
Durham E-Theses

Robust data analysis for factorial experimental

designs: Improved methods and software

Sarmad, Majid

How to cite:

Sarmad, Majid (2006) Robust data analysis for factorial experimental designs: Improved methods and

software, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/2432/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2432/
 http://etheses.dur.ac.uk/2432/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Robust data analysis for factorial
experimental designs: Improved

methods and software

Majid Sarmad

The copyright or this thesis rests with the
author or the university to which 1t was
submitted. No quotation from lt, or
Information derived from lt may be published
without the prior written consent of the author
or university, and any Information derived
from lt should be acknowledged.

A Thesis presented for the degree of

Doctor of Philosophy

• ,,
Statistics

Department of Mathematical Sciences
University of Durham

England

November, 2006

0
.,;.· 5, FEB 2007

Dedicated to
My loving father who was the first to encourage me to study hard. The rest of my

academic life will be dedicated to his memory.

Moreover, it is d,edicated to my respectful mother whose magnanimity cannot be

expressed in words alone.

My beloved wife and the kids.

•

Robust data analysis for factorial experimental
designs: Improved methods and software

Majid Sarmad

Submitted for the degree of Doctor of Philosophy

November 2006

Abstract

Factorial experimental designs are a large family of experimental designs. Robust

statistics has been a subject of considerable research in recent decades. Therefore,

robust analysis of factorial designs is applicable to many real problems. Seheult and

Tukey (2001) suggested a method of robust analysis of variance for a full factorial

design without replication. Their method is generalised for many ot~r factorial

designs without the restriction of one observation in each cell. Furthermore, a new

algorithm to decompose data from a factorial design is introduced and programmed

in the statistical computer package R. The whole procedure of robust data analysis

is also programmed in R and it is intended to submit the library to the repository

of R software, CRAN. In the procedure of robust data analysis, a cut-off value is

needed to detect possible outliers. A set of optimum cut-off values for univariate

data and some dimensions of two-way designs (complete and incomplete) has also

been provided using an improved design of simulation study.

Declaration

The work in this thesis is based on research carried out at the Statistics Group, the

Department of Mathematical Sciences, England. No part of this thesis has been

submitted elsewhere for any other degree or qualification and it is all my own work

unless referenced to the contrary in the text.

•

Copyright © 2006 by Majid Sarmad.

"The copyright of this thesis rests with the author. No quotations from it should be

published without the author's prior written consent and information derived from

it should be acknowledged".

iv

Acknowledgements

I would like to express my gratitude to Dr. Peter S. Craig for his support and

scientific supervision during my study in Durham. I will keep in my mind his

sympathy, knowledge and experience in computational statistics. I hope I can learn

more from him even after this degree. I have appreciated the help and kindness of

Dr. Allan H. Seheult from the first weeks of my study until now. I would like to

acknowledge the friendly environment of the Department of Mathematics where I

made many friends, too many to mention individually here. I dedicate my degree to

Ferdowsi University of Mashhad which was my academic birth place atJ.d am very

thankful of the Ministry of Science, Research and Technology in Iran who supported

my studies. Certainly, I need to appreciate my wife, Soheyla for her patience during

my study, Mahdi, Mohammad Saeed and Fatemah for their sweet smells and who

will hopefully be the new researchers of tomorrow.

V

Contents

Abstract

Declaration

Acknowledgements

1 Introduction

1.1 Robustness in statistics .

1.2 Outliers or Extreme values

1.2.1 Example 1: A univariate case

1.2.2 Example 2: A case of experimental design

1.3 Methods of outlier detection

1.3.1 Univariate outlier detection

1.3.2 Methods for experimental designs

1.4 Robust designs ...

1.5 Robust data analysis

1.5.1 L1

1.5.2 Seheult-Thkey

1.6 A new library in R

1. 7 Objectives

2 Detecting outliers in univariate data

2.1 Introduction

2.2 Method 1: Z-Scores

2.3 Method 2: Modified Z-Scores

vi

•

iii

iv

V

1

2

5

6

6

7

8

9

12

12

13

13

13

15

16

16

17

19

Contents vii

2.4 Method 3: Thkey 21

2.5 Optimum cut-off value 22

2.5.1 Slash Distribution . 25

2.6 Simulation study - Basic notations 27

2.7 Simulation study - The results . . . 32

2.8 Comparing Modified Z and Thkey's Methods . 40

2.9 Miscellaneous ... 42

2.10 The functions in R 50

3 Two Way Factorial Designs 54

3.1 Introduction . 54

3.2 The method . 55

3.2.1 Decomposition 56

3.2.2 Detecting possible outliers 59

3.3 Simulation study for optimum cut-off value . 60
• 3.4 Results 63

3.5 Weaknesses and Alternatives . 64

3.6 New simulation study . 68

3.7 A brief discussion 72

3.8 Functions in R 72

4 A general decomposition algorithm 74

4.1 An introduction to the new algorithm . 75

4.1.1 A simple example of the new method 76

4.1.2 An approach to generalise the new method 77

4.2 The algorithm of the new method 78

4.2.1 Some necessary definitions used in the algorithm . 80

4.2.2 Key points in the algorithm 80

4.2.3 The algorithm . . 80

4.3 Checking the algorithm . 82

4.4 An application of the algorithm 83

4.5 The functions in R 0 ••• 0 •• 85

Contents

5 Robust analysis of variance

5.1 The algorithm for the robust ANOVA table

5.2 R library .

5.2.1 Generalisation points and comments

5.2.2 Main functions in the library and the usage

5.3 Examples

5.3.1 Dental Gold Data .

5.3.2 A randomised complete block design

5.3.3 Balanced incomplete block designs

6 Con cl us ions

6.1 What has been achieved and what is left to do?

6.2 Further works

Appendix

A A note by Dr. P. Craig on estimated minimum badness

B R functions used in Chapter 2

B.1 bbO.sim

B.2 rslash.O .

B.3 b.Oway.O -
B.4 sweeper.O

B.5 lomedian .

B.6 bbO.sim.res

B.7 ppO.sim

B.8 ppO.sim.res

B.9 b.Oway .

B.10 b.Oway.ST

B.11 b.Oway.MZ .

B.12 b.Oway.res.6.ci

B.13 b.Oway.summ

B.14 STm1

•

viii

86

86

87

87

88

90

90

97

. 100

101

. 101

. 103

109

109

112

. 112

. 112

. 113

. 114

. 114

. 115

. 115

116

118

. 118

119

120

. 121

. 121

Contents

C R functions used in Chapter 3

C.1 b.2way.new.2 . . .

C.2 incidence.matrix.2 .

C.3 rslash

C.4 pslash

C.5 n0gg.avg.2way .

C.6 nOgg

C.7 n1gg

C.8 sweeper

C.9 himedian.

. C.10 NE.median

C.ll n2gg .

C.12 STm2

C.13 mat.rank .

C.14 b.2way.new.2.res. ...

ix

123

. 123

. 126

. 127

. 127

. 127

. 128

. 128

. 129

. 129

. 130

. 130

. 131

. 131

. 132

C.15 b.2way.new.2.res.m2nd . 134

C.16 b.2way.new.2.res.mf . . 135

C.17 b.2way.new.2.res.ci . . 136

D R function for the new algorithm of decomposition in chapter 4 139

D.1 decomp

D.2 incidence.matrix .

D.3 is.child .

D.4 permutes.

D.5 list. table3

D.6 print.lstpolish

D.7 print.lstX ·•

E R functions in robande library

E.1 anova.decomp

E.2 n5gg.3 ..

E.3 print.lstrob

:- . 139

. 142

. 143

. 143

. 144

. 145

. 145

146

. 146

. 148

. 148

Contents X

F R functions to do the traditional decomposition 149

F.1 decom . 149

F.2 n3gg.2 . 150

F.3 n0gg.2 . 151

F.4 n4gg . 151

F.5 n5gg . 152

F.6 n6gg . 153

F.7 n7gg . 153

F.8 n10gg . 153

F.9 print .lstold polish . 155

•

List of Figures

2.1 Slash density function; Similar to Normal in the middle, long tails 26

2.2 Three separate simulations of one million samples of size five 35

2.3 Three million samples of size five (Slash vs Normal) - pooled 35

· 2.4 The behaviour of initial optimum cut-off in even and odd sample sizes 37

2.5 Scatterplot and the residual plots of the regression on data in table 2. 7 39

2.6 The plots of badnesses of Slash and Gaussian samples size n = 5 in

two methods. 42

2. 7 i'm (cut-off corresponding to minimum badness in initial simul~tion)

versus sample size n for modified Z-scores . 44

2.8 i'm (cut-off corresponding to minimum badness in initial simulation)

versus sample size n for Thkey's method 44

2.9 B~' (minimum badness in initial simulation) versus sample size n for

modified Z~scores . 45

2.10 B~' (minimum badness in initial simulation) versus ~ample size n for

Thkey's method . 45

2.11 ,.Y* (optimum cut-of value) versus sample size n for modified Z-scores

using the smaller minimum badness to scale 46

2.12 ,.Y* (optimum cut-of value) versus sample size n for Thkey's method

using the smaller minimum badness to scale 46

2.13 The differences between the scaled badness at optimum cut-off value

for modified Z-scores and Thkey's inethod 47

2.14 For n = 4, modified Z-scores and Tukey's method scaled by their own

minimum badness with confidence interval at each cut-off 4 7

xi

List of Figures

Slash density function vs Gaussian

Compromised graphs of a 2x2 and a 2X7 two-way table

xii

67

70

3.1

3.2

3.3 Estimated optimum cut-off values by simulation in square two-way

factorial designs . 73

4.1 A graphical representation of the hierarchical algorithm to decompose

a complete two-way factorial design with model Y""A*B .

4.2 The graphical show of decomposition for model Y""a+b*c

•

78

79

List of Tables

2.1 Outlier detection using Z-scores . 18

2.2 Maximum possible Z-score depending on sample size n (Shiffier 1988) 19

2.3 Outlier detection using Modified Z-scores 20

· 2.4 Outlier detection using Thkey's method . 23

2.5 Thkey's method: Minimum average badness and corresponding cut-

off value according to 10 million simulations for each n 34

2.6 Initial estimates of optimum cut-off values for Thkey's Method 36

2. 7 For n = 15, the difference of Slash and Gaussian scaled badnes~ near

the initial estimated optimum cut-off 38

2.8 Initial and more exact optimum cut-off values with 95% confidence

intervals . 40

2.9 Comparison of two methods and their expected badnesses at their

optimum c'ut-offs . :. . .

2.10 Initial and the final ry* with 95% Cl for both MZ and Thkey

43

48

2.11 Inefficiency (scaled badness) difference when choosing a fixed cut-off

compare to using the optimum cut-off 49

2.12 Proportion of Slash samples' detected as outliers by Thkey's method . 51

2.13 Proportion of Gaussian samples' detected as outliers by Thkey's method 52

3.1 Example 2. Seheult-Thkey's method

3.2 Comparison of old simulations and the present

3.3)'* with 95% Cl_ and the p-value to test the Normality of regression

60

64

errors. 71

4.1 ry*' for some dimentions of Incomplete balanced designs- 20000 samples 85

xiii

List of Tables xiv

5.1 Dental gold data- Source: Seheult and Tukey (2001) 91

5.2 Fibian decomposition of the data in table 5.1 by Seheult and Tukey

(2001) 0 92

5.2 Fibian decomposition of the data in table 5.1 by Seheult and Tukey

(2001) (Cont.) . 93

5.3 Averaged based NE-median decomposition of the data in table 5.1 94

5.3 Averaged based NE-median decomposition of the data in table 5.1

(Cont.) .·. 95

5.4 Suspected outliers in Dental Gold Data using two cut-offs, 1.5 and 1.3 96

5.5 Grain yield of rice variety IR8 (in Kg) - Source: Bhar and Gupta

(2001; page 345) 97

5.6 Averaged based NE-median decomposition of the data in table 5.5 . 98

5.7 Original data- Source: Montgomery (1997; page 209) 100

5.8 Residuals of the data in table 5.7 obtained by NE-median polish . 100

5.9 Number of non-zero residuals, the percentages and detected o,.tliers

by a simulation study of 1000 on a. BIB design in example 5.3.3 ... 102

Chapter 1

Introduction

Robustness in statistics has been considered in recent decades. It needs to be studied

due to departures from the usual modelling assumptions in real data. From the fol­

lowing quotes, it may be understood where robust statistics lies and how important

it is to pay more attention to robust statistical methods.

"The study of robust statistics is useful for anyone who handles ra!ldom data.

Applications can be found in statistics, economics, engineering, information technol­

ogy, psychology, and in the biological, environmental, geological, medical, physical

and social sciences." (Olive 2006)

"There are many classical statistical procedures such as least squares estimation

for multiple linear regression and the t-interval for the population _mean J.L. A given

classical procedure should perform reasonably well if certain assumptions hold, but

may be unreliable if one or more of these assumptions are violated. A robust analog

of a given classical procedure should also work well when these assumptions hold,

but the robust procedure is generally tailored to also give useful results when a

single, specific assumption is relaxed." (Olive 2006)

"A statistical method is said to be robust if its behavior is relatively insensitive to

slight departure from the assumptions that justify that method." (Kotz et al. 1988;

page 176)

"By a resistant technique will be meant one whose results are at most mildly af­

fected by observations which do not conform to the general pattern of the data." (Besag

1981)

1

1.1. Robustness in statistics 2

"In recent years, considerable attention has been paid to the development of

resistant techniques for data analysis, primarily under the influence of J.W.Tukey

and his coworkers." (Besag 1981)

"I think it is an important area that is used a lot less than it ought be." (Ripley

2004)

1.1 Robustness in statistics

"In the statistical literature the word robust is synonymous with good." (Olive 2006)

Hampel (2001) states that almost everybody nowadays believes in the "dogma of

Normality" as an assumption for the error distribution to find the "best estimate" of

an unknown "true value". He also mentions that "Bessel (1818), Newcomb (1886),

Jeffreys (1939) and others, showed that typical error distributions of high-quality

data are slightly but clearly longer-tailed than the Normal." He adds " ... obviously

real data have different accuracy, as modelled by Newcomb (1886)." It.seems that

it is risky to trust the assumptions in an statistical analysis and an alternative is to

switch to robust statistics.

Huber (1972) also believed it was dogmatic to assume Normality for the errors:

"It seems to me that this kind of discussion borders on dogmatism; a more rational

action would have been to look at actual error distributions in large samples, to

check whether they were compatible with a Normal and, if not1 to develop a different

theory of estimation."

"Gross errors often show themselves as outliers, but not all outliers are gross

errors. Some outliers are genuine and may be the most important observations of

the sample. For example, if a geodetic point seems suddenly to be in a different

position, it may mean a gross error of some sort, or it may mean a shift of the

underground, and some redundancy (or experience) is needed to distinguish these

possibilities." (Hampel 2001)

Considering the above realities, there are some issues to address in order to deal

with the problem. One issue is to determine the outliers, if any, and then find a way

to deal with them. Recognising suspected outliers has been addressed in the litera-

1.1. Robustness in statistics 3

ture by such as Barnett and Lewis (1994), Iglewicz and Hoaglin (1993), Rousseenuw

and Leroy (1987), Bhar and Gupta (2001), Rosner (1975; 1983), Stefensky (1972),

Shiffier (1988), Daniel (1960), Al-Madfai (1994), Johnson (1989) and Seheult and

Thkey (2001) for some different statistical types of data collection; however, many

types of data collection have not been covered. Many of the existing methods to

detect outliers need a cut-off, or in other words a criterion which plays a key role.

Fixing an optimum cut-off value usually takes a separate study.

The next issue that arises is how to manage detected outliers. "A common

reaction to this danger is 'rejection of outliers' " (Hampel 2001) Quoting Hampel

(1985), he also says that, even using a good rule to detect the outliers, rejecting them,

and then doing least squares for the remaining data, typically loses 10-20 percent

efficiency compared with a better robust method. It is also worth quoting Ripley

(2004) mentioning that screening data and removing the outliers is not sufficient:

"1. Users, even expert statisticians, do not always screen the data.

•
2. The sharp decision to keep or reject an observation is wasteful. We can do bet-

ter by down-weighting dubious observations than by rejecting them, although

we may wish to reject completely wrong observations.

3. It can be difficult or even impossible to spot outliers in multivariate or highly

structured data.

4. Rejecting outliers affects the distribution theory, which·ought to be adjusted.

In particular, variances will be underestimated from the 'cleaned' data."

Although rejecting outliers is the simplest way, there are a few alternatives.

Thkey suggested substituting each outlier by the next closest number to it. He

named it Winsorizing in honour of Charlie Winsor (see Huber 2002). Huber (2002)

notes that "Interestingly, and rather counter-intuitively, it turned out a few years

later that trimming does exactly what Winsorizing was supposed to do but, on

the other hand, that the standard error calculated from the Winsorized sample

asymptotically gives the correct value for the standard error of the trimmed mean

(see Huber 1981; pages 58-59)." Later Seheult and Thkey (2001) suggested half­

Winsorizing which is substituting the outlier by the half of the next closest number

1.1. Robustness in statistics 4

to the outlier. Either trimming or modification of an outlier should be done after

being in almost no doubt that the outlier is the result of a gross error.

Another approach is to find the breakdown point of the statistic which is used.

"Some sources use the term breakdown bound instead of breakdown point The

breakdown point of an estimator is the largest proportion of the data that can be re­

placed by arbitrary values without causing the estimated value to become infinite."

(Iglewicz and Hoaglin 1993; page 11) It might be better to consider the breakdown

point before outlier detection as the outlier may have some useful information and

need to be kept in its original form. Again from Hampel (2001): "The breakdown

point . . . is often the first and most important number to be looked at before going

into the details of local robustness properties." Using a statistic with a high break­

down point is a good way to do a resistant statistical analysis. "The sample mean y

can be upset completely by a single outlier; if any data value Yi - oo, then y - oo.

This contrasts with the sample median, which is little affected by moving any single

value to oo. We say that the median is resistant to gross errors whereas •he mean is

not. In fact the median will tolerate up to 50% gross errors before it can be made

arbitrarily large; we say its breakdown point is 50% whereas that for the mean is

0%." (Ripley 2004)

The fourth approach is to do a robust analysis such as using M-estimators instead

of least squares method or median polish in an experimental design.

"It is convenient to divide methods of robustification into.four categories:

(1) trimming, Winsorization, and other methods based on other statistics,

(2) M-estimation and minimum distance estimation,

(3) rank statistics, and

(4) outlier tests and diagnostics." (Kotz et al. 1988; page 177)

Finally, a completely different approach is to use a robust design which means

a design for which the analysis is resistant in presence of outliers. However, there

is only a tiny literature on the production and use of these robust designs while

extensive studies have been done on robust designs against missing observations.

(Bhar and Gupta 2001; page 339)

1.2. Outliers or Extreme values 5

1.2 Outliers or Extreme values

Data analysis can be affected by outliers in any type of data collection. Ignoring

them, the analysis might be misled to a wrong or far from correct conclusion. "The

concept of an outlier has fascinated experimentalists since the earliest attempts

to interpret data." (Barnett and Lewis 1994) "That observation is suspect whose

removal greatly simplifies the description of the rest of the data. That observation

is also suspect that complicates the description of the error distribution." (Daniel

1960) Two other terms for "outlier" are "discordant" and "contaminant". (see Kotz

et al. 1988; page 177) "Aberrant" has also been seen in some literature. "Outliers

occur very frequently in real data, and they often go unnoticed because nowadays

much data is processed by computers, without careful inspection or screening."

(Rousseenuw and Leroy 1987)

They can be a result of any of the following reasons: (see Barnett and Lewis 1994,

Hawkins 1980)

• A mistake when recording the data - Measurement error

• A mistype in data entry - Measurement error

• Collecting data from a long tail distribution - Inherent variability

• Wrong experiment to collect the sample - Execution error or biased sampling

Regardless of what does cause one or more outliers, they will detract from the results.

"It is clear that a single outlier- if located sufficiently far away- can completely

spoil a least squares analysis." (Hampel 2001)

"Outliers are sample values that cause surprise in relation to the majority of

the sample. This is not a pejorative term; outliers may be correct, but they should

always be checked for transcription errors. They can play havoc with standard

statistical methods, and many robust and resistant methods have been developed

since 1960 to be less sensitive to outliers." (Ripley 2004)

The following examples show how an outlier can affect a statistical analysis.

1.2. Outliers or Extreme values 6

1.2.1 Example 1: A univariate case

Suppose, as a hypothetical sample, we have

3,5,4,6,3,20

It seems obvious that for some reason the value 20 is a mistake. A 95% confidence

interval for the population mean, assuming the data are from a Normal distribution,

from the sample is

(-0.04561, 13.7123)

which includes zero. The researcher may draw a conclusion of not rejecting the null

hypothesis that the population mean is zero.

Let's assume the correct value for the last observation is 2. Then the 95% mean

confidence interval for the correct hypothetical sample

3,5,4,6,3,2

is

(2.2886, 5.3781)

which does not include zero and leads to rejection of the same null hypothesis.

1.2.2 Example 2: A case of experimental design

In experimental designs, the existence of only one outlier may change the result of

analysis of variance (ANOVA). A hypothetical example of a 5 by 4 two-way factorial

experimental design (without replication) will be followed by its ANOVA table as

given by R.

23 54 52 35

61 23 53 45

29 20 25 38

36 29 32 31

38 38 24 30

1.3. Methods of outlier detection

> summary(aov(y-fr+fc,data=ex.hy))

fr

fc

Of Sum Sq Mean Sq F value Pr(>F)

4 829.20 207.30 1.4426 0.2796

3 67.60 22.53 0.1568 0.9233

Residuals 12 1724.40 143.70

7

Substitution of just one datum with a supposed outlier, makes a lot of difference

to the Sum of Squares' column and hence to the final results:

123 54 52 35

61 23 53 45

29 20 25 38

36 29 32 31

38 38 24 30

> summary(aov(y-fr+fc,data=ex.hy.out))

Of Sum Sq Mean Sq F value Pr(>F)

fr 4 3869.2 967.3 3. 0511 0. 05978

fc 3 1887.6 629.2 1. 9846 0. 17013

Residuals 12 3804.4 317.0

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Assuming the significance level to be 0.1, the second ANOVA table indicates a

significant difference between the levels of the row factor while it does not occur in

the first ANOVA table.

Both examples can easily happen by mistyping and when the computations are

being done by computer, it could be hidden from the researcher's eye!

One may find many other examples in other statistical data such as regression

or time series. We will try to find how to deal with outliers in the univariate case

as a preface to studying experimental designs.

1.3 Methods of outlier detection

There are many existing methods to detect possible outliers in a univariate data set.

Most of them may be generalised to apply for some types of experimental designs.

1.3. Methods of outlier detection 8

However, there are also a few specially constructed methods for data which are not

univariate.

1.3.1 Univariate outlier detection

There are many methods to detect the outliers in a univariate data set. Most have

been constructed first to detect a single outlier. Some of them have been generalised

to detect two outliers or more. There are still some methods with weaknesses which

can be improved. Among the methods for outlier detection in a univariate data

set, we may name ESD (Extreme Studentised Deviate), generalised ESD, MNR

(Maximum Normed Residual), Shapiro-Wilk test, Ln Z-scores, Modified Z-scores,

test based on Kurtusis, Dixon-Type test and the boxplot rule. In this part, a few of

them will be introduced.

ESD

Grubbs (1950) has a discussion on several solutions to find one outlier in a sample

of size n from a reference distribution of Gaussian. Grubbs (1969) also made a

tutorial on how to detect two highest data in a sample or two lowest or one highest

and one lowest. Iglewicz and Hoaglin (1993) have compared five methods to detect

more than one possible outlier. As a result, Generalised ESD (Extreme Studentised

Deviate) was proposed by Rosner (1975) who introduced the procedure to detect

more than one outlier and prepared a table for many sample sizes n 2: 25 (Rosner

1983).

Z-Scores

This is a popular rule to tag possible outliers in a univariate data set. It is just based

on the property of Gaussian distribution that 99.7% of values lie between -3 and 3.

The method has an easy computational procedure and so many people like to use

it. The problem, revealed by Shiffier (1988), is its inability to detect the outliers in

sample size less than 11.

1.3. Methods of outlier detection 9

Modified Z-Scores

Iglewicz and Hoaglin (1993) mentioned the weaknesses of using Z-scores to de­

tect outliers. An alternative was using resistant estimators rather than the sam­

ple average and the sample standard deviation which both can be affected even

by one outlier. Then all Z-scores including non-outliers will be changed. "The

sample mean, standard deviation, and range have breakdown points of zero ... "

(Iglewicz and Hoaglin 1993; page 11). Replacing the sample mean by the me­

dian, which has a breakdown point of about 50%, is one modification of Z-Score.

Modified Z-Score has been made by also replacing the standard deviation of the

sample by the median of absolute deviations of observations from the median, i.e.

MAD= mediani{l Xi-xI} called MAD where xis sample median. Because, for

very large n, E(MAD) = 0.6745a, the modified Z-Score introduced by Iglewicz and

Hoaglin (1993) uses the scaling constant 0.6745 which however seems inappropriate

to use for all sample sizes.

1.3.2 Methods for experimental designs

"In classical and in robust analyses, residuals are important; in exploratory work,

residuals are generally of paramount importance." (Besag 1981) By studying the

residuals, there are a few methods to recognise the possible outliers in a two-way

factorial designs. Usually they have been improved from their first versions and

mostly restricted to the full two-way factorial design without replication.

MNR in factorial designs

Daniel (1960) proposed a statistic equivalent to the maximum normed residual for

detecting a single bad value in a factorial design with replication (see Stefensky

1971; 1972). Later, Stefensky (1972) generalised the cut-off values given by Daniel

(1960).

1.3. Methods of outlier detection 10

Least square methods

Iglewicz and Hoaglin (1993; page 67-68) discussed the problems of using the same

rules to identify the outliers in multiple regression for a balanced factorial experi­

mental design.

Modified R charts

"Ullman (1989) uses a quality control technique called analysis ofranges to provide a

simple tool for identifying outliers in replicated factorial experiments." (Iglewicz and

Hoaglin 1993) They (Iglewicz and Hoaglin 1993) also simplified Ullman's approach

when the number of cells is at least 12.

Developed Cook's Statistic

Bhar and Gupta (2001) modified Cook's statistic in a way to detect a single outlier

in a randomised complete block design. Cook's statistic is usually used for a linear

regression. The newly developed statistic for a block design can be calculated for

each observation in the design and then using a criterion each will be checked for

being an outlier if it corresponds to an influential observation. They defined an

influential observation to be one which, when removed from the data, will change

the F-ratio in an ANOVA table so that the decision of rejecting or not rejecting the

null hypothesis will consequently be changed.

Tukey in factorial designs

It seems that the unpublished report by Fowlkes, McRae, Seheult, and Tukey (1981)

is the beginning of their work on detecting and dealing with the outliers in the two­

way factorial designs. Seheult (2006) believes the main idea was from Tukey. The

method is to polish the table first by a resistant statistic. Tukey (1977) introduced

the main idea of polishing. Polishing a two-way table leaves four partitions: the

total effect, row effects, column effects and the interaction or residuals. The next

step was inspecting the residuals to find and tag the possible outliers. A way to find

the outlier has been introduced by Daniel (1960) using the half-normal distribution.

1.3. Methods of outlier detection 11

The positive half-normal order statistics are calculated in Thkey's method as a set

of reference values. Then by comparing the residuals and the reference values, the

magnitude of each residual is revealed. Scaling them by a resistant statistic makes

them ready to tag the outliers.

The median is a resistant statistic. In an odd number of data, there is one datum

in the middle. In an even number of data, there are two data in the middle and in

addition to these two, any value between them can be chosen as the median. Thkey

has used the lower value called "lo-median" in his first works while in Seheult and

Thkey (2001), they chose one of the lower or the higher value in middle based on

a definition in the procedure of polishing. This index function of lower and higher

values is called "fibian" in Seheult and Thkey (2001). The situation with most

advantage gained from using the fibian is in the two-way table with one factor of

two levels.

Similar to other outlier detection methods, what is needed again is a cut-off value at

the last stage of tagging. Based on this method, Fowlkes et al. (1981) and Al-Madfai

(1994) have done some simulations to find out an optimum cut-off value for a 5 by 4

two-way table. Although, Al-Madfai has used an additional scaling called "SqLm",

the results of the two simulation studies are very close.

Present work is a generalised form of Tukey's method

Selecting one of the lo-median or hi-median to be called fibian is not so easy for

programming. Instead, "NE-median" introduced by Johnson (1989) has similar

properties as fibian but is easier to program because it is a stand-alone function

whereas fibian needs to keep track of and use each effect during the decomposition.

Like fibian, NE-median is also one of lo-median or hi-median but is simply the one

which is closest to zero.

In the present work, there are some improvements and generalisations which have

been applied on Thkey's method in outlier detection:

• 'fruncating the reference distribution to produce outliers in the simulation

study

1.4. Robust designs 12

• Adding some random normal numbers to the row and column effects as a

generalised form of simulation

• Using NE-median to polish in simulation study

• Performing a unique polish

• Using an improved approximation for the reference values given in Seheult and

Tukey (2001)

• Applying the simulation for many more sets of number of levels in the two-way

tables

• Finding the accuracy of optimum cut-off values

• An independent simulation to find the scaling item

• A very much bigger simulation

1.4 Robust designs

By robust designs we mean "designs are constructed that guard against particular

shortcomings." (Kotz et al. 1988) "Robustness of designs against missing observa­

tions has been studied extensively in the literature. Only a little work on robustness

against the presence of outliers is found in_ the literature." (Bhar and Gupta 2001)

Box and Draper (1975) were the first to study robust response surface designs. Kotz

et al. (1988) say that Box and Draper (1975) wanted to obtain designs that made

the analysis insensitive to outliers. Bhar and Gupta (2001) introduced a few robust

designs which are robust against the presence of a single outlier.

1.5 Robust data analysis

"The classical methods - means, variances and least squares - are unsafe. Sometimes

they are good, sometimes they are not. . .. It is perfectly proper to use both classical

and robust/resistant methods routinely, and only worry when they differ enough to

1.6. A new library in R 13

matter. But when they differ, you should think hard. .. . What you need is a

reasonably self-consistent set of procedures that are reasonably easy to use and

reasonably easy to describe." (Tukey 1979)

1.5.1 Ll

Burns (1988) showed for some given designs, L1 has not a unique solution. Based

on Burns's report, L1 has a unique answer when for an oddly-replicated table (all

cells have odd replicates - empty cells are not accepted), and the number of levels

for the factor with fewer levels is odd. He adds that it is impossible to have a unique

L1 solution when the number of replicates in all cells is even and empty cells are

allowed. "It is easily seen that the sum of the absolute value of residuals can never

increase at any stage of median polish and, in practice, an L 1 solution is usually

attained." (Besag 1981)

1.5.2 Seheult-Tukey

Seheult and Tukey (2001) have completed some previous work by developing an

applicable robust ANOVA. The procedure goes back to the 1980s in Princeton Uni­

versity. The first important part of the procedure is tagging outliers if any exist.

Decomposition by a resistant statistic and then applying Tukey's method using a

fixed cut-off value recognises as many outliers as might exist in the data. A three­

way factorial design without replication is discussed in Seheult and Tukey (2001)

for the procedure of robust ANOVA. The rest of the procedure after tagging the

outiiers is to substitute them by half-Winsorized values and then down-sweeping

the mean squares in the ANOVA table based on Paul's rule of two which has also

been addressed in Hoaglin, Mosteller, and Tukey (1991; chapter 11).

1.6 A new library in R

Statistical analyses are being done by statistical software these days. Statistical

packages are full of variations of classical methods to analyse data collected in dif­

ferent patterns for different purposes. It has been said earlier that nobody should

1.6. A new library in R 14

ignore possible outliers. A lack of robust statistical computations is obvious in

many statistical software although the theoretical basis exists. "Robust statistical

methods are designed to work well when classical assumptions, typically normality

and/ or the lack of outliers, are violated. Almost everyone agrees on the value of ro­

bust statistical procedures. Nonetheless, after more than 40 years and thousands of

papers, few robust methods were available in standard statistical software packages

until very recently." (Stromberg 2004)

"One reason that contributes to the limited use of Robust Statistics is the heavy

computational cost of many of these techniques. The lack of easy to use and well

documented computer code does not help either. In the last few years the consolida­

tion of the R-project as a widely available, powerful and versatile computer program

for statistical analysis has resulted in many people simultaneously developing and

publishing R code that implements Robust Statistics techniques." (Filzmoser 2006)

"Robust Statistics deals with a very real problem in statistical applications: the

effect of violations to the model used to analyse the data. The last 40 years have

been tremendous advancements in the theory of Robust Statistics, but unfortunately

many of these procedures are not widely used in practice yet." (Filzmoser 2006)

A set of functions in R have been provided to do a robust ANOVA for an ex­

perimental design. The method used in this package is based on Seheult and Thkey

(2001) and on the new method of decomposition proposed in chapter 4. Many types

of factorial experimental designs have been checked by this library. By the method,

a given data set from a designed experiment should be first decomposed using a

sweep function. The library is able to accept any built-in or user-defined sweep

function to decompose but the default sweep function is NE.median which was in­

troduced earlier. The algorithm to decompose a design is new and has the capability

to work on most factorial designs. Unlike the approach using sweep operators for

least squares of Wilkinson (1970), the new algorithm is a hierarchical algorithm.

Incidence matrix and terms levels in the model are the main keys in the algorithm

of decomposition. It is intended to submit the library to CRAN (the Comprehensive

R Archive Network).

1. 7. Objectives 15

1. 7 Objectives

The overall objective in this work is to provide a set of functions in R to do a robust

data analysis for the family of factorial experimental designs.

The overall objective may be subdivided into

- Finding a method of decomposition which generalises median polish and is

applicable to a wide range of linear models for data from factorial designs.

- Improving and generalising previous work (including simulation studies) on

outlier detection for median polish in two-way tables.

- Generalising the robust ANOVA procedure of Seheult and Tukey (2001) to a

wide range of factorial designs and models.

Chapter 2

Detecting outliers in univariate

data

In this chapter two old methods for detecting outlier(s) in univariate data will be

explained via a common example. Then the method introduced by Fowlkes et al.

will be discussed. A set of optimum cut-off values for the third method is obtained

by a simulation study. Confidence intervals for optimum cut-offs are discussed in

section 2.6. A simulation study comparing the new method and one of the old ones

shows the new method to be more efficient. Some properties of the Slash distribution

and a table of proportions of detected outliers in Slash and Gaussian samples are

also a part of this chapter.

2.1 :Introduction

Three methods to distinguish outliers in a univariate data set will be explained

via an example. The first method is more popular than the second one despite its

weakness. The third method is based on some work of J.W. Tukey. In each method,

a cut-off value to detect the outliers is necessary. The usual cut-off value for the

first method comes from the property of the standard Gaussian distribution that

99.7% of data lie between -3 and 3. In the second method, we use the cut-off value

proposed by Iglewicz and Hoaglin (1993) as a result of a simulation study. For the

last method, there is no previous work to find a cut-off value to detect possible

16

2.2. Method 1: Z-Scores 17

outliers in a univariate data set. It is the first time that optimum cut-off values for

a wide range of sample sizes are being found by a simulation study. The functions to

do the simulations are written in R (see Section 2.10 and Appendix B). To generate

samples having outliers, the Slash distribution has been used. The details of this

distribution will be given later.

Suppose that a single variable has been measured in a randomly selected sample

from a population. In the next sections, three methods to distinguish any possible

outlier(s) will be described. The key concepts in the methods will be illustrated

using the following simple data set:

10, -20, 1, 18, 2, 3, -5, -6, 7, 2, 6, 5, 12, -1, -11, -7, 28, 5, 7, 2

Among the values of the hypothetical sample, it seems likely that -20 and 28

would be considered to be outliers caused, for instance, by data errors or coming

from another distribution. We shall now see how the following three methods try to

find outliers.

2.2 Method 1: Z-Scores

Using Z-scores is a simple way to try to detect the outliers. Z-scores may be calcu­

lated for a set of observations x1 , x2 , ... , Xn as follows:

xi- x L:~= 1(xi- x)2
Zi = , where s =

s n-1

This method is based on the well-known property of the Normal distribution, i.e:

X- JL
X : N(JL, a 2

) ~ Z = : N(O, 1)
(J

Hence, any Z-score more than 3 in absolute value might be labelled as an outlier.

For our given data set, Z-scores are calculated in table 2.1.

It can be seen that no observation with this method is tagged as an outlier.

What is happening here is that even a single large lxi- xi causes s to be large too

and then it makes an upper bound for zi. Shiffier (1988) showed that the maximum

possible Z-score depends on n (see table 2.2).

2.2. Method 1: Z-Scores 18

Table 2.1: Outlier detection using Z-scores

z Xi Zi

1 10 0.6883

2 -20 -2.2199

3 1 -0.1842

4 18 1.4638

5 2 -0.0872

6 3 0.0097

7 -5 -0.7658

8 -6 -0.8628

9 7 0.3975

10 2 -0.0872

11 6 0.3005

12 5 0.2036

13 12 0.8822

14 -1 -0.3781

15 -11 -1.3475

16 -7 -0.9597

17 28 2.4332

18 5 0.2036

19 7 0.3975

20 2 -0.0872

2.3. Method 2: Modified Z-Scores 19

Table 2.2: Maximum possible Z-score depending on sample size n (Shiffier 1988)

n Z Z n-l
max = (n) = ,;n

3 1.155

4 1.500

5 1.789

10 2.846

11 3.015

17 3.881

18 4.007

Thus, for any sample of size less than 11, no observation could be found as an

outlier in this method using cut-off 3 even if you have one or more. For n > 11, this

method still seems unreliable.

2.3 Method 2: Modified Z-Scores

Iglewicz and Hoaglin (1993) introduced a modified Z-score to detect outliers. This

method is based on resistant estimators rather than x and s. The modified Z-score

is calculated as

Xi- X
Mi = MAD , where xis the sample median and MAD= mediani{lxi- xl}

0.6745

Iglewicz and Hoaglin (1993) say E(M AD) = 0.67450" which is the basis for the

constant 0.6745 in Mi. However, the constant introduced by them is for very large

n which is not applicable in practice. Running a simple simulation study shows the

constant varies for different sample size n.

Accepting this constant for now, table 2.3 shows the procedure and results for the

example. Any observation with I Mi I > D is tagged as outlier. Based on a simulation

study, they suggested that the cut-off value D = 3.5. Therefore, the observation

xi = 28 would be suspected as an outlier with this method.

2.3. Method 2: Modified Z-Scores 20

Table 2.3: Outlier detection using Modified Z-scores

Data Ordered Ordered

1, Xi Xi lxi- xi M· = 0.6745(x;-x)
t mediani{Jx;-xj}

1 10 -20 0.5 1.1242

2 -20 -11 0.5 -3.3725

3 1 -7 0.5 -0.2248

4 18 -6 0.5 2.3233

5 2 -5 1.5 -0.0749

6 3 -1 2.5 0.0749

7 -5 1 2.5 -1.1242

8 -6 2 3.5 -1.2741

9 7 2 3.5 0.6745

10 2 2 4.5 -0.0749

11 6 3 4.5 0.5246

12 5 5 7.5 0.3747

13 12 5 7.5 1.4239

14 -1 6 8.5 ~0.5246

15 -11 7 9.5 -2.0235

16 -7 7 9.5 -1.4239

17 28 10 13.5 3.8222

18 5 12 15.5 0.3747

19 7 18 22.5 0.6745

20 2 28 25.5 -0.0749

2.4. Method 3: Tukey 21

2.4 Method 3: Tukey

In this section, finding possible outliers in the example data will be done using the

method from Fowlkes, McRae, Seheult, and Thkey (1981). Seheult and Thkey (2001)

generalised the method for a set of data collected by a factorial experimental design.

The case of a two-way factorial design will be discussed in section 3.2.

To find possible outliers in a univariate sample, it is necessary to construct a table

like 2.4. Before that, there are some keys in the table which need to be explained:

• The lower of two data in the middle of an even number of data set is called

the la-median. The upper one is called the hi-median and the mid-median is

the average of these two values. Note that for the odd number of values, there

is just one median.

• If the number of non-zero residuals is less than the degrees of freedom (in

univariate case, it is usually the sample size minus one), only one more than

the number of non-zero residuals will be inspected (18 observations in this

example). If only one non-zero residual remains, the datum related to the

residual would be considered as an unique outlier.

• Using Gaussian as a reference distribution, extreme values are not expected

to exist. Outliers may be distinguished by comparing the absolute values of

residuals with what would be expected for order statistics from the positive

half of Gaussian distribution. The reference values in column (4) in table 2.4

are a very good approximation to the expected order statistics for a sample

from the positive half of standard Gaussian distribution. There is a short

discussion in section 3.5 of how to approximate E[x(i)] where X(i) is i-th order

statistic when the sample size is n. Hoaglin, Mosteller, and Thkey (1991; page

187) say a good approximation for E(x(i)) is

<I>-1 (1 - 3i- 1)
6n+2

where <I>-1 is the inverse Gaussian distribution function and i = 1 gives the

largest reference values.

2.5. Optimum cut-off value 22

In this example, ignoring two zero observations, putting n = 18 in the above

formula gi~es the needed reference values.

The ratios of absolute values of residuals to reference values in column (5)

should reveal the magnitude of the residuals.

• The lo-median of the ratios is again has been chosen to standardise the mag­

nitudes. It might be called a scaling.

Now a cut-off value has to be chosen to determine which observation should be

considered as outlier. Suppose that the cut-off value is to be 1.41. The investigation

is started from the bottom of the last column corresponding to the largest absolute

residual. Since last scaled ratio is less than the supposed cut-off value (1.41) we

would not tag the related observation (28) as possible outlier. Although the next

from the bottom is greater than the supposed cut-off value, we do not tag that one

as an outlier either, because the last one was not tagged. In fact, no observation

will be tagged as an outlier by this method when the cut-off value is 1.41. However,

if the cut-off is equal to 1.4, the two last scaled ratios are both greater than 1.4 and

the corresponding observations would be tagged as outliers. As mentioned earlier,

there is no previous study to find an optimum choice of cut-off for this method.

The next section is about a procedure to choose the optimum cut-off, say 1* when

1 denotes any possible cut-off, which is applicable for any outlier detection method

which involves a choice of cut-off.

2.5 Optimum cut-off value

To arrive at a sensible choice of cut-off value, 1*, we choose the value which is

the minimax solution for a particular decision problem. The decision problem is

designed to choose a value which is a good compromise between what one should do

when there are no outliers and what one should do when there are many outliers.

Note that we allow the value of 1* to depend on the sample size n.

For a univariate sample, x1 , ... , Xn from a distribution with mean f-L, we measure

the "badness" of a particular value of 1 by B(!) = (x-y- f.-l) 2 where X-y is the average

2.5. Optimum cut-off value 23

Table 2.4: Outlier detection using Tukey's method

(1) (2) (3) (4) (5) (6)

Original Data- la-median Sorted Reference Ratios- (3) -(4) Scaled ratios

data (Residuals) absolute values (5)

- (5)s' la-median

10 8 0 (2) - - -

-20 -22 0 (2) - - -

1 -1 0 (2) 0.0456 0 0

18 16 1 (1) 0.1142 8.7566 0.9896

2 0 1 (3) 0.1833 5.4555 0.6165

3 1 3 (5) 0.2533 11.8437 1.3385

-5 -7 3 (-1) 0.3246 9.2421 1.0445

-6 -8 3 (5) 0.3976 7.5453 0.8527

7 5 4 (6) 0.4728 8.4602 0.9561

2 0 5 (7) 0.5507 9.0794 1.0261

6 4 5 (7) 0.6322 7.9089 0.8938

5 3 7 (-5) 0.7180 9.7493 1.1018

12 10 8 (10) 0.8096 9.8814 1.1167

-1 -3 8 (-6) 0.9085 8.8057 0.9951

-11 -13 9 (-7) 1.0171 8.8487 1

-7 -9 10 (12) 1.1394 8.7765 0.9918

28 26 13 (-11) 1.2816 10.1436 1.1463

5 3 16 (18) 1.4558 10.9905 1.2421

7 5 22 (-20) 1.6906 13.0131 1.4706

2 0 26 (28) 2.0928 12.4235 1.4040

2.5. Optimum cut-off value 24

of the remaining data having applied the procedure to remove outliers using the

specified cut-off value f. This measure is based on the presumption that the goal of

collecting the data is to estimate the population mean and that we use the sample

mean (omitting outliers) as the natural estimator.

Our measure of the adverse consequences (across all samples) of a particular

choice of 1 for a particular population distribution is then b(l) = E[B(!)] where

the expectation is taken with respect to samples of size n from the distribution.

The measure is location-invariant, i.e. it is not changed by changing the mean of

the distribution.

For any location-family of distributions, there is an optimal choice of 1 which

minimises b(1) for that family. The problem for the data analyst is that the family

and consequently b(!) and its behaviour is not known to him/her. Hence we seek

a compromise choice of I· To make comparisons between the consequences for

different families of distributions, we use the "scaled badness" bscb) = b(!)/bm

where bm = min1 b(!). We denote by /m the value for which b(/m) = bm.

There are two key reasons for using the scaled badness measure. First, b(1) is

essentially a measure of inefficiency of estimation of the sample mean and so the

scaled badness bscb) is effectively a measure of relative inefficiency compared to

the best possible for that family. Secondly, the scaled badness is the same for all

members of a location-scale family of distributions which corresponds well to the

fact that our procedure for determining outliers is location and scale-invariant.

To arrive at the compromise choice of cut-off, we consider two extreme location­

scale families of distribution: the Gaussian and Slash families1 , two of Tukey's

so-called three corners2 (Yatracos 1991). The former may be considered to generate

no outliers and the latter are distributions which generate many outliers. We then

find the cut-off which is the minimax solution for the decision problem where the

loss function, measuring the adverse consequences of using a particular cut-off for a

1Some properties of Slash distribution will be discussed in section 2.5.1
2The third corner is one-wild distribution which is a sample of 95% of standard Normal and

5% from N(O, 100). This corner has not been used in the present work as the initial aim was to

compare some results with Fowlkes and Al-Madfai who have not used it.

2.5. Optimum cut-off value 25

particular location-scale family, is the scaled badness measure. Then, the optimal

cut-off is the value 1* which minimises the function max(bfc(r), b~(r)) where bfc(.)

and b~ (.) are respectively the scaled badness functions for the Gaussian and Slash

families of distributions.

2.5.1 Slash Distribution

The Slash distribution has been chosen by previous authors as a distribution suitable

for this type of simulation study because it is similar to the Normal distribution in

the middle but generates many extreme values.

Probability density function of Slash distribution

Let S = ~' where X "' N(O, 1) and Y "' U(O, 1) are independent. Then S is a

random variable with Slash distribution. Let W = Y. Then, the Jacobian of this

transformation is

)
8s

J = o(s,w = 8x

o(x,y) 8s
8y

8w
8x

8w
8y

1
y

-x
1r

0 1 1
=- =? J- = y

1 y

and the joint density function of s and w is given by g(s, w) = f(x, y)J- 1 =
S2W2

c!J(x)y = c!J(sw)w == ~e--2- where 0 ::; w ::; 1, -oo < s < +oo. Finally, the

density function of s is

fs(s) = 11

g(s, w)dw

Figure 2.1 shows the Slash probability density function compared to the standard

Normal distribution.

2.5. Optimum cut-off value

Figure 2.1: Slash density function; Similar to Normal in the middle, long tails

c
0

:j:;
(.)
c
::J -~ ·u;
c
Q)
Cl

~
0

C")

0

C\J
ci

,....
ci

0
0

-4

1!1 Gaussian
1!1 Slash

-2 0 2 4

X

26

2.6. Simulation study- Basic notations

Distribution function of Slash

First

P(S :S siU = u)

Now

Fs(s) = P(S :Ss)

z
P(U :S siU = u)

z
P(- :S siU = u)

u
P(Z :S suiU = u)

- P(Z :S su) = <I?(su).

11

P(S :S siU = u)fu(u)du

11

<I?(su)du

118

- <I?(w)dw
s 0

~ (w<I?(w) 1g -18

wcP(w)dw)

1 (1 1~8
2

) - s<I?(s)- -- e-Ydy
s v'2ii 0

1 (182) <I?(s)- -- -e-Y 16
sv'2ii
1

<I?(s)-- (cP(O)- cP(s))
s

2.6 Simulation study- Basic notations

27

In practice, b~ (1) is an increasing function of 1 (except for a short initial section

near 1 and bfc (1) is a decreasing function of 1 and so 1* may be found by solving the

equation bfc(l*) = b~(T*). Writing o(T) = bfc(T)- b~(T), 1* must satisfy o(l*) = 0.

None of bfc(l), b~(T) and <5(1) are known but they may be estimated for a set

of 1's, e.g. 1 1 , 12 , • • • , lkl using a simulation study.

Practically, for a given sample size n, N 1 samples of size n from Gaussian and N 2

samples of size n from Slash may be generated. Although, to reduce the variance of

the difference between the average of badnesses in two sets of samples i.e. Gaussian

and Slash samples, it would be better to generate the Gaussian samples from the

2.6. Simulation study- Basic notations 28

Slash samples using the following conversion:

z = q,-l (Fs(s)).

Obviously z rv N(O, 1).

Therefore, what we need is to generate firstly N samples from Slash and then N

correlated Gaussian samples corresponding to each of Slash samples. By applying

the procedure to detect the outliers on each sample using any of J''S in the set, N

sets of badnesses for Slash samples and N sets of badnesses for Gaussian samples

will be obtained:

Bf(l'l) Bf12) Bf (l'k)

B~(/'1) B~(/'2) B~(l'k)

BFr(/'1) BFr (1'2) BFr(/'k).

and

Bf(I'I) Bf (/'2) Bf(l'k)

Bf(l'l) Bf(/'2) Bf (l'k)

BjJ(l'I) BjJ(/'2) BjJ(l'k)

Now what we have is k badnesses for each N samples of Slash and Gaussian.

Thus we estimate the expected badnesses by

and

for i = 1, 2, · · · , k.

To scale the badnesses, we need the minimum of badness for each distribution.

Gaussian samples: b;;: can be obtained theoretically:

In Gaussian samples, we know that the optimal estimator of the population mean

is the sample mean. Therefore, by removing even one observation, this estimator

has not been used and the measure of badness will be increased as a result. In

the other words, minimum of measure of padness occurs when no observation is

2.6. Simulation study- Basic notations 29

removed. To keep all observations of all Gaussian sample, ~~ must be oo. Keeping

all observations leads the badness to be the same as variance of the mean which is

.!.
n

Slash samples: It is not known where exactly 1! is and we may estimate it

using the simulation results. Let

which is a negatively biased estimator of b~ and then define i! to satisfy B 8 (i!) =

B!'. Now, an independent simulation study just at i~ (no need for a set of 1's)

leads to an unbiased estimator of b8 (i~) denoted by B~. It is still a biased estimator

(positively this time) for b~ = b8 (r~), but the second bias is never great and is

usually less than the first one (Craig 2006) (see Appendix A).

At the first stage of the simulation study, using a wider range of 1's, 1* can

be initially estimated from a graph of b~(ri) = 88
5

1~;) and bfc(ri) - 80
(-y;) for

m - ~

i = 1, 2, · · · , k. We note the initial optimum cut-off value as 1*'.
The next stage is to estimate more accurately 1* and its accuracy. Doing another

set of simulations with the similar procedure but for a set of 1's near to the initial

estimate of 1* may help. A graph is still applicable to estimate 1*. However, another

way to solve o(r*) = 0, which also helps to find an accuracy for 1*, is to approximate

J(r) by a line

a+ f31· Now J(r*) ~a+ !31* = 0 leads to the answer

* a
I = -73.

a and {3 can be estimated by running a regression of J(ri) = b~(ri) - bfc(ri) on li·

The benefit of the above solution is to make it possible to find the uncertainty

of 1* = -~:
(3

Let f(a,{3) =-~which is the quantity we need a confidence interval for. Again

based on Taylor's expansion about the point (&, /3), having ¥c; = -~ and U = JF,
• 1 • A • 1 •

f(a, {3) ~ -~- ;3(a- &) + $2 ({3- !3) = -~- ;3a + $2 !3·

Considering er = (- ~, / 2) and fl.r = (a, {3) , an approximate (1 - a)% confidence

interval for erfl_ =-~a+ tf3 is (see Seber 1977; page 108)

er&± z% J ervar(&)e

2.6. Simulation study- Basic notations

and so the confidence interval for f(a, (3) is simply

-~+ere± ZQ_. I crvar(O)C. !3 -- 2V- --

We know that Var(~) = (XT X)- 1 XTVar(f)X(Xr X)-1 where

X=

1 1'1

1 1'2

1 !'k

30

(2.1)

and Var(f) = a 2 I if the errors of the regression of b(!'i) on "Yi are independent.

Assuming b~ is known

and if we do a separate simulation for each f'i, the above independence can happen.

Thus the confidence interval is obtained by

(2.2)

However, in fact, b~ is uncertain and might be estimated by either B~' or B~.

In either case, there is a dependence for b("Yi)'s and then Var(f) # a 2!.

Let us choose B~ to estimate b~. Then

2.6. Simulation study - Basic notations 31

The first bit can be written as

Bs(!i) bs(!i) + (Bs(!i)- bs(!i)) bs(!i)(1 + Bs(b~(-r:~('Y;))
BB - bS +(BB - bS) bS (1 Bs -bs) m m m m m +~

m

,...., bs(!i)(1 + Bs(,.'!i)- bs(li))(1- B~- b~)
b~ b8 (/i) b~

ss- bs
provided m bs m < < 1

m

b8 (!i) (
1

_ B~ - b~ + B 8 (!i) - b8 (!i) _ B 8 (!i) - b8 (!i) B~ - b~)
b~ b~ b8 (''li) b8 (''li) . b~

,...., b8 (!i) (
1

_ B~- b~ + B8 (!i)- b8 (!i))
b~ b~ b8 (/i)

. B 8 (!i) - b8 (!i)
provided bs (li) < < 1

b8 (!i) b8 (ri)(B~- b~) b8 (!i)B8 (!i) (b8 (ri)) 2

b~ - (b~) 2 + b~b8 (ri) - b~b8 (/i)
- Bs(ri) - bs(ri) (Bs - bs)

b~ (b~)2 m m

Both B£;sb~ << 1 and 88
(-y;)-bs(f';) << 1 can be verified. The first one is true

bm bS(I';)

provided E[(B~ ~ b~) 2) = Var[B~] + (E[B~]- b~) 2 << (b~) 2 . Thus, it is needed

that SD[B;;] << b~ or, using their estimates, that SE[B~] << B~ which can be

checked using the simulation results. Also, E[B~]- b~ needs to be small. A similar

calculation verifies the second.

Now

~~ = B
8
(rr) _ b

8
(ri)(Bs _ bs) _ B

0
(!i) = ~- _ b

8
(ri)(Bs _ bs)

t b~ (b~)2 m m bg t (b~)2 m m

By noting that E[B~] :::= b~ which is a constant

and
* . (bs(!i))2 s

Var[~i] = Var[~i] + (b~)4 Var[Bm]·

provided Cov[~i, B~] = 0 which is achieved when calculation of B~ comes from a

separate simulation.

