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Abstract 

We give criteria for the stability of a very general queueing model under different 

levels of control. A complete classification of stability (or positive recurrence), tran

sience and null-recurrence is presented for the two queue model. The stability and 

instability results are extended for models with N ~ 3 queues. 'vVe look at a broad 

class of models which can have the following features: 

Customers arrive at one, several or all of the queues from the outside with expo

nential inter arrival times. We often have the case where a arrival stream can be 

routed so that under different routing schemes each queue can have external ar

rivals, i.e. we assume we have some control over the routing of the arrivals. We 

also consider models where the arrival streams are fixed. 

We view the service in a more abstract way, in that we allow a number k of different 

service configurations. Under every such service configuration service is provided to 

some or all of the queues, length of service time can change from one service configu

ration to another and we can change from one configuration to another according to 

some control policy. The service times are assumed to be exponentially distributed. 

The queueing models we consider are networks where, after completion at one queue, 

a customer might be fed back into another queue where it will be served another 

time often under with a different service time. These feedback probabilities change 

with the service configurations. 

Our interest is in different types of control policies which allow us to change the 
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routing of arrivals and configurations of the service from time to time so that the 

controlled queue length process (which in most cases is Markov) is stable. The 

semi-martingale or Lyapunov function methods we use give necessary and sufficient 

conditions for the stability classification. We will look at some two queue mod

els with different inter arrival and service times where the queueing process is still 

Markov. 
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Chapter 1 

Introduction 

There are several things I would like to do in the introduction. First of all I would 

like to give a brief thought to what the title of the thesis means, which hopefully will 

give the reader an idea about the content of the thesis. Further I would like to give 

an introduction to some basic queueing models, then a short introduction to the 

methods for establishing stability that will be used later and a selective summary 

of some more queueing networks discussed in the literature - selective since the 

main focus here is on stability and there is a lot of literature that deals with rather 

different problems. 

But first let us start with the title. The discrepancy, or not, between the linguistic 

definition and the mathematical meaning of a word can be rather confusing or 

enlightening (at least for me). Here I will state, and comment on, what I found in 

the Oxford Dictionary [33]. 

A queue is 

"a line or sequence of people or vehicles awaiting their 

turn to be attended to or to proceed". 

Although we will not look at quettes in terms of people or vehicles waiting, the 

main points we would like to consider are given in this definition - we shall keep these 

in mind when talking about queues in a mathematical sense. We have customers 

arriving from somewhere to be processed, the processing takes some time which can 

lead to waiting times for the customers and a queue starts forming. 

We will not look at single queues but queueing networks, networks are "a group 

1 



Chapter 1. Introduction 2 

or system of interconnected people or things" [33]. In terms of queues, networks 

arise if a customer has to go through several stages of service before it has received 

all the necessary attention and can be considered completed. One can think of this 

in terms of production of goods which require processing at several machines before 

being finished; or a visit to a doctor which starts at the reception, then one hopes to 

see the nurse or the doctor, and quite often has to visit the reception again before 

leaving. 

A novelty of our approach is the way in which we control the queueing system. If 

we have control we have "the power to influence or direct[. .. ] the course of events" 

[33]. We do not specify the control applied but try to keep it as general as possible, 

which means that a lot of control policies are included in our approach. 

The most ambiguous word of those in the title is stability, at least in its math

ematical interpretation. To say something stabilises or is stable can mean very 

different things depending on which branch of mathematics one considers. Here we 

are only interested in it in the sense of positive recurrence or ergodicity if the queue 

length process is a Markov chain (more details can be found in Section 1.2). In 

contrast to this linguistic meaning of the word stable is simply "not likely to give 

way or overturn" [33]. 

The word criteria is plural for criterion which is "a principal or standard by which 

something maybe judged or decided" [33], we will look for the standards needed in 

order to decide whether a queueing network is stable. 

Let us summarise: we will try to control queueing networks in such a way that 

they are stable. We will give criteria (necessary and sufficient) to identify the situ

ations when stability is present, possible or not at all achievable. 

A PhD in brief or historical PhD briefing: Before we start fully with queues, 

stability and literature I would like to give a brief overview of how the work that is 

presented in this thesis came together and state which parts of it are published and 

where. 

The original question was given by M. Menshikov as something like: What if we 
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have two queues and two servers and we can move the servers from one queue to 

another from time to time with the aim to make the system stable; when is it stable, 

and how can we classify when the system is stable or not? 

The answer to this question is given with the convex hull of the system mean 

drifts given in Chapter 2 and some of the even earlier results for two queues are 

summarised in Section 2.4. Given the convex hull it was clear that introducing extra 

features and parameters to the model, such as Jackson feedback, would not change 

the stability classification. The idea of the control the we exercise over the system 

also evolved, starting with what we call pure policies to using (fully) randomised 

controls. It also became clear the some of the result would be easily extend-able 

to queueing models with more than 2 queues. At this state my supervisor lain 

MacPhee and Misha Menshikov got a bit overexcited and lain wrote the proof for 

Theorem 4.3.2 (the proof is here included in Appendix B) while I was away. We 

finished the first paper [27] and submitted it in January 2005. 

I had submitted the work on two queues to a conference (the ASMDA (applied 

stochastic models and data analysis) held in May 2005 in Brest, France) earlier, so 

the two queue result can also be found in [26]. Since this conference paper won 

the IBM student price I was asked whether we have something to be submitted 

for a special conference issue of Methodology and Computing in Applied Probability. 

This became the second paper [28] about queueing networks with re-entrant lines, 

examples of this type of models can be found throughout the thesis. In the mean 

time I had worked on phase type distributions. The question was whether phase 

type services can be introduced into our model and whether the stability results 

would still hold in this case. Together with the phase type service I investigated the 

possibility to introduce discrete time Markovian arrival processes. The results of 

this can be found in Chapter 3. And in the last couple of month I became extremely 

interested in the queueing literature, which is why the fruits of this labour will 

be presented just after an introduction the Lyapunov function or semi-martingale 

methods. 

Since ordering the content of the thesis chronologically in time does not make 

much sense the order of the content can be explained in the following way. There are 
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two "directions of travel", the macro direction, from start to finish, is the "queue

direction" and the micro direction, reappearing in some chapters, is the "stability

direction". The queue-direction goes from simple, low dimensional queueing models 

to more complex networks and higher dimensional processes; while the stability

direction starts with the most general stability result (under very general assump

tions about the control) and is then narrowed down to the cases where we can talk 

about ergodicity or positive recurrence of a Markov chain (when the controls are 

stationary and Markov or even more restrictive). 

A brief summary of content can be given as follows. We start by giving an in

troduction to queueing models, semi-martingale and Lyapunov function methods as 

well as giving stating some examples of queueing network discussed in the literature 

Sections 1.1 to 1.3. We then analyse a very general class of two queue models in 

detail under several different control policies in Chapter 2, including several exam

ples where we also show how our results relate to existing models. In the proceeding 

Chapter 3 we consider some generalisations of the two queue model, such as service 

time of phase type and discrete time Markovian arrival processes. Chapter 4 has 

the N queue model as its main objective. We show which results from Chapter 2 

extend readily into a N dimensional setting and where additional assumptions are 

needed in order to find similar results. In Chapter 4 we will take a closer look at 

some of the examples introduced in Section 1.3 such as the generalised Lu-Kumar 

network. 

1.1 A Queueing Model 

In this section we will we start by defining what exactly we mean when we say queue 

and what happens in such a queue. Additionally we will give some basic examples 

of queueing models and give some intuition about whether they are stable or not. 

Generally queues form if customers or jobs need service or processing that takes 

some time and is only provided by a limited number of servers at stations, usually 

there is one server or one type of service offered per station (we will also consider 

stations with several queues and only one server). We say that there are arrival to 
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a queue at some rate. At the time of arrival of a customer three things can happen: 

the server is idle and the customer is served straight away, the server is occupied 

or there are customers already present in the queue, in which cases the new arrival 

joins the queue. We consider systems with so called infinite buffers, which means 

there is no limit to the number of customers that wait in the queue. We also assume 

that customers are served one at a time and there is a finite but non-zero service or 

processing time which has finite mean. A schematic picture of such a queue is given 

in Figure 1.1. 

Poisson arrival stream 
jobs leaving 

exponential service time 

Figure 1.1: A M/ M /1 queue with infinite buffer. 

We will mainly consider queueing models where the arrival rate >. is Poisson and 

the service times of jobs are independently exponentially distributed with parameter 

1-l· This means that the queue length process denoted by X is a Markov chain. A 

consequence of these assumptions is that the rates of arrival and service time are 

directly comparable which leads to the following well known result. 

Theorem 1.1.1 Given a Poisson arrival rate >. and exponentially distributed ser

vice times with parameter /-l, the queue length process X is Markov chain and is 

(i} stable ( ergodicjpositive recurrent) if the workload is >.j 1-l < 1, 

(ii} unstable (transient) if >.j 1-l > 1, or 

(iii} neither (null-recurrent) if >.j 1-l = 1. 

These results about the workload or traffic intensity >.j 1-l go back to A.K. Er

lang, thus the one server one Markovian queueing model is sometimes referred to as 

Erlang's model, but more popularly denoted by M/M/1 (M for Markovian arrivals 

and service times and 1 indicating the number of servers). 
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Intuitively (i) means that on average the time that it takes to serve a customer 

is shorter than the time interval between successive arrivals. So even if there exists 

a queue when the service starts it will disappear after some time and once the queue 

is empty new arrivals will be served without waiting. Part (ii) on the other hand 

implies that the number of customers waiting will keep increasing. We will show 

these basic results in the following Section when demonstrating the methods. The 

condition in (iii) implies that the all the jobs that enter will be served but the queue 

length might never be really reduced. More details about this and other queueing 

models can be found in text books such as Asmussen [1]. 

Once one knows that the system is stable the question is whether one can also find 

the stationary probability distribution for the underlying Markov chain, a question 

we will not study for our model, but point out for which models they exist or where 

attempts have been made. 

The first variation of the M I M I 1 is to have two M I M I 1 queues running parallel 

to one another. The necessary and sufficient condition for the stability of such a 

system is that maxi >.d J-1i < 1, i.e. both >.If J-1 1 and >..21 J-1 2 are smaller than 1. The 

idea is the same for N MIMI1 queues parallel (which we then denote by MINIIN) 

when there is no interaction between N queues arrivals and services. 

Sometimes the queueing system denoted as MIMIc, is a system with only one 

Poisson arrival stream >. and c identical servers serving all jobs at rate J-1. This 

means that if there are less than c jobs in the system some of the servers idle. The 

stability of a one arrival stream c server queue is still straight forwardly given by 

>.lcf-1 < 0. 

The stability of a model that incorporates a network structure, where customers 

that are processed at one queue can enter another queue and receive additional 

service there, was first analysed by Jackson [21], in a model now referred to as the 

Jackson Network. 

Example 1.1.1 (Jackson Network) Consider the simplest Jackson Network which 

has two queues with independent Poisson rates )q and >.. 2 and independent, expo

nentially distributed service rates J-1 1 and J-1 2 . On completion of service at queue 1 
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the customer either re-enters queue 1, joins the end of queue 2 or leaves the system 

with probabilities p11 , P12 or p10 = 1 - (Pn + p12 ) respectively. There are similar 

routing probabilities for customers that have finished at queue 2. As long as PiD > 0 

for i = 1 or 2 there is a possibility for the system to be stable (i.e. some customers 

certainly leave the system so that the queue lengths can be reduced). From Jack

son's [21] results, which hold for N queues as well, we know that the system is stable 

if ~i = Ai + ftiPii + J-tiPii < fti for i and j = 1, 2 and i -1- j. Just like the conditions 

above this means that the total arrival rate, from the outside and from feed backs, 

is smaller than the service rate at each queue. In his paper Jackson [21] also gives 

the stationary probabilities for this Markov chain. 

The following Example 1.1.2 investigates an additional idea that we will take 

even further in our model - the idea that one server can help the other if there 

are no customers waiting in his queue. In the previous examples, and for most of 

those that will follow, it is assumed that a server is allocated to a specific queue and 

cannot move to the other queues. 

Example 1.1.2 (Modified Jackson Network) Foley and McDonald [14] consider 

a two queue Jackson network as in Example 1.1.1 given the addition that once queue 

2 is empty server 2 can move to queue 1 and help serving customers there, thus in

creasing the service rate to p,1 + p,2 . The authors [14] show that this increases the 

stability region, we will discuss this model later. 

Queueing models and networks present in the literature are often motivated by 

some practical example which has been observed in reality, one of these is 

Example 1.1.3 (Join the shortest queue or JSQ) Consider two queues with 

service times as in Example 1.1.1 but only one Poisson arrival stream with parameter 

A. The customers that arrive in the system make a decision at the time of arrival 

to join the shorter one of the two queues - like a customer in a shop would do given 

the choice. If the two queues are the same length the customers are equally likely 

to join either of the two queues. This queue system is stable if A < p, 1 + p,2 . Flatto 

and McKean [12] consider this model and the stationary probabilities where the 

two servers that have identical service time distribution. More details about the 
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stationary probabilities can also be found in Kurkova and Suhov [23]. Foley and 

McDonald [13] investigate the stability of the JSQ model for N queues. 

Example 1.1.4 (Load-balanced network) Kurkova [22] considers a combina

tion of the two models with two queues given in Examples 1.1.1 and 1.1.3, in that in 

addition to two dedicated arrival streams to the two queues there is another Poisson 

stream with parameter ,\ which is routed to the shorter of the two queues. Addi

tionally some of the customers fed back into the queues join the shorter queue also. 

We will consider this model and a generalisation of it in more detail in Chapter 2. 

In order to consider stability of more complex networks we will now take a closer 

look at stability criteria. 

1.2 Stability criteria for countable Markov chains 

In this section we would like to give a brief introduction to the mathematics we use to 

show stability or not of our queue length (or queueing) process. These methods are 

often referred to as semi-martingale or Lyapunov function methods (also called test 

functions see Meyn and Tweedie [29]). The main idea goes back to Foster's criterion 

[18] for ergodicity of Markov chains. A more general formulation of the theory 

gathered in the book by Fayolle, Malyshev, Menshikov [11]. Meyn and Tweedie [29] 

look at similar criteria when the Markov chain is not necessarily countable. Another 

book that summarises some of the earlier semi-martingale method results and has 

some more details about queueing models is Asmussen [1]. 

A continuous time queueing process is a combination of two random sequences: 

the inter arrival times of customers and their service times. The queue length process 

associated with the number of customers waiting in such a queueing system in a 

continuous time setting will be denoted by X= {X(t) : t 2:: 0}. We will concentrate 

on the case where the inter arrival times are exponential with parameter >. and the 

service times are exponential with parameter f-L· 

The process we will consider mainly is the discrete time queue length process 

denoted by 3 = { ~ ( n) : n 2:: 0}, where n indicated the discrete time units. 3 is the 
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embedded continuous time queueing process X observed at the times of events, the 

events being arrivals or departures of customers and a null event when the process 

remains in the same state, see Section 2.2 for more details. 3 lives on the state 

space z~ :::::::: {(xl, ... 'XN) E zN : Xi ~ 0 for all i = 1, ... 'N} and a vector in this 

state space is usually denoted by a = (x 1 , ... , XN) E Z~. We will assume Poisson 

arrival rates and exponentially distributed service times which means that 3 will be 

Markov. Once we introduce control policies to the queueing system these also need 

to fulfil some requirements for the process to remain Markov, this is discussed in 

Section 2.2. What matters for now is that if we do not have a Markov chain we will 

talk about stability, but if we do have a Markov chain then stability and ergodicity 

(or positive recurrence) are the same. Unless specified otherwise the state space is 

Z~ where N is the number of queues in the model. 

We will start with some very general stability results and then look at the 

stronger results we get when considering Markov chains. Towards the end of this 

section we will show more specifically how the stability of queueing systems can be 

analysed, introducing some notation and conditions. 

Martingales: Since one of the methods presented here is the semi-martingale 

method, we give a very brief summary of martingales. Let { Zn}nEZ+ be a sequence 

of real valued random variables with finite mean. We say { Zn} is adapted to an 

increasing family of (}-fields {Fn}nEZ+ if Zn is Fn-measurable for each n. For nE z+ 
the sequence { Zn} is called 

a martingale if E (Zn+l I Fn) = Zn a.s., 

a supermartingale if E (Zn+l I Fn) ::; Zn a.s., or 

a submartingale if E (Zn+l I Fn) ~ Zn a.s. 

A lot of probability text books have information about martingales, for more details 

see for example Doob [9] or Meyn and Tweedie [29]. 

Stability: We consider stability as introduced in Chapter 2 of Fayolle, Malyshev, 

Menshikov [11], or loosely speaking in the sense that, for a sequence of non-negative 

real valued random variables, the time to reach a finite ball V around the origin is 



1.2. Stability criteria for countable Markov chains 10 

finite, given that it started outside this ball. The three Theorems stated here are 

all taken from FMM [11] and the reader is referred to this source for the proofs. 

Theorem 1.2.1 below gathers together three of semi-martingale results from Fay

olle, Malyshev and Menshikov (FMM) [11] which we will use to help determine the 

stability or not of our queueing model. 

Let {St, t 2 0} be a sequence of non-negative random variables with S0 constant 

and St measurable with respect to the history 'Ht = CJ(~(O), rJo, ... ,~(t)) fort 2 1, 

where ~(t) are the realisations of the process and the rJt contain information about 

the way the system was run at timet under some control. Let {Nn, n 2 0} be an 

increasing sequence of stopping times adapted to {'Hn} with N0 = 0 and let Y0 = S0 

and Yn = SNn for n 2 1. Also, for constant D > 0, let T = min{t 2 1 : St :::;; D} 

and CJ = min { n 2 1 : Yn :::;; D}. Finally let { Xt~~a} denote a sequence { Xt} stopped 

at CJ and Is be the indicator function of an event E. 

Theorem 1.2.1 (i} If S0 > D and for some E > 0 and all n 2 0 

then E(T) :::;; S0/E < oo. 

(ii} If S0 > D, the jumps Sn+J - Sn are uniformly bounded below and there exists 

E > 0 and a positive constant b such that for every n 2 0 

then P(T = oo) > 0 and for any 51 E (0, E) there exist constants C = C(S0 ) 

and 52 > 0 such that for any n 2 0, P(Sn < b'1n):::;; ce-li2n. 

(i) is Theorem 2.1.2 while (ii) combines versions of 2.1.10 and 2.1.7 of FMM [11]. 

Setting up the process Yn = SNn in (i) guarantees the most general setting for 

stability. It means by observing the process Sn at certain stopping times Nn we 

get Yn and if Yn is a supermartingale this allows us to conclude that the time T, 

the time it takes until Sn reaches the finite ball V around the origin, is finite and 

even has expectation bounded by So/E. Note that if the first moment E(Sn I 'Hn) 

is finite then the process remains bounded in mean. Part (ii) states that if Sn is a 
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sub martingale there is a positive chance that the process will never reach V, and 

that in fact the process goes to infinity at least linearly fast. 

Positive recurrence and transience of Markov chains: Given an irreducible 

and aperiodic Markov chain on a countable state space, we can talk about the 

positive recurrencejergodicity and transience of a Markov chain. 

We say a Markov chain:=:= (~0 , ... ,~n .. . ) is positive recurrent if for all a E Z0 

we have P(~n = a for infinitely many n) = 1 and the expected return time to a is 

E(Ta) < 00. 

One way to show the positive recurrence of a Markov chain was introduced by 

Foster [18]. The Theorems 1.2.2 and 1.2.3 below are Theorems 2.2.3 and 2.2.2 

respectively from FMM [11]. 

Theorem 1.2.2 (Foster's criterion) A Markov chain:=: is positive recurrent (er

godic}, if and only if there exists a positive function f : Z~ -----> R+, some c: > 0 and 

a finite set V c Z~ such that 

Here f is called a Lyapunov (or test) function and f(~n) is a supermartingale. 

The Lyapunov function projects the, often higher dimensional, process :=: into a one 

dimensional space where one can see more easily whether it increases or decreases 

in expectation. Often the main problem when using this method is to find an 

appropriate Lyapunov function. Due to the nature of the processes and controls we 

consider most of the Lyapunov functions we will use are linear. Note that we can 

set Sn = f(~n) in Theorem 1.2.1(i) which, if the first moment E (J(~n+l) I ~n = ai) 

is finitem would then also yield the stronger result of Theorem 1.2.2. 

Theorem 1.2.3 (Transience) A Markov chain:=: is transient, if and only if there 

exists a positive function f : Z~ -----> R+, some c: > 0 and a finite set V C Z~ such 

that 
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Note: A Markov chain is either positive recurrent, transient or null-recurrent. 

Briefly null-recurrence means that the Markov chain is recurrent (we have a function 

f : Z{} ---> R+ and a finite set V C Z{} such that E (J(~n+d- f(~n) I ~n =a) ::; 

0, for a tj. V), but not ergodic, we can find another positive function g(a) which 

is a submartingale for a tj. V, given some additional constraints, see for example 

Theorem 2.2.8 in FMM [11]. We will consider null-recurrent cases in more detail in 

Section 2.3.3. 

After this short description of general stability criteria we will now return to 

the queueing models and introduce notions such as the mean drift to illustrate how 

the theorems above relate to the actual behaviour of the models we have already 

discussed in Section 1.1. 

A discrete time queue length process: Consider the continuous time M I M I 1 

queue, the intensities (or rates) of the inter arrival and service times of the queue 

length process X are given by A and 1-l respectively. We would now like to con

sider the embedded discrete time Markov chain :=: with transition probabilities 

Paa+I and Paa-I, i.e. we observe the continuous process at the times of events 

such as arrivals and depatures. These probabilities are given by Paa+I = >.~1-' and 

Paa-1 = 1-Paa+I = ih (for all states a but a= 0). We will introduce uniformising 

or embedding for more complicated models and the related processes in Section 2.2. 

Note: The Lyapunov function methods also hold for continuous time processes, 

choosing the discrete version instead is mostly down to personal preference. 

Given that we can observe the embedded discrete time queue length process :=: 

on Z{} with states a and (3 we set the following two conditions for the transition 

probabilities of jumps PafJ: 

Condition B (Boundedness of jumps): Pa/3 = 0 for I la - !311 > d > 0, 

where 11 a 11 = maxi I xi I with a = ( x 1 , ... , x N). In fact for all the models we consider 

the jumps are only on Z{} and most of the models have jumps bounded by d = 1 in 

both directions. 
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Figure 1.2: Rate of jumps for the two queue Jackson network. 

Condition H (Homogeneity): There is a finite number of blocks B which 

partition the state space Z~ (see Section 2.2) and the jump distribution Po/3 is the 

same for each o:, (3 on a block B, with o:- (3 constant. 

We introduce the notation Ai to denote the axis in i direction. Consider the 

two queues with two serves. We can observe three different jump distributions, the 

jumps in the interior when both servers are serving customers and the jumps on the 

boundary of the state space, the axes, when one of the servers is idling while waiting 

for a new customer to arrive. Figure 1.2 shows the three jump distributions in the 

case of the two queue Jackson network. 

Mean drifts: Given the jump distribution we can now define the one step mean 

drift vectors for the discrete time process from o: E Z~ as 

M(o:) = (M1(o:), ... , MN(o:)) = l:)o:- f3)Pa/3· 
/3 

Looking at the mean drifts of the queue length process :=: we can immediately 

get some idea about whether :=: is stable or not. Consider the M I M I 1 queue again. 

The mean drift, while there are customers in the queue, is M(o:) = >.!{,(A- J.L) and 
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Figure 1.3: Possible mean drift vectors of a two queue model. 

14 

from Theorem 1.1.1 we know that the process is positive recurrent only if >../ J.L < 1 

which is equivalent to a negative mean drift M(a) < 0. 

If we consider the two queue two server model again we get three different mean 

drift vectors for the three blocks: 

M(a) = (Mx(a), My( a)) 

M'(a) 

M"(a) 

for the interior, no customers in queue 2 and no customer in queue 1 respectively 

(the vectors M' and M" are referred to as reflexion vectors). 

Given set of parameters lets consider the three mean drift vectors to assess the 

stability of the process:=:. Assume that the mean drifts in Figure 1.3 are the vectors 

we got from a given set of parameters in a two queue model. We can see that >..i < J.li 

fori= 1, 2 as M(a) is pictured with Mx(a), My(a) < 0. 

Now consider the angles 81 and ()2 that the reflexion vectors M' and M" make 

with the respective axes. If the sum of these angles is () 1 + ()2 < 1r /2 and Mx, My < 0, 

then we can find a linear Lyapunov function (in Figure 1.3 the level curve of this 
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function is indicated by the dashed line) that shows that :=: is positive recurrent. 

