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Abstract 

The large baryon number sector of the Einstein-Skyrme model has been investigated, 

aHa possible model for baryon stars. Self-gravitating hedgehog skynnions have been 

studied previously and the existence of stable soli tonic stars excluded due to energy 

considerations. However, in this thesis it is demonstrated that by generating self­

gravitating skyrmions using harmonic maps, one can achieve multi-baryon bound 

states. 

The question of the spatial symmetry of such configmations is discussed and 

it is argued that, a.lthough low baryon number solutions have va.rious symmetries, 

a.pproximate spherical symmetry is recoverered in the case of very large baryon 

numbers. Plausible structures are obtained, that possess baryon numbers typical to 

neutron sta.rs and one concludes that indeed. the Einstein-Skyrme system can he 

used as a. toy model for ba.ryon stars. 
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Chapter 1 

Introduction 

1.1 The Skyrme Model and associated field ansatze 

The Skyrme model, in its initial form, was proposed and developed by T.H.R. 

Skyrme in a series of papers during 19.54-1962, as a non-linear field theory of pi­

ons [1], [2]. Skyrme's initial idea was to think of baryons (in particular nucleons) as 

secondary stntetures arising from a more fundamental mesonie fluid. Thus only the 

pion fields were required in the model. 

This differed from the contemporary view point of Yukawa, which required both 

fundamental fermionic fields for the nucleons and the fundamental bosonic fields of 

the pions. The latter were thought t.o bind the nucleons together. 

The key property of the Skyrme model was that the Imcleons arose as solitons 

m a topological nuumer and thus possessed a conserved topological charge. This 

charge, or winding number, allowed the possibility of constructing fermions from 

more fundamental bosonic fields [3]. The approach shm·es features with Kelvin's 

vortex model of the atom in that secondary structures, distinguished by their con-

1 



1.1. The Skyrme Model and associated field ansatze 2 
-----------------

served topological charateristics, are used to model varius nuclei or atoms [4]. 

In the Skyrme model the topological charge is interpreted as the baryon number. 

The lowest energy stable solution:=> to the model are termed Skyrmions and can 

be thought of as baryonic solitons. Formally, they are localised solutions to the 

classical field equations of the model. In practice, due to the high degree of non-

linearity involved in the model, a.nsatze are taken for the Skyrme field. Thus the 

term Skynnion is often used to mean the approximate localised solutions. 

Interest in the Skyrme model flourished following work by 't Hooft and vVitten, 

amongst others, on effective approaches to QCD. It is well known that the coupling of 

QCD increases at low energy scales (of the type relevant to the formation of nucleons 

from quarks). Consequently, standard perturbation techniques are inapplicable in 

such regimes. 

't Hooft demonstrated an alternative approach, in which QCD can effectively be 

described, at low energy, in term:=> of the weak interactions of mesons, [5]. Moreover, 

Witten showed that baryons should a.ri:=>e as solitons in this description and that the 

Skyrme model possessed all the general features of a low energy effective field theory 

for QCD, [6]. 

The Skyrme model is described by the following Lagrangian density in the field 

variable U(x, t). U itself is an SU(N) valued scalar field, where N is the number of 

flavours of interest. lVluch previous work has centred on the S'U(2) model. 

Here, f., and r: are constants relating to the model. These are usually fixed, such 

that the model gives the correct value for the nucleon energy. 

July 3, 2006 



1.1. The Skyrme Model and associated field ansatze 3 
-------

One should note the presence of the second term, quartic in derivatives, which 

differs the Skyrme Lagrangian from the Yang-1\i[ills Lagrangian. It is the second 

term which allows stability of solitonic solutions, as can be seen by an application 

of Derrick's theorem, [7]. 

For simplicity one will outline the production of a topological charge for the 

S'U(2) model. The following homotopy analysis can however he extended to the 

S'U(N) model, as outlined later. 

Note that as U takes value..-; in S'U(2), one can think that at a given time the field 

defines a map between coordinate space and the § 3 group N-fold, U(x) : JR3 ~ § 3 . 

Also, finite energy considerations impose that U should take a fixed value on the § 3 

group N-fold at spatial infinity, such that U(x) ____, 1 as lxl ____, oo. This is efl"ect.ively 

the one point compactification JR3 U { oo} ~ § 3 . 

The field can therefore be thought of as a map between the spatial infinity 3-

sphere and the group N-fold, also a 3-sphere. As such, it falls into distinct homotopy 

classes characterised by their winding number, the homotopy group for this case 

being the integers. The integer winding numbers are conserved topological charges as 

no continuous deformations can change a given state to one in a different homotopy 

class. In the Skyrme model the winding number is interpreted as the baryon number 

of the Skynnion and thus baryon number conservation is achieved. 

July 3, 2006 



1.1. The Skyrme Model and associated field ansatze 4 

The conserved topological charge can be calculated a.<> J cl3x 8 0 , where the topo-

logical current is defined as 

B = - 1
-r Tr [(uta''U) (utapu) (utaau)] 

Jl 24712 "JlVpa -
(1.2) 

For a detailed review of the Skrme model, the reader is referred to [8]. 

1.1.1 Hedgehog ansatz 

Any field equations derived from the model, will be highly non-linear partial differ-

ential equations. To make progress one usually adopts a,n ansatze for the Skyrme 

field. 

A particular ansatz for the field, taken by Skyrme in his initial papers, is the 

Hedgehog ansatz. 

U(x, t) = e:rp (iiJ · nh(r)) (1.3) 

In this a.nsa,tz the field, characterised by a profile function h(r, t), is pmely radial 

and thus the resulting Skyrmions are always spherically symmetric. 

For the field to be well defined at the origin then h(r = 0) = 8 111 a,ncl for finite 

energy h(r = oo) = 8 211, where B1, B 2 E Z. The baryon number of the Skyrmion is 

found to he 8 1 - 8 2 , however, for the remainder of this thesis we shall take B2 = 0, 

as is the common practice. 

The fact that it iR the unit radial vector and that the product of two Pauli 

matrices is given by a;a1 = 'iE;jl,ak + 8;11, leads to the square of ( jj · ii.) being unity 

and the following convenient expresRion 

U = cosh · I +"in · a sinh ( 1.4) 

July 3, 2006 



1.1. The Skyrmc Model and associated field ansatze 5 

1.1.2 Rational map ansatz 

An alternative a.nsatz proposed by Houghton et al., following a similar technique 

used by Donaldson et al. and Jarvis et al. in monopole theory, is the rational map 

ansatze, [9]. 

Points on § 2 can be labelled by their stereogra.phic coordinate z = tan( f) /2)ei¢ 

and its conjugate, via projection onto the complex plane. A rational map of degree 

Q is a map between 2-spheres defined to he a ratio of polynomials in z, having 

maximum order Q, possessing no common factors and with one polynomial being 

exactly of order Q. 

R(z) = p(z) 
q(z) 

(1.5) 

It has been previously outlined that SU(2) Skyrmions can be thought of as maps 

between JR3 U { oo} and the field manifold SU(2), which are essentially maps between 

3-spheres. Houghton et al. proposed, therefore, that Skyrmions could he constructed 

from rational maps between concentric § 2 in JR3 and 2-spheres of latitude on § 3 . This 

leads to a modification of the ansatz to 

U(r, z) = exp(iii · nRh(r)) (1.6) 

where the unit vector associated with the rational map is given by 

(1. 7) 

It can be shown that the baryon number for Skyrmions constructed in this way, 

is equal to the degree Q of the rational map, providing one takes the boundary 

conditions h('r = 0) = 1r and h(r = oo) = 0. 

July 3, 2006 



1.1. The Skyrme Model and associated field ansatze 6 

The approximate solutions of the field equations obtained using the rational 

map ansatze, are an improvement on those obtained for multi-baryons, using the 

hedgehog a,nsatze. By this, one means that the energies of the solutions obtained 

more closely resemble those found from dynamically evolving well separated single 

baryons. Further, the solutions possess the correct symmetries. For the S'U(2) 

model, all multi-baryon states are non-spherica,lly symmetric. For example, a two 

baryon Skyrmion naturally forms a torus, whereas three baryons will bind into a 

tetrahedral structure [9]. 

1.1.3 SU(N) Harm.onic n1ap ansatz 

If one wishes to study the general S'U ( JV) Skyrme model, one can use the extension of 

the rationa.l map a.nsatz due to loannidou et a.l., known as the projector or harmonic 

map ansatz [10]. These are completely euqivalent to the rational map ansa.tze, when 

studying the SU(2) model. 

One takes the following ansatz for the SU ( JV) field 

U(r, z, z) = e2ih(r)(P--}J) (1.8) 

where P is an N x N hermitian projection operator which depends only on the 

angular variables. 

Expanding and using the fact that P 2 = P, one arrives at the following, more 

convenient form of the ansa.tz. 

U = e-2ih/N (I+ (e2ih _ l)P) (1.9) 

Here the general scheme is to decompose the Skyrme field, which at a. given 

July 3, 2006 



1.2. Summary of related work 7 

instant is effectively a map from § 3 to the group manifold of S'U(N), into a prod­

uct of a radial and angular functions. P is a hermitian projector between the two 

sphere and the manifold of ((]pN- 1 and h(r) is a radial profile function living in the 

remaining quotient space S'U (N) jCTP'N - 1
. 

It can be shown that, for a suitable choice of the boundary conditions for h(r), 

i.e. h("r = 0) = 1r and h(r = oo) = 0, the degree of the total map is reduced to the 

degree of the map § 2 --> CTP'N- 1
, which is again an integer. 

The advantage of the rational or harmonic map ansatze, is that they allow one to 

study minimal energy Skyrmions with specific spatial symmetries, simply by using 

maps that posses.<; these symmetries. This will become important when studying 

specific Skyrmion eonfigura.tions coupled to gravity. 

1.2 Summary of related work 

The idea behind this research project, was to re-explore the Einstein-Skyrme model 

and ask 'Can structures resembling baryon stars arise as low energy Skyrmions 

coupled to gravity?'. This seems a plausible enquiry. After all, neutron stars are 

structures made of superdense neutron matter, for which the equation of state is not. 

well understood, [ 11]. The interactions het\veen the neutrons should he described 

by QCD and it has already been detailed that the Skynne model is, in essence, an 

appropriate effective field theory for QCD. 

The Skyrme field coupled to gra.vity h11s already been studied by, amongst others, 

Luckock and T\-foss, [12], [13], [H]. The research involved studying a Skyrme field 
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1.2. Summary of related work 8 
------------------------------------

in the presence of an external gravitational field. Interesting non-trivial structures 

were found, for example, black holes surrounded by a pion cloud. These black holes, 

termed hairy or coloured are extremely interesting, in that they violate the usual 

no-hair theorems. In short, the associated horizons cannot he totally defined in 

terms of their ma..<;s, charge a.nd angular momentum, because of the extra chiral 

fields involved. What is more, the coloured black hole solutions are stable. 

Although the focus of this work was not directly the same as in this thesis, the 

papers formed extremely valuable conrihutions to the academic community. They 

were the first to study the Skyrme model in the presence of gravity and paved the way 

for much similar research. Since then, violations of the no-hair theorems have been 

found for various non-linear field theories coupled to gravity and much further study 

of the Skyrme black hole has been undertaken, [1.5], [16], [17], [18], [19], [20], [21], [22]. 

Resulting from such study, many other interesting solutions have been found. 

For many non-linear field theories, non-trivial stable gravitationally hound config­

urations of the field ha,ve been obtained. Perhaps the most well known of these 

are the particle-like gravitationally bound Yang-1Vlills fields, known as the 13artnick­

·McKinnon solutions [23], [24]. 

In contrast to the work of Luckcock & l'vloss, this thesis investigates Skyrmions 

not in an external gravitationa.l field, hut where the field is due to the baryon 

distribution in th Skyrmion itself. The baryons then settle in their own gravitational 

field. 

Similar work was caried out by 13izon & Chmaj, [2.5], [26]. Self-gravitating 

Skyrmions were studied using the sphercal hedgehog ansa.tze for the Skyrme field. 
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1.2. Summary of related work 9 

It was hoped that the inclusion of gravity would lead to multi-baryon hound states 

and thus the possibility of using the Einstein-Skyrme system as a toy model for 

baryon stars. Unfortunately this was not the case and all multi-baryon solutions 

were fmmd to be energetically unfavourable. 

There is however an alternative approach, which will be used in this thesis. 

Instead of imposing spherical ansatze on the field, as would he reasonable for baryon 

stars, and then hoping that the energies are reduced by gravitational binding, why 

not use energetically favourable a.nsatze for the field which produce non-spherical 

Skyrmions. Then one hopes that somehow spherical symmetry ca.n he recovered. 

This thesis take.'i the harmonic map ansatze for self-gravitating S'U ( N) Skyrmions 

and hopes that energetically favourable states of multi-baryons are produced. The 

isssue of symmetry is then dealt with and the question of how one studies the 

extremely large baryon numbers required to model baryon stars is addressed. 

The author notes at this point, that independently to this research some similar 

studies at low baryon number have been published in para.llel [27], [28]. The author 

points out that although the solutions at low baryon number, detailed in this thesis, 

were obtained before these publications, they were not submitted for publication as 

one wished to wait until the issue of symmetry and large baryon numbers had been 

resolved. Neither of these concerns are addressed in [27], [28], because the focus of 

that reasearch was not towards baryon stars. 
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Chapter 2 

Self-Gravitating Skyrmions 

The action for the Skyrme model, including gravitational interactions, can be formed 

from the standard Skyrme action for the matter field and the Einstein-Hilbert action 

for the gravitational field (along with a suitable boundary term, denoted here by 

ScH ), [2.5]. Thus the starting point for the study of self-gravitating Skyrmions is 

the action 

(2.1) 

Here Lsk is the standard Lagrangian density for the SU(N) Skyrme model hut 

now defined on the (generally curved) manifold M. 

I' - t;.T· ( KIL 1 
... ([ K ][ J1 K'/1) LSk- 4 r KJl ) + 

32
e2 T1 KJl, v K , . (2.2) 

In the above, the K 1, are current value(l objects, defined as (V'11U)U- 1
. Note 

that now the Skyrme field U can be thought of as a map from the curved space-time 

M into SU(N). 

In the gravitational part of the action, R is the Ricci scalar associated with the 

manifold M. G, f,, and e are the fundamental constants of the model, being re-
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2.1. Metric Ansatze 11 

spectively Newton's gravitationa.l constant, the pion decay constant and the Skyrme 

coupling. 

Finally, S'cH is the appropriate regularised Gibbon.~-Hawking action for the model 

and is the nece&r.;ary boundary contribution to ensure that variation of the action 

leads to Einstein's equation, [29]. For a fuller discussion of the need for such a term, 

a.long with its explicit calculation, see App. A. 

2.1 Metric Ansatze 

For the metric on the manifold M, it is reasonable to choose that associated with 

the following line element 

This is a sensible choice of metric that captures the natnre of the cnrvature that 

would result in the situation of interest. First, the main area of interest in this work 

is in the static properties of gravitating skyrmions, thus one should choose a metric 

associated with a static gravitational field. 

Second, rather than the mass 'fit and coefficient A being constants they are pro-

mated to radial fields. This encodes the fact that one is not stwlying the properties 

of Skyrmions in a fixed curved background ( eg Skyrmions in the presence of a fixed 

mass) hut rather the more interesting problem of hound states of baryons interacting 

with their own gravitational field. 

Finally, for any reasonable astrophysical interpretation of gravitating Skyrmions, 

e.g. as neutron stars, then it is reasonable to assume that the gravita.tiona.l field 

possesses spherical symmetry. This is captnred in the form of the metric (2.3). 

July 3, 2006 



2.2. The Gravitational part of the Action 12 

Actually, most of the configurations that will be presented will not possess exact 

spherical symmetry and thus the resulting gravitational field should not be assumed 

to be pmely radial. However, the configurations will possess an approximately 

spherical distribution of baryons, with this symmetry becoming more enhanced as 

the baryon number increases. In effect then, although the configurations will only be 

approximations to true gravitating Skyrmions, the discrepancy due to this mismatch 

of symmetry will not be significant. This is particularly the case in the regime 

of astrophysical relevance (high baryon number) and when one considers that the 

gravitational hack-reaction of the matter field is relatively small. 

2.2 The Gravitational part of the Action 

Using this ansatze for the metric on M it is possible to calculate both ScH and R 

directly. 

R = - 2 
( -A".,.2

- 2A'r + 2A"rrn. + A'm + 3A'.,.ml +Arm"+ 2Am') (2.4) 
Ar2 

where' denotes a derivative with respect to the radial coordinate r. 

Noting that from (2.3) 

Fri = A(r)r2sin(O) (2 .. 5) 

a.nd that S'cH = - 2~ J dtm( oo) (shown in App. A), then t.he gravitational part of 

the action simplifies as follows 
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2.2. The Gravitational part of the Action 

S'crav - 2~ J dt [m(oo) + J (A"r2 + 2A'r- 2A"rm- A'm 

3A'nn'- Ann"- 2Arn') dr] 

--
1
- j dt [m( oo) + / ( !!__ [ A'r2 

- 2A'mr - Am'r] 
2G . clr 

+ A'm- Am') dr] 

13 

(2.6) 

Now using the fact that asymptotic flatness of space-time imposes A(r = oo) = 1 

and m(r = oo) =canst., and that there is no mass at the origin, one obtains 

Sera" - 2~ j dt [m(oo) + ( [A'-r2
- 2A'mr- Arn'r + AmJ:- 2 J Am'dr)] 

-~ j dt (m.(oo)- j Arn'dr) (2.7) 
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2.3. The Matter part of the Action 14 

2.3 The Matter part of the Action 

In deriving the form of the matter part of the action, it is convenient to change 

from spherical polar coordinates (r, (}, ¢) to stereogra.phic coordinates (r, z, z), via 

projection onto the complex plane such that 

z =tan(~) e;q, (2.8) 

The Jacobian for this transformation is easil:~· calculated to he 

'/, 

Ill = vfzl2(1 + lzl2) (2.9) 

and thus the area form becomes 

2i 
dA = sin8d8d¢ = (l + lzl 2) 2 dzdz (2.10) 

In stereographic coordinates, the currents become 

Ko (cJolJ)U- 1 

(oz aU oz &oll)U- 1 ae z · + ae ~ 

~ (l + lzl
2
) (zK- + zK-) 

2 JiZi2 ~ z 
(2.11) 

and 

Kq, (aq,u)u- 1 

( az a u az a-U)U- 1 

(JqJ z + 3¢ z 

i(zKz- zK.z) (2.12) 

For what follows, let Lsk 1 denote the first term in the Skyrme Lagrangian density, 

1lwt which is quadratic in derivatives. Csk
2 

will label the Skyrme term, that which is 
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2.3. The Matter part of the Action 15 

quartic in derivatives. Thus. noting that the metric is purely diagonal and referring 

to eqn. (2.2), it is clear that 

(2.13) 

Here the third line has been obtained by direct substitution of the currents in 

stereographic coordinates from eqns. (2.11) and (2.12). Note that for convenience, 

the function S'(r) has been defined as follows: 

S(r) = (1- 2m(r)) 
r 

(2.14) 

In a similar manner, the Skyrme term ca.n be rewritten a.s 

I' 1 T· ( JLJL 1/V[K K 12) 
'-Sk2 32e2 r g g '', I/ 

1 , , (s(T) (r 12 1 12) 1 r 12) 
162

Ir -
2
- K,.,Ke +----:--

28
[K,.,Kq, + 

4
. 28 Ko,Kq, 

e r szn T szn 

_1_Tr (S'(r)(1 + lzi2)21[K,., KzW- (1 + izl2)4 [Kz, K;;12) (2.15) 
16e2 r 2 4r4 

where the factor of two has arisen due to the symmetry under the interchange J-L ..._. v. 

Now using the H;trmonic lVIa.p Ansatze, U = e- 2ih(r)JN (I+ (e2ih(r) - l)P), as 

discussed in section 1.1.3, one can calculate the relevant currents and their com-

mutators. Note that in what follows the argument of both h(r) and S('r) shall be 

dropped and a dash will denote differentiation with respect to the radial coordinate 
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2.3. The Matter part of the Action 

T. 

Kr (8,.e-2ih/N(I + (e2it'- l)P)) u-t 

-2ih' [1[1-1 + 2'ih' e-2ih/N e2ih p[!-1 
N 

- 2ih'l+2ih'e2ihP(I+ (e- 2ih -l)P) 
N 

2-ih'(P- 2_1) 
N 

16 

(2.16) 

Note that in order to arrive at the above result, the fact that P is a projection 

matrix and thus P 2 = P, was used. One should also remember that I is, in this 

context, always the N x N identity matrix, where N denotes the number of flavours 

included in the model. 

Next one finds 

(2.17) 

and 

(e2ih- 1)8;;P(I + (e- 2ih- l)P) 

(2.18) 

In the above calculations it was necessary to use the useful identities discussed 
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2.3. The Matter part of the Action 17 

in [10]. Namely 

0 (2.19) 

Now it is straightforward to calculate the commutators needed in eqn. (2.15), as 

follows. Again the identities in (2.19) will be used. 

[K,.,K;;] 

and finally 

2ih'(1-e-2i") [(P- 1~rl),a,P] 
2ih'(1- e-2i") (P(ozP)- 1~/)zp- (ozP)P + 1~ozP) 
-2ih'(l - e- 2ih)OzP 

2ih'(e2
;
1
,- 1) [ (p- 1~1), o;;P] 

2ih'(e2
;"- 1) (P(o;;P)- ~a:oP- (azP)P+ 1~<1zP) 

2ih'(e2ih - 1)<1zP 

(2.20) 

(2.21) 

(2.22) 

Having calculated the explicit form of the currents for the Harmonic Ma.p Ansa.tze 

and their commutation relations, it is straightforward to obtain the Lagrangian 
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2.3. The Matter part of the Action 18 

density for the matter fields. 

Here, the fact tha.t I was the N x N identity matrix and thus its trace is simply 

N, was used, along with the fact that TrP = 1, [10]. The .fiavov:r factor QN has 

been defined a.<> (N;;l). 

Using the commutation relations of eqns. (2.20) - (2.22), the Skyrme term be-

comes 

It is now finally possible to combine eqns. (2.7), (2.23) and (2.24) to obtain the 

full action for the gravitating SU ( N) Skyrmions. 

S = Scrav + J cit J F9 (.Csk 1 + .Csk2 ) drdzdz 

J (47f j rlrA [f''c'_- f?c (QNSh'2r 2 + Cs'in2 h) 
-l7f J 

1 (cs'/'2 :. 21 Tsin4h)] m.(oo)) 1 - -
2 

1 sm. 1 + 
2 

- -----r,- ct 
e 2r u 

(2.25) 

In the above, the following angular integrals have been defined. 

(2.26) 

July 3, 2006 



2.4. Scaling 19 

(2.27) 

2.4 Scaling 

It is convenient at this point to combine the three parameters of the model (G, fn and 

e), into one dimensionless coupling constant. This can he done by an appropriate 

scaling of the radial lengths and ma&.;;as to dimensionla.;;s variables, such as 

(2.28) 

and, similarly 

rn(-r) -; fL(x) = efnm(-r) (2.29) 

As a result of these scalings we can rewrite the metric function simply as S(:c) = 

Thus one obtains the simplified Lagrangian for the model 

L - 4nfn [jd·A(fL·' -Q 51 ,2 •. 2 _C. 2 /(l 01 ,2)_Isin
4
h) _fL(oo)] - X N /. .C SW. I + ,:J L 2 e Ct 2:L; Ct 

(2.30) 

One should note that for the static solutions, which are those presented in this 

work, the Hamiltonian of the system is just given by H = -L. 

2.5 The Euler-Lagrange Equations 

In order to find solutions, or, more precisely, approximations to solutions of the 

Einstein-Skyrme model, one searches for stationary points of the action. Thus form-
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2.5. The Euler-Lagrange Equations 

ing the Euler-Lagrange equations 

aL _a aL 
D1jJ(x) - x (hj/(x) 

for the three fields ~)(:c)= A(x), Jt(x) and h(x). one obtains 

' ( S' 12 2 . 2 ( ,2 ) Is'in
4 h) JL =a QN h :c + Cs1n h 1 + S'h + 2 2:r 

and 

20 

(2.31) 

(2.32) 

(2.33) 

. (( ,2) Isin
2h) [· ''( 2 ·2)]' Astn2h C 1 + S'h + x2 = 2ASh QN:r + Cszn h (2.34) 

One should at this point note that although solutions must obey all three of these 

equations simultaneously, eqn. (2.34) is actually linear in the field A(:c) and thus 

the final t\vo equations are really independent of this field. To elucidate this one 

performs the derivative on the right hand side of eqn. (2.34), substitutes for A'(:r) 

from eqn. (2.32) and cancels out the linear dependence on A(x). Thus, defining 

h" = ~ [sin2h (c(1 + S'h'2 ) + Isin
2

h) _ 2ah'
3

8V
2 

_ S''h'V _ S'h'v'J (2.35) 
SV 2 :r2 x 

The next chapter will discuss approximate solutions to eqns. (2.32)- (2.35) at 

low baryon number, for the S'U(2) model. Note that the procedure is as follows. 

One first minimises the harmonic map quantities C and I, over all possible harmonic 

maps of the required degree. This has been done for many cases and one will take 

these values from, [9] & [30]. These minimal values are then substituted into the 

field equations so that the extremal forms of the fields ca.n be found. 
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Chapter 3 

Low Baryon Number 

Configurations 

3.1 Numerical Methods 

The system of equations (2.32) to (2.3.5) comprise two first order and one second 

order coupled differential equations, which cannot be solved analytically. Thus nu­

merical integration must he used. To simpli(v matters, the metric field A(:c) de­

couples from the differential equations for tt(x) and h(:r). As such the solution to 

these equations is independent of the solution for A(:r). Thus one really has to solve 

a. second order equation for h(:r), coupled to a first order eqm1..tion for tt(:r). Once 

the solutions for h( x) and tt( :r) are known, they can then be used in the numerical 

integration of (2.32), to find the form of A(:c). 

Taking the two coupled equations (2.33) & (2.3.5), (one second order and one 

first order), one requires three pieces of independent boundary information to define 

the solutions completely. 
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3.1. Numerical Methods 22 

One has the following: 

h(x = 0) 1r 

h(:c = oo) 0 

~-t(:c = 0) 0 (3.1) 

One therefore possesses information about h(x) at two points but no information 

about its derivative. This is known as a boundary value problem. A useful technique 

for the numerical integration of such problems is known as the Shooting Method. 

Effectively one applies a vector of initial data at one boundary. In this case it 

will he (h(O), h'(O) and f-t(O)), where h'(O) is a plausible estimate for the derivative 

of h(:c) at :c = 0. One then evolves the fields radially, according to the coupled 

differential equations (2.33) and (2.:3.5) until the second boundary is reached. In 

general, the value of the fields obtained will not correspond to the second boundary 

conditions. That is h( oo) :f. 0 . An error vector is then calculated describing the 

discrepancy from the required boundary condition and a. suitable algorithm is used 

to calculate a better estimate for the initial derivative, h'(O). This is then used to 

start the evolution from the initial boundary once again. 

The process is repeated iteratively, with better and better estimates for the initial 

derivative calculated at each step using a suitable root finding algorithm e.g. the 

dichotomic method. Eventually a solution will he found such that the discrepancy 

from the final boundary condition is less than some specified tolerance. This solution 

for h(x) and /L(:c) is then accepted and can be used with the boundary condition 

A(oo) = 1 to integrate (2.32). 
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3.2 Asymptotic Expansions 

Unfortunately there is a caveat to the above description. Although one has the 

boundary information given in (3.1 ), a close inspection of the system of differential 

equations (2.32) to (2.35) reveals that the boundary values cannot be directly ap­

plied. This is because the differential equations themselves are not well defined at 

the point x = 0. (This can be true even if the solutions to the equations are well 

defined). Thus one has to use (3.1) to determine starting values a.t a small distance 

from the origin, ;r = o. 

One proceeds by making a series expansion of the fields h(:r) aml p.(x) about the 

origin. Thus 

(3.2) 

and 

(3.3) 

Here, one \\'ill assume nothing other than the following. That p and ·r are positive 

and, in general, non-integer powers of x and that p and r are both non-zero. This 

second requirement comes from the fact that the original boundary data, (3.1 ), must 

be recovered at x = 0. 

Substituting the general expansions into the differential equations for h(:c) and 

tJ,(:c), one can determine information about p. r, a; and b; by comparing terms order 

by order. 

Starting with (2.33), the left hand side is given by tt' and thus the term of lowest 

order in xis 

(3.4) 
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3.2. Asymptotic Expansions 24 

substituting the field expansions into the right hand side (and being careful to 

expand sin2 h(:c) and sin4 h(:c) about h(:c) = 11), one obtains a lowest order term of 

(3.5) 

Now, one notes that p and T are non-zero and there is thus no reason for the 

coefficient of these lowest order terms to be zero. Thus equating exponents and 

coefficients we have 

2p + 1 

2 
o:al (Q 2 C) -- .. NfJ + 

2p + 1 

(3.6) 

(3.7) 

One has to be slightly careful here though. If, in some circumstance, p = 1 then 

there is another contribution to (3.5), coming from terms with order 4p- 2 (=2p). 

In this case, the lowest order terms on the right hand side of the differential equation 

are 

(3.8) 

and thus one has 

T 2p + 1 (3.9) 

21~~ 1 ( QNP
2 + c +a~ (~ + Czi)) (3.10) 

To determine p itself, one has to turn to the second order equation for h( :1:), 

(2.35). :tvlultiplying this equation through hy S'(:c)V(:r) and then substituting the 

the fielcl expansions in, together with the shown fact that r = 2p + 1, the lowest 

order term on the left hand side is 

(3.11) 
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Similarly, the lowest order term on the right hand side of (2.35) is given by 

(3.12) 

Equating coefficients and rearranging for p (noting that pis non-negative), one 

obtains 

(3.13) 

As a result, the form of h(:t.:) and f-l(:t.:) will depend both on the number of included 

flavours N and the degree of the harmonic map used, as one might expect. 

One proceeds as follows. Taking the specific parameters of the problem one 

wishes to solve, i.e. QN, C, I and o:, one can calculate the values of p, .,. and b1 to 

obtain the explicit field expansions ahout the origin. Truncating after the first power 

of :t.:, one uses the expansions to calculate boundary data near the origin, at :r = 8. 

One applies this data and numerically integrates the coupled differential equations 

according to the previously described prescription. The estimated parameter, which 

is found via the Shooting Method is, in this case, o.1 . 

Once solutions have been found for /l(.r) and h(.r), the solution for A(.?:) can he 

found subject to the condition A( oo) = 1. 
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3.3 SU(2) Solutions 

3.3.1 Solutions with Baryon nun1ber 1 

Solutions to the field equations have been found numerically for a variety of baryon 

numbers. For a single baryon, in the SU(2) model, the harmonic map quantities 

are minimised at C = I = 1. Consequently,it can be shown that the ansatze are 

completely equivalent to the Hedgehog Ansatze, [9]. One would therefore expect the 

solutions obtained to be identical to those previously found by Dizon & Chmaj, [2.5]. 

Table 3.3.1 lists information about the solutions obtained at a variety of coupling 

values, o:. Listed a.re the values of the shooting parameter, h' (0) ( =a1 ), the minimum 

value of the metric function S(:c) = ( 1 - 21;:r)) (used to check for the presence of 

horizons) and the value of the ADJVI mass per baryon. This was calculated using 

AI.~M = 4"11~oo) as in [2.5]. 

The data identically reproduces that obtained by I3izon & Chmaj, as expected. 

The main features to note are the affects of the coupling value o:. Firstly, increasing 

o: effectively increases the strength of gravity in the model. This is mirrored by 

a reduction in Smin caused hy a greater warping of space hy the self-gravitating 

Skyrmion. Fmther, the ADIVI mass reduces as (t increases, showing the gravitational 

binding energy of the Skyrmion. 

Perhaps the most striking phenomenon is that for each value of a, there exist two 

solutions. The two branches of solutions identif~y at a specific value of the coupling 

and above this value, no other solution can be obtained. This value of the coupling 

is known as the criticaJ coupling O:crd· 
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-----------------------------------------------------

Remembering that increasing o: is the same as increasing the strength of gravity, 

one might conclude that the critical coupling is the point at which gravity becomes 

so strong that a singularity forms. However two questions are not answered by this 

explanation. 'vVhy are there two branches of solutions below O:crit?' and 'Why is 

Smin far from zero at the critical coupling, if a horizon is formed?'. One concludes 

that there must he another explanation for this phenomenon. 

The answer is that the two branches represent two different local extrema of the 

action. The upper being an unstable branch and the lower being globally regular 

solitons that are the stable minima. The difference in energ;y between these two types 

of solution reduces as the coupling; is increased. Eventually, at the critical coupling, 

the two branches coincide. The different solutions annihilate and no further solutions 

can he found. The phenomena is deta.iled in [2.5]. 
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0: h'(O) S'min MADAI/B 

1 x w-6 -2.0075 1.0000 72.9238 

0.0001 -2.0081 0.9994 72.9004 

0.01 -2.0798 0.9328 70.5300 

0.02 -2.1783 0.8.587 68.0462 

0.04 -2.7820 0.6156 62.4090 

0.0403 -2.8602 0 . .5975 62.3008 

0.04037.5 -2.91.58 0.58.56 62.2727 

0.040378 -2.9269 0.5833 62.271.5 

0.040378 -2.9337 0 . .5819 62.2715 

0.040375 -2.94.50 0 .. 5797 62.2727 

0.0403 -3.005.5 0 . .5680 62.302.5 

0.04 -3.1033 0 .. 5.506 62.4271 

0.02 -.5.8360 0.3591 80.6829 

0.01 -8.860-5 0.3850 109.4264 

Table 3.1: Numerically obtained solution., .for a. B= 1 self-gravitating Skyrmion. One 

should note that the physical ma88 per ba·ryon can be calculated a8 MAg~I!r. 

The actual form of the solutions for the fields h(.1:), Jt(.T) and A(x) are shown 

in figures 3.2 and 3.3. These were obtained at couplings of o: = 1 x 10-6 and 

Clcrit = 0.040378, respectively. 

One can see that fields change over a. smaller region, at the higher coupling 

value. This represents a shrinking in the size of the Skyrmion, due to gravitational 
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compression. The readers attention is drawn to the plots of A(x). One notes that 

the actual boundary condition A( oo) = 1 appears not to have been satisfied. This 

is however, simply an artdact of the integration procedure. The solutions for h(x) 

and tt(:c) are, as previously stated, independent of the solution for A(x). Thus these 

solutions were obtained first and satisfy the correct boundary conditions. 

When the solution for A(x) was obtained, a boundary condition of A(O) = 1 wa..s 

used for computational ease. This does not affect the form of any solutions and the 

precise solution for A( x) can he obtained hy the scaling :/:J). 
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Figure 3.1: The two bmnche8 of ,qo[ntion8 obtained for B=l. 
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Figure 3.2: Lower branch numerical solntions for the fields h(x), tt(x) and A(x) for 

B=l at a coupling ofc.t = 1 X w-6 . 
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Figure 3.3: Lower branch nnmerical solv.tions for the fields h(x), /-l(X) and A(x) for 

B=l at the critical coupling of Ctcrit = 0.040378. 
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3.3.2 B=2 

For an SU(2) Skyrmion containing two baryons, the quantities C and I are min­

imised at 2 and 5.81, respectively [9]. The flat space solution is toroidal in form 

and has an axial symmetry. Using these values, solutions for harmonic map gen­

erated self-gravitating Skynnions with B=2, were obtained. The relevant data is 

summarised in table 3.3.2. 

There is a crucial difference here, between the solutions obtained using the har­

monic map ansatze, and those obtained previously by Bizon & Chmaj for the hedge­

hog ansatze. They found that for all solutions with B2: 2, the ADivi mass per baryon 

was higher, than that for B = 1. Thus no self-gravitating bounds states could form 

as they would be unstable against decay into individual solitons. 

This is not the case for the data in table 3.3.2. Clearly, comparing the solutions 

obtained at identical values of the coupling, MADM(B = 2) < 2Jv[ADM(B = 1). This 

opens up the possibility once again, that solutions resembling baryon stars, could 

exist within the Einstein-Skyrme model. 
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0' F'(O) S'min. MAD AI MADM/B 

1 x w-6 -1.4636 1.0000 143.0924 71 .. 5462 

0.0001 -1.4644 0.9990 143.0338 71.5169 

0.001 -1.4721 0.9903 142.4998 71.2499 

0.01 -1..5642 0.899.5 137.0590 68.529.5 

0.02 -1.7241 0. 786.5 130.6999 65.3499 

0.032 -2.3219 0 . .5 76.5 122.0191 61.0096 

0.0326 -2 .. 5099 0 .. 5408 121.4867 60.7434 

0.03266 -2.5747 0 . .5302 121.4303 60.71.51 

0.032668 -2.60,59 0.52.53 121.4226 60.7113 

0.032668 -2.6148 0.5240 121.4226 60.7113 

0.03266 -2.6471 0 .. 5192 121.4304 60.7152 

0.0326 -2.7199 0 .. 5090 121.4906 60.74.53 

0.032 -2.9903 0.4769 122.1390 61.0695 

0.02 -6.0789 0.3403 145.32.54 72.6627 

0.01 -11.7721 0.2881 196.9852 98.4926 

0.001 -71.4731 0.2497 600.7141 300.3-570 

Table 3.2: Numerically obtained solntion.c; for a D=2 8elf-gm.vitn.ting Skyrmion. One 

shovld note that the physical m.as8 per baryon can be calr:nlated as MAg;1 1~ 
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Other features to note are as follows. Again there exists two branches of solutions. 

However, as the baryon number has increased, the critical coupling has decrea.•:;ed 

from 0.040378 to 0.032668. 

The form of the individual fields are given in figures 3.5 and 3.6. One notes that 

the solutions represent slightly larger Skyrmions than for the B=l case. This would 

be as expected in order to accommodate the extra baryon and is akin to the fiat 

space solutions [9]. 
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Figure 3.6: Lower branch numerical solutions for the fields h(:c), fL(:t:) and A(:c) for 

B=2 at the critical coupli.ng of Clcrit. = 0.032668. 
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3.3.3 B=3 

At ll=3, the situation is similar. The minimal map quantities C and I are 3 and 

13 . .58 [30]. Again two branches of solutions exist hut this time the critical coupling 

has been reduced to 0.027413. 

lmportant.l.y, the solutions are even more energetically favourable than both the 

ll=1 and ll=2 cases. For example, at a. coupling of n = 1 x 10-6 , the ADM mass 

per baryon is 70.1379. There is seen to be almost a 2 per cent binding (reduction in 

MAtf·") over the value of 71 . .5462 for ll=2. 1VIoreover there is an almost 4 per cent 

binding compared to the value of 72.9238, for the single baryon solution . 
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Figme 3. 7: The two branches of solutions obtained joT B=3. 

July 3, 2006 



3.3. 5'U(2) Solutions 38 

0: F'(O) S'min .~{ADM MAD!IJ/B 

1 X 10-6 -0.9864 1.0000 210.4136 70.1379 

0.0001 -0.9872 0.9988 210.3109 70.1036 

0.001 -0.9954 0.9876 209.3750 69.7917 

0.01 -1.0996 0.8712 199.7877 66 .. 5959 

0.02 -1.3173 0.7208 188.3.560 62.7853 

0.0274 -2.0827 0 .. 5109 178.4857 59.4952 

0.02741 -2.1090 0 .. 5071 178.4688 .59.4896 

0.027413 -2.12.54 0 . .5047 178.4637 .59.4879 

0.027413 -2.1508 0.5012 178.4638 .59.4879 

0.02741 -2.1679 0.4989 ] 78.4689 .59.4896 

0.0274 -2.1962 0.4952 178.4863 .59.4954 

0.02 -5.1473 0.3470 199.2991 66.4330 

0.01 -14.1405 0.2807 267.9163 89.30.54 

Table 3.3: Nmnel'ically obtained 8olutions for a B=3 self-gravitating Sl.:yrmion. One 

8hould note that the physical mas8 per baryon can be calculated a8 M·4g:1f" 
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3.3.4 B=4 

The minimal values of C and I are 4 and 20.6.5, for the B = 4 Skyrmion [30]. Using 

these values, two branches of solutions, annihilating at a critical coupling of O:crit = 

0.023673, were obtained. Again the solutions obtained, which are approximations 

to true self-gravitating Skyrmions, are hound states. That is, the ADM mass per 

baryon is less, at each (Je, than for 13=1,2 or 3. 

Interestingly, the value of Sm;,, at the critical coupling, is still far from zero, 

at 0.4976. Thus total gravitational collapse still doesn't occur and the system is 

horizon free. 
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0' F'(O) S1
n1in i11ADA! MAoAJ/B 

1 X 10-n -0.8058 1.0000 269.2061 67.3153 

0.0001 -0.8069 0.9985 269.0.550 67.2638 

0.001 -0.8169 0.9853 267.6787 66.9197 

0.01 -0.9538 0.8460 253.4973 63.3743 

0.02 -1.3277 0.6546 236.1382 .59.0346 

0.023.5 -1.9302 0 . .5268 228.9.570 .57.2393 

0.02367 -2.1479 0 .. 5002 228.5489 57.1372 

0.023673 -2.1726 0.4976 228 . .5414 .')7.13.54 

0.023673 -2.2037 0.4943 228 .. 5414 .57.1354 

0.023.5 -2 . .5104 0.4668 229.00S4 .57.2.514 

0.02 -4.7424 0.3743 241 .. 5351 60.3838 

0.01 -19.62.5.5 0.2844 321.1271 80.2818 

0.001 -472.9266 0.2370 967.8879 241.9720 

Table 3.4: Nnmerically obtained Bolu.tionB for a B=4 self-gravitating Skyrmion. One 

should note that the physical mass per baryon can be calculated as MA~~I!" 
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3.3.5 B=17 

The B=17 Skyrmion was studied because it presents an interesting solution in flat 

space possessing icosahedral symmetry and an llllUSIHllly low energy [31]. The har-

monic map quantities C and T a.re minimised for this case, with values of 17 and 

363.4. 

One again finds two branches of solutions. This time Ctcrit is 0.011417. All 

solutions are again energetically favourable, when their ADM mass per baryon is 

compared to that of the lower baryon number solutions already presented. One is 

left to conclude that, in contrast to the hedgehog self-gravitating Skyrmions, those 

obtained using the harmonic map ansatze become more and more hound as more 

baryons a.re added. Therefore none are unstable to break-up. 
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0: F'(O) .S1nin .~I ADA! AfAoM / B 

0.0001 -0.0036 0.9964 1099.818.5 64.6952 

0.001 -0.0039 0.9642 1088.2619 64.01.54 

0.005 -0.0054 0.8149 103.5.0773 60.8869 

0.01 -0.0121 0.5874 960.9968 56 .. 5292 

0.0112 -0.0212 0.4923 939.9.59.5 .55.2917 

0.0114 -0.028.5 0.4.540 936.0071 55.0.592 

0.011417 -0.0314 0.4431 935.6499 55.0382 

0.011417 -0.0336 0.43.58 935.6.502 .55.0382 

0.0114 -0.0371 0.42.52 936.0272 .55.0604 

0.0112 -0.0530 0.3922 940.8128 55.3419 

0.011 -0.0653 0.37.55 946.000.5 55.6471 

0.01 -0.1353 0.3291 976.5.562 .57.444.5 

Table 3 .. 5: Numerically obtained .solutions for a B= 1 'l 8elf-gmvdating Skyrmion. 

One should note that the physical rna8s per baryon can be calculated a.s AIAg;If• 
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3.3.6 General Observations 

There are several general comments that can be made regarding the approximations 

to self-gravitating Skyrmions thus far presented. The first thing to note is the 

relationship between the critical coupling and the baryon number. Bizon & Chmaj 

observed that the critical coupling decreased as ne~·it ~ 0.0403788- 2 [25]. However, 

for the harmonic map generated solutions, one observes acrit ~ 0.0403788-~. This 

is shown in figure 3.10. 

This is a significant improvement over the hedgehog Skyrmions. Quantitatively, 

it means that for a given value of the critical coupling, if a hedgehog Skyrmion 

can accommodate B baryons, it's harmonic map generated counterpart can hold 8 4 

baryons. 

A crucial difference between the solutions presented here and those of Bizon & 

Chmaj, is that of energy. Baryon stars were ruled out as structures that could he 

studied in the Einstein-Skyrme model, as it was simply not energetica1ly favourable 

to have multi-baryon states. However, by taking more suitable ansatze for the 

Skyrme field, one sees tha.t the converse is true. For all baryon numbers greater 

than 1, the ADIVI mass per baryon is less than that of the B = 1 Skyrmion, as 

shown in figure 3.11. Bound multi-baryon self-gravitating states are admitted and 

the possibility of using the model to study baryon stars, is once again opened. 

There are some concerns here. Firstly, the Euler-Lagrange equations become 

increasingly difficult to solve numerically, as the baryon number increases. That is 

why solutions only up to B=17, have been presented so far. In fact these solutions 

were of considerable difficulty to obtain. Clearly a better method is to be found if 
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one wishes to study Skyrmions of high enough baryon number to he astrophysically 

relevant. 

The second concern is one of symmetry. The metric ansatze that has been used 

possesses spherical symmetry. Naturally one would expect this of a baryon star. 

The hedgehog ansatze give spherically symmetric solutions automatically, though 

they are energetically unfavourable. 

Using the harmonic map a.nsatze allows bound sta.tes but does not directly lead to 

spherical symmetry. For example, the 13=2 Sk.vrmion is known to be toroidal in flat 

space. Similarly, 13=3 is tetrahedral, whilst 13=4 is a. cube [9]. This mismatching of 

symmetry must be overcome if one is to credibly study baryon stars. 13oth challenges 

will be addrassed in this next chapter. 
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Chapter 4 

High Baryon Number 

Configurations 

In the previous chapter it was demonstrated that the approximations obtained to 

true gravitating Skyrmions, generated from rationa.l maps, did indeed become more 

hound with increasing baryon number. This qua.litative behaviour is remarkably 

different to that obtained in [2.5] & [26] for Hedgehog Skyrmions and re-opens the 

possibility for using the Skynne model to describe baryon stars. 

Of course there are still difficulties to overcome. Firstly, the approximate solu­

tions presented in the previous chapter are not truly spherically symmetric as one 

would wish for a baryon star. Also there are technica.l challenges involved with solv­

ing the Euler-Lagrange equations at high baryon number. This chapter will explore 

these issues and discuss possible ways of overcoming such challenges. 
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4.1 The shape and form of high baryon number 

configurations 

The first area for improvement of the approximations to self-gravitating multi-

baryon Skyrmions presented thus far is related to their spatial symmetry. In con-

structing the model, ansatze were taken for both the Skyrme field and the metric. 

The Harmonic 1\lap Ansatze were taken for the Skyrme field because they give a. bet-

ter approximation to true multi-baryon Skyrmions in flat space than the Hedgehog 

Ansatze [10]. This leads directly to the possibility of bound multi-baryon configu-

rations in the case with gravity. 

The metric ansatze were that it should he staticity and spherical symmetry. 

These would be appropriate properties when trying to describe something like a 

baryon star. 

However, the informed reader might here spot an area for careful consideration. 

If one studies Skyrmions constructed from Harmonic Maps in fiat space, they will 

find non-spherical baryon distributions [9], [30] [31]. These symmetries are identical 

to those of true Skyrmions. Thus the question arises: Is it really appropriate to use 

a spherical metric? 

There are three justifications to support the choice of metric. Firstly, one is 

not claiming that the configurations presented in Chapter 3 are anything other than 

approximations to true self-gravitating Skyrmions. As such they will have an energy 

higher than the true solutions to the model. However, the complexity of the Skyrme 

model means that any practical progress can only he made using a.nsatze for the 

Skyrme field such as the Hedgehog or Harmonic iVJap Ansatze. As such, one is 
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normally only finding approximations to Skyrmions, with or without gravity. 

Secondly, one must consider that in the situation of interest, i.e. the construction 

of a realistic baryon star, a very small value of the coupling a should he taken. One 

is reminded that for realistic values of the Skyrme and Newton constants, a plausible 

value for a is a= 7.3 x 10-40
. At such low couplings the effect of gravity is really 

a small perturbation to the Skyrme model. As such, the small mismatch in the 

symmetry of the fields is not significant. 

One of course could argue that even taking a small coupling constant, the effects 

of gravity should be far from small at very high baryon numbers. This will be seen to 

be correct. However, this leads directly to the final and most important justification 

for the choice of metric. 

Throughout this research the goal has been to demonstrate the possibility of 

and then to construct baryon stars in the Einstein-Skyrme model. As such one 

is really interested in configurations containing extremely high numbers of baryons. 

For example, a typical neutron star might contain in the region of 1050 neutrons [32]. 

Now Battye and Sutcliffe, whilst investigating Skyrmions generated by the Ratio­

nal Aia.p Ansatze (which are equivalent to the Harmonic Map Ansatze for the SU(2) 

model), discovered interesting spatial symmetries. l'vlinimal energy solutions with 

B greater than six ha.ryons (with the exception of two cases) possessed a shell-like 

structure, with the baryon density distributed solely over the surface of the shell. 

Interestingly, the baryon density on the shell is distributed along the edges of 12 

pentagons and 2B- 14 hexagons [30]. These configurations very much resemble the 

fnllerene cages that exist in Carbon chemistry. 
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As the topological charge increases, the baryon density is effectively concentrated 

on an increasingly tight lattice distributed over the shell [31], [33], [34]. Thus for the 

case of interest in this thesis, very large baryon number configurations should possess 

the underlying spherical symmetry of the shell. Approximate spherical symmetry is 

restored and the choice of metric that has been used is appropriate. 

There is a further technical challenge here. The numerical solution of the Euler­

Lagrange equations (2.32) to (2.3.5) becomes increasingly difficult as more and more 

baryons are included. This is because the radius of the shell structure of the solution 

becomes very large, whilst the width of the shell is comparatively very small. In 

practice this means that the fields h(x), ft.(:c) and A(:z:) change over a very small 

region of the full integration interval. This makes the shooting algorithm used very 

sem;itive to good initial information and the practical utility of the method is poor. 

The problem is highlighted in Figs. 4.1 to 4.3. This solution set was obtained 

using the shooting algorithm for the case B = 2 x 106 and (t = 1 x 10-6 and typify 

the form of the fields &<; the baryon number becomes large. The fields stay constant 

until a large value of the scaled radial coordinate :c, in this case until :t: ::::! 1219. The 

fields then change rapidly and assume another constant value which is continued for 

an infinite radius. 

It is important, for what will come later, to note two things. Firstly, aJl three 

fields begin and end their transformation together. Secondly, the centre of the 

transformation, for the case shown, is at a radial position of x ::::! 1223, whereas 

the width of the transformation region is ::::! 3. This means that the ratio of the 

width to the radius is < 2.5 x 10-:~. Even at this relatively modest baryon mtmber 
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of 2 x 10", one can clearly see the difficulties because of the difference in scale. 

Therefore numerical integration of the Euler-Lagrange equations for the order of 

baryon number one is really interested in, is practically impossible. 

There is another way to find approximate solutions, motivated by the work of 

Kopeliovich [33], [34]. Using the known shell structure of solutions, Kopeliovich 

demonstrated a way of finding hounds on the energy of the solutions ana.lytically. 

The Hamiltonian of the Skyrme model can not he integrated directly. However, by 

constructing ansatze for the fields of interest it ma.y he possible to obtain the energy 

explicitly. 