For any i i= j, ~; and ~; are not independent as they both include a random

2. 7. Simulation study - The results 32

and

C [b
8

(/'i) (s s) b
8

(/'i) (s bs)]
OV (b~)2 Bm- bm ' (b~)2 Bm- m

b
8

(/'i)b
8
(/'i)c [(s bs) (s s)]

(b~)2 (b~)2 OV Bm- m ' Bm- bm

b
8 (/'i) b

8 (/'i) [s s]
(b~) 2 (b~) 2 V ar Bm - bm

b
8

(!i)b
8
(rj)V [Bs]

(b~)4 ar m.

Thus, performing a regression of ~i 's on ri 's, we have V ar (f) = a 2 I + wwT where

bs('y) S [Bsj
Wi = (b~)2 D m .

Therefore, Var(Q) = (xrx)- 1XT(a2I + wwT)X(XTx)- 1 = a 2(XTx)-1 + vvr

where V = (XT x)-1 xr w. Let Wi = c + dri for some choice of c and d. Then,

w =cl+ dr.

Knowing;~(!,]), then w ~X (:) and

V~ (XTX)-lXTX (:) ~ (:) .
Thus,

vvr = (c
2

cd) .
- cd d2

Note that c and d can be estimated as coefficients of a regression of wi = ~:t);£ SD[B~]

h bs('y;)SD[B8] · · db Bs('y;)SE[B8] on ri w ere (b~)2 m IS estimate y (B~,Y m .

2. 7 Simulation study - The results

The simulation study in this section is to find the optimum cut-off values for Thkey's

method. The simulation has been performed for a set of sample sizes

n = 4,5,6,··· ,30,49,50.

2.7. Simulation study- The results 33

Following the explanation in previous sections, the simulation study should contain

three stages:

1. Scanning to find 'Y! and making an initial estimate of 1*

2. Estimation of b~ by B! = B8 ('Y!)

3. A number of separate simulations to find a more accurate optimum C\lt-off

value (~*) and its accuracy

Stages 2 and 3 would be done simultaneously.

As the simulation study for the univariate case was carried out before the full

development of this procedure, estimation of b~ is by B!' and so stage 2 is not

found in the present univariate simulation study. Instead, stage 1 has been done

in substages; one simulation to scan to find 'Ym and another one to find the initial

estimate ~*.

Stage 1. For each given sample size, 10,000,000 samples from a Slash distribu­

tion and then by converting from Slash samples, the same number of samples from

a correlated Gaussian distribution have been generated. Due to memory restriction

and to increase the speed of simulation study, ten million paired simulations have

been done in 50 separate simulations containing 200000 samples each.

Then, for a wide range of cut-off values, suspected outliers in each 20,000,000

samples have been detected and removed temporarily, ready to compute the measure

of badness. Means of ten million badnesses, separately for Gaussian and Slash, have

been calculated for each cut-off value. Table 2.5 shows 'Y! and B!' for a range of

sample sizes.

For each n, further simulations were done in the same way but with a different

number of samples. This new simulation involved scaling the badnesses by their

minimum, obtained at the previous stage. Drawing a graph has been used to inter­

sect the scaled badnesses for Slash and Gaussian. Figure 2.2 shows three different

simulations of 1,000,000 samples of size n = 5 in the same graph. It can be easily

seen that the results are very stable for Gaussian samples and reasonably stable for

Slash samples. Figure 2.3 is the average of the three repetitions and is the basis for

the optimum cut-off value shown at table 2.6 for n = 5.

2. 7. Simulation study - The results 34

Table 2.5: Thkey's method: Minimum average badness and corresponding cut-off

value according to 10 million simulations for each n

I n I i~ I B~' 11 n I 'Y~ I B~' I

4 0.99 9.1795 5 0.86 2.1546

6 0.99 1.7110 7 0.99 1.1772

8 0.99 1.0077 9 0.99 0.8191

10 0.99 0.7302 11 1.00 0.6286

12 0.99 0.5769 13 1.00 0.5099

14 1.00 0.4744 15 1.00 0.4296

16 1.00 0.4032 17 1.02 0.3721

18 1.01 0.3513 19 1.04 0.3278

20 1.03 0.3115 21 1.06 0.2931

22 1.05 0.2801 23 1.07 0.2650

24 1.07 0.2542 25 1.09 0.2419

26 1.08 0.2327 27 1.09 0.2223

28 1.09 0.2144 29 1.11 0.2057

30 1.11 0.1987 49 1.18 0.1173

50 1.16 0.1152

2.7. Simulation study- The results

Figure 2.2: Three separate simulations of one million samples of size five

~
Q)
c:
"0 m
Ill
"0
Q)

m
u en

-

t\! -

0.8

n= 5 , r= 1 e+06 (Iterations: 2,3,4)

1.0

I

1.2

Cut-off values

I

1.4

I

1.6

Figure 2.3: Three million samples of size five (Slash vs Normal) - pooled

CD

m m -.::t
Q)
c: T""

"0 m
Ill
"0
Q) t\!
m T""

u en

0

0.8

n= 5 , 1 e+06 * 3 (Iterations: 2,3,4)

1.0 1.2 1.4 1.6

Cut-off values - intersection at: 1 .42

35

2.7. Simulation study- The results 36

Table 2.6: Initial estimates of optimum cut-off values for Tukey's Method

N N
11

4 not-stable 9*500000 + 2*1000000 5 1.4178 3*1000000

6 not-stable 8*500000 7 1.4402 4*500000

8 1.3049 4*500000 9 1.4477 4*500000

10 1.3468 4*500000 11 1.4387 4*50000

12 1.3759 4*50000 13 1.4245 4*50000

14 1.3773 4*50000 15 1.4084 4*50000

16 1.3729 4*50000 17 1.4045 4*50000

18 1.3731 4*50000 19 1.3947 4*50000

20 1.3660 4*50000 21 1.3898 4*50000

22 1.3708 4*50000 23 1.3825 4*50000

24 1.3669 4*50000 25 1.3773 4*50000

26 1.3538 4*50000 27 1.3780 4*50000

28 1.3561 4*50000 29 1.3774 4*50000

30 1.3562 4*50000 49 1.3475 4*50000

50 1.3361 4*50000

Table 2.6 shows the results of repetition of this procedure for sample sizes up to

50.

Simulations for n = 4 and n = 6 were not stable enough and no compromise

cut-off value could be determined. We split the table into even and odd values of

sample sizes because of different behaviours for these two cases. Figure 2.4 shows

this difference and it can be seen the difference is decreasing in n.

Stage 3. Finding a more accurate estimate of the optimum cut-off value as

well as its confidence interval for univariate data needs another simulation study

to approximate the difference between inefficiencies (or scaled badnesses) near the

initial optimum cut-off value by a regression line. The details have been discussed

in section 2. 7.

2.7. Simulation study- The results 37

Figure 2.4: The behaviour of initial optimum cut-off in even and odd sample sizes

"~;!' 0 0 0 0 0
- 0 0 0

Q) ..- e e e e 9 °eo9o e0 e0e :::1 e oe
C\3 C')
> - e
= ..-
0

C\1 I - -
:::1 ..-
u
C\3 ..- -:-e ..- e c

0 -..- e
I I I I I

10 20 30 40 50

n

The new sets of simulations have been done for a subset of samples sizes which

have been studied in stage one. Table 2. 7 shows the difference of Slash and Gaussian

scaled badnesses i.e. b('yi) where i = 1, 2, · · · , 21 and']_= {1.30, 1.31, · · · , 1.50} for

n = 15. Each row of the table comes from two separate simulation with 10,000,000

samples (42 simulations in total). The table is followed by the scatterplot and the

regression error plots. The plots show a reasonable independence and normality of

the errors.

The regression line is J (1) a+ !3! = 1.1513 - 0.81741. Putting 8(1) = 0,

we have 1* = - _!0~~{;4 = 1.4085 which is a more accurate optimum cut-off value to

recognise outliers for a sample sized n = 15 based on Tukey's method.

To find how accurate the optimum cut-off value is, a confidence interval for -~ in

a regression line is used. Despite of the discussion in section 2. 7 to consider the

uncertainty of minimum badness in Slash samples, table 2.8 contains the confidence

intervals without this consideration as the work had been done before the discussion.

For instance, using (2.2), the calculated 95% confidence interval for optimum cut-off

value when n = 15 in the Tukey's method is (1.4072, 1.4098). For some sample

2.7. Simulation study- The results 38

Table 2. 7: For n = 15, the difference of Slash and Gaussian scaled badness near the

initial estimated optimum cut-off
============================

/i:cut-off value b(Ti):B0 (Ti)- B 8 (Ti)

1.3 0.0915) 0.0934

1.31 0.0811) 0.08

1.32 0.0739) 0.072

1.33 0.0579) 0.0603

1.34 0.0548) 0.0583

1.35 0.0499) 0.048

1.36 0.0401) 0.0395

1.37 0.0345) 0.0298

1.38 0.0249) 0.0206

1.39 0.0154) 0.0106

1.4 0.0076) 0.0005

1.41 0.0059) -0.0043

1.42 -0.0073) -0.0056

1.43 -0.0151) -0.0259

1.44 -0.0241) -0.0219

1.45 -0.0384) -0.0363

1.46 -0.0442) -0.0416

1.47 -0.0505) -0.0545

1.48 -0.054) -0.057

1.49 -0.0658) -0.0631

1.5 -0.0789) -0.0707

2.7. Simulation study- The results 39

Figure 2.5: Scatterplot and the residual plots of the regression on data in table 2. 7 -..c: m
CO
en

I
c: 0
CO ~

'Ci) 0 e
m o e ::l
CO LO e @ e (!J 0 -- 0 0 m 8 8 Q)
u 0 8 8 c: 0 0
Q) - 0 0 0 Q) 0 e = 0
:0 LO e e 0 m

0 - 9 e e m
Q) I
c: 8 "0
CO I I I I I
m
"0 1.30 1.35 1.40 1.45 1.50
Q)

CO
u cut-off values en

Tukey;n=15
(/)

Tukey;n=15
Residuals vs Fitted (ij Normal 0-Q :::J

lO 120
'0

0 '(i) C\1
(/)

0 -o& §::8 0 ~ (ij 0 ~~ :::J - ~ '0
'0 Q) 0
'(i) Q:) r:fJ 0 N
Q)

0
_o o o 0 o o ~ a: 320 0 C\1 ,.... 035 (\1

I 0 '0
0 I I I c::

(\1
I --0.05 0.05 (/) -2 -1 0 1 2

Fitted values Theoretical Quantiles

lii Tukey; n=15
(/)

Tukey;n=15
(ij Scale-Location (ij Residuals vs Leverage :::J :::J
'0 '0 '(i) '(i) - 0
~ Q)

,.... -
~ q

'0 '0
0

Q) Q) -·
N N ,.... f g 0 0 '6 ~ I -....
(\1

0 (\1 - 0 04
'0 '0 C") - - C~s distance c:: 0 c:: I I I I I I (\1 (\1 -fD. --0.05 0.05 (/) 0.00 0.04 0.08

Fitted values Leverage

2.8. Comparing Modified Z and Tukey's Methods 40

sizes, the confidence intervals contains the old cut-off values while for some others

it does not. Checking for the possibility of needing a quadratic model shows except

Table 2.8: Initial and more exact optimum cut-off values with 95% confidence in­

tervals
A I

I* I* 195% Cl- L 95% Cl- u I
5 1.4178 1.3995 1.3802 1.4188

7 1.4402 1.4476 1.4421 1.4530

8 1.3049 1.3007 1.2878 1.3137

9 1.4477 1.4490 1.4456 1.4525

10 1.3468 1.3597 1.3571 1.3622

11 1.4387 1.4300 1.4279 1.4322

12 1.3759 1.3671 1.3644 1.3698

13 1.4245 1.4179 1.4161 1.4197

14 1.3773 1.3651 1.3627 1.3675

15 1.4084 1.4085 1.4072 1.4098

16 1.3729 1.3650 1.3632 1.3669

17 1.4045 1.4000 1.3974 1.4026

18 1.3731 1.3627 1.3606 1.3648

19 1.3947 1.3950 1.3930 1.3970

20 1.3660 1.3659 1.3635 1.3682

30 1.3562 1.3566 1.3545 1.3587

for n = 7, all the rest are not significant.

2.8 Comparing Modified Z and Tukey's Methods

In this section, we try to compare two methods: Modified Z-scores (MZ) and Tukey.

We understand that the cut-off value suggested by Iglewicz and Hoaglin (1993) is

fixed at 3.5 but to do the comparison, a wide range of cut-offs has been applied,

something which has not been studied before. Therefore, some simulations have

been done to find a compromise cut-off value in each method for a wide range of

2.8. Comparing Modified Z and Tukey's Methods 41

sample sizes (5,7-20,30)3 . The simulations are again based on generation of corre­

lated random numbers from Slash and Gaussian distributions as before. The results

of these series of simulation for Tukey's method are naturally different from the

simulations explained in previous sections.

To make the two methods comparable, we need to scale them by a single scale

which should be chosen by the minimum of two minimum badnesses obtained in two

methods. The reason is that if we knew the population type, the best result would

be obtained by using the best method with its best cut-off and so inefficiency should

be measured relative to that level of badness. The minimum of expected badness

in Gaussian population is 1/n where n is the sample size, regardless of the method.

Therefore, the inefficiencies would only be changed in Slash population.

Investigated cut-off values in MZ method are {0.7, 0.75, 0.8, ... , 4} which was a

fixed cut-off 3.5 in the earlier studies. The set of cut-off studied in Tukey's method

is {0.7,0.75,0.8, ... ,1.6}. Here is the explanation of the details of calculation for n = 5

after running the simulations.

For n = 5, the minimum badness by applying MZ occurs at cut-off 1.15 with

the amount of 2.1066 while the minimum of badness applying Tukey's method is

2.1402 at the cut-off 0.85. Then raw badnesses obtained by both methods are scaled

by 2.1066 which is minimum of the two minimums. The optimum cut-off value

for n = 5 by this scaling in MZ is 2.6749 and in Tukey's method is 1.3971. The

scaled badness or inefficiency using Tukey's method with its optimum cut-off value

for n = 5 is less than the same calculation using MZ and its optimum cut-off. The

difference is 0.0081. See figure 2.6 linked to the above calculations for n = 5.

Table 2.9 shows similar calculations for other sample size n. The table splits odd

and even n because the behaviour of some columns of the table is separately regular

for odd and even values. Although, for both odd and even n, ~s is almost increasing

in terms of n for MZ's method and not for Tukey's method (see figures 2.7 and 2.8).

B!' decreases as n increases regardless of which method is used or whether n is even

or odd (see figures 2.9 and 2.10). Again, in terms of odd or even n's, cut-off values in

3 We did the simulations for n = 4 and n = 6 but did not bring the results in the tables and no

discussion on them because the simulation results in section 2.7 were not stable for them.

2.9. Miscellaneous 42

Figure 2.6: The plots of badnesses of Slash· and Gaussian samples size n = 5 in two

methods

method: MZ ; n= 5 , 50 * 2e+05 method: Tu key ; n= 5 , 50 * 2e+05

en CX) en CX)
en

~
en ~ Q) Q)

c c
"'0 "'0
a:s a:s
ID

~
ID

~ "'0 "'0
Q) ~ Q) ~

a:s a:s
(.) (.)
(/) (/)

0 0 888888
~ ~

1.0 2.0 3.0 4.0 0.8 1.2 1.6

cfs cfs
2.6749 0.0081 1.3733

each of the two methods are regularly different (see figures 2.11 and 2.12). Finally,

the difference between inefficiencies in the two methods, depending on odd or even

n, is increasing which means for larger sample sizes, Thkey's method is preferred

(see figure 2.13). Except for n = 8, Thkey's method is more efficient than MZ.

As another check for n = 4, confidence intervals for any individual cut-off values

are too big which implies the results of simulation are not stable (see figure 2.14).

FUrthermore, there is a jump at cut-off one and it makes the function of scaled

badness not to be differentiable. It means no confidence interval for the optimum

cut-off value could be found at n = 4.

Table 2.10 shows the confidence intervals for some n in both MZ and Thkey.

2. 9 Miscellaneous

o Table 2.11 shows the inefficiency using a fixed cut-off value for all n in each

method. Column diff. is the difference between badness using the fixed and

the estimated optimum cut-off value. We did not take a rule to choose these

two fixed cut-off.

2. 9. Miscellaneous 43

Table 2.9: Comparison of two methods and their expected badnesses at their opti­

mum cut-offs

n MZ Thkey expected badness
As BS' I* As BS' I* cliff. I m m I m m

5 1.15 2.1066 2.6749 0.85 2.1402 1.3971 0.0081

7 1.2 1.1397 2.6676 0.95 1.1789 1.444 0.0237

9 1.3 0.7939 2.6593 1 0.8224 1.4488 0.0365

11 1.35 0.6115 2.6442 1 0.6263 1.4291 0.045

13 1.4 0.4983 2.6322 1 0.5084 1.4173 0.0526

15 1.4 0.4204 2.6202 1 0.4286 1.4069 0.0582

17 1.45 0.3634 2.6031 1 0.3708 1.4006 0.0634

19 1.45 0.3201 2.5932 1.05 0.3267 1.3926 0.0678

8 1.1 0.9347 2.5592 0.95 1.014 1.3058 -0.0113

10 1.3 0.6853 2.5841 0.95 0.736 1.3583 0.0145

12 1.3 0.5433 2.5803 1 0.576 1.3672 0.0287

14 1.35 0.4513 2.5775 1 0.4724 1.3644 0.0413

16 1.4 0.3865 2.5733 1 0.4016 1.3636 0.0507

18 1.4 0.3378 2.5672 1 0.3502 1.3638 0.0564

20 1.45 0.3 2.5597 1.05 0.3111 1.3654 0.0617

30 1.45 0.1926 2.5353 1.1 0.1984 1.3548 0.0812

2. 9. Miscellaneous 44

Figure 2. 7: .:Ym (cut-off corresponding to minimum badness in initial simulation)

versus sample size n for modified Z-scores

~ -
0 o e e

0 o e e
T""

0 e
- o e e

C'! - 0
T""

0
- e

0 . -
T"" e

I I I I I I

5 10 15 20 25 30

n

Figure 2.8: .:Ym (cut-off corresponding to minimum badness in initial simulation)

versus sample size n for Thkey's method

- e
LO
~ - o e
T""

- 0 oeoeoeoe
LO
0'? - eo e e
0

-
LO
~ - 0
0 I I I I I I

5 10 15 20 25 30

n

2.9. Miscellaneous 45

Figure 2.9: B~' (minimum badness in initial simulation) versus sample size n for

modified Z-scores

C? - 0
C\1

LO e -,..-

0 0
- e ,..-

o e
a.q - Oeo
0 eoeoeoe

e
I I I I I I

5 10 15 20 25 30

n

Figure 2.10: B~' (minimum badness in initial simulation) versus sample size n for

Thkey's method

0 0
(\j -

LO
e

-,..-

0 0
- e ,..-

o e
LO - oeo
0 eo eo e o e e

I I I I I I

5 10 15 20 25 30

n

2.9. Miscellaneous 46

Figure 2.11: ~* (optimum cut-of value) versus sample size n for modified Z-scores

using the smaller minimum badness to scale

0 0 0 - 0
0 0 0
<.0 - 0 0 C\i e e e e e - e e
0

e
..q -
(\)

-
0,. - e
C\i I I I I I I

5 10 15 20 25 30

n

Figure 2.12: ~* (optimum cut-of value) versus sample size n for Thkey's method

using the smaller minimum badness to scale

- 0 0
0 0 0
~ - 0 0 0 0
~ e e e e e - e e
0 e Cf:? -
~

-
0
(\) -
~ e

I I I I I I

5 10 15 20 25 30

n

2. 9. Miscellaneous 47

Figure 2.13: The differences between the scaled badness at optimum cut-off value

for modified Z-scores and Tukey's method

- e
<0 o o eo e 0 -
ci 0

0 e
- 0 e

:t: e Q) 0 c: - e 0 0 :a:: 0
:a 0 e -

<0 -
0 - e ci
I I I I I T I

5 10 15 20 25 30

n

Figure 2.14: For n = 4, modified Z-scores and Tukey's method scaled by their own

minimum badness with confidence interval at each cut-off

method: MZ ; n= 4 , 50 * 2e+05 method: Tu key ; n= 4 , 50 * 2e+05

.J'

Lq -
(\J

Lq
(\J --s 1/) 1/) -

1/) 0 1/)

~----Q) Q)
<: C\i <:

0 '0 '0

~ ~ C\i --'0 '0

~
..!!l

1.0 ~
en en 1.0 ..- ..-

0 0
..- ..-

1.0 2.5 4.0 0.8 1.2 1.6
cfs cfs

1.3247 f1.0252 0.9633

2. 9. Miscellaneous 48

Table 2.10: Initial and the final 1* with 95% Cl for both MZ and Thkey

n Modified Z-scores Thkey's method
A I

L u A I

I 1* L u 'Y* 'Y* 'Y*

5 2.6761 2.6790 2.6563 2.7018 1.3971 1.3995 1.3802 1.4188

7 2.6680 2.6786 2.6672 2.6900 1.4440 1.4476 1.4421 1.4530

8 2.5592 2.5617 2.5529 2.5706 1.3060 1.3007 1.2878 1.3137

9 2.6592 2.6579 2.6494 2.6663 1.4488 1.4490 1.4456 1.4525

10 2.5841 2.5802 2.5744 2.5860 1.3586 1.3597 1.3571 1.3622

11 2.6442 2.6463 2.6414 2.6511 1.4291 1.4300 1.4279 1.4322

12 2.5803 2.5806 2.5748 2.5865 1.3682 1.3671 1.3644 1.3698

13 2.6322 2.6290 2.6234 2.6346 1.4178 1.4179 1.4161 1.4197

14 2.5775 2.5782 2.5734 2.5830 1.3652 1.3651 1.3627 1.3675

15 2.6205 2.6163 2.6117 2.6210 1.4072 1.4085 1.4072 1.4098

16 2.5739 2.5747 2.5709 2.5784 1.3642 1.3650 1.3632 1.3669

17 2.6032 2.6029 2.5986 2.6072 1.4006 1.4000 1.3974 1.4026

18 2.5674 2.5653 2.5610 2.5696 1.3644 1.3627 1.3606 1.3648

19 2.5932 2.5926 2.5889 2.5964 1.3926 1.3950 1.3930 1.3970 *
20 2.5598 2.5610 2.5578 2.5643 1.3660 1.3659 1.3635 1.3682

30 2.5353 2.5346 2.5317 2.5376 1.3551 1.3566 1.3545 1.3587

2.9. Miscellaneous 49

Table 2.11: Inefficiency (scaled badness) difference when choosing a fixed cut-off

compare to using the optimum cut-off

MZ Thkey

n Inefficiency diff. Inefficiency diff.

2.6 'Y* 1.4 'Y*

5 1.3132 1.3008 -0.0124 1.2866 1.2851 -0.0015

7 1.2689 1.2563 -0.0126 1.2315 1.2160 -0.0155

8 1.2444 1.2338 -0.0107 1.2556 1.2000 -0.0556

9 1.2404 1.2286 -0.0117 1.1925 1.1749 -0.0177

10 1.2168 1.2128 -0.0039 1.1836 1.1611 -0.0226

11 1.2182 1.2090 -0.0091 1.1628 1.1523 -0.0105

12 1.2044 1.1996 -0.0048 1.1569 1.1404 -0.0165

13 1.2026 1.1959 -0.0067 1.1397 1.1334 -0.0063

14 1.1953 1.1898 -0.0055 1.1426 1.1251 -0.0175

15 1.1898 1.1855 -0.0044 1.1197 1.1173 -0.0024

16 1.1882 1.1819 -0.0063 1.1295 1.1118 -0.0176

17 1.1792 1.1785 -0.0007 1.1062 1.1060 -0.0002

18 1.1828 1.1751 -0.0077 1.1180 1.1009 -0.0171

19 1.1730 1.1714 -0.0016 1.0975 1.0942 -0.0032

20 1.1792 1.1697 -0.0095 1.1064 1.0905 -0.0159

30 1.1691 1.1536 -0.0155 1.0768 1.0584 -0.0185

2.10. The functions in R 50

o After finding the optimum cut-off values in Tukey's method, a question arises

of how many percent of a data set with Slash distribution (having some out­

Hers) will be tagged as outliers using the optimum cut-off values.

To answer this question, a simulation study has been done. For each n

5, 7, · · · , 20, 30 sample sizes, 10000 random numbers from Slash distribution

have been generated. Each generated sample data set will be inspected to

detect possible outliers using the optimum cut-off regarding its sample size.

Then, the average of 10000 number of detected outliers in each sample size's

data sets has been calculated and these averages will be divided by their sample

sizes to find the outliers' proportions for each sample size.

Table 2.12 shows the results of three repeated simulation studies producing

10000 Slash random numbers in each repetition and they seem to be consistent.

The range of percentages varies between 14% to 18%.

We also did the similar simulation for samples generated from Gaussian dis­

tribution to check the optimum cut-off values. It was expected to have very

few of outliers. The results in table 2.13 shows the low percentages of outliers

especially when the sample size increases:

2.10 The functions in R

• Function bbO. sim calling b. Oway. 0 has been used for scanning the 'Ym· They

produce as many samples as required with specific sample sizes from Slash

and correlated Gaussian distributions. Then the badness for each element of

a set of cut-off values is calculated. Finally, the mean of badnesses in each

cut-off value will be saved in separated files. Function bbO. sim. res gathers

the results of saved files and reports the minimum of badness for each n.

• The function ppO. sim, can produce a large number of samples from Slash and

correlated Gaussian distributions. For a set of cut-off values, badnesses are

calculated and scaled by the results of the output of bbO. sim. res stored in a

variable bbOsimres. Then using ppO. sim. res, a plot of the expected mean of

2.10. The functions in R 51

Table 2.12: Proportion of Slash samples' detected as outliers by Tukey's method

n Repeat 1 Repeat 2 Repeat 3

5 0.15 0.14 0.15

7 0.15 0.15 0.15

8 0.13 0.14 0.14

9 0.15 0.15 0.15

10 0.14 0.14 0.14

11 0.15 0.16 0.15

12 0.15 0.15 0.15

13 0.16 0.16 0.16

14 0.15 0.15 0.15 .

15 0.16 0.16 0.16

16 0.16 0.16 0.16

17 0.16 0.16 0.16

18 0.16 0.16 0.16

19 0.17 0.16 0.17

20 0.16 0.16 0.16

30 0.18 0.18 0.17

2.10. The functions in R 52

Table 2.13: Proportion of Gaussian samples' detected as outliers by Tukey's method

n Repeat 1 Repeat 2 Repeat 3

5 0.08 0.07 0.07

7 0.05 0.05 0.05

8 0.04 0.04 0.04

9 0.04 0.04 0.04

10 0.03 0.03 0.03

11 0.03 0.03 0.03

12 0.03 0.03 0.03

13 0.03 0.03 0.03

14 0.02 0.02 0.02

15 0.02 0.02 0.02

16 0.02 0.02 0.02

17 0.02 0.02 0.02

18 0.02 0.02 0.02

19 0.02 0.02 0.02

20 0.01 0.01 0.01

30 0.01 0.01 0.01

2.10. The functions in R 53

scaled badness will be produced for each group of Slash and Gaussian against

the set of cut-off values. The results can be presented as two different plots.

• The function b. Oway has been used to simulate the univariate data in a short

range of cut-off values to be used for finding the confidence intervals. It pro­

duces for the desired sample sizes and a given method (modified Z-scores and

Tukey's methods).

• b. Oway. res. 6. ci calculates the confidence intervals for the results of simula­

tion near to the initial optimum cut-off value. It uses b. Oway. res. table. 1

to retrieve the estimate of minimum badnesses.

• The function b. Oway. summ does the simulations and calculations needed to

produce tables 2.12 and 2.13 (see Appendix B).

Chapter 3

Two Way Factorial Designs

This chapter is about finding the optimum cut-off value to be used for detection of

any possible outliers in a two-way factorial design when there is no replication. The

method and an old simulation study will be reviewed and the results of an improved

simulation study will be presented.

3.1 Introduction

In one of the last papers by Prof. J.W. Thkey (1915-2001), Seheult and Thkey

(2001) introduced a method of outlier detection and robust analysis in a factorial

experimental design. The basic method for identifying outlying residuals is the

same as the third method in univariate data, subject obviously to some changes

for analysing a table rather than a vector of data. The cut-off value used in that

paper was 1.5 which was based on Fowlkes et al. (1981) and Al-Madfai (1994). The

old simulation studies to determine the cut-off value were based on decomposition

of 5 by 4 two-way simulated tables1 using "lo-median" as the sweep function. A

sweep function is a location statistic which can be calculated for and subtracted

from a set of data. In some sense it can be considered as removing the centre of

the data. In this chapter, firstly, that simulation study has been repeated to ensure

comparability with the results of previous simulations.

1 A simple two factorial experimental design without replication

54

3.2. The method 55

The sweep function in Seheult and Tukey (2001), for an even number of values, is

a new concept of median named "fibian". Also, the method in the paper is intended

to be used for a generalised factorial experimental design which may have a different

number of factors as well as a different number of levels in each factor. The second

part of this chapter is another simulation study for a wider range of numbers of

levels in a two-way factorial design in order to find a relation between the cut-off

value and the number of levels of a two-way factorial design. The new simulation

series has been improved in five ways; a) using a similar sweep function to "fibian"

named "NE.median" (Johnson 1989; page 13) but easier to use, b) a unique result for

the decomposition which is a more user friendly decomposition, c) adding random

row and column effects to the generated tables in the simulation, d) censoring Slash

random numbers at 80 to control the behaviour of badness and e) using a better

approximation for reference values.

The results of the new simulation study are also followed by confidence intervals

for cut-off values.

3.2 The method

The method used to distinguish outliers in univariate data may be generalised for a

two-way factorial design as follows:

• In chapter 2, calculation ofthe residuals by subtracting the lo-median from the

observations, can be called a "decomposition" which decomposes the data into

lo-median and residuals. A simple two-way table can also be decomposed into

four components which are the overall parameter, row effects, column effects

and the residuals.

• A similar rule must separately be followed for the three non-trivial compo­

nents effects to distinguish the possible outliers among rows, columns and the

residuals.

• To find the best cut-off value to use for each of the three components (rows,

columns and interaction), three measures of badness have to be considered.

3.2. The method 56

3.2.1 Decomposition

Decomposition is a method to separate the main effects, interactions (if there are)

and residuals in data from a designed experiment. The simplest decomposition is

based on the mean as a measure of centre. Using the following example, a mean­

based decomposition for a 22 factorial design will be explained. The procedure is

also called "mean polish" .

Example 3.1: Here is the data for a 22 factorial design:

factor 1 level 1 level 1 level 2 level 2

factor 2 level 1 level 2 level 1 level 2

response 8 2 6 3

To do a decomposition, we have to make a crosstabulation of the data and add a

row and a column of zero to it:

11
1 2

1

1 8 2 0

2 6 3 0

0 0 0

Then, starting from rows or columns (as convenient), calculate the mean of main

part of crosstable for each row or column, subtract the mean from the elements of

the main part and add the mean to the appropriate element of the extra row or

column. In this example, we start with the columns (the second factor):

8 2 0 1 -0.5 0 0.75 -0.75 0.25

6 3 0 -1 0.5 0 -0.75 0.75 -0.25

0 0 0 7 2.5 0 2.25 -2.25 4.75

Repeating the procedure will not make any changes for a mean-based decomposition

on a balanced complete factorial design. As well as converging with just one step,

a mean-based decomposition does not depend on whether one starts with rows or

columns.

In a median-based decomposition, a more resistant sweep function is used but

for an even number of values, there is more than one possible value to choose as a

3.2. The method 57

median. In fact, for an even number of values, any number between the two central

values can be presented as median.

Fowlkes et al. (1981) and Al-Madfai (1994) have used la-median when the number

of values is even. The la-median is the lower of the two numbers in the centre for an

even number of values. We follow the explanation of rest of the method by polishing

an example of 5x4 two-way table using la-median as the sweep function:

Example 3.2:

-1 -1 11 5

55 -5 -5 0

1 2 -2 11

-1 2 0 -2

1 2 -1 0

As before, the first step is to add a sweep-into column and row to the table:

-1 -1 11 5 0

55 -5 -5 0 0

1 2 -2 11 0

-1 2 0 -2 0

1 2 -1 0 0

0 0 0 0 0

One can choose whether to start from columns or rows. The results are not exactly

the same but for our purpose, outlier recognition, both would lead to similar results.

In this example, we may start with the columns and find out the la-median of each

column and add it to the element of the sweep-into row corresponding to each

column (zeros in the first stage) while it has to be subtracted from each element of

the column:

-2 -3 12 5 0

54 -7 -4 0 0

0 0 -1 11 0

-2 0 1 -2 0

0 0 0 0 0

1 2 -1 0 0

3.2. The method 58

In the next step, a sweeping will be done on rows:

0 -1 14 7 -2

58 -3 0 4 -4

0 0 -1 11 0

0 2 3 0 -2

0 0 0 0 0

1 2 -1 0 0

The procedure has to be iterated to achieve a stable table:

0 -1 14 3 0

58 -3 0 0 -2

0 0 -1 7 2

0 2 3 -4 0

0 0 0 -4 2

1 2 -1 4 -2

0 -1 14 3 0

58 -3 0 0 -2

0 0 -1 7 2

0 2 3 -4 0

0 0 0 -4 2

0 1 -2 3 -1

As the lo-mediart for each column and each row is zero, there is no further change

by continuing the sweeping. It usually converges after one or two iterations.

To check that the decomposition has been done in the right way, each cell of the

original table should be written as the sum of its corresponding values in the sub­

tables and the common value in the right-down corner of the final table. For instance:

55 = 58 + (- 2) + 0 + (-1)

In general, if aij 's are the original values of the given two-way table, and rii 's, Cj 's

and ri's are the residuals, column and row sub-tables, respectively, provided by the

decomposition and let m to be the common value of the decomposition:

3.2. The method 59

3.2.2 Detecting possible outliers

For a two-way table, the outliers can be separately tagged in the row effects, column

effects and the residuals. By considering the row effects as the residuals obtained in

a univariate study, Seheult and Thkey (2001) applied exactly the same routine as

applied in chapter 2 for univariate data to detect possible outliers. It is the same

for the column effects. For the residuals, the procedure is again the same but the

number of residuals to be inspected is slightly different. Assume v is the number

of degrees of freedom of the residuals which is v = (r- 1)(c- 1). The v largest

residuals in size should be inspected in the procedure. If there are fewer than v

non-zero residuals, it is recommended to replace v by the minimum of v and one

more than the number of non-zeros.

In the example, the number of non-zero residuals is 11 which is less than the number

of degrees of freedom which is (5- 1)(4- 1) = 12. According to the recommended

rule, the minimum of the degree of freedom and "one plus the number of non-zero's"

are both 12. Then, we choose the largest 12 residuals in size. Table 3.1 shows the

rest of procedure.

Considering a cut-off value of 1.5 leads to tagging the first two residuals in the

table as corresponding extreme values. It means that in the original data, we will

flag 55 and 11, respectively a21 and a13 , as extreme values or outliers. If we consider

1.9 as an alternative cut-off value, the result will be the same. But a cut-off value of

1.1leads to more than two extremes (58, 14 and 7). Based on the rule, if the cut-off

value is 0.9, we have still just three extremes because 0.79 has a larger residual than

0.93 which is greater than 0.9.

Obviously, choosing different cut-off values can have different results. Fowlkes

et al. (1981) and Al-Madfai (1994) have done some simulation studies to find an

optimum cut-off value for a 5x4 two-way table. We first repeated their simulations

for a large number of samples and then carried out further work.

3.3. Simulation study for optimum cut-off value 60

Table 3.1: Example 2. Seheult-Thkey's method

(1) (2) (3) (4)

Ordered Absolute Reference Scaled by

Selected Residuals Values (1)
(2) la-median of (3)

58 1.94 29.90 6.28

14 1.51 9.27 1.95

7 1.25 5.60 1.18

4 1.06 3.77 0.79

4 0.90 4.44 0.93

3 0.76 3.95 0.83

3 0.63 4.76 1.00

3 0.52 5.77 1.21

2 0.41 4.88 1.03

1 0.30 3.33 0.70

1 0.20 5.00 1.05

0 0.10 0.00 0.00

3.3 Simulation study for optimum cut-off value

The idea of how to find out an optimum cut-off value is to generate many samples

from a Gaussian distribution while generating other samples from an alternative

distribution expected to have some extreme values. The simulation here generates

50000 data sets for a two-way factorial design from a Slash distribution and then

50000 data sets from a Gaussian distribution correlated to the Slash samples. The

samples are decomposed to produce the residual part. Then using a set of cut-off

values, the corresponding extreme values will be tagged and be temporarily removed

from their sample. If the rank of temporary modified sample is big enough (greater

than or equal to the degrees of freedom), the next step will be executed which is

to calculate an efficient measure to find the difference between estimates and true

values. Three measures called by Thkey as the measures of "badness" are the sum

of squares of the differences between estimated and true row effects (Br), the sum

3.3. Simulation study for optimum cut-off value 61

of squares of the differences between estimated and true column effects (Be) and a

linear combination of the last two

where c is the number of levels in the column's factor and r is the number of levels

for the row's factor and note that the true (row and column) effects are zero as the

described simulation procedure.

The stages to calculate the measures of badness are now shown for our example.

The measures will be calculated for a set of cut-off values {0.7,0.9,1.1,3}:

For cut-off value 3, we have just one extreme value and the temporary modified

original data (by removing the corresponding extreme) is:

-1 -1 11 5

NA -5 -5 0

1 2 -2 11

-1 2 0 -2

1 2 -1 0

There are two ways to find out the row and columns effects which are needed to

calculate the measures of badnesses: using a standard linear model fitting method

and doing a mean decomposition. The two methods yield the same results. When

calculating a value to be swept out during the decomposition we ignore completely

the removed data. In the current example:

-1 -1 10.4 2.2 0 -3.65 -3.65 7.75 -0.45 2.65

NA -5 -5.6 -2.8 0 NA -0.53 -1.13 1.67 -4.47

1 2 -2.6 8.2 0 -1.15 -0.15 -4.75 6.05 2.15

-1 2 -0.6 -4.8 0 0.1 3.1 .5 -3.7 -0.1

1 2 -1.6 -2.8 0 1.35 2.35 -1.25 -2.45 -0.35

0 0 0.6 2.8 0 -0.85 -0.85 -0.25 1.95 0.85

3.3. Simulation study for optimum cut-off value 62

and after seven iterations the final decomposed table is:

-2.81 -3.93 7.47 -0.73 2.93

NA -0.53 -1.13 1.67 -4.47

-0.31 -0.43 -5.03 5.77 2.43

0.94 2.82 0.22 -3.98 -0.82

2.19 2.07 -L53 -2.73 -0.07

-1.69 -0.57 0.03 2.23 0.57

It is notable that mean decomposition in a complete table does not need any iteration

to converge. In other words, at the first step the decomposition is completed. If

we remove even one entry from the table, a few iterations are needed to achieve

convergence.

Continuing the calculation of badnesses in the example, it is simply calculated

by sum of squares of estimated row effects as well as column effects:

Br = (-1.69)2 + (-0.57)2 + (0.03) 2 + (2.23) 2 = 8.14

Be= (2.93) 2 + (-4.47) 2 + (2.43) 2 + (-0.82) 2 + (-0.07) 2 = 35.11

and then

Br = rBc + cBr = 5(8.14) + 4(35.11) = 181.16

The same routine has to be run for the other cut-off values. For both 0.9 and 1.1

there ate three extremes and the modified original table to decompose is:

-1 -1 NA 5

NA -5 -5 0

1 2 -2 NA

-1 2

1 2

0

-1

-2

0

and the three measure of badnesses can be calculated as above.

For cut-off value of 0. 7, there are ten extremes and the modified original table is as

the following:

3.4. Results 63

-1 -1 NA NA

NA NA NA 0

1 2 -2 NA

-1 NA NA NA

1 2 -1 NA

The linear model's design matrix X corresponding to the modified table has a rank

of seven that is less than the eight needed to be a full rank matrix. Then, some

effects of the linear model cannot be estimated. In practice, in our simulation study,

cut-off values less than 1 usually lead to this situation.

3.4 Results

The simulation study has been done for 50000 samples2 of 5x4 two-way factorial

tables in the first stage to check the results of Fowlkes et al. (1981) and Al-Madfai

(1994). Furthermore, for validation, similar simulations have been done for 4x5

tables which should lead to the same results.

We found the optimum cut-off values for each set of effects separately as Fowlkes

et al. (1981) and Al-Madfai (1994) 3 did. Table 3.2 includes their results and the

presented work.

There are no recorded results for Br and Be in Fowlkes's report. It might be

because of their emphasis on the total badness (Br) rather than the other two

measures.

For Br, which is the main measure in the decision problem, the results even using

scaling by SqLm in Al-Madfai (1994), are very close.

250000 simulations have been split to five 10000 samples and submitted to "condor", a batch

processing system. The result of each split has been stored and then they are gathered to make

the result of 50000.
3 They have also used another scaling named square lo-median scaling or SqLm as a type of

within sample scaling. For this scaling, they divide the square root of the ratios of ordered absolute

values of each original two-way table to the same number of quartiles of the half positive Gaussian.

3.5. Weaknesses and Alternatives 64

Table 3.2: Comparison of old simulations and the present

Br CV(Br) Be CV(Bc) Br CV(Br)

1.178 1.652 1.69

Al-Madfai 10000 X 3 1.93 0.2929 1.453 0.1216 1.672 0.0055

1.22 1.855 1.685

(SqLm)

1.66

1.80

Fowlkes 10000 X 5 1.68 0.0316

1.72

1.70

1.38 2.00 1.77

1.37 1.87 1.68

This work 10000 X 5 1.43 0.0183 2.24 0.0654 1.96 0.0587

1.37 2.04 1.78

1.40 2.02 1.73

3.5 Weaknesses and Alternatives

i) The first weakness of the above method of polish is that the result is not

unique. It depends on the start direction of polishing. There are two different

answers if you start the sweeping from the columns or if you start it from

the rows. Thkey believed that it does not make effect on distinguishing the

outliers. However, having a unique answer would reduce confusion for users of

statistical software.

Solution: A unique decomposition for a two-way table4 can be achieved by doing two

polishes, one started with the row and the other one started with the column

and then taking an average of the results of row-first polish and the column­

first polish. The process is repeated until convergence.

4The solution can be used for any higher dimensions of a table

3.5. Weaknesses and Alternatives 65

ii) If you have a 2 by c two-way table5 , where c > 2, using lo-median to polish

we may lose the extreme value in some cases. This is because the lo-median

of two numbers is always one of them and sweeping the lo-median makes it

zero. It may happen that the value selected by the la-median is an extreme

value but in the residual part of polish it becomes zero and is not considered

as an extreme or outlier. This may also happen if lo-median is substituted by

hi-median.

Even if mid-median is used, one outlier in a column will spread in the column

and both cells might be tagged as outliers.

Solution: An alternative to lo-median/hi-median has been introduced by Seheult and

Tukey (2001) named fibian which solves the problem. Fibian is one of la­

median or hi-median depending which one makes the swept-into smaller. Ap­

plying fibian to a general design using the method based on the new idea in the

next chapter is too difficult. Another alternative named NE-median has been

introduced in Johnson (1989; page 13) which is very similar to fibian but it

does not use the swept-into value. This alternative is as easy as la-median/hi­

median/mid-median to apply for a generalised new decomposition method.

NE-median is the smaller in magnitude of the lo-median and hi-median. If

lo-maedian and hi-median are equal in magnitude, NE-median would be set

to zero. Using the NE-median, if we first subtract the overall median from the

whole table, the results will be very close to the fibian.

In the next section, the simulation study will be based on NE-median as the

sweep function after first subtracting the overall median from all cells. If we

want to have a decomposition, we need just to add the subtracted median

to the estimated total effect which is not necessary in the stage of badness

calculation.

iii) In Slash random samples, sometimes a very large number like 700000 may

be generated. Such large numbers can have a large influence on the measure

5It happens also when there is a r by 2 table, where r > 2

3.5. Weaknesses and Alternatives 66

of badness so the distribution of badness is very heavily skewed. It leads to

an instability in simulation results when the study is repeated. In fact, in the

simulation study, we are comparing two type of tables: without extreme values

and with some extreme values. In reality, we do not need such large numbers

as extremes.

Solution: It is enough for this form of simulation that in the second type of tables there

are extremes. The size of extreme are not very important as long as it is

considered as extreme comparing to Gaussian. Figure 3.1 shows an overlaid of

Gaussian and Slash density functions. It can be seen that any value of Slash

greater than 20 in size can be considered as an extreme to Gaussian.

We suggest to truncate any value of Slash random numbers greater than 80

which causes censoring of just %1 of too large and too small numbers, i.e:

P(S < 80) ~ 0.9950 => P(S < -80) + P(S > 80) ~ 0.0100. Truncating Slash

leads to change of Slash distribution function to:

Fs(s)- Fs(-M) . .
FstrM(s) = Fs(M) _ Fs(-M) where M IS the truncated pomt.

and it should be considered when we generate Gaussian samples by converting

Slash samples.

iv) NE.median tries to make the effects as close as possible to zero. Then if the

true row effects and column effects are actually zero, it is effecti.vely a bias

in the simulation study. In the other words, zeroing row and column effects

makes the table almost ready to polish by NE.median.

Solution: In the simulation study, some Gaussian random numbers are added to the

samples generated from Slash and converted to Gaussian. One set of Gaus­

sian random numbers is added to rows and another set to columns. It causes

the expected row and column effects not to be zero. Then when calculat­

ing badness we must subtract those values from the estimated effects before

squaring and summing.

v) There are three formulas to approximate the reference values which are m half

positive normal expected order statistics qi where i = 1, 2, ... , m:

3.5. Weaknesses and Alternatives 67

Figure 3.1: Slash density function vs Gaussian

'<;f" -0 1111 Gaussian
El Slash

C') -
c 0
0

:;::::;
(J
c
::J C\1 - 0 -
~
'Ci)
c
Q)

Cl ..- -0

0 .}, ,\.. -0
I I I

-50 0 50

X

- Seheult and Thkey (2001)

2 --e 2 dx - 1 = ----;c;--l q; 1 _ ,2 m - i + 1

-oo ..J2i m+~

- Al-Madfai (1994)

2 --. e- 2 dx - 1 = 1 - = 3 l q; 1 ,2 3i - 1 m - i + ~
_ 00 ..;2-i 3m + 1 m + k

. I

Fowlkes et al. (1981) used another form of the second one which is ~~31 where
3

i ~m, (m- 1), ... , 1.

Solution: It has an easy solution. A quick simulation study showed the first one is much

better.

3.6. New simulation study 68

3.6 New simulation study

A new series of simulations has been done as the final simulations for two-way facto­

rial designs without replication. The basis of the simulation is the same as previous

ones but incorporating the improvements in section 3.5.

The first step is to generate re Slash random numbers restricted to have magnitude

less than 80 followed by generating the same number of correlated Gaussian random

numbers where r and c indicate the number of rows and the number of columns,

respectively, in a simulated two-way table.

Then, for each Slash sample and its correlated Gaussian sample, r ordinary Gaus­

sian will be added to the observations lying in each row of the tables. And similarly,

c Gaussian random numbers will be added to each observation on the columns.

A decomposition will be performed for the sample tables using the sweep function

"NE.median". The result of decomposition is unique as we polished from both di­

rections (first column and first row) and then average two results and repeat until

convergence. It may be called an average based decomposition.

For a given set of cut-off values, the residuals obtained by the decomposition are

analysed by Tukey's method to detect possible outliers for a temporary removing

from the table.

If the new table without suspected outliers is still a full rank matrix, the measures

of badness (row, column and the total) will be calculated for each cut-off and scaled

by their minimums. Usually, for smaller cut-off values (about one), the new table

without suspected outliers, is not a full rank matrix and then the effects and conse­

quently the measure of badness cannot be computed.

The minimum badnesses for Slash samples have been obtained by the first stage

simulations. For Gaussian samples, it can be theoretically calculated by noting that

in Gaussian samples it is not expected to tag any data as an outlier. Then keeping

all the data leads to the minimum degree of badness. Therefore, the minimum row

badness is sum of squares of the usual estimated row effects. It just needed to find

its mathematical expectation:

3.6. New simulation study 69

r

L (E (xi.- x.i)
i=l

~ (E (x2 - 2xi. L:;=l xi. + x2))
~ t. re ..
i=l

t (E (xi -2 X! +X
2
)) (3.1)

t (E (! - 22_ + 2_))
e re re

i=l

r-1
e

In similar, the minimum column badness for Gaussian samples is c~ 1 . Obviously,

the minimum for total badness will be r + e - 2.

Average and average square of badnesses for each cut-off value will be stored, ready

to take account for the final results.

Table 3.3 shows the results of the above described simulation study. The two first

columns are the dimensions of the simulated two-way tables. The third column is

estimated minimum total badness B! achieved by an independent simulation. The

next two columns show the initial and final estimation of the optimum cut-off value.

The 95% confidence interval for the final optimum cut-off estimated comes next

where the formula 2.1 is used to apply the uncertainty of the estimated minimum

badness. Eventually the last column is the p-value of testing the hypotheses of the

regression errors to be Normally distributed (see 2.6 for the details of simulation

stages and when the regression comes up).

Figures 3.2 and 3.3 show a discontinuity of the measures of badness in 2 by c tables.

It means the difference of badnesses is not a continuous function of I and then it

cannot be approximated by a line. As a result, the four last columns of 2 by e rows

in table 3.3 have no entries.

If we set aside the two-way tables with at least one two-level factor, the last

column of table 3.3 shows that in the regressions applied to find the confidence in­

tervals, the hypothesis of normality for the residuals are not rejected. This is needed

in order to trust the regression approximated coefficients. There is an exception on

5 by 6 tables as well as 6 by 5 table that we used to check the algorithms. Then

3.6. New simulation study

-"0
Q)

ell
u
(j) -Cl)
Cl)
Q)
c
"0
ell
[D

.$

Figure 3.2: Compromised graphs of a 2x2 and a 2X7 two-way table

2x2-NIE.median-lomedian-1 OOOO(x1 0)

o ~~~~sian I * * * * * * * * * * * * * * * * * *

M -

C\1 -

0
1- 000000000

T""- * * * * * * * * * 000000000000000000
J J J J I

0.0 0.5 1.0 1.5 2.0 2.5

cut-off values
Optimum-et= 0.9067

:0
Q)

ell u
(j) -Cl)
Cl)
Q)
c
"0
ell

[D

.$
~

2x7 -NE.median-lomedian-1 OOOO(x1 0)

C\1~ - o Gaussian I
Slash

0
C\i -

LO - * *

* *
* *

* * * * * * * *

*
*

OOOOOOo 00 .*
Oooo

C!- ********* oooooooooooooo
I I I I I

0.0 0.5 1 .0 1.5 2.0 2.5

cut-off values
Optimum-et= 0.9562

70

3.6. New simulation study 71

Table 3.3: 1* with 95% Cl and the p-value to test the Normality of regression errors

As ss A I
95% CI-L 95% CI-U Shapiro.p r c tm m /* /*

2 2 0.1-0.9 26.9494 0.9067

2 3 0.1-0.9 35.3009 0.9457

2 4 0.3 36.1643 0.9112

2 5 0.4 45.2804 0.9417

2 6 0.3 53.1658 0.9282

2 7 0.3 62.0337 0.9562

3 3 1 78.7456 2.0538 2.0537 1.8319 2.2755 0.9989

3 4 1 74.3659 1.6850 1.7830 1.4149 2.1511 0.4128

3 5 1 95.4589 1.8617 1.8736 1.7341 2.0132 0.5092

3 6 1 104.8668 1.7332 1.7190 1.6285 1.8095 0.2404

3 7 1 126.3142 1.8085 1.8264 1.7557 1.8972 0.6950

4 4 1 51.7030 1.3067 1.3034 1.2640 1.3428 0.7706

4 5 1 63.4948 1.4764 1.4864 1.4366 1.5362 0.1472

4 6 1 60.3229 1.3201 1.3190 1.2972 1.3407 0.4783

4 7 1 71.0007 1.4070 1.4080 1.3894 1.4266 0.0619

5 5 1.1 85.2526 1.6938 1.6897 1.6497 1.7298 0.3541

5 6 1 79.9997 1.5197 1.5198 1.4800 1.5595 0.0020

5 7 1.2 96.4786 1.6211 1.6184 1.5748 1.6620 0.5616

6 6 1 68.0780 1.3361 1.3362 1.3205 1.3518 0.4144

6 7 1.1 83.3647 1.4525 1.4537 1.4347 1.4727 0.9870

7 7 1.2 100.1290 1.5484 1.5388 1.5146 1.5630 0.5614

3. 7. A brief discussion 72

we are not sure if the estimated cut-off for these dimension of tables are accurate.

Furthermore, 5 by 6 and/ or 6 by 5 tables are the only tables in simulation study that

have a unusual behaviour which makes them different to the others. The difference

is that with a cut-off value greater than one, removing the suspected outliers makes

the rest of design matrix not to be a full rank matrix. We did not consider these few

cases in the final calculation. In fact, we reran some more simulations to substitute

for them.

The other point to mention is that for all cases the confidence interval includes the

initial optimum cut-off value unlike the univariate cases despite our expectation.

3. 7 A brief discussion

For any number of levels of a factor, it can be seen that the optimum cut-off value

is decreasing for odd number of levels of the other factor and increasing for even

number of levels of the other factor. Except if the first factor has three levels the

increasing pattern cannot be seen on the even number of levels of the other factor.

Also we can say that in square two-way tables in odd dimensions the optimum

cut-off is decreasing and in even dimensions it is increasing (see figure 3.3).

A more precise pattern might be found if optimum cut-off values for bigger tables

will be discovered by simulation.

3.8 Functions in R

• b. 2way. new. 2 is to simulate rr samples of a factorial experimental design

without replication with dimension lvls.

• mat. rank is the function to find the rank of a matrix (Ripley 2002) which is

used after removing the suspected outliers to check if the design matrix is still

full rank.

• b. 2way. new. 2. res is to gather the simulation results of 10*10000 of each

dimensions of two-way tables. It reports i'm, initial)'*, b:!' and SE[b:!'J.

3.8. Functions in R 73

Figure 3.3: Estimated optimum cut-off values by simulation in square two-way fac­

torial designs

0 0
C\i -= 0

I CX) - -~
(.)

..-

E 0
CD ~ -

E ..-
0 a

'<:2' 0 -..-
0 0

I I I I I

3 4 5 6 7

number of levels

• b. 2way. new. 2. res. m2nd prepares a batch file in linux to run the second and

the third stages of simulation as well running the function of b. 2way. new. 2. res

for all simulated dimensions.

