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Abstract 

The time evolution operator of quantum field theory (Schrodinger functional) can 

be written in terms of particles moving on § 1/Z2 . By deriving the 'gluing property' 

which joins two propagators across fixed time surfaces, we show that the Feynman 

diagram expansion of the free Schrodinger functional is determined once we know 

the field propagator. 

We generalise the gluing property to a new method of sewing string field prop­

agators and construct the string field Schrodinger functional in terms of strings 

moving on § 1/Z2 . Timelike T-duality in string theory then appears as a large/small 

time symmetry of string field theory with an exchange of boundary states and string 

backgrounds. All of our arguments apply equally to the open and closed string. 

The addition of interactions to quantum field theory bring no complication to our 

arguments, but modifications are required when the interaction is non-local. As as 

application of these methods we construct the interacting string field vacuum wave 

functional using a knowledge of the vacuum expectation values it must generate. 
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Chapter 1 

Introduction 

String theory, like quantum mechanics, is discussed mostly in the formalism of first 

quantisation theory. The extended nature of the string makes calculations appear 

similar to those in field theory, since there are an infinite number of degrees of 

freedom representing the infinite number of possible vibrational modes of the string. 

Although the theory generates its own interactions as represented by the Polyakov 

sum over topologies, this series is perturbative. A string field theory is needed to give 

a non-perturbative description of strings and give us access to information hidden 

from perturbation theory. 

In this thesis we study the nature of time in string field theory. This second 

quantised theory sees spacetime as being built from curves, not points, which implies 

that our perceptions of time in particle theories may need to be altered. 

To understand the issues involved it may be beneficial to contrast the theory 

of particles. Most particle physics is done in second quantisation. Rather than 

quantise a finite number of degrees of freedom (the position xJ.t and momentum p11 

of a particle) we quantise an infinite number, namely ¢(x11 ), the field argument at 

position xJ.t. The field can be pictured as being much like the classical field of say, 

electromagnetism (in whichever way the reader chooses to visualise such things). 

It exists throughout spacetime and excitations of the field can appear locally as 

particles. The quantum field is not really the smooth field of classical theory, the 

uncertainty principle means that even the supposedly empty vacuum is in a state of 

constant flux, but as a mental picture the classical field should suffice. 

1 
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The field is not restricted to describing single particle states and so is the natural 

framework in which to investigate the multi-particle state processes such as pair 

production and annihilation observed in nature. 

The natural picture in which to investigate time evolution in quantum field 

theory is the Schrodinger representation. The field operator is diagonalised on the 

initial quantisation surface, the hyperplane at some fixed time, and arbitrary data is 

evolved through time from this surface by the action of the Schrodinger functional. 

What happens when we go to string theory? The string field exists throughout 

spacetime, but its arguments are not spacetime points but rather one dimensional 

spacetime curves1 . Excitations of the string field appear locally as strings. We wish 

to construct the Schrodinger functional for strings though it is not clear how to 

realise this using current approaches to string field theory. 

For example, in Witten's open string field theory the time variable is associated 

with the midpoint of the timelike extension of the string X 0 (7r/2), rather than 

being a global time for the whole string. It is unclear what this implies for our 

interpretation of time nor how a Schrodinger representation might be constructed. 

One possibility is to use the light-cone gauge but there are concerns in the literature 

over the usefulness of this theory in describing non-perturbative information (more 

on this later). 

Our aim is to construct the time evolution operator of (bosonic) string field 

theory. The vacuum state wave functional will feature heavily in our particle cal­

culations, so we will also construct the string field vacuum. Both time dependence 

and the nature of the string field vacuum are topics of current interest and we hope 

to be able to add to the literature on them. 

Due to the difficulties of working with known Lagrangian formalisms, in this 

thesis we find diagrammatic methods of examining second quantised string theory 

using properties of first quantisation. This approach is inspired by analogous results 

in field theory. 

The thesis is laid out as follows. We begin by reviewing the Schrodinger represen-

1 Unlike particle theories, it has long been known that outside of the light-cone gauge the string 

field must also be a functional of the reparametrisation ghosts of string theory. 
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tation of scalar quantum field theory (scalar fields will be our toy model throughout). 

In field theory the Schrodinger picture is regularly abandoned in favour of Fock space 

realisations based on creation and annihilation operators. In quantum mechanics it 

is more familiar and closely related to the conceptual interpretation of the theory, 

so we review this material before we describe the field theory representation to help 

solidify ideas. 

The remainder of this chapter is given over to a review of the functional approach 

to string theory and then string field theory. We summarise the differences between 

the functional and canonical quantisation of the string, describe how to compute 

the functional integrals, how the dimension of spacetime arises, gauge fixing and the 

calculation of on-shell scattering amplitudes. We then describe the need for a string 

field theory, open problems, and two of the most successful approaches, namely the 

light-cone gauge and Witten's cubic theory. 

In Chapter 2 we define the Schrodinger functional and vacuum functional in 

scalar field theory, their sum over field histories descriptions as given by Symanzik 

and their Feynman diagram expansion. We show that these functionals can be 

expressed in terms of particles moving on JRD times a discrete symmetrisation of 

the time direction using the sum over paths representation of the field propagator. 

Since the sum over paths has a natural generalisation to the Polyakov integral for 

strings, it is suggested that we can construct the string field Schrodinger functional 

from first quantised strings by analogy. 

To realise this we derive the 'gluing property'. This is a property of the free space 

scalar field propagator fundamental to second quantisation, but derived in first quan­

tisation. It is a method of gluing together reparametrisation invariant propagators 

and diagrams, including their moduli spaces, appropriate to the Schrodinger repre­

sentation. Using this property we show that time dependence as defined through the 

action of the Schrodinger functional can be described graphically; the Schrodinger 

functional is characterised solely by the gluing property and its Feynman diagram 

expansion. 

Our conclusion is that once we have the free field two-point function (the free 

propagator) the Schrodinger functional and vacuum wave functional are determined, 
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provided that the gluing properties hold. The string field propagator is well known, 

as we review at the beginning of Chapter 3. We then prove that the gluing property 

holds as a method of sewing worldsheets by using a particular BRST constraint to 

quantise string theory. This approach is unconventional, so we verify our gluing rules 

using the cancellation of the Weyl anomaly. The Schrodinger functional and vacuum 

wave functional for both open and closed free bosonic strings are then described. 

In Chapter 4 we introduce interactions into our theories. We calculate a three 

field correlation function in q} theory using our graphical arguments to describe how 

the Schrodinger representation relates to standard covariant results. The interaction 

vertex in string field theory is cubic but non-local. When we try to extend our 

methods to non-locally interacting quantum field theories the functional descriptions 

fail, for reasons we explain. We describe an alternative method of constructing the 

functionals which applies to both local and non-locally interacting field theories. We 

close the chapter by using these methods to describe the vacuum wave functional 

of interacting string field theories. Our calculation does not require the choice of a 

specific interaction vertex and again applies to both open and closed strings. 

In Chapter 5 we describe the Schrodinger functional in the field momentum 

representation. In this representation the functional is built from particles moving 

on an orbifolded time direction. Naturally this leads to T-duality in the string field 

Schrodinger functional. We show that timelike T -duality of string theory becomes 

a large/ small time duality of string field theory, where evolution through time t is 

exchanged with evolution through time 1/t and with an interchange of string fields 

and backgrounds. Finally we give our conclusions. 

The appendices contain some proofs of gluing properties for string field theory 

and extensions of some quantum field theory results to anti de Sitter spacetimes. 

1.1 The Schrodinger representation of quantum 

mechanics 

Non-relativistic quantum mechanics is invariably described in the Schrodinger rep­

resentation, since it makes contact with physical observables. We summarise this 
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here as an aid to understanding the analogous, but less familiar, representation of 

quantum field theory. 

The particle of mass m moving in D space dimensions with a potential V(x) has 

action 

J mx2 

S[x] = dt -
2
-- V(x), 

where tis time and a dot is a derivative with respect to time. We define the conjugate 

momentum 
_ 8L ·i 

Pi=~=mx, 
uxt 

and to quantise promote x and p to operators obeying the equal time canonical 

commutation relations 

Quantum states J 'l/J ) are represented as wave functions by picking a basis for the 

state space. In the Schrodinger representation we take the basis to be the set of 

position eigenstates ( x I such that 

i.e. we diagonalise the position operator at some given time. State wave functions 

are then '1/J(x, t) = (xI '1/J). The basis has the properties 

J dDx I x)(x I 

(X I y) 

1, 

The dependence of the states on x can be made explicit by writing 

(X J = ( D Jeip.x/li 

where ( D J is the state annihilated by :X, i.e. the state x = 0. The momentum 

operator, therefore, acts as a derivative on wave functionals, 

( x !Pi= -in !la. ( x J. 
uxt 

The time dependence of the state is given by the Schrodinger equation, 
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which, using the definition of the momentum operator above, can be written as the 

differential equation 

a ( n,2 a2 ) 
ifi at '1/J(x, t) = -

2
m ax2 + V(x) '1/J(x, t). 

The probabilistic interpretation of the wavefunction is that 

is the probability of measuring the position of the particle in state 'lj; and finding it 

in the volume dDx. This gives the wavefunction normalisation condition 

1.2 The Schrodinger representation of quantum 

field theory 

In quantum field theory the common approach to canonical quantisation is to use 

the Heisenberg representation where the operators are time dependent and states 

are time independent. The field operator is expanded in Fourier modes, and a Fock 

space is built on which these modes act as creators and annihilators of particles. 

We will instead work in the Schrodinger picture where the states are time de­

pendent and operators are time independent. This is summarised below and the 

description is parallel to that of the Schrodinger picture of quantum mechanics. 

Note that the Schrodinger representation of field theory is not manifestly Lorentz 

covariant, since we have singled out time as a special direction2 . This is one of 

the reasons why, historically, the Schrodinger representation was the less favoured 

approach. Symmetries were essential in the development of, for example, renormal­

isation theory, and comparison with experiment is most suited to the Fock space 

approach. We will see in the next chapter that, by the same token, the Schrodinger 

representation is ideally suited to studying time evolution. 

2 For the previous case this was not an issue since there was no Lorentz symmetry to maintain. 
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A scalar field in D + 1 dimensional Minkowski spacetime, signature ( +, -, - ... ) , 
has action 

where V contains mass and interaction terms. To quantise, the field cjJ and its 

conjugate momentum 1r, 

a.c . 
7r -. = c/J, 

oc/J 

are promoted to operators obeying the equal time commutation relation 

[~(x, t), ?f(y, t)] = iho (x- y). 

The canonical commutation algebra is represented by diagonalising the field operator 

on the quantisation surface t = 0. That is, a basis for the state space is given by 

with the properties 

( c/J l~(x, 0) = c/J(x)( c/J I 

I 'DcjJ I cjJ ) ( cjJ I 
(¢1¢) 

1, 

o[c/J- ¢]. 

Using the canonical commutation relations the dependence on the field of these 

states is made explicit by writing 

where the Dirichlet state ( D I is annihilated by ~(x, 0). The momentum operator 

acts as a functional derivative, 

A quantum state I \ll ) is represented by a functional of the field and depends explic­

itly on the time, 

( c/J I w) = w [c/J(x), t], 

the dependence on which is governed by the Schrodinger equation, 
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This can be written as the functional differential equation 

The probabilistic interpretation is that the probability of a measurement of the 

system in the state W will find the field within the set of configurations defined by 

'D¢> is 

which again gives a normalisation condition, 

1.3 Canonical string theory 

The first quantised string action is the generalisation of the relativistic particle 

action to a one dimensional object. The particle of mass m has action equal to the 

mass multiplied by the length of the particle worldline, 

Spart = m Ids= mId~ V i;JL(~)xJL(~), 

where~ is a parameter along the worldline. The Feynman prescription for calculating 

a quantum transition amplitude is to sum over all possible paths the particle can 

take weighted with the exponential of i times the action. The difficulties of using 

this action are two-fold. First there is an enormous over counting of equivalent 

spacetime paths due to the reparametrisation invariance of the action (xJL(~) and 

x1L(f(0) are the same path), and secondly no-one knows how to do such integrals 

containing exponentials of square roots. 

The solution to these problems is to introduce a metric g on the worldline and 

use instead the action [2] 

(which is also suitable for m = 0 particles). The equations of motion of the metric 

are i;2 -m2g = 0, and substituting this back into S9 recovers the original action Spart, 
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so these actions are classically equivalent. Under a reparametrisation, ~ --t e(~) the 

metric g transforms as a (0,2) tensor, 

(de) 2 

g(~) = d~ g(e) 

and the action 59 is easily verified to be reparametrisation invariant. We now exploit 

this reparametrisation invariance and gauge fix the metric g to something useful, 

for example g = 1/m2 . This gives us an action quadratic in xi-L, which is much more 

workable, and gives a familiar expression for the canonical momenta, PJ-L = mxw 

The equations of motion of the particle are now j;J-1. = 0 so the particles move along 

straight lines, the geodesics of fiat space. 

However, when working with the gauge fixed action we must remember to impose 

the constraint coming from the equations of motion of g. In our gauge this is 

±2 - 1 = 0, which, using the definition of pJ-L, is the familiar mass-shell condition 

p2 = m2. 

Canonical quantisation of the bosonic string is the repetition of these arguments 

for a one dimensional object. The value of the particle action is given by the length 

of the spacetime path a particle takes, so for a string we expect the Nambu-Goto 

action [3], [4], [5] 

(1.1) 

equal to the area of the spacetime region swept out by the string as it propagates. 

2m:i is the inverse string tension, aa = ( r, a) is a two component vector parameter­

ising a two dimensional worldsheet and the determinant is that of the two by two 

matrix of partial derivatives Oa 8/8aa. XJ.L(a) are a set of D + 1 spacetime curves 

giving the location of the string in D + 1 dimensional spacetime. 

Again, this action is difficult to work with because of the square root, so we 

introduce a metric gab(a) on the worldsheet giving us the Polyakov action [6], [2] 

(1.2) 

Integrating out gab returns the Nambu-Goto action. The Polyakov action is invariant 

under reparametrisations and also, uniquely because we have a two dimensional 

worldsheet, under a Weyl scaling of the metric gab --t ep(u) gab (which leaves XJ-L 
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invariant). This is called a conformal symmetry since it changes distance but not 

angles. p is called the Liouville mode. 

We can now gauge fix the metric as we did for the particle, but the details 

depend very much on the topology of the worldsheet. The string may be open or 

closed. For a free open (closed) string the parameter domain of a a is unrestricted, 

so the worldsheet has the topology of a disk (sphere). It is a theorem of Gauss 

that on the disk (sphere) any metric can be transformed to any other using only a 

reparametrisation and a Weyl scaling. Therefore we can choose co-ordinates (gauge 

fix) such that 

(1.3) 

which removes the metric degrees of freedom from the action. This is called the con­

formal gauge choice. Though we will lose manifest reparametrisation invariance this 

approach is explicitly Weyl invariant, provided we do not reintroduce the metric3 . 

The gauge fixed action is 

(1.4) 

and the equations of motion for XJ-t are 

(1.5) 

with Neumann boundary conditions for the open string and periodic conditions 

on the closed string. As before we must remember to impose the 'missing' Euler­

Lagrange constraint, 

1 os I Tab(X) ---b = 0 
..j9 0 ga yggab=l)ab 

(1.6) 

which is Fourier expanded to give the set of Virasoro constraints imposing the phys-

ical state conditions. Using this and the equations of motion, the string spectrum 

is easily determined. The string, and therefore the Virasoro constraints, can be 

expanded in Fourier modes which are promoted to creation/ annihilation operators 

at quantisation. A state is described by a collection of the creation modes acting 

on a Fock vacuum. The physical state conditions impose restrictions on the allowed 

3 As may be required by renormalisation, for example. 
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combinations of those modes. For example, the lowest mass open string state is the 

famous tachyon, which has no oscillation modes excited but carries a momentum. 

The Virasoro constraints imply that the mass squared of this state is negative. 

However, upon closer inspection it is found that the theory suffers from the 

presence of negative norm states, which give us nonsensical negative probabilities 

for physical processes. The Virasoro constraints are sufficient to eliminate these 

states provided that the dimension of spacetime is D + 1 = 26. 

Interactions occur when strings split or join. Scattering amplitudes are organised 

by worldsheet topology, which is the analogue of the loop expansion in quantum 

field theory. One difficulty of working in the canonical approach is that to calculate 

terms of order higher than tree level, one must begin with the operator formalism 

appropriate to topologies other than the disk and once again ensure that ghosts do 

not contribute to the loops, both of which are challenging. The functional approach 

of Polyakov is much better suited to this task, as we now describe. 

1.4 Functional string theory 

Polyakov's approach was to make explicit the reparametrisation invariance of all 

calculations at the expense of losing explicit Weyl invariance. This is the opposite 

of the canonical approach, where we gauge fixed from the outset. The starting point 

is the functional integral 

2: ,e-x J TI(X, g)NW1 ... WneiS[g,XJ. 
X 

(1.7) 

N is a normalisation constant, 

1 
N = Vol(DiffxWeyl)' 

(1.8) 

to regulate the over-counting of equivalent worldsheets. The Wi are insertions we 

will return to when we discuss scattering. ,B is the string coupling constant and x is 
the Euler characteristic of the manifold, so the sum represents a genus expansion. 

To properly define the integrals we must define measures on the spaces of XJ.t and 

9ab, maintaining reparametrisation invariance. 
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We begin with the XJ.L integrals. To understand the origin of the measure, 

consider for a moment a finite dimensional integral over a volume of 3-dimensional 

space. An infinitesimal change in volume can be written as the scalar triple product 

bv = <51x.<52x 1\ <53x in terms of small displacements <Six (this is the volume of the 

parallelepiped of sides <Six). This can be written as the determinant of a matrix, 

which implies, squaring the volume element and taking the determinant of the mul­

tiplied matrices, rather than the product of the determinants, 

which is written in terms of the inner product ( , ) . We note that this formula can 

be applied to arbitrary dimensional space and, in passing, explains the form of the 

Nambu-Goto action (1.1). The trick is now to choose the variations to be defined 

as variations of the co-ordinates aj in a basis of vectors ej, so that 

which gives us 

bv =IT bak Jdet(ei, ej). 
k 

In the limit we replace '<5' with 'd' and this defines the volume measure in terms 

of the inner product ( , ). This is generalisable to infinite dimensional spaces. In 

the Polyakov integral we wish to integrate over the volume of the space of functions 

XJ.L (satisfying certain boundary conditions). We find a suitable basis of functions 

en(ac), such that we can write 

n 

and then a basis of variations of XJ.L is given by 

for each J.L, for each n, in terms of variations of the coefficients <Sa~. Following the 

same arguments as above the measure on this space is 

'DX =IT da~JDet (er(a), e8 (a)). 
n,J.L 
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With this basis the string action becomes a function of the a~ and we now have an 

infinite product of ordinary Riemann integrals over the coefficients a~. To complete 

the definition of the measure we need to identify the inner product and hence the 

determinant. The inner product 

(1.9) 

is reparametrisation invariant since the XJ.t are worldsheet scalars, but is not Weyl 

invariant so nor will be the measure. Using integration by parts we can write the 

Polyakov action as 

(1.10) 

up to classical pieces, where ~ is the worldsheet scalar Laplacian, 

(1.11) 

We choose the en to be a basis of eigenvectors of the Laplacian. Since~ is Hermitian 

with respect to the inner product we have defined we can choose its eigenfunctions 

to be orthonormal - the determinant in the measure becomes unity in this case 

and we are left with an infinite number of readily computable Gaussian integrals. 

When we perform these integrals we obtain the determinant (the infinite product of 

eigenvalues) of the operator~' to the power minus one half. 

However, this determinant is not Weyl invariant. Although this was classically a 

symmetry of the action, it is broken when we perform the functional integral - i.e. 

when we quantise the theory. This is the Weyl anomaly. This is not quite the whole 

story. Not only must we regulate the determinant, we have an integral over 9ab to 

perform and it is possible that this will cancel the dependence on the Liouville mode 

(this is of course precisely what will happen if D + 1 = 26, as we will see). 

The only complication to the XJ.t integral is when the manifold and boundary 

conditions permit ~ to have a zero mode e0 (a), which must be a constant. The 

integral over XJ.t then contains an integral over the coefficient of this zero mode which 

diverges. It contains information which must be separated from the divergence. The 

normalisation condition gives the value of the zero mode 
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Now call the centroid of the string xiL (the 'centre of mass' of the worldsheet), 

IL - 1 I 2 r;; IL - 1 (XIL ) - 1 IL x = Jd2 In d a v g X - Jd2 In ' 1 - 1/2 ao . 
ayg ayg (Jd2ayg) 

The divergent integral can therefore be written in terms of an integral over the 

centroid 

I (I )(D+l)/2 I 
da~ = d2ay'g dxiL. 

The final term is simply the volume of space, which we factor out. The final result 

of the X integrations is 

( 
J d2a V9) (D+l)/2 

Det'~ 
(1.12) 

possibly multiplied by the exponential of any classical piece. The numerator in the 

above appears only if we have a zero mode. 

The integral over the metric follows similar lines. For the free string, an arbitrary 

variation of the metric can be written in terms of infinitesimal Weyl scalings Jp and 

reparametrisation M;,a as 

(1.13) 

There are in general additional parameters describing the metric (moduli) but we 

will return to these later. We need a reparametrisation invariant inner product on 

such variations. There are two possible choices, 

(1.14) 

Once again, neither of these are Weyl invariant. Also, the two types of variation 

of the metric are not orthogonal with respect to either inner product (there are 

reparametrisations which appear as Weyl scalings of the metric) so we cannot pro­

ceed to define the measure as we did for the integral over X. We are looking for a 

functional determinant for this definition, and a determinant is unaffected by row 

and column operations on its matrix. In the infinite dimensional case, this tells us 

we can shift the piece of V' (aJeb) which generates Weyl scalings into a redefinition of 

the Liouville mode Jp. We write a variation of the metric as 

6gab = Jp 9ab + P(Je)ab (1.15) 
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where P maps vectors into traceless, symmetric covariant tensors, 

(1.16) 

The two types of variation are now orthogonal, as we see if we insert this represen-

tation for og into (1.14), 

(o1g, 02g) = (2A + 4B) J d2o-y/g 01P02P +A J d2o-y/g oiP(oi~)ar9abgrs P(o2~hs· 

After an integration by parts the second term becomes 

A j d2a-y/g 9abole(PtP(o2~))b, 

where pt(brs)a = -2\hbab. We can now define part of the measure. Expanding the 

reparametrisation in a basis of eigenfunctions of pt P, 

~a= LbNU~(o-) 
N 

defines the functional measure over reparametrisations 

j 1Jg = j 'Dp IT dbNJDet (UN, ptpuM). 
N 

We have been deliberately obscure about the nature of 1Jp for reasons which will 

become apparent. Note that there will be in general be a finite number of 'conformal 

killing vectors', which are annihilated4 by P. The conformal killing vectors corre­

spond to reparametrisations which are actually Weyl scalings of the metric, which 

make our functional measure vanish. 

To overcome this we define a reparametrisation to be expanded in only the non­

zero eigenvectors of pt P, so that the integral over the metric becomes 

J 1JgVol(Di;xWeyl) = J 1JpiJ'dbNJDet'(UN, ptpUM)Vol(Di;xWeyl)' 
N 

The prime indicates the exclusion of zero modes. Since we have taken care to make 

everything reparametrisation invariant, the integrand cannot depend on the choice 

of UN or bN, the integral over which cancels the volume of the diffeomorphism group, 

!IT, Vol(Diff) 
dbN = Vol(CKV). 

N 

(1.17) 

4There is a distinction between proper conformal killing vectors and those vectors annihilated 

by V' a, but this is somewhat technical and will not affect our results. For a discussion see [7]. 
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This contains the volume of the group of conformal killing vectors since we excluded 

those vectors from our measure. We are left with only the integral over p to perform, 

I 
1 I JDet 1(PtP) 1 

'DgVol(DiffxWeyl) = 'Dp Vol(CKV) Vol(Weyl). 

Following the classical theory we would hope that the integrand would be in­

dependent of the Liouville field, so that the remaining integral factor would cancel 

the volume of the group of Weyl transformations (much as with the o~a integral). 

However, as we have already pointed out the determinants do not appear to be 

Weyl invariant. To determine this dependence they must first be regulated, in a 

reparametrisation invariant manner. 

To do this we generalise the finite dimensional result for N x N matrices A, 
00 

logdetA = Tr log A => ologdetA = Tr(oAA- 1
) =Ids Tr (oAe-sA), (1.18) 

0 

which holds provided that the eigenvalues of the matrix are strictly positive. Under 

a Weyl scaling, the operators of interest to us transform as [8] 

oil= -opll, 

oPt= -2Ptop, 

oP =Pop. 

The product of non-zero eigenvalues of these operators, denoted by a prime, are 

therefore 
00 

0 log Det 1 ll = -Ids Tr( 0plle-st.), 

00 

o log Det 1 pt P =Ids Tr[ ( -2PtopP + pt Pop)e-sptp J 

00 

= ldsTr[(-2opPPte-sPPt +OpPtP)e-sptp]. 

We have used the cyclicity of the trace in the expression for Det 1 pt P, and in each 

case we have introduced a small positive parameter t. This regulates the expression, 

since otherwise the lower end of the integration limit gives us 

(1.19) 
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Performing the integrals gives, in the limit E ----+ 0, 

c5logDet'~ = Tr(c5pe-f~), 

c5logDet'ptp = -2Tr[6pPPte-fppt] +Tr[Jpptpe-fptp]. 

It is straightforward to see that, introducing the heat kernel K for the Laplacian, 

(1.20) 
n 

and such that ~en = Anen, we can write the regulated Laplacian determinant as 

J log Det ~ = -I d2avg Jp(a)K(a, a; E). (1.21) 

if there is no zero mode, and as 

J log Det '~ = -I d2avg Jp(a) L 1 e~(a)e--\nfeJ.tn(a'), 
n 

= (eo, Jpeo) -I d2avg Jp(a)K(a, a; E) 

= J log I d2avg- I d2avg Jp(a)K(a, a; E) 
(1.22) 

( 
Det'~) I J log J d2ay'g =- d2o-vg Jp(a)K(o-, a; E) 

if there is, obtaining a regulated expression for the contribution in (1.12). The heat 

kernel obeys the relations 

a 
~K= --K 

OE ' 
. JC2)(a- a') 

hmK = r;:; , 
f~O y9 

(1.23) 

which are independent of parameterisation, so our regulated determinants will be 

reparametrisation invariant, as we wished. Defining heat kernels for pt P and P pt 

allows us to regulate the metric contributions in a similar way. 

The actual regularisation procedure, finding the small E behaviour of the kernel 

to identify the divergence and finding the cut-off independent part to identify the 

regulated determinant, is well documented (see for example [9]). We will not go into 

the details here, since some examples of such calculations will feature in Chapter 3, 

but merely quote the result that 

[ 
v'Det 'pt P ( Det '~ ) -(D+l)/

2
] I 

J log Vol(CKV) f d2o- y'g = (D- 25) d2avg R6p(o-) (1.24) 
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where n is the worldsheet Ricci scalar. It appears that we must now perform 

the integral over p, since the regulated integrals we have performed are not Weyl 

invariant. This poses a problem however, since the measure 'D p is given by 

(op, op) = J d2afg (op) 2 

which in the conformal gauge, for example, is 

(op, Op) = J d2a eP(op?. 

No one understands how to interpret this measure, and so we cannot perform the 

final integral. It is not of a kind encountered in any quantum field theory. How­

ever, from (1.24) we see that if we are in D + 1 = 26 spacetime dimensions the 

Weyl dependence disappears, and whatever the measure on p the integral can only 

contribute and cancel the volume of the group of Weyl scalings. 

Canonically, the critical dimension is that in which the Virasoro (physical state) 

conditions are sufficient to remove the unphysical negative norm states from the 

state space. In the functional approach, it is the dimension in which the metric 

contribution to the Weyl anomaly cancels that from the co-ordinates and allows 

us to complete the quantisation. Loop calculations are simpler in the functional 

approach since the metric integral automatically removes the negative norm state 

contributions. 

Now that we know that when D + 1 = 26 the functional integral has no Weyl 

dependence, we will usually regulate our determinants without worrying about the 

Weyl anomaly, using the zeta function regularisation technique. 

To see how the mass spectrum arises in the functional approach it is necessary 

to study scattering amplitudes. The spectrum comprises those states which do not 

re-introduce the Weyl anomaly. Closed strings interact by splitting or joining at an 

interior point. Open strings interact by splitting at an interior point or joining at 

their endpoints. For example, 

+ + + ... 
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is the start of the sum over worldsheets for the four point function. The scattering 

amplitude for such processes is (1. 7) on the appropriate worldsheets with the Wi 

representing the interactions, as we will discuss. What makes computing these 

integrals feasible is the ability, only in the critical dimension, to deform the manifold 

into something simple. By a suitable choice of the Liouville mode we can deform one 

worldsheet into another. This is what accounts for the Veneziano amplitude property 

in string theory [10], namely that t-channel and s-channel scattering amplitudes are 

dual. 

When the initial states come in from the infinite past and scatter to the infinite 

future, the Liouville mode can be chosen so that not only is the worldsheet deformed 

to a compact manifold, but the asymptotic strings are shrunk to punctures on 

this manifold's surface. At tree level the N-point tree level open string scattering 

amplitude is calculated by working on a disc with N punctures on its boundary. 

The tree level closed string amplitude is a two sphere with N punctures. 

The states at the punctures are represented by local operators on the worldsheet, 

called vertex operators. These are the operators which excite a mode of the string. 

An open string can emit a closed string from any point on its worldsheet, and an 

open string from any point on the boundary of the worldsheet. The corresponding 

vertex operators are therefore integrated over the relevant parts of the worldsheet. 

These integrals must be made reparametrisation invariant. Examples are the open 

string tachyon vertex 

j ds eik.x. 

boundary 

and the open string photon vertex, 

J do-a V(k)Jl8aXJl eik.X. 

boundary 

The former of these is not Weyl invariant, even as a classical expression, while 

the latter is. Terms outside the exponential can be represented as derivatives with 

respect to sources added to the string action. When we compute the Gaussian inte­

gral divergences arise because the classical part of the action contains the worldsheet 

Green's function which diverges at co-incident points. The regulation of these terms 
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introduces a dependence on the Weyl anomaly, which only goes out if the vertex 

operator insertions obey the mass-shall conditions which are found in the canonical 

approach from the Virasoro constraints. In short, "the vertex operator plays the 

roll of an on-mass-shell interaction vertex" [10]. 

At tree level and one loop level, the symmetries of the string action allow us 

to deform any diagram into a state where each interaction vertex is coupled to an 

external line, 

At two loops and beyond there will remain at least one vertex attached to three 

internal lines, which requires a description of off-shell strings. 

Using the functional approach described forces us to deal with reparametrisation 

invariant string functionals to represent states. This is in general quite complex, and 

the Weyl anomaly can spoil our intuition of which states should be reparametrisation 

invariant5 . 

Instead, the BRST quantisation techniques of Yang Mills theory can be gen­

eralised to string theory, where reparametrisation invariance is replaced by BRST 

invariance, which we now review. This will also afford us a good opportunity to 

introduce the complications of working on manifolds with more structure than the 

disk. 

As mentioned earlier, string functional integrals are given by a sum over surfaces 

of increasing genus. In the critical dimension the integral is invariant under the 

gauge symmetries of reparametrisations and Weyl scalings. In general, however, 

5For example, we shall explain in Chapter 5 how the Weyl anomaly is related to the puzzle of 

why only closed, and not open, strings appear to be independent of their parameterisation when 

they are contracted to points. 
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there exist deformations of the metric obeying gab09ab = va9ab = 0, orthogonal 

to reparametrisations and Weyl scalings6 . For each solution there is a Teichmiiller 

parameter, or moduli, which parameterises the transformation. 

Consider the Faddeev-Popov approach to gauge fixing the functional integral over 

worldsheets with moduli. We may fix the gauge so that 9ab is some reference metric, 

?Jab, but this metric must depend on a set of moduli, call them lA, so ?Jab = ?Jab(lA)· 

The number of moduli (the dimension of moduli space) depends on the properties 

of the worldsheet. For example, on a closed Riemann surface with h > 1 handles 

there are 6- 6h moduli. We will make the Weyl invariant gauge choice .j9 gab = 

vg gab(lA) for some reference metric g(lA)· Ultimately, all string amplitudes should 

be independent of this choice. 

An arbitrary variation of the metric can now be written 

09ab = op 9ab + '\l(aO~b) +LolA 9ab,A, 
A 

===} o( Jggab) = -JgP(o~)ab + L ...;g olA xc:f 
A 

(1.25) 

9ab,A is shorthand for 8gab/ alA and Xc:f is the traceless symmetric part of gab,k 

To fix the gauge we look for the Faddeev-Popov determinant which obeys 

(1.26) 

and the integral over g is over the moduli and the group of diffeomorphisms and 

Weyl scalings, 

(1.27) 
A 

for a reparametrisation invariant measure TI( on the cliff x Weyl group. Suppose 

that given 9ab the constraints have a solution ( = (~a, p) and {lA}· Expanding about 

this solution gives 

1 = j TI(op, oO j II dol A ~FP o [- Vfli>(o~)ab + 2::.: JgolAxc:f] 
A A 

(1.28) 

6There is an easily understood analogue for particle worldlines which is discussed in Section 

2.2. 
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using equation (1.25). Now represent the delta functional by an integral over a 

(symmetric, traceless) covariant tensor Aab, 

1 = J 'D(>., r5p, r5~) J IT dr5lA ~FP exp (i J d2avg AabP(r5~)ab- L r5lAAabXab). 
A A 

(1.29) 

The integral over the Liouville mode goes out if we are in the critical dimension. We 

can invert the remaining expression by replacing bosonic with Grassmann variables 

to find 

~FP(g) = J 'D(bab, ca, 0) exp (i J d2a/9 babP(c)ab- L OAbabXct). 
A 

(1.30) 

The fields 0 A, ca and bab are a set of A scalars, a vector and a traceless symmetric 

covariant tensor respectfully, all Grassmann valued. bab will be referred to as the 

anti-ghost, for reasons which will shortly be apparent. If we integrate over the scalar 

fields we obtain 

~Fp(g) = J 'D(bab, ca) IT (xct, bab) exp (i J d2a/9 babP(c)ab). 
A 

(1.31) 

Now we expand the anti-ghost into zero modes and an orthogonal piece, b = 

bA'IjJ A + bj_, where the bA are Grassmann valued and the 'ljJ A are the zero modes 

of f>t. The zero modes do not appear in the action (as they can be annihilated 

with integration by parts) but only in the leading product. Integrating out the zero 

modes leaves us with7 

(1.32) 

Now that we have identified the Faddeev Popov determinant, we insert the resolution 

of unity (1.26) into the functional integral for, say, the string partition function and 

obtain 

z = J'D(X ) 1 iS(X,g) 
- ' 9 Vol(DiffxWeyl) e 

-I'D( X) 1 ~ [ ]r5 [·In ab _ 0..Aab(l )] iS[X,g] 
- g, Vol(DiffxWeyl) FP 9 v 99 V 99 A e · 

(1.33) 

7This is easily verified by, for example, using the simplest case where there are two zero modes. 
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It is important to note that this applies to any functional we may choose, and we 

are only using the partition functional since it is the simplest example. Now, due 

to the invariance of the measures and the Faddeev Popov determinant under diff x 

Weyl transformations we can push the g integration through the determinant and 

integrate it out, 

z = J II dlADet (XA .!.8 ) J'D(X c bl..) eiS[X,g]+if v'YbabP(c)ab J 'D( 
A ''~-' ' ' Vol(DiffxWeyl)' 

(1.34) 

where the volume of the gauge group is explicitly cancelled, obtaining a well defined 

gauge fixed result. 

We will now relate this to BRST quantisation. We take a step back to equation 

(1.30), and use this instead in the resolution of unity inserted into the partition 

function. We again represent the delta functional as a bosonic integral over Aab, and 

examine the expression 

z = J II dlA J 'D(X, >., g, b, c, e)eiSpp' 

A 

where the Faddeev-Popov action is 

SFP = S[X, g] + J d2ay/g babP(c)ab + J d8 aAab( y/ggab- /YfJab(lA)) 

+LeA J d2
ababxc::. 

A 

Defining an anticommuting operator Q generating the transformations 

8QXJL = caoaXJL, 

~ a b5:1 a 
UQC = C UbC , 

the Faddeev-Popov action can be written 

(1.35) 

(1.36) 

(1.37) 

(1.38) 

(1.39) 

(1.40) 

(1.41) 

Up to the term in eA this action is precisely the BRST action we would write down 

if we wished to quantise the string action with a gauge fixing term forcing the metric 

to equal the reference metric. 
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The reference metric g is unaffected by the variation c5Q and the derivative 8A. 

These transformations represent a reparametrisation with respect to the ghost ca, 

and additional structure relating the anti-ghosts and constraints. The variation of 

ca is 'half' what one would expect for the transformation of a bosonic vector under 

a reparametrisation , and is required to maintain the nilpotency of the variation, 

.1:2 -0 UQ- . 

The presence of the moduli means that the gauge fixed action is not BRST 

invariant, c5QSFP = (}A8ASFP· In fact this spoils the interpretation of physical states 

as living in the cohomology of Q, see [11]. The symmetry is still useful- it encodes 

the reparametrisation invariance as BRST invariance which can still be used to 

quantise the theory. 

1.5 String field theory 

As we mentioned, string theory is analogous to quantum mechanics, in that it is 

first quantised. Even though the theory generates its own loop expansion in the 

sum over topologies, this is still a perturbation series. Consider the case of Yang­

Mills theory, where the perturbative expansion shows no sign of confinement. That 

string theory contains such non-perturbative information is certain, as illustrated 

by the web of old and new [12] string dualities. To get at such information we need 

a non-perturbative formulation of strings, a string field theory. 

Another example of why a string field theory is needed also illustrates the major 

problem with constructing such theories. Suppose that rather than the flat target 

spacetime of the Polyakov action given earlier we wish to include a spacetime metric 

Gp.v· The action we would use is an example of a non-linear sigma model, 

J d2ay'g 8aXJJ.gab8bXvGp.v(X). 

This metric is put in by hand, however, and the Euler Lagrange equations impose 

no restrictions on it - so where do Einstein's equations come from? As with the 

dimension of spacetime, requiring Weyl invariance at the quantum level imposes re­

strictions on G p.v which at leading order are Einstein's equations. The full constraint 

on Gp.v receives contributions from all orders in perturbation theory, and so is not 
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yet known. The constraint, and those for other fields we may include in the model 

such as the Dilaton, would be given us to as equations of motions by the string field 

theory. 

Herein lies the problem; we would look for a string field theory which reproduced 

the perturbation expansion of our conformal field theory. The string field would be 

a weighted sum over states of the conformal field theory, i.e. we require a conformal 

field theory before we can construct a string field theory. This is called the problem 

of background dependence. What we are doing in constructing such theories is 

expanding the true string field action around some classical solution and analyzing 

the resultant action for fluctuations (our string field) about this solution. As yet 

no-one knows what the true action is, nor if we might somehow reconstruct it from 

the string field actions we have. We do not attempt to tackle such problems here, 

we will work with string field theories which are based on the conformal background 

of the flat space Polyakov action. 

We briefly mention the problems of closed string field theory(see [13] and the 

references therein for a fuller discussion). The problem of constructing interacting 

closed string field theories was originally the definition of an interaction vertex which 

preserved reparametrisation invariance while leaving the action quantisable. If we 

were to attempt a Witten type construction, we would need to choose a point on the 

closed string to be the 'midpoint' for the local interaction to occur, but this would 

break manifest reparametrisation invariance. 

Once it was understood how the closed strings interacted the problem then be­

came that of showing that the Feynman rules of the string field theory correctly 

reproduced the diagrams of string theory- i.e. that the rules gave a decomposition 

of the space of all Riemann surfaces [14]. The theory is somewhat more complicated 

than the open string theories we will discuss, and are more geometrical in nature 

(that geometry should be so important can be regarded as natural since it is in the 

closed string spectrum that the graviton appears). The quantisation of closed string 

field theory seems to require the full weight of the Batalin-Vilkovisky formalism [15]. 

We will not elaborate on the details, since our methods will apply to both open and 

closed strings equally. 
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Let us turn to the details of some open string field theories. The string field 

is a functional ¢[X) of the string X1L(£T), independent of the co-ordinate £T used to 

parameterise the string. Suppose we had some Lagrangian density .C for the string 

field. To quantise we would identify the conjugate momentum 1r[X) and impose the 

canonical commutation relations [¢, 1r) = io at equal time. There is a problem with 

this since the string field is defined not on spacetime points but on spacetime curves. 

The conjugate momentum is defined as 

1r[X,£T) = o.Cjo(8¢[X]/8X0 (£T)) (1.42) 

since X 0 is time - but at what value of £T do we take the time derivative? There are 

an infinite number of choices. Not only does this make the conjugate momentum 

badly defined but brings in an explicit dependence on the parameterisation of the 

string. In short, there is no well defined time for the string field, so we cannot 

canonically quantise the theory. 

One way out of this problem is to give up manifest Lorentz covariance. In fixing 

the conformal gauge in string theory there is actually a residual gauge symmetry. If 

we choose a Weyl scaling p and a reparametrisation ~a such that 

then the conformal gauge is preserved. The light-cone gauge uses up this residual 

symmetry to identify a unique time for the string. On the worldsheet the residual 

symmetry corresponds to changes in the co-ordinates £T+ --t a-+ ( £T+), £T- --t a-- ( £T-) 

where £T± = £T ± T. This implies that we can perform a gauge transformation which 

makes f a solution of the free wave equation, and means we can gauge fix so that 

worldsheet T is equal to one of the co-ordinates of the string. 

In the light-cone quantisation we define 

(1.43) 

and identify x+ = T as the physical time. The remaining degrees of freedom are the 

24 transverse co-ordinates X, while x- is determined by the Virasoro constraints 

up to its centre of mass piece. Taking T as the physical time direction allows us to 



1.5. String field theory 27 

define an unambiguous momentum, 

rr[X] = o.C/ 0 ( 8¢[X]/ OT). (1.44) 

It is customary to work in a mixed co-ordinate/ momentum representation in which 

we exchange the centre of mass of x- with its Fourier momentum P+, denoting such 

a string field ¢P+[X, T]. 

The light-cone gauge also helps us construct the string field Lagrangian by high­

lighting some of the properties it should have. For example, since we have identified 

worldsheet time with physical time we would expect the generator of first quantised 

time evolution to generate time translations of the second quantised field also, 

(1.45) 

where L 0 is the normal ordered zeroth Virasoro generator and the factor of 2p+ is a 

convention. The free string field action which reproduces this is [16] 

(1.46) 

where h is the first quantised string Hamiltonian, 

7r 

1 J '( )2 o2 h = 2 da X a - oX( a )2. (1.47) 

0 

The conjugate momentum is i<f>t and canonical commutation relations are 

(1.48) 

To solve the equations of motion the transverse co-ordinates and therefore the 

Schrodinger equation can be expanded in Fourier modes, 

in which case the equation for each mode x~ is that of a harmonic oscillator of 

frequency n. The string field then has the mode expansion 

(1.49) 
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The product over nand i is the product over the separated Hermite solutions for each 

string mode Xn in dimension i. There is then a sum over all possible combinations of 

assigning excitation level values l to each of these solutions, representing the infinite 

number of independent solutions to the full equations of motion. 

Despite the complexity of the functions in the above this is in the form "sum over 

creation/ annihilation operators multiplied by wave functions" as found in quantum 

field theory. In first quantised string theory the creation operator o:t excited an 

oscillation of the string, here the operator At creates an entire string from the 

vacuum. 

It can be shown [16] that second quantised Poincare generators obeying the 

correct commutation relations and consistent with the light cone gauge choice can 

be constructed in the theory. This ensures that despite the non-covariant gauge 

choice Lorentz covariance is preserved and completes the quantisation of the free 

string field. 

The free propagator for the string field between times T2 and T1 can be calculated 

from the first quantised Polyakov integral on a strip of length T2 - T1 with delta 

functional sources at each end representing prescribed initial and final strings (we 

will return to this in the covariant theory in Chapter 3). 

This suggests that the interaction for the string field theory should represent the 

splitting and joining of such strips. The action which allows strings to interact by 

splitting or joining at an interior point is 

~ J dT J IT 'DXjdP+j0(P+3 - P+2 - P+i)c/>t3 [Xa, T]c/>1+2 [X2, T]c/>P+J [X1, T] 
]=l (1.50) 

X II o(Xl(ai)- X2(a2)e(al- 7f/2)- Xa(aa)B(7r/2- al)) + h.c. 

where 0 is the Heaviside function. The strings obey the parameterisation constraints 

a2 = 2al 0 < a1 < 1r /2, 

aa = 2al- 1r 7r/2 < a1 < 7f. 

The delta functional interaction conserves P+ and forces the arguments Xj to overlap 
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as shown below. 

This interaction is local in our chosen time, as illustrated. Although this appears to 

destroy the smoothness of string interactions, it is equivalent to inserting a Y-shaped 

worldsheet like that shown above between three string propagators and taking a limit 

as the thickness of this Y region vanishes. For open strings it is necessary to also 

introduce a quartic interaction, for details see [16]. In general locality in a single 

direction does not re-introduce the ultraviolet divergences of particle theory which 

strings are supposed to smooth away. 

The locality of string field theory in the light-cone gauge is viewed with some 

caution in the literature. It is unconvincing that gauge fixing alone could remove 

non-locality from the theory. It has been suggested [17] that this locality, and also 

the agreement of light-cone string field theory with on-shell string theory amplitudes 

is an artifact of perturbation theory only. There is no evidence that the light-cone 

string field theory contains any non-perturbative information. Lorentz invariance of 

the theory is also expected to only hold perturbatively. 

One of the most successful covariant approaches to string field theory was given 

by Witten [18]. He proposed the open string field action 

(1.51) 

The string field is <I>, Q is the open string BRST operator, f3 is the string coupling 

and* is an associative, graded product on the space of string fields. The integration 

maps from the space of string fields to the complex numbers, and g is the string 

coupling constant. The free field equations of motion are just 

Q<I> = 0, (1.52) 
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and there is a gauge invariance of the action under 

6<P = QA (1.53) 

for any string field A. This tells us that the free string field is BRST invariant and 

has a gauge symmetry under reparametrisations of the string. Thus the free string 

field reproduces the theory of the free string. The free string field, therefore, can be 

expanded as a sum over fields associated to open string Fock space states, 

(1.54) 

where f/>(p) is the tachyon field, AIL(p) is the gauge field, etc. The ghost and antighost 

states must also be included in this expansion. 

The star product combines a pair of string functionals by sewing the left half of 

one string to the right half of another (the open strings have parameter range [0, 1r]), 

<P * 8[Z(a)] =I IT 1>Y(a')1>X(1r- a') 
O~u1 -:£:.1f/2 

X IT 6[X(a")- Y(1r- a")]<P[X(a")]8[Y(a")] 
1rj2~u11 ~1r 

where Z(a) = X(a) for 0 :::; a :::; 1r /2 and Z(a) = Y(a) for 1r /2 :::; a :::; 1r. The 

interaction vertex joins three strings at their midpoints, most easily illustrated by 

It is possible to write the string field action explicitly as an infinite series. The free 

part is an infinite sum over the field theory actions for each field in the expansion 

above. The interaction term become a sum over interactions between this infinite 

set of fields. The first few terms of the action are 

~I d26 x 8¢(x) · 8¢(x) + ¢2(x) + 8A1L(x) · 8AIL(x) 

+~I d26x ( eaa
2

¢(x)) 
3 
+ ( eaa

2

1J(x)) ( eaa
2 

AIL(x)) ( eaa
2 

AIL(x)) 

(1.55) 
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where a= log(27 /16)/2 (for the origins of this number see Sections 6.4, 6.5 of [19]). 

These terms describe the tachyon with negative mass squared, the photon, with 

zero mass, and the cubic interactions between them. In terms of these component 

fields the interaction term implies that string field theory behaves very differently 

to any ordinary quantum field theory. There appear to be an infinite number of 

non-renormalisable interactions, which somehow combine into the reasonable inter­

pretation of strings joining as described above. It is possible to show that Witten's 

theory correctly reproduces all open string amplitudes, including the measures on 

moduli space [20), [21), [22]. 

We now turn to quantising the theory. In the free theory the centre of mass of 

X 0 is taken as time and can be used to quantise without complication [23), since 

the free action looks like ci>p5ci>. 

When we introduce the interaction vertex we run into problems, since the in­

teraction ties together three strings at their midpoint, which in general differs from 

the centre of mass position. The interaction is non-local in our chosen time, and 

the interaction vertex contains infinite orders of time derivatives, which prevents us 

quantising canonically (see [17] for problems with higher derivative theories) 

It is logical to instead treat the midpoint of the string as the time co-ordinate. 

The interaction vertex is local with respect to X 0 ( 1r /2) and it appears our problems 

are solved. Unfortunately, when we write the free piece of the action in terms of the 

midpoint and the remaining modes, the canonical momentum picks up a divergence 

proportional to the one dimensional delta function <5(0). To proceed, the divergence 

must be regulated [24] which can be achieved by discretising the string. 

It is possible to quantise the theory and avoid these divergences [24), [25]. To 

quantise we would like to have a vertex which is local in time, but the spatial part 

of the vertex can remain non-local and not affect the quantisation procedure. To 

this end, the light-cone components X 0 ± X 25 are re-written in midpoint form, and 

the remaining co-ordinates are left in the standard 'centre of mass' basis. In this 

representation the vertex is local in x+ ( 1r /2) and the kinetic term has no divergence. 

It seems at any rate that non-locality is a feature of string field theory which 

cannot be argued away without introducing divergences and other problems. The 
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quantum field theories with which we deal in this thesis are, for the most part, 

local. However, in later sections we explain how to generalise our ideas to non-local 

theories, and then to string field theory. 

Briefly, let us summarise some more modern areas of investigation in string field 

theory. Much of the recent work has focussed on the Sen conjectures. The tachyon 

in the open string spectrum indicates, as with quantum field theory, that we are 

trying to perform perturbation theory around an unstable point of the potential 

which governs the full, non-perturbative string theory. Sen observed that the open 

string can be thought of as ending on a space filling D25-brane, and that since this 

Brane carries no conserved charges it is unstable. He conjectured that the tachyon 

was the unstable mode of the D25-brane [26]. More precisely, Sen's conjectures are 

that the stable minimum of the tachyon potential has an energy density equal to 

minus the tension of the D25-brane, as measured relative to the unstable vacuum. 

That is, in the true vacuum the tachyon condenses and annihilates the D25 brane, 

leaving a closed string vacuum in which there are no open string states. 

It was suggested that Witten's cubic field theory could be used to test these 

conjectures by calculating the energy density of the vacuum and showing that it 

gave the tension of the brane. Investigations of this result have been encouraging, 

but due to the complexity of Witten's theory the result has not yet been proven 

analytically. 

There are encouraging numerical results however. Defining he level of a state 

in the string field expansion to be its eigenvalue under £ 0 relative to the tachyon 

state, the (N ,M) level truncation of the action neglects all fields of level greater 

than Nand all interactions between fields whose combined level is greater than M. 

This leaves us with a finite number of terms in the action which can be analysed 

numerically. The complexity of the calculations grows exponentially with N, the 

numerical results seem to converge rapidly to Sen's projected value. Even the most 

naive calculation, dropping everything except the tachyon and restricting the field 

to a static configuration gives a vacuum energy of around 70% of Sen's value. For 

recent results of these calculations see [27] [28] [29] and for a review see [30]. For 

a general review of calculational methods in Witten's SFT see [31] and references 
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therein. 

For supersymmetric generalisations of Witten's theories, modifications to the star 

product and integral are necessary to avoid problems with ghost number counting 

[32], but these modifications then lead to a breakdown of gauge in variance, see for 

example [33]. The problem can be avoided by working in a larger ghost space [34]. 

The string field action then has a Wess Zumino Witten type structure [35]. There 

has recently been an interest in work connected to this approach and directed at 

the heterotic string, see [36] and [37]. Again, Batalin Vilkovisky techniques are 

required and the theory is quite complex. At leading order the non-linear equations 

of motion and gauge invariance of this string field theory reproduce those of the 

heterotic string, and it is hoped the theory can be used for investigating the closed 

string tachyon. The construction of superstring field theories remains, in general, 

very much open for investigation. For example, there is no known string field action 

which reproduces the amplitudes of the type II superstring. 



Chapter 2 

Free quantum field theory 

In this chapter we give a graphical description of time dependence in free field 

theories which we will later generalise to the string field. Our approach is based 

on interpreting sums over field histories in terms of sums over particle histories as 

we will describe. We begin with some definitions, then prove the 'gluing property' 

which will be of paramount importance in the remainder of this chapter where we 

present various calculations to demonstrate that it determines time dependence in 

the free field theory. 

2.1 The Schrodinger functional and the vacuum 

The Schrodinger functional is defined as 

S(¢2, t2; ¢I, tl] = ( ¢21e-iif(t2-h)/nl ¢I) 

= ( D lei J </>2if/ne-iHt/ne-i J </>prfnl D) 
(2.1) 

where the states ( c/>i I are eigenvectors of the field operator. This functional evolves 

arbitrary functionals through time as follows. Suppose we have some state w(¢, t 1]. 

Then this state at later time t 2 is, inserting a complete set, 

w(¢,t2] .. (¢1e-iif(t2-tJ)/nlw) 

= ( ¢> le-iH(t2-t1)/n [/ 1><p 1 <p )( <p 1] 1 w) (2.2) 

=I 1>cp ( ¢> le-iif(t2-ti)fnl <p )(<pI w) I 1>cp S(¢, t2; cp, td w[cp, t!]. 

34 
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From (2.1) the Feynman prescription for the Schrodinger functional is 

(2.3) 

The change of variable 

(2.4) 

where (}is the step function (0(0) = 1), leaves the measure invariant and will move 

the ¢-dependence in the integration limits to boundary terms in the action. Naively 

the (} terms do not contribute to the potential, since the action is evaluated between 

times t 1 and t 2 . Our functional integral becomes, dropping the tilde, 

J 'Dcp exp ( *S[cp] + * J dDx 4>2(x) cp(x, t2) - * J dDx cP1 (x) cp(x, t1) 

+ 
2
ili J dDx cP2(x)2t5(0) -

2
ili J dDx 4>1 (x)2t5(0)) 

(2.5) 

and the integration variable now obeys cp = 0 on the boundaries t = t 1 and t = t2 . 

There are several methods of obtaining this result, such as shifting the field by a 

classical solution or by smoothed step functions, see [38] for a full discussion. 

The first three terms in (2.5) relate directly to the canonical expression in (2.1). 

The final two terms require regularisation. As Symanzik has discussed [39], placing 

source terms on the boundary leads to divergences, and the Schrodinger functional 

is an example. The divergences appear in perturbation theory because the field is 

placed at the same point as the image charges which enforce boundary conditions, 

and are in addition to the usual free space UV divergences. In order to regulate the 

image divergences we should split in time the fields- thus the fields in (2.5) should 

be defined at different ordered times, with the difference acting as regulator. 

We will take this time splitting regularisation to be understood so that we may 

drop the delta functions in (2.5) and standard field theory results imply that the log­

arithm of the Schrodinger functional is given by the sum of connected diagrams built 

from a propagator G D which vanishes on the initial and final time hypersurfaces, 

where all external legs are constrained to end, and interaction vertices are integrated 

only over the interval [t1 , t2]. We will discuss interactions in a later chapter, for now 

let us carry out the free field integral in (2.5) and introduce some notation. 
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Using the usual i€ prescription to make the operator in the exponent positive 

definite the Gaussian converges to 

S[¢z, tz; (h, t1] = Ns exp (- ~ J J dD(x, y) ~¢z(y)G v(y, iz, x, iz)¢z(x) 

-¢z(y)G v(Y, iz, x, ii)¢1 (x) (2.6) 

+~¢1 (y)G v(y, i1, x, ii)¢1 (x)) 

where the propagator G D obeys Dirichlet boundary conditions on the surfaces t = t 1 

and t = t2 as described above, reflecting the fact that ( D l~(x) = 0. G D appears 

differentiated since ¢ is coupled to r.p in the integral, 

(2.7) 

The normalisation constant Ns will be discussed below. The Feynman diagram 

expansion of the free field Schrodinger functional can be written 

4>2 4>2 t2 

S[¢2, t2; cPt, t1] = Ns exp (- 2
1
1i ~ ................ ¢ +k 
___ t1 

4>2 t t -.....;---2 ---2 

~ 1 ) G> t - 21i ~{···"""···· .. Q t 
_ _. • .,....__ 1 • . 1 

J1 J1 Jl . (2.8) 

The heavy lines denote the boundaries at t = t 1 , t 2 . In our diagrams a dotted line 

will denote a propagator with Dirichlet conditions on all boundaries shown (whether 

or not the propagator ends on them all). The grey dot is the time derivative. 

The Schrodinger functional between times 0 and t (without loss of generality) is 

built from the Green's function G D which vanishes on the hypersurfaces at times 0 

and t. This can be interpreted in terms of first quantisation as follows. Beginning in 

free space we identify points with their images under an § 1/Z2 (orbifold) compact­

ification of the time direction, radius tjrr. In a sum over paths from points (x, ti) 

to (y, t 1) on this spacetime we must include the paths to the image points since 

they are considered equivalent. If we attach a minus sign each time a path crosses 

a reflection of the quantisation surfaces at times nt for n E Z, 
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-----,..-------,--- 3t 
(y, t, + 2t) 

(y, -t, + 2t) 

(x, t;) 
--~-----~0 

then the sum over paths to each image gives the free space propagator, call it G0 , 

weighted with a sign. The sign is positive if the image is of form t 1 + 2nt and 

negative if of form -t1 + 2nt for n E Z. All together, the sum over paths gives the 

sum 

L Go(xi, t1; x2, t2 + 2nt)- Go(xi, t1; x2, -t2 + 2nt) · Gv(xl, t1; x 2, t2) (2.9) 
nEZ 

which is equal to the desired propagator G v because the sum on the left hand 

side is the method of images imposition of the boundary conditions implicit on the 

right hand side. Since the sum over paths generalises to the Polyakov sum over 

worldsheets in string theory, we suggest that the string field Schrodinger functional 

has a similar description. 

The method of images implies that the Schrodinger functional can be interpreted 

in terms of sums of ordinary free space Feynman diagrams. Later in this chapter 

we will use this interpretation to show that time evolution can be described using 

properties of first quantisation. It is this structure which we will later generalise to 

string field theory. To do this, we will also need the vacuum state wave functional. 

The conventional method of constructing the vacuum wave functional is via a large 

time path integral [39]. If we apply the time evolution operator exp( -iHt/fi) to any 

state I v) not orthogonal to the vacuum, then for large times 

exp(-iHt/Ti)l v) rv I 0 )e-iEotfli( 0 I v) (2.10) 



2.1. The Schrodinger functional and the vacuum 38 

where Eo is the energy of the vacuum1 . Thus 

w[¢] = lim NeiEot/li( D leifdx 1/>(x)ft(x,O)/Iie-iHt/lil v ). 
t-+oo 

(2.11) 

We choose the normalisation constant N to remove dependence on the choice of v, so 

N = ( 0 I v) -I. We obtain the functional integral representation following arguments 

similar to those above, 

I ( i i I ) lcp(x,O)=O Wo[¢] = 'Dcp(x, t) exp JiS[cp] + fi dDx cp(x, O)¢(x) (2.12) 

The boundary condition on the field at t = -oo is that it must be regular. The 

overall normalisation of the vacuum will not concern us here, so we set it equal to 

one. The free field Gaussian integral gives 

.p .p 0 

w~ee[¢] = exp (- 2~ ~ ................ ¢ ) 
(2.13) 

where the propagator, call it Gd(O), satisfies Dirichlet conditions on the boundary 

x0 = 0. By the method of images this propagator is 

(2.14) 

The differentiation leads to each term contributing equally when the propagator 

ends on the boundary and so we can write the free vacuum wave functional in terms 

of the free space propagator. Let an unbroken line indicate the free space propagator 

and a black dot denote the time derivative with a factor of -2 as appears in the 

gluing properties. Then the free vacuum functional is 

(2.15) 

Using this we can verify the time independence of the vacuum wave functional; for 

propagators Gd(t) which obey Dirichlet conditions on the plane at timet we have 

(2.16) 

1 Strictly, we should make iii positive definite by the addition of some regulator and later let 

it tend to zero to achieve this result. This is what happens in the Euclideanised theory which we 

will consider later. 
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To complete the discussion of the vacuum wave functional we describe how the 

propagator is given in first quantisation. If we identify spacetime points with their 

reflection in t = 0, the quantisation surface, then when we sum over paths from 

(x, t 1) to (y, t2 ) we have to include paths from (x, t 1) to (y, -t2), the reflection of 

(y, t2), 

Now weight paths with a minus sign each time they cross the surface t = 0. Paths 

from (x, ti) to (y, -t2) must cross the quantisation surface an odd number of times 

and acquire an overall minus sign, whereas paths directly from (x, t 1) to (y, t 2 ) cross 

an even number of times and are weighted with an overall plus sign. The contribu­

tion from the latter paths gives G0 {t1 , t2) and from the former give -G0 {t1 , -t2 ) in 

expression (2.14) for the Dirichlet propagator Gd(O)· 

Our goal is to construct the Schrodinger functional and vacuum functional for 

string field theory - of course we do not necessarily know the Hamiltonian so the 

above definition does not seem immediately applicable. However, we will find that 

the Feynman diagram expansions we have given must hold for string field theory 

also, if we generalise a key property of propagators which we now discuss. 

