph dates: Top -
19th February 2007, middle-!!' March 2007, bottom- 11th March 2007. 



158 

Between Portinscale and High Stock Bridge, many of the actively eroding 

river banks have relatively low heights. A good example of such a bank was 

found on the west bank of the Derwent in a 4 7 m section upstream of NY 248 

249 (bank 4, Figure 4.24). The bank is only 0.85 m in height but features both a 

very steep overall gradient (86°), and the maximum undercut is situated at a low 

elevation at only 0.19 m above the bank foot. Therefore, a large proportion of the 

bank is undermined which has rendered the bank susceptible to cantilever 

failures, which are suggested by the presence of fallen vegetated blocks at the 

bank foot. A further low, actively eroding river bank is located on the west bank to 

the south of the sharp meander at NY 243 259, where a 60 m eroding bank reach 

is found at NY 245 254 (bank 5, Figure 4.25). Several vegetated blocks were 

found at the base of this river bank during surveying. The bank is low (height<1 

m throughout the bank length), and is similar in morphology to bank 4 as a large 

proportion of the river bank is undermined, with a maximum undercut at a low 

elevation on the bank face (measured between 0.1-0.3 m). The river bank has a 

strongly composite bank structure, with the undercutting taking place at the 

boundary between the gravel and soil layers in the river bank. At the sharp 

meander (NY 243 259), a further 58 m reach of actively-eroding river bank is 

found at the outside of the meander, with some block failures towards the 

downstream end of the section. 
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Figure 4.24: Bank 4 (West bank, NY 248 249, river flow left-right). 

Figure 4.25: Bank 5 (West bank, NY 243 259, looking downstream). 

The most extensive reach of active block failures occurred downstream of 

Low Stock Bridge, on the west bank of the River Derwent. This bank section 

includes over half (54%) of all actively eroding river bank lengths on the River 

Derwent between Derwent Water and Bassenthwaite Lake. A large proportion of 

the west bank of the river is actively eroding, and an area of spectacular block 

failures (Figures 4.26, 4.27) is found on the outside of the final meander before 

the lake inflow at Derwent Foot (bank 6). Three bank profiles were measured on 

the 235 m eroding reach, and were relatively low, between 0.9 m and 1.15 m in 

height. However, the bank was consistently steep throughout its length, and two 
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profiles were undermined from the bank foot with overall gradients in excess of 

90°. Maximum undercut depths were also considerable (240 mm, 280 mm, 450 

mm). Several large, vegetated blocks of material were resting at the base of the 

river bank at Derwent Foot (Figures 4.27, 4.28). Most blocks were rectangular in 

shape and were up to 1 m in length. A large proportion of blocks were resting 

sub-parallel to the river bank line with their grassy top facing the channel, 

suggesting that they had rotated forwards during collapse. This suggests active 

beam failures (Section 2.4.2.1, Figure 2.15), which are likely to remain active as 

the upper bank remains undercut, with tension cracking present at the bank top 

in some areas of the bank. 

Figure 4. 26: Bank 6 (West bank, NY 232 272, looking downstream to 
Bassenthwaite Lake). 
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Figure 4.27: Map of the extensive block (cantilever) failures on the west bank of 
the River Derwent at Derwent Foot (bank 6), also showing photograph of the 
failures (looking downriver to Bassenthwaite Lake). Tension cracks at the bank 
top in the foreground suggest a very high likelihood of block failures following 
further erosion. Flow direction is away from photograph towards the lake. 

lt is known that, after failure, blocks of material can still retain their 

cohesion and can prove difficult to erode (Brunsden and Kesel 1973, Thorne and 

Tovey 1981). This is especially noticeable on the extensive section of block 

failures near the Bassenthwaite Lake inflow, as below the recently-eroded 

vegetated blocks there are several older unvegetated blocks that remain intact 

(Figures 4.27, 4.28).This suggests that despite the bank erosion, fine sediment 
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supply to the channel did not occur when these blocks were detached. lt is 

possible that the blocks could be eroded over longer periods of time by more 

powerful river flows, however it is unlikely that large volumes of sediment will be 

delivered from the blocks during moderate flow conditions. 

