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Abstract

The large baryon number sector of the Einstein-Skyrme model has heen investigated,
as a possible model for baryon stars. Self-gravitating hedgehog skyrmions have been
studied previously and the existence of stable solitonic stars excluded due to energy
considerations. However, in this thesis it is demonstrated that by generating self-
gravitating skyrmions using harmonic maps, one can achieve muiti-baryon bound
states.

The question of the spatial symmetry of such configurations is discussed and
it is argued that, although low baryon number solutions have various symmetries,
approximate spherical symmetry is recoverered in the case of very large baryon
numbers. Plausible structures are obtained, that possess baryon numbers typical to
neutron stars and one concludes that indeed, the Einstein-Skyrme system can be

used as a toy model for baryon stars.
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Chapter 1

Introduction

1.1 The Skyrme Model and associated field ansatze

The Skyrme model, in its initial form, was proposed and developed by T.H.R.
Skyrme in a series of papers during 1954-1962, as a non-linear field theory of pi-
ons [1], [2]. Skyrme’s initial idea was to think of baryons (in particular nucleons) as
secondary structures arising from a more fundamental mesonic fluid. Thus only the
pion fields were required in the model.

This differed from the contemporary view point of Yukawa, which required both
fundamental fermionic fields for the nucleons and the fundamental bosonic fields of
the pions. The latter were thought to bind the nucleons together.

The key property of the Skyrme model was that the nucleons arose as solitons
m a topological manner and thus possessed a conserved topological charge. This
charge, or winding number, allowed the possibility of constructing fermions from
more fundamental bosonic fields [3]. The approach shares features with Kelvin's

vortex model of the atom in that secondary structures, distinguished by their con-




1.1. The Skyrme Model and associated field ansatze

| vo

served topological charateristics, are used to model varius nuclei or atoms [4].

In the Skyrme model the topological charge is interpreted as the baryon number.
The lowest energy stable solutions to the model are termed Skyrmions and can
be thought of as barvonic solitons. Formally, they are localised solutions to the
classical field equations of the model. In practice, due to the high degree of non-
linearity involved in the model, ansatze are taken for the Skyrme field. Thus the
term Skyrmion is often used to mean the approximate localised solutions.

Interest in the Skyrme model flourished following work by 't Hooft and Witten,
amongst others, on effective approaches to QCD. It is well known that the coupling of
QCD increases at low energy scales {of the type relevant to the formation of nucleons
from quarks). Consecquently, standard perturbation techniques are inapplicable in
such regimes.

't Hooft demonstrated an alternative approach, in which QCD can effectively be
described, at low energy, in terms of the weak interactions of mesons, [5]. Moreover,
Witten showed that baryons should arise as solitons in this description and that the
Skyrme model possessed all the general features of a low energy effective field theory
for QCD, [6].

The Skyrmme model is described by the following Lagrangian density in the field
variable U(x,t). U itself is an SU(N) valued scalar field, where N is the number of
flavours of interest. Much previous work has centred on the SU(2) model.

£2 1 ) o
L= -2Tr (B,UonU") + 5T ([ Ut @0y uT?) (1.1)
Here, fr and € are constants relating to the model. These are usually fixed, such

that the model gives the correct value for the nucleon energy.
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1.1. The Skyrme Model and associated field ansatze 3

One should note the presence of the second term, quartic in derivatives, which
differs the Skyrme Lagrangian from the Yang-Mills Lagrangian. It is the second
term which allows stability of solitonic solutions, as can be seen by an application
of Derrick’s theorem, [7].

For simplicity one will outline the production of a topological charge for the
SU(2) model. The following homotopy analysis can however be extended to the
SU(N) model, as outlined later.

Note that as U takes values in SU(2), one can think that at a given tinie the field
defines a map between coordinate space and the S* group N-fold, U(x) : R?* — S®.
Also, finite energy considerations impose that U should take a fixed value on the S3
group N-fold at spatial infinity, such that U(x) — 1 as |x] — oo. This is effectively
the one point compactification R* U {oc} ~ §3.

The field can therefore be thought of as a map between the spatial infinity 3-
sphere and the group N-fold, also a 3-sphere. As such, it falls into distinct homotopy
classes characterised by their winding number, the homotopy group for this case
being the integers. The integer winding numbers are conserved topological charges as
no continuous deformations can change a given state to one in a different homotopy
class. In the Skyrme model the winding number is interpreted as the baryon number

of the Skyrmion and thus baryon number conservation is achieved.

July 3, 2006



1.1. The Skyrme Model and associated field ansatze 4

The conserved topological charge can be calculated as [ @z By, where the topo-

logical current is defined as

]
n— 247T2 (ilwpa

Tr [(UtoU) (UTerU) (U'97U)] (1.2)

For a detailed review of the Skrme model, the reader is referred to [8].

1.1.1 Hedgehog ansatz

Any field equations derived from the model, will be highly non-linear partial differ-
ential equations. To make progress one usually adopts an ansatze for the Skyrme
field.

A particular ansatz for the field, taken by Skyrme in his initial papers, is the
Hedgehog ansatz.

Ux, ty = exp (id - nh(r)) (1.3)

In this ansatz the field, characterised by a profile function h(r,t), is purely radial
and thus the resulting Skyrmions are always spherically symmetric.

For the field to be well defined at the origin then A{r = 0) = B;7 and for finite
energy h(r = oo) = Bym, where By, By € Z. The baryon number of the Skyrmion is
found to he B, — B,, however, {or the remainder of this thesis we shall take By = 0,
as is the common practice.

The fact that 7 is the unit radial vector and that the product of two Pauli
matrices is given by 0,0; = i€;;,0 + 6;;1, leads to the square of (& - 1) being unity

and the following convenient expression

U =cosh-I+in-osinh (1.4)

July 3, 2006



1.1. The Skyrme Model and associated field ansatze 5

1.1.2 Rational map ansatz

An alternative ansatz proposed by Houghton et al., following a similar technique
used by Donaldson et al. and Jarvis et al. in monopole theory, is the rational map
ansatze, [9].

Points on $? can be labelled by their stereographic coordinate 2z = tan(8/2)e’®
and its conjugate, via projection onto the complex plane. A rational map of degree
) is a map between 2-spheres defined to be a ratio of polynomials in z, having
maximum order @), possessing no common factors and with one polynomial being

exactly of order Q.

R(z) = P : (1.5)

It has been previously outlined that SU(2) Skyrmions can be thought of as maps
hetween R3U{oc} and the field manifold SU(2), which are essentially maps between
3-spheres. Houghton et al. proposed, therefore, that Skyrmions could be constructed
from rational maps between concentric S in R? and 2-spheres of latitude on $*. This

leads to a modification of the ansatz to
U(r, z) = exp (id - ngh(r)) (1.6)

where the unit vector associated with the rational map is given by

1

Ny — — (9] DIy _ 2 \
MR =TT Tk (2R(R),23(R),1 — |R|?) (1.7)

It can be shown that the baryon number for Skyrmions constructed in this way,
is equal to the degree @ of the rational map, providing one takes the boundary

conditions h{r = 0) = 7 and h(r = o0) = 0.
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1.1. The Skyrme Model and associated field ansatze 6

The approximate solutions of the field equations obtained using the rational
map ansatze, are an improvement on those obtained for multi-baryons, using the
hedgehog ansatze. By this, one means that the energies of the solutions obtained
more closely resemble those found from dynamically evolving well separated single
baryons. Further, the solutions possess the correct symmetries. For the SU(2)
model, all multi-baryon states are non-spherically symmetric. For example, a two
baryon Skyrmion naturally forms a torus, whereas three baryons will bind into a

tetrahedral structure [9)].

1.1.3 SU(N) Harmonic map ansatz

If one wishes to study the general SU(N) Skyrme model, one can use the extension of
the rational map ansatz due to loannidou et al., known as the projector or harmonic
map ansatz [10]. These are completely eugivalent to the rational map ansatze, when
studying the SU(2) model.

One takes the following ansatz for the SU(N) field
U(r,2,7) = &MP%) (1.8)

where P is an N x N hermitian projection operator which depends only on the
angular variables.
Expanding and using the fact that P? = P, one arrives at the following, more

convenient form of the ansatz.
U =e N (14 (2™ - 1)P) (1.9)

Here the general scheme is to decompose the Skyrme field, which at a given

July 3, 2006



1.2. Summary of related work 7

instant is effectively a map from S* to the group manifold of SU(N), into a prod-
uct of a radial and angular functions. P is a hermitian projector hetween the two
sphere and the manifold of CPY ! and h(r) is a radial profile function living in the

remaining quotient space SU(N)/CPY 1.

It can be shown that, for a suitable choice of the boundary conditions for h(r),
ie. h(r =0) =7 and h{r = o0) = 0, the degree of the total map is reduced to the
degree of the map $? — CP"™', which is again an integer.

The advantage of the rational or harmonic map ansatze, is that they allow one to
study minimal energy Skyrmions with specific spatial symmetries, simply by using
maps that possess these symmetries. This will become important when studying

specific Skyrmion configurations coupled to gravity.

1.2 Summary of related work

The idea behind this research project, was to re-explore the Einstein-Skyrme model
and ask ‘Can structures resembling baryon stars arise as low energy Skyrmions
coupled to gravity?'. This seems a plausible enquiry. After all, neutron stars are
structures made of superdense neutron matter, for which the equation of state is not
well understood, [11]. The interactions between the neutrons should be described
by QCD and it has already been detailed that the Skyrme model is, in essence, an
appropriate effective field theory for QCD.

The Skyrme field coupled to gravity has already been studied by, amongst others,
Luckock and Moss, {12}, [13], [14]. The research involved studying a Skyrme field

July 3, 2006



1.2. Summary of related work 8

in the presence of an external gravitational field. Interesting non-trivial structures
were found, for example, black holes surrounded by a pion cloud. These black holes,
termed hairy or coloured are extremely interesting, in that they violate the usual
no-hair theorems. In short, the associated horizons cannot be totally defined in
terms of their mass, charge and angular momentum, because of the extra chiral
fields involved. What is more, the coloured black hole solutions are stable.

Although the focus of this work was not directly the same as in this thesis, the
papers formed extremely valuable conributions to the academic community. They
were the first to study the Skyrme model in the presence of gravity and paved the way
for much similar research. Since then, violations of the no-hair theorems have been
found for various non-linear field theories coupled to gravity and much further study
of the Skyrme black hole has been undertaken, [15], [16], [17], [18], [19], [20], [21], [22].

Resulting from such study, many other interesting solutions have bheen found.
For many non-linear field theories, non-trivial stable gravitationally bound config-
urations of the field have been obtained. Perhaps the most well known of these
are the particle-like gravitationally bound Yang-Mills fields, known as the Bartnick-
McKinnon solutions [23], [24].

In contrast to the work of Luckcock & Moss, this thesis investigates Skyrmions
not in an external gravitational field, but where the field is due to the baryon
distribution in th Skyrmion itself. The baryons then settle in their own gravitational
field.

Similar work was caried out by Bizon & Chmaj, [25], [26]. Self-gravitating

Skyrmions were studied using the sphercal hedgehog ansatze for the Skyrme field.
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1.2. Summary of related work 9

It was hoped that the inclusion of gravity would lead to multi-baryon hound states
and thus the possibility of using the Einstein-Skyrme system as a toy model for
baryon stars. Unfortunately this was not the case and all multi-baryon solutions
were found to be energetically unfavourable.

There is however an alternative approach, which will be used in this thesis.
Instead of imiposing spherical ansatze on the field, as would be reasonable for baryon
stars, and then hoping that the energies are reduced by gravitational binding, why
not use energetically favourable ansatze for the field which produce non-spherical
Skyrmions. Then one hopes that somehow spherical symmetry can be recovered.
This thesis takes the harmonic map ansatze for self-gravitating SU(N) Skyrmions
and hopes that energetically favourable states of multi-baryons are produced. The
isssue of symmetry is then dealt with and the question of how one studies the
extremely large baryon numbers required to model baryon stars is addressed.

The author notes at this point, that independently to this research some similar
studies at low baryon number have been published in parallel [27], [28]. The author
points out that although the solutions at low baryon number, detailed in this thesis,
were obtained before these publications, they were not submitted for publication as
one wished to wait until the issue of symmetry and large baryon numbers had been
resolved. Neither of these concerns are addressed in [27], [28], because the focus of

that reasearch was not towards baryon stars.
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Chapter 2

Self-Gravitating Skyrmions

The action for the Skyrme model, including gravitational interactions, can be formed
from the standard Skyrme action for the matter field and the Einstein-Hilbert action
for the gravitational field (along with a suitable boundary term, denoted here by
Scu), [25]. Thus the starting point for the study of self-gravitating Skyrmions is

the action

R .
: =l re A 2.1
5 /\,, g (ESI‘ 167rG>d v+ San (2.1)

Here Lg; is the standard Lagrangian density for the SU(N) Skyrme model but
now defined on the (generally curved) manifold M.

2

f’n& A 1 T, v B
Lsk = —ZI—T'r(K,‘K“) + @T" ([Ku,Ku][K”»K 1. (2.2)

In the above, the K, are current valued objects, defined as (V,U)U™'. Note
that now the Skyrme field U can be thought of as a map from the curved space-time
M into SU(N).

In the gravitational part of the action, R is the Ricci scalar associated with the

manifold M. G, f; and ¢ are the fundamental constants of the model, being re-
10



2.1. Metric Ansatze 11

spectively Newton's gravitational constant, the pion decay constant and the Skyrme
coupling.

Finally, S¢y is the appropriate regularised Gibbons-Hawking action for the model
and is the necessary boundary contribution to ensure that variation of the action
leads to Einstein’s equation, [29]. For a fuller discussion of the need for such a term,

along with its explicit calculation, see App. A.

2.1 Metric Ansatze

For the metric on the manifold M, it is reasonable to choose that associated with

the following line element

el e
(l52 _ _A2(~]’) (1 _ 277:‘(7)) (lt2 n (1 _ 277?;‘(7")) (l‘f'2 + ‘rQ(dOQ + Sin'z H(l(b?) (23)

This is a sensible choice of metric that captures the nature of the curvature that
would result in the situation of interest. First, the main area of interest in this work
is in the static properties of gravitating skyrmions, thus one should choose a metric
associated with a static gravitational field.

Second, rather than the mass m and coefficient A being constants they are pro-
moted to radial fields. This encodes the fact that one is not studying the properties
of Skyrmions in a fixed curved background (eg Skyrmions in the presence of a fixed
mass) but rather the nmore interesting problem of bound states of baryons interacting
with their own gravitational field.

Finally, for any reasonable astrophysical interpretation of gravitating Skyrmions,
e.g. as neutron stars, then it is reasonable to assume that the gravitational field

possesses spherical symmetry. This is captured in the form of the metric (2.3).
July 3, 2006



2.2. The Gravitational part of the Action 12

Actually, most of the configurations that will be presented will not possess exact
spherical symmetry and thus the resulting gravitational field should not be assumed
to be purely radial. However, the configurations will possess an approximately
spherical distribution of baryons, with this symmetry becoming more enhanced as
the baryon number increases. In effect then, although the configurations will only be
approximations to true gravitating Skyrmions, the discrepancy due to this mismatch
of symmetry will not be significant. This is particularly the case in the regime
of astrophysical relevance (high baryon number) and when one considers that the

gravitational back-reaction of the matter field is relatively small

2.2 The Gravitational part of the Action

Using this ansatze for the metric on M it is possible to calculate both Sgy and R

directly.

R= e (—A"? =247 + 24" rm + A'm o+ 3Ar ! + Arm” + 2An/) (2.4)

where ' denotes a derivative with respect to the radial coordinate 7.

Noting that from (2.3)

V=g = A(r)risin(0) (2.5)
and that Sgy = —% [ dtm(oo) (shown in App. A), then the gravitational part of

the action simplifies as follows
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2.2. The Gravitational part of the Action 13

Scrav = 56 dt |m(o0) + / (A"r* + 24'r — 2A4"rm — A'm
- 3Arm’ — Arm” — 2Am’) dr]
- L dt ~m(oo) + / 4 [A'r? — 2A'mr — Am'r]
2G 1 J \dr
+ A'm — Am/)dr] (2.6)

Now using the fact that asymptotic flatness of space-time imposes A(r = co) = 1

and m(r = oo) = const., and that there is no mass at the origin, one obtains

1 o
Serav = —55 [ dt {m(oo) + ([A"r2 — 2A'mr — Am'r + Am|; -2 /Am’dr)}

2G
= —é / dt (-m.(oo) — / Am’(lr) (2.7)
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2.3. The Matter part of the Action 14

2.3 The Matter part of the Action

In deriving the form of the matter part of the action, it is convenient to change
from spherical polar coordinates (r,8,¢) to stereographic coordinates (r, z, z), via

projection onto the complex plane such that

a .
z = tan (—) e (2.8)
2
The Jacobian for this transformation is easily calculated to be

i

V== (2.9)
VI + 2P
and thus the area form becomes
: 21
dA = sinfdfd¢ = 0+ |2)2d 2dz (2.10)
In stereographic coordinates, the currents become
Ky = (80(,/)(]_1
= ()—d /+—3 ot
T 0
1+ _ .
RNV (2K + 7K5) (2.11)
and
K, = ((94,(/)[]’]
0z dz
= ]+ —o:UH\U™ !
(=— 5 .U+ — 56 )
= i(zK, - zK3;) (2.12)

For what follows, let Lg,, denote the first term in the Skyrme Lagrangian density,

that which is quadratic in derivatives. Lgy, will label the Skyrme term, that which is
July 3, 2006



2.3. The Matter part of the Action 15

quartic in derivatives. Thus, noting that the metric is purely diagonal and referring
to equ. (2.2), it is clear that
2
,Cgkl = 7TTI“( M‘I(Q)

2

- ”Tr( (K + 5 (K3 + — K ¢)>

- Z”T'r <S(7‘)K3 + W|K |2) (2.13)

Here the third line has heen obtained by direct substitution of the currents in
stereographic coordinates {rom eqns. (2.11) and (2.12). Note that for convenience,

the function S(r) has been defined as follows:
2, (7
S(r) = (1 - ”;f”) (2.14)

In a similar manner, the Skyrme term can be rewritten as

1 (bjy WV
Lsi, = 32€2T'r (g”g K,.K.|%)

1, S(r) 9 1 ) 1 5
= T rs . ry p ; K ) b
16e? r( T2 ([K Ko™+ sz'n?()[K Kl )+ 'r“sm?()[ 0, Kol

L ()0 Y L OHE
= r K, K. || - ——FK.,,K; 2.15
oot (S e g - S e ) s

where the factor of two has arisen due to the symmetry under the interchange p « v.

Now using the Harmonic Map Ansatze, I/ = e 2h0V/N(T 4 (500 _ 1)P) as
discussed in section 1.1.3, one can calculate the relevant currents and their com-
mutators. Note that in what follows the argument of both h(r) and S(r) shall be

dropped and a dash will denote differentiation with respect to the radial coordinate
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2.3. The Matter part of the Action 16

K, = (0 ?NI+ (¥ -1)P)) U

—21h!
— ?\Irh UU-Y 4 24k e~ 2h/N 2R prr-1
—2ih L1 2k —2ih "
= — I+ 2ib'e”" P(I+ (e — 1)P)
1.,
o 1 2.16
i (P NI) (219

Note that in order to arrive at the above result, the fact that P is a projection
matrix and thus P2 = P, was used. One should also remember that I is, in this
context, always the N x NV identity matrix, where N denotes the number of flavours
included in the model.

Next one finds

Kz — e*?ih/N(eQih _ 1)82PU~1
= (" — 1)a,PA+ (e72 — 1)P)
= (¥ = 1)(0,P+ (e ¥" - 1)(8,P)P)

= (1—e2Mo,pP (2.17)
and

KZ — e—2ih/1\’(62ih _ l)BgPU‘l
= (e — D3PI+ (e —1)P)
= (" = 1)(8:P+ (e7*" = 1)(8;P)P)

= (¥ - 1)8;P (2.18)

In the above calculations it was necessary to use the useful identities discussed
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2.3. The Matter part of the Action 17

in [10]. Namely

(3,P)P = O.P

P(8,P) = 0

P(3,P) = .P

(3.P)P = 0 (2.19)

Now it is straightforward to calculate the commutators needed in eqn. (2.15), as

follows. Again the identities in (2.19) will be used.
» 1
K, K., = 2h'(1—e%h) KP ~ NI) ,@P}

= 2K (1—e M P(O,P)— laLP — (0,P)P + iaN,P
N 1

= —2%h(1 -e?Ma,P (2.20)

K, K;| 2R (e — 1) KP — %I) ,agp]

95 p(2th _ 9 ___1_'_ (A i_

= 2ih'(e 1) (P(dZP) N(LP (8;P)P + Nazp

= 2N (¥ — 1)0:P (2.21)

z

and finally

Il

K., K:] (1 — e M) (XM —1)[0,P,0;P]
= 2(cos2h — 1)[0, P, 0;P]
= —4sin®h|d. P, 0:P) (2.22)

Having calculated the explicit form of the currents for the Harmonic Map Ansatze

and their commutation relations, it is straightforward to obtain the Lagrangian
July 3, 2006



2.3. The Matter part of the Action 18

density for the matter fields.

2 2
Ls, = —fT'r (LSK,2 L+—i—u|K |2)

: 72
; I\* | (1422 o

= ImPpe | —_4Sh"? _ — e 2ihy (2R _ 2
1 r( 4Sh (P N) + > (1 —e ") (e 1)]|2,P|

Sh'? 1 o, (L4272

= - 2 o _ 2
fx Tr( N ((]\ 2)P + V) + sin h——r |0, P| )

= —f2 (Q Sh? + sin h I 0k Tr|0, P|2) (2.23)

Here, the fact that I was the N x N identity matrix and thus its trace is simply

N, was used, along with the fact that TrP = 1, [10]. The flavour factor Qn has

(N-1)

been defined as

Using the commutation relations of eqns. (2.20) - (2.22), the Skyrme term be-

comes
! S(r)(1 + [2*)? 2 (4] 2
w = | GKPP - KK
Lsk, 1662Tr ( = K., K.]| g K ]
1 {1+ |z]*)?
2 2~
2o apia 2y LD o )2
Tr | Sh”sinh|0,P|* + gz S h{d, P, 0: P (2.24)
4r

It is now finally possible to combine eqns. (2.7), (2.23) and (2.24) to obtain the

full action for the gravitating SU(N) Skyrmions.

S = Scrav +/dt/\/—g (Lsk, + Lsi,) drdzdz
- /(zm/(h A H—’— £ (Qu K + Csin®h)

1 o o, Isin'h m{oo) o
-3 (CSh sinch + 52 e dt (2.25)

In the above, the following angular integrals have been defined.

]
C:%/T‘I’(

9. P|*) dzdz (2.26)
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2.4. Scaling 19

= ﬁ /(1 + 22T (8, P, 0:P)?) dzdz (2.27)

2.4 Scaling

It is convenient at this point to combine the three parameters of the model (G, f. and
¢), into one dimensionless coupling constant. This can be done by an appropriate

scaling of the radial lengths and masses to dimensionless variables, such as
T — @ =efr (2.28)

and, similarly

m(r) — p(x) = ef-m(r) (2.29)

As a result of these scalings we can rewrite the metric function simply as S(z) =

(1 _ 2u(x) ) )

Thus one obtains the simplified Lagrangian for the model

L=

4 y o

o U dod (ﬁ — QuSHa? = Csin®h(1 + Sh) — =2 h) B u(oo)}

) ) 2a o
(2.30)

One should note that for the static solutions, which are those presented in this

work, the Hamiltonian of the system is just given by H = —L.

2.5 The Euler-Lagrange Equations

In order to find solutions, or, more precisely, approximations to solutions of the
Einstein-Skyrme model, one searches for stationary points of the action. Thus form-
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2.5. The Euler-Lagrange Equations 20

ing the Buler-Lagrange equations

dL dL
: = 8, 2.31
@ ~ o (231
for the three fields ¥(z) = A(2), p(z) and h(z). one obtains
s 2
A = 20AR? (QN.’L‘ 4 Coin h’) (2.32)
£
I‘."’ 4
v = a (QNSh,’?:L»? + Csin®h(1 + SH?) + ;Z h’) (2.33)
and
2
Asin2h (C (1 4+ Sh'*) + IQZZ h’) = [24SK (Qna® + Csin’h)]’ (2.34)

One should at this point note that although solutions must obey all three of these
equations simultaneously, eqn. (2.34) is actually linear in the field A(x) and thus
the final two equations are really independent of this field. To elucidate this one
performs the derivative on the right hand side of eqn. (2.34), substitutes for A’'(x)
from eqn. (2.32) and cancels out the linear dependence on A(x). Thus, defining

V(z) = (@na? + Csin?h), one obtains

v 1 [sin2h
2

o Tsin?h 20h3SV?
. 12 __
- = (0(1 +Sh?) + )

22

- —S’h’V—Sh/V’} (2.35)

The next chapter will discuss approximate solutions to eqns. (2.32) - (2.35) at
low baryon number, for the SU(2) model. Note that the procedure is as follows.
One first minimises the harmonic map quantities C and Z, over all possible harmonic
maps of the required degree. This has been done for many cases and one will take
these values from, [9] & [30]. These minimal values are then substituted into the

field equations so that the extremal forms of the fields can be found.
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Chapter 3

Low Baryon Number

Configurations

3.1 Numerical Methods

The system of equations (2.32) to (2.35) comprise two first order and one second
order coupled differential equations, which cannot be solved analyticallv. Thus nu-
merical integration must be used. To simplify matters, the metric field A(x) de-
couples from the differential equations for p(x) and h(z). As such the solution to
these equations is independent of the solution for A(2:). Thus one really has to solve
a second order equation for h(x), coupled to a first order equation for p(x). Once
the solutions for h(x) and p(x) are known, they can then be used in the numerical
integration of (2.32), to find the form of A(x).

Taking the two coupled equations (2.33) & (2.35), (one second order and one
first order), one requires three pieces of independent boundary information to define

the solutions completely.
21



3.1. Numerical Methods 22

One has the following:

hMe=0) = =
hez =0c) = 0
wae=0) = 0 (3.1)

One therefore possesses information about h(z) at two points but no information
about its derivative. This is known as a boundary value problem. A useful technique
for the numerical integration of such problems is known as the Shooting Method.

Effectively one applies a vector of initial data at one boundary. In this case it
will be (h(0), A'(0) and u(0)), where h’(0) is a plausible estimate for the derivative
of h(x) at & = 0. One then evolves the fields radially, according to the coupled
differential equations (2.33) and (2.35) until the second boundary is reached. In
general, the value of the fields obtained will not correspond to the second boundary
conditions. That is {c0) # 0 . An error vector is then calculated describing the
discrepancy from the required boundary condition and a suitable algorithm is used
to calculate a better estimate for the initial derivative, h’(0). This is then used to
start the evolution from the initial boundary once again.

The process is repeated iteratively, with better and better estimates for the initial
derivative calculated at each step using a suitable root finding algorithm e.g. the
dichotomic method. Eventually a solution will be found such that the discrepancy
from the final boundary condition is less than some specified tolerance. This solution
for h(z) and ju(x) is then accepted and can be used with the boundary condition

A(oo) =1 to integrate (2.32).
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3.2. Asymptotic Expansions 23

3.2 Asymptotic Expansions

Unfortunately there is a caveat to the above description. Although one has the
boundary information given in (3.1), a close inspection of the system of differential
equations (2.32) to (2.35) reveals that the boundary values cannot be directly ap-
plied. This is because the differential equations themselves are not well defined at
the point 2 = 0. (This can be true even if the solutions to the equations are well
defined). Thus one has to use (3.1) to determine starting values at a small distance
from the origin, 2 = §.

One proceeds by making a series expansion of the fields h{x) and u(x) about the
origin. Thus

hz) =7+ 2P(a1 + apx + ..) (3.2)

and

w(x) =a"(by + byx + ...) (3.3)

Here, one will assume nothing other than the following. That p and r are positive
and, in general, non-integer powers of x and that p and r are both non-zero. This
second requirement comes from the fact that the original boundary data, (3.1), must
be recovered at x = 0.

Substituting the general expansions into the differential equations for h(z) and
p(x), one can determine information about p, r, a; and b; by comparing terms order
by order.

Starting with (2.33), the left hand side is given by 1/ and thus the term of lowest
order in z is

rbya! (3.4)
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3.2. Asymptotic Expansions 24

substituting the field expansions into the right hand side (and being careful to

expand sin?h(x) and sin*h(x) about h(x) = 7), one obtains a lowest order term of

a2 (Qnp? + C)a? (3.5)

Now, one notes that p and r are non-zero and there is thus no reason for the
coefficient of these lowest order terms to be zero. Thus equating exponents and

coefficients we have

ro= 2p+1 , (3.6)
2
ay 2 .
= ' 3.7
b W+ ](QNP +C) (3.7)

One has to be slightly careful here though. If, in some circumstance, p = 1 then
there is another contribution to (3.5), coming from terms with order 4p — 2 (=2p).

In this case, the lowest order terms on the right hand side of the differential equation

are

2 2 2 (2 2 2 :
ay (QNP +C+aj <§ +Cp >) P (3.8)

and thus one has
r = 2p+1 (3.9)

aal 2 2 (T 2

—_— 5 —_ ¥ 310
b 21)+1(QNp +C+(L,(2+Cp ( )

To determine p itself, one has to turn to the second order equation for h(z),
(2.35). Multiplying this equation through by S{z)V(x) and then substituting the
the field expansions in, together with the shown fact that v = 2p + 1, the lowest
order term on the left hand side is

Qnap(p — 1)a? (3.11)
July 3, 2006
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Similarly, the lowest order term on the right hand side of (2.35) is given by

a1(C — 2Qnp)a? (3.12)

Equating coefficients and rearranging for p (noting that p is non-negative), one

obtains

p= ¥ VQSQN e (3.13)
N

As a result, the form of h(x) and p(x) will depend both on the number of included
flavours N and the degree of the harmonic map used, as one might expect.

One proceeds as follows. Taking the specific parameters of the problem one
wishes to solve, i.e. Qn, C, T and «, one can calculate the values of p, r and b, to
obtain the explicit field expansions about the origin. Truncating after the first power
of x, one uses the expansions to calculate boundary data near the origin, at - = 4.
One applies this data and numerically integrates the coupled differential equations
according to the previously described prescription. The estimated parameter, which
is found via the Shooting Method is, in this case, a;.

Once solutions have been found for p(x) and h(x), the solution for A(z) can be

found subject to the condition A(oc) = 1.
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3.3 SU(2) Solutions

3.3.1 Solutions with Baryon number 1

Solutions to the field equations have heen found numerically for a variety of baryon
numbers. For a single baryon, in the SU(2) model, the harmonic map quantities
are minimised at C = 7 = 1. Consequently,it can be shown that the ansatze are
completely equivalent to the Hedgehog Ansatze, [9]. One would therefore expect the
solutions obtained to be identical to those previously found by Bizon & Chmaj, [25].

Table 3.3.1 lists information about the solutions obtained at a variety of coupling
values, a. Listed are the values of the shooting parameter, 1'(0) (=a;), the minimum

2u(z)

value of the metric function S(z) = <]. - T) (used to check for the presence of

horizons) and the value of the ADM mass per baryon. This was calculated using
Mapy — 4—”@ as in [25).

The data identically reproduces that obtained by Bizon & Chmaj. as expected.
The main features to note are the affects of the coupling value a. Firstly, increasing
« effectively increases the strength of gravity in the model. This is mirrored by
a reduction in Sy, caused by a greater warping of space by the self-gravitating
Skyrmion. Further, the ADM mass reduces as « increases, showing the gravitational
binding energy of the Skyrmion.

Perhaps the most striking phenomenon is that for each value of «, there exist two
solutions. The two branches of solutions identify at a specific value of the coupling

and above this value, no other solution can be obtained. This value of the coupling

is known as the critical coupling ;.
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Remembering that increasing « is the same as increasing the strength of gravity,
one might conclude that the critical coupling is the point at which gravity becomes
so strong that a singularity forms. However two questions are not answered by this
explanation. "Why are there two branches of solutions below «..47" and "Why is
Smin far from zero at the critical coupling, if a horizon is formed?’. One concludes
that there must be another explanation for this phenomenon.

The answer is that the two branches represent two different local extrema of the
action. The upper being an unstable branch and the lower being globally regular
solitons that are the stable minima. The difference in energy between these two types
of solution reduces as the coupling is increased. Eventually, at the critical coupling,
the two branches coincide. The different solutions annihilate and no further solutions

can be found. The phenomena is detailed in [25].
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o h'(0) Smin | Mapn/B

1 x107%]-2.0075 | 1.0000 | 72.9238

0.0001 | -2.0081 | 0.9994 | 72.9004

0.01 -2.0798 | 0.9328 | 70.5300

0.02 -2.1783 1 0.8587 | 68.0462

0.04 -2.7820 | 0.6156 | 62.4090

0.0403 | -2.8602 | 0.5975 | 62.3008

0.040375 | -2.9158 | 0.5856 | 62.2727

0.040378 | -2.9269 | 0.5833 | 62.2715

0.040378 | -2.9337 | 0.5819 | 62.2715

0.040375 | -2.9450 | 0.5797 | 62.2727

0.0403 | -3.0055 | 0.5680 | 62.3025

0.04 -3.1033 | 0.5506 | 62.4271

0.02 -5.8360 | 0.3591 | 80.6829

0.01 -8.8605 | 0.3850 | 109.4264

|

Table 3.1: Numerically obtained solutions for a B=1 self-gravitating Skyrmion. One

. Maparfx
should note that the physical mass per baryon can be calculated as if%’f‘

The actual form of the solutions for the fields i(x), p(x) and A(x) are shown
in figures 3.2 and 3.3. These were obtained at couplings of @ = 1 x 107¢ and
(erig = 0.040378, respectively.

One can see that fields change over a smaller region, at the higher coupling

value. This represents a shrinking in the size of the Skyrmion, due to gravitational-
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3.3. SU(2) Solutions 29

compression. The readers attention is drawn to the plots of A(z). One notes that
the actual boundary condition 4{c0) = 1 appears not to have been satisfied. This
is however, simply an artefact of the integration procedure. The solutions for h(z)
and p(x) are, as previously stated, independent of the solution for A{z). Thus these
solutions were obtained first and satisfy the correct boundary conditions.

When the solution for A(2) was obtained, a boundary condition of A(Q) = 1 was

used for computational ease. This does not affect the form of any solutions and the

precise solution for A(z) can be obtained by the scaling ::((2 :
110 % T T T T é T T T T T T T T T T T T g ™1
100
[a g
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2 ool o
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Figure 3.1: The two branches of solutions obtained for B=1.
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Figure 3.2: Lower branch numerical solutions for the fields h(z), u(z) and A(z) for

B=1 at a coupling of « = 1 x 107°.
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Figure 3.3: Lower branch numerical solutions for the fields h(z), u(x) and A(z) for

B=1 at the critical coupling of iy = 0.040378.
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3.3.2 B=2

For an SU(2) Skyrmion containing two baryons, the quantities C and Z are min-
imised at 2 and 5.81, respectively [9]. The flat space solution is toroidal in form
and has an axial symmetry. Using these values, solutions for harmonic map gen-
crated self-gravitating Skyrinions with B=2, were obtained. The relevant data is
summarised in table 3.3.2.

There is a crucial difference here, between the solutions obtained using the har-
monic map ansatze, and those obtained previously by Bizon & Chmaj for the hedge-
hog ansatze. They found that for all solutions with B> 2, the ADM mass per baryon
was higher, than that for B = 1. Thus no self-gravitating bounds states could form
as they would be unstable against decay into individual solitons.

This is not the case for the data in table 3.3.2. Clearly, comparing the solutions
obtained at identical values of the coupling, M pa(B = 2) < 2Mapy (B = 1). This
opens up the possibility once again, that solutions resembling baryon stars, could

exist within the Einstein-Skyrme model.
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& F'(0) Smin Mapar | Mapa /B

1x 1075 | -1.4636 | 1.0000 | 143.0924 | 71.5462

0.0001 | -1.4644 | 0.9990 | 143.0338 | 71.5169

0.001 -1.4721 | 0.9903 | 142.4998 | 71.2499

0.01 -1.5642 | 0.8995 | 137.0590 | 68.5295

0.02 -1.7241 | 0.7865 | 130.6999 | 65.3499

0.032 -2.3219 | 0.5765 | 122.0191 | 61.0096

0.0326 | -2.5099 | 0.5408 | 121.4867 | 60.7434

0.03266 | -2.5747 | 0.5302 | 121.4303 | 60.7151

0.032668 | -2.6059 | 0.5253 | 121.4226 | 60.7113

0.032668 | -2.6148 | 0.5240 | 121.4226 | 60.7113

0.03266 | -2.6471 | 0.5192 | 121.4304 | 60.7152

0.0326 | -2.7199 | 0.5090 | 121.4906 | 60.7453

0.032 -2.9903 | 0.4769 | 122.1390 | 61.0695

0.02 -6.0789 | 0.3403 | 145.3254 | 72.6627

0.01 -11.7721 | 0.2881 | 196.9852 | 98.4926

0.001 -71.4731 | 0.2497 | 600.7141 | 300.3570

Table 3.2: Numerically oblained solutions for a B=2 self-gravitating Skyrmion. One

should note that the physical mass per baryon can be calculated as M"‘gg’ z
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Figure 3.4: The two branches of solutions obtained for B=2.

Other features to note are as follows. Again there exists two branches of solutions.
However, as the baryon number has increased, the critical coupling has decreased
from 0.040378 to 0.032668.

The form of the individual fields are given in figures 3.5 and 3.6. One notes that
the solutions represent slightly larger Skyrmions than for the B=1 case. This would

be as expected in order to accommodate the extra baryon and is akin to the flat

space solutions [9].
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Figure 3.5: Lower branch numerical solutions for the fields h(zx), p(z) and A(z) for

B=2 at a coupling of &« =1 x 107°.
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Figure 3.6: Lower branch numerical solutions for the fields h(x), p(x) and A(x) for

B=2 at the critical coupling of ey = 0.032668.
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3.3.3 B=3

At B=3, the situation is similar. The minimal map quantities C and Z are 3 and
13.58 [30]. Again two branches of solutions exist but this time the critical coupling
has been reduced to 0.027413.

Importantly, the solutions are even more energetically favourable than both the
B=1 and B=2 cases. For example, at a coupling of & = 1 x 107%, the ADM mass
per baryon is 70.1379. There is seen to be almost a 2 per cent binding (reduction in
Lé"‘i) over the value of 71.5462 for B=2. Moreover there is an almost 4 per cent

binding compared to the value of 72.9238, for the single baryon solution.
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Figure 3.7: The two branches of solutions obtained for B=38.
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a F'(0) | Smin | Mapy | Mapa/B
1x107°%| -0.9864 | 1.0000 | 210.4136 | 70.1379
0.0001 -0.9872 | 0.9988 | 210.3109 | 70.1036
0.001 -0.9954 | 0.9876 | 209.3750 | 69.7917
0.01 -1.0996 | 0.8712 | 199.7877 | 66.5959
0.02 -1.3173 | 0.7208 | 188.3560 | 62.7853
0.0274 -2.0827 | 0.5109 | 178.4857 | 59.4952
0.02741 | -2.1090 | 0.5071 [ 178.4688 | 59.4896
0.027413 | -2.1254 | 0.5047 | 178.4637 | 59.4879
0.027413 | -2.1508 | 0.5012 | 178.4638 | 59.4879
0.02741 | -2.1679 | 0.4989 [ 178.4689 | 59.4896
0.0274 -2.1962 | 0.4952 | 178.4863 | 59.4954
0.02 -5.1473 | 0.3470 | 199.2991 | 66.4330
0.01 -14.1405 | 0.2807 | 267.9163 | 89.3054

Table 3.3: Numerically obtained solutions for a B=3 self-gravitating Skyrmion. One

should note that the physical mass per baryon can be caleulated as

Mapatrfx
Be

July 3, 2006



3.3. SU(2) Solutions 39

3.34 B=4

The minimal values of C and Z are 4 and 20.65, for the B = 4 Skyrmion [30]. Using
these values, two branches of solutions, annihilating at a critical coupling of apiy =
0.023673, were obtained. Again the solutions obtained, which are approximations
to true self-gravitating Skyrmions, are bound states. That is, the ADM mass per
baryon is less, at each «, than for B=1,2 or 3.

Interestingly, the value of S,,;,, at the critical coupling, is still far from zero,
at 0.4976. Thus total gravitational collapse still doesn’t occur and the system is

horizon free.
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Figure 3.8: The two branches of solutions obtained for B=4.
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o F'(0) Simin Mapy | Mapn /B

1x10°%| -0.8058 | 1.0000 | 269.2061 | 67.3153

0.0001 -0.8069 | 0.9985 | 269.0550 | 67.2638

0.001 -0.8169 | 0.9853 | 267.6787 | 66.9197

0.01 -0.9538 | 0.8460 | 253.4973 | 63.3743

0.02 -1.3277 | 0.6546 | 236.1382 | 59.0346

0.0235 -1.9302 | 0.5268 | 228.9570 | 57.2393

0.02367 | -2.1479 | 0.5002 | 228.5489 | 57.1372

0.023673 | -2.1726 | 0.4976 | 228.5414 | 57.1354

0.023673 | -2.2037 | 0.4943 | 228.5414 | 57.1354

0.0235 -2.5104 | 0.4668 | 229.0054 | 57.2514

0.02 -4.7424 | 0.3743 | 241.5351 | 60.3838

0.01 -19.6255 | 0.2844 | 321.1271 | 80.2818

0.001 | -472.9266 | 0.2370 | 967.8879 | 241.9720

Table 3.4: Numerically obtained solutions for a B=4 self-gravitating Skyrmion. One

should note that the physical mass per baryon can be calculated as Mg;‘i&
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3.3.5 B=17

The B=17 Skyrmion was studied because it presents an interesting solution in flat
space possessing icosahedral symmetry and an unusually low energy [31]. The har-
monic map quantities C and Z are minimised for this case, with values of 17 and
363.4.

One again finds two branches of solutions. This time . is 0.011417. All
solutions are again energetically favourable, when their ADM mass per baryon is
compared to that of the lower baryon number solutions already presented. One is
left to conclude that, in contrast to the hedgehog self-gravitating Skyrmions, those
obtained using the harmonic map ansatze become more and more bound as more

baryons are added. Therefore none are unstable to break-up.
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Figure 3.9: The two branches of solutions obtained for B=17.
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a F'(0) | Shmin Mapar | Mapn /B

0.0001 | -0.0036 | 0.9964 | 1099.8185 | 64.6952

0.001 -0.0039 | 0.9642 | 1088.2619 | 64.0154

0.005 | -0.0054 | 0.8149 | 1035.0773 | 60.8869

0.01 -0.0121 | 0.5874 | 960.9968 | 56.5292

0.0112 |-0.0212 | 0.4923 | 939.9595 | 55.2917

0.0114 | -0.0285 | 0.4540 | 936.0071 55.0592

0.011417 | -0.0314 | 0.4431 | 935.6499 | 55.0382

0.011417 | -0.0336 | 0.4358 | 935.6502 | 55.0382

0.0114 | -0.0371 | 0.4252 | 936.0272 | 55.0604

0.0112 | -0.0530 | 0.3922 | 940.8128 | 55.3419

0.011 -0.0653 | 0.3755 | 946.0005 | 55.6471

0.01 -0.1353 | 0.3291 | 976.5562 | 57.4445

Table 3.5: Numerically obtained solutions for a B=17 self-gravitating Skyrmion.

One should note that the physical mass per baryon can be calculated as —‘Uﬁ‘g%’ﬁ
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3.3.6 General Observations

There are several general comments that can be made regarding the approximations
to self-gravitating Skyrmions thus far presented. The first thing to note is the
relationship between the critical coupling and the baryon number. Bizon & Chmaj
observed that the critical coupling decreased as ¢4 = 0.040378 B2 [25]. However,
for the harmonic map generated solutions, one observes «..; = 0.0403785 ~2. This
is shown in figure 3.10.

This is a significant improvement over the hedgehog Skyrmions. Quantitatively,
it means that for a given value of the critical coupling, if a hedgehog Skyrmion
can accommodate B baryons, it's harmonic map generated counterpart can hold B*
baryons.

A crucial difference between the solutions presented here and those of Bizon &
Chmayj, is that of energy. Baryon stars were ruled out as structures that could he
studied in the Einstein-Skyrme model, as it was simply not energetically favourable
to have multi-baryon states. However, by taking more suitable ansatze for the
Skyrme field, one sees that the converse is true. For all baryon numbers greater
than 1, the ADM mass per baryon is less than that of the B = 1 Skyrmion, as
shown in figure 3.11. Bound multi-baryon self-gravