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Abstract 

Computer Simulation of Diesel and Diesel Additives 

Matteo Nasi 

The formation of n-alkane (paraffin) wax crystals in diesel fuel in winter time 

is an important problem for many oil industries. This thesis investigates the possi­

bilities of making a simulation model, which can be used to study the behavior of 

diesel fuel, and can be used to investigate crystallization. Initial work focused on 

finding a suitable molecular mechanics force field. Hexane molecules were modeled 

with three different force field and the TraPPE force field was chosen. A model 

of a liquid diesel fuel was produced composed of 78.7 % of a branched alkane sol­

vent (2,4,6,10 tetramethyl dodecane) plus a distribution of n-alkanes from C10 to 

C26 . After technical problems, due to the inhomogeneity of the system leading to 

a formation of clusters molecules with gaps between them, equilibration of a model 

liquid diesel was achieved starting from an initial gas phase simulation. Calculated 

liquid density was in good agreement with experiment. Volume, total energy, en­

thalpy, radial distribution functions and dihedral angle distributions of the solvent 

molecules all confirmed equilibration of the model diesel. A crystallization inhibitor 

consisting of a random co-polymer of ethylene vinyl acetate, EVA, was simulated. 

Starting from an extended configuration led to the formation of a coiled chain in the 

gas phase. The chain was added to the liquid diesel model and it was found that 

the diesel can be considered as a good solvent for EVA polymer, with the radius of 

gyration for EVA increasing slightly in the diesel. An orthorhombic structure with 

Pbcm space group of tricosane (C23 H48 ) was built and incorporated into the liquid 

diesel and the liquid diesel / EVA models. In these models it was found that edges 

of the crystal started to melt into the liquid diesel as a function of time. The EVA 

was found to migrate to the surface of the crystal. 
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1 Introduction 

1.1 Project aim 

The project involves collaboration with Infineum UK Ltd., a petroleum additives 

enterprise. The problem to be addressed concerns the formation of plate-like n­

alkane (paraffin) wax crystals in diesel fuel in winter time. These wax crystals gel 

the fuel and block the diesel engine fuel filters, preventing the flow of fuel causing 

the engine to stop or not start. Wax Crystal Modifying (WCM) additives are added 

to diesel fuel to alter the wax crystal habit into compact prisms that do not gel and 

form porous filter cakes on fuel filters. 

Diesel fuel is a mixture of n-alkanes, isoalkanes e.g. phytane and trimethyl 

dodecane, alicyclics e.g. dipentylhexane and alkyl aromatics e.g. dihexyl and diethyl 

benzene. 

This project is designed to gain insights into: 

• The structure of diesel fuel. 

• The phase separation of n-alkanes from solution. 

• The behavior and structure of WCM additives in diesel fuel. 

• The interactions of WCM additives with separating n-alkane crystals, 

In order to provide this understanding we plan to: 

• Build molecular models of diesel fuel involving a mixture of low molecular 

weight hydrocarbons (simulated at the United Atom Model level). 

• Model the polymer structure of a typical additive and add it to the diesel fuel 

model to understand better the behavior of the additive in solution. 

2 Diesel fuel and wax crystallization 

A major problem for both refiners and users of diesel fuel or home heating oil is the 

behavior of such a fuel in cold weather. Diesel contains varying amounts of n-alkanes 
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(generally 10-30 %). When diesel fuel is subjected to low temperatures the higher 

molecular weight n-alkanes become insoluble and precipitate from the fuel as wax 

crystals. 

The cold flow properties of middle distillate are defined by the following three 

parameters [ 1]. 

1. Cloud Point (CP) is the temperature at which the crystals first appear. This 

value is determined by a standard method, ASTM D2500, or differential scan­

ning calorimetry measurements. The cloud point depends on the concentra­

tion, the molecular weight of the n-alkanes and on the chemical nature of the 

hydrocarbons matrix. 

2. Pour Point (PP). As the temperature gets colder, crystal growth continues 

and a lattice is obtained leading to solidification at the pour point. This value 

is calculated according to the standardized method ASTM D97. 

3. Cold filter plugging point (CFPP). CP and PP cannot be directly correlated 

to the plugging of filters by n-alkane crystals, so a third parameter is used, the 

cold filter plugging point, which corresponds to the plugging of 45 J-lm filter 

under standardized cooling conditions (Test EN116). 

The presence of solid wax crystals in the fuel can cause blockage of filters and narrow 

lines in the fuel system, so leading to operational failure of a diesel vehicle. In the 

past these problems were minimized by the production of diesel fuel with low cloud 

point or by addition of kerosene. An alternative approach in many parts of the 

world, is to use chemical additives to improve the low-temperature properties of 

diesel fuel [2]. 

These additives have the following possible action: 

• Modification of the size and shape of the crystals of n-alkanes appearing in 

the fuel when cooled below its cloud point (PP and CFPP depressants). 

• Complete inhibition of wax crystallization depressing the cloud point (CP 

depressants) 

In general these additives are called Wax Crystal Modifiers (WCM). 
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2.1 Consideration for Wax· Crystal Modifiers 

In order to make their use economical, WCM must operate at low concentrations 

(0.01-0.1%), consequently their structure must be optimized with respect to 

1. the ability to associate strongly with the wax, 

2. an appropriate solubility in the fuel, 

3. appropriate groups to block crystal growth or promote nucleation, 

4. ease and cost of production, 

as described below. 

2.1.1 Association with the wax 

In order to associate with the wax crystal, part of the additive must be n-alkane 

like. Thus the molecule may have n-alkyl substituent or a polyethylene like segment 

in the polymer backbone. 

2.1.2 Solubility 

If too soluble a growth inhibitor will not adsorb onto the wax, except at high con­

centration, or a nucleator will not separate before the wax and therefore they will 

be either ineffective or unacceptably expensive. If too insoluble the additive is likely 

to separate before the wax, associating with itself and not with the wax. The sol­

ubility has to be carefully controlled by the ratio of polar to non-polar groups, of 

branched alkyl or aromatics to linear alkyl groups and by molecular weight. For 

high effectiveness WCM must begin to precipitate at the same temperature or just 

above the temperature at which the wax crystallizes. 

2.1.3 Blocking groups 

These need to be large enough and suitably situated on the adsorbed molecule to 

inhibit further growth on the face of the wax crystal where the inhibitor is adsorbed. 

However the blocking group must not inhibit adsorption of the additive onto the wax 

crystal. 
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2.1.4 Ease and cost of production 

In the past production costs have limited polymers to those produced by free rad­

ical methodologies using low cost monomers; for example, ethylene, vinyl acetate, 

a-olefins and derivatives such as dialkyl fumarates, alkyl methacrylates or alkyl 

acrylates. For the future the use of more complex syntheses and/or more expensive 

raw materials has not been ruled out [3], [4]. 

3 Previous work on simulation of crystal inhibitors 

An extensive research effort has been carried out to develop new and better WCM, 

but progress is limited by a lack of deep understanding of the inhibition mechanisms. 

What is generally known is that the WCM are surface active, in the sense that 

they adsorb to the surface of small crystals, and thereby disrupt further growth or 

aggregation of the crystals. 

In order to provide a better understanding of the behaviour of inhibitors, neutron 

scattering has been carried out [5]- [6]. Moreover, useful information can be gleaned 

by comparison with anti-freeze proteins [7]- [8]. 

Dr M. Duffy and Dr P.M. Rodger in the Chemistry Department of the University 

of Warwick and in the Physics and Astronomy Department of University College 

London have put considerable effort into understanding the behavior of important 

crystal modifiers on the surface of n-alkane wax crystal. An important paper in 

2004, Molecular Physics studied the inhibitors of gas hydrate formation and wax 

depositons [9]. Gas hydrates are crystalline solids made of a host water lattice com­

posed of cavities which enclathrate individual gas molecules [6]. The structure of the 

water lattice is determined by the size of the "guest" molecules and the composition 

of the gas mixture. Typical guest molecules include: methane, ethane, propane, 

carbon dioxide and hydrogen sulphide. Gas hydrate are formed when water and gas 

are together at low temperature and high pressure (e.g. temperature below 25 °C 

and pressures greater than 1.5 MPa for natural gas hydrate). 
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3.1 Molecular Simulation works using a kinetic inhibitors 

In simulation work [9]- [10], a gas hydrate model can be made from a thin film of 

water surrounded by methane fluid. 

To study inhibition, two model were used. In the first one a pure methane-water 

system (called uninhibited) was employed and compared to an equivalent system in 

which two octomers of polyvinylpyrrolidone (PVP) were added one at each water­

methane interface. N pT Molecular Dynamics simulation was performed for both 

systems with the package DL_POLY [11]. PVP was added by considering a config­

uration from the uninhibited simulation and putting the PVP within the methane 

fluid and close to the water surface. All water molecules were then immobilized and 

NVT MD were performed to ·relax any stress caused by the insertion. All simula­

tions were curried out at T = 300 K, which represents a subcooling of about 25 K 

respect to gas hydrate formation. 

Results plotting the fraction of hydrate-like water molecules as a function of time 

for the uninhibited and inhibited simulation are shown in Figure 1. 

Figure 1: Plot of the fraction of hydrate-like water molecules formed within time for 
an uninhibited (shown as solid line) and inhibited (shown as dashed lines) simulation 

·(Figure 1 of ref. [10] used with permission). 
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From Figure 1, after 35 ns more than one third of the water molecules are in 
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the hydrate phase. However, the introduction of PVP completely suppresses the 

growth. Hydrate clusters did not form when PVP was added at the beginning of 

the simulation, and PVP deformed the hydrate clusters when added after it had 

begun to form. 

Radial distribution functions for the system water-methane system are shown in 

Figure 2. 

Figure 2: Radial distribution function for the water-methane system in the unin­
hibited and inhibited simulation (Figure 2 of ref. (10] used with permission). 
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The RDFs in Figure 2 show three things. 
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• With time, the first peak disappears and the second peak shifts to about 7.5 

A; this indicate water-separated methane molecules. 

• There is also a third peak at about 10 A, showing long range ordering in the 

distribution of dissolved methane molecules. 

• However, in the inhibited system there is no change of any peak with time, 

with no evident variation in either the height or position of the three peaks 

changing during more than 10 ns of the simulation when PVP was added at 

the beginning. 

Is possible to conclude that direct simulation of methane hydrate is achievable with 

MD, and that the presence of PVP, as a kinetic inhibitor, increases the induction 

time for hydrate nucleation. 

3.2 Molecular Simulation works using anti-agglomerants in­

hibitors 

In 2000, Duffy and Rodger, described the effect of a particular anti-agglomerants 

inhibitors on paraffin crystal growth, using molecular dynamics calculation [10]. 

The interaction between an inhibitor, poly(octadecyl acrylate) (PA-18) and the 

low index face of a paraffin crystal ( n~octacosane) was investigated using two dif­

ferent methods. The first involved collocating the inhibitor into the crystal with 

minimal disruption, by adding complete layers of crystal. The second one concerned 

rapid crystal growth by adding alkane molecules, one at a time, to a surface with 

an adsorbed PA-18 dimer. 