2.2 The gluing property 

It is well known that the off-shell free space propagator from the point xi (xi, ti) 

to x f ( x f, t f)) may be written as a sum over all paths from xi to x f with an action 

involving an intrinsic metric g [6] [2). Integrating out g gives a Boltzmann weight 

equal to the exponential of the length of the path, 

I 1J( ) lx(l)=xf 
Go(xJ;xi) = x, ~ eifdd€y'9(±·±/(2g)+m2/2) 

Vol Diff x(D)=x; 

I l

x(l)=xJ 
= 1Jx eimf~ d€ ~ . 

x(O)=x; 

(2.17) 

The path is parameterised by~ and x(O) is the point xi, x(1) the point Xf. We have 

corrected for the over counting of equivalent paths resulting from reparametrisation 



2.2. The gluing property 40 

invariance of the action by dividing out the volume of the space of reparametrisations 

f ( T). This is the particle analogue of the Polyakov integral in string theory. Any 

metric can be reduced, by a suitable gauge transformation, to 

for some f and T, the latter of which is the analogue of a string modular parameter. 

The reason it appears is that a reparametrisation cannot measure the intrinsic length 
1 

of the worldline, T := J d~y!g, which is therefore another parameter on which g can 
0 

depend. The Jacobian for the change of variables from g to f and Tis [2] 

- dT 1/2 ( - _.!._ d2 ) 
'Dg- ..;r Det T2 de 'Df. 

We can now evaluate the path integral {2.17) by using the reparametrisation invari­

ance to set g = T2, constant, and then integrate overT, 

The above determinant is computed with Dirichlet boundary conditions and can be 

zeta function regulated, 

( 
1 d2 ) ( 2 2) 

1
/2 

Det 
1
/
2 

- T2 de = 1]1f T: ---+ const. VT. 

Splitting xll- into classical and quantum pieces, the integral over xll- is over the 

quantum piece which has the Fourier expansion 

Each x integration results in the inverse of the previous determinant. To do the 

final integration we can rotate the contour T ---+ -iT and we obtain the integral of 

the heat kernel K of the Laplacian {with normalisation K(T = 0) = c5°+1(x1 - xi)), 



2.2. The gluing property 41 

The derivation of the gluing property begins with the simple observation that paths 

from (x1, ti) to (x2 , t 2 ) must cross the plane at timet at least once ift2 > t > t 1 . This 

implies the sum over paths defining the propagator can factorised so that formally 

L e-length(AB) = L ( L e-length(AC)) ( L e-length(CB)) 

paths AB C paths AC paths CB 

(2.18) 

where C lies in the plane at time t. To make this factorisation explicit, insert into 

(2.17) a resolution of the identity, 

(2.19) 

For t2 > t > t1 the delta function always has support on the worldline. The Jacobian 

J which makes the insertion unity is easily found to be 

:i;O(~') I 
j = V97I') x 0 (e)=t' 

which is reparametrisation invariant. Taking the integral over e outside and distin­

guishing between worldline times earlier and later than e' the path integral is 

Ide Vi00f [rr dx!J(~)J dvx(eJ ~ [rr dx!J(~)J 
~<e g(~) ~>~' 

exp (i L S[x(~)] + L S[x(~)]) . 
~<e ~>~' 

We can write x0 (e) as a two sided derivative 

which splits the path integration into a pair of terms each with an insertion. The 

integrals are invariant under reparametrisations of the worldline and so have no 

explicit e dependence, the integral over which gives a finite volume, leaving 

(2.20) 

where the integral over y is over the boundary spatial co-ordinate data. The path 

integrals can be done in the Polyakov approach, and from an integration by parts in 
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the action of (2.17) the insertion of the Jacobian J can be taken outside the integral 

as a derivative with respect to boundary data, 

a i ±0 (~final) 

atfinal 2 J g(~final) 
or with a minus sign for the initial time, giving us the factorisation of the propagator 

H 

Go(x,, t 1; xi, ti) = -i J dDy G0 (x,, t,, y, t) :t G0 (y, t, xi, ti), 

(2.21) 

The double headed arrow is shorthand for --+ - f-. The explicit calculation is 

easiest using the Fourier representation. Consider 

which follows from doing they integration giving (27r)D£5 (p- q) (the usual iE pre­

scription is understood but not written explicitly). The q0 integration depends on 

the sign oft- t1 , Sg(t- ti), giving 

The Po integration gives 

The leading factors are taken care of if we include the second term in (2.21), the 

result of which follows. We can write this with the insertion acting on a single 

propagator by replacing 
7! a -----+ -2-at at 
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and the following additional cases are immediate, 
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iGo(x2, t2; x1, tl) t2 > t > ti 

-iGo(x2, t2; XI, ti) ti > t > t2 

iG1(x2, t2; XI, ti) 

-iG 1(x2, t2; x1, t1) 

t > ti,t2 

t < ti, t2 
(2.22) 

where G 1 is an "image propagator" equal to the free space propagator for the points 

(x2, t2) and the reflection of (xi, ti) in the plane at time t. In short, if the two 

points are on opposite sides of the plane at time t, the two propagators are glued to 

form the usual propagator, if they are on the same side gluing produces the image 

propagator. 

This result should not be confused with the self-reproducing property of heat­

kernels (which will be apparent when we discuss strings and which fails when modu­

lar parameters are present) but plays a nonetheless fundamental role in field theory. 

For example, applying it twice gives 

(2.23) 

Taking all the ti to zero gives a useful relation which may be expressed as 

Thus 

(2.24) 

From this we deduce that the inverse of the free space propagator at equal time is 

(2.25) 
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Recall that this expression appeared in the free field vacuum wave functional, (2.15). 

This is not coincidence, since the vacuum functional must generate the propagator 

at equal time as a vacuum expectation value, 

Go(x, 0; y, 0) = J 'Dcp cp(x)cp(y)w~[cp], (2.26) 

and this is a Gaussian integral which (2.24) precisely describes. This is essentially 

how we wish to describe the free field Schrodinger functional, as the unique object 

which gives the correct time dependence of the two point function. In the following 

three sections we will describe time dependence in free field theory using the gluing 

property. 

2.3 Time evolution of the vacuum 

The vacuum wave functional is an eigenstate of the Hamiltonian. Using this and 

the Schrodinger functional we have two expressions for the vacuum state at time t, 

(2.27) 

(we will set n = 1 for the remainder of this chapter since all our calculations are 

necessarily of the same order.) The free field integral is Gaussian and can of course 

be carried out directly, but we will represent it using the diagram expansion. The 

integral is 

I 'DcptS[cpz,t;cpt,O]'llo['PtiO] = Nsx 

I 'Dept exp ( -~ _b_ ...... _ .... _ .... _ ..... _ . ..J_JJ·' o + ? 
<? -----~-0 
'PI 

~- --~ ' ) exp ( - ;o 0) 
I • 0 

'PI 'PI 

'P2 'P2 'P2 t 

= NsDet(Kt112 exp (- ~~---................... ¢ 
0

) exp (~ ____ ; __ :) K-1(x,y) $ 
0 ~ 

X y 

(2.28) 

In the second line, the first three terms are the Schrodinger functional, the final 

term is the vacuum. The Gaussian integral in cp1 gives the third line, where the 

symmetric operator K and its inverse are defined by 
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= f =t=2nt 
n=O x o 

:. K-l(x,y) = ~ ----r---2! 
f \ o- _l_o 
X y X (2.29) 

In the definition of K, the derivatives on the propagator lead to all the images 

entering with the same sign (plus). We can check explicitly that the inverse is 

correct, using the gluing properties (2.22). 

K-1(x, z)K(z, y) = 
X Z Y 

( 0 I)(v +I+ I+ ... ) 
X z z y y 

= (\ 0 =:t> =:t:·+ =:t:· X v+ + ... 
y y y 

-=t;~- f" ±::_ ±:: 2! 

0 
y y y 

X 2! X 4! X 6! 

=t5D(x-y)+i Io+i Io+i Io+ ... 
y y y 

(2.30) 

To understand the terms in the third line, either recall that gluing propagators which 

end on the same side of the boundary produces an image propagator, or, as we have 
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illustrated, use the time dependence of the propagator to translate the diagrams. 

For example, 

=t:: 
y 

The Schrodinger functional term to be contracted with K- 1 is 

<? =2:: +2:: = 2:: 
t It+2nt I-t+2nt It+2nt 

_ _.Q._· _o n 0 n ' 0 n=O 0 (2.31) 

Carrying this out gives the final result of the Gaussian integration, 

-1 -2 

'P2 'P2 t 'P2 'P2 0 

o ....... e _ 1~ ......... 4 '-...._./ ___ o 
(2.32) 

This removes the remaining <p2- dependent term in (2.28) and implies 

(2.33) 

which is the correct diagram since the vacuum should be time independent, up to a 

pre factor. From (2.5) we see that the normalisation of the Schrodinger functional 

is the determinant of the Laplacian with Dirichlet conditions at times 0 and t, to 
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the power minus one half. Comparing (2.27) and (2.33) we have an unregulated 

expression for the free vacuum energy, 

e-iEot = Det -1/2(b.v)Det -1/2(K). (2.34) 

The indices in all our calculations can be checked using finite dimensional cases such 

as I II duk e-~u;A;jUj+VjBjiUi = Det (A)-1f2e~vkBk;A;:/vmBmj. 
k 

(2.35) 

2.4 Self reproduction of the Schrodinger functional 

We now recover the self reproducing property of the Schrodinger functional. That 

is, taking two copies of the functional and integrating over the shared field argument 

returns the Schrodinger functional for the sum of the times of the initial functionals, 

I 'D<p S[</>2, t; <p, O)S[<p, t; </>1, 0) = ( <P2ie-iHt I 'D<p I <p )( <p ie-iHti ¢>1) 

= S[</>2, 2t; ¢ll 0). 

The integral is 

4J2 4J2 t t 

exp (- _21 Q ................ ¢ __ 21 •• ••·······•··•·•.• ) 

9 Q ___ o ¢
1 

J; o 

cp cp t ¢2 

x J 'D<p exp (- ~ Q ................ ¢ o -~ ¢ .... --········· ... C? o + 9 + <;> 0 
cp cp cp 

The Gaussian operator, A, which we need to invert is now 

X y t =t:·· Q .. o 00 

A(x,y) = + 0.··· ·········· .... ~ +2 2: · ... ············ l'i> 0 : ·0 0 n=1 
X y X y X 

(2.36) 

(2.37) 

The inverse can be built term by term. Unlike the previous operator K, the result 

is an infinite sum of Feynman diagrams, 

X y X 

(2.38) 
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Explicitly, 

A-1(x, y)A(y, z) = 

z z z z 

z z z z 

z z z 

(2.39) 

The result of the Gaussian integration is calculated using 

y t y 2t y 4t 
A-l(x,y) Io = ( (\0 -2 =0 +2 I+ ... \1 

0 J 
z X y X X 

I> y 3t 
( I+ ... \1 

0 J 
z z 

X t X 3t 
=t:t+ ... =z Io+i Io+i 

z z z 

X 3t -2i I
0
-2i X 5t Io-2i =t:t- ... 

z z z 

X 5t +2i I
0
+2i X 7t Io+2i =t:o~··· 

z z z 

x (2n+ l)t = i L(-)n Io n=O 
z (2.40) 
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which implies 

~:A-1 ~:= =t:t~ =t:t+ =t:t- ... 
z z z 

+ =t:t- =t:t+ =t:~- ... 
z z z 

x (2n + 1)(2t) 

=L:-,-
n=O __j__o 

z (2.41) 

We now combine this with the remainder of the original Shrodinger functional. We 

clearly arrive at the correct term connecting ¢2 and ¢ 1 in S[¢2 , 2t; <fJI, 0]. The term 

quadratic in ¢2 is (similarly for the term quadratic in ¢1) 

---t 
-~ "' ... -···-····· .. b +~I: 

+l"'--+0 n=O 
<h <h 

<h (2n + 1)(2t) <h (2m- l)t t/>2 (2m- 0(2!) 

---,--- - _! ~ _! I: ---,--- ---,--
__i__o - 4 2m=l __i__o - __i__o 

<h <h tP2 tP2 tP2 

=-~A-~ L +t/>2 (2m)(2t) 

m=l 0 
2 2 2 

___ 2t 

(2.42) 

which is the term we expect in S[¢2 ,2t;¢1,0]. 

2.5 Time dependence of the two-point function 

Finally we apply our methods to an explicitly time dependent object. The two point 

function can be written in terms of the Schrodinger functional and the vacuum wave 

functional, 
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In the free theory the r.p 1 integral is 

___ t 

~{···············oo -~ Oo) 
i{Jl i{Jl I{JJ lfJl 

(2.44) 

The exponential terms are the same as for the evolution of the vacuum, but the 

insertion of r.p1 (y) brings down the leading factor. Again the indices can be checked 

by comparison with the finite dimensional case. The remaining integral over r.p2 ties 

together x and y giving us 

W t W X --.:.....--- )( u )-1 
_....__o 

:t. 

= (¢(x, t)¢(y, 0)) 
(2.45) 

Using the gluing property alone we have shown that equations (2.8) and (2.13) for 

the Schrodinger functional leads to the correct result for various time dependencies in 

field theory, in particular for the two point function at unequal times. This argument 

is invertible; if we know the two point function we can construct the Schrodinger 

functional and vacuum functional provided the gluing property holds. If we can 

generalise the gluing property to string theory we can repeat the diagrammatic 

arguments and construct second quantised string functionals. 
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We will do just this in the next chapter, and we will work in Euclidean space 

where the Polyakov functional integrals are better defined. We must verify that our 

methods work in this representation, and identify any changes from the Lorentzian 

theory. Extensions of our results to non-flat spacetimes are discussed in the appen­

dices. 

2.6 Euclidean results 

Rotating x0 ---+ -ix0 the Euclidean action for a scalar field of mass m is 

The Euclidean free field propagator is 

In Euclidean space the propagator factorises as 

from which follow the gluing properties 

(2.46) 

Go(x2, t2; xi, ti) t2 > t > ti 

-Go(x2, t2; XI, ti) ti > t > t2 

-G1(x2, t2; xi, ti) t < ti, t2. 
(2.49) 

The only differences between these rules and those in Minkowski space is a now 

missing factor of i. It follows that the inverse of the propagator at equal time picks 

up a minus sign, 

(2.50) 
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In Euclidean space the vacuum is given by applying the imaginary time evolution 

operator exp( -fit) to any state I v ), not orthogonal to the vacuum. For large times 

exp( -fit) I v) rv I 0 )e-Eot( 0 I v) (t ~ oo) 

where E0 is the energy of the vacuum, and the larger energy eigenvalues are expo­

nentially damped. The path integral representation now follows as before, 

with the action evaluated on the half space t < 0. The Schrodinger functional has 

a similar expression, 

All of the calculations we have presented can be repeated in Euclidean space, but 

the only differences to keep track of are minus signs. This is reassuring, as it is the 

Euclidean results which we will now generalise to string field theory. 



Chapter 3 

Free string field theory 

In this chapter we generalise the gluing property of quantum field theory to string 

field theory using the Polyakov integral description of the string field propagator. 

This involves using a new description of the ghost sector to represent the infinite 

number of time derivatives necessary to sew the off-shell worldsheets together. We 

will begin with a summary of the properties of the string field propagator, then 

present the new ghost variables and prove the gluing properties. We end with some 

explicit examples of gluing calculations and the BRST quantisation which defines 

our ghost structure. 

3.1 The string field propagator 

Off-shell amplitudes are associated with the Polyakov integral on worldsheets with 

boundaries. The open (closed) string field propagator is the transition amplitude 

G(X,; Xi) between arbitrary spacetime curves Xf(a) and Xj(a) which bound a 

finite strip (cylinder), 

(3.1) 

An arbitrary metric on the strip (cylinder) can be written as a diffxWeyl transfor­

mation (orthogonal to the conformal killing vector V = a/ aa for the closed string) 

of a reference metric flab(T) for some value of the modular parameter T. A hat on an 

53 
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object indicates it is computed with this metric. The propagator is (40] (41] (42] (45] 

00 

Gt
1
-dX1; Xi) = J dT Jac(T)(Det 'pt P) i (Det JS.)-13 J De e-sc~(Xci.9(T)J. (3.2) 

0 

The remaining e integral is over reparametrisations of the boundary data. The 

measure on moduli space is Jac(T) given by 

where hab is the zero mode of Pt, Xab is the symmetric traceless part of 9ab,T and 

v = a 1 a()'. xc1 satisfies the wave equation in metric 9 with boundary conditions 

X~1 lr=o = Xi, X~dr=l = X1 in some parameterisation given by e. The open string 

boundary conditions are X' = 0 at 0' = 0, 1r. 

If we attach reparametrisation invariant functionals IIi (Xi], II 1 [X f] to the bound­

aries of the worldsheet then this integral can be done trivially to give an (infinite) 

constant factor, for then 

The same applies when we sew two worldsheets together, since G itself is reparametri­

sation invariant. Rather than work with reparametrisation invariant functionals 

it is customary to represent the metric degrees of freedom by ghosts and then 

reparametrisation invariance is replaced by BRST invariance. The ghost sector 

of the functional integral is 

There is an additional term to the usual ghost action which must be included to 

make the functional integral non zero and is due to the presence of a zero mode of 

pt (A full Faddeev Popov treatment gauge fixing the Weyl invariant quantity ylggab 

includes this term automatically, see (11]). Expanding the antighost 
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where b0 is Grassmann odd and b' is constructed from the non-zero eigenvectors of 

pt the integral over b0 becomes saturated and reproduces the modular Jacobian, 

!'])( b) ( _ S [b ]) _ (habiXab,T) !'])( b') -S9 h[b',c] 
c, exp gh 'c - (hablhab)l/2 c, e . 

The ghosts inherit the Alvarez boundary conditions [8], [43] 

(3.5) 

where na and ta are, respectively, the normal and tangent vectors on the boundary. 

In the conformal gauge 9ab(T) = diag(1, T 2 ) and the contributions to the propagator 

integrand are 

2_ j ds Xc~naaaXc!, 
411' 

(3.6) 

aM 

(Det A)-112 
{ ( 41rT) -l/2ry(T) -112 open 

(3.7) 
r-112r/T)-1 closed, 

(Det 'pt P)1/2 
{ ( 47rT) 112ry(T) open 

(3.8) 
( 47rT) 7]2 

( T) closed, 

Jac(T) 
{ (47rT)-l/2 open 

(3.9) 
( 47rT)-1 closed, 

where the Dedekind eta function is 
00 

rJ(T) := e-T/12 IT (1 _ e-2mT). (3.10) 
m=1 

The determinants have been zeta-function regulated and the normalisation chosen 

in line with the particle case. 

The propagator in the extended state space of the co-ordinates and ghosts should 

interpolate between boundary configurations of the ghosts also. To fix the values of 

c and b on the Dirichlet ( r = 0, 1) boundaries delta-functionals can be inserted into 

the integration (3.4) giving 

At A 112 IT (cosh mT . . 1 1 1 . 1 1 . ) (Det'P P) exp (ct bt + c b ) - (ct b + c bl) (3.11) sinh mT m m m m sinh mT m m m m 
m=1 

where bim, cfn are the Fourier modes of the initial, final ghost configurations [41]. 
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3.2 Corners and sewing for the open string 

There is a caveat to these calculations in the case of the open string. We know 

that the integrand in (3.1) is independent of the Liouville mode when D + 1 = 26 

[44] at least for worldsheets without boundaries, giving a Weyl invariant string 

theory. Although our worldsheet is topologically a disk, we have boundaries with 

marked points where boundary conditions change - the corners. This generates 

extra contributions to the Weyl dependence of the determinants in (3.2) as we now 

describe. 

As an example consider the determinant of the Laplacian. Under an infinitesimal 

Weyl scaling p --+ p + 8 p the variation of the determinant is, using the usual heat 

kernel regularisation [9], 

8log Det 6.. = -I d2ay'g JC(a, a, T, T; c)8p(a). (3.12) 

We know that the variation must have an expansion in powers of the cutoff of form 

8logDet6.. =- -
1
-ld2ay'g R8p- -

1
-ld2ay'g8p 

24n 4nE 

+ L Ai ~I ds8p+ Bi I dsnaoa8P + ci Ids Kg8p 
z 

+ E L 8p(aj) + 0( ..;E) 
j 

(3.13) 

where i runs over the boundaries and j over the distinguished points. The divergent 

volume and surface terms can be removed by local counter-terms in the string action. 

What remains is removed by the metric integral when D + 1 = 26 excluding the 

contribution from the corners [45], [46]. So even in the critical dimension, the off­

shell propagator is not truly Weyl invariant. 

We will need to compute these corner anomalies for various determinants. Each 

corner contributes equally and independently (for the same change in boundary con­

ditions). Since the anomaly is a local effect it is insensitive to the global topology of 

the worldsheet, so we can work on the simpler geometry of the upper right quadrant 

with appropriate conditions on the axes. Finally, since the anomaly only depends 

on a single value of the Liouville field we can compute it using a constant 8p. 
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Returning to the Laplacian the quadrant has Dirichlet conditions on the x-axis 

and Neumann conditions on the y-axis. The heat kernel for this geometry is given 

by the method of images, 

/(( I I. ) _ /( ( I I. ) /( ( I I. ) x,y,x,y,t- 0 x,y,x,y,t- 0 x,y,x,-y,t 
(3.14) 

+ IC0 (x, y, -x1
, y1

; t)- !Co(x, y, -x1
, -y1

; t), 

where the free space heat kernel for the Laplacian is 

1 1. _ 1 ( (x-x
1
)2+(y-y1

)
2

) 
K0 (x, y, x, y, t) -

4
7ft exp -

4
t . (3.15) 

The variation in the determinant with a constant Weyl scaling is, writing down only 

the cutoff independent, non-zero corner anomaly in the final line, 

&logDet~ 

00 

-&p J dx dy K(x, y, x, y; t) 

0 
00 

s; Jd d 1 1 -y2/f 1 -x2jf 1 -(x2+y2)/f -up x y - - -e + -e - -e 
4nt 4nt 4m: 4nt 

0 

1 
16 8p +... (3.16) 

The corner anomaly is not a sickness of the off-shell theory. It is there to cancel 

anomalies generated by the process of sewing worldsheets together or sewing string 

functionals onto Dirichlet sections of worldsheets. When we sew two worldsheets 

M 1 and M 2 together by integrating over all possible boundary values of X (the 

ghosts behave similarly, and we will neglect modular parameters for the moment) 

the classical actions combine to give the classical action on the sewn worldsheet. 

The Gaussian integration brings down the determinant of naoa to the power minus 

one half, computed with the harmonic extension of the boundary data into the bulk, 

which sews the determinants together [47]; 

(3.17) 

The anomalous boundaries become a bulk piece of the sewn worldsheet, which has 

no privileged structure and so cannot carry the anomaly- how does this come about? 



3.3. Sewing worldsheets 58 

The answer is the determinant of na8a has its own corner anomaly. The calculation 

is given in [46] so we will just state 

o log Det na8a = ~-op- - ds op 1 1 I 
8 27rE 

(3.18) 

where the minus (plus) sign is for Neumann (Dirichlet) boundary conditions at a= 

0, 1r. The open string co-ordinates have Neumann conditions so the anomaly is minus 

twice that coming from a single Laplacian, (3.16), ensuring that two worldsheets are 

sewn without anomaly in the bulk. 

3.3 Sewing worldsheets 

The appearance of the corner anomaly has led us naturally to sewing. In this section 

we will prove the extension of the gluing property (2.48) to the string propagator as 

a method of sewing worldsheets. The details are a little involved, but in the next 

section we will give explicit examples. 

If we represent the propagator as an amplitude 

00 

G(x bf /.X· bi i) - ldT (X b' I I -fiT I X· bi i) ,, , c , t' , c - ,, , c e t' , c (3.19) 

0 

then the standard sewing prescription discussed above, integrating over all boundary 

values of Xll- and the ghosts shared between the two propagators, returns 

00 00 I dU I dT ( x,, b', cf ie-ii(T+U)i xi, bi, ci ), (3.20) 
0 0 

which is incorrect, since we have a redundant modular integral which gives an infinite 

factor. Carlip showed [47] that by inserting the Hamiltonian acting on the boundary 

of one worldsheet the redundant length parameter is removed and the moduli spaces 

are correctly sewn. This applies to general worldsheets but is suitably illustrated by 
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sewing two propagators, 

00 00 

= ~ J 'D(X, b, c) J dT ( Xf, b1, c1 ie-ilr1 X, b, c) J dU a~ (X, b, c ie-ilul Xi, bi, ci) 

0 0 
00 

= J 'D(X, b, c) J dT ( Xf, bf, cf ie-ilr1 X, b, c )c5 [X- Xi, b- bi, c- ci] 

0 
00 

= J dT ( X 1, bf, cf ie-ilrl Xi, bi, ci ). 

0 

(3.21) 

The Hamiltonian is the derivative of the second integrand with respect to the mod­

ular parameter, which reduces one propagator to a delta functional 1 . Sewing this 

onto the second propagator trivially produces the desired result. 

However, this method is inappropriate for our means. In the Schrodinger repre­

sentation we are interested in evolving states between successive times so the prop­

agator would be calculated with the particular boundary conditions X 0 = constant 

and we would not integrate over X 0 when sewing, just as we did in the previous 

chapter for quantum field theory. However this would leave behind one Laplacian 

determinant from each worldsheet, so there is something more going on. 

That there should exist a method of sewing worldsheets appropriate to our needs 

may not be immediately obvious because of the extended nature of the string, but 

performing a similar trick to (2.19) gives a strong indication; insert a resolution of 

the identity into the functional integral defining the propagator, 

where the new integral is over curves C on the worldsheet. For t 1 > t > ti the delta 

functional has support on the worldsheet, and the Jacobian is 

(3.23) 

1 Strictly speaking this is only true for a positive definite Hamiltonian, so for the bosonic string 

there is the tachyon divergence to be regulated. 
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where Cx is the curve on which X 0 (a, Cx(a)) = t. We will now describe how 

this infinite product of time derivatives can be represented and used to generalise 

(2.48). The key is the metric integral. Taking the Alvarez boundary conditions in 

the conformal gauge, a basis of reparametrisations ~a = ( ~u, C) on the strip (with 

metric as given earlier, soT E [0, 1] and a E (0, rr) is given by 

1 _ ( cos(mrrr) sin(na) ) 
~nm - lVm ' 

0 
2 ( 0 ) ~nm = Nm 

sin(nrrr) cos(ma) 
(3.24) 

1 
with normalisation Nm = 21-26

m=o j-JT;r. The reparametrisations split into orthog-

onal pieces, with the set { e} obeying 

on the Dirichlet boundaries - so only half of all reparametrisations couple to these 

boundaries. If we were to compute the propagator with conditions on the metric 

fixing 9uu, much as we do for the co-ordinates, then to sew two propagators together 

we would integrate over all values of the boundary metric which would sew together 

only half of the determinant of pt P. Since (Det pt P) 112 cancels two copies of 

(Det6)-112 , this would leave a determinant behind to cancel that from X 0
. 

We now make this rigourous with a proof that the gluing property can be gen­

eralised to the string field propagator. The proof in three stages. 

1. We will introduce a change of variables in the ghost sector allowing us to realise 

the discussion following (3.24). 

2. We then show that when integrating over the boundary data, the ghosts cancel 

the unwanted effects of not integrating over X 0 . This combines the integrands 

of the propagators into the standard "sewn" form, as in (3.20). 

3. Finally, we insert a time derivative between the propagators being sewn and, 

similarly to Carlip's method, use it to remove the extra modular parameter and 

contract one propagator to a delta functional, integrating over which returns 

the sewn propagator. 
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1. Ghosts 

The role of the reparametrisation ghosts in string theory is to cancel the undesirable 

effects of including the X 0 oscillators. They will do the same thing for us here, 

although to a different end. Starting with the standard b- c system, 

we change variables b' = P"( and pick up a Jacobian (DetPtP)-112 (recall that 

the Jacobian for a Grassmann change of variables is the inverse of the bosonic 

Jacobian), which we can represent as a bosonic vector integral. Our new ghost 

system is therefore 

(Det 'pt P) 112 = J 'D(ca, ''/, r) exp ( -~ J d2avg (P f)ab(P j)ab) 

X exp (- ~ J d2avg (P'Y)ab(Pc)ab), 

(3.25) 

where r is the bosonic worldsheet vector. We have included a factor of one half in 

front of the new action for convenience later. The operator P is not invertible on 

the strip or the cylinder, but this should not worry us since we are merely changing 

the representation of Det 'pt P, and the eigenvectors and eigenvalues of b~b and P'Yab 

are in one to one correspondence [8]. However, this change of variable will have an 

interesting effect on the BRST transformation, as is discussed in the final sections 

of this chapter. 

The propagator in the extended state space is the transition amplitude between 

arbitrary values of X~-', cu, "fu, fu. The ghost integrals can be done by expanding 

around a classical solution satisfying pt P = 0 (or inserting delta functionals as 

described earlier). The r-components of the fields, corresponding to the set of 

reparametrisations {e} discussed earlier, are integrated out. For the open string, 

the classical ghost fields obey 

Jci(a, 0) = L J:n sin(ma)j!, 
m=l 

Jci(a, 1) = L Jfnsin(ma)f! 
m=l 
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where the field 1 E {/, c, 1}. The quantum fields obey 

nabla = tabla = 0 on Dirichlet boundaries, 

nabla = natb P(bl)ab = 0 on Neumann boundaries. {3.26) 

For the closed string the change of variables is only well defined up to shifts propor­

tional to the CKV, 1a---+ 1a + >.va for 1a E {ca,1a,r}, so we choose (liV) = 0 

which removes the centre of mass from the classical pieces. 

With these boundary conditions the actions separate into a quantum piece giving 

the determinants, 

(3.27) 

and a classical action 

(3.28) 

evaluated at T = 0, 1. With the given boundary conditions the classical action 

reduces to that for a single free boson and a pair of free Grassmann fields, 
7r 7r J dS l~ 8TCucl + J ds fci 8rfucl (3.29) 

0 0 

The exponent in the Grassmann part is easily verified to give (3.11) with the modes 

bm replaced by the modes 1m of 1u. 

2. Integrating over boundary data 

We will again write the propagator as an amplitude, 

00 

G(tt,Bt;ti,Bi) = JdT (ttle-HoTiti)(Btle-HTIBi), (3.30) 

0 

where the states ( t I are ordinary quantum mechanical states for the time variable 

and ( B I represents boundary data for X, cu, 1u, fu. The contribution from the 

X 0 oscillators (1J(T)-112 for the open string, 17(T)-1 for the closed string) precisely 

cancel against the ghost T-component contributions and the modular Jacobians. 

Write the worldsheet Hamiltonian as 

H=H0 +H (3.31) 
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with Ho = - Xt22 and H the Hamiltonian for all remaining degrees of freedom. Ex­

plicitly, 

( t le-HoTI t·) = _1_e-(tJ-t;)2f47r:o.'T 
f t ~ ' 

1 
( B f le-HTI Bi) = Tl2 e-Sc~[Bl1J(T)-24 

(3.32) 

where Sc1 is the classical action for X and the ghosts. It is a simple matter to 

check that when we integrate over the remaining boundary data shared by two 

propagators with modular parameters T and U we get back the amplitude for the 

remaining boundary data with modular parameter T + U- the new ghosts make this 

integration into a resolution of the identity, 

3. Sewing with the time derivative 

Taking two propagators, we insert a time derivative between them and integrate 

over the boundary data as we have described to obtain 
00 +-::+ J dTdU ( t 1 le-HoTI t)! ( t le-HoU I ti) ( B 1 le-H(T+U) I Bi). (3.34) 

0 

We can write the time derivative as a double derivative and an integral, 
00 00 00 f---:+ -f dt f dT f dU ( tf le-HoTI i) :;2 ( ile-HoUI ti )( BJ le-H(T+U)I Bi ). 

t 0 0 

Using the definition (3.31) this is 
00 00 00 f dt f dT f dU (a~ - a~) { ( tf le-HoTI t)( tle-HoUI ti )( BJ le-H(T+U)I Bi)} 

t 0 0 

plus two cancelling terms. In the above we see the similarity to Carlip's method 

- an insertion of the time derivative is related to an insertion of the worldsheet 

Hamiltonian which gives a derivative with respect to the modular parameter. We 

can now perform the integral over one modular parameter, 
00 00 f di f dU 8 (tJ- i) ( ile-HoUI ti )( B1 le-Hul Bi) 

t 0 
00 00 -f di f dT8 (i- ti) (tJ le-HoTI i)(B1 le-HT1 Bi ), 

t 0 
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and for t 1 > t > ti the t integral has support on only one delta function, giving 

00 

Jdu(t,le-Houlti)(Btle-HuiBi)- G(t,,B,;ti,Bi) 
0 

recovering the propagator. Overall, we have shown that the Euclidean generalisation 

of (2.21) holds in string theory as 

(3.35) 

A proof that the various corollaries to the gluing property given in Section 2.2 also 

apply to string field theory is given in Appendix B. Uses of Carlip's sewing method 

extend to quantum field theory (since particle propagators also contain modular 

integrals), for example it is intimately related to the recurrence relations of MHV 

rules, see [59]. 

3.4 Discussion 

We will now give some explicit examples ofsewing worldsheets and check our gluing 

property using the corner anomaly. A simple and readily computable example is for 

pointlike initial and final co-ordinate states and vanishing ghost states em = 'Ym = 

f m = 0. In this case when we sew two closed string propagators the integral over 

boundary data as we have described returns 

Expanding the final product gives 

00 +-=+ """n J d(T U)-1-e-(tf-t)2/4T (~) _l_e-(t-ti)2/4U 
~·,m , Vf' at v'U 
m 0 
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where the 'rim are constants. Comparing with (2.47) this is a sum over masses of the 

particle gluing result, so we have 

00 

~ I dT _1_ -(t1-ti)2 /4T-(xrx;) 2 j4T -(2m-1)T 
~'r/m T13e e 

m 0 

00 =I dT T1
13e-(t,-t;)

2
/4T-(x,-x;)2/4T II (1- e-2mT)-24 

o m=1 

which is the closed string propagator connecting pointlike initial and final states. 

The sewing description we have given may seem surprising given the extended 

nature of the string. Fortunately, the open string affords us a check. We can verify 

that the corner anomalies correctly cancel between the determinants of (Det 1 pt P) 114 

and (Det ~)- 112 when we sew. Under an infinitesimal Weyl transformation the 

variation of (Det 1 pt P) is [8] 
00 

OlogDetptp =- ~~8Tr[ oe-sptp] 

00 =I dsTr[ (-2PtopP + ptpop)e~sPtP] 

00 

= ldsTr[(-2opPPte-sPPt +OpPtP)e-sptp] 

= -2Tr[ope-lPPt] +Tr[ope-lptp]. 

We have used the cyclicity of the trace in going from the second to the third line. 

However we know that we can calculate the corner anomaly with a constant Op in 

which case the above becomes 

(3.36) 

For the ghost T-components the non-zero contribution to the heat kernel for pt P 

on the upper right quadrant is, by the method of images, 

contributing 
1 1 

olog(Det 1PtP)112 = --op+ ... 
216 

(3.37) 
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This part of the determinant, along with (Det L:l)- 112 , is not sewn, and the corner 

anomaly is minus that from a single boson, so this piece cancels the corner anomaly 

from the X 0 determinant. For the a components the heat kernel is 

The corner contribution is therefore 

1 1 
c5log(Det 'pt P) 1/ 2 = --- 6 p + ... 

216 
(3.38) 

As we have seen the classical action for the a components involves na8a, so we know 

from the Dirichlet case in (3.18) that this part of the determinant sews correctly 

without anomaly in the bulk. 

We conclude that despite the extension of the string a Schrodinger representation 

makes sense for string field theory, and we can carry over our diagrammatic argu­

ments and it follows that the vacuum wave functional and Schrodinger functional of 

string field theory are 

(3.39) 

and 

~2 ~2 t 

~::::::::::::9 + ___ o 
~ 1 

_....,;b .... ~ _o - 2 .6::::::::::::1D.. t ) 
.. .. 0 

~1 ~1 ~I (3.40) 

respectively. The double line represents either the open or closed string propagator 

and the dotted line is the propagator with Dirichlet boundary conditions defined by 

a sum over images as in section (2.1). As is usual for free string field theory the 

centre of mass of X 0 acts as our time variable, though the X 0 oscillators are zero 

when the kernels in the above couple to the string field so our time is not extended 

and behaves as in particle theories. 

The factorisation of the ghosts we have used may seem ad-hoc but in fact it 

follows from the gauge choice PJ(g)a = 0 which is equivalent to the usual gauge fixing 
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9ab ex: Yab· This, and the BRST symmetry are discussed in the final section of this 

chapter, where it is shown that BRST invariance corresponds to reparametrisation 

in variance of the boundary data attached to the propagator. 

3.5 Light cone string field theory 

Recall the light cone gauge string field theory [16], 

(3.41) 

where X is now the set of 24-dimensional transverse co-ordinates. In the Schrodinger 

representation we diagonalise the field operator at T = 0 and represent the algebra 

[</>, ¢t] acting on a basis of states (</>I by 

(3.42) 

The field dependence is made explicit by writing 

The Dirichlet state ( D I is annihilated by ¢. Taking the conjugate of these states 

we have a natural set of ket vectors which are eigenstates of Jt rather than ¢, 

Jt)x, o] I </>t) = I </>t )<Pt)x], 

1</>t) =e-fct>t~IN). 
(3.43) 

The state I N) is annihilated by Jt. The matrix element of the time evolution 

operator between such states at times 0 and T is 

T 

= J 1>(<p, <pt) exp (i J dT L[<p, <pt] (3.44) 
0 

-f dp+ f TJX <It <p(T) HP+ 'I'' ( 0)) [0 
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This has a Feynman expansion in terms of a propagator with mixed boundary con­

ditions - in the Schrodinger functional only one boundary condition is specified for 

each of¢ and ¢t since the equations of motion are first order. 

The free propagator F for positive, Wick-rotated T is [48], [49] 

00 12 
F(or ox- ox) = f dp e-ip5x- ( p ) e-p5x2/215rl+l5ri/P 

' ' 2p 27riOrl 
0 

IT 15 I/ -12 ( -2m I 2 · 2 I · ) (1- e-2
m 

7 P) exp . [(x + xt ) cosh(lorl/p)- 2x · xt J 
m=1 smh(lori/P) m m m m 

with x- being the Fourier transform of P+· It is a simple matter to check the 

following Gaussian integral results 

f 1>Xdx- F(r,, x-, X'; T, x-, X) (- 2i a:-) F(r, X-' X; Ti, xi' Xi) 

= F(r,, xj' x,; Ti, Xi' Xi) if TJ > T > T+i (3.45) 

(3.46) 

and F1 is the propagator from one point to the reflection of another in the plane at 

time T. The insertion required is different to the conformal gauge case but should 

be expected since in the light cone gauge -i8/BX- = 1f_ = x+. With this it is a 

simple matter to extend our arguments to the light cone gauge. 

3.6 Gauge fixing and BRST invariance. 

In this section we show that our ghost system follows from a choice of gauge equiv­

alent to the usual choice .Jijgab = ..jggab(T), as mentioned earlier. We begin by 

showing this with Faddeev Popov gauge fixing and then investigate the BRST sym­

metry. 