• The function b. 2way. new. 2. res. mf is to gather the results of second simula­

tions at i'm and reports b~.

• b. 2way. new. 2. res. ci calculates the final i'* and its confidence interval in

both cases with and without applying the uncertainty of b~ (see Appendix C).

Chapter 4

A general decomposition

algorithm

In this chapter we introduce a new algorithm to do a decomposition. It is a hi­

erarchical algorithm which is general enough to decompose all types of factorial

experimental designs including fractional, incomplete and unbalanced factorial de­

signs. The classical algorithm is not only not directly generalisable but also is not

able to cope with absence of one or more interaction effects. The functions in R,

provided for the new idea, are able to decompose any type of factorial experimental

design using any desired sweep function such as mean, la-median or NE-median.

Recall from chapter 3 that the order of polishing affects the results when the sweep

function is not the mean. The functions provided for the new algorithm use the

averaging rule which leads to a unique answer.

Some examples have been used to test the algorithm such as factorial designs

including unbalanced and fractional factorial designs, incomplete block and Latin

square designs. The test is based on three points:

• The results to be the same as the R function lm when a mean-based polish is

performed

• For any sweep function, the result should be a decomposition

• The result of applying the sweep function on the estimated effects of each term

is zero

74

4.1. An introduction to the new algorithm 75

The new decomposition works based on the incidence matrix XI and two vectors

named "effects index" and "levels index". Therefore, producing the incidence matrix

XI for the given model or data frame is the first step which is not completely provided

in many statistical software. Most statistical software gives a model matrix which

corresponds to a reduced parameterisation for which there are well-defined least

squares estimators; often it is a treatment contrasts form of the incidence matrix.

The incidence matrix is briefly discussed in Searl (1971; page 166) and Seber (1977;

page 72) . In fact, each row of the incidence matrix determines the desired effects to

be involved for each response in the model. The function to produce the incidence

matrix and desired vectors is also provided in the present work.

4.1 An introduction to the new algorithm

Consider a table of data collected by an experimental design. A model H.= XI(}_+ f

may be fitted to the data and the vector of parameters (3 estimated. The parame­

ters can be divided into three major parts; the overall mean, main effects and the

interactions. Interactions may also be partitioned to the different orders. They all

can be easily estimated by applying a least squares solution with desired contrasts.

Another way to compute the parameter estimates, when the effects of each term are

constrained to sum to zero, is to do a mean decomposition. One method to do a de­

composition for a complete factorial design without replication has been introduced

in section 3.1. In the example 3.1, the marginals of the result table are the esti­

mated main effects and the right-bottom corner is the estimated total mean. Also,

the body of the result table of mean decomposition is the residuals in the model.

This method of decomposition can only be used for some types of experimental de­

signs without replication. The new algorithm to decompose hierarchically a table of

data in this chapter is applicable for most types of factorial experimental designs.

Some motivation for this type of decomposition comes from a paper of Wilkinson

(1970) who introduces an alternative approach to computing least squares estimates

using sweep operators instead of the usual linear model solution.

4.1. An introduction to the new algorithm 76

4.1.1 A simple example of the new method

Before giving a general explanation of the algorithm, let's perform a simple mean

decomposition on the data in example 3.1.

Example 4.1: Using the data in example 3.1, the response vector, the incidence

matrix and the vector of model's parameters are as follow:

8 1 1 0 1 0
1-t

0'1
2 1 1 0 0 1

y= ,XI= and {3 = 0'2
6 1 0 1 1 0

{31
3 1 0 1 0 1

!32

In this example, we have just the main effects and the overall mean to be estimated

and no interaction. Residuals also will automatically be estimated. In the new ap­

proach, decomposition is by estimating the effects using their corresponding columns

in the incidence matrix. Before starting the procedure, we put the response values

into the residual container as initial values:

2(0) - y - 8 2(0) - 2 2(0) - 6 2(0) - 3
'-1 - 1 -) '-2 -) '-3 -) '-4 - .

The aim is to find and take out the effects in the model from these containers.

In general, the procedure starts with the highest order of interaction but no inter­

action exists in our model. Then we need to start with the main effects. Usually,

different ordering of selecting main effects makes difference in the results. However,

if the sweep function is mean, as in this example, different orderings lead to the

same results. Let us start with a 1 which corresponds to the second column of X 1 .

A subset of residuals (at the first stage the same as responses) corresponding to the

ones in this column is selected (8,2). Their mean is calculated, reserved as the first

step of calculating eh and subtracted from the corresponded residual containers.

Then it does the same for &2 . The results are

A (1) - 8 + 2 - 5 A(1) - 8 - 5 - 3 A(l) - -3
0'1 - - El - - E2 -2) l l

4.1. An introduction to the new algorithm 77

where the notation (1) means the first stage of decomposition.

The same routine will be done for the other main effects using the updated residuals

leaving another updated version of them:

m2) = 3 + 1.
5 = 2.25, Ei2) = 3- 2.25 = 0.75, E~2) = -0.75,

2

/3~2) = -2.25, E~2) = -0. 75, E~2) = 0. 75.

At the end of this stage, estimation of residuals has been completed. The procedure

continues to complete the estimation of main effects and the total effect. In the next

stage, the column of XI corresponding to f.L, which is the first column, will select the

corresponding estimates so far of each main effects. If we start with the first main

effect, then

p,(3) = 5 + 4·
5 = 4. 75, ai3l = 5 - 4. 75 = o.25, &~3) = -0.25

2

Continuing with the other main effect does not change anything because of the mean

of 0. Therefore, the final estimates are

~ ~

p, = 4.75,&1 = 0.25,&2 = -0.25,,61 = 2.25,,62 = -2.25

E1 = 0. 75, E2 = -0. 75, E3 = -0. 75, E4 = 0. 75.

4.1.2 An approach to generalise the new method

In the case where there is replication in the two-way factorial design, the two-way

interaction effects may also be estimated. In this situation, the XI matrix has some

more columns corresponding to the two-way effects. The procedure to decompose

now has to be done in three stages starting from the two-way interaction effects and

continuing by the main effects and eventually followed by the total mean as before.

The other issue is to find the residuals. An elegant approach is to augment the

XI matrix by an identity matrix of size of the number of responses. The augmented

matrix might be called Xj, i.e.

Xj =(XI I I)

Assume that, in a two-way table with replication, we want to estimate the residuals

as well as the effects. Performing a decomposition in four stages leads to the right

4.2. The algorithm of the new method 78

consequences. In this situation, the decomposition starts from the new columns

in Xj which correspond to the residuals. It continues in the next stage with the

columns of two-way interactions and so on. Of course, in practice, we always need

to estimate the residuals as they are needed to tag the outliers.

Even if two-way interactions are not requested or they are not applicable, the Xj

can be constructed similarly and there are just three stages to get the results.

4.2 The algorithm of the new method

Example 4.2: Consider a two-way factorial design with replication. Then the

interaction is also eligible to be estimated. Suppose A and B are the two factors

and let AB denote the interaction. Figure 4.1 shows the hierarchical levels for the

elements of the full model Yiik = J-l + ai + /3i + (a/3)ij + Eijk where i = 1, · · · , r,

j = 1, · · · , c and k = 1, · · · , n and r ,c and n are the number of levels of factor A,

number of levels of factor B and the number of replications in each cell, respectively.

Column l* shows the level numbers and column t* is a numbering for the terms. With

the column l*, one may explain the hierarchical procedure so that beginning from

the highest level each term(s) of the higher level should be swept onto the term(s) in

all possible lower levels. We will use index of terms (t*) later on in the explanation

of the general algorithm. The procedure may be repeated till convergence.

Figure 4.1: A graphical representation of the hierarchical algorithm to decompose a

complete two-way factorial design with model Y""'A*B

Index of levels (l*) Index of terms (t*) Terms

3 4

2 3

I 1.3

1 1, 2

0 0

4.2. The algorithm of the new method 79

When there is a sweeping onto more than one term in the same level, the ordering

should be considered. A strong suggestion to have a unique result is that when

sweeping onto several terms at the same level, all possible orders should be applied

and then head to the next stage by taking the average of the results of them.

Therefore, the algorithm is a sweeping from top level to the lower ones as the arrows

show. First, y will be swept onto AB, main effects and the total effect. Then, the

sweeping from AB onto the main effects and the total effect is run. Eventually, each

main effect will be swept onto the total effect. Therefore, when AB is swept onto A

and B, one might sweep first onto A or first onto B. As it said earlier, the answer is

not always the same but the suggestion is to apply both ways and take the average

of the two results.

If all the upper levels are complete, continuing to sweep onto the lower levels has

no effect but we keep this as part of the algorithm to prevent missing some terms

where higher order interactions are omitted from the model. Dashed arrows show

the sweeps which have no effect on the results. The next example is a model where

an interaction has been omitted.

Example 4.3: The following graph shows the necessary elements of the hier­

archical sweeping down for a model of Y'"'"'a+b*c. Again, there are some sweeping

shown by dashed arrows which are a part of the algorithm but have no effect in

this example. We did not number dashed arrows to prevent losing the clarity of the

graph.

Figure 4.2: The graphical show of decomposition for model Y'"'"'a+b*c

Index of levels (l*) Index of terms (t*) Terms

3 5 y-. r ---I 1\
" I \ ' 2 4 lb: c \ '

"j~
\

X 2 \

1,2,3
I'\ 2 ~

I
1 a 1 b c /

~J3//
/

0 0 1-l~

4. 2. The algorithm of the new method 80

4.2.1 Some necessary definitions used in the algorithm

• We may consider the overall mean 1-L as the lowest order among the parameters.

Then, main effects are the second lowest order, the two-way interactions are

the third and so on.

• When a subset of columns of X 1 corresponding to an effect can be expressed

by a sum of the subset of columns of X 1 corresponding to an effect in a higher

order, the lower effect is called a child of the higher one.

• In x;, the augmented part is corresponding to y in the model. None of its

columns can be expressed by any subset of columns.

• Following the previous definition, y is the highest order term.

• 1-L is the lowest order term.

4.2.2 Key points in the algorithm

• Applying the given sweep function on the final estimated effects of each term,

will give the result of zero.

• The new method is a hierarchical polish by sweeping from the highest order

term on its lower order terms (its children!) and then the second highest order

term on its lower order terms and it will be continued till reaching to the lowest

order term i.e. 1-L which has no children and cannot be swept.

4.2.3 The algorithm

Some materials need to be prepared for the overall algorithm:

1. Create the incidence matrix X 1 as explained earlier.

2. Construct a vector, named "terms' index" and denoted by t, of the same

length as the number of columns of X 1 with entries of zero corresponding

to the first column of X 1, one corresponding to the columns of X 1 allocated

for the first main effect, two for the second main effect, if exists, and so on.

4.2. The algorithm of the new method 81

The numbering will be continued for all two-way and higher interaction effects

which are presented in the model. Let s denote the maximum value in t.

3. Construct another vector, named "levels' index" and denoted by l, with the

same length as t. The first entry is zero, all the entries corresponding to the

main effects are one, all the entries for two-way interactions (if exists) are two

and so on. Let g denote the maximum value in l.

4. Construct a third vector of the same length but all entries are zero. This is

the "coefficient estimates" vector denoted by c.

5. Augment X1 as Xj = (XI I I).

6. Augment t to form t* by adding n extra entries, each equal to s + 1.

7. Augment l to form l* by adding n extra entries, each equal to g + 1.

8. Augment c* = (c I y) where y is the response vector corresponding to the rows

of X 1 .

The operations of the algorithm are as follows.

Overall algorithm:

Description: A hierarchical sweep starting from the highest level to the second lowest

level onto any lower level terms

Action: For each k, indexing terms, descending from s+ 1 to 1, repeat the "complete

sweep down" till convergence

Complete sweep down:

Description: Sweeping from a term k onto lower order terms

Action: Let p be the level of term k. For each j descending from p - 1 to 0, do the

"partial sweep down" from term k onto terms of level j

Partial sweep down:

Description: Sweeping from a term k onto all terms of a particular lower level j

Action: For each i appearing in t[.j] do the "multi-sweep down" from k onto i if i is

a child of k. Applying different ordering of i changes the result. Either use a special

order or take the average of all possible ordering results

4.3. Checking the algorithm 82

I> t[jJ is the subset of t* corresponding to the entries of l* which equal j

1> Term i is a child of term k if variables appearing in term i are a subset of

those in term k

Multi-sweep down:

Description: Sweeping from a term k onto a lower level term i

Action: For each m for which t~ = i do the "simple sweep down"

Simple sweep down:

Definition: Sweeping from effects in a higher level term k onto the m-th effect (cor­

responding to a lower level term i)

Action:

1. Find the columns of x;[k] which sum to Xim· Their corresponding entries in c*

are denoted by c[k,m]

I> Xj[k] indicates those columns of Xj corresponding to the elements of t* which

equal k

I> Xjm is the m-th column of Xj

2. The requested sweep function is calculated for the elements of c[k,m]

3. The result is added to c~ and is subtracted from each element of c[k,mJ

4.3 Checking the algorithm

Many types of experimental designs can be decomposed by the new algorithm re­

gardless of the number of factors or whether the design is balanced or not or even

if it is not a complete design. It also works when there are some missing values in

the data. The author has tested the algorithm for the following examples:

• A randomised complete block design (Montgomery 1997; page 177)

• A 5 x 5 Latin square design (Montgomery 1997; page 194)

• A 4 x 4 balanced incomplete block design (Montgomery 1997; page 209)

• A 3 x 3 balanced factorial design with four replications (Montgomery 1997;

page 240)

4.4. An application of the algorithm 83

• A 3 x 2 x 2 balanced factorial design with two replications (Montgomery 1997;

page 259)

• A 3 x 3 unbalanced factorial design (Montgomery 1997; page 278)

• A 2jv fractional factorial design (Montgomery 1997; page 378)

• The 3 x 2 x 2 balanced factorial design with two replications (Montgomery

1997; page 259) when the model is rva+b*c

• The 3 x 2 x 2 balanced factorial design with two replications (Montgomery

1997; page 259) when the model is rv(a+b+c) 2

• The 3 x 2 x 2 balanced factorial design with two replications (Montgomery

1997; page 259) when there are some missing values among the responses

• A 3 x 2 x 4 x 10 x 3 balanced factorial design when the model is ""a+b* (c+d*e)

("solder" data from "durham" R library, Maths. Dept., University of Durham)

The test is based on achieving the same result of mean decomposition via the

new idea and the usual linear model solution.

If the sweep function is different from the mean, they have been tested to be

a decomposition and applying the sweep function on the estimated effects of each

term to be zero.

4.4 An application of the algorithm

One use of the new algorithm is to produce a list of optimum cut-off values for

many types of factorial designs. As an example we have arranged and run a set

of simulation studies to estimate the optimum cut-off value for some dimensions

of incomplete balanced two-way designs when one observation from each row and

each column is missing. All improvement points in 3.5 have been applied in this

simulation study, including use of NE-median, averaging for uniqueness and addition

of random row and column effects.

Two things have to be mentioned in this simulation study. First, the total measure

4.4. An application of the algorithm 84

of badness is slightly different from the usual (complete) design. In the usual designs,

we calculated the total badness by Br = r Be+ cBr where Be and Br are the column

measure of badness and the row measure of badness, respectively. r is the number

of rows and c the number columns. In an incomplete design, we may compute Be

and Br as before by sum of squares of the difference between estimated and true

column and row effects after removing the suspected outliers corresponding to a

given cut-off.

However, the total badness should be amended. Be will be multiplied by the number

of elements present in each column. Similarly, Br is multiplied by the number of

elements present in each row. One may easily generalise the total badness calculation

for an incomplete unbalanced factorial design.

The second notable thing is the minimum expected badness for Gaussian samples.

The answer can be obtained as follows:

It has been explained in chapter 2 that the minimum expected badness in Gaussian

samples will happen when no observation is removed. Then, the minimum is just

the mathematical expectation of each measure of badness. For the row badness,

E (t(&,- a;)2
) ~ t Var(&l}.

The variance matrix of the estimated effects can be achieved from the following

commands in R:

options(contrasts=c('contr.sum' ,'contr.sum'))

summary(lm(mdl))$cov.unscaled

The first command is needed to set the constraint of sum to zero to the effects to get

the proper answer from the second command. The covariance matrix obtained by the

above command has some missing rows and columns; one for each term. They can

easily be calculated from the other elements by considering that the missing effect

is a linear combination of the other effects in that term. Consequently, because the

structure of the incidence matrix makes a symmetry of the order of the effects, the

variance of the effects in each term are equal. For the incomplete balanced design,

where it is a square design (the same number of levels for both factors i.e. r = c),

4.5. The functions in R 85

the variance of any effect in both factors are the same. As a result, the minimum

badness for row badness in Gaussian samples are the same as the one for column

badness which equals rVar(a1). Then, the minimum of total badness in Gaussian

samples is 2r(r- 1)Var(ai) when there is one and only one missing observation in

every row and every column.

We could use the similar rule instead of the equation (3.1)

Table (4.1) shows the initial optimum cut-off value (,.Y*') for some dimensions

of an incomplete balanced design. It also contains the estimated cut-off at which

the minimum of total badness for Slash samples occurs ("!~) and also this minimum

(B~').

Table 4.1: ,.Y*' for some dimentions of Incomplete balanced designs - 20000 samples

Dimension bG ~ I BS'
m "!* "!m m

3x3 5.3333 0.9-1 < 1 84.57

4x4 6.7500 1.5886 1 126.72

5x5 8.5333 1.2733 1 96.13

6x6 10.4167 1.6078 1 150.56

7x7 12.34286 1.3344 1 83.12

It again can be seen that the estimated optimum cut-off values are increasing

separately in odd dimensions and in even dimensions. Although, in general, the

optimum cut-offs in odd dimensions are less than in even ones.

4.5 The functions in R

• decomp decomposes a data set by estimation the parameters defined by a given

model using using a given sweep function. The function is in the R library of

robande.

• incidence. matrix makes the desired incidence matrix which is used in the

above function. This function is also in the R library of robande (see Appendix

D).

Chapter 5

Robust analysis of variance

In this chapter the procedure for a robust ANOVA introduced by Seheult and Thkey

(2001) will be described and extended to apply to a wider range of factorial designs.

Based on the procedure, a library in R has been prepared as one of the outcomes of

the present work. Some examples run by the library have been compared with their

former analyses.

5.1 The algorithm for the robust ANOVA table

Seheult and Thkey (2001) introduced a procedure to make a robust ANOVA table

for a full factorial experimental design. A robust ANOVA table is preferred to the

usual one in the presence of one or more outliers or unusual effects in the data. Thus,

the first step is to detect the possible outliers which might appear in each model

term (obviously except in the total effect). A resistant decomposition is needed to

find the resistant effects of any term. Seheult and Thkey (2001) suggested a fibian

decomposition. A decomposition includes a sub-table corresponding to each model

term. Then, a method is needed to be applied on each sub-table to detect the

possible outliers. There are many methods to detect outliers. The method in this

procedure and consequently in the provided library is Thkey's method (see sections

2.4 and 3.2 for details). After distinguishing the possible outliers, one may just

remove them or they might be substituted by zero as the simplest substitution.

Another suggestion is winsorizing the outlier which means that each outlier will

86

5.2. R library 87

be substituted by the next largest value (in magnitude but the same sign of the

outlier) in its sub-table when the smallest outliers is considered as the first largest

(in magnitude). In fact, in this procedure, Seheult and Thkey (2001) used a middle

way which is half-winsorizing i.e. half of the next largest value is substituted.

After making the substituted table by substituting the suspected outliers, the next

stage in the procedure is to do a mean decomposition on the substituted table which

will produce what they call inner sub-tables1 . Robust ANOVA will be based on sums

of squares of the estimated effects in the inner sub-tables.

The substituted table differs from the original data and thus the inner tables are not

a decomposition of the original data. To make a decomposition table, for each entry

corresponding to a suspected outlier in an inner sub-table, they add the difference

of the original outlier and its half-winsorized replacement. The resulting tables they

call "additive tables" which are a decomposition of the original data.

5.2 R library

The R library robeda is provided, based on the procedure introduced by Seheult

and Thkey (2001) and generalised for any type of factorial design by the material in

chapter four of the present work and by use of sequential AN OVA for non-orthogonal

designs. It includes the proper functions to decompose the data collected using a

factorial experimental design, to detect the possible outliers and to make the robust

ANOVA table. The recipe in Seheult and Thkey (2001) has been also generalised to

apply the procedure on full and fractional factorial designs with replication.

5.2.1 Generalisation points and comments

In order to generalise and to program the procedure, some changes are needed. The

essential comments and changes are as follows:

1 Referring to examples 3.1 and 3.2, for a classical decomposition we need to add some zeros to

the margins of the table. However, in this case, the extras already exist. Estimating effects using

a mean decomposition is made by polishing from that starting point.

5.2. R library 88

• Doing the decomposition using fibian is not easy to program for the general

case. A good alternative sweep function is NE-median which has been dis­

cussed in section 3.5. The default sweep function in the library is NE. median

but can be changed by the user to median, lomedian, himedian and/or any

other built-in or user-defined function in R.

• It has been discussed in section 3.5 that decomposing the design using differ­

ent ordering of model terms in each level will lead to different decomposition

results. A recommended method to have a unique decomposition is to average

the results of different orderings.

• The cut-off value is very important to detect the possible outliers. The default

is 1. 5 adopted from Seheult and Tukey (2001) but may also be set using tables

3.3 and 4.1 when they are relevant. For now, there is no option in the library

to set different cut-off values for different sub-tables in a decomposition.

• In a full factorial design, the estimated effects can be used to directly drive

an ANOVA table. However, for an incomplete and/or unbalanced factorial

design, a sequential analysis of variance is needed which is not possible or at

least not easy to do by using the estimated effects. Therefore, in the library

we recompose the data from estimated effects (inner values) and then use lm

and anova to make the ANOVA tables (the standard and the robust).

e There is also an argument named wins which can be set to 0, 1 or 0. 5 respec­

tively to apply zeroing, winsorizing or half-winsorizing of detected outliers.

The default is 0. 5. Original detected outliers are saved for further studies.

5.2.2 Main functions in the library and the usage

There are 14 functions and 19 data frames in the library robeda. The usage of three

main functions is explained:

• incidence. matrix is a function to produce a complete incidence matrix for

any given model formula for a design. The arguments of the function are mdl

and dt. mdl is a model formula for the design. The variables in mdl must exist

5.2. R library 89

in the current working data image or a data frame containing the variables

needs to be defined by dt. Two examples of the usage of this function are (1)

incidence. matrix (y - r * c) when y, r and c are existed in R working

data. r and c must have class "factor"; and (2) incidence. matrix (md1 =

02 , dt = MGDC) when 02 has been already defined by 02 = M - (G + D +

C) A 2 and MGDC is a data frame in R working data and contains variables M,

G, D and C. It is required that G, D and C have class "factor".

The output is a list of incidence matrix, indexes of levels and effects and terms'

names, respectively named by X, 1 v1s and nterms.

• decomp is the decomposition function which decomposes a data set collected

by an experimental design via a given model formula. The arguments are

md1, dt, swp. f and ico. md1 and dt are as described for incidence. matrix.

swp. f is the sweep function of the decomposition which may be mean (which is

the default), NE.median, 1omedian, himedian or some other built-in or user­

defined function in R. ico is NULL by default and may be set by the user to be a

vector obtained by the function unlist in R which can be applied on a previous

decomposition. It is useful when we need to decompose a modified (for example

having adjusted for by outliers) former decomposition. The function decomp

calls incidence. matrix and then does the decomposition based on the levels'

index and effects' index and using the incidence matrix. Three examples of

the usage of this function are (1) decomp (y - c * r) when y, r and c are

existed in R working data and rand care in a factor class; (2) decomp (02 ,

MGDC) with the same description for 02 and MGDC in the above; and (3) decomp

(02 , MGDC, swp.f = NE.median).

The output is a list representing the decomposition shown in two forms: (i)

as a vector matched to levels and effects indexes; and (ii) as a table (a list

of sub-tables) appropriate to display, levels and effects indexes, the incidence

matrix and finally terms' names, respectively named by vect, tb1, 1 v1s, X

and nterms. The output list has a class of "decomp" which helps to be used in

combination with object oriented functions in R. For instance, print. decomp

is another function in the library which uses the properties of function print

5.3. Examples 90

to display the desired elements of the list.

• anova. decamp is the function to do the robust data analysis for a factorial

experimental design. The analysis does include a mean based decomposi­

tion, a resistant statistic's based decomposition, outlier detection, outlier sub­

stitution and robust ANOVA table (see 5.2.1 for details). The arguments

are tabdecamp, self, cf and wins. The first argument is the same list of

output from the above function decamp. self is a scale function which is

used in Tukey's method when the possible outliers is detected. The default is

"lamedian" and might be set by the user to "himedian" or "median". The

default for cf is 1. 5. This is the argument which used as cut-off value when

the possible outliers are detected. Finally, wins is a switch to apply the way of

substitution of the suspected outliers. It can be set to any number when the

default is 0. 5. According to object oriented properties in R, this function is

called by a combination of anava function and decamp as the following exam­

ples: (1) anava(decamp (y - c * r)); (2) anava (decamp (02 , MGDC));

and (3) anava(decamp (02 , MGDC), cf = 1. 3). In all three examples,

arguments have the same properties as those in the other two main functions.

The result of this function is a list of the mean decomposition of the data,

the decomposition based on the given sweep function, an index table of 0 and

1 indicating the suspected outliers by 1, the adjusted table by substituting

the outliers, inner sub-tables, the additive decomposition table and at last ro­

bust ANOVA table, respectively named by mean.dcmp, swp.dcmp, autliers,

half . wins, inner, add. dcmp and Ra bust . ANOVA.

5.3 Examples

5.3.1 Dental Gold Data

Table 5.1 shows the data collected as a 8 x 3 x 5 factorial design organised by Xhonga

(1971). The response variable is the hardness of the direct gold alloy restoration.

Eight types of gold fillings have been used with three methods of condensation by

5.3. Examples 91

five dentists.

Table 5.1: Dental gold data - Source: Seheult and Tukey (2001)

Gold Type

Dentist Condensation Method ----------------------
2 3 4 5 6 7 8

792 824 813 792 792 907 792 835

2 772 772 782 698 665 1115 835 870

3 782 803 752 620 835 847 560 585

803 803 715 803 813 858 907 882

2 2 752 772 772 782 743 933 792 824

3 715 707 835 715 673 698 734 681

715 724 743 627 752 858 762 724

3 2 792 715 813 743 613 824 847 782

3 762 606 743 681 743 715 824 681

673 946 792 743 762 894 792 649

4 2 657 743 690 882 772 813 870 858

3 690 245 493 707 289 715 813 312

634 715 707 698 715 772 1048 870

5 2 649 724 803 665 752 824 933 835

3 724 627 421 483 405 536 405 312

These data have been frequently analysed as in Seheult-Tukey's robust/resistant

method (Seheult and Tukey 2001). Table 5.2 shows the fibian decomposition of the

data from the paper. NE-median decomposition of the data by the present library

robeda based on averaging on the same level terms comes in table 5.3.

Comparing to the results in the paper by Seheult and Tukey (2001), the sixth

type is tagged (in bold) to be an outlier in the paper while none of the Gold types

are identified to be exotic in the averaged NE-median based decomposition. In the

paper, only Dentist 5 has been revealed as exotic but Dentist 1 is also tagged in

the current calculation. Both calculations have the same result for Condensation

method. Furthermore, there are two common distinguished outliers among two-way

interactions; one more in the paper and two different ones in the current calculation.

