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Abstract 

Factorial experimental designs are a large family of experimental designs. Robust 

statistics has been a subject of considerable research in recent decades. Therefore, 

robust analysis of factorial designs is applicable to many real problems. Seheult and 

Tukey (2001) suggested a method of robust analysis of variance for a full factorial 

design without replication. Their method is generalised for many ot~r factorial 

designs without the restriction of one observation in each cell. Furthermore, a new 

algorithm to decompose data from a factorial design is introduced and programmed 

in the statistical computer package R. The whole procedure of robust data analysis 

is also programmed in R and it is intended to submit the library to the repository 

of R software, CRAN. In the procedure of robust data analysis, a cut-off value is 

needed to detect possible outliers. A set of optimum cut-off values for univariate 

data and some dimensions of two-way designs (complete and incomplete) has also 

been provided using an improved design of simulation study. 
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Chapter 1 

Introduction 

Robustness in statistics has been considered in recent decades. It needs to be studied 

due to departures from the usual modelling assumptions in real data. From the fol­

lowing quotes, it may be understood where robust statistics lies and how important 

it is to pay more attention to robust statistical methods. 

"The study of robust statistics is useful for anyone who handles ra!ldom data. 

Applications can be found in statistics, economics, engineering, information technol­

ogy, psychology, and in the biological, environmental, geological, medical, physical 

and social sciences." (Olive 2006) 

"There are many classical statistical procedures such as least squares estimation 

for multiple linear regression and the t-interval for the population _mean J.L. A given 

classical procedure should perform reasonably well if certain assumptions hold, but 

may be unreliable if one or more of these assumptions are violated. A robust analog 

of a given classical procedure should also work well when these assumptions hold, 

but the robust procedure is generally tailored to also give useful results when a 

single, specific assumption is relaxed." (Olive 2006) 

"A statistical method is said to be robust if its behavior is relatively insensitive to 

slight departure from the assumptions that justify that method." (Kotz et al. 1988; 

page 176) 

"By a resistant technique will be meant one whose results are at most mildly af­

fected by observations which do not conform to the general pattern of the data." (Besag 

1981) 

1 
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"In recent years, considerable attention has been paid to the development of 

resistant techniques for data analysis, primarily under the influence of J.W.Tukey 

and his coworkers." (Besag 1981) 

"I think it is an important area that is used a lot less than it ought be." (Ripley 

2004) 

1.1 Robustness in statistics 

"In the statistical literature the word robust is synonymous with good." (Olive 2006) 

Hampel (2001) states that almost everybody nowadays believes in the "dogma of 

Normality" as an assumption for the error distribution to find the "best estimate" of 

an unknown "true value". He also mentions that "Bessel (1818), Newcomb (1886), 

Jeffreys (1939) and others, showed that typical error distributions of high-quality 

data are slightly but clearly longer-tailed than the Normal." He adds " ... obviously 

real data have different accuracy, as modelled by Newcomb (1886)." It.seems that 

it is risky to trust the assumptions in an statistical analysis and an alternative is to 

switch to robust statistics. 

Huber (1972) also believed it was dogmatic to assume Normality for the errors: 

"It seems to me that this kind of discussion borders on dogmatism; a more rational 

action would have been to look at actual error distributions in large samples, to 

check whether they were compatible with a Normal and, if not1 to develop a different 

theory of estimation." 

"Gross errors often show themselves as outliers, but not all outliers are gross 

errors. Some outliers are genuine and may be the most important observations of 

the sample. For example, if a geodetic point seems suddenly to be in a different 

position, it may mean a gross error of some sort, or it may mean a shift of the 

underground, and some redundancy (or experience) is needed to distinguish these 

possibilities." (Hampel 2001) 

Considering the above realities, there are some issues to address in order to deal 

with the problem. One issue is to determine the outliers, if any, and then find a way 

to deal with them. Recognising suspected outliers has been addressed in the litera-
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ture by such as Barnett and Lewis (1994), Iglewicz and Hoaglin (1993), Rousseenuw 

and Leroy (1987), Bhar and Gupta (2001), Rosner (1975; 1983), Stefensky (1972), 

Shiffier (1988), Daniel (1960), Al-Madfai (1994), Johnson (1989) and Seheult and 

Thkey (2001) for some different statistical types of data collection; however, many 

types of data collection have not been covered. Many of the existing methods to 

detect outliers need a cut-off, or in other words a criterion which plays a key role. 

Fixing an optimum cut-off value usually takes a separate study. 

The next issue that arises is how to manage detected outliers. "A common 

reaction to this danger is 'rejection of outliers' .... " (Hampel 2001) Quoting Hampel 

(1985), he also says that, even using a good rule to detect the outliers, rejecting them, 

and then doing least squares for the remaining data, typically loses 10-20 percent 

efficiency compared with a better robust method. It is also worth quoting Ripley 

(2004) mentioning that screening data and removing the outliers is not sufficient: 

"1. Users, even expert statisticians, do not always screen the data. 

• 
2. The sharp decision to keep or reject an observation is wasteful. We can do bet-

ter by down-weighting dubious observations than by rejecting them, although 

we may wish to reject completely wrong observations. 

3. It can be difficult or even impossible to spot outliers in multivariate or highly 

structured data. 

4. Rejecting outliers affects the distribution theory, which·ought to be adjusted. 

In particular, variances will be underestimated from the 'cleaned' data." 

Although rejecting outliers is the simplest way, there are a few alternatives. 

Thkey suggested substituting each outlier by the next closest number to it. He 

named it Winsorizing in honour of Charlie Winsor (see Huber 2002). Huber (2002) 

notes that "Interestingly, and rather counter-intuitively, it turned out a few years 

later that trimming does exactly what Winsorizing was supposed to do but, on 

the other hand, that the standard error calculated from the Winsorized sample 

asymptotically gives the correct value for the standard error of the trimmed mean 

(see Huber 1981; pages 58-59)." Later Seheult and Thkey (2001) suggested half­

Winsorizing which is substituting the outlier by the half of the next closest number 
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to the outlier. Either trimming or modification of an outlier should be done after 

being in almost no doubt that the outlier is the result of a gross error. 

Another approach is to find the breakdown point of the statistic which is used. 

"Some sources use the term breakdown bound instead of breakdown point . . . . The 

breakdown point of an estimator is the largest proportion of the data that can be re­

placed by arbitrary values without causing the estimated value to become infinite." 

(Iglewicz and Hoaglin 1993; page 11) It might be better to consider the breakdown 

point before outlier detection as the outlier may have some useful information and 

need to be kept in its original form. Again from Hampel (2001): "The breakdown 

point . . . is often the first and most important number to be looked at before going 

into the details of local robustness properties." Using a statistic with a high break­

down point is a good way to do a resistant statistical analysis. "The sample mean y 

can be upset completely by a single outlier; if any data value Yi - oo, then y - oo. 

This contrasts with the sample median, which is little affected by moving any single 

value to oo. We say that the median is resistant to gross errors whereas •he mean is 

not. In fact the median will tolerate up to 50% gross errors before it can be made 

arbitrarily large; we say its breakdown point is 50% whereas that for the mean is 

0%." (Ripley 2004) 

The fourth approach is to do a robust analysis such as using M-estimators instead 

of least squares method or median polish in an experimental design. 

"It is convenient to divide methods of robustification into.four categories: 

(1) trimming, Winsorization, and other methods based on other statistics, 

(2) M-estimation and minimum distance estimation, 

(3) rank statistics, and 

( 4) outlier tests and diagnostics." (Kotz et al. 1988; page 177) 

Finally, a completely different approach is to use a robust design which means 

a design for which the analysis is resistant in presence of outliers. However, there 

is only a tiny literature on the production and use of these robust designs while 

extensive studies have been done on robust designs against missing observations. 

(Bhar and Gupta 2001; page 339) 
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1.2 Outliers or Extreme values 

Data analysis can be affected by outliers in any type of data collection. Ignoring 

them, the analysis might be misled to a wrong or far from correct conclusion. "The 

concept of an outlier has fascinated experimentalists since the earliest attempts 

to interpret data." (Barnett and Lewis 1994) "That observation is suspect whose 

removal greatly simplifies the description of the rest of the data. That observation 

is also suspect that complicates the description of the error distribution." (Daniel 

1960) Two other terms for "outlier" are "discordant" and "contaminant". (see Kotz 

et al. 1988; page 177) "Aberrant" has also been seen in some literature. "Outliers 

occur very frequently in real data, and they often go unnoticed because nowadays 

much data is processed by computers, without careful inspection or screening." 

(Rousseenuw and Leroy 1987) 

They can be a result of any of the following reasons: (see Barnett and Lewis 1994, 

Hawkins 1980) 

• A mistake when recording the data - Measurement error 

• A mistype in data entry - Measurement error 

• Collecting data from a long tail distribution - Inherent variability 

• Wrong experiment to collect the sample - Execution error or biased sampling 

Regardless of what does cause one or more outliers, they will detract from the results. 

"It is clear that a single outlier- if located sufficiently far away- can completely 

spoil a least squares analysis." (Hampel 2001) 

"Outliers are sample values that cause surprise in relation to the majority of 

the sample. This is not a pejorative term; outliers may be correct, but they should 

always be checked for transcription errors. They can play havoc with standard 

statistical methods, and many robust and resistant methods have been developed 

since 1960 to be less sensitive to outliers." (Ripley 2004) 

The following examples show how an outlier can affect a statistical analysis. 
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1.2.1 Example 1: A univariate case 

Suppose, as a hypothetical sample, we have 

3,5,4,6,3,20 

It seems obvious that for some reason the value 20 is a mistake. A 95% confidence 

interval for the population mean, assuming the data are from a Normal distribution, 

from the sample is 

( -0.04561, 13.7123) 

which includes zero. The researcher may draw a conclusion of not rejecting the null 

hypothesis that the population mean is zero. 

Let's assume the correct value for the last observation is 2. Then the 95% mean 

confidence interval for the correct hypothetical sample 

3,5,4,6,3,2 

is 

(2.2886, 5.3781) 

which does not include zero and leads to rejection of the same null hypothesis. 

1.2.2 Example 2: A case of experimental design 

In experimental designs, the existence of only one outlier may change the result of 

analysis of variance (ANOVA). A hypothetical example of a 5 by 4 two-way factorial 

experimental design (without replication) will be followed by its ANOVA table as 

given by R. 

23 54 52 35 

61 23 53 45 

29 20 25 38 

36 29 32 31 

38 38 24 30 
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> summary(aov(y-fr+fc,data=ex.hy)) 

fr 

fc 

Of Sum Sq Mean Sq F value Pr(>F) 

4 829.20 207.30 1.4426 0.2796 

3 67.60 22.53 0.1568 0.9233 

Residuals 12 1724.40 143.70 

7 

Substitution of just one datum with a supposed outlier, makes a lot of difference 

to the Sum of Squares' column and hence to the final results: 

123 54 52 35 

61 23 53 45 

29 20 25 38 

36 29 32 31 

38 38 24 30 

> summary(aov(y-fr+fc,data=ex.hy.out)) 

Of Sum Sq Mean Sq F value Pr(>F) 

fr 4 3869.2 967.3 3. 0511 0. 05978 

fc 3 1887.6 629.2 1. 9846 0. 17013 

Residuals 12 3804.4 317.0 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 

Assuming the significance level to be 0.1, the second ANOVA table indicates a 

significant difference between the levels of the row factor while it does not occur in 

the first ANOVA table. 

Both examples can easily happen by mistyping and when the computations are 

being done by computer, it could be hidden from the researcher's eye! 

One may find many other examples in other statistical data such as regression 

or time series. We will try to find how to deal with outliers in the univariate case 

as a preface to studying experimental designs. 

1.3 Methods of outlier detection 

There are many existing methods to detect possible outliers in a univariate data set. 

Most of them may be generalised to apply for some types of experimental designs. 
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However, there are also a few specially constructed methods for data which are not 

univariate. 

1.3.1 Univariate outlier detection 

There are many methods to detect the outliers in a univariate data set. Most have 

been constructed first to detect a single outlier. Some of them have been generalised 

to detect two outliers or more. There are still some methods with weaknesses which 

can be improved. Among the methods for outlier detection in a univariate data 

set, we may name ESD (Extreme Studentised Deviate), generalised ESD, MNR 

(Maximum Normed Residual), Shapiro-Wilk test, Ln Z-scores, Modified Z-scores, 

test based on Kurtusis, Dixon-Type test and the boxplot rule. In this part, a few of 

them will be introduced. 

ESD 

Grubbs (1950) has a discussion on several solutions to find one outlier in a sample 

of size n from a reference distribution of Gaussian. Grubbs (1969) also made a 

tutorial on how to detect two highest data in a sample or two lowest or one highest 

and one lowest. Iglewicz and Hoaglin (1993) have compared five methods to detect 

more than one possible outlier. As a result, Generalised ESD (Extreme Studentised 

Deviate) was proposed by Rosner (1975) who introduced the procedure to detect 

more than one outlier and prepared a table for many sample sizes n 2: 25 (Rosner 

1983). 

Z-Scores 

This is a popular rule to tag possible outliers in a univariate data set. It is just based 

on the property of Gaussian distribution that 99.7% of values lie between -3 and 3. 

The method has an easy computational procedure and so many people like to use 

it. The problem, revealed by Shiffier (1988), is its inability to detect the outliers in 

sample size less than 11. 
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Modified Z-Scores 

Iglewicz and Hoaglin (1993) mentioned the weaknesses of using Z-scores to de­

tect outliers. An alternative was using resistant estimators rather than the sam­

ple average and the sample standard deviation which both can be affected even 

by one outlier. Then all Z-scores including non-outliers will be changed. "The 

sample mean, standard deviation, and range have breakdown points of zero ... " 

(Iglewicz and Hoaglin 1993; page 11). Replacing the sample mean by the me­

dian, which has a breakdown point of about 50%, is one modification of Z-Score. 

Modified Z-Score has been made by also replacing the standard deviation of the 

sample by the median of absolute deviations of observations from the median, i.e. 

MAD= mediani{l Xi-xI} called MAD where xis sample median. Because, for 

very large n, E(MAD) = 0.6745a, the modified Z-Score introduced by Iglewicz and 

Hoaglin (1993) uses the scaling constant 0.6745 which however seems inappropriate 

to use for all sample sizes. 

1.3.2 Methods for experimental designs 

"In classical and in robust analyses, residuals are important; in exploratory work, 

residuals are generally of paramount importance." (Besag 1981) By studying the 

residuals, there are a few methods to recognise the possible outliers in a two-way 

factorial designs. Usually they have been improved from their first versions and 

mostly restricted to the full two-way factorial design without replication. 

MNR in factorial designs 

Daniel (1960) proposed a statistic equivalent to the maximum normed residual for 

detecting a single bad value in a factorial design with replication (see Stefensky 

1971; 1972). Later, Stefensky (1972) generalised the cut-off values given by Daniel 

(1960). 
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Least square methods 

Iglewicz and Hoaglin (1993; page 67-68) discussed the problems of using the same 

rules to identify the outliers in multiple regression for a balanced factorial experi­

mental design. 

Modified R charts 

"Ullman (1989) uses a quality control technique called analysis ofranges to provide a 

simple tool for identifying outliers in replicated factorial experiments." (Iglewicz and 

Hoaglin 1993) They (Iglewicz and Hoaglin 1993) also simplified Ullman's approach 

when the number of cells is at least 12. 

Developed Cook's Statistic 

Bhar and Gupta (2001) modified Cook's statistic in a way to detect a single outlier 

in a randomised complete block design. Cook's statistic is usually used for a linear 

regression. The newly developed statistic for a block design can be calculated for 

each observation in the design and then using a criterion each will be checked for 

being an outlier if it corresponds to an influential observation. They defined an 

influential observation to be one which, when removed from the data, will change 

the F-ratio in an ANOVA table so that the decision of rejecting or not rejecting the 

null hypothesis will consequently be changed. 

Tukey in factorial designs 

It seems that the unpublished report by Fowlkes, McRae, Seheult, and Tukey (1981) 

is the beginning of their work on detecting and dealing with the outliers in the two­

way factorial designs. Seheult (2006) believes the main idea was from Tukey. The 

method is to polish the table first by a resistant statistic. Tukey (1977) introduced 

the main idea of polishing. Polishing a two-way table leaves four partitions: the 

total effect, row effects, column effects and the interaction or residuals. The next 

step was inspecting the residuals to find and tag the possible outliers. A way to find 

the outlier has been introduced by Daniel (1960) using the half-normal distribution. 
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The positive half-normal order statistics are calculated in Thkey's method as a set 

of reference values. Then by comparing the residuals and the reference values, the 

magnitude of each residual is revealed. Scaling them by a resistant statistic makes 

them ready to tag the outliers. 

The median is a resistant statistic. In an odd number of data, there is one datum 

in the middle. In an even number of data, there are two data in the middle and in 

addition to these two, any value between them can be chosen as the median. Thkey 

has used the lower value called "lo-median" in his first works while in Seheult and 

Thkey (2001), they chose one of the lower or the higher value in middle based on 

a definition in the procedure of polishing. This index function of lower and higher 

values is called "fibian" in Seheult and Thkey (2001). The situation with most 

advantage gained from using the fibian is in the two-way table with one factor of 

two levels. 

Similar to other outlier detection methods, what is needed again is a cut-off value at 

the last stage of tagging. Based on this method, Fowlkes et al. (1981) and Al-Madfai 

(1994) have done some simulations to find out an optimum cut-off value for a 5 by 4 

two-way table. Although, Al-Madfai has used an additional scaling called "SqLm", 

the results of the two simulation studies are very close. 

Present work is a generalised form of Tukey's method 

Selecting one of the lo-median or hi-median to be called fibian is not so easy for 

programming. Instead, "NE-median" introduced by Johnson (1989) has similar 

properties as fibian but is easier to program because it is a stand-alone function 

whereas fibian needs to keep track of and use each effect during the decomposition. 

Like fibian, NE-median is also one of lo-median or hi-median but is simply the one 

which is closest to zero. 

In the present work, there are some improvements and generalisations which have 

been applied on Thkey's method in outlier detection: 

• 'fruncating the reference distribution to produce outliers in the simulation 

study 
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• Adding some random normal numbers to the row and column effects as a 

generalised form of simulation 

• Using NE-median to polish in simulation study 

• Performing a unique polish 

• Using an improved approximation for the reference values given in Seheult and 

Tukey (2001) 

• Applying the simulation for many more sets of number of levels in the two-way 

tables 

• Finding the accuracy of optimum cut-off values 

• An independent simulation to find the scaling item 

• A very much bigger simulation 

1.4 Robust designs 

By robust designs we mean "designs are constructed that guard against particular 

shortcomings." (Kotz et al. 1988) "Robustness of designs against missing observa­

tions has been studied extensively in the literature. Only a little work on robustness 

against the presence of outliers is found in_ the literature." (Bhar and Gupta 2001) 

Box and Draper (1975) were the first to study robust response surface designs. Kotz 

et al. (1988) say that Box and Draper (1975) wanted to obtain designs that made 

the analysis insensitive to outliers. Bhar and Gupta (2001) introduced a few robust 

designs which are robust against the presence of a single outlier. 

1.5 Robust data analysis 

"The classical methods - means, variances and least squares - are unsafe. Sometimes 

they are good, sometimes they are not. . .. It is perfectly proper to use both classical 

and robust/resistant methods routinely, and only worry when they differ enough to 
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matter. But when they differ, you should think hard. .. . What you need is a 

reasonably self-consistent set of procedures that are reasonably easy to use and 

reasonably easy to describe." (Tukey 1979) 

1.5.1 Ll 

Burns (1988) showed for some given designs, L1 has not a unique solution. Based 

on Burns's report, L1 has a unique answer when for an oddly-replicated table (all 

cells have odd replicates - empty cells are not accepted), and the number of levels 

for the factor with fewer levels is odd. He adds that it is impossible to have a unique 

L1 solution when the number of replicates in all cells is even and empty cells are 

allowed. "It is easily seen that the sum of the absolute value of residuals can never 

increase at any stage of median polish and, in practice, an L 1 solution is usually 

attained." (Besag 1981) 

1.5.2 Seheult-Tukey 

Seheult and Tukey (2001) have completed some previous work by developing an 

applicable robust ANOVA. The procedure goes back to the 1980s in Princeton Uni­

versity. The first important part of the procedure is tagging outliers if any exist. 

Decomposition by a resistant statistic and then applying Tukey's method using a 

fixed cut-off value recognises as many outliers as might exist in the data. A three­

way factorial design without replication is discussed in Seheult and Tukey (2001) 

for the procedure of robust ANOVA. The rest of the procedure after tagging the 

outiiers is to substitute them by half-Winsorized values and then down-sweeping 

the mean squares in the ANOVA table based on Paul's rule of two which has also 

been addressed in Hoaglin, Mosteller, and Tukey (1991; chapter 11). 

1.6 A new library in R 

Statistical analyses are being done by statistical software these days. Statistical 

packages are full of variations of classical methods to analyse data collected in dif­

ferent patterns for different purposes. It has been said earlier that nobody should 
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ignore possible outliers. A lack of robust statistical computations is obvious in 

many statistical software although the theoretical basis exists. "Robust statistical 

methods are designed to work well when classical assumptions, typically normality 

and/ or the lack of outliers, are violated. Almost everyone agrees on the value of ro­

bust statistical procedures. Nonetheless, after more than 40 years and thousands of 

papers, few robust methods were available in standard statistical software packages 

until very recently." (Stromberg 2004) 

"One reason that contributes to the limited use of Robust Statistics is the heavy 

computational cost of many of these techniques. The lack of easy to use and well 

documented computer code does not help either. In the last few years the consolida­

tion of the R-project as a widely available, powerful and versatile computer program 

for statistical analysis has resulted in many people simultaneously developing and 

publishing R code that implements Robust Statistics techniques." (Filzmoser 2006) 

"Robust Statistics deals with a very real problem in statistical applications: the 

effect of violations to the model used to analyse the data. The last 40 years have 

been tremendous advancements in the theory of Robust Statistics, but unfortunately 

many of these procedures are not widely used in practice yet." (Filzmoser 2006) 

A set of functions in R have been provided to do a robust ANOVA for an ex­

perimental design. The method used in this package is based on Seheult and Thkey 

(2001) and on the new method of decomposition proposed in chapter 4. Many types 

of factorial experimental designs have been checked by this library. By the method, 

a given data set from a designed experiment should be first decomposed using a 

sweep function. The library is able to accept any built-in or user-defined sweep 

function to decompose but the default sweep function is NE.median which was in­

troduced earlier. The algorithm to decompose a design is new and has the capability 

to work on most factorial designs. Unlike the approach using sweep operators for 

least squares of Wilkinson (1970), the new algorithm is a hierarchical algorithm. 

Incidence matrix and terms levels in the model are the main keys in the algorithm 

of decomposition. It is intended to submit the library to CRAN (the Comprehensive 

R Archive Network). 
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1. 7 Objectives 

The overall objective in this work is to provide a set of functions in R to do a robust 

data analysis for the family of factorial experimental designs. 

The overall objective may be subdivided into 

- Finding a method of decomposition which generalises median polish and is 

applicable to a wide range of linear models for data from factorial designs. 

- Improving and generalising previous work (including simulation studies) on 

outlier detection for median polish in two-way tables. 

- Generalising the robust ANOVA procedure of Seheult and Tukey (2001) to a 

wide range of factorial designs and models. 



Chapter 2 

Detecting outliers in univariate 

data 

In this chapter two old methods for detecting outlier(s) in univariate data will be 

explained via a common example. Then the method introduced by Fowlkes et al. 

will be discussed. A set of optimum cut-off values for the third method is obtained 

by a simulation study. Confidence intervals for optimum cut-offs are discussed in 

section 2.6. A simulation study comparing the new method and one of the old ones 

shows the new method to be more efficient. Some properties of the Slash distribution 

and a table of proportions of detected outliers in Slash and Gaussian samples are 

also a part of this chapter. 

2.1 :Introduction 

Three methods to distinguish outliers in a univariate data set will be explained 

via an example. The first method is more popular than the second one despite its 

weakness. The third method is based on some work of J.W. Tukey. In each method, 

a cut-off value to detect the outliers is necessary. The usual cut-off value for the 

first method comes from the property of the standard Gaussian distribution that 

99.7% of data lie between -3 and 3. In the second method, we use the cut-off value 

proposed by Iglewicz and Hoaglin (1993) as a result of a simulation study. For the 

last method, there is no previous work to find a cut-off value to detect possible 

16 
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outliers in a univariate data set. It is the first time that optimum cut-off values for 

a wide range of sample sizes are being found by a simulation study. The functions to 

do the simulations are written in R (see Section 2.10 and Appendix B). To generate 

samples having outliers, the Slash distribution has been used. The details of this 

distribution will be given later. 

Suppose that a single variable has been measured in a randomly selected sample 

from a population. In the next sections, three methods to distinguish any possible 

outlier(s) will be described. The key concepts in the methods will be illustrated 

using the following simple data set: 

10, -20, 1, 18, 2, 3, -5, -6, 7, 2, 6, 5, 12, -1, -11, -7, 28, 5, 7, 2 

Among the values of the hypothetical sample, it seems likely that -20 and 28 

would be considered to be outliers caused, for instance, by data errors or coming 

from another distribution. We shall now see how the following three methods try to 

find outliers. 

