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ABSTRACT 

Carbon nanotubes (CNTs) have attracted considerable research interest owing to 

their exciting properties and potential for a wide range of applications. However, major 

challenges must be overcome before these applications can be realised. As-prepared 

CNT material contains a significant proportion of impurities, such as amorphous carbon, 

fullerenes and metal catalyst particles. The raw CNT material must be purified before the 

CNTs can be studied and utilised. Also, CNTs tend to aggregate into bundles or "ropes", 

and have poor solubility in common solvents, making their handling and processing 

extremely difficult. Also, many applications require individually separated CNTs. To 

improve the solubility of CNTs, and amenability to processing on a large scale, chemical 

modification of CNT surfaces is necessary. To this end, non-covalent as well as covalent 

strategies have been developed. However, chemical modification may perturb the 

electronic structure of CNTs, thereby compromising their interesting properties. The 

challenge, therefore, is to develop chemical modification routes that improve CNT 

solubility while not seriously affecting their properties. 

In this work, we firstly study the problem of purification of as-produced CNT 

material. We have resolved a major controversy concerning the use of oxidising acids for 

purifying CNTs, which has profound implications for the spectroscopy and subsequent 

chemical modification of the CNTs. Secondly, we have developed a route for the non­

covalent modification of CNTs by tertiary phosphines. This method has the advantages 

of significantly improving the solubility of CNTs in organic solvents while being 

extremely simple, not seriously perturbing the CNT electronic structure, as well as not 

rendering large areas of the CNT inaccessible~ Thirdly, we describe a method for the 

covalent derivatisation of CNTs based on reduction, followed by electrophilic 

substitution. This route is considerably more facile and versatile than other covalent 

functionalisation methods reported to date, and does not cause significant disruption of 

the CNT electronic structure. Finally, we demonstrate the covalent attachment of formyl 

(-CHO) groups to CNT walls, which could potentially open the gateway for a plethora of 

of coupling and modification reactions. 
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Chapter 1 

1. INTRODUCTION 

1.1 Overview 

Carbon nanotubes (CNTs) are materials related to both graphite and fullerenes. 

They have attracted considerable research interest across a range of disciplines, from 

physics and chemistry through materials science and medicine to engineering, owing to 

their extremely interesting properties and potential for a range of applications. 

The discovery of CNTs is overwhelmingly attributed to Iijima (1991) 1
• 

However, these nanostructures may have been synthesised and observed on several 

earlier occasions 2
-4. But it was Iijima's report 1 which triggered the explosion of 

research on CNTs, thanks to the discovery of fullerenes in 1985 5
, and the burgeoning 

interest in nanoscience and nanotechnology in the early 1990s. 

1.2 Structure of carbon nanotubes 

Ideal CNTs, also called "buckytubes", can be thought of simply as sheets of 

graphite rolled into seamless cylinders, the ends of which are capped by fullerene 

hemispheres (Figure 1-1 ). It follows that the carbon atoms comprising CNTs are sp2
-

hybridised. CNTs may consist of a single cylindrical shell or several coaxial cylindrical 

shells of increasing diameters, known as single-wall (SWNTs) or multi-wall carbon 

nanotubes (MWNTs) respectively (Figure 1-2). The spacing between the walls in 

MWNTs is approximately the same as that between the layers of graphite i.e., 3.4 A. 

SWNTs 6
• 
7 were discovered shortly after MWNTs. 

1 
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(a) 

(c) 

(b) 

Figure 1-1 

Equilibrium structure of(a) graphite, (b) fullerene and (c) carbon nanotubes. 

CNTs are high aspect ratio materials with diameters of the order of nanometres, 

while their lengths could be of the order of microns. The smallest diameter for a CNT 

has been found to be 0.4 nm, for the innermost shell in an MWNT 8
, while the smallest 

diameter for a single-wall carbon nanotube has been reported to be 0.43 nm 9. 

Figure 1-2 

Transmission electron micrographs showing multi-wall carbon nanotubes (Ref. 1). 

Depending on the "direction of rolling" of graphene into seamless cylinders, it is 

possible to obtain nanotubes of different "helicities" or "chiralities" (Figure 1-3). 

2 
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(a) (b) (c) 

Figure 1-3 

CNTs of different helicities: (a) zigzag, (b) armchair and (c) chiral. 

The circumferential periodicity of a nanotube can be described by a chiral vector, 

Ch, which connects two crystallographically equivalent points on the graphene lattice, as 

shown in Figure 1-4. The chiral vector is determined in terms of the graphene lattice 

vectors, a1 and a2, as 

Equation 1-1 

where nand m are integers. The diameter, d, ofthe nanotube can be determined from the 

equation 

d (/nm) = 0.0783 x --J(n2 + m2 + nm) Equation 1-2 

In other words, the structure of a CNT can be completely described by the indices (n, m). 

For example, Figure 1-4 illustrates the case of a (5, 2) nanotube. A zigzag nanotube will 

have the indices (n, 0), and an armchair nanotube (n, n). Alternatively, the wrapping 

angle (also called chiral angle), e, is a useful measure ofthe helicity ofthe nanotube. It is 

the angle between the zigzag direction of graphene and the chiral vector of the nanotube. 

The value of e is oo for a zigzag nanotube, 30° for an armchair CNT, and anything 

between 0 and 30° for a chiral nanotube. 

3 



Chapter I 

tube axis . . 
• • 

Figure 1-4 

zlgzag 

(n, 0) . . ..... 

. .J 8 
A ······ eh 

C,,=5a,+2a,=(5. 2: 

··· .... 
armchair 
(n, n) 

Schematic illustration of the roll-up of a graphene sheet to form a carbon nanotube, showing the graphene 

lattice vectors a1 and a2, chiral vector eh. and nanotube indices (n, m). 

1.3 Synthesis 

1.3.1 Arc-discharge 

Iijima had observed CNTs in the soot discharged by arc evaporation 1
, a process 

quite similar to that used for the large-scale synthesis of fullerenes 10
• Other methods 

have since been developed for the synthesis of CNTs, and are described in detail below. 

In this method, an electric arc is struck between two pure graphite electrodes in an 

inert atmosphere, such as of helium or argon. The arc produces temperatures of around 

3000°C, causing the graphite to evaporate. CNTs are one of the products in the soot 

collected at the cathode, along with other graphitic nanostructures such as fullerenes and 

multi-shell spherical polyhedra ("buckyonions"), and amorphous carbon. The 

optimisation of this process to maximise the yield of CNTs to gram scales was soon 

demonstrated 11
• The purification of this soot to obtain CNTs is dealt with in Chapter 2. 
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When the graphite anode is doped with metals such as cobalt, nickel or iron, the 

selective formation of single-wall CNTs is observed 6
' 
7

• 

1.3.2 Laser ablation 

Large quantities of high-purity bundles or "ropes" of SWNTs can be synthesised 

by the laser ablation method 12
' 

13
• This process involves the evaporation of a graphite 

target impregnated with a suitable catalyst (iron, cobalt or nickel) by an intense laser 

beam at a temperature of around 1200°C in an inert atmosphere. The evaporated carbon 

nucleates and forms CNTs, which are deposited as a "felt" on a collector. By this 

method, high-purity bundles or "ropes" of single-wall carbon nanotubes are obtained. 

These ropes are of the order of 100 J.Ull long, and consist of hundreds of tubes of a very 

narrow diameter distribution, arranged in a regular triangular lattice. 

1.3.3 Chemical vapour deposition 

The use of chemical vapour deposition (CVD) for growing carbon filaments has a 

history that extends for more than a century 3
• CNTs have been extensively synthesised 

by the thermal disproportionation of a gas I vapour carbonaceous precursor and growth 

over nanoparticles of transition metals, supported over a suitable support such as alumina, 

silica or magnesium oxide. 

A variety of carbon-containing feedstocks have been employed, such as 2-methyl-

1,2'-naphthyl ketone 1
\ methane 15

' 
16

, carbon monoxide 17
' 

18
' 

19
, ethylene 18

, acetylene 20 

and ethanol 21
• In a slight variation, the catalyst too may be introduced in the form of a 

gaseous precursor, such as iron pentacarbonyl, Fe(C0)5 
19

, or ferrocene 22 for iron 

catalyst. This has been used to advantage in developing a fully continuous process for 

spinning fibres of several metres length from CNTs, which has tremendous potential for 

industrial application 23
• 

5 
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The temperature, pressure in the chamber, flowrate of the feedstock, nature and 

size of the catalyst particles are all variables governing the quality and nature (i.e., 

whether single-wall, multi-wall or a mixture of both types) of the CNTs obtained. The 

range of temperatures employed by various groups is as wide as 600°C-1200°C. Also, if 

the catalyst particles are of a size less than around 5 nm, SWNTs can be selectively 

grown. 

1.3.4 Comparison of the various methods of synthesis 

Owing to the high temperature involved (- 3000°C), the arc discharge method 

yields CNTs of the best level of crystallinity and structural perfection, followed by the 

laser ablation method(- 1200°C). However, the high operating temperature also means a 

higher cost of production. While the low temperatures involved in CVD synthesis (600-

12000C) lead to CNTs with relatively higher levels of defects and by-production of 

greater amounts of amorphous carbon, they are also conducive for industrial scale-up. 

CNTs can be grown by CVD in the form of high quality films with a high degree 

of alignment at desired locations on pre-pattemed substrates. This has been exploited to 

grow individual CNTs in such a way as to directly yield device structures 24
, or for 

growing CNTs that can be used as high-resolution atomic force microscopy (AFM) tips 
25 The obvious disadvantage of arc discharge or laser ablation methods for such 

applications would be that the CNTs would have to be first separated and then 

individually manipulated into position by procedures such as AFM, which would be 

prohibitively tedious. 

Arc discharge synthesis of CNTs also leads to the formation of considerable 

amounts of by-products including fullerenes, buckyonions and metal nanoparticles 

enclosed in graphitic carbon polyhedra. Laser ablation CNTs also contain fullerenes, 

albeit to a much lesser extent. The presence of these by-products greatly complicates the 

purification of the as-produced raw material to yield a starting material enriched in CNTs, 

as shall be described in Chapter 2. 

6 
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1.3.5 Growth mechanisms 

All synthesis methods usually yield a mixture of CNTs of varying helicities. 

Identifying and understanding the mechanism by which CNTs grow may be the first step 

towards achieving rational synthesis of CNTs of a particular helicity (which ultimately 

corresponds to the electronic nature of the CNTs, as described in Section 1.4.1.1 ), which 

could be very important for many technological applications ofCNTs. 

It was recognised early on that the growth mechanism in the case of CVD may be 

different from that in the case of arc discharge or laser ablation 17
• For CVD synthesis, 

the mechanism that has come to be increasingly accepted as the most likely is the 

"yarmulke" (Yiddish for "skullcap") mechanism 17
• In CVD synthesis, a clear 

correspondence is observed between the diameters of carbon nanotubes and the size of 

the catalyst particle they have grown from and which can often be seen enclosed at the 

lower end of the nanotubes. The yarmulke mechanism explains this by postulating that 

the catalyst causes disproportionation of the precursor, leading to formation of carbon 

atoms. These carbon atoms first form a hemispherical cap on the catalyst particle. 

Thereafter, the tube grows by cap lift-off as the carbon atoms diffuse either over the 

surface of the catalyst particle, or dissolve in it and are precipitated out, thereby 

continuing to add to the end. Both root-growth (extrusion from catalyst particle) and tip­

growth are possible, as shown in Figure 1-5. This mechanism appears to account for the 

fact that the metals that have been employed as catalysts for the growth of CNTs are 

those which are known to form stable interstitial carbides, which would be required for 

the carbon atoms to dissolve in the metal nanoparticle before crystallising as the CNT. 

7 
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Figure 1-5 

The yarmulke mechanism for the growth of SWNTs (Ref. 9). The red spheres denote the catalyst 

nanoparticles, and the beige base, the catalytic support. The SWNT appearing nearest in the picture is 

forming by root-growth (extrusion). The SWNT in the middle is being formed by tip-growth. 

There is very little agreement on the growth mechanism of CNTs by the arc 

discharge and laser ablation methods. Among the models proposed include vapour phase 

growth 26
, liquid phase growth 27

, solid phase growth 28 and growth by crystallisation 29
' 

30
. These have been reviewed elsewhere 31

. None of these mechanisms appears to 

satisfactorily explain all aspects of CNT growth, and it is likely that the actual 

mechanism may be a combination of all of these. 

It is interesting to note that fullerenes were believed to be occuring naturally in 

the universe from the condensation of carbon vapours 5
' 

32
• Fullerenes have been found to 

occur in geological samples on Earth, in contexts which seemed to suggest that they had 

been formed either as a result of lightning or by as yet unknown solid- or liquid-phase 

mechanisms quite different from the methods employed in their laboratory synthesis 33
-
35

• 

(There is also at least one report of fullerenes occurring in a structure resulting from the 

impact of a meteorite 36
, but it is easy to rationalise their formation, as the temperature 

and pressure conditions during such an impact may have been extreme.) More recently, 

it was demonstrated that high-quality CNTs could be grown on minerals 37
• CNTs have 

also been grown by plasma-enhanced CVD at temperatures under 400°C 38 In a 

8 
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surprising development, it was also found that, by suitable activation, it may be possible 

to grow SWNTs on any metal 39
• Further, the synthesis of graphite structures including 

sheets and CNTs has been reported in the solution phase at temperatures as low as 11 ooc 
40

. Thus, it may be reasonable to state that (a) CNTs, like fullerenes, may be expected to 

be naturally occurring in the geological environment, and that (b) it is entirely probable 

that they may be synthesised by new routes radically different and much gentler than 

those currently employed in laboratories. 

To conclude this Section, it will suffice to say that a deeper understanding of the 

kinetics and thermodynamics ofthe fundamental processes involved in the nucleation and 

growth of CNTs is necessary before a complete picture of the growth mechanism can be 

constructed. 

1.4 Properties 

The exciting properties of CNTs have drawn the interest of theorists from very 

early on. In fact, attempts were being made to understand the electronic properties 4143 

of these as yet hypothetical materials from around the same time that these materials were 

being identified by Iijima 1
• CNTs are nanomaterials with extremely exciting electronic, 

and, consequently, thermal and mechanical, properties. They shall be briefly summarised 

in this section. The chemical nature ofCNTs shall be described in detail in Section 1.7. 

1.4.1 Electronic and electrical properties 

1.4.1.1 Electronic structure 

It was first theoretically predicted 4143 and later experimentally confirmed by 

scanning tunnelling microscopy (STM) 4446 that the electronic properties of SWNTs are 

sensitive functions of their diameters and helicities. Owing to curvature, quantum effects 

come into play as a result of the boundary conditions imposed by the confinement of the 

9 
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electron wave to the circumference. Hence, the densities of state (DOS) in nanotubes are 

split into spikes or the so-called van Hove singularities, and are not continuous as is the 

case for graphene, or usually all bulk materials. Graphene has a zero band gap. 

However, owing to the splitting of the bands into spikes, SWNTs may be either metallic 

(i.e., zero band gap), semi conducting with a small band gap or semi conducting with a 

large band gap, depending on diameter and helicity. As a general rule, for a (n, m) 

S WNT, the nanotube is metallic if it is armchair i.e., (n, n), semiconducting with a small 

band gap if n- m = 3j (j being a non-zero integer), and semiconducting with a large band 

gap for all other values of n and m. Further, the energy gap between the densities of state 

is inversely proportional to the diameter of the SWNT. It is worth mentioning that the 

band gap for n- m= 3j is small enough for practically observed SWNTs that they can be 

regarded as metallic. Electronic transitions between the van Hove singularities have been 

observed in optical absorption spectroscopy in the visible and near-infrared region 47
' 

48
• 

The densities of state and the electronic transitions between them for the three different 

types of S WNTs are schematically illustrated in Figure 1-6. 

~1 
>- M11 

>. 
~ e> 
(1) Q) 
c c: 
Q) -1 Q) -1 

DOS (a.u.) 

(a) 

M11 

DOS (a.u.) 

(b) 

Figure 1-6 

-1 
~ ->.Q 
~ 
! 
Q) -1 

DOS {a.u.) 

(c) 

Schematic illustration of the densities of state (DOS) in (a) metallic, denoted by M, (b) semiconducting, 

denoted by S (with small bandgap) and (c) semiconducting (with large bandgap) SWNTs (Ref. 346). For 

preserving the wave vector, transitions can take place only between symmetrical singularities (for 

convenience, the Fermi level is taken as lying in the centre of the energy gap). Thus, we have the first and 

second metallic or semiconducting transitions, M11 , S11 and S22 respectively. 

10 
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Thus, not only do the indices (n, m) completely specify the physical structure of a 

CNT, they also give its electronic structure. One-third of SWNTs will be metallic, 

whereas two-thirds will be semi conducting 43
• 

1.4.1.2 Electrical properties 

Owing to their nanometre-scale diameters, extremely high aspect ratios and 

confinement of the electron wave to a single atom-thick circumferential layer, CNTs are 

one-dimensional (1-D) conductors. Also, the band gap in semiconducting nanotubes is of 

the order of 1 e V for a diameter of around 1 nm, implying that the 1-D nature is retained 

even at room temperature. In addition, CNTs also have high chemical and thermal 

stability. 

CNTs show excellent field emission properties owing to their extreme aspect 

ratios and small tip diameters. CNTs have the advantage of a turn-on voltage as low as 1-

2 V, and can operate stably at current densities as high as 109 A/m2
, at least an order of 

magnitude higher than the best field emitters currently available 49
. 

1.4.1.3 Electrical transport 

Individual CNTs have been experimentally observed to behave like quantum 

conductors or, in other words, show ballistic conduction so. SI, even at room temperature. 

This is remarkable as it implies that the nature of electrical transport may not be 

significantly perturbed by defects in the walls, which should always be expected to be 

present. An important consequence of ballistic conduction is that CNTs can be expected 

to carry extremely high currents without Joule heating which arises from scattering of 

electrons. Actual experimental observation shows that this is indeed the case. MWNTs 

have been observed to stably carry current densities as high as 1011 A/m2 at room 

temperature without dissipation of heat si. The room temperature resistivity of ropes of 

SWNTs was measured by a four-point technique to be ofthe order of 104 n-cm 13
• 

11 
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1.4.2 Thermal properties 

As in most other carbon materials, thermal conduction in CNTs is by phonons at 

all temperatures 52
. The thermal conductivity of bulk mats of SWNTs has been 

experimentally found to be as high as 200 W/mK at room temperature 53
, but it has been 

theoretically predicted that the thermal conductivity of an individual ideal SWNT at room 

temperature could be as high as 6,600 W/mK 5
\ comparable with diamond and graphite, 

themselves among the best thermal conductors known. Practical values will be much 

lesser, owing to the presence of defects on the walls of nanotubes. Also, such unusually 

high values may be expected only in the tube axial direction; in the radial direction, it 

may only be a few hundredths of the axial value, identical with in-plane and out-of-plane 

graphite 55
• 

1.4.3 Physical and mechanical properties 

Owing to their hollow tubular structure, CNTs can be expected to have very low 

densities. Recently, Lu and eo-workers estimated the density of isolated as well as 

bundled CNTs to be in the region of 2 g/cm3 from gradient sedimentation studies 56
• 

CNTs have outstanding mechanical properties, made further attractive by the fact that 

they would translate into superlative specific properties, given their low densities. 

Treacy and eo-workers attempted the estimation of the Young's modulus of arc 

discharge MWNTs by direct measurement of their intrinsic thermal vibrations in a 

transmission electron microscope, and arrived at values of the order of 1 TPa 57
• Similar 

results were obtained for SWNTs 58
• These values are comparable with the in-plane 

values for graphite and with that of diamond, and also broadly agree with theoretical 

estimates for CNTs 59
• 

60
• Direct measurements using an AFM set-up in a scanning 

electron microscope (SEM) also yielded similar values of Young's modulus, and tensile 

strengths of the order of 20 GPa 61
• 

62
. Similar values have been estimated for individual 

CNTs from direct measurements of the properties of ropes 63
. Typical values of the 

Young's modulus and tensile strength for steel are 200 GPa and 400 MPa respectively. 
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Clearly, therefore, CNTs are at least one order of magnitude stiffer and two orders of 

magnitude stronger than steel, but are less than one-third as heavy. 

1.5 Applications 

With such exciting properties, it is hardly surprising that a very wide range of 

applications has been envisaged for CNTs 64
• 

65
• While many applications are still at a 

very early stage of development, thanks to the enormous technological challenges 

involved in harnessing CNTs, some have already been realised. These are briefly 

described below, along with the technological challenges involved. 

1.5.1 Nanoelectronics 

Miniaturisation of microelectronic devices at the present rate cannot continue for 

more than a few years, as there shall be a dramatic change in the behaviour of traditional 

semiconductor materials (such as silicon), as quantum effects will come in to play. This 

has prompted the exploration of novel semiconductor nanowires, molecular wires etc. for 

future electronics applications. CNTs are excellent candidates for nanoscale electronics 

of the future owing to their nanoscale dimensions, quantum conducting behaviour, high 

current carrying capacity (for interconnects) and stability. Fig. 1-7 shows the schematic 

representation of an SWNT-based transistor device. CNT-based field effect transistor 

(FET) devices have been demonstrated and studied 66
-
69

, and are ordinarily observed to 

behave asp- type semiconductors. 
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Figure 1-7 

Schematic representation of a CNT-based field effect transistor. 

However, the fabrication of CNT -based devices is as yet very tedious, and cannot 

be scaled up easily to match the throughput of silicon devices. Also, the current sizes of 

these devices are limited by available lithographic techniques, being no less than a few 

hundred nanometres. Most importantly, the success of these devices is a matter of 

chance, depending on whether the nanotube selected was semiconducting and not 

metallic. CNT electronics is unlikely to become a viable option before rational synthesis 

of tubes of a particular electronic type is achieved. 

Samsung has demonstrated a CNT-based flat panel display 70
, which exploits the 

favourable field emission properties of CNTs (see Section 1.4.1.2). Other applications 

based on field emission that are being explored include lamps 71 and X-ray generators 72
• 

1.5.2 Electrochemical devices 

This category includes applications which exploit the exceptionally high specific 

surface of CNTs, such as lithium ion batteries 73
, as catalytic support in enhanced­

performance electrodes for fuel cells 74
• 

75
, supercapacitors which have much higher 

energy storage abilities than batteries as well as much higher storage capacities and 

quicker discharge than ordinary capacitors 76
· 

77
, and actuators in which stored charge is 

converted into mechanical energy for robotics and artificial muscles 78
• 
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1.5.3 Sensors and detectors 

CNTs have been observed to show large and rapid changes in electrical 

characteristics upon exposure to extremely small concentrations of gases such as 

ammonia and nitrogen dioxide 79
-SI, opening up the possibility that they may be used as 

chemical sensors and detectors. They have also been shown to be useful for detecting 

biomolecules s2, sJ. 