Finally, the number of exotic residuals corresponding to individual observations is

19 in the paper while this number is just four in the new analysis which are a subset

of the 19. It needs to be remembered that the sweep function in the paper by

Seheult and Tukey (2001) is fibian and they choose a specific order of polishing,

while the current method is a hierarchical algorithm flexible for any given factorial

design model.

However, comparing the polishing when the cut-off value is changed from 1.5 to 1.3

shows many differences (see table 5.4). 11 residuals are tagged as outliers when the

5.3. Examples 92

Table 5.2: Fibian decomposition of the data in table 5.1 by Seheult and Tukey

(2001)

$swp.decomposition

$swp.decomposition$ 1 Overall 1

[1] 771

$swp.decomposition$ 1 MGDC$G 1

[1) -9 0 1 -17 -18 95 38 43

$swp.decomposition$ 1 MGDC$D 1

[1] 20 0 -10 -57

$swp.decomposition$ 1 MGDC$C I

[1] 1 0 -65

$swp.decomposition$ 1 MGDC$G:MGDC$D I

[, 1] [, 2] [,3] [,4] [, 5]

[1,] 9 0 0 -80 -72

[2,] 32 0 -39 -1 0

[3,] 25 -4 27 -58 0

[4 ,] -46 17 -42 149 0

[5.] 0 0 28 0 0

[6,] 26 -60 -30 17 0

[7 ,] -38 0 0 33 116

[8,] 0 36 -43 -109 0

$swp.decomposition$ 1 MGDC$G:MGDC$C I

[,1] [,2] [,3]

[1,] 0 0 56

[2,] 0 -17 0

[3,] -9 14 0

[4 ,] 0 -11 25

[5.] 18 0 -16

[6.] 20 -12 0

[7.] 0 38 -11

[8.] 0 51-172

$swp.decomposition$ 1 MGDC$D:MGDC$C I

[. 1] [,2] [, 3]

[1,] 0 -19 0

[2,] 30 -11 0

[3,] -48 0 9

[4,] 0 0 -146

[5,] 0 27 -208

5.3. Examples 93

Table 5.2: Fibian decomposition of the data in table 5.1 by Seheult and Tukey

(2001) (Cont.)

$swp.decomposition$' MGDC$G:MGDC$D:MGDC$C '

[' 1] [,2] [,3] [,4] [, 5]

[1 '] 0 9 0 0 0

[2 '] 0 0 39 185 0

[3 ,] 4 -76 0 96 0

[4 ,] 63 0 -38 -151 0

[5 ,] 0 10 0 0 0

[6,] -26 0 49 0 -58

[7 ,] 0 66 0 -41 179

[8,] 0 0 0 -47 112

2

[, 1] [, 2] [,3] [,4] [,5]

[1 '] 0 0 30 -15 -11

[2'] -15 28 0 0 0

[3'] -30 0 0 -28 47

[4'] 0 32 42 0 -48

[5,] -89 0-168 29 29

[6,] 234 149 0 -48 0

[7 ,] 25 -45 0 0 0

[8 ,] 4 -67 -40 112 0

3

[,1] [,2] [,3] [,4] [' 5]

[1,] 0 -39 0 173 308

[2'] 45 0 -70-304 186

[3'] 0 131 0 0 -21

[4'] -68 -17 0 0 34

[5,] 143 0 34-227 -2

[6,] 0 -44 -65 53 0

[7'] -155 0 82 203-179

[8,] -12 67 138 0 0

5.3. Examples

Table 5.3: Averaged based NE-median decomposition of the data in table 5.1

$pres

$Intercept

Intercept

759.B9

$G

Gl G2 G3 G4 G5 G6 G7 GB

-10.24 -6.75 9.76 -1B.53 0.00 75.04 59.50 54.13

$D

Dl D2 D3 D4 D5

24.49 4.22 0.00 -5.51 -45.43

$C

Cl C2 C3

0. 00 0. 42 -62.88

$'G:D'

Dl D2 D3 D4 D5

Gl 13.57 0.00 4.21 -67.01 -66.10

G2 22.25 13.35 -3B.56 -5.25 0.00

G3 6.96 0.00 B.60 -74.76 -1.40

G4 -52.14 3B.29 -1B.67 49.03 0.00

G5 0.00 -19.24 3.92 0.00 -7.0B

G6 B9.92 -4.65 -29.56 10.25 0.00

G7 -4B.5B -26.74 0.00 2B.31 115.56

GB 0.00 40.26 -57.5B -159.50 24.97

$'G:C'

Cl C2 C3

Gl -4.12 0.00 50.B3

G2 24.12 0.00 -O.B3

G3 -15.B2 0.00 7.44

G4 -4.37 0.00 1.00

G5 7.63 0.00 -9.00

G6 0.00 1B.21 -45.79

G7 -3.29 27.19 0.00

GB 0.00 25.15-196.96

$'D:C'

Cl C2 C3

Dl 0.00 -16.12 6.33

D2 23.50 -2.29 0.00

D3 -19.43 0.00 20.1B

D4 0.00 0.21 -16.00

D5 0.00 15.B7-151.06

94

5.3. Examples 95

Table 5.3: Averaged based NE-median decomposition of the data in table 5.1 (Cont.)

$res. tab

. , Cl

01 02 03 04 05

Gl B.42 29.75 -15.31 0 0

G2 0 -15.33 4.72 179.5 -16.B3

G3 27.72 -66.56 0 11B.44 0

G4 B2.67 0 -71. B9 -37.5 6.44

G5 0 37 0 0 0

G6 -42.33 0 72.06 54.33 -17.5

G7 0 B9.92 -34.67 -46.B9 161.7B

GB -3.5 0 -13 0 76.44

. , C2

01 02 03 04 05

Gl 0 0 37.72 -20.75 -5.42

G2 -12.17 3.17 0 0 0

G3 -3.39 0 34.33 0 63.B9

G4 0 0 19.B9 96.5 -47.22

G5 -103.67 0 -151.22 17 2B.33

G6 163.17 B2.17 0 -45.5 0

G7 2B.22 -30.19 0 0 0

GB 22.06 -57.7B 0 1B3.22 0

. , C3

01 02 03 04 05

Gl 0 -26.B3 0 40.92 248.97

G2 60.5 0 -65.06 -417.67 134.06

G3 0 116.56 0 -124.94 -95.33

G4 -3B.17 -7 0 0 0

G5 116.17 0 30.B9 -377.5 -79.44

G6 0 -27.B3 -1.B9 0 6.22

G7 -17B.75 0 47.31 49' 69-270.58

GB 0 B2.33 164.22 -61.17 -70.67

5.3. Examples 96

cut-off is 1. 3 with eight exotics in two-way sub-tables. The end user should decide

on the cut-off value.

Table 5.4: Suspected outliers in Dental Gold Data using two cut-offs, 1.5 and 1.3

G->

D->D1 ,D5

C->C3

G:D->G8:D4,G7:D5

G:C->G8:C3

D:C->D5:C3

avg -- 1. 5

residuals->res 15,res 29,res 74,res 105

avg -- 1.3

G->

D->D1,D5

C->C3

G:D->G6:D1,G3:D4,G8:D4,G7:D5

G:C->G1:C3,G6:C3,G8:C3

D:C->D5:C3

residuals->res 15,res 19,res 29,res 68,res 74,res 81,res 95,res 101,

res 105, res 114,res 118

The following results, provided by the default arguments in the library, show the

standard and inner mean squares which make a robust ANOVA table. They also

includes the percentages of the difference from standard MS to Inner MS. Exotic

effects can be also seen in the table for each term.

G->

0->01,05

OF Standard.MS Inner.MS MS.Changes.Percent

7 31476.85 30519.87 3.04

4 54394.10 6213.10 88.58

5.3. Examples 97

C->C3 2 298807.60 6611.38 97.79

G:D->G8:D4,G7:D5 28 7457.65 5847.87 21.59

G:C->G8:C3 14 14983.78 5575.51 62.79

D:C->D5:C3 8 32930.12 8357.43 74.62

residuals->res 15,res 29,res 74,res 105 56 9968.89 5905.60 40.76

5.3.2 A randomised complete block design

Table 5.5 contains the gain yield (in Kg) of rice variety IR8 with six different rates

of seeding (treatment), collected by a randomised complete block design with four

replication (block).

Table 5.5: Grain yield of rice variety IR8 (in Kg) - Source: Bhar and Gupta (2001;

page 345)

Treatment Replication No.

No. 1 2 3 4

1 5113 5398 5307 4678

2 5346 5952 4719 4264

3 5272 5713 5483 4749

4 5164 4831 4986 4410

5 4804 4848 4432 4748

6 5254 4542 4919 4098

This is the example that Bhar and Gupta (2001) have presented to show how

their new developed Cook's statistic works. Two observations have been tagged

by their method. The second replication of the second treatment and the fourth

replication of the fifth treatment are detected by the developed Cook's statistic.

Table 5.6 shows the estimated effects by an average NE-median polishing. This

example could be considered as a 6 x 4 two-way table. Then from table 3.3 pertaining

to a 4 x 6 two-way table, the cut-off value 1.3190 is used to determine the outliers.

As a results, second replication of the second treatment is tagged as an outlier.

Furthermore, the fourth replication is revealed to be an extreme replication.

5.3. Examples 98

Table 5.6: Averaged based NE-median decomposition of the data in table 5.5

$Intercept

Intercept

4905.5

$c

cl c2 c3 c4

136.0 0.0 13.5 -387.0

$r:

rl r2 r3 r4 r5 r6

159.5 -200.0 230.5 -74.5 -57.5 0.0

$res.tab

rl r2 r3 r4 r5 r6

cl -88 504.5 0 197 -180 212.5

c2 333 1246.5 577 0 0 -363.5

c3 228.5 0 333.5 141.5 -429.5 0

c4 0 -54.5 0 -34 287 -420.5

5.3. Examples 99

The following results also contains the standard and the robust mean squares for

the treatment, blocks and the residuals.

DF Standard.MS Inner.MS MS.Changes.Percent

c->c4 3 648120.3 85208.5 86.852980

r-> 5

residulas->res 8 15

239666.2 235498.9

110558.4 68667.2

1.738794

37.890569

Bhar and Gupta (2001) remove suspected outliers and find the new F-ratio from

the modified ANOVA table. The ANOVA tables after removing the eighth observa­

tion which is the second replication of the second treatment, is as follows.

> summary(aov(y[-8]-c[-8]+r[-8] ,ex345bhar))

Df Sum Sq Mean Sq F value Pr(>F)

c[-8] 3 1570221 523407 7.1233 0.003865 **
r[-8] 5 1174433 234887 3.1967 0.039297 *
Residuals 14 1028701 73479

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Also the following ANOVA table is after removing the eighth and the 23rd ob­

servations (the fourth replication of the fifth treatment) which is tagged as outlier

by Bhar and Gupta (2001).

> summary(aov(y[-c(8,23)]-c[-c(8,23)]+r[-c(8,23)] ,ex345bhar))

Df Sum Sq Mean Sq F value Pr(>F)

c[-c(8, 23)] 3 1619718 539906 10.3398 0.0009449 ***

r[-c(8, 23)] 5 1445169 289034 5.5353 0.0060088 **
Residuals 13 678809 52216

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

By looking at the residuals mean squares, we understand in the robust ANOVA

table MS of residuals is smaller than the standard ANOVA after removing the eighth

5.3. Examples 100

observation. However, removing the two observations, this value in robust table is

greater. We may wish to compare mean squares column effects in the robust table

with the standard ones which is much smaller.

5.3.3 Balanced incomplete block designs

Applying an averaged NE-median polish on a data set adopted from (Montgomery

1997; page 209), it can be seen that the number of non-zero residuals is six which is

one more than the degrees of freedom for the residuals in this type of designs (see

tables 5. 7 and 5.8).

Table 5.7: Original data- Source: Montgomery (1997; page 209)

Block

'freatment

(Catalyst) 1 2 3 4

1 73 74 71

2 75 67 72

3 73 75 68

4 75 72 75

Table 5.8: Residuals of the data in table 5. 7 obtained by NE-median polish

Block

'freatment

1 2 3 4

1 1 0 -0.5

2 0.5 -0.5 0

3 0 0 0

4 -0.5 1.5 0

Then, following the rule in Seheult and Thkey (2001), the smallest non-zero

residuals (in magnitude) would be subtracted from the other five values. Now the

5.3. Examples 101

procedure of the detecting outliers will be applied on the five obtained values with

three zeros among them. Discrete values in the original collected data for the design

may cause this situation in some other real examples. The problem is with three

zeroes, the la-median of the five obtained values is zero and then scaling by the

la-median is not possible. As a consequence, the procedure of detecting outliers

cannot be completed.

With a simulation study of 1000 replicates of adding random numbers generated

from the uniform distribution, U(O,l), to the above real example, it was revealed

that for about 95% of the replications, the number of non-zero residuals obtained

from an averaged NE-median polish is six while only in 0.4% of the replications the

number of non-zeros are five which is the same as the degrees of freedom (see table

5.9). Thus, for more than 99% of replicates, it was necessary to subtract a non-zero

absolute residual from the five largest and this may lead to above problem whenever

the data are discrete. Continuing the outlier detection in the hypothetical cases of

the simulation, it can be seen in table 5.9 that 16.8% of samples end with detecting

the ninth datum to be an outlier. In addition, the first datum is detected as an

outlier in 6.6% of samples while more study shows that in 6.4% of samples both

the first and the ninth data are detected to be outliers. The conclusion is that if

the data are integer, outlier detection cannot be finished while there might be some

suspected outliers. In other words, for integer values, Tukey's method may need to

be modified, as otherwise there will be an error of calculation during the procedure

and it cannot be completed.

An alternative suggestion to keep away from the problem in a real case with the

integer data is to use the top 5 actual non zero values without doing the subtraction.

Or it might also be suggested to use all of non zero values.

5.3. Examples 102

Table 5.9: Number of non-zero residuals, the percentages and detected outliers by

a simulation study of 1000 on a BIB design in example 5.3.3

Number of non-zero residuals 5 6 7 8

Percentages appeared 0.4 94.9 4.5 0.2

res 1 0 66 6 1

res 2 0 0 0 0

res 3 0 2 0 0

res 4 0 0 0 0

res 5 0 0 1 0

res 6 0 0 0 0

res 7 1 2 1 0

res 8 0 0 0 0

res 9 4 168 18 2

res 10 1 10 1 0

res 11 0 0 0 0

res 12 0 0 0 0

Chapter 6

Conclusions

This chapter includes a summary of what has been achieved during this work, how

the research objectives have been met, what further questions have been raised and

suggestions for further work.

6.1 What has been achieved and what is left to

do?

In chapter 2, two methods of outlier detection in univariate data have been compared

by simulation study and Tukey's method was found to be generally more efficient.

A list of optimum cut-off values for a wide range of sample sizes has been provided

for Tukey's method. The result shows there is a different pattern for optimum cut­

offs on odd and even number of sample sizes but a convergence can be seen for

large sample sizes. The list also includes the confidence interval for each optimum

cut-off. This list could be improved by repeating the simulation study incorporating

the suggestion for improvement in section 3.5 and also using the positively and less

biased estimator of minimum badness.

In chapter 3, for a 4 x 5 two-way factorial design without replication, the optimum

cut-off obtained by simulation study has been compared with two old simulations.

In section 3.5, some improvements for the simulation study have been suggested

and then for a wide range of two-way dimensions, optimum cut-off values with their

confidence intervals have been obtained using the improved simulations. Near me-

101

6.1. What has been achieved and what is left to do? 102

dian, as a choice of one of the middle values in an even number of data, is used as

the sweep function of decomposition. A pattern might be found for the optimum

cut-offs but simulations for bigger two-way tables are required.

The measure of inefficiency is based on removing the suspected outliers from the

data. Possible alternatives are winsorising, half-winsorising or even fractional win­

sorising the suspected outliers. They might be more efficient.

In Chapter 4, a new hierarchical decomposition algorithm has been developed

which can be used for many types of factorial designs. Decomposing a table helps to

do an exploratory data analysis and is the basis for the robust analysis of variance

introduced in Seheult and Thkey (2001).

Using the new algorithm, many types of factorial designs with or without replication

can be decomposed including incomplete, unbalanced, Latin square and fractional

factorial designs. One of the most important achievements of this algorithm is the

possibility of choosing the desired interaction effects by defining a model. Using the

algorithm, one may find lists of cut-off values for a variety of factorial designs; for

example, see section 4.4 for such a list. The function in R for the new algorithm is

an average based decomposition with a unique answer. It still needs some work to

do the decomposition faster.

In Chapter 5, a robust data analysis based on Seheult and Thkey (2001) has

been programmed in R. The collection of functions have been put in a library in

R named robeda and the intention is to submit to CRAN. With the library, many

factorial designs and models can be robustly analysed. The final output of the main

function of the library is a joint table of standard and robust ANOVA tables. The

elements of the decomposition can be displayed or passed to other functions in R.

Object oriented properties of R have been used and the usage of main functions is

similar to the other functions.

Paul's rule of two is used in Seheult and Thkey (2001) and should be added

to the library. A graphical display of the effects and residuals produced by the

decomposition helps interpretation and should also be added.

6.2. Further works 103

6.2 Further works

• Redoing the simulation study in section 2. 7, to find out a more precise list of

optimum cut-offs in univariate data by considering the improvement points in

section 3.5 and using B~, introduced in section 2.6, to scale the measure of

inefficiency.

• A new approach is to try fractional winsorising of suspected outliers during

the simulation study and see if it is more efficient.

• More simulation studies for other sizes of layout may lead to finding a pattern

for optimum cut-offs in two-way designs.

• There are still many factorial designs for which optimum cut-off values have

not been determined. A study (theoretical or by simulation) is needed to find

the best cut-off values for each particular design. It might be added as a table

to the library to use automatically for different designs.

• The hierarchical algorithm programmed in R might be improved to do a faster

decomposition.

• In the paper of Seheult and Tukey (2001), Paul's rule of two is suggested

for application to the robust ANOVA table based on Hoaglin, Mosteller, and

Tukey (1991; chapter 11). It might be added in future to the library.

• Trimming is another way of dealing with outliers and it seems a good idea for

it to be available in the library.

• Methods other than Tukey's method to detect outliers might also be added in

the library. Then the user will be able to select fr01n them.

• When the collected data are integer, adjusting the number of non-zero residuals

in the outlier detection method might be modified to avoid the unexpected

termination of the procedure. Suggested modifications are 1) not to subtract

the smallest non-zero residual when the number of non-zeros are more than

the degrees of freedom and/or 2) using all the non-zeros rather than just the

6.2. Further works 104

number of degrees of freedom of non-zeros. Changing the residuals a little bit

is another suggestion which makes undesired zeros disappear.

Bibliography

H. S. Al-Madfai. Detecting outliers in factorial experiments. Master's thesis, Uni­

versity of Durham, 1994.

V. Barnett and T. Lewis. · Outliers in Statistical Data. Wiley, New York, third

edition, 1994.

J. Besag. On resistant techniques and statistical analysis. Biometrika, 68:463-469,

1981.

F. W. Bessel. Fundamenta Astronomiae. Nicolovius, Konigsberg, 1818.

L. Bhar and V. K. Gupta. A useful statistic for studying outliers in experimental

designs. Sankhya: The Indian Journal of Statistics, 63:338-350, 2001.

G. E. P. Box and N. R. Draper. Robust designs. Biometrika, 62(2):347-352, 1975.

P. J. Burns. Aspects of Robust Analysis in Designed Experiments. PhD thesis,

University of Washington, 1988.

P. S. Craig. A private communication, 2006.

C. Daniel. Locating outliers in factorial experiments. Technometrics, 2:149-156,

1960.

P. Filzmoser. Robust statistics and R, August 2006. http:/ /www.statistik.tuwien.

ac.at/rsr/.

E. Fowlkes, J. McRae, A. H. Seheult, and J. W. Tukey. Unpublished technical

report. Received from Dr. A. H. Seheult, 1981.

105

BIBLIOGRAPHY 106

F. E. Grubbs. Sample criteria for testing outlying observations. Technometrics, 2:

27-58, 1950.

F. E. Grubbs. Procedures for detecting outlying observations in samples. Techno­

metrics, 11:1-21, 1969.

F. Hampel. The breakdown points of the mean combined with some rejection rules.

Technometrics, 27:95-107, 1985.

F. Hampel. Robust statistics: A brief introduction and overview. Technical report,

Invited talk in the Symposium Robust Statistics and Fuzzy Techniques in Geodesy

and GIS held in ETH Zurich, March 12-16, 2001.

D. M. Hawkins. Identification of Outliers. Chapman and Hall, London, 1980.

D. C. Hoaglin, F. Mosteller, and J. W. Tukey. Fundamental of Exploratory Analysis

of Variances. Wiley, New York, 1991.

P. J. Huber. John W. Tukey's contributions to robust statistics. The Annals of

Statistics, 30(6):1640-1648, 2002.

P. J. Huber. The 1972 wald lecture robust statistics: A review. The Annals of

Mathematical Statistics, 43(4):1041-1067, 1972.

P. J. Huber. Robust Statistics. Wiley, New York, 1981.

B. Iglewicz and D. C. Hoaglin. How to Detect and Handle Outliers. Quality Press,

Wisconsin, 1993.

H. Jeffreys. Theory of Probability. Clarendon Press, Oxford, 1939.

E. G. Johnson. Robust Analysis of Factorial Designs via Elemental Subsets and Out­

tier Sterilization. PhD thesis, Princeton University, Educational testing service,

1989.

S. Kotz, N. L. Johnson, and C. B. Read, editors. Encyclopedia of Statistical Sciences,

volume 8. John Wiley, New York, 1988.

BIBLIOGRAPHY 107

D. C. Montgomery. Design and Analysis of Experiments. Wiley, New York, fourth

edition, 1997.

S. Newcomb. A generalized theory of the combination of observations so as to obtain

the best result. American journal of Mathematics, 8:343-366, 1886.

D. J. Olive. Applied robust statistics, 2006. http:/ /www.math.siu.edu/olive/cont.

pdf.

B. D. Ripley. Re: [R] Rank of a matrix?, 2002. http:/ /tolstoy.newcastle.edu.au/R/

help /02a/ 4608.html.

B. D. Ripley. Robust statistics - M.Sc. program in applied statistics - University of

Oxford, 2004. http:/ /www.stats.ox.ac.uk/pub/StatMeth/Robust.pdf.

B. Rosner. On the detection of many outliers. Technometrics, 17:221-227, 1975.

B. Rosner. Percentage points for a generalized esd many-outlier procedure. Tech­

nometrics, 25:165-172, 1983.

P. J. Rousseenuw and A. M. Leroy. Robust Regression and Outlier Detection. Wiley,

New York, 1987.

S. R. Searl. Linear Models. Wiley, New York, 1971.

G. A. F. Seber. Linear Regression Analysis. Wiley, New York, 1977.

A. H. Seheult. A private communication, 2006.

A. H. Seheult and J. W. Thkey. Toward robust analysis ofvariances. In Data Analysis

from Statistical Foundations. A Festschrift in Honour of the 75th Birthday of

D.A.S.Fraser., Ottawa, 2001. Nova Publishers.

R. E. Shiffier. Maximum z scores and outliers. The American Statistician, 42:79-80,

1988.

W. Stefensky. Rejecting outliers by maximum normed residual. The Annals of

Mathematical Statistics, 42:35-45, 1971.

BIBLIOGRAPHY 108

W. Stefensky. Rejecting outliers in factorial designs. Technometrics, 14:469-479,

1972.

A. J. Stromberg. Why write statistical software? the case of robust statistical

methods. Journal of Statistical Software, 10(5):1-8, 2004.

J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading, MA, 1977.

J. W. Tukey. Robust techniques for the user. In Launer R.L. and Graham N.W.,

editors, Robustness in Statistics, pages 103-106, New York, 1979. Academic Press.

N. R. Ullman. The analysis of means (anom) for signal and noise. Journal of Quality

Technology, 21:111-127, 1989.

G. N. Wilkinson. A general procedure for analysis of variance. Biometrika, 57:19-46,

1970.

F. Xhonga. Direct gold alloys- part 11. Journal of the American Academy of Gold

Foil Operators, 14:5-15, 1971.

G. Y. Yatracos. A note on Tukey's polyefficiency. Biometrika, 78(3):702-703, 1991.

Appendix A

A note by Dr. P. Craig on

estimated minimum badness

We have data B(Ti) fori= 1, ... , n near to the minimum of the expected badness.

Assume the expected badness b("y) is quadratic near the minimum and that B("yi) is

an unbiased estimate of b("yi) and that Var['Yi J does not depend on i. For the moment

we will also assume that B(/1), ... , B("yn) are independent. We are interested in

estimating mini' b(T) and we have two approaches: (i) Bm = mini B(!i) and (ii)

find i for which B('Yi) is minimum, write i' for that cut-off and then make new

observation B*()'). The purpose of what follows is to study the bias involved in the

two methods. We believe Bm is mostly biased below and B* (i') is biased above.

The question is which bias is worse. Note that B* (i') is an unbiased esimate of b(i')

and so the bias is E[b(i')].

As a metaphor for our real situation we will study the following problem. We

observe independent Y0 , ... , Ym where Yi rv (J-ti, 1) for /1i = a(xi- ~) 2 and xi= i/m.

The parameter a represents the ratio of the sampling standard deviation of B(li)

to the difference between the maximum and minimum of b(1) on the range we are

considering. m is effectively n - 1.

For even values of m, we have a best-case situation where we actually make an

observation of badness at the minimum and for even values we have a worst-case

situation where the minimum is in the middle between two of our observations.

109

Appendix A. A note by Dr. P. Craig on estimated minimum badnessllO

Let L = mini Yi. The cdf of L is

FL(y) = 1- rr[1- <I>(y- /Li)]
i

and we can approximate E[L] numerically in R using the integrate function based

on the general formula for obtaining the expectation of a random quantity from the

cdf:

E[X] =loo [1- F(x)] dx- 1: F(x) dx

The results are shown in the picture below. The red curves are for m= 1, 3, 5 and

7 (m increasing as you go down the picture). The black curves are for m = 2, 4, 6, 8

(again m increasing as you go down the picture). The bias is potentially quite large

for small a, i.e. when the badness curve is nearly flat compared to the sampling

variation. If the the sampling errors are small relative to the change in badness

from one cutoff to another, the bias is small. In either case the bias is relative to

the sampling standard deviation.

0

C\1
I

0 10 20 30 40 50

a.

Appendix A. A note by Dr. P. Craig on estimated minimum badnesslll

Now let I be the (random) value for which Y1 = min1 }j. Then

P[I = i] = 1: cjJ(y - J-ti) l_J.[l - <I>(y - /-tj)] dy
J-rt

which again may be approximated using integrate. We want to find E[/-ti] =

E[a(x1 - ~) 2] which is easy once we have computed the probability distribution of

I.

The results are shown in the picture below. The red curves are for m = 1, 3, 5

and 7 (m increasing as you go down the picture). The black curves are for m= 2,

4, 6, 8 (again m increasing as you go down the picture at a = .5). The bias is

effectively bounded by .4 unless m is very small. On the other hand, the bias takes

a long time to decay away for even m and becomes very large for odd m if a becomes

very large. As before the bias is being measured relative to the sampling standard

deviation. It would appear that this method is less likely to produce a bias which

would cause problems in subsequent analyses.

...........
::3: ..__.
w

CO
c:)

w
c:)

"<t
c:)

0
c:)

0 10 20 30 40 50

Appendix B

R functions used in Chapter 2

B.l bbO.sim

function (nn = 5:5, rr = 2000, ss= seq(0.7, 1.3, 0.05), kk = 1,

p1 = "")

{

}

for (jn in nn) {

}

for (ii in 1:kk) {

}

BBB = b.Oway.O(matrix(rslash.O(rr * jn), jn, rr), ss)

aa <- apply(BBB[[1]] [, -1], 1, mean)

dput(cbind(ss, aa), paste(p1, paste(jn, rr, kk, ii),

sep = ""))

B.2 rslash.O

function (nnnn)

{

rnorm(nnnn)/(runif(nnnn))

}

112

B.3. b.Oway.O

B.3 b.Oway.O

function (aaaa, cfs)

{

}

rsg <- aaaa

kr = dim(aaaa)[2]

n = dim(aaaa)[1]

aaaa <- rbind(aaaa, rep(O, kr))

aaaa <- apply(aaaa, 2, sweeper.O, swp.f = "lomedian")

aaaa <- aaaa[1:n,]

oooo <- apply(abs(aaaa), 2, order, decreasing= T)

rsg <- matrix(rsg[oooo + (col(oooo) - 1) * nrow(oooo)], n,

kr)

aaaa <- apply(abs(aaaa), 2, sort, decreasing T) [1:(n-

1) ']

ii = 1:(n 1)

ref.vals <- qnorm(1 (3 * ii - 1)/(6 * (n - 1) + 2))

aaaa <- aaaa/ref.vals

lambda <- t(t(aaaa)/apply(aaaa, 2, lomedian))

lambda <- rbind(lambda, rep(O, kr))

B = nB = eO

for (icf in cfs) {

}

ss =matrix(!, n, ~~)

ss[lambda <= icf] = 0

ss apply(ss, 2, cumprod)

ss 1 - ss

nn <- apply(ss, 2, sum)

bb = (apply(rsg * ss, 2, sum)/nn)A2

B = rbind(B, c(icf, bb))

nB = rbind(nB, c(icf, nn))

list(B, nB)

113

B.4. sweeper.O

B.4 sweeper.O

function (vv, swp.f)

{

}

11 length(vv)

tt = vv[1:ll - 1]

vvv = tt[!is.na(tt)]

111 = length(vvv)

aaa <- switch(swp.f, mean= mean(vvv), median= median(vvv),

lomedian = sort(vvv)[ceiling(lll/2)], fibian = {

aba = median(vvv)

if (floor(lll/2) * 2 == 111) {

lom = sort(vvv)[lll/2]

him= sort(vvv)[lll/2 + 1]

}

ab a

} ' "")

if (abs(lom + vv[ll]) < abs(him + vv[ll]))

aba = lom

else if (abs(lom + vv[ll]) > abs(him + vv[ll]))

aba = him

if (aaa == "")

return("Error: Unknown sweeper function")

vv[ll] = vv[ll] + aaa

vv[1:ll - 1] = vv[1:ll - 1] - aaa

vv

B.5 lomedian

function (vv)

{

svv = sort(vv)

114

B.6. bbO.sim.res

svv[ceiling(length(svv)/2)]

}

B.6 bbO.sim.res

function (p1 = 11 arc/80.s1ash/1/ 11
, ns c(4:30, 49, 50), 11 50,

rr = 2e+05)

{

}

res = eO

for (nn in ns) {

}

kk = seq(0.7, 1.3, 0.01)

for (i in 1:11) kk = cbind(kk, dget(paste(p1, nn, 11 11

rr, 11 11 , 11, 11 11 , i, sep = 11 11)) [, 2])

kk = cbind(kk, t(app1y(kk[, -1], 1, ssummary)))

res= rbind(res, c(nn, kk[, -c(2:(11 + 1))] [kk[, 11 +

2] == min(kk[, 11 + 2])],))

colnames(res) = c(11 n 11
,

11 cut-off/min8 11
,

11 min 8 11
,

11 stdev 11
,

11 C. I. %95 L. 11
,

11 C. I. %95 U. 11
)

res

B.7 ppO.sim

function (r = 200, n = 5, cfs seq(0.8, 1.6, 0.05), cp 1)

{

slash= matrix(rnorm(r * n)/runif(r * n), n, r)

gauss.conv = qnorm(pnorm(slash) + (dnorm(slash) - dnorm(O))/slash)

888 = b.Oway.O(cbind(gauss.conv, slash), cfs)

8mB= matrix(app1y(rbind(888[[1]] [, -1] [, 1:r], 888[[1]] [,

-1] [, (r + 1):(2 * r)]), 1, mean), length(cfs), 2)

8v8 = matrix(apply(rbind(B88[[1]] [, -1] [, 1:r], 888[[1]] [,

-1] [, (r + 1):(2 * r)]), 1, var), length(cfs), 2)

115

B.8. ppO.sim.res 116

colnames(BmB) = colnames(BvB) c("Normal", "Slash")

BmB[, 1] = BmB[, 1]/(1/n)

BmB[, 2] = BmB[, 2]/bbOsimres[, 3] [bbOsimres[, 1] == n]

dput(list(scaled.mean = cbind(cfs, BmB), unscaled.variance = cbind(cfs,

BvB), remained.obs.n = cbind(cfs = c(normal = cfs, slash= cfs),

}

t(apply(rbind(BBB[[2]] [, -1] [, 1:r], BBB[[2]] [, -1] [,

(r + 1):(2 * r)]), 1, function(x) c(min = min(x),

Max = max(x), Mean= mean(x))))), c(n = n, r = r,

cp = cp)), paste(n, r, cp))

B.8 ppO.sim.res

function (ns = 5, r = 1e+06, cps = 2:4, p1

p2 = "" log="", plpl = 0)

"-/arc/BO.sn/",

{

BB = xlxl = ylyl = c()

for (n,in ns) {

for (cp in cps) {

BmB = dget(paste(p1, n 11 11

' ' r, " " , cp, p2, sep

xlxl summary(c(xlxl, BmB[, 1]))[c(1, 6)]

}

}

ylyl summary(c(ylyl, as.vector(BmB[, -1]))) [c(1,

6)]

BB = cbind(BB, BmB)

if (plpl == 0) {

ccp = 0

for (n in ns) {

for (cp in cps) {

plot (BB [, ccp + 1] , BB [, ccp + 2] , pch = "N",

""))$scaled.mean

"o", lwd = 1, ylim = ylyl, xlim = xlxl, lty = cp,

main=paste("n=", n, ", r=", r, "(", paste(cps,

B.8. ppO.sim.res

collapse= 11
,

11
),

11
)

11
), xlab ="Cut-off values",

ylab ="Scaled Badness", col= "green", log= log)

par(new = T)

117

plot(BB[, ccp + 1], BB[, ccp + 3], pch = as.character(cp),

"o", lwd = 2, ylim = ylyl, xlim = xlxl, lty = cp,

}

xlab = "" ylab = "", col= "red", log= log)

par(new = T)

ccp = ccp + 3

}

}

par(new F)

BB

else if (prod(apply(BB[, (1:length(cps)) * 3 - 2], 1, var)

0) == 1) {

}

BBm = cbind(BB[, 1], apply(BB[, (1:length(cps)) * 3-

1], 1, mean), apply(BB[, (1:length(cps)) * 3], 1,

mean))

plot(BB[, 1], apply(BB[, (1:length(cps)) * 3 - 1], 1,

mean), ylim = ylyl, "o", pch = "N", main paste("n=",

n, ",", r, "*", length(cps), "(", paste (cps, collapse = ", "),

11
)

11
), xlab = paste(11 Cut-off values 11

,
11

- intersection at: 11
,

round(mlines.int(BBm)$x, 4)), ylab = 11 Scaled Badness 11
,

col 11 green 11
)

par(new T)

c(n, round(mlines.int(BBm)$x, 4))

plot(BB[, 1], apply(BB[, (1:length(cps)) * 3], 1, mean),

ylim ylyl, 11 0 11
, pch = "S", lty = 2, xlab

ylab 1111
, col = "red")

c(n, round(mlines.int(BBm)$x, 4))

1111

else {

kk 11 Error: Cut-off sets are not the same!"

B.9. b.Oway

kk

}

}

B.9 b.Oway

function (r = 200, n = 5, cfs = seq(0.7, 1.6, 0.05), cp = 1,

method= "ST", swpf = "lomedian", self= "lomedian", sqlm =F)

{

slash= matrix(rnorm(r * n)/runif(r * n), n, r)

gauss.conv = qnorm(pnorm(slash) + (dnorm(slash) - dnorm(O))/slash)

BBB = switch(method, ST = b.Oway.ST(cbind(gauss.conv, slash),

cfs, swpf, self, sqlm), MZ = b.Oway.MZ(cbind(gauss.conv,

slash), cfs))

BmB = matrix(apply(rbind(BBB[[1]] [, -1] [, 1:r], BBB[[1]] [,

-1] [, (r + 1): (2 * r)]), 1, mean), length(cfs), 2)

BvB = matrix(apply(rbind(BBB[[1]] [, -1] [, 1:r], BBB[[1]] [,

-1][, (r + 1):(2 * r)]), 1, var), length(cfs), 2)

118

colnames(BmB) = colnames(BvB) = c("Normal", "Slash")

list(unscaled.mean = cbind(cfs, BmB), unscaled.variance = cbind(cfs,

BvB), remained.obs.n = cbind(cfs = c(normal = cfs, slash= cfs),

t(apply(rbind(BBB[[2]] [, -1] [, 1:r], BBB[[2]] [, -1] [,

}

(r + 1):(2 * r)]), 1, function(x) c(min = min(x),

Max = max(x), Mean= mean(x))))), c(n = n, r = r,

cp = cp, method = method))

B.lO b.Oway.ST

function (aaaa, cfs, swpf = "lomedian", self "lomedian")

{

rsg <- aaaa

kr = dim(aaaa)[2]

B.11. b.Oway.MZ

}

n = dim(aaaa)[1]

aaaa <- rbind(aaaa, rep(O, kr))

aaaa <- apply(aaaa, 2, sweeper.O, swp.f swpf)

aaaa <- aaaa[1:n,]

oooo <- apply(abs(aaaa), 2, order, decreasing= T)

rsg <- matrix(rsg[oooo + (col(oooo) - 1) * nrow(oooo)], n,

kr)

aaaa <- apply(abs(aaaa), 2, sort, decreasing= T)[1:(n-

1) ']

ii = 1: (n - 1)

ref.vals <- qnorm(1 (3 * ii - 1)/(6 * (n - 1) + 4))

aaaa <- aaaa/ref.vals

lambda <- t(t(aaaa)/apply(aaaa, 2, self))

lambda <- rbind(lambda, rep(O, kr))

B = nB = eO

for (icf in cfs) {

}

ss =matrix(!, n, kr)

ss[lambda <= round(icf, 2)] 0

ss apply(ss, 2, cumprod)

ss 1 - ss

nn <- apply(ss, 2, sum)

bb = (apply(rsg * ss, 2, sum)/nn)~2

B = rbind(B, c(icf, bb))

nB = rbind(nB, c(icf, nn))

list(B, nB)

B.ll b.Oway.MZ

function (aaaa, cfs)

{

rsg <- aaaa

119

B.12. b.Oway.res.6.ci

kr = dim(aaaa)[2]

n = dim(aaaa) [1]

120

lambda= apply(aaaa, 2, function(zz) abs(0.6745 * (zz - median(zz))/

median(abs(zz - median(zz)))))

}

B = nB = eO

for (icf in cfs) {

}

ss = matrix(1, n, kr)

ss[lambda > icf] = 0

nn <- apply(ss, 2, sum)

bb = (apply(rsg * ss, 2, sum)/nn)-2

B = rbind(B, c(icf, bb))

nB = rbind(nB, c(icf, nn))

list(B, nB)

B.12 b.Oway.res.6.ci

function (nn = 15, method= "ST", location= "arc/res.short-cfs/",

res.table = b.Oway.res.table.1, kk = 2)

{

fff ccc(1, nn, method, location, res.table)[[1]] [, 1]

111 length(fff)

ddd = eO

for (j in 1:(111 * kk)) ddd = cbind(ddd, ccc(j, nn, method,

location, res.table)[[1]] [, 2])

LU = cir(t(ddd)[cbind(1:(lll * kk), rep(1:lll, kk))], rep(fff,

kk))

par(mfrow = c(2, 2))

plot(lm(t(ddd)[cbind(1:(lll * kk), rep(1:lll, kk))] - rep(fff,

kk)), main= paste(method, nn))

list(lm(t(ddd)[cbind(1:(lll * kk), rep(1:lll, kk))] - rep(fff,

kk) + I(rep(fff, kk)-2)), LU, lm(t(ddd)[cbind(1:(lll *

B.13. b.Oway.summ

kk), rep(1:lll, kk))] - rep(fff, kk)))

}

B.13 b.Oway.summ

function (nnnn = c(4:20, 30), rep1

{

10000, rep2 3)

}

aaaa = eO

for (nn in rep(nnnn, rep2)) {

}

cccc <- apply(apply(matrix(rslash(rep1 * nn), rep1, nn),

1, function(xxxx) {

STm1(xxxx, cu = b.Oway.res.table[b.Oway.res.table[,

1] == nn, 7])$r

}), 2, sum)

bbbb <- c(nn, mean(cccc/nn), table(cccc))

aaaa <- c(aaaa, bbbb)

aaaa

B.14 STml

function (xxx, swp = "lomedian", scalf "lomedian", cutoff 1.5)

{

if (length(dim(xxx)) == 0)

ddff = length(xxx) - 1

else ddff = prod(dim(xxx) - 1)

xx = as.vector(xxx)

121

aa2 xx- switch(swp, lomedian = lomedian(xx), median= median(xx))

oo3 = order(abs(aa2))

aa3 sort(abs(aa2))

nnzz <- sum(aa3 != 0)

if (nnzz < ddff)

B.14. STml

nnn = min(ddff, sum(aa2 != 0) + 1)

else {

}

aa3 aa3- aa3[length(xxx):1] [ddff + 1]

nnn = ddff

aa4 = c(rep(NA, length(xx)- nnn), qnorm(((nnn- (nnn:1) +

1)/(nnn + 2/3) + 1)/2))

aa5 = aa3/aa4

122

aa6 = aa5/switch(scalf, lomedian = lomedian(aa5), median= median(aa5,

}

na.rm = T))

aa7 = rep(1e+06, length(xx))

aa7[oo3] = cumprod(((aa6 > cutoff)~2)[length(xx):1])[length(xx):1]

aa7[is.na(aa7)] = 0

list(details = cbind(xx, aa2, oo3, aa3, aa4, aa5, aa6, aa7),

resault = array(aa7, dim(as.array(xxx))))

Appendix C

R functions used in Chapter 3

C.l b.2way.new.2

function (lvls = c(5, 4), mdl =NULL, data= NULL, rr = 8, cfs = seq(0.7,

3, 0.1), swpf = NE.median, self= "lomedian", effecttoadd = c(1,

{

2), sqlm =F)

if (is.null(mdl)) {

fr = factor(rep(1:lvls[1], rep(lvls[2], lvls[1])))

fc factor(rep(1:lvls[2], prod(lvls)/lvls[2]))

data = data.frame(fr, fc)

mdl = -fr + fc

}

des.m = incidence.matrix.2(mdl, data)

dims <- table (des. m [[3]] [des. m [[2]] 1])

rrow = dims[1]

ccol = dims [2]

slash= matrix(rslash(nrow(des.m[[1]]) * rr, C = T, M= 80),

nrow(des.m[[1]]), rr)

gauss.conv = qnorm((pslash(slash) - pslash(-80))/(pslash(80) -

pslash(-80)))

if (effecttoadd[1] != 0) {

cc2 = matrix(O, sum(dims) + 1, rr)

123

C.l. b.2way.new.2 124

}

for (jj in 1:length(effecttoadd)) {

}

cc= matrix(rnorm(dims[effecttoadd[jj]] * rr), ncol = rr)

cc2[des.m[[3]] == effecttoadd[jj],] <- matrix(as.vector(t(cc)) -

c(rep(1, nrow(cc)) %*% cc/nrow(cc)), ncol = rr,

byrow = T)

cc3 <- des.m[[1]] %*% cc2

slash <- cc3 + slash

gauss.conv <- cc3 + gauss.conv

rrnd = cbind(gauss.conv, slash)

rres = apply(t(t(rrnd)- apply(rrnd, 2, median)), 2, function(xxxx) {

as.vector(n0gg.avg.2way(n2gg(matrix(xxxx, ccol, rrow)),

swp = "NE.median")[-(ccol + 1), -(rrow + 1)])

})

BBad eO

icfs cfs[length(cfs):1]

for (cf in icfs) {

rnd2 = rrnd

iind = apply(rres, 2, function(xxxx) {

})

STm2(xxxx, ddff = (rrow- 1) * (ccol- 1), cutoff cf,

scalf = self) $r

if (sum(apply(iind == 0, 2, function(xxxx) {

mat.rank(des.m[[1]] [xxxx,])

}) - (sum(lvls) - 1)) != 0)

break

rnd2[iind == 1] = NA

A = apply(rnd2, 2, function(xxxx) {

yyyy <- n0gg(n2gg(matrix(xxxx, rrow, ccol, byrow T)),

swp = "mean")

c(row.coef = yyyy[-(rrow + 1), (ccol + 1)], col.coef = yyyy[(rrow +

1), -(ccol + 1)])

C.l. b.2way.new.2 125

}

}

})

if (effeettoadd[1] != 0)

A<- A- ebind(ee2[-1,] , ee2[-1,])

br <- apply(A[des.m[[3]] [-1] 1,]~2, 2, sum)

be <- apply(A[des.m[[3]] [-1]

Bads rbind(br, be)

2,] ~2, 2, sum)

Bads rbind(Bads, eeol * Bads[1,] + rrow * Bads[2,

])

BBad = rbind(BBad, ebind(e(ef, ef, ef), Bads))

if (length(BBad) -- 0)

break

if (length(efs) > 1 & ef >= 1)

dput(list(lvls, rrnd, iind), paste("rank", date()))

if (sqlm) {

}

nnn = rrow * eeol

half.gq = sort(qnorm(((nnn- (nnn:1) + 1)/(nnn + 2/3) +

1)/2))

SqLm = apply(apply(rrnd, 2, funetion(xxxx) sort(abs(xxxx)))/half.gq,

2, lomedian)~2

BBad[, -1] = t(t(BBad[, -1])/SqLm)

BBad = ebind(BBad [, 1] , BBad [, 2: (rr + 1)] %*% rep (1, rr) /rr,

BBad[, (rr + 2):(rr * 2 + 1)] %*% rep(1, rr)/rr, BBad[,

2:(rr + 1)]~2 %*% rep(1, rr)/rr, BBad[, (rr + 2):(rr *

2 + 1)]~2 %*% rep(1, rr)/rr)

dimnames(BBad) = list(rep(e("Br", "Be", "BT"), dim(BBad) [1]/3),

e("efs", "Mean.Gauss", "Mean. Slash", "MeanSq.Gauss",

"MeanSq.Slash"))

list(BBad, rr = rr)

C.2. incidence.matrix.2

C.2 incidence.matrix.2

function (mdl, dt = NULL)

{

options(contrasts c("contr.treatment", "contr.poly"))

ddtt = 1111

if (!is.null(dt))

ddtt = "dt$"

tt <- attr(terms(mdl, data = dt), "term. labels")

00 <- attr(terms(mdl, data = dt), "order")

ff = ee = dd = c()

for (ii in 1:length(tt)) {

if (!is.null(dt))

aa <- eval(parse(text = paste("model.matrix(-", tt [ii],

",data=dt)")))

else aa <- eval(parse(text paste("model.matrix(-",

tt[ii]' ")")))

bb <- aa[, 1] - apply(as.matrix(aa[, -1]), 1, sum)

if (sum(bb) == 0)

a a <- a a [, -1]

else {

aa [, 1] <- bb

126

dimnames(aa)[[2]] [1] = paste(tt[ii], eval(parse(text paste("levels(",

ddtt, tt[ii], ")"))) [1], sep = "")

}

}

}

dd = cbind(dd, aa)

ee c(ee, rep(oo[ii], dim(aa)[2]))

ff c(ff, rep(ii, dim(aa)[2]))

list(X cbind(Intercept = 1, dd), lvls = cbind(lvls1 = c(O,

ee), lvls2 = c(O, ff)), neffects = c("Intercept", tt))

C.3. rslash

C.3 rslash

function (nnnn, Censoring= F, M= 70)

{

}

if (!Censoring)

rnorm(nnnn)/(runif(nnnn))

else {

}

a= rnorm(nnnn * 1.05)/(runif(nnnn * 1.05))

a[abs(a) < M] [1:nnnn]

C.4 pslash

function (s)

{

}

t <- pnorm(s) + (dnorm(s) - dnorm(O))/s

t[abs(s) < 1e-07] = 0.5

t

C.5 n0gg.avg.2way

function (aa, swp)

{

}

bb =eO

while (!isTRUE(all.equal(aa, bb))) {

bb = aa

}

a a

aa <- (nOgg(bb, swp, st ="first", rep= 1) + nOgg(bb,

swp, st = "last", rep = 1))/2

127

C.6. nOgg

C.6 nOgg

{

}

for (1 in !:rep) {

bb = aa

}

a a

for (i in switch(starting.direction, first= 1:length(dim(aa)),

last= length(dim(aa)):1)) aa = n1gg(aa, i, swp)

if (isTRUE(all.equal(bb, aa)))

break

C.7 nlgg

function (aa, ppmm, swp.f)

{

}

iiii 1:length(dim(aa))

bbbb = iiii[ppmm]

iiii[ppmm] = iiii[1]

iiii [1] = bbbb

aa = aperm(aa, iiii)

dd = dim(aa)

d1 = dd [1]

d2 = prod(dd)/dd[1]

aa = array(aa, c(d1, d2))

for (i in 1:d2) {

aa[, i] = sweeper(aa[, i], swp.f)

}

aa = array(aa, dd)

aa = aperm(aa, iiii)

a a

128

C.8. sweeper

C.8 sweeper

function (vv, swp.f)

{

}

11 length (vv)

tt vv[1:ll - 1]

vvv = tt[!is.na(tt)]

111 = length(vvv)

aaa <- switch(swp.f, mean= mean(vvv), median= median(vvv),

lomedian = lomedian(vvv), himedian = himedian(vvv),

NE.median = NE.median(vvv),

fibian = {

aba = median(vvv)

if (floor(lll/2) * 2 == 111) {

lom = sort(vvv)[lll/2]

him= sort(vvv)[lll/2 + 1]

}

ab a

} ' "")

if (abs(lom + vv[ll]) < abs(him + vv[ll]))

aba = lom

else if (abs(lom + vv[ll]) > abs(him + vv[ll]))

aba = him

if (aaa == "")

return("Error: Unknown sweeper function")

vv[ll] = vv[ll] + aaa

vv[1:ll - 1] = vv[1:ll - 1] - aaa

vv

C.9 himedian

function (vv)

129

0.10. NE.median

{

}

svv = sort(vv)

svv[floor(length(svv)/2) + 1]

C.lO NE.median

function (vv)

{

}

nemed = lomedian(vv)

if (abs(himedian(vv)) < abs(lomedian(vv)))

nemed = himedian(vv)

nemed

C.ll n2gg

function (aa)

{

dd = dim(aa)

bb = as.vector(aa)

ddd = 1

ggg = 0

fff = 1

for (i in 1:length(dd)) {

ddd = ddd * dd[i]

ggg = ggg + fff

fff = ggg * dd[i]

cc = c ()

for (j in 1:(prod(dd)/ddd)) {

}

cc= c(cc, bb[((j- 1) * fff + 1):(j * fff)], rep(O,

ggg))

130

C.12. STm2

bb = cc

}

array(bb, dd + 1)

}

C.12 STm2

function (xx, scalf "lomedian", cutoff

{

oo3 order(abs(xx), decreasing= TRUE)

aa3 sort(abs(xx), decreasing= TRUE)

nnzz sum(xx != 0)

nndf ddff

if (nnzz < ddff)

nndf = min(ddff, sum(xx != 0) + 1)

else if (nnzz > ddff)

aa3 = aa3 - aa3[ddff + 1]

1. 5' ddff)

aa4 = c(qnorm(((nndf- (1:nndf) + 1)/(nndf + 2/3) + 1)/2),

rep(NA, length(xx) - nndf))

aa5 aa3/aa4

131

aa6 = aa5/switch(scalf, lomedian = lomedian(aa5), himedian = himedian(aa5),

}

median = median(aa5, na.rm = TRUE))

aa7 = rep(1e+06, length(xx))

aa7[oo3] = cumprod(((aa6 > cutoff)~2))

aa7[is.na(aa7)] = 0

list(details = cbind(xx, oo3, aa3, aa4, aa5, aa6, aa7), result= aa7)

C.13 mat.rank

function (xxxx)

{

aaaa = svd(xxxx, nu = 0, nv 0)

C.14. b.2way.new.2.res 132

sum(aaaa$d > 1e-04 * aaaa$d[1])

}

C.14 b.2way.new .2.res

function (lvls = c(5, 4), swpf = "NE.median", self= "lomedian",

rr = 1:10, location= "-/arc/final-now/", start.order 1111

effecttoadd = c(1, 2), rept = 10000, prts = F, whichB c("Br",

{

"Be", "BT"), comma = 11 11

' '

pt = function(a, lcfs) {

iter = length(a)/lcfs/5

if (floor(iter) != iter) {

dput (a, "a")

cfseq = "0.1.2.7.0.1.")

return(paste("########################", paste(lvls,

collapse=""), "##########################"))

}

a<- apply(array(a, c(lcfs, 5, iter)), c(1, 2), mean)

row.names(a) <- row.names(aa[[1]])

par(mfrow = c(1, length(whichB)))

cc = eO

for (jj in whichB) {

b <- a[row.names(a) -- jj,]

minBg = switch(jj, Be= (lvls[2]- 1)/lvls[1], Br

1)/lvls[2], BT lvls[1] + lvls[2] - 2)

minBs = min(b[, 3])

(lvls [1] -

b = cbind(b, sqrt((b[, 5] - b[, 3]~2) * iter* rept/(iter *

rept - 1)))

plot(rep(b[, 1], 2), c(b[, 2]/minBg, b[, 3]/minBs),

ylab = "", xlab = "", pch = rep(c("o", "*"),

rep(dim(b)[1], 2)))

legend("topleft", c("Gaussian", "Slash"), pch c("o",

"*"))

C.14. b.2way.new.2.res 133

}

cc

}

cutpoint = mlines.int(cbind(b[, 1], b[, 2]/minBg,

b [, 3] /minBs))

gg = b[b[, 2] == min(b[, 2]), 1:2] .
if (is.matrix(gg)) {

print(paste("Cut-off's", paste(gg[, 1], collapse=","),

"have the same (minimum) badness in Gaussian"))

gg = gg [1']

}

ss= b[b[, 3] == min(b[, 3]), c(1, 6, 3)]

if (is.matrix(ss)) {

}

print(paste("Cut-off's", paste(ss[, 1], collapse

"have the same (minimum) badness in Slash"))

ss = ss [1']

cc= c(c(gg, ss, cutpoint$x,), cc)

names(cc)[1:6] = c(paste(jj, c("minG.cf", "minG.nu",

"minBs.cf", "minS SD", "minS", "cf-mm",)))

title(main = paste(lvls[1], "x", lvls[2], "-", swpf,

11 '11) ,

"-" start.order, "-", effecttoadd[1], ",", effecttoadd[2],

"-" self,"-", aa[[2]], "(", switch(as.character(iter),

"1" = ii, ind), ")", sep = ""), jj, xlab ="cut-off values",

sub = paste ("minB (Nu.)=", round (min (b [, 2]) ,

5), " .. minimax-cf=", round(cutpoint$x, 4)))

summ = ptr = eO

a = ind = c()

for (ii in rr) {

aa = dget(paste(location, lvls[1], comma, lvls[2], " 11 . '
swpf, ".", start.order, effecttoadd[1], comma, effecttoadd[2],

11 11 . ' rept, ".", cfseq, ii, sep = ""))

a= c(a, aa[[1]])

C.15. b.2way.new.2.res.m2nd

}

lcfs <- dim(aa[[1]])[1]

if (!is.null(aa))

ind = paste(c(ind, ii), collapse="")

ptr = rbind(ptr, c(ii, pt(aa[[1]], lcfs)))

if (prts == T)

dev.printO

for (jj in whichB) summ = cbind(summ, apply(ptr[, grep(jj,

dimnames(ptr)[[2]])], 2, function(yy) {

xx = as.numeric(yy)

c(mean = mean(xx), var = var(xx), cv sqrt(var(xx))/mean(xx))

}))

summ = rbind(summ, overall = pt(a, lcfs))

list(header = c(lvls[1], lvls[2], swpf, self, rept, cfseq),

details = ptr, summary = summ)

}

C.15 b.2way.new.2.res.m2nd

function (cfseq = "0.1.2.7.0.1.")