2.2 Method 1: Z-Scores 

Using Z-scores is a simple way to try to detect the outliers. Z-scores may be calcu­

lated for a set of observations x1 , x2 , ... , Xn as follows: 

xi- x L:~= 1(xi- x)2 
Zi = , where s = 

s n-1 

This method is based on the well-known property of the Normal distribution, i.e: 

X- JL 
X : N(JL, a 2

) ~ Z = : N(O, 1) 
(J 

Hence, any Z-score more than 3 in absolute value might be labelled as an outlier. 

For our given data set, Z-scores are calculated in table 2.1. 

It can be seen that no observation with this method is tagged as an outlier. 

What is happening here is that even a single large lxi- xi causes s to be large too 

and then it makes an upper bound for zi. Shiffier (1988) showed that the maximum 

possible Z-score depends on n (see table 2.2). 
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Table 2.1: Outlier detection using Z-scores 

z Xi Zi 

1 10 0.6883 

2 -20 -2.2199 

3 1 -0.1842 

4 18 1.4638 

5 2 -0.0872 

6 3 0.0097 

7 -5 -0.7658 

8 -6 -0.8628 

9 7 0.3975 

10 2 -0.0872 

11 6 0.3005 

12 5 0.2036 

13 12 0.8822 

14 -1 -0.3781 

15 -11 -1.3475 

16 -7 -0.9597 

17 28 2.4332 

18 5 0.2036 

19 7 0.3975 

20 2 -0.0872 
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Table 2.2: Maximum possible Z-score depending on sample size n (Shiffier 1988) 

n Z Z n-l 
max = (n) = ,;n 

3 1.155 

4 1.500 

5 1.789 

10 2.846 

11 3.015 

17 3.881 

18 4.007 

Thus, for any sample of size less than 11, no observation could be found as an 

outlier in this method using cut-off 3 even if you have one or more. For n > 11, this 

method still seems unreliable. 

2.3 Method 2: Modified Z-Scores 

Iglewicz and Hoaglin (1993) introduced a modified Z-score to detect outliers. This 

method is based on resistant estimators rather than x and s. The modified Z-score 

is calculated as 

Xi- X 
Mi = MAD , where xis the sample median and MAD= mediani{lxi- xl} 

0.6745 

Iglewicz and Hoaglin (1993) say E(M AD) = 0.67450" which is the basis for the 

constant 0.6745 in Mi. However, the constant introduced by them is for very large 

n which is not applicable in practice. Running a simple simulation study shows the 

constant varies for different sample size n. 

Accepting this constant for now, table 2.3 shows the procedure and results for the 

example. Any observation with I Mi I > D is tagged as outlier. Based on a simulation 

study, they suggested that the cut-off value D = 3.5. Therefore, the observation 

xi = 28 would be suspected as an outlier with this method. 
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Table 2.3: Outlier detection using Modified Z-scores 

Data Ordered Ordered 

1, Xi Xi lxi- xi M· = 0.6745(x;-x) 
t mediani{Jx;-xj} 

1 10 -20 0.5 1.1242 

2 -20 -11 0.5 -3.3725 

3 1 -7 0.5 -0.2248 

4 18 -6 0.5 2.3233 

5 2 -5 1.5 -0.0749 

6 3 -1 2.5 0.0749 

7 -5 1 2.5 -1.1242 

8 -6 2 3.5 -1.2741 

9 7 2 3.5 0.6745 

10 2 2 4.5 -0.0749 

11 6 3 4.5 0.5246 

12 5 5 7.5 0.3747 

13 12 5 7.5 1.4239 

14 -1 6 8.5 ~0.5246 

15 -11 7 9.5 -2.0235 

16 -7 7 9.5 -1.4239 

17 28 10 13.5 3.8222 

18 5 12 15.5 0.3747 

19 7 18 22.5 0.6745 

20 2 28 25.5 -0.0749 
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2.4 Method 3: Tukey 

In this section, finding possible outliers in the example data will be done using the 

method from Fowlkes, McRae, Seheult, and Thkey (1981). Seheult and Thkey (2001) 

generalised the method for a set of data collected by a factorial experimental design. 

The case of a two-way factorial design will be discussed in section 3.2. 

To find possible outliers in a univariate sample, it is necessary to construct a table 

like 2.4. Before that, there are some keys in the table which need to be explained: 

• The lower of two data in the middle of an even number of data set is called 

the la-median. The upper one is called the hi-median and the mid-median is 

the average of these two values. Note that for the odd number of values, there 

is just one median. 

• If the number of non-zero residuals is less than the degrees of freedom (in 

univariate case, it is usually the sample size minus one), only one more than 

the number of non-zero residuals will be inspected (18 observations in this 

example). If only one non-zero residual remains, the datum related to the 

residual would be considered as an unique outlier. 

• Using Gaussian as a reference distribution, extreme values are not expected 

to exist. Outliers may be distinguished by comparing the absolute values of 

residuals with what would be expected for order statistics from the positive 

half of Gaussian distribution. The reference values in column ( 4) in table 2.4 

are a very good approximation to the expected order statistics for a sample 

from the positive half of standard Gaussian distribution. There is a short 

discussion in section 3.5 of how to approximate E[x(i)] where X(i) is i-th order 

statistic when the sample size is n. Hoaglin, Mosteller, and Thkey (1991; page 

187) say a good approximation for E(x(i)) is 

<I>-1 (1 - 3i- 1) 
6n+2 

where <I>-1 is the inverse Gaussian distribution function and i = 1 gives the 

largest reference values. 
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In this example, ignoring two zero observations, putting n = 18 in the above 

formula gi~es the needed reference values. 

The ratios of absolute values of residuals to reference values in column (5) 

should reveal the magnitude of the residuals. 

• The lo-median of the ratios is again has been chosen to standardise the mag­

nitudes. It might be called a scaling. 

Now a cut-off value has to be chosen to determine which observation should be 

considered as outlier. Suppose that the cut-off value is to be 1.41. The investigation 

is started from the bottom of the last column corresponding to the largest absolute 

residual. Since last scaled ratio is less than the supposed cut-off value (1.41) we 

would not tag the related observation (28) as possible outlier. Although the next 

from the bottom is greater than the supposed cut-off value, we do not tag that one 

as an outlier either, because the last one was not tagged. In fact, no observation 

will be tagged as an outlier by this method when the cut-off value is 1.41. However, 

if the cut-off is equal to 1.4, the two last scaled ratios are both greater than 1.4 and 

the corresponding observations would be tagged as outliers. As mentioned earlier, 

there is no previous study to find an optimum choice of cut-off for this method. 

The next section is about a procedure to choose the optimum cut-off, say 1* when 

1 denotes any possible cut-off, which is applicable for any outlier detection method 

which involves a choice of cut-off. 

2.5 Optimum cut-off value 

To arrive at a sensible choice of cut-off value, 1*, we choose the value which is 

the minimax solution for a particular decision problem. The decision problem is 

designed to choose a value which is a good compromise between what one should do 

when there are no outliers and what one should do when there are many outliers. 

Note that we allow the value of 1* to depend on the sample size n. 

For a univariate sample, x1 , ... , Xn from a distribution with mean f-L, we measure 

the "badness" of a particular value of 1 by B(!) = (x-y- f.-l) 2 where X-y is the average 
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Table 2.4: Outlier detection using Tukey's method 

(1) (2) (3) (4) (5) (6) 

Original Data- la-median Sorted Reference Ratios- (3) -(4) Scaled ratios 

data (Residuals) absolute values (5) 

- (5)s' la-median 

10 8 0 (2) - - -

-20 -22 0 (2) - - -

1 -1 0 (2) 0.0456 0 0 

18 16 1 (1) 0.1142 8.7566 0.9896 

2 0 1 (3) 0.1833 5.4555 0.6165 

3 1 3 (5) 0.2533 11.8437 1.3385 

-5 -7 3 (-1) 0.3246 9.2421 1.0445 

-6 -8 3 (5) 0.3976 7.5453 0.8527 

7 5 4 (6) 0.4728 8.4602 0.9561 

2 0 5 (7) 0.5507 9.0794 1.0261 

6 4 5 (7) 0.6322 7.9089 0.8938 

5 3 7 (-5) 0.7180 9.7493 1.1018 

12 10 8 (10) 0.8096 9.8814 1.1167 

-1 -3 8 (-6) 0.9085 8.8057 0.9951 

-11 -13 9 (-7) 1.0171 8.8487 1 

-7 -9 10 (12) 1.1394 8.7765 0.9918 

28 26 13 (-11) 1.2816 10.1436 1.1463 

5 3 16 (18) 1.4558 10.9905 1.2421 

7 5 22 (-20) 1.6906 13.0131 1.4706 

2 0 26 (28) 2.0928 12.4235 1.4040 
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of the remaining data having applied the procedure to remove outliers using the 

specified cut-off value f. This measure is based on the presumption that the goal of 

collecting the data is to estimate the population mean and that we use the sample 

mean (omitting outliers) as the natural estimator. 

Our measure of the adverse consequences (across all samples) of a particular 

choice of 1 for a particular population distribution is then b(l) = E[ B(!)] where 

the expectation is taken with respect to samples of size n from the distribution. 

The measure is location-invariant, i.e. it is not changed by changing the mean of 

the distribution. 

For any location-family of distributions, there is an optimal choice of 1 which 

minimises b( 1) for that family. The problem for the data analyst is that the family 

and consequently b(!) and its behaviour is not known to him/her. Hence we seek 

a compromise choice of I· To make comparisons between the consequences for 

different families of distributions, we use the "scaled badness" bscb) = b(!)/bm 

where bm = min1 b(!). We denote by /m the value for which b(/m) = bm. 

There are two key reasons for using the scaled badness measure. First, b( 1) is 

essentially a measure of inefficiency of estimation of the sample mean and so the 

scaled badness bscb) is effectively a measure of relative inefficiency compared to 

the best possible for that family. Secondly, the scaled badness is the same for all 

members of a location-scale family of distributions which corresponds well to the 

fact that our procedure for determining outliers is location and scale-invariant. 

To arrive at the compromise choice of cut-off, we consider two extreme location­

scale families of distribution: the Gaussian and Slash families1 , two of Tukey's 

so-called three corners2 (Yatracos 1991). The former may be considered to generate 

no outliers and the latter are distributions which generate many outliers. We then 

find the cut-off which is the minimax solution for the decision problem where the 

loss function, measuring the adverse consequences of using a particular cut-off for a 

1Some properties of Slash distribution will be discussed in section 2.5.1 
2The third corner is one-wild distribution which is a sample of 95% of standard Normal and 

5% from N(O, 100). This corner has not been used in the present work as the initial aim was to 

compare some results with Fowlkes and Al-Madfai who have not used it. 
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particular location-scale family, is the scaled badness measure. Then, the optimal 

cut-off is the value 1* which minimises the function max(bfc(r), b~(r)) where bfc(.) 

and b~ (.) are respectively the scaled badness functions for the Gaussian and Slash 

families of distributions. 

2.5.1 Slash Distribution 

The Slash distribution has been chosen by previous authors as a distribution suitable 

for this type of simulation study because it is similar to the Normal distribution in 

the middle but generates many extreme values. 

Probability density function of Slash distribution 

Let S = ~' where X "' N(O, 1) and Y "' U(O, 1) are independent. Then S is a 

random variable with Slash distribution. Let W = Y. Then, the Jacobian of this 

transformation is 

) 
8s 

J = o(s,w = 8x 

o(x,y) 8s 
8y 

8w 
8x 

8w 
8y 

1 
y 

-x 
1r 

0 1 1 
=- =? J- = y 

1 y 

and the joint density function of s and w is given by g(s, w) = f(x, y)J- 1 = 
S2W2 

c!J(x)y = c!J(sw)w == ~e--2- where 0 ::; w ::; 1, -oo < s < +oo. Finally, the 

density function of s is 

fs(s) = 11 

g(s, w)dw 

Figure 2.1 shows the Slash probability density function compared to the standard 

Normal distribution. 
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Figure 2.1: Slash density function; Similar to Normal in the middle, long tails 
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2.6. Simulation study- Basic notations 

Distribution function of Slash 

First 

P(S :S siU = u) 

Now 

Fs(s) = P(S :Ss) 

z 
P(U :S siU = u) 

z 
P(- :S siU = u) 

u 
P(Z :S suiU = u) 

- P(Z :S su) = <I?(su). 

11 

P(S :S siU = u)fu(u)du 

11 

<I?(su)du 

118 

- <I?(w)dw 
s 0 

~ ( w<I?(w) 1g -18 

wcP(w)dw) 

1 ( 1 1~8
2 

) - s<I?(s)- -- e-Ydy 
s v'2ii 0 

1 ( 182) <I?(s)- -- -e-Y 16 
sv'2ii 
1 

<I?(s)-- (cP(O)- cP(s)) 
s 
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In practice, b~ ( 1) is an increasing function of 1 (except for a short initial section 

near 1 and bfc ( 1) is a decreasing function of 1 and so 1* may be found by solving the 

equation bfc(l*) = b~(T*). Writing o(T) = bfc(T)- b~(T), 1* must satisfy o(l*) = 0. 

None of bfc(l), b~(T) and <5(1) are known but they may be estimated for a set 

of 1's, e.g. 1 1 , 12 , • • • , lkl using a simulation study. 

Practically, for a given sample size n, N 1 samples of size n from Gaussian and N 2 

samples of size n from Slash may be generated. Although, to reduce the variance of 

the difference between the average of badnesses in two sets of samples i.e. Gaussian 

and Slash samples, it would be better to generate the Gaussian samples from the 
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Slash samples using the following conversion: 

z = q,-l (Fs(s)). 

Obviously z rv N(O, 1). 

Therefore, what we need is to generate firstly N samples from Slash and then N 

correlated Gaussian samples corresponding to each of Slash samples. By applying 

the procedure to detect the outliers on each sample using any of J''S in the set, N 

sets of badnesses for Slash samples and N sets of badnesses for Gaussian samples 

will be obtained: 

Bf(l'l) Bf12) Bf ( l'k) 

B~(/'1) B~(/'2) B~(l'k) 

BFr(/'1) BFr (1'2) BFr(/'k). 

and 

Bf(I'I) Bf ( /'2) Bf(l'k) 

Bf(l'l) Bf(/'2) Bf ( l'k) 

BjJ(l'I) BjJ(/'2) BjJ(l'k) 

Now what we have is k badnesses for each N samples of Slash and Gaussian. 

Thus we estimate the expected badnesses by 

and 

for i = 1, 2, · · · , k. 

To scale the badnesses, we need the minimum of badness for each distribution. 

Gaussian samples: b;;: can be obtained theoretically: 

In Gaussian samples, we know that the optimal estimator of the population mean 

is the sample mean. Therefore, by removing even one observation, this estimator 

has not been used and the measure of badness will be increased as a result. In 

the other words, minimum of measure of padness occurs when no observation is 
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removed. To keep all observations of all Gaussian sample, ~~ must be oo. Keeping 

all observations leads the badness to be the same as variance of the mean which is 

.!. 
n 

Slash samples: It is not known where exactly 1! is and we may estimate it 

using the simulation results. Let 

which is a negatively biased estimator of b~ and then define i! to satisfy B 8 ( i!) = 

B!'. Now, an independent simulation study just at i~ (no need for a set of 1's) 

leads to an unbiased estimator of b8 ( i~) denoted by B~. It is still a biased estimator 

(positively this time) for b~ = b8 (r~), but the second bias is never great and is 

usually less than the first one (Craig 2006) (see Appendix A). 

At the first stage of the simulation study, using a wider range of 1's, 1* can 

be initially estimated from a graph of b~(ri) = 88
5

1~;) and bfc(ri) - 80
(-y;) for 

m - ~ 

i = 1, 2, · · · , k. We note the initial optimum cut-off value as 1*'. 
The next stage is to estimate more accurately 1* and its accuracy. Doing another 

set of simulations with the similar procedure but for a set of 1's near to the initial 

estimate of 1* may help. A graph is still applicable to estimate 1*. However, another 

way to solve o(r*) = 0, which also helps to find an accuracy for 1*, is to approximate 

J(r) by a line 

a+ f31· Now J(r*) ~a+ !31* = 0 leads to the answer 

* a 
I = -73. 

a and {3 can be estimated by running a regression of J(ri) = b~(ri) - bfc(ri) on li· 

The benefit of the above solution is to make it possible to find the uncertainty 

of 1* = -~: 
(3 

Let f(a,{3) =-~which is the quantity we need a confidence interval for. Again 

based on Taylor's expansion about the point (&, /3), having ¥c; = -~ and U = JF, 
• 1 • A • 1 • 

f(a, {3) ~ -~- ;3(a- &) + $2 ({3- !3) = -~- ;3a + $2 !3· 

Considering er = (- ~, / 2 ) and fl.r = (a, {3) , an approximate ( 1 - a)% confidence 

interval for erfl_ =-~a+ tf3 is (see Seber 1977; page 108) 

er&± z% J ervar(&)e 
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and so the confidence interval for f(a, (3) is simply 

-~+ere± ZQ_. I crvar(O)C. !3 -- 2V- --

We know that Var(~) = (XT X)- 1 XTVar(f)X(Xr X)-1 where 

X= 

1 1'1 

1 1'2 

1 !'k 

30 

(2.1) 

and Var(f) = a 2 I if the errors of the regression of b(!'i) on "Yi are independent. 

Assuming b~ is known 

and if we do a separate simulation for each f'i, the above independence can happen. 

Thus the confidence interval is obtained by 

(2.2) 

However, in fact, b~ is uncertain and might be estimated by either B~' or B~. 

In either case, there is a dependence for b("Yi)'s and then Var(f) # a 2!. 

Let us choose B~ to estimate b~. Then 
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The first bit can be written as 

Bs(!i) bs(!i) + (Bs(!i)- bs(!i)) bs(!i)(1 + Bs(b~(-r:~('Y;)) 
BB - bS +(BB - bS) bS (1 Bs -bs) m m m m m +~ 

m 

,...., bs(!i)(1 + Bs(,.'!i)- bs(li))(1- B~- b~) 
b~ b8 (/i) b~ 

ss- bs 
provided m bs m < < 1 

m 

b8 (!i) (
1 

_ B~ - b~ + B 8 (!i) - b8 (!i) _ B 8 (!i) - b8 (!i) B~ - b~) 
b~ b~ b8 ( ''li) b8 ( ''li) . b~ 

,...., b8 (!i) (
1 

_ B~- b~ + B8 (!i)- b8 (!i)) 
b~ b~ b8 (/i) 

. B 8 (!i) - b8 (!i) 
provided bs ( li) < < 1 

b8 (!i) b8 (ri)(B~- b~) b8 (!i)B8 (!i) (b8 (ri)) 2 

b~ - (b~) 2 + b~b8 (ri) - b~b8 (/i) 
- Bs(ri) - bs(ri) (Bs - bs) 

b~ (b~)2 m m 

Both B£;sb~ << 1 and 88
(-y;)-bs(f';) << 1 can be verified. The first one is true 

bm bS(I';) 

provided E[(B~ ~ b~) 2) = Var[B~] + (E[B~]- b~) 2 << (b~) 2 . Thus, it is needed 

that SD[B;;] << b~ or, using their estimates, that SE[B~] << B~ which can be 

checked using the simulation results. Also, E[B~]- b~ needs to be small. A similar 

calculation verifies the second. 

Now 

~~ = B
8
(rr) _ b

8
(ri)(Bs _ bs) _ B

0
(!i) = ~- _ b

8
(ri)(Bs _ bs) 

t b~ (b~)2 m m bg t (b~)2 m m 

By noting that E[B~] :::= b~ which is a constant 

and 
* . (bs(!i))2 s 

Var[~i] = Var[~i] + (b~)4 Var[Bm]· 

provided Cov[~i, B~] = 0 which is achieved when calculation of B~ comes from a 

separate simulation. 

For any i i= j, ~; and ~; are not independent as they both include a random 
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and 

C [b
8

(/'i) ( s s) b
8

(/'i) ( s bs )] 
OV (b~)2 Bm- bm ' (b~)2 Bm- m 

b
8

(/'i)b
8
(/'i)c [( s bs) ( s s)] 

(b~)2 (b~)2 OV Bm- m ' Bm- bm 

b
8 (/'i) b

8 (/'i) [ s s] 
(b~) 2 (b~) 2 V ar Bm - bm 

b
8

(!i)b
8
(rj)V [Bs] 

(b~)4 ar m. 

Thus, performing a regression of ~i 's on ri 's, we have V ar (f) = a 2 I + wwT where 

bs('y) S [Bsj 
Wi = (b~)2 D m . 

Therefore, Var(Q) = (xrx)- 1XT(a2I + wwT)X(XTx)- 1 = a 2(XTx)-1 + vvr 

where V = (XT x)-1 xr w. Let Wi = c + dri for some choice of c and d. Then, 

w =cl+ dr. 

Knowing;~(!,]), then w ~X (:) and 

V~ (XTX)-lXTX (:) ~ (:) . 
Thus, 

vvr = ( c
2 

cd ) . 
- cd d2 

Note that c and d can be estimated as coefficients of a regression of wi = ~:t);£ SD[B~] 

h bs('y;)SD[B8 ] · · db Bs('y;)SE[B8 ] on ri w ere (b~)2 m IS estimate y (B~,Y m . 

2. 7 Simulation study - The results 

The simulation study in this section is to find the optimum cut-off values for Thkey's 

method. The simulation has been performed for a set of sample sizes 

n = 4,5,6,··· ,30,49,50. 
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Following the explanation in previous sections, the simulation study should contain 

three stages: 

1. Scanning to find 'Y! and making an initial estimate of 1* 

2. Estimation of b~ by B! = B8 ( 'Y!) 

3. A number of separate simulations to find a more accurate optimum C\lt-off 

value ( ~*) and its accuracy 

Stages 2 and 3 would be done simultaneously. 

As the simulation study for the univariate case was carried out before the full 

development of this procedure, estimation of b~ is by B!' and so stage 2 is not 

found in the present univariate simulation study. Instead, stage 1 has been done 

in substages; one simulation to scan to find 'Ym and another one to find the initial 

estimate ~*. 

Stage 1. For each given sample size, 10,000,000 samples from a Slash distribu­

tion and then by converting from Slash samples, the same number of samples from 

a correlated Gaussian distribution have been generated. Due to memory restriction 

and to increase the speed of simulation study, ten million paired simulations have 

been done in 50 separate simulations containing 200000 samples each. 

Then, for a wide range of cut-off values, suspected outliers in each 20,000,000 

samples have been detected and removed temporarily, ready to compute the measure 

of badness. Means of ten million badnesses, separately for Gaussian and Slash, have 

been calculated for each cut-off value. Table 2.5 shows 'Y! and B!' for a range of 

sample sizes. 

For each n, further simulations were done in the same way but with a different 

number of samples. This new simulation involved scaling the badnesses by their 

minimum, obtained at the previous stage. Drawing a graph has been used to inter­

sect the scaled badnesses for Slash and Gaussian. Figure 2.2 shows three different 

simulations of 1,000,000 samples of size n = 5 in the same graph. It can be easily 

seen that the results are very stable for Gaussian samples and reasonably stable for 

Slash samples. Figure 2.3 is the average of the three repetitions and is the basis for 

the optimum cut-off value shown at table 2.6 for n = 5. 
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Table 2.5: Thkey's method: Minimum average badness and corresponding cut-off 

value according to 10 million simulations for each n 

I n I i~ I B~' 11 n I 'Y~ I B~' I 

4 0.99 9.1795 5 0.86 2.1546 

6 0.99 1.7110 7 0.99 1.1772 

8 0.99 1.0077 9 0.99 0.8191 

10 0.99 0.7302 11 1.00 0.6286 

12 0.99 0.5769 13 1.00 0.5099 

14 1.00 0.4744 15 1.00 0.4296 

16 1.00 0.4032 17 1.02 0.3721 

18 1.01 0.3513 19 1.04 0.3278 

20 1.03 0.3115 21 1.06 0.2931 

22 1.05 0.2801 23 1.07 0.2650 

24 1.07 0.2542 25 1.09 0.2419 

26 1.08 0.2327 27 1.09 0.2223 

28 1.09 0.2144 29 1.11 0.2057 

30 1.11 0.1987 49 1.18 0.1173 

50 1.16 0.1152 
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Figure 2.2: Three separate simulations of one million samples of size five 
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Figure 2.3: Three million samples of size five (Slash vs Normal) - pooled 
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Table 2.6: Initial estimates of optimum cut-off values for Tukey's Method 

N N 
11 

4 not-stable 9*500000 + 2*1000000 5 1.4178 3*1000000 

6 not-stable 8*500000 7 1.4402 4*500000 

8 1.3049 4*500000 9 1.4477 4*500000 

10 1.3468 4*500000 11 1.4387 4*50000 

12 1.3759 4*50000 13 1.4245 4*50000 

14 1.3773 4*50000 15 1.4084 4*50000 

16 1.3729 4*50000 17 1.4045 4*50000 

18 1.3731 4*50000 19 1.3947 4*50000 

20 1.3660 4*50000 21 1.3898 4*50000 

22 1.3708 4*50000 23 1.3825 4*50000 

24 1.3669 4*50000 25 1.3773 4*50000 

26 1.3538 4*50000 27 1.3780 4*50000 

28 1.3561 4*50000 29 1.3774 4*50000 

30 1.3562 4*50000 49 1.3475 4*50000 

50 1.3361 4*50000 

Table 2.6 shows the results of repetition of this procedure for sample sizes up to 

50. 

Simulations for n = 4 and n = 6 were not stable enough and no compromise 

cut-off value could be determined. We split the table into even and odd values of 

sample sizes because of different behaviours for these two cases. Figure 2.4 shows 

this difference and it can be seen the difference is decreasing in n. 

Stage 3. Finding a more accurate estimate of the optimum cut-off value as 

well as its confidence interval for univariate data needs another simulation study 

to approximate the difference between inefficiencies (or scaled badnesses) near the 

initial optimum cut-off value by a regression line. The details have been discussed 

in section 2. 7. 
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Figure 2.4: The behaviour of initial optimum cut-off in even and odd sample sizes 
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The new sets of simulations have been done for a subset of samples sizes which 

have been studied in stage one. Table 2. 7 shows the difference of Slash and Gaussian 

scaled badnesses i.e. b('yi) where i = 1, 2, · · · , 21 and']_= {1.30, 1.31, · · · , 1.50} for 

n = 15. Each row of the table comes from two separate simulation with 10,000,000 

samples ( 42 simulations in total). The table is followed by the scatterplot and the 

regression error plots. The plots show a reasonable independence and normality of 

the errors. 

The regression line is J ( 1) a+ !3! = 1.1513 - 0.81741. Putting 8(1) = 0, 

we have 1* = - _!0~~{;4 = 1.4085 which is a more accurate optimum cut-off value to 

recognise outliers for a sample sized n = 15 based on Tukey's method. 

To find how accurate the optimum cut-off value is, a confidence interval for -~ in 

a regression line is used. Despite of the discussion in section 2. 7 to consider the 

uncertainty of minimum badness in Slash samples, table 2.8 contains the confidence 

intervals without this consideration as the work had been done before the discussion. 

For instance, using (2.2), the calculated 95% confidence interval for optimum cut-off 

value when n = 15 in the Tukey's method is (1.4072, 1.4098). For some sample 
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Table 2. 7: For n = 15, the difference of Slash and Gaussian scaled badness near the 

initial estimated optimum cut-off 
============================ 

/i:cut-off value b(Ti):B0 (Ti)- B 8 (Ti) 

1.3 0.0915 ) 0.0934 

1.31 0.0811 ) 0.08 

1.32 0.0739 ) 0.072 

1.33 0.0579 ) 0.0603 

1.34 0.0548 ) 0.0583 

1.35 0.0499 ) 0.048 

1.36 0.0401 ) 0.0395 

1.37 0.0345 ) 0.0298 

1.38 0.0249 ) 0.0206 

1.39 0.0154 ) 0.0106 

1.4 0.0076 ) 0.0005 

1.41 0.0059 ) -0.0043 

1.42 -0.0073 ) -0.0056 

1.43 -0.0151 ) -0.0259 

1.44 -0.0241 ) -0.0219 

1.45 -0.0384 ) -0.0363 

1.46 -0.0442 ) -0.0416 

1.47 -0.0505 ) -0.0545 

1.48 -0.054 ) -0.057 

1.49 -0.0658 ) -0.0631 

1.5 -0.0789 ) -0.0707 



2.7. Simulation study- The results 39 

Figure 2.5: Scatterplot and the residual plots of the regression on data in table 2. 7 -..c: m 
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sizes, the confidence intervals contains the old cut-off values while for some others 

it does not. Checking for the possibility of needing a quadratic model shows except 

Table 2.8: Initial and more exact optimum cut-off values with 95% confidence in­

tervals 
A I 

I* I* 195% Cl- L 95% Cl- u I 
5 1.4178 1.3995 1.3802 1.4188 

7 1.4402 1.4476 1.4421 1.4530 

8 1.3049 1.3007 1.2878 1.3137 

9 1.4477 1.4490 1.4456 1.4525 

10 1.3468 1.3597 1.3571 1.3622 

11 1.4387 1.4300 1.4279 1.4322 

12 1.3759 1.3671 1.3644 1.3698 

13 1.4245 1.4179 1.4161 1.4197 

14 1.3773 1.3651 1.3627 1.3675 

15 1.4084 1.4085 1.4072 1.4098 

16 1.3729 1.3650 1.3632 1.3669 

17 1.4045 1.4000 1.3974 1.4026 

18 1.3731 1.3627 1.3606 1.3648 

19 1.3947 1.3950 1.3930 1.3970 

20 1.3660 1.3659 1.3635 1.3682 

30 1.3562 1.3566 1.3545 1.3587 

for n = 7, all the rest are not significant. 

2.8 Comparing Modified Z and Tukey's Methods 

In this section, we try to compare two methods: Modified Z-scores (MZ) and Tukey. 

We understand that the cut-off value suggested by Iglewicz and Hoaglin (1993) is 

fixed at 3.5 but to do the comparison, a wide range of cut-offs has been applied, 

something which has not been studied before. Therefore, some simulations have 

been done to find a compromise cut-off value in each method for a wide range of 
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sample sizes (5,7-20,30)3 . The simulations are again based on generation of corre­

lated random numbers from Slash and Gaussian distributions as before. The results 

of these series of simulation for Tukey's method are naturally different from the 

simulations explained in previous sections. 

To make the two methods comparable, we need to scale them by a single scale 

which should be chosen by the minimum of two minimum badnesses obtained in two 

methods. The reason is that if we knew the population type, the best result would 

be obtained by using the best method with its best cut-off and so inefficiency should 

be measured relative to that level of badness. The minimum of expected badness 

in Gaussian population is 1/n where n is the sample size, regardless of the method. 

Therefore, the inefficiencies would only be changed in Slash population. 

Investigated cut-off values in MZ method are {0.7, 0.75, 0.8, ... , 4} which was a 

fixed cut-off 3.5 in the earlier studies. The set of cut-off studied in Tukey's method 

is {0.7,0.75,0.8, ... ,1.6}. Here is the explanation of the details of calculation for n = 5 

after running the simulations. 

For n = 5, the minimum badness by applying MZ occurs at cut-off 1.15 with 

the amount of 2.1066 while the minimum of badness applying Tukey's method is 

2.1402 at the cut-off 0.85. Then raw badnesses obtained by both methods are scaled 

by 2.1066 which is minimum of the two minimums. The optimum cut-off value 

for n = 5 by this scaling in MZ is 2.6749 and in Tukey's method is 1.3971. The 

scaled badness or inefficiency using Tukey's method with its optimum cut-off value 

for n = 5 is less than the same calculation using MZ and its optimum cut-off. The 

difference is 0.0081. See figure 2.6 linked to the above calculations for n = 5. 

Table 2.9 shows similar calculations for other sample size n. The table splits odd 

and even n because the behaviour of some columns of the table is separately regular 

for odd and even values. Although, for both odd and even n, ~s is almost increasing 

in terms of n for MZ's method and not for Tukey's method (see figures 2.7 and 2.8). 

B!' decreases as n increases regardless of which method is used or whether n is even 

or odd (see figures 2.9 and 2.10). Again, in terms of odd or even n's, cut-off values in 

3 We did the simulations for n = 4 and n = 6 but did not bring the results in the tables and no 

discussion on them because the simulation results in section 2.7 were not stable for them. 
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Figure 2.6: The plots of badnesses of Slash· and Gaussian samples size n = 5 in two 

methods 
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each of the two methods are regularly different (see figures 2.11 and 2.12). Finally, 

the difference between inefficiencies in the two methods, depending on odd or even 

n, is increasing which means for larger sample sizes, Thkey's method is preferred 

(see figure 2.13). Except for n = 8, Thkey's method is more efficient than MZ. 

As another check for n = 4, confidence intervals for any individual cut-off values 

are too big which implies the results of simulation are not stable (see figure 2.14). 

FUrthermore, there is a jump at cut-off one and it makes the function of scaled 

badness not to be differentiable. It means no confidence interval for the optimum 

cut-off value could be found at n = 4. 

Table 2.10 shows the confidence intervals for some n in both MZ and Thkey. 

2. 9 Miscellaneous 

o Table 2.11 shows the inefficiency using a fixed cut-off value for all n in each 

method. Column diff. is the difference between badness using the fixed and 

the estimated optimum cut-off value. We did not take a rule to choose these 

two fixed cut-off. 
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Table 2.9: Comparison of two methods and their expected badnesses at their opti­

mum cut-offs 

n MZ Thkey expected badness 
As BS' I* As BS' I* cliff. I m m I m m 

5 1.15 2.1066 2.6749 0.85 2.1402 1.3971 0.0081 

7 1.2 1.1397 2.6676 0.95 1.1789 1.444 0.0237 

9 1.3 0.7939 2.6593 1 0.8224 1.4488 0.0365 

11 1.35 0.6115 2.6442 1 0.6263 1.4291 0.045 

13 1.4 0.4983 2.6322 1 0.5084 1.4173 0.0526 

15 1.4 0.4204 2.6202 1 0.4286 1.4069 0.0582 

17 1.45 0.3634 2.6031 1 0.3708 1.4006 0.0634 

19 1.45 0.3201 2.5932 1.05 0.3267 1.3926 0.0678 

8 1.1 0.9347 2.5592 0.95 1.014 1.3058 -0.0113 

10 1.3 0.6853 2.5841 0.95 0.736 1.3583 0.0145 

12 1.3 0.5433 2.5803 1 0.576 1.3672 0.0287 

14 1.35 0.4513 2.5775 1 0.4724 1.3644 0.0413 

16 1.4 0.3865 2.5733 1 0.4016 1.3636 0.0507 

18 1.4 0.3378 2.5672 1 0.3502 1.3638 0.0564 

20 1.45 0.3 2.5597 1.05 0.3111 1.3654 0.0617 

30 1.45 0.1926 2.5353 1.1 0.1984 1.3548 0.0812 
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Figure 2. 7: .:Ym (cut-off corresponding to minimum badness in initial simulation) 

versus sample size n for modified Z-scores 
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Figure 2.8: .:Ym (cut-off corresponding to minimum badness in initial simulation) 

versus sample size n for Thkey's method 
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Figure 2.9: B~' (minimum badness in initial simulation) versus sample size n for 

modified Z-scores 
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Figure 2.10: B~' (minimum badness in initial simulation) versus sample size n for 

Thkey's method 
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Figure 2.11: ~* (optimum cut-of value) versus sample size n for modified Z-scores 

using the smaller minimum badness to scale 
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Figure 2.12: ~* (optimum cut-of value) versus sample size n for Thkey's method 

using the smaller minimum badness to scale 
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Figure 2.13: The differences between the scaled badness at optimum cut-off value 

for modified Z-scores and Tukey's method 
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Figure 2.14: For n = 4, modified Z-scores and Tukey's method scaled by their own 

minimum badness with confidence interval at each cut-off 

method: MZ ; n= 4 , 50 * 2e+05 method: Tu key ; n= 4 , 50 * 2e+05 
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Table 2.10: Initial and the final 1* with 95% Cl for both MZ and Thkey 

n Modified Z-scores Thkey's method 
A I 

L u A I 

I 1* L u 'Y* 'Y* 'Y* 

5 2.6761 2.6790 2.6563 2.7018 1.3971 1.3995 1.3802 1.4188 

7 2.6680 2.6786 2.6672 2.6900 1.4440 1.4476 1.4421 1.4530 

8 2.5592 2.5617 2.5529 2.5706 1.3060 1.3007 1.2878 1.3137 

9 2.6592 2.6579 2.6494 2.6663 1.4488 1.4490 1.4456 1.4525 

10 2.5841 2.5802 2.5744 2.5860 1.3586 1.3597 1.3571 1.3622 

11 2.6442 2.6463 2.6414 2.6511 1.4291 1.4300 1.4279 1.4322 

12 2.5803 2.5806 2.5748 2.5865 1.3682 1.3671 1.3644 1.3698 

13 2.6322 2.6290 2.6234 2.6346 1.4178 1.4179 1.4161 1.4197 

14 2.5775 2.5782 2.5734 2.5830 1.3652 1.3651 1.3627 1.3675 

15 2.6205 2.6163 2.6117 2.6210 1.4072 1.4085 1.4072 1.4098 

16 2.5739 2.5747 2.5709 2.5784 1.3642 1.3650 1.3632 1.3669 

17 2.6032 2.6029 2.5986 2.6072 1.4006 1.4000 1.3974 1.4026 

18 2.5674 2.5653 2.5610 2.5696 1.3644 1.3627 1.3606 1.3648 

19 2.5932 2.5926 2.5889 2.5964 1.3926 1.3950 1.3930 1.3970 * 
20 2.5598 2.5610 2.5578 2.5643 1.3660 1.3659 1.3635 1.3682 

30 2.5353 2.5346 2.5317 2.5376 1.3551 1.3566 1.3545 1.3587 



2.9. Miscellaneous 49 

Table 2.11: Inefficiency (scaled badness) difference when choosing a fixed cut-off 

compare to using the optimum cut-off 

MZ Thkey 

n Inefficiency diff. Inefficiency diff. 

2.6 'Y* 1.4 'Y* 

5 1.3132 1.3008 -0.0124 1.2866 1.2851 -0.0015 

7 1.2689 1.2563 -0.0126 1.2315 1.2160 -0.0155 

8 1.2444 1.2338 -0.0107 1.2556 1.2000 -0.0556 

9 1.2404 1.2286 -0.0117 1.1925 1.1749 -0.0177 

10 1.2168 1.2128 -0.0039 1.1836 1.1611 -0.0226 

11 1.2182 1.2090 -0.0091 1.1628 1.1523 -0.0105 

12 1.2044 1.1996 -0.0048 1.1569 1.1404 -0.0165 

13 1.2026 1.1959 -0.0067 1.1397 1.1334 -0.0063 

14 1.1953 1.1898 -0.0055 1.1426 1.1251 -0.0175 

15 1.1898 1.1855 -0.0044 1.1197 1.1173 -0.0024 

16 1.1882 1.1819 -0.0063 1.1295 1.1118 -0.0176 

17 1.1792 1.1785 -0.0007 1.1062 1.1060 -0.0002 

18 1.1828 1.1751 -0.0077 1.1180 1.1009 -0.0171 

19 1.1730 1.1714 -0.0016 1.0975 1.0942 -0.0032 

20 1.1792 1.1697 -0.0095 1.1064 1.0905 -0.0159 

30 1.1691 1.1536 -0.0155 1.0768 1.0584 -0.0185 



2.10. The functions in R 50 

o After finding the optimum cut-off values in Tukey's method, a question arises 

of how many percent of a data set with Slash distribution (having some out­

Hers) will be tagged as outliers using the optimum cut-off values. 

To answer this question, a simulation study has been done. For each n 

5, 7, · · · , 20, 30 sample sizes, 10000 random numbers from Slash distribution 

have been generated. Each generated sample data set will be inspected to 

detect possible outliers using the optimum cut-off regarding its sample size. 

Then, the average of 10000 number of detected outliers in each sample size's 

data sets has been calculated and these averages will be divided by their sample 

sizes to find the outliers' proportions for each sample size. 

Table 2.12 shows the results of three repeated simulation studies producing 

10000 Slash random numbers in each repetition and they seem to be consistent. 

The range of percentages varies between 14% to 18%. 

We also did the similar simulation for samples generated from Gaussian dis­

tribution to check the optimum cut-off values. It was expected to have very 

few of outliers. The results in table 2.13 shows the low percentages of outliers 

especially when the sample size increases: 

2.10 The functions in R 

• Function bbO. sim calling b. Oway. 0 has been used for scanning the 'Ym· They 

produce as many samples as required with specific sample sizes from Slash 

and correlated Gaussian distributions. Then the badness for each element of 

a set of cut-off values is calculated. Finally, the mean of badnesses in each 

cut-off value will be saved in separated files. Function bbO. sim. res gathers 

the results of saved files and reports the minimum of badness for each n. 

• The function ppO. sim, can produce a large number of samples from Slash and 

correlated Gaussian distributions. For a set of cut-off values, badnesses are 

calculated and scaled by the results of the output of bbO. sim. res stored in a 

variable bbOsimres. Then using ppO. sim. res, a plot of the expected mean of 
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Table 2.12: Proportion of Slash samples' detected as outliers by Tukey's method 

n Repeat 1 Repeat 2 Repeat 3 

5 0.15 0.14 0.15 

7 0.15 0.15 0.15 

8 0.13 0.14 0.14 

9 0.15 0.15 0.15 

10 0.14 0.14 0.14 

11 0.15 0.16 0.15 

12 0.15 0.15 0.15 

13 0.16 0.16 0.16 

14 0.15 0.15 0.15 . 

15 0.16 0.16 0.16 

16 0.16 0.16 0.16 

17 0.16 0.16 0.16 

18 0.16 0.16 0.16 

19 0.17 0.16 0.17 

20 0.16 0.16 0.16 

30 0.18 0.18 0.17 
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Table 2.13: Proportion of Gaussian samples' detected as outliers by Tukey's method 

n Repeat 1 Repeat 2 Repeat 3 

5 0.08 0.07 0.07 

7 0.05 0.05 0.05 

8 0.04 0.04 0.04 

9 0.04 0.04 0.04 

10 0.03 0.03 0.03 

11 0.03 0.03 0.03 

12 0.03 0.03 0.03 

13 0.03 0.03 0.03 

14 0.02 0.02 0.02 

15 0.02 0.02 0.02 

16 0.02 0.02 0.02 

17 0.02 0.02 0.02 

18 0.02 0.02 0.02 

19 0.02 0.02 0.02 

20 0.01 0.01 0.01 

30 0.01 0.01 0.01 
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scaled badness will be produced for each group of Slash and Gaussian against 

the set of cut-off values. The results can be presented as two different plots. 

• The function b. Oway has been used to simulate the univariate data in a short 

range of cut-off values to be used for finding the confidence intervals. It pro­

duces for the desired sample sizes and a given method (modified Z-scores and 

Tukey's methods). 

• b. Oway. res. 6. ci calculates the confidence intervals for the results of simula­

tion near to the initial optimum cut-off value. It uses b. Oway. res. table. 1 

to retrieve the estimate of minimum badnesses. 

• The function b. Oway. summ does the simulations and calculations needed to 

produce tables 2.12 and 2.13 (see Appendix B). 



Chapter 3 

Two Way Factorial Designs 

This chapter is about finding the optimum cut-off value to be used for detection of 

any possible outliers in a two-way factorial design when there is no replication. The 

method and an old simulation study will be reviewed and the results of an improved 

simulation study will be presented. 

3.1 Introduction 

In one of the last papers by Prof. J.W. Thkey (1915-2001), Seheult and Thkey 

(2001) introduced a method of outlier detection and robust analysis in a factorial 

experimental design. The basic method for identifying outlying residuals is the 

same as the third method in univariate data, subject obviously to some changes 

for analysing a table rather than a vector of data. The cut-off value used in that 

paper was 1.5 which was based on Fowlkes et al. (1981) and Al-Madfai (1994). The 

old simulation studies to determine the cut-off value were based on decomposition 

of 5 by 4 two-way simulated tables1 using "lo-median" as the sweep function. A 

sweep function is a location statistic which can be calculated for and subtracted 

from a set of data. In some sense it can be considered as removing the centre of 

the data. In this chapter, firstly, that simulation study has been repeated to ensure 

comparability with the results of previous simulations. 

1 A simple two factorial experimental design without replication 

54 
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The sweep function in Seheult and Tukey (2001), for an even number of values, is 

a new concept of median named "fibian". Also, the method in the paper is intended 

to be used for a generalised factorial experimental design which may have a different 

number of factors as well as a different number of levels in each factor. The second 

part of this chapter is another simulation study for a wider range of numbers of 

levels in a two-way factorial design in order to find a relation between the cut-off 

value and the number of levels of a two-way factorial design. The new simulation 

series has been improved in five ways; a) using a similar sweep function to "fibian" 

named "NE.median" (Johnson 1989; page 13) but easier to use, b) a unique result for 

the decomposition which is a more user friendly decomposition, c) adding random 

row and column effects to the generated tables in the simulation, d) censoring Slash 

random numbers at 80 to control the behaviour of badness and e) using a better 

approximation for reference values. 

The results of the new simulation study are also followed by confidence intervals 

for cut-off values. 

3.2 The method 

The method used to distinguish outliers in univariate data may be generalised for a 

two-way factorial design as follows: 

• In chapter 2, calculation ofthe residuals by subtracting the lo-median from the 

observations, can be called a "decomposition" which decomposes the data into 

lo-median and residuals. A simple two-way table can also be decomposed into 

four components which are the overall parameter, row effects, column effects 

and the residuals. 

• A similar rule must separately be followed for the three non-trivial compo­

nents effects to distinguish the possible outliers among rows, columns and the 

residuals. 

• To find the best cut-off value to use for each of the three components (rows, 

columns and interaction), three measures of badness have to be considered. 
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3.2.1 Decomposition 

Decomposition is a method to separate the main effects, interactions (if there are) 

and residuals in data from a designed experiment. The simplest decomposition is 

based on the mean as a measure of centre. Using the following example, a mean­

based decomposition for a 22 factorial design will be explained. The procedure is 

also called "mean polish" . 

Example 3.1: Here is the data for a 22 factorial design: 

factor 1 level 1 level 1 level 2 level 2 

factor 2 level 1 level 2 level 1 level 2 

response 8 2 6 3 

To do a decomposition, we have to make a crosstabulation of the data and add a 

row and a column of zero to it: 

11
1 2

1 

1 8 2 0 

2 6 3 0 

0 0 0 

Then, starting from rows or columns (as convenient), calculate the mean of main 

part of crosstable for each row or column, subtract the mean from the elements of 

the main part and add the mean to the appropriate element of the extra row or 

column. In this example, we start with the columns (the second factor): 

8 2 0 1 -0.5 0 0.75 -0.75 0.25 

6 3 0 -1 0.5 0 -0.75 0.75 -0.25 

0 0 0 7 2.5 0 2.25 -2.25 4.75 

Repeating the procedure will not make any changes for a mean-based decomposition 

on a balanced complete factorial design. As well as converging with just one step, 

a mean-based decomposition does not depend on whether one starts with rows or 

columns. 

In a median-based decomposition, a more resistant sweep function is used but 

for an even number of values, there is more than one possible value to choose as a 
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median. In fact, for an even number of values, any number between the two central 

values can be presented as median. 

Fowlkes et al. (1981) and Al-Madfai (1994) have used la-median when the number 

of values is even. The la-median is the lower of the two numbers in the centre for an 

even number of values. We follow the explanation of rest of the method by polishing 

an example of 5x4 two-way table using la-median as the sweep function: 

Example 3.2: 

-1 -1 11 5 

55 -5 -5 0 

1 2 -2 11 

-1 2 0 -2 

1 2 -1 0 

As before, the first step is to add a sweep-into column and row to the table: 

-1 -1 11 5 0 

55 -5 -5 0 0 

1 2 -2 11 0 

-1 2 0 -2 0 

1 2 -1 0 0 

0 0 0 0 0 

One can choose whether to start from columns or rows. The results are not exactly 

the same but for our purpose, outlier recognition, both would lead to similar results. 

In this example, we may start with the columns and find out the la-median of each 

column and add it to the element of the sweep-into row corresponding to each 

column (zeros in the first stage) while it has to be subtracted from each element of 

the column: 

-2 -3 12 5 0 

54 -7 -4 0 0 

0 0 -1 11 0 

-2 0 1 -2 0 

0 0 0 0 0 

1 2 -1 0 0 
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In the next step, a sweeping will be done on rows: 

0 -1 14 7 -2 

58 -3 0 4 -4 

0 0 -1 11 0 

0 2 3 0 -2 

0 0 0 0 0 

1 2 -1 0 0 

The procedure has to be iterated to achieve a stable table: 

0 -1 14 3 0 

58 -3 0 0 -2 

0 0 -1 7 2 

0 2 3 -4 0 

0 0 0 -4 2 

1 2 -1 4 -2 

0 -1 14 3 0 

58 -3 0 0 -2 

0 0 -1 7 2 

0 2 3 -4 0 

0 0 0 -4 2 

0 1 -2 3 -1 

As the lo-mediart for each column and each row is zero, there is no further change 

by continuing the sweeping. It usually converges after one or two iterations. 

To check that the decomposition has been done in the right way, each cell of the 

original table should be written as the sum of its corresponding values in the sub­

tables and the common value in the right-down corner of the final table. For instance: 

55 = 58 + (- 2) + 0 + ( -1) 

In general, if aij 's are the original values of the given two-way table, and rii 's, Cj 's 

and ri's are the residuals, column and row sub-tables, respectively, provided by the 

decomposition and let m to be the common value of the decomposition: 
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3.2.2 Detecting possible outliers 

For a two-way table, the outliers can be separately tagged in the row effects, column 

effects and the residuals. By considering the row effects as the residuals obtained in 

a univariate study, Seheult and Thkey (2001) applied exactly the same routine as 

applied in chapter 2 for univariate data to detect possible outliers. It is the same 

for the column effects. For the residuals, the procedure is again the same but the 

number of residuals to be inspected is slightly different. Assume v is the number 

of degrees of freedom of the residuals which is v = (r- 1)(c- 1). The v largest 

residuals in size should be inspected in the procedure. If there are fewer than v 

non-zero residuals, it is recommended to replace v by the minimum of v and one 

more than the number of non-zeros. 

In the example, the number of non-zero residuals is 11 which is less than the number 

of degrees of freedom which is (5- 1)(4- 1) = 12. According to the recommended 

rule, the minimum of the degree of freedom and "one plus the number of non-zero's" 

are both 12. Then, we choose the largest 12 residuals in size. Table 3.1 shows the 

rest of procedure. 

Considering a cut-off value of 1.5 leads to tagging the first two residuals in the 

table as corresponding extreme values. It means that in the original data, we will 

flag 55 and 11, respectively a21 and a13 , as extreme values or outliers. If we consider 

1.9 as an alternative cut-off value, the result will be the same. But a cut-off value of 

1.1leads to more than two extremes (58, 14 and 7). Based on the rule, if the cut-off 

value is 0.9, we have still just three extremes because 0.79 has a larger residual than 

0.93 which is greater than 0.9. 

Obviously, choosing different cut-off values can have different results. Fowlkes 

et al. (1981) and Al-Madfai (1994) have done some simulation studies to find an 

optimum cut-off value for a 5x4 two-way table. We first repeated their simulations 

for a large number of samples and then carried out further work. 
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Table 3.1: Example 2. Seheult-Thkey's method 

(1) (2) (3) (4) 

Ordered Absolute Reference Scaled by 

Selected Residuals Values ( 1) 
(2) la-median of (3) 

58 1.94 29.90 6.28 

14 1.51 9.27 1.95 

7 1.25 5.60 1.18 

4 1.06 3.77 0.79 

4 0.90 4.44 0.93 

3 0.76 3.95 0.83 

3 0.63 4.76 1.00 

3 0.52 5.77 1.21 

2 0.41 4.88 1.03 

1 0.30 3.33 0.70 

1 0.20 5.00 1.05 

0 0.10 0.00 0.00 

3.3 Simulation study for optimum cut-off value 

The idea of how to find out an optimum cut-off value is to generate many samples 

from a Gaussian distribution while generating other samples from an alternative 

distribution expected to have some extreme values. The simulation here generates 

50000 data sets for a two-way factorial design from a Slash distribution and then 

50000 data sets from a Gaussian distribution correlated to the Slash samples. The 

samples are decomposed to produce the residual part. Then using a set of cut-off 

values, the corresponding extreme values will be tagged and be temporarily removed 

from their sample. If the rank of temporary modified sample is big enough (greater 

than or equal to the degrees of freedom), the next step will be executed which is 

to calculate an efficient measure to find the difference between estimates and true 

values. Three measures called by Thkey as the measures of "badness" are the sum 

of squares of the differences between estimated and true row effects ( Br), the sum 
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of squares of the differences between estimated and true column effects (Be) and a 

linear combination of the last two 

where c is the number of levels in the column's factor and r is the number of levels 

for the row's factor and note that the true (row and column) effects are zero as the 

described simulation procedure. 

The stages to calculate the measures of badness are now shown for our example. 

The measures will be calculated for a set of cut-off values {0.7,0.9,1.1,3}: 

For cut-off value 3, we have just one extreme value and the temporary modified 

original data (by removing the corresponding extreme) is: 

-1 -1 11 5 

NA -5 -5 0 

1 2 -2 11 

-1 2 0 -2 

1 2 -1 0 

There are two ways to find out the row and columns effects which are needed to 

calculate the measures of badnesses: using a standard linear model fitting method 

and doing a mean decomposition. The two methods yield the same results. When 

calculating a value to be swept out during the decomposition we ignore completely 

the removed data. In the current example: 

-1 -1 10.4 2.2 0 -3.65 -3.65 7.75 -0.45 2.65 

NA -5 -5.6 -2.8 0 NA -0.53 -1.13 1.67 -4.47 

1 2 -2.6 8.2 0 -1.15 -0.15 -4.75 6.05 2.15 

-1 2 -0.6 -4.8 0 0.1 3.1 .5 -3.7 -0.1 

1 2 -1.6 -2.8 0 1.35 2.35 -1.25 -2.45 -0.35 

0 0 0.6 2.8 0 -0.85 -0.85 -0.25 1.95 0.85 
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and after seven iterations the final decomposed table is: 

-2.81 -3.93 7.47 -0.73 2.93 

NA -0.53 -1.13 1.67 -4.47 

-0.31 -0.43 -5.03 5.77 2.43 

0.94 2.82 0.22 -3.98 -0.82 

2.19 2.07 -L53 -2.73 -0.07 

-1.69 -0.57 0.03 2.23 0.57 

It is notable that mean decomposition in a complete table does not need any iteration 

to converge. In other words, at the first step the decomposition is completed. If 

we remove even one entry from the table, a few iterations are needed to achieve 

convergence. 

Continuing the calculation of badnesses in the example, it is simply calculated 

by sum of squares of estimated row effects as well as column effects: 

Br = ( -1.69)2 + ( -0.57)2 + (0.03) 2 + (2.23) 2 = 8.14 

Be= (2.93) 2 + ( -4.47) 2 + (2.43) 2 + ( -0.82) 2 + ( -0.07) 2 = 35.11 

and then 

Br = rBc + cBr = 5(8.14) + 4(35.11) = 181.16 

The same routine has to be run for the other cut-off values. For both 0.9 and 1.1 

there ate three extremes and the modified original table to decompose is: 

-1 -1 NA 5 

NA -5 -5 0 

1 2 -2 NA 

-1 2 

1 2 

0 

-1 

-2 

0 

and the three measure of badnesses can be calculated as above. 

For cut-off value of 0. 7, there are ten extremes and the modified original table is as 

the following: 
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-1 -1 NA NA 

NA NA NA 0 

1 2 -2 NA 

-1 NA NA NA 

1 2 -1 NA 

The linear model's design matrix X corresponding to the modified table has a rank 

of seven that is less than the eight needed to be a full rank matrix. Then, some 

effects of the linear model cannot be estimated. In practice, in our simulation study, 

cut-off values less than 1 usually lead to this situation. 

3.4 Results 

The simulation study has been done for 50000 samples2 of 5x4 two-way factorial 

tables in the first stage to check the results of Fowlkes et al. (1981) and Al-Madfai 

(1994). Furthermore, for validation, similar simulations have been done for 4x5 

tables which should lead to the same results. 

We found the optimum cut-off values for each set of effects separately as Fowlkes 

et al. (1981) and Al-Madfai (1994) 3 did. Table 3.2 includes their results and the 

presented work. 

There are no recorded results for Br and Be in Fowlkes's report. It might be 

because of their emphasis on the total badness ( Br) rather than the other two 

measures. 

For Br, which is the main measure in the decision problem, the results even using 

scaling by SqLm in Al-Madfai (1994), are very close. 

250000 simulations have been split to five 10000 samples and submitted to "condor", a batch 

processing system. The result of each split has been stored and then they are gathered to make 

the result of 50000. 
3 They have also used another scaling named square lo-median scaling or SqLm as a type of 

within sample scaling. For this scaling, they divide the square root of the ratios of ordered absolute 

values of each original two-way table to the same number of quartiles of the half positive Gaussian. 
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Table 3.2: Comparison of old simulations and the present 

Br CV(Br) Be CV(Bc) Br CV(Br) 

1.178 1.652 1.69 

Al-Madfai 10000 X 3 1.93 0.2929 1.453 0.1216 1.672 0.0055 

1.22 1.855 1.685 

(SqLm) 

1.66 

1.80 

Fowlkes 10000 X 5 1.68 0.0316 

1.72 

1.70 

1.38 2.00 1.77 

1.37 1.87 1.68 

This work 10000 X 5 1.43 0.0183 2.24 0.0654 1.96 0.0587 

1.37 2.04 1.78 

1.40 2.02 1.73 

3.5 Weaknesses and Alternatives 

i) The first weakness of the above method of polish is that the result is not 

unique. It depends on the start direction of polishing. There are two different 

answers if you start the sweeping from the columns or if you start it from 

the rows. Thkey believed that it does not make effect on distinguishing the 

outliers. However, having a unique answer would reduce confusion for users of 

statistical software. 

Solution: A unique decomposition for a two-way table4 can be achieved by doing two 

polishes, one started with the row and the other one started with the column 

and then taking an average of the results of row-first polish and the column­

first polish. The process is repeated until convergence. 

4The solution can be used for any higher dimensions of a table 
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ii) If you have a 2 by c two-way table5 , where c > 2, using lo-median to polish 

we may lose the extreme value in some cases. This is because the lo-median 

of two numbers is always one of them and sweeping the lo-median makes it 

zero. It may happen that the value selected by the la-median is an extreme 

value but in the residual part of polish it becomes zero and is not considered 

as an extreme or outlier. This may also happen if lo-median is substituted by 

hi-median. 

Even if mid-median is used, one outlier in a column will spread in the column 

and both cells might be tagged as outliers. 

Solution: An alternative to lo-median/hi-median has been introduced by Seheult and 

Tukey (2001) named fibian which solves the problem. Fibian is one of la­

median or hi-median depending which one makes the swept-into smaller. Ap­

plying fibian to a general design using the method based on the new idea in the 

next chapter is too difficult. Another alternative named NE-median has been 

introduced in Johnson (1989; page 13) which is very similar to fibian but it 

does not use the swept-into value. This alternative is as easy as la-median/hi­

median/mid-median to apply for a generalised new decomposition method. 

NE-median is the smaller in magnitude of the lo-median and hi-median. If 

lo-maedian and hi-median are equal in magnitude, NE-median would be set 

to zero. Using the NE-median, if we first subtract the overall median from the 

whole table, the results will be very close to the fibian. 

In the next section, the simulation study will be based on NE-median as the 

sweep function after first subtracting the overall median from all cells. If we 

want to have a decomposition, we need just to add the subtracted median 

to the estimated total effect which is not necessary in the stage of badness 

calculation. 

iii) In Slash random samples, sometimes a very large number like 700000 may 

be generated. Such large numbers can have a large influence on the measure 

5It happens also when there is a r by 2 table, where r > 2 
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of badness so the distribution of badness is very heavily skewed. It leads to 

an instability in simulation results when the study is repeated. In fact, in the 

simulation study, we are comparing two type of tables: without extreme values 

and with some extreme values. In reality, we do not need such large numbers 

as extremes. 

Solution: It is enough for this form of simulation that in the second type of tables there 

are extremes. The size of extreme are not very important as long as it is 

considered as extreme comparing to Gaussian. Figure 3.1 shows an overlaid of 

Gaussian and Slash density functions. It can be seen that any value of Slash 

greater than 20 in size can be considered as an extreme to Gaussian. 

We suggest to truncate any value of Slash random numbers greater than 80 

which causes censoring of just %1 of too large and too small numbers, i.e: 

P(S < 80) ~ 0.9950 => P(S < -80) + P(S > 80) ~ 0.0100. Truncating Slash 

leads to change of Slash distribution function to: 

Fs(s)- Fs( -M) . . 
FstrM(s) = Fs(M) _ Fs( -M) where M IS the truncated pomt. 

and it should be considered when we generate Gaussian samples by converting 

Slash samples. 

iv) NE.median tries to make the effects as close as possible to zero. Then if the 

true row effects and column effects are actually zero, it is effecti.vely a bias 

in the simulation study. In the other words, zeroing row and column effects 

makes the table almost ready to polish by NE.median. 

Solution: In the simulation study, some Gaussian random numbers are added to the 

samples generated from Slash and converted to Gaussian. One set of Gaus­

sian random numbers is added to rows and another set to columns. It causes 

the expected row and column effects not to be zero. Then when calculat­

ing badness we must subtract those values from the estimated effects before 

squaring and summing. 

v) There are three formulas to approximate the reference values which are m half 

positive normal expected order statistics qi where i = 1, 2, ... , m: 
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Figure 3.1: Slash density function vs Gaussian 
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Fowlkes et al. (1981) used another form of the second one which is ~~31 where 
3 

i ~m, (m- 1), ... , 1. 

Solution: It has an easy solution. A quick simulation study showed the first one is much 

better. 
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3.6 New simulation study 

A new series of simulations has been done as the final simulations for two-way facto­

rial designs without replication. The basis of the simulation is the same as previous 

ones but incorporating the improvements in section 3.5. 

The first step is to generate re Slash random numbers restricted to have magnitude 

less than 80 followed by generating the same number of correlated Gaussian random 

numbers where r and c indicate the number of rows and the number of columns, 

respectively, in a simulated two-way table. 

Then, for each Slash sample and its correlated Gaussian sample, r ordinary Gaus­

sian will be added to the observations lying in each row of the tables. And similarly, 

c Gaussian random numbers will be added to each observation on the columns. 

A decomposition will be performed for the sample tables using the sweep function 

"NE.median". The result of decomposition is unique as we polished from both di­

rections (first column and first row) and then average two results and repeat until 

convergence. It may be called an average based decomposition. 

For a given set of cut-off values, the residuals obtained by the decomposition are 

analysed by Tukey's method to detect possible outliers for a temporary removing 

from the table. 

If the new table without suspected outliers is still a full rank matrix, the measures 

of badness (row, column and the total) will be calculated for each cut-off and scaled 

by their minimums. Usually, for smaller cut-off values (about one), the new table 

without suspected outliers, is not a full rank matrix and then the effects and conse­

quently the measure of badness cannot be computed. 

The minimum badnesses for Slash samples have been obtained by the first stage 

simulations. For Gaussian samples, it can be theoretically calculated by noting that 

in Gaussian samples it is not expected to tag any data as an outlier. Then keeping 

all the data leads to the minimum degree of badness. Therefore, the minimum row 

badness is sum of squares of the usual estimated row effects. It just needed to find 

its mathematical expectation: 
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L (E (xi.- x.i) 
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In similar, the minimum column badness for Gaussian samples is c~ 1 . Obviously, 

the minimum for total badness will be r + e - 2. 

Average and average square of badnesses for each cut-off value will be stored, ready 

to take account for the final results. 

Table 3.3 shows the results of the above described simulation study. The two first 

columns are the dimensions of the simulated two-way tables. The third column is 

estimated minimum total badness B! achieved by an independent simulation. The 

next two columns show the initial and final estimation of the optimum cut-off value. 

The 95% confidence interval for the final optimum cut-off estimated comes next 

where the formula 2.1 is used to apply the uncertainty of the estimated minimum 

badness. Eventually the last column is the p-value of testing the hypotheses of the 

regression errors to be Normally distributed (see 2.6 for the details of simulation 

stages and when the regression comes up). 

Figures 3.2 and 3.3 show a discontinuity of the measures of badness in 2 by c tables. 

It means the difference of badnesses is not a continuous function of I and then it 

cannot be approximated by a line. As a result, the four last columns of 2 by e rows 

in table 3.3 have no entries. 

If we set aside the two-way tables with at least one two-level factor, the last 

column of table 3.3 shows that in the regressions applied to find the confidence in­

tervals, the hypothesis of normality for the residuals are not rejected. This is needed 

in order to trust the regression approximated coefficients. There is an exception on 

5 by 6 tables as well as 6 by 5 table that we used to check the algorithms. Then 
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Figure 3.2: Compromised graphs of a 2x2 and a 2X7 two-way table 
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Table 3.3: 1* with 95% Cl and the p-value to test the Normality of regression errors 

As ss A I 
95% CI-L 95% CI-U Shapiro.p r c tm m /* /* 

2 2 0.1-0.9 26.9494 0.9067 

2 3 0.1-0.9 35.3009 0.9457 

2 4 0.3 36.1643 0.9112 

2 5 0.4 45.2804 0.9417 

2 6 0.3 53.1658 0.9282 

2 7 0.3 62.0337 0.9562 

3 3 1 78.7456 2.0538 2.0537 1.8319 2.2755 0.9989 

3 4 1 74.3659 1.6850 1.7830 1.4149 2.1511 0.4128 

3 5 1 95.4589 1.8617 1.8736 1.7341 2.0132 0.5092 

3 6 1 104.8668 1.7332 1.7190 1.6285 1.8095 0.2404 

3 7 1 126.3142 1.8085 1.8264 1.7557 1.8972 0.6950 

4 4 1 51.7030 1.3067 1.3034 1.2640 1.3428 0.7706 

4 5 1 63.4948 1.4764 1.4864 1.4366 1.5362 0.1472 

4 6 1 60.3229 1.3201 1.3190 1.2972 1.3407 0.4783 

4 7 1 71.0007 1.4070 1.4080 1.3894 1.4266 0.0619 

5 5 1.1 85.2526 1.6938 1.6897 1.6497 1.7298 0.3541 

5 6 1 79.9997 1.5197 1.5198 1.4800 1.5595 0.0020 

5 7 1.2 96.4786 1.6211 1.6184 1.5748 1.6620 0.5616 

6 6 1 68.0780 1.3361 1.3362 1.3205 1.3518 0.4144 

6 7 1.1 83.3647 1.4525 1.4537 1.4347 1.4727 0.9870 

7 7 1.2 100.1290 1.5484 1.5388 1.5146 1.5630 0.5614 
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we are not sure if the estimated cut-off for these dimension of tables are accurate. 

Furthermore, 5 by 6 and/ or 6 by 5 tables are the only tables in simulation study that 

have a unusual behaviour which makes them different to the others. The difference 

is that with a cut-off value greater than one, removing the suspected outliers makes 

the rest of design matrix not to be a full rank matrix. We did not consider these few 

cases in the final calculation. In fact, we reran some more simulations to substitute 

for them. 

The other point to mention is that for all cases the confidence interval includes the 

initial optimum cut-off value unlike the univariate cases despite our expectation. 

3. 7 A brief discussion 

For any number of levels of a factor, it can be seen that the optimum cut-off value 

is decreasing for odd number of levels of the other factor and increasing for even 

number of levels of the other factor. Except if the first factor has three levels the 

increasing pattern cannot be seen on the even number of levels of the other factor. 

Also we can say that in square two-way tables in odd dimensions the optimum 

cut-off is decreasing and in even dimensions it is increasing (see figure 3.3). 

A more precise pattern might be found if optimum cut-off values for bigger tables 

will be discovered by simulation. 

3.8 Functions in R 

• b. 2way. new. 2 is to simulate rr samples of a factorial experimental design 

without replication with dimension lvls. 

• mat. rank is the function to find the rank of a matrix (Ripley 2002) which is 

used after removing the suspected outliers to check if the design matrix is still 

full rank. 

• b. 2way. new. 2. res is to gather the simulation results of 10*10000 of each 

dimensions of two-way tables. It reports i'm, initial)'*, b:!' and SE[b:!'J. 
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Figure 3.3: Estimated optimum cut-off values by simulation in square two-way fac­

torial designs 
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• b. 2way. new. 2. res. m2nd prepares a batch file in linux to run the second and 

the third stages of simulation as well running the function of b. 2way. new. 2. res 

for all simulated dimensions. 

• The function b. 2way. new. 2. res. mf is to gather the results of second simula­

tions at i'm and reports b~. 

• b. 2way. new. 2. res. ci calculates the final i'* and its confidence interval in 

both cases with and without applying the uncertainty of b~ (see Appendix C). 



Chapter 4 

A general decomposition 

algorithm 

In this chapter we introduce a new algorithm to do a decomposition. It is a hi­

erarchical algorithm which is general enough to decompose all types of factorial 

experimental designs including fractional, incomplete and unbalanced factorial de­

signs. The classical algorithm is not only not directly generalisable but also is not 

able to cope with absence of one or more interaction effects. The functions in R, 

provided for the new idea, are able to decompose any type of factorial experimental 

design using any desired sweep function such as mean, la-median or NE-median. 

Recall from chapter 3 that the order of polishing affects the results when the sweep 

function is not the mean. The functions provided for the new algorithm use the 

averaging rule which leads to a unique answer. 

Some examples have been used to test the algorithm such as factorial designs 

including unbalanced and fractional factorial designs, incomplete block and Latin 

square designs. The test is based on three points: 

• The results to be the same as the R function lm when a mean-based polish is 

performed 

• For any sweep function, the result should be a decomposition 

• The result of applying the sweep function on the estimated effects of each term 

is zero 

74 
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The new decomposition works based on the incidence matrix XI and two vectors 

named "effects index" and "levels index". Therefore, producing the incidence matrix 

XI for the given model or data frame is the first step which is not completely provided 

in many statistical software. Most statistical software gives a model matrix which 

corresponds to a reduced parameterisation for which there are well-defined least 

squares estimators; often it is a treatment contrasts form of the incidence matrix. 

The incidence matrix is briefly discussed in Searl ( 1971; page 166) and Seber ( 1977; 

page 72) . In fact, each row of the incidence matrix determines the desired effects to 

be involved for each response in the model. The function to produce the incidence 

matrix and desired vectors is also provided in the present work. 

4.1 An introduction to the new algorithm 

Consider a table of data collected by an experimental design. A model H.= XI(}_+ f 

may be fitted to the data and the vector of parameters (3 estimated. The parame­

ters can be divided into three major parts; the overall mean, main effects and the 

interactions. Interactions may also be partitioned to the different orders. They all 

can be easily estimated by applying a least squares solution with desired contrasts. 

Another way to compute the parameter estimates, when the effects of each term are 

constrained to sum to zero, is to do a mean decomposition. One method to do a de­

composition for a complete factorial design without replication has been introduced 

in section 3.1. In the example 3.1, the marginals of the result table are the esti­

mated main effects and the right-bottom corner is the estimated total mean. Also, 

the body of the result table of mean decomposition is the residuals in the model. 

This method of decomposition can only be used for some types of experimental de­

signs without replication. The new algorithm to decompose hierarchically a table of 

data in this chapter is applicable for most types of factorial experimental designs. 

Some motivation for this type of decomposition comes from a paper of Wilkinson 

(1970) who introduces an alternative approach to computing least squares estimates 

using sweep operators instead of the usual linear model solution. 
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4.1.1 A simple example of the new method 

Before giving a general explanation of the algorithm, let's perform a simple mean 

decomposition on the data in example 3.1. 

Example 4.1: Using the data in example 3.1, the response vector, the incidence 

matrix and the vector of model's parameters are as follow: 

8 1 1 0 1 0 
1-t 

0'1 
2 1 1 0 0 1 

y= ,XI= and {3 = 0'2 
6 1 0 1 1 0 

{31 
3 1 0 1 0 1 

!32 

In this example, we have just the main effects and the overall mean to be estimated 

and no interaction. Residuals also will automatically be estimated. In the new ap­

proach, decomposition is by estimating the effects using their corresponding columns 

in the incidence matrix. Before starting the procedure, we put the response values 

into the residual container as initial values: 

2(0) - y - 8 2(0) - 2 2(0) - 6 2(0) - 3 
'-1 - 1 - ) '-2 - ) '-3 - ) '-4 - . 

The aim is to find and take out the effects in the model from these containers. 

In general, the procedure starts with the highest order of interaction but no inter­

action exists in our model. Then we need to start with the main effects. Usually, 

different ordering of selecting main effects makes difference in the results. However, 

if the sweep function is mean, as in this example, different orderings lead to the 

same results. Let us start with a 1 which corresponds to the second column of X 1 . 

A subset of residuals (at the first stage the same as responses) corresponding to the 

ones in this column is selected (8,2). Their mean is calculated, reserved as the first 

step of calculating eh and subtracted from the corresponded residual containers. 

Then it does the same for &2 . The results are 

A (1) - 8 + 2 - 5 A(1) - 8 - 5 - 3 A(l) - -3 
0'1 - - El - - E2 -2 ) l l 
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where the notation ( 1) means the first stage of decomposition. 

The same routine will be done for the other main effects using the updated residuals 

leaving another updated version of them: 

m2) = 3 + 1.
5 = 2.25, Ei2) = 3- 2.25 = 0.75, E~2 ) = -0.75, 

2 

/3~2) = -2.25, E~2) = -0. 75, E~2 ) = 0. 75. 

At the end of this stage, estimation of residuals has been completed. The procedure 

continues to complete the estimation of main effects and the total effect. In the next 

stage, the column of XI corresponding to f.L, which is the first column, will select the 

corresponding estimates so far of each main effects. If we start with the first main 

effect, then 

p,(3) = 5 + 4·
5 = 4. 75, ai3l = 5 - 4. 75 = o.25, &~3) = -0.25 

2 

Continuing with the other main effect does not change anything because of the mean 

of 0. Therefore, the final estimates are 

~ ~ 

p, = 4.75,&1 = 0.25,&2 = -0.25,,61 = 2.25,,62 = -2.25 

E1 = 0. 75, E2 = -0. 75, E3 = -0. 75, E4 = 0. 75. 

4.1.2 An approach to generalise the new method 

In the case where there is replication in the two-way factorial design, the two-way 

interaction effects may also be estimated. In this situation, the XI matrix has some 

more columns corresponding to the two-way effects. The procedure to decompose 

now has to be done in three stages starting from the two-way interaction effects and 

continuing by the main effects and eventually followed by the total mean as before. 

The other issue is to find the residuals. An elegant approach is to augment the 

XI matrix by an identity matrix of size of the number of responses. The augmented 

matrix might be called Xj, i.e. 

Xj =(XI I I) 

Assume that, in a two-way table with replication, we want to estimate the residuals 

as well as the effects. Performing a decomposition in four stages leads to the right 
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consequences. In this situation, the decomposition starts from the new columns 

in Xj which correspond to the residuals. It continues in the next stage with the 

columns of two-way interactions and so on. Of course, in practice, we always need 

to estimate the residuals as they are needed to tag the outliers. 

Even if two-way interactions are not requested or they are not applicable, the Xj 

can be constructed similarly and there are just three stages to get the results. 