Kopeliovich studied the Skyrme model without gravity, thus having only one 

field to deal with, the profile h(:c). Ansatze were made for h(:c) which resembled a 

shell-like or domain wall solution and which depended on free parameters relating to 

the dimensions of the shell. This allowed the Hamiltonian to he integrated. I3ounds 

on the energy of solutions could then he found by minimising the energy with respect 

to the free parameters of the a.nsatze. 

Clearly Figs. 4.1 to 4.3 show that the shell-like structure of solutions is also 

inherent in the Einstein-Skyrme model. Thus, although ansatze will he used that 

are different to Kopeliovich's, one will proceed in a similar manner. 
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Figure 4.1: Numerical solutions for h(:c) in the case of B = 2 x 106 and o: = 1 x 1 o-6 . 

Clearly e.Thibited is the large radius and small width ove1· which the fields change, 

showing the shell-like str11ctnre of the SkyrmJon 
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Clearly e:rhibited i8 the large mdiu.8 and small width ouer which the field8 change, 

showing the shell-like 8trncture of the Skyrmion 

July 3, 2006 



4.1. The shape and form of high baryon number configurations 54 

X 

0 
(o 

_.(0 
1\) ... 
0 

1\) ... 
C.11 

... 
1\) 
1\) 
0 

... 
1\) 
1\) 
C.11 

1\) 
VJ 
0 

... 

0 
(o 
(0 
C.11 

I 

A(x) 

... 
0 ... 
0 0 ... C.11 ... 
I 

~ L-----------L-----------~~------------~L-------~~ 

C.11 

Figure 4.3: Nnmerical.solntion.s for A(:1:) in the case of B = 2 x 106 and a= 1 x 10-6 . 

Clearly e:rhibited is the large radins and small width over which the field8 change, 

8howing the 8hell-like st·/'1/.ctv.re of the Skyrrnion 
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4.2 The Ramp Ansatze 

So in order to find approximate solutions in the high baryon number regime, where 

the direct numerical solution of t.he Euler- Lagrange equations becomes difficult, it 

is convenient to use ansatze for the fields of interest. Obviously, any such ansatze 

should possess the genera.] features discussed above. 

Thus the following Ramp Ansatzc were used for the fields h(.'C), p(x) and A(.'C). 

h(x) = 7r (··· .,. ) 7r 2- .~- ·"0 w 

0 

0 

~t(:c) = M +(X ~· )M 2 . - •"0 Hi 

Ao 

A(x) = l+An + (x _ ~· ) 1-An 
2 ' ·•·O W 

0 :S: X < Xo - ~~ 

.,. w < ~· < ~· + w uO - 2 - ,{, ,LO 2 

.,. > •P + IV 
·"- ·"0 2 

0 <1·<x _w - •' • 0 2 

,,. -!:!::. < ... <'" +!:!::. 
·"0 2 - ·" ·"0 2 

~·>X + W ·" -. 0 2 

0 < 'I'<,.,. IV -·· ·•·o- 2 

,.,. _w<···<·" +w J,O 2 - ,c ·"0 2 

···>··· + w ·"- ·'-'0 2 

In the a.bove there are four free parameters which define the exact form of the 

fields. These are W, the width of the shell over which the fields change, .To, the 

radial position of the centre of this shell, !11, the value of tt(:c) at infinity and Ao 

the value that A(x) must take at the origin in order to ensure t.hat A( oo) = 1. 

One should note here that, according to the ansatze, all fields change over the 

same region. This was a..s motivated by the previous numerical results. Further, one 

has explicitly taken the situation that there is no additional central mass around 
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which the Skyrmion gravitates. This is different from the ca..;;e discussed by Luckock 

& Moss [12]. To change to this setup the Ramp ansatze have to be modified by 

adding a constant mass to the field fJ,( x). 

The procedure for finding approximate solutions using the above ansatze is as 

follows. Instead of numerically integrating the field equations (2.32)-(2.35) one sub-

stitutes the Ramp ansatze into the reduced Hamiltonian for the model ((2.30) 11p 

to a change of sign) and attempts to integrate to find a closed expression for the 

energy. If such an expression can be found then one proceeds to find its stationary 

points. The resulting values of the parameters should chara.cterise the approximate 

solutions for given values of the baryon number and coupling a etc. 

One should not view this as an attempt to find minimal energy solutions (a..;; 

this would be inappropriate for a gravitational system). However, the procedure 

is largely equivalent to finding solutions to the Euler-Lagrange equations. This is 

because in that approach one finds solutions which extremise the action, but as one 

is interested only in static field configurations, this amounts to finding stationary 

points of the energy functional. 

The point of departure for the method outlined is the reduced Hamiltonian of 

the system of self-gravitating Skyrmions. From the expression for the Lagrangian 

(2.30), one obtains the following Hamiltonian (in which the arguments of all fields 

are explicitly stated). 

J-1 = - 47rfrr [jz, (··) (tt(:r)' Q S'(··· 1 (··)'2 .. 2 .:. 2 1 (··)[ S(·,. 1 (··)'2] -- cxA .1. --.-- Nc .t) 1 . • t .L - Csw 1 ,/, 1 + .r.) ~ .L 
e . a 

_ Isin
4
h(x)) _ f.t.(oo)] (4.1) 

2:~;2 (t 
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Ignoring the multiplicative factor - 47rf~, the expression comprises a radial in-

tegra.l of four distinct terms along with the boundary contribution - J.L(';l For 

simplicity, these terms will be dealt with separately and labelled as 

H1 1= . {t(:r)' (4.2) A(x)--dx 
o a 

H2 -100 

A(x)QNS(x)h(:c)'2x 2dx (4.3) 

JJ3 -100 

A(x)Csin?h(:r)[l + S(:c)h(x)'2]dx (!.4) 

H4 
loo A(:r)Isin4 h(:r) 

1 
.. 

- (~ 

. o 2x2 
( 4 .. 5) 

H5 
M(oo) 

(4.6) ---
(t 

The first term contains the first derivative of the mass field. Noting the form of 

ft(:r) from (4.2), it is clear that because the mass field only changes over the width 

of the shell, the integrand in H 1 vanishes everywhere except over the shell. The fhst 

contribution to the energy is thus 

(4.7) 

Noting from ( 4.2) that M(X )' = ~\~ across the shell and substituting the ansatze 

for the metric field from ( 4.2), the integral becomes 

w 
M lxn+T (1 + Ao 1- Ao) H1 = - , + (.7: - :ro) W rl.?: 

o:lV w 2 . xo-2 

(4.8) 

This can he fmther simplified as one realises that (:c - :c0 ) is an orld function 

about x = :~:0 and the interval of integration is symmetrical about this point. This 

part of H 1 should therefore be identically zero. lVfecha.nically ploughing through the 
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calculation shows this to be true. One is left with 

i\1 [! + Ao:c]xo+'f 
et~V 2 IV xo-2 

(4.9) 

M (1 + Ao) 
Ct 2 

(4.10) 

Similar to the case for H 1 , H 2 need only be integrated over the shell region. 

This is because it contains a derivative of the profile function h(x) and, according 

to the ansatze, h(:c) is constant everywhere apart from within the shell. Thus, upon 

substitution of the ansatze, one obtains 

(4.11) 

Expanding and integrating term by term, one obtains 

+ 

+ 
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Simply by evaluating and substituting the following 

[
,,2]xn+lf ,,, 

2 w xo-2 

[ 
,3] xn+lf ,'l, 

3 II' xo-2 

Vll3 
l,lf-e2 +­
II ' 0 12 

txf .3 W3x_o_ 
n .To+ 

4 

the explicit form of H2 , after simplification, is given by 

QN71
2 [(1 + Ao) (:c2 _ Mxo + W2 

_ Mvll) 
w 2 ° 12 6 

+ (
1- A0 ) (W2

:c0 _ MW 2 
_ MWxo)] 

w 6 12 6 

59 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

Again H3 need only be integrated across the width of the shell. The factor of 

S'in2 h(x) in the integrand is zero elsewhere because of the boundary conditions on 

h(:c). (These being h(:c) = 71 and h(:c) = 0 before and after the shell respectively). 

-lxn+lf 
w xo-;r 

A(:c)Csin2 h(:c)[1 + S(:r)h(:r)'2 ]dx 

IF 

(4.17) 

-C -- + (:r- :r0)-- sin?h(:c) 1xn+2 [1 + Ao 1- Ao] 
IF 2 W :ro-2 

[ 
71

2 
( 2 ( M !VI ) ) ] x 1 + - 1 - - - + ( :r - :r0 ) -. dx 

W 2 :r 2 W 
(4.18) 

Expanding, the integral can be split as follows 

(4.19) 

where 

H,. ~ -C C ~Ao) (I+ f~') f ~'f sin'h(x)rb (4.20) 

H = -C (1- Ao) 
32 w ( 

712 ) 1.To+!} 
1 + 1

c
2 

- (:t:- :r0 )sin2 h(:c)dx 
h/ ll' 

· xo-T 

(4.21) 
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H = (1 + Ao) M1r2 lxo+~ sin
2
h(x) dx 

33 c 2 {X/2 W ' 
'V • :ro-2 J, 

( 4.22) 

_ lvh
2 [(l-Ao) 2_(1+Ao)]1xo+~ ._. sin

2
h(:c) . 

H34 - C u 12 W + lx; , (:~, J,o) dx 
VI 'I 2 ~-~ X 

2 

(4.23) 

and 

'" _ (1- Ao) 2M7r2 12·n+~ ,. _ ,. 2 sin
2h(:c) . H.1o - C ~~ lr;·l (.t .to) dx 

~ IJ. w X xo--y 

( 4.24) 

Taking H31 , the integral can be performed by a simple change of variable from 

x to h. Noting that from ( 4.2) ~Z = - ~~~, one has 

( 
1 + Ao) ( 1r

2 
) r , ( -HI ) -C - 2- 1 + W 2 .}11" sin

2
h ----;:--- dh 

( 1 + A ) ( W) ( 1r
2 

) 1° C 2 ° --:;;:- 1 + W 2 71" sin
2 
hdh 

( 
1 + Ao) ( W) ( 1r

2 
) r 2 

-C - 2- --:;;:- 1 + W 2 .Jo sin hdh 

-C -- - 1 +- -h- -sin2h ( 
1 + A0 ) ( W) ( 1r

2 
) [ 1 1 ] 71" 

2 1r W 2 2 4 0 

-C (~) (vV) (1 + 7r~) 
2 2 {;l;2 

( 4.25) 

In the high baryon number regime, H 32 has a negligible contribution to the total 

energy. This can be reasoned a.s follows. As described in section .5.1, when the 

baryon number increases, the efl'ect on the fields is that they resemble more and 

more truly the proposed Ramp Ansatze. Further, the fields remain constant for 

longer and change over a comparatively small radial region. Concretely, one can say 

that for high baryon numbers, the fields follow the Ramp Ansatze with x0 > > Hi. 

Therefore, because one only integrates over the width of the shell in H 32 , the 

actual radial position :t is never fa.r away from the centre of the shell :t:0 and the 
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term (:r-xo) is always very small. As the other factor in H32 is s'in2 h(x), thus never 

being larger than 1, one makes the approximation that H32 = 0. 

One similarly approximates H34 and H 35 to zero. The approximations here are 

further qualified by the factor of .T in the denominator, which will, over the region 

of integration, be large in comparison to (x - :r0 ). 

One is left to calculate H33 . This integral is difficult to handle explicitly because 

of the factor of ~, however a good approximation can be made. Following the 

arg11ments outlined above, the radial position x does not vary significantly from the 

central position of the shell :r0 , over the interval of integration. Thus one simply 

replaces the factor of l in the integrand with the constant factor 1 Integration 
X ~ 

can then proceed via a change of variables from :r to h. 

C (1 + A0 ) ll17r
2 

{
0 

s'in
2
h (-vV) dh 

2 Hi2 J" Xo 7r 

C ( 
1 + Ao ) M n in : 21 dl sm t. 1. 

2 vV:co. 0 

C ( 
1 + A0 ) Jl;f 1r [~./ _ ~ . 21 ] 7f 1. sm. 1. 

2 Wxo 2 4 0 

C ( 1 + Ao ) J\. 

1! n
2 

2 2Wxo 

Thus combining H 31 and H33 one obtains 

( 4.26) 

(4.27) 

lVIoving on to the calcula.tion of H4 one sees that because there is a factor of 

s'in4 h(x), the boundary conditions on h(:r) mean that a.gain integration needs only 

be performed over the width of the shell. 

l xo+!f A(x)Isin4 h(x) l. 
- c~ 

w 2···2 xo-T .v 

w -Ilx"-t- 2 [1 + Ao (·· _ T )1- Ao] + .1: "0 u· 
w 2 r~ xo-T 

sin4 h(:r) 
---::----:o'--

2 
-'-dx ( 4. 28) 

2:r 
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At this point one can make an immediate simplification by using the type of 

approximation used in the calculation of H 3 . Namely, contributions from the term 

containing the factor (x:~o) are negligible and will be ignored. One is left with 

II' 

I (1 + A0 ) ixo+2 sin4 h(:c) H4 = -- dx 
2 2 w :c2 · xo~ 2 

(4.29) 

Next, the factor of ~ is replaced with the constant factor ; 2 , an approximation 
II 

already reasoned to he valid in the high baryon number regime. Thus 

w 
I (1 + A0 ) 1xo+2 H4 = -;---2 . sin4 h(:~:)dx 

2:c 2 w 0 xo-2 

( 4.30) 

The integration variable can now he changed to h and the remaining calculation 

is straightforward. 

I ( 1 + A0 ) lo . 4 (-vV) -~2 --- s'ln h -- dh 
2x0 2 . 7f r. 

IW ( 1 + Ao) 1rr . 4 -~-2 --. - szn hdh 
2r.:t.:o 2 o 

IW ( 1 + A0 ) [ 3 1 . 1 . ] 7r -~-.2 --.- -h- -;sut2h + ~sz.n4h 
2n0 2 8 ·l 32 0 

3TW (1 + Ao) 
- 16.'1:5 --2- ( 4.31) 

The final contribution to the Hamiltonian (4.1), comes from the boundary con-

tribution, H 5 . This can be calculated straight from the ansatze for fL(:l:), (4.2). 

Hs 
p(oo) 

---

0: 

M 
( 4.32) 

(t 

Finally, the explicit form of the Hamiltonian is obtained by combining H1 to H5. 

One is reminded that, because of the approximations made, the following expression 

is valid in the regime where the ba.ryon number is high. However, this is exactly the 
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regime one is interested in when considering Skyrmions of astrophysical relevance. 

H = _ 47ifrr [l'vf (1 + Ao) _ QN11
2 [(1 + Ao) (:r2 _ Mx vV 2 

_ AfW) 
e o: 2 W 2 ° 0 + 12 6 

(
1- Ao) (H'2

x0 _ MW
2 

_ MW:ro)] 
+ lV 6 12 6 

+ C ( 1 + A0 ) ( M 11
2 

_ W _ 11
2 

) _ 31VV ( 1 + Ao ) _ M] ( 4. 33) 
2 2W:r0 2 2W 16:c5 2 a 

Indeed, one sees that the approximate total energy of the Einstein-Skyrme system 

depends upon the four free parameters of the Ramp ansatze. One proceeds to find 

stationary points of this energy. First, extremising with respect to the parameter 

M, one finds the following constraint. 

3H 
3M =O::::? 

A _ 0:7f
2 (-3C- 8QNx~- 2QN:r0 W) + 6:roW 

0
- 0:112 (3C + 4QN:r6) + 6xoW 

Similarly, extremisation with respect to A0 gives 

3H 
':]A = 0:::::? 
(J '0 

( 4.34) 

( 4.3.5) 

One should note, at this point, that these constraints have an appropriate form in 

terms of their behaviour in the limit of gravitationa.l decoupling. This is illustrated 

by the following limits. 

. 6xoW 
hm Ao = -.-- = 1 
a~o 6:r0 lV 

( 4.36) 

lim !VI = O . = 0 
o~o 48x6W 

(4.37) 

This is the expected behaviour when the gravitational interaction is removed 

from the model. In this case, (cJ.36) & (4.37) imply that A(:r) = 1 and JJ.(:c) = 0 
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everywhere. This ensures that the line element (2.3) takes the form of fiat space 

without the presence of mass. 

Now, extremisation of the energy with respect to the remaining two parameters, 

:r:o and vV, leads to very complicated expressions which cannot be solved analyti­

cally. However, the constraints ( 4.34) and (4.35) effectively pick out hyper-surfaces 

within the full four-dimensional parameter space of field configurations, upon which 

the energy has an extremum in the A0 and fv[ directions. One can proceed by substi­

tuting these constraints into ( 4.33) and extremising numerically over the remaining 

two-dimensional surface. 

Of course, once substitution of the constraints into ( 4.33) has been done and a 

specific two-dimensional surface picked, one must avoid differentiation to find the 

minimum in the :c0 and TV directions. An appropriate algorithm to use is the Find­

Minimum, routine found in Mathcmatica [\Volfram Ref]. This routine, provided with 

a function of N-Yariables along with a.n initial coordinate, uses explicit evaluation 

and not derivatives to find a local minimum on the N-dimensional parameter space. 
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Chapter 5 

Ramp Ansatze Generated 

Configurations 

This chapter details minimal energy parameter sets found for :c0 , W, A0 and AI for 

varying values of the coupling and baryon number. The procedure used to find these 

was outlined in the previous chapter. Specifically one minimizes the energy, (4.33), 

of the system, subject to the constraints on A0 and M detailed in (4.34) and (4.3.5) 

respectively. 