1.5.4 Polymer composites 

CNTs combine superlative mechanical, thermal and electrical properties with low 

density, nanoscale diameter and extreme aspect ratios. Thus, they are ideal candidates for 

use as reinforcements in polymer composites with dramatically enhanced properties, 

which have become the goal of a considerable amount of research effort. 

There are several reports of impressive enhancement of mechanical properties in 

polymer composites upon loading with extremely low loading of CNT fillers, indicating 

that the percolation thresholds are very low: upto 42% increase in elastic modulus, and 

25% in break stress, were achieved in polystyrene composites upon 1 weight per cent 

loading with MWNTs s4
; the Young's modulus of poly(methyl methacrylate) almost 

doubled upon incorporation of 8 weight per cent of SWNTs ss; 10 weight per cent of 

SWNTs in poly(p-phenylenebenzobisoxazole) (PBO) led to a 50% increase in tensile 

strength together with reduction in shrinkage and high-temperature creep s6
; addition of 

0.1 weight per cent MWNTs increased the elastic modulus of epoxy by 20% s7
• 

CNTs have also been reported to enhance thermal transport properties m 

polymers. Epoxy loaded with 1 weight per cent SWNTs showed an enhancement in 

thermal conductivity of 125% at room temperature ss. Choi and eo-workers found a 

300% enhancement in thermal conductivity of industrial epoxy with 3 weight per cent 

loading of SWNTs, which increased by a further 10% upon alignment of the tubes by a 

magnetic field s9
• 
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Similar enhancement has been observed for electrical properties. Room 

temperature-resistivity of 3 weight per cent loaded epoxy showed six orders of magnitude 

reduction over pure epoxy 89
• 

However, such enhancement, while significant, is considerably short of what is 

predicted by theory 90
• In at least one case, very modest increase in moduli and strength, 

and a slight degradation in failure properties, was observed 91
• This has been attributed to 

nanotubes not having been dispersed individually in the matrix, being still in bundles in 

which there is a relative slipping of tubes, leading to ineffective load transfer from matrix 

to reinforcement and, thereby, premature failure 92
• Better separation of nanotubes in 

polymer matrices would also be helpful towards maximising thermal conductivity 88
• 

Suggestions to achieve individual nanotube dispersion in, and effective binding with, 

polymer matrices include ultrasonication 90 and chemical functionalisation 88
' 

92
' 

93
• 

Recent work suggests that functionalisation of CNTs might aid their better dispersion in, 

and improve their interaction with, polymers 93
"
96

• 

1.5.5 Hydrogen storage 

It has been believed from very early on that CNTs would be very well suited for 

hydrogen storage on account of their high porosity. The United States Department of 

Energy has set a benchmark of 6.5 weight per cent capacity at room temperature for 

hydrogen storage materials. While there have been a few claims 97 of achieving more 

than 6.5 weight per cent hydrogen adsorption by CNTs, most reports in this area have not 

been as encouraging 98
' 

99
• At the present time, it will perhaps only be safe to say that the 

suitability of CNTs for hydrogen storage is not settled. 
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1.6 Chemistry of carbon nanotubes 

1.6.1 Overview 

One of the most significant hurdles in the way of widespread application of CNTs 

is their insolubility and the consequent difficulty in handling and processing them on 

large, industrial scales. CNTs aggregate into bundles or "ropes" owing to the van der 

Waals attraction between their smooth, highly polarisable graphitic walls 100
• It is 

extremely difficult to break these bundles to obtain individual CNTs, although single or 

singly dispersed nanotubes will be required for many applications such as 

nanoelectronics and polymer composites. Dispersion and solubilisation of CNTs will 

invariably require one or all of vigorous mechanical agitation (such as by ultrasonication) 

and chemical modification of the surfaces of CNTs (either by the use of surface active 

agents or long molecules, or outright chemical derivatisation of the tube walls). 

Both mechanical and chemical treatments have their own advantages and 

disadvantages. Ultrasonication inflicts mechanical damage on the walls ofnanotubes 101
• 

102
• Chemical modification may disrupt the intrinsic electronic structure of the pristine 

nanotubes 103
, thereby compromising their exciting properties. For instance, it was found 

that ozonation of CNTs resulted in several orders of magnitude increase in their 

resistance 104
• Ultrasonication of itself cannot achieve the efficient and stable dispersion 

of individual nanotubes into solution without causing an unacceptable level of damage to 

the CNT walls. Chemical modification of CNT surfaces is inevitable for improving the 

solubility of CNTs in a variety of solvents and, consequently, enable inexpensive large­

scale processing. 

Fullerenes have a rich chemistry 105
• While the chemistry of CNTs may not be 

comparable with that of fullerenes, a large number of routes have been developed for the 

modification of CNTs by both covalent as well as non-covalent means. These are 

reviewed here. The purification of as-produced CNTs, which is the first step before any 

chemistry can be carried out on them, is dealt with separately in Chapter 2. 
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1.6.2 Reactivity 

The reactivity of fullerenes can be thought of as arising from the strain induced by 

the curvature necessary to form a closed cage structure 106
' 

107
• The preferred geometry of 

the orbitals of sp2 -hybridised carbon atoms is planar, which is the case in graphene. 

However, in fullerenes, there is a deviation from planarity. Reaction at any of the carbon 

atoms, causing it to change to an sp3 -hybridised state (the preferred geometry of which is 

tetrahedral) reduces this strain. This also explains why fullerenes are particularly 

susceptible to addition reactions. A very good measure of the extent of curvature or 

deviation from planarity is the angle of pyramidalisation, eP, which is illustrated in Figure 

1-8. 

PyramldaUzatlon Angle: 9p = (O® • 99)0 

TRIGONAL TETRAHeDRAL 

9cm = 90° 9m; = 109.47 ° 

'Cl 

Figure 1-8 

The angle of pyramidalisation, eP, which is a measure of deviation in fullerenes and CNTs, from the 

preferred trigonal planar geometry of sp2 -hybridised carbon atoms. 

In addition to pyramidalisation, another effect that comes into play in the case of 

large, non-planar aromatic molecules is the misalignment of the 7t-orbitals causing 

torsional strain 107
, cl>, which is shown in Figure 1-9. Such misalignment is either 

negligible or altogether absent in fullerenes, but is very pronounced in CNTs. Thus, the 

chemistry of CNTs can be expected to be slightly different from that of fullerenes. At the 

same time, it must be remembered that while the curvature of CNTs is only in two 
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dimensions, that of fullerenes is in three. Thus, the extent of pyramidalisation (and, 

consequently, the susceptibility for reaction) is considerably greater in a fullerene than in 

a nanotube of the same diameter. Hence, CNT walls can be expected to be less reactive 

than the hemispherical fullerene end-caps. 

Also, as can be easily appreciated, for CNTs, both 9p and <I> decrease with 

increasing nanotube diameter. This accounts for the lesser reactivity of larger diameter 

tubes as compared with the smaller diameter ones. 

Figure 1-9 

7t-Orbital misalignment in fullerenes and a (5, 5) CNT. 

19 



Chapter 1 

1.6.3 Routes for the chemical modification of CNTs 

The routes for the chemical modification of CNTs can be broadly classified into 

three categories: 

1. Non-covalent modification by the adsorption or wrapping of molecules on 

their external surfaces; 

2. Covalent modification by the creation of functional groups on, or attachment · 

of species directly to, the walls of the CNTs; and 

3. Endohedral filling of species into their hollow cavities. 

The various routes for the modification of CNTs that have been reported to date 

are reviewed in the subsequent sections of this chapter. The work described in this thesis 

is exclusively concerned with the modification ofthe external surfaces ofSWNTs, i.e. the 

first two routes mentioned above. 

1.6.4 Non-covalent modification 

Non-covalent modification of CNT surfaces is achieved by adsorption or 

wrapping of surfactants, or long chains such as polymers and biomolecules. The 

debundling and solubilisation of CNTs in solvents is thermodynamic, wherein the 

solubilising species both disrupt the affinity between the CNT walls in bundles as well as 

overcome the lack of affinity with solvents, including water. In particular, modification 

with surfactants such as sodium dodecyl sulphate (SDS) or biological polymers to yield 

water-soluble CNTs is of great importance to the potential biomedical applications of 

CNTs. The major advantages of non-covalent routes for the modification of CNTs are 

that they do not perturb their intrinsic electronic structure, thus leaving most of their 

properties intact, and are generally easily reversible. However, they can make large 

portions of the CNT surface inaccessible, which could be a disadvantage for applications 

such as electronics. 
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1.6.4.1 Surfactants 

Surfactants adsorb non-specifically on the surface of CNTs, and have been 

extensively used to obtain stable dispersions of de-bundled CNTs by subjecting them to 

mild ultrasonic treatment in solutions of the chosen surfactant. Commonly used 

surfactants include anionic surfactants such as sodium dodecyl sulphate 108
• 

109
, sodium 

dodecylbenzene sulphonate 110
• 

111
; cationic surfactants such as benzalkonium chloride 

112
; and non-ionic surfactants such Triton-X 108

• A comparative study ofthe performance 

of a variety of surfactants has also been reported 113
• 

1.6.4.2 Polymers 

Incubation of CNTs with a range of polymers, in particular polyvinyl pyrrolidone 

(PVP) and polystyrene sulphonate (PSS) led to soluble CNTs owing to the wrapping of 

the long polymer chains around the CNT backbone 114
• Solubilisation has also been 

demonstrated with other synthetic polymers such as polyethylene 115
, polybutadiene, 

polystyrene, polyisoprenes, poly(dimethylsiloxane) (PDMS) 116
, poly(acrylic acid) (PAA) 

117
, and natural polymers, such as Gum Arabic 118 and starch 119

• The wrapping 

phenomenon is robust, and the solubilised CNTs can even be passed, without separation, 

through filter membranes; however, it can also be easily reversed by changing the 

solvent. 

The solubilisation of CNTs by conjugated polymers such as poly(m­

phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) (PmPV) 120
-
123

, substituted 

PmPV 124 poly{ (5-alkoxy-m-phenylenevinylene )-co-[(2,5-dioctyloxy-p­

phenylene )vinylene]} (P AmP V) and its derivatives 125
, poly(phenylacetylene) 126 and 

poly { (2,6-pyridinylenevinylene )-co-[(2,5-dioetyloxy-p-phenylene )vinylene]} (PPyPV) 
127 have been extensively studied. It is believed that 1t-1t interactions aid the wrapping of 

the helical polymer molecules around the CNTs. There is also one report of CNT 

surfaces modified by the conjugated polymer with a rod-like backbone, poly-p­

phenylenebenzobisoxazole (PBO) 128
• CNT-conjugated polymer composite materials are 

particularly interesting from the point of view of photovoltaic applications. Synergistic 
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interaction is observed between the conjugated polymer and the CNTs, leading to 

composites with enhanced electrical conductivities and, therefore lower ''turn-on" fields, 

and high stabilities under irradiation as the CNTs act as "heat-sinks" preventing the 

build-up of pockets of heat. 

1.6.4.3 Biomolecules 

The assembly of biomolecules on the external surfaces of CNTs may have 

interesting applications like sensors and bionanoelectronics, stemming from the specific 

recognition properties of the biomolecules. CNTs modified in this way show 

significantly improved water-solubility. 

It is now well known that proteins and DNA can be immobilised on CNT walls 
129

-
132

, resulting in water-soluble tubes. More recently, it has been shown that 

biomolecules organise themselves helically around CNTs 133
-
135

• 

CNT surfaces have also been modified by large aromatic molecules, such as 

pyrene derivatives, which adsorb on the CNTs by 1t-stacking 136
-
140

• 

1.6.5 Covalent derivatisation 

Although the covalent chemistry of CNTs is not as rich as that of fullerenes, a 

wide range of routes have been developed for the covalent functionalisation of CNTs. In 

one of the first attempts at solubilising CNTs, it was shown that treatment with oxidising 

acids could etch and shorten CNTs; such treatment could lead to the creation of oxygen­

containing functional groups, predominantly carboxylic acid, by rupturing the side-walls, 

and on opened end-caps, of the CNTs 108
. Subsequently, it was found that other oxidising 

media could similarly produce defects in CNTs. Derivatisation of oxidised CNTs via 

carboxylic group chemistry was demonstrated, and has gone on to become the most 

widely used route for the covalent attachment of functional moieties to CNTs. Many 

other routes have also been developed, such as radical additions, cycloadditions etc., 
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which do not rely on the prior creation of carboxylic acid groups at "ruptures" or 

"defects" on the CNTs. Instead, they cause a local puckering of the tube surface, thereby 

releasing the strain engendered by curvature and 7t-orbital misalignment, as described in 

Section 1.6.2. Thus, we can classify the covalent functionalisation routes for CNTs into 

two broad categories: 

1. Defect-based chemistry, and 

2. Non-defect chemistry. 

1.6.5.1 Defect-based covalent chemistry 

1.6.5.1.1 Carboxylation of CNTs 

One of the first attempts at the solubilisation of SWNTs involved their sonication 

in oxidising acids, such as sulphuric and nitric acids 108
, which resulted in the etching of 

the SWNTs into short pipes and the creation of oxygen-contaning functional groups, 

predominantly carboxylic acids, at their cut ends and ruptures in their side-walls 

("defects"). Subsequently, other routes for the oxidative etching and creation of oxygen­

containing functional groups on CNT walls have been developed, including refluxing in 

sulphuric or nitric acids or mixtures of the two acids 141
-
155

, KMn04 
15

6-
158

, and H20 2 
152

• 

159
-
162

• Other groups such as quinoidal, and ester groups are also formed as a result of 

oxidising treatment 104
• 

163
-
167

• 

1.6.5.1.2 Ozonation 

In addition to the oxidising media mentioned in Section 1.6.5 .1.1, CNTs have also 

been oxidised by treatment with ozone at room temperature, producing predominantly 

quinoidal and ester groups on the walls 165
• Liquid-phase ozonation at low temperatures 

leads, in the first instance, to the formation of primary ozonide by 1 ,3-dipolar 
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cycloaddition similar to alkenes and fullerenes. The ozonide can then be cleaved by 

hydrogen peroxide, dimethyl sulphide or sodium borohydride to produce preferentially 

carboxylic acid, aldehyde/ketone or alcohol groups respectively on the CNT walls 168
• 

1.6.5.1.3 Derivatisation via carboxylic group chemistry 

Haddon and eo-workers converted oxidatively etched CNTs to acid chlorides 

using thionyl chloride (SOCh) followed by derivatisation with octadecylamine via amide 

linkages resulting in highly soluble CNTs, as shown in Figure 1-10 163
• 

164
• Subsequently, 

attachment of molecules via esterification of acid chlorides 166
• 

169
• 

170
, as well as direct 

diimide-activated amidation of carboxylic acid groups without the intermediate acid 

chloride formation step has also been shown 171
• 

172
; this is particularly helpful for the 

attachment of delicate biomolecules to CNTs at ambient conditions. Alternatively, oxalyl 

chloride [(COC1)2] can be employed for the conversion to acid chlorides 167 and the 

conversion to amide achieved simply by ammonia 167
• 

173 (Figure 1-10). Amines (R­

NH2) may also react directly with the carboxylic acid group (CNT -COO H), forming a 

zwitterion (CNT-Coo-.NH/-R) 164
• 

Derivatisation via carboxylic acid chemistry has been used for attachment of 

functional molecules to CNTs. For example, poly( ethylene oxide) has been grafted onto 

CNTs for the synthesis of composites 174
• Biomolecules have also been tagged to CNTs, 

such as glucosamine by ami dation via thionyl chloride 175
, proteins like bovine serum 

albumin 171
, Knob protein 176 and antibodies 177

• Significantly, biological molecules 

attached to CNTs by this route have been found to retain their activity and specificity, 

which is of great importance to applications such as biosensors. 

Coleman and eo-workers have demonstrated iodination vta a modified 

Hunsdiecker reaction on oxidised CNTs 178
• 
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SOCI2 I (CO~ RNH ! diimide 
-----------

2 
activation 

ROOC COOR 

ROOC- COOR 

Figure 1-10 

Carboxylation of CNTs and subsequent derivatisation via ami dation I esterification. 

1.6.5.2 Non-defect covalent chemistry 

1.6.5.2.1 Fluorination 

This approach to the functionalisation ofCNTs has been pioneered by Margrave's 

group. Analogous with graphite 179 and fullerenes 180
, the fluorination of CNTs was 

achieved by gas-phase treatment with fluorine at elevated temperatures in the range, 250-

5000C 181
' 

182
, to yield a grey to white powder of fluorinated CNTs having the 

stoichiometry CF (MWNTs) and C2F (SWNTs). Although treatment with hydrazine 182 

or, better still, annealing at temperatures in the range 100-350°C 183
' 

184 can be used to 

reverse fluorination, the damage caused may not be completely recoverable. At 

temperatures above 400°C, fluorination causes SWNTs to be converted into MWNTs. 
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Fluorination is observed to lead to increased solubility over pristine CNTs in 

alcohols 185
, and greater uniformity of dispersion in polymer composites 186

• 

Fluorinated CNTs have been used as a starting point for further derivatisation by 

nucleophilic substitution by Grignard and alkyllithium reagents 187
• The functionalisation 

was reversible upon annealing, and the extent of functionalisation, as estimated from the 

weight loss profile in thermogravimetric analysis (TGA) was of the order of I 0 atomic 

per cent. Fluorinated CNTs have also been subjected to nucleophilic substitution by 

diamines 188 and radicals generated thermally from peroxides [RC(O)OO(O)CR] 189
. 

Figure 1-11 shows the reaction scheme for the fluorination of CNTs and the subsequent 

derivatisation of fluorinated CNTs. 

Fluorinated SWNTs were also produced by the treatment of nanotubes by CF4 

plasma 190,191. 

R 

R 

R 

R 

R 

F2 

250-500°C 

NH2NH2 

RMgBr I RLi/ 
RC(O)OO(O)CR 

F 

F 

H 
H2N-R-N-

H 
H2N-R-N 

Figure 1-11 

-F 

F 

F 

H 
N-R-NH2 
H 
N-R-NH2 

H 
N-R-NH2 

Fluorination of CNTs and further derivatisation of fluorinated CNTs. 
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1.6.5.2.2 Radical additions 

1.6.5.2.2.1 Radicals from aryl diazonium salts 

Radicals generated by the electrochemical reduction of aryl diazonium salts in 

non-aqueous media was demonstrated by Tour and eo-workers 192
• They estimated that 

one in every twenty CNT carbon atoms was functionalised, and the functionalisation was 

reversible upon annealing the modified CNTs. Later, a more facile route via the 

decomposition ofdiazonium salts in aqueous solution was developed 193
-
195 (Figure 1-12). 

The reaction has a strong selectivity for metallic over semiconducting SWNTs 195
, 

196
• 

Very recently, Strano and others functionalised SWNTs with the radical generated from 

p-hydroxybenzene diazonium salt, deprotonated the hydroxyl group and, exploiting the 

differences in mobilities between metallic and semiconducting SWNTs induced by the 

selectivity of the reaction, achieved the enrichment of metallic and semiconducting 

fractions by electrophoresis 197
• 

N=N-o-R 
R 

Figure 1-12 

Functionalisation of CNTs by radicals derived from aryl diazonium salts. 

1.6.5.2.2.2 Radicals from organic peroxides 

Radicals generated by the decomposition of a range of organic peroxides either in 

the presence of alkyl halides 198 or simply upon mild heating 173
' 

189 have also been used 

to derivatise the sidewalls of CNTs (Figure 1-13). Ying and eo-workers estimated the 
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degree of functionalisation to vary from as low as one in every thirty, to one in every five 

CNT carbon atoms 198
• 

0 0 
11 11 

HOOC-R-COOC-R-COOH ·R-COOH 
-C02 

·R-COOH 

Figure 1-13 

Functionalisation of CNTs by radicals derived from organic peroxides. 

1.6.5.2.2.3 Other radical additions 

Perfluoroalkyl radicals have been added to CNT sidewalls in a photoinduced 

reaction 199
• Plasma treatment of a CNT/sulphur mixture resulted in the formation of 

thiolated CNTs 200
• In what could be of significance to nanoelectronics, the thiolated 

CNTs are seen to self-assemble on gold electrodes. 

1.6.5.2.2.4 Polymer grafting onto CNTs via radical chemistry 

Radical addition has been exploited for the grafting of polymers onto CNTs, such 

as polystyrene 201
, poly( methyl methacrylate) (PMMA) 202 and poly( 4-vinylpyridine) 203

, 

leading to highly soluble CNTs. 
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1.6.5.2.3 Nucleophilic additions- CNTs as nucleophiles 

1.6.5.2.3.1[2+1} cycloadditions 

1.6.5.2.3.1.1 Cycloaddition of carbenes 

Cycloaddition of dichlorocarbene (Figure 1-14), generated from chloroform in 

NaOH or PhHgCChBr precursor, to CNTs was reported by Haddon's group 103
' 

163
, 

204
• 

The disruption of the electronic structure was followed in terms of the features in UV­

visible-IR spectroscopy. It was seen that 12% functionalisation led to a 50% suppression, 

while a 23% functionalisation led to a near-complete suppression of the features. 

Cl 
CHC13 /NaOH 

or Cl Cl 

PhHgCC12Br 

Cl 
Cl 

Cl 

Figure 1-14 

Cycloaddition of dichlorocarbene to CNTs. 

1.6.5.2.3.1.2 Nitrene addition 

Holzinger and eo-workers demonstrated the [2+ 1} cycloaddition of nitrenes 

generated thermally from alkyl azidoformates to CNTs 199
' 

205 (Figure 1-15). UV -visible­

NIR spectroscopy shows that, in general, this route does not cause a significant disruption 

of the electronic structure of the CNTs. Also, Raman spectroscopy reveals that the 

reaction has a greater selectivity for metallic over semiconducting SWNTs. This reaction 

was also employed by the same group to cross-link SWNTs 206
• 
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1.6.5.2.3.2 Carbene addition 

Figure 1-15 

Cycloaddition ofnitrenes to CNTs. 

Addition of the nucleophilic carbene derived by the deprotonation of dipyridyl 

imidazolidene was shown by Holzinger and eo-workers 199
• 

1.6.5.2.3.3 1,3-Dipolar cycloaddition 

Extending their reaction demonstrated previously for fullerenes 207
, Prato's group 

showed the cycloaddition of azomethine ylides formed by the in situ condensation of an 

aldehyde and an a-amino acid to CNTs 208
' 

209 (Figure 1-16). The reaction occurs over 

several days. It has been shown that, by a careful choice of the decorating chains, CNTs 

of high solubility in water or several organic solvents can be obtained. Although only 

one pyrrolidine moiety is introduced for every hundred CNT carbon atoms, significant 

disruption ofthe CNT electronic structure is indicated by the UV-visible-NIR spectra of 

the modified nanotubes. 

This route has subsequently been used for tagging molecules with several 

functionalities. Ferrocene was attached to CNTs to study photo-induced electron transfer 

processes 137
• The covalent tagging ofthe amino acid, glycine, has also been achieved by 

the same group 210
. 
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RL 

DMF, reflux, 120 h 

Figure 1-16 

I ,3-Dipolar cycloaddition of azomethine ylides. 

1.6.5.2.3.4 Bingel Reaction 

This is also an instance of [2+1] cycloaddition. The cyclopropanation of 

fullerenes by bromomalonates has been extensively studied 211
• This route has been 

extended to SWNTs by Coleman et al. 212 (Figure 1-17). 

OEt 

DBU 
OEt 

0 

Figure 1-17 

Cyclopropanation ofCNTs via the Binge! reaction. (DBU = 1,8-diazabicyclo[5.4.0]undecene) 

1.6.5.2.4 Reduction chemistry of CNTs - CNTs as electrophiles 

1.6.5.2.4.1 Birch reduction 

The Birch reduction, which is employed to reduce aromatic species to non­

conjugated ones, has been shown for fullerenes 213
. Fullerenes (C60) were reduced via the 

formation of anionic species to C60H36 by lithium and t-butanol in liquid ammonia. In an 
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analogous procedure, CNTs (and, simultaneously, graphite) were reduced using lithium 

and methanol in ammonia 214. The stoichiometry of the products was found to be C11 H 

for both SWNTs and MWNTs, and C5H for graphite. 

1.6.5.2.4.2 Reduction by alkali metals and nucleophiles 

The reduction of graphite by alkali metals to give intercalation compounds, and 

their subsequent chemistry, is well-known 215. The stoichiometry ofthese intercalation 

compounds is C8M (M = Li, Na, K, Rb, Cs). For the case of fullerenes, intercalation 

compounds have been found to have a stoichiometry of up to Mt;C60 
216. Alkali metal­

intercalated SWNTs synthesised by a vapour-phase reaction were also found to have the 

stoichiometry C8M; also, the intercalation was found to be reversible 217. Recently, 

Billups and eo-workers reduced SWNTs by alkali metals in liquid ammonia, resulting in 

the formation of the salt, [(SWNT)x-.Mx+, M= Li, Na, K]. This salt was then subjected 

to electrophilic substitution with alkyl and aryl halides, resulting in highly soluble 

nanotubes 218-220. The functionalisation ratio ranged from 1 in 17 to 1 in 54 CNT carbon 

atoms. Alkali metal naphthalenide solutions in THF have also been employed to reduce 

CNTs 221 . Interestingly, although elemental analysis indicated a stoichiometry of C 10M, 

only 20% of the metal atoms were dissociated into ions; in other words, the actual 

stoichiometry of the salt was C5oM. 

It has been demonstrated that fullerenes can be reduced by t-butyllithium, 

followed by electrophilic substitution 222' 223 . Reduction by butyllithiums to generate 

charged CNT anionic species has been used for grafting polymers by anionic 

polymerisation onto CNTs for use in composites 224· 225. Hirsch and eo-workers have 

recently carried out a detailed investigation into the reduction of CNTs by t-butyllithium, 

which can be carried out in repeated steps on the same CNT backbone 226. They have 

also found that the extent of functionalisation in the first reduction step is around 2 

atomic per cent, which agrees well with the figure given by Penicaud and group 221 for 

the reduction of CNTs by alkali metal naphthalenides. 

The reduction chemistry of CNTs is discussed in greater detail in Section 4.1. 
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1.6.5.3 Characterisation 

CNTs are materials. Although a CNT is a single molecule, any sample of CNTs 

will contain a mixture of tubes of varying diameters and helicities. Besides, their 

solubility, even when enhanced by suitable chemical modification, is low (generally less 

than the order of 1 mg!L). Thus, they are not easily amenable to conventional molecular 

spectroscopy, and it is extremely difficult to establish their chemical modification, or its 

result on their properties. Nevertheless, several techniques have been employed for their 

characterisation with increasing success over the years, such as Raman spectroscopy, 

optical absorption spectroscopy including the electronic ultraviolet-visible-near infrared 

(UV -vis-NIR) and vibrational mid-infrared (IR) spectroscopy, microscopic techniques for 

direct visualisation such as atomic force microscopy (AFM), transmission (TEM) and 

scanning (SEM) electron microscopy, X-ray photoelectron spectroscopy (XPS), thermal 

analysis, etc. In general, no single method of characterisation is able to furnish the entire 

picture regarding the modification ofCNTs, and a combination of techniques will have to 

be employed. Often, the techniques used will be dictated by the specific modification 

route; also, the groups attached to the CNTs can be innovatively tailored to suit one or 

more spectroscopic methods. These are described in detail below. 

1.6.5.3.1 Raman spectroscopy 

The use of resonant Raman spectroscopy for characterising CNTs was placed on a 

firm experimental footing by Rao and eo-workers 227
• The Raman spectra of CNTs 

consists of bands corresponding to low-energy radial breathing modes (RBM) of the 

tubular cages having Raman shifts below 500 cm-1
, a tangential mode corresponding to 

in-plane vibrations of sp2 -hybridised carbon commonly denoted as the "graphitic" or "G­

band" at around 1580 cm-1
, a band arising from defects or amorphous carbon 

corresponding to vibrations of sp3 -hybridised carbon and denoted as the "disorder" or "D­

band" at around 1350 cm-1
, and an overtone at around 2700 cm-1

• However, these 

features are very prone to resonance-enhancement, and are therefore strongly dependent 
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on the wavelength of the laser used for excitation. Further, Kataura and others 

demonstrated that the G-band may have a Breit-Wigner-Fano (BWF) line shape arising 

from metallic CNTs 47
• The presence of amorphous carbon or covalent derivatisation of 

CNTs leads to an increase in the proportion of sp3 -hybridised carbon, resulting in an 

enhancement of the intensity of the D-band (10 ) relative to the G-band (la). This 

observation has been extensively used to obtain proof of functionalisation 104
' 

163
' 

168
, 

182
, 

188, 190, 198,218,224 

Raman spectroscopy is also helpful in deducing chemoselectivity of reactions. It 

was found that nitrene cycloaddition shows a preference for metallic over 

semiconducting SWNTs, as spectra recorded using a 633 nm laser (which probes 

predominantly metallic SWNTs) showed greater change in the Iofla ratio over pristine 

SWNTs than that recorded using a 1064 nm laser (which probes predominantly 

semiconducting SWNTs) 205
• Similarly, the functionalisation of SWNTs by radicals 

generated from aryl diazonium reagents also showed a high level of selectivity for 

metallic over SWNTs: the RBM bands corresponding to semiconducting SWNTs 

(recorded predominantly by a 532 nm laser) were largely unchanged, whereas those 

corresponding to metallic SWNTs (633 nm laser) decayed upon reaction 196
• The shape 

of the G-band, which results from the superimposition of the contributions of metallic 

and semiconducting SWNTs, was seen to be greatly affected owing to the 

chemoselectivity of the aryl diazonium reaction; also, beyond a certain level of 

functionalisation, the D-band intensity was seen to reduce sharply, underscoring the fact 

that it is strongly dependent on resonance enhancement and that a simple comparison of 

the lo/la ratio may not always reveal iffunctionalisation has occurred 195
• 

Besides an increase in D-band intensity and change in the shape of the G-band, 

the intensity of the G-band relative to the RBM, and the intensities ofthe RBM in general 

may change upon modification 192
-
194

' 
220

' 
226

• The fact that the D-band is highly sensitive 

to resonance enhancement was also observed by Coleman and group for the iodination of 

SWNTs; when a He/Ne laser (632.8 nm) was used for excitation, the intensity of the D­

band for derivatised SWNTs was found to reduce for the second step of the reaction; also, 

the RBM features were observed to change for the different chemical steps, indicating a 

change in the electronic properties ofthe SWNTs at each step 178
• 
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Many times, it is of interest to know if a route for chemical modification is 

reversible, and if the electronic structure of pristine CNTs can be recovered. Thermal 

annealing was unable to restore the D-band intensity of SWNTs cyclopropanated by 

carbenes down to the level of that in pristine CNTs, indicating that this form of 

modification was not entirely reversible 204
• In contrast, Raman spectra indicated that 

modification by aryl diazonium radicals was completely reversible 194
• 

The low-energy RBMs are dependent on the state of aggregation of the CNTs. 

Thus, cross-linking of SWNTs achieved via the nitrene cycloaddition route caused a shift 

in the position of the RBMs owing to change in size of bundles 206
• 

The alteration in the electronic structure of CNTs upon chemical modification 

may also manifest as a shift in the position of the G-band, as was observed for 

functionalisation by nitrenes 205
• 

1.6.5.3.2 Ultraviolet-visible-near infrared (lN-vis-NIR) spectroscopy 

Kataura's group demonstrated that the transitions between the electronic densities 

of state in SWNTs (see Figure 1-6) could be observed as bands in UV -vis-NIR absorption 

spectroscopy 47
• Approximately, the metallic transitions (M11 ) can be observed in the 

400-600 nm region, the first semiconducting transitions (S 11 ) in the 600-800 nm range, 

and the second semiconducting transitions (S22) in the 800-1400 nm range. Later, 

Haddon and eo-workers observed that the perturbation of the electronic structure of 

pristine SWNTs upon chemical modification leads to a suppression of these bands 163
, 

and followed the extent of suppression of the bands with degree of functionalisation for 

the cyclopropanation of SWNTs with dichlorocarbene 103
• 

204
• Thereafter, UV-vis-NIR 

spectroscopy has become a common tool for characterising functionalised SWNTs 104
• 

178
• 

188
• 

192
-
194

• 
208

• 
224

• Chemically modified CNTs can be expected to have higher solubilities 

than pristine CNTs. Thus, a dispersion of modified CNTs will have a higher absorbance 

than that of pristine CNTs, and this can also be taken as proof of CNT derivatisation 104
• 

The degree of functionalisation can be qualitatively estimated from the extent of 

suppression of the absorption bands. For instance, carbene addition led to a very little 
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suppression of bands, indicating low extent of functionalisation, whereas cycloaddition of 

some nitrenes resulted in highly dispersed SWNTs even with a small extent of 

functionalisation, leading to an enhancement in the intensity of the bands 199
• 

By following the progress of the functionalisation of SWNTs by radicals derived 

from aryl diazonium salts by UV-vis-NIR spectroscopy, Strano and group observed that 

the reaction showed a remarkable selectivity for metallic over semiconducting SWNTs 
195 

The restoration of UV -vis-NIR absorption bands can be used to judge if a 

chemical modification route is reversible. Margrave's group demonstrated the 

reversibility of fluorination of SWNTs, as well as the possibility of restoring pristine 

SWNTs from alkylated SWNTs synthesised from the fluorinated SWNTs by thermal 

annealing 187
• The reversal of fluorination has also been studied by other groups 183

' 
184

• 

UV -vis-NIR spectroscopy confirmed the Raman evidence that the disruption of the 

electronic structure of S WNTs by dichlorocarbene cyclopropanation could not be 

reversed completely by thermal annealing 204
• 

1.6.5.3.3 Mid-Infrared Spectroscopy 

While CNTs have great polydispersity in terms of the range of helicities and 

diameters present in any sample, many groups have nevertheless successfully employed 

Fourier-transform infrared (FTIR) vibrational spectroscopy to obtain evidence of 

attachment of groups to CNTs. FTIR was first used to observe the effect of oxidising 

acid treatments on CNTs, with characteristic bands appearing for carboxylic acid and 

various oxygen-containing functional groups including ester and quinoidal groups 104
' 

163
-

167. FTIR has now become fairly common for probing the attachment of groups to CNT 

walls 188,189,192,198,204,218. 
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1.6.5.3.4 Nuclear magnetic resonance (NMR) spectroscopy 

Even after chemical modification, the solubility of CNTs in most organic solvents 

is low as compared to ordinary molecular species. Also, one-third of any sample of 

CNTs consists of metallic nanotubes. Hence, it is not easy to characterise CNT samples 

by NMR. Nevertheless, there are a few reports where the organic moieties attached to 

CNTs have been successfully probed by NMR. SWNTs derivatised by addition of 

nitrenes, dissolved in CDCb and 1,1,2,2-tetrachloroethane (TCE-d2), were characterised 

by 1H NMR 205
• Fluorinated alkyl chains attached to CNTs via a radical reaction were 

detected by 19F NMR for a dispersion of modified CNTs in DMSO 199
• Coleman et al. 

further derivatised SWNTs cyclopropanated via Bingel reaction with a fluoroalkyl chain, 

and were able to obtain an 19F NMR of the tagged SWNTs suspended in drDMF 212
• 

1.6.5.3.5 Atomic Force Microscopy (AFM) 

Methods for the direct visualisation of CNTs prove to be very useful in observing 

the effects of chemical modification. AFM has been used by several groups to show the 

shortening of CNTs caused by oxidative treatments, or exfoliation of CNT bundles as a 

result of higher solubility conferred by chemical derivatisation, and AFM height images 

are often employed to determine the reduction in average bundle diameter upon 

modification 104, 150, 166, 171, m, 176, 187, 194, 199,204, 2os, 218,220,224,228. Coleman et al. used gold 

colloid tagging to provide direct evidence of the successful cyclopropanation of SWNTs 

via the Bingel reaction. In their procedure, a thiolated moiety was attached to SWNTs, 

following which gold colloids were tagged to the thiol groups, whereupon AFM height 

images showed an increase equal to the diameters of the gold colloids 212
• Holzinger and 

group used AFM imaging to show the bundling of SWNTs brought about by cross­

linking via nitrene addition to the side-walls 206
• 
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1.6.5.3.6 Transmission electron microscopy (TEM) 

TEM is also very helpful in directly observing the effect of chemical modification 

of CNTs and attachment of groups to their walls. Fluorination was observed to cause 

damage to SWNT walls, and formation ofMWNTs if carried out above 500°C 182
• When 

organic chains are attached to CNT walls, they may be seen as hazy coatings on the 

sharply delineated CNT walls 172
• 

188
• 

189
• 

194
' 

205
• 

218
' 

220
. In addition to AFM images, 

Holzinger and eo-workers also used TEM images to observe the cross-linking of SWNTs 

via nitrene addition to the nanotube walls 206
• Hydrogenation of CNTs by Birch 

reduction was seen to cause corrugation of the CNT walls 214
. TEM contrast images were 

used for showing the presence of iodine atoms attached to S WNT walls by the 

Hunsdiecker reaction 178
• 

1.6.5.3.7 Scanning Electron Microscopy (SEM) 

Although to a lesser extent than TEM, SEM has been used by some groups to 

observe changes in the morphology of CNTs as a result of chemical modification 108
, 

188
• 

190
• 

206
• For instance, just as is the case with graphite 179

, SEM images indicated that the 

fluorination of CNTs led to a change in their colour from black to white, which was 

reversed upon defluorination by hydrazine 182
• 

1.6.5.3.8 X-ray photoelectron spectroscopy (XPS) 

XPS is a surface analysis technique for studying the elemental composition and 

chemical state of the elements present in a sample, that has been commonly used for 

polymers and carbon materials such as carbon fibres. XPS has also been used to 

characterise chemically modified CNTs. One of the first reports was for the study of 

CNTs that had been subjected to oxidising treatments; the Cls peak was deconvoluted to 

determine the oxygen-containing functional groups present on the CNT walls 168
• XPS 
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data was useful in observing the fluorination and defluorination of CNTs 184
, and 

understanding the nature of the bonds between carbon and fluorine: the F1s peak of 

fluorinated CNTs showed the presence of both ionic and covalent C-F bonds 190
, and the 

shape of the C 1 s peak upon deconvolution showed the contribution of C-F covalent 

bonds 191
• Other instances ofthe use ofXPS in characterising modified CNTs include the 

detection of nitrogen introduced by 1,3-dipolar cycloaddition 205 and by nitrene addition 
206

, fluorinated chains introduced via the Bingel reaction 212
, iodine by the Hunsdiecker 

reaction 178
, and sulphur covalent attached to SWNTs via a plasma-induced radical 

reaction 200
• 

A lesser used method for obtaining the elemental composition of modified CNTs 

is energy-dispersive X-ray analysis (EDAX) 103
• 

188
• 

1.6.5.3.9 Thermal analysis 

Thermogravimetric analysis (TGA) of modified CNTs in an inert atmosphere, 

such as argon or helium, helps in following the thermal defragmentation of the groups 

attached to CNTs. The weight loss corresponding to the attached groups is used to 

quantitatively estimate the degree of functionalisation; often, this technique is coupled 

with gas-phase mass spectrometry (MS), which helps in exactly identifying the attached 

groups 167,178,187-189,192,194,198,218,220,224. There is one report ofTGA being coupled with 

infrared spectroscopy (TGA-FTIR) 189
• The temperature at which the groups evolve 

indicates if the attachment was covalent or non-specific adsorption, as the former takes 

place at higher temperatures. For instance, the high temperature of evolution of 

hydrogen, 500°C, and detection of methane was adduced as proof of covalent C-H bond 

formation in the Birch reduction ofCNTs 214
• 
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1.6.5.3.10 Electrical measurements 

Owing to the presence of metallic tubes, any bulk sample of CNTs ordinarily 

behaves like a conductor. Chemical modification perturbs the intrinsic electronic 

structure of CNTs, and therefore shall alter their electrical properties. Based upon this 

principle, bulk electrical measurements have been used to probe CNT chemical 

modification. Electrical measurements on "buckypaper" showed that the resistance 

measured by a four-point apparatus increased by orders of magnitude owing to chemical 

functionalisation, and ideally returned to the value of pristine tubes if the modification 

was completely reversible 182
"
184

' 
187

• 

1.6.6 Endohedral filling 

Incorporating molecules and chemical species within the cavities of CNTs may 

have implications for their potential use as nanoscale reactors, and biomedical 

applications such as drug-delivery. Also, from a more fundamental point of view, it 

would be interesting to study the formation and properties of 1-D crystals of dimensions 

where quantum effects would come into play, as well as the properties of the filled CNTs 

themselves. 

The end-caps of CNTs can be opened by heat treatment or oxidation with acids, 

thereby making the cavity accessible for filling 156
' 

229
"
231

• CNTs have been filled by 

metals such as lead 229
, ruthenium 232

, metal oxides 233
' 

234 and mixtures of metal halides 
235

-
237

• The filling can take place either in solution or by capillarity of molten species. 

For a review of the filling ofCNTs by metal halides, see Ref. 238. 

In the laser ablation method of synthesis, some CNTs were observed to have 

fullerenes encapsulated within them 239
' 

240
• Later, the targeted high-yield synthesis of 

these so-called "peapod" structures of CNTs encapsulating fullerenes (C60@SWNTs), 

endohedral metallofullerenes [such as (Gd@C82)@SWNTs] has been achieved 241
, as 

well as functionalised fullerenes 242
' 

243
• In an interesting report, Khlobystov and eo-
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workers have demonstrated the use of CNTs as nano-reactors for carrying out the 

polymerisation ofC60 molecules encapsulated within the CNTs 244
• 

The encapsulation of proteins inside the hollow cavities of CNTs has been 

demonstrated 245
' 

246
• Significantly, it was found that the proteins retain most of their 

activity, which could pave the way for using such systems as nanoscale biological 

reactors. 

For an exhaustive, in-depth review on the filling of CNTs, the reader is referred to 

Ref. 247. 
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2. PURIFICATION OF CARBON NANO'fUBES: 

IMPLICATIONS FOR CHEMISTRY AND 

SPECTROSCOPY 

2.1 Introduction 

2.1.1 Overview 

Purification of as-produced CNTs is the first step before any chemical 

modification can be carried out, or before they can be employed for any of their potential 

applications (see Chapter 1, Section 1.5). As-produced CNTs contain a very large 

amount (30-70% by weight) of impurities including metal catalyst particles, amorphous 

carbon, fullerenes and multi-shell graphitic carbon "buckyonions". Thus, the initial 

purification step is of great importance and criticality. The impurities associated with 

CNTs must be removed before commencing any investigations on their electronic, 

electrical, thermal, mechanical or chemical properties, or for their application in any of 

the areas ranging from electronics to polymer composites. The metal catalyst may be 

enclosed by the graphitic or amorphous carbon, as has been shown by transmission 

electron microscopy (TEM) imaging 144
' 

160
' 

161
' 

248
-
259

• As-produced CNT samples 

synthesised by laser ablation methods contain a significant amount offullerenes 248
, while 

arc-discharge CNTs have a considerable content of multi-layer graphitic carbon enclosing 

metal catalyst. A wide range of physical and chemical methods have been developed for 

the removal of these impurities from as-produced soot to yield a material considerably 

enriched in CNTs. The various routes for the purification of CNTs that have been 

reported to date, and their respective advantages and disadvantages, are reviewed in 

Sections 2.1.2 to 2.1.5. To the best of our knowledge, there is no comprehensive review 

in the published literature of what is a very important aspect of CNT research. This 

review shall provide the necessary background for appreciating the importance of the 
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present study into some fundamentally important aspects of the purification and 

chemistry of CNTs. 

The initial purification step is of great importance to any subsequent chemistry 

that is carried out on the CNTs. Species of the highest purity possible are desirable for 

chemistry. The purity levels possible for molecular species are extremely difficult to 

achieve for heterogeneous materials such as CNTs. Amorphous carbon likely present in 

CNT material is more reactive than the CNTs, and will invariably be the preferred site of 

attack for any chemical reagents with which the CNTs are sought to be modified; besides, 

the reactivity of fullerenes and buckyonions, occurring as by-products in the CNT 

material, is almost identical with that of the end-caps, and quite similar (if not identical) 

with that of the side-walls, of CNTs. In addition, a great complication is introduced by 

the fact that the characterisation of chemically modified CNTs is extremely challenging, 

as, unlike molecular species, they are not easily amenable to standard techniques such as 

nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry or infra-red (IR) 

spectroscopy. 

Many groups have made use of previously reported recipes for the purification of 

CNTs, if the source of the CNTs was the same as, or if they were produced by processes 

identical with, that in the original report on the purification ofthe CNTs 166
, 

169
, 

182
, 

187
, 

189
, 

204
' 

260
• However, we find that, even for different batches of CNT material which have 

been made by the same synthesis method and while keeping the macroscopic synthesis 

conditions identical, it is not advisable to rely entirely on previously reported purification 

recipes without careful re-evaluation. This is an aspect of the purification of CNTs that 

has not been critically examined previously. Even though characterisation methods such 

as Raman spectroscopy and thermogravimetric analysis (TGA) show virtually identical 

spectra for the different batches of the CNT material, and the steps involved in the 

purification process may broadly be the same, they have to be fine-tuned and re-adapted 

afresh for each batch of material produced, ifthe removal of amorphous carbon and metal 

catalyst is to be ensured. This probably underscores the high inherent heterogeneity in 

the material, and the difficulty involved in characterising CNTs. 

The elimination of amorphous and non-nanotube carbon is integral to any 

purification process for as-produced CNT material. The elimination of non-nanotube 
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carbon is generally achieved by exploiting its greater reactivity to oxidation as compared 

to the relatively stable nanotubes. An extensively employed purification route involves 

the treatment of as-produced CNT material with liquid-phase oxidising media, such as 

sulphuric or nitric acids, which selectively oxidise away the non-nanotube impurities. 