4.2 The algorithm of the new method 

Example 4.2: Consider a two-way factorial design with replication. Then the 

interaction is also eligible to be estimated. Suppose A and B are the two factors 

and let AB denote the interaction. Figure 4.1 shows the hierarchical levels for the 

elements of the full model Yiik = J-l + ai + /3i + (a/3)ij + Eijk where i = 1, · · · , r, 

j = 1, · · · , c and k = 1, · · · , n and r ,c and n are the number of levels of factor A, 

number of levels of factor B and the number of replications in each cell, respectively. 

Column l* shows the level numbers and column t* is a numbering for the terms. With 

the column l*, one may explain the hierarchical procedure so that beginning from 

the highest level each term(s) of the higher level should be swept onto the term(s) in 

all possible lower levels. We will use index of terms (t*) later on in the explanation 

of the general algorithm. The procedure may be repeated till convergence. 

Figure 4.1: A graphical representation of the hierarchical algorithm to decompose a 

complete two-way factorial design with model Y""'A*B 
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When there is a sweeping onto more than one term in the same level, the ordering 

should be considered. A strong suggestion to have a unique result is that when 

sweeping onto several terms at the same level, all possible orders should be applied 

and then head to the next stage by taking the average of the results of them. 

Therefore, the algorithm is a sweeping from top level to the lower ones as the arrows 

show. First, y will be swept onto AB, main effects and the total effect. Then, the 

sweeping from AB onto the main effects and the total effect is run. Eventually, each 

main effect will be swept onto the total effect. Therefore, when AB is swept onto A 

and B, one might sweep first onto A or first onto B. As it said earlier, the answer is 

not always the same but the suggestion is to apply both ways and take the average 

of the two results. 

If all the upper levels are complete, continuing to sweep onto the lower levels has 

no effect but we keep this as part of the algorithm to prevent missing some terms 

where higher order interactions are omitted from the model. Dashed arrows show 

the sweeps which have no effect on the results. The next example is a model where 

an interaction has been omitted. 

Example 4.3: The following graph shows the necessary elements of the hier­

archical sweeping down for a model of Y'"'"'a+b*c. Again, there are some sweeping 

shown by dashed arrows which are a part of the algorithm but have no effect in 

this example. We did not number dashed arrows to prevent losing the clarity of the 

graph. 

Figure 4.2: The graphical show of decomposition for model Y'"'"'a+b*c 
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4.2.1 Some necessary definitions used in the algorithm 

• We may consider the overall mean 1-L as the lowest order among the parameters. 

Then, main effects are the second lowest order, the two-way interactions are 

the third and so on. 

• When a subset of columns of X 1 corresponding to an effect can be expressed 

by a sum of the subset of columns of X 1 corresponding to an effect in a higher 

order, the lower effect is called a child of the higher one. 

• In x;, the augmented part is corresponding to y in the model. None of its 

columns can be expressed by any subset of columns. 

• Following the previous definition, y is the highest order term. 

• 1-L is the lowest order term. 

4.2.2 Key points in the algorithm 

• Applying the given sweep function on the final estimated effects of each term, 

will give the result of zero. 

• The new method is a hierarchical polish by sweeping from the highest order 

term on its lower order terms (its children!) and then the second highest order 

term on its lower order terms and it will be continued till reaching to the lowest 

order term i.e. 1-L which has no children and cannot be swept. 

4.2.3 The algorithm 

Some materials need to be prepared for the overall algorithm: 

1. Create the incidence matrix X 1 as explained earlier. 

2. Construct a vector, named "terms' index" and denoted by t, of the same 

length as the number of columns of X 1 with entries of zero corresponding 

to the first column of X 1, one corresponding to the columns of X 1 allocated 

for the first main effect, two for the second main effect, if exists, and so on. 
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The numbering will be continued for all two-way and higher interaction effects 

which are presented in the model. Let s denote the maximum value in t. 

3. Construct another vector, named "levels' index" and denoted by l, with the 

same length as t. The first entry is zero, all the entries corresponding to the 

main effects are one, all the entries for two-way interactions (if exists) are two 

and so on. Let g denote the maximum value in l. 

4. Construct a third vector of the same length but all entries are zero. This is 

the "coefficient estimates" vector denoted by c. 

5. Augment X1 as Xj = (XI I I). 

6. Augment t to form t* by adding n extra entries, each equal to s + 1. 

7. Augment l to form l* by adding n extra entries, each equal to g + 1. 

8. Augment c* = (c I y) where y is the response vector corresponding to the rows 

of X 1 . 

The operations of the algorithm are as follows. 

Overall algorithm: 

Description: A hierarchical sweep starting from the highest level to the second lowest 

level onto any lower level terms 

Action: For each k, indexing terms, descending from s+ 1 to 1, repeat the "complete 

sweep down" till convergence 

Complete sweep down: 

Description: Sweeping from a term k onto lower order terms 

Action: Let p be the level of term k. For each j descending from p - 1 to 0, do the 

"partial sweep down" from term k onto terms of level j 

Partial sweep down: 

Description: Sweeping from a term k onto all terms of a particular lower level j 

Action: For each i appearing in t[.j] do the "multi-sweep down" from k onto i if i is 

a child of k. Applying different ordering of i changes the result. Either use a special 

order or take the average of all possible ordering results 
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I> t[jJ is the subset of t* corresponding to the entries of l* which equal j 

1> Term i is a child of term k if variables appearing in term i are a subset of 

those in term k 

Multi-sweep down: 

Description: Sweeping from a term k onto a lower level term i 

Action: For each m for which t~ = i do the "simple sweep down" 

Simple sweep down: 

Definition: Sweeping from effects in a higher level term k onto the m-th effect (cor­

responding to a lower level term i) 

Action: 

1. Find the columns of x;[k] which sum to Xim· Their corresponding entries in c* 

are denoted by c[k,m] 

I> Xj[k] indicates those columns of Xj corresponding to the elements of t* which 

equal k 

I> Xjm is the m-th column of Xj 

2. The requested sweep function is calculated for the elements of c[k,m] 

3. The result is added to c~ and is subtracted from each element of c[k,mJ 

4.3 Checking the algorithm 

Many types of experimental designs can be decomposed by the new algorithm re­

gardless of the number of factors or whether the design is balanced or not or even 

if it is not a complete design. It also works when there are some missing values in 

the data. The author has tested the algorithm for the following examples: 

• A randomised complete block design (Montgomery 1997; page 177) 

• A 5 x 5 Latin square design (Montgomery 1997; page 194) 

• A 4 x 4 balanced incomplete block design (Montgomery 1997; page 209) 

• A 3 x 3 balanced factorial design with four replications (Montgomery 1997; 

page 240) 
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• A 3 x 2 x 2 balanced factorial design with two replications (Montgomery 1997; 

page 259) 

• A 3 x 3 unbalanced factorial design (Montgomery 1997; page 278) 

• A 2jv fractional factorial design (Montgomery 1997; page 378) 

• The 3 x 2 x 2 balanced factorial design with two replications (Montgomery 

1997; page 259) when the model is rva+b*c 

• The 3 x 2 x 2 balanced factorial design with two replications (Montgomery 

1997; page 259) when the model is rv(a+b+c) 2 

• The 3 x 2 x 2 balanced factorial design with two replications (Montgomery 

1997; page 259) when there are some missing values among the responses 

• A 3 x 2 x 4 x 10 x 3 balanced factorial design when the model is ""a+b* (c+d*e) 

("solder" data from "durham" R library, Maths. Dept., University of Durham) 

The test is based on achieving the same result of mean decomposition via the 

new idea and the usual linear model solution. 

If the sweep function is different from the mean, they have been tested to be 

a decomposition and applying the sweep function on the estimated effects of each 

term to be zero. 

4.4 An application of the algorithm 

One use of the new algorithm is to produce a list of optimum cut-off values for 

many types of factorial designs. As an example we have arranged and run a set 

of simulation studies to estimate the optimum cut-off value for some dimensions 

of incomplete balanced two-way designs when one observation from each row and 

each column is missing. All improvement points in 3.5 have been applied in this 

simulation study, including use of NE-median, averaging for uniqueness and addition 

of random row and column effects. 

Two things have to be mentioned in this simulation study. First, the total measure 
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of badness is slightly different from the usual (complete) design. In the usual designs, 

we calculated the total badness by Br = r Be+ cBr where Be and Br are the column 

measure of badness and the row measure of badness, respectively. r is the number 

of rows and c the number columns. In an incomplete design, we may compute Be 

and Br as before by sum of squares of the difference between estimated and true 

column and row effects after removing the suspected outliers corresponding to a 

given cut-off. 

However, the total badness should be amended. Be will be multiplied by the number 

of elements present in each column. Similarly, Br is multiplied by the number of 

elements present in each row. One may easily generalise the total badness calculation 

for an incomplete unbalanced factorial design. 

The second notable thing is the minimum expected badness for Gaussian samples. 

The answer can be obtained as follows: 

It has been explained in chapter 2 that the minimum expected badness in Gaussian 

samples will happen when no observation is removed. Then, the minimum is just 

the mathematical expectation of each measure of badness. For the row badness, 

E ( t(&,- a;)2
) ~ t Var(&l}. 

The variance matrix of the estimated effects can be achieved from the following 

commands in R: 

options(contrasts=c('contr.sum' ,'contr.sum')) 

summary(lm(mdl))$cov.unscaled 

The first command is needed to set the constraint of sum to zero to the effects to get 

the proper answer from the second command. The covariance matrix obtained by the 

above command has some missing rows and columns; one for each term. They can 

easily be calculated from the other elements by considering that the missing effect 

is a linear combination of the other effects in that term. Consequently, because the 

structure of the incidence matrix makes a symmetry of the order of the effects, the 

variance of the effects in each term are equal. For the incomplete balanced design, 

where it is a square design (the same number of levels for both factors i.e. r = c), 
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the variance of any effect in both factors are the same. As a result, the minimum 

badness for row badness in Gaussian samples are the same as the one for column 

badness which equals rVar(a1 ). Then, the minimum of total badness in Gaussian 

samples is 2r(r- 1)Var(ai) when there is one and only one missing observation in 

every row and every column. 

We could use the similar rule instead of the equation (3.1) 

Table ( 4.1) shows the initial optimum cut-off value ( ,.Y*') for some dimensions 

of an incomplete balanced design. It also contains the estimated cut-off at which 

the minimum of total badness for Slash samples occurs ( "!~) and also this minimum 

(B~'). 

Table 4.1: ,.Y*' for some dimentions of Incomplete balanced designs - 20000 samples 

Dimension bG ~ I BS' 
m "!* "!m m 

3x3 5.3333 0.9-1 < 1 84.57 

4x4 6.7500 1.5886 1 126.72 

5x5 8.5333 1.2733 1 96.13 

6x6 10.4167 1.6078 1 150.56 

7x7 12.34286 1.3344 1 83.12 

It again can be seen that the estimated optimum cut-off values are increasing 

separately in odd dimensions and in even dimensions. Although, in general, the 

optimum cut-offs in odd dimensions are less than in even ones. 

4.5 The functions in R 

• decomp decomposes a data set by estimation the parameters defined by a given 

model using using a given sweep function. The function is in the R library of 

robande. 

• incidence. matrix makes the desired incidence matrix which is used in the 

above function. This function is also in the R library of robande (see Appendix 

D). 



Chapter 5 

Robust analysis of variance 

In this chapter the procedure for a robust ANOVA introduced by Seheult and Thkey 

(2001) will be described and extended to apply to a wider range of factorial designs. 

Based on the procedure, a library in R has been prepared as one of the outcomes of 

the present work. Some examples run by the library have been compared with their 

former analyses. 

5.1 The algorithm for the robust ANOVA table 

Seheult and Thkey (2001) introduced a procedure to make a robust ANOVA table 

for a full factorial experimental design. A robust ANOVA table is preferred to the 

usual one in the presence of one or more outliers or unusual effects in the data. Thus, 

the first step is to detect the possible outliers which might appear in each model 

term (obviously except in the total effect). A resistant decomposition is needed to 

find the resistant effects of any term. Seheult and Thkey (2001) suggested a fibian 

decomposition. A decomposition includes a sub-table corresponding to each model 

term. Then, a method is needed to be applied on each sub-table to detect the 

possible outliers. There are many methods to detect outliers. The method in this 

procedure and consequently in the provided library is Thkey's method (see sections 

2.4 and 3.2 for details). After distinguishing the possible outliers, one may just 

remove them or they might be substituted by zero as the simplest substitution. 

Another suggestion is winsorizing the outlier which means that each outlier will 
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be substituted by the next largest value (in magnitude but the same sign of the 

outlier) in its sub-table when the smallest outliers is considered as the first largest 

(in magnitude). In fact, in this procedure, Seheult and Thkey (2001) used a middle 

way which is half-winsorizing i.e. half of the next largest value is substituted. 

After making the substituted table by substituting the suspected outliers, the next 

stage in the procedure is to do a mean decomposition on the substituted table which 

will produce what they call inner sub-tables1 . Robust ANOVA will be based on sums 

of squares of the estimated effects in the inner sub-tables. 

The substituted table differs from the original data and thus the inner tables are not 

a decomposition of the original data. To make a decomposition table, for each entry 

corresponding to a suspected outlier in an inner sub-table, they add the difference 

of the original outlier and its half-winsorized replacement. The resulting tables they 

call "additive tables" which are a decomposition of the original data. 

5.2 R library 

The R library robeda is provided, based on the procedure introduced by Seheult 

and Thkey (2001) and generalised for any type of factorial design by the material in 

chapter four of the present work and by use of sequential AN OVA for non-orthogonal 

designs. It includes the proper functions to decompose the data collected using a 

factorial experimental design, to detect the possible outliers and to make the robust 

ANOVA table. The recipe in Seheult and Thkey (2001) has been also generalised to 

apply the procedure on full and fractional factorial designs with replication. 

5.2.1 Generalisation points and comments 

In order to generalise and to program the procedure, some changes are needed. The 

essential comments and changes are as follows: 

1 Referring to examples 3.1 and 3.2, for a classical decomposition we need to add some zeros to 

the margins of the table. However, in this case, the extras already exist. Estimating effects using 

a mean decomposition is made by polishing from that starting point. 
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• Doing the decomposition using fibian is not easy to program for the general 

case. A good alternative sweep function is NE-median which has been dis­

cussed in section 3.5. The default sweep function in the library is NE. median 

but can be changed by the user to median, lomedian, himedian and/or any 

other built-in or user-defined function in R. 

• It has been discussed in section 3.5 that decomposing the design using differ­

ent ordering of model terms in each level will lead to different decomposition 

results. A recommended method to have a unique decomposition is to average 

the results of different orderings. 

• The cut-off value is very important to detect the possible outliers. The default 

is 1. 5 adopted from Seheult and Tukey (2001) but may also be set using tables 

3.3 and 4.1 when they are relevant. For now, there is no option in the library 

to set different cut-off values for different sub-tables in a decomposition. 

• In a full factorial design, the estimated effects can be used to directly drive 

an ANOVA table. However, for an incomplete and/or unbalanced factorial 

design, a sequential analysis of variance is needed which is not possible or at 

least not easy to do by using the estimated effects. Therefore, in the library 

we recompose the data from estimated effects (inner values) and then use lm 

and anova to make the ANOVA tables (the standard and the robust). 

e There is also an argument named wins which can be set to 0, 1 or 0. 5 respec­

tively to apply zeroing, winsorizing or half-winsorizing of detected outliers. 

The default is 0. 5. Original detected outliers are saved for further studies. 

5.2.2 Main functions in the library and the usage 

There are 14 functions and 19 data frames in the library robeda. The usage of three 

main functions is explained: 

• incidence. matrix is a function to produce a complete incidence matrix for 

any given model formula for a design. The arguments of the function are mdl 

and dt. mdl is a model formula for the design. The variables in mdl must exist 
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in the current working data image or a data frame containing the variables 

needs to be defined by dt. Two examples of the usage of this function are (1) 

incidence. matrix (y - r * c) when y, r and c are existed in R working 

data. r and c must have class "factor"; and (2) incidence. matrix (md1 = 

02 , dt = MGDC) when 02 has been already defined by 02 = M - (G + D + 

C) A 2 and MGDC is a data frame in R working data and contains variables M, 

G, D and C. It is required that G, D and C have class "factor". 

The output is a list of incidence matrix, indexes of levels and effects and terms' 

names, respectively named by X, 1 v1s and nterms. 

• decomp is the decomposition function which decomposes a data set collected 

by an experimental design via a given model formula. The arguments are 

md1, dt, swp. f and ico. md1 and dt are as described for incidence. matrix. 

swp. f is the sweep function of the decomposition which may be mean (which is 

the default), NE.median, 1omedian, himedian or some other built-in or user­

defined function in R. ico is NULL by default and may be set by the user to be a 

vector obtained by the function unlist in R which can be applied on a previous 

decomposition. It is useful when we need to decompose a modified (for example 

having adjusted for by outliers) former decomposition. The function decomp 

calls incidence. matrix and then does the decomposition based on the levels' 

index and effects' index and using the incidence matrix. Three examples of 

the usage of this function are (1) decomp (y - c * r) when y, r and c are 

existed in R working data and rand care in a factor class; (2) decomp (02 , 

MGDC) with the same description for 02 and MGDC in the above; and (3) decomp 

(02 , MGDC, swp.f = NE.median). 

The output is a list representing the decomposition shown in two forms: (i) 

as a vector matched to levels and effects indexes; and (ii) as a table (a list 

of sub-tables) appropriate to display, levels and effects indexes, the incidence 

matrix and finally terms' names, respectively named by vect, tb1, 1 v1s, X 

and nterms. The output list has a class of "decomp" which helps to be used in 

combination with object oriented functions in R. For instance, print. decomp 

is another function in the library which uses the properties of function print 
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to display the desired elements of the list. 

• anova. decamp is the function to do the robust data analysis for a factorial 

experimental design. The analysis does include a mean based decomposi­

tion, a resistant statistic's based decomposition, outlier detection, outlier sub­

stitution and robust ANOVA table (see 5.2.1 for details). The arguments 

are tabdecamp, self, cf and wins. The first argument is the same list of 

output from the above function decamp. self is a scale function which is 

used in Tukey's method when the possible outliers is detected. The default is 

"lamedian" and might be set by the user to "himedian" or "median". The 

default for cf is 1. 5. This is the argument which used as cut-off value when 

the possible outliers are detected. Finally, wins is a switch to apply the way of 

substitution of the suspected outliers. It can be set to any number when the 

default is 0. 5. According to object oriented properties in R, this function is 

called by a combination of anava function and decamp as the following exam­

ples: (1) anava(decamp (y - c * r)); (2) anava (decamp (02 , MGDC)); 

and (3) anava( decamp (02 , MGDC), cf = 1. 3). In all three examples, 

arguments have the same properties as those in the other two main functions. 

The result of this function is a list of the mean decomposition of the data, 

the decomposition based on the given sweep function, an index table of 0 and 

1 indicating the suspected outliers by 1, the adjusted table by substituting 

the outliers, inner sub-tables, the additive decomposition table and at last ro­

bust ANOVA table, respectively named by mean.dcmp, swp.dcmp, autliers, 

half . wins, inner, add. dcmp and Ra bust . ANOVA. 

5.3 Examples 

5.3.1 Dental Gold Data 

Table 5.1 shows the data collected as a 8 x 3 x 5 factorial design organised by Xhonga 

(1971). The response variable is the hardness of the direct gold alloy restoration. 

Eight types of gold fillings have been used with three methods of condensation by 
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five dentists. 

Table 5.1: Dental gold data - Source: Seheult and Tukey (2001) 

Gold Type 

Dentist Condensation Method ----------------------
2 3 4 5 6 7 8 

792 824 813 792 792 907 792 835 

2 772 772 782 698 665 1115 835 870 

3 782 803 752 620 835 847 560 585 

803 803 715 803 813 858 907 882 

2 2 752 772 772 782 743 933 792 824 

3 715 707 835 715 673 698 734 681 

715 724 743 627 752 858 762 724 

3 2 792 715 813 743 613 824 847 782 

3 762 606 743 681 743 715 824 681 

673 946 792 743 762 894 792 649 

4 2 657 743 690 882 772 813 870 858 

3 690 245 493 707 289 715 813 312 

634 715 707 698 715 772 1048 870 

5 2 649 724 803 665 752 824 933 835 

3 724 627 421 483 405 536 405 312 

These data have been frequently analysed as in Seheult-Tukey's robust/resistant 

method (Seheult and Tukey 2001). Table 5.2 shows the fibian decomposition of the 

data from the paper. NE-median decomposition of the data by the present library 

robeda based on averaging on the same level terms comes in table 5.3. 

Comparing to the results in the paper by Seheult and Tukey (2001), the sixth 

type is tagged (in bold) to be an outlier in the paper while none of the Gold types 

are identified to be exotic in the averaged NE-median based decomposition. In the 

paper, only Dentist 5 has been revealed as exotic but Dentist 1 is also tagged in 

the current calculation. Both calculations have the same result for Condensation 

method. Furthermore, there are two common distinguished outliers among two-way 

interactions; one more in the paper and two different ones in the current calculation. 

Finally, the number of exotic residuals corresponding to individual observations is 

19 in the paper while this number is just four in the new analysis which are a subset 

of the 19. It needs to be remembered that the sweep function in the paper by 

Seheult and Tukey (2001) is fibian and they choose a specific order of polishing, 

while the current method is a hierarchical algorithm flexible for any given factorial 

design model. 

However, comparing the polishing when the cut-off value is changed from 1.5 to 1.3 

shows many differences (see table 5.4). 11 residuals are tagged as outliers when the 
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Table 5.2: Fibian decomposition of the data in table 5.1 by Seheult and Tukey 

(2001) 

$swp.decomposition 

$swp.decomposition$ 1 Overall 1 

[1] 771 

$swp.decomposition$ 1 MGDC$G 1 

[1) -9 0 1 -17 -18 95 38 43 

$swp.decomposition$ 1 MGDC$D 1 

[1] 20 0 -10 -57 

$swp.decomposition$ 1 MGDC$C I 

[1] 1 0 -65 

$swp.decomposition$ 1 MGDC$G:MGDC$D I 

[, 1] [, 2] [,3] [,4] [, 5] 

[1,] 9 0 0 -80 -72 

[2,] 32 0 -39 -1 0 

[3,] 25 -4 27 -58 0 

[4 ,] -46 17 -42 149 0 

[5.] 0 0 28 0 0 

[6,] 26 -60 -30 17 0 

[7 ,] -38 0 0 33 116 

[8,] 0 36 -43 -109 0 

$swp.decomposition$ 1 MGDC$G:MGDC$C I 

[,1] [,2] [,3] 

[1,] 0 0 56 

[2,] 0 -17 0 

[3,] -9 14 0 

[4 ,] 0 -11 25 

[5.] 18 0 -16 

[6.] 20 -12 0 

[7.] 0 38 -11 

[8.] 0 51-172 

$swp.decomposition$ 1 MGDC$D:MGDC$C I 

[. 1] [,2] [, 3] 

[1,] 0 -19 0 

[2,] 30 -11 0 

[3,] -48 0 9 

[4,] 0 0 -146 

[5,] 0 27 -208 
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Table 5.2: Fibian decomposition of the data in table 5.1 by Seheult and Tukey 

(2001) (Cont.) 

$swp.decomposition$' MGDC$G:MGDC$D:MGDC$C ' 

[' 1] [,2] [,3] [,4] [, 5] 

[1 '] 0 9 0 0 0 

[2 '] 0 0 39 185 0 

[3 ,] 4 -76 0 96 0 

[4 ,] 63 0 -38 -151 0 

[5 ,] 0 10 0 0 0 

[6,] -26 0 49 0 -58 

[7 ,] 0 66 0 -41 179 

[8,] 0 0 0 -47 112 

2 

[, 1] [, 2] [,3] [,4] [,5] 

[1 '] 0 0 30 -15 -11 

[2'] -15 28 0 0 0 

[3'] -30 0 0 -28 47 

[4'] 0 32 42 0 -48 

[5,] -89 0-168 29 29 

[6,] 234 149 0 -48 0 

[7 ,] 25 -45 0 0 0 

[8 ,] 4 -67 -40 112 0 

3 

[,1] [,2] [,3] [,4] [' 5] 

[1,] 0 -39 0 173 308 

[2'] 45 0 -70-304 186 

[3'] 0 131 0 0 -21 

[4'] -68 -17 0 0 34 

[5,] 143 0 34-227 -2 

[6,] 0 -44 -65 53 0 

[7'] -155 0 82 203-179 

[8,] -12 67 138 0 0 
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Table 5.3: Averaged based NE-median decomposition of the data in table 5.1 

$pres 

$Intercept 

Intercept 

759.B9 

$G 

Gl G2 G3 G4 G5 G6 G7 GB 

-10.24 -6.75 9.76 -1B.53 0.00 75.04 59.50 54.13 

$D 

Dl D2 D3 D4 D5 

24.49 4.22 0.00 -5.51 -45.43 

$C 

Cl C2 C3 

0. 00 0. 42 -62.88 

$'G:D' 

Dl D2 D3 D4 D5 

Gl 13.57 0.00 4.21 -67.01 -66.10 

G2 22.25 13.35 -3B.56 -5.25 0.00 

G3 6.96 0.00 B.60 -74.76 -1.40 

G4 -52.14 3B.29 -1B.67 49.03 0.00 

G5 0.00 -19.24 3.92 0.00 -7.0B 

G6 B9.92 -4.65 -29.56 10.25 0.00 

G7 -4B.5B -26.74 0.00 2B.31 115.56 

GB 0.00 40.26 -57.5B -159.50 24.97 

$'G:C' 

Cl C2 C3 

Gl -4.12 0.00 50.B3 

G2 24.12 0.00 -O.B3 

G3 -15.B2 0.00 7.44 

G4 -4.37 0.00 1.00 

G5 7.63 0.00 -9.00 

G6 0.00 1B.21 -45.79 

G7 -3.29 27.19 0.00 

GB 0.00 25.15-196.96 

$'D:C' 

Cl C2 C3 

Dl 0.00 -16.12 6.33 

D2 23.50 -2.29 0.00 

D3 -19.43 0.00 20.1B 

D4 0.00 0.21 -16.00 

D5 0.00 15.B7-151.06 
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Table 5.3: Averaged based NE-median decomposition of the data in table 5.1 (Cont.) 

$res. tab 

. , Cl 

01 02 03 04 05 

Gl B.42 29.75 -15.31 0 0 

G2 0 -15.33 4.72 179.5 -16.B3 

G3 27.72 -66.56 0 11B.44 0 

G4 B2.67 0 -71. B9 -37.5 6.44 

G5 0 37 0 0 0 

G6 -42.33 0 72.06 54.33 -17.5 

G7 0 B9.92 -34.67 -46.B9 161.7B 

GB -3.5 0 -13 0 76.44 

. , C2 

01 02 03 04 05 

Gl 0 0 37.72 -20.75 -5.42 

G2 -12.17 3.17 0 0 0 

G3 -3.39 0 34.33 0 63.B9 

G4 0 0 19.B9 96.5 -47.22 

G5 -103.67 0 -151.22 17 2B.33 

G6 163.17 B2.17 0 -45.5 0 

G7 2B.22 -30.19 0 0 0 

GB 22.06 -57.7B 0 1B3.22 0 

. , C3 

01 02 03 04 05 

Gl 0 -26.B3 0 40.92 248.97 

G2 60.5 0 -65.06 -417.67 134.06 

G3 0 116.56 0 -124.94 -95.33 

G4 -3B.17 -7 0 0 0 

G5 116.17 0 30.B9 -377.5 -79.44 

G6 0 -27.B3 -1.B9 0 6.22 

G7 -17B.75 0 47.31 49' 69-270.58 

GB 0 B2.33 164.22 -61.17 -70.67 
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cut-off is 1. 3 with eight exotics in two-way sub-tables. The end user should decide 

on the cut-off value. 

Table 5.4: Suspected outliers in Dental Gold Data using two cut-offs, 1.5 and 1.3 

G-> 

D->D1 ,D5 

C->C3 

G:D->G8:D4,G7:D5 

G:C->G8:C3 

D:C->D5:C3 

avg -- 1. 5 

residuals->res 15,res 29,res 74,res 105 

avg -- 1.3 

G-> 

D->D1,D5 

C->C3 

G:D->G6:D1,G3:D4,G8:D4,G7:D5 

G:C->G1:C3,G6:C3,G8:C3 

D:C->D5:C3 

residuals->res 15,res 19,res 29,res 68,res 74,res 81,res 95,res 101, 

res 105, res 114,res 118 

The following results, provided by the default arguments in the library, show the 

standard and inner mean squares which make a robust ANOVA table. They also 

includes the percentages of the difference from standard MS to Inner MS. Exotic 

effects can be also seen in the table for each term. 

G-> 

0->01,05 

OF Standard.MS Inner.MS MS.Changes.Percent 

7 31476.85 30519.87 3.04 

4 54394.10 6213.10 88.58 
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C->C3 2 298807.60 6611.38 97.79 

G:D->G8:D4,G7:D5 28 7457.65 5847.87 21.59 

G:C->G8:C3 14 14983.78 5575.51 62.79 

D:C->D5:C3 8 32930.12 8357.43 74.62 

residuals->res 15,res 29,res 74,res 105 56 9968.89 5905.60 40.76 

5.3.2 A randomised complete block design 

Table 5.5 contains the gain yield (in Kg) of rice variety IR8 with six different rates 

of seeding (treatment), collected by a randomised complete block design with four 

replication (block). 

Table 5.5: Grain yield of rice variety IR8 (in Kg) - Source: Bhar and Gupta (2001; 

page 345) 

Treatment Replication No. 

No. 1 2 3 4 

1 5113 5398 5307 4678 

2 5346 5952 4719 4264 

3 5272 5713 5483 4749 

4 5164 4831 4986 4410 

5 4804 4848 4432 4748 

6 5254 4542 4919 4098 

This is the example that Bhar and Gupta (2001) have presented to show how 

their new developed Cook's statistic works. Two observations have been tagged 

by their method. The second replication of the second treatment and the fourth 

replication of the fifth treatment are detected by the developed Cook's statistic. 

Table 5.6 shows the estimated effects by an average NE-median polishing. This 

example could be considered as a 6 x 4 two-way table. Then from table 3.3 pertaining 

to a 4 x 6 two-way table, the cut-off value 1.3190 is used to determine the outliers. 

As a results, second replication of the second treatment is tagged as an outlier. 

Furthermore, the fourth replication is revealed to be an extreme replication. 
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Table 5.6: Averaged based NE-median decomposition of the data in table 5.5 

$Intercept 

Intercept 

4905.5 

$c 

cl c2 c3 c4 

136.0 0.0 13.5 -387.0 

$r: 

rl r2 r3 r4 r5 r6 

159.5 -200.0 230.5 -74.5 -57.5 0.0 

$res.tab 

rl r2 r3 r4 r5 r6 

cl -88 504.5 0 197 -180 212.5 

c2 333 1246.5 577 0 0 -363.5 

c3 228.5 0 333.5 141.5 -429.5 0 

c4 0 -54.5 0 -34 287 -420.5 
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The following results also contains the standard and the robust mean squares for 

the treatment, blocks and the residuals. 

DF Standard.MS Inner.MS MS.Changes.Percent 

c->c4 3 648120.3 85208.5 86.852980 

r-> 5 

residulas->res 8 15 

239666.2 235498.9 

110558.4 68667.2 

1.738794 

37.890569 

Bhar and Gupta (2001) remove suspected outliers and find the new F-ratio from 

the modified ANOVA table. The ANOVA tables after removing the eighth observa­

tion which is the second replication of the second treatment, is as follows. 

> summary(aov(y[-8]-c[-8]+r[-8] ,ex345bhar)) 

Df Sum Sq Mean Sq F value Pr(>F) 

c[-8] 3 1570221 523407 7.1233 0.003865 ** 
r[-8] 5 1174433 234887 3.1967 0.039297 * 
Residuals 14 1028701 73479 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 

Also the following ANOVA table is after removing the eighth and the 23rd ob­

servations (the fourth replication of the fifth treatment) which is tagged as outlier 

by Bhar and Gupta (2001). 

> summary(aov(y[-c(8,23)]-c[-c(8,23)]+r[-c(8,23)] ,ex345bhar)) 

Df Sum Sq Mean Sq F value Pr(>F) 

c[-c(8, 23)] 3 1619718 539906 10.3398 0.0009449 *** 

r[-c(8, 23)] 5 1445169 289034 5.5353 0.0060088 ** 
Residuals 13 678809 52216 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 

By looking at the residuals mean squares, we understand in the robust ANOVA 

table MS of residuals is smaller than the standard ANOVA after removing the eighth 
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observation. However, removing the two observations, this value in robust table is 

greater. We may wish to compare mean squares column effects in the robust table 

with the standard ones which is much smaller. 

5.3.3 Balanced incomplete block designs 

Applying an averaged NE-median polish on a data set adopted from (Montgomery 

1997; page 209), it can be seen that the number of non-zero residuals is six which is 

one more than the degrees of freedom for the residuals in this type of designs (see 

tables 5. 7 and 5.8). 

Table 5.7: Original data- Source: Montgomery (1997; page 209) 

Block 

'freatment 

(Catalyst) 1 2 3 4 

1 73 74 71 

2 75 67 72 

3 73 75 68 

4 75 72 75 

Table 5.8: Residuals of the data in table 5. 7 obtained by NE-median polish 

Block 

'freatment 

1 2 3 4 

1 1 0 -0.5 

2 0.5 -0.5 0 

3 0 0 0 

4 -0.5 1.5 0 

Then, following the rule in Seheult and Thkey ( 2001), the smallest non-zero 

residuals (in magnitude) would be subtracted from the other five values. Now the 
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procedure of the detecting outliers will be applied on the five obtained values with 

three zeros among them. Discrete values in the original collected data for the design 

may cause this situation in some other real examples. The problem is with three 

zeroes, the la-median of the five obtained values is zero and then scaling by the 

la-median is not possible. As a consequence, the procedure of detecting outliers 

cannot be completed. 

With a simulation study of 1000 replicates of adding random numbers generated 

from the uniform distribution, U(O,l), to the above real example, it was revealed 

that for about 95% of the replications, the number of non-zero residuals obtained 

from an averaged NE-median polish is six while only in 0.4% of the replications the 

number of non-zeros are five which is the same as the degrees of freedom (see table 

5.9). Thus, for more than 99% of replicates, it was necessary to subtract a non-zero 

absolute residual from the five largest and this may lead to above problem whenever 

the data are discrete. Continuing the outlier detection in the hypothetical cases of 

the simulation, it can be seen in table 5.9 that 16.8% of samples end with detecting 

the ninth datum to be an outlier. In addition, the first datum is detected as an 

outlier in 6.6% of samples while more study shows that in 6.4% of samples both 

the first and the ninth data are detected to be outliers. The conclusion is that if 

the data are integer, outlier detection cannot be finished while there might be some 

suspected outliers. In other words, for integer values, Tukey's method may need to 

be modified, as otherwise there will be an error of calculation during the procedure 

and it cannot be completed. 

An alternative suggestion to keep away from the problem in a real case with the 

integer data is to use the top 5 actual non zero values without doing the subtraction. 

Or it might also be suggested to use all of non zero values. 
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Table 5.9: Number of non-zero residuals, the percentages and detected outliers by 

a simulation study of 1000 on a BIB design in example 5.3.3 

Number of non-zero residuals 5 6 7 8 

Percentages appeared 0.4 94.9 4.5 0.2 

res 1 0 66 6 1 

res 2 0 0 0 0 

res 3 0 2 0 0 

res 4 0 0 0 0 

res 5 0 0 1 0 

res 6 0 0 0 0 

res 7 1 2 1 0 

res 8 0 0 0 0 

res 9 4 168 18 2 

res 10 1 10 1 0 

res 11 0 0 0 0 

res 12 0 0 0 0 



Chapter 6 

Conclusions 

This chapter includes a summary of what has been achieved during this work, how 

the research objectives have been met, what further questions have been raised and 

suggestions for further work. 

6.1 What has been achieved and what is left to 

do? 

In chapter 2, two methods of outlier detection in univariate data have been compared 

by simulation study and Tukey's method was found to be generally more efficient. 

A list of optimum cut-off values for a wide range of sample sizes has been provided 

for Tukey's method. The result shows there is a different pattern for optimum cut­

offs on odd and even number of sample sizes but a convergence can be seen for 

large sample sizes. The list also includes the confidence interval for each optimum 

cut-off. This list could be improved by repeating the simulation study incorporating 

the suggestion for improvement in section 3.5 and also using the positively and less 

biased estimator of minimum badness. 

In chapter 3, for a 4 x 5 two-way factorial design without replication, the optimum 

cut-off obtained by simulation study has been compared with two old simulations. 

In section 3.5, some improvements for the simulation study have been suggested 

and then for a wide range of two-way dimensions, optimum cut-off values with their 

confidence intervals have been obtained using the improved simulations. Near me-
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dian, as a choice of one of the middle values in an even number of data, is used as 

the sweep function of decomposition. A pattern might be found for the optimum 

cut-offs but simulations for bigger two-way tables are required. 

The measure of inefficiency is based on removing the suspected outliers from the 

data. Possible alternatives are winsorising, half-winsorising or even fractional win­

sorising the suspected outliers. They might be more efficient. 

In Chapter 4, a new hierarchical decomposition algorithm has been developed 

which can be used for many types of factorial designs. Decomposing a table helps to 

do an exploratory data analysis and is the basis for the robust analysis of variance 

introduced in Seheult and Thkey (2001). 

Using the new algorithm, many types of factorial designs with or without replication 

can be decomposed including incomplete, unbalanced, Latin square and fractional 

factorial designs. One of the most important achievements of this algorithm is the 

possibility of choosing the desired interaction effects by defining a model. Using the 

algorithm, one may find lists of cut-off values for a variety of factorial designs; for 

example, see section 4.4 for such a list. The function in R for the new algorithm is 

an average based decomposition with a unique answer. It still needs some work to 

do the decomposition faster. 

In Chapter 5, a robust data analysis based on Seheult and Thkey (2001) has 

been programmed in R. The collection of functions have been put in a library in 

R named robeda and the intention is to submit to CRAN. With the library, many 

factorial designs and models can be robustly analysed. The final output of the main 

function of the library is a joint table of standard and robust ANOVA tables. The 

elements of the decomposition can be displayed or passed to other functions in R. 

Object oriented properties of R have been used and the usage of main functions is 

similar to the other functions. 

Paul's rule of two is used in Seheult and Thkey (2001) and should be added 

to the library. A graphical display of the effects and residuals produced by the 

decomposition helps interpretation and should also be added. 
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6.2 Further works 

• Redoing the simulation study in section 2. 7, to find out a more precise list of 

optimum cut-offs in univariate data by considering the improvement points in 

section 3.5 and using B~, introduced in section 2.6, to scale the measure of 

inefficiency. 

• A new approach is to try fractional winsorising of suspected outliers during 

the simulation study and see if it is more efficient. 

• More simulation studies for other sizes of layout may lead to finding a pattern 

for optimum cut-offs in two-way designs. 

• There are still many factorial designs for which optimum cut-off values have 

not been determined. A study (theoretical or by simulation) is needed to find 

the best cut-off values for each particular design. It might be added as a table 

to the library to use automatically for different designs. 

• The hierarchical algorithm programmed in R might be improved to do a faster 

decomposition. 

• In the paper of Seheult and Tukey (2001), Paul's rule of two is suggested 

for application to the robust ANOVA table based on Hoaglin, Mosteller, and 

Tukey (1991; chapter 11). It might be added in future to the library. 

• Trimming is another way of dealing with outliers and it seems a good idea for 

it to be available in the library. 

• Methods other than Tukey's method to detect outliers might also be added in 

the library. Then the user will be able to select fr01n them. 

• When the collected data are integer, adjusting the number of non-zero residuals 

in the outlier detection method might be modified to avoid the unexpected 

termination of the procedure. Suggested modifications are 1) not to subtract 

the smallest non-zero residual when the number of non-zeros are more than 

the degrees of freedom and/or 2) using all the non-zeros rather than just the 
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number of degrees of freedom of non-zeros. Changing the residuals a little bit 

is another suggestion which makes undesired zeros disappear. 
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Appendix A 

A note by Dr. P. Craig on 

estimated minimum badness 

We have data B(Ti) fori= 1, ... , n near to the minimum of the expected badness. 

Assume the expected badness b("y) is quadratic near the minimum and that B("yi) is 

an unbiased estimate of b("yi) and that Var[ 'Yi J does not depend on i. For the moment 

we will also assume that B(/1), ... , B("yn) are independent. We are interested in 

estimating mini' b(T) and we have two approaches: (i) Bm = mini B(!i) and (ii) 

find i for which B('Yi) is minimum, write i' for that cut-off and then make new 

observation B*()'). The purpose of what follows is to study the bias involved in the 

two methods. We believe Bm is mostly biased below and B* ( i') is biased above. 

The question is which bias is worse. Note that B* ( i') is an unbiased esimate of b( i') 

and so the bias is E[ b(i') ]. 

As a metaphor for our real situation we will study the following problem. We 

observe independent Y0 , ... , Ym where Yi rv (J-ti, 1) for /1i = a(xi- ~) 2 and xi= i/m. 

The parameter a represents the ratio of the sampling standard deviation of B( li) 

to the difference between the maximum and minimum of b( 1) on the range we are 

considering. m is effectively n - 1. 

For even values of m, we have a best-case situation where we actually make an 

observation of badness at the minimum and for even values we have a worst-case 

situation where the minimum is in the middle between two of our observations. 
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Let L = mini Yi. The cdf of L is 

FL(y) = 1- rr[1- <I>(y- /Li)] 
i 

and we can approximate E[ L] numerically in R using the integrate function based 

on the general formula for obtaining the expectation of a random quantity from the 

cdf: 

E[X] =loo [1- F(x)] dx- 1: F(x) dx 

The results are shown in the picture below. The red curves are for m= 1, 3, 5 and 

7 (m increasing as you go down the picture). The black curves are for m = 2, 4, 6, 8 

(again m increasing as you go down the picture). The bias is potentially quite large 

for small a, i.e. when the badness curve is nearly flat compared to the sampling 

variation. If the the sampling errors are small relative to the change in badness 

from one cutoff to another, the bias is small. In either case the bias is relative to 

the sampling standard deviation. 

0 
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I 
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Now let I be the (random) value for which Y1 = min1 }j. Then 

P[I = i] = 1: cjJ(y - J-ti) l_J.[l - <I>(y - /-tj )] dy 
J-rt 

which again may be approximated using integrate. We want to find E[ /-ti] = 

E[ a(x1 - ~) 2 ] which is easy once we have computed the probability distribution of 

I. 

The results are shown in the picture below. The red curves are for m = 1, 3, 5 

and 7 (m increasing as you go down the picture). The black curves are for m= 2, 

4, 6, 8 (again m increasing as you go down the picture at a = .5). The bias is 

effectively bounded by .4 unless m is very small. On the other hand, the bias takes 

a long time to decay away for even m and becomes very large for odd m if a becomes 

very large. As before the bias is being measured relative to the sampling standard 

deviation. It would appear that this method is less likely to produce a bias which 

would cause problems in subsequent analyses. 
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Appendix B 

R functions used in Chapter 2 

B.l bbO.sim 

function (nn = 5:5, rr = 2000, ss= seq(0.7, 1.3, 0.05), kk = 1, 

p1 = "") 

{ 

} 

for (jn in nn) { 

} 

for (ii in 1:kk) { 

} 

BBB = b.Oway.O(matrix(rslash.O(rr * jn), jn, rr), ss) 

aa <- apply(BBB[[1]] [, -1], 1, mean) 

dput(cbind(ss, aa), paste(p1, paste(jn, rr, kk, ii), 

sep = "")) 

B.2 rslash.O 

function (nnnn) 

{ 

rnorm(nnnn)/(runif(nnnn)) 

} 
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B.3 b.Oway.O 

function (aaaa, cfs) 

{ 

} 

rsg <- aaaa 

kr = dim(aaaa)[2] 

n = dim(aaaa)[1] 

aaaa <- rbind(aaaa, rep(O, kr)) 

aaaa <- apply(aaaa, 2, sweeper.O, swp.f = "lomedian") 

aaaa <- aaaa[1:n, ] 

oooo <- apply(abs(aaaa), 2, order, decreasing= T) 

rsg <- matrix(rsg[oooo + (col(oooo) - 1) * nrow(oooo)], n, 

kr) 

aaaa <- apply(abs(aaaa), 2, sort, decreasing T) [1:(n-

1) ' ] 

ii = 1:(n 1) 

ref.vals <- qnorm(1 (3 * ii - 1)/(6 * (n - 1) + 2)) 

aaaa <- aaaa/ref.vals 

lambda <- t(t(aaaa)/apply(aaaa, 2, lomedian)) 

lambda <- rbind(lambda, rep(O, kr)) 

B = nB = eO 

for (icf in cfs) { 

} 

ss =matrix(!, n, ~~) 

ss[lambda <= icf] = 0 

ss apply(ss, 2, cumprod) 

ss 1 - ss 

nn <- apply(ss, 2, sum) 

bb = (apply(rsg * ss, 2, sum)/nn)A2 

B = rbind(B, c(icf, bb)) 

nB = rbind(nB, c(icf, nn)) 

list(B, nB) 
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B.4 sweeper.O 

function (vv, swp.f) 

{ 

} 

11 length(vv) 

tt = vv[1:ll - 1] 

vvv = tt[!is.na(tt)] 

111 = length(vvv) 

aaa <- switch(swp.f, mean= mean(vvv), median= median(vvv), 

lomedian = sort(vvv)[ceiling(lll/2)], fibian = { 

aba = median(vvv) 

if (floor(lll/2) * 2 == 111) { 

lom = sort(vvv)[lll/2] 

him= sort(vvv)[lll/2 + 1] 

} 

ab a 

} ' "") 

if (abs(lom + vv[ll]) < abs(him + vv[ll])) 

aba = lom 

else if (abs(lom + vv[ll]) > abs(him + vv[ll])) 

aba = him 

if (aaa == "") 

return("Error: Unknown sweeper function") 

vv[ll] = vv[ll] + aaa 

vv[1:ll - 1] = vv[1:ll - 1] - aaa 

vv 

B.5 lomedian 

function (vv) 

{ 

svv = sort(vv) 
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svv[ceiling(length(svv)/2)] 

} 

B.6 bbO.sim.res 

function (p1 = 11 arc/80.s1ash/1/ 11
, ns c(4:30, 49, 50), 11 50, 

rr = 2e+05) 

{ 

} 

res = eO 

for (nn in ns) { 

} 

kk = seq(0.7, 1.3, 0.01) 

for (i in 1:11) kk = cbind(kk, dget(paste(p1, nn, 11 11 

rr, 11 11 , 11, 11 11 , i, sep = 11 11)) [, 2] ) 

kk = cbind(kk, t(app1y(kk[, -1], 1, ssummary))) 

res= rbind(res, c(nn, kk[, -c(2:(11 + 1))] [kk[, 11 + 

2] == min(kk[, 11 + 2])], )) 

colnames(res) = c( 11 n 11
, 

11 cut-off/min8 11
, 

11 min 8 11
, 

11 stdev 11
, 

11 C. I. %95 L. 11
, 

11 C. I. %95 U. 11
) 

res 

B.7 ppO.sim 

function (r = 200, n = 5, cfs seq(0.8, 1.6, 0.05), cp 1) 

{ 

slash= matrix(rnorm(r * n)/runif(r * n), n, r) 

gauss.conv = qnorm(pnorm(slash) + (dnorm(slash) - dnorm(O))/slash) 

888 = b.Oway.O(cbind(gauss.conv, slash), cfs) 

8mB= matrix(app1y(rbind(888[[1]] [, -1] [, 1:r], 888[[1]] [, 

-1] [, (r + 1):(2 * r)]), 1, mean), length(cfs), 2) 

8v8 = matrix(apply(rbind(B88[[1]] [, -1] [, 1:r], 888[[1]] [, 

-1] [, (r + 1):(2 * r)]), 1, var), length(cfs), 2) 
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colnames(BmB) = colnames(BvB) c("Normal", "Slash") 

BmB[, 1] = BmB[, 1]/(1/n) 

BmB[, 2] = BmB[, 2]/bbOsimres[, 3] [bbOsimres[, 1] == n] 

dput(list(scaled.mean = cbind(cfs, BmB), unscaled.variance = cbind(cfs, 

BvB), remained.obs.n = cbind(cfs = c(normal = cfs, slash= cfs), 

} 

t(apply(rbind(BBB[[2]] [, -1] [, 1:r], BBB[[2]] [, -1] [, 

(r + 1):(2 * r)]), 1, function(x) c(min = min(x), 

Max = max(x), Mean= mean(x))))), c(n = n, r = r, 

cp = cp)), paste(n, r, cp)) 

B.8 ppO.sim.res 

function (ns = 5, r = 1e+06, cps = 2:4, p1 

p2 = "" log="", plpl = 0) 

"-/arc/BO.sn/", 

{ 

BB = xlxl = ylyl = c() 

for (n,in ns) { 

for (cp in cps) { 

BmB = dget(paste(p1, n 11 11 

' ' r, " " , cp, p2, sep 

xlxl summary(c(xlxl, BmB[, 1]))[c(1, 6)] 

} 

} 

ylyl summary(c(ylyl, as.vector(BmB[, -1]))) [c(1, 

6)] 

BB = cbind(BB, BmB) 

if (plpl == 0) { 

ccp = 0 

for (n in ns) { 

for (cp in cps) { 

plot (BB [, ccp + 1] , BB [, ccp + 2] , pch = "N", 

""))$scaled.mean 

"o", lwd = 1, ylim = ylyl, xlim = xlxl, lty = cp, 

main=paste("n=", n, ", r=", r, "(", paste(cps, 
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collapse= 11
,

11
), 

11
)

11
), xlab ="Cut-off values", 

ylab ="Scaled Badness", col= "green", log= log) 

par(new = T) 
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plot(BB[, ccp + 1], BB[, ccp + 3], pch = as.character(cp), 

"o", lwd = 2, ylim = ylyl, xlim = xlxl, lty = cp, 

} 

xlab = "" ylab = "", col= "red", log= log) 

par(new = T) 

ccp = ccp + 3 

} 

} 

par(new F) 

BB 

else if (prod(apply(BB[, (1:length(cps)) * 3 - 2], 1, var) 