The DL POLY software was used, and the united atom representation was 

employed for methylene and methyl group of the C28 H58 crystal. 

The n-alkane crystal have a lamellar structure, with layers of molecules that are 

diveded in blocks called lamellae, separated by well-defined gaps. The monoclinic 

structure of C28 H58 was used in those simulations; it has two molecules per unit cell 

and the molecular planes are stacked such that their short axes form a herring-bone 

configuration [12]. The (001) surface contains only the CH3 end groups arranged 
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in a planar configuration; the (100) surface is corrugated and the surface molecules 

are widely separated. The (010) has the short axis of all molecules tilted at an 

angle to the plane of the surface, whereas the (110) surface has the short axes of the 

molecules oriented alternatively parrallel and perpendicular to the surface plane. 

Simulations of PA-18 on various surfaces of a n-octosane crystal have shown 

that PA-18 binds preferentially to the (110) and (010) surface. It was found that 

the PA-18 absorb along the inter-lamellar gap, occupying the surface sites to which 

alkanes would have added if the crystal growth was uninhibited, as shown in Figure 

3. When further layer of crystal wax were grown onto the inhibited surface it has 

been shown that these shifted so that the added alkanes lay over the inhibitor rather 

than aligning with the underlying crystal structure, as illustrated in Figure 4. 

Figure 3: The PA-18 adsorbed on the (100) (shown on left) and (010) surface of an 
octosane wax crystal. Note that periodic boundary condition have been considered 
in order to show the inter-lamellar gaps across each surface (Figure 4 of ref. [10] 
used with permission). 
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Figure 4: Top and side view of a system in which three layers of crystal wax were 
added onto an inhibited surface (Figure 1 of ref. [10] used with permission) . 

In summary have shown that PA-18 modifies the wax surface creating defects on 

it. At low concentration these defects prevent a step-growth mechanism. 

4 Simulation Method for the Project 

4.1 Force field models: molecular mechanics 

4.1.1 Introduction 

This thesis will use typical molecular mechanic force fields to model diesel. The fact 

that force field approaches work is due to the validity of several assumptions: 

• Nuclei and electron are lumped into atom-like particles. 

• Atom-like particles are spherical and have a net charge. 

• Interactions are based on springs (representing bonds) and classical potentials. 

• Interactions must be pre-assigned to specific sets of atoms. 

• Interactions determine the spatial distribution of atom-like particles and their 

energtes. 
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The idea behind force field approaces are discussed below. 

4.1.2 The anatomy of a molecular mechanics force field 

The approximation used for molecular mechanics calculations, as well as classical 

atomistic MD (molecular dynamic) and MC (Monte Carlo) simulation, is that the 

energy of a molecule can be describe as a function, termed a force field, that de­

pends only on the atomic positions. This function, computes the molecular potential 

energy as a sum of terms that describe the variation of energy as a funtion of the 

deviation of bond lengths, bond angles and torsional angles away from equilibrium 

values, plus terms for non-bonded pairs of atoms describing Van der Waals and 

electrostatic interactions. 

E = Ebonds + Eangle + Edihedral + Enon-bonded, 

Enon-bonded = Eelectrostatic + ELJ · (1) 

There are many different force fields, which use different forms for the various 

interactions within and between molecules. The functional form of a force field 

depends on the accuracy required for its purpose. The common force fields in use 

today have been developed by using high-level quantum calculations and/or by 

fitting to experimental data. 

A key property of all force fields is that a particular atom or group of atoms 

should have the same parameters in different molecules, i.e. they should be trans­

ferable. For example the stretching frequencies of aliphatic carbon-carbon bonds are 

largely independent of molecular environment, as are aliphatic C-H bonds lengths. 

4.1.3 Bond stretching 

Ebond is the energy function for stretching a bond between two atom types A and 

B. It is written as a Taylor expansion around an equilibrium bond length R0 . Ter­

minating the expression at second order gives the following 
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E (RAB- RAB) = E(O) + dE(RAB- RAB) + ~ d
2
E(RAB- RAB)2. 

bond 0 dR 0 2 dR2 0 
(2) 

The derivatives are evaluated at R = Ro and the E(O) term is normally set to zero; 

this is the zero point for the energy scale. The second term is zero because we 

consider the Taylor expansion around the equilibrium value. In its simple form the 

stretch energy can now be written as 

where KAB is the force constant at R = R0 for the A-B bond. This is the form 

of a harmonic oscillator, the potential is quadratic in the displacement from the 

mm1mum. 

The harmonic form is the simplest possible, and is in fact sufficient for deter­

mination of most equilibrium geometries. The reference bond length Ro is often 

called the equilibrium bond length. This is slightly misleading, as the reference 

bond length is the bond length when all the other force field terms are set to zero, 

while the actual equilibrium bond length is the bond length for the minimum energy 

configuration of the molecule. 

The forces between bonded atoms are very high in comparison to other forces. 

This is the justification for using the harmonic approximation (the harmonic oscil­

lator). It is important to remember that this is an approximation to the real bond 

stretching potential and that for large deviations from Ro the harmonic approxima­

tion no longer holds true. 

For situations where the bond lengths may deviate far from Ro, or to accurately 

calculate molecular structures and vibrational frequencies, it is necessary to go be­

yond the harmonic approximation and include higher order terms usually up to 

(R- Rot While increasing the range of validity of equation 3, E(R) will still tend 

to oo as R ~ oo , so it remains unphysical. One potential, which satisfies the exact 

conditions outlined above, is the Morse potential [13] 

25 



E (R) = D(1- exp (-a (R- Ro))) ,2 (4) 

where D is the dissociation energy and a = j7!;. 

Figure 5: Comparison of the performance of various functional forms for the stretch 
energy of CH bond in CH4 . The "exact curve" is taken from an electronic structure 
calculation. (Figure taken from figure 2. 1 of reference [14]). 
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The simple harmonic approximation (P2) in figure 5 is seen to be accurate to 

about 0.1 A from the equilibrium geometry and the quartic approximation (P4) 

up to 0.3 A. The Morse potential reproduces the real curve accurately up to an 

elongation of 0.8 A. 

For the large majority of systems used in simulation, the only important chemical 

region is up to about 10 kcal mol- 1 above the bottom of the curve. In this region 

a fourth order polynomial is essentially indistinguishable from either a Morse curve 

or the exact curve. 

Values of t he force constant are often evaluated from experimental data, such 

as infrared stretching frequencies, or from quantum mechanical calculations. Values 
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of bond length can be found from high-resolution crystal structures or microwave 

spectroscopy data. 

Bond angle bending 

E angle is the energy required for bending an angle formed by three atoms A - B - C , 

where there is a bond between A and B , and between B and C. In a similar way 

to Ebonds it is usually expanded as a Taylor series around a equilibrium bond angle 

and terminated at second order, giving the harmonic approximation: 

E (e Ase_ eAse) _ KAsc (eAse_ eAsc)2 
a ngle 0 - 0 · (5) 

While the simple harmonic expansion is quite adequate for most applications, 

there may be cases where higher accuracy could be useful. The next improvement 

is to include a third order term in the angle , as show in Figure 6 for CH4 . 

Figure 6: Comparison of the performance of various functional forms for the angle 
bending energy of CH4 ; the "exact curve" form is taken from an electronic structure 
calculation. (Figure taken from Figure 2.4 of reference [14] ) 
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The simple harmonic approximation (P2) is seen to be accurate to about ±30° 
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from the equilibrium geometry and the cubic approximation (P3) up to ±70°. 

In the chemical important region below around 10 kcal mol-1 above the bottom 

of the curve, a second order expansion is analogous to Ebonds· 

The energy needed to distort an angle away from equilibrium is much lower than 

the energy needed to distort a bond, so consequently bond angle bending forces tend 

to be proportionally smaller than those for bond stretching. 

4.1.4 Torsions 

Edihedrat is the energy change associated with rotation around a B - C bond in a 

four atom sequence A - B - C - D, where A - B, B - C and C - D are bonded. 

Looking down the B- C bond, the dihedral (also called torsional) angle is defined 

as the angle formed by the A- B - C and D-C- B planes as illustrated in Figure 

4. 

Figure 7: Dihedral angle between the atom A,B,C,D.(Figure taken from Figure 2.7 
of reference [14]). 

0 

The torsional energy is different from Ebonds and Eangle in two aspects: 

• First, the energy function must be periodic in the angle w: if the bond is 

rotated through 360° the energy should return to the same value. 

• Second, the cost in energy for distorting a molecule by rotation around a bond 

is often low, i.e. large deviations from the minimum energy structure may 

occur. 

A Taylor expansion in w is not a good idea, so in order to encompass the periodicity, 

Edihedral is written as a Fourier series: 
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n 

Edihedral (w) = L Vn COS (nw). (6) 
n=l 

The term n = 1 describes a rotation which is periodic by 360°, the n = 2 term 

is periodic by 180°, then = 3 term is periodic by 120° and so on. The Vn constants 

determine the size of the barrier for rotation around the B - C bonds. Depending 

on the situation, some of the Vn constants may be zero. The form of Edihedral is best 

understood by reference to an example. For ethane the most stable conformation 

is one where the hydrogens are staggered relative to each other, the eclipsed con­

formation represents an energy maximum. As the three hydrogens at each end are 

identical, there are three energetically equivalent staggered, and three equivalents 

eclipsed conformations. The rotational energy profile must have three minima and 

three maxima. In the Fourier series only those terms which have n = 3 can have Vn 

constants different from zero. 

Others terms could be necessary for rotation around single bonds in substituted 

systems. For example in the butane molecule, there are still three minima, but the 

two gauche (torsional angle ±60°) and anti (torsional angle = 180°) conformations 

now have different energies. The barriers separating the two gauche and the gauche 

and anti conformations are also of different height. So we have to introduce a term 

corresponding to n = 1. 

For the ethylene molecule the rotation around the C = C bond must be periodic 

by 180°, and thus only n = 2, 4,etc. terms can enter. 

In general molecules that are composed of atoms having a maximum valency of 

4 (i.e. all the organic molecules), with a few exceptions are found to have rotational 

profiles showing at most three minima. The first three terms in the equation 6 are 

sufficient to qualitatively reproduce such a profile and combined with nonbonded 

interactions, can provide quantitative data. 

Most rotational profiles resemble either the ethane or ethylene example above, 

and a popular expression for the torsion energy is 
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E ( ABCD) 
dihedral W ~y1ABCD [ 1 +COS (wABCD)J + ~y2ABCD [ 1 - COS ( 2wABCD)J 

+ ~V3ABCD [1 +COS (3wABCD)J. 

(7) 

The + and - signs are chosen so that the one fold rotational term has a minimum 

for an angle of 180°, the two fold rotational term minima for angles of 0° and 180°, 

and the three fold term minima for angles of 60°, 180° and 300° ( -60°). 

In simple form the three terms in the equation above can be described as: 

vl 
E 1 (w) = 2 (cosw) (8) 

(9) 

(10) 

as ill ustated in figure 8. 