However, such oxidising treatments do cause some chemical modification of the CNTs, 

such as the formation of carboxylic acid and other oxygen-containing functional groups 

on the CNT backbones. Even very mild treatment with oxidising acids causes some 

amount of damage to the CNT structures 261
•
262

• However, this may in fact be preferable, 

as the carboxylic acid groups lead to enhanced solubility or can be exploited for the 

further derivatisation of the CNTs, as described in Section 1.6.5 .1. 

One consequence of such oxidising treatments that was surprisingly not taken 

note of till very recently, is the effect of the amorphous carbon that may be formed as a 

result of chemical etching, on the subsequent chemistry carried out on the CNTs. In 

recent publications, it has been argued that the vast majority of carboxylic acid groups 

that were believed to have been created on the CNT walls may actually be associated 

with this amorphous carbon debris 263
• 

264
, and not covalently attached to the CNT walls 

as previously assumed. This could potentially cast doubt over a great deal of the 

literature based on the carboxylation of CNTs and subsequent derivatisation via 

amidation I esterification, which is among the most commonly employed chemical 

modification routes for CNTs (see Section 1.6.5.1.3 and references therein). Also, their 

conclusions could have profound implications for the spectroscopy of chemically 

modified CNTs, and could call into question the currently accepted interpretations of the 

effect of chemical modification on CNT spectra. The evidence for the formation of 

carboxylic acid groups on the CNT walls was adduced from an increase in the disorder 

(D-) band corresponding to defects and sp3 carbon atoms in the Raman spectra 149
• 

158
• 

265
• 

266
, and the appearance of bands ascribable to oxygen-containing functional groups in the 

mid-infrared (IR) spectra 155
• 

158
• 

163
-
166

• 
262

• 
265

• 
267 of CNTs. However, Verdejo et al. 263 

and Salzmann et al. 264 reported that washing the acid-treated CNTs was able to reverse 

the changes in the Raman and IR spectra that were attributed to the carboxylic acid 

groups on the CNT walls, which implied that the groups were not covalently attached to 

the CNT walls. Given how extensively this method is used for the purification and 
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modification of CNTs, this is a question of great importance, and has been investigated in 

great detail herein. 

Our findings underscore the great difficulty in characterising CNTs, and the 

limitations in employing molecular spectroscopic methods for these materials. It has 

been suggested that ultraviolet-visible-near-infrared (lN-vis-NIR) spectroscopy has the 

potential to obviate the need for other characterisation methods for CNTs, such as Raman 

spectroscopy or transmission electron microscopy (TEM) 47
• Our findings however 

indicate that exclusive reliance on any one spectroscopic method may be very 

misleading. Accurate evaluation of the purity and characterisation of CNTs may be 

achieved only if multiple spectroscopic methods such as Raman spectroscopy, UV-vis­

NIR spectroscopy, TEM and thermal analysis methods, such as thermogravimetric 

analysis (TGA) and thermogravimetric analysis-mass spectrometry (TGA-MS), are used 

in conjunction to complement each other. Our results especially bring to the fore the 

usefulness of thermal analysis in characterising CNTs. 

2.1.2 Physical purification methods 

Many research groups have attempted to develop purely physical or physico­

chemical purification routes, which avoid the need for outright chemical treatments. 

A common strategy is the use of surfactant or dispersing agent to assist in the 

debundling of CNTs 112, 122, 123, 145, 153, 160,251,255,256,268-272, thereby separating them from 

the amorphous carbon, non-CNT graphitic carbon and metal particles. However, mild 

sonication will invariably be required to achieve this dispersion, and the dispersion may 

be used for acid treatment as the non-CNT impurities can now be more easily removed. 

Chemical treatment can also be completely avoided and methods like centrifugation, 

microfiltration or even decantation can be employed for separating the CNTs from the 

impurities. 

In an interesting procedure, CNTs have been mixed with inorganic nanoparticles 

such as Zr02 and CaC03 and subjected to sonication, whereupon it was found that these 

nanoparticles ejected the metal catalyst particles enclosed within amorphous or graphitic 
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carbon by mere elastic impact 257
• The catalyst paraticles (typically Fe, Co or Ni) could 

easily be separated by a magnet, leaving behind purified CNTs. 

It has been shown that, under an electric field, CNTs migrate towards, accumulate 

on electrodes and align themselves 273
' 

274
• This is owing to the high aspect ratio of the 

CNTs and the polarization induced by the field in CNTs in the axial direction. As higher 

AC frequencies are applied, the non-CNT impurities become increasingly harder to 

mobilise. This has been exploited to electrophoretically separate CNTs from the 

impurities and obtain films of purified CNTs on electrodes 275
-
277

• The high power 

requirement for applying high-frequency AC voltages may be a drawback of this method. 

Size-exclusion chromatography has been shown to be capable not only of 

purifying CNTs while causing virtually no damage to the tubes, but also of sorting them 

length-wise within very narrow ranges 109
' 

271
' 

278
' 

279
• Typically, surfactant-stabilised 

dispersions of CNTs are eluted through columns of carefully chosen packing, such as 

controlled pore glass (stationary phase). The successively collected fractions will consist 

of CNTs of decreasing lengths and, finally, impurities, in that order. This method has 

also been applied to oxidatively shortened CNTs 280
-
284

• However, as can be expected of 

chromatographic procedures, this method has a very low throughput. 

Many proposed applications of CNTs require aligned films and arrays, which can 

be obtained by CVD growth of CNTs on substrates. The majority of the purification 

methods described above will be inapplicable for such films. While in situ methods for 

minimising the formation of amorphous carbon by the incorporation of water vapour or 

hydrogen in the feedstock have been mentioned above, post-synthesis purification 

processes have also been developed. Laser irradiation has been found to be useful in 

eliminating amorphous carbon and trimming the surfaces of CNT films 285
• Plasma 

etching has also been employed for the same purpose 286
, although prolonged exposure to 

plasma was found to open the end-caps of the CNTs. 
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2.1.3 Chemical purification methods 

For CNTs synthesised by chemical vapour deposition (CVD), the first step in the 

purification process is the removal of the catalyst support. This is generally done by 

washing the as-prepared sample with HF 157,249, 250,287-290, HCl 146, 154,249 or NaOH 291,292. 

Along with the support, these treatments also dissolve away some of the metal catalyst as 

well. It must be kept in mind that carrying out this step with HCl or NaOH (or both in 

succession) is more environmentally benign than the use ofHF. 

Fullerenes and carbon onions are soluble and, hence, are easily removed by either 

washing or Soxhlet extraction of the raw sample with CS2 
112

' 
151

' 
293

, toluene 160 or 

benzene 294
• 

A far greater challenge is posed by the metal catalyst nanoparticles enclosed in 

either amorphous or graphitic carbon layers. A variety of strategies have been devised 

for the removal of these impurities from the raw soot. The most commonly adopted 

strategy for removing amorphous I graphitic carbon and the metal enclosed by them is to 

exploit their greater ease of oxidation than CNTs. In this step, the more reactive 

amorphous carbon, fullerenes and buckyonions are selectively oxidised, whereas the 

more stable CNTs are relatively unharmed. The oxidation can be carried out either in the 

gaseous phase or in the liquid phase. 

The gas-phase oxidation can be carried out by simply heating the raw soot in air 

or oxygen-containing atmosphere 69, 147, 149, 157, 158,249,251,252,268,287,288,290,292,295-302. In a 

slight modification of this procedure, some groups have subjected the raw soot to 

microwave treatment in air 253
' 

303
• It is important to choose the proper temperature for 

oxidation, so as to minimise the burning of the CNTs themselves in the process. This can 

be done by carrying out a thermo-gravimetric analysis (TGA) of the raw material: 

initially, the non-CNT carbon gets oxidised and only at a slightly higher temperature does 

the degradation of the more stable CNTs begin. The temperature for carrying out the 

oxidation, then, would be slightly below this cross-over temperature at which the gradient 

of the curve changes. Once the carbon covering the metal particles is consumed, the 

exposed metal can be removed by subjecting the material to an acid treatment, such as 

with HCl, HN03, H2S04 or HF. If the metal catalyst-free CNT material is now subjected 
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to TGA, the degradation temperature for the CNTs may be observed to be noticeably 

higher than before the purification 143, 145, 154, 162,249-251,253-256,261,268,297,300,302,304-307. This 

is owing to the fact that the metal catalyst nanoparticles present in as-prepared material 

catalyze the oxidation, causing it to begin at a lower temperature 300
• 

301
, and that 

purification by oxidation can lead to the loss of small-diameter CNTs, which would burn 

at lower temperatures (more below). 

A variation of this method is the vapour-phase sulphidation of non-CNT 

impurities 308
, which has been shown to be suitable for employing directly on CNT 

devices as it is less corrosive than oxidation. 

Liquid-phase oxidation methods include stirring at a slightly high temperature, 

refluxing or sonicating the raw soot in oxidising acids like HN03 
69

• 
99

• 
108

• 
141

"
149

• 
151

• 
153

• 

154
, H2S04, or a mixture of the two 149

• 
151

• 
155

, or in oxidising media such as acidic 

KMn04 
15

6-
158

, or H20 2 
69

• 
159

.
162

• While treatment with oxidising acids simultaneously 

removes the exposed metal catalyst particles, the KMn04 method necessitates washing 

the material with HCl to remove the Mn02 formed during the oxidation, as does the H20 2 

method for eliminating the exposed metal. 

The fact that metals can catalyse oxidation has, in fact, been used to advantage by 

some groups who have resorted to the external addition of gold nanoparticles 309 or iron 

particles 161 to assist the oxidation. 

Although they are inexpensive and can purify gram-scales of CNTs at a time, a 

major disadvantage of the above methods of oxidation from the industrial processing 

point of view is that the time period required for them is very long, being anywhere 

between three hours to two days. Considerable reduction in processing time - as low as 

one hour - is one of the benefits claimed for a purification procedure based on 

microwave treatment, as is low power consumption. In this method, the as-prepared 

CNT material is subjected to microwave irradiation in oxidising acid, most commonly 

HN Q3 
259

• 
310

"
314

, but H Cl 310
• 

311 and H20 2 
312 have also been used. Once again, it is very 

important to determine the optimum processing temperature at which maximum removal 

of metal catalyst and minimum damage to the CNTs can be ensured. It is observed that, 

below this temperature, the dissolution of metal particles is ineffective while, above this 
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temperature, considerable etching ofthe CNTs takes place. Very high levels of purity in 

the final CNT product (2:: 99%) 314 have been reported using this method. 

Electrochemical routes have also been proposed for the selective oxidation of 

amorphous carbon in as-produced CNT soot 258
• Once again, the principle is the higher 

reactivity of the amorphous carbon compared to the CNTs. A major drawback, however, 

is that the electrochemical oxidation potential of the graphitic layers enclosing the metal 

catalysts is quite similar to the CNTs and, hence, a significant amount of metal remained 

behind in the material. 

As an alternative to oxidation for the selective removal of amorphous carbon, 

high-temperature reductive treatments such as by hydrogen 151
• 

305
, ammonia 153 and water 

vapour 315 have also been used. With the aim of minimising the production of amorphous 

carbon by in situ etching during the synthesis of CNTs itself, small amounts of hydrogen 
159

• 
252

• 
299 or water vapour 316

• 
317 have been included in the gaseous feed to, or atmosphere 

within, the reactor. While hydrogen reduces the more reactive amorphous carbon into 

volatile hydrocarbons, water vapour removes the carbon via the water gas shift reaction, 

leaving the stable CNTs in a highly pure state. For CVD synthesis of CNTs, the 

incorporation of controlled amounts of water vapour or hydrogen in the feedstock has 

been reported to yield thick forests of aligned, very high quality CNTs, which is of great 

relevance to applications such as optoelectronics. 

Carbon nanotubes were first reported to be synthesised by the arc-discharge 

method 1
• 

6
• 

7
• Arc-discharge also leads to the by-production of a considerable amount of 

multi-layer graphitic "buckyonions", either empty or enclosing metal catalyst particles. 

Unsurprisingly, the problem of purification of arc-discharge CNTs by eliminating 

graphitic impurities has been the focus of researchers from the very outset, and has 

proved a major challenge, given that the reactivity of graphite is not very different from 

that of the CNTs themselves. To this end, graphite intercalation has been attempted. 

Copper iodide 318
, bromine 319

-
321 and potassium 304 have been used as intercalating 

agents. The more rigid structures of CNTs (if multi-wall) cannot be intercalated. The 

exfoliated graphite can then be either selectively oxidised or washed away. 
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The importance of eliminating the carbon covering on the metal nanoparticles 

before attempting the removal of the latter can hardly be overstated: if due attention is not 

given, it may not be achieved at all 258
• 

2.1.4 Damage to pristine CNTs by purification procedures 

It is now well-documented that chemical purification methods such as 

oxidative treatments inflict damage on CNTs including opening of end-caps 151
• 

155
"
157

• 
229

• 

231, 259, 262, 289, 305, 311, 314, 315, 319, 320, 322, shortening 108, 143, 158, 289, 297, creation of defect sites 

such as vacancies and oxygen-containing functional groups on the CNT walls 142
• 

149
• 

155
• 

158
• 

165
• 

262
• 

265
• 

267
• 

323
•
325 and burning away of small diameter (and hence, more reactive) 

tubes 149
• 

262
• 

326
•
329

• While liquid-phase oxidising treatments carried out even under very 

mild conditions will cause some modification of the pristine CNTs 261
• 

262
, gas-phase 

oxidation will cause damage to CNTs only above a threshold temperature, and the extent 

of side-wall modification will be much lesser than in the former instance 328
• Although 

opening of CNT tips is a modification from their pristine structure, it may, however, be 

necessary if the metal catalyst enclosed within the tip of the CNT (as frequently occurs 

for CVD-grown CNTs) is to be removed. Liquid-phase oxidation treatments can also 

lead to the formation of fragments of carbon, possibly attached to carboxyl groups 141
, 

which may remain as a disordered coating on the CNTs 143
• 

144
• 

148
•
248

•
261

•
310

•
311

•
329

• 

Even ultrasonication, which is often used to assist in the dispersion of CNT 

bundles and to separate them from metal catalyst particles for their efficient removal, can 

lead to damage ofthe CNT walls 101
• 

102
• 

While some amount of damage to CNTs as a result of purification may be 

inevitable, attempts have been made to reverse this, with varying degrees of success. 

Amorphous carbon produced as a result of oxidising acid treatments can be removed by 

air oxidation 99
• 

143
• 

145
•
148

• 
311

• Alternatively for this purpose, or for removing the defects 

and functional groups introduced during the purification, the CNTs can be annealed at 

high temperature (though under 1000°C) in an inert gas 148
• 

153
• 

304
• 

330
, or in vacuum 254

• 
267

• 

305
• In fact, vacuum annealing at temperatures as low as 800°C has been reported to re­

seal open tips ofSWNTs 331
•
332

• 
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Further, annealing in vacuum or in an inert atmosphere at or above 1600°C has 

been found to be effective in purifying MWNTs by removing non-CNT carbon and even 

metal catalyst, although the mechanism for this is not known at present. Annealing at 

such high temperatures is also capable of producing re-graphitisation and re-ordering of 

defects, leading to MWNTs of high crystallinity 256
• 

333
• For, SWNTs, however, it has 

been reported that vacuum annealing at such elevated temperatures (> 1600°C) can lead 

to enlargement of diameters and even coalescence of SWNTs into MWNTs 334
• 

335
• The 

coalescence is believed to start from vacancies in the SWNT walls, triggering off a 

continuous re-organisation 336
• 

2.1.5 Choice of purification method 

The choice of purification method will be governed by the cost, scale and the 

targeted end-application of the purified CNTs. Chemical purification routes have the 

advantage of low cost, low power consumption and applicability to large scales, but 

invariably produce some defects on the CNTs, although these may be reversed to some 

extent. Indeed, for some applications such as polymer composites, a small amount of 

defects on the CNTs may prove to be advantageous, as they ensure better dispersion in 

the polymer matrix. Most physical purification routes do not cause damage to the CNTs, 

but may not match the scalability of chemical routes. 

2.2 Results and discussion 

2.2.1 Impossibility of devising standard recipes for purification 

The thermogravimetric analysis (TGA) in air of as-received SWNT material 

shows that there is a residual content of metal (iron) catalyst particles of around 15-20 

weight%. For example, Curve lA in Figure 2-1 shows the TGA profile of one batch 

(Batch 1) of as-received SWNTs (lA-SWNTs) obtained from Carbon Nanotechnologies, 
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Inc. (CNI), Houston TX, USA (see Section 7.1). The metal nanoparticles can be 

expected to be enclosed by a layer of amorphous carbon. This is confirmed by the fact 

that, upon soaking the as-received material in 6M HCl, the acid is not observed to turn 

yellow, which would have been the case upon dissolution of metal in the acid. Further, 

after this S WNT material was filtered and washed to remove the acid, TGA in air does 

not show a change in the residual weight per cent, indicating that virtually no removal of 

metal has taken place. 

From Figure 2-1, it can be seen that there is a rapid weight loss of the as-received 

material after and above 350°C. Thus, the procedure employed for purification of the 

1A-SWNTs involved heating in air at 350°C for 1h to remove the amorphous carbon, 

followed by soaking the material for 6h in 6M HCl (such that the overall concentration of 

the solids in the suspension was 0.25 g/mL) to dissolve the metal catalyst nanoparticles, 

and finally filtering the suspension over a polycarbonate membrane filter (pore size 0.2 

~) and washing with copious amounts of deionised water to remove the acid. 

The yield at the end of the air oxidation step was around 90% by weight. The 

SWNTs subjected to all three steps described above are referred to as 1B-SWNTs. The 

TGA of the lB-SWNTs is shown by Curve 1B in Figure 2-1. It can be seen that the 

residual weight in the purified SWNTs is around 3.5 weight %, indicating a significant 

reduction in the content of metal by the purification process. Also, as a result of the 

removal of amorphous carbon, the burning of the purified material begins at a higher 

temperature than the as-received lA-SWNT material. The thermal degradation of the 

SWNTs also continues up to a much higher temperature (over 700°C, compared to the 

600°C for as-received sample). This can be explained in terms of the higher content of 

metal nanoparticles in the 1A-SWNT material, which catalyse the oxidation of the 

nanotubes. 
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TGA in air of(lA) as-received SWNT material of Batch 1, and (18) the SWNTs labelled lA subjected to a 

purification process. The samples were heated from room temperature to 1 ooooc at a rate of 1 0°C/min. 

However, when the similar procedure was attempted for another batch (Batch 2) 

of SWNTs, the TGA curves shown in Figure 2-2 were obtained. 
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Figure 2-2 

TGA in air of(2A) as-received SWNT material of Batch 2, and (2B) the SWNTs labelled 2A subjected to a 

purification process. The samples were heated from room temperature to l000°C at a rate of 10°C/min. 

The TGA profile of the as-received 2A-SWNTs is quite similar to that of lA­

SWNTs. In particular, the thermal degradation begins at around the same temperature 

i.e., 350°C, justifying the choice of temperature for the initial air oxidation step in the 

purification process for this batch too. The yield after the air oxidation was around 90%, 

similar to that for the lA-SWNTs. Once again, there is a considerable reduction in the 

metal content present in the as-received material, with the residual weight in the purified 

material being only 1.7%. It can, therefore, be safely concluded that the air oxidation 

step was able to crack open the carbon layers enclosing the metal nanoparticles, enabling 

their efficient leaching by the HCl. 

However, it is clear from the considerable weight loss of over 10% before 400°C 

in Curve 2B of Figure 2-2 that the amorphous carbon has not been eliminated by the 
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purification. This would suggest that, for this batch of S WNT material, the air oxidation 

is able to crack the carbon coating on the metal nanoparticles into smaller fragments, 

thereby exposing the metal, but the duration of the step was insufficient to effect the 

complete burning of all the amorphous carbon. In order to address this issue, two 

approaches were tried: a) refluxing the SWNT material in NaOH solution to exfoliate the 

amorphous carbon, followed by washing in HCl to neutralise the NaOH; and b) 

increasing the duration of the air oxidation step. 

Treatment with strong bases has been previously reported to exfoliate non­

nanotube carbon and remove metal catalyst from SWNT material 291
• 

292
• 

304
• 2A-SWNTs 

were first heated in air at 350°C for 1 h, then refluxed in 6M NaOH solution at l20°C for 

12 h, and then stirred in 6M HCl at room temperature for 6 h to neutralise the base. They 

were then filtered and washed as above to yield 2B'-SWNTs. As a control, as-received 

2A-SWNTs were refluxed in 6M NaOH solution and stirred in 6M HCI without the air 

oxidation step (2B"-SWNTs). The TGA profiles of these materials are shown in Figure 

2-3. 
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Figure 2-3 

TGA in air of2A-, 28'- and 28"-SWNTs. The samples were heated from room temperature to 1000°C at a 

rate of l0°C/min. 

Alkali treatment is able to exfoliate the amorphous carbon to some extent, 

enabling a partial removal of metal catalyst from the as-received SWNT material. It can 

be seen from Curve 2B" in Figure 2-3 above that not only is the residual metal content 

lower than in case of the as-received 2A-SWNTs but the thermal degradation continues 

up to a much higher temperature, indicating reduced catalytic enhancement of the 

oxidation process by the metal catalyst. It has been previously reported 258 for arc­

discharge CNTs that chemical treatment with alkali solutions fails to remove a 

considerable portion of the metal content in as-synthesised CNT material. Also, it can be 

seen from Curve 2B" that a significant amount of amorphous carbon does remain behind 

after the purification. If the alkali treatment is carried out after the air oxidation step 

(Curve 2B'), then a greater reduction in metal content is achieved, but a considerable 
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amount of amorphous carbon nevertheless remains behind after the purification process, 

as evident from the weight loss of around 8% before 400°C. In view of the fact that, 

even after a tripling in the processing time the amount of amorphous carbon has not been 

reduced to acceptable levels, it would appear that no purpose is served by an alkali 

treatment step in the purification process for CVD CNTs. 

A far more satisfactory reduction in amorphous carbon content (together with 

efficient removal of metal catalyst) was observed upon increasing the duration of the air 

oxidation to 2 h for the SWNT material of Batch 2. However, the yield at the end ofthe 

air oxidation step was only around 75% (compared to around 90% when the duration is 

only 1 h), suggesting that some small-diameter SWNTs as well as the end-caps of many 

remaining SWNTs may have been burned away as a result of the prolonged oxidation. 

The SWNTs thus purified are labelled 2C-SWNTs, and their TGA profile is shown in 

Figure 2-4 (the 2B-SWNTs are also shown for comparison). 

57 



Chapter 2 

90 

80 

70 
~ e.... 
:E 60 
Cl 
'(jj 
~ 50 
iii 
:::l 

~ 40 
Q) 

0::: 30 

20 

10 

100 200 300 400 500 600 700 800 900 

Temperature (0 C) 

Figure 2-4 

TGA in air of2A-, 2B- and 2C-SWNTs. The samples were heated from room temperature to 1000°C at a 

rate of I 0°C/min. 