The procedure is carried out using the FindMinimu.m routine in lvfathematica, 

given data describing the situation of interest. Namely this data is; QN = N;./, the 

flavour factor which for the S'U(2) model is ~' a the va.lue of the coupling one wishes 

to use, and C and I which are related to the degree of the harmonic map used and 

thus the number of baryons required. 

When using the harmonic map ansatze, one initially minimizes the quantities C 

and I over the space of all harmonic maps of the required degree. As the baryon 
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number increases, so does the required degree of map and, consequently, so does the 

number of possible maps. For large baryon numbers it is inconceivable to numerically 

minimise C and I over all possible maps and thus an approximation nmst be used. 

One notes that for the SU(2) model, the minimal value of C is equal to the 

baryon number, B [9]. Further it has been shown [30], [?], [?], that. for moderately 

large baryon nmnbers, the minimal value of I tends to a limiting value of 1.28B2
• 

These are the values used in obtaining the solutions, for any given baryon number, 

shown in this chapter. 
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5.1 8U(2) configurations 

5.1.1 Validity of Ramp Ansatze 

Table 5.1 shows the minimal energy parameters for the ramp ansa.tze describing a. 

configuration of 2 x 106 baryons, at a. variety of coupling values. A solution set for 

this baryon number was the highest obtained by direct numerical integration of the 

field equations for h(x), fJ.(x) and A(x). The form of these solutions are shown in 

figmes 4.1 to 4.3 at a coupling of (t = 1 X IQ-G. 

One first notes that the approximations made in Chapter 4, which required 

vV < < :z:0 , are valid for all ramp ansatze configurations with baryon number 1 x lOG. 

Line 10 of table 5.1 shows that even for the configuration with the smallest radius, 

obtained at the critical coupling. the ratio IF is still of order 10-2 . 
' xo 

lVIoreover, one notes that the predictions of the ramp ansatze are in remarkably 

good agreement with the solutions obtained directly from the field equations. The 

direct numerical integration of the field equations at 13 = 2 x lOG, gives solutions 

that have a radius of x0 ~ 1223 and a width of W ~ 3 (see figures 4.1 to 4.3). Line 

3 of table 5.1 shows that for the same value of n, the ramp ansatze predicts a radius 

of :c0 ~ 1171.6 and ~F ~ :3.1. In each case there is less than a .5 percent discrepancy 

between the values obtained by the different approaches. 

Further, the ADJ\-1 mass per baryon for the configuration, calculated from figure 

4.2, is given by 

(5.1) 

Comparing this with the value of 66 .. 56 obtained from the ramp ansatze, one is 
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left with a discrepancy of only (j percent! These figures, along with the existence 

of a critical coupling in table .5.1, provide one with confidence in the validity of the 

ramp ansatze. 

a J:o w Ao MADAJ/B S1nin 

1 x w-s 11 77.07940.5 3.141339 0.999910 66.81.5103 0.999820 

1 x 10-7 1176 .. 584103 3.138980 0.999096 66.791644 0.998195 

1 x w-6 1171..598103 3.115317 0.990914 66 . .5.56852 0.981941 

1 x w-5 1117.468499 2.868798 0.90414.5 64.185116 0.817404 
--

3 x w-- 5 943.153230 2.186000 0.6.50125 58.619086 0.407177 

3.7 x 10-5 801.051220 1. 730217 0.472.599 .56.421817 0.1713.52 

3.76 x w- 5 760.448013 1.613464 0.426883 .56.223736 0.1160SO 

3.768 x w-s 742.1120.54 1.56247.5 0.406975 .56.204875 0.092.580 

3.76808 x w- 5 741.331293 1..560327 0.406138 S6.20S10.5 0.091601 

3.768083 x w-5 741.299241 1.-560239 0.406104 56.20-5116 0.091.560 

Table .5.1: Numerically obtained minimum energy configurations for 2 x 106 baryons 

at a range of couplings. Respectively shown are the coupling used and optimal values 

for the radius of the shell, its width, the value of A0 such that A(oo) = 1, the ADM 

Mass per baryon and the minimu-rn ?lalue of the metric function S(:r) = ( 1 - 211;x)). 
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5.1.2 Effect of increasing baryon number at a= 10-6 

Having established the validity of the ramp ansatze as a description of configurations 

containing large numbers of baryons, it is important to see how the structures change 

a.-; more and more baryons are added. Tables .5.2 and .5.3 summarise the data 

obtained for increasing baryon number at a. fixed value of the coupling (a = 1 x 10-6). 

Comparing the data to the previously obtained solutions at low baryon numbers 

shows significant differenc{~S. For example, the ramp ansatze predicts that a single 

baryon configuration a.t n = 1 X 10-6 will have an ADlVI mass of 63.55. However, 

table 3.3.1 in Chapter 3, shows that the actua.l value of the ADtd mass in this 

case is 72.92. The large (13 percent) discrepa.nc.Y can he explained because the 

approximations made in calculating the energy from the ramp amm.tze, relied on 

the premise tha.t ~V << x0 . This is clearly not the case for low baryon numbers, as 

shown by the values in table 5.2. As such, one will restrict attention to configurations 

where the approximations are clearly valid, say B 2: 1 x 106 . 

The first comment that can be made is that the previously found trend in de­

creasing ADIVI mass per baryon, is continued at large baryon numbers. One can 

clearly see that for B 2: 1 x 106 , configurations become more and more energeti­

cally favourable as more baryons are added. Given that section 5.1.1 showed there 

to be only a small discrepancy between A1ADM per B whether calculated by direct 

integration or from the ramp a.nsatze, one can he fairly sure that the values in table 

.5.3 are a good representation of the ADr-.:J masses of true solutions. If anything, 

imposing the ansatze rigidly on the fields, would tend to result in an overestimation 

of the energy. 
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Thus taking absolute values of f\,{ADM per B for B ? 1 x 106 and comparing these 

to the value of 72.92 for a single baryon, at the same coupling, from table 3.3.1, one 

can be convinced that all the configurations are stable against single particle decay. 

Thus the possibility of constructing a solution representing a baryon star is indeed 

energetically plausible. 

As for the form of solutions, the general trends in the parameters of the ramp 

ansatze are a.s follows. A0 is effectively a measure of the warping of space caused by 

the self-gravitating Skyrmion. As A(:r) has a value of 1 at spatial infinity, then the 

smaller the value of A0 , the larger the deviation from 1 and thus from flat space. As 

one would expect, A0 decreases significantly with increased baryon number, partic­

ula.rly as one approaches the baryon number for which n = 1 x 10-6 is the critical 

coupling. 

There is an interesting comment here. Again there is the existence of a. critical 

coupling, above which no solutions exist. Even for the very large baryon numbers 

involved in this chapter, the value of the metric f11nction S'(;c) is small but signifi­

cantly greater than zero, near C:.tait. Still no horizon forms and the lack of solutions 

above Ocrit is not due to a collapse to a singularity. Thus one is left to conclude that 

indeed the lack of solutions is due to the annihilation between the sphaleronic and 

regular branches of solutions (shown in Chapter 3), at the critical coupling. 

The width of the baryon layer, H', has a. curious behaviour. It decreases sig­

nificantly near the critical coupling. However, far away from this it stabilises at a. 

value of around 3.1. This was in fact expected. Kopeliovich [33], [34], calculated a 

minimal energy value of HI, for la.rge baryon number Skyrmions in flat space . 
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Taking a.n ansatze akin to the ramp ansatze he was able to obtain the explicit 

form of the Hamiltonian. As the situation was simplified by the exclusion of gravity, 

the number of free parameters of the energy were reduced to two, :z;0 and vV. In this 

case the energy could, in fact, he minimised analytically and the optimal value of 

lV was shown to be vV = 1r. 

Perhaps the most interesting feature of the data is the behaviour of the radius 

:c0 . As the baryon number increases so does the radius. In fact far away from O:crit it 

is evident that x0 ex: B~. This shows that far from the critical coupling, the presence 

of gravity is having a negligible effect on the structure of the Skyrmion. The baryons 

are distributed over a hollow shell. Thus the number of baryons is proportional to 

the smface of that shell and so B ex: :c&. There is no evidence for any deviation from 

this behaviom, far from ctcrit· 

This is not the whole story however. Figure 5.1 shows that near the critical 

coupling, the radius deviates from this proportionality with B~ and rises more slowly 

with increasing baryon number. This signifies that gravitational compression has 

started to occur. :tviore surprising is the fact that at couplings very close to Ctait. the 

radius actually decreases as more baryons are added. This is a tantalising property 

for trying to model a baryon star within the Einstein-Skyrme system. 

Real neutron stars exhibit a similar phenomenon. Supported by degenerate neu­

tron presrmre, a neutron star must decrease in size as more neutrons are added. This 

is because the neutrons need to be brought into closer proximity in order to suffi­

ciently increase the degenerate neutron pressure so that the increased gravitational 

force is balanced [35]. 
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Figure 5.1: The behaviour of :c0 with increasing baryon number at n ji1:ed coupling 

of a = 1 X 10-G. 

5.1.3 Effect of increasing baryon number on the critical cou-

piing 

Table .5.4, shows the relation between the critical coupling and the baryon number. 

It is again clear that Ctcrit ex B- ~, as obtained for low baryon number Skyrmions in 

Chapter 3. 

It may be tempting here to attribute this relationship as an artefact of the hollow 

shell structure, in that the behaviour of Uait is related in some way to the surface 

area of the shell. However the phenomenon seems more genuine than that. One 

must remember that (.l:crit was proportional to s- ~, for baryon numbers 1,2,3 & 4, 

as shown in Cha.pter 4. These solutions do not possess spherical symmetry and thus 

there must he a deeper reason for the behaviour of Ctcrit· 
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5.1.4 Candidate baryon stars 

Having discussed the main features of configurations with a large baryon number 

and moreover, having established that the ramp a.nsa.tze is both reliable and gives 

rise to energetica.lly favourable multi-baryon Skyrmions, it is now time to test the 

model to the limit, as it were. One will attempt to find a structure corresponding 

to a baryon star, in the Einstein-Skyrme model. 

A typical neutron sta.r would comprise in the order of 1058 neutrons. Thus one 

will take a baryon number of B = 1058 . The real physica1 value of the coupling, u, 

must also be known. Given that a = 4nf':CG and taking .frr = 93M ev, along with 

G = 6.72 X 10-45Afev-2 , one obtains aphysical = 7.30 x 10--IO. Using these values, 

one obtains the clata shown in table .5.5. 

One sees that the physical value for n is far below the critica1 coupling for this 

particular baryon number. Thus A0 & S'min both equa1 unity and HI tends to a 

value of Jr, as predicted by Kopeliovich. The configuration does, happily, appear 

to still be energetically favourable, having an AD!vi mass per baryon far less than 

that of a single baryon in table 3.3.1, at 72.92. Incidentally, the value for the single 

baryon was obtained at a far higher value of n and thus the comparable vah1e at 

<lphysical, would be slightly higher again. Either way, a hound state of baryons large 

enough to be a baryon star, does seem energetically favourable. 

There is one major drawback with the solution however. The ramp ansatze 

predicts a baryon star with a radius of :~:0 = 8.32 x 1028 . One must convert this back 

from the sca.led units to SI units of length. Thus, noting that :1: = ef1fr, one has 

1 
r=-x 

ef1f 
(5.2) 
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Now one notes that common values of the Skyrme model parameters are e = 

4.84, with dimensions of [Mass-~Length-~] and f.,= 93Mev with dimensions of 

e 

(5.3) 

and 

.r., 93 ( J\;~:v) (x) ~ kq~rn-~ 
2.72 X 10- 7 kg~m.-~ (5.4) 

allow one to calculate the predicted radius of a baryon star as 

Rbllryonstar 
8.32 X 1028 

-------~--'f/1. 

8.18 X 1021 X 2.72 X lQ-7 

(5.5) 

This is clearly too large for the radius of a compact, super-dense baryon star, 

such as a neutron star. A typical neutron star radius might be expected to he in 

the order of 10- 50km., [35]. 

Such a prediction seems a serious obstacle in trying to model a baryon star within 

the Einstein-Skyrme system. However, it is no more than one expected at this stage. 

Effectively one has made ansatze which describe a giant hollow structure. This was 

a first approximation and the next chapter shows how the model can be refined. 
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B Xo w Ao MADM/B lS'nlin 

1 0.673.505 2.327110 0.999989 63.548704 0.999994 

4 1..59196 2.86115 0.999984 62.5851 0.999987 

8 2.32292 2.991.52 0.999979 63.419.5 0.999979 

.50 .5.861.57 3.11.594 0.9999.53 64.7287 0.999931 

100 8.306280 3.128570 0.999934 65.273095 0.999895 

200 11.758698 3.134892 0.999908 6.5.693078 0.999843 

500 18.60307.5 3.138600 0.9998.5.5 66.089160 0.999739 

1 X 103 26.313363 3.139718 0.999796 66.296392 0.999622 

2 X 103 37.214608 3.140166 0.999713 66.44.51.54 0.9994.5.5 

.5 X 103 .58.840444 3.140026 0.999.546 66 .. 576866 0.999123 

1 X 104 83.206449 3.139.582 0.9993.59 66.641104 0.998749 

2 X 104 117.6.57832 3.138913 0.999094 66.68304.5 0.998220 

.5 X 104 18.5.983840 3.1374.52 0.998.568 66.712118 0.997169 

1 X 105 262.940613 3.13.574.5 0.997976 66.717411 0.99.5986 

2 X 105 371.692791 3.133319 0.997136 66.70910.5 0.994311 

5 X 105 .587.189670 3.128492 0.99.5468 66.67.5247 0.990988 

1 X 106 829 . .598841 3.123040 0.993.58.5 66.628301 0.987242 

Table .5.2: N1tmc-rically obtained minimu·m energy configurations for a range of 

baryon numbers at n = 1 X 1 o~G. Respectively shown nrc the baryon n-umber and 

optinwl values .for the radius of the shell, ils width, the value of A0 such that 

A ( oo) = 1, the AD AI M 088 per baryon and the minimum value of the metric function 

8(:r) = (1- 21';rl). 
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n :ro w Ao MAou/B S1nin 

2 X 106 1171..598103 3.11.5317 0.990914 66 . .5.568.')2 0.981941 

.') X 106 1847.3057.')1 3.099942 0.98.5590 66.4094.53 0.971416 

1 X 10i 2604.193248 3.082536 0.979548 66.240364 0.9.59541 

2 X 107 3666.097134 3.0.57771 0.970927 6.').999282 0.942720 

.5 X 107 .57 42.761267 3.008095 0.953.54.') 6.') .. 517862 0.909236 

1 X 108 8032.82070.') 2.9.')117.5 0.933482 64.972117 0.871294 

2 X 108 11174.683329 2.868773 0.904158 64.19.5072 0.817164 

5 X 108 17031.617830 2.696761 0.841996 62.632.')96 0. 707383 

1 X 109 22898.7887.50 2.483680 0.763196 60.827.52.') 0 .. 577249 

2 X 109 29121.037849 2.109214 0.620.568 .')8.139036 0.364.')30 

2.8 X 109 29097.730196 1.662272 0.446042 .56.288421 0.137963 

2.83 X 109 28.514.182644 1.606614 0.424264 56.224-598 0.111904 

2.839 X 109 28024.164280 1..567118 0.408849 56.210670 0.093726 

2.8397 X 109 27869.287879 1 . .').5.5.558 0.404340 56.211729 0.088448 

2.83975 X 109 2782.5 .. 597221 1..5.52361 0.403092 S6.212412 0.086989 

2.8397.52 X 109 27821.996607 1..')52098 0.402989 56.212474 0.086870 

Table .5.3: Nu.meTically obtained minimum ener-gy configuTations joT a range of 

baryon numbers at n = 1 X w-6 . Respectively shown aTe the ba·ryon nnmbeT and 

optimal values joT the radius of the shell, 'its width, the value of A0 such that 

A( oo) = 1, the AD!vf Mass peT haTyon and the mininw.m value of the metric function 

S(:r) = ( 1- 2i•;:r)). 