The total torsional energy is therefore given by 

(11) 

as plotted in figure 9 . 
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Figure 8: The first three terms in a typical function to model the torsional energy. 
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Figure 9: Total energy of torsion of a dihedral angle as a sum of the three terms in 
equation 11. 
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4.1.5 Non bonded interactions 

In addition to the bonded interactions between atoms described above, force fields 

also contain non-bonded interactions. Non-bonded interactions act between atoms 

in the same molecule and those in other molecules. Force fields usually divide 

non-bonded interactions into two: electrostatic interactions and Van der Waals in-

teractions. 

ELECTROSTATIC INTERACTIONS 

The electrostatic interaction arises due to the unequal distribution of charge in 

a molecule. A simple example is the hydrogen fluoride (HF) molecule, where the 

hydrogen atom is slightly positive and the fluorine is slightly negative. Within the 

force field framework this uneven distribution of charge can be modeled by placing 

point charges at each of the atomic sites. Due to charge conservation for a neutral 

molecule these sum to zero. Thus in the previous example we would have qF = -qH. 

A Coulomb potential generally models the interaction between these point charges 

(12) 



where c:0 is the permittivity of free space, Qi are atomic charges, and rij is the 

distance between i and j. 

VAN DER WAALS INTERACTIONS 

Evdw is the van der Waals energy describing the repulsion and the attraction 

between atoms that are not directly bonded. At large interatomic distances Evdw is 

zero and for small distances it becomes very repulsive. In quantum mechanical terms 

this is due to the overlap of the electron clouds of the two atoms: the electrons repel 

each other because they are negatively charged. At intermediate distance, there is a 

slight attraction between two such electron clouds. The attraction is due to induced 

dipole-induced dipole interactions (dispersion forces). Even if the molecule has not 

got a permanent dipole moment, the motion of electrons may create a slightly uneven 

distribution of charge at a given time. This transcient dipole moment will induce a 

charge polarization in the neighboring molecule, creating an attraction. 

It can be derived theoretically that this attraction varies, as a first approximation, 

as the inverse sixth power of the distance between the two fragments. The induced 

dipole-dipole interaction is only one of such terms: there are also contributions from 

quadrupole-dipole, quadrupole-quadrupole, etc. interactions. These vary as R-8
, 

R-10 , etc.: the R-6 is only the asymptotic behavior at long distance. 

Evdw is very positive at small distances, has a minimum, which is slightly negative 

at a distance corresponding to the two atoms touching each other, and goes towards 

zero faster as the distance become large. 

A general functional form, which fits these considerations is : 

CAB 
E (RAE) E (RAE) ij 

vdw ij = repulsive ij - ( AB) 6 · 
Rij 

(13) 

A popular potential, which obeys these general requirements, is the Lennard­

Janes (LJ) potential [15], where the repulsive part is given by a R-12 dependence 

(14) 

where Aij and Cij are suitable constants. Evdw can alternately be given as 
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ELJ = 4 [ ( aij ) 
12 

_ ( aij ) 
6

] 
vdw f. ~j ~j ' 

(15) 

where Eij is the Van der Waals well depth and aij is the distance at which Evdw = 0. 

The constants in equation 14 are related to Cij and aii by A ii = 4Eijal} and Cij = 

4 Eijafj· 

Figure 10: Lennard-Jones Potential. (Figure taken from Chemistry Department 
Website of Saint Johns University, Minnesota, US). 
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There are no physical arguments for choosing the repulsive term to vary as R- 12 ; 

this arises due to computational expediency. From electronic structure theory it is 

known that the repulsion is due to overlap of the electron wave function, and that 

the electron density falls off approximately exponentially with the distance from the 

nucleus (the exact wavefunction for an hydrogen atom is an exponential function). 

There is some justification for choosing the repulsive part as an exponential function. 

The general form of the exponential R- 6 E vdw function , also know as the "Buck­

ingham" or "Hill" [16] type potential is 

EHill =A· ·exp (-B- . D.·)- c ij 
vdw tJ lJ.L'iJ R~ -

l J 

{16) 

where Ai, Bii and Cii are suitable constants. 
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4.1.6 Different type of force field 

CLASSICAL FORCE FIELDS: 

• AMBER (Assisted Model Building and Energy Refinement) - widely used for 

proteins and DNA [17]. 

• CHARMM - originally developed at Harvard, widely used for both small 

molecules and macromolecules [18]. 

• CHARMm- commercial version of CHARMM, available through Accelrys. 

• CVFF - also broadly used for small molecules and macromolecules. 

• GROMOS - A force field that comes as part of the GROMOS (GROningen 

Molecular Simulation package), a general-purpose molecular dynamics com­

puter simulation package for the study of biomolecular systems. GROMOS 

force field (A-version) has been developed for application to aqueous or apolar 

solutions of proteins, nucleotides and sugars. However, a gas phase version 

(B- version) for simulation of isolated molecules is also available [19]. 

• OPLS-AA, OPLS-UA, OPLS-2001 - Members of the OPLS family of force 

fields developed by William L. Jorgensen at Yale Department of Chemistry 

[20]. 

• ECEPP /2 - free energy force field. 

SECOND-GENERATION FORCE FIELDS: 

• MMFF - developed at Merck, for a broad range of chemicals [21]. 

• MM2 [22], MM3 [23], MM4 [24] - developed by Norman L. Allinger, for a 

broad range of chemicals. 

5 Molecular Dynamics Simulation 

5.1 Introduction 

Consider the energy of a state 
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E(M) = E(x, y, z, ....... Xn, Yn, Zn)· (17) 

Suppose we have a 2 state system with energies E 1 and E0 . The relative populations 

of molecules in state 1 over state 0 is given by 

(18) 

If we have more than two states in a system it is possible to use the Boltzmann 

distribution to obtain the probability of each state. The probability of a state i is 

given by 

-(E;-Eo) 
exp kaT 

pi = -----=---
q 

where the quantity q is called the partition function. 

The relation below gives the partition function q 

_ Nstates [ ( Ei _ Eo ) ] 
q- L exp - k T 

i=l B 

(19) 

(20) 

where Eo is the lowest energy of the system and Nstates is the number of different 

energy states. 

This conditions is only useful for a small number of states. If we consider large 

molecules the number of conformations that are accessible is very large, too large 

to find all the relevant ones. If we have more than one molecule, the number of 

possible molecular arrangements grows exponentially as the number of molecules 

increases. It is impossible to solve this problem by calculating large number of 

energy states. Instead we need to calculate the average energies < E >, without 

needing to calculate the partition function q. 

Molecular dynamics (MD) allow us to "cheat" i.e. to calculate average quantities 

without considering the partition function q. We generate different states with 

the correct Boltzmann Distribution, so these states occur with a probability Pi. 

Consequently, the mean energy is given by an average over a representative number 

of states, 
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(E)= l:Et 
number of samples 

(21) 

5.2 Molecular dynamic methods 

5.2.1 Newton's Second Law 

The molecular dynamics simulation method is based on Newton's second law 

(22) 

where Fi is the force exerted on the particle i, m is its mass and a is its acceleration. 

From a knowledge of the force on each atom, it is possible to determine the acceler­

ation of each atom in the system. Integration of the equations of motion then yields 

a trajectory that describes the positions, velocities and accelerations of the particles 

as they vary with time. From this trajectory, the average values of properties can be 

determined. The method is deterministic; once the positions and velocities of each 

atom are known, the state of the system can be predicted at any time in the future 

or the past. Molecular dynamics simulations can be time consuming and computa­

tionally expensive. However, computers are getting faster and cheaper. Simulations 

of solvated proteins can now be carried for t~ns of nanoseconds. 

The force can also be expressed as the gradient of the potential energy (force 

field) 

(23) 

Combining these two equations yields 

(24) 

where E is the potential energy of the system. Newton's equation of motion can 

then relate the derivative of the potential energy to the changes in position as a 

function of time. Solving these equations for a system of N atoms, means solving 

3N coupled 2nd order differential equations to yield the position vectors, ri, as a 
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function of time. 

5.2.2 Integration algorithms 

The potential energy is a function of the atomic positions (3N) of all the atoms in 

the system. Due to the complicated nature of this function, there is no analytical 

solution to the equations of motion. Instead they must be solved numerically. 

Numerous numerical algorithms have been developed for integrating the equa­

tions of motion mainly by using finite difference algorithms. 

As examples we list: 

• The Verlet algorithm [25] ; 

• The Leap-frog algorithm [26].; 

• The Velocity Verlet algorithm [26]; 

• The Beeman's algorithm [26]. 

In choosing which algorithm to use, one should consider the following criteria: 

• The algorithm should conserve energy and momentum. 

• It should be computationally efficient. 

• It should permit a long time step for integration. 

Most integration algorithms assume the positions, velocities and accelerations can 

be approximated by a form of Taylor series expansion. 

THE VELOCITY VERLET ALGORITHM 

t> We start with r(t), v(t), a(t). 

[> 

1 
r ( t + M) = r ( t) + v ( t) M + 2 a ( t) M2 (25) 

t> Calculate the force 

F =- \7 E (t + bt) (26) 
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[> 

F=ma (27) 

[> 

( 
s: ) F (t + 6t) a t + ut = -'-------'-

m 
(28) 

[> 

1 
v(t+6t) = v(t) + 2 [a(t) +a(t+6t)]6t (29) 

t> Now we have 

r ( t + 6t) , v ( t + 6t) , a ( t + 6t) . 

t> Provide that dt is small, we can move forward in a series of steps. Iteration of 

these equations allows us to find r as a function of time. 

The leap-frog algorithm is also commonly used for molecular simulation and the 

details are discussed below. 

THE LEAP-FROG ALGORITHM 

r(t+M) = r(t) +v (t+ ~bt) 6t (30) 

(31) 

In this algorithm, the velocities are first calculated at time ( v + ~bt); these are 

used to calculate the positions r, at time (t + 6t). In this way, the velocities leap 

over the positions, and then the positions leap over the velocities. The advantage 

of this algorithm is that the velocities are explicitly calculated. The disadvantage 

is that they are not calculated at the same time as the positions. The velocities at 

time t can be approximated by the relationship 

(32) 

The leap-frog algorithm can easily be applied to complex molecular systems and 

combined with constraint algorithms, such as the SHAKE procedure, which for 

example allows bonds lengths to be constrained, allowing longer time steps. Its 
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simplicity and speed makes it a useful choice for the work described in this study. 

5.2.3 Statistical mechanics 

In a molecular dynamics simulation, we study the macroscopic properties of a system 

through microscopic simulations. The connection between microscopic simulations 

and macroscopic properties is made via statistical mechanics [27], which provides 

mathematical expressions that relate macroscopic properties to the distribution and 

motion of the atoms and molecules of the N-body system. 

The thermodynamic state of a system is usually defined by a small set of param­

eters: for example, the temperature T, the pressure p and the number of particles, 

N. Other thermodynamic properties may be derived from the equations of state 

and other fundamental thermodynamic equations. 