These results clearly illustrate that there is no "standard" procedure that can be 

applied to different batches of CNTs, even when they have been synthesised by the same 

process, and even when TGA analysis gives almost identical burning profiles for material 

from different batches. The purification process must be re-evaluated for each individual 

batch, and the purity of the SWNT material must be rigorously evaluated before further 

studies are carried out on them. 

The purified lB- and 2C-SWNTs, which have an amorphous carbon content of 

less than 3 weight per cent and a residual metal catalyst content of less than 4 weight per 

cent have been used in the remainder of the studies described in this thesis, and are 

hereafter referred to as Pur-SWNTs. 
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2.2.2 Amorphous carbon debris from Biquid-phase oxidative purification 

Purification by treatment with oxidising acids may be regarded as having the two­

fold advantage of removing non-nanotube carbon and also providing a useful starting 

point for further chemistry by creating carboxylic acid groups on the CNT walls. 18-

SWNTs were refluxed in a mixture of sulphuric and nitric acids to give 18-ox-SWNTs. 

Some 1 8-ox-SWNTs were further refluxed in NaOH solution, then washed and filtered, 

whereupon a reddish-brown filtrate was obtained. The base-treated SWNTs were stirred 

in HCl solution to neutralise the base, and then filtered and washed to yield 18-ox'­

SWNTs. Refluxing the 18-ox'-SWNTs once again in NaOH solution did not result in a 

reddish-brown filtrate. As a control, purified 18-SWNTs that had not been subjected to 

any oxidising acid treatment were refluxed in NaOH solution, then washed and filtered, 

to yield a colourless filtrate. The SWNTs were then stirred in HCl solution to neutralise 

the base, and then washed and filtered, whereupon they are labelled as 18-nox-SWNTs. 

The SWNTs were characterised by Raman spectroscopy and thermogravimetric analysis­

mass spectrometry (TGA-MS). 
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Figure 2-5 

Raman spectra of the various SWNT samples. The wavelength of the laser used for excitation was 532 run. 

The Raman spectra of the SWNT samples are shown in Fig. 2-5. The low-energy 

features in the range 100-250 cm·1 correspond to the radial breathing of the nanotubes. 

The diameter, d (run), of a nanotube is inversely related to the frequency of its radial 

breathing mode (RBM) peak, mr (cm-1
), as d = 223.75 I Wr 

355
• It can be seen from 

Figure 2-5 that some RBM peaks, especially that located at approximately 270 cm·1 

(corresponding to nanotubes of diameter around 0.83 nm), present in the spectrum of lB­

SWNTs are absent in those of the lB-ox-SWNTs and 1B-ox'-SWNTs, but present once 

again in the spectrum of the control 1B-nox-SWNTs. Thus, as expected, treatment with 

oxidising acids has led to the degradation of small diameter SWNTs, although refluxing 

in alkali does not appear to have done so. The band at around 1590 cm·1 is owing to the 

in-plane vibrations of sp2 -hybridised graphitic carbon, and hence is called the tangential 

or G-band. Defects and functional groups on the walls or ends of the CNTs, or 
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amorphous carbon give rise to the so-called disorder (D-) band corresponding to sp3
-

carbon, which is located around 1340 cm·1
• The areal ratio of the intensities of the D­

band to the G-band (Io/10 ) is, therefore, a measure of the extent of defects or functional 

groups present on the CNTs. The ratios for the four samples are given in Table 2-1. 

Sample loll a 

18-SWNTs 0.02 

18-ox-SWNTs 0.25 

18-ox'-SWNTs 0.14 

18-nox-SWNTs 0.02 

Table 2-1 

The areal ratios (lofla) ofthe intensities ofthe disorder (D-) band to the graphitic tangential (G-) band of 

the SWNT samples. 

The Iolla ratio increases upon acid treatment (0.24 for 18-ox-SWNTs as against 

0.02 for 18-SWNTs). However, this could be owing either to the formation of functional 

groups on the CNT walls or the presence of amorphous carbon debris. Additionally, the 

lo/10 ratio for 18-ox-SWNTs is 0.25, whereas it is only 0.14 for 18- ox'-SWNTs. Thus, 

there is a clear decrease in the intensity of the D-band of the oxidised SWNTs following 

the NaOH treatment, which may be the result of the removal of the amorphous carbon 

debris by the NaOH. But the 10 /Ia ratio ofthe oxidised SWNTs after base-treatment (18-

ox'-SWNTs) is nevertheless an order of magnitude higher than that for the starting 18-

SWNTs. This is very different from the recent reports ofVerdejo et al. 263 and Salzmann 

et al. 264
, who had found a near-complete reversal in the increase of the D-band upon 
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alkali treatment, which had led them to conclude that the carboxylic acid groups were 

mostly associated with the amorphous carbon debris. Further evidence that the oxygen­

containing functional groups may be attached directly to the CNT walls is provided by 

thermogravimetric analysis-mass spectrometry (TGA-MS). 

It has been reported that the thermal defragmentation of oxygen-containing 

functional groups, produced by the treatment with oxidising media, shall occur in the 

range 350-800°C, leading to the evolution of carbon dioxide (C02) as one of the 

defragmentation products 267
' 

324
• Thus, TGA-MS may be a useful tool to probe the effect 

of oxidising acid treatment on CNTs. A slight weight loss corresponding with the 

evolution of C02 (44.01 amu) can be observed in the TGA profile for the 18-SWNTs 

(Fig. 2-6(i)), as some residual functional groups can be expected to be present on purified 

SWNTs as a result of the oxidation step in the purification process. For the 18-ox­

SWNTs that have been oxidised by acid treatment, two distinct regions for the evolution 

of C02 can be seen (Fig. 2-6(ii)). The peak at a temperature as low as 250°C can be 

explained in terms of the carboxylic acid groups associated with the amorphous carbon 

produced by the degradation of the SWNTs by the acid, which decompose at a much 

lower temperature than the groups directly on the SWNT walls, which are relatively 

stabler to thermal degradation than the amorphous carbon. The weight loss for the 1 B­

ox-SWNTs (~27%) is much higher than for the purified 18-SWNTs (~17%), indicative 

of the introduction of functional groups introduced by the acid treatment. When the 1 B­

ox-SWNTs are refluxed in NaOH, it is this carboxylated amorphous carbon which 

dissolve in the base and results in a reddish-brown filtrate. After refluxing in NaOH, it 

can be seen that this low-temperature evolution of C02 is almost completely reduced, as a 

result of the removal of the amorphous carbon. When the alkali treatment was repeated, 

no further formation of coloured filtrate was observed, indicating that the amorphous 

carbon debris had been almost entirely removed. Significantly, the weight loss ofthe 18-

ox'-SWNTs (Fig. 2-6(iii)) is approximately the same as for the lB-ox-SWNTs (~27%), 

which clearly suggests that most of the functional groups are associated with the SWNT 

backbone rather than the carbon fragments. The weight loss of the control 1 B-nox­

SWNTs (Fig. 2-6(iv)) is almost identical with that ofthe starting lB-SWNTs, thus ruling 

out any oxidation being caused during the alkali treatment. 
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(i) (Above) TGA in helium and (below) the corresponding mass spectrometry data for the thermal 

evolution of C02 for purified lB-SWNTs. 
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(ii) (Above) TGA in helium and (below) the corresponding mass spectrometry data for the thermal 

evolution ofC02 for lB-ox-SWNTs. 
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(iii) (Above) TGA in helium and (below) the corresponding mass spectrometry data for the thermal 

evolution ofC02 for IB-ox'-SWNTs. 
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(iv) (Above) TGA in helium and (below) the corresponding mass spectrometry data for the thermal 

evolution of C02 for I B-nox-SWNTs. 

Thus, our findings differ greatly from those of Verdejo and eo-workers 263
, and 

Salzmann and eo-workers 264
, who had concluded that the enhancement in the 10 :10 ratio 

upon liquid-phase oxidation treatments is almost entirely owing to the formation of 

amorphous carbon debris, and that very few, if any, functional groups are created directly 

attached to the CNT walls, contrary to what was thought previously. We suggest that this 

may be attributed to the difference in the purification procedures employed in the 

aforesaid reports 263
• 

264
, and in our study. Amorphous carbon is formed as a by-product 
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of CNT production, and is already present as a coating on nanotubes (and metal catalyst 

particles) in raw CNT material. As it is more reactive than the CNTs, it shall be the 

preferred site of chemical attack. Unlike Verdejo et al. 263 and Salzmann et al. 264
, we 

have included a separate step in our purification procedure involving the heating of raw 

CNT material at high temperature in air, in order to oxidise and remove amorphous 

carbon (see Figure l(a) in Ref. 263) before any subsequent chemistry is carried out on the 

CNTs. Thus, when subjected to acid treatment, the CNT walls were accessible for 

oxidation, and functional groups were created directly on the walls. At the same time, 

some amorphous carbon is also generated from the degradation of the SWNTs by the 

oxidising acid, which remains as debris and must be removed by treatment with NaOH. 

Thus, unlike what has been suggested recently 263
' 

264
, we are able to confirm that 

oxidising acid treatment does lead to a significant functionalisation of CNT walls, and 

this route can be safely used for the carboxylation of CNTs and subsequent covalent 

derivatisation. 

2.3 Conclusion 

Some very important aspects of the purification of SWNTs have been studied. 

The significance of these results stems from the fact that purification processes constitute 

the starting point of most studies into the properties and applications of CNTs. From the 

point of view of the chemistry and spectroscopy of CNTs, the implications of these 

studies could potentially be profound. 

Firstly, it was found that heating raw CNTs in air may be an extremely important, 

and perhaps unavoidable, step for the elimination of amorphous carbon in any 

purification process for SWNTs. That it is extremely simple to carry out and easily 

scalable makes it attractive. If non-nanotube carbon in any as-produced CNT material is 

not eliminated, the metal catalyst nanoparticles present in the material cannot be 

efficiently removed in a subsequent chemical step, as the metal particles are enclosed by 

carbon layers. Also, it is very likely that the amorphous carbon that was not satisfactorily 

eliminated from the raw CNTs will be the preferred target of chemical attack in any 
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subsequent chemical modification, and the CNT walls may not be derivatised as 

intended. 

Secondly, we are able to resolve a recent major controversy about the exact 

location of the oxygen-containing functional groups created by liquid-phase oxidising 

acid treatment of CNTs. Such treatments have been extensively used in the purification 

and chemical modification of CNTs as they are commonly regarded as having the two­

fold advantage of removing non-nanotube carbon as well as creating carboxylic acid 

groups on the CNT walls, which are the starting point for the chemical derivatisation of 

the CNTs via amidation I esterification (see Chapter 1, Section 1.6.5.1). There is a great 

deal of published literature on the purification of CNTs by treatment with oxidising acids, 

and their carboxylic acid-based modification and spectroscopy. However, oxidising acid 

treatments inevitably cause some degradation of the nanotubes themselves, leading to 

generation of amorphous carbon debris, which may remain coating the nanotubes. In 

what could call a vast volume of literature into serious question, it has been very recently 

suggested 263
• 

264 that the carboxylic acid groups that were believed to have been created 

directly on the CNT walls, were actually associated with this debris. This could cast a 

doubt on the exact location of any further chemical derivatisation and, consequently, have 

serious implications for the spectroscopy of modified CNTs. We have been able to 

establish that treatment with oxidising acids, such as nitric, does indeed lead to creation 

of oxygen-containing functional groups directly attached to the CNT backbone, and not 

associated with the carbon debris. However, it is important to note that carbon debris is 

indeed generated by acid treatment of CNTs, which will remain on the surface of the 

CNTs if no attempt is made to expressly remove them, such as with alkali treatment. 

Thirdly, there are numerous instances in the published literature of groups using 

previously reported recipes for the purification of CNTs, wherein the implicit assumption 

appears to be that the same purification process would be valid if the CNTs have been 

produced by identical methods or are from the same source. However, based on our 

study, we emphasise that, although the steps involved in the purification process may 

broadly be the same, previously reported recipes should not be treated as "standard"; the 

processing conditions in the purification procedure - such as temperature and time 

duration of the oxidation step - should be re-evaluated for the batch of CNTs being 
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studied at present. This is true for different batches of CNT material, even if the method 

used for synthesising the CNTs is the same, the macroscopic parameters of the synthesis 

process are kept the same, and analyses such as Raman spectroscopy and TGA yield very 

similar spectra for the different batches. This only underscores the inherent heterogeneity 

in CNT material, and the fact that present spectroscopic methods, or the models currently 

proposed to explain the growth of CNTs, do not yield an outright molecular-level picture 

of the CNTs and impurities present in the as-synthesised material. 
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3. MODIFICA'I'ION OF SINGLE-WALL CARBON 

NANOTUBES BY TERTIARY PHOSPHINES 

3.1 INTRODUCTION 

In attempts to realize the full potential of CNTs in nanoscale materials and 

devices, a problem of solubility is frequently encountered. CNTs have a tendency to 

aggregate together into bundles resulting in very low solubility in common solvents 

making their handling and processing difficult. It is no surprise therefore that 

considerable efforts have focused on producing stable dispersions of CNTs in both 

aqueous and organic solvents. Non-covalent routes for solubilising CNTs has been 

reviewed in depth in Chapter 1, Section 1.6.4. Briefly, CNTs can be solubilised in water 

by wrapping the nanotube in water-soluble polymers such as poly(vinyl pyrrolidone) 114 

and poly(acrylic acid) 117
, or by the 1t-stacking of ionic pyrenes (or other polycyclic 

aromatic compounds) onto the nanotube surface 138
• 

140
• The same methodology, using 

appropriate polymers, can be used to solubilise CNTs in organic solvents 116
• Similarly, 

stable CNT dispersions in aqueous media can be achieved using anionic (sodium dodecyl 

sulphate, SOS), cationic (dodecyltrimethylammonium bromide, DTAB) or non-ionic 

(Triton X) surfactants 113
• Alternatively CNTs can be solubilized in both organic and 

aqueous solvents by employing synthetic strategies that use covalent chemistry (Chapter 

I, Section 1.6.5). 

However, whilst non-covalent routes, such as the use of surfactants, polymer­

wrapping and 1t-stacking of molecules, can have a dramatic effect on solubility they have 

the obvious disadvantage of rendering the CNT surface inaccessible therefore inhibiting 

further chemistry or interactions. On the other hand, covalent functionalization can 

disrupt the intrinsic electronic structure of the CNTs, thereby compromising their exciting 

properties 103, 104, 163, 178, 188, 192-194, 204, 208, 224. The challenge, therefore, is to achieve 

sufficient modification of the CNT surface to ensure ease of processing, while avoiding 

significant degradation of electronic structure. 
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The chemistry of fullerenes and CNTs suggests that they can behave as electron­

deficient systems, susceptible to nucleophilic reactions. Amines are nucleophilic species, 

as they have a lone-pair of electrons on the nitrogen atom. It was observed that there is 

indeed an interaction between SWNTs and ammonia 79. Subsequently, there have been 

several studies on the non-covalent modification of CNTs by alkylamines, leading to 

enhanced solubility of the nanotubes 228
' 

260
' 

337"339. However, the adsorption of amines 

could be easily reversed, and the amines desorbed with time. 

Tertiary phosphines have been extensively used for capping nanoparticles and 

improving their solubility by preventing aggregation. Similar to the nitrogen atom in 

amines, these molecules also have a lone-pair of electrons on the phosphorus atom. Here 

we report a simple, solvent-free, low level non-covalent and non-destructive modification 

ofSWNTs by triphenyl- [P(C6H5)3] and trioctyl- [P(C8H17)3] phosphines 356. The choice 

of these tertiary phosphines is governed by their stability (many other phosphines such as 

PH3 or trimethylphosphine, P(CH3)3, are highly pyrophoric). Besides, they are 

inexpensive and very commonly used in the laboratory. The modified SWNTs showed 

greater ease of exfoliation and solubility in organic solvents as compared to pristine 

SWNTs. 

3.2 Results and discussion 

SWNTs produced by the HiPCO process 19 were purified as described in Chapter 

2 (Pur-S WNT). In order to remove the oxygen-containing functional groups from the 

CNT walls that may have been introduced during the purification process, the material 

was annealed under vacuum at 900°C for 8 hours (Ann-Pur-SWNT). The purified, 

annealed SWNTs were then treated at 90°C with either molten triphenylphosphine (PPh3) 

or tri-n-octylphosphine (POc3) 90°C under nitrogen to produce SWNT-PPh3 and SWNT­

POc3 respectively, as shown in Figure 3-1. 
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H 
H 

Ann-Pur-SWNT 

N 2, 90°C, 48 h 

Figure 3-1 

SWNT-PPh3 (R =Ph) 
or 

SWNT-POCJ (R = Oc) 

Modification of SWNTs by triphenylphosphine (PPh3) or tri-n-octylphosphine (P0c3). 

X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible-near infrared (UV­

vis-NIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), and 

atomic force microscopy (AFM) have been employed to characterize the functionalized 

material. Significantly, Raman spectroscopy and Ultraviolet-visible-near infrared (UV­

vis-NIR) spectroscopy show minimal perturbation of the electronic structure of the 

SWNTs upon modification. AFM analysis shows considerable debundling of the 

SWNTs as a result of the modification. XPS suggests that the interaction between the 

phosphine molecules and the SWNTs may be via the lone-pair of electrons on the 

phosphorus. Bulk electrical transport properties of films of nanotubes measured by a 

four-point apparatus also show a significant change in the resistance of the modified 

SWNTs. 

3.2.1 Enhancement of solubility 

Interestingly, the treatment of SWNTs with the tertiary phosphines resulted in 

significant improvements in the dispersion of the carbon nanotubes in organic solvent. 

Ann-Pur-SWNTs, SWNT-PPh3 and SWNT-POc3 were suspended under mild bath 

sonication (Ultrawave U50, 30-40 kHz) for 15 min in absolute ethanol such that the 
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overall concentration of the suspensions was 0.1 mg/mL, and the suspensions were 

allowed to stand for 48 h. The improved solubility of SWNT-PPh3 and SWNT-POc3 in 

ethanol can be readily observed in the optical photographs taken after 48 h, displayed in 

Figure 3-2. It is clear that while the Ann-Pur-SWNT material starts aggregating shortly 

after sonication, the phosphine-treated samples form stable suspensions for several days. 

Figure 3-2 

Optical photographs of suspensions in absolute ethanol of(from left) Ann-Pur-SWNTs, SWNT-PPh3 and 

SWNT-P0c3• The suspensions were obtained by mild bath sonication ofSWNTs in ethanol , and allowed 

to stand for 48 hours. 

In order to further support the enhanced dispersion properties of the phosphine­

treated SWNTs in organic solvents, an AFM analysis of suspensions of the nanotube 

samples on a mica surface was carried out. The nanotube samples were suspended under 

mild bath sonication for 5 min in DMF, while maintaining an overall concentration of 

0.03 mg I mL. The suspensions were allowed to stand for 1 h, after which 2 J.!L of clear 

supematant was pipetted, drop cast onto freshly cleaved mica, and the solvent evaporated 

under a gentle stream of nitrogen. Figure 3-3 shows three representative AFM images of 

(i) Ann-Pur-SWNT, (ii) SWNT -PPh3, and (iii) SWNT -POc3 samples. It is evident that the 

untreated nanotubes, Ann-Pur-SWNT, are present as larger bundles when compared with 

SWNT-PPh3 and SWNT-POc3. Histograms showing the diameter distribution, 
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determined by measuring the heights of the individual bundles observed in the AFM 

height images are also shown. The mean diameter of the bundles in the two samples are 

calculated to be 16.0 nm, 6.1 nm and 5.6 nm for Ann-Pur-SWNT, SWNT-PPh3 and 

SWNT-POc3 respectively, clearly demonstrating a significant debundling in phosphine 

treated SWNTs which is presumably responsible for the improved dispersion of the 

material in common organic solvents. 
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Figure 3-3 

(i) (From top to bottom) A representative tapping mode AFM height image of pristine Ann-Pur-SWNT, 

diameters ofnanotube bundles along the section marked by the white line, and histogram showing the 

diameter distributions. 
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Figure 3-3 

(ii) (From top to bottom) A representative tapping mode AFM height image of phosphine-modified SWNT­

PPh3, diameters ofnanotube bundles along the section marked by the white line, and histogram showing 

the diameter distributions. 
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Figure 3-3 

(iii) (From top to bottom) A representative tapping mode AFM height image of phosphine-modified 

SWNT-POc3, diameters ofnanotube bundles along the section marked by the white line, and histogram 

showing the diameter distributions. 
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3.2.2 X-ray photoelectron spectroscopy (XPS) 

In order to probe the interaction of the tertiary phosphines with SWNTs the 

reacted material was studied by XPS. The XPS spectra are shown in Figure 3-4. 

130 132 134 136 
Binding Energy (eV) 

Figure 3-4 

P 2p photoelectron spectra ofSWNT samples treated with (a) triphenyl phosphine (SWNT-PPh3) and (b) 

trioctyl phosphine (SWNT-P0c3) . The red line represents the fitted curve to the experimental data (black), 

while the coloured peaks within the fitted curve represents the deconvoluted components. 

XPS data recorded on SWNT-PPh3 shows the presence of a broad peak associated 

with P 2p core electrons at a binding energy of approximately 133.5 eV (Figure 3-4 (a)). 

This value is approximately 2.6 eV shifted from the P 2p peak position expected for pure 

triphenylphosphine (130.9 e V) 340
' 

341
• This indicates that the phosphorus atoms present 

in the nanotube material are in a different chemical environment than those in the pure 

phosphine reagent. The binding energy is in line with that expected for a simple 

phosphine adduct such as PPh3.BF3, where the 2p312 binding energy has been reported to 
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have values between 132- 133.2 eV 340' 341 . The broad nature ofthe P 2p peak can be 

understood by considering that the P 2p peak consists of two closely spaced ( -1.3 e V 

apart) lines due to 2P3t2 and 2pll2 electrons (which are unresolved in the current data) and 

may contribute, along with other factors such as inhomogeneity and the presence of more 

than one phosphorus environment, to the peak broadening. Deconvolution of the peak 

into its components shows the presence oftwo main doublets at 132.7 eV and 133.4 eV 

respectively, indicating signatures of a simple phosphine adduct or phosphorus (V)-like 

state 341 . While it is not possible to comment on the exact chemical nature of the 

interaction, the upward shift in the 2p312 binding energy of the phosphorous indicates that 

charge transfer between the electron donating phosphorus atoms and the carbon 

nanotubes may have taken place. Similar results were found for SWNT -POc3, with the 

presence of a broad peak associated with P 2p core electrons at a binding energy of 

approximately 133.0 eV (Figure 3-4 (b)). Elemental composition analysis of the XPS 

data for SWNT-PPh3 and SWNT-POc3 show that the phosphorus content is 

approximately 0.1 atomic per cent for both materials. 