Figure 4. 28: Unvegetated, intact blocks (indicated by white affows) lying in the 
river channel below more recent failures at bank 6 (flow direction: away from 
photograph). 

Currently eroding river banks on the Derwent are therefore defined by a 

significantly higher gradient than non-eroding, stable river banks. Also, the depth 

of undercutting and the proportion of the river bank that is undermined appear to 

be significant factors in generating river bank instabilities. These observations 

mean that a significant proportion of eroded bank sections, which are steep and 



feature some undercutting, are at risk of bank failure and significant sediment 

supply to the channel in the event of erosion of the lower banks. 

4.2. 7 Morphology of semi-active river banks on the River Derwent 
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There are several river banks on the River Derwent which are clearly 

eroded, but do not appear to be actively eroding at present. They are defined as 

semi-active river banks (Section 4.2.6). Several such banks are located in areas 

where a line of trees grows at the bank top. Vegetation growth at the bank face is 

generally a strongly positive influence upon bank stability, with root growth 

improving bank cohesion and reducing the susceptibility of soil to erosion 

(Section 2.4.1 ). An excellent example of this is at a bank close to Portinscale at 

which was found to have a height of 3.5 m, with an undercut of 900 mm (Figure 

4.29). Both these measurements are the largest of any river bank profile on the 

Derwent and suggest that the river bank should be unstable and actively eroding. 

However, the upper bank and undercut was composed of a dense vegetation 

layer which included several large tree roots, which appears to increase the 

cohesion of the upper river bank and provide support to the material. The lower 

bank had a relatively low gradient and no block failures, turf slippage or other 

evidence of erosion. Additionally, the river bank was composed of highly 

cohesive till, which appears to have considerable resistance to erosion. Similar 

bank sections were found between Portinscale and High Stock Bridge, with four 

banks found on the c. 350 m straight, tree-lined east bank downstream of the 

meander at NY 249 249. The four banks were in excess of 2.5 m in height, and 
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three of the four profiles had maximum undercut depths of 300 mm or greater 

(with a maximum undercut depth of 760 mm). However, again the lower bank 

showed no sign of recent erosion, and several sections of these banks had 

remained stable long enough for grass and mosses to grow on some parts of the 

bank face. lt is clear that vegetation had played a major role in influencing river 

bank form, as the trees on the bank tops had stabilized the upper river bank 

despite the presence of a large overhang. However, several trees on the bank 

tops in these areas have become significantly undermined (Figure 4.30), and 

when the tree eventually collapses into the river channel a large erosion event 

will take place, and the bank face will become much more susceptible to erosion 

(Figure 4.31). Some collapsed trees at the foot of the bank have been found in 

the wooded areas adjoining the east river bank of the Derwent between 

Portinscale and High Stock Bridge, and after the tree had collapsed, the bank 

face appeared steep and loose following the loss of cohesion (Figure 4.31). This 

is a major reason why single tree-lined channel banks were assessed as having 

a moderate-to-high sediment risk by Orr et al. (2004). 
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Figure 4.29: High (3.5 m) but presently stable river bank near Portinscale (NY 
252 238), with metre ruler for scale. The dense vegetation roots at the overhang 
and the highly cohesive till on the lower, exposed bank face have prevented 
active erosion of this bank. 
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Figure 4. 30: Semi-active exposed bank face between Portinscale and High Stock 
Bridge at NY 248 250, showing the influence of tree roots on river bank form and 
upper bank stability. The tree is however extremely undermined. 

Figure 4.31: Collapsed bank-top tree at NY 247 251, showing a considerable 
amount of material removed from the bank attached to the roots, and a steep 
bank face left exposed by the removal of the material. 
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4.2.8 Poaching scars 

Poaching scars were found in the field survey at several places along the 

river banks in areas where animals could access the bank face. The morphology 

of such scars was varied. The poaching scars could be distinguished into two 

broad categories of erosion. The first category of scars were found in places of 

controlled poaching at fenced areas of river bank (Figure 4.32). Several of these 

scars were found between High Stock Bridge and Low Stock Bridge, where the 

river banks are fenced and densely vegetated aside from fenced enclosures 

where grazing animals have been able to access the river banks for watering. 

Due to the high intensity of grazing at these areas, several of these scars are 

large, covering the whole of the river bank to water level. Good examples of 

these scars are found upstream of High Stock Bridge on the west bank at NY 244 

257 and NY 243 258, and upstream of Low Stock Bridge (NY 244 257). lt is 

notable that some scars had become grassed over, including a large hollow near 

Portinscale monitoring station (NY 252 238) suggesting that grazing pressure 

had been reduced at the location. 
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Figure 4.32: Large poaching scars: (left) near High Stock Bridge (NY 244 257), 
(right) near Low Stock Bridge (NY 244 257). Note the diversion of fencing into the 
river channel to allow grazing animals access to the water. 

The second category of scars have formed as the result of uncontrolled 

access by grazing animals, on river banks which are unfenced and unprotected 

from grazing. Many scars have formed in areas of preferential grazing and animal 

movement, including near fences (Figure 4.33) and at areas of sheltered river 

banks (Figure 4.34). The formation of poaching scars by preferential grazing 

patterns is noted in the literature (Sheath 1998) and the scars that are formed are 

typically much smaller than the large scars described above, generally no more 

than 5 m across in any direction. 
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Figure 4. 33: Examples of poaching scars formed near to fences in areas of 
channelled grazing: upstream of Low Stock Bridge (NY 237 264) (left) and near 
Portinscale (NY 253 237) (right). 

Figure 4. 34: Examples of poaching scars that have formed in sheltered areas of 
river bank: under trees near Portinscale (NY 251 240) (left), and below a steep 
bank face downstream of Low Stock Bridge (NY 236 268) (right). 

Poaching scars make up just below 2% of the River Derwent's banks 

(Table 4.11 ), and although the transfer of sediment to the river from poaching 

scars has not been specifically studied during this project, several poaching scars 

comprise large areas of bare ground and loosened soil (Figure 4.35) as a result 

of frequent watering by grazing animals, and therefore constitute a potential fine 

sediment source. This is especially the case at the large scars in areas of 
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controlled grazing at restricted access points, which are frequently grazed, 

providing fine sediment which could be entrained by surface run-off or river level 

rise. The former mechanism was observed at the large scar upstream of Low 

Stock Bridge in June 2007, following c. 30 minutes of heavy rain. During and 

after the rainfall, a cloud of suspended sediment formed in the river at the foot of 

the scar (Figure 4.11 ). lt is likely that this mechanism takes place at other 

poaching scars, and due to the close proximity of the scar to the channel, fine 

sediment delivery is likely to be almost immediate. Therefore, poached river 

banks could deliver a significant volume of fine sediment to the channel if 

weather and river flow conditions are suitable. 

Figure 4.35: Poaching scar at Low Stock Bridge (NY 236 268) showing 
hoofmarks and loosened soil at the lower part of the scar (indicated by arrow). 
Photograph looking downstream. 
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4.2.9 Bank weakening and preparation processes 

Processes of bank weakening as a result of variations in temperature and 

moisture, particularly the effects of freeze-thaw weathering and needle ice 

(Section 2.4.4.1) and desiccation (Section 2.4.4.2) can increase the susceptibility 

of banks to erosion as well as deliver material to the channel by themselves. 

Although the processes have not been directly studied during this research 

project, observations suggest that they have been periodically active on the River 

Derwent. During the summer, several of the eroded bank sections took on a dried 

and desiccated appearance following a spell of warm and dry weather, with the 

upper river bank appearing crumbly and cracked (Figure 4.36). Although these 

processes may play an important role in preparing river banks for erosion, the 

overall volume of material delivered to the river channel by these processes 

would be very small in comparison to that transferred by larger erosion events. 
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Figure 4.36: Desiccated river bank face downstream of Low Stock Bridge at NY 
235 269, showing the moisture contrast between the (dry) upper and lower bank. 