In fact if Mx, My < 0 FMM [11] Theorem 3.3.1(a) shows that the Markov chain 

is stable if and only if MxM~ - MyM~ < 0 and MyM~ - lvfx.tvf; < 0. If the sum 

is (}1 + (}2 > 1r /2 and/ or Mx or My f.. O,the positive recurrence of the underlying 

Markov chain depends on the angles of M with respect to the two reflexion vectors, 

see Theorem 1.2.4 below. 

We can see now why the idea of Foley and McDonald [13], see Example 1.1.2, 

that one server helps the other can increase the range of parameters for which the 

system is stable; boosting the service at the non-empty queue 1 to f-L 1 + f-L2 changes 

the reflexion vector M' so that the first component is now ,\1 - (f-l 1 + f-l2 ), this means 

the angle (}1 is smaller and thus there are more cases where (}1 + (}2 < 1r /2. 

Lyapunov functions can be interpreted in a very natural way. The linear function 

f can be chosen in such a way that all three mean drifts shown in Figure 1.3 point 

inwards (towards the origin) just like they do from the dashed line. So if we attach 

the function to our process we would expect that a decrease in the function value 

from time n to time n + 1, which is exactly what Foster's criterion says. A complete 

classification of the stability or not of a Markov chain in Z6 with three homogeneous 

blocks (the interior and the two axis of Z6) is given in FMM [11] Chapter 3.3, 

Theorem 1.2.4 below is a version of Theorem 3.3.1. 

Theorem 1.2.4 Assume that condition C and H are satisfied. 

(1} If Mx ~ 0 and My < 0, then the Markov chain:=: is 

(a) positive recurrent if lvfxM~- MyM~ < 0 

{b) transient if MxM~- lvfyM~ > 0. 

(2} If Mx < 0 and My ~ 0, then the Markov chain:=: is 

(a) positive recurrent if lvfyM~- MxM; < 0 

{b) transient if MyM~- MxM; > 0. 

(3} If 1\ifx ~ 0, My ~ 0 and Mx + My > 0 then the Markov chain:=: is transient. 
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What we consider in detail in Chapter 2 are two queue models with more than 

three blocks of homogeneity. We also allow the model parameters such as the arrival 

rates, service times and feedback probabilities at each of the queues to not necessarily 

be the same in different blocks. The control of the system, depending on the queue 

lengths allows us to change the model parameters completely from time to time. 

1.3 More queueing models 

If we want to analyse more complex queueing models a simple comparison of arrival 

and service rates can sometimes only lead to a necessary stability condition but not 

a sufficient one. Often the problems that arise are related also to the way in which 

the process is run or managed with help of control policies and in some way feasible 

strategies. The queueing models we consider now are different to those we looked at 

earlier because there are different control policies one can apply. Our model, which 

will be introduced later, is different to the existing ones also because of our very 

general approach to control - we let the question about stability lead us towards a 

control policy and not examine the stability given a restrictive strategy. 

First however we consider some queueing models discussed in the literature1 

We will focus on three points here: ( 1) polling systems, because the control of such 

systems is important and the N dimensional Markov chain associated with the queue 

lengths process is well studied because of its special characteristics; (2) multi-class 

queueing systems with re-entrant lines, because in some examples, as we show in 

Section 4.4, the control policies applied have led to problems with stability and 

the traffic intensity is not a sufficient stability condition any more; (3) maximum 

pressure or throughput approach, since this method to stabilise a queueing network 

is a very interesting approach. 

1 I do not intend to give a full review of the queueing literature, the focus is on those models 

which are interesting with respect to the question of stability, or their control features. For a more 

complete review of queueing literature please see Stidham [35]. 
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Example 1.3.1 (Polling systems) These are queueing models with the following 

features: there are i = 1, ... , N stations or nodes and each station has an indepen

dent Poisson arrival stream with rate.\ but there is only one server that polls theN 

queues (i.e. asks theN queues whether they have customers). We assume that this 

server serves customers at queue i with exponentially distributed service times with 

mean 1/ 1-li· There are various control policies or disciplines that are applied in order 

to run such systems. Generally we have two approaches to service: exhaustive (the 

server serves each queue that he visits until it is empty), or non-exhaustive (there is 

some rule by which the server stops serving a queue before it is empty); then there 

are models with finite or infinite buffers; and a choice on whether to do cyclic or 

non-cyclic polling. We will concentrate exhaustive service and infinite buffers and 

state some different ways to control the polling of the server. 

Cyclic polling means that the server visits the queues in a given order, i.e. starting 

with queue 1 the server remains there until there is no customer left in the queue 

and then moves to queue 2, and so on until the server has finished the last customer 

at queue N when it starts again at queue 1. Takagi [36] gives an overview of 

the literature mainly on these cyclic polling models. For such an N -queue polling 

system there are i = 1, ... , N mean drifts Mi. Each Mi has N components with 

Ml = ,.\ - J-li when the server serves queue i and Mf = AJ for i f- j, the remaining 

N - 1 queue which do not receive service. The system is stable if and only if 

L.i >-d 1-li < 1. 

In terms of non-cyclic polling we differentiate between deterministic and prob-

abilistic polling (see Takagi [36] and references therein). A deterministic polling 

strategy can be a given, non-cyclic order (like 1 ---> 3 ---> 1 ---> N ---> 2 ... and so on) 

in which the server visits the queues. 

An example for probabilistic polling is given by Borovkov and Schassberger [5], 

who consider a server that polls in a Markovian fashion which means that given the 

server serves station i it will serve station j next with some probability PiJ. Foss 

and Last [16] consider a polling model where the server's decision which queue to 

serve next depends on the configuration of the customers present in the system. 

Their polling system also has general service time and it takes the server a non-zero 
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walking time to move from one queue to another. 

Another way to run a polling system is by what is called the greedy algorithm. 

There are several variations of this algorithm but the main idea about the greediness 

of the server works as follows: after completing the service of the last customer in 

queue i the server chooses queue j as the next queue to serve, given that queue j is 

the longest of all queues (or the longest within a neighbourhood of queue i) at this 

time instance. Foss and Last [17] analyse the stability of a greedy polling system 

with general service policies and non-zero walking time when the server changes 

from one queue to another. Their greedy service policy is a variation of the above 

in that at the instance of polling queue i at time n the server generates a pair of 

random variables (En, Cn) where Cn < Xi (where xi is the number of customers in 

queue i) and the server either serves Bn customers and leaves queue i or departs 

after there are only Cn jobs left in the queue, whatever event occurs first. 

For all these different ways to run the polling systems (given that instantaneous 

switching time) the necessary and sufficient condition for stability can be summed 

up as the total workload is smaller than one. In terms of the mean drifts this means 

that all Mi have a negative component Mf such that l.::i A.d f-Li < 1. Another feature 

of the polling system which makes the issue of stability easier to evaluate is that the 

queue length process does not tend to "hang around" the boundaries of the state 

space - once a queue is served the server leaves and the queue will almost surely 

have new arrivals before the server starts serving it again. The next example we 

will consider showed that comparison of rates is not a sufficient condition under all 

reasonable appearing control strategies. 

Example 1.3.2 (Queues in series, or re-entrant lines) The idea for this model 

is rather different from the one above. We assume there is one stream of Poisson 

arrivals of rate ). that arrive at a series of N servers or service stations. Once a 

customer has been served at the first server, with exponentially distributed service 

time at rate /-Ll, it is routed to another server i where it is served at rate f-Li and so 

on. The customer may also be routed back to a server it has visited earlier, until it 

has completed its service at the N-th server say, after which the customer leaves the 
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system. The service times can be different at each queue and also depend upon the 

number of visits a customer has already made to a server. We assume that all cus

tomers follow the same route determined by a routing matrix R with entries rij = 1 

if customers are routed from i to j and rij = 0 otherwise. The customers are served 

in the order of arrival at each queue ( FIFO - first in first out). Unlike the previous 

example the workload conjecture does not hold any more, see for example Bramson 

[4], and one can ask whether this has anything to do with the way we route the 

customers through the system and how the customers are treated when they revisit 

a service station. Note that models with service constituencies as introduced by Dai 

[6] include this model. 

A popular example of such a queueing system is called the Lu-Kumar model [24]. 

Lu and Kumar considered the simple routing (see Figure 1.4) which is motivated as 

a typical manufacturing process, where goods may require the attention at the same 

machine several times. The model has two stations with one server and two queues 

each. A customer (with Poisson arrival rate A = 1) that enters the system queues at 

queue 1 at station 1 first, it is served by server 1 at exponentially distributed service 

times with rate p,1 . Then it joins queue 2 at station 2 and will be served by server 

2 at rate p,2 , after completing service the customer remains at station 2 but is now 

waiting in queue 3 which is also attended by server 2 this time with rate p,3 . Before 

leaving the system the customer joins the last queue, queue 4, this time at station 1 

where server 1 serves customers at rate p,4 . Given these parameters and that both 

servers are working we can have four mean drift vectors 

M 1(a) 1 (1 
l+l:;lii -p,1, /11 - /12, /12, 0), 

M 2(a) 1 (1 1+ l:; lii - /1 1, /11, -P,3, /13), 

M 3(a) 1 (1 
1+l:;lii , -p,2, /12, -p,4), 

M 4(a) 1 (1 
1+ l:; l'i , 

0, -p,3, /13 - /14) 

The obvious problem which arises here is that one has to decide how to split the 

attention of the two servers between the two queues that each of them has to serve. 

The usual control or strategy that is applied is called a priority scheduling. For 

example at station 1 serving queue 1 might have priority over serving queue 4, while 

are station 2 customers waiting in queue 2 has priority over those in queue 3. 
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/1>1 

/1>2 J 
/1>3 

Station 1 Station 2 

Figure 1.4: The Lu-Kumar network 

We will now review some of the work that has been done on the Lu-Kumar net-

work or variations of it. The Lu-Kumar network [24] has received a lot of attention. 

Bramson [4] considers a variation of this system where the customers revisit queue 

two over and over again. The phenomenon that occurs for the Lu-Kumar network, 

and is amplified in Bramson's [4] variation of the two station network, is the fol

lowing: server 1 is left idling while server 2 serves the queues at his station, then 

once the jobs have received the last service at station 2, server 1 is over occupied 

at queue 4, which in turn means that it does not serve the jobs waiting at the first 

queue that would be fed into station two, so server 2 is forced to idle. What we 

observe here (that is very different to the polling system) is that the process 3 "gets 

stuck" close to the boundary of the state space, which, as we will see in Chapter 4 

this is manily down to poor choice of controls. The forced idling in this two station 

network was also observed by Dai [6], who considers the Harris ergodicity of a gen

eral class of multi-class queueing networks, via fluid limits, where each server serves 

a constituency of queues and jobs are routed from one queue to another. 

Down and Meyn [10] use a fluid limit approach to find piecewise linear test 

functions (or Lyapunov functions) for re-entrant networks like the tandem queue 

(where all jobs from the first queue get fed into the second one). They also consider 

the Lu-Kumar and similar networks and come up with a buffer priority programming 

approach to find a range of service rates for which the system is stable. The stability 

or not of another variation of the two station re-entrant line network is considered by 

Dai et al. [7]. Nino-Mora and Glazebrook [32] consider what they call a generalised 
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Lu-Kumar network; it has additional arrivals from the outside at station two and 

the possibility for a proportion of the jobs to go from queue 1 to queue 4 (avoiding 

station two) and to leave the system after being served at queue 3. This model and 

the original Lu-Kumar network are considered in more detail in Chapter 4 where we 

show when there exists a randomised control policy that makes the system stable. 

The main idea in our approach is that after some or all queues are empty we wait 

for arrivals and change the servers around until all the queues populate again. Some 

two queue re-entrant lines are also discussed in Section 2.5. 

The main results for our model in Chapter 4 can only deal with what is called 

multi-class queueing networks if the customers that require different service times at 

one station wait in different queues, we will discuss later in what way our approach 

is more general than the multi-class idea. We give some results under very general 

control policies (Theorem 4.2.1 and 4.2.2) which hold for a multi-class queueing 

model like the one in the following example. 

Example 1.3.3 (Another multi-class queueing system) Foss and Chernova [15] 

study a multi-class model with N servers, general independent inter arrival times 

and service times and state dependent routing. They give stability criteria for join 

the shortest workload routing in cases where the service times are either server or 

class dependent and for the case of two queues where service times can be both 

server and class dependent. Towards the end of their paper they consider an in

teresting example with N = 3 queues and an arrival stream to each pair of queues 

where the service times depend not on the queue but on the routing decision i.e. for 

any cyclic permutation a of 1, 2, 3 a job arriving for queues a 1 and a 2 has service 

time distribution Fi if routed to a 1 and Fr if routed to a 2 . 

The following class of models approaches the idea of stability from a different 

direction - that of maximum throughput or the pressure in a queueing network. The 

idea is that under some conditions there is a service allocation policy in the set of 

all feasible policies for which the throughput of customers is maximised. 

Example 1.3.4 (The Generalised Constrained Queueing System) Tassiulas 

and Bhattacharya [37] considered this general network with service scheduling which 
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was published in 20002
. The network has N + 1 nodes where the i = 1, ... , N nodes 

are stations, or queues in our language, while the N +1-st node represents the out

side world in that every customer that reaches this node is considered as having 

left the queueing system. There is an independent Poisson arrival stream for each 

node i, while the service time distribution is general and identical within each node 

i but different for different nodes. There are k = 1, ... , K servers which can be 

allocated to the different nodes where they serve customers according to the service 

time distribution required for the node. After being served by server k at node i the 

customer might go to node j with probability p(i, k,j). Tassiulas and Bhattacharya 

[37] define a N x K scheduling matrix U = { uik} where uik = 1 means that server k 

can serve customers at node i, uik = 0 otherwise. A service allocation is feasible if 

it guaranties that each server serves only one customer at a time and is still feasible 

if servers idle at empty queues. 

Another more recent, in some ways more general but very similar queueing model 

with a different approach to control, is discussed below. 

Example 1.3.5 (Stochastic Processing Networks) Stochastic processing net

works were introduced by Harrison, see for example [20]. What we are interested in 

however is the paper by Dai and Lin [8] which looks at maximum pressure policies 

to control these type networks so that they are stable. Their model is similar but 

more general to Tassiulas and Bhattacharya [37] above. There are N + 1 buffers or 

nodes, K processors and J what they call activities (this is most similar to what we 

will introduce as management regimes TJ in Chapter 2). Each activity j can process 

customers at a number of processors. They distinguish one input buffer 0 from the 

N service buffers and a number of the processors are only input processors. At each 

processor activities can be allocated, and the processing time of a customer depends 

on the number l of customers already processed under activity j. After completion 

of processing time the customer can be routed to another node. The activities are 

allocated in such a way that the customers are processed under maximum pressure, 

2 Unfortunately I had been unaware of this paper until Tassiulas sent me a copy in July 2006 

after he had read our paper [27] 
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and an allocation is only feasible if no processor is idle, i.e. no activity is wasted at 

an empty buffer. Some of the more general features of Dai and Lin's [8] model are 

that it can handle activities which simultaneously process customers and that the 

processing time depends on the activity, not on the buffer or processor. 

We will consider the model and the stability results which are given in Tassiulas 

and Bhattacharya [37] and compare them with our approach in Chapter 4. We will 

also compare our model and the assumptions made over control with Dai and Lin 

[8]. In particular we will look at customer types that require the attention of several 

servers simultaneously. 



Chapter 2 

The Two Queue Model 

In this chapter we analyse a system which has two queues with arrival streams and 

servers that can be configured or managed in several ways. Our main aim is to 

identify conditions under which we can give a queue length dependent policy for 

choosing the system configuration that guarantees the stability of the queue length 

process. The queueing model in Section 2.1 is one example of a Markov chain and we 

use it to demonstrate how our results, which are true for all Markov chains, apply. 

We start with the two queue model as we can get the most explicit results when 

the queue length process lives in a two dimensional state space. In terms of different 

queueing systems and their behaviour (like Jackson networks, join the shortest queue 

and so on) modelling two queues can often give a good idea about what will happen 

with more queues, while being easier to understand. The results given in this chapter 

are published in [26] and [27], only Section 2.3.3 is new. Those results that can be 

extended to more than two queues will be given in Chapter 4 . 

As established earlier the most basic queueing model has arrivals and non-zero 

service times, which can lead to a queue forming. In this chapter we give a complete 

stability classification under control policies for a general two queue system with 

multiple service regimes, a dedicated traffic stream for each queue, and a further 

stream which can be routed to either queue with feedback of completed customers. 

The customers in one queue are of the same class in the sense that we do not keep 

track from where they joined the queue, but not all customers in one queue will 

necessarily receive the same service time because this and the feedback probabilities 

24 
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depend upon the configuration of the servers. We will define the queue length process 

and the events that we observe. Several different levels of control of the service 

regimes are considered. We define the mean drifts of the queue length process. 

Given the mean drifts we identify four exclusive cases that the system can fall into. 

These cases are directly related to our main results about stability. We show these 

using the semi-martingale methods given in Fayolle, Malyshev and Menshikov [11] 

and described in Section 1.2. We start with stability criteria under very general 

control policies and also consider some null-recurrent cases. All cases on a very 

low level of control are discussed in Section 2.4 our results in this section generalise 

those ofKurkova [22]. We give examples throughout and concentrate on models with 

re-entrant lines, such as two queues in tandem in the last section of this chapter. 

2.1 Model Parameters 

In this Section we will introduce the parameters of the queueing model, such as 

arrival, service and feedback rates, introduce the assumptions that we make and 

give a basic example. 

Arrival Rates: The queues have independent Poisson arrival streams with rates 

Ai ~ 0, i = 1, 2. There is an independent Poisson arrival stream with rate A ~ 0 

of customers that can be sent to either queue, we will call this the routable arrival 

stream. We denote by s = i with i = 1, 2 whether the jobs from the routable arrival 

stream are sent to queue 1 or 2 respectively. 

Introducing the additional mutable arrival stream means we can for example 

change the way in which we route the arrivals depending on the lengths of the two 

queues. A well known routing rule for queueing models with such an arrival stream 

is to join the shortest queue ( JSQ). 

Two queue models like tandem queues where A2 = A = 0 and only A1 > 0 

(i.e. only one queue has external arrivals) are considered separately in Section 2.5. 

Service Times: We allow several ways to provide service to the customers wait

ing in the queues by introducing service configurations k. This means that under a 

service configuration k = 1, ... , I< a specific service time is offered at each queue, k 
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can include configurations under which no service is provided at one or both queues. 

We assume that there are distinct service configurations of distinct service rates, for 

example the configuration changes due end of service at an empty queue. 

We assume all customers are served in the order in which they join a queue but 

that their service times depend upon their queue and the service scheme k in force 

while they are being served. Under server configuration k, at most one customer is 

in service at each non-empty queue and all customers in queue i have independent, 

exponentially distributed service times with rate /-Lki, i = 1, 2. The /-Lki may take 

any non-negative values so they may vary with k for any queue i, but we make the 

following 

Assumption A 1 (Efficient service): We allow only efficient service configu-

rations, so whenever the queue i is empty we only permit configurations k where 

/-Lki = 0. 

On the other hand we do allow the use of configurations with /-Lki 

queue i is not empty. 

0 when 

No service is possible when the system is empty but as our main interest is in 

stability we are not concerned with what happens on any finite neighbourhood of 

the origin Q = (0, 0). 

Management Regimes: Given that the arrival stream), can be routed to either 

queue by s = 1, 2 and that we can choose the service configuration k we define the 

finite collection R of overall management regimes whose members are the pairs 

TJ = (k, s). 

Our aim to control the system so that it is stable is directly related to these 

management regimes and the ability to change from one management regime TJ to 

another. For now we will make the following 

Assumption A2 (Zero switchover times): We can instantaneously switch 

between different management regimes TJ at the instants just after changes to queue 

lengths. 

Feedback Probabilities: In addition to the parameters above the system has 

Jackson-type feedback with probabilities that depend upon the current management 

regime TJ· Any job that completes service at queue i under regime TJ independently 
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enters queue i' with probability p:~,, i' = 1, 2 or leaves the system with probability 

Pfo = 1 - (Pft + Pfz) 2:: 0. 

Example 2.1.1 (Two queues and two servers) In a simple case of the model 

described above we have two servers for the two queues. Each server Si can be used 

to process customers at either queue ( Qi) which it does at rate f.lki· The model 

and four different service configurations are illustrated in Figure 2.1. It implies 

that no server idles unless as long as there are customers in the system so there 

is no configuration with one server working at Qi alone while Q1 is empty. Thus 

given our efficient service assumption A1, the regime where both servers are at Q1 

must be used when Q2 is empty but might also be used when both queues contains 

customers. 

Figure 2.1: The four basic service regimes for two queues and two servers 

The four service regimes are denoted by ki = 12, 21, 11 and 2 2 with service 

rate pairs (f.lu,f-122 ), (f.l21 ,f.l 12 ), (f.lt,O) and (O,f-12 ) respectively. Note that f.lt is not 
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necessarily /-Lll +J-L21 but can be bigger or smaller than the sum of the two service time 

rates. If we introduce a routable arrival stream which can be routed to either of the 

two queues we have eight management regimes 7] = ( k, s). Introducing feedback will 

not change the number of service regimes, but the feedback depends on the regime 17 

in force. For example under ki = 11 only customers at Q1 receive service thus giving 

feedback probabilities pj1 and pj2 while customers leave with pj0 = 1 - (pj1 + pj2). 

Other server configurations are possible. We could have more that two servers 

giving more than four service configurations k, or a server with no jobs may be 

switched to some background tasks and its service rate drops to /-Li = 0, or it may 

be possible to boost the service rates at some cost or by contrast, the two servers 

may hinder each other when working at a single queue resulting in a service rate /-LJ 

which is less than J-L11 or /-L2I· 

The question we consider is whether for such a model with a given set of param

eters, the management regime can be changed from time to time to ensure that the 

queue lengths remain stable or whether the queue lengths must grow indefinitely re

gardless of how the system is managed. In the following section we define the queue 

length process and give details about the management and control of the system. 

2.2 Definitions 

This Section gives some of the important definitions we need in order to describe our 

results. First we define the discrete time queue length process by uniformising the 

continuous time process, then we define control and describe the classes of control 

policies that we wish to investigate. Given the control we can define the mean drifts 

of the queue length process and in the last part of this section we define different 

sets of the state space which will be used frequently throughout the thesis. 

2. 2.1 U niformising the process 

The Lyapunov function results sketched in Section 1.2 are described in terms of 

discrete time stochastic processes. Although the same results can be obtained for 
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continuous time it is convenient to study the discrete time process as uniformising 

has the positive side effect of simplifying the comparison of the behaviour of the 

queue length process under different management regimes ry. 

Consider the M/M/1 queue introduced in Section 1.1 which is equivalent to a 

birth and death process with constant birth and death rates. The birth rate is >. 

and death rate is J-L. We also saw that the transition probabilities of the discrete 

time process are given by p01 = 1 and Paa+ 1 = ..\~ 11 as the probability of birth and 

Paa-1 = 1- Paa+1 = ih for all a E Z+. 

The idea for uniformising our continuous time queueing process X works in a 

rather similar way, only we now have more parameters due to two queues and k 

service configurations. More details about uniformising and the equivalence of the 

continuous and the discrete time process can be found in Serfozo [34], but here we 

give a brief outline. 

Assume that the continuous time queueing process X under a regime T/ has a 

generator matrix A'~ = (aij)'1 with up, down and diagonal transitions at rates as 

given in Figure 2.2. The exponential rate for remaining in any given state is given 

by (>. + >.1 + >.2 + J-Lk1 + J-Lk2). Using Serfozo's [34] approach we change the generator 

matrix A'l into a matrix of transition probabilities A '1 = (Pij )'7• We choose a constant 

(2.1) 

and divide all off-diagonal elements aij for i =/= j of A'7 by p, so that Pi] = ai1/ p. 

For the diagonal elements aii we introduce what is called a null or bell event which 

has exponential inter-event times with rate Pii = p - (>. + >.1 + >.2 + /-Lk1 + /-Lk2) 

at any given queue lengths when regime T/ = (k, s) is used. So the total event 

rate has the same value p in all states under all regimes which makes the process 

dynamically comparable under the different regimes. Observing the continuous time 

process when jumps occur gives the embedded Markov chain. This yields the matrix 

of transition probabilities A'l of the discrete time queue length process which is 

equivalent to the continuous time version. 

From now on we consider the uniformised discrete time process :=: on the state 

space Z6 = {(x, y) E Z2 :X~ 0, y ~ 0}. The process is obtained by considering the 
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Figure 2.2: Typical jump rates in the two queue model. 
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queue lengths at bell events, arrival times of new jobs and at service completions 

and consequent re-entry to queues. The queue length process :=: has jumps of the 

form ±ei and ±(e1 - e2 ) where ei denotes the unit vector in the i-th coordinate 

direction with i = 1, 2. We will use a= (x, y) E Z6 to denote a typical state vector 

for:=:. 

2.2.2 Control Policies 

The control that can be apply over the queueing models arrival stream and service 

configurations is an important part of our stability results. We assume three different 

levels of control and give our stability results depending on these. As we have seen 
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in Section 1.3 not all sensibly or naturally seeming control policies lead to stability 

for all types of queueing models. 

We define the policies by which the management regimes TJ at each state a are 

selected. A policy for controlling this discrete event system is a sequence IT = { 7rn : 

n ~ 0} of probabilities 7rn from 1-ln, the process history at time n, to R, the set of 

regimes. This means for any history a 0 , TJo, ... , an_ 1, fJn- 1 , an the next action is 

selected according to the distribution 7rn(a0 , TJo, ... , an,·). This definition includes 

non-stationary, non-Markov randomised policies though they offer no performance 

benefits when applied to stationary Markov processes, see Blackwell [2]. The results 

for these very general controls are given in Theorems 2.3.1 and 2.3.2. 

Let ~i(n) denote the length of queue i at time nand ~(n) = (6 (n), 6(n) ). A pol

icy IT along with an initial distribution for the queues determines a stochastic process 

(3, IT) = {(~(n), TJn) : n ~ 0} which will only be Markov when 7rn(ao, TJo, ... , an,·) 

is Markov and depends only on an and not on the whole history 7-ln. 

We are interested in stationary Markovian control policies which choose the same 

distribution over large blocks of the state space, this is interesting because it leads 

to a finite number of blocks with a homogeneous jump distribution in each block. 

We define these blocks formally in Section 2.2.4 for now denote them by B. 

We consider two of these block policies. Under this type of policy the state space 

Z5 is partitioned into a small number of disjoint blocks and we run the system 

according to a distribution 1r (a) in each block. 

The first type of block policy is what we call a block randomised policy, denoted 

by ITr, where the distribution 1rr (a) is the same at every state a in the block B. We 

make a decision on which TJ to use according to a randomised rule which is the same 

for all states in a. block. 

The second type is what we call block pure policy denoted by ITP. This is a. 

deterministic rule and can be seen as a. degenerate case of the ra.ndomised version 

because the distribution 1rP(a) is constant for every a E B, i.e. we run the system 

under the same regime TJ in the whole block. 

Note: Block pure or ra.ndomised policies are stationary and Ma.rkov which means 

that the process (3, ITr) is Ma.rkov because we assume that the arrivals are Poisson 
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and the services times are exponential for now (see Chapter 3 for different arrival 

and service distributions where the queueing process is still Markov). 

Given the control policy we introduce an assumption about the routing of arrivals 

and change of service regimes. Let A 1 = { (x, 0) : x > 0} and A 2 = { (0, y) : y > 0} 

denote the boundary or axes of the state space Z6. 
Assumption A3 (Boundary Reflexion Condition): If >.i > 0 for i = 1, 2 

or a routable arrival stream >. > 0 exists that can be routed to queue i = 1, 2 by 

changing the management regime rt then the boundary reftexion condition applies, 

i.e. we can jump back into the interior of the state space by simply directing the 

arrivals to the empty queue. 

The assumption below is needed when we would like to analyse two queue mod

els where only one of the queues has an external Poisson arrival stream of rate >. 

and the other queue gets only feedback. This makes it impossible to send arrivals 

to the second queue by changing the routing scheme s, i.e. we cannot direct the 

process away from the boundary of the state space by directing the arrivals only. 

To compensate for this we introduce the boundary sojourn condition below. 

Assumption A4 (Boundary Sojourn Condition): For each a on the boudray 

of the state space Z6 let T = min{n ~ 1: ~0 =a E A1 U A2,~n E Z~} denote the 

length of the boundary sojourn. We assume there exists a constant v > 0 such that 

for any a E A 1 U A 2 there is a policy ITa such that 

(2.2) 

This condition means that we assume that we can change service configurations 

and regimes rt = (k, s), where the arrival routing s is fixed, so that customers are 

fed into empty queues through feedback in order to drive away from the boundary 

as quickly as possible. 

2. 2. 3 Mean drifts 

The results about stability are based on the mean drifts of the process. The basic 

idea for this is described in Section 1.2; alternatively to FMM [11] we will look at 
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the mean drifts under the different management regimes 1], given a control policy 

II. 

The process (3, II) has bounded jumps, specifically ±ei with i = 1, 2 and ±(e2 -

ei) and so all moments of its jump distributions exist under any policy II, but our 

results can be stated in terms of their first moments. For each regime 'I} and process 

history Hn let 

(2.3) 

denote the mean drift vector for any period when the policy selects regime 1]. We 

have, fork= 1, ... 'Kat states a E z~ = {(x, y) E Z2 :X> 0, y > 0} 

Airy = (A1~,A1i) 

{ 
~ ( ,\ + -\1 + f.-Lk2P~1 - /--Lk1P'Jo, A2 + /--Lk1P'J2 - /--Lk2P~o), 
~ (-\1 + f.-Lk2P~1 - /--Lk1P'Jo, ,\ + A2 + /--Lk1P'J2 - /--Lk2P~o), 

'I}= (k, 1) 
(2.4) 

'I}= (k, 2) 

Recalling the efficient service assumption A1, when queue i is empty the policy 

selects a regime 'I} from among those with /--Lki = 0. This ensures that equation (2.4) 

is also correct for histories leading to states a E A 1 and a E A2 for such service 

regimes k. 

Now consider any policy II allowing randomisation. The mean drift of our process 

3 under II when the current state is a E Z6 is a 2-dimensional vector Afn lying in 

the convex set 

M= { ~p,M' • p, E [0, 1[ and ~p, =I} (2.5) 

the convex hull of the regime mean drifts Airy. The extreme points of M are a subset 

of the regime mean drifts Airy. When three or more of the A£1
1 are distinct, or not 

parallel, it may happen that the two-dimensional interior, 

Int2 (M) = {z EM: B(z, E) CM for some E > 0}, (2.6) 

is non-empty, here z E R~, B(z, E) = {z' E R 2 
: lz- z'l < E}. Using randomised 

policies (stationary Markovian or not) implies that we can create a vector Afn, so 

that there exists a II for which for example AIP < 0 for i = 1 ,2. When using 

the deterministic block pure policy only pure regimes Airy can be used to run the 
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0 

Figure 2.3: a+ M with non-empty 2 dimensional interior and an example for M 0 . 

queueing system and we might not always have TJ such that M? < 0 for i = 1 ,2. 

Figure 2.3 depicts a non-empty interior Int2(M) i= 0 with an example vector M 0 . 

2.2.4 Cone shaped blocks in Z5 
As stated earlier we are interested in policies which apply the same rule over a block 

of the state space Z6, specifically we will look at cone shaped blocks. For these we 

need some notation. 

Summarising some of the earlier notation we have: 

* the state space is Z6 

* the interior of the state space is denoted by Z~, some times used as a block 

together with, 
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*the positive parts of the axes, At= {(x,O): x > 0} and At= {(O,y): y > 0} 

which are considered blocks. 

Note that there is also the origin of the state space Q which is not included in 

the three blocks given above, this is because Lyapunov function methods allow us 

to not really care about what happens to the process close to the origin. 

Z6 is divided into cones in the following way. Let ei denote the unit vector in 

the axis Ai direction and for non-zero z = ( Zt, z2) E R~ let I z I denote the length of 

z and argu(z) the argument relative to non-zero vector u E R2 . argu(z) gives the 

angle anticlockwise from u to z. For any non-zero u, v E R 2 let e(u) = {z E R 2 
: 

z = tu, t > 0} denote the half-line in the direction u and 

C(u, v) = { z E R 2
: lzl > 0, 0 < argu(z) < argu(v)} (2.7) 

the cone swept anticlockwise from direction u to direction v. The closure of such a 

cone will be denoted C ( u, v). 

An example of Z6 divided into five blocks given by the two axes Ai and three 

cones is shown in Figure 2.4. Here C1 = C(e1,dt) = {z E R 2 
: lzl > 0, 0 < 

arg1(et) < argt(dt), C2 = C(dt,d2) and C3 = C(d2,e2). 

Knowing the angle between the axes Ai and the mean drift vectors M'1 is im

portant when assessing the behaviour of the system. Therefore it will be convenient 

to define two special versions of the argument, one relative to each axis Ai· Let 

R: R 2 
-t R 2 be reflection in the line z1 = z2 i.e. R(z1 , z2 ) = (z2 , zt) and define 

(2.8) 

so arg2 ( z) is the angle measured clockwise from A2 to z. These are used to define 

the two angles of the reflexion vectors M' and !Yf" which are the two mean drift 

vectors, under regimes ry, such that /1kt = 0 and J1k 2 = 0 respectively. If there is 

more than one regime rt which we can use on an axis under the efficiency assumption 

Al the rt which maximises the angles 'l/J1 = argt (M') and 'ljJ2 = arg2(M") relative to 

the two axes is chosen, the angles are also depicted in Figure 2.4. 
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M" 

M' 

.:.·· 

Figure 2.4: An example of a finite number of blocks, with three cones and the two 

axis giving five blocks. 
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2.3 Classification and Results 

The classification of our queueing model using the mean drifts M'7 is the basis for 

the results. It is based on the position and shape of the convex hull a+ M with 

respect to the origin Q = (0, 0), and whether a + M can be separated from the 

origin by a line (or hyperplane) through a or not. The classification leads directly 

to the Theorems about stability or ergodicity and transience, under different control 

policies IT given later on in this Section. 

For any set of parameters Ai, /-lki and P0 the mean drifts M'7 and thus M of the 

process (3, IT) fall into one the following four exclusive cases: 

Cl (0, 0) = Q tf:_ M and there exists a state a E Z6 and a hyperplane 

(2.9) 

with normal vector v through a separating a + M from the origin Q. If there 

exists one such a E Z6 then there is an infinite cone of such a. 

C2 Q tf:_ M and there exists no a E Z6 for which there exists a hyperplane Lv (a) 

through a which separates a + M from Q. 

C3 Int2 (M) is non-empty, Q E M and there exists no a E Z6, v E R2 such that 

the line Lv(a) separates a+ Int2 (M) from the origin. 

C4 Q is a boundary point of M and either Int2 (M) = 0 or the tangent line to 

a+ M through a separates the origin Q from a+ Int2(M) for each a in a cone 

within Z6. 

See Figure 2.5 for examples of Cl-C4 (for further reference the classification is 

also given in Appendix A). 

The results are separated by the type of control policy IT that is applied. We 

start by giving sufficient conditions for instability or stability respectively of the 

system under fully randomised controls in cases Cl and C2 respectively. Next we 

show that in case C3 there is always a block pure policy that makes (3, ITP) ergodic 

and we also show that randomisation allows the use of fewer blocks. Finally we will 

consider the null recurrent case C4. 
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Q 

L, 

Q Q 

Figure 2.5: From top left: Cl, C2, and below C3, C4. 

We will explore lower levels of control relating to the results in Kurkova [22] 

separately in Section 2.4. 

2.3.1 Fully randomised controls 

The following two results apply when even the most general policy II, non-stationary 

and non-Markov, is used to control the queueing system. The results imply that, 
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given our assumptions about the queueing process, in cases Cl and C2 the control 

policy used does not affect the stability or otherwise of the process. 

Theorem 2.3.1 If Q t/: M and there exists an a E Z6 and v E R 2 such that the 

line Lv (a), see (2. 9), separates a + M from the origin Q then the process (3, IT) is 

unstable, in the sense that the total number of queued jobs almost surely goes to oo 

linearly in time for any policy IT. 

The conditions of the theorem can be pictured in an alternative way. Specifically 

there exists a state a E Z~ such that the line segment from Q to a does not intersect 

a+ M. It follows that if there is any such pair a, v then there is an infinite cone of 

points a' such that Lv(a') separates Q and a'+ M. 

Proof: Under the conditions of Theorem 2.3.1 there exists a E Z~ and v = 

(v1 ,v2 ) E R 2 
\ C(-e1 , -e2 ) (i.e. v has at least one positive component) such that 

Lv (a) separates a + M from Q and hence v T M77 > 0 for every regime TJ. As the 

number of regimes TJ is finite, we can choose e: = ! min77 v T M77 > 0. In order to 

apply Theorem 1.2.1 to show that the process is unstable we first need to define a 

sequence of non-negative random variables { Sn}· In this case Sn = v16 (n) +v26(n) 

for n = 0, 1, ... satisfies 

E(Sn+! - Sn IHn, 1rn = TJ) = V T JV/77 > [ 

whatever policy IT is used. It then follows from part (ii) of Theorem 1.2.1 that 

so by Borel-Cantelli these events almost surely occur only finitely often. This means 

the number of jobs waiting in the queues goes to infinity linearly in time due to 

the Poisson arrival stream. In addition we have P( T = oo) > 0 so with positive 

probability the process makes no visits to {a E z~ : V T a < D} which for large D 

contains the region of Z~ around the origin Q. D 

Next we present the results for case C2, here the process is always stable no 

matter what policy IT is used. 
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Theorem 2.3.2 If Q 1. M and there is no a E Z~, v E R 2 such that Lv(a) 

separates a + M from Q then (:=:, TI) is stable, in the sense that the total number of 

queued jobs remains bounded in mean, under every policy TI. 

The alternative description of the conditions here is that for every a E Z~ the 

line segment joining Q to a intersects a + M. From this it follows there is some 

v E R~ such that Q and a + M are in the same half space created by Lv (a). 

Proof: Under the conditions of Theorem 2.3.2 we can find a v E R~ such that 

v T Mfl < 0 for every regime T/· As before we choose Sn = v1 ~ 1 (n) +v26(n) for n = 0, 

1, ... which now satisfies 

for some E > 0. Applying part (i) of Theorem 1.2.1 we see that E(T I TI, S0 >D):::; 

S0/E < oo. Thus from any finite state a the process reaches {a E Z~ : v T a < D} 

in finite time and the process must remain finite almost surely. D 

Note: these two results have immediate extensions to models with i > 3 queues 

this is given in Chapter 4. 

2.3.2 Block controls 

In case C3 it does make a difference which policy is used for running the system. In 

fact we can show that block pure policies IJP with at most a handful of blocks are 

adequate to ensure stability of the process. Under policies of this type the process 

(::::,TIP) is Markov so we can now talk about ergodicity and transience. 

Corollary 2.3.3 Under block randomised or block pure policy the processes (::::, Tir) 

and (:=:,TIP) are Markov, so that under the conditions of Theorem 2.3.2 these pro

cesses are ergodic if the first moment E(~n I 'Hnm7rn) is finite. 

The main result for two queues is given by the following 

Theorem 2.3.4 If Q E In~(M) then there is a block pure policy TIP with at most 

five blocks such that the Markov chain (:=:,TIP) is ergodic. 
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This implies that when Q is inside M we can always find a policy which is 

stationary, Markov and uses only five blocks so that the process is ergodic. Theorems 

2.3.2 and 2.3.4 imply the following result. 

Corollary 2.3.5 If Q is a boundary point of M, In~(M) is non-empty and there 

exists no a E Z6, v E R 2 such that Lv(a) separates a+ Int2(M) from Q then there 

is a policy fiP with at most three blocks wch that (3, fiP) is ergodic. 

In Theorem 2.3.4 the number of blocks required to achieve ergodicity can be 

reduced if block randomised policies rrr are used. This is due to the fact that under 

a randomised policy and the conditions of case C3 we can choose a mean drift with 

Mpr < 0 for i = 1, 2. 

Corollary 2.3.6 If Q E In~(M) and a block randomised policy rrr is used then at 

most four blocks are necessary to ensure that (3, rrr) is ergodic. 

Example 2.3.1 (Fixed servers and JSQ) Foley and MacDonald [13] carry out 

the large deviations analysis of a model with N queues which has fixed servers, no 

feedback and is strictly join the shortest queue ( JSQ). For N = 2 queues their are 

three Poisson arrival streams, two dedicated ones with parameters )11 and A2 and 

a routable one with rate >.. The service times at queue 1 and 2 are exponentially 

distributed with parameters /-Ll and f.L2 . We can see that the boundary reflexion 

condition (A3) applies. The stability criterion for N = 2 queues given in Foley and 

MacDonald [13] is that Pmax :=::; 1 where 

For the policy which sends the routable stream>. to the shortest queue our model has 

four regimes depending upon where the routable traffic is sent and which queues have 

customers. We have four blocks the two axes Ai and two cones C1 = C ( e1 , d) n f( d) 

and C2 = C(d, e2 ) where the slope of f(d) is d' = 1; join the shortest queue means 

that the two cones split Z~ in half and in this example we also have symmetry of 

the jump distributions. The four mean drift vectors are 
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when both queues are non-empty (on cones Ct and C2 respectively) and 

M'= l(.Xt- J.Lt, -X+ Az) and M"= l(,X +At, Az- J.Lz) 
p p 

42 

on At and A2 where p is defined in (2.1). The condition Pmax < 1 guarantees 

one of the cases in Theorem 2.4.1(i) (see Section 2.4) holds so the system is ergodic. 

Similarly Pmax > 1 or Pmax = 1leads to cases in Theorem 2.4.1(ii) or (iii) respectively. 

We see that our conditions are consistent with those of Foley and McDonald for 

N=2. 

Our results also apply where these regimes may be chosen by policies different 

to JSQ. As p(Mt - M2
) = (-A, .X) l_ (1, 1) the line segment joining these two drift 

vectors has the form Zt + z2 = (-X+ At - J.Lt + -X2 - J.L2 )/ p which can only intersect 

R:_ when Pmax < 1. In this case Theorem 2.3.4 guarantees a routing scheme that 

makes the system stable. 

Proofs: We will establish Theorem 2.3.4 by using linear and smoothed piecewise 

linear Lyapunov functions and appropriate waiting times Ni, i = 1, 2 when :=: visits 

the axes Ai· We set up some additional preliminary results before the proofs of our 

main results. 

The lemma below about second vector fields states a special case we need of 

general results from Fayolle, Malyshev and Menshikov [11]. 

Let X be a Markov chain on Z x Z0 with typical state a= (x, y) and transition 

probabilities Pa(J = p(f3- a) for a, f3 E Z x Z0 with y 2: 1 while Pa(J = q(f3- a) 

when y = 0 for some appropriate distributions p, q. Suppose there exists some 

b > 0 such that p(f3 - a) = 0 and q(f3 - a) = 0 whenever 11!3 - all > b. Let 

Mt = E(X(n + 1)- X(n) I X(n) = a) for a with y 2: 1 and let M' = E(X(n + 
1)- X(n) I X(n) =a) when y = 0. Let c.p = 27r- arg1(M1

), 'lj; = arg1(M') and let 

A = {a E Z x Z0 : y = 0}. 

Lemma 2.3. 7 For any given w E R 2 let c = lw T M 1 1. There exist constants '"'( = 

'"'t(w) and 8 E (O,c) such that 
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(i) if M~< 0, w1 > 0 then E(wTX(n+!) -wTX(n) I X(n) EA)< -18 (> 18) 

according as to <p + 'ljJ > 1r ( < 1r ); 

(ii) if MJ ~ 0 then E(w T X(n+!) -w T X(n) I X(n) EA) < -18 (> 18) according 

as tow T M 1 < 0 ( > 0} . 

Proof of Lemma 2.3. 7: the proof is routine as the projection of X onto the 

y dimension is a one dimensional Markov chain which is ergodic in case (i) and 

transient or null recurrent in case (ii). In the language of FMM [11], in case (i) A is 

an ergodic face with the second vector field (here a scalar) ingoing when <p + 'ljJ > 1r 

and otherwise outgoing. In case (ii) face A is transient so the jump distribution 

there has no major influence on the long term behaviour of X. 
y 

.... ~~~ .. : .... : .... : .... : ......... : . "Njl\: : .......... : 
~···· v¥6 

........................................... . ~I' ....... . 
M~ 

jumps p and q A is transient 

A 

Figure 2.6: Jumps and possible mean drifts of the Markov chain X on Z x Z0 . 

D 

We will use Lemma 3.3.4 from [11] to extend our semi-martingale results to 

the smoothed functions so briefly state it here for our process :=:. Let f be a real 

function defined on R 2 , b a bound on the length of :=:'s jumps and A the space of 

linear functions on R 2 . 
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Lemma 2.3.8 (local linearity) For a E Z6, if f(a + M'r/) < f(a) - 5E for some 

E > 0 and 

inf sup lf(z) - A(z)l < E 
>.EA zEB(a,b) 

(2.10) 

then E(f(~(n + 1))- f(~(n)) I ~(n) =a, 1T"n = 77) < -E. 

Smoothing The smoothing we use is elementary. For any d E R~, u, v E R 2 such 

that 0 < uT d = v T d and u2/u1 < d2 / d1 < v2/v1, the continuous piecewise-linear 

function 

{ 

uTz, zEC(e1,d) 
f(z) = 

V T z , Z E C ( d, e2) 

defined on cones C(e1, d) and C(d, e2 ) in R~ with common boundary line£= {z E 

R~ : z = td, t > 0} can be modified outside a ball around the origin to give a 

smoothed version f. To do this we redefine f on a strip parallel to and containing 

£(d) so that its contours there are circular arcs as follows (see also Figure 2.7). For 

.· 

'.f(z) =uT z =I< 

Figure 2.7: An example of a smoothed piecewise linear function. 
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any given r > 0 and for all K 2 r max(ldl, lul, I vi) join the two linear parts of 

the contour of f with value K by a circular arc of radius r centred on the point 

c(K) = {z ER~: vTz = K-rlvl}n{z ER~: uTz = K-rlul} ER~ and 

extending from c1(K) = c(K) + ru/lul to c2 (K) = c(K) + rv/lvl and set f(z) = K 

on this arc. The centres c( K) lie on a straight line parallel to d as do the c1 ( K) 

and c2(K) and we define f(z) = f(z) outside the strip bounded by these lines. For 

any z in this strip we note that f(z + "fd) = f(z) + "fU T d for scalar 'Y· By choosing 

r sufficiently large we can (i) ensure that the distance from €(d) to the edge of the 

strip is further than the longest possible jump; (ii) use the tangent to the contour 

at point a as our linear function A in which case we may take E ~ b2 (uT d) j2r in 

condition (2.10), where b is an upper bound on jump length. 

For some additional but useful notation denote by M { 1, ... k} = conv{ v1 , ... , Vk} 

the convex hull of the vectors vi, we will also use this notation to describe the convex 

hull of for example two mean drifts M' and M 2 by M{', 2} and so on. 

Dichotomy The final piece of our analysis is a dichotomy which we use to split 

the proofs of the remaining theorems into cases. 

Lemma 2.3.9 Let v1, v2, ... , vk be distinct vectors in R 2 and M{1, ... k} = 

conv{v1 , ..• ,vk}, the convex hull of the vi. Suppose that B(Q,E) C M{1, ... k} 

(so the origin is inside the convex hull, not on the boundary) for some E > 0 and 

there exists u E R~ such that uT vi > 0 for i = 1, 2. For definiteness suppose that 

0 < argv
1 

( v2) < 1r so that C( v1, v2) n C( -e1, -e2) = 0 (so v1, v2 are in the upper half 

plane of Lu(Q) and v1 is clockwise of v2). Then one of the following holds: 

D2: DJ does not hold but there exist w E R 2, Vm E C(v2, -vt), Vn E C( -v2, v1) 

such that w T Vi > 0, i = 1, 2 w T Vm < 0, W T Vn < 0 

Proof of Lemma 2.3.9: Suppose D1 does not hold. If there is no viE C(v2, -vt) 

then, as vi tJ. C( -v1 , -v2 ) for all i it follows that there are no vi in the half plane 

C(v2,-v2) which contradicts B(Q,E) c M{1, ... k}. It follows there exist viE 

C ( v2 , -vt) and by a similar argument some other vi E C ( -v2 , vt). 
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Let Vm denote the vi E C( v2, -vl) with maximal value of argv
2 
(vi) and Vn the 

vi E C( -v2 , vi) with minimal value of arg_v
2
(vi)· Now consider the unit vec

tor Um perpendicular to Vm such that u~ vi > 0 for i = 1, 2 which exists as 

C ( VJ, v2) C C (-V m, V m). It is necessary that u~ Vn < 0 for otherwise there are 

no vi E C( Vm, -vm)· Replicating this argument there exists Un with uJ Vi > 0 for 

i = 1, 2 and uJ Vm < 0 and we complete the proof by setting w = Um + Un. D 

Proof of Theorem 2.3.4 We wish to define a pure block policy IJP to ensure the 

ergodicity of our Markov queueing process (2, IJP). We start by selecting regimes 

f1 1 and f1 11 on blocks A1 and A2 respectively. Their mean drifts M' and M" make 

angles 'lj;1 = arg1(M') and 'lj;2 = arg2 (J\1") with their axial directions. If there is a 

choice of regimes in either of these blocks we choose the regimes that make 'lj;1 and 

'lj;2 as large as possible. The result depends on the sum of the angles, the smaller 

the sum of the angles the more work is need to show the positive recurrence on the 

Markov chain. Below we state how to split the state space into blocks and which 

regimes to use in each of these blocks depending on the angles and the dichotomy 

stated above. 

If 'lj;1 + 'lj;2 > 37r /2 ergodicity can be achieved only using regimes f1 1 and f1 11 as 

follows. Choose dE R! and use regime f1 1 on C(e1 , d) and f111 on C(d, e2) U A2. As 

'lj;1 + 'lj;2 > 37r /2 we can choose w E R! such that -E = max{ w T M', w T M"} < 0. 

Now consider the process Sn = w T ~ ( n). At all states a E Z! we have 

and by Theorem 1.2.1(i), with Nn+l- Nn = 1 for all n, it follows that T = min{n 2:: 

1 : Sn ~ D} satisfies E(T) ~ S0 /c from any initial value S0 > D. As w E R!, 
{a E Z~ : w T a ~ D} is a finite triangle around Q and the ergodicity of (2, IJP) is 

assured. 

When 'lj;1 + lj;2 ~ 37r /2 it is necessary to use further regimes to achieve ergodicity. 

We will denote these by Tli, i = 1, 2 or 3 as necessary and their corresponding drift 

vectors by Mi. We split the proof into three sub-cases according to the value of 

'lj;1 + 'lj;2 and the cases of the dichotomy established in Lemma 2.3.9. 
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Suppose that 37r/2 ~ 'I/J1 + 'ljJ2 > 1rj2 and apply Lemma 2.3.9 with v2 M' 

and v1 = M". If D 1 holds then there exists r/ such that '1/Ji + 'Pi > 1r, where 

'Pi = 21r - argi ( M 1), for i = 1, 2 (Case I); otherwise D2 applies and there exist ry1 , 

ry2 and wE R 2 such that M 1 E C(M',-M"), M 2 E C(-M',M"), wTMi < 0 for 

i = 1, 2 and also w T M' > 0 and w T M" > 0 (Case 11). 

This leaves the possibility that 'I/J1 + 'ljJ2 ::::; 1r /2 in which case '1/Ji + 'Pi ::::; 1r (again 

'Pi = 21r- argi(M17 )) for at least one of i = 1, 2 for every regime ry. This time 

employ Lemma 2.3.9 with v1 = M' and v2 = M". If D1 applies then there exists ry1 

such that 'I/J1 + tp2 > 1r and 'ljJ2 + tp1 > 1r (Case Ill); otherwise D2 applies and we are 

again in Case 11 (with M' and M" swapped). It remains to describe the pure block 

policies required and construct the super-martingales {Sn}. 

Case 1: Our policy TIP uses three blocks, A 1 where regime r/ is used, A2 with regime 

ry" and Z6 where we use regime ry 1 such that '1/Ji + 'Pi > 1r for i = 1, 2. Pick E > 0. 

As M 1 tf. R~ it has at least one negative component and further we can choose a 

w E R~ such that 

Applying Lemma 2.3.7 to (:=:,TIP) with each Ai as A (using part (i) if M/ < 0 and 

( ii) if Ml ~ 0) we see there are constants ')'1 , ')'2 and o E ( 0, E) such that 

for a outside some finite ball where the other axis can be reached in l'i steps. Choose 

D > 0 large enough that { w T a ::::; D} contains such a ball. Next use the l'i to define 

a sequence of random times Nn by No= 0 and for n = 0, 1, ... 

1, ~(Nn) E Z~ 

1'1, ~(Nn) E A1 

1'2, ~(Nn) E A2 

Now set Sn = w T ~(n) for n ~ 0, Yn = SN" and define hitting times T, (}' as for 

Theorem 1.2.1. We have shown that 
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so by Theorem 1.2.1(i), E(T) ::; S0 /8 from any initial value S0 > D. As w E R~, 

the ergodicity of (2, IJP) is assured as before. 

Case 11: now policy IJP needs four blocks, the Ai as before and now, for any dE R~, 

the cones C(e1 ,d) U £(d) on which regime TJ 1 is used and C(d,e2 ) where TJ2 is used. 

We know that M 1 E C( -M', M"), M 2 E C(M', -M") and there exists wE R 2 such 

that w T Mi < 0 for i = 1, 2. Hence there exists c > 0 such that 

E ( w T ~ ( t + 1) - w T ~ ( t) I IJP) ~ ( t) = (X) ::; - c ) a E Z2 
+ 

Next consider axis A1 with reflexion vector M' in relation to M 2
, since M 2 E 

C (M', -M") we will check whether the axis is a transient or an ergodic face according 

to Lemma 2.3.7. If M; < 0 we know that 7/J1 + (27r- arg1(M2
)) > 7f and we can 

choose w1 > 0. Next we apply Lemma 2.3.7, part (i) or (ii) depending upon the sign 

of M;, to obtain constants /I and 8 E ( 0, c) such that 

as long as a is outside a finite ball around Q where 2 can reach £(d) in /I steps from 

a. Repeat this argument for block A 2 . Finally define the times Nn as in Case I and 

proceeding exactly as before, the ergodicity of (2, IJP) is established in Case II. 

A2 

M" 

-- a -M" ---- I, --- / 
- I 

I 
I 

-M' 

I 
I , 

I , 
I 

M' 

M" 

!vi' 

Figure 2.8: Possible mean drift vectors for Case 11. 
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Case Ill: this time IJP has five blocks and we use a smoothed piecewise linear 

Lyapunov function. For any d1 , d2 E R~ with d2 strictly anticlockwise of d1 define 

blocks A1, C1 = C(e1, di) U £(d1), C2 = C(d1, d2) U £(d2), C3 = C(d2, e2) and A2. IJP 

uses regimes 17' on blocks A1 and C3 and 17" on A2 and C1 . In addition we know there 

is a regime 171 such that 'lj;1 + <p2 > 1T and 'lj;2 + <p1 > 1T where <pi = 21T- argi(Nf1 ). 

Choose c > 0. As M 1 E C( -M', -M") there exist v, wE R 2 such that v1 > 0, 

vTM" < -E:, vTM1 < -E: and w 2 > 0, wTM' < -E:, wTM1 < -E:. To define our 

Lyapunov function let d = -M1 and use it to define cones v- = A1 UC(e1 , d) ue(d), 

v+ = C(d, e2 ) u A2 . Now let 

f(z) ~ { 
z E v
z E v+ 

scaling v say, so that v T d = w T d to make f continuous (we know both v T d > 0 and 

w T d > 0 so this does not change this sign of v1). 

By construction we know that for a E Z~ but not too near £(d) we have 

E(f(~(t + 1))- J(~(t)) I IJP, ~(t) = o:) < -E: 

but we do not know this expectation if a single jump from a E v- can reach f3 E v+ 
or vice versa. To deal with this we use the smoothing described earlier in this section 

M' ----
fv!" 

/ 
M' l 

Figure 2.9: Regimes and mean drifts for Case Ill. 
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to produce a function j which coincides with f except on a corridor containing £(d) 

where its level curves are circular arcs of sufficiently large radius r. 

Because of the choice of d = - M 1 we calculate that j (a+ M 1 ) = j (a)+ w T M 1 < 

](a)- c for every a E Z~ so by Lemma 2.3.8 

E(j(~(t + 1))- ](~(t)) I TIP, ~(t) E Z~) < -s/5. 

Finally as M~> 0 and wTM < -c it follows from Lemma 2.3.7(ii) that for a E A 1 

there exist constants lt and 8 E (0, c) such that 

as long as a is outside a finite ball around Q where :=: can reach £( d1 ) in /I steps 

from a. Repeat this argument for block A2 . Finally define the times Nn as in Case I 

and proceeding exactly as before, the ergodicity of (:=:,TIP) is established in all cases. 

This completes the proof of Theorem 2.3.4. 0 

Proof of Corollary 2.3.5 In this case 7/J1 + 7/J2 2: 37r /2 so at the worst we can 

employ the argument of Case I of the proof of Theorem 2.3.4. 0 

Proof of Corollary 2.3.6 If 7/J1 + '!j;2 > 1r /2 then we use an appropriate mixture of 

regimes to obtain a drift vector M0 E C( -M", -M') and we can use the argument 

of Case I of Theorem 2.3.4. If on the other hand '!j;1 + '!j;2 :::; 1r /2 then we use a policy 

IT that creates the conditions of Case 11 of Theorem 2.3.4. 0 

2.3.3 Null-recurrence of the Markov chain (3, TI) 

In order to complete the stability classification of the queue length process (::::, IT) 

we would like to evaluate the case C4. Under the conditions of case C4 the queueing 

system can be controlled so that (::::, II) is null-recurrent (i.e. it cannot be positive 

recurrent and there are many more ways to control the system so that it is transient). 

We can formulate the following 

Theorem 2.3.10 If Q is a boundary point of M and either In~(M) = 0 or the 

tangent line Lv(a) to a+ M through a separates the origin Q from a+ Int2(M) for 
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each a in Z6 then the Markov chain (2, TI) can, "at best", be controlled so that it is 

null-recurrent. 

Note, "at best" in the sense that any control that does not make the Markov 

chain null-recurrent will make it transient. 

Proof: In order to establish the proof of Theorem 2.3.10 we first give a slightly 

modified version of Theorem 2.2.8, p. 31 in Fayolle, Malyshev, Menshikov [11] 

Theorem 2.3.11 For an irreducible Markov chain 2 on Z6 to be null-recurrent it 

suffices that there exist two functions f, cjJ : Z6 -----+ R+, a E Z~ and a finite set 

V C Z6 so that the following conditions hold: 

{1) f(a) 2:: 0, cp(a) 2:: 0 for all a E Z~. 

{2) For some 1 > 0 and 0 < f3 ~ 2 we have f(a) ~ 'Y[c/J(a)]il, for all a E Z~. 

{3) limx;--->oo cp(xi) = oo fori= 1, 2 and supa~V f(a) > SUPaEV f(a). 

{4) {a) E(J(~n+l)- f(~n) I ~n =a) 2:: 0 for all a (j_ V; 

{b) E(cp(~n+l)- c/J(~n) I ~n =a) ~ 0 for all a (j. V; 

{c) SUPaEZ2 E(lc/J(~n+l)- cfJ(~n)l 11 I ~n =a) = C < 00. 
+ 

This means that we have to find two positive functions f and c/J, so that f(a) 

is a submartingale while cjJ(a) is a supermartingale for a (j_ V. Or we can find one 

function for which the equality in (a) and (b) holds. 

We will concentrate on one case of the null-recurrent cases only and first show 

how the process can be controlled so that it is null-recurrent and then give an 

example why it is transient if it is controlled any other way. 

Again it is necessary to split the proof into cases depending on the reflexion 

vectors and their angles with the axes. Since we know that there exists a tangent 

line with v (j_ R~ such that v T MTJ 2:: 0 for all TJ we can exclude the case when 

1/;1 + 1/;2 > 3n /2. We distinguish the two cases for the angles, either 1/;1 + 1/;2 = 3n /2 
or 1/;1 + 1/;2 < 3n /2, where the latter would need to be split into yet more cases. 

If 1/;1 + 1/;2 = 3n /2 then we need only two blocks to run the queueing system 

under a block pure policy TIP (a different policy would not change anything about 
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the stability). The two blocks are as follows, we choose d E R~ and use regime r/ 

on C(ei, d) and r/' on C(d, e2 ) U A 2 . Since 'l/J1 + 'l/J2 = 37r/2 we can choose v E R~. 

Now consider the function f(~) = c/J(O = vT~(n). At all states a E Z6 we have 

E ( v T ~ ( n + 1) - v T ~ ( n) I IJP, ~ ( n) = a) = 0. 

We can see that f(a) and cj;(a) fulfil all conditions of Theorem 2.3.11 thus (3, IJP) 

is null recurrent. 

Note that by choosing any other regime 'T/ on one of the two block for which 

'l/J1 + 'l/J2 =J=. 31f /2 under the conditions of Theorem 2.3.11 would make the process 

(3, IT) transient. Using f(a) as above the transience can be established as in the 

proof of Theorem 2.3.1. 

For 'l/J1 + 'ljJ2 < 37r /2 we consider the following case. We can find a v E R~ 

such that v T !vf77 > 0 for ry', ry". In which case we need only four blocks to run the 

queueing system under a block pure policy IJP. The blocks are A 1 where we run ry' 

and A2 with ry", we choose dE R~ so that ry1 is run on C(e1 ,d) and ry 2 on C(d,e2 ). 

The regimes ry 1 and ry2 have mean drifts !111 and M 2 which lie on the boundary 

of the convex hull 8M, i.e. they both lie on the tangent line with normal vector 

v E R 2 so that v T M 1 = v T M 2 = 0 and M 1 M 2 < 0. Consider first the linear + x• Y 

function f( 0 = v T ~ ( n). At all states a E Z6 we have 

so f(a) is a positive submartingale, i.e. fulfils conditions (1) and (4)a of Theorem 

2.3.10. 

Construction the function cjJ to be a positive supermartingale is a little bit more 

involved and based on the smoothing and local linearity, see Lemma 2.3.8 in the proof 

of Theorem 2.3.4. We will briefly describe how such a function can be constructed. 

The idea is to produce a function which is linear over most of Z~ but to glue a 

quadratic onto the end of the linear function, so that the reflexion vectors M' and 

lvf" with 'ljJ1 + 'l/J2 < 31f /2 point inwards from the locally linear function c/J. For a 

suitably large radius r and along the line segment lK = {a E R~ : w T a = K} select 

p1 (K) so that lK is tangential to a circle of radius r that sits on the axes A1. This 
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means the centre of the circle is given by ( x K, r) and p1 ( K) = ( x K, r) + r 1: 1. Since 

we know that (xK,r) sits on a line segment given by {a ER!: wTa = K- rlwl} 
we get XK = ~~ (K- r(lwl + w2)). The construction is also depicted in Figure 2.10. 

We can repeat the same idea for the other axes A2 . The function cp is lK between 

the point p1(K) and p2(K), and a part of a circle of radius r between Pi(K) and 

the respective axes Ai· We can observe that f(a) ~ cp(a) for all a outside some set 

Figure 2.10: Constructing the locally linear function c/J. 

D = {a E Z6 : x + y ~ 4r }. 

There are several ways to make the system unstable, for example one could 

reduce the number of blocks to three run M" on C(d, e2 ) U A 2 . 

There are the cases where we cannot find a w E R! U R:. such that v T M1J > 0 

but we will not consider them here. 

2.4 Low levels of control 

In this section we will explore the ergodicity, transience and null-recurrence of a 

Markov chain with set blocks in Z6, so that the control that can be applied is 

limited. The results of Fayolle, Malyshev and Menshikov [11] can also be used to 

classify the process for any control policy that is block homogeneous for any small 

number of blocks. It soon becomes evident to anybody who attempts this that there 

are many ways for the process to remain stable and many more for it to be transient. 

To illustrate this we now spell out the possible behaviour of the queueing system 

with four blocks, specifically the axes AI, A2 and two cones, cl = c ( el, d) u e( d) 

and C2 = C(d, e2 ) (see (2.7) for this notation), that partition Z6. The two cones are 
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not assumed to be symmetric i.e. the vector d E R~ need not be parallel to ( 1, 1). 

Some of the cases given here with d equal to (1, 1) were analysed in Kurkova [22], 

see Example 2.4.1. 

We assume that in each of the blocks Ai and Ci, i = 1, 2 a single management 

regime is used (different blocks may have a common regime) with mean drift vectors 

M 1 , M2 in blocks cl, c2 respectively and M', M" in blocks AI, A2 respectively. 

Figure 2.11: Graphical explanation of the labels. 

We first label the Mi according to the angles 'Pi they make relative to the axes 

Ai, i = 1, 2. For each JvJi angle 'Pi = 0 is in the direction of Ai and rp1 increases 

clockwise while rp2 increases anticlockwise i.e. 'Pi = 271' - argi ( Mi). We label the 

directions of the Mi as case A when 0 < 'Pi < 71', B when 71' :::; 'Pi :::; 3
{ and D when 

3
2
rr < 'Pi :::; 271'. The various cases of this model are labelled with label of M 1 /label of 

M 2 so a label B j A means M 1 has a positive y and a negative x component and M 2 

has x component negative with y of either sign. Figure 2.11 illustrates this labelling 

scheme for the directions of the Mi from origins ai. 

From the results FMM [11] on the random walk in the positive quadrant, we 

have (as also given in Lemma 2.3.7): 

(i) if a drift Mi has an A label then axis Ai is an ergodic face; 
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(ii) if (i) is true the face Ai will be outgoing, ingoing or neutral according to the 

sign of the second vector field (which is scalar in this case); 

(iii) if Mi has a B or D label then face Ai is transient and has no second vector 

field. 

In this two dimensional case the sign of the second vector field depends only upon the 

angles of M' and M 1 for A 1, M" and M 2 for A2 . We repeat the angles 'lj;1 = arg1(M') 

and 'lj;2 = arg2 (M") that M' and M" make relative to axes A 1 and A 2 respectively, 

so '1/Ji = 0 is in the Ai direction and 'lj;1 increases anticlockwise while 'lj;2 increases 

clockwise. 

The labelling below is a direct result of Lemma 2.3. 7, so that following the sign 

of the second vector field, we modify the labels for Mi, i = 1, 2 to 

A+ : 'Pi + '1/Ji < 1r, A- : 'Pi + '1/Ji > 1r, A 0 
: 'Pi + 't/Ji = 1r. (2.11) 

Using this labelling system we can identify 25 different cases to deal with. It 

turns out that in many of the cases we get the same result for all choices of the two 

cones i.e. all slopes d' = d2/d1 E (0, oo) of the line e(d) separating them. Theorem 

2.4.1 classifies these invariant cases. 

Theorem 2.4.1 The system is 

(1} ergodic in cases A- I A- u B, B/ A-' B/B with I~ I > I m I 
(2} transient in cases A+jA+, A+jA- U BUD, A- U B U DjA+, B/B with 

I Aofl I I M21 iJI < ~ , D/B, B/D, D/D; 

For systems with no control over the service regimes there still may be some 

control over the routable traffic stream. The next theorem shows that there are 

sets of parameters such that a change to the slope of the switching line £(d) can 

changeS from a transient to an ergodic process. We describe in detail only the case 

D/A0 uA-, depicted in Fig. 2.12, as case A 0 uA-/D is very similar. The relative 

slopes of M 1
, e( d) and M 2 are crucial so we label two key conditions: 
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El: Mi < d' Mf (so £(d) is steeper than M 1 
); El': filii > d' Mf; 

E2: -Mi, ::::; d'( -Mf) (includes cases with Mi,;::: 0 and implies -M2 is not steeper 

than £(d)). 

Theorem 2.4.2 In caseD/ A 0 U A- the ergodicity or non-ergodicity of the Markov 

chain :::: also depends on the slope d' > 0 of the line £(d) separating cl and c2 as 

follows: 

(a) if El holds then :=: is transient, 

(b) if El' holds then:=: 's excursions into C1 have finite mean time and:=: is 

(i) ergodic if E2 holds and M 2 is A- or if E2 does not hold and ( -Mi)Mf < 

Mi_(-Mf) (so M 1 is steeper than ~M2); 

(ii) null recurrent if E2 holds and M2 is A 0 or if E2 does not hold and 

(-Mi)Mf = Mi,(-Mi); 

(iii) transient if E2 does not hold and ( -A1i)Ml > Mi,( -Mf). 

The case A 0 U A-/D is simply the reflection of the above in the line £( 1, 1). 

M" I ............. 

M" . 2 

Figure 2.12: Example of caseD/ A- where £(d) is important. 
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Note: this theorem says nothing about the cases where M 1 is parallel to £(d) but 

in practice this will not be a major problem if the slope of the line £(d) is under user 

control. 

Example 2.4.1 (Load-balanced network) Kurkova [22] establishes stability con

ditions for a two queue model with Poisson arrival streams at rates >. 1 and >.2 , two 

fixed servers with rate 1 exponentially distributed service times. There is also an 

arrival stream >. which is routed to the shortest queue and some of the fed back 

jobs also join the shortest queue. Again we see that the boundary reflexion con

dition can be applied. The feedback from queue i to queue 1 and 2 is given by 

Pi = Pi,1 + Pi,2 + Pi,{1,2}, where Pi,{1,2} indicated the proportion of the customers that 

have completed service at queue i and join the shorter of the two queues. Customers 

leave this system with probability Pio = 1- Pi· Our Theorems 2.4.1 and 2.4.2 above 

hold for a in many ways more general model and our results coincide with those of 

Kurkova. The only slight difference is that Kurkova [22] assumes a jump distribution 

on £(d) different to those on ci. 
Assume we have the following five blocks, the axes Ai, two cones Ci with i = 1, 

2 and £(d) with slope d' = 1 as the last block. Since the service rates are all 1 the 

mean drifts are given by 

M' 
1 
p(>.1- Pw, >. + >-z + P12 + P1,{2}) 

M" 
1 
p(>. + >-1 + P21 + Pz,{I}, >-z- Pzo) 

1 
p(>.1 + P21- Pw, >. + >-z + P12 + P1,{2}- Pzo) 

1 
p(>. + >.1 + P21 + Pz,{I}- Pw, >-z + P12- Pzo) 

~(MJ +M~, Mi + Mi). 

We can see that the additional mean drift along the £(d) does not make the problem 

any more complicated. Consider the four mean drifts ]lrfi, Jvf' and M" in the pos

itive recurrent cases given in Theorem 2.4.1; due to the nature of the JSQ routing 

Kurkova's model is stable in the cases A-/ A-, A- /B and B/ A-, i.e. all the cases 
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where the process hardly visits €( d) or drives through it. If we are in case B /B then 

Me has more impact as the process 3 spends most of its time driving into €(d). 

Therefore we need the following there exists a v E R~ such that v T JvJi < 0 for i = 1, 

2, e. 

Example 2.4.2 (Move-able servers but no routable arrivals) In the modified 

Jackson feedback model described by Foley and MacDonald [14] there are two queues 

and server 2 helps the other if queue 2 is empty. This is a special case of our model 

but their main interest is in asymptotic estimates of the equilibrium distribution. 

Their stability result, Proposition 1, is quite old and appears as case (i) of Theorem 

3.3.1(b) of [11]. Our Theorem 2.4.1 above discusses stability conditions for more 

complex models with two queues. 

To illustrate the typical behaviour of the process 3 under some of the cases some 

sample path simulations are included in Figure 2.13. 

The proofs of Theorems 2.4.1 and 2.4.2 are very much based on the previous 

proofs. The positive recurrent cases are special cases of Theorems 2.3.2 and 2.3.4, 

transience can be established via Theorem 2.3.1 and the null-recurrent cases are 

partly covered by Theorem 2.3.10. 

Proof of Theorem 2.4.1(i) & (ii) In part (i) we can use a linear Lyapunov 

function. If the mean drift in either Ci is labelled A- then we need to use the waiting 

times given in Lemma 2.3. 7 whenever the process visits the Ai· The argument follows 

that for Theorem 2.3.2. 

For part ( ii) we can again use linear Lyapunov functions for all pairs of labels. 

For example, with pair A-/ A+ we use function f(z) = w T z where w 1 < 0 and 

w2 > 0, again employing the waiting times given in Lemma 2.3. 7 when the process 

visits the Ai· The other cases all work similarly and the argument follows that for 

Theorem 2.3.1. 

A note on part (iii) The null recurrence of the cases listed in part (iii) cannot be 

established using purely linear Lyapunov functions. The problem is that we have 
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Figure 2.13: Simulations of typical paths for cases, from top left: B I A-, A- ID, 
A-lA+, BIB with~~~=~~~ cases. 

The dot indicates the starting point and the dashed line is£(-). One can see that the 

process in case Bl A- does not look positive recurrent until it hits A 2; forD I A- the 

process changes it behaviour when hitting £( ·); the process in case A- I A+ shows 

its transience only after hitting the A 2 ; and the null-recurrent case BIB hugs £(-) 

but never reaches the origin. 
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to prove the non-ergodicity (case 4(a) in Theorem 2.3.11) as well as the recurrence 

(see 4(b)) of the Markov chain - usually one of the two is reasonably easy while the 

other one is difficult to establish. 

Looking the cases A 0 /A0 U A+ U B, A+ U B/A0
, B/B with~~~ I = ~~~it 

becomes clear that they all behave rather differently and each case might have to 

be split again into separate cases. We will consider one case briefly in more detail, 

the case B/B with I~ I = I~ I· There exists a w with wi > 0 for the line Lw(ex) 

containing to Mi(ex) fori= 1, 2. We can see that 

E(g(~n+d- g(~n) I IJP~n =a) = 0 for a E z~ (2.12) 

where g(ex) = w 1x + w2y. Including the reftexion vectors NI' and M" we can distin-

guish (1) 'I/J1 + '1/Jz > 37r /2, (2) 'I/J1 + '1/Jz = 37r /2, or (3) 'l/h + '1/Jz < 37r /2. 

Cases (2) and (3) are covered in the proof of Theorem 2.3.10. The case (1) 

is special in that we only have null-recurrency because of the low levels of control 

(remembering that 'lj;1 + 'lj;2 > 37r /2 in the proof of Theorem 2.3.4 we enough for 

positive recurrence with two blocks). Here however (1) implies that g in (2.12) is a 

supermartingale on Z6 since g(M'), g(M") < 0 giving the recurrence of the process 

together with (2.12). The non-ergodicity can be established using a locally linear 

function, but we will not do this here. 

Sketch of proof of Theorem 2.4.2 The argument uses all the same ideas as the 

earlier proofs. We discuss only the case D /A- as A- /D is so similar and the null 

recurrent cases are rather more delicate. When conditions El (£(d) is steeper than 

M 1 ) or E2 (-M 2 is no steeper than £(d)) hold there exists w E R 2 with w1 > 0 

such that w T M 1 = -w T M 2 = 1 and we will use the process w T ~ ( t) to generate our 

semi-martingales. 

(a) For ~(0) =ex E C1 if El holds then, by suitable application of Theorem 1.2.l(ii), 

we can show there is positive probability that 3 never exits C1 and conditioned on 

this event, w T ~(t) --> oo almost surely as t--> oo and so 3 is transient. 

(b) If El does not hold then 3 surely exits C1 and if E2 holds we can define a 

sequence of times N n that enable us to use Theorem 1. 2.1 ( i). For a E C1 we define a 

state dependent time T( ex) as follows. Let dj_ denote the unit vector perpendicular 
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to don the side of cone C2 , the function h(ex) be the perpendicular distance from ex 

to £(d) and m( ex) = h( ex)/ M 2 
· d.J... > 0. For suitably large m0 and small 8 > 0 let 

T(ex) = max{m0 , f3m(ex)l+8l }. Using Law of Large Numbers type estimates we 

can show that 

1 
E(w T ~(t + T(ex))- w T ~(t) I ~(t) =ex E C1) < -4 T(ex) 

so given ~(Nn) = ex E C1 we define Nn+l = Nn + T(ex). For ex E C2 we proceed 

exactly as in Case I of the proof of Theorem 2.3.4 to define a supermartingale 

Yn = SNn = w T ~(Nn) on all of Z~ outside some finite ball around Q and ergodicity 

follows from Theorem 1. 2.1 ( i). 

If neither El or E2 hold then the LLN type estimate fails because the line £(d) 

becomes an ergodic face and the behaviour of :=: is determined by the relative sizes 

of arg1(M1) and arg1(-M
2 ) just as in Lemma 2.3.7(i). 

2.5 Examples 

Networks with or without re-entrant lines seem to become very interesting only 

when there are more than two queues (see for example the generalised Lu-Kumar 

network in Section 4.4). Nevertheless looking at the two dimensional example can 

help to understand why some of the intuition fails once we remove the possibility to 

have external arrivals to all queues. The material presented here on re-entrant lines 

is published in [28]. 

The three examples discussed here are the one server re-entrant line, two queues 

in tandem and two queues with feedback. For the first two of these models we have 

a Poisson arrival stream >. which is sent to queue i only and never to queue j thus 

making it impossible to send arrivals to queue j by changing the routing scheme s, 

thus we need to apply the boundary sojourn condition (2.2). 

Example 2.5.1 (One server re-entrant line) The smallest networks with a re

entrant line is a one single server station with two queues and one external arrival 

stream of rate >. as depicted in Figure 2.14. The external arrivals enter queue 1 
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Figure 2.14: One server re-entrant station 

where the exponentially distributed service time has parameter /-LI when the server 

is there. After a customer has received service at queue 1 it enters queue 2 to receive 

further service, this time at rate J-L2. The system has two service regimes with mean 

drift vectors M1 = l(>.- J-L1, J-L 1) and M 2 = l(>., -J-L2 ). M satisfies the conditions 
p p 

of Theorem 2 precisely when the well-known condition >.j /-Ll + >.j J-L2 < 1 holds and 

in this case the system is stable no matter what non-idling control policy is used. If 

>.j /-Ll + >.j J-L2 > 1 then M satisfies the conditions of Theorem 2.3.1 and the system is 

always unstable. Further Theorem 2.4.1 ( iii) states that the system is null recurrent 

if V 1-L1 + >-! 1-L2 = 1. 

Example 2.5.2 (Two queues in tandem) Consider a network with two single 

server stations where each job visits servers 1 and 2 in that order. This model, with 

general arrival and service time distributions, appears as an example in Down and 

Meyn [10] to demonstrate how stability conditions for it can be established using 

piecewise linear test functions. Figure 2.15 with >.2 = 0 and p'f2 = pj0 = 1 depicts 

this network. We have a Poisson arrival stream at rate >.1 and service rates J-li for 

i = 1, 2. This two dimensional system has regimes T/ = {1, 2, 3} corresponding to 

service at queue 1, 2 or both queues respectively with mean drift vectors Mi where 

2 1 
M = -(>.1, -J-L2), 

p 
3 1 ) NI = - ( >. 1 - 1-L 1 , 1-L 1 - 1-L2 . 

p 

M satisfies the conditions of Theorem 2.3.2 if >.I/ /-LI + >.I/ J-L2 < 1 and in this case 

the process is stable under any non-idling control. If, on the other hand, >.I/ /-Ll > 1 

or >.I/ J-L2 > 1 then M satisfies the conditions of Theorem 2.3.1 and the system is 

sure to be unstable. 
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If A.I/ P,1 +A. I/ P,2 > 1 but A. I/ J-L1 < 1 and >..1/ P,2 < 1 then M satisfies the conditions 

of case C3 under any non-idling strategy. If the boundary sojourn condition (2.2) is 

satisfied we can apply Theorem 2.3.4 to deduce that a policy which keeps the system 

stable exists. We now establish the boundary sojourn condition. From the state Q 

(with both queues empty) the jumps e1, e1, e2 - e1 lead to the state ( 1, 1) E Z~ and 

has positive probability under any policy that ensures service at queue 1. Hence 

there exists a constant p > 0 such that for each a: E 8Z~ there is a policy IIa such 

that the sojourn time T satisfies 

P( T > t + 3 I T > t, ~(0) = 0:, I10 ) < 1 - p 

It follows from this that starting from any boundary point a: T is stochastically 

smaller than a random variable Z with geometrically bounded tails and finite mean 

( say and so condition (2.2) is satisfied. This shows that our results are consistent 

with the known properties of this system. 

Q I"' Q Pio ___ 9!2:__1_~_..1--
P~l 

Figure 2.15: Two queues in tandem 

Example 2.5.3 (Two queues with feedback) This is a variation of the tandem 

queue above with the following additions. We introduce a second arrival stream 

with rate >..2 to queue 2 and allow completed jobs to feed back into the system. Jobs 

leaving queue i = 1, 2 independently enter queue j = 1, 2 with probability P0 and 

leave the system with p{0 = 1 - (p~ + P0) ~ 0 (see Figure 2.15). The mean drifts 

under the three service regimes are pM1 = (>..1 + PnP,1 - J-LI, >..2 + PI2J-LI), pM2 = 

(>..I +P21J-L2,>..2 +P22J-L2- J-L2) and pM3 = (>..1 + ~jP)IIJj- J-L1,>..2 + ~jP)21Jj- P,2). 

This example satisfies the boundary reflection condition and so is covered by the 

complete stability classification of two queue models in Theorems 2.4.1 and 2.4.2. 



Chapter 3 

Extensions of the two queue model 

The results stated in the previous chapter rely on the fact that we have a Markov 

chain 3 as the queue length process on Z6 and that the mean drifts MTJ under 

a management regime TJ can be expressed as vectors in Z6 in order to describe 

the convex hull M, which is used to establish our results under different control 

policies. In this chapter we will drop some of the restrictive assumptions on the 

model parameters which leads to a state space different from Z6 that the Markov 

chain lives in. We will investigate where and how our results from Chapter 2 could 

apply. 

The first assumption we drop is that of exponentially distributed service times. 

In practice it is often desirable to have a more general distribution for the service 

times, for modelling purposes we would however still like to be able to model the 

queueing process as a Markov chain. In order to do this we introduce phase type 

service. A detailed introduction to phase type distributions can be found in Neuts' 

book [30]. The advantage of assuming phase type service is that we can keep the 

Markovian setting while being able to approximate any distribution on (0, oo) using 

phase type distributions, see Asmussen [1]. The challenge is to describe the state 

space of the queueing process, which now also involves stages of service, then to find 

an appropriate way to describe the mean drifts MTJ to get the convex hull M and 

thus being able to apply the earlier results. 

Similarly restrictive to assuming exponentially distributed service times is to 

64 
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consider exponential inter arrival times. The question is whether we can relax the 

arrival process assumption be introducing a Markovian arrival process (short denoted 

by MAP). The advantage being that again the Markovian property of the queueing 

process is preserved by considering the stages of arrival as part of the process. An 

introduction to the Markovian and other arrival processes can be found in Neuts 

[30]. 

There are two ideas we would like to introduce in order to help us with the 

analysis of the two variations of our model, one is the idea of induced Markov chains 

and the other is the joint transition or generator matrix of two finite state Markov 

chain. 

The induced Markov chain 

We will start with a low dimensional example for an induced Markov chain, called 

a Markov chain in a half-strip. The result in Fayolle, Malyshev, Menshikov [11] 

Section 3.1, pp. 33, says that if a discrete time Markov chain 3, on a state space 

Z0 x {1, ... , n} with states (x, i) is homogeneous for all but finitely many x and 

its jumps are bounded, the ergodicity or transience can be determined by checking 

the sign of the mean drift of the one dimensional Markov chain in x direction. The 

homogeneity assumption is that the jumps of the Markov chain 3 on the half-strip 

are given by pfJ, i.e. a transition from (x, i) to (x + k, j) does not depend on the state 

x (except for a finite number of x). The induced Markov chain 3 is the finite state 

Markov chain with states i E B = { 1, ... , n}. We assume that the Markov chain 

on the finite state space B is irreducible so there is only one essential class. The 

transitions of the induced chain from state i to j are denoted by % = L;k pfJ and 

each state i we get 1r( i) where 1r is the stationary distribution of the Markov chain 

with jumps on Band a mean jump from the point (x, i) given by M(i) = L:J,k kpf1. 

The mean drift on the half-strip is then given by 

M= L 1r(i)M(i) fori E B. (3.1) 

It follows that if M( i) < oo for all i then the Markov chain 3 is ergodic (FMM [11], 

Theorem 3.1.2). 
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FMM [11 J, Chapter 4 has an even more detailed introduction to induced Markov 

chains and the idea of second vector fields for Markov chains on Zf_. One of the 

changes to the half-strip model we are interested in is where several finite state 

spaces are attached to the countable state space, such that the Markov chain lives 

on Z0 x {0, ... , c} x {1, ... , m} which is some kind of bundle of Z0 (this corresponds 

to the state space of the two queues in tandem model with a single Markovian 

arrival process and a finite buffer at the second queue, see Section 3.2). The other 

application we are interested in is a Mar kov chain on Z6 x { 1, ... , s1 } x { 1, ... , s2 }, 

which corresponds to the state space of a two queue model with phase type service 

at both queues, see Section 3.1. 

In order to work with these additions to the half-strip model idea in the pro

ceeding sections we will first introduce some notation concerning the stationary 

distribution of two Markov chains which are joint. 

Two independent Markov chain's jumps combined 

Assume we have two finite state, irreducible continuous time Markov chains QJ = 

{V(t) : t ;::: 0} and 21J = {W(t) : t ;::: 0} with states i 1 E S1 = {1, ... , si} and 

i2 E S2 = {1, ... , s2} respectively. The generator matrices are given by 

-ll l12 llSJ -kl kl2 k1s2 

L= and K= 
k21 -k2 k2s2 

(3.2) 

ls1l lsi2 -[Si ks2l ks22 -k82 

By definition we know that the stationary distributions of both Markov chains exist. 

We would now like to consider the joint Markov chain 3 = { Z ( t) : t ;::: 0} of 

the two processes QJ and W. The joint process we are interested in has non-zero 

transitions of the form 

(i1,i2) --t (j1,i2) with rate l;J]1 and 

(i1,i2) --t (i1,]2) with rate k;2)2 

where --t denotes that there is a jump from one state (i 1 , i2 ) in £ 2 to another. The 

process stays in state (i 1 ,i2 ) for an exponentially distributed time with parameter 
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li 1 + ki2 • This means the joint process 3 has jumps on a finite two dimensional lattice 

£ 2 = { (ii, i 2) : ii = 1, ... , si and i 2 = 1, . .. , s2}. There are no diagonal jumps on 

[,2. 

Denote by litJ1 I the s2 x s2 matrix with zero entries apart from lit} I on the 

diagonal. The generator matrix for the joint service processes 3 is then given by the 

(sis2) x (sis2) matrix 

M = L ® K 

-lii + K 

bl 

l3II 
(3.3) 

the symbol ® is introduced to denote this type of matrix multiplication I. Following 

Serfozo we can uniformise the Markov chain 3 governed by M by choosing a constant 

p* 2: max{ li 1 + ki2 } (3.4) 
ti ,'Z-2 

so p* is at least as big as the maximum diagonal element of M. Using (3.4) we can 

define the discrete time Markov chain Z = { z( n) : n 2: 0} of the joint process with 

the matrix M! of transition probabilities given by 

(iii2)---> (jii2) 

(iii2)---> (id2) 

0, otherwise 

(3.5) 

Note that we have set up the continuous time processes 3 first in order to find the 

right bell/ null event rate or clock speed p* at which to compare the two processes. 

The product ® works also for discrete time processes and their transition matrices. 

1 Although this seems to be so straight forward that it surely exists in some text book I have 

been unable to find it. 
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We also define the two discrete time versions of QJ and W as the Markov chains 

V = {v(n) : n 2:: 0} and W = {w(n) : n 2:: 0} respectively. The transition 

probability matrices ll.... and ][{ with p* as in (3.4) are given by 

0, otherwise 0, otherwise 

Given all these Markov chains and their transition matrices we can note the following 

Lemma 3.0.1 Given the Markov chains V and W above with stationary distribu

tions vll.... = v and BOC = e respectively and M = ll.... ® ][{ we have 

where 7!'Ml = 7!' is the stationary distribution of Z. 

Proof: Let 7r(i1,i2) = v(i1)B(i2) for all i1,i2. The rest follows from the uniqueness 

of the stationary distribution and 

(7rM)tJ!2 = LJI L)2 1f(il, i2)(M)(tJ,t2)~(iJ,i2) 

= 71'( 21, 22) (p* - ( ztl + kt2)) + Li1 hl 71'( i1, 22)( ;.zi!]1) + Lidh 71'( z1, 12)( ;. ki2j2) 

= v(2I)B(22)(p*- (lt 1 + kt2)) + v(z1)0(22)( ~ltJ + v(zt)B(z2)( ~kt2 ) p p 

3.1 Service time of phase type 

D 

In this section we will consider the phase type distribution as the distribution of the 

service time in a two queue model. The class of phase type distributions is a highly 

versatile class of probability distributions - it is the distribution of the time until 

absorption in a finite Markov chain. One distribution in this class, introduced as 

a generalisation of the exponential distribution, is called the Erlang distribution or 

also the method of stages. The idea is that the customer goes through m stages of 
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exponentially distributed service time with the same rate 1-l· This can be generalised 

by assuming different rates at each stage. Another distribution that falls into the 

class of phase type distributions is the hyperexponential distribution, or exponential 

distributions in parallel channels; here one of m different exponentially distributed 

service times is chosen at random by the customer. 

The general information about the phase type distributions is taken from, and 

more details and applications can be found in, Neuts [30], Chapter 2 and Asmussen 

[1] Chapter Ill, Part 6. 

The class of phase type distributions dense in the set of all probability distribu

tions on (0, oo) (see Asmussen [1] Chapter Ill, Section 6), which means it is appli

cable for a much broader range of service time distributions than the exponential 

distribution. Additionally the use of phase type distributions allows us to analyse 

the queueing process as a Markov chain as the phase type distribution preserves the 

Markov property, if the process is observed at the stages of service as well as the 

changes in queue length. 

The two queue model that we will consider is a bit simpler than that in Chapter 

2 in that we have two dedicated Poisson arrival streams )q and >.2 only and no 

feedback of customers that have completed service is allowed. We keep the general 

notion for service regimes with TJ. The simplifications are introduced to avoid over 

complicated notation, the results apply for the general model in Chapter 2 as well. 

We will start with a short definition of the phase type distribution we would like 

to use and then describe what happens for a two queue model. Note that we will 

use the continuous time setting for the phase type distribution first and change to a 

discrete time queueing process when the continuous time process is completely set 

up. 

The phase type distribution as the distribution of service times implies the follow

ing: every customer that receives service starts at some state, according to some ini

tial distribution/}_, of a finite state continuous time Markov chain~ = {Y(t) : t :2: 0}. 

This Markov chain has i = 1, ... , s transient states and one absorbing state s + 1; 

upon arrival at state s + 1 the customer has completed service. There is only one 

customer per queue in service at any given time n. ~ has a transition matrix of the 
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form 

where T is a s x s matrix giving the transitions tiJ between the transient states 

i, j = 1, ... , s and t. = ( t1s+1, ... , tss+1) T is the vector that gives the transitions to the 

absorbing states+ 1. For our purpose of modelling service times in a queueing model 

we make the following additional assumptions about the phase type distribution: 

(a) all jumps from states i : i =1- 1 to state 1 have transition ti1 = 0 and also 

(b) the initial distribution (~(x),,8s+ 1 (x)) of any phase type distribution given 

here is 

{

1, 
f}_(x) = (,81 (x), 0, ... , 0) where ,81 (x) = 

0, 

if X> 0 

if X= 0 

{

0, 
,8s+1(x) = 

1, 

if X> 0 

if X= 0 

and x the number of customers waiting in the queue. 

We say the phase type distribution, as given above, has representation (T, ~( x)), is 

of order s and the first moment is given by 

(3.6) 

where~= (1, ... , 1)T. 

We will now briefly define the renewal representation of the phase type dis

tribution. The idea is that as long as the queue length is positive the next customer 

starts service when the previous one leaves, in other words to restart the Markov 

chain~' in our case from state 1, over and over again until the queue is empty. This 

is done using the so called renewal phase type distribution (or irreducible represen

tation) which is given by 

Q* = T+T0A 0 (3.7) 
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where T 0 = (t,t, ... ,!) and A 0 = (1- ,8s+1(x))-1diag(,81(x),O, ... ,O) are 8 x 8 

matrices, where diag indicates the matrix with all zero's except of the diagonal 

elements here given as (,81 ( x), 0, ... , 0). We will use the matrices T and T 0 A 0 when 

setting up the queueing process 3. 

Phase type service for the two queue model 

For the two queue model as described above, under a service regime TJ which provides 

service to both queues, denote by Qi on sl = { 1' ... ' 81 + 1} and Q~ on s2 = 

{ 1, ... , 8 2 + 1} the transition matrices of the two Markov processes QJrJ = {V ( t) : 

t 2: 0} and 21J'1 = {W(t) : t 2: 0} for the service at queue 1 and 2 respectively. 

Note that the state space S1 of the phase type service at queue l can also change 

from one regime TJ to another but we will refrain from introducing further sub- or 

superscripts here. We denote by (x, y) E R5 the number of customers in queue 1 

and queue 2 respectively. We have two transition matrices of size 8 1 x 8 1 and 8 2 x 8 2 

for the transient states only given by 

-d7) 
1 di2 dis1 -t'l 

1 
t'l 

12 
t'l 

1 S2 

0 d'l d~Sj 0 -t'l t~S2 DrJ= 
- 2 

and T'l= 2 (3.8) 

0 d';I2 -drJ 
Sj 

0 t'l 
S22 -t7J 

S2 

where t7J = trJ. and drJ = drJ . . 
lj qq 12 1212 

The joint Markov jump process 3'~ = { Z ( t) : t 2: 0} of two service processes 

together jumps on a finite two dimensional lattice c;, = { ( i1' i2) : i1 = 1' ... '81 + 
1 and i 2 = 1, ... , 8 2 + 1} and the following non-zero transitions rates for all J1, J2 "I- 1 

(i 1 ,i2 ) ~ (j1 ,i2 ) with rate d?d
1 

and 

(i1 ,i2) ~ (i 1,j2 ) with rate t~72j2 

(3.9) 

where ~ denotes the transitions between states in £~. The time that the process 

remains in state (ill i 2) is exponentially distributed with parameter d{
1 
+ t;~. 
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In order to define the queueing process as a whole we have to set up some notation 

first. Denote by d{d
1 
I the s2 x s 2 matrix with zero entries apart from d{

1
it along the 

diagonal. The transition matrix (again excluding the absorbing states) for the joint 

service processes 31J is then given by the (s1s2) x (s1s2) matrix 

-dj I+ T1J di2I di3I dj
81

I 

0 -di I+ T 7
1 di3I diS[ I 

Q1J = D1J ® T1J = 0 dj2I -dj I+ T1J djsJ 

0 d;t2I d7t3I -d1J I+T1) 
S[ 

(3.10) 

as in (3.3). 

In the following we will not use the superscript T] every time any more, everything 

to do with service can however change with a change in service regime 7]. We define 

another two matrices of size (s1s2) x (s1s2) with D 0 and T 0
, A? and Ag as defined 

in (3.7) for queue 1 and queue 2 respectively. 

0 0 0 

d2(s 1+I)I 0 0 

Dl= d3(s 1 +I) I 0 0 and 

dst(st+I)I 0 0 

TOAO 2 

0 
T2 = 

0 

0 

TOAO 2 

0 

0 

0 

(3.11) 

where the matrix D11J gives the transition rates for customers leaving after service 

at queue 1 under regime ry, and T21J gives those for customers leaving from queue 2. 

We set >. = >. 1 + >.2 and I 1 , I2 and I 12 denote identity matrices of size ( s1 x si), 

(s2 x s2) and (s1s2 x s1s2) respectively. The transitions to and from the boundary 

states are denoted by the following: 

(1) If there are no jobs in queue 2, (x, 0) with x > 0 then 

where ® denotes the tensor or Kronecker product of the two matrices. The three 
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matrices are of size (s1s2 x s 1s2). The matrix D0 A? corresponds to the departing 

jobs, )ql1 to the arrivals and -)1111 + D to remaining in service at queue 1. After 

each entry of these (s1 x si) matrices there are s2 - 1 rows and columns of zeros 

(this is achieved by the tensor product with A?), which makes them the desired size 

of (s1s2 X s1s2). 

(2) For the case where (0, y) with y > 0 we get 

TOAD 2 0 0 >.212 0 0 

0 0 0 0 0 0 
TA= L2 = and 

0 0 0 0 0 0 

->.2!2 + T 0 0 

0 0 0 
LT= 

0 0 0 

as the corresponding matrices for queue 2 which are of size (s1s2 x s 1s 2) also. This 

time we add s1 - 1 times ( s2 x s2) matrices with all zero entries to the first ( s2 x s2) 

non-zero matrix. 

For the whole queueing process we now have two two-dimensional state spaces, 

(i 1 , i2 ) E .c; and the states (x, y) E R6. If we look only at the changes in queue 

length, then these happen at the following transition rates: 

(x,i1,y,i2) ~ (x+ 1,i1,y,i2) with rate >.1 

(x,i1,y,i2) ~ (x,i 1 ,y+ 1,i2) with rate >.2 

(x,i1,y,i2) ~ (x -1,i1,y,i2) with rate g 

(x,i1,y,i2) ~ (x,i1,Y -1,i2) with rate t. 

(3.12) 

where g and t. are the vectors of transition from states i 1 and i 2 to the absorbing 

states s1 + 1 and s2 + 1 respectively. 

Given all these transitions we can now set up the actual transition matrix P for 

the N = 2 queue process with phase type service. We will write out four matrices 
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depending on whether we are in the interior, between interior and boundary or on 

the boundary of the queue lengths state space R6. 
Between the boundary states we have 

-,\112 ,\1112 0 

DA LD L1 

0 DA LD 

Poo = 

TA 0 0 

0 0 0 

Form boundary states to interior states 

0 0 

L2 0 

0 L2 

Po1 = 

L1 0 

0 0 

From interior states to boundary states 

T2 0 0 

0 0 T2 

plO = 
0 0 0 

0 0 0 

0 

0 

L1 

0 

0 

0 0 

0 0 

0 0 

0 0 

L1 0 

Dl 

0 

0 

0 

0 

0 

0 

0 

LT L2 

TA LT 

0 0 

0 0 

0 0 

0 0 

0 0 

0 

Dl 

0 
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Between interior states 

-.\112 + Q .\1112 .\2l12 0 0 0 

Dl -.\112 + Q 0 .\1l12 0 0 

Pn = 
T2 0 -.\112 + Q .\1l12 0 0 

0 T2 Dl -.\112 + Q 0 .\2l12 

Given these we can see that the transition matrix of the Markovian queueing 

process X under rt on .c; x R6 has a transition matrix of the form 

P" = (:: :::) 

This generator matrix depends on the regime rt in force in the sense that all matrices 

D1J and T'l will change with 'fl· 

The discrete time process 

Given the rates of jumps between the stages of service and changes in queue length 

in P7J we can define the discrete time queueing process :=: by choosing a constant 

(3.13) 

as in (3.4) pis bigger than the maximum diagonal element of all rt generator matrices 

P'l. The uniformised discrete time process :=: on .c; x Z6 has null events at exponential 

rate p- (d{
1 
+ t{

2 
+ .\) under rt when both queues receive service; under rt when only 

queue 1 or 2 receive service the rate are given by p- (d{
1 
+ .\) or p- (t{

2 
+ .\) 

respectively. :=: is the continuous time queueing process X observed at the following 

events: a customer changes stage during service (at either of the two queues), a new 

arrival occurs, a customer leaves the system and at all null events. 

We can picture the state space of:=: in the following way. Changes to queue length 

happen on the positive lattice Z6 with states a = ( x, y) indicating the number of 

customers waiting at each queue. There are s1 s2 layers of Z6 and each of these layers 

corresponds to a joint state of service (i1, i2 ). 
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We will now define the mean drifts with respect to the queue length i.e. m 

direction of a = (x, y) E Z6. As long as there are customers in queue l = 1, 2 we 

know that the service process has a renewal phase type distribution or irreducible 

representation (see Qi in (3.7)). This means both service processes have a stationary 

distribution which we denote by v and 0 for queue 1 and 2 respectively. From Lemma 

3.0.1 we know that we also have 1r(ii,i2 ) = v(ii)O(i2 ) where 1r is the stationary 

distribution of Q* - the irreducible representation of the discrete time equivalent 

of (3.7) with uniformising constant as in (3.13). Note that these distributions and 

matrices again change with 77· With a, f3 E Z6 we also define 

M(ii, i2) = L q0 ,g 
,g 

the mean jump from point (a, ii, i2) where q0 ,g gives the jumps that correspond to 

arrival p-I >..1 with l = 1, 2 or to departures from the queues p-Ig_, p-It with pas in 

(3.13). 

The mean drift is given by 

M'IJ = L 7r(ii' i2)M(ii' i2) 
it Ji2 

under regime 77 when both queues receive service and for regimes 77' and 77" on axis 

A 1 and A2 of Z6 by 

respectively. 

The mean drifts form a convex hull as in Chapter 2 (2.5) and the discrete time 

process (3, II) is Markov if II is a stationary, Markovian control policy. Thus the 

results of Theorems 2.3.1, 2.3.2 a.nd 2.3.4 could be applied if we sample the process 

at fewer time points so that the service process is in some sense averaged out. 

3.2 Markovian arrival process 

The continuous time Markovian arrival processes denoted by Q{, similarly to the 

phase type service above, involves a finite state Markov chain. The idea is that 
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specific transition of the Markov chain m correspond to a certain number b of arrivals, 

so if the Markov chain makes a transition from a state i to j there are b arrivals. 

We will first describe the Markovian arrival process for two queues and see what we 

can say about this and later consider a specific example of two queues in tandem 

with blocking at the second queue which was analysed by van Houdt and Alfa [38]. 

Although the Markovian arrival process can deal with batch arrivals where 

batches are of size b, see Lucantoni [25], we will concentrate on the Markovian 

arrival process with b = 0 orb= 1 as discussed by van Houdt and Alfa [38] or Neuts 

and Alfa [31]. 

We use a Markovian arrival processes as introduced in van Houdt and Alfa [38], 

though they use the discrete time Markovian arrival process (D-MAP) while we will 

start in a continuous time setting. The matrix of transition rates B of the Markovian 

arrival process Q3 is composed as follows. There are two m x m matrices B0 and 

B 1 such that B = B0 + B 1 is a generator matrix, i.e. 'L.i(B)ij = 0 where (B)ij are 

the elements of B. We assume that Q3 is irreducible and aperiodic. The elements 

of the matrix B denoted by (Bb)ij do not only bear information about the rate of 

transitions from states i to j but also of making a transition from state i to j with 

b arrivals where b = 0 or 1. The Markovian process described by B has a stationary 

distribution which satisfies JB = 0 and i5f: = 1, where f:. is a m column vector with 

all ones. Given i5 the arrival rate is given by A = i5 B 1f:., see Lucantoni [25]. 

A variation of this process is given in Neuts and Alfa [31]. In their model arrivals 

of two types are generated by the discrete time Markovian arrival process. We can 

use this idea to generate two types of arrivals. In this case we have four matrices 

Ao,o, Ao,I, A1,o and A1,1 of size m so that A = Ao,o+ Ao,I + A1,o + A1,1 is the generator 

matrix of the Markov chain m which is irreducible and aperiodic. Similar to above 

we have b, d E {0, 1} and elements (Ab,d)i,j that give information on the number b 

of arrivals to queue 1 and the number d of arrivals to queue 2 with any transition 

from state i to state j of the Markov chain. The stationary distribution ()A = 0 is 

again used to determine the two types of arrival rates 
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This idea can of cause be taken further, say we would like a third type of arrivals 

which could than be routed to either queue 1 or 2 depending on our routing decision, 

then use a formulation like the following: Ao,o,o, A1,o,o, Ao,1,o, Ao,o,1, A1,1,o, Ao,l,l, 

A1,0 ,1 and A1,1,1 are eight matrices giving the transition rate with arrivals of type 1, 2 

or 3. For simplicity we will refrain from doing this and consider a two queue system 

with a Markovian arrival process 2t. as above and arrival rates A1 and A2 to queues 

1 and 2 respectively. We assume for now that the customers waiting in queue l have 

exponentially distributed service times at rate /1kl under regime f1 = (k, s) (with s 

fixed) at queue l = 1, 2. After receiving service at queue l a customer might be fed 

back into queue l' with probability Pll' or leave with probability Pw = 1 - L.::1, Pll'· 

As before we would like to consider the discrete time queueing process 3 on 

Z5 x { 1, ... , m}. The non-zero jumps have rates 

(x, y, i) __, (x + 1, y, j) with rate (AI,o)ij 

(x, y, i) __, (x, y + 1,j) with rate (A0,1)ij 

(x, y, i) __, (x + 1, y + 1,j) with rate (AI,l)ij 

(x, y, i) __, (x, y, j) with rate (Ao,o)i,j 

(x, y, i) __, (x + 1, y, i) with rate L J-lLPll 
l 

(x, y, i) __, (x, y + 1, i) with rate L f-LLPL2 
l 

(x, y, i) __, (x- 1, y, i) with rate /-lklPIO 

(x,y,i) __, (x,y -1,i) with rate /-lk2P2o 

thus we can find a p ~ maxi,k(J-lkl + /1k2 + (Ab,d)i) where (Ab,d)i = Lio;ij(Ab,d)i,J to 

uniformise the process 2t. giving the equivalent discrete time process 3 by observing 

the process at all stages of arrival, null events and departures or subsequent reentries. 

We will look at the discrete time queueing process 3 in the following way. For 

each state i of the arrival process 2t. governed by A there is a Z5 plane so that 

the state space of the queueing process is Z5 x { 1, ... , m} as depicted in Figure 
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Figure 3.1: State space Z6 x { 1, ... , m} of the queueing process with discrete time 

Markovian arrivals. 

3.1. To define the mean drifts with respect to the queue length in direction of 

a = (x, y) E Z6 we consider the stationary distribution of the arrival process Qt 

given by e. Unfortunately we have no control over the arrival process and it is not 

yet clear to me how to get nice results for this model, I am however working on it. 

Two queues in tandem with blocking We have seen an example of two queues in 

tandem in Section 2.5. Here we will discuss a variation similar to the model analysed 

in van Houdt and Alfa [38]. The first queue has a Markovian arrival process ~ (as 

above) with stationary distribution 5 and arrival rate A. Customers are served in 

the order in which they join the queue, we assume for now that the service time is 

exponentially distributed with rate /-ll at queue 1 and rate J-L2 at queue 2. The buffer 

at queue 2 is finite, so that at any time only c customers can wait at queue 2. So 

whenever there are c customers waiting, a customer that has completed service at 

queue 1 has to wait there, preventing any other customers being served by server 1. 

This reduces the state space that the queue length process lives on to Z0 x {0, ... , c}, 

where queue 2 has only c + 1 states and the queue length changes of queue 1 happen 

on Z0 , see Figure 3.2 for an example. 
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The continuous time queueing process X with states (x, K-, i) (corresponding to 

number of customers in queue 1, queue 2 and stages of arrival respectively) has 

non-zero jumps at rates 

(x, K-, i)--> (x + 1, K-, i) with rate (BI)ij 

(x,K-,i)--> (x,K-,j) with rate (Bokj 

(x,K-,i)--> (x -1,"'-+ 1,i) with rate /-ll 

(x,K-,i)--> (x,K- -1,i) with rate !-l2 

We choose p 2:: maxi(/-ll + /-l2 + (Bb)i) where (Bb)i = 'L,itJ(Bb)i,J and get the discrete 

time queueing process 3 by observing X at the times of events as before. 

The discrete time queueing process 3 lives on Z0 x { 0, ... , c} x { 1, ... , m}. The 

stability or not of a process on such a state space follows from the result about the 

half-strip model in Fayolle, Malyshev and Menshikov [11] given earlier. 

For the model with two queues in tandem, Markovian arrival process and block

ing in the second queue we have states (x, K-, i) E Z0 x {0, ... , c} x {1, . .. , m}, so it 

is not a half-strip as such but more a bundle which can be treated in a very similar 

fashion. By definition the Markov chain on "'- = {0, ... , c} is irreducible and aperi-

c 

.... """"'N--'''···································· . . . . . . . . . . . 
. . . . . . . . . . . 
. . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................ . 
. . . . . . . . . . 
. . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . 

...................................................... 

Q 

Figure 3.2: Queue length process state space Z0 x {0, ... , c} with jumps, for two 

queues in tandem with blocking at the second queue. 
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odic and has a stationary distribution which we denote by v. Given Lemma 3.0.1 

we know that the stationary distribution 1r of 2 fulfils n(K;,i) = v(K;)c5(i). We also 

have 

where Ai denotes the arrival rate at a given state i and 1 is the indicator function. 

We can see that 

The process is stable if M < 0 which corresponds to the results of van Houdt and 

Alfa [38]. 

Note the introducing the phase type service that van Houdt and Alfa [38] assume 

for the service at both queues would a.dd an extra finite two dimensional state space 

£ 2
, we will refrain from introducing this extra complication here. 



Chapter 4 

Stability criteria for N > 3 queues 

Given our results for two queues it is natural to ask which of these are still valid 

if we have three or more queues, when the queue length process lives in Z{/ with 

N ~ 3. In this chapter we will look at the discrete time queue length process :=: on 

Z{/ for N queue models and state stability criteria under different control policies 

or levels of control. We will also look at some examples such as the (generalised) 

Lu-Kumar network as introduced in Niiio-Mora and Glazebrook [32], the generalised 

constraint queueing system in Tassiula.s and Bhattacharya [37] and networks with 

customers that require simultaneous service at several service stations. The results 

given in Theorem 4.2.1 to Corollary 4.3.3 and the proofs are published in [27], the 

results on the Lu-Kumar network are published in [28]. 

There are some aspects of positive recurrence which are much more challenging 

inN ~ 3 dimensions than in two, we try to give the reader some idea why. In Section 

2.4 we introduced the notion of second vector fields. In Z6 these are scalars and 

their signs, which determine whether the second vector field is ingoing or outgoing 

are easily obtained by comparing angles of the mean drifts as in Lemma 2.3. 7. This 

rather nice idea does not work that simply for N ~ 3. Imagine one of the three 

axes in Z~, say Al ={a= (xl,x2,x3) E z~: Xl > O,x2 = O,x3 = 0}. On this axis 

we have a reflexion M' with at most one negative component- the x1 component if 

the service at queue 1 is faster that the rate of input. We define the two mean drift 

vectors M2
' and M 3

' as the reflexion from the two two dimensional planes Z~xFo) = 
{a E zg: Xl > O,x2 = O,x3 > 0} and Z(xJ=O) ={a E zg: Xl > O,x2 > O,x3 = 0} 

82 
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·····························/: 

M2' : 

M3' 

............................................ ~ ........ · 
Figure 4.1: Mean drifts around A1 in Z~. 

respectively. And finally there is one mean drift vector M'TI under regime TJ on states 

a E Z~. See Figure 4.1 for an example of these mean drifts. Around the axis 

A 1 all four jump distributions and not only the mean drift vectors are important 

to determine the second vector field; similarly if we introduce blocks and change 

between regimes we will have to consider second vector fields at the boundaries of 

these blocks. 

We have seen some results for induced Markov chains in Chapter 3 when parts of 

the state space are finite. The results for second vector fields in higher dimensions 

with countable state space are given in FMM [11] Chapter 4, we will give the basic 

idea of this method here. If the mean drift in the interior M'TI has M? < 0 for i = 1, 

2, 3 then we know that for example Z(xJ=O) is an ergodic face (in the terminology 

of FMM [11]). We can calculate the stationary distribution of the birth and death 

process associated with the jumps in x3 direction, we could have Paa+ 1 = p- 1 A3, 

Paa-1 = p- 1 J-lk3, Paa = p- (A3 + J-lk3) and Po1 = p1 A3 (given a queueing system with 

dedicated arrival streams only and no feedback and service configuration k, with p 

as the uniformising constant). Lets denote the stationary distribution of this one 
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dimensional process by 1r0 . If we are far away from the boundaries A 1 and A2 on 

the plane Z(x
3
=o) we know that the mean drifts that influences the second vector 

field are M'IJ and !113
'. We can now calculate Mx 3=o = (1- 1r0 )M'1J + 1r0 M 3

' which is 

a drift vector with zero x3 component, if Mx 3=o < 0 then we say the second vector 

field is ingoing. In order to avoid long calculations of second vector fields on all 

ergodic faces for different management regimes we will show here how, given some 

control, we can drive the process away from the boundaries so that the faces are 

transient. 

We start be defining the model parameters of N queues and repeat some as

sumption made in Chapter 2. We will define the discrete time queue length process 

and state the mean drift vectors under ry. We will see that the results for the clean 

cut cases such as Cl and C2 are straight forward, while C3 requires controls that 

keep the process away from the boundary; we will consider block randomised and 

block pure policies in this case. 

4.1 Model parameters 

Queueing models with N 2: 3 queues require some modifications of the parameters 

introduced in Section 2.1 we will state these here. 

Arrival streams Let PN denote the collection of non-empty subsets, Q, of the 

queues. Each such Q has an independent Poisson arrival stream with rate )..Q and 

upon arrival each job is routed to a queue i E Q. Any rule for doing this is a routing 

scheme 

s: PN----> {1, ... , N} such that s(Q) = i E Q for all Q E PN. 

We distinguish two cases: (1) we permit )..Q = 0 for some sets Q but assume that no 

queue has zero arrival rate under all routing schemes, so that l:Q•s(Q)=i )..Q > 0. (2) 

we will look at networks with re-entrant lines where )..Q > 0 for at least one i E Q 

and l:Q•s(Q)=i )..Q = 0 is allowed. 

Service times We assume all jobs have service times that depend upon their 

queue and the service scheme in force while they are being served. Specifically, 
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under server configuration k, at most one job is in service at each non-empty queue 

and all jobs in queue i have independent, exponentially distributed service times 

with parameter /-Lki, i = 1, 2, ... , N. 

The /-Lki may take any non-negative values so they may vary with k for any queue 

i but we allow only efficient server configurations (Assumption A1: whenever the 

queues in some set Q are all empty we only permit configurations k where /-Lki = 0 

for each i E Q). We do allow the use of configurations with /-Lki = 0 at states where 

queue i is not empty. 

Regimes and switching As before the set R of overall management regimes is 

a finite collection of pairs rt = (k, s) and Assumption A2 (zero switchover time when 

changing from one rt to another) applies. 

Feedback For N ~ 3 any job that completes service at queue i under regime rt 

independently enters queue j with probability pz, j = 1, ... , Nor leaves the system 

with probability p{0 = 1 - L:f=l PZ ~ 0. 

Uniformising We uniformise the continuous time jump process, following Serfozo 

[34], by choosing a constant 

p ~ m:x{L AQ + L /-Lkd ( 4.1) 
Q . 

and introducing a null or bell event which has exponential inter-event times with 

rate p- o::::Q ,\Q + l:i /-Lki) at any given queue lengths when regime rt = (k, s) is 

used. 

We consider the uniformised discrete time process :=: on state space Z{j = 
{(xl, ... ) XN) E zN : Xi ~ 0, i = 1, ... ) N}, obtained by observing the queue 

lengths at all null events, arrival times of new jobs, at service completions and 

consequent re-entry to queues. The jumps are of the form ±ei and ei - ej where ei 

denotes the unit vector in ith coordinate direction, so they are bounded in L00-norm, 

by 1. We will use a = (x1 , ... , XN) E Z{j to denote a typical state vector for :=:. 

Control We define a policy for controlling this discrete event system as a sequence 

IT= {7rn : n ~ 0} of probability distributions 7rn, as in Section 2.2.2. We consider 

non-stationary, non-Markov fully randomised policies in Theorems 4.2.1 and 4.2.2. 

Then stationary randomised policies are considered in Theorem 4.3.2 and Corollary 
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4.3.3 where we investigates the use of block randomised policies IF. Some special 

cases when block pure policies IIb can be used for N queue models are given in 

Section 4.5. 

The blocks we consider are denoted by B, one can still think of them as higher 

dimensional cones, but we will also consider different ways to define blocks. The 

basic blocks in three dimensions are given in the example below. 

Example 4.1.1 (Block controls for N = 3) Consider a system with three queues. 

It has at least seven blocks of interest, these are linked to the collection of seven 

non-empty subsets Q E P3 ( {1}, ... , {1, 2}, ... {2, 3},). Let Q' = {1, 2, 3} \ Q and 

let BQ ={a= (xl,x2,x3) E zg: Xi> O,i E Q;xi = O,i E Q'} so BQ contains 

those states where precisely the queues in set Q have customers. All states except 

(0, 0, 0) lie in exactly one of these blocks. We may choose to partition these further 

but dealing with these blocks for now, the list of regimes ry usable on block BQ may 

be constrained by our efficient server assumption Al. At any visit to a E BQ: any 

block randomised policy chooses at random a regime from this list using the same 

distribution every time; a block pure policy chooses the same regime ry every time. 

With respect to the routable or fixed arrival rate we repeat the two assumptions 

made earlier 

Assumption A3 (Boundary Reftexion Condition): If AQ = 0 for some 

sets Q but no queue has zero arrival rate under all routing schemes s, so that 

2.:.':Q:s(Q)=i AQ > 0, then the process (2, II) can be reflected off the boundary simply 

by changing the routing scheme s. 

We also assume that if we cannot route arrivals to all queues that assumption 

A4 given in Section 2.2 holds. 

Assumption A4 (Boundary Sojourn Condition): If for for some non-empty 

subsets of queue, Q E PN we have 

L AQ=O 
Q:s(Q)=i 

then we require the following condition. For each a E az~ let T = min{ n 2: 1 : 

~(0) =a, ~(n) E Z~} denote the length of the boundary sojourn. We assume there 
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exists a constant V > 0 such that for any a E azr: there is a policy ITa such that 

E(T I ~(0) =a, ITa) <V ( 4.2) 

Mean drifts For routing policies s and service regimes k = 1, ... , K at states 

a E z~ ={(xi, ... ,xN) E zN: X;> O,i = 1, ... ,N} we have 

M;11 = p-
1 

( L >.s + t /-LkjPj; - /-Lki) , 17 = (k, s) ( 4.3) 
S:s(S)=i j=l 

for queues i = 1, 2, ... , N with p as defined in ( 4.1). Under the efficient service 

assumption (Al) equation (4.3) is also correct for histories leading to states a E 

azr: - zr: \ z~ i.e. where at least one queue is empty. 

The convex hull of the regime mean drifts is given by 

M= { ~p"M' ERN: p, E [0, 1] and ~p, =I} (4.4) 

and, if it is non-empty, its N-dimensional interior is given as 

IntN(M) ={a EM : B(a, t:) CM for some E > 0}. 

Given all the details above we can now state the results for the N ~ 3 queueing 

model, using the classification of the convex hull with respect to the origin, see 

Appendix A. As before we have for each v the hyperplane 

(4.5) 

through a with normal vector v, which either separates a+ M from the origin Q or 

not. 

4. 2 Fully randomised controls 

The following two results apply when even the most general policy IT is used to 

control the queueing system. They imply that in cases Cl and C2 the control policy 

used does not affect the stability or otherwise of the process. 
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Theorem 4.2.1 If Q rt M and there exists an o: E Z~ and v E RN such that 

the hyperplane Lv(o:) separates o: +M from the origin Q then the process (::::, II) is 

unstable for any policy II, in the sense that the total number of queued jobs almost 

surely goes to oo linearly in time. 

Proof: Under the conditions of Theorem 4.2.1 there exists o: E Z{/ and w E 

RN with at least one positive component, such that Lw(o:) separates o: +M from 

Q and w T M"~ > 0 for every regime TJ. As the number of regimes is finite, c = 

1/2min71 wTM,., > 0. In this case Sn = wT~(n) for n = 0, 1, ... satisfies 

whatever policy II is used. It follows from part (ii) of Theorem 1.2.1 that there 

exists a eh > 0 and 82 > 0 such that 

so by Borel-Cantelli these events almost surely occur only finitely often i.e. the 

number of customers waiting in the queues goes to infinity at least linearly in time. 

In addition we have P(T = oo) > 0 so with positive probability the process makes 

no visits to { 0: E zr; : V T 0: < D} which for large D contains the region of zr; around 

the origin Q. 0 

Theorem 4.2.2 If Q rt M and there is no 0: E z~' V E RN such that Lv(o:) 

separates o: +M from Q then (::::, II) is stable under every policy II, in the sense that 

the mean time to reach a bounded set around Q is finite from any state o:. 

Proof: Under the conditions of Theorem 4.2.2 we can find w E R~ such that 

w T M"~ < 0 for every regime TJ. In this case Sn = w T ~ ( n) for n = 0, 1, ... satisfies 

for some c > 0 and for every TJ. A pp lying part ( i) of Theorem 1. 2.1 we see that 

E( T I II, S0 > D) ~ S0 /c < oo. Thus from any finite state the process reaches 

{ 0: E zr; : w T 0: < D} in finite time almost surely. 0 
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Example 4.2.1 (Fixed servers and no routable arrivals) Consider a system 

with fixed servers (with service rate that drops to 0 when their queues are empty), 

Poisson arrivals with rate vector A, exponential service times with rate vector fJ, 

and Markov feedback according to substochastic matrix P. We can see that the 

boundary reflexion condition applies. Jackson's result [21] for such models says that 

the system is stable if v < f.L, where v = (I - P)- 1 A, but transient if vi > f.Li 

for any i. In our notation, for the regime 7J where all servers have jobs to process 

and so pM"~ = A - (I - P)f.L from ( 4.3), these conditions correspond to stability if 

[(I- P)-1 M"~]i < 0 for each server i and transience if [(I- P)-1 M"~]i > 0 for any i. 

Our results do apply to this system if we assume we can shut down servers at any 

time and our results are consistent with what is known as we now show. 

The possible regimes are as follows. For each subset Q E PN of the queues 

our model has a regime 'TJQ in which all servers outside Q are idle; feedback uses 

probabilities from P in all regimes. The mean drift MQ of 3 under 7JQ satisfies 

for j tt Q, 

for j E Q 

As p(I- P)-1 MQ = (I- P)-1 A- f.LQ, where (I- Pt1 is non-negative matrix and 

hence (I- P)- 1 A > 0 it follows that if [(I- P)- 1 MQ]i < 0 (i.e. (I- P)-1 Ai < f.L~) 

for each i then Q E IntN((I- P)- 1M). As (I- P)- 1 is invertible this implies 

Q E IntNM so the conditions for Theorem 4.3.2 apply and the system with multiple 

regimes can be controlled to ensure it is ergodic. 

If on the other hand [(I - P)-1 M"~]i > 0 for some queue i then there exists a 

vector w > Q such that w T(I- P)-1 MQ > 0. In this case 

pw T (I- P)-1 MQ = w T (I- P)- 1 A- w T f.LQ > pw T (I- P)- 1 M"~ > 0 

and hence wT(J- P)-1M > 0 for all ME M. As vT = wT(I- P)-1 > Q we 

have v T M > 0 for all M E M and hence the conditions of Theorem 4.2.1 hold and 

the system is transient under any control scheme. This equivalence of conditions is 

natural as switching regimes here can only make sets of servers idle whether or not 

they have jobs to process. 
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For N = 2 queues we see directly that if either MirJ > 0 then one of the conditions 

of Theorem 2.4.1(ii) holds and the system is transient while if both M2 < 0 we are in 

case A-/ A- and the system is stable. The criteria for transience differ from those 

in the previous paragraphs if the servers can assist each other. Our results are of 

course for Poisson arrivals and exponential service while for example, Baccelli and 

Foss [3] establish essentially the same stability criteria for a model with an ergodic 

arrival process. 