{

tt = eO

sink("qq")

for (ii in 2:7) for (jj in ii:7) {

a= b.2way.new.2.res(c(ii, jj), rr = c(1:10), rept = 10000,

location= "-/arc/final-now/", start= "", comma= 11 11

' '
cfseq = cfseq, w = "BT")

b = b.2way.new.2.res(c(jj, ii), rr = c(1:10), rept = 10000,

location= "-/arc/final-now/", start="", comma= 11 11
' '

cfseq = cfseq, w = "BT")

if (a$s[4, 3] != b$s[4, 3])

print(paste("Warning: gamma_m in(", ii, 11 11

' ' jj'

"is not the same as(", jj, 11 tl

' '
ii, 11) 11))

134

C.16. b.2way.new.2.res.mf 135

}

print(paste("cdr-awk3", paste(ii, jj, sep =","),"NULL NULL 10000",

a$s[4, 3], a$s[4, 3], "0 NE.median lomedian 1,2 10"))

for (kk in seq(round(mean(a$s[4, 6], b$s[4, 6]) - 0.05,

2), by= 0.01, length= 11)) print(paste("cdr-awk3",

paste(ii, jj, sep =","),"NULL NULL 10000", sprintf("%.2f",

kk), sprintf ("%. 2f", kk), "0 NE. median lomedian 1, 2 2"))

tt rbind(tt, c(ii, jj, a$s[4,]))

if (ii != jj)

}

sink()

tt = rbind(tt, c(jj, ii, b$s[4,]))

colnames(tt)[1] = cfseq

dput(tt, "b.2way.new.2.res.tbl")

C.16 b.2way.new .2.res.mf

function (lvls = c(7, 7), swpf = "NE.median", self "lomedian",

{

rr = 1:10, location= "-/arc/final-now/", ccff 0, mmin1 = "th",

title= T, start.order = ''", effecttoadd = c(1, 2), rept = 10000,

reps= T, prts = F, whichB = "BT", table= F, comma=",")

ttt = eO

tt = dget("b.2way.new.2.res.tbl")

kk = 1

while (kk <= dim(tt)[1]) {

overall <- tt[kk,]

cf = overall [5]

lvls = overall[1:2]

if (sum(lvls == 2) != 0) {

ttt = rbind(ttt, rep(O, 5))

kk = kk + 1

next

C.17. b.2way.new.2.res.ci

}

}

b eO

for (ii in rr) {

b = rbind(b, dget(paste(location, lvls[1], comma,

lvls[2], ".", swpf, ".", start.order, effecttoadd[1],

}

comma, effecttoadd[2], ".", rept, ".", cf,

cf, ".0.", ii, sep = ""))[[1]])

}

bb = b[row.names(b) == whichB,]

ttt = rbind(ttt, apply(bb, 2, mean))

if (lvls[1] != lvls[2]) {

}

ttt = rbind(ttt, 0)

kk = kk + 1

kk kk + 1

print(ttt)

cbind(tt, ttt)

11 11 . '

C.17 b.2way.new .2 .res.ci

function (lvls = c(7, 7), swpf = "NE.median", self= "lomedian",

{

rr = 1:22, location= "-/arc/final-now/", ccff 0, mmin1 = "th",

title = T, start. order = 1111
, effecttoadd c(1, 2), rapt= 10000,

reps= T, prts = F, whichB = "BT", table F, comma= 11 11

' '
cfs)

tt = dget("b.2way.new.2.res.tbl")

overall <- tt[tt[, 1] == lvls[1] & tt[, 2] == lvls[2],]

cfs = seq(round(overall[8] - 0.05, 2), by= 0.01, len = 11)

b =eO

for (cf in sprintf("%.2f", cfs)) for (ii in 1:2) {

136

C.17. b.2way.new.2.res.ci 137

aa = dget(paste(location, lvls[1], comma, lvls[2], 11 11 . '

swpf, ".", start.order, effecttoadd[1], comma, effecttoadd[2],

".", rept, ".", cf, ".", cf, ".0.", ii, sep = '"'))

if (is.null(aa))

return(paste("Error in file:", paste(location, lvls[1],

comma, lvls[2], ".", swpf, ".", start.order,

effecttoadd[1], comma, effecttoadd[2], ".", rept,

. ' cf, ".", cf, ". 0.", ii, sep = ""))) 11 11

b = rbind(b, aa[[1]])

}

bb = b[row.names(b) == whichB,]

cfs = as.numeric(names(table(bb[, 1])))

lcfs = length(cfs)

minBg = switch(whichB, Be = (lvls[2] - 1)/lvls[1], Br

1)/lvls[2], BT = lvls[1] + lvls[2]- 2)

minBs = overall[7]

n = length(bb[, 1])

X= cbind(rep(1, n), bb[, 1])

Y = bb[, 2]/minBg- bb[, 3]/minBs

par(mfrow = c(3, 2))

plot (X [, 2] , Y)

title(main = paste(lvls, collapse = "x"))

B = solve(t(X) %*% X) %*% (t(X) %*% Y)

plot(lm(Y- X[, 2]))

S = sqrt(t(E) %*% E/(n - 2))

C = c(-1/B[2], B[1]/B[2]-2)

(lvls [1] -

L1 = t(C) %*% B - qt(0.975, n - 2) * S * sqrt(t(C) %*% solve(t(X) %*%

X) %*% C)

U1 = t(C) %*% B + qt(0.975, n - 2) * S * sqrt(t(C) %*% solve(t(X) %*%

X) %*% C)

cc= c(O, as.numeric(paste(lvls, collapse="")), min(bb[,

2]), minBs, overall[8], -B[1]/B[2], c(L1, U1) - B[1]/B[2],

C.17. b.2way.new.2.res.ci

}

shapiro.test(E)$p)

cd <- lm(bb[, 3]/overall[4]-2 * overall[3]/sqrt(1e+05) -

bb [, 1]) $coef

VVT = matrix(c(cd[1]-2, prod(cd), prod(cd), cd[2]-2), 2,

2)

Var8 = as.numeric(s)-2 * solve(t(X) %*% X) + VVT

L2 = t(C) %*% 8 - qnorm(0.975) * sqrt(t(C) %*% Var8 %*%C)

U2 = t(C) %*% 8 + qnorm(0.975) * sqrt(t(C) %*% Var8 %*% C)

cc = rbind(cc, c(1, as.numeric(paste(lvls, collapse = '"')),

min(bb[, 2]), min8s, overall[5], -8[1]/8[2], c(L2, U2)-

8 [1] /8 [2] , shapiro. test (E)$p))

colnames(cc) = c("Uncert.Ind.", "lvls", paste(whichB, c("minG.nu",

"minS", "cf-mm", "cf-lm", "ci-lm-L", "ci-lm-U")), "Shapiro.p")

cc

138

Appendix D

R function for the new algorithm

of decomposition in chapter 4

Any called function which is not presented here, can be found in previous appendices.

D.l decomp

function (mdl, dt = NULL, swp.f =mean, ico = NULL)

{

options(contrasts = c("contr.treatment", "contr.poly"))

aa = incidence.matrix(mdl, dt)

if (!is.null(dt))

y = eval(parse(text = paste("dt$", as.character(mdl)[2])))

else y = eval(parse(text = paste(as.character(mdl)[2])))

yna <- is.na(y)

aa[[1]] = aa[[1]] [!is.na(y),]

aa[[2]] = aa[[2]] [apply(aa[[1]], 2, sum) != 0,]

aa[[1]] = aa[[1]] [, apply(aa[[1]], 2, sum) != 0]

y = y[!is.na(y)]

ly = length(y)

X= cbind(aa[[1]], diag(1, ly, ly))

lvls1 = c(aa[[2]] [, 1], rep(max(aa[[2]] [, 1]) + 1, ly))

lvls2 = c(aa[[2]] [, 2], rep(max(aa[[2]] [, 2]) + 1, ly))

139

D.l. decomp

eo <- rep(O, ncol(X))

iiend <- lvls1 == max(lvlsl)

if (identical(svp.f, NE.median)) {

med.y = median(y, na.rm = TRUE)

y = y - med.y

}

co[iiend] = apply(X[, iiend] * y, 2, sum, na.rm = TRUE)/apply(X[,

iiend] ! = 0, 2, sum)

if (!is.null(ico))

eo = ico

pivot = function(X, coe, iiis, iis) {

ipivot = function(X, coef, iiiss, iis) {

for (ii in (1:length(iiiss))[iiiss]) {

}

coef

}

if (!is.child(colnames(X)[iis], colnames(X)[ii]))

next

bb <- 1 - (rep(1, nrow(X)) %*% (X[, ii] * X[,

iis]) == 0)

if (jj != 0 & sum(bb) >= length(bb) - sum(yna))

next

mp = svp.f(coef[iis] [bb == 1])

coef[ii] <- mp + coef[ii]

coef[iis] <- coef[iis] - mp * bb

plvls <- permutes(as.numeric(names(table(lvls2[iiis]))))

if (length(plvls) == 1)

return(ipivot(X, coe, lvls2 == plvls, iis))

sumcoe = 0

for (iii in 1:ncol(plvls)) {

coe.p = coe

for (iiii in 1:nrow(plvls)) coe.p = ipivot(X, coe.p,

lvls2 == plvls[iiii, iii], iis)

140

D.l. decomp 141

}

sumcoe sumcoe + coe.p

}

sumcoe/ncol(plvls)

CO.p = CO - CO

while (!isTRUE(all.equal(co.p, eo))) {

co.p = eo

for (kk in max(lvls2):1) {

jj <- lvls1[lvls2 == kk] [1] - 1

for (jjj in jj:O) eo<- pivot(X, eo, lvls1 -- jjj,

lvls2 == kk)

}

}

if (identical(swp.f, NE.median))

co[1] = co[1] + med.y

names(co) <- colnames(X)

names(co)[(length(names(co))- ly + 1):length(names(co))] = paste("res",

1:ly)

k = list()

for (j in O:max(lvls2)) k[[j + 1]]

x = rep(NA, length(yna))

x[!yna] = k[[max(lvls2) + 1]]

names(x) = paste("res", 1:ly)

k[[max(lvls2) + 1]] = x

eo = unlist(k)

co[lvls2 j]

cotab <- list.table3(round(co, 2), cbind(lvls1, lvls2), aa[[3]],

dt)

llist = length(cotab)

dof = unlist(lapply(2:(llist- 2), function(ii) prod(dim(as.array(

cotab[[ii]])) - 1)))

dof = c(dof, dof.res = sum(!is.na(y)) - 1 - sum(dof))

names(dof) <- c(attr(terms(mdl), "term.labels"), "residuals")

obs = unlist(lapply(2:(llist- 2), function(ii) prod(dim(as.array(

D.2. incidence.matrix

}

cotab[[ii)])))))

obs = c(ly, obs)

11 = list(vect =eo, tbl = cotab, lvls = cbind(lvls1, lvls2),

X= X, nterms = aa[[3]], dof = dof, obs = obs, mdl = mdl,

dt = dt)

class(ll) = c("lstpolish", "decomp")

11

D.2 incidence.matrix

function (mdl, dt = NULL)

{

options(contrasts c("contr.treatment", "contr.poly"))

ddtt = 1111

if (!is.null(dt))

ddtt = "dt$"

tt <- attr(terms(mdl, data= dt), "term. labels")

00 <- attr(terms(mdl, data = dt), "order")

ff = ee = dd = c ()

for (ii in 1:length(tt)) {

if (!is.null(dt))

aa <- eval(parse(text paste("model.matrix(-", tt[ii],

",data=dt)")))

else aa <- eval(parse(text paste("model.matrix(-",

tt[ii]' ")")))

bb <- aa[, 1] - apply(as.matrix(aa[, -1]), 1, sum)

if (sum(bb) == 0)

aa <- aa[, -1]

else {

aa[, 1] <- bb

142

dimnames(aa)[[2]) [1] = paste(tt[ii], eval(parse(text paste(

"levels(", ddtt, tt[ii], ")"))) [1], sep = "")

0.3. is.child

}

}

}

dd = cbind(dd, aa)

ee c(ee, rep(oo[ii], dim(aa)[2]))

ff = c(ff, rep(ii, dim(aa)[2]))

11 = list(X = cbind(Intercept = 1, dd), lvls = cbind(lvlsl = c(O,

ee), lvls2 = c(O, ff)), nterms = c("Intercept", tt))

class(ll) = "lstX"

11

D.3 is.child

function (big, ss)

{

}

if (big[l] == "" I ss -- "Intercept")

return(l)

big = paste (big, collapse = " : ")

big= paste(":", big, ":", sep = "")

ss= strsplit(ss, ":")

ss= unlist(lapply(ss, function(xx) paste(":", xx, ":", sep = "")))

prod(unlist(lapply(ss, function(xx) strsplit(big, xx) !=

big)))

D.4 permutes

function (x)

{

n = length(x)

if (n == 1)

return(x)

tmp = sapply(l:n, function(i) rbind(x[i], permutes(x[-i])))

143

D.5. list.table3 144

matrix(tmp, nrow = n)

}

D.5 list.table3

function (eo, lvls, nterms, dt)

{

}

aal = list()

for (j in O:max(lvls[, 2])) aal[[j + 1]] = co[lvls[, 2]

j]

k <- lapply(1: (length(aal)), function(jj) {

if (jj == length(aal))

return(aal[[length(aal)]])

kkk = eO

for (ii in 1:length(aal[[jj]])) kkk <- cbind(kkk, unlist(strsplit(

names (aal[[jj]]) [ii], 11
\\:

11
)))

tapply(aal[[jj]], lapply(1:nrow(kkk), function(i) kkk[i,

]) , paste)

})

names(k)

idt = 1111

c(nterms, 11 residuals")

if (!is.null(dt))

idt = 11 dt$"

nldt = nterms[seq(2, leng = length(table(lvls[, 2] [lvls[,

1] == 1])))]

ldt = eval(parse(text = paste("list(", paste(idt, nldt, collapse ","),

")")))

ldt = lapply(seq(along = ldt), function(ii) paste(nldt[ii],

ldt [[ii]] , sep = 1111
))

k$res.tab = tapply(k$res, ldt, paste, collapse ",")

k

D.6. print.lstpolish

D.6 print.lstpolish

function (11, ...)

{

print(11$tb1, ...)

}

D. 7 print .lstX

function (11, ...)

{

print (ll$X, ...)

}

145

Appendix E

R functions in robande library

Any called function which is not presented here, can be found in previous appendices.

E.l anova.decomp

function (tabdecomp, self= "lomedian", cf 1.5, wins 0.5)

{

tab4.1 = tabdecomp

tab3 <- decomp(mdl = tab4.1$mdl, dt = tab4.1$dt)

tab4.2 = 0

for (ii in l:max(tab4.1$1[, 2])) tab4.2 = c(tab4.2, STm2(tab4.1$v[tab4.1$1[,

2] == ii], ddff = tab4.1$dof[ii], cutoff= cf, scalf = sclf)$result)

tab5 = tab4.1$v[l]

for (ii in l:max(tab4.1$1[, 2])) tab5 = c(tab5, n5gg.3(tab4.1$v[tab4.1$1[,

2] == ii], tab4.2[tab4.1$1[, 2] == ii], wins))

tab6 <- decomp(tab4.1$mdl, dt = tab4.1$dt, ico = tab5)

tab7 <- tab4.2 * tab4.1$v- tab5 + tab6$v

options(contrasts = c("contr.sum", "contr.sum"))

kk <- t(t(tab4.1$X) * tab3$v)

kky <- apply(kk, 1, sum)

mdl.tmp = as.formula(paste("kky-", strsplit(as.character(tab4.1$mdl),

,_,) [3]))

if (!is.null(tab4.1$dt))

146

E.l. anova.decomp

data.tmp = cbind(tab4.1$dt, kky)

else data.tmp = NULL

aa anova(lm(mdl.tmp, data.tmp))[, 2]

kk <- t(t(tab4.1$X) * tab5)

kky <- apply(kk, 1, sum)

147

mdl. tmp = as. formula(paste (11 kky- 11
, strspli t (as. character (tab4. 1$mdl),

11-11) [3]))

if (!is.null(tab4.1$dt))

data.tmp = cbind(tab4.1$dt, kky)

else data.tmp = NULL

bb = anova(lm(mdl.tmp, data.tmp))[, 2]

tagged = eO

for (ii in 1:max(tab4.1$1[, 2])) tagged= c(tagged, paste(names(

tab4. 1$v [tab4. 2 == 1 & tab4. 1$1 [, 2] == ii]) , collapse = 11
,

11
))

Robust.ANOVA cbind(DF = tab4.1$dof, Standard.MS = aa/tab4.1$dof,

Inner.MS bb/tab4.1$dof, MS.Changes.Percent = (aa-

bb)/aa * 100)

rownames(Robust.ANOVA) paste(rownames(Robust.ANOVA), tagged,

sep = 11 -> 11
)

names(tab4.2)

tmp = tab4.2

names(tab5)

tmp[tmp 0] = 1111

tmp[tmp -- 11 111
] = 11 *11

tmp = paste(tmp, round(tab4.1$v, 2))

names(tmp) = names(tab4.1$v)

pres = list.table3(tmp, tab4.1$1, tab4.1$n, tab4.1$dt)

robana = list(mean.dcmp = tab3$tbl, swp.dcmp = tab4.1$tbl,

outliers = list.table3(tab4.2, tab4.1$1, tab4.1$n, tab4.1$dt),

half.wins = tab5, inner= tab6$tbl, add.dcmp = tab7,

Robust.ANDVA = list(formula = tab4.1$mdl, Robust.ANOVA = Robust.ANOVA),

dt = tab4.1$dt, lvls = tab4.1$lvls, nterms = tab4.1$nterms,

tab4.2, presentation = pres)

class(robana) = 11 lstrob 11

E.2. n5gg.3

rob ana

}

E.2 n5gg.3

function (mm, mmtag, wins 0.5)

{

}

eee3 <- mm

eee2 <- mmtag

tmp1 = summary(eee3[eee2 != 1])[c(1, 6)] *wins

eee2 = eee2 * sign(eee3)

eee3[eee2 == -1] = tmp1[1]

eee3[eee2 == 1] = tmp1[2]

eee3

E.3 print.lstrob

function (robana, ...)

{

print(robana$Robust.ANOVA, ...)

}

148

Appendix F

R functions to do the traditional

decomposition

Any called function which is not presented here, can be found in previous appendices.

F.l decom

function (mdl = 0, swp = "fibian", gf ="mean", eps = 0.01, rep= 100,

dir = "first", cf = 1.5, scalf = "lomedian")

{

bb = n3gg.2(mdl, gf)

tab3 = nOgg (n2gg (bb [[2]]) , "mean")

if (swp == "NE.median") {

}

med.bb = median(bb[[2)])

bb[[2]] = bb[[2]] - med.bb

aa = n2gg(bb[[2)])

if (dir == "avg")

aa = n0gg.2(aa, swp)

else aa = nOgg(aa, swp, st = dir)

ptrn = n4gg(dim(aa), mdl, bb[[1)] [1])

if (swp == "NE.median")

eval(parse(text = paste("aa", ptrn$index[1], "=med.bb+aa",

149

F.2. n3gg.2 150

}

ptrn$index[1])))

tab4.1 = aa

tab4.2tab5 = n5gg(aa, ptrn$i, l, cf = cf, scalf

tab4.2 = tab4.2tab5$tag

tab5 tab4.2tab5$rep

tab6 n0gg(tab4.2tab5$rep, "mean")

tab7 tab4.2 * (tab4.1- tab5) + tab6

scalf)

tabSa = cbind(n6gg(tab3, ptrn), n6gg(tab6, ptrn), n7gg(tab4.2,

ptrn))

tabS= cbind(tabSa[, c(1, 2, 4, 5)], 1- as.numeric(tabSa[,

4])/as.numeric(tabSa[, 2]))

colnames(tabS) = c("DF", "Std MS", "Inner MS", "# of exotics",

"% of MS changes")

tab10 n10gg(mdl, as.numeric(tabS[, 2]), as.numeric(tabS[, 1]))

tab11 n10gg(mdl, as.numeric(tabS[, 3]), as.numeric(tabS[, 1]))

ll = list(mean.decomposition = nSgg(tab3, ptrn), swp.decomposition =

nSgg(tab4.1, ptrn), i.swp.decomposition = nSgg(tab4.2, ptrn),

half_winsorized = nSgg(tab5, ptrn), mean.re_decomposition =

nSgg(tab6, ptrn), additive.decomposition = nSgg(tab7, ptrn),

Robust.ANOVA = tabS, tab10 = tab10, tab11 = tab11, ptrn = ptrn)

class(ll) = c("lstoldpolish", "decom")

ll

F.2 n3gg.2

function (mdl, gf)

{

ttmm as. character (attr (terms (mdl) , "variables"))

cell ""

for (ii in 3:length(ttmm)) cell <- paste(ccll, ttmm[ii],

sep = ", ")

list(eval(parse(text paste("tapply(", ttmm[2], 11 11

' '
"list(",

F.3. n0gg.2 151

substring(ccll, 2), "),length)"))), eval(parse(text = paste("tapply(",

ttmm[2], 11
,

11
, "list(", substring(ccll, 2), "), 11

, gf,

")"))))

}

F.3 n0gg.2

function (aa, swp, eps 1e-14, rep = 100)

{

}

for (1 in 1:rep) {

bb = aa

}

a a

per = permutes(1:length(dim(aa)))

cc = array(O, dim(aa))

for (j in 1:ncol(per)) {

}

tmp = aa

for (i in per[, j]) tmp <- n1gg(tmp, i, swp)

cc <- tmp + cc

aa = cc/ncol(per)

if (isTRUE(all.equal(bb, aa)))

break

F.4 n4gg

function (dimaa, ooo, repll)

{

ff <- attr(terms(ooo), "factors") [-1,]

ff = cbind(rep(O, dim(ff)[1]), ff)

ff <- (ff * (-2) + 1) * dimaa

eee = eO

F.5. n5gg

}

for (i in 1: dim(ff) [2]) {

cc = ff [' i]

ee 11 (11

for (j in 1:length(dimaa)) {

ee = paste(ee, cc [j] ' 11 '11)

}

ee substr(ee, 1, nchar(ee) - 1)

ee paste(ee, "] 11)

eee = c(eee, ee)

}

list(names = c("Overall", attr(terms(ooo), "term.labels")),

index= eee, dof = apply(ff, 2, function(xx) {

prod(xx[xx < 0] * (-1) - 2)

}), n = apply(ff, 2, function(xx) {

prod(xx[xx > 0] - 1)

}) * repll, levels= c(O, attr(terms(ooo), "order")))

F.5 n5gg

function (aa, eee, 1, cf 1. 5, scalf "lomedian")

{

aatag = aarep = aa

eval(parse(text = paste("aatag", eee[1], "=0")))

for (i in 2:length(eee)) {

eee3 eee1 = eval(parse(text = paste("aa", eee[i])))

eee2 STm2(as.array(eee1), scalf = scalf, cutoff= cf,

ddff = prod(dim(as.array(eee1)) - 1))$r

eval(parse(text = paste("aatag", eee[i], "=eee2")))

tmp1 summary(eee3[eee2 != 1])[c(1, 6)]/2

eee2 eee2 * sign(eee3)

eee3[eee2

eee3[eee2

-1] = tmp1 [1]

1] = tmp1 [2]

152

F .6. n6gg 153

eval(parse(text paste("aarep", eee[i], "=trunc(eee3)")))

}

list(tag = aatag, replaced = aarep)

}

F.6 n6gg

function (aa, ptrn)

{

}

tmp = eO

for (ii in 2:length(ptrn$n)) tmp = rbind(tmp, c(ptrn$dof[ii],

eval(parse(text = paste("sum(aa", ptrn$index[ii], "~2)*ptrn$n[ii]/

ptrn$dof[ii]")))))

rownames(tmp) = ptrn$name[2:length(ptrn$n)]

tmp

F.7 n7gg

function (aa, ptrn)

{

}

cc = eO

for (i in 2:length(ptrn$names)) cc = c(cc, sum(eval(parse(text =

paste("aa", ptrn$index[i], "==1")))))

cc

F.8 nlOgg

function (mo, ms, df)

{

for (kk in 1:(max(as.numeric(names(table(attr(terms(mo),

"order"))))) - 1)) {

F.8. nlOgg 154

df1 <- df[attr(terms(mo), "order") kk]

df2 <- df[attr(terms(mo), "order") (kk + 1)]

ms1 <- ms[attr(terms(mo), "order") kk]

ms2 <- ms[attr(terms(mo), "order") (kk + 1)]

11 = 1ength(ms1)

12 1ength(ms2)

msm = matrix(O, 11, 12)

for (ii in 1:11) for (jj in 1:12) msm[ii, jj] <- 1og2(ms1[ii]) -

1og2(ms2[jj])

a <- attr(terms(mo), "factor")[, attr(terms(mo), "order") -­

kk]

b <- attr(terms(mo), "factor")[, attr(terms(mo), "order") -­

(kk + 1)]

ab = matrix(O, 11, 12)

for (ii in 1:11) for (jj in 1:12) {

ab[ii, jj] <- sum(a[, ii] * as.matrix(b)[, jj]) kk

}

co1names(msm) attr(terms(mo), "term.1abe1s")[attr(terms(mo),

"order") == (kk + 1)]

rownames(msm) = attr(terms(mo), "term.1abe1s")[attr(terms(mo),

"order") -- kk]

msm[ab == 0] = NA

msm[msm > 1] NK

msm app1y(msm, 2, function(x) {

x == app1y(msm, 1, min, na.rm NA)

})

msm[msm == FALSE] = NA

ms[attr(terms(mo), "order")== (kk + 1)] <- app1y(rbind(msm *
ms1, ms2) * rbind(msm * df1, df2), 2, sum, na.rm =TRUE)/

app1y(rbind(msm * df1, df2), 2, sum, na.rm =TRUE)

ms[attr(terms(mo), "order")== kk] <- (app1y(msm, 1,

sum, na.rm = TRUE) == 0) * ms1

df[attr(terms(mo), "order")== (kk + 1)] <- app1y(rbind(msm *

F.9. print.lstoldpolish

}

}

df1, df2), 2, sum, na.rm =TRUE)

df[attr(terms(mo), "order")== kk] <- (app1y(msm, 1,

sum, na.rm = TRUE) == 0) * df1

cbind(attr(terms(mo), "term.1abe1s"), ms, df)

tmp = cbind(ms, df)

rownames(tmp) = attr(terms(mo), "term.1abe1s")

tmp [tmp [, 2] ! = 0 ,]

F .9 print.lstoldpolish

function (11, ...)

{

print(11$swp.decomposition, ...)

}

155