4.2.10 River bank erosion detailed study 

In order to assess changes in river bank morphology on a representative 

reach of the River Derwent, laser scanning of three eroded bank sections has 

taken place on the 13th March 2007 and 15th June 2007 (Section 3.3.2). In order 

to assess erosion rates and changes to bank morphology, the two scans at each 

river bank were compared using the program ReaiWorks Survey. Letters and 
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numbers referred to in the text refer to labels on the three bank scan comparison 

diagrams, of bank 1 (Figure 4.37), bank 2 (Figure 4.38) and bank 3 (Figure 4.39). 
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Figure 4.37: Bank 1/aser scan comparison. Labels on the diagram show areas of 
bank changes which are referred to in the text in Section 4. 2. 10. 
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Figure 4. 38: Bank 2 laser scan comparison. 
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1 

Figure 4. 39: Bank 3 laser scan comparison. 
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The most notable change to occur at the river banks between the two 

scanning periods was an increase in vegetation cover. On bank 1 (Figure 4.37), 

the downstream c. 10 m of the bank became considerably more vegetated, in 

particular at the slumped shelf of material (a) and the formerly bare area of soil at 

the far downstream end of the reach (b). In the central area of bank 1, vegetation 

growth appears to have occurred on the tops of some failed blocks of material 

(c). Vegetation growth has clearly taken place at some parts of bank 2 (Figure 

4.38), in particular a marked increase in vegetation density at the downstream 

end of the bank (d) and on the tops of some blocks of slumped material further 

upstream (e). At bank 3 (Figure 4.39), notable vegetation growth has occurred at 

the upstream end of the bank, particularly in a c. 3 m x 1.5 m section of bank face 

(f), as well as some clusters of vegetation growth at mid bank height along the 

previously bare river bank face (g). The increased erosion protection as a result 

of the vegetation growth (Section 2.4.1) means that stability in these areas is 

likely to be increased in the summer. The fact that the failed blocks and slumped 

areas became vegetated (c, e) suggests that the blocks do not constitute recent 

failures, as freshly failed blocks would typically lose vegetation fairly rapidly after 

becoming detached from the bank. lt is likely that the blocks on banks 1 and 2 

have remained in position for a longer period of time, and therefore vegetation 

has become established on their upper surface. 

During the three month period between the scans, erosion rates on the 

river bank surfaces have been negligible. lt is notable that the Low Stock Bridge 
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turbidity record between the two laser scans (March-June 2007) suggests that 

sediment transfers on the River Derwent were small during this period, with no 

large spikes. This suggests an absence of river bank erosion and/or other 

sediment inputs. Some small changes to bank morphology have occurred, but 

they do not constitute major bank failures and are not likely to have supplied a 

large volume of sediment to the river channel. At bank 1 (Figure 4.37), a small 

failure scar on the lower bank appears on the 15th June scan which was not 

present on the 13th March scan (1). The small size of the feature (c. 0.75 m in 

length) makes it difficult to assess the feature, but its shape suggests a very 

small slip of material. On bank 2 (Figure 4.38), it appears that the mid-lower bank 

at a c. 4 m long reach in the central part of the bank is notably less steeper on 

the 15th June scan (2), possibly reflecting the erosion of the lower bank after river 

level rise, a process observed elsewhere on the River Derwent (Figures 4.22, 

4.23). As there are several river banks on the River Derwent which are clearly in 

the process of active erosion (Section 4.2.6), the lack of active erosion on the 

three study banks is not an indication of the absence of erosion elsewhere. 

The fact that the relatively small changes to river bank form (vegetation 

changes and limited erosion in some areas) have been identified by the laser 

scanner suggests that the technique is potentially useful in the study of river bank 

erosion. On river banks where erosion is more active, morphological changes to 

the river bank surface would be shown clearly by comparisons of the scans. lt is 

clear a study of some of the actively eroding bank sections downstream of Low 
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Stock Bridge may have yielded significant changes to river bank morphology over 

the short (3 month) timescale of study. lt is clear that a longer study period would 

be necessary to survey bank erosion rates at the three banks observed during 

this project, due to the lack of active erosion. 