0) == 1) { 

} 

BBm = cbind(BB[, 1], apply(BB[, (1:length(cps)) * 3-

1], 1, mean), apply(BB[, (1:length(cps)) * 3], 1, 

mean)) 

plot(BB[, 1], apply(BB[, (1:length(cps)) * 3 - 1], 1, 

mean), ylim = ylyl, "o", pch = "N", main paste("n=", 

n, ",", r, "*", length(cps), "(", paste (cps, collapse = ", "), 

11
)

11
), xlab = paste( 11 Cut-off values 11

, 
11

- intersection at: 11
, 

round(mlines.int(BBm)$x, 4)), ylab = 11 Scaled Badness 11
, 

col 11 green 11
) 

par(new T) 

c(n, round(mlines.int(BBm)$x, 4)) 

plot(BB[, 1], apply(BB[, (1:length(cps)) * 3], 1, mean), 

ylim ylyl, 11 0 11
, pch = "S", lty = 2, xlab 

ylab 1111
, col = "red") 

c(n, round(mlines.int(BBm)$x, 4)) 

1111 

else { 

kk 11 Error: Cut-off sets are not the same!" 
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kk 

} 

} 

B.9 b.Oway 

function (r = 200, n = 5, cfs = seq(0.7, 1.6, 0.05), cp = 1, 

method= "ST", swpf = "lomedian", self= "lomedian", sqlm =F) 

{ 

slash= matrix(rnorm(r * n)/runif(r * n), n, r) 

gauss.conv = qnorm(pnorm(slash) + (dnorm(slash) - dnorm(O))/slash) 

BBB = switch(method, ST = b.Oway.ST(cbind(gauss.conv, slash), 

cfs, swpf, self, sqlm), MZ = b.Oway.MZ(cbind(gauss.conv, 

slash), cfs)) 

BmB = matrix(apply(rbind(BBB[[1]] [, -1] [, 1:r], BBB[[1]] [, 

-1] [, (r + 1): (2 * r)]), 1, mean), length(cfs), 2) 

BvB = matrix(apply(rbind(BBB[[1]] [, -1] [, 1:r], BBB[[1]] [, 

-1][, (r + 1):(2 * r)]), 1, var), length(cfs), 2) 

118 

colnames(BmB) = colnames(BvB) = c("Normal", "Slash") 

list(unscaled.mean = cbind(cfs, BmB), unscaled.variance = cbind(cfs, 

BvB), remained.obs.n = cbind(cfs = c(normal = cfs, slash= cfs), 

t(apply(rbind(BBB[[2]] [, -1] [, 1:r], BBB[[2]] [, -1] [, 

} 

(r + 1):(2 * r)]), 1, function(x) c(min = min(x), 

Max = max(x), Mean= mean(x))))), c(n = n, r = r, 

cp = cp, method = method)) 

B.lO b.Oway.ST 

function (aaaa, cfs, swpf = "lomedian", self "lomedian") 

{ 

rsg <- aaaa 

kr = dim(aaaa)[2] 
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} 

n = dim(aaaa)[1] 

aaaa <- rbind(aaaa, rep(O, kr)) 

aaaa <- apply(aaaa, 2, sweeper.O, swp.f swpf) 

aaaa <- aaaa[1:n, ] 

oooo <- apply(abs(aaaa), 2, order, decreasing= T) 

rsg <- matrix(rsg[oooo + (col(oooo) - 1) * nrow(oooo)], n, 

kr) 

aaaa <- apply(abs(aaaa), 2, sort, decreasing= T)[1:(n-

1) ' ] 

ii = 1: (n - 1) 

ref.vals <- qnorm(1 (3 * ii - 1)/(6 * (n - 1) + 4)) 

aaaa <- aaaa/ref.vals 

lambda <- t(t(aaaa)/apply(aaaa, 2, self)) 

lambda <- rbind(lambda, rep(O, kr)) 

B = nB = eO 

for (icf in cfs) { 

} 

ss =matrix(!, n, kr) 

ss[lambda <= round(icf, 2)] 0 

ss apply(ss, 2, cumprod) 

ss 1 - ss 

nn <- apply(ss, 2, sum) 

bb = (apply(rsg * ss, 2, sum)/nn)~2 

B = rbind(B, c(icf, bb)) 

nB = rbind(nB, c(icf, nn)) 

list(B, nB) 

B.ll b.Oway.MZ 

function (aaaa, cfs) 

{ 

rsg <- aaaa 
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kr = dim(aaaa)[2] 

n = dim(aaaa) [1] 
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lambda= apply(aaaa, 2, function(zz) abs(0.6745 * (zz - median(zz))/ 

median(abs(zz - median(zz))))) 

} 

B = nB = eO 

for (icf in cfs) { 

} 

ss = matrix(1, n, kr) 

ss[lambda > icf] = 0 

nn <- apply(ss, 2, sum) 

bb = (apply(rsg * ss, 2, sum)/nn)-2 

B = rbind(B, c(icf, bb)) 

nB = rbind(nB, c(icf, nn)) 

list(B, nB) 

B.12 b.Oway.res.6.ci 

function (nn = 15, method= "ST", location= "arc/res.short-cfs/", 

res.table = b.Oway.res.table.1, kk = 2) 

{ 

fff ccc(1, nn, method, location, res.table)[[1]] [, 1] 

111 length(fff) 

ddd = eO 

for (j in 1:(111 * kk)) ddd = cbind(ddd, ccc(j, nn, method, 

location, res.table)[[1]] [, 2]) 

LU = cir(t(ddd)[cbind(1:(lll * kk), rep(1:lll, kk))], rep(fff, 

kk)) 

par(mfrow = c(2, 2)) 

plot(lm(t(ddd)[cbind(1:(lll * kk), rep(1:lll, kk))] - rep(fff, 

kk)), main= paste(method, nn)) 

list(lm(t(ddd)[cbind(1:(lll * kk), rep(1:lll, kk))] - rep(fff, 

kk) + I(rep(fff, kk)-2)), LU, lm(t(ddd)[cbind(1:(lll * 
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kk), rep(1:lll, kk))] - rep(fff, kk))) 

} 

B.13 b.Oway.summ 

function (nnnn = c(4:20, 30), rep1 

{ 

10000, rep2 3) 

} 

aaaa = eO 

for (nn in rep(nnnn, rep2)) { 

} 

cccc <- apply(apply(matrix(rslash(rep1 * nn), rep1, nn), 

1, function(xxxx) { 

STm1(xxxx, cu = b.Oway.res.table[b.Oway.res.table[, 

1] == nn, 7])$r 

}), 2, sum) 

bbbb <- c(nn, mean(cccc/nn), table(cccc)) 

aaaa <- c(aaaa, bbbb) 

aaaa 

B.14 STml 

function (xxx, swp = "lomedian", scalf "lomedian", cutoff 1.5) 

{ 

if (length(dim(xxx)) == 0) 

ddff = length(xxx) - 1 

else ddff = prod(dim(xxx) - 1) 

xx = as.vector(xxx) 
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aa2 xx- switch(swp, lomedian = lomedian(xx), median= median(xx)) 

oo3 = order(abs(aa2)) 

aa3 sort(abs(aa2)) 

nnzz <- sum(aa3 != 0) 

if (nnzz < ddff) 
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nnn = min(ddff, sum(aa2 != 0) + 1) 

else { 

} 

aa3 aa3- aa3[length(xxx):1] [ddff + 1] 

nnn = ddff 

aa4 = c(rep(NA, length(xx)- nnn), qnorm(((nnn- (nnn:1) + 

1)/(nnn + 2/3) + 1)/2)) 

aa5 = aa3/aa4 
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aa6 = aa5/switch(scalf, lomedian = lomedian(aa5), median= median(aa5, 

} 

na.rm = T)) 

aa7 = rep(1e+06, length(xx)) 

aa7[oo3] = cumprod(((aa6 > cutoff)~2)[length(xx):1])[length(xx):1] 

aa7[is.na(aa7)] = 0 

list(details = cbind(xx, aa2, oo3, aa3, aa4, aa5, aa6, aa7), 

resault = array(aa7, dim(as.array(xxx)))) 



Appendix C 

R functions used in Chapter 3 

C.l b.2way.new.2 

function (lvls = c(5, 4), mdl =NULL, data= NULL, rr = 8, cfs = seq(0.7, 

3, 0.1), swpf = NE.median, self= "lomedian", effecttoadd = c(1, 

{ 

2), sqlm =F) 

if (is.null(mdl)) { 

fr = factor(rep(1:lvls[1], rep(lvls[2], lvls[1]))) 

fc factor(rep(1:lvls[2], prod(lvls)/lvls[2])) 

data = data.frame(fr, fc) 

mdl = -fr + fc 

} 

des.m = incidence.matrix.2(mdl, data) 

dims <- table (des. m [ [3]] [des. m [ [2]] 1] ) 

rrow = dims[1] 

ccol = dims [2] 

slash= matrix(rslash(nrow(des.m[[1]]) * rr, C = T, M= 80), 

nrow(des.m[[1]]), rr) 

gauss.conv = qnorm((pslash(slash) - pslash(-80))/(pslash(80) -

pslash(-80))) 

if (effecttoadd[1] != 0) { 

cc2 = matrix(O, sum(dims) + 1, rr) 
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} 

for (jj in 1:length(effecttoadd)) { 

} 

cc= matrix(rnorm(dims[effecttoadd[jj]] * rr), ncol = rr) 

cc2[des.m[[3]] == effecttoadd[jj], ] <- matrix(as.vector(t(cc)) -

c(rep(1, nrow(cc)) %*% cc/nrow(cc)), ncol = rr, 

byrow = T) 

cc3 <- des.m[[1]] %*% cc2 

slash <- cc3 + slash 

gauss.conv <- cc3 + gauss.conv 

rrnd = cbind(gauss.conv, slash) 

rres = apply(t(t(rrnd)- apply(rrnd, 2, median)), 2, function(xxxx) { 

as.vector(n0gg.avg.2way(n2gg(matrix(xxxx, ccol, rrow)), 

swp = "NE.median")[-(ccol + 1), -(rrow + 1)]) 

}) 

BBad eO 

icfs cfs[length(cfs):1] 

for (cf in icfs) { 

rnd2 = rrnd 

iind = apply(rres, 2, function(xxxx) { 

}) 

STm2(xxxx, ddff = (rrow- 1) * (ccol- 1), cutoff cf, 

scalf = self) $r 

if (sum(apply(iind == 0, 2, function(xxxx) { 

mat.rank(des.m[[1]] [xxxx, ]) 

}) - (sum(lvls) - 1)) != 0) 

break 

rnd2[iind == 1] = NA 

A = apply(rnd2, 2, function(xxxx) { 

yyyy <- n0gg(n2gg(matrix(xxxx, rrow, ccol, byrow T)), 

swp = "mean") 

c(row.coef = yyyy[-(rrow + 1), (ccol + 1)], col.coef = yyyy[(rrow + 

1), -(ccol + 1)]) 
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} 

} 

}) 

if (effeettoadd[1] != 0) 

A<- A- ebind(ee2[-1, ] , ee2[-1, ]) 

br <- apply(A[des.m[[3]] [-1] 1, ]~2, 2, sum) 

be <- apply(A[des.m[[3]] [-1] 

Bads rbind(br, be) 

2, ] ~2, 2, sum) 

Bads rbind(Bads, eeol * Bads[1, ] + rrow * Bads[2, 

]) 

BBad = rbind(BBad, ebind(e(ef, ef, ef), Bads)) 

if (length(BBad) -- 0) 

break 

if (length(efs) > 1 & ef >= 1) 

dput(list(lvls, rrnd, iind), paste("rank", date())) 

if (sqlm) { 

} 

nnn = rrow * eeol 

half.gq = sort(qnorm(((nnn- (nnn:1) + 1)/(nnn + 2/3) + 

1)/2)) 

SqLm = apply(apply(rrnd, 2, funetion(xxxx) sort(abs(xxxx)))/half.gq, 

2, lomedian)~2 

BBad[, -1] = t(t(BBad[, -1])/SqLm) 

BBad = ebind(BBad [, 1] , BBad [, 2: (rr + 1)] %*% rep (1, rr) /rr, 

BBad[, (rr + 2):(rr * 2 + 1)] %*% rep(1, rr)/rr, BBad[, 

2:(rr + 1)]~2 %*% rep(1, rr)/rr, BBad[, (rr + 2):(rr * 

2 + 1)]~2 %*% rep(1, rr)/rr) 

dimnames(BBad) = list(rep(e("Br", "Be", "BT"), dim(BBad) [1]/3), 

e("efs", "Mean.Gauss", "Mean. Slash", "MeanSq.Gauss", 

"MeanSq.Slash")) 

list(BBad, rr = rr) 
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C.2 incidence.matrix.2 

function (mdl, dt = NULL) 

{ 

options(contrasts c("contr.treatment", "contr.poly")) 

ddtt = 1111 

if (!is.null(dt)) 

ddtt = "dt$" 

tt <- attr(terms(mdl, data = dt), "term. labels") 

00 <- attr(terms(mdl, data = dt), "order") 

ff = ee = dd = c() 

for (ii in 1:length(tt)) { 

if (!is.null(dt)) 

aa <- eval(parse(text = paste("model.matrix(-", tt [ii], 

",data=dt)"))) 

else aa <- eval(parse(text paste("model.matrix(-", 

tt[ii]' ")"))) 

bb <- aa[, 1] - apply(as.matrix(aa[, -1]), 1, sum) 

if (sum(bb) == 0) 

a a <- a a [ , -1] 

else { 

aa [, 1] <- bb 
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dimnames(aa)[[2]] [1] = paste(tt[ii], eval(parse(text paste("levels(", 

ddtt, tt[ii], ")"))) [1], sep = "") 

} 

} 

} 

dd = cbind(dd, aa) 

ee c(ee, rep(oo[ii], dim(aa)[2])) 

ff c(ff, rep(ii, dim(aa)[2])) 

list(X cbind(Intercept = 1, dd), lvls = cbind(lvls1 = c(O, 

ee), lvls2 = c(O, ff)), neffects = c("Intercept", tt)) 



C.3. rslash 

C.3 rslash 

function (nnnn, Censoring= F, M= 70) 

{ 

} 

if (!Censoring) 

rnorm(nnnn)/(runif(nnnn)) 

else { 

} 

a= rnorm(nnnn * 1.05)/(runif(nnnn * 1.05)) 

a[abs(a) < M] [1:nnnn] 

C.4 pslash 

function (s) 

{ 

} 

t <- pnorm(s) + (dnorm(s) - dnorm(O))/s 

t[abs(s) < 1e-07] = 0.5 

t 

C.5 n0gg.avg.2way 

function (aa, swp) 

{ 

} 

bb =eO 

while (!isTRUE(all.equal(aa, bb))) { 

bb = aa 

} 

a a 

aa <- (nOgg(bb, swp, st ="first", rep= 1) + nOgg(bb, 

swp, st = "last", rep = 1))/2 
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C.6 nOgg 

{ 

} 

for (1 in !:rep) { 

bb = aa 

} 

a a 

for (i in switch(starting.direction, first= 1:length(dim(aa)), 

last= length(dim(aa)):1)) aa = n1gg(aa, i, swp) 

if (isTRUE(all.equal(bb, aa))) 

break 

C.7 nlgg 

function (aa, ppmm, swp.f) 

{ 

} 

iiii 1:length(dim(aa)) 

bbbb = iiii[ppmm] 

iiii[ppmm] = iiii[1] 

iiii [1] = bbbb 

aa = aperm(aa, iiii) 

dd = dim(aa) 

d1 = dd [1] 

d2 = prod(dd)/dd[1] 

aa = array(aa, c(d1, d2)) 

for (i in 1:d2) { 

aa[, i] = sweeper(aa[, i], swp.f) 

} 

aa = array(aa, dd) 

aa = aperm(aa, iiii) 

a a 
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C.8 sweeper 

function (vv, swp.f) 

{ 

} 

11 length ( vv) 

tt vv[1:ll - 1] 

vvv = tt[!is.na(tt)] 

111 = length(vvv) 

aaa <- switch(swp.f, mean= mean(vvv), median= median(vvv), 

lomedian = lomedian(vvv), himedian = himedian(vvv), 

NE.median = NE.median(vvv), 

fibian = { 

aba = median(vvv) 

if (floor(lll/2) * 2 == 111) { 

lom = sort(vvv)[lll/2] 

him= sort(vvv)[lll/2 + 1] 

} 

ab a 

} ' "") 

if (abs(lom + vv[ll]) < abs(him + vv[ll])) 

aba = lom 

else if (abs(lom + vv[ll]) > abs(him + vv[ll])) 

aba = him 

if (aaa == "") 

return("Error: Unknown sweeper function") 

vv[ll] = vv[ll] + aaa 

vv[1:ll - 1] = vv[1:ll - 1] - aaa 

vv 

C.9 himedian 

function (vv) 
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{ 

} 

svv = sort(vv) 

svv[floor(length(svv)/2) + 1] 

C.lO NE.median 

function (vv) 

{ 

} 

nemed = lomedian(vv) 

if (abs(himedian(vv)) < abs(lomedian(vv))) 

nemed = himedian(vv) 

nemed 

C.ll n2gg 

function (aa) 

{ 

dd = dim(aa) 

bb = as.vector(aa) 

ddd = 1 

ggg = 0 

fff = 1 

for (i in 1:length(dd)) { 

ddd = ddd * dd[i] 

ggg = ggg + fff 

fff = ggg * dd[i] 

cc = c () 

for (j in 1:(prod(dd)/ddd)) { 

} 

cc= c(cc, bb[((j- 1) * fff + 1):(j * fff)], rep(O, 

ggg)) 
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bb = cc 

} 

array(bb, dd + 1) 

} 

C.12 STm2 

function (xx, scalf "lomedian", cutoff 

{ 

oo3 order(abs(xx), decreasing= TRUE) 

aa3 sort(abs(xx), decreasing= TRUE) 

nnzz sum(xx != 0) 

nndf ddff 

if (nnzz < ddff) 

nndf = min(ddff, sum(xx != 0) + 1) 

else if (nnzz > ddff) 

aa3 = aa3 - aa3[ddff + 1] 

1. 5' ddff) 

aa4 = c(qnorm(((nndf- (1:nndf) + 1)/(nndf + 2/3) + 1)/2), 

rep(NA, length(xx) - nndf)) 

aa5 aa3/aa4 

131 

aa6 = aa5/switch(scalf, lomedian = lomedian(aa5), himedian = himedian(aa5), 

} 

median = median(aa5, na.rm = TRUE)) 

aa7 = rep(1e+06, length(xx)) 

aa7[oo3] = cumprod(((aa6 > cutoff)~2)) 

aa7[is.na(aa7)] = 0 

list(details = cbind(xx, oo3, aa3, aa4, aa5, aa6, aa7), result= aa7) 

C.13 mat.rank 

function (xxxx) 

{ 

aaaa = svd(xxxx, nu = 0, nv 0) 
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sum(aaaa$d > 1e-04 * aaaa$d[1]) 

} 

C.14 b.2way.new .2.res 

function (lvls = c(5, 4), swpf = "NE.median", self= "lomedian", 

rr = 1:10, location= "-/arc/final-now/", start.order 1111 

effecttoadd = c(1, 2), rept = 10000, prts = F, whichB c("Br", 

{ 

"Be", "BT"), comma = 11 11 

' ' 

pt = function(a, lcfs) { 

iter = length(a)/lcfs/5 

if (floor(iter) != iter) { 

dput (a, "a") 

cfseq = "0.1.2.7.0.1.") 

return(paste("########################", paste(lvls, 

collapse=""), "##########################")) 

} 

a<- apply(array(a, c(lcfs, 5, iter)), c(1, 2), mean) 

row.names(a) <- row.names(aa[[1]]) 

par(mfrow = c(1, length(whichB))) 

cc = eO 

for (jj in whichB) { 

b <- a[row.names(a) -- jj, ] 

minBg = switch(jj, Be= (lvls[2]- 1)/lvls[1], Br 

1)/lvls[2], BT lvls[1] + lvls[2] - 2) 

minBs = min(b[, 3]) 

(lvls [1] -

b = cbind(b, sqrt((b[, 5] - b[, 3]~2) * iter* rept/(iter * 

rept - 1))) 

plot(rep(b[, 1], 2), c(b[, 2]/minBg, b[, 3]/minBs), 

ylab = "", xlab = "", pch = rep(c("o", "*"), 

rep(dim(b)[1], 2))) 

legend("topleft", c("Gaussian", "Slash"), pch c("o", 

"*")) 
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} 

cc 

} 

cutpoint = mlines.int(cbind(b[, 1], b[, 2]/minBg, 

b [, 3] /minBs)) 

gg = b[b[, 2] == min(b[, 2]), 1:2] . 
if (is.matrix(gg)) { 

print(paste("Cut-off's", paste(gg[, 1], collapse=","), 

"have the same (minimum) badness in Gaussian")) 

gg = gg [1' ] 

} 

ss= b[b[, 3] == min(b[, 3]), c(1, 6, 3)] 

if (is.matrix(ss)) { 

} 

print(paste("Cut-off's", paste(ss[, 1], collapse 

"have the same (minimum) badness in Slash")) 

ss = ss [1' ] 

cc= c(c(gg, ss, cutpoint$x, ), cc) 

names(cc)[1:6] = c(paste(jj, c("minG.cf", "minG.nu", 

"minBs.cf", "minS SD", "minS", "cf-mm", ))) 

title(main = paste(lvls[1], "x", lvls[2], "-", swpf, 

11 '11) , 

"-" start.order, "-", effecttoadd[1], ",", effecttoadd[2], 

"-" self,"-", aa[[2]], "(", switch(as.character(iter), 

"1" = ii, ind), ")", sep = ""), jj, xlab ="cut-off values", 

sub = paste ( "minB (Nu.)=", round (min (b [, 2]) , 

5), " .. minimax-cf=", round(cutpoint$x, 4))) 

summ = ptr = eO 

a = ind = c() 

for (ii in rr) { 

aa = dget(paste(location, lvls[1], comma, lvls[2], " 11 . ' 
swpf, ".", start.order, effecttoadd[1], comma, effecttoadd[2], 

11 11 . ' rept, ".", cfseq, ii, sep = "")) 

a= c(a, aa[[1]]) 
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} 

lcfs <- dim(aa[[1]])[1] 

if (!is.null(aa)) 

ind = paste(c(ind, ii), collapse="") 

ptr = rbind(ptr, c(ii, pt(aa[[1]], lcfs))) 

if (prts == T) 

dev.printO 

for (jj in whichB) summ = cbind(summ, apply(ptr[, grep(jj, 

dimnames(ptr)[[2]])], 2, function(yy) { 

xx = as.numeric(yy) 

c(mean = mean(xx), var = var(xx), cv sqrt(var(xx))/mean(xx)) 

})) 

summ = rbind(summ, overall = pt(a, lcfs)) 

list(header = c(lvls[1], lvls[2], swpf, self, rept, cfseq), 

details = ptr, summary = summ) 

} 

C.15 b.2way.new.2.res.m2nd 

function (cfseq = "0.1.2.7.0.1.") 