The mechanical or microscopic state of a system is defined by the atomic posi­

tions, r and momenta mv; these can also be considered as coordinates in a multi­

dimensional space called phase space. For a system of N particles, this space has 

6N dimensions. A single point in phase space, describes the state of the system. 

An ensemble is a collection of points in phase space satisfying the conditions of 

a particular thermodynamic state. A molecular dynamics simulations generates a 

sequence of points in phase space as a function of time; these points belong to the 

same ensemble, and they correspond to the different configurations of the system 

and their respective momenta. 

There exist different ensembles with different characteristics. 

• Micro canonical ensemble (NV E): The thermodynamic state is characterized 

by a fixed number of atoms, N, a fixed volume, V, and a fixed energy, E. This 

corresponds to an isolated system. 

• Canonical Ensemble (NVT): This is a collection of all'systems whose thermo­

dynamic state is characterized by a fixed number of atoms, N, a fixed volume, 

V, and a fixed temperature, T. 

• Isobaric-Isothermal Ensemble (N PT): This ensemble is characterized by a 

fixed number of atoms, N, a fixed pressure and a fixed temperature. 

40 



• Grand canonical Ensemble (J.L VT): The thermodynamic state for this ensemble 

is characterized by a fixed chemical potential, J.L, a fixed volume, V, and a fixed 

temperature, T. 

5.2.4 Molecular dynamics and ensembles 

Molecular dynamics [26] is most easily performed in the constant NV E ensemble. 

However, it is often of more interest to perform simulations in other ensembles such 

as the canonical and isobaric- isothermal ensembles. 

MOLECULAR DYNAMICS AT CONSTANT TEMPERATURE (NVT ENSEMBLE) 

As temperature is directly related to the average kinetic energies of all the par­

ticles in the system, and, from equipartition 

(33) 

The Equipartition of energy is a principle which states that, in a system in 

thermal equilibrium, on the average, an equal amount of energy will be associated 

with each independent energy state. Specifically, that for a system of particles in 

equilibrium at absolute temperature T; each will have an average energy of ~kBT 

associated with each degree of freedom. For example, an atom of a gas has three 

degrees of freedom (the three spatial coordinates of the atom) and will, therefore, 

have an average total energy of ~kBT· 

For N particles this will be 

(34) 

Now considering equation 33 and 34: 

(35) 

and 

(36) 

Constant temperature simulations can be carried out by scaling the velocity of 
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the particles. There are different types of thermostats for MD simulations in the 

literature [28]- [29], each one has advantages and disadvantages. All thermostats 

give a good temperature control, but they differ in how they drive the system to 

equilibrium. Some of most popular thermostats are described below. 

The Anderson thermostat [28] keeps the temperature constant by colliding the 

particles with a heat bath. The strength of the coupling between the heat bath and 

the simulation can be determined by the frequency of stochastic collision, w, which 

can be selected by the simulator. During the simulation, particles are randomly 

selected and their velocities are set at values drawn from the Maxwell-Boltzmann 

distribution corresponding to the temperature of the heat bath. 

In the thermostat proposed by Nose [30], the heat bath is represented by intro­

ducing an extra degree of freedom in the simulation. Energy can dynamically flow 

between the heat bath and the simulation system with a thermal inertia of Q ( Q 

controls the thermal fluctuations in the system). Hoover simplified the approach by 

introducing a thermodynamic friction coefficient f.. 

The resulting Nose-Hoover thermostat equation of motion are: 

(37) 

(38) 

c = C£i p7fmi- gkBT) 
<, Q ) (39) 

where g is the number of degrees of freedom. 

An alternative method for rescaling the velocity is the approach proposed by 

Berendsen [31]. At every time-step the old velocity v are rescaled to new velocities, 

v', by v' = .Av 

( 40) 

where T0 is the desired temperature and D.t is the integration time step. 
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Here, "'! is the so-called "rise time" of the thermostat, describing the coupling 

strength of the system with a hypothetical heat bath. The larger the "rise time", 

the weaker the coupling, i.e. the longer is the period of temperature fluctuations 

around T0 . 

MOLECULAR DYNAMICS AT CONSTANT PRESSURE (NpT ENSEMBLE) 

Ensemble that work in the constant pressure regime give the possibility to the 

simulation box of changing size during the course of the simulation. The box may 

be allowed to change isotropically or anisotropically depending on the method used 

and the system that is being studied. 

In the Berendson approach [31], the system is coupled to a pressure bath and 

obeys the equation: 

. Po-p p = :..____:_ 
tp 

( 41) 

where p is the pressure of the system, p0 is the desired pressure, and tp is a time 

constant. At each step the volume of the box is scaled by a factor of~ and so the 

co-ordinates are scaled by a factor of ~k where 

(42) 

and >..r is a compressibility factor. 

Nose-Hoover barostat can also be used. In the form proposed by Toxvaerd [32] 

the co-ordinates QN are scaled to RN = QNVk. Introducing a friction, ~, the equa­

tions of motion become: 

(43) 

(44) 

. v 
~ = (3V)' ( 45) 
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·· (P- P0 ) V 
~ = Nk Tt2 ' 

B P 
(46) 

where ~ is given by equation 39. 

PERIODIC BOUNDARY CONDITIONS 

Figure 11: Periodic boundary condition . (Figure taken from Figure 2.4 of reference 
[14]). 
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Periodic boundary condit ions enable a simulation to be performed using a rela­

tively small number of particles in such a way that the particles experience forces 

as though they were in a bulk solution. See, for example, the two dimensional box 

shown in Figure 11 . The central box is surrounded by eight neighbours. The coor­

dinates of the image particles, those found in the surrounding box, are related to 

those in the primary box by simple translations. The simplest box is the cubic box. 

Forces on the primary particles are calculated from particles within the same box 

as well as in the image boxes (nearest image convertion) . The cutoff is chosen such 

that a particle in the primary box does not see its image in the surrounding boxes. 
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6 Assessment of force field for hydrocarbons 

In this project we are studying hydrocarbons and in particular n-linear and branched 

alkanes. n-alkanes are nonpolar, flexible chain molecules. They are composed of only 

two types of segment, methyl and methylene groups. n-alkanes are used as feedstock 

for the production of natural gas, petrochemicals, gasoline, kerosene, oil, paraffin 

wax and are one of the building blocks for biological molecules (e.g. phospholipids). 

In the literature two different approaches for dividing alkanes into interaction 

sites are followed when building a transferable molecular force field. The term 

transferable is the key word for the force field; it implies that the force field param­

eters for a given interaction site should be transferable between different molecules 

(e.g. identical parameters should be used for the methyl group in, say, n-hexane, 

1-hexene, or 1-hexanol) and that the force field should be transferable to different 

state points (e.g., pressure, temperature, or composition) and to different properties 

(e.g., thermodynamic, structural, or transport). 

The first approach is to consider each hydrogen and carbon atoms as an inter­

action site, and is called an "ALL-ATOM FORCE FIELD". The second approach is to 

unite each carbon and its bound hydrogen into a single interaction site, to give a 

"UNITED-ATOM FORCE FIELD". 

In the united-atom approach, according to the above consideration, the num­

ber of interaction sites is reduced by a factor of approximately three and thus the 

computational burden is reduced by an order of magnitude(2n2). The choice of sim­

ulation can change drastically when we choose one method or the other. It depends 

which type of molecules we want to study. In the simulation of n-alkanes where the 

number of hydrogens is very high, using a "united-atom" force field make our sim­

ulation easier but with some loss in accuracy. However, a literature search reveals 

several united atom studies for hydrocarbons, which have succeeded in producing 

excellent agreement with experimental data. In the following paragraph, we briefly 

summarise the best known and useful types of force field and the conclusions we 

have made. 

45 



6.1 Different force field for hydrocarbons 

Three literature force fields for hydrocarbons are considered below: OPLS- UA, 

TraPPE and NERD 

6.1.1 OPLS-UA 

The united atom form of the OPLS (Optimised Parameters for Liquid Simulation) 

force field was developed by in Jorgensen's laboratory at Yale University, Chemistry 

Department from the 1978 to 1984. 

In reference [33] optimized intermolecular potential functions have been deter­

mined for hydrocarbons through Monte Carlo simulations of different liquids. To 

achieve high accuracy, 12 unique group types were identified and their associated 

Lennard-Jones parameters were established. The average deviation from experiment 

for the computed densities and heats of vaporization was 2%. 

The functional form for the bonding interactions, harmonic bond stretching and 

bending is seen in equation 3, 5 and the parameters for the force field are summarised 

in Table 6, 4, 5. In common with many united atom force fields, Jorgensen chose 

to freeze bond lengths at their equilibrium values, which is justified based on the 

fact that bond lengths only change a little from equilibrium values and the coupling 

between bond stretching and bond bending is weak. 

Table 1: Lennard Jones 12-6 parameters for OPLS-UA force field. 

I Atom Type I t:/kcal mol- 1 I a/A I qje- I 
C2-C2 0.1180 3.905 0.00 
C3-C3 0.1750 3.905 0.00 
C2-C3 0.1437 3.905 0.00 
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Table 2: 1-2 Interaction [Stretch] for OPLS-UA force field. 

I Atom Type I Bond lengths /A I 
C4-C4 1.53 
C4-C3 1.50 
C3=C3 1.34 
C3-C3 1.40 

Table 3: 1-3 Interaction [Bend] for OPLS-UA force field. 

I Bend Type I Bond angles/ deg I (Ke/kB)/ K I 
I C-C4-C I 112 I 62,500.00 I 
. C-C3-C . 124 . 62,500.00 . 

The torsional angles are generated according to the torsional potential 

E ( ABCD) 
dihedral W ~ V/BCD [ 1 +cos (wABCD)] + ~ v2ABCD [1 - cos ( 2wABCD)] 

+ ~v;ABCD [1 +COS ( 3wABCD)] 

( 47) 

with vl = 1.411 kcal mol-\ v2 = -0.271 kcal mol-\ v3 = 3.145 kcal mol-1. 

6.1.2 TraPPE (Transferable Potential for Phase Equilibria Force Field) 

This force field was development by the research group of Siepmann of the University 

of Minnesota, Chemistry Department [33]- [34]. 

Table 4: 1-2 Interaction [Stretch]. 

I Stretch Type I Distance /A I 
I CHx-CHy I 1.540 I 
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Table 5: 1-3 Interaction [Bend]. 

I Bend Type I () I (Ko/ kB)/ K I 
I CHx-(CH)-CHy 1112.0 I 62,500.00 I 

Table 6: Lennard Jones 12-6 parameters. 