4.2.11 Methods of river bank management 

This section summarises attempts to manage the banks of the River 

Derwent. The presence of river bank management schemes limit the potential 

extent of bank erosion, and it is clear that some schemes have been installed to 

prevent future erosion. The two principal modern management techniques have 

been to encourage vegetation growth by stock exclusion or tree planting (Section 

4.2.11.1) and the use of large stone revetments and reinforced levees (Section 

4.2.11.2). The implications of these management techniques are described 

below. 

4.2.11.1 Vegetation plantation 

The addition of vegetation to river banks is known to have a positive 

influence on overall bank stability (Section 2.4.1). Vegetation growth has been 

encouraged on some bank reaches on the River Derwent by the fencing off of 

adjacent grazing land from the bank face. The recent AXIS Consultancy Report 

(2007) has identified the planting and encouragement of vegetation growth in 

'buffer zones' as a key method of reducing fine sediment delivery from the 
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floodplain in the Bassenthwaite Lake catchment, a recommendation made by 

other studies of the area (e.g. Nisbet et al. 2004, Orr et al. 2004). In order to 

encourage vegetation growth and prevent river bank poaching by grazing 

animals, fencing has been installed on the bank top of the Derwent's channel 

between High Stock Bridge (NY 243 259) and Low Stock Bridge (NY 236 268). 

On this reach, the entire west bank has been fenced, with a c. 500m section of 

the east bank to the north of High Stock Bridge. The river banks between the 

channel and the bank top fence are covered by high density vegetation, including 

grasses, shrubs and bushes, with some areas of recently-planted trees between 

the fence and the channel (Figure 4.41). This vegetation is likely to increase the 

stability of the river bank in this area and contribute to erosion protection. 

Similarly, the east river bank downstream of Low Stock Bridge is not grazed and 

features dense vegetation at the bank top and bank face (Figure 4.41 ), as well as 

some areas of reeds and grasses at the bank foot near the lake. The latter 

vegetation also reduces flow velocities at the bank foot and trap sediment 

(Section 2.4.1) and the river bank in this area has a very low height and gradient. 

Very little river bank erosion is found on this reach, in contrast to the extensive 

active bank erosion occurring on the west bank downstream of Low Stock Bridge, 

which is grazed, unprotected and has little vegetation except for the short grass 

at the bank top (Figure 4.40). The fact that grazing animals can access the river 

bank face has also led to several small poaching scars developing on the west 

river bank (e.g. Figure 4.35). 
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Eroded ri¥er bank ---
Poaching scar • 

Figure 4. 40: Contrast between erosion extent on the west and east banks of the 
River Derwent between Low Stock Bridge and Bassenthwaite Lake. Photographs 
show representative river bank vegetation cover on each river bank. 
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Figure 4.41: Field management techniques on the River Derwent (all 
photographs looking downstream). Top right: dense vegetation on a fenced bank 
downstream of High Stock Bridge (NY 243 260). Top left: Tree plantation and 
bank top fence installation upstream of Low Stock Bridge (NY 236 267). Bottom: 
Willow bank spiting installed on a c. 40 m reach of riverbank upstream of Low 
Stock Bridge (NY 236 266), showing (left) newly planted spiling in March 2007 
and (right) willow growth by June 2007. 

There is evidence that the plantation of vegetation has taken place on 

some areas of river bank in order to increase river bank protection from erosion. 
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These include some small plantations of young trees on the west bank upstream 

of Low Stock Bridge (Figure 4.41). Additionally, willow spiling has been installed 

on a c. 20 m section of the west bank of the Derwent upstream of Low Stock 

Bridge at NY 237 266. The willow was planted during March 2007, and by the 

spring the vegetation cover on the bank had increased considerably (Figure 

4.41 ). An older area of spiting is situated upstream of Portinscale on the west 

bank between NY 255 238 and NY 256 237. The increased root density and 

increased vegetation cover will increase bank protection from erosion, reducing 

the risk of bank failure and sediment delivery in these areas. 

4.2.11.2 Revelments 

Revelments are commonly used to straighten the river channel, act as 

flood defences and to protect river banks. Compared with other rivers in the 

Bassenthwaite catchment (in particular the River Greta and Newlands Beck), the 

River Derwent's channel between Derwent Water and Bassenthwaite Lake has 

not been extensively modified (Section 2.1.2). During this field survey, the overall 

length of stone revetments on the Derwent was measured at 760 m, or 5.4% of 

the total length of the river channel. There are however large areas of engineered 

river banks near Portinscale. The largest revetment of this type is a 170 m long 

raised embankment situated on the east bank of the Derwent between the A66 

road bridge (NY 251 241) and the environs of the old railway bridge (NY 249 241) 

(Figure 4.42). This bank is in the form of a mound of boulders (maximum height 

c. 4 m) at the channel edge. Furthermore, an 85 m stone revetment is found 
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opposite Portinscale gauging station to the north of NY 251 238 (Figure 4.43) , 

with similar revetments on the east bank near the gauging station. These 

revetments are placed to stabilise the weir at the gauging station. Aside from 

these large revetments and some shorter sections close to Portinscale, including 

the banks at the recreational area close to Portinscale suspension footbridge (NY 

253 237), the largely agricultural reaches to the north of Portinscale do not 

feature extensive stone revelments. Some sections of boulders are found near 

Low Stock Bridge, including a 40 m section to the north of a reinforced 

promontory at NY 236 265. Gabions, constructed as five walls built perpendicular 

to the bank line (maximum height c. 2-3 m) were found on the east bank of the 

Derwent at NY 247 251 (Figure 4.44). Such features are not widespread on the 

River Derwent, but prevent erosion in areas where they do exist. 

Figure 4. 42: Large stone revetment in the form of a raised embankment on the 
east bank of the River Derwent to the north of the A66 bridge (NY 250 241, 
looking downstream). 



Figure 4.43: Boulder revetment wall at Portinscale (NY 251 238, looking 
upstream). 
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Figure 4.44: Gabion cages between Portinscale and High Stock Bridge (NY 247 
251, looking upstream). 
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4.2.12 Summary and conclusions 

The extent of bank erosion on the River Derwent is clearly considerable, 

with over a fifth of the River Derwent's banks eroded, just over 40% of which 

comprises presently active river bank failures (Section 4.2.2, Table 4.11 ). A large 

proportion of river bank erosion, in particular active bank failures, is found in 

areas of large historical channel migration (Section 4.2.3). Bank erosion has 

been restricted in areas of river bank management (Section 4.2.11 ), although 

such areas only cover a small proportion of the River Derwent's channel. 

As discussed in Chapter 2, river bank failures become more likely with 

increasing gradient and undercutting (Section 2.4.1), and therefore fine sediment 

delivery risks on the River Derwent are considerable, as a large number of 

eroded river bank sections are both steep and undercut (Section 4.2.5), and such 

banks therefore have potential to fail in the future, particularly following the 

actions of erosive high river discharges which could convert presently semi-active 

river banks into actively eroding banks. lt is difficult to assess thresholds at which 

river bank sections that are presently stable will fail, however, material removal 

from the bank foot area during high river flows, leading to increased bank 

steepness and undercutting, will increase the likelihood of large bank failures, 

including block failures. This mechanism has been observed in the field at the 

actively eroding bank near Portinscale Bridge (Section 4.2.6.2, Figures 4.22, 

4.23). Furthermore, the river bank sections currently undergoing active erosion 

and block failures at present have considerably steeper gradients than stable 
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banks. Many of these block failures occur as a result of a favourable bank 

composition, with undermining of the upper bank facilitated by composite bank 

structures and non-cohesive material situated at a low elevation on the bank 

(Section 4.2.4). A large proportion of all actively eroding banks are found on the 

west bank of the Derwent downstream of Low Stock Bridge (Section 4.2.6.2). lt 

does not appear that height is, of itself, a contributing factor to river bank 

instability, as many of the highest banks on the river are presently stable, mostly 

due to the influence of vegetation (Section 4.2. 7). 

Other processes of bank erosion are of varying significance to overall fine 

sediment supply. While bank weakening and preparation processes are only 

likely to supply a very small volume of sediment to the channel (Section 4.2.9), 

the erosion of poaching scars may supply a larger volume of sediment in the 

event of surface run-off or river level rise (Section 4.2.8), as suggested by field 

observations of this mechanism. 

The survey of river bank morphological changes carried out using laser 

scan comparisons suggests minimal changes to river bank form at three eroded 

banks upstream of Low Stock Bridge (Section 4.2.10). As active bank failures 

have been observed on other reaches of the Derwent (Section 4.2.6), it is 

possible that the river banks that were chosen to form the study area are not in 

the process of active erosion, particularly over a relatively short (three month) 

study period. However, it is apparent that the use of the terrestrial laser scanner 
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to assess river bank erosion is a useful method, as the high resolution of the 

scans enabled clear and detailed comparisons to be made of bank morphological 

changes. 

To answer the initial research question, it is highly likely that river bank 

erosion is an important source of fine sediment on the River Derwent, and 

therefore an important source of suspended sediment to the catchment sediment 

budget and Bassenthwaite Lake. This is suggested by the large extent of river 

bank erosion and evidence of active bank failures on several reaches of the 

Derwent, and the potentially unstable morphology of several presently semi­

active river banks. As a large increase in sediment load has been shown to occur 

on the lowland River Derwent (Section 4.1.3.2), it is very possible that river bank 

erosion events provide a sizeable proportion of the overall fine sediment input in 

this region. 
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CHAPTER FIVE 

CONCLUSIONS 

This chapter provides a summary of the key findings of this research and 

presents a summary sediment budget for fine sediment fluxes in the 

Bassenthwaite Lake catchment. lt is known that Bassenthwaite Lake has 

suffered a deterioration of water quality, potentially as a result of increased fine 

sediment transfers to the lake, which has caused a decline in the population of 

the rare vendace (Coregonus albula) (Chapter 1). The project aim was to 

describe the characteristics of fluvial suspended sediment transfers to 

Bassenthwaite Lake through direct monitoring of the River Derwent and 

Newlands Beck (at the head of Bassenthwaite Lake) in order to assess the 

potential contribution of river bank erosion on the lowland River Derwent to fine 

sediment delivery. 

5.1 Research question 1: What are the characteristics of suspended 
sediment transfers to Bassenthwaite Lake? 

• Suspended sediment transfers in the lowland Bassenthwaite Lake 

catchment typically occur during infrequent, high-magnitude flow events 

which are responsible for the transfer of a large proportion of the overall 

fine sediment load. Approximately two-thirds of the total suspended 

sediment transfers on the River Derwent occurred during just over 1 0% of 

the time (Figure 4.5). 
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• The River Derwent supplies the largest suspended sediment input to 

Bassenthwaite Lake. The river had an overall sediment load five times 

larger than that of Newlands Beck (Figure 4.6). This is also demonstrated 

in the river water sample record, which suggests that the mean suspended 

sediment concentration on the Derwent was 56% higher than Newlands 

Beck (Section 4.1.3.1 ). 

• Fine sediment is supplied to the river along the lowland Derwent, between 

Portinscale and Low Stock Bridge, as demonstrated by an increase in total 

suspended sediment loads (estimated at 1,158 t a-1
) between the two 

monitoring stations (Figure 5.1 ). Fine sediment transfer in this reach 

results from a combination of sediment inputs from the wider catchment, 

and brief pulses of suspended sediment added by active erosion (river 

bank failures) on the lowland River Derwent. 