Thermogravimetric analysis (TGA) 

In order to follow the thermal desorption ofthe organic molecules from the CNTs, 

TGA was performed under helium. TGA data for SWNT-PPh3 and SWNT-POc3 (Figure 

3-5) show a weight loss of up to ea. 20 wt.%, and 25 wt.% respectively, when compared 

to Ann-Pur-SWNTs, indicating the desorption of organic groups could correspond to as 

many as 0.9 and 0.8 tertiary phosphines per 100 carbon atoms for SWNT-PPh3 and 

SWNT-POc3 respectively. 
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Figure 3-5 

Thermogravimetric analysis (TGA) data under helium for pristine (Ann-Pur-SWNT), triphenyl phosphine­

treated (SWNT-PPh3) , and trioctyl phosphine-treated (SWNTs-POc3) nanotube samples. 

3.2.3 Ultraviolet-visible-near infrared spectroscopy 

UV -vis-NIR spectroscopy has been used extensively to follow functionalization 

of SWNTs with the loss of the characteristic absorption bands corresponding to the 

electronic transitions between the van Hove singularities, a consequence of their chemical 

modification . The absorption spectra obtained from the Ann-Pur-SWNT, SWNT-PPh3 

and SWNT-POc3 samples are shown in Figure 3-6. Only a small suppression of the 

absorption bands of the phosphine-treated SWNTs can be seen which is indicative of a 

low level of functionalization. Importantly, the electronic structure of the SWNTs has 

not been perturbed significantly by the tertiary phosphine treatment. 
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UV-vis-NIR spectra in DMF of Ann-Pur-SWNT, SWNT-PPh3 and SWNT-POCJ . The spectra have been 

normalised to have an absorbance of0.5 units at 400 nm. 

3.2.4 Raman spectroscopy 

Raman spectra of SWNT-PPh3 and SWNT-POc3 (Figure 3-7) show an expected 

enhancement in intensity ofthe disorder related D band (ea. 1330 cm-1
) compared to the 

Ann-Pur-SWNT sample. This Raman mode, linked to an increase in scattering sites and 

a lowering of the symmetry of the SWNT structure 342
, indicates that groups have been 

introduced on to the walls of the nanotube material. Importantly however, the increase in 

the D band intensity reported here is well below those reported for other functional 

groups covalently attached to carbon nanotubes 104
• 

163
• 

168
• 

182
• 

188
• 

190
• 

198
•

218
•

224
, which is in 

keeping with the low levels of functionalization determined by XPS and TGA, thus 

confirming the integrity of the samples. Similarly, only a small variation in the relative 
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intensities ofthe radial breathing modes (RBMs) ofSWNT-PPh3 and SWNT-POc3 were 

evident upon comparison with the Ann-Pur-SWNT material, indicating that there is little 

perturbation of the electronic structure upon modification, which agrees with the UV-vis­

NIR data. 
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Figure 3-7 

1700 1800 

Raman spectra of unmodified (Ann-Pur-SWNT) and modified samples, SWNT-PPh3 and SWNT-POc3 

obtained using an excitation wavelength of633 run (normalised to have the same maximum intensity of the 

0-band). Inset: radial breathing modes (RBMs). 

3.2.5 Bulk electrical properties 

It is normally observed that pristine SWCNTs behave asp-doped in air and as n­

doped in ultra-high vacuum even if they are not intentionally doped 66· 67· 343"345. The 

actual physical origin of such doping character of CNTs is not beyond debate. But it is 

thought that ordinarily used purification methods involving oxidising treatment steps 

(such as heating the CNTs in air in our case) lead to hole-doped (i.e. p-type) CNTs 346. 

The electrical properties of individual semiconducting SWNTs has been observed to be 

extremely sensitive to adsorption of electron-donating species, such as NH3 
79 and amines 

337, and electron-accepting ones, such as 0 2 
347 and N02 

79. Electron-donating species 
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caused a few orders of magnitude increase in the resistance, while electron-accepting 

ones had the opposite effect. The former reduce the concentration of charge carriers 

(holes) in pristine tubes, thereby reducing the conductivity, whereas the latter increase it. 

Individual metallic tubes show a very small change (< 30%), as the concentration of 

charge carriers does not change significantly. Thus, it was observed that the bulk 

resistance of mats of tubes increased by < 50% owing to the averaging of metallic and 

semiconducting tubes 79' 347. Also, these changes were reversible as the adsorbed species 

could be easily desorbed with time. 

For measuring the bulk electrical resistance, films were made by filtering 

suspensions of pristine and phosphine-modified SWNTs in ethanol over polycarbonate 

membrane filters (Whatman Cyclopore™, 25 mm diameter, 0.2 micron pore size), 

followed by drying in a vacuum oven at 80°C for 1 hour and lift-off of the SWNT films 

from the membrane filter. The films were around 100 microns thick, as measured by a 

screw gauge. The electrical resistances, as measured by a four-point apparatus, are 

summarised in Table 3-1. 

Sample Electrical resistance (Q) 

Pur-SWNT 0.02 

Ann-Pur-SWNT 0.631 

SWNT-PPh3 0.191 

SWNT-POc3 0.205 

Table 3-1 

Four-point electrical resistances of the pristine and modified SWNTs. 
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Just as has been observed in this study, Rinzler and eo-workers have previously 

reported an increase in the resistivities of films upon annealing 141 . They had advanced a 

tentative explanation for this phenomenon, based on greater compaction of the annealed 

films. What is significant in this study is that, contrary to the trend expected from 

electron-donating species like amines, we find a decrease in the bulk resistance of mats 

of phosphine-treated CNTs. However, a closer inspection of the purification process 

employed in the current work can explain this apparent conundrum. The step in which the 

CNTs were annealed under vacuum at 900 °C after their purification employed in this 

study can be expected to nullify the hole-doping induced by the purification process. 

Thus, as the phosphines are electron-donating groups, one would expect that the SWNTs 

should be n-doped as a result of phosphine treatment. The increased charge carrier 

(electron) concentration will in turn increase the conductance, or in other words, decrease 

the resistance. This is exactly what we observe in the phosphine-treated CNTs as listed in 

Table 3-1. 

3.2.6 Nature of interaction between SWNTs and tertiary phosphine molecules 

The best comparison for the phosphine treated SWNTs discussed here is the 

interaction of amines, particularly octadecyl amine (ODA) with carbon nanotubes which 

is well documented 79· 228· 260· 337-339. The nature of this amine interaction is predominantly 

physisorption although some degree of non-covalent functionalization, with the formation 

of zwitterions from the interaction of the amine with residual carboxylic acid groups, is 

possible 164· 338· 348. In addition, yet another mode of interaction is possible: nucleophilic 

amines react with electron deficient fullerenes to form addition products (adducts) of the 

type C6oHn(NRR')n. Here, n is generally 6, or the number of pyracyclene rings in C60. It 

has been suggested that the hydrogen atoms behave as "fullerene globe-trotters" 349. 

Analogously, it has also been shown that, under suitable conditions, amination of the 

nanotubes (the activation of an N-H bond over a nanotube 1t-bond) can occur 339. 

In the case of the phosphine-treated S WNTs described here the physisorption of 

the phosphine can be ruled out, as the attachment of the tertiary phosphines to the 
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SWNTs is not reversed even after repeated ultrasonication, washing with solvents and 

filtration. It is worth noting that a tertiary amine (triethylamine) has been shown to 

untangle bundled SWNTs and stabilise nanotube dispersions 228
• XPS suggests 

interaction of the tertiary phosphine molecules with the SWNTs via the lone pair of 

electrons on the phosphorus, similar to what has been observed with amines by 

Chattopadhyay and eo-workers 338
• They also found that amines preferentially interact 

with the semiconducting SWNTs as compared to the metallic ones, and argued that this 

could be exploited to achieve a separation of SWNTs by electronic type. This throws up 

exciting possibilities for the modification of SWNTs by tertiary phosphines. However, 

considerable work is first required to determine the exact nature of the interaction 

between the phosphines and SWNTs. An effective way for probing the interaction 

between phosphines and SWNTs may be the fabrication of SWNT-FET devices and 

studying the effect of phosphine adsorption on individual SWNTs, as previously reported 

for amines 337
• This shall also help determine if phosphines show a preference for 

SWNTs of one electronic type over the other. Efforts in this direction are currently 

underway in the group. 

3.3 Conclusion 

SWNTs have been modified by tertiary phosphines (triphenyl- and trioctyl­

phosphine) using a simple and robust solvent-free route. XPS data recorded in the P 2p 

region clearly shows that the phosphorous atoms present in the phosphine treated 

nanotube material are in a different chemical environment than found in pure phosphine 

indicating that charge transfer between the electron donating phosphorous atom and the 

carbon nanotube may have taken place. Modification with phosphines resulted in 

significant de-bundling of the SWNTs allowing stable dispersions in common organic 

solvents to be prepared. Although the modified material disperses readily the electronic 

properties of the nanotube are not perturbed and the surface of the nanotube is thought to 

be still accessible as the degree of functionalization is low (ea. 1 atomic per cent). The 
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effect of the tertiary phosphines on the electrical conductivity of SWNTs is currently 

under investigation. 
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4. COVALENT MODIFICATllON OF SWNTs VIA 

REDUCTION FOLLOWED BY ELECTROPHILIC 

SUBSTITUTION 

4.1 Introduction 

A wide range of applications of immense technological importance have been 

proposed for CNTs, including nanoelectronics 66
-
69

, sensors and detectors 79
-
83

, and 

polymer composites with dramatically enhanced mechanical 84
-
87

, thermal 88
• 

89 and 

electrical properties 89
• However, major challenges must be overcome before these 

applications can be realised on a large commercial scale. CNTs tend to aggregate into 

bundles owing to strong van der Waals forces of interaction between their smooth 

graphitic walls 100
• Consequently, they have extremely low affinity for other materials, 

and show very poor solubility in common solvents or dispersion in polymers. This is a 

serious drawback for industrial-scale handling and processing. Besides, amenability to 

solution processing is convenient and inexpensive, and will greatly reduce production 

costs. Also, many applications require individually dispersed CNTs. As described in 

Section 1.5.4, the true potential of CNTs for producing high-performance polymer 

composites can be realised only if individual nanotubes can be dispersed in the polymer 

matrices. For applications such as CNT based electronic devices like field effect 

transistors (FETs), not only will individual CNTs be required, but they also need to be 

separated by electronic type. Currently used synthesis methods yield mixtures of metallic 

and semiconducting SWNTs, and there is no known method for exclusively producing 

one type ofSWNTs. 

Chemical modification of CNT surfaces will be necessary to improve the 

solubility of CNTs and improve their affinity for other materials such as polymers. 

Several strategies for non-covalent as well as covalent modification of CNTs have been 

developed towards this end, which are reviewed in Chapter 1, Sections 1.6.3-1.6.5. 

Covalent modification can lead to the perturbation of the intrinsic electronic structure of 
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pristine nanotubes 103
' 

104
' 

163
• 

178
• 

188
• 

192
-
194

• 
204

' 
208

• 
224

, which may lead to a loss of their 

interesting properties. Non-covalent methods for the modification of CNT surfaces result 

in relatively lesser disruption of the CNT electronic structure. However, most of the 

CNT surface may be rendered inaccessible owing to extensive coverage by the modifying 

agent, which may prove to be a disadvantage for applications like nanoelectronics. Non­

covalent modification is generally easily reversible, although this may prove to be a 

disadvantage. For example, modification of CNTs by polymer wrapping can be reversed 

by changing the solvent 114
• Similarly, the adsorption of amines on CNTs also cannot 

withstand multiple processing steps or even slightly elevated temperatures or vacuum 228
• 

260
• 

337
-
339

• Covalent modification is more durable, and requires annealing at temperatures 

of 300°C or higher for reversal. Thus, covalent modification routes which significantly 

improve the solubility and dispersibility of CNTs, while not significantly compromising 

their electronic structure, would be very advantageous. 

Yet another disadvantage of the covalent modification routes reported to date is 

that they are not very versatile. Some reactions also require long processing times, such 

as the 1,3-dipolar cycloaddition which occurs over several days 208
• 

209
• The most 

commonly used route for the covalent modification of CNTs is carboxylation, followed 

by subsequent ami dation I esterification (see Chapter 1, Section 1.6.5.1 and references 

therein). However, the process of carboxylating CNTs can cause considerable damage to 

the nanotubes, such as burning away of small diameter (and hence, more reactive) tubes 

149,262,326-329, opening of end-caps 151, 155-157,229-231, 259, 262,289, 305, 311, 314,315,319, 320,322, 

shortening 108
• 

143
• 

158
• 

289
• 

297
, rupturing the CNT walls 323

, and generation of amorphous 

carbon which may remain as a coating on the nanotubes if not removed, potentially 

hindering subsequent chemistry that aims to attach functional molecules to the CNT walls 
263,264 

One route for the covalent modification that has not received the attention it 

deserves is via the reduction of CNTs by nucleophiles such as alkali metals and 

organolithium reagents. Compared with the other reported routes, there are very few 

studies on this method of modifying CNTs (see references in Section 1.6.5.2.4). Similar 

to reactions such as fluorination and the Bingel reaction, reduction by alkali metals too 

has a precedent in the chemistry of graphite 215 and fullerenes 216
• The reduction of 
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fullerenes by alkyllithiums has also been demonstrated 222
• 

223
. For CNTs, reduction by 

alkyllithium reagents has only been used for grafting polymers directly onto the CNT 

walls 224
• 

225
. Hirsch and eo-workers have reported a detailed spectroscopic study of the 

reduction of S WNTs by t-butyllithium 226
• They noted that the sequence of reduction of 

SWNTs by t-butyllithium could be repeated, leading to the species, (t-Bun)mSWNT 

(where number of times the sequence is repeated, m = 1-3). The extent of 

functionalisation was around 2 atomic per cent. The charged species formed upon 

reduction spontaneously exfoliated in benzene; however, charged species would be stable 

only in an inert environment. Significantly, they also concluded from a Raman 

spectroscopic study that the reaction demonstrates a selectivity for metallic SWNTs, 

although their study had not included other nucleophiles. 

Penicaud and others showed the reduction of CNTs by alkali metal 

naphthalenides under an inert atmosphere 221
. The stoichiometry of the reduced species 

was found to be C5oM (M = Li, Na, K), which is almost identical with that found by 

Hirsch and group for reduction of SWNTs with t-butyllithium 226
• Recently, Billups and 

eo-workers reported the covalent modification of SWNTs by reduction with alkali metals 

(Na, K, Li) in ammonia, followed by electrophilic substitution with alkyl and aryl halides 
218

-
220

• They obtained highly soluble SWNTs, with the extent offunctionalisation ranging 

from one in every 17 to one in every 54 CNT carbon atoms, depending on the 

substituting group. This figure is much higher than that found by Hirsch and eo-workers 
226 and Penicaud and eo-workers 221

• 

The immense potential for extremely facile and versatile covalent modification of 

SWNTs by this route has independently also been the focus of our interest. However, 

unlike the work of Hirsch et al. 226 and Penicaud et al. 221
, our primary focus is the 

possibility to exploit the reduction of SWNTs by nucleophiles as a starting point for 

functionalisation via electrophilic substitution, according to the scheme shown in Figure 

4-1. We show that this scheme can bring the great versatility of electrophilic substitution 

to the chemistry of SWNTs. Because of its enormous scope, this scheme could be used 

to tether a much wider range of functional moieties to CNTs than is possible with any of 

the previously reported routes. The functionalisation sequence can be repeated, and 

different moieties can be introduced in each cycle onto the same CNT backbone. Thus, 
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this scheme offers almost limitless possibilities in terms of the groups which can be 

attached to nanotubes, thereby opening the gateway to the tailoring of nanotube surfaces 

to suit various solvents and host matrices. We also report the first study to date by 

ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy of the effect of this 

modification route upon the electronic structure of the SWNTs. Importantly, it is 

observed that the extent of perturbation of the electronic bands of the SWNTs in one 

cycle of functionalisation is very small. 

Li+co argon 

Lithium ntphtha/enide 

x-

(1) I argon 

Pur-SWNT 

x-

(2) u: 1 R-X 

-LiX 

SWNT-R 

R 

X = Br 

Figure 4-1 

(i) Reaction scheme for the functionalisation of SWNTs via reduction with lithium naphthalenide, followed 

by electrophilic substitution. 
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X· 

R1-Li 
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X 
nitrogen, 0°C 

Pur-SWNT 

X· 

RrX 
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-LiX 

R1-SWNT-R2 

RI = Me n-Bu 
' 

t-Bu Ph 

Rz 9 ' 9 b F3C CF3 

OMe N02 

X = Br 

Figure 4-1 

(ii) Reaction scheme for the functionalisation of SWNTs via reduction with organolithium reagents, 

followed by electrophilic substitution. 

4.2 Results and discussion 

4.2.1 Reduction by lithium naphthalenide 

Purified SWNTs (Pur-SWNT) were obtained as described in Chapter 2, Section 

2.2.1, and were modified by the reaction scheme shown in Figure 4-1(i). Following the 

reduction with lithium naphthalenide (Step 1 in the scheme shown in Figure 4-1 (i)), the 

reduced SWNTs were then covalently functionalised by electrophilic substitution with a 

range of alkyl halides RX (Step 2 in Figure 4-1 (i)), where R = pentyl (Pe ), 4-

methoxybenzyl and 4-nitrobenzyl, and X= Br. The SWNTs thus modified are labelled as 
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SWNT-Pe, SWNT-OMe and SWNT-N02 respectively. The SWNTs were observed to 

spontaneously exfoliate upon modification, without the need for harsh ultrasonic 

treatment (Figure 4-2). The suspension shown in Figure 4-2 is not stable and settles 

within a few minutes. However, it is significant that a very uniform dispersion could be 

obtained merely by stirring, which was not possible for the pristine Pur-SWNTs (inset in 

Figure 4-2). 

The modified SWNTs have been characterised by Raman spectroscopy, UV­

visible-near infrared (UV -vis-NIR) spectroscopy, thermogravimetric analysis-mass 

spectrometry (TGA-MS) and cyclic voltammetry. TGA-MS has been used to estimate 

the degree of functionalisation. 

Figure 4-2 

Optical photograph showing the spontaneous exfoliation of24 mg ofPur-SWNTs (inset, before reaction) 

upon modification to SWNT-N02 (after reaction) in -20 mL dry THF. 

To obtain preliminary evidence of chemical modification of the SWNTs, we 

employed cyclic voltammetry as a probe for the nitro- group in the SWNT -N02• Cyclic 

voltammetry has been used for detecting the nitro- group in the nitrophenyl group 

attached to CNTs via functionalisation with radicals generated from aryl diazonium 
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compounds 350
• 

351
• The reduction of the nitro- group follows the mechanism shown in 

Figure 4-3 using nitrobenzene as an example. CV was recorded on a film ofSWNT-N02 

drop cast from suspension onto a glassy carbon electrode and dried under a gentle stream 

of nitrogen, and the voltammograms are shown in Figure 4-4. 
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~ 
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Q. 

~ 

· 1.50E·03 

· 1.CXlE-03 

· 5.00E·04 

O.OOE+OO 

5.00E·04 

1.00E·03 

1.50E·03 

2.00E·03 

2.50E·03 

4e- Step corresponding to system (l) 

Figure 4-3 

2e" step corresponding 
to system (H) 

The mechanism for the electrochemical reduction of nitrobenzene. 

System 11 

Increasing nurrber of scans 

System 11 

- 1st cycle 
- 2nd cycle 

5th cycle 

- 10th cycle 

- 15th cycle 
- 20th cycle 

·1500 ·1000 · 500 0 500 1000 1500 

E (mV) 

Figure 4-4 

Cyclic voltammetry (CV) of SWNT-NB, showing the first, second, fifth, tenth, fifteenth and 

twentieth voltammograms. 
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In the first reductive scan (+1 to -1 V), a peak is observed at around -0.5 V, for 

which no corresponding peak was observed upon reversing the direction of the scan ( -1 to 

+ 1 V). This peak corresponds to the 4-electron reduction of the nitro- group to 

hydroxylamine (System I in Figure 4-3). In the oxidative sweep, a new peak appears at 

around +0.6 V, for which there is a corresponding peak at around +0.4 V when the 

scanning direction is reversed. The intensities of these peaks reduce with increasing 

number of scans, as can be expected for a quasi-reversible reaction. These peaks 

correspond to the reduction of the nitroso- group to the hydroxylamine group (System 11). 

Thus, we find that the voltammetric response of the SWNT-N02 is in line with what can 

be expected for an aromatic nitro- species 350· 351 . No such response was observed for a 

control sample comprising Pur-SWNTs that had been stirred with 4-nitrobenzyl bromide, 

followed by washing to remove any excess, physically adsorbed 4-nitrobenzyl bromide. 

This suggests that the 4-nitrobenzyl group may be covalently bound to the nanotube walls 

in the SWNT -N02. 

Evidence that covalent functionalisation has been achieved is also provided by 

Raman spectroscopy. Upon functionalisation, some of the sp2 -hybridised carbon atoms 

of the SWNTs are converted into sp3-hybridised ones by local puckering of the CNT 

walls. This increase in the proportion of sp3 -hybridised carbon atoms is reflected in the 

enhancement ofthe areal ratio ofthe intensity ofthe so-called disorder (D-) band, located 

at around 1340 cm·1, to that of the tangential or graphitic (G-) band, located at around 

1590 cm·1
• An increase in this ratio (ldla) is the most common indicator of covalent 

modification of CNTs in the literature 104· 163· 168· 182· 188· 190· 198· 218· 224. In Figure 4-5, the 

Raman spectra of three modified samples, SWNT-Pe, SWNT-N02 and SWNT-OMe, are 

compared with that of the pristine Pur-SWNTs, and the lo/10 ratios for these samples are 

given in Table 4-1. 
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- Pur-SWNT 

- SWNT-Pe 
- SWNT-N02 

SWNT-OMe 

1200 1300 1400 1600 1700 1800 

Figure 4-5 

Raman spectra of pristine (Pur-SWNT) and three modified samples, SWNT-Pe, SWNT-N02 and SWNT­

OMe and obtained using an excitation wavelength of 532 nm (normalised to have the same maximum 

intensity of the G-band). Inset: radial breathing modes (RBMs). 

Sample loll a 

Pur-SWNTs 0.03 

SWNT-Pe 0.092 

SWNT-N02 0.062 

SWNT-OMe 0.077 

Table 4-1 

The area! ratios (Idlo) ofthe intensities ofthe disorder (D-) band to the graphitic tangential (G-) band of 

the SWNT samples for the Raman spectra in Figure 4-5. 
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Covalent functionalisation is suggested by a clear enhancement of the D-band 

intensities for the modified samples. It is also important to note that the enhancement in 

the lo/Ia ratios is small relative to other reports 218
-
220

, suggesting that the degree of 

functionalisation may be low. This qualitative observation is further supported by UV­

vis-NIR spectroscopy, and confirmed by quantitative estimates from TGA-MS (see 

below). There is a noticeable change in the line shape of the G-band of the modified 

samples compared with that of the pristine Pur-SWNTs, which is suggestive of a change 

in the electronic structure 195
• Further, it can be seen that there are some changes in the 

low-energy radial breathing modes (RBMs) (inset in Figure 4-5), and the intensities of 

the RBMs of the modified samples relative to the intensity of the G-band are also 

different from that of the pristine Pur-SWNTs, which may be as a result of the 

modification ofthe electronic properties ofthe SWNTs by functionalisation 192
• 

194
•
220

•
226

• 

The electronic transitions between the densities of states (DOS) in SWNTs can be 

observed as absorption bands in optical spectroscopy in the ultraviolet-visible-near 

infrared range (UV-vis-NIR), of films or suspensions of the nanotubes 47
• These bands 

are suppressed as a result ofthe disruption of the native electronic structure ofSWNTs by 

chemical modification, and the extent of the suppression of these bands provides a 

qualitative estimate of the degree of functionalisation 103
• 

104
• 

163
• 

178
• 

188
• 

192
-
194

• 
204

• 
208

• 
224

• 

UV-vis-NIR (not shown here) showed virtually no suppression ofthe absorption bands in 

the modified samples relative to those of the pristine Pur-SWNTs. However, this could 

be the result of the superimposition of two opposing phenomena: if the degree of 

functionalisation is low, the extent of suppression ofthe absorption bands will be low; on 

the other hand, functionalisation may result in a higher solubility for the modified 

SWNTs, owing to which their absorption bands may become more pronounced 199
• 

Thus, if a low level of functionalisation has led to enhancement in the solubility of the 

SWNTs, chemical modification may not be apparent in the UV-vis-NIR spectra of the 

SWNTs. 

Thermogravimetric analysis-mass spectrometry (TGA-MS) was employed to 

follow the thermal evolution of the groups attached to the modified SWNTs. The TGA­

MS profile under helium for SWNT-OMe is shown in Figure 4-6. The evolution of the 

groups from the thermal fragmentation of the moieties from the SWNTs occurs in two 
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distinct regions: in the temperature range around 200-400°C, and around 460-500°C. 

The high evolution temperatures suggest that the moieties are covalently attached to, and 

not physically adsorbed on, the SWNTs. This has been further confirmed by carrying out 

the TGA-MS analysis on control samples comprising Pur-SWNTs which had been 

merely stirred with the species, RX, followed by washing to remove physically adsorbed 

material, whereupon no evolution of groups could be detected in the analysis. From the 

weight loss of the modified samples, we estimate the degree of functionalisation to be 

around 2 atomic per cent. 
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Figure 4-6 
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(Above) TGA in helium and (below) the corresponding mass spectrometry data for the thermal evolution of 

the indicated fragments for purified SWNT-OMe. 
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Thus, TGA-MS supports the evidence from Raman and UV-vis-NIR spectroscopy 

that the degree of functionalisation is low. This may prove to be a major advantage of 

this method of functionalisation over other routes reported to date, as it confers very high 

dispersibility without any significant disruption of the electronic structure of the SWNTs. 

4.2.2 Reduction by organolithium reagents 

It is more facile to carry out the reduction of SWNTs using organolithium 

reagents as compared with alkali metal naphthalenides. In order to explore the possibility 

of functionalising SWNTs by using organolithium reagents for the initial reduction step, 

purified Pur-SWNTs were subjected to the reaction scheme shown in Figure 4-l(ii). 

Additionally, this variation of the functionalisation scheme has the advantage that two 

different moieties, R1 and R2, can be introduced on to the SWNTs, whereas the reduction 

by lithium naphthalenide allows only one moiety, R, to be attached to the SWNT walls. 

Thus, there shall be greater scope for tailoring the S WNT surface. 

The Pur-SWNTs were reduced (Step 1 in Figure 4-l(ii)) by four nucleophiles, 

R1Li, where R1 = methyl (Me), n-butyl (nBu), t-butyl (tBu), and phenyl (Ph). The 

reduced SWNTs were then covalently functionalised by electrophilic substitution with a 

range of alkyl halides R2X (Step 2 in Figure 4-1 (ii)), where R2 = 4-methoxybenzyl 

(OMe), 4-nitrobenzyl (N02), 3,5-bis(trifluoromethyl)benzyl (CF3), or pentyl (Pe), and X 

= Br. SWNTs thus modified are labelled as R1-SWNT -R2• As in the case of reduction 

with lithium naphthlenide, the SWNTs were observed to spontaneously exfoliate even 

when the reduction was carried out with organolithium reagents. 

Raman spectroscopy provides evidence of covalent modification of the SWNTs, 

as was evident from an enhancement in the Io/Ia ratios for the treated samples (Figure 4-

7). 
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Figure 4-7 

Raman spectra of pristine Pur- and four modified samples, R1-SWNT-0Me (R1 = Me, nBu, tBu, Ph) 

obtained using an excitation wavelength of 633 nm. 

Sample lofla 

SWNT-Pur 0.079 

Me-SWNT-OMe 0.121 

nBu-SWNT-OMe 0.165 

tBu-SWNT-OMe 0.142 

Ph-SWNT -OMe 0.104 

Table 4-2 

The area! ratios (Iofl0 ) of the intensities of the disorder (D-) band to the graphitic tangential (G-) band of 

the SWNT samples, for which the Raman spectra are shown in Figure 4-7. 
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UV -vis-NIR spectroscopy (Figure 4-8) corroborates the Raman evidence that this 

method of functionalisation achieves a low degree of functionalisation, as it can be seen 

that the suppression of bands in the UV -vis-NIR absorption spectra of the modified 

SWNTs relative to the pristine sample is very low. More importantly, this fact is true 

regardless of the nucleophile employed for the initial reduction step. 

0.25 
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Figure 4-8 
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- Pur-SWNT 
- nBu-SWNT-CF3 

tBu-SWNT-CF3 
- Me-SWNT-CF3 
- Ph-SWNT -CF3 

UV-vis-NIR spectra in DMF suspension of the pristine Pur-SWNTs, and four chemically modified 

samples, Rl -SWNT-CF3 (R1 = Me, nBu, tBu or Ph). The spectra have been normalised to have an 

absorbance of 0.25 units at 400 nm. 

Thermogravimetric analysis-mass spectrometry (TGA-MS) was employed to 

follow the thermal evolution of the groups attached to the modified SWNTs. The TGA­

MS profile under helium for Me-SWNT-OMe is shown in Figure 4-9. The evolution of 

the groups from the thermal fragmentation of the moieties from the SWNTs occurs in two 
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distinct regions: in the temperature range around 200-400°C, and around 460-500°C. We 

postulate that the two distinct temperature ranges may correspond to different chemical 

environments at which the groups are attached to the SWNTs, such as the end-caps and 

the side-walls. The high evolution temperatures suggest that the moieties are covalently 

attached to, and not physically adsorbed on, the SWNTs. This has been further 

confirmed by carrying out the TGA-MS analysis on control samples comprising SWNTs 

which had been merely stirred with the species, R2X, followed by washing to remove 

physically adsorbed material, whereupon no evolution of groups could be detected in the 

analysis. 
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Figure 4-9 

(Above) TGA in helium and (below) the corresponding mass spectrometry data for the thermal evolution of 

the indicated fragments for purified Me-SWNT-OMe. 
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The degree of functionalisation for all these samples is estimated to be 

approximately 2 atomic per cent from the weight losses. This also seems to agree with 

the evidence from Raman and UV -vis-NIR spectroscopy that the degree of 

functionalisation achieved by this route is both low and, viewed in conjunction with the 

degree offunctionalisation reported for the modified SWNTs obtained via reduction with 

lithium naphthalenide (Section 4.2.1 ), independent of the nucleophile used for the initial 

reduction step. In order to conclusively establish if such is indeed the case, Pur-SWNTs 

were treated with a very vast excess of n-BuLi as in Step 1, Figure 4-1 (ii), after which 

they were quenched with water. The Raman spectrum (Figure 4-10) shows that the Iolla 

ratio ofthis sample is virtually the same as that ofthe nBu-SWNT-OMe. This confirms 

the finding ofPenicaud et a/ 221 that reduction is limited by the charge that can be held on 

the SWNTs, and is not influenced either by the nature or the amount of the nucleophile 

used. 

I& J 
100 200 300 400 

1200 1300 1400 1700 1800 

Figure 4-10 

Raman spectra ofPur-SWNTs treated with t-BuLi such that the molar ratio of the carbon in the SWNTs to 

the nucleophile was 2:1 (blue line), and Pur-SWNTs treated with a very vast excess oft-BuLi, followed by 

quenching with water (red line). The Iofl0 ratios for the samples are 0.141 and 0.142, as compared with 

0.079 for the pristine Pur-SWNTs (green line). The inset shows the radial breathing modes (RBMs). The 

excitation wavelength used for recording the spectrum was 633 nm. 
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4.2.3 Multiple functionalisation sequences 

The sequence of steps shown in Figure 4-1 (ii) can be repeated, and the same or 

different moieties R1 and R2 can be introduced on the same CNT backbone, as shown in 

Figure 4-11. 

nitrogen, 0°C 

Pur-SWNT 

( R1 R2) 
R1"-Li I R2"-X 

(RI R2) 
X X X X 

(RI' R2') 
y 

nitrogen, 0°C 
y 

(RI" 
z 

Figure 4-11 

Reaction scheme for multiple sequences for the reduction I electrophilic substitution of SWNTs. 

Pur-SWNTs were subjected to two and three functionalisation sequences. The 

nucleophiles used were R1 = R1' = R1" = n-Bu, and the electrophilic substituent moieties 

were R2 = 4-methoxybenzyl (OMe), R2' = 4-nitrobenzyl (N02), R2" = 3,5-

bis(trifluoromethyl)benzyl (CF3). It should, however, be noted that even the moieties R1. 

R1' and R1" can be different from each other. Although we have chosen n-BuLi itself as 

the nucleophile for the reduction, this step too can be exploited for introducing a range of 
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moieties onto the CNT walls. The two- and three-sequence functionalised SWNTs have 

been labelled as (Rt)CRt')-SWNT-(Rz)(Rz') and CRt)CRt')(Rt"')-SWNT-(Rz)(Rz')(Rz"). 

The Raman spectra of the two- and three-sequence modified SWNTs are shown in 

Figure 4-12. It can be seen that the Iolla ratio increases in the order of pristine (Iollo 

ratio = 0.03), one-sequence (0.036), two-sequence (0.048) and three-sequence 

functionalised SWNTs (0.084), suggesting incremental enhancement in the degree of 

functionalisation with each functionalisation sequence. 

-Pristine 
- One-sequence 

- Two-sequence 
- Three-sequence 

1200 1400 1600 1800 

Figure 4-12 

Raman spectra obtained at an excitation wavelength of 532 nm of pristine (28-SWNTs) and SWNTs 

modified by one, two and three sequences as shown in Figure 4-11. 

The groups attached to the SWNT-(Rt)CRt')-(Rz)(Rz') and SWNT-(Rt)CRt)CRt"')­

(R2)(R2')(R2") have also been detected by TGA-MS (Figure 4-13). Owing to the low 

extent of functionalisation, the heterogeneity of the samples and the error in 
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measurement, it was not possible to make an exact estimate of the degree of 

functionalisation in the second and third sequences, although it was in the region of 2 

atomic per cent in each sequence. 
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Figure 4-13 
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(Above) TGA in helium ofPur-SWNT and SWNTs subjected to one, two and three sequences of 

functionalisation as in Figure 4-11 [where R1 = R1' = R1" = n-Bu, and the electrophilic substituent moieties 

were R2 = 4-methoxybenzyl (OMe), R2' = 4-nitrobenzyl (N02), R/' = 3,5-bis(trifluoromethyl)benzyl (CF3)] 

and the corresponding mass spectrometry data for the thermal evolution of the indicated fragments for 

SWNTs subjected to two (middle panel) and three (bottom panel) functionalisation sequences. 
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4.2.4 Possible specificity towards metallic SWNTs 

Raman spectroscopy suggests that the reduction I electrophilic substitution 

reaction may show specificity towards metallic over semiconducting SWNTs. The line 

shape ofthe tangential, graphitic or G-band at around 1590 cm-1 is the superimposition of 

a higher frequency feature with a Lorentzian line shape owing to semiconducting tubes, 

and a lower frequency feature with a Breit-Wigner-Fano (BWF) line shape owing to 

metallic tubes 352
• Changes in the shape of the G-band have been reported previously for 

reactions that show chemoselectivity for SWNTs of one electronic type over the other. 

Notably the functionalisation by radicals derived from aryl diazonium salts 195 resulted in 

a broadening of the G-band and appearance of a low-frequency shoulder owing to the 

modification in the electronic structure of the metallic tubes by the functionalisation. 

When an excitation wavelength of 532 nm is used, we find that the G-band in the Raman 

spectrum of modified SWNTs is considerably broader than that of the pristine SWNTs 

(Figure 4-14(i)), and the formation of an additional shoulder is also observed. A slight 

broadening is also noticed when the Raman spectra are recorded at an excitation 

wavelength of 633 nm (Figure 4-14(ii)). This is significant as the 532 nm excitation 

wavelength is more sensitive to metallic than semiconducting SWNTs 196
• Additionally, 

it can be seen that there are noticeable changes in the low-frequency radial breathing 

mode (RBM) features (inset in Figure 4-14(ij) such as the appearance of new peaks at 

231.8 and 240.0 cm-1
• Such changes are not observed in the Raman spectrum recorded at 

633 nm (inset in Figure 4-14(ilj). However, there is a slight shift in the positions of the 

RBM features of the modified SWNTs, which can be attributed to the change in the state 

of aggregation ofthe nanotubes upon modification 206
• 
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(I) Raman spectrum obtained with an excitation wavelength of532 nm for pristine IB-SWNT and modified 

tBu-SWNT-MB. The inset shows the radial breathing modes (RBMs). 
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Figure 4-14 

(ii) Raman spectrum obtained with an excitation wavelength of 633 run for pristine I B-SWNT and 

modified SWNT-tBu-MB. The inset shows the radial breathing modes (RBMs). 

Further work needs to be done before the chemoselectivity of this method of 

functionalisation of SWNTs can be conclusively determined. Work is underway to probe 

the reaction by UV-vis-NIR spectroscopy 195
, and it is also proposed to study this reaction 

theoretically. If these studies corroborate our preliminary hypothesis that the reaction 

shows specificity for metallic SWNTs, then it could be exploited for the facile separation 

ofnanotubes by electronic type 197
• 

4.3 Conclusion 

We have demonstrated a new, extremely facile route for the covalent 

functionalisation of SWNTs via reduction with nucleophiles, followed by electrophilic 

substitution. The major advantage of this route over those reported to date is versatility. 

Since this functionalisation route is based on electrophilic substitution, it may well afford 
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almost limitless possibilities for attaching functional moieties to CNTs. It is observed 

that the degree of functionalisation is limited by the charge that can be transferred to the 

SWNTs in the first, or reduction, step. Thus, regardless of the nucleophile used, the 

degree of functionalisation is always found to be approximately 2 atomic per cent. The 

extent of functionalisation, though low, is still observed to cause remarkable exfoliation 

of the SWNTs into organic solvents such as THF and alcohols. As can be expected for 

such a low degree of functionalisation, the perturbation of the electronic structure is 

minimal. Thus, this functionalisation scheme is able to produce highly solubilised 

SWNTs, while not compromising the intrinsic electronic properties of the nanotubes. 

Further, the reaction sequence can be repeated to attach an entirely different set of 

moieties to the same SWNT backbone, thus enabling the tailoring of the SWNT surface 

by attaching groups for multiple functionalities, or enhancing the affinity of the SWNTs 

for several solvent systems I matrices. Although it was not possible to estimate the 

degree of functionalisation in each of the multiple sequences owing to factors such as 

errors in the TGA-MS analysis, it is in the region of 2 atomic per cent. Changes in the 

line shape of the G-band in the Raman spectra also seem to suggest that the reaction may 

be showing a preference for metallic SWNTs over semiconducting ones, although much 

further work needs to be done to establish if this is the case. If this reaction is indeed 

found to show specificity towards SWNTs of one electronic type, it may be possible that 

the reaction can be exploited for the separation of metallic and semiconducting SWNTs, 

which is of great importance for applications such as nanoelectronics. 
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5. FORMYLATION OF SINGLE-WALL CARBON 

NANOTUBES 

5.1 IN1'RODUC1'ION 

The covalent chemistry of CNTs is very closely related to, but not as rich as that 

of fullerenes, although several routes for the chemical modification of CNTs have been 

reported since the work of Liu et a/ 108
• Liu and eo-workers 108 had demonstrated that 

treatment of SWNTs with oxidising acids could shorten or inflict defects or ruptures in 

the CNT walls, and result in the creation of oxygen-containing functional groups, 

predominantly carboxylic acid, at these defects or shortened ends. The carboxylic acid 

groups thus created could be exploited for the further covalent derivatisation of CNTs via 

amidation I esterification 163
' 

164
' 

166
' 

167
' 

169
-
173

• Many other routes have also been reported, 

which are described in Chapter 1, Section 1.6.5. However, the reported routes for the 

covalent modification of CNTs are not very versatile and severely restricted in terms of 

the groups I molecules that can be attached to the CNTs, although several attempts have 

been made to tether functional molecules to CNTs via these routes including polymers 

for composites 174
' 

201
-
203

, biomolecules for sensing and detection 171
' m-m, 210

, and dyes 

for light-harvesting applications 137
• Attaching formyl groups to CNTs could confer great 

advantage in terms of the wide range of modification reactions that become available. 

The aldehyde group can be subjected to numerous C-C and C-N coupling reactions, 

reductions and other transformations. 

Aromatic aldehydes are traditionally synthesised by formylations reactions such 

as the Gatterman, Gatterman-Koch, Reimer-Tiemann, Vilsmeier and the Duff reactions. 

As CNTs are electron-deficient species, these reactions are not suitable candidates for the 

formylation of CNTs. Another possible route for formylation is the carboxylation of 

CNTs, reduction of the carboxylic acid groups to alcohols, followed by the selective 

oxidation of the hydroxyl group to the formyl 353
• However, firstly, it is a resort to 

defect-based chemistry, and would involve multiple steps. Secondly, there is the problem 
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of selectivity. Once again, such routes produce considerable quantities of, often solid, 

side-products. 

N-formylpiperidine has been used for extremely facile formyl transfer to 

organolithium and Grignard reagents, resulting in formation of formylated molecules in 

very high yields 354
• It has been demonstrated that SWNTs can be lithiated by lithium 

naphthalenide 221 and lithium in ammonia 218
-
220

, resulting in the formation of the salt, 

[(SWNT)x-.Lixl. The SWNT salt can be subjected to nucleophilic substitution, akin to 

organolithium species. Therefore, it is not unreasonable to explore if, in a similar way, 

formyl transfer to the SWNT salt could be achieved by N-formylpiperidine, according to 

the proposed reaction scheme shown in Figure 5-1(i). 

CO argon eo-u+ Li+ 
# # 

Lithium n<phthalenide 

x-eo-u+ 
~ 

(I) L' + lx 

argon 

Pur-SWNT 

x- 1)0 
I 

CHO 
Nformylpperidine 

(2) Lix + CHO) 
X 

2) HCI (3N) 

SWNT-CHO 

Figure 5-1 

(i) Reaction scheme for the formylation of SWNTs. 
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Phenylhydrazine 

CHO) 
X 

SWNT-CHO 

NaBf4 

SWNT-Phz 

Figure 5-1 

(ii) Reaction scheme for the tagging of the formylated SWNTs with phenylhydrazine. 

5.2. Results and discussion 

Single-wall carbon nanotubes were purified as described in Chapter 2. The 

purified SWNTs (Pur-SWNT) were subjected to the reaction scheme in Figure 5-l (i) 

(SWNT-CHO). The formylated SWNTs (SWNT-CHO) were characterised by Raman 

spectroscopy, UV -visible-near infrared (NIR) spectroscopy and thermogravimetric 

analysis-mass spectrometry (TGA-MS). It has been pointed out in Chapter 4 that the 

degree of functionalisation that is achieved via reduction with nucleophiles is low ( ~ 2 

atomic per cent), although the modified SWNTs were found to be highly soluble. Owing 

to this, it was not possible to detect the formyl groups on the SWNT walls by mid­

infrared spectroscopy. However, the formyl group was detected by tagging with 

phenylhydrazine via a hydrazone linkage (Figure 5-l (ii)). The SWNT -CHO tagged with 

phenylhydrazine (SWNT-Phz) were studied by Raman spectroscopy and TGA-MS. As a 

control, pristine SWNTs were simply stirred with N-formylpiperidine and washed to 

remove excess N-formylpiperidine (SWNT -CHO'), and these were also similarly treated 

with phenylhydrazine, followed by NaBHt (SWNT/Phz). Unlike the modified SWNTs 
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described in Chapter 4, it was observed that the SWNT-CHO and the SWNT-Phz show 

considerable ease of exfoliation not only in common organic solvents but also water. 

The Raman spectra, recorded at an excitation wavelength of 532 nm, of the Pur­

SWNT, SWNT-CHO, SWNT-Phz and SWNT/Phz are shown in Figure 5-2. Covalent 

functionalisation of CNTs may lead to an increase in the proportion of sp3 -hybridised 

carbon, resulting in an enhancement of the intensity of the D-band (10 ) relative to the G­

band (la). The ratios of the intensities of the D-band to that of the G-band (Id la) for the 

various samples are summarised in. Table 5-l. There is a small change in the Id la ratio 

for the SWNT-CHO (0.034) over that for the pristine Pur-SWNTs (0.03), although the 

increase is small and cannot be taken to be conclusive proof of covalent functionalisation. 

At the same time, it can be seen from Figure 5-2 that there is a broadening in the shape of 

the G-band for the SWNT-CHO over that for the Pur-SWNTs, suggesting a change in the 

electronic properties of the SWNT -CHO, which may be as a result of chemical 

modification. Also, the broadening of the G-band may mask an increase in the relative 

intensity of the D-band 195
• Significantly, upon the reaction for tagging with 

phenylhydrazine, the Idla ratio increases considerably to 0.062 from the value of 0.034 

for the SWNT-CHO. However, the Idla ratio of the control SWNT/Phz (0.031) is 

almost identical with that of the pristine Pur-SWNTs (0.03). The D-band is considerably 

sensitive to resonance enhancement, and its intensity may change with a conversion of 

the functional group 178
• Thus, the Raman spectra suggest that the SWNTs may indeed 

have been modified by the formylation reaction, and further that these formyl groups on 

the SWNTs may be undergoing a conversion to a hydrazone bond upon tagging with 

phenylhydrazine. 
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- Pur-SWNT 
- SWNT-CHO 
- SWNT-Phz 
- SWNT/Phz 

0 500 1000 1500 2000 2500 3000 3500 

Figure 5-2 

Raman spectra of pristine (Pur-SWNT) and formylated (SWNT-CHO) nanotubes, SWNT-CHO tagged 

with phenylhydrazine (SWNT-Phz), and a control sample (SWNT/Phz). The excitation wavelength is 532 

nm. The spectra have been normalised to have identical maximum intensity of the G-band for ease of 

comparison. 
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Sample lo/lo 

Pur-SWNT 0.03 

SWNT-CHO 0.034 

SWNT-Phz 0.062 

SWNT/Phz 0.031 

Table 5-1 

The areal ratios (loflo) of the intensities ofthe disorder (D-) band to the graphitic tangential (G-) band of 

the SWNT samples for which the Raman spectra are shown in Figure 5-2. 