Our gauge fixing conditions are 

= 0, (3.47) 

= 0. (3.48) 

These conditions are equivalent to the usual choice .Jijgab = ytggab(T) as we now 
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show. A variation of the metric can be decomposed into a Weyl scaling, a reparametri­

sation and a modular transformation as 

bp 9ab + \7 (a{J~b) + fJT 9ab,T, 

-y'gP(b~)ab + y'g fJT Xab 

(3.49) 

(3.50) 

where xab is the traceless symmetric part of gab,T· The first constraint above implies 

(3.51) 

since the inner product is not zero. The second constraint gives 

(3.52) 

by the boundary conditions on {J~a (for the closed string we take {J~a to be orthogonal 

to the CKV to get a good co-ordinate system). Inserting into (3.50) we have 

(3.53) 

as claimed. We now compute the Faddeev-Popov determinant. Define the determi­

nant ~FP by 

(3.54) 

where'D( is the measure on the cliff xWeyl group. This and ~FP are invariant under 

the action of(. Suppose that given g the constraints have a solution ( ~ (p, ~a) and 

T. Expanding about this solution gives 

(3.55) 

We can integrate out the modular parameter and represent the delta functional by 

an integral over a vector Lagrange multiplier A a, 

(3.56) 

The factor of one half multiplying the action is for later convenience. In the critical 

dimension the integral over the Liouville mode bp contributes a volume (cancelling 

the corner anomalies if necessary). As usual we invert the expression for ~FP by 
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replacing bosonic with Grassmann variables. Following this and an integration by 

parts we have 

6..Fp(fl) = (hI Xab,T) I'D(/, c) exp (~I d2ayfg P( 'Y)ab P(c)ab). (3.57) 

where Ia, ca are Grassmann vectors obeying the Alvarez boundary conditions. We 

now wish to insert our expression for "1" into the Polyakov integral and carry out 

the integration over the metric. Since we known our gauge choice is equivalent to 

the usual choice we have two expressions for "1", 

1 = I'D( I dT 6..~p0( ../99- yfgg) 

=I'D( I dT 6..pp(g, T)o[(hab I gab)]o [t>t ( ~s)] 
(3.58) 

where 6..~p is the standard b-e determinant. By changing variables bl. = P1 in the 

expression for the FP determinants where bl. is orthogonal to the zero mode of f>t 

we find 

(3.59) 

and we can carry out the integration over g in our functional integral using the 

usual, single, delta function, 

(3.60) 

We now turn to the BRST quantisation of the string. The BRST action for our 

constraints is, setting a' = 1/27r, 

SBRST =~I d2a..j9gabaaxabx + ~OQ [I d2ayfg j>t ( ~grs) aflanb] 

+ ~OQ [r I d2a..j9gabhab] 

(3.61) 

where 'Ya(a, T) and r are antighosts. The nilpotent BRST transformations are 

(3.62) 
0 ,.p- iBa 

Q r - ' 

oQr = iB, oQB = 0. 
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Inserting these transformations into the action above we find, after an integration 

by parts, 

(3.63) 

Integrating over the Lagrange multipliers in the final term imposes the gauge fix­

ing constraints (3.47). To find the BRST transformations which result after this 

integration we should solve the equations of motion of gab. Notice that the first 

two terms in SsRST have exactly the g dependence of the standard Faddeev-Popov 

action, 

~I d2a.,j9gabaax abx +~I d2aJ9 babP(c)ab 

with bab replaced by P, + hf. The equations of motion for g therefore imply 

(3.64) 

where Tis the usual energy momentum tensor of the string with bab = F(!)ab+fhab· 

The variations of 1 and r can be disentangled by multiplying both sides by h,ab, since 

F(!) is orthogonal to h. However, after imposing the constraints any dependence 

on hab vanishes from the action, which becomes 

The BRST transformations reduce to 

OQX = CaOa X 

OQCa = cb Ob ca 

The energy momentum tensor is T = tx + fgh, 

2t~ = oaX obX- ~.9abor X orX, 

(3.65) 

(3.66) 

(3.67) 

We have a non-local transformation for the antighost. Just as is found in the stan­

dard case the transformation for the antighost is not nilpotent, 
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where £ is the Lagrangian density in (3.65). On a manifold without boundary, or 

a manifold with boundary where the Alvarez boundary conditions hold, we recover 

nilpotency when the ghost ca is on shell, for then pt Pc = 0 {::::::::} P(c) = 0. 

Although the BRST transformation is now non-local, it has the natural inter­

pretation of generating reparametrisations of the boundary as we now describe. 

Consider the string field propagator written as 

(3.68) 

where SsRsT is as in (3.65) and 51 is a source term which generates boundary values 

of the ghosts, _1/ 2 r;_ hth a a hth 
SJ- 2 d ay g (P P"'f)accl + "'fci(P Pc)a· 

In the above, c~1 obeys f>t f>c~1 = 0 and equals the boundary values of the ghosts on 

the Dirichlet sections of the worldsheet, 

and similarly for "'fa. The integration variables obey the boundary conditions (3.26) 

and c~1 = "'f~I - 0. After repeated integration by parts we can write the source term 

as 

SJ = J d~b (f>"Y)abCbhd + "Y~hd(Fc)ab· 
bhd 

The bulk action SsRST is invariant for arbitrary boundary values of X, c, "'(, 

(3.69) 

using the ghost boundary conditions naca = 0. The source term 51 does not respect 

this symmetry, so we are led to expect a Ward identity resulting from a shift in 

integration variables corresponding to (3.66), 

(3.70) 

where the expectation value is defined as 
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so the propagator itself is (1). To simplify the remaining presentation we now fix 

the gauge ?Jab = Dab and absorb dependency on the modular parameter into the co­

ordinates, so a E [0, 1r] and T E [0, T]. Consider calculating the expectation value of 

the ghosts away from the boundary. Each ca ('·t) is contracted with ''/ (ca) in the 

source term and brings down the classical field, 

(3.71) 

As T ---t 0, 1 this gives the boundary values of the ghosts. In general an expectation 

value separates into quantum and classical pieces. In addition to the usual short 

distance divergences the quantum pieces will contain finite, non-zero contributions 

from the image charges i.e. the corner anomaly contributes to the Ward identity. 

To illustrate, the contribution to (3.70) from the first term in (3.69), at T = E > 0 is 

(r5Q Jda(P"!)aTcfJ =- Jda(X'X+(P"/)p(a87)cP+(8p(P"!)a7 )cP)c~1 (a,E). (3.72) 

The two boundaries contribute similarly so we will focus on T = 0, and let a subscript 

"b" denote boundary value. We will deal with the co-ordinate term first. The X 

functional integrals are carried out by splitting X into classical and quantum parts, 

X= Xc1 + Xq. The expectation value becomes 

-J da c~1 (a, E)X~1 (a, E)Xc~(a, E)+ c~1 (a, E)( X~( a, E)Xq(a', E)). 

To calculate the quantum contribution from the corners, we again go to the upper 

right quadrant with Dirichlet conditions at T = 0 and Neumann conditions at a= 0. 

The Green's function, F, for Xq on this geometry is given by the method of images, 

F(a, r; a', r') = F0 (a, r; a', r')+F0 (a, r; -a', r') -F0 (a, r; a' -r') -F0 (a, r; -a', ~r') 

(3.73) 

in terms of the free space Green's function 

1 
Fo(a, r; a'r') =--log ((a- a') 2 + (r- r') 2

). 
47r 

(3.74) 

The contribution we are interested in comes from the final term in (3. 73), as this is 

the only term which sees both reflections and hence the corner. Taking a = a' and 

T = r' = E this term contributes 

1 a E 1r5(a) 
-- --t ---- as E ---t 0. 

47r a2 + E2 a 2 + E2 4 a 
(3.75) 
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Since each corner contributes equally and independently we know that the expecta­

tion value on the strip will be given by 

( X' (a, O)X (a', 0)) = _! £5(a) - ! r5(a- 1r) 
q q 4 a 4 a-1r (3.76) 

per spacetime dimension. This leads to a quantum contribution to the Ward identity, 

lnd u( ) ( 18(a) 18(a- 1r)) _ 1 ( u '(O) u '( )) - a c a - ----- -- c b + c b 1r 
b 4 a 4 a-1r 4 ' 

(3.77) 

0 

where we have applied L'Hopital's rule since cu(o) = cu(1r) = 0. As we take E ~ 0 

the total contribution from the co-ordinates to the Ward identity is 

(3.78) 

The remaining classical field can be written as a derivative acting on the propagator 

(1) with respect to the X boundary data, so we have the operator expression 

(3.79) 

per co-ordinate. This looks like a reparametrisation apart from the terms coming 

from the corners. We will return to these extra terms in Chapter 5. 

All that remains is to calculate the ghost contributions from (3.69) to the Ward 

identity. Recall that we found the total contribution to the corner anomaly in 

Det pt P vanished using our ghosts, cancelling between the a and T components. 

The classical ghost terms in (3.72) are (we have re-ordered some terms) 

(3.80) 

The quantum pieces are 

-Ida ( Prp(uaT)cP + (8p(Pr)uT)cP) c~1 (a, E) 

=-Ida ( ru'iF + "('e + -yu cu' + 'YT cT' + ~,u cu +~IT CT) C~t(a, E). 
(3.81) 

The Green's function for pt P on the upper right quadrant is given by 

(3.82) 



3.6. Gauge fixing and BRST invariance. 75 

which is constructed using the method of images, 

( I I) 1 ( I I) 1 ( I I) Fuu a, T; a , T = 2 F0 a, T; a , T - 2 F0 a, T; -a , T 

1 ( 1 1) 1 ( 1 1) - - R0 a T a - T + - R0 a T' -a -T 
2 ' ' 2 ' ' ' ' 

( 1 I) 1 ( I I) 1 ( 1 I) F77 a, T; a , T = 2 Fo a, T; a , T + 2 Fo a, T; -a , T 

1 ( 1 1) 1 ( 1 1) - -R0 aT a - T - -R0 aT -a -T . 
2 ' ' 2 ' ' ' 

(3.83) 

Following the same argument as we used for the co-ordinates it is a simple mat­

ter to check that the corner contributions once again cancel between the a- and 

T-components. 

Finally, the second term in (3.69) contributes only a classical piece, 

(8Q fda"/~ (Pc)u7 ) = ~fda "fu (87 (Cu Cu
1 + C7 en) = -fda 2C~1 "f~C~I + C~ "/~ 1 C~l' 

(3.84) 

since for the quantum pieces (cc) = 0 as the ghosts anti commute. We can turn this 

into an operator acting on the propagator using 

•(f 8 
'Yci = 8cu' 

b 

. 8 
Xc~ = -2 8Xb' (3.85) 

where the factors come from the conventions in the action. Collecting all the terms 

we find the Ward identity 

(3.86) 

This operator describes the transformation of 25 scalars, X (X 0 dr~ps out since 

its tangential derivative is zero on the boundary) and the tangential component 

of a vector 'Yu, under a reparametrisation of the boundary generated by the ghost 

cu, and quantum corrections. The nonlocal BRST transformations correspond to 

local reparametrisations of the boundary as claimed. Note that demanding BRST 

invariance here does not put the string field on shell, as the reparametrisations are 

only a subset of those described by BRST in the usual formalism. 



Chapter 4 

Interacting field and string field 

theories 

We begin by showing the equivalence of our diagrammatic methods and covariant 

methods in interacting scalar field theory. Since the string field interaction is, in 

various guises, cubic, we will consider here q} theory. We will then describe an 

alternative method of constructing field theory functionals which can be generalised 

to non-locally interacting field theories and can be used, as in [50], to construct the 

string field vacuum functional. 

4.1 Interacting correlation functions 

Using the functional integral definitions in Section (2.1) the first order vacuum wave 

functional and Schrodinger functional for ¢3 theory are 

'P2 'P2 'P2 t 

;,. '·o f!ii i y i ··. .. 
3!1i p/) ....... '0.. 0 + 3!1i ··~··· 0 

'PI 'PI <{JJ 
A B 

'P2 'P2 'P2 t 

(J .. i 
............. 

. 'b <b c.;{ 
--~- ······ .. J ....... ... 

3!1i . +i -i 
('''··.} 
·· ....... ·· 
6 _ ___._, __ o 

++ ........ r····... ) 3.1i d 0 ·a ____ o .. • ··. o ____ o 
'Pl 'PI 'PI 'PI 

c D 
(4.1) 
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(4.2) 

The gray letters will be used to reference the diagrams. We will calculate the simplest 

non-trivial correlation function 

00 

= -iAn? j dDzdz G0(xt, 0; z, z)G0(z, z; x2 , t)G0(z, z; x3, t) 
-oo 

(4.3) 

In the Schrodinger representation this is given by the functional integral 

Excluding the loop diagrams, which can only contribute disconnected graphs and 

are of the wrong order in 1i, we must include all of the diagrams in ( 4.1) and ( 4.2) 

to calculate (4.3), not just diagram B which pictorially matches the desired result. 

The reason is that, besides being of the correct order to contribute, even though the 

Dirichlet propagators may not end on a boundary, their boundary conditions mean 

they can still see it, and can contribute to the free space result. 

Inserting expressions (4.1) and (4.2) into (4.4), carrying out the functional inte­

grals and keeping only the order A terms, the diagrams A to E contribute the set 

of diagrams shown below (excluding loops or disconnected pieces generated by the 

integrations). To illustrate we will give the calculation for diagram C explicitly, and 

state the results for the remaining diagrams. Below, the numbers 1 to 3 indicate 

the spatial positions of the external legs and the thick gray line will be shorthand 

for K-1 which we met in Chapter 2. 

We now begin the computation of diagram C. In this case the <p1 integral does 

not see the contribution from the interacting Schrodinger functional, and is Gaussian 

with the insertion <p1 (xi), 
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"'
2 

___ t "'' "''o 

:.: - 2~ 0,.--·· .. ~ - 4~ 0 ) 
-7----0 ' 'i 0 

"'' "'' "'' 
"'

2 t 'P2 "'2 t 'P2 'P2 0 

~ 1 o exp (2~ b,,.,_/d o- 4~ c=J ) 
......._, 

The r.p2 integral becomes 

···a. 6 .r/ ¢ 
······ .. J......... ~ 1 

-----r-' .....,.-o ....._, 

To obtain a connected graph we must contract r..p2 , r..p3 with the 3 point function and 

the remaining 3 point function field must be contracted with the field attached to 

x 1. There are 3! equivalent ways of doing this, so the result is 

c 
0 0 0 3 ··... 2 ' .. · . 

o .... ,'··· ... J ... -··········a·· ? 
~ 1 
' 

Using the method of images the propagator G v attached to one boundary is 

X oo Ix tz+ 2+nt =-L: 
n=O 

(z,z) ...... o .. · 
____ o 

z 

z z 

I-t-2nt 
X (4.5) 

From which the gluing properties tell us that the two types of terms we encounter 

in diagram C are 

C\ t 
X oo Ix tz+ 2-nt 

= -i L: 
n=O 

_____ o 
z 

and 

z z 

I-t-2m~ 
X (4.6) 
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00 

= -i:L 
n=l 

z 

Defining the following sets of diagrams, 

00 
x; t + 2nt 

Hi(z,z)= Eoi-z-
z 

we can write the contribution from diagram C as 

t 

i)../12
/ dzj dDz F1(z, z)H2 (z, z)H3(z, z). 
0 

79 

X 

(4.7) 

(4.8) 

(4.9) 

The calculation of the remaining diagrams A to E are similar and the results are 

below. There is no content in the length of the K- 1 lines which varies in the 

diagrams only for clarity. K-1 will appear on the lower boundary and the equal 

time propagator on the upper boundary if we perform the r.p 1 integral first, and vice 

versa if we perform the r.p2 integral first. 

Diagram A contributes 

A 
C\ C\ 

2 ~ 3 ? 
~ ,..a···-"'·'····o ... 
0 CJ 

-in? 

C\ C\ 
3 ~ 2 ~ 

! l $ c;:{···"'· ... b 1 

v·' ···a 

3 '? 
i 
9 

C\ C\ 
2 <i> ~ ~ 

.
_.G{) ..... ,o... ~ ~ 1 

: : 
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Written in terms of the sums Fi(z, z) and Hi(z, z) this is (the order of the terms is 

respective to that in the figures above) 

t 

i>..n2jdzj dDz(G0 (x1 , 0; z, z)- G0 (x1 , 2t; z, z))H2(z, z) (H3(z, z) + G0 (z, t; x3, 0)) 

0 

B contributes 

B 

C\ C\ 
2 'o p/3 

+ (2 ++ 3) 

C) C\ C\ 

2 
....... 

+ih y· 
2 <..o.,·,./...0... 3 f f 

6 <? <? 1 ¢ 1 u 

equivalently, 

t 

-i>..n2j dzj dDz ( G0 (x1, 0; z, z) -G0 (x1 , 2t; z, z) )H2(z, z)H3(z, z) 

0 

Diagram D gives 

+ (F1(z, z) + Go(x1 , 2t; z, z))H2(z, z)H3(z, z) 

+ F1 (z, z) (H2(z, z) + G0 (z, z; x2, t) (H2(z, z) + G0 (z, z; x2, t) H3(z, z) 

+ (2 ++ 3). 

D 

C\ C\ 
0 3 2 0 

+in2 ~ ..... o······~········~················e..... ~ 
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which is 

t 

-i).fi2! dzj dDz (F1 (z, z) + G0 (x1 , 0; z, z)) (H2 (z, z) + G0 (z, z; x2 , t)) 
0 

81 

x (H3 (z, z) + G0 (z, z; x 3 , t)). 

Before calculating the diagrams coming from the interacting vacuum functional it 

is worthwhile adding the above terms up to find, with no calculation other than 

cancellations, that the total contribution from the interacting Schrodinger functional 

and the free vacuum is 

t 

-i>..n2j dzj dDz G0(x1, 0; z, z)G0(z, z; x 2, t)G0(z, z; x 3, t). 
0 

(4.10) 

This is the correlation function we were looking for (with the correct coefficient) 

but the vertex is integrated in time only over the interval [0, t]. What remains must 

come from the vacuum. The contribution from the interacting vacuum functional 

w0 [cpi], diagram E, is 

E 

The upper boundary (at time t) is broken as a reminder that only the outermost 

Dirichlet propagators vanish on both boundaries (i.e. come from the free field 

Schrodinger functional), whereas the inner three propagators vanish only at x0 = 0 

(come from the free field vacuum). This is 

0 

-i>..n2 j dzj dDz G0(x1, 0; z, z)G0(z, z; x 2, t)Go(z, z; x3, t) 
-00 

There is a contribution from the vacuum w0 [cp2], which we call term F, 

F 

p ... 0 ..... Q 
·o... o ... 0 o ······ ....... J ... ··········· I 

d> I 
-+-­

"\,._./ 

(4.11) 
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Again, only the rightmost propagator comes from the Schrodinger functional. This 

is 
0 

-i>..n? I dzl dDz Go(x1, z; z, t)Go(z, z; x2 , O)G0 (z, z; x3 , 0). (4.12) 

-oo 

Changing variable 

z--+ -z + t (4.13) 

in F we have a total contribution of 

0 

-i>..n2 I dzl dDz G0 (x1, 0; z, z)G0 (z, z; x2 , t)G0 (z, z; x3 , t) 
-oo 

00 

- i>..n21 dzl dDz G0 (x1, 0; z, z)Go(z, z; x2 , t)G0 (z, z; x3 , t) 
t 

(4.14) 

This is again the integrand we want, but we are missing the integral over the re­

gion [0, t]. This missing piece is precisely what we found to be contributed by the 

Schrodinger functional in ( 4.10). 

We have seen that for this simple scattering process the interacting vacuum wave 

functional gives almost the correct result, up to some 'small' (in the sense that the 

remaining term is integrated over only a finite time) missing piece, and that this is 

given by the Schrodinger functional. 

4.2 Reconstruction of the vacuum wave functional 

The aim of this section is to use diagrammatic methods to show that the interacting 

vacuum wave functional for q} theory can be constructed from the requirement that 

it must generate known results for vacuum expectation values (equal time correlation 

functions) through 

( ¢>(x1, 0) · · · c/>(Xn, 0)) ( 0 l¢(xl, 0) ... ¢;(xn, O)l 0) 

=I 'De/> c/>(xl) · · · c/>(xn) l'llo[¢>]i2. 
(4.15) 

The gluing property will play a central role. We will build the vacuum wave func­

tional perturbatively by order in n and ).., using the known diagram expansion of 
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n-point functions (A closely related approach to investigating the diagram expan­

sion of the vacuum wave functional for ¢4 theory has been considered in [38]- this 

is essential the reverse of the calculation we present here). 

The free theory vacuum wave functional has the form 

Wo[¢] = exp (- 2
1n J dD(x, y) ¢(x) r~(x, y)¢(y)) (4.16) 

for some function rg and must generate the free space propagator restricted to the 

boundary t = 0 via 

nG0 (x, 0, y, 0) = (¢(x, O)¢(y, 0)) = J 'D¢ ¢(x)¢(y)e- f 1/Jrgl/J/n = n(2 r~(x, y) r 1 

( 4.17) 

and we recover the result (2.15). 

If we consider interactions then the logarithm of the vacuum wave functional has 

an expansion not only in powers of). but in n also. We expand the logarithm as 

(4.18) 

where each of the r n has an expansion in powers of n, 

with their n dependence given by the superscript. There can be no correction to rg 
(defined in ( 4.16)) from the addition of interactions since this would give a leading 

order correction to the two point function, but we know that the first corrections 

are of order ).2 fi2 • 

(y, t) (y, t) (y, t) 

(~(y, t)~(x, o)) = n + n' ~ + n' 9 
(x, 0) (x, 0) (x, 0) 

(4.19) 

Keeping only rg in the exponent and expanding the other contributions to log W0 [¢], 

call this log w[¢], we can write vacuum expectation values as 

( ¢(x1, 0) ... cjJ(xn, 0)) = J 'D¢ e- fljJrglfJ/Ii L ( 2 log~[¢])m ¢(x1) .. · cjJ(xn), (4.20) 
m 
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so in general we have to contract ¢>(x1 ) ... ¢>(xn) with the ¢> in the diagrams con­

tributing to log '11 using the inverse of 2rg which is the equal time propagator in free 

space. 

To identify the first interaction vertex rg consider the (connected) three point 

function 

rg 

.ffi..o = j1J¢ ¢(xt)¢(x2)¢(xJ)(3,~ <P~<P ) exp (-A <Pd 0
) 

X 1 X2 X 3 (4.21) 

The box represents the kernel r~, which has three arguments, see (4.18). When we 

perform the integral the three external fields are contracted with the three fields 

attached to rg using the equal time propagator, which must give us the usual three 

point function restricted to the boundary. This is represented by the first line in the 

equation below. 

-2~0= 
rg 

-2i~ 
~0 

ro 
3 

~0 

( 4.22) 

In the second line we invert one of propagators attached to rg using 2rg to give 

the third line. The factor Sg(t), the sign of the vertex position t, emerges here 

because the gluing rules are dependent on the positions of all the endpoints of the 

propagators we are gluing. In the final line we have repeated these steps to remove 

the remaining two equal time propagators from rg. A sign remains because the 

vertex is cubic. The signs do not appear in the ¢>4 calculations in [38] and [51] 

because of the even power of interacting fields. We trust the notation is not too 

confusing, the vertex is integrated over all space with the factor Sg(t) included in 
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the integrand 1. Keeping track of the combinatoric factors the explicit expression for 

the vertex is 

r:(x, x,, x,) =->.I dt I [ D ~:~~e-;k;.x; l (2tr)DJ(kJ + k,+ k,) 

X e-i(E(k)l +E(k)2+E(k)3)1t1. 

All the tree level contributions r~ can be similarly derived from considering the tree 

level n-point function at equal time, as we have done for n = 2, 3 above. 

Using r~ we can determine the tadpole r~. The tadpole graph is of order )..fi, 

so the only terms contributing are r~ and r~. Expanding to first order in ).. we 

calculate 

0 r~ 

1i ___l__o = j 'De/> ¢(x)(W ! +;,~sg(t) .ffi..o 
X 'I' r/> r/> r/> 

(4.23) 

To make sense of the final diagram we appeal to the gluing property with appropriate 

conditions t 1 , t2 :S 0, 

J dD(x, y) ( 2! G0 (x, x1 ; y, t)) G0 (y, 0; z, 0) ( 2 !, Go(z, t'; x2, t2)) lt'=t=O 

= -GJ(XI, X1; X2, t2) 

(4.24) 

so the effect of gluing two free propagators with the inverse of 2f6 on the boundary 

is to produce the image propagator. The external leg becomes a free propagators 

and the internal lines become an image propagator loop, denoted by an I, 

X 

(4.25) 

1 In fact, since the derivatives on the propagators induce such signs as well, the signs do not 

appear explicitly, as can be seen in the given example. 
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The factor of 1/2 on the left is the symmetry factor implicit in the diagram on 

the right. Loops of image and free propagators are unequal, so this term must be 

removed by rq. Inverting the equal time propagators we are led to 

X X 

(4.26) 

Let us now compare this with (4.2). The Feynman diagrams there are con­

structed from G d(o) and the interaction vertices are integrated over the half space 

t < 0. The first order three field kernel is 

0 

-i).. J dt J dDy Gd(o)(t, y; 6, x 1)Gd(o)(t, y; 6, x2)Gd(o)(t, y; 6, x3). ( 4.27) 

-oo 

The derivative of Gd(O) on the boundary obeys a Neumann boundary condition, so 

Gd(o) can be replaced by 2G0 . Now write this expression as two of the above terms 

each multiplied by a half, and in one term change variables t ---+ -t. The kernel 

becomes 

0 

i).. J J D · · · - 2 dt d y 2Go(t, y; 0, x 1).2Go(t, y; 0, x2).2G0 (t, y; 0, x3) 

-00 

00 

+ i; J dt J dDy 2G0 (t, y; 6, xi).2G0 (t, y; 6, x2).2Go(t, y; 6, x3). 

0 

( 4.28) 

Finally we absorb the factors of 2 into the time derivative, and let a bullet • indicate 

-28/&t, so that the kernel is 

0 

i).. J J D • 
0 

• 2 dt d y Go(t, y; 0, x 1)G0 (t, y; 0, x2)G0 (t, y; 0, x3) 

-00 

0 

i).. J J D • • • -2 dt d y Go(t, y; 0, x 1)Go(t, y; 0, x2)Go(t, y; 0, x3) 

-oo 
(4.29) 

-oo 

- ro = 3• 
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So the Dirichlet Feynman diagram is equivalent to our construction using vacuum 

expectation values. This is more clearly represented by 

( 4.30) 

in agreement with our result (4.22). Similarly the tadpole in the vacuum wave 

functional obeys 

(~) = ~Sg(t) 0 -~Sg(t) 0 I 
_ _.$....__0 ~0 ~0 

( 4.31) 

in agreement with (4.26). 

4.3 Non-local interactions 

The interaction Hamiltonian of local <P theory is 

( 4.32) 

Consider now the case when the interaction is local in time, but non-local in space 

so that the interaction Hamiltonian can be written in terms of some kernel W, 

3 

A J IT dDxj W(x; x1, x2, x3)¢>(x1, t)¢>(x2, t)¢>(x3, t). 
j==l 

(4.33) 

The calculations in the previous sections treated the spatial co-ordinates on an equal 

footing as standard covariant methods, only the time direction is singled out for 

special attention. As such, the calculation can be repeated for an arbitrary spatially 

non-local interaction. 

Given this and our gluing property for string fields we may postulate any string 

field theory interaction which is non-local in the spatial co-ordinates and ghosts, but 

local in time, and where the fields depend only on t and the set B defined in Chapter 

3. For example we could postulate an interaction very like that in the light-cone 
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gauge [16], with worldsheet T replaced by spacetime t, 
00 J dt J 'D(B, B1, B2)<I>[B(a), t]<I>[B1 (o-1), t]<I>[B2(a2), t] 

-00 (4.34) 

where all three fields interact at the same time and the parameters along the string 

are 

(4.35) 
o-2 = 2a - 1r, 1r /2 ::; a ::; 1r 

so that each string has parameter domain 0 ::; a ::; 1r. If the free Hamiltonian was 

the inverse of G(B2 , t2 ; B 1 , tl) we could repeat any quantum field theory argument in 

this theory. However, this approach removes the X 0 oscillators from the theory from 

the outset, and it is unclear how to justify this nor how amplitudes in this theory 

relate to known results. Since non-locality in one direction does not spoil the UV 

properties of string interactions (as in the light cone) [17] this may be a worthwhile 

avenue to explore, but here we will stick to conventional string field interactions. 

In the next section we will construct the string field theory vacuum. To ready 

us we describe the construction of the vacuum wave functional for a quantum field 

theory with an interaction non-local in time. If we try to apply the functional 

integral prescription given earlier we do not obtain the correct expression for the 

vacuum wave functional. The problem is that we are trying to write the vacuum 

in terms of field histories in the half space t < 0, but the non-local Hamiltonian 

depends on the field at all times. For similar reasons, the Schrodinger functional 

integral description also fails. We will instead use the reconstructive arguments of 

the previous section. 

Tree level, first order 

The free theory vacuum wave functional is unchanged. Let the non-local cubic 

Hamiltonian be 
00 3 

A J IT dtj W(t; tl, t2, t3)¢(ti)¢(t2)¢(t3). 
J·=l -oo 

(4.36) 
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The vertex may be local or non-local in space, so we will suppress the dependence on 

the spatial co-ordinates and will continue to do so whenever possible. Accordingly, 

we will use the notation 

(4.37) 

for the free space propagator. A covariant field theory calculation implies that the 

lowest order contribution to the three field vacuum expectation value is 

00 00 3 

( 0 icf>(x, O)cf>(y, O)cf>(z, O)i 0) = -i>.n2 J dt J u dti W(t; t1, t2, t3) 
-oo -ooJ-

X L Gx(O; tl)Gy(O; t2)Gz(O; t3) 
perms of tj 

(4.38) 

We get a sum over permutations since any external leg can be contracted to any 

argument of the vertex kernel but the ways of contracting them will not, in general, 

be equivalent. Alternatively, we can abandon the explicit kernel W and think of this 

as some Feynman diagram which ties together three legs ending at t = 0, in some 

way: 

L: 
perms oft; 

X y Z (4.39) 

Introducing an unknown diagram r into the vacuum wave functional, 

( 4.40) 

we require the above expectation value to be given by 

( 0 lcf>(x, O)cf>(y, O)cf>(z, O)i 0) = j 'Del> ¢(x)¢(y)¢(z)w5[¢], 

equivalently, 

L: =2~ E 
perms of t; perms 

X y z ( 4.41) 
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To identify r we can invert these equal time propagators as before. The result of 

applying this gluing to the left hand diagram depends on the signs of the tj, and 

tells us that our blob r is 

( 4.42) 

In terms of the interaction kernel W this means 

• 
00 3 3 

'llo[4>] = >l!~~[¢] ( 1- ;~ _£ dt Ddt; W(t; t~o t2 , ! 3) D isign(t;) 4> · G(0; t;)) ( 4.43) 

Notice the bullet over the 0 in the final factor, this is the time derivative with factor 

-2. We have used the shorthand 

( 4.44) 

This is analogous to the vacuum in the local cubic theory, except that we now have 

a product of signs of the arguments ti of the interaction kernel W. These signs are 

missing if we try to use the functional integral definition of the vacuum. 

One loop, first order 

This term and that which we constructed above are the sole contributors to the 

tadpole graph, 

( o 1¢>(x, o) I o) = I: 
perms oft; 

X ( 4.45) 

which is just the generalisation of 

_2_0 
X ( 4.46) 
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in local cubic theory. Calculating this expectation value with the vacuum wave 

functional we constructed above gives 

(4.47) 

so we include in the vacuum wave functional a term which cancels this to give the 

correct result. Introducing a new term, carrying out the functional integral and 

inverting the external equal time propagators as in the previous subsection the first 

order one loop term in the vacuum wave functional is 

3 

L isign(ti) 2: TI isign(tj) 
perms of ti perms of ti j=l 

X 

( 4.48) 

This is very similar to the result we found for local theories. 

4.4 The vacuum of string field theory 

Let us repeat the above arguments to construct the string field vacuum. As already 

mentioned, the free field vacuum is 

( 4.49) 

We propose the lowest order expansion 

(4.50) 

We would then try to recover the three field vacuum expectation value as we did 

before we find the relation 
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X(a) Y(a) Z(a) (4.51) 

The diagram on the left is the three field vacuum expectation value, constructed 

with some three string vertex, or via the Polyakov integral [2] on a manifold with 

the topology of a disk with marked sections on the boundary (for clarity only we 

will assume that this three point function is symmetric under permutations of the 

data on its legs). 

As before we invert the equal time propagators on the right hand side of the 

above equation, and the left hand side becomes the kernel we are trying to identify. 

The first order cubic term in the vacuum wave functional is therefore 

( 4.52) 

Our gluing rules give us the result of joining propagators when each end lies on a 

constant time surface, they do not apply when one end lies on a time X 0 (a) for 

non-trivial sigma dependence, nor how to attach more general surfaces together. 

For this we need Carlip's method, which sheds some light on what the above kernel 

( 4.52) is. 

In [47] it was shown that to correctly sew the moduli spaces of two worldsheets 

the inverse propagator (first quantised Hamiltonian) should be attached to one of 

the boundaries being sewn. This removes a redundant length parameter when we 

integrate over all shared field arguments on the boundaries being sewn which would 

otherwise give a divergent factor. 

Let T [ t~, t~, t~] is the three string amplitude with external legs ending at curves 

X= Xi(a) and X 0 ....:... t~. Using the simple identity 

f(O) =Ids f(s)6(s) =I dsdq J(s)G- 1(s, q)G(q, 0). 

we can write the three field expectation value as 
3 3 

T[o, o, o] =I II dtjdtj r[t~, t~, t~] II c- 1 (t~, ti)G(ti, o) 
j=l i=l 

(4.53) 

(4.54) 
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Now when we attach the inverse of the equal time propagator the gluing rules imply 

that the vacuum wave functional is 

In our case the inverse propagator is that part of the first quantised string theory 

Hamiltonian which depends on X and ton the boundary of our worldsheet. We can 

represent the vacuum functional as 

) 
(4.56) 

where we have written H in place of the inverse propagators for clarity. As before, 

the first order one loop term in the vacuum wave functional follows, and is 

3 
-~ n isign(tj) 

j=l 

(4.57) 

We have described, in analogy with quantum field theory, how to construct 

the string field theory vacuum wave functional. Note that we have not given the 

explicit form of the three string vertex. That choice is arbitrary, the required kernels 

could even, theoretically, be computed with the Polyakov integral on a the relevant 

manifold. Our construction applies to both open and closed strings. 

Although it is a lengthier task, it is not especially more difficult to reconstruct 

the Schrodinger functional of quantum field theory using a similar approach, and 

the generalisation to string field theory will follow. We would propose the first order 

expansion 

S[¢2, r/>1, t] = srree[¢2, r/>1, t] ( 1+¢2¢2¢2S(3'0>+¢2¢2S(2'1)¢I+¢2S(1,2)¢I¢I+S(o,3)¢I¢I¢1) 

(4.58) 
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which includes four unknown kernels S(i,j). There are four possible three field am­

plitudes which must be reproduced by a functional integration with one instance of 

the Schrodinger functional, 

( 0 l¢>(x, t)¢>(y, t)¢>(z, t) I 0) 

( 0 l¢>(x, t)¢>(y, O)¢>(z, O)l 0) 

( 0 l¢>(x, t)¢>(y, t)¢>(z, O)l 0) 

( 0 l¢>(x, O)¢>(y, O)¢>(z, O)l 0) 

giving us four simultaneous functional equations with which to determine the kernels 

S(i,j). 



Chapter 5 

The field momentum 

representation and T-duality 

In this chapter we will describe an alternative representation of the state space of 

scalar quantum field theory which when generalised to string field theory reveals the 

effect ofT-duality on the string field Schrodinger functional. This material expands 

on the discussion in [52]. Finally we present our conclusions. 

5.1 Time dependence in the field momentum rep-

resentation 

We work in the remainder of this thesis in Euclidean space and in a basis in which 

the field momentum 1r = ¢ is diagonal. For the scalar field, 

( 1r lir(x) = n(x)( 1r I, (5.1) 

We have returned to setting fi = 1 since all calculations in this chapter will be of 

the same order. The ¢-dependence of the states is made explicit by writing 

(5.2) 

where ( N I is the Neumann state annihilated by n. This representation can be 

viewed simply as a functional Fourier transform on the space of state functionals, 

w[n, t] :=I 1J¢ exp (i I dDx n(x)¢(x)) w[¢, t] 

95 

(5.3) 
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but there is more to learn by working from first principles. The free field vacuum 

wave functional is 

'llo[7r] = (7rl'llo) = (Nie-if he-Iitl'llo) 

= I'D¢> exp ( - SE[¢] - i I dD r,i>{x)7r{x)) lf(x,O)=O 

= exp (- ~ J dD(x, y)7r(x)Gn(o)(x, 0, y, 0)1r(y)) 

where the propagator Gn(o) obeys Neumann conditions on the boundary at t = 0. 

A dashed line will represent a propagator with Neumann conditions as the dotted 

line did for Dirichlet so we write 

( 
71".. .; 111" 0) Wo[7r] = exp - ~ , 

(5.4) 

As in earlier sections, the vacuum wave functional can be reconstructed without the 

definition above. Computing G0 at equal times as a vacuum expectation value we 

find 

I fJ fJ 
G0(x, 0; y, 0) = ( <f>(x, 0)</>(y, 0)) = - 'Ih \llo[7r] f11r(x) b1r(y) 'llo[1r] 

( 

1f 1fo) 
==} \II o [ 1r] = exp \..__) 

(5.5) 

and so on beyond the free theory. The two above expressions for the vacuum are 

equivalent, as can be seen from the method of images, 

(5.6) 

The Schrodinger functional now describes imaginary time evolution. It is defined 

by an expression analogous to (2.1), 

S[1r2, t; 1r1, 0) = ( 1r2le-Iitl7r1) 

= ( N le-if7r2tPe-Iiteif11"1,pl N) 

I ( J J ) I 
tP(x,t)=O 

= 'D</> exp - SE[<P]- i dD <P(x, t)1r2(x) + i dD <P(x, 0)1r1 (x) tP(x,O)=O. 

(5.7) 
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The result of the free field integral is 

S[1r2, t; 1r2, 0] = exp (- J J dDxdDy ~7rl(y)Gorb(y, 0, x, 0))1r1(x) 

- 1f2(y)Gorb(y, t, x, 0)1r1 (x) (5.8) 

+ ~1f2(y)Gorb(y, t, X, t)1r2(x)) 

where Gorb obeys Neumann, rather than Dirichlet, boundary conditions at x0 = t 

and x0 = 0, and there is no longer a time derivative on the propagators since this 

has been moved into the fields, 1r = ¢>. In terms of Feynman diagrams 

+ 
\ I ... ____ o 

--'----0 
1ft 

" I 

(5.9) 

The method of images with the free space propagator gives us the required boundary 

conditions, 

Gorb(Xf, tf, Xi, ti) = L Go(xf, tf, Xi, ti + 2nt) + Go(XJ, tf, Xi, -ti + 2nt). (5.10) 
nEZ 

The sum over images is written as a sum over paths by again compactifying the time 

direction on the § 1 /Z2 orbifold of radius t / 1r but without the minus sign weightings 

of the field representation. Therefore the field momentum Schrodinger functional is 

constructed from a sum over paths of particles moving on § 1/Z2 x JRD. 

The following calculations are similar to those in Sections 2.3 and 2.5, but are 

included for completeness. We will demonstrate the correct time evolution of the 

vacuum and the time dependence of the two point function. The free field integral 

evolving the vacuum between times 0 and t is 

j TI1riS[1r2, t; 71'1, 0] 'lro[1r1; OJ= 

1ft 1ft 
t 0 

1 " ... ) ( 1 \ I ) -2 I \ 
exp -

2 
, __ , 

0 0 
j TI11'1 exp ( -~ '' __ " 1 + 

----0 
1ft 1ft 

11"2 7r2 t 7r2 7r2 

= exp ( - ~ ', __ , 1 
) exp ( ~ 

---- 0 ---11.....--

K-1(x, y) 
0 ) 0 

X y 

(5.11) 
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The first three terms are the Schrodinger functional, the final term is the vacuum. 

This time the operator K and its inverse are given by 

K(x,y) = 
', = 4L --t-2nt 

........_ __ • 0 n>O _L 0 

I 

' 
X y - X 

(5.12) 

Again we can check that the inverse is correct, 

K-1(x, y) K(y, z) = 
X y 0 y 2t · z 2t z 4t 

(- 0 + Io )( Oo +Io +I+ ... ) 
X Y Z Y Y 

X X X 

&(x-z)
0

- =t> =t:' 
+ =t:t + =t:t + =t:t + ... 

X X X 

= 6(x- z) 

(5.13) 

The Schrodinger functional term to be contracted with K- 1 is 

t+2nt -t+2nt (2n+l)t 

I +2:I = 4 2: I 
0 n 0 n=O 0 (5.14) =2: _.....__o n 
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Finally, the Gaussian integral gives 

~2 ~2t ~2 ~2t 

\ I 1 \ I '-, -2 .... -., ___ o 

which again implies the correct result for time evolution of the vacuum, 

The two point function in the field momentum representation is 

The 1r1 integral is 

J 'D1r1 1r1 (y) exp ( 

=( 
____ t 

... - .. 
I \ + 
~-~0 y z 

11"2 
-__,..--t 

) exp (-! _ __.__o 
... - .. 

I \ 1 " .. ,0) -2 I 

~--~o ~--~· 
1rt 1rt 

99 

(5.15) 

(5.16) 

(5.17) 

(5.18) 
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and the final integral is 

7r2 
--,.--t 

I 1>1r2 1r2(x) ( 
,. ... 

1 ... - ... , 0)-1( 
0

) exp (- ' 
I ) I \ o+ 

... _ ... 
y z y z z 

t w w X t 

( ... - ... - ) -1 (2 \ I 
) -1 ,. ... 

I \ o+ I \ 
... _ ... 

0 0 
y z y z z 

y 2t 

~ !(-~ --.-- )42: 
W (2n + 1 )t w X t Io (-!V) ~L___!~--=-0 + __L_o n=O 

y z z z 

= (- =t) (- ~ u t) 
y 

-~ =t: = (1r(x, t)1r(y, 0)} 
y 

(5.19) 

In the final line, the dots on the propagator appear since we are correlating the field 

momenta 1r = cp. The prefactor is a result of our conventions; the minus sign is an 

artifact of Euclideanisation, as in (2.50), and the quarter cancels the four coming 

from the time derivatives, giving the correct two point function. This can be verified 

by using the field momentum vacuum functional to generate the leading term in the 

equal time two point function, 

(7r(x)7r(y)) =I 1>71" 7r(x)7r(y) \[lo[7r]2 

= (2Gn(x, 0; y, 0))-1 

X y 

=-~v 
(5.20) 

5.2 T-duality in the closed string Schrodinger func-

tional 

The string field Schrodinger functional in the momentum representation is 
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S[TI,, t; lli, OJ= Ns exp (- ~ 

rr, rr, t 
, , I I 

\ "-" I ... , ____ o 
I 
I + 

rr, 
I I 
I -2 

0 
II; 

101 

(5.21) 

for momentum string fields TI, and the double line represents the orbifolded propaga­

tor for either the open or closed string. The orbifold leads naturally to the question 

of what role T-duality plays. We now show that T-duality exchanges the states 

attached to the propagators with backgrounds in the dual picture, and vice versa. 

The closed string Schrodinger functionalisT-dual to the loop diagrams appearing 

in the normalisation Ns of the open string Schrodinger functional. We set t = n R, 

making the orbifold radius explicit, and use Poisson resummation and a change in 

modular parameter to convert the closed propagators into open loops. From (5.21) 

we can write the logarithm of the Schrodinger functional as 

(5.22) 

where Gt is shorthand for the free string propagator with boundary data XJ-Xf = t, 

and the sums are over the images, see (5.12) and (5.14). Applying the Poisson 

resummation formula 

(5.23) 

and changing modular parameter T-+ 1/T to represent the closed string propaga­

tors as open string loops we can write the Schrodinger functional as 

-~ "' TI1G - llf +"' TI·G - eimr/2n1 - ~ "' TI·G - TI· 2 ~ 1r Rn ~ t 1r Rn 2 ~ t 1r Rn t 
(5.24) 

n even n even n even 

where the sums impose the Neumann boundary conditions on the propagators, R = 

a'/ R and G is now viewed as an open string loop contribution. The new exponent 

comes from the resummation formula. 

The fields originally glued onto the Dirichlet sections of the closed string propa­

gator become an averaging over backgrounds, characterised by lli and TI 1, coupling 
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to the ends of the open string. These backgrounds, as they must be, are the same 

at each end of the string, for we can write the above as 

_ 1 '"' ( iAfdX
0 

) ( iAfdX0 
) log Sc1osed - -2 L...J Ili - e Il 1 G1rRn Ili - e IT1 (5.25) 

n even 

with Wilson line value A= (2R)-1 . Let us give an explicit example. We will focus 

on the co-ordinates. Consider the reparametrisation invariant boundary states 

(5.26) 

for qi,J constant p-vectors. These are pointlike states in p directions and Neumann 

states in 25 - p directions, 0 ~ p ~ 25. The closed string Schr6dinger functional is 

(5.27) 

with &q = q1 - qi. Since the open string runs from a= 0 ... 1r and the closed string 

from a = 0 ... 21r we must scale the closed string worldsheet to interpret (5.27) as 

an open loop. We include this in a change of modular parameter U := 27r2 fT. After 

this and the Poisson resummation we find 
00 

_ 25-p J dU 1 U rr ( -mU)-24 log Sclosed - -Vol U 26;-P e 1 - e 
0 U m=l (5.28) 

X L e- ~:~ n2 ( 1 - e i~rr e-~'!:~). 
n even 

Now consider an open string loop. The measure on moduli space is dU /U (this can 

be viewed as giving the logarithm of the trace of the worldsheet propagator). If the 

string has Neumann conditions at its endpoints in 26 ~ p directions (including X 0 ) 

and Dirichlet conditions in p directions, as for a string on a D(25- p)-brane then the 

trace over X gives the eta function and the factor (U- 112Vol)(25-P) from the 25 - p 

zero modes. The sum and remaining factor of u-112 come from the trace over X 0 

in the co-ordinate representation. We arrive at (5.28), if the term in large brackets, 

coming form the original boundary states represents an averaging over backgrounds 

of Wilson lines and D(25- p)-branes of separation &q. 
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5.3 T-duality in the open string Schrodinger func-

tional 

We interpret the open string duality as taking us from one Schrodinger functional 

to another with an exchange of boundary states and backgrounds. Poisson resum­

mation implies 

L e-~:Tn2 + L 
n odd n even (5.29) 

where the dual radius is now R = 2a' / R. Following a modular transformation 

S := 7!'2 /T these are the sums in the open string Schrodinger functional. Again the 

states now represent an averaging over backgrounds. The new momentum states 

are characterised by the original Neumann condition on the open string ends. The 

open string Schrodinger functional becomes 

1 1 
logSopen = -2 L (Ili-TI/)GnnR(Ili-Il/)-2 L (Ili+TI,)GnnR(Tii+Il/) (5.30) 

n even n odd 

To interpret this as strings moving in a single background we can introduce a Wilson 

line, rri- eiAfdxon,, with value A= (R)-1 . 

Explicit examples are difficult to construct for two reasons: difficulties in find­

ing reparametrisation invariant or BRST invariant states, and keeping track of the 

corner anomaly in the states and backgrounds. A simple example of a state inde­

pendent of parameterisation would seem to be a string collapsed to a point, as we 

used for the closed string. The closed string invariant states are more commonly 

known as Ishibashi states [53] arising via closed string channel descriptions of open 

string loop amplitudes [54]. They are characterised by the condition 

\InEZ (5.31) 

(at worldsheet T = 0 for simplicity). The pointlike, or localised, state is given by 
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and the state I q) is an eigenstate of the centre of mass of the co-ordinate XJL. By 

writing the Virasoro generators in terms of the oscillator modes an it is easy to 

check that this state satisfies (5.31). The corresponding generators for the open 

string are usually taken to be Ln - L-n· This was derived in [55] by inserting 

the mode expansion for XJL into the functional expression for the generators Mn of 

reparametrisations, 

M. := /'!; J dcr sin(ncr)X'(cr) J;(cr). (5.32) 

0 

Since this is an operator expression the authors chose to normal-order the result. 

It is however already well defined - normal ordering unreasonably removes a finite 

constant. The generators are in fact 

Mn = ~ ( Ln - L_n + n
4
d bn/2EZ) (5.33) 

in d dimensions. Consistency can be checked in that the Neumann state IN) obeying 

rr(a) IN) = 0 is killed by Mn v n, as is appropriate from (5.32). Now, the pointlike 

open string state I D) obeys 

I D; q )open = exp ( '2:: _!_a_na-n) I q ), 
n=l 2n 

( Ln- L_n- :d bn/2EZ) I D; q) = 0. 

(5.34) 

The eigenvalue has the wrong sign to be a solution. Similar observations have been 

made before in the consideration of pointlike states, for example [56]. However, the 

state is indeed independent of the co-ordinate a, 

and the state wave functional (X I D; q) is reparametrisation invariant- it is a delta 

functional, 

(X I D; q) = & (X(a)- q) = J 'D>.JL exp (/ daylg ).JL(XJL- qJL)), (5.35) 

with reparametrisation invariant measure (>., >.) = J d2~Vfj>.JL>.JL. There is a mis­

match between the functional and Hilbert space approaches. In the latter the inte­

gral over the metric has been performed and so the meaning of a reparametrisation 
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is unclear, to which we attribute the discrepancy. In Chapter 3 the corner anomaly 

manifests itself in the BRST transformation- recall equation (3. 79). BRST transfor­

mations correspond to reparameterisations and the corner anomaly indeed explains 

the additional terms in 5.33, which do not and cannot appear in the closed string 

generators. If we expand the ghost ca in modes in equation (3.79), 

c~(a) = /!; fcnsinna 
n=1 

====> ca~(O) + ca~(n-) = /!; f 2ncn 6n/2EZ, 
n=1 

then each ghost mode multiplies a generator of reparametrisations Mn and a constant 

term, so that the Ward identity for BRST invariance becomes 

'L:en(Ln- L_n + corner contributions) 
n 

as found in (5.33). 

Let us give an example of the open string duality based on the pointlike and 

Neumann states. Take the states attached to the Schrodinger functional to be 

the open string equivalent of (5.26). The logarithm of the Schrodinger functional 

becomes 

(5.36) 

where 'Vol' is the volume of space generated from attaching Neumann states. Follow­

ing the Poisson resummations in (5.29) the logarithm of the Schrodinger functional 

becomes 

00 

logS J dT L _ il
2

T n2+T ( _ (xf-xil
2

) IT ( -2mT) -12 
-~- = - -- e 4a' 1 + e 4a'T 1 - e 
Vol25-P TP/2 

0 n even m=1 

()() 

+ J :~2 L e-f.fn2+T (- 1 - e- (x{~,';!l2) II (1- e-2mT) -12 

0 n odd m=1 

(5.37) 
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The terms inside the large brackets represent the new background for the string. 

As with the closed string, we could now perform a change of variable U = 7!'2 /T 

which would give us back the sums and determinants of (5.36). Before doing this we 

describe how to interpret the above expression in terms of a Schrodinger functional 

constructed in a different gauge. Choosing our gauge fixed worldsheet metric to be 

g = diag(T2 , 1) amounts to rotating the worldsheet by 90° so that T represents the 

length of the string (the co-ordinate ranges are reversed r7 E [0, 1], T E [0, 7!']). The 

X 0 contributions to the Schrodinger functional in this gauge are 

T/24 II (1 -2mT)-1/2 "'"' _R
2
Tn

2 
e - e L.J e 4n

1 
• 

m=1 

A co-ordinate with Neumann conditions on its endpoints attached to Neumann 

states gives 

Vol eT/24 II (1 - e-2mT) -1/2 

m=1 

and a co-ordinate with Dirichlet conditions on its endpoints attached to a Neumann 

state gives 

_1_ eT/24 II (1 _ e-2mT)-1/2 
T1/2 

m=1 

in addition to any contribution from the background it couples to. We conclude 

that (5.37) is the Schrodinger functional for a string in this gauge, with initial and 

final field momentum Neumann states II = 1, with an averaging over backgrounds 

of 0(25-p )-branes and Wilson lines. 

We might expect to see a description of the same system if we perform the change 

of variables U = 7!'
2 /T on the modular parameter. Doing this gives us 

00 

logS J dU L il2
.-

2 
2 ( U(x,-x;)

2
) II -12 -~- =- --US e- 4a1un +U 1 + e- 4u'.-2 (1- e-2mU) 

Vol2S-p U 262p 

0 n even m=1 

(5.38) 

There is an additional factor of us in both terms as compared to the 'expected' 

result. However, we have not been careful with the corner anomaly. The change of 

modular parameter T--* 7!'2 /T corresponds to a scaling of the metric. To see this it 
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is helpful to put the a parameter range into the metric so Yaa ---t n2 then the change 

of variable corresponds to a scaling, 

(5.39) 

This is a constant Weyl scaling with Liouville mode p = 2log(n2 /T) = 2log U. The 

logarithms of the various determinants in the Polyakov integral depend linearly on 

pat the corners, so a scaling must produce powers of U in the propagator. Joining 

states and background contributions produces the same effect, thus the additional 

factors in (5.38). 

5.4 Conclusions and outlook 

We have shown that the scalar field Shrodinger functional can be written in terms of 

particles moving on JRD x § 1 /Z2 , and that the action of the Schrodinger functional, 

describing time evolution, reduces to a Feynman diagram expansion and the gluing 

property. 

The bosonic string field propagator, for both the open and closed string, obeys a 

generalisation of the gluing property which sews together the propagator worldsheets 

at definite times. The string field Schrodinger functional can therefore be written 

down using the diagram expansion found in the field theory case. Although some 

Plank scale effects due to the extension of the string may have been expected to 

spoil our notions of time, our results seem to imply that we may regard time in 

string field theory just as we do in a particle theory. 

The string field gluing property, unlike the scalar field case, depends on treating 

the gauge fixing ghosts (or alternatively the metric) at least on an equal level as 

the co-ordinates. While this is not surprising, it may have some implications for the 

nature of causality, further study is required. 

Despite being interested in time dependence, we have not made an issue of the 

faster than light tachyon in the string spectrum. It appears as a divergence in the 

string field propagator which is to be regulated. We have, implicitly, replaced the 

mass squared by a small positive parameter and returned it to its proper value 
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at the end of calculations. We believe this is justified since we could repeat our 

calculations (which would be lengthier but no more difficult) using a superstring 

field theory based on the conformal action of Ramond-Neveu-Schwarz which would 

yield the same physics but without the tachyon divergence. 

Timelike T-duality of the string theory becomes a large/small time duality of 

the string field theory under which boundary states are exchanged with backgrounds 

coupling to the ends of the dual string. In the examples given we have seen the usual 

features ofT-duality appearing, namely Wilson lines and D-branes. 

For the open string, the presence of the corner Weyl anomaly is necessary in any 

string field theory for building more complicated surfaces by sewing propagators 

and vertices together and care must be taken to include its effects in calculations; in 

particular we have shown that the corner anomaly is responsible for old confusions 

regarding the nature of point-like strings. 

The vacuum of string field theory is currently a topic of active research following 

Sen's conjecture [26] that the tachyon instability comes from a space filling D-25 

brane to which the ends of an open string couple, and that this will be seen in 

measuring the vacuum energy of Witten's string field. We have described how 

to construct the string field vacuum functional with no assumption of the type of 

interaction vertex. Although the ghost sector of our theory differs from Witten's we 

hope that our result may be useful in investigating this area. 

Our time co-ordinate, unlike in other string field theories, is a time at which the 

whole spatially extended string (with ghosts) exists. This seems to work around the 

problems of, for example, quantising Witten's theory [24] where time is normally 

taken to be the midpoint of X 0 (a), but the string remains extended in time. This 

may be a worthwhile avenue for future study. As discussed in Section 4.3, we may 

also postulate an interaction local in time but with arbitrary spatial dependence and 

repeat our field theory arguments, but we have shown that our methods are capable 

of handling interaction theories almost 'without' an interaction vertex. 

As a very first step to performing a similar construction of string field objects in 

non-flat spacetimes, we have generalised some of our field theory gluing properties to 

anti-de Sitter spacetimes of arbitrary dimension. This can be found in the appendix. 
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The non-perturbative correspondence between string theory in anti-de Sitter 

space and conformal field theory on the spacetime boundary has attracted much 

interest in recent years. It has been shown that the AdS/ CFT correspondence holds 

between scalar field theory in AdSD+l and conformal field theory on JRD [57]. Our 

results allow us to describe fundamental properties of the radial evolution of scalar 

fields in AdSv+I· This is especially interesting as it is related to the 'extra' dimension 

as seen from the boundary. There is an opportunity to study how our results relate 

to the holographic description of radial translation as scaling of operators in the 

boundary conformal field theory. 

The gluing property in flat space, with respect to the time direction, determined 

the field theory time evolution operator and generalised to bosonic strings and string 

fields. Although we have not attempted it here, it would be intriguing to see if our 

results could be extended to strings in anti-de Sitter spacetime and to learn how 

they arise in the dual field theory. A framework in which to begin this task has been 

set up by Berkovits [58], using pure spinors to overcome the difficulties of covariantly 

quantising the Green-Schwarz string. 



Appendix A 

Radial evolution in anti-de Sitter 

spacetime 

This material originally appeared in [60]. Since its proposal [12] there has been 

huge interest in studying the correspondence between string theory in anti-de Sitter 

space and its holographic dual conformal field theory on the boundary (see [61] for 

a comprehensive review). A variety of new approaches to studying the correspon­

dence have recently been employed (see for example [58] and [62] ... [64]). Berkovits' 

approach [65] gives a quantisable action for the superstring in AdS space times a 

compact manifold, with Ramond Ramond flux, but the complexity of the action 

makes hard work of calculating scattering amplitudes [66] ... [69]. 

Given the difficulties of string calculations in anti-de Sitter space, it is worthwhile 

to pursue unconventional approaches. Here we show that in anti-de Sitter spacetimes 

of arbitrary dimension, factorisation of the quantum mechanical path integral agrees 

with the gluing property of the scalar field propagator which we expect from the 

second quantised derivation above. This defines the evolution of scalar fields in the 

radial direction, much as we found time evolution in fiat space. Time translation 

invariance simplified the fiat space calculations so we do not expect our Feynman 

diagram arguments to be so simple in AdS, but we can derive the essential property. 

We will represent Euclideanised anti-de Sitter spacetime as the upper half space 

110 
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x 0 > 0 with metric 

(A.0.1) 

where i = 1 ... D and x0 is the 'radial' direction. For a scalar field of mass m define 

11 = J D2 /4 + m2, then the scalar field propagator which vanishes on the boundary 

of the spacetime ( compactified JRD) is, labelling the final and initial values of x0 as 

r f and ri respectively [70] [71], 

G ( . ) - I dDk ( )D/2 -ik.(xf-Xi)K (lkl )J (lkl ) (A 0 2) AdS rf, Xf, ri, Xi -- (27r)D rfri e v rf v ri .. 

when r f > ri and the Bessel functions Iv and Kv [72] are exchanged otherwise. As 

before, we insert into the sum over paths in anti-de Sitter space a resolution of the 

identity, 

1 =I dT' 0 (xo(T')- r) dx;;~') lxo=r· 

After integrating out the reparametrisations we can write the momentum conjugate 

to the radial variable as 

~:0 lxO=r = -r
2! (A.0.3) 

which implies that the propagator factorises as 

G Ads(rf, Xf; ri, xi) = I dDy A(r) (r2 
:r G Ads(rf, Xf; r, y)) G Ads(r, y; ri, xi) 

- G Ads(rJ, xf; r, y) (r2! G Ads(r, y; ri, xi)). 

(A.0.4) 

Let r 1 > r > ri, then inserting the explicit representation of the propagator 

(A.0.2) into the right hand side of (A.0.4) we find 

-I dD(~;)~~y) (r fri)D/2 e-ik.(xJ-Y)e-ip.(y-x;) Kv(lklr f )Iv(IPh) 

X rl-D/2{ Kv(lplr) :r rD/2 lv(lklr)- Iv(lklr) :r rD/2 Kv(lplr) }· 

(A.0.5) 

The integral over y gives a momentum conserving delta function which allows us 

to do the integral over p, say. For brevity write z lklr and the result of these 
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integrations is 

(A.0.6) 

plus two terms coming from the derivatives of z0 12 which cancel. We require the 

final line of the above to be unity in order to recover GAdS· Applying the Bessel 

function properties [72] 

:z Z 11 Kv(z) = -Z
11 Kv-1 (z), (A.0.7) 

the final line of (A.0.6) becomes 

(A.0.8) 

a standard Bessel function identity for unity, leaving 

(A.0.9) 

We have proven (A.0.4), which agrees with the general case given at the beginning 

of this appendix. For r 1 < r < ri the right hand side of (A.0.4) picks up a minus 

sign. These results also hold in the limit in which r f = r or r = ri. 

In the AdS/CFT correspondence translations in the bulk radial direction corre­

spond to conformal transformations in the boundary field theory. Applied to the 

toy model of scalar field theory in AdSv+l and conformal field theory on IR0 [57], 

there is an opportunity to study how our results relate to a holographic description 

in terms of scaling of operators in the boundary conformal field theory. 

Toward this end we note that our gluing properties hold for the propagator 

J dDk ( )D/2 -ik.(xf-Xi)K (lkl )K (lkl ) fv(lkjt:) + (2n)D TJTi e v TJ v ri Kv(lkk) 

(A.O.lO) 
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considered in [71] which vanishes not on the spacetime boundary but on the near­

boundary surface x0 = E and is used to regulate boundary divergences when inves­

tigating the conformal field theory. 



Appendix B 

Corollaries for sewing strings 

Following the derivation of the gluing property for string field theory, we prove here 

the corollaries we found for quantum field theory, (2.49) (2.50), which are necessary 

to carry out our diagrammatic calculations. Essentially, the corollaries hold because 

the time dependence of the string field and quantum field propagators is the same. 

Recall that the string field propagator can be written 

(B.O.l) 

Identify a complete set of eigenvectors In) of the Hamiltonian H and insert this 

into the given expression, 

(B.0.2) 

This description is analogous to the Fourier representation used for the scalar field 

propagator, where An is En(k) 2 and the complete set is aD-dimensional momentum 

integral over k. The time dependence of the string field propagator is therefore the 

same as that of the scalar field propagator. Since we now know that integrating over 

shared ( B I data when we glue two propagators is a resolution of the identity, the 
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cases (2.22) now follow, 

J 1>B G(t2, B 2; t, B) (- 2!) G(t, B; t 1 , B 1) 

= Sg(t- ti) 2::( B2 1 n)( n I B 1) 
2 
~ e-YAn"(ltrtl+lt-t;l). 

n VAn 

(B.0.3) 

The propagator at equal time is 

(B.0.4) 

and the derivative with respect to both time arguments of the propagator at equal 

time is 

(B.0.5) 
n 

from which (2.50) follows, 

4 J 1>B G(O, B 2; 0, B)G(O, B2; 6, B) 

= r;J 'DB ( B2l n) ( n I B) ( B I m) ( m I B;) ~ 
' 

= ~(B,In)(nlm)(miB;) ~ 
' 

(B.0.6) 

=(B2IB1) 

= b[B2- Bl]. 

It is a simple matter to repeat the arguments above in Euclidean space, to show 

that the string field generalisations of (2.21) and (2.22) hold. 
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