{ 

tt = eO 

sink("qq") 

for (ii in 2:7) for (jj in ii:7) { 

a= b.2way.new.2.res(c(ii, jj), rr = c(1:10), rept = 10000, 

location= "-/arc/final-now/", start= "", comma= 11 11 

' ' 
cfseq = cfseq, w = "BT") 

b = b.2way.new.2.res(c(jj, ii), rr = c(1:10), rept = 10000, 

location= "-/arc/final-now/", start="", comma= 11 11 
' ' 

cfseq = cfseq, w = "BT") 

if (a$s[4, 3] != b$s[4, 3]) 

print(paste("Warning: gamma_m in(", ii, 11 11 

' ' jj' 

"is not the same as(", jj, 11 tl 

' ' 
ii, 11) 11)) 
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} 

print(paste("cdr-awk3", paste(ii, jj, sep =","),"NULL NULL 10000", 

a$s[4, 3], a$s[4, 3], "0 NE.median lomedian 1,2 10")) 

for (kk in seq(round(mean(a$s[4, 6], b$s[4, 6]) - 0.05, 

2), by= 0.01, length= 11)) print(paste("cdr-awk3", 

paste(ii, jj, sep =","),"NULL NULL 10000", sprintf("%.2f", 

kk), sprintf ( "%. 2f", kk), "0 NE. median lomedian 1, 2 2")) 

tt rbind(tt, c(ii, jj, a$s[4, ])) 

if (ii != jj) 

} 

sink() 

tt = rbind(tt, c(jj, ii, b$s[4, ])) 

colnames(tt)[1] = cfseq 

dput(tt, "b.2way.new.2.res.tbl") 

C.16 b.2way.new .2.res.mf 

function (lvls = c(7, 7), swpf = "NE.median", self "lomedian", 

{ 

rr = 1:10, location= "-/arc/final-now/", ccff 0, mmin1 = "th", 

title= T, start.order = ''", effecttoadd = c(1, 2), rept = 10000, 

reps= T, prts = F, whichB = "BT", table= F, comma=",") 

ttt = eO 

tt = dget("b.2way.new.2.res.tbl") 

kk = 1 

while (kk <= dim(tt)[1]) { 

overall <- tt[kk, ] 

cf = overall [5] 

lvls = overall[1:2] 

if (sum(lvls == 2) != 0) { 

ttt = rbind(ttt, rep(O, 5)) 

kk = kk + 1 

next 
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} 

} 

b eO 

for (ii in rr) { 

b = rbind(b, dget(paste(location, lvls[1], comma, 

lvls[2], ".", swpf, ".", start.order, effecttoadd[1], 

} 

comma, effecttoadd[2], ".", rept, ".", cf, 

cf, ".0.", ii, sep = ""))[[1]]) 

} 

bb = b[row.names(b) == whichB, ] 

ttt = rbind(ttt, apply(bb, 2, mean)) 

if (lvls[1] != lvls[2]) { 

} 

ttt = rbind(ttt, 0) 

kk = kk + 1 

kk kk + 1 

print(ttt) 

cbind(tt, ttt) 

11 11 . ' 

C.17 b.2way.new .2 .res.ci 

function (lvls = c(7, 7), swpf = "NE.median", self= "lomedian", 

{ 

rr = 1:22, location= "-/arc/final-now/", ccff 0, mmin1 = "th", 

title = T, start. order = 1111
, effecttoadd c(1, 2), rapt= 10000, 

reps= T, prts = F, whichB = "BT", table F, comma= 11 11 

' ' 
cfs) 

tt = dget("b.2way.new.2.res.tbl") 

overall <- tt[tt[, 1] == lvls[1] & tt[, 2] == lvls[2], ] 

cfs = seq(round(overall[8] - 0.05, 2), by= 0.01, len = 11) 

b =eO 

for (cf in sprintf("%.2f", cfs)) for (ii in 1:2) { 
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aa = dget(paste(location, lvls[1], comma, lvls[2], 11 11 . ' 

swpf, ".", start.order, effecttoadd[1], comma, effecttoadd[2], 

".", rept, ".", cf, ".", cf, ".0.", ii, sep = '"')) 

if (is.null(aa)) 

return(paste("Error in file:", paste(location, lvls[1], 

comma, lvls[2], ".", swpf, ".", start.order, 

effecttoadd[1], comma, effecttoadd[2], ".", rept, 

. ' cf, ".", cf, ". 0.", ii, sep = ""))) 11 11 

b = rbind(b, aa[[1]]) 

} 

bb = b[row.names(b) == whichB, ] 

cfs = as.numeric(names(table(bb[, 1]))) 

lcfs = length(cfs) 

minBg = switch(whichB, Be = (lvls[2] - 1)/lvls[1], Br 

1)/lvls[2], BT = lvls[1] + lvls[2]- 2) 

minBs = overall[7] 

n = length(bb[, 1]) 

X= cbind(rep(1, n), bb[, 1]) 

Y = bb[, 2]/minBg- bb[, 3]/minBs 

par(mfrow = c(3, 2)) 

plot (X [, 2] , Y) 

title(main = paste(lvls, collapse = "x")) 

B = solve(t(X) %*% X) %*% (t(X) %*% Y) 

plot(lm(Y- X[, 2])) 

S = sqrt(t(E) %*% E/(n - 2)) 

C = c(-1/B[2], B[1]/B[2]-2) 

(lvls [1] -

L1 = t(C) %*% B - qt(0.975, n - 2) * S * sqrt(t(C) %*% solve(t(X) %*% 

X) %*% C) 

U1 = t(C) %*% B + qt(0.975, n - 2) * S * sqrt(t(C) %*% solve(t(X) %*% 

X) %*% C) 

cc= c(O, as.numeric(paste(lvls, collapse="")), min(bb[, 

2]), minBs, overall[8], -B[1]/B[2], c(L1, U1) - B[1]/B[2], 
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} 

shapiro.test(E)$p) 

cd <- lm(bb[, 3]/overall[4]-2 * overall[3]/sqrt(1e+05) -

bb [, 1]) $coef 

VVT = matrix(c(cd[1]-2, prod(cd), prod(cd), cd[2]-2), 2, 

2) 

Var8 = as.numeric(s)-2 * solve(t(X) %*% X) + VVT 

L2 = t(C) %*% 8 - qnorm(0.975) * sqrt(t(C) %*% Var8 %*%C) 

U2 = t(C) %*% 8 + qnorm(0.975) * sqrt(t(C) %*% Var8 %*% C) 

cc = rbind(cc, c(1, as.numeric(paste(lvls, collapse = '"')), 

min(bb[, 2]), min8s, overall[5], -8[1]/8[2], c(L2, U2)-

8 [1] /8 [2] , shapiro. test (E)$p)) 

colnames(cc) = c("Uncert.Ind.", "lvls", paste(whichB, c("minG.nu", 

"minS", "cf-mm", "cf-lm", "ci-lm-L", "ci-lm-U")), "Shapiro.p") 

cc 
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R function for the new algorithm 

of decomposition in chapter 4 

Any called function which is not presented here, can be found in previous appendices. 

D.l decomp 

function (mdl, dt = NULL, swp.f =mean, ico = NULL) 

{ 

options(contrasts = c("contr.treatment", "contr.poly")) 

aa = incidence.matrix(mdl, dt) 

if (!is.null(dt)) 

y = eval(parse(text = paste("dt$", as.character(mdl)[2]))) 

else y = eval(parse(text = paste(as.character(mdl)[2]))) 

yna <- is.na(y) 

aa[[1]] = aa[[1]] [!is.na(y), ] 

aa[[2]] = aa[[2]] [apply(aa[[1]], 2, sum) != 0, ] 

aa[[1]] = aa[[1]] [, apply(aa[[1]], 2, sum) != 0] 

y = y[!is.na(y)] 

ly = length(y) 

X= cbind(aa[[1]], diag(1, ly, ly)) 

lvls1 = c(aa[[2]] [, 1], rep(max(aa[[2]] [, 1]) + 1, ly)) 

lvls2 = c(aa[[2]] [, 2], rep(max(aa[[2]] [, 2]) + 1, ly)) 
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D.l. decomp 

eo <- rep(O, ncol(X)) 

iiend <- lvls1 == max(lvlsl) 

if (identical(svp.f, NE.median)) { 

med.y = median(y, na.rm = TRUE) 

y = y - med.y 

} 

co[iiend] = apply(X[, iiend] * y, 2, sum, na.rm = TRUE)/apply(X[, 

iiend] ! = 0, 2, sum) 

if (!is.null(ico)) 

eo = ico 

pivot = function(X, coe, iiis, iis) { 

ipivot = function(X, coef, iiiss, iis) { 

for (ii in (1:length(iiiss))[iiiss]) { 

} 

coef 

} 

if (!is.child(colnames(X)[iis], colnames(X)[ii])) 

next 

bb <- 1 - (rep(1, nrow(X)) %*% (X[, ii] * X[, 

iis]) == 0) 

if (jj != 0 & sum(bb) >= length(bb) - sum(yna)) 

next 

mp = svp.f(coef[iis] [bb == 1]) 

coef[ii] <- mp + coef[ii] 

coef[iis] <- coef[iis] - mp * bb 

plvls <- permutes(as.numeric(names(table(lvls2[iiis])))) 

if (length(plvls) == 1) 

return(ipivot(X, coe, lvls2 == plvls, iis)) 

sumcoe = 0 

for (iii in 1:ncol(plvls)) { 

coe.p = coe 

for (iiii in 1:nrow(plvls)) coe.p = ipivot(X, coe.p, 

lvls2 == plvls[iiii, iii], iis) 
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} 

sumcoe sumcoe + coe.p 

} 

sumcoe/ncol(plvls) 

CO.p = CO - CO 

while (!isTRUE(all.equal(co.p, eo))) { 

co.p = eo 

for (kk in max(lvls2):1) { 

jj <- lvls1[lvls2 == kk] [1] - 1 

for (jjj in jj:O) eo<- pivot(X, eo, lvls1 -- jjj, 

lvls2 == kk) 

} 

} 

if (identical(swp.f, NE.median)) 

co[1] = co[1] + med.y 

names(co) <- colnames(X) 

names(co)[(length(names(co))- ly + 1):length(names(co))] = paste("res", 

1:ly) 

k = list() 

for (j in O:max(lvls2)) k[[j + 1]] 

x = rep(NA, length(yna)) 

x[!yna] = k[[max(lvls2) + 1]] 

names(x) = paste("res", 1:ly) 

k[[max(lvls2) + 1]] = x 

eo = unlist(k) 

co[lvls2 j] 

cotab <- list.table3(round(co, 2), cbind(lvls1, lvls2), aa[[3]], 

dt) 

llist = length(cotab) 

dof = unlist(lapply(2:(llist- 2), function(ii) prod(dim(as.array( 

cotab[[ii]])) - 1))) 

dof = c(dof, dof.res = sum(!is.na(y)) - 1 - sum(dof)) 

names(dof) <- c(attr(terms(mdl), "term.labels"), "residuals") 

obs = unlist(lapply(2:(llist- 2), function(ii) prod(dim(as.array( 
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} 

cotab[[ii)]))))) 

obs = c(ly, obs) 

11 = list(vect =eo, tbl = cotab, lvls = cbind(lvls1, lvls2), 

X= X, nterms = aa[[3]], dof = dof, obs = obs, mdl = mdl, 

dt = dt) 

class(ll) = c("lstpolish", "decomp") 

11 

D.2 incidence.matrix 

function (mdl, dt = NULL) 

{ 

options(contrasts c("contr.treatment", "contr.poly")) 

ddtt = 1111 

if (!is.null(dt)) 

ddtt = "dt$" 

tt <- attr(terms(mdl, data= dt), "term. labels") 

00 <- attr(terms(mdl, data = dt), "order") 

ff = ee = dd = c () 

for (ii in 1:length(tt)) { 

if (!is.null(dt)) 

aa <- eval(parse(text paste("model.matrix(-", tt[ii], 

",data=dt)"))) 

else aa <- eval(parse(text paste("model.matrix(-", 

tt[ii]' ")"))) 

bb <- aa[, 1] - apply(as.matrix(aa[, -1]), 1, sum) 

if (sum(bb) == 0) 

aa <- aa[, -1] 

else { 

aa[, 1] <- bb 
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dimnames(aa)[[2]) [1] = paste(tt[ii], eval(parse(text paste( 

"levels(", ddtt, tt[ii], ")"))) [1], sep = "") 
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} 

} 

} 

dd = cbind(dd, aa) 

ee c(ee, rep(oo[ii], dim(aa)[2])) 

ff = c(ff, rep(ii, dim(aa)[2])) 

11 = list(X = cbind(Intercept = 1, dd), lvls = cbind(lvlsl = c(O, 

ee), lvls2 = c(O, ff)), nterms = c("Intercept", tt)) 

class(ll) = "lstX" 

11 

D.3 is.child 

function (big, ss) 

{ 

} 

if (big[l] == "" I ss -- "Intercept") 

return(l) 

big = paste (big, collapse = " : ") 

big= paste(":", big, ":", sep = "") 

ss= strsplit(ss, ":") 

ss= unlist(lapply(ss, function(xx) paste(":", xx, ":", sep = ""))) 

prod(unlist(lapply(ss, function(xx) strsplit(big, xx) != 

big))) 

D.4 permutes 

function (x) 

{ 

n = length(x) 

if (n == 1) 

return(x) 

tmp = sapply(l:n, function(i) rbind(x[i], permutes(x[-i]))) 
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matrix(tmp, nrow = n) 

} 

D.5 list.table3 

function (eo, lvls, nterms, dt) 

{ 

} 

aal = list() 

for (j in O:max(lvls[, 2])) aal[[j + 1]] = co[lvls[, 2] 

j] 

k <- lapply(1: (length(aal)), function(jj) { 

if (jj == length(aal)) 

return(aal[[length(aal)]]) 

kkk = eO 

for (ii in 1:length(aal[[jj]])) kkk <- cbind(kkk, unlist(strsplit( 

names (aal[ [jj]]) [ii], 11
\\: 

11
))) 

tapply(aal[[jj]], lapply(1:nrow(kkk), function(i) kkk[i, 

]) , paste) 

}) 

names(k) 

idt = 1111 

c(nterms, 11 residuals") 

if (!is.null(dt)) 

idt = 11 dt$" 

nldt = nterms[seq(2, leng = length(table(lvls[, 2] [lvls[, 

1] == 1])))] 

ldt = eval(parse(text = paste("list(", paste(idt, nldt, collapse ","), 

")"))) 

ldt = lapply(seq(along = ldt), function(ii) paste(nldt[ii], 

ldt [ [ii]] , sep = 1111
)) 

k$res.tab = tapply(k$res, ldt, paste, collapse ",") 

k 



D.6. print.lstpolish 

D.6 print.lstpolish 

function (11, ... ) 

{ 

print(11$tb1, ... ) 

} 

D. 7 print .lstX 

function (11, ... ) 

{ 

print (ll$X, ... ) 

} 
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Appendix E 

R functions in robande library 

Any called function which is not presented here, can be found in previous appendices. 

E.l anova.decomp 

function (tabdecomp, self= "lomedian", cf 1.5, wins 0.5) 

{ 

tab4.1 = tabdecomp 

tab3 <- decomp(mdl = tab4.1$mdl, dt = tab4.1$dt) 

tab4.2 = 0 

for (ii in l:max(tab4.1$1[, 2])) tab4.2 = c(tab4.2, STm2(tab4.1$v[tab4.1$1[, 

2] == ii], ddff = tab4.1$dof[ii], cutoff= cf, scalf = sclf)$result) 

tab5 = tab4.1$v[l] 

for (ii in l:max(tab4.1$1[, 2])) tab5 = c(tab5, n5gg.3(tab4.1$v[tab4.1$1[, 

2] == ii], tab4.2[tab4.1$1[, 2] == ii], wins)) 

tab6 <- decomp(tab4.1$mdl, dt = tab4.1$dt, ico = tab5) 

tab7 <- tab4.2 * tab4.1$v- tab5 + tab6$v 

options(contrasts = c("contr.sum", "contr.sum")) 

kk <- t(t(tab4.1$X) * tab3$v) 

kky <- apply(kk, 1, sum) 

mdl.tmp = as.formula(paste("kky-", strsplit(as.character(tab4.1$mdl), 

,_,) [3])) 

if (!is.null(tab4.1$dt)) 
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data.tmp = cbind(tab4.1$dt, kky) 

else data.tmp = NULL 

aa anova(lm(mdl.tmp, data.tmp))[, 2] 

kk <- t(t(tab4.1$X) * tab5) 

kky <- apply(kk, 1, sum) 
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mdl. tmp = as. formula(paste ( 11 kky- 11
, strspli t (as. character (tab4. 1$mdl), 

11-11) [3] ) ) 

if (!is.null(tab4.1$dt)) 

data.tmp = cbind(tab4.1$dt, kky) 

else data.tmp = NULL 

bb = anova(lm(mdl.tmp, data.tmp))[, 2] 

tagged = eO 

for (ii in 1:max(tab4.1$1[, 2])) tagged= c(tagged, paste(names( 

tab4. 1$v [ tab4. 2 == 1 & tab4. 1$1 [, 2] == ii] ) , collapse = 11 
, 

11
)) 

Robust.ANOVA cbind(DF = tab4.1$dof, Standard.MS = aa/tab4.1$dof, 

Inner.MS bb/tab4.1$dof, MS.Changes.Percent = (aa-

bb)/aa * 100) 

rownames(Robust.ANOVA) paste(rownames(Robust.ANOVA), tagged, 

sep = 11 -> 11
) 

names(tab4.2) 

tmp = tab4.2 

names(tab5) 

tmp[tmp 0] = 1111 

tmp[tmp -- 11 111
] = 11 *11 

tmp = paste(tmp, round(tab4.1$v, 2)) 

names(tmp) = names(tab4.1$v) 

pres = list.table3(tmp, tab4.1$1, tab4.1$n, tab4.1$dt) 

robana = list(mean.dcmp = tab3$tbl, swp.dcmp = tab4.1$tbl, 

outliers = list.table3(tab4.2, tab4.1$1, tab4.1$n, tab4.1$dt), 

half.wins = tab5, inner= tab6$tbl, add.dcmp = tab7, 

Robust.ANDVA = list(formula = tab4.1$mdl, Robust.ANOVA = Robust.ANOVA), 

dt = tab4.1$dt, lvls = tab4.1$lvls, nterms = tab4.1$nterms, 

tab4.2, presentation = pres) 

class(robana) = 11 lstrob 11 
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rob ana 

} 

E.2 n5gg.3 

function (mm, mmtag, wins 0.5) 

{ 

} 

eee3 <- mm 

eee2 <- mmtag 

tmp1 = summary(eee3[eee2 != 1])[c(1, 6)] *wins 

eee2 = eee2 * sign(eee3) 

eee3[eee2 == -1] = tmp1[1] 

eee3[eee2 == 1] = tmp1[2] 

eee3 

E.3 print.lstrob 

function (robana, ... ) 

{ 

print(robana$Robust.ANOVA, ... ) 

} 
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Appendix F 

R functions to do the traditional 

decomposition 

Any called function which is not presented here, can be found in previous appendices. 

F.l decom 

function (mdl = 0, swp = "fibian", gf ="mean", eps = 0.01, rep= 100, 

dir = "first", cf = 1.5, scalf = "lomedian") 

{ 

bb = n3gg.2(mdl, gf) 

tab3 = nOgg (n2gg (bb [ [2]]) , "mean") 

if (swp == "NE.median") { 

} 

med.bb = median(bb[[2)]) 

bb[[2]] = bb[[2]] - med.bb 

aa = n2gg(bb[[2)]) 

if (dir == "avg") 

aa = n0gg.2(aa, swp) 

else aa = nOgg(aa, swp, st = dir) 

ptrn = n4gg(dim(aa), mdl, bb[[1)] [1]) 

if (swp == "NE.median") 

eval(parse(text = paste("aa", ptrn$index[1], "=med.bb+aa", 
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} 

ptrn$index[1]))) 

tab4.1 = aa 

tab4.2tab5 = n5gg(aa, ptrn$i, l, cf = cf, scalf 

tab4.2 = tab4.2tab5$tag 

tab5 tab4.2tab5$rep 

tab6 n0gg(tab4.2tab5$rep, "mean") 

tab7 tab4.2 * (tab4.1- tab5) + tab6 

scalf) 

tabSa = cbind(n6gg(tab3, ptrn), n6gg(tab6, ptrn), n7gg(tab4.2, 

ptrn)) 

tabS= cbind(tabSa[, c(1, 2, 4, 5)], 1- as.numeric(tabSa[, 

4])/as.numeric(tabSa[, 2])) 

colnames(tabS) = c("DF", "Std MS", "Inner MS", "# of exotics", 

"% of MS changes") 

tab10 n10gg(mdl, as.numeric(tabS[, 2]), as.numeric(tabS[, 1])) 

tab11 n10gg(mdl, as.numeric(tabS[, 3]), as.numeric(tabS[, 1])) 

ll = list(mean.decomposition = nSgg(tab3, ptrn), swp.decomposition = 

nSgg(tab4.1, ptrn), i.swp.decomposition = nSgg(tab4.2, ptrn), 

half_winsorized = nSgg(tab5, ptrn), mean.re_decomposition = 

nSgg(tab6, ptrn), additive.decomposition = nSgg(tab7, ptrn), 

Robust.ANOVA = tabS, tab10 = tab10, tab11 = tab11, ptrn = ptrn) 

class(ll) = c("lstoldpolish", "decom") 

ll 

F.2 n3gg.2 

function (mdl, gf) 

{ 

ttmm as. character (attr (terms (mdl) , "variables")) 

cell "" 

for (ii in 3:length(ttmm)) cell <- paste(ccll, ttmm[ii], 

sep = ", ") 

list(eval(parse(text paste("tapply(", ttmm[2], 11 11 

' ' 
"list(", 
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substring(ccll, 2), "),length)"))), eval(parse(text = paste("tapply(", 

ttmm[2], 11
,

11
, "list(", substring(ccll, 2), "), 11

, gf, 

")")))) 

} 

F.3 n0gg.2 

function (aa, swp, eps 1e-14, rep = 100) 

{ 

} 

for (1 in 1:rep) { 

bb = aa 

} 

a a 

per = permutes(1:length(dim(aa))) 

cc = array(O, dim(aa)) 

for (j in 1:ncol(per)) { 

} 

tmp = aa 

for (i in per[, j]) tmp <- n1gg(tmp, i, swp) 

cc <- tmp + cc 

aa = cc/ncol(per) 

if (isTRUE(all.equal(bb, aa))) 

break 

F.4 n4gg 

function (dimaa, ooo, repll) 

{ 

ff <- attr(terms(ooo), "factors") [ -1, ] 

ff = cbind(rep(O, dim(ff)[1]), ff) 

ff <- (ff * (-2) + 1) * dimaa 

eee = eO 
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} 

for (i in 1: dim(ff) [2]) { 

cc = ff [' i] 

ee 11 (11 

for (j in 1:length(dimaa)) { 

ee = paste(ee, cc [j] ' 11 '11) 

} 

ee substr(ee, 1, nchar(ee) - 1) 

ee paste(ee, "] 11) 

eee = c(eee, ee) 

} 

list(names = c("Overall", attr(terms(ooo), "term.labels")), 

index= eee, dof = apply(ff, 2, function(xx) { 

prod(xx[xx < 0] * (-1) - 2) 

}), n = apply(ff, 2, function(xx) { 

prod(xx[xx > 0] - 1) 

}) * repll, levels= c(O, attr(terms(ooo), "order"))) 

F.5 n5gg 

function (aa, eee, 1, cf 1. 5, scalf "lomedian") 

{ 

aatag = aarep = aa 

eval(parse(text = paste("aatag", eee[1], "=0"))) 

for (i in 2:length(eee)) { 

eee3 eee1 = eval(parse(text = paste("aa", eee[i]))) 

eee2 STm2(as.array(eee1), scalf = scalf, cutoff= cf, 

ddff = prod(dim(as.array(eee1)) - 1))$r 

eval(parse(text = paste("aatag", eee[i], "=eee2"))) 

tmp1 summary(eee3[eee2 != 1])[c(1, 6)]/2 

eee2 eee2 * sign(eee3) 

eee3[eee2 

eee3[eee2 

-1] = tmp1 [1] 

1] = tmp1 [2] 
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eval(parse(text paste("aarep", eee[i], "=trunc(eee3)"))) 

} 

list(tag = aatag, replaced = aarep) 

} 

F.6 n6gg 

function (aa, ptrn) 

{ 

} 

tmp = eO 

for (ii in 2:length(ptrn$n)) tmp = rbind(tmp, c(ptrn$dof[ii], 

eval(parse(text = paste("sum(aa", ptrn$index[ii], "~2)*ptrn$n[ii]/ 

ptrn$dof[ii]"))))) 

rownames(tmp) = ptrn$name[2:length(ptrn$n)] 

tmp 

F.7 n7gg 

function (aa, ptrn) 

{ 

} 

cc = eO 

for (i in 2:length(ptrn$names)) cc = c(cc, sum(eval(parse(text = 

paste("aa", ptrn$index[i], "==1"))))) 

cc 

F.8 nlOgg 

function (mo, ms, df) 

{ 

for (kk in 1:(max(as.numeric(names(table(attr(terms(mo), 

"order"))))) - 1)) { 
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df1 <- df[attr(terms(mo), "order") kk] 

df2 <- df[attr(terms(mo), "order") (kk + 1)] 

ms1 <- ms[attr(terms(mo), "order") kk] 

ms2 <- ms[attr(terms(mo), "order") (kk + 1)] 

11 = 1ength(ms1) 

12 1ength(ms2) 

msm = matrix(O, 11, 12) 

for (ii in 1:11) for (jj in 1:12) msm[ii, jj] <- 1og2(ms1[ii]) -

1og2(ms2[jj]) 

a <- attr(terms(mo), "factor")[, attr(terms(mo), "order") -­

kk] 

b <- attr(terms(mo), "factor")[, attr(terms(mo), "order") -­

(kk + 1)] 

ab = matrix(O, 11, 12) 

for (ii in 1:11) for (jj in 1:12) { 

ab[ii, jj] <- sum(a[, ii] * as.matrix(b)[, jj]) kk 

} 

co1names(msm) attr(terms(mo), "term.1abe1s")[attr(terms(mo), 

"order") == (kk + 1)] 

rownames(msm) = attr(terms(mo), "term.1abe1s")[attr(terms(mo), 

"order") -- kk] 

msm[ab == 0] = NA 

msm[msm > 1] NK 

msm app1y(msm, 2, function(x) { 

x == app1y(msm, 1, min, na.rm NA) 

}) 

msm[msm == FALSE] = NA 

ms[attr(terms(mo), "order")== (kk + 1)] <- app1y(rbind(msm * 
ms1, ms2) * rbind(msm * df1, df2), 2, sum, na.rm =TRUE)/ 

app1y(rbind(msm * df1, df2), 2, sum, na.rm =TRUE) 

ms[attr(terms(mo), "order")== kk] <- (app1y(msm, 1, 

sum, na.rm = TRUE) == 0) * ms1 

df[attr(terms(mo), "order")== (kk + 1)] <- app1y(rbind(msm * 
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} 

} 

df1, df2), 2, sum, na.rm =TRUE) 

df[attr(terms(mo), "order")== kk] <- (app1y(msm, 1, 

sum, na.rm = TRUE) == 0) * df1 

cbind(attr(terms(mo), "term.1abe1s"), ms, df) 

tmp = cbind(ms, df) 

rownames(tmp) = attr(terms(mo), "term.1abe1s") 

tmp [ tmp [ , 2] ! = 0 , ] 

F .9 print.lstoldpolish 

function (11, ... ) 

{ 

print(11$swp.decomposition, ... ) 

} 
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