Further evidence ofthe modification of the SWNTs is provided by UV-vis-NIR 

spectroscopy. The transitions between the electronic densities of state in SWNTs can be 

observed as bands in the UV-vis-NIR spectra of the SWNTs 47
• Perturbation of the 

electronic structure of SWNTs by chemical modification leads to a suppression of the 

bands, and the extent of suppression provides a qualitative measure of the degree of 

functionalisation of the SWNTs 103, 104, 163, 178, 188, 192-194, 204, 208, 224. The UV-vis-NIR 

spectra of the pristine Pur-SWNTs and the modified SWNT-CHO are shown in Figure 5-

3. A weak suppression of the bands is observed for the SWNT-CHO, indicating that 

there has been a modification of the S WNTs, although the degree of functionalisation is 

low. This may prove to be a major advantage as the intrinsic electronic properties of the 

SWNTs are not modified by the formylation. It is worth pointing out that this 

observation is similar to that in Chapter 4, for SWNTs covalently modified via the 

reduction I electrophilic substitution route. 

115 



Chapter 5 

0.3 

::i 
~ 
8 
lii 0.2 
e 
0 

~ 

0.1 

0 +-----~------~----~----~------~----~----~ 

400 600 600 1000 1200 1400 1600 1600 

Wavelength (nm) 

Figure 5-3 

- Pur-SWNT 
- SWNT-CHO 

UV-vis-NIR spectra in DMF ofPur-SWNT and SWNT-CHO. The spectra have been normalised to have 

an absorbance of0.3 units at 400 nm. 

TGA-MS in helium of the SWNT-CHO (Figure 5-4(i)) shows the evolution of a 

fragment of weight 29.018 amu (corresponding to -CHO) in two regions: in the 

temperature range 1 00-180°C, and in the range 320-360°C. No such thermal 

defragmentation was observed for the control SWNT-CHO'. The evolution of the 

fragment at a temperature as high as 320-360°C suggests that it is covalently attached to 

the CNT framework, rather than physically adsorbed on the CNTs. It can be observed 

that the TGA curve has a steeper decline in the temperature range of 320-360°C than in 

the range 1 00-180°C. Also, the weight loss is greater in the higher temperature range 

than the lower range. Therefore, it may be reasonable to believe that the evolution of the 

-CHO group at the lower temperature range 1 00-180°C corresponds to the formyl groups 

that were attached to the amorphous carbon, which is considerably more reactive than the 
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SWNTs. Amorphous carbon present in raw SWNT material cannot be practically 

eliminated in entirety, and a very small amount of amorphous carbon can invariably be 

expected to be present in the starting Pur-SWNTs, even after the purification process. 

The weight loss in the higher temperature range 320-360°C corresponds to the thermal 

defragmentation of the -CHO groups that are attached directly to the SWNT walls. 
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~. 95 
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i 
• 85 

i 80 
a: 

75 

70 ~--------------------------------------------------~ 

1 -P.r~v.m I 
;-S\\m-CHq 
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TerJ1)erab.re ("C) 

600 700 800 900 

Figure 5-4 

(i) (Above) TGA in helium for Pur-SWNT and SWNT-CHO and (below) the corresponding mass 

spectrometry data for the thermal evolution of -CHO (29.018 amu) for SWNT-CHO. 
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Figure 5-4 

(ii) (Above) TGA in helium for Pur-SWNT, SWNT-CHO, SWNT-Phz and SWNT/Phz (control) and 

(below) the corresponding mass spectrometry data for the thermal evolution of the indicated fragments for 

SWNT-Phz_ 

The TGA-MS ofthe phenylhydrazine-tagged SWNT-Phz (Figure 5-4(ii)) shows a 

higher weight loss as compared to the SWNT-CHO. Also, the evolution ofthe fragments 

from the phenylhydrazide can be observed in the temperature range 350-500°C. The 

control SWNT/Phz does not show the evolution of these fragments. Additionally, the 

weight loss for the SWNT-Phz is higher than that for the control SWNT/Phz, which is 

almost identical with that for the pristine Pur-SWNTs. Thus, this demonstrates that there 

was indeed a covalent tagging of phenylhydrazine to the formyl groups on the SWNT­

CHO. 

From the TGA data of the SWNT-Phz, we estimate that the degree of formylation 

is approximately 2 atomic per cent. However, it must be cautioned that it is difficult to 

estimate the degree offunctionalisation accurately from the TGA data ofthe SWNT-Phz, 
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as the percentage conversion of the formyl groups into hydrazone bonds is not exactly 

known. It is reasonable to believe that it should be quite similar to the degree of 

functionalisation achieved in the reduction I electrophilic substitution route described in 

Chapter 4, i.e. around 2 atomic per cent. 

5.3 Conclusion 

We have demonstrated a simple and elegant route for the formylation of SWNTs. 

Formylation of aromatic molecules is traditionally accomplished by reactions such as the 

Gatterman, Gatterman-Koch, Reimer-Tiemann, Vilsmeier and the Duff; however, these 

are electrophilic substitution reactions and cannot be readily extended to electron­

deficient SWNTs. We have devised a route based on the reduction chemistry of SWNTs 

described in Chapter 4, followed by formyl transfer from N-formylpiperidine 354 to the 

reduced intermediate. 

As can be expected for functionalisation via reduction of SWNTs, the degree of 

formylation is low. Owing to the low molecular weight of the formyl (-CHO) group, it 

was not possible to quantitatively estimate the degree of formylation from 

thermogravimetric analysis-mass spectrometry (TGA-MS). For this reason, the formyl 

groups could not be detected by mid-IR spectroscopy. However, TGA-MS showed the 

thermal evolution of the -CHO group at temperatures high enough (320-360°C) as to 

suggest that they were covalently attached to the SWNTs. For proving the covalent 

attachment of formyl groups on the SWNT, the formylated SWNTs were tagged with 

phenylhydrazine via a hydrazone linkage, and the tagged SWNTs were characterised by 

TGA-MS. 

The available routes for the chemical modification of SWNTs are limited in 

scope, and do not offer great variety in terms of the moieties that can be attached to the 

nanotubes. The formyl group can potentially open the gateway for a wide range of C-C 

and C-N coupling reactions, reductions and other transformations, thus considerably 

enriching the chemistry of carbon nanotubes. 
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6. FUTURE WORK 

1. Probing the electronic interaction between tertiary phosphines and 

SWNTs 

Efforts are underway in the group to study the exact nature of the interaction 

between tertiary phosphines and SWNTs (Chapter 3). X-ray photoelectron spectroscopy 

(XPS) and measurement ofthe bulk electrical transport properties ofSWNTs modified by 

tertiary phosphines suggest that there may be an interaction via the lone pair of electrons 

on the phosphorus atom in the phosphines. The electronic properties of SWNTs are 

sensitive to chemical species, as is evident from the chemical gating of semiconducting 

SWNTs upon exposure to electron-donating molecues such as ammonia 79 and amines 
337

, and electron-accepting ones such as 0 2 
347 and N02 

79
• Thus, a suitable way for 

probing the charge-transfer interaction between tertiary phosphines and SWNTs may be 

studying the changes in the transport properties of field-effect transistors (FETs) 

fabricated from individual semiconducting SWNTs. Similarly, it is also proposed to use 

scanning tunnelling spectroscopy (STS) for studying the changes in the densities of state 
347 induced by exposure to phosphines. 

It is reasonable to compare the non-covalent modification of S WNTs by 

phosphines with that by amines 228
• 

260
• 

337
-
339

, as both molecules have a lone pair of 

electrons (on the phosphorus and nitrogen atoms respectively). It has recently been 

suggested that amines may interact selectively with semiconducting SWNTs as compared 

with metallic ones, thus raising the possibility that modification by amines may be 

exploited for the enrichment of SWNTs of one electronic type based on differences in 

solubility 338
. Electrical property measurements on individual SWNT-based FET devices 

and STS studies may help in determining if a similar selective interaction exists for 

phosphines also, which may be used for the separation of nanotubes by electronic type. 
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2. Chemical modification of SWNTs for polymer composites 

The true potential of CNT -based polymer composites is far from realised, thanks 

to the poor affinity ofCNTs for, and poor dispersion in, polymer matrices 90
"
92

, which has 

to be addressed by suitable chemical modification of the CNT surfaces. A major 

drawback of the reported routes for the chemical modification of CNTs is their lack of 

versatility. We have developed a facile route for the chemical modification of SWNTs 

by reduction with nucleophiles, followed by electrophilic substitution (Chapter 4), which 

shall considerably enrich the chemistry of SWNTs. The solubility of the SWNTs is 

considerably enhanced, and a wide range of moieties can be covalently attached to 

SWNTs, while the disruption of the intrinsic electronic structure of the nanotubes is 

minimal, thereby ensuring that the interesting properties of the nanotubes are not 

compromised. At the same time, we have also demonstrated an elegant reaction for the 

formylation of SWNTs (Chapter 5). The formyl (-CHO) group makes possible 

numerous coupling and transformation reactions, which shall enable the tethering of a 

wide range of molecules to SWNTs. 

We propose to exploit these functionalisation routes for tailoring the surfaces of 

SWNTs for interaction with a wide range of polymers. The modified SWNTs shall be 

used as reinforcements in polymer composites, and their mechanical, thermal and 

electrical properties studied. It is hoped that the gap between the potential and currently 

achieved enhancement levels in the performance of CNT -polymer composites, can be 

substantially bridged. 
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7. EXPERIMENTAL 

7.1 Purification 

The SWNTs used in these studies were produced by the High-Pressure Carbon 

Monoxide (HiPCO) process 2
\ and obtained from Carbon Nanotechnologies, Inc. (CNI), 

Houston TX (USA). The average nanotube diameter is given by the supplier as 1.2 nm. 

Two batches of SWNTs, Batch 1 (#P0289) and Batch 2 (#P0323) have been used. The 

as-received SWNTs from these batches have been referred to herein as lA- and 2A­

SWNTs respectively. 

7.1.1 Preparation of lB-, 2B-, 2B'-, 2B"- and 2C-SWNTs 

lB- and 2B-SWNTs: 100 mg of IA-SWNTs were heated at 350°C for 1 h. They 

were then soaked in 400 mL 6M HCl for 8h at room temperature. The SWNTs were then 

separated from this suspension by filtering over a Whatman Cyclopore polycarbonate 

membrane filter (pore size 0.2 J.tm, diameter 47 mm) and washed with copious amounts 

of high-purity (18.2!1) water to remove the acid. 2B-SWNTs were obtained by 

subjecting the as-received 2A-SWNTs to an identical procedure. 

lB'-SWNTs: 100 mg of 2A-SWNTs were heated at 350°C for lh, and then 

refluxed in 400 mL 6M NaOH solution at l20°C for 12 h. The suspension of the SWNTs 

in the NaOH solution was diluted with plenty of water, the SWNTs were separated from 

the suspension by filtering over Whatman Cyclopore membrane filter as above and 

washed with plenty of high-purity water to remove excess alkali, then immediately 

suspended in 400 mL 6M HCl and stirred for 6 hat room temperature. The SWNTs were 

then filtered and washed. The procedure for obtaining 2B"-SWNTs is identical, but 

without the air oxidation step. 

2C-SWNTs: 100 mg 2A-SWNTs were heated at 350°C for 2h, then soaked in 

400 mL 6M HCl for 8h at room temperature. The SWNTs were separated from this 
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suspension by filtering over a polycarbonate membrane filter and washed with copious 

amounts of high-purity water to remove the acid. 

7.1.2 Preparation of lB-ox-, lB-ox'-, and lB-nox-SWNTs 

lB-ox-SWNTs: 100 mg 18-SWNTs were refluxed in 50 mL of a 3:1 volume 

mixture of 6M sulphuric and 6M nitric acids at l20°C for 3 h. This suspension was then 

diluted with high purity water, and filtered over a Cyclopore polycarbonate membrane 

filter and washed with copious amounts of high purity water to remove excess acid. 

lB-ox'-SWNTs: 40 mg 18-ox-SWNTs were refluxed in 100 mL 6M NaOH 

solution at l20°C for 48 h, after which the suspension was diluted, filtered and washed as 

above, whereupon a reddish-brown filtrate was obtained. This procedure was repeated, 

after which the NaOH-treated SWNTs were then immediately suspended in 6M HCl 

solution and stirred at room temperature for 12 h, then filtered and washed. 

lB-nox-SWNTs: 40 mg 18-SWNTs were treated with NaOH, then neutralised 

with HCl, as described for the 18-ox'-SWNTs above. 

7.2 Modification by phosplltines 

Ann-Pur-SWNT-PA: The Pur-SWNT were annealed under vacuum(< 0.2 mbar) 

at 900°C for 8 h. 

SWNT-PPh3: 20 mg Ann-Pur-SWNT were stirred with molten 

triphenylphosphine, PPh3 (Lancaster, 99%) under nitrogen at 90°C for 48 h. After this, 

excess PPh3 was removed by Soxhlet extraction with dichloromethane for 48 h. 

SWNT-POc3: 20 mg Ann-Pur-SWNT were stirred with tri-n-octylphosphine, 

POc3 (Lancaster, technical grade, 90%) under nitrogen at 90°C for 48 h. After this, 

excess POc3 was removed by Soxhlet extraction with dichloromethane for 48 h. 
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7.3 Functionalisation by reduction followed by electropbilic substitution 

Lithium metal (99%, sticks, Fluka), methyllithium (1.6 M solution in diethyl 

ether, Aldrich), n-butyllithium (1.6 M solution in hexanes, Aldrich), t-butyllithium 

solution (1. 7 M solution in pentane, Aldrich), phenyllithium ( 1.8 M solution in di-n-butyl 

ether), naphthalene (99%, Aldrich), 1-bromopentane (99%, Aldrich), 4-methoxybenzyl 

bromide (synthesis grade, Aldrich), 4-nitrobenzyl bromide (99%, Aldrich), 3,5-

bis(trifluoromethyl)benzyl bromide (97%, Aldrich), N-formylpiperidine (99%, Aldrich) 

and phenylhydrazine (97%, Aldrich) and sodium borohydride, NaB~ (98%, Aldrich) 

were used as received. 

SWNT -Pe, SWNT -OMe and SWNT -N02: The synthesis of these modified 

SWNTs was carried out entirely in an argon atmosphere. 7 mg (1 mmol) lithium and 128 

mg naphthalene (1 mmol) were transferred into a Schlenk. Dry THF (~ 20 mL) was 

cannulated into the Schlenk, and the contents were left to stir for 24 h under argon till all 

the metal had dissolved, to yield a green solution of lithium naphthalenide. The lithium 

naphthalenide was cannulated onto 12 mg Pur-SWNT taken in another Schlenk, and the 

contents were allowed to stir for 8 h at room temperature. After 8 h, the Schlenk was 

cooled to 0°C, and the reduced SWNTs were quenched by addition of 2 mmol of RX 

(302 mg of 1-bromopentane, 402 mg of 4-methoxybenzyl bromide or 432 mg of 4-

nitrobenzyl bromide, respectively). The modified SWNTs were then washed by Soxhlet 

extraction with THF for 24 h, followed by absolute ethanol for a further 24 h to remove 

excess reactants and by-products. The modified S WNTs were filtered over a 

polycarbonate membrane filter. 

R1-SWNT-R2: The synthesis ofthese modified SWNTs was carried out entirely 

in a nitrogen atmosphere. 12 mg Pur-S WNT were taken in a Schlenk and dry THF ( ~ 20 

mL) was cannulated into it. The contents ofthe Schlenk were cooled to 0°C, after which 

0.5 mmol of R1-Li (R1 = Me, nBu, tBu, Ph) were injected into the Schlenk, and the 

contents allowed to stir at 0°C for 8 h. The reduced SWNTs were then quenched under 

rapid stirring in an ice bath with 0.75 mmol of R2X [R2 = 4-methoxybenzyl, 4-

nitrobenzyl, 3,5-bis(trifluoromethyl)benzyl, and X = Br]. The modified SWNTs were 
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then subjected to Soxhlet extraction with THF followed by absolute ethanol as above, and 

were then filtered over a polycarbonate membrane filter. 

CRt)CRt')-SWNT-(R2)(R2') and (Rt) (Rt')(Rt")-SWNT-(R2)(R2')(R2"): The 

multiple sequences of functionalisation were carried out under nitrogen and at a 

temperature of 0°C throughout as follows [quenching with 3, 5-bis(trifluoromethyl)benzyl 

bromide was carried out after cooling the Schlenk to -44°C]: 

1. addition of 0.5 mmol of R1-Li, stirring for 8 h, followed by quenching with 

0.75 mmol ofR2X; 

2. addition of 0.5 mmol of R1'-Li, stirring for 8 h, followed by quenching with 

0.75 mmol ofR2'X; 

3. addition of 0.5 mmol of R!"-Li, stirring for 8 h, followed by quenching with 

0.75 mmol ofR2"X. 

The modified SWNT samples were washed as described above. 

7.4 Formynation 

SWNT-CHO: The synthesis is identical with that ofSWNT-Pe, SWNT-OMe and 

SWNT-N02. After reduction of the Pur-SWNTs with lithium naphthalenide for 8 h, the 

reaction was quenched by addition of N-formylpiperidine, and allowed to stir for 1 h, and 

then worked up with 3N HCl till the solution turns acidic. The formylated SWNT 

samples were washed as above. 

SWNT-Phz: 12 mg SWNT-CHO and 54 mg (0.5 mmol) phenylhydrazine were 

allowed to react for 24 h in 20 mL acetate buffer (pH = 5.0), at the end of which 19 mg 

NaB~ (0.5 mmol) was added to the suspension and allowed to stir for a further 2 h. The 

tagged SWNT-Phz were washed as above. 
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7.5 Characterisation 

7.5.1 Raman spectroscopy 

Raman spectra were recorded on solid samples taken on optically transparent 

glass sides, using a Jobin Yvon Horiba LabRAM spectrometer in a back scattered 

confocal configuration, using excitation wavelengths of 532.3 nm or 632.8 nm. All 

spectra were referenced to the silicon line at 520 cm-1
• In view of the heterogeneity of the 

samples, spectra were recorded at three different regions of the samples to ensure that the 

obtained spectra are truly representative of the sample. The ratios of the area of the D­

band to that of the G-band (Ir/10 ) reported herein are the average values for all the 

spectra recorded for a particular sample. 

7.5.2 Ultraviolet-visible-near infrared (UV-vis-NIR spectroscopy) 

The UV-vis-NIR absorption spectra were recorded on a Perkin Elmer Lambda 

900 spectrometer, on suspensions of the CNT samples taken in a quartz cell of optical 

path length 10 mm. The suspensions were prepared by dispersing the nanotube material 

in DMF (99%, Aldrich) or 1,2-dichlorobenzene (Aldrich, 99%) to an initial concentration 

of 1 mg/mL using mild bath sonication (Ultrawave U50, 30--40 kHz) for 5 min, followed 

by filtration through cotton wool to remove particulates. 

7.5.3 Tbermogravimetric analysis-mass spectrometry (TGA-MS) 

Thermogravimetric analysis (TGA) was carried out using a Perkin Elmer Pyris I 

system in a He environment. Samples were heated from room temperature to 900°C at a 

rate of 1 0°C/min. Mass spectrometry was carried out by a Hiden HPR-20 mass 

spectrometer coupled to the TGA system. 
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7.5.4 Atomic force microscopy (AFM) 

Samples for AFM analysis were produced by drop deposition onto mica of the 

corresponding solution of SWNTs (concentration of 0.005 mg/ml) in DMF produced by 

sonication in an ultrasonic bath (Ultrawave U50, 30-40kHz) for 15 minutes. Samples 

were dried in air before imaging in tapping mode using a Digital Instruments Multimode 

AFM with a Nanoscope IV controller. 

7.5.5 X-ray photoelectron spectroscopy (XPS) 

XPS studies were performed at NCESS, Daresbury laboratory using a Scienta 

ESCA 300 hemispherical analyser with a base pressure under 3 x 1 o-9 mbar. The analysis 

chamber was equipped with a monochromated AI Ka X-ray source (hv = 1486.6 eV). 

Charge compensation was achieved (if required) by supplying low energy (<3 eV) 

electrons to the samples. XPS data were referenced with respect to the corresponding C 

1 s binding energy of 284.5 e V which is typical for carbon nanotubes. Photoelectrons 

were collected at a 45 degree take-off angle, and the analyser pass energy was set to 150 

eV giving an overall energy resolution of0.4 eV. 

7.5.6 Measurement of bulk electrical properties 

The bulk electrical transport properties of the CNTs were measured at room 

temperature in air by a four-point contact apparatus, on thick films (roughly few tens of 

microns) ofCNTs obtained by filtering a dispersion ofnanotubes in absolute ethanol over 

a 0.22 Jlm pore-size, 25 mm cellulose acetate membrane, which was then dried in a 

vacuum oven at 60°C for 8h to remove the solvent. The 4- wire resistances of the samples 

were measured in a V an der Pauw geometry using a Keithley 2602 Source Measure Unit 

(SMU). A constant current ( <5 mA) was applied between two adjacent terminals and the 

voltage across the opposite terminals was recorded. 
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7 .5. 7 Cyclic voltammetry 

Measurements taken using a computer controlled potentiostat (Autolab 

PGSTAT12) with a standard three-electrode configuration. All experiments were carried 

out in a three-necked glass cell. Electrolyte solution consisted of 0.1M HCl (at pH of l) 

and degassed with N2 for 30 minutes before use. A glassy carbon electrode (BASi 

supplied) acted as a working electrode. CV was recorded on a film of SWNT sample 

drop cast from suspension onto the working electrode and dried under a gentle stream of 

nitrogen. The counter electrode consisted of a 0.5 mm diameter Pt wire (exposed length 

of 4 cm) and a Ag/ AgCl electrode in 0.1M KCl solution acted as the reference electrode. 

Cyclic voltammagrams were recorded using a 2 m V step potential and scan rate of 100 

mvs-1• 
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Appendix 

APPENDIX 

As an illustration, the estimation of the degree offunctionalisation for the SWNT­

OMe (Figure 4-6) is shown here. We consider the residual weights at 550°C (after the 

evolution of the organic groups is complete), and assume that the weight loss of pristine 

Pur-SWNTs is entirely owing to --COOH groups. 

For the Pur-SWNTs, the percentage coverage of --COOH groups, a, is given by 

12x(l00-a) =0.94 
12 x (1 00 - a) + 45a 

or a= 1.7 

For the SWNT-OMe, the percentage coverage of the 4-methoxybenzyl groups, b, 
is given by 

12x(100-1.7-b) =0.78 
12x (100 -1.7- b) +45 x 1.7 + 133b 

orb= 1.9 

Thus, the degree of functionalisation is 1.9 per cent. 
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