July 3, 2006 



5.1. SU(2) configurations 77 

13 O:ait :co w Ao ~MADJ\1/B S'n1in 

lOa 1.6867.51 X 10-a 16.505171 1.5.53694 0.400954 .5.5. 954881 0.130810 

104 5.331088 x 10-4 .52.20.5734 1..5.52662 0.402323 .56.128167 0.101148 

105 1.68.51.5.5 x 10--1 166.~{.52221 1..567714 0.408796 .56.183.5.51 0.098431 

106 .5.329166 x 10-5 .522.07.5324 1..5.52098 0.402900 .56.204084 0.088264 

107 1.68.5180 x 10-5 16.50. 9.54688 1 . .5.520.59 0.402947 .56.209924 0.087274 

108 .5.3289.51 x 10-6 .5220. 7293.51 1 . .5.5202.5 0.4029.54 .56.211801 0.0869.52 

109 1.68.51.58 x 10-6 16.511.849632 1..5.52321 0.403075 .56.212301 0.086989 

1010 5.328927 x 10-7 52210.639623 1..5.52148 0.403010 .56.21254.5 0.086880 

1011 1.68.51.54 x w- 7 16.5114.043088 1..5.52264 0.4030.56 .56.212576 0.086924 

1012 .5.32892.5 x w-8 .522104.287618 1..5.52140 0.403007 .56.212624 0.086864 

1013 1.68.51.56 x w-8 1.6.51101 X JOG 1..5.52215 0.403037 56.212592 0.086896 

1014 .5.328926 x w-!) .5.221007 X 10(] 1..5.5212.5 0.403002 .56.212631 0.0868.56 

1015 1.68.51.56 x w-!) 1.6.51091 X 107 1 .. 5.52204 0.403032 .56.212.597 0.086891 

Table .5.4: Numerically obtained minimum energy configurations for a range of 

baryon nv.mbers at their corresponding rna:J:imum permitted o:. Respectively shown 

are the baryon number, critical coupling and optimal values for the radius of the 

shell, its width, the value of A0 snch that A(oo) = 1, the ADM Mass per bmyon and 

the minim·nm. value of the metric fnnction S(:r) = ( 1 - 21~r)). 
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:ro w Ao i\1/AD/II I B S'min 

8.323.583 X 1028 3.141.593 1.000000 66.829868 1.000000 

Table .5 .. 5: Numerically obta·inerl minim:um energy configuration for baryon star can­

didate. 
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Chapter 6 

Multiple Layer Gravitating 

Skyrmions 

As was demonstrated in the previous two chapters, the Skyrme model can produce 

baryon configurations that have approximate spherical symmetry and that are en­

ergetically favourable (i.e. resistant to single particle decay). Whilst this is some 

way towards constructing something akin to a baryon star within the model, there 

are drawbacks. 

Firstly the configurations obtained so far exist effectively as giant hollow shells, 

with the haryon density distributed as a tight lattice over the spherical surface. 

Clearly a. hollow object is not what one would expect of a baryon star. Related to 

this is the problem of size. For the real value of the coupling constant 0' = 7.3 x 10-40
, 

then a hollow configuration containing 1058 baryons (a typical number for a neutron 

star), would have a radius corresponding to around 3.74 x 1010 km! Noting from [35], 

that a typical neutron star radius is a.bout lOkm then, as of yet, one cannot claim 
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to have described anything like a neutron star in the Einstein-Skyrme model. 

This chapter addresses these challenges and provides the first examples of plau­

sible baryon star structures within the model. 

6.1 The shape and form of Multiple Layer Skyrmions 

So far, the following boundary conditions have been imposed on the profile function, 

h(x). 

h(O) 11 

h.(oo) = 0 (6.1) 

There were two reasons for this. Firstly that the field be well defined at the origin 

and secondly finite energy considerations. However, it is clear from the exposition of 

the Harmonic !\1Iap ansatze in Chapter 1 that (6.1) a.re not the only set of satisfactory 

boundary conditions. 

In fact, the Skyrme field will be well defined at the origin if the profile function 

is any multiple of 11. Thus, fork E Z, 

h(O) k11 

h(oo) = 0 (6.2) 

is also a reasonable choice of boundary data.. 

It can be shown [9], [10], that a. Skyrmion generated by a Harmonic rvia.p of 

degree B, where the profile function has boundary the conditions (6.2), will pos­

sess a. topological charge of kB. Such a. Skynnion will he equivalent to a. bound 

configuration of kB baryons. 
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Such configurations were studied for moderate baryon number as in Chapter 3. 

That is, numerical integration of equa.tions (2.32) to (2.35) was performed hut this 

time imposing (6.2) on h(x) with k = 2. A typical solution set is shown in Figs. 6.1 

- 6.3. 

This data was obtained for a total baryon number of B = 4 x 106 , thus in actuality 

a Harmonic map of (legree 2 x 106 was used. Further, the data was obtained at a 

coupling of 0: = 1 X 10-6 . 
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Figure 6.1: Numerical solutions for h(:c) in the case of B = 2 x 106 per layer and 

o: = 1 x 10- 6 , where the boundary condition h(O) = 211 have been taken. Clearly 

e:J:hibited is the multiple shell-like structure of the Skyrmion 
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Figure 6.2: Nnmerical solutions for tt(:c) in the case of B = 2 x 106 per layer and 

0: = 1 X w-6 , where the boundary condition h(O) = 27r have been taken. Clearly 

e.rhibited is the multiple shell-like structure of the Skyrmion 

July 3, 2006 



6.1. The shape and form of Multiple Layer Skyrmions 

0 
(o 
r.D 

..... 01 
t\) 
0 
0 

...... 
t\) 
0 
(J1 

...... 
t\) ...... 
0 

...... 
X t\) 

...... 
(J1 

...... 
t\) 
t\) 
0 

...... 
t\) 
t\) 
(J1 

...... 

A(x) 

0 ...... 0 
0 0 ...... 
(J1 ...... (J1 

I I 

84 

0 
t\) 

~ L-------~~---------~L-·------~---------L---L--~ 

0 

Figure 6.3: Nu·rnerical solutions .for A(:c) in the case of B = 2 x 106 per layer and 

0: = 1 X w-6 ' where the boundary condition h(O) = 2n have been taken. Clearly 

e1:hibited is the mu.ltiple shell-like .structure of the Skyrmion 
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~--~~---------------------

Clearly the slight modification of the boundary conditions on h(x) has produced 

a novel structure in the solutions. Again, the fields remain constant until a large 

radial value at which they evolve simultaneously over a relatively sma11 width before 

attaining another constant value. The curious thing is that the evolution occurs 

over two distinct sections which have the same width. 

It would seem that for boundary conditions of the form (6.2), the Skyrmion has 

a multiple-layered structure. In the previous picture of Skyrmions of large baryon 

number as hollow shells, it appears that solutions of the form shown in Figs. 6.1 -

6.2 correspond to a series of equal width embedded hollow shells. The number of 

such shells being equal to k the multiplicity of 1r in the boundary condition (6.2). 

Such structures hold tantalising possibilities for constructing Skyrme stars. 

In the previous chapter it was shown that for realistic input data, a Skyrme star 

constructed as a hollow shell would simply be too large to resemble anything like a 

neutron star. However, multiple-layered structures could provide Skyrme stars with 

considerably lower radii. The reasons are two-fold. 

The first is improved packing. For the single-layered structures described in 

Chapters 4 & 5, the baryons were distributed over a.n approximately spherical shell 

of very small width. Essentially, the baryons were distributed over the surface area. 

A very large baryon number would therefore require a very large surface area. and 

consequently a very la.rge shell radius. If now one deals with embedded shells then, 

if the number of layers is large, the baryons become distributed within part of a 

spherical volume. Thus a smaller radius should he required to accommodate the 

same number of baryons. 
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Secondly, Table .5.1 a.lready provides evidence for the gravitational compression 

of hollow Skyrmions. It is hoped that this effect could be enhanced if the Skyrmion 

has multiple layers, since the outer layers will feel the gravita.tiona.l attraction due 

to inner layers. 

For these reasons it is plausible to consider multiple-layered Skyrmions as a way 

of overcoming the size problems of Skyrme stars. Certainly, the tota.l radius of the 

solutions shown in Figs. 6.1 - 6.3 for two layers is no worse than that of the single 

layer solutions shown in Figs. 4.1 - 4.3, for the same baryon number. 

6.2 The Ladder Ansatze 

One proceeds as in Chapter 4 by constructing ansatze for h(:c), J-l(:c) and A(:r) that 

mimic the multiple-layered structure. 

Thus 

h(x) = 

tt(.T) = 

A(:c) = 

br 

0 

0 

i\1 + (x x ) AI 2 ' -' 0 kW 

Af 

Ao 

l+An + (x _ X ) 1-An 
2 ' < 0 kiF 

0 :S: X < Xo - k~ir 

.,. _ k\V < X < X + kW 
·"0 2 - < < 0 2 

X >,.,. + kW 
< - ·''0 2 

0 :S: X < Xo - k~V 

,.,. >X + kW ,(,-' 0 2 

0 :S: x < Xo - k;v 

kW :r 2: :ro + -2-
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where W is the width of a single layer and :r0 is now the radial position of the centre 

of all k layers. Again, M is the value of p(:c) at infinity (as before, there is no central 

mass) and A0 the value that A(x) must take at the origin in order to ensure that 

A(oo) = 1. 

It is important to note an approximation here. The above ansatze describe fields 

changing continuously over the region .1:o - ki1.· to Xo + ki11 . However, this is not 

quite the situation demonstrated in Figs. 6.1 - 6.:1 In those solutions there is a 

small separation between each distinct layer. The size of this separation is small 

though, compared to the overall radius of the Skyrmion and so this subtle structure 

has been neglected as a first approximation. 

One attempts again to find an explicit form for the energy of the system by sub­

stituting the field a.nsatze into the reduced Hamiltonian ( 4.1) and then to minimise 

this with respect to the four free parameters of the ansa.tze. 

For simplicity one will again deal with the Hamiltonian m five distinct parts. 

Also, as the Hamiltonian is identical to that used in Chapter 4 (all that one alters 

here are the field a.nsatze), then all integrands in the energy contain either a power 

of sin(h(x)) or a derivative of one of the fields. Noting from the above ansatze that 

the fields only change over :c0 - k~v to :c0 + k~F and that outside this region h(:c) is 

a. multiple of 1r (and thus sinh( :c)) = 0, then integration is restricted to the layers 

themselves. 

At this point there is one subtlety. \Vhilst one integrates over all layers, several 

of the integrands contain T or C. Thus information needs to be known about the 

harmonic map used across each layer. One notes that the motivation for using 
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the Ladder Ansatze were solutions obtained when taking a single harmonic map 

combined with the modified boundary conditions on h(x), (6.2). Thus it is sensible 

to use a single value of the harmonic map quantities I and C across all layers. 

A suitable picture of the stmcture is as follows. I3y taking a harmonic map of 

degree B along with the previous boundary conditions, (6.1), one obtained a single 

layer Skyrmion comprising B baryons. Now since each layer in the multiple-layered 

Skyrmion corresponds to a change in h(:~;) equal to that in the previous boundary 

conditions, (6.2), one sees that each layer will contain B baryons. Thus the whole 

structure contains k layers each with equal baryon number, B. 

Of course, as each layer occurs at a different radius, then the volume and thus 

the baryon density of each layer will vary. This is in fact a desirable property as 

there is evidence to suggest that neutron stars comprise several strata, each with 

different neutron densities [35]. 

Having, stated the above details it is clear that integration of the Hamiltonian 

density need only be preformed across the layers and with single values of I and C. 

Thus the five parts of the energy, without the overall multiplicative constant - 4:/rr, 

are 

!ro+k~V 4( ·)Jl(:c)'d. 
, X .X 

, To- k~V 0' 
(6.3) 

!
ro+k~l' 

A( :c )Q N S(:r)h(:c )'2:c2 dx 
. oo- k·;F 

(6.4) 

, kW -.l~~:~1
2 

A(:r)Csin2 h(:r)[l + S(.1:)h(:r)'
2
]rl:l: (6.5) 

fro+ ~<;
1

• A(:c)Isin'1 h(:c) d 
- y 

~<n· 2·c2 ·• · ro-· 2 ._ 

(6.6) 

fl( 00) 
(G.7) 
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Commencing with H1, one substitutes the Ladder Ansatze for Jl(x) and A(x) 

and obtains 

kW 

j\;[ 1:ro+--y- ( 1 + Ao 1- Ao) 
-k . -.- + (:r- :co)-k~,\·1 dx 
O; ·W k\V 2 "v xo-2 

kl\' 

!vi [ 1 + Ao ] :ro +- 2 

akW --2-:t: kW 
xo-·2 

M (1 + Ao) 
(t 2 

(6.8) 

To arrive at this one has again used the fact that (x - x0 ) is an odd function 

over the symmetric interval of integration. Thus this term vanishes. 

l\-ioving on to H 2 , one obtains upon substitution and expansion 

. kW 

QN7r
2 l:ro+--y- [1 + Ao 1 - Ao] 

H2 -~ k\1' -2- + (:r- xo)kW-
. xo-~ 

x [T2 -2T(M +(T-T) M )] dx . .. 2 . . 0 kW . 

QN1r
2 

[( (1 + A0 ) (2:r0 . ) (1- A0 ) ( 2:t:0 )) [:t: 2 ]:rn+~;F 
- W2 M --2- kHI- 1 + Mxo kW 1 - kW 2 :ro-ii_'f 

+ ( c +/o) (I-!~)+ c ;,:") (4~~- M <•o)) [~'[':~ 
(
1- ,~0 ) (

1 
_2M) [X4]:ro+k;l'] 

kW kW 4 kw 
xo-~ 

+ (6.9) 
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From the following evaluations 

[ ~
2 ] :ro-t- k;v 

2 :ro- k~V 

[ 
:r3] :ro+ k;F 
3 kW :ro-2 

[ 
:r4] :ro+ k~v 

4 k\\' 
:ro-~ 

the final form of H 2 is given by 

+ 

90 

kvV:ro (6.10) 

(6.11) 

(6.12) 

(6.13) 

H3 comprises a more involved integral so, for simplicit)'·, it will once again he split 

into several parts 

(6.14) 

where 

H31 = -C ( 1 +2Ao) (1 + 11
:
2

) 1:ro-t-k;v- sin2 h(:c)dx 
H, HI. 

xo----:r-

(6.1.5) 

H, ~ -C c ~0) (1 + ~~') r:;:v (x- x0 )si.n
2h(x)dx (6.16) 

( 
1 + Ao) J\1f11

2 l:ro+ ~~ sin2 h( :r) 
H33=C ~- -.- dx 

2 H/ 2 kiF X · xo- 2 ._ 

(6.17) 
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_ Mn
2 [(1- A0 ) _2_ (1 + A0 )] lxn+k~v ,. _ ,. sinN~(x) , 

H34- C W2 kW + kl;\l 2 kw (.t; .t;o) :c dx (6.18) 
· xo- 2 

and 

( 
1 - Ao) 2/Y[ n2 lxn+ k;\· 2 sin2 h( :c) 

H35 = C -k11 . kl 113 (:r- :r0 ) dx 
" 'I/ ~ 'I . xn- k;F X 

(6.19) 

The calculation of H:n is straightforward following a change of variable from x 

to h. 

( 
1 + Ao ) ( W ) ( n

2 
) ('n -C --

2
- --:;;- 1 + W 2 .Jo sin?hdh 

( )( )( 2)[ ]br 1 + A0 W n 1 1 . 
-C -- - 1 + - -h - -sw2h 

2 n vV 2 2 4 o 

-C (~) (kVl~) (1 !!!__) 
2 2 + W 2 

(6.20) 

As in Chapter 4, one makes the high baryon number approximation that W << 

.7:0 . This means that across the layers .?: doesn't vary significantly from the central 

radius, :r0 . Thus (:r- :r0 ) and consequently the contributions from any integrals 

containing this factor, are negligible. 

This approximation requires more consideration than in Chapter 4, since one 

actually requires that kH! < < :r0 . Obviously this depends on the number of layers, 

k. However, Chapter.) demonstrated that for realistic values of n and B (7.3 x IQ-40 

and 1058 ), the radius, :r0 , of a single-layered structure was of the order 1028
, whilst 

the width, W, was of order 1. This clearly allows for a large number of shells. 

Even if one was to he optimistic enough that the multiple-layered structures 

would have a reduced radius akin to that of a neutron star, the approximation is 

still valid. A typical neutron star has a radius of order 10krn. Using the conversion 

detailed in Chapter 4, this corresponds in topological units, to a radius of :r0 = 
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2.22 x 101u. Given that the width of a single layer is still likely to be of order 1, 

then for the ratio kW to be small, sav of order 10-2 , one could still allow 1017 lavers. :ro " J 

Clearly, the small width approximation is still valid. 

As a consequence of this observation, one can neglect the contribution to the 

energy from H32. H34 and H 35 . One is left to calculate H33 . Again the ratio of the 

total width of layers to the radius is taken to be small. One therefore approximates 

the factor of l as __!__. Thus 
X Xo 

k\V 

(
1 + Ao) Afrr 2

l:ro+-or C -.- sin2h(:c)dx 
2 li-' 2:c ~.-w 0 . :rn--or 

C --- -- sm. hdh ( 
1 + Ao ) M 7r ikrr . 2 

2 Wxo. 0 

C ( 
1 + Ao ) M rr [ 11 1 ... . I ] br -- - 1.- -sm2l 

2 W:r0 2 4 0 

C ( 1 + Ao ) k. Afrr
2 

2 2vV:co 
(6.21) 

Summing H31 ami H32 , one obtains for H 3 

H 3 = C ( 1 + Ao) ~ ( l'I rr2 - W - rr2 ) 
· 2 2 W:r0 W 

(6.22) 

After substitution of the field ansatze, the fourth contribution to the energy 

reads 

_ l:ro+k.·~l' [1 +.Ao .. .. 1- Ao] sin4 h(:r) . 
H4- -I -.- + (.c- .1. 0 ) • 

2 
dx 

kw 2 kl+ 2:r · xo-2 

(6.23) 

As previously, one simplifies by neglecting the contribution from the term containing 

the factor (:c- :c0 ) and then declaring that the denominator 2x2 he approximately 

equal to 2:r5 across the integration interval. 
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One is left with 

T (1 + Ao) lxo+k;F .. 
-:-:2 --- s·m4 h(:r)dx 

2Xo 2 . To- k~V 

TlV (1 + Ao) 1krr ,.- 4 ---
2 
--- stn hdh 

21r:r0 2 0 

TW ( 1 + Ao ) [ 3 1 . 1 . ] krr --
2 2 

--- -h- -szn2h + -szn4h 
· 1r:r0 2 8 4 32 0 

3kiW (1 + Ao) 
- 16:r6 --2- (6.24) 

Finally, the boundary term, fh, is ca.lculated as 

/L(oo) 

0: 

M 
(6.2.5) 

Nmv one is in a. position of finding the explicit form of the energy for a multiple-

layered gravitating Skyrmion, subject to the high baryon number approximation. 