4.3 Block randomised controls 

In case C3 it does make a difference which policy is used for running the system. In 

fact we can show that block randomised policies IY with a finite number of blocks are 

adequate to ensure stability of the process. Under policies of this type the process 

(3, IY) is Markov so we can now talk about ergodicity and transience. 

Corollary 4.3.1 Under the conditions of Theorem 4.2.2 if the policy IT is Markov 

then (3, IT) is an ergodic Markov chain. 

Proof: If IT is Markov then (3, IT) is an aperiodic Markov chain. By construction 

(3, IT) is irreducible and so it is ergodic by Foster's criterion, see e.g. Theorem 2.2.3 

of [11]. 0 

Note that under the conditions of Theorem 4.2.1 when IT is Markov, (3, IT) is 

transient. For block randomised policies we get the following result: 

Theorem 4.3.2 If Q E IntN(M) then there is a block randomised policy ITr with a 

finite number of blocks such that the Markov chain (3, ITr) is ergodic. 

Using randomised policies means that we can choose any vector M 0 starting in 

a that lies in M(a) as the mean drift under which we run the system. M 0 is then a 

mixture of the pure mean drifts 1\,frJ. The condition Q E IntN (M) is more restrictive 

than case C3. Let aM = M \ IntN(M), then we can extend our results to the 

following 
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Corollary 4.3.3 The result of Theorem 4. 3. 2 still holds under the conditions Q E 

BM, IntN(M) =f. 0 and there exist no a E Z~, v E RN such that the hyperplane 

Lv(a) separates Q from a+ IntN(M). 

These results resolve the stability problem when block randomised policies can be 

used. The proof of Theorem 4.3.2 and Corollary 4.3.3 can be found in the Appendix 

B and in [27]. We do however give the idea of the proof here. 

Idea of the proof of Theorem 4.3.2: Given that Q E IntN(M) is true we know 

that there is a ball around Q (denoted by B(Q, ~))with distance~> 0 to the origin 

which is also inside M. Since we can use block randomised policies rrr we are free 

to choose a mean drift vector Mw that points into any direction from the origin 

that we like (at least within the ball B(Q, ~) as we know for a fact that it is part of 

M). 

The only problem that can arise in this case is that the boundary refiexion vectors 

are not very good; remember that given our efficient service assumption Al we have 

to run the system under the appropriate regimes until we are in the interior Z~ (see 

the case 'ljJ1 + 'lj;2 :::; 1rj2 in the proof of Theorem 2.3.4 for aN= 2 example of this). 

To avoid any problems that might arise due to the refiexion vectors we use a similar 

idea for N queues as we did for two. We construct a large block sa in the interior 

Z~ in which we run a mean drift Ma which has all negative components and we 

make sure that this block has a large enough distance from the boundary azr: so 

that we are unlikely to hit it. Around sa we have a safety zone where we use mean 

drifts Mi such that the process drives away from what ever boundary it is closest 

to and into the interior block. The Mi are chosen is such a way that M (M a, Mi) 

is in case C2 for all i, which ensures that there is no problem on the boundaries 

between the interior blocks. On the boundary of the state space we use the fact 

that we can route arrivals so that we can populate the empty queues, i.e. we use the 

regime which guarantees that the boundary refiexion condition holds. Thus we can 

make the boundary faces transient and use the Lyapunov function f(a) = I:~ ai, 

given we can estimate appropriate sequence of random times Nn, makes the process 

Yn = f(~(Nn)) a supermartingale on Z{j. 
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4.4 The generalised Lu-Kumar network 

In this section we look at a queueing network with re-entrant lines, the Lu-Kumar 

network as introduced in [24] and the generalised Lu-Kumar network discussed in 

[32]. This two station, two server network with four queues and variations of it have 

received a lot of attention as we highlighted in Section 1.3. Here we demonstrate 

how a randomised control policy can be applied so that the network is stable. 

The Lu-Kumar network has a re-entrant structure i.e. there is a non-empty 

subset i E Q of queues with L:Q:s(Q)=i AQ = 0 which means we require the boundary 

sojourn condition 4.2 to be true. Given this we will consider the (generalised) Lu

Kumar model which falls into the group of multi-class queueing networks, see Dai 

[6] for an early paper about the stability of such networks. The multi-class networks 

considered in [6] and here are those where jobs that require different service times 

(i.e. are of different classes) queue in separate queues. Our model is in some ways 

more general than the multi-class network, as the idea of service regimes TJ allows 

a more general treatment in service of jobs. Jobs that wait at queue i can receive 

different service depending on the length of queue i. The way our model is set up 

we do not care whether these changes is due to actual servers coming or going to 

queue i (where service rate possibly add up) or some much more abstract notion is 

applicable by which the service speed is just changed with the regimes TJ. 

We will describe one example of a. multi-class queueing network given by Niiio

Mora and Glazebrook [32]; differences in notation to the original paper are due to 

the attempt of keeping our notation. 

The model considered is an open multi-class queueing network with N queues, 

where each queue contains a. single class of customers, and K single server stations. 

Each station er E S = { 1, ... , S} provides service for a constituency Ca ~ N = 
{1, ... ,N} with cl,···,Cs forming a partition of N. Let CT = cr(i) denote the 

station containing queue i. Customers of class i arrive at queue i as a Poisson 

stream with rate )..i independently of other arrivals and of server location, note that 

>.i = 0 is possible for some classes ·i. Class i jobs have exponential service times with 

parameter Jl.i but only receive service when server er( i) is at queue i. Once its service 
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is completed an i-customer is routed back into the network as a j-customer with 

probability PiJ or leaves the network with probability Pw = 1 - LjEN PiJ. There are 

several results in the literature stated in terms of the total arrival rate of customers 

at queue i which is defined by the traffic equation >.i = .\ + LjEN >.JPJi for i E N 

but we do not make any particular use of this. 

To simplify comparison of the queueing process given in Niiio-Mora and Glaze

brook [32] with our model (in Section 4.1 and [27]) we translate their model into 

our language. In our model the service time and routing probabilities depend upon 

the current management regime 17 = (k, s). For the model in [32] this corresponds 

to allocating server (} to queues i in constituency Ca which gives the service con

figurations k, but the routing scheme for arrivals, s, is fixed. Under management 

regime 17 we change the service times as follow 

{ 

/-li' 
/-lki = 

0, 

if queue i receives service under 17 = (k, s) 

otherwise 

with /-lki = 0 for the special cases where there are no customers in Ca and server (} 

is idle. 

Given this translation we now look at the generalised Lu-Kumar network in more 

detail. 

Nn~·o-MORA AND GLAZEBROOK NETWORK This network was introduced in [32]. 

Like the standard Lu-Kumar network this one has two service stations 5 1 and 52 

with one server each. There are two external arrival streams with rates )q = 1 and 

.\2 = 1 - q where 0 ::; q ::; 1. The service rate at queue i is /-li, i = 1, ... , 4. The 

routing probabilities are P12 = q, Pl4 = 1 - q, P23 = 1, P34 = q, P3o = 1 - q and 

p40 = 1 which gives a total arrival rate of 1 at each queue, see Figure 4.2. The case 

q = 1 corresponds to the original Lu-Kumar network in [24]. 

We assume throughout that the servers can switch between the two queues at 

their station at any given queue length without time delays. 

This generalised Lu-Kumar model has eight service regimes: A = 12, B = 

13, C = 42 and D = 43 (service provided at two queues); 1, 2, 3 and 4 under which 

only one queue gets served. For convenience we introduce an idling regime 0 where 
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1- q 

q 
/-Ll /-L2 

J 1-q 

q 
/-L4 /-L3 

1- q 

Station 1 Station 2 

Figure 4.2: The generalised Lu-Kumar network 

no queue is served. The mean drifts are 

p*MA 1-f-Ll, 1- q + qf-LI- f-L2, /-L2' (1 - q)f-LI 

p*MB 1-f-Ll, 1 - q + qf-LI, - /-L3, (1- q)f-LI + qf-L3 

p*Mc 1, 1 - q- f-L2, /-L2, - /-L4 

p*MD 1, 1- q, - /-L3, qf-L3 - /-L4 

p*MI 1-f-Ll, 1 - q + qf-LI, 0, (1- q)f-LI 

p*M2 1, 1 - q- f-L2, /-L2' 0 

p*M3 1, 1- q, - /-L3, qf-L3 

p*M4 1, 1 - q, 0, - /-L4 

p* J'vJO 1, 1 - q, 0, 0 

where p* denotes the uniformising constant in ( 4.1). 

It is necessary to show that this model satisfies our boundary sojourn condition. 

Consider any a E 8Z~. For the model with q < 1 the sequence of jumps e1, e1, e2, 

e2 (in any order) followed by e4 - e1, e3 - e2 (either way around) leads from a to 

a+ e1 + e2 + e3 + e4 E Z~ and has strictly positive probability when the servers 

are at queues 1 and 2. As in the two queues in tandem example (Section 2.5) this 

implies that every sojourn time T is stochastically smaller than a random variable 

Z with geometrically bounded tails and finite mean ( say and so condition ( 4.2) is 

satisfied. 

For the case q = 1 we can ensure that the sequence of jumps e1 (four times), 

e2 - e1 (three times), e3 - e2 (twice) and finally e4 - e3 has positive probability and 

then, as above, we can show that condition ( 4.2) is satisfied. 
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We now explain how our classification relates to known results. Let M be the 

matrix with rows which are the vectors MTJ for the various regimes TJ· Let 59 = {p E 

[0, 1]9 
: "L

11
p11 ~ 1} and let 11 · 11 2 denote the Euclidean distance. If Q E M then 

there exists a p = (pA, ... ,pD,PI, ... ,p4,Po) E Sg such that IIPMII2 = 0. We have 

IIPMII~ (1- /ki(PA + Ps + pi))
2 

+ (1- q + qp,I(PA + Ps +PI)- /k2(PA +Pc+ P2)) 2 

+ (!k2(PA +Pc+ P2) - /k3(Ps + PD + P3)) 
2 

+ ((1- q)p,I(PA + PB +pi)+ qp,3(Ps + PD + P3)- /k4(Pc + PD + P4))
2 

To obtain IIPMII2 = 0 we need PA+Ps+PI = ...!..., PA+Pc+P2 = ...!..., Ps+PD+P3 =...!... 
IJ.I IJ.2 IJ.J 

and Pc + PD + P4 = ...!... which imply 
IJ.4 

and 

1 1 
PI = - +- = PA + PB +Pc+ PD +PI+ P4 ~ 1 

/ki /k4 

1 1 
~=-+-=~+~+~+~+~+~~1 

/k2 /k3 

This means that if Pi > 1 for either i = 1 or 2 then Q ~ M and we will show below 

that the system is in case Cl. 

Suppose now that the system is in case C2 or C3. Then there exists a vector 

v E M such that vi < 0 fori = 1, 2, 3, 4. For any v E M there exists p E S9 such 

that pN! = "L
11 

p11 M 17 = v. As each vi < 0 we get the following set of inequalities: 

From these inequalities it readily follows that 

PA + PB +Pc+ PD +PI+ P4 < l d PA + Ps +Pc+ PD + P2 + P3 < l 
P1 < """' _ an P2 < """' _ 

61]~ 61]~ 

These are the well known necessary conditions for stability for this system. 

Next we assume these necessary conditions hold and establish that either case 

C2 or C3 holds so that by Theorems 4.2.2 and 4.3.2 the process (3, rrr) can be made 

ergodic by an appropriate control policy. 
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Suppose that PI < P2 < 1. The vector 

( 
1 1 1 1 P2 - PI P2 - PI ) 

p = , , , , 0, , , 0, 1 - P2 
P2/-ii/-i2 P2/-ii/-i3 P2/-i4/-i2 P2/-i4/-i3 P2/-i2 P2/-i3 

has L_1Jp'l) = 1 with seven of the pry E (0, 1) and also L_ 11 pryM1J = Q. Further the 

4 x 4 matrix which has rows MA, M 8 , Me, M3 has determinant (1- p2) Ili /-ii > 0 

so these four vectors are linearly independent and hence Q E Int4 (M) so there is 

v E M with Vi < 0. The case p2 < PI < 1 is very similar- this time use 

( 
1 1 1 1 PI - P2 PI - P2 ) 

p = , , , , , 0, 0, , 1- PI 
PI/-ii/-i2 PI/-ii/-i3 PI/-i4/-i2 PI/-i4/-i3 PI/-ii PI/-i4 

When PI = p2 < 1 use the convex combination 

p = (-1-, _1_, _1_, _1_, 1- PI' 1- PI' 1- PI' 1- PI, (l- PI)2) 
/-i I /-i2 /-i I /-i3 /-i4 /-i2 /-i4/-i3 /-i I /-i2 /-i3 /-i4 

Now consider the transient case: if either PI > 1 or p2 > 1 the system must 

be in case Cl since Q tj M and M n R~ = 0. Thus by Theorem 4.2.1 the system 

is unstable under any possible control policy. In some cases it is easy to find the 

normal vector w of a separating hyperplane Lw ( 4.5) such that w T M'l) > 0 for all 

M'I)EM. 

Consider the following case, suppose PI > 1, p2 < 1. If q = 0 (i.e. two inde

pendent tandem queues) we can use normal vector wr = (1, 0, 0, a); for q = 1 (the 

Lu-Kumar network) we we can use W£ = (1, a, a, a), where a= J.L}+f where E > 0 is 

such that a> 1- __L, Given these w T M'l) > 0 for all M'l) EM is true. 
I-Ll 

Finally there are the cases where Pi ::; 1 for i = 1, 2 with one or both Pi = 1. 

These are in case C4 which we have discussed for N = 2 cases only in Section 2.3.3. 

Our results also apply to a generalised Niiio-Mora and Glazebrook model as 

depicted in Figure 4.2 which has Poisson arrival streams with arbitrary rates and 

with feedback of completed jobs. 

4. 5 Block pure controls 

Using block pure policies ITP in for models with N ;::: 3 queues makes the description 

of how the system is run more complicated. Remember the two queue model under 
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block policies, we have already seen that when block randomised policy are used only 

a maximum of four blocks is required while it is 5 for block pure policies. In FMM 

[11] Section 3.3 one can find the 15 possible cases for the three essential blocks of 

Z6, Z~, A 1 and A2 . When establishing the stability of the queueing network under 

the conditions of Theorem 2.3.4 we allow the number of blocks to change depending 

on the mean drifts and single out four general cases. For lower levels of control in 

Section 2.4, with four given blocks the number of all possible cases is 27 and this is 

when we have only two queues. 

From Example 4.1.1 we can see that there are seven essential blocks in Z~ (three 

axis, three two dimensional faces and the interior). Assuming that we would like to 

run the system with these seven blocks only and given that we know that the mean 

drift MTJ that is run in the interior has components i = 1, 2, 3 with M? < 0 we 

still need to check the interior mean drift against all the boundary ones. Loosely 

speaking we can have the following: all second vector fields are ergodic and ingoing, 

one of the 6 vector fields is ergodic but outgoing, there are 15 combinations in which 

two boundary faces can be outgoing, and so on. In the latter cases we will need 

more than seven blocks and think in detail about how to run the system for each 

case. Since we could see already how many cases there can be for Z~ we will try 

to avoid this possible but not practical splitting into cases for N ~ 3 and rather 

highlight some more general straight forward cases where block pure policies can be 

used. 

Consider case C3, where Q E IntN(M). The convex hull might fall into C3 

and the following situation is given: there is one mean drift vector Ma which has 

components Mi < 0 for all i = 1, ... , N while the convex hull of the remaining 

mean drifts M \ Ma falls into case Cl (i.e. is separable from the origin). From 

the proof of Theorem 4.3.2 we know that having only one mean drift vector with 

all negative components is not sufficient to establish the positive recurrence as the 

boundary behaviour might make the process unstable. 

We can guarantee stability if there are mean drifts Ma and Jl1i as given in the 

proof of Theorem 4.3.2 (see Appendix B). However there is another condition which 

together with a change in control strategy can leads to a stable system. 
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As we have seen in Example 4.2.1 and for the Lu-Kumar network our Section 4.4 

definition of regimes includes the following: For each subset Q E PN of the queues 

our model has a regime 'f/Q in which all servers outside Q are idle. The mean drifts 

are denoted as MQ of :=: under 'f/Q and the service rate is given by 

for j ~ Q, 

for j E Q 

This is a very natural assumption to make and, as we have seen in previous examples, 

it is the case for lot of models present in the literature (see for example the Jackson 

and Lu-Kumar network). If we know that such regimes 'f/Q exist then a case like 

case CIII in the proof of Theorem 2.3.4 cannot happen and neither can the situation 

given above where M\ Ma falls into case Cl. 

We can identify the two following sub cases of C3 which enable us to find block 

pure policies so that the N queue network is stable 

Ci There exists at least one regime "7a with mean drift Ma such that Mia < 0 for 

all i = 1, ... , N when all xi > 0. 

Cii There exists a v as in ( 4.5) with all vi > 0 so that for any queue i 

(4.6) 

Given the service rate as above, no feedback or routable arrivals, the first case Ci 

corresponds to the stable standard N queues in parallel denoted by M I M IN, with 

stability condition maxi A.d J-li < 1 - the lengths of all queues is reduced while there 

are jobs present and the servers just idle when there are no jobs in the queues. If we 

introduce feedback it corresponds to Jackson's network [21]. We will not consider 

Ci in any more detail but concentrate on Cii. 

The strategies we introduce here is to show stability in case Cii is what we call 

a cyclic or greedy strategy. We can formulate Cii as follows: 

Cii For a system with N queues there are L regimes 'f/t with mean drifts M
1

, 

l = 1, 2, ... , Land L ~ N such that Cii is true and 
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ML = {tPtM1 ERN : Pt E [0, 1] and LPt = 1}, 
1=1 l 

the convex hull of the M 1, l = 1, 2, ... , L only, falls into case C2 (given in Appendix 

A). The M 1 are such that we can reduce every queue i with at least one mean drift 

M 1• The extreme of this case is given by L = N which means that there are N 

mean drifts and each of them has only one negative component Mf < 0 while all 

the other components MJ for j =/: i are positive. 

Considering the extreme case its similarity to a polling system becomes clear. 

Given that L = N the model could be controlled in such a way that the queue 

length process 2 on Z~ looks like a polling system where queue i is emptied first 

and then the policy changes to a regime under which queue j can be emptied, and 

so on. See Example 1.3.1 for a brief description of polling systems. 

Different to polling systems, under our model assumptions service can be pro

vided to more than one queue and under all regime rJt which satisfies Cii service 

might even be provided to all N queues but only queues i E Q E PN are reduced in 

mean. 

Cyclic strategy For Cii if L :::; N consider the discrete time queue length process 

2 in state a E Z~. Assume that the system is run under a policy IJP so that the 

mean drift M 1 which is in force at time n reduces the length of the set of queues 

Q1. Given that started in a state a E Ba (an interior block defined in Appendix B) 

at time n we know that after a finite amount of time n 1 the process will first hit a 

state a E OQ
1 
Z~ (the set of the boundary states where queues i E Q1 are empty). 

Once 2 is in such a boundary state following the cyclic strategy the policy choose 

the mean drift from all M 1 which reduces queues Q1 as follows. 

Choosing a feasible regime Given that the process 2 is in state ~(n) = a E 

OQ
1 
Z~ having run the system under regime 'r/t using the cyclic strategy, the feasible 

regime 'r/m is given by 

m = min {m = l + e : ~ ( n) = a ~ 8Qm Z~}. 
e={1,2, ... £} 

This means, if we check all regimes 'r/t+1 , 'r/t+ 2 ... then 'r/m=L+e is the first regime 

(following the cyclic order) under which we reduce queues i so that all Xi > 0 and 
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~(n) =a= (x1, ... ,xN) E 8Q1 Z~ fori E Qm. We assume that selecting a feasible 

regime can be done instantaneously. 

Corollary 4.5.1 Under Cii given a cyclic strategy which chooses feasible regimes TJ 

the Markov chain (3, TIP) is positive recurrent. 

Proof: Since the condition Cii requires that there exists a v as in (4.5) with all 

vi > 0 so that for any queue i :3 TJ ER= {TJ: vTMTJ < 0} with M? < 0 we 

know from the proof of Theorem 4.2.2 combined with Corollary 4.3.1 that setting 

Sn = VT~(n) in Theorem 1.2.1 the process in stable for all a E z~. 

On the boundary we know that once we hit a state a E 8Q1 Z~ under 771 we next 

change to regime 'TJt+ 1. This means that if the process 3 is in ~ ( n) = a E 8Q1 Z~ 

at time n we run the system under a new mean drift M 1+1 which reduces queues 

i E QI+I if Q1 n Ql+l = 0, then we have 

If Ql n Ql+l =/= 0 we can have the following two possibilities (a) the boundary 

state is a ~ aQl+l z~' i.e. it is a state of the boundary of the set Ql but not Ql+l 

in which case we run M 1+1 until we hit 8Q1 + 1 Z~ and start again; or (b) ~(n) = 

a E aQl z~ n aQI+l z~ in which case the regime chose is 1]m such that the feasibility 

condition above is fulfilled. 

Since we have assumed that switching regimes and choosing a feasible regime 'T/m 

does not take any time we know that E(Sn+I - Sn I'Hn, ~(n) = a) = w T M"~ < -E 

is true for all a E Z~. D 

Greedy strategy This strategy works as follows: when :=: is in a boundary state 

~ ( n) = a E 8Q1 Z~ after being run under regime 'T/b applying the greedy strategy 

mean we choose regime 'T/c with mean drift !vfc, such that 

(1) Mc reduces the set of queues Qc which contains the longest queue i, with 

i = max{j: Xj = maxc=l, ... N(xc)} given that ~(n) =a E 8Q1 Z~, and 

(2) MC is feasible if ~(n) =a tJ. aQmz~. If JvfC is not feasible, and there is no 

other regime 'T/d which reduces queue i and is feasible, then the greedy strategy 
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selects a regime Tfe which reduces (in mean) the next longest queue j for which 

~(n) =a tf_ OQez~. 

Corollary 4.5.2 Under Cii and the greedy strategy which selects feasible regimes TJ 

the Markov chain (3, fiP) is positive recurrent. 

Proof: Follows directly from the proof of Corollary 4.5.1. If we hit the boundary 

~ ( n) = a E OQb Z~ under regime T/b given the greedy strategy regime Tfc is selected 

which reduce i E Qc where i is the longest queue at time n. As before we check if 

Qb n Qc = 0 and run T/b if this is the case. Otherwise (Qb n Qc i= 0) there are two 

possibilities: (a) there is another T/d so that CII is true which reduces the longest 

queue i; or (b) we choose a regime T/e under which the second longest queue j is 

reduced. 0 

Note: Given our earlier assumption about the service configurations under TJQ 

we know that if regime T/b is not feasible after 3 hits a state a E OQa Z~ because 

Qa n Qb = {j}, then there is a regime Tfc for which all components of M 7
7c but j are 

identical to those of MTJb and component j has in MTJc has /-Lj = 0. 

4.6 Further Examples 

In this section we would like to discuss some more examples of queueing networks. 

The first one we look at is an example of a three queue system where one queue 

requires simultaneous processing by the two only service stations in the system. 

We show how our assumptions about management regimes can straightforwardly 

deal with models of this type. We also show how the three queue example can be 

controlled so that it is stable under a block pure strategy /policy introduced in the 

previous section. As another example for a model run under a block pure strategies 

can be found in a paper by Tassiulas and Bhattacharya [37]. We will state their 

model and results briefly and compare them to ours using an example. 
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4.6.1 Customers with simultaneous service requirements 

Networks with customers which have simultaneous service (or station, or processor) 

requirements can be found for example in Dai and Lin [8] and Hansen, Reynolds and 

Zachary [19]. We will only consider one example to demonstrate how our methods 

can be applied. The example is the following three queue model. There are three 

Poisson arrival streams with rate ,\ i = 1, 2, 3 and two stations where customers 

are served with exponentially distributed service times with parameter /-lki where k 

is the service configuration under regime T] = (k, s) and i indicates which queue i 

is served. Customers in queue 1 are served at station 1 and customer from queue 2 

are served at station 2, while serving customers that are waiting in queue 3 requires 

the attention of both stations 5 1 and 52 , see Figure 4.3. This means /-lki = 0 for 

i = 1 and 2 if J-ik3 > 0 and J-lki > 0 for i = 1 and/ or 2 if J-ik3 = 0, leaving out the case 

where no queue receives service. 

Figure 4.3: Three queue model where queue Q3 requires the attention of both service 

stations 51 and 52. 

We have regimes T]12 with mean drifts 

when queues 1 and 2 receive service, regimes ry3 with mean drifts 

if queue 3 is served and regimes T}j with 
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when either queue 1 or queue 2 are served and p ~ max7J(Li ,\ + /-Lk1 + /-Lk2, Li Ai + 

/-Lk3)· 

Let us consider the possible ways in which this three queue model can be stable. 

The convex hull M which is formed by the mean drifts above would have to be 

either in case C2 or C3. If C3 is true it is obvious that for this model to be stable 

condition Cii has to be true (as Ci is impossible). We will assume that we are in 

case Cii (a model with M that falls into C2 can be controlled to be stable in exactly 

the same way). 

We can have the following situations: (i) there is at least one regime '1]12 and one 

regime '1]3 such that there exists a v E R! for which v T M 12 < 0 and v T M 3 < 0, (ii) 

there are three regimes "7i so that for v E R! we have v T JVJi < 0 fori= 1, 2, 3, or 

(iii) both. In any of these cases we can apply the cyclic or the greedy strategy and 

run the system using pure (or non-randomised) regime mean drifts. 

Given that we are in a state a E Ba c Z! away from the boundary and that the 

system is run under a regime "73 we know that M 3 only reduces the length of queue 

3 in mean while queue 1 and 2 have only arrivals. After some finite time we will hit 

the boundary OQ3 Zg. We can see that Q3 n Q12 = Q3 n Q1 n Q2 = 0 and if we have 

a regime '1]12 that falls into Cii we can run the system under this regime until 3 hits 

~(n) =a E OQ 12 Zg at which point it is feasible to select regime '1]3 . 

In general for networks with customers which have simultaneous service require

ments with i = 1, ... , N queues and j = 1, ... , J service stations, we know that if 

customers in queues Q E PN require the attention of the server at stations S E PJ 

(where PJ is the collection of non-empty subsets S of stations j) then 

Q {0, 
1-Lki = 

/-Lki' 

if queue i tJ_ Q but requires station(s) S under k 

if queue i E Q is served at station(s) S under k 

Note that under our assumptions about service configurations k and regimes "7 it is 

also possible to model a queueing system where the simultaneous service require

ments change from one regime to another. 
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Figure 4.4: The N + 1 nodes of the GCQS without feedback. 

4.6.2 The generalised constrained queueing system (GCQS) 

We will now discuss the model and results in Tassiulas and Bhattacharya [37], see 

also Example 1.3.4. Note that the notation used for describing the model is the 

same as in [37] and we state whenever any of our results and notations are used. 

The network has N + 1 nodes where the i = 1, ... , N nodes are stations or queues in 

our language, while the N +1-st node represents the outside world, customers that 

reach N + 1 have left the system, these nodes are depicted in Figure 4.4. There is an 

independent Poisson arrival stream with parameter Ai for each node i. The service 

time distribution is general and identical within each node i with mean f3i. There are 

k = 1, ... , K servers which are allocated to nodes i where they serve at the required 

rate. After being served by server k at node i the customer might go to node j with 

probability p(i,k,j). There is aN x K schedule matrix U = {uik} where uik = 1 

means that server k can serve customers at node i, uik = 0 otherwise. Tassiulas 

and Bhattacharya's [37] aim is to find a server allocation policy that stabilises the 

network under the condition that only feasible schedules can be applied. A schedule 

is feasible if no more than K serves are needed, the set of feasible schedules includes 

schedules under which servers idle at empty queue. 
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Modelling the departures from the network through node N + 1 is an essential 

part of Tassiulas and Bhattacharya's [37] analysis. Let <Pii denote the flow from node 

i to node j, then the set of flows which satisfy what they call the flow conservation 

equations is given by 

:F = {</J E RNxN+
1 

: Ai t </Yji = ~ </Yij 1 i = 1, · · ·, N} · 
j=1 j=1 

So :F contains those flows for which the number of customers that are served at node 

i is equal to the number of customers that reach node N + 1 for all i = 1, ... , N. 

Tassiulas and Bhattacharya [37] also construct a convex hull. The components of 

their convex hull S are matrices S1 with elements 

1 K 

stj = (J L u~kp(i, k,j), i::::; N, j::::; N + 1 
k=1 

which gives the maximum flow matrices under a possible, feasible server schedule 

u1 E U. The convex hull is gives the flow achieved by mixing all schedules u1 E U is 

S = { t Ct 51 
: t Ct :S 1, Cl ~ 0} . 

1=1 1=1 

Given these two sets F and S Tassiulas and Bhattacharya [37] state their first 

necessary result, saying that it is possible to allocate the servers so that the system 

is stable if :F n S =f. 0 (see Theorem 1 in [37]). For the necessary and sufficient 

stability results they construct a policy 1r* which is rather similar to the greedy 

strategy described above. The policy 7r* runs a server allocation schedule u* for 

some time so that the longest queue in the network is reduced. Tn denotes the 

sequence of times when the queue length's are checked and a new decision about the 

schedule u* is made. Given this policy 7r* Tassiulas and Bhattacharya [37] conclude 

that if F n S 0 =I= 0 (where S 0 is the interior of the convex hull) then 1r* stabilises 

the GCQS (see Theorem 2 in [37]). Observing the process at times tann guarantees 

that the conditions of Theorem 1.2.1(i) hold. 

We would now like to demonstrate how our convex hull M relates to the set of 

flows and the convex hull of Tassiulas and Bhattacharya [37] by means of a three 

queue version of the parallel processing example. The parallel processing network has 
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customers that are split into component i where each component requires a server 

and all components finish service at the same time. For the particular example we 

would like to consider this works as follows. There are i = 1, 2, 3 nodes, a Poisson 

arrival stream at rate .. \ and at node i the customer is split into i components 

which are processed by i servers simultaneously at the identical mean service rate 

f3i (i.e. all i components are finished at the same time and enter the next queue as 

one customer). The number of servers in the parallel processing network is K = 6, 

so that there can be i servers for each node i. There are seven feasible service 

schedules u E U, one where all nodes i = 1, 2, 3 receive service, three where two 

queues are served (queues 12, 13 and 23) and three where only one queue is served. 

After completing service at queue i a customer is fed into queue j with probability 

Pii while we assume that Pii = 0 for all i. The probability for customers leaving the 

system is given by PiO = 1 - Lj Pii. 

The total traffic at node i is given by >. = (I- P) - 1 >. (as in Section 4.4) which in 

this example gives the unique solution to the flow equation in [37]. The convex hull 

S has seven matrices S 1 with elements Sfj = -/J;Pii Lk u~k with i :::; 3 and j :::; 3 + 1 

(for the fourth node that is used to model the exiting jobs). The necessary condition 

F n S-=!= 0 reduces to 

,\1 

,\2 E convex hull 

).3 

Jl Lk U1k 

1" Uk :uEU !h L.Jk 2. 

J3 Lk U3k 

We can adapt this example quite easily, the only major change is that we assume 

exponentially distributed service times. The arrival rates are given by >.i for each 

i and we have exponentially distributed service times at rate /-Lki· There are seven 

service regimes rt = ( k, s) as mentioned above. Under our modelling assumptions 

a customer at queue i is not split into components but just served under a specific 

regime. This works since a service configuration under our assumptions could mean 

there are in fact i servers working parallel but we do not care as all i components 

finish service at the same time and are fed into other queues as one customer and 

we look at the changes to queue length only. We get the following mean drift 



4.6. Further Examples 107 

components: 

Our stability criteria for this type of model are given in Example 4.2.1 of the Jackson 

Network. 

Using the example above we can see that the necessary and sufficient stability 

criterion in [37] given by F n S 0 =!= 0, is only true if [(I - P)- 1 .A]i < J.li for all i, 

which corresponds exactly to our results for Example 4.2.1 in Section 4.2. Thus the 

result that F n S 0 =!= 0 corresponds to our the convex hull M intersecting with the 

negative quadrant. 



Chapter 5 

Discussion 

A very general queueing network that can be controlled at several levels has been 

introduced. The aim was to determine criteria for which control policies can be 

found, these control the routable arrivals or inputs, the service configurations and 

with it the feedback probabilities, so that the process (2, II), which is Markov if II 

is stationary and Markov, is stable; or when the process is unstable, no matter what 

controls are applied. 

The novelty of our approach is that we look at the mean drifts for each possible 

system configuration or under each possible management and then ask which control 

to apply so that the network can be stable. As we have demonstrated in Chapter 

2 and more so in Chapter 4 this leads to straight forward conclusions about the 

stability of the queueing network as we do not limit our search by making prior 

assumptions about the control. 

We do admit that limiting our analysis to queue length processes 2 which are 

Markov is restrictive. Chapter 3 however gives an idea of how many different ser

vice time and arrival distributions are possible while still keeping the Markovian 

assumption. The main problem with Markovian arrival processes and phase type 

service is the formulation of the state space that the queueing process lives on and 

produce mean drift vectors that give information about the queue length changes. 

One queueing model in the literature which is similar in terms of control but 

more general with respect to the inter arrival and service time distributions is the 

stochastic processing model given in Dai and Lin [8]. Their model has N + 1 buffers or 
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nodes, K processors and J what they call activities. These activities are comparable 

to our management regimes rt in that the service times of customers are determined 

by the activity which is active at a processor and not the processor. Each activity 

j can process customers at a number of processors. They distinguish one input 

buffer 0 from the N service buffers and a number of the processors are only input 

processor, there are also input activities. Under our assumptions we can model 

a queueing network which has only one external arrival stream to one queue (see 

Section 4.4) but the stream needs to be Poisson and the arrivals to all other queues 

in the network would be determined through feedback probabilities and by the 

exponentially distributed service times at this queue. 

In Dai and Lin's model activities can be allocated to each processor, and the 

processing time of a customer depends on the number of customer already processed 

under activity j (this generalistaion is not possible for our model as we do not 

remember the number of customers which are served under a regime and assume 

exponentially distributed service times). After completion of processing time the 

customer can be routed to another node. The activities are allocated in such a way 

that the customers are processed under maximum pressure, an allocation is only 

feasible if no processor is idle, i.e. no activity is wasted at an empty buffer. 

This assumption about the feasibility of the activities is in some ways rather 

restrictive and leads to models such as the one in Figure 5.1 (from Section 6 in [8]) 

being unstable. This is because the activity (activity 6) under which all buffers are 

served (indicated by the solid line) can be unfeasible most of the time, the result 

being that queue 3 is growing infinitely. 

Due to the way in which we model our service regimes a problem like this (given 

our more restrictive assumptions about service and inter arrival times) would not 

occur. As Dai and Lin [8] point out, if one would drop the feasibility assumption 

activity 6 could be run all the time, leaving the servers or parts of the processor to 

idle when there are no jobs in the queues, the system would be stable. 

Dai and Lin [8] assume for their first result, Theorem 2, that processors can be 

split, i.e. two activities that need the same processor can split the attention of this 

processor according to some function. This is equivalent to our assumption about 
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Figure 5.1: Dai and Lin's [8] counter example under the feasibility assumption. 

The boxes indicate buffers and the circles processors, buffer 0 and processors 1-5 are 

for the input, so are the activities 1 to 5. There are three service activities: activity 

6 (indicated by the solid lines) under which all buffers are served, activity 7 (dotted) 

and activity 8 (dashed). 

randomised controls where pure regimes rt are mixed according to some randomised 

rule IJT. Dai and Lin also find that it requires additional assumptions to run the 

queueing system if the processor cannot be split. The methods that Dai and Lin 

use to show the stability of their model are rather different from our which is why 

we will not go into further details with the comparison of the results here. It seems 

however that the approaches to control and the model (except for the Markovian 

assumption) are very similar and lead to similar results. 

Another assumption made by Dai and Lin [8] which we would like to comment on 

is that of preemptive service. This idea has not been mentioned at all in our model. 

Recall the assumption about switching between different management regimes rt we 

made in the beginning; we assume that switching takes no time is possible just after 

the event of service completion. This means that if a job completes service at queue 

i we can change service regime while all the other N- 1 jobs that could possibly be 

in service at this time are preempted and are served again under a different service 

time whenever service is next provided to their queue. For the queue length process 

we consider this means that we have a jump of the form -ei or ±( ei - ej) (leaving 



Chapter 5. Discussion 111 

or re-entering) after service completion, we do not remember half served jobs as is 

the case in Dai and Lin [8]. It would however be possible in our model to include 

a short waiting time just before switching in which all unfinished services can be 

completed. Note that we would need to make sure that under any given control 

policy there are only a finite number of regime switches. 

Another extension of our model which is possible but not considered here is to 

introduce batch arrival and batch service, both are possible if the batch size is finite 

since the Lyapunov function results apply as long as the jumps are bounded. 

Finally I would like to say that I think that the model is sufficiently general even 

under the Markov assumption and the results, or at least the main idea which is 

captured in the convex hull, are easy to understand. It also shows that it is better 

to start asking for stability in general and then find suitable control policies than 

doing it the other way round as it is always easier to loose generality. 
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Appendix A 

Process classification Pull-out 

Component i of the regime mean drifts 

M(=p-1 ( L >.s+ tllkiPJ;-Jlk;) , n = (k,s) 
s,•CSJ=i i=• 

(A.O.l) 

for queues i = 1, 2, ... , N with p defined asp 2:: maxk{L;5 >.s + L:;Jlk;}. 

T he convex hull of the regime mean drifts 

M = { ~p,M" E R N: p,1 E (O,lj and ~p,1 = 1} (A.0.2) 

and it interior lntN(M) = {z EM: B(z,() CM for some ( > 0} , where B(z,() = 

{z' E RN: lz - z'l < (}for z E RN. 

Any set of parameters for the process (=:,IT) falls into one the following four 

exclusive cases: 

Cl (0, ... , 0) = Q fj; M and there exists a state a E Z~ and a hyperplane 

(A.0.3) 

through a with normal vector v separating a + M from the origin Q. If there 

exists one such a E Z~ then there is an infinite cone of such a . 

C2 Q 1: M and there is no a E zz for which a hyperplane L.(a) exists separating 

a+M from Q. 

C3 IntN(M) is non-empty, Q E M and there exists no a E zz, v E RN such that 

a hyperplane L.(a) separates a+ IntN(M) from the origin. 
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C4 Q is a boundary point of M and either IntN(M) = 0 or a supporting hyper

plane to a+ M at a separates the origin from a + lntN(M) for each a in 

some cone within zz. 
These cases are depicted for N = 2 in Figure A.l . 
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Figure A. I: From top left: Cl, C2, and below C3, C4 for N = 2. 



Appendix B 

Proof of Theorem 4.3.2 and 

Corollary 4.3.3 

The proof of Theorem 4.3.2 given here is a slightly extended version of the proof 

given in our first paper MacPhee and Miiller [27] and was written by lain MacPhee. 

We will establish Theorem 4.3.2 with a linear Lyapunov function and appropriate 

waiting times Nn, n = 1, 2 ... whenever :=:visits states a E &Z~ where queues are 

empty. We start with a calculation that is needed in the proof of Theorem 4.3.2. 

The idea is the same as for two queues, since we would like to avoid the boundary 

we choose the control policies so that the boundary is transient, i.e. the number of 

visits to states a E &Z~ is finite and in fact decays exponentially fast, while there 

is some positive probability that the time it takes to reach the the boundary from 

any state a is infinite. 

Lemma B.O.l Consider a process X on state space Z~ with bounded jumps that is 

adapted to some filtration F = {Fn} and satisfies 

E(Xj(n + 1)- X1(n) I Fn) ~ E: > 0, j = 1, 2, ... , k 

for all n {for X(n) = a E &Z~ we assume that X(n + 1) = a+ L:jEJ(a) eJ where 

J(a) = {j : a1 = 0} i.e. X jumps back to Z~ as quickly as possible). There exist 

constants C and <52 > 0 such that for any a E Z~ 

P(X(n) E &Z~ I X(O) =a)~ ce-nli2 

118 

for all n ~ 1 . 
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Further there exists p(c:) > 0 such that Tx = min{n :2: 1 : X(n) E 8Z~} satisfies 

P(Tx = oo I X(O) =a) :2: p(c:) for any a E Z~ . 

Proof We can apply Theorem 1.2.1(ii) to each component Xj of X. We find that 

for any a E Z~ and for all n :2: 1 

k 

P(X(n) E az~ I X(O) =a) ~ L P(Xj(n) = 0 I X(O) =a) 
j=l 

k 

< L P(Xj(n) < J1n I X(O) =a)~ kC'e-n°2 

j=l 

for some constants C' > 0, 61 E (0, c:), 62 > 0 which is independent of a. Using these 

inequalities the proof of Theorem 1.2.1(ii) now guarantees the existence of p(c:) > 0 

such that P(Tx = oo I X(O) =a) :2: p(c:) as required. 0 

Proof of Theorem 4.3.2 The content of Theorems 2.4.1 and 2.4.2 show that it is 

not sufficient to ensure that 3 has negative drift in all components on Z~ as this 

may lead to difficulties on boundary faces. The scheme of the proof is to define a 

policy rrr with blocks and drifts so that :::: is pushed away from the boundary of its 

state space but decreases in the interior so the jump distributions on its boundary 

faces have no major influence on its long term behaviour. 

We use as our Lyapunov function f (a) = 2::=~ ai, the total number of jobs in the 

system, and we study the process Yn = J(~(Nn)) = 2::=~ ~i(Nn) where the Nn are a 

strictly increasing sequence of random times where INn+l - Nnl is bounded for all 

n :2: 0 which we must find. 

We start by defining the blocks on which our randomised policy will be based. 

Our assumptions on routing ensure that 3 is irreducible under all allowed policies 

so we do not need to worry about a finite set of states near .Q when establishing 

ergodicity. For some constant b to be determined so it is sufficiently large, let 

Ba = {a E Z~ : ai :2: b, i = 1, ... , N} and let 

Bi ={a E Z~: i = min(m: Zm = max{a1} ), Zj < b for some j} 
J 

for j = 1, 2, ... , N. In addition to these interior sets we define boundary sets 

EQ = {a E Z~ : ai > 0 for i E Q, ai = 0 for i E Q'} 
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for each Q E PN, where Q' = {1, ... , N} \ Q. Our blocks are the sets Bi and EQ. 

If Q E IntN(M) there exists ~ > 0 such that M ::J B(Q, ~) (the convex hull 

contains the origin with a little ball around it, or Q is not on the boundary of M). 

We choose randomised policies 1r[ on the blocks Bi with mean drifts Mi so that for 

i =a, the expected mean drift Ma has components Mja = -~, j = 1, ... , N while 

fori= 1, ... , N 

. { -~, j = i 
Mj = ~IN' j :/: i 

This ensures that the mean drift in the interior block Ba is negative, while on the 

blocks Bi for i = 1, ... , N which are close to the boundary the mean drifts drive 

the process towards Ba. 

On the boundary az~ a policy IIQ on blocks EQ is such that 

P(~(t + 1) = o: + ei 1 ~(t) = o: E EQ n z~, rr0) > o for all ·i E Q' (B.0.1) 

i.e. we route some arrivals to empty queues, again aiding our aim to drive away from 

the boundary. By construction Sn = L:~=I ~J(n) satisfies 

N { - N ~ , 0: E Ba 
E(Sn+l- Sn I ~(n) = 0: E Z+) = 

"IN B ~ >_ 1 -u , 0: E i 1 • 

so this process is a strong supermartingale on Z~ and we can set Nn+I = Nn + 1 

whenever ~(Nn) E Z~. It remains to define Nn+I when ~(Nn) E 8Z~ so that we 

can apply Theorem 1.2.1(ii). 

Consider the evolution of :=: started from & E EQ n { o: E Z~ : o:i ~ b} for some 

i E Q over a period of tb < bl3 steps (b is used in the definition of Ba above). It 

spends some time in az~, then enters Z~ for some number of steps and may return 

to 8Z~ before time tb, repeating this pattern. Let Wb denote the number of distinct 

sojourns in Z~ by time tb and let o-n, T 11 denote the lengths of the successive sojourns 

in az~ and z~' n = 1' 2, ... 

The boundary reflection assumption (B.0.1) on (3, IT) implies there is some Pa > 

0 such that under IY, independently of o: E 8Z~ 

P(~(N) E z~ 1 ~(O) = o: E az~) ~ Pa =? P(o-n > t + N I o- > t) ~ 1- Pa 
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i.e. each sojourn of (3, IF) in 8Z~ is stochastically smaller than some random vari

able V with geometrically bounded tails and mean v say. Further, from our assump

tion of bounded jumps, there exists a constant K, independent of a, such that 

E(Sl -So I ~(0) =a) :s: /'\,for all a E az~. 

so the expected change to Sn during each sojourn in az~ is bounded by KV. 

Now we estimate Wb, the number of sojourns in 8Z~. For any j such that 

aj ~ b/3 we know that component ~j cannot reach 0 by time tb as its jumps are 

bounded below by -1. This applies particularly to ~i as by assumption &i ~ b. For 

j E J(&) = {j : &j < b/3} we observe that ~j(n) < ~i(n) at all times n :S: tb so 3 

cannot reach Bj before time tb. Hence, for these components, 

As the projection of 3 onto components ~j, j E J(&) satisfies the conditions of 

Lemma B.0.1 and the other components cannot reach 0 by time tb it follows that 

the lengths Tn of excursions in Z~ satisfy 

n-1 

P ( Tn ~ tb- L Tj I ~(0) = & ) ~ P( Tn ~ tb I ~(0) = &) ~ p(b.j N) 
j=l 

for each n :S: Wb and this estimate is uniform in b. Hence the number of separate 

sojourns in z~ by time tb, w+ say, is bounded by a geometric random variable with 

parameter p(b./N) with mean (1- p(b./N)t1
. As Wb :S: W+ + 1, there is some 

finite w ~ E(Wb) for all b. 

Let In = IWn)EZi} for n = 1, 2, ... and In = 1 -In. We have shown that the 

total time, l.:~=o In, spent by 3 in az~ up to time tb is bounded by 2.::~ 1 Vn, a 

variable with geometrically bounded tails and further 

tb 

E(L In I ~(0) = & ) :S: vw 
n=O 
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We see now that for n ~ tb and & E EQ n {a E Z{/ : ai ~ b} for some i E Q 

n-1 

E(Sn- So I ~(0) = &) =I: E(Sj+1 - sj I ~(0) = &) 
j=O 

n-1 n-1 

l:::E(SJ+1- S1 1 Ij)E(Ij 1 ~(o) = &) + l:::E(SJ+1- s 1 1 Ij)E(lj 1 ~(o) = &) 
j=O j=O 

n-1 

-n!::./N +I: {E(Sj+1- sj I !j) + !::./N}E(lj I ~(0) = &) 
j=O 

n-1 

< -n!::./N + (K: + !::./N) I: E(lJ I ~(0) = &) 
j=O 

and hence 

IE(Stb- So I ~(0) = &) + tb!::./NI ~ (K: + !::./N)vw 

By choosing tb (and hence b) large enough we can be sure that 

E(Stb -So I ~(0) = &) ~ -tb!::./2N < 0 

Choosing suitably large b and tb we set our stopping times 

and by Theorem 1.2.l(i) with D = Nb we see that the hitting time to {a E Z{/ : 

Li ai ~ Nb} is finite and our process (3, IF) is ergodic. 0 

Proof of Corollary 4.3.3 We do not have complete freedom to choose directions 

Mi now but we can still use the proof of Theorem 4.3.2. 

If Q E M \ IntN(M) but there is no a E Z~ with a supporting hyperplane 

Lv(a) that separates a+ IntN(M) from Q then any supporting hyperplane Lv(a) 

with v T f3 < 0 for f3 E IntN(M) has vi ~ 0 for all i. In addition, the line segment 

joining Q and a must intersect a+ IntN(M) for all a E Z~ and so, for small enough 

o > 0 we have -oa E IntN(M) for all a E Z~. Hence there exists!::.> 0 such that 

IntN(M):::) {z ER~: lzl <!::.}i.e. IntN(M) contains a small ball intersected with 

the strictly negative orthant. Specifically this means there is a randomised strategy 

1r a with mean drift vector M a such that Mia < 0 for each i. 

The regimes available at states of the form a = aiei E 8Z{/ all have zero service 

rate at all queues j =1- i. As we can route arrivals to any queues we know for each 
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i = 1, 2, ... , N there is a randomised strategy 1T'i with mean drift vector Mi such 

that Mj > 0 for all j =J. i. As v =J. 0 and v T Mi ~ 0 for each i it follows that Ml < 0 

and vi > 0 for each i. 

If at all a E ez~ there are regimes TJ available with V T M11 < 0 for some V then by 

choosing regimes appropriately the weighted total queue process v T ~ ( t) = 2.:.::~ vi~i ( t) 

can be made a strong supermartingale bounded below by 0 and ergodicity of 2 

follows as in Theorem 4.2.2 as all vi > 0. 

If there are boundary faces where the only available regimes TJ satisfy v T M11 = 0 

then we can apply the argument of Theorem 4.3.2 to the process v T ~(t) using the 

strategies with drifts M 0 , Ml, ... , MN found above. D 