• The overall sediment load calculations from turbidity monitoring and the 

accompanying water sampling suggest that a large volume of fine 

sediment (4,469 t a-1
) is stored in Bassenthwaite Lake (Figure 5.1 ). This 

equates to an average sedimentation rate of 0.08 g cm a-1
, which is 

comparable with the rate of c. 0.1 g cm a-1 approximated from sediment 

core records (Cranwell et al. 1995, Bennion et al. 2000). 
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Newtands Beck 
1,211 t - I······ I ...... 

2,858 t ...... N -~ 

f-- + 1,158 t ----+ ...... 
Bassenthwaite Lake 4,958 t 6,116t .. River Derwent 

3.7 km 

River Derwent 

Figure 5. 1: Summary of the estimated annual sediment budget for the 
Bassenthwaite lowland catchment. Inflows to the lake show suspended sediment 
loads extrapolated from the 8-month turbidity monitoring period (Section 4.1.3.2). 
Sediment storage in Bassenthwaite Lake and sediment outflows from the lake 
were estimated from the suspended sediment concentration records (Section 
4.1.3.1). 

5.2 Research question 2: To what extent does river bank erosion 
constitute an important fine sediment source on the lowland River 
Derwent? 

• Field evidence of extensive bank erosion on the River Derwent,suggests 

that river bank erosion constitutes a major fine sediment source on the 

lower Derwent, and therefore an important sediment input to 

Bassenthwaite Lake. 

• Over 21% of river banks on the River Derwent between Derwent Water 

and Bassenthwaite Lake are eroded, of which approximately 40% are 

actively eroding. 

• A high proportion of eroded river banks are susceptible to large-scale bank 

failures. Failed blocks have been observed at several river banks, and the 

dominant erosion mechanism on the river appears to be lower bank 

erosion and undercutting by high river discharges, leading to cantilever 

failure. 
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• Livestock poaching scars are likely to be sources of fine sediment to the 

channel during rainfall and periods of high river levels. Based on field 

observations, river bank weakening processes, including freeze-thaw and 

desiccation, are thought to be insignificant in overall sediment delivery. 

5.3 Recommendations for further study 

Further monitoring of suspended sediment transfers within the 

Bassenthwaite Lake area is necessary in order to gain a fuller understanding of 

patterns of suspended sediment transfers to Bassenthwaite Lake. Although the 

water sample record analysed in this project covers a period of just under two 

and a half years, the nature of water sampling means that large periods of river 

flows were not directly sampled. The continuous turbidity monitoring has proved 

most useful in the analysis of overall sediment loads and suspended sediment 

dynamics during high flow events, however this comprises only eight months of 

monitoring of sediment inputs to Bassenthwaite. A more sustained water 

sampling programme, together with continuous turbidity monitoring, is necessary 

in order to further quantify suspended sediment transfers, particularly on the 

River Derwent. There is also uncertainty as to the outflow sediment load from 

Bassenthwaite Lake, and therefore the volume of sediment being trapped in the 

lake, as the loads shown in Figure 5.1 are only preliminary estimates. Monitoring 

of suspended sediment transfers is fundamental in assessing the impact of any 

remediation work aimed at reducing sediment supply in the catchment. 
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Future monitoring of river bank erosion is also important, as this project 

has concluded that the extensive eroded banks of the River Derwent are an 

important source of fine sediment to Bassenthwaite Lake. In particular, 

monitoring of the length of active river bank erosion and bank failures (the areas 

of river bank that are presently transferring sediment to the river channel) will 

enable the risk of fine sediment delivery to be assessed in future years. 

Repeated laser scans of the river banks near Low Stock Bridge, in comparison 

with the scan data collected during 2007, are planned and will also contribute to 

this process. 

The preliminary sediment budget described in Section 4.1 and shown in 

Figure 5.1 is the first detailed attempt at a sediment budget for Bassenthwaite 

Lake. This clearly demonstrates the importance of the river inputs and the 

trapping efficiency of the lake. Intriguingly, based on this first approximation, the 

calculated sedimentation rate agrees closely with estimates measured from lake 

cores. However, this value can be expected to be higher if sediment focussing is 

considered, autochthonous sedimentation included, and inputs from unmeasured 

streams calculated. 
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