Combining the five pa.rts of the energy, one obtains 

H _ 47rfrr_ [M (L±_Ao) _ QN1r
2 [(L±_Ao) (kx2 _ kfl.fxo + PH

1= _ P~fW) 
e 0: 2 W 2 ° 12 6 

(
1- A0 ) (k

3
W

2
:c0 _ k

3
MW

2 
_ k

2
.MWx0 )] 

+ kW 6 12 6 

+ C (1 + A0 ) ~ (M1r2 
_ Hl _ 1r2

) _ 3ki1V (1 + Ao) _ M] (6.26) 
2 2 W :ro lV 16:r6 2 o· 

Clearly, the energy obtained in Chapter 4, using the Ramp Ansatze, is a special 

case of (6.26) for a single layer. Indeed setting k = 1, one recovers the energy of a 

single layered Skyrrnion, (4.33), as o11e would expect. 
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The method for finding solutions is now identical to in Chapter 4. One first 

minimises the energy independently with respect to the parameters 1\1 and A0 to 

obtain the following constraints. 

and 

aH 
aM= 0 => 

(6.27) 

a (81r2 (3kC:c6 + 6kQN:t;~- 2k2QN:c~W) + W2 (9k'I + 24kC:r6 + 4k3
7r

2QNx6)) 
8:c0 (a1r2 (3kC + 4kQN:c6) + 6:coH!) 

(6.28) 

As one would expect these take the same form as for the single-layered structures 

of Chapter 4, for the case k = 1. Thus they also behave correctly ( A0 --+ 1 and 

M --+ 0) in the limit of gravitational decoupling (a --+ 0). This can be seen to be 

true regardless of the layer nmnber k. 

Finally, minimal energy configurations can he obtained. Upon substitution of 

constraints (6.27) and (6.28) into the explicit Hamiltonian, (6.26), one picks out a 

two-dimensional sub-space of the full parameter space. One again uses the Find!vfin-

imnm routine in Mathcrnatica to minimise in the remaining lV and x0 directions. 
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Chapter 7 

Ladder Ansatze Generated 

Configurations 

This chapter presents parameter sets obtained by numerical minimisation of the 

energy of a. multiple-layered self-gravitating Skyrmion, (6.26). Again, for the SU(2) 

model, values of C = B and I = 1.288~ were taken when trying to study configu-

rations containing B barym1s. 

In particular, the first plausible baryon star configuration is produced within the 

SU(2) Einstein-Skyrme model. 

7.1 SU(2) Configurations 

7.1.1 Validity of the Ladder Ansatze 

The data. sets contained in table 7.1 are the minimum energy configurations for 

double layer Skyrmions with various baryon numbers. That is, the layer number 
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k = 2. Each configuration wa.s obtained at a fixed coupling of a= 1 x w-n. 

Of particular interest is the double layer configuration containing a total of 4 x lOG 

baryons, (2 x lOG baryons per layer). One can see that the ladder ansatze predicts 

that such a. configuration has a raclius of x0 = 116.5.97. Further, it predicts that 

each layer has a width of 3.09. 

Such a configuration has already been obtained, at the same value of a, by direct 

numerical integration of the field equations (2.32) -(2.3.5 ). The solutions are shown 

in figures 6.1 -6.3, in Chapter 7. Inspection of the plots reveals that the actual 

radius of solutions was ~ 1214.0 (remember it is taken to be the centre of the two 

layers). The width of each layer was ~ 3 . .5. 

Comparing the data obtained by direct integration and that predicted by the 

ladder ansatze, one finds discrepancies of < 4 per cent in radius and < 12 per 

cent in layer width. The discrepancy in the width is higher than that caused by 

taking the ramp ansatze for a single layer configuration (see section 6.1.1 ). This is 

probably caused by the extra assumption made in the ladder ansatze, that there 

was no separation between layers. However, the discrepancies are not significantly 

large to cause concern. 

Further, if one studies figure 6.2 in Chapter 6, one finds that the solution for 

JL( x) has a final value of p( oo) ~ 20. This corresponds to and ADlVI mass per baryon 

of 
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MADM 4ntt(infty) 

B aB 
807r 

"-' --
4 

~ 62.83 (7.1) 

This value must be compared with that predicted by the ladder ansatze of 66.28. 

Indeed the ADJ\J mass has been overestimated, as one would expect from imposing 

an a.nsatze. However the discrepancy is < 6 per cent and one concludes that the 

ladder ansatze does produce configurations with properties satisfactorily close to 

true solutions. 

7.1.2 The affect of varying the layer number, k 

Having established faith in the configurations generated by the ladder ansatze, one 

asks "What general affects come from varying the number of layers?". 

Comparing table 7.1 to tables 5.2 and 5.3, one can start to see differences caused 

by doubling the layer number. The first thing to note is that at each baryon number, 

the radius of double layer configurations is considerably lower than for the single 

layer configurations. This is true whether one compares the values of :~:0 or if one 

considers the total radius of solutions after layer widths have been added. Far from 

baryon numbers for which the value of a = 1 x 10-6 used is close to their critical 

coupling, the decrease in radius is likely to he due to a better packing of baryons. 

As was hoped in Chapter 6, it seems that indeed the radius is reduced because of 

baryons being distributed through a volume instead of across a surface area. 

For baryon numbers of greater than 1 x 10° (at this coupling of n = 1 x 10-6 ), 
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the affect appears to be enhanced. The difference between the single and double 

layer radii, is even larger. This seems to signify that gravity is now playing an 

important role and that the gravitational attraction of the inner layer, in the double 

layer configurations, ha.<; resulted in increased compression. This is what was hoped 

for and may pave the way in constructing plausible baryon stars. 

It is also important to note that the width of layers has not been significantly 

decreased, for the double layer structures. One might have expected the width 

to half as the number of layers doubled. This would have meant that the baryon 

density was the same as for the single layer configurations. In this case one would 

have obtained two layers, back to hack, with the same haryon density as before and 

with half the width. In effect, the configuration would have been indistinguishable 

from a single layer Skyrmion. This is not the case and one concludes that the 

configurations detailed in this chapter are qualitatively different structures to those 

previously described. 

The situation is also desirable in terms of energy. One notes that at each baryon 

number the double layer solutions have a lower ADM mass per baryon, than their 

single layer counterparts. Far from the critical coupling, this is probably due to 

a relaxation within the Skyrmion. However, near acrit it seems that the increased 

gravitational attraction between layers, for the double layer configurations, results 

in an increased gravitational binding energy for the baryons. 

Table 7.2, shows the direct affect that the number of layers has on the critical 

coupling. The data was obtained by varying k for a fixed total of 1058 baryons. This 

number of baryons was chosen not just because it is the order of baryons needed for 
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something like a star. More importantly, it a.llowed a large variety of layer numbers, 

k, to be used, whilst still ensuring that the approximations made (which relied on 

kW << x0 ) remained valid. 

One sees that the layer number vastly impacts on the highest value of o: for 

which solutions can he obtained. In fact, it can be seen that there is quite a precise 

relationship, that o: ex k-~. This will he important when constructing baryons stars. 

One has already seen that although the existence of (Xcrit is not d11e to horizon 

formation, the approach of the critical coupling does herald the point at which 

gravity plays a significant role in binding the baryons. The real physical value is 

very low, at O:physical = 7.3 X w-40
. However, the relationship between k and O:crit 

implies gravitational binding will still be evident, even at s11ch a low value of the 

coupling, if a. sufficiently large number of layers are present. 

7.1.3 Plausible baryon stars 

All the signs are favourable for using the Einst.ein-Skyrme system as a toy model for 

baryon stars. One has already shown that increasing the layer number can reduce 

the radius and allow gravitationa,l binding to be possible at small coupling values. 

What remains is to study a configuration with a sufficiently high baryon number, 

at rYphysicat, to see whether a plausible structure can be obtained. 

Tables 7.3 and 7.4 detail the data obtained for Sk:vrmions with 1058 baryons 

at O:physicat, using different numbers of layers. One notes all the features described 

earlier. That the radius and mass reduce \Vith increasing k:, and that this is enhanced 

when the layer n11mher is such that O:physicat is close to O:ait· 

July 3, 2006 



7.1. S'U(2) Configurations 100 

For 13=1058
, aphysical = r1crit at k = .5.3306!)7 x 1017 layers. This is the maximum 

number of layers that can support 1058 baryons, at a = 7.3 x 10-40 . One first 

checks that all approximations are valid. For this number of layers, the radius is 

predicted as Xo = 7.1.50612 x 10 19 and the \vidth as W = 1..5.52304. Thus indeed 

the requirement that kvV < < x0 , is satisfied. One can therefore be confident in the 

parameters describing this configuration and the structure can he discussed with 

faith. 

First one notes that this configuration is energetically favourable. The ladder 

ansatze predict an ADM mass of .56.18 per baryon, as compared to the 13=1 gravi­

tating Skyrmion mass found in Chapter 4 to be 72.92 (at a considerably larger value 

of a). Thus one indeed finds a bound state of a sufficiently large number of baryons 

to be akin to a baryon star. 

The question of spherical s.ymmetry has already been discussed in Chapter 4. 

The configuration consists as a large number of embe(lded layers. Each contains in 

the order of 1040 baryons distributed as a tight lattice over a spherical shell. Thus 

the overall structure ha.s approximate spherica.l symmetry as required. 

As was seen in Chapter .5, the radius of configurations caused concern. 13m·yon 

star candidates within the Einstein-Skyrrne model were just too large. One has 

already seen that allowing the number of layers to increase, can significantly reduce 

the overall size of the configuration. One is left asking what is predicted for the 

multiple layer baryon star. 

Taking the maximum number oflayers allowed for 13= 1058 at a physical, the ansa.tze 

predicts values of :c0 = 7.1.50612 x 1010 and vV = 1.5.52304, a.s stated earlier. This 
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gives a total radius of 

Xstar Xo + kH' 

~ 7.23 X 101
!1 (7.2) 

Converting to SI units using the values given in Chapter 5, one ha.·> 

~ 32.5lkm (7.3) 

Thus one concludes tha.t the Einstein-Skyrme model may indeed be a suitable 

testing ground for studying approximations of baryon stars, predicting a bound 

state of 1058 baryons, with the correct symmetry and with a radius comparable to 

a typical neutron star. 
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n Xo w Ao MAoM/B Smin 

1 X 106 .585.79.5134 3.11.5293 0.990909 66 . .520788 0.982023 

2 X 106 826.800070 3.1043.50 0.987118 66.4267.50 0.974522 

4 X 106 1165.971374 3.088826 0.981726 66.283602 0.963905 

5 X 106 1302.092387 3.082530 0.979543 66.224381 0.959622 

1 X 107 1833.04.5.504 3.057771 0.970923 6.5.988069 0.942801 

2 X 107 2.57.5.16248.5 3.022296 0.958.570 6.5.648620 0.918948 

' 

.5 X 107 4016.404800 2.9.51177 0.933477 64.967281 0.871374 

1 X 108 5.587.271170 2.868732 0.9041.52 64.191754 0.817242 

2 X 108 7702.394198 2.747487 0.860462 63.082328 0.739398 

.5 X 108 11449.400032 2.483688 0.763193 60.8262.51 0.9.59623 

1 X 109 14560 . .531816 2.109223 0.620.566 .58.138282 0.364607 

1.4 X 109 14.548.790990 1.662263 0.44603.5 .56.287941 0.138040 

1.41 X 109 14384.731809 1.629530 0.433224 .56.244544 0.1226.58 

1.419 X 109 1406.5.061027 l.S752.53 0.412017 S6.210839 0.097S31 

1.4198 X lOU 139.57.031889 1..5.58861 2 0.40.5624 .56.210710.5 0.09003.5 

1.41988 X 109 13914 .. 517098 1..5.52611 0.40318.5 .56.211877 0.087184 

1.419882 X 109 13910 . .592896 1..5.52039 0.402961 .56.212013 0.086923 

Ta.ble 7.1: Numerically obtained minimum energy configurations for a mnge of 

ba-ryon numbers at a = 1 X 10-fl and k = 2. Respectively shown are the baryon 

number and optimal values fo-r the mdius of the shell, layer widths, the value of A0 

such that A(oo) = 1, the ADM Mass per baryon and the minimum value of the 

metric function S(x) = ( 1- 21;:r)). 
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k O'CI'it :ro w Ao MAoM/B E>m.in 

1 .5.328462 x 10-31 5.252242 X 1028 1.564261 0.407736 .56.210872 0.092394 

10 1.68.5007 x 10-31 1.660926 X 1028 1.564286 0.407746 56.210871 0.092406 

102 .5.328462 x w-32 5.2.52242 X 1027 1.:564261 0.407736 .56.210872 0.092394 

103 1.68.5007 x 10-32 1.660926 X 1027 1.564287 0.407746 .56.210871 0.092406 

104 .5.328462 x 10-33 .5.2.52242 X 1026 1.564261 0.407736 .56.210872 0.092394 

105 1.685007 x 10-:33 1.660926 X 1026 1..564287 0.407746 .56.210871 0.092406 
----~ 

106 .5.328462 x 10-34 .5. 2.52242 X 1025 1.564261 0.407736 .56.210872 0.092394 

107 1.68.5007 x w-34 1.660926 X 1025 1..564287 0.407746 56.210871 0.092406 

108 5.328462 x 10-35 .5.252242 X 1024 1..564261 0.407736 .56.210872 0.092394 

109 1.68.S007 x 10-35 1. 660926 X 1024 1..564287 0.407746 .56.210871 0.092406 

1010 .5.328462 x 10-36 .5.2.52242 X 1023 1 . .564261 0.407736 .56.210872 0.092394 

Table 7.2: Numerically obtained minimum energy configurations containing 1058 

baryons but with a varying layer number k. Respectively shown m·e the layer number, 

critical conpl'ing and optimal values for the radius of the shell, layer widths, the value 

of A0 such that A(oo) = 1, the ADM Ma88 per baryon and the minimum value of 

the metric function S(:t:) = ( 1 - 21~;x)). 
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k Xo w Ao MADM/B Smin 

1 8.323583 X 1028 3.141593 1.000000 66.829868 1.000000 

2 .5.885662 X } 028 3.141.593 1.000000 66.829868 1.000000 

10 2.632148 X 1028 3.141.593 1.000000 66.829868 1.000000 

102 8.323.583 X 1027 3.141593 1.000000 66.829868 1.000000 

10:3 2.632148 X 1027 3.141593 1.000000 66.829867 1.000000 

104 8.323582 X 1026 3.141593 1.000000 66.829866 1.000000 

105 2.632148 X 1026 3.141592 1.000000 66.829863 1.000000 

106 8.323581 X 1025 :3.141591 1.000000 66.829854 0.999999 

107 2.632146 X 1025 3.141588 0.999999 66.82982.5 0.999997 

108 8.323563 X 1024 3.141579 0.999995 66.829n3 0.9.59623 

109 2.632128 X 1024 3.141.5.50 0.99998.5 66.829442 0.959623 

1010 8.323382 X 1023 3.1414.57 0.999953 66.828522 0.999907 

1011 2.631947 X 1023 3.14116.5 0.9998.52 66.825611 0.9.59623 

1012 8.321575 X 10
22 3.140240 0.999.533 66.816408 0.999067 

1013 2.630138 X 1022 3.I:n3I2 0.998524 66.787300 0.9970.50 

1014 8.303433 X 1021 3.128041 0.99.5323 66.695218 0.990668 

1015 2.611829 X 1021 3.098565 0.985121 66.403649 0.970461 

Table 7.:3: Numerically obtained minirrwm energy configu·rations containing 1058 

ba:ryons a.t O:physical = 7.3 X 10-40
. The number of layers. k. lws been varied. Re-

8JH:cliuely shown are the layer number and optimal ualues for the mdiu .. c; of the shell, 

layer widths. the value of A0 snch that A(oo) = 1. the ADM Jllass per baryon and 

the ·rninim.nm valtu~ of the metric function S(:c) = ( 1- 21';:r)). 
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k :co w Ao MADJ\l I B Sn1in 

1016 8.114672 X 1020 3.003680 0.9.51 997 6.5.477403 0.9062.53 

1017 2.400111 X 1020 2.680978 0.836210 62.489436 0.697674 

.5 X 1017 8.206.5713 X 10 19 1.788807 0.49.5296 .56 . .562632 0.203.564 

.5.3 X 1017 7.417211 X 1019 1.622703 0.43020.5 56.203619 0.124702 

.5.33 X 1017 7.187062 X 1019 1.562516 0.406704 56.177573 0.097088 

.5.3306 X 10 17 7.15966.5 X 1019 1..5548.56 0.403717 .56.178822 0.093607 

5.3306.5 X 10 17 7.1.52.519 X lOW 1 . .5.52843 0.402931 .56.179307 0.092693 

.5.3306.57 X 10 17 7.1.50612 X 101!) 1.5.52304 0.402721 .56.179446 0.092448 

Table 7.4: Numerically obtained minimum energy configurations containing 1058 

baryons at ()'physical = 7.3 X 10-40 . The number of layers, k, has been varied. Re­

spectively shown are the layer number and optimal values for the mdins of the shell, 

layer widths, the value of A0 such that A( oo) = 1, the ADM Mass per baryon and 

the minimum valu,e of the metric function S(x) = ( 1 - 2J.L;x)). 
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Chapter 8 

Conclusions 

8.1 Summary of Research 

The purpose of this research, as stated in Chapter 1, was to revisit the SU(N) 

Einstein-Skyrme model as a possible toy model for baryon stars. Previous work, 

most notably by 13izon & Chmaj [25], [26], had ruled out solutions representing 

baryon stars on grounds of energy. Taking the hedgehog ansatze for the Skyrme 

field coupled to gravity they obtained solutions that inherently possessed spherical 

symmetry. However it was found that, just as in the fiat-space scenario, multi-

baryon states were not energetically favourable and were susceptible to decay into 

single baryon Skyrmions. The affect of gravity simply did not provide sufficient 

binding to allow spherical multi-baryon states. 