Atom Type I (E/kB) / K I a/ A I q / e- I 
[CH3]-CHx 98.00 3.75 0.00 

[CH]-(CH3)3 10.00 4.68 0.00 
CHx-[CH2]-CHy 46.00 3.95 0.00 

The torsional angles are generated according to the torsional potential 

E ( ABCD) dihedral W ~ v; ABCD [ 1 +cos ( wABCD) J + ~ V/BCD [ 1 _ cos ( 2wABCD) J 

+ ~~ABCD [ 1 +COS ( 3wABCD)] 

( 48) 

with vl = 1.411 kcal mol-\ v2 = -0.271 kcal mol-\ V3 = 3.145 kcal moi-1. 
In order to optimise these parameters the Siepmann group have worked exten­

sively on n-alkanes over many years employing the technique of Gibbs ensemble 

Monte Carlo combined with the configurational-bias Monte Carlo method to de­

termine the vapour-liquid curves of various n-alkanes. Different alkanes models 

have been compared and the model parameters have been optimised to describe the 

vapour-liquid curve over a large temperature range [35]. Siepmann demonstrated 

that for modelling vapour liquid coexistence a relatively simple united-atom model 

is sufficient to obtain a very good agreement with experimental data and it is not 

necessary to take the hydrogen atoms explicitly into account. Also, in contrast with 

the traditional view, the critical density of the long alkanes decreases rather than 

increases with carbon numbers. 
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6.1.3 NERD 

The NERD force field was introduced to model branched and linear alkanes. Monte 

Carlo simulations have been conducted to assess the ability of this force field to 

predict orthobaric density, second virial coefficients, and p- V- T data for short 

and long alkanes [36]. The force field provides good agreement with experimental 

phase equilibrium and second virial coefficient data over wide ranges of temperature. 

In another article the NERD force field has been used to study the vapour-liquid 

equilibria for pure components and binary mixtures [37]. Result of phase equilibria 

simulations are found to be in good agreement with available experimental data. 

The force field has also been used to study vapour-liquid equilibria for various iso­

mers of alkanes up to C8 . Results from this simulation are found to be in quite 

good agreement with experimental data [38]. In the NERD force field the bonding 

parameters are the same as in TraPPE. However, the Lennard-Janes parameters 

change slightly as shown in table 7. 

Table 7: Non-bond interaction in TraPPE and NERD force field. 

I TraPPE I NERD I 
CH2 (c/kB)/K 46.0 45.8 
CH3(c/kB)/K 98.0 140.0 

CH2 rJj A 3.95 3.93 
CH3 rJj A 3.75 3.91 

6.2 A comparison of force field for n-hexane. 

To compare the above force field, molecular dynamics simulations of n-hexane were 

carried out using the DL POLY simulation program, version 2.13. 

DL POLY is a general purpose serial and parallel molecular dynamics simulation 

package originally developed at Daresbury Laboratory, Cheshire, UK by W. Smith 

and T.R. Forester. Any molecular dynamic simulation performs five different kinds 

of operations: 

• Initialisation, 
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• Force calculation, 

• Integration of the equation of motion, Newton's second law. 

• Calculations of system properties 

• Job termination. 

In order to perform these processes DL POLY required three input data files. 

• CONTROL, tells the program which kind of simulation we want to run, how 

many data we want to gather and for how long the job running. These es­

sential parameters such as temperature, pressure, number of steps required, 

simulation algorithm, ensemble used, the job time and the close time. 

• CONFIG, contains all the coordinates of the atoms in the simluation. 

• FIELD, specifies the nature of the inter- and intramolecular interactions, the 

molecular topology and the atomic properties like charge and atomic mass. 

A successful run of DL POLY will generate several data file, which appear in the 

executive sub directory, called output data files. This data file contains a summary 

of the simulation: the input information, the starting configuration, temperature, 

pressure, timestep, etc. (all the data from the CONTROL file), thermodynamic 

data, the final configuration and radial distribution functions. 

• REVIVE, is a binary file, used as input to allow a simulation to be restarted. 

• REVCON, this has the same format as a CONFIG file and can be used to 

restart a simulation from the final configuration of an old simulation. 

• STATIS, summary of instantaneous values of thermodynamic and other vari­

ables, in a form suitable for statistical analysis. 

• HISTORY, provides time ordered sequence of configurations to facilitate fur­

ther analysis of atomistic motion. 
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6.2.1 The steps required in a MD simulation using hexane as an example 

To compare hexane in the OPLS-UA, TraPPE and NERD force fields we carried 

out molecular dynamics simulations for a small system of 216 n-hexane molecules 

in a cubic simulation box. The following steps were used: 

• The molecular structure of n-hexane was produced in a modelling program 

(Maestro) to generate initial coordinates. 

• Coordinates for many molecules were generated, making a lattice of molecules 

though a FORTRAN program and generating coordinates by duplications of 

the single molecule. e.g. for a 6*6*6 lattice in a cubic simulation cell, 216 

molecules are created (1080 atoms). 

• FIELD file with the force parameters for OPLS-UA, TraPPE, or NERD was 

created. 

• CONTROL file was created. 

• DL POLY was run for 100,000 steps in the NVT ensemble in order to melt 

the lattice and have a gas phase, at room temperature (298 K), using the leap 

frog algorithm. A time step of 2 fs was employed and the SHAKE algorithm 

was used to constrain bond lengths to equilibrium values. 

• DL POLY was run for 1,000,000 steps in the NpT ensemble using the Berend­

sen thermostat and barostat and a high pressure of 1000 atm, to rapidly com­

press to a liquid phase. Temperature and pressure relaxation times of 1 ps 

and 4 ps respectively was used. 

• DL POLY was run for 1,000,000 steps in the NpT ensemble using the Berend­

sen thermostat and barostat in order to have liquid phase; at room temperature 

(298 K) and a pressure of 1 atm. 

• DL POLY was run for 1,000,000 steps in the NpT ensemble using Nose-Hoover 

thermostat and barostat in order to have an equilibrated liquid phase; at 

room temperature (298 K) and a pressure of 1 atm. As before employing 

temperature and pressure relaxation times of 1 ps and 4 ps respectively. 
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6.2.2 Result 

We give below results from three force fields for simulations of 216 n-hexane molecules; 

and assess them will a view to choosing a force field for future simulations. 

OPLS-UA 

Average density calculated: 0.6808 g cm-3 ; experimental density: 0.6603 g cm-3 . 

An important property in order to evaluate from molecular simulation is the 

dihedral angle distribution function. In hexane we have three dihedral angles, that 

we call angle A (formed by the atoms 1,2,3,4) , angle B (formed by the atom 2,3,4,5,), 

angle C (angle formed by the atom 3,4,5,6). The distribution function, S(w), for 

these three are shown in Figure 12. 

The result in the Figure and Table above are in excellent agreement with previ­

ous simulation results [36] and experimental Raman scattering data where a trans 

population of 70.7 % is given [39]- [40] for angle A. 

Table 8: % trans-gauche populations of the three dihedral angles in hexane using 
the OPLS-UA force field. 

I Angle A I Angle B I A:ngle C I 
Gauche+(%) 14.79166 11.1458 14.6875 

Trans(%) 70.4456 77.67939 70.3067 
Gauche-(%) 14.7627 11.1747 15.00579 
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Figure 12: Dihedral angle distribution functions for angles A-C using the OPLS-UA 
force field. 
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NERD 

Average density calculated: 0.6479 g cm-3 ; experimental density: 0.6603 g cm-3 . 

The dihedral angle distributions given using the NERD force field are show in 

figure 13. 

Table 9: % trans-gauche populations of the three dihedral angles in hexane using 
the NERD force field. 

I Angle A I Angle B I Angle C I 
Gauche+(%) 14.73379 11.42631 15.0690 

Trans(%) 69.94210 76.96759 70.6134 
Gauche- (%) 15.32407 11.60880 14.3171 
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Figure 13: Dihedral angle distribution functions in hexane for angles A-C using the 
NERD force field. 
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The result in the figure and in the table above are also in agreement with previous 

simulation [36], and experimental Raman scattering data where a trans population 

of 70.7 % is given [39]- [40] for angle A. 
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TRAPPE 

Average density calculated: 0.6679 g cm-3 ; experimental density: 0.6603 g cm-3 . 

The dihedral angle distribution given using TraPPE force field are show in figure 

14. 

Table 10: % Trans-gauche population of the three dihedral anlges in hexane using 
the TraPPE force field. 

I Angle A I Angle B I Angle C I 
Gauche+(%) 15.1331 11.8630 15.0221 

Trans (%) 69.6060 75.5840 70.2310 
Gauche- (%) 15.2600 11.5520 14.7430 
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Figure 14: Dihedral angle distribution functions for angles A-C using the TraPPE 
force field 
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The results are also in excellent agreement with previous simulation [36] and 

experimental Raman scattering data where a trans population of 70.7% is given [39]­

[40] for angle A. 
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The results for the three force fields are all very similar. The TraPPE-UA 

gives slightly better agreement with experiment, with slightly better values for 

the trans/gauche distribution. Moreover, this force field has an advantage over 

NERD, in so much as there are a whole set of parameters available for other non­

hydrocarbons. It makes sense therefore to choose this force field for further simula­

tions. 

6.3 Accurate description of TraPPE-UA force field 

As discussed in the previous chapter the TraPPE-UA force field was choosen. Before 

discussing diesel simulations, a brief but more accurate description of this force field 

is appropiate. 

For this project, the simplest and easiest to simulate force field, TraPPE-UA is 

the most useful. This force field utilizes pseudo-atoms located at carbon centres for 

alkyl groups (CH4 , CH3 , CH2 , CH, and C). The total potential energy is divided 

into a bonded and a non bonded part. The non bonded potentials are used only 

for the interactions of pseudo-atoms belonging to different molecules or belonging 

to the same molecule but not accounted for by any of the intramolecular bonded 

potentials. The intramolecular bonded potentials include: fixed bond lengths for 

neighbouring pseudo-atoms (1-2 interactions), harmonic bond bending potentials 

for pseudo-atoms separated by two bonds (1-3 interactions), and dihedral potentials 

for pseudo-atoms separated by three bonds (1-4 interactions) and thus takes an 

almost identical functional form to the OPLS force field. 

The potential function for the TraPPE force field is as follow [33]- [34]: 

dihedral 

+ L ~ ( (} - (} eq) 2 + L i (l - leq) 2 

angles bonds 

(49) 

where rN, qN, rij, 0, ¢, and l are the set of Cartesian coordinates and partial 
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charges, the pair separations, bending angles, the dihedral angles and the bond 

lengths respectively. 

7 Simulation of a model diesel 

A simulation containing 78.7 % of a branched solvent (2,4,6,10 tetramethyl dade­

cane) plus a distribution of n-alkanes from clO up to c26 was studied. 

The component of each n-alkane in a typical diesel are shown in table 11 and 

in figure 15. A cut off of C26 was applied to the model system because above C26 

the percentage of higher alkanes in the mixture is very low. The % of n-alkanes 

employed in our model diesel is given in table 12. 

Figure 15: The distribution of n-alkanes in a typical diesel up to C26. Data is 
supplied by Infineum. 
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Table 11: %of linear saturated hydrocarbons in a typical diesel fuel. Data is supplied 
by Infineum. 

c %In Fuel 
10 0.680 
11 1.996 
12 2.243 
13 2.683 
14 2.159 
15 2.304 
16 2.199 
17 2.135 
18 1.574 
19 1.346 
20 0.815 
21 0.518 
22 0.334 
23 0.231 
24 0.148 
25 0.090 
26 0.051 

Table 12: % of linear saturated hydrocarbons in our model diesel 

I C I % in our model diesel I 
10 0.680 
11 1.996 
12 2.243 
13 2.683 
14 2.159 
15 2.304 
16 2.199 
17 2.135 
18 1.574 
19 1.346 
20 0.815 
21 0.518 
22 0.334 
23 0.231 
24 0.148 
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The steps. required for setting up this model diesel simulation are: 

• Draw the single.molecules of the distribution and the solvent with a molec­

ular modeling program (Maestro), which provides a pdb file, containing the 

cartesian coordinates and the connectivities of the atoms. 

• Create coordinates for many molecules, making a low density lattice of the 

mixture using a Fortran program and generating coordinates by duplications 

of the single molecules. 

• Create a DL_POLY FIELD file using a Fortran program to assign TraPPE 

force field parameters to structural features of each molecule. 

• Create a CONTROL file to control the simulation. 

• Run the molecular dynamics program, DL_POLY, for 1,000,000 steps in the 

N pT ensemble using the Berendsen thermostat and barostat and a high pres­

sure of 1 Katm, in order to compress the diesel mixture from a lattice to a 

liquid phase, at room temperature (298 K), using a leap frog algorithm. (Em­

ploy a time step of 2 fs and the SHAKE algorithm to constrain bond lengths 

to equilibrium values). 

• Further compression, as described in table 13 and discussed below. 

• Equilibrate the mixture at 1 atm of pressure at room temperature (298K) 

using a Nose-Hoover thermostat and barostat. 

Initial simulations lead to condensation of liquid droplets within the gas phase, 

leading to a highly inhomogeneous system. This is illustrated in the snapshot from 

figure 16, which show large gaps between molecules. This caused major problems in 

equilibration during standard molecular dynamics runs. 

After approximately 3 weeks of computer time, with large cutoff parameters, the 

model diesel looked much better as show in figure 17. 
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The actual liquid diesel density is 0.83 g cm- 3 .s 1
•
2 

Figure 16: Snapshot of the model diesel compressed from gas phase towards a 
liquid, where the molecules have condensed into clusters of diesel liquid learving 
gaps between the cluster. 

1 Initial simulation crashed due to certain molecules being too close and therefore generating 
large repulsion forces. Starting the simulation again with an expanded box, solved the first error, 
but an other error was found. The problem was that the Neighbour list arrays employed by the 
DL_POLY program are too small. This means that the construction of the Verlet neighbour 
list (in subroutine link_ cell_pairs) failed because the number of non-bonded pair exceeded the 
neighbourlist array dimension . This problem arises when there are inhomogeneties in the density 
within a simulation box. 

2This problem can be solved by modifying two parameters in the CONTROL file, the cutoff and 
delr (Verlet neighbour list shell) parameters. However, this dramatically increase the time required 
for simulation. Also, a second possibility is to compress the gas at a slightly elevated temperature 
(400-450 K) to avoid liquid clusters condensing separately. In doing this droplets formed from the 
rapid compression from a gas to a liquid will merge. 
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Figure 17: A snapshot of the model diesel condensed to liquid state density. Note 
that molecules wrap round the periodic boundary conditions (density calculated: 
0.83 g cm-3 ) . 

Finally, a simulation for 1,000,000 steps were carried out in the NpT ensemble 

using the Nose-Hoover thermostat and barostat and a pressure of 1 atm, room tem­

perature (298 K) using a leap frog algorithm. The aim was to arrive at equilibiurm 

at a point where the density of our model diesel system could be similar to that of 

real liquid diesel. 

Table 13: Parameters of the four simulations of the model liquid diesel from a gas 
phase to a liquid phase carried out in order to achive equilibrium in the system. 

I T I K I PI Katm I Step I Time step I fs I cutoff I A I delr I A I 
First 298.0 1.000 1,000,000 2 7.000 20.00 

Second 398.00 10.00 1,000,000 2 10.00 45.00 
Third 450.00 10.00 1,000,000 2 10.00 45.00 
Fourth 298.00 0.001 1,000,000 2 8.000 3.000 
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7.1 Results from the model lriquid diesel simulation 

In order to verify that equilibrium is achieved we plot the ensemble average of the 

following thermodynamic properties: volume, total energy. It can be seen from 

figures 18 and figure 19 that the curves all increase during equilibration, but that 

the volume, total energy averages reach a steady state. The final mean density of 

our model liquid diesel is 0.83 g cm-3 , which is in very good agreement with the 

experimental density for a typical diesel of 0.85 g cm-3 . 

Figure 18: Volume as a function of time for an equilibration run of the model diesel 
system at 1 atmosphere and 298 K, illustrating compression from an initial low 
density lattice configuration. 
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Figure 19: Total energy as a function of time for an equilibrium run of the model 
diesel at 1 atmosphere and 298K, during compression from an initial low density 
lattice configuration. 
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Radial distribution functions (RDFs) are pair correlation functions, which de­

scribe how the atoms in a system are packed around each other. This provide a 

particularly effective way of describing the average structure of a disordered molec­

ular system such as a liquid. We have to think that the molecules are in constant 

motion, so the notion of a liquid structure has only got meaning in an average sense. 

In other words, the RDF is a measure of the probability of finding particles at a 

distance rij from each other. For a simple liquid the RDF is termed 9 (ri1), where 

rij is the separation between atoms i and j. 9 (ri1) is defined as 

(50) 

where o (r) is the Dirac delta function. The );2 prefactor normalizes the RDF relative 

to an ideal gas of the same density. A typical RDF plot shows a number of feature a) 

at short separation the RDF is zero, b) peaks indicate that the atoms pack around 

each other in a shell of neighbours. The occurence of peaks at long range indicates 

a high degree of ordering. 

The fact that the RDFs do not change significally during the final part of the 

simulation is another indication that equilibration has been achieved. 
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Figure 20: Radial distribution function of each of the different interaction types in 
our liquid diesel model. 
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Four main conclusions can be drown, as it has been shown in figure 20, from the 

RDF curves. 

The CH groups cannot approach as closely as C2 groups or C3 groups because 

they always occur at branching points along the chain. 

66 



The CH3 groups occur as the terminal group of a chain and therefore approach 

more closely than CH and CH2 approach, as illustrated in the CH3- CH3 RDF. 

The CH- CH picks up the intramolecular interaction from along the chain, this 

is the reason why a sharp pick is found. 

An other important property that allows us to verify that equilibrium has been 

achieved is the dihedral angle distribution of the branched solvent in our model 

liquid diesel for different torsional angles. The dihedral angle distributions and the 

relative percentages of trans-gauche conformations of the solvent are shown in figure 

22 and in table 14. The chemical structure of the solvent is shown in figure 21. 

Figure 21: Chemical structure of the solvent, the 2,4,6,10 tetramethyl dodecane 
showing the dihedral angles 
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Figure 22: Dihedral angle distribution of different angles of the solvent in our model 
liquid diesel 

Angle A Angle B 
2.0xi02r----~--~--~-., 2.0xi02r----~--~--~-., 

1.5xl0
2 1.5xl0

2 

~ 2 ___, I.OxiO 
C/) 

5.0xl0
1 

Angle C AngleD 
I.Oxi02r----~--~--~-., 2.0xi02r----~--~--~-., 

8.0xl0
1 

,-..._ I 
::::: 6.0xl0 

'-' 
Cll 4.0xl01 

2.0xl01 

Angle E Angle F 
2.0xl02r----~--~--~-., 2.0xl0'.----r----r----,---.... 

1.5xl0' 

--
::::: I Oxl02 
'-' . 
C/) 

5.0xl01 

1.5xl0
2 

--
::::: I Oxl02 
'-' . 
C/) 

5.0xl0
1 

Table 14: Trans-gauche relative percentages for dihedral angles within the solvent 
in our model liquid diesel. Definition of angles are given in figure 21. 

I Angle A I Anlge B I Angle C I Angle D I Angle E Angle F 

Gauche- (%) 22.15692 22.64930 8.21156 11.54702 10.38754 22.45870 
Trans(%) 48.22109 66.62960 61.37220 80.01905 78.875476 57.38564 

Guache- (%) 29.62198 10.72109 30.41613 8.43392 10.736975 20.155654 
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As the solvent is a branched alkane (2,4,6,10 tetramethyl dodecane) in position 2, 

4, 6 and 10 of the dodecane, from the figure 22, the result of the dihedral distribution 

angle are in good agreement with our expectations. If we look, for example, at the 

angleD formed by the atoms 6, 7, 8 and 9, the gauche+ and the gauche- have more 

or less the same relative percentages as we expect for this dihedral, which contains 

no branched groups. The same is true for the angle E, formed by the atoms 7, 8, 

9 and 10 where the branched group is in position 10. On the other hand, for the 

dihedrals A, B and F the relative percentages of the gauche- and gauche+ are quite 

different due to the presence of the branched methyl group in the middle of the 

dihedral angle. 

All the properties described above allow us to say that the simulation of our 

liquid model diesel led to an equilibrated system. This model can now be used for 

further simulations with the polymer EVA and the crystal C23 • 

8 Wax Crystal Modifier (EVA) 

Wax Crystal Modifier (WCMs) all contain polyethylene-like segments and most can 

be classified within three main groups. 

8.0.1 Random co-polymers 

These are ethylene vinyl ester co-polymers, the most notable example is ethylene 

vinyl acetate (EVA). EVA is one of the most effective wax crystal growth inhibitors 

modifying the PP and the cold filter plugging point CFPP (PP and CFPP depres­

sants) but not CP. 

These co-polymers are believed to adsorb selectively onto the growing face of 

the crystal via the polyethylene backbone with the acetate and short alkyl groups 

extending into the fuel [41]. This adsorption and mode of action of this additives is 

not very selective but is efficient because of the polymer multipoint contact. 
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8.0.2 Comb type polymer. 

There are several variations of this type of WCM. They are characterized by long 

n-alkyl side groups that protrude from the backbone, which can co-crystallize with 

the n-alkanes. Examples of this type of polymer include esters of fumaric acid 

co-polymerized with vinyl acetate (FVA) and poly-n-alkyl-methacrylates. 

Different chain lengths can be used for the comb branches and those with between 

twelve and eighteen carbon atoms are generally favoured. These additives effect the 

cloud point ( CP depressants) and also provide antisettling effects for the crystallised 

n-alkanes. 

8.0.3 Nucleators 

These additives are low molecular weight polymers. Typical examples are polyethy­

lene glycol (PEG) esters, which have been esterified with docosanoic acid. These 

additives do not modify the crystal habit of the wax but increase the number of wax 

crystals present in the fuel compared to untreated fuel. 

Unfortunately, some incompatibilities occasionally exist with regards to EVA 

type additives (which are CFPP and PP depressants) and FVA type additives (which 

are CP depressants). Ideally the aim is to find multifunctional additives that improve 

the CFPP, PP, CP and also give antisettling properties [42], [1]. 

8.1 Characteristics of EVA 

EVA is a random co-polymer of ethylene vinyl acetate and there is little precise 

information with regard to detailed molecular structure, particularly regarding the 

distribution of co-monomer units. A linear EVA structure is found to be more 

effective as a wax crystal modifier. In order to achieve this [43], monomers have 

been used which possessed an acetate group such as 1-acetoxy-4,8-cyclododecadiene. 

Ring opening polymerization followed by hydrogenation for these, yield an EVA type 

polymer. 

Free radical polymerised ethylene and EVA suffer backbiting. So random butyl 

side groups are obtained in addition to random vinyl acetate branches that break 
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up the polymethylene run where Mn (by VPO, i.e absolute) c.a. 2,500 and Mn/Mw 

2.2; we target EVA as made of 15 mole % of vinyl acetate and side chain branches 

of 4 per 100 backbone methylenes (measured by H-NMR) which is approximately 

64 to 67 mole % of ethylene and 6 to 8 mole % hexene. 

8.2 Force Field Parameters of EVA 

Until now we have only used hydrocarbons in our simulations, but EVA is a co­

polymer ( terpolymer) of ethylene vinyl acetate. The vinyl acetate group is an ester; 

the esters are functional derivatives of carboxylic acids where the hydroxyl (-OH) 

group is replaced by an alkoxy (-OR). TraPPE-UA force field parameters for the 

esters group in EVA molecule have been developed [44]; Lennard-Janes parameters 

for the methyl pseudo-atom were taken from the TraPPE-UA alkane parameters 

set [33], the carbonyl carbon parameters were taken from carboxylic acid [45], the 

carbonyl oxygen from carbon dioxide model [46] and the ether oxygen from the ether 

parameter set [47]. These are illustrated in table 15-19. 

Table 15: 1-2 Interaction [Stretch] 

I Stretch Type I Distance /A I 
CHx-CHy 1.540 

C=O 1.200 
C-0 1.344 

C-CH3 1.520 
CH-0 1.410 

Table 16: 1-3 Interaction [Bend] 

Bend Type I e /degree I (Ko/kB) I K I 
CHx-(CH)-CHy 112.0 62,500.00 

O-C-CH3 110.0 70,600.00 
0=C-CH3 125.0 62,500.00 

0-C=O 125.0 62,500.00 
CHx-CHy-0 112.0 50,300.00 
CH-0-C(=O) 110.0 70,600.00 

71 



Table 17: 1-4 Interaction [Torsion] 

Torsion Type 

CHx-(CH2)-(CH2)-CHy 355.03 -68.19 791.32 
CHx-(CH2)-(CH)-CHy 428.73 -111.85 441.27 

CHx-CHy-0-C 725.35 163.75 558.20 
CHx-0-C=O 2194.00 2059.0 -153.4 
CH-0-C-CHx 993.1 520.7 -138.5 

CHx-CH2-CH2-0 172.62 -53.34 769.93 

Table 18: Lennard Jones 12-6 parameters 

· Atom Type I (clkB) I K I 
[CH3]-CHx 98.00 

[CH]-(CH3)3 10.00 
CHx-[CH2]-CHy 46.00 

-0- 55.00 
C=O 41.0 
=0 79.00 

Table 19: Partial charges used in EVA simulation 

I Atom Type I q I e I 
-0- -0.4 

C=O 0.55 
=0 -0.45 

CH3-(C) 0.05 
CH-0 0.25 

The polymer EVA was draw with a molecular modeling program, Maestro. 
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Figure 23: An extended EVA chain drawn with Maestro molecular modelling soft­
ware, before starting the simulation. Notice the random distribution of the vinyl 
acetate group and the butyl group in the long chain polymer. 

As a polymer is a large molecule, there are a huge number of conformations. 

It proved convenient to start from an extended conformation and then use MD to 

allow the polymer chain to curl up and provide a better strarting configuration to 

put into the diesel solution. 

After creating the FIELD, the CONFIG file and the CONTROL file , a first 

MD simulation in a canonical ensemble was carried out without periodic boundary 

condition with the following characteristics: 

Table 20: Summary of the first EVA MD simulations 

I T I K I p I atm I Step I Time step I fs I cutoff I A I delr I A I 
1 29s.oo 1 1.oo 1 so,ooo 1 2 1 1oo.oo 1 3o.oo 1 
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A shapshot of EVA at differents time step of the simulation were taken as shown 

in figures 24-26. At the end of the simulation the polymer remained stable in a coil 

arrangement, as expected from entropic considerations. 

Figure 24: EVA shapshots from a gas phase MD simulation 

Coordinates at timestep 2700 

Coordinates at timesteps 5200 

74 



Figure 25: EVA snaphops from a gas phase MD simulation 

Coordinates at timestep 20100 

Coordinates at timestep 30300 

Coordinates at timestep 42700 
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Figure 26: EVA snapshots from a gas phase MD simulations 

Coordinates at timestep 48200 

Coordinates at timestep 49000 

8.3 A property of EVA polymer: radius of gyration 

The three dimensional structure of a polymer chain such as EVA can determine 

many of its most important properties. One of these properties is the radius of 

gyration. 
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The mean radius of gyration R9 [48]- [49] of a polymer chain is defined as the 

root mean squared distance of the chain segment from the centre of mass of the 

chain. 

It is calculated using 

(51) 

where ri is the ith monomer position and rem is the positions of the centre of mass. 

The radius of gyration represents the overall size and shape of the polymer chain. 

For a given N, low values of R9 represent more compact folded configurations; and 

higher values of R9 represent unfolded configuration. In other words, the natural 

process of curling up of EVA can be measured quantitatively by calculating the 

radius of gyration, the radius of gyration squared and its components in the x, y, z 

direction. 

From the first MD simulation the radius of gyration squared and its components 

in x, y, z direction were ploted as a function of simulation time. 

Figure 27: Radius of gyration squared and x, y, z components plotted again the 
simulation time. 
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From figure 27 the curves show a reduction in the radius of gyration as a function 

of simulation time as one would expect from the snapshots of fugure 24-26. 

Starting from the last configuration of the previous run, a longer MD simulation 

was carried out in the canonical ensemble, with the characteristics given in table 21. 

Table 21: Parameters of the second EVA gas phase MD simulation. 

I T I K I p I atm I Step I Time step I fs I cutoff I A I delr I A I 
1 298.oo 1 1.oo 1 5oo,ooo 1 2 1 too.oo 1 3o.oo 1 

Figure 28: Mean value of the radius of gyration of EVA as an "equilibrated" chain 
polymer in a gas phase. 
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This simulation is made in order to check the equilibration with regards to the 

natural process of curling up of this polymer; a converged ensemble average for the 

radius of gyration of EVA in the gas phase is shown in the figure 28. The average 

values of R9 of EVA in the gas phase is 86.14 A. 
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It is also possible to consider the radius of gyration of a polymer chain like EVA 

in a solvent. Whether the solvent is a good or bad one for EVA will determine 

whether the radius of gyration will become larger or smaller when immersed in the 

solvent. 

In our case the solvent is the model diesel previously studied. In order to merge 

the model diesel with EVA, we need to unperiodically box our diesel as shown in 

figure 29. This will allow the EVA to see full molecules, not only a part of those 

that they are split via the periodic boundaries. 

Figure 29: Snapshot of the model diesel condensed to liquid state density. This 
snapshot shows unperiodically boxed diesel molecules, so that individual molecules 
are not split by being wrapped round the periodic boundary conditions. 

9 EVA + Diesel 

Starting from the final configuration of the equilibrated EVA, the liquid model diesel 

and the polymer EVA were merged and the starting configuration of the system 

(diesel + EVA) is shown in figure 30. 
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Figure 30: Starting configuration of the system made using our model diesel plus 
the EVA polymer 

In order to compress the system quickly from gas to the liquid phase, two ini­

tial NpT molecular dynamics simulations, using the Nose-Hoover thermostat and 

barostat, were carried out with the characteristics described in table 22. 

Table 22: Conditions for a molecular dynamics simulation for EVA plus our model 
liquid diesel. 

I T / K I p I atm I Step I Time step I fs I cutoff I A I delr I A I 
298 1000 1,000 2 25.00 30.00 
298 1000 10,000 2 25.00 30.00 

After compressing at high pressure, relaxation of the system was performed with 

a long molecular dynamic simulation at 1 atm with the details shown in table 23. 
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Table 23: Molecular dynamic simulation of the system EVA + our liquid model 
diesel after compressing the system. 

I T I K I p I atm I Step I Time step I fs I cutoff I A I delr I A I 
298 1 11,ooo,ooo 1 2 1 8 1 3 1 

The final configuration of the equilibrated system of EVA plus diesel is shown in 

figure 31. 

Figure 31: Equilibrated system of EVA plus our liquid model diesel: shapshot of the 
final configuration where the system was unbox and EVA was shifted at the center 
of the box . 

From figure 31, it can be seen that complete solvation of the EVA by the diesel 

has been achieved. 
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9.1 Results for EVA plus diesel 

In order to understand if the diesel is a good or bad solvent for the polymer EVA, 

the radius of gyration of the EVA in diesel was calculated. In general, for a polymer 

chain it is crucial to verify in which solvent the polymer is dissolved. For good 

solvents the chain is more expanded while for bad solvents the chain segments stay 

close to each other. This means that if diesel is a good solvent for EVA, the radius 

of gyration will become larger [50]. 

The radius of gyration of EVA in the liquid diesel solvent is shown in fugure 32. 

Figure 32: Radius of gyration of the EVA polymer in the liquid diesel solvent plotted 
as a friction of simulation time in ps. 
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From this graph the radius of gyration of the EVA polymer when it is in the 

liquid diesel solvent is plotted versus the simulation time. 

The average radius of gyration of EVA in the gas phase is 86.14 A, while the 

average value of EVA in the liquid diesel is 127.55 A. 
As the radius of gyration of EVA increases while it solvated in the diesel solvent, 

we can define our liquid model diesel as a good solvent for the polymer EVA. 
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10 Crystal 

10.1 n-alkanes crystals 

n-alkanes crystallize to form thin plates with regular faces in which the chain direc­

tion is more or less perpendicular to the lamella surface. A combination of single 

crystal and powder X-ray diffraction analysis has enabled some of these system to 

be characterized. In the low temperature modifications, three solid-state structures 

have been identified: 

TRICLINIC: 6 :::;n(even) :::;26 

MONOCLINIC: 28 :::;n(even) :::;36 

ORTHORHOMBIC ~36 and n(odd) 

In all the structures the hydrocarbon chains are linear and they have trans con­

figurations. The chains are parallel to one another, the terminal methyl groups 

forming the surfaces of lamella. 

10.2 C23 crystal 

Infinuem Ltd. have collaborated with different Universities to investigate the struc­

ture of individual and mixed n-alkane crystals. Dr S. Craig from the University of 

Strathclyde [51], presents crystallographic unit cell parameters and fractional coor­

dinates for a series of n-alkane crystal systems (C13H28 to C60H28 ) and from it, unit 

cell parameters of C23H24 , as shown in table 24, allow us to build a crystal structure 

with a molecular modeling program (Cerius2). The C23H48 , called tricosane has a 

typical orthorhombic structure with Pbcm space group. 

Table 24: Unit cell parameters of C23 . 

I a/ A I b/ A I c/ A I a / deg I ;J / deg l1 / deg I 
1 4.967 1 7.441 1 62.189 1 9o.ooo 9o.ooo 9o.ooo 

A single crystal of C23 was build. The cell was duplicated in the a and b direction 

in order to have 64 molecules of c23· 
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Figure 33: Crystal C23 before the simulation . 
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A MD simulation was carried out at 100 K m the NVT ensamble with the 

following characteristics: 

Table 25: Parameters of a molecular dynamic simulation of 64 molecules of C23 

orthorhombic crystal. 

I T I K I p I atm I Step I Time step I fs I cutoff I A I delr I A I 
1100.00 I 1.00 11 ,000,000 I 2 I 8.50 I 1.00 I 

At the end of the simulation the crystal remained stable and this was a good 

starting point for merging the crystal with the model diesel and the EVA. 

Figure 34: Figure of the crystal C23 after the simulation (Note atoms at the end of 
the cell arc broken across the periodic boundary conditions). 
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11 Model Diesel plus Crystal simulations 

After creating the right FIELD, CONTROL and CONFIG files (unperiodic CON­

FIG), a 100 steps simulation of the liquid model diesel plus the C23 crystal was 

carried out in order to compress the system from a gas phase to a liquid one, fol­

lowed by 20000, 100000 and 1 million step runs in an NVT ensemble with the 

characteristics described in table 26. 

Table 26: Parameters of the first series of simulations in NVT ensemble of our liquid 
model diesel plus the c23 crystal. 

I T I K I p I atm I Step I Time step I fs I cutoff I A I delr /A I 
298.00 1.00 100 2 25.00 10.00 
298.00 1.00 20,000 2 25.00 10.00 
298.00 1.00 100,000 2 25.00 10.00 
298.00 1.00 1,000,000 2 25.00 10.00 
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Figure 35: Snapshot after the first simulation (100 steps) of the model liquid diesel 
and the C23 crystal. (Note atoms at the edge of the cell are broken across the 
periodic boundary conditions). 
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Figure 36: Snapshot after the last simulation in the NVT ensemble of the model 
liquid diesel and the c23 crystal (notice that they are still gaps in the system). 
t+ \ delta t 

In order to fill the space between the two merged systems, a series of simulations 

in NpT ensemble at high pressure were carried out using the conditions shown in 

table 27. 

Table 27: Parameters of a series of simulation in NpT ensemble at high pressure of 
the model liquid diesel plus the c23 crystal. 

I T I K I p I atm I Step I Time step I fs I cutoff I A I delr I A I 
298 1000 10,000,000 2 25.00 10.00 
298 1000 10,000,000 2 8.50 3.00 

When a rapid compression at high pressure was made, the crystal is completely 

incorporated inside of the liquid diesel, as shown in the shapshot at figure 37. 
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Figure 37: Shapshot of the model liquid diesel plus the C23 crystal after rapid 
compression at high pressure in the NpT ensemble. 

12 Model Diesel plus Crystal plus EVA 

After creating the right FIELD (FIELD of diesel plus FIELD of crystal plus FIELD 

of EVA), CONTROL and CONFIG files, a 100 steps simulation of the liquid model 

diesel plus the C23 crystal were carried out, followed by 20000, 100000 and 1 million 

step runs in the NVT ensemble with the characteristics show in table 28. 

The starting configuration shapshot is shown in figure 38. 
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Figure 38: Snapshot of the final simulation carried out for the model liquid of diesel 
plus crystal plus EVA. 

Table 28: Parameters of NVT ensemble simulations, carried out for the mixture 
model diesel plus crystal plus EVA. 

I T I K I pI atm I Step I Time step I fs I cutoff I A I delr I A I 
First 298.0 1,000 100 2 35.00 30.00 

Second 98.00 1,000 20,000 2 35.00 30.00 
Third 298.00 1,000 20,000 2 20.00 25.00 
Fourth 298.00 1,000 1,000,000 2 8.00 3.00 

In these initial simulations, the NVT ensamble allows system to relax any initial 

stress without the added complexity of a barostat. Therefore avoiding any rapid 

fluctuations in box size, which might occur at constant pressure. The results in figure 
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39 show that the diesel starts to melt the surface of the crystal but there remains a 

large gap in the system. The latter can then be removed with a quick compression 

at high pressure in the NpT ensemble simulations, followed by equilibration of the 

system with 1 atm Npt simulations; as summarized in table 29. 

Figure 39: Snapshot of the final configuration of the NVT simulations described in 
table 28. 

Table 29: Parameters for N pT simulations of diesel plus crystal plus EVA. 

I T I K I p I atm I Step I Time step I fs I cutoff I A I delr I A I 
First 298 1,000 1,000,000 2 20.00 25.00 

Second 298 1,000 1,000,000 2 8.00 3.00 
Third 298 1 1,000,000 2 8.00 3.00 
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A Snapshot of the final NpT simulation where the gaps have been filled is shown 

in figure 40. Here the diesel is shown in grey, the crystal in blue and the EVA is 

green with the red atom of oxygen on EVA. 

Figure 40: Snapshot of the final N pT simulation at 1 atm in order to relax the 
system (note that now all the gaps between the different components of the system 
have been filled). 

The snapshot in Figure 40 shows that at this temperature the edge of the crystal 

has started to melt into the surrounding diesel liquid but that the centre of the 

crystal has remained crystalline. The EVA was found to migrate to the surface of 

the crystal, as shown in the snapshot on the right of Figure 40, which shows the 

molecules of diesel removed. 
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13 Conclusion 

A simulation of hexane was carried out with different force fields in order to decide 

the most appropriate one to be used for a model of diesel. The TraPPE force field 

was selected due to good agreement with experimental data and due to availability 

of additional parameters (e.g. not only hydrocarbons) for other functional group in 

addition to hydrocarbons , as used later for EVA (e.g. esters groups). 

A model diesel was created composed of 78.7% of a solvent (2,4,6,10 tetramethyl 

dodecane) plus a distribution of n-alkanes from C10 up to C26 . In compressing 

from a gas phase to a liquid there was an initial formation of liquid droplets with 

space between then. The inhomogeneity of the system caused a major technical 

problem in the simulations, which was eventually solved by running simulations 

with a very large cutoff and Verlet list shell cutoff. This slowed down the simulations 

dramatically, but proved to be the only way to condense the clusters. Finally, after 

further equilibration this led to an equilibrium liquid diesel system in which the 

density was in good agreement with experiment. Volume, total energy and enthalpy 

/ time graphs were plotted and the radial distribution function of all the atoms 

in the model diesel were monitored to check equilibrium. Also the dihedral angle 

distributions of the solvent molecules in the diesel system was studied for six dihedral 

angles. All those properties allowed us to say that the simulations of the liquid model 

diesel built, had produces an equilibrated system. 

MD simulations of EVA, as a co-polymer of ethylene vinyl acetate with the 

TraPPE force field were carried out starting from an extended conformation. During 

the simulation the polymer chain curled up and remained stable in a coil configu­

ration at the end of the simulation, as expected from entropic considerations. The 

radius of gyration, the radius of gyration squared and its components in the x, y, z 

directions, were plotted against time. The mean values of Rg in the gas phase was 

found to be 86.14 A. 
After unperiodically boxing the liquid model diesel, it was merged with the 

EVA polymer, starting with the final configuration of the equilibrated system. This 

simulations was made to understand if the diesel can be considered as a good or bad 

solvent for EVA. The mean radius of gyration when it was immersed in the diesel 

92 



was found to be of 127.55 A, showing an increase compared to EVA in gas phase. 

We can conclude that diesel can be considered a good solvent for EVA. 

To model the n-alkanes crystals, an orthorhombic structure with Pbcm space 

group for C23H48 ( tricosane) was built with a Cerius2 molecular modeling program. 

MD simulations of the diesel plus C23 crystal were carried out leading to a crystal 

system completely incorporated inside of the diesel. 

Different simulations of the three components systems of diesel plus crystal plus 

EVA were performed at 298 K. Here the edge of the crystal was found to melt into 

the surrounded liquid diesel leaving the centre of the crystal crystalline. 
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Appendix A): Courses attended 

• INTRODUCTION OF FORTRAN 90 by Prof. J. M. Hutson, Chemistry Depart­

ment, Durham University. Test taken on 12th December 2005, Mark: 70/100 

• NUMERICAL METHODS by Dr M. Wilson, Chemistry Department, Durham 

University. Test taken twice and passed with mark: 77/100. 

• MANAGING YOUR RESEARCH PROJECT I. INTRODUCTION- 4 Nov 2005. 

• THE KEY SKILLS AWARD FOR POSTGRADUATE RESEARCH STUDENTS I. 

INTRODUCTION - 11 NOV 2005. 

• MANAGING YOUR RESEARCH PROJECT II. EFFECTIVE COMMUNICATION-

14 Nov 2005. 

• MANAGING YOUR RESEARCH PROJECT III. PROJECT MANAGEMENT Es­

SENTIALS- 1 DEC 2005. 

• MANAGING YOUR RESEARCH PROJECT IV. TIME MANAGEMENT- 10 FEB 

2006. 

• GIVING YOUR FIRST PRESENTATION: ORAL PRESENTATION SKILLS- 18 MAY 

2006. 
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Appendix B): Seminars attended 

• Wednesday 2nd November: PROFESSOR JoN A. PREECE, Nanoscale Chem­

istry Laboratory, School of Chemistry, University of Birmingham. "Chemical 

N anoengineering". 

• Wednesday 16th November: PROFESSOR IAN WILLIAMS, Department of Chem­

istry, University of Bath. "How do calculated kinetic isotope effects relate to 

transition state structure?". 

• Wednesday 7th December: PROFESSOR JOHN SUTHERLAND, School of Chem­

istry, The University of Manchester. "Exploratory Studies to Investigate a 

Linked Prebiotic Origin of RNA and Coded Peptides". 

• Wednesday 11th January: PROFESSOR A. VLCEK, Department of Chemistry 

at Queen Mary, University of London. "Ultrafast Excited-State Processes of 

d6-Metal Carbonyl-Diimine Complexes: From Excitation to Photochemistry". 

• Wednesday 8th February PROFESSOR HOWARD M. COLQUHOUN, School of 

Chemistry, University of Reading. "The Message in the Molecule: Probing 

Polymer Sequences with a Molecular Tweezer". 

• Wednesday 15th February: DR DAVID KLENERMAN, University Chemical 

Laboratories, University of Cambridge. "New biophysical tools to study biomolecules 

and living cells based on single molecule fluorescence and a scanned nanopipette." 

• Wednesday 1st March: PROFESSOR STEPHEN MANN, School of Chemistry, 

University of Bristol. " Beyond Nano- the Chemistry of Emergence". 

• Monday 15th May : DR. KIYOTAKA 0NITSUKA, The Institute of Scien­

tific and Industrial Research,Osaka University, Japan. "Precise synthesis and 

properties of organometallic dendrimers". 
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