The technique used in this thesis was to approach the problem from a different 

angle. It is known that the harmonic map ansatze [9], [10], provide very good 

approximations to true low energy solutions of the SU(N) Skyrme model. It is 

also known that the approximate solutions obtained using these ansatze, at least for 
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low baryon number, are not spherical for I3> 1. For example, in the SU(2) model, 

the I3= 2 solution resembles a torus, whilst the solutions containing three and four 

baryons are tetrahedral and cubic respectively. 

At the start of the research project, one decided to look for energetically favourable 

approximate solutions to the Einstein-Skyrme model as a first requirement and not 

to impose spherical symmetry from the outset. Thus the harmonic map ansatze 

were taken for the Skyrme field coupled to gravity. A spherically symmetric metric 

ansatze was taken, as this would be appropriate for eventual baryon star structures. 

Using all of the above, it was possible to derive the Euler-Lagrange equations for 

the profile function, h(x), the ma..ss field, J-t(x) and the metric field, A(x). 

Using known vahtes for the minimal angular quantities of the harmonic map 

ansatze, taken from [9] & [30], it was possible to solve these coupled differential 

equations at low baryon number. In order to do this, however, there were non­

trivial technical challenges to overcome, relating to the application of boundary 

conditions. A highly non trivial asymptotic expansion of fields, which depended on 

all the parameters of the system, enabled one to proceed. 

The low energy solutions reproduced that of I3izon & Chmaj a.t I3=1. This wa..s 

to he expected as for a single baryon in the SU (2) model, the harmonic: map ansatze 

are completely equivalent to the hedgehog ansatze and the solution is spherically 

symmetric: [9]. Two branches of solutions were obtained which coincided at a crit­

ical value of the coupling constant n. Above this value, no fmther solutions were 

obtained. 

A study of the metric: at the critica.l coupling revealed that the system was far 
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from horizon formation and thus O:crit could not he caused hy collapse to a singularity. 

The existence of the critical coupling can he understood as the annihilation point of 

two different local extrema of the model. Concretely, the upper branch of solutions 

represents sphalerons within the model, [37], which annihilate with the lower branch 

regular minima, at O:crit.· 

For multi-bar.\'011 self-?;ravitating Skyrmions, the situation was entirely different 

to the findings of Bizon & Chmaj [25]. As was hoped, the solutions became more 

and more energetically favourable, as the baryon number increased. Again two 

branches of solutions were obtained but this time the critical coupling varied as 

O:ait ~ 0.040378B-~ (as opposed to O:crit ~ s-2
). 

The fact that the ADI'd mass per baryon a.ctually decreased with increasing 

baryon number suggested that, in fact, the Einstein-Skyrme model could be used as 

a toy model for baryon stars. At this point one had to step back and reflect on what 

had actually been obtained. As the case when taking any ansatze for the Skyrme 

field, one actually obtains approximations to the true minimal energy Skyrmion, for 

any given ba.ryon number. However, the situation is more complicated here. 

One has effectively found structures which are not spherical, coupled to a spher­

ical gravitational field which is supposed to be induced by the baryon distribu-

tion itself. Thus there is a mismatching in symmetry and all one can claim is to 

have found some approximate configurations which suggest that multi-baryon bound 

states could exist. One should not be alarmed, however, as this was all that one set 

out to achieve at first. That is, one wished to address the issue of energy first and 

then hope to recover spherical symmetry. 
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The work of Battye & Sutcliffe [30], amongst others, [9], [?], [34], sugge::;ted that 

this might be possible. It was found that for moderately large baryon numbers, 

approximations to true Skyrmions had structures resembling the fullerene cages of 

Carbon chemistry. That is, the baryons were distributed over a shell-like lattice. 

As the baryon number increased, the la.tt.ice became tighter and, viewed externally, 

the deviation from spherica.l symmetry became less. It was therefore argued that at 

the large baryon numbers one wished to study for baryon stars, the approximations 

to true self-gravitating Skyrmions would resemble shells with approximate spherical 

symmetry. Such arguments were also supported by the form of the fields obtained 

for I3=2 x 106 (see figures 4.1- 4.3). 

The observation led to an approach, which would also allow one to overcome the 

technica.l challenges in numerically integrating the Euler-Lagrange equations. In a 

similar fashion to Kopeliovich [33], [34], one formed the ramp ansatze for h(:r), ~t(x) 

and A(:r) based on the approximate solutions that had been obtained. This allowed 

integration of the Hamiltonian, once one made certain approximations relating to 

the radius and thickness of the shelL at high baryon number. 

The explicit form of the total energ_y of the model was then minimised semi­

analytically, to find the parameters of the a.nsa.tzc which described minimal energy 

configurations. A comparison of the results obtained for I3=2 x 106 , showed that 

the ramp ansatze were in good agreement with the solutions obtained by direct 

numerical integration of the Euler-Lagrange equations. 

One found that the (now spherical) approximations to true self-gravitating Skyrmions, 

continued the trend of becoming more energetically favourable, with increased baryon 
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number. The existence of the critical coupling was still evident and again followed 

1 
a acrit ex B-2 relationship. 

An interesting behaviour was observed for the radius. Far from the critical cou-

piing, the radius increased as B~, in accordance with the increased surface area of 

the shell, needed to accommodate the increased baryon number. However, close to 

O:crit, the radius grew less quickly suggesting that gravity wa.<J becoming important 

and that gravitational compression was occurring. In fact, very close to (tcrib the 

radius actually decreased as more baryons were added. This is an effect that is 

predicted for real neutron stars, in that a smaller radius is needed in order to suffi-

ciently increase the degenerate neutron pressure needed to balance the gravitational 

attraction [3.5]. 

It was found that, at the true physical value of a, a structure containing a typical 

baryon number for a neutron star, wa.<J predicted to he energetically stable. However, 

the radius of this configuration, at 3. 74 x 1010 km, was simply too large to resemble 

a neutron star. This was not surprising. Remember, one has found approximations 

to self-gravitating Skyrmions that resemble a hollow shell. Clearly this is not the 

picture one has of a neutron star. 

One is forced to consider a structure consisting of several embedded shells. This 

would hopefully allow a decrease in raclius for two reasons. Firstly, the baryons would 

be distributed throughout a finite volume, and thus a better packing is achieved. 

Secondly, one hopes for extra. gravitational compression due to attraction between 

layers. 

Earlier numerical solutions obtained at B=4 x 106 using the alternative boundary 
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condition h(O) = kn, show that the approximate solutions could possess a multi-layer 

structure. Based on these results (figures 6.1- 6.3), one formed the ladder a.nsatze 

describing this structme. Again, with careful consideration the Hamiltonian was 

integrated and minimum energy approximate sol11tions were obtained. 

These were found to be in good agreement with the numerical results for B=4 x 

106 . It wa.'i observed tha.t the number of layers did indeed reduce the radius of 

configurations, in the manner described. Further, the layer number led to a reduction 

in the ADM ma.'is and in the critical coupling for any given baryon number. In total 

one obtains O:C1·it ex: k- j s- ~. 

This time, an approximation to a self-gravitating Skyrmion resembling a ba.ryon 

star was obtained, with ra.diuH of 32.51km. This is a much more credible candidate. 

In short then, one has shown that by not initially imposing spherical symme­

try one can obtain energetically favourable approxima.tions to multi-baryon self-

gravitating Skyrmions. As a by-product of the high baryon numbers required to 

study baryon stars, approximate spherical symmetry is eventually recovered. One 

can obtain structures containing sufficiently large numbers of baryons to be astra­

physically relevant. For fun, the author will term these structures Solamns (star-like 

solitons). 

One doesn't claim that these Solarons are models of neutrons stars. There are 

still many things to do and refinements to make, as will be discussed. However, the 

research suggests that the Einstein-Skyrme system may be used as a toy model for 

baryon stars and has gone some way in constructing such a model. 

The Solarons obtained do have interesting and desirable properties. These in-
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elude appropriate radii, a stratified distribution of baryons (as believed for neutron 

stars and the possibility of a decrease in size with added baryons [11], [32], [35]. 

8.2 Future Directions 

As one has said. there are still many refinements to he made to the model and plenty 

of avenues for future research. 

The first thing to be done is to improve the ladder ansatze. At the moment one 

has many layers, back to hack and all having the same width and containing the 

same number of baryons. One could improve this by adding another parameter to 

the ansatze which describes the separation between layers. 

rviore importantly, one eventually wishes to be able to construct a Hamiltonian in 

which all that one fixes is the baryon nmnher. The number of layen~ and, moreover, 

the baryon number per layer should be ti·ee parameters of the rnodel which will 

be determined upon minimisation of the energy. It is hoped that in this way, the 

number of layers and their widths will settle in such a. way, that the gaps between 

layers and the remaining hollow region, become filled. 

This is a complicated task and is currently being studied by the author, along 

with his supervisor Dr·. Bernard Piette. Some progress has, however, been made. 

As a simplification, a two or three layer a.nsatze can be built, which includes filling 

factors for each layer. These describe the proportions of the total number of baryons 

(which is fixed), contained by each layer [38]. The explicit form of the Hamiltonian 

has been derived in this case but, as of yet, no suitable minimum energy configura­

tions have been found. 
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The second thing that can he done is to study solutions to the SU(3) model. 

Certainly all the theoretical work in this thesis has heen set up to allow any number 

of flavours to be studied. However, because of the computation time involved, 

numerical results have only been obtained for the S'U(2) model. This is an avenue 

which can now he directly explored. It is expected that the same qualitative features 

will be present but that the energies of solutions may be affected in line with the 

fiat-space analogue [39]. 

Finally, a.fter one has satisfactorily refined the ladder ansatze to achieve a better 

toy model, one could start to build in more realistic properties. For example, an 

angular momentum term could he added to the matter part of the action, to describe 

a spinning Skyrmion [36]. Coupled to a non-static metric, in principle the Euler­

Lagrange equations could he derived, although now this would result in a series 

of coupled partial dift"erential equations. The solution of these is expected to be a 

highly non-trivial task. 

Another, very interesting investigation would he to study self-gra.vita.ting Skyrmions 

using different ansatze. Some research suggests that at high baryon densities, there 

may be even lower energy solutions tha.n obtained from harmonic maps. Such solu­

tions resemble a crystal or lattice [40]. It may be possible, with a judicious choice 

of boundary conditions, to obtain giant spherical chunks of the lattice, which could 

then he used to give non-hollow star-like structures. 
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Appendix A 

Boundary contributions to the 

gravitational action 

A.l The need for boundary terms 

In a Lagrangian fornmlation of gravity one essentially wishes to be able to write 

an action, which, upon extremization, implies the Einstein equation. I3y this one 

means tha.t if the action is varied with respect to the metric (or parameters of the 

metric), and that this variation is set to zero, then this condition is just the normal 

Einstein equation [29]. Thus taking the Einstein-Hilbert action and varying, one 

finds 

j 8 (AR) d4 x 

J 8( ,f=Y)R + (()R,lVgi'V + RJII/8g1'v) Fgd4:t: (A.l.l) 
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Now, remembering that by A one really means J-det(.qpv) and using the fol-

lowing identity for a genera.l nonsingular matrix A 

rl [rlA 1] d).. (detA) = dctA Tr d).. A- (A.1.2) 

one can ca.lenlate that by varying a. general parameter, ).., of the metric 

(A.1.3) 

Also, if one notes that the second term in eqn. (A.l.l) can be rewritten a.'> 

(A.1.4) 

where 

(A.L5) 

then eqn. ( A.l.l) becomes 

(A.1.6) 

Consider the two integrals in (A.l.6). If the first integral vanished identically 

then extremisation of the action with respect to variations of the metric leads to 

(A.1.7) 

which is clearly equivalent to Einstein's equation in vacuum, as required. 
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However, as will be shown, the first integral will in general be non-vanishing. 

It is clear that this term is the integral of a divergence over the four dimensional 

space-time volume. Thus by Stokes' theorem it is equivalent to the following smface 

integral 

(A.1.8) 

where 8M is the three dimensional boundary to the manifold M. Here, h1w is the 

appropriate metric induced by g1w on the boundary and n/' is the unit normal to 

the boundary. 

Now it is clear from the form of u1, in eqn. (A.l.5) that although terms such 

as ogl' 11 do not contribute to the second integral Ill (A.l.8) (because we consider 

only variations of the metric which vanish at the boundary), terms such as \ll'(8gpa) 

will contribute to the integral. This is because to require that such a term is zero 

implies that 15g1w = 0 in the neighbourhood of the boundary and thus the notion of 

variations in the metric is lost. 

Since such terms mean that the boundary integral contribution to 85 is non-zero, 

we can ensure that extremiza.tion of the action does imply the Einstein equation, 

by adding a suitable boundary term to the original Einstein-Hilbert action to com-

pensa.te. This necessary term, known as the Gibbons-Hawking action can be shown, 

from the above equations, to be [29] 

(A.1.9) 

July 3, 2006 



A.2. Derivation of the appropriate Gibbons-Hawking action 122 
~~~~ 

A.2 Derivation of the appropriate Gibbons-Hawking 

action 

The previous sections served as an illustration of why an extra boundary term 

must be added to the standard Einstein-Hilbert action. This section will deal with 

calculating what the appropriate Gibbons-Hawking action is for the S'U(N) Einstein-

Skyrme model considered in this thesis. 

From (A.l.9) it is clear that several factors need to be considered in order to 

calculate S'cH. Namely, what is the appropriate boundary of the manifold, what is 

the indnced metric on this bonndary and what is the normal vector to the boundary? 

The first of these questions needs to be addressed carefully. Really the domain 

of interest is JR4 , which of course is non-compact and thus the notion of a boundary 

initially seems inappropriate. However, what one really desires is the surface at 

which the metric is held fixed. For a physical model of self-gravitating Skyrmions, 

one wishes to impose asymptotic flatness of the metric. Thus one only needs to 

consider variations of the metric for which this is preserved, i.e. the metric is held 

fixed at the surface r = oo. Therefore the appropriate boundary to consider is the 

three-sphere at r = oo, however, in practice this is difficult to implement when 

calculating ScH and it is convenient to take the surface T = Ro where Ro is a large 

radius when performing the calculation. Finally one takes the limit a.o;; Ro __, oo. 

Now the appropriate hmmdary has been defined, finding the induced metric and 

unit normal vector is more straightforward. First, the induced metric inherits the 

form of the full metric for the three-dimensions remaining and is now evaluated at 

the fixed vn1ue of r = R0 . Thus the line element associated with hpv can be written 
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as 

2 2( ) ( 2m(Ro)) 2 2( 2 . 2 2 ds8 }vt =-A Ro 1 - dt + R0 d(} + s-t:n Btl<p ) 
Ro 

(A.2.10) 

Second, as the surface aM is three-dimensional it has only one normal vector, 

in the radial direction. This can be represented by 

,. ( 2'fn(r)) ~ I ~ n = 1--- r 
T r=Ro 

(A.2.11) 

So, proceeding with the calculation one finds that 

r N, "VI' n~'d3x =I [R ba,.yCgn'"] I dtd(}drjJ 
}f)M • V -9 r=Ro 

I [ 1 ( 2m.(r)) ( 2n1.(r)) 1 1 ] I 41f A r
2 

1- -,.- + 2Ar 1 - -,.- + 2A(2m.- 2m. r) r=Rodt 

(A.2.12) 

Now as one takes the limit R0 ----+ oo, one can use the fact that A( R0 ) ----+ 1 and that 

m.(Ro)----+ canst. to obtain 

, . 1 I[· . ( 2m.(R0 )) ] Sell = Inn -:--(' 2A(Ro)Ro 1 - R + A(Ro)m.(Ro) dt 
Ro-•oo 2 ' 0 

(A.2.13) 

and one immediately notes that this is divergent. However the divergence is simply 

caused by the way the boundary has been imposed. To see this one can perform the 

same calculation over the same boundary in fiat space-time and one \vill obtain the 

following 

S'cHo = lim --
1
-. j 2R0dt 

Ro-+oo 2G 
(A.2.14) 

This is essentially the divergence in (A.2.13) when one notes asymptotic flatness 

and really is just an artefact of the extrinsic curvature of the artificial boundary. 

Thus one can renormalise the Gibbons-Hawking a.ction to remove this divergence 
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and finally one has 

S'cH R~.i~~~- 2~ j A(RD)n1.(~)dt 
- cl fm(oo)dt 

2 -'. 
(A.2.1.')) 

and it is this boundary term that has been added to the Einstein-Hilbert action in 

Chapter 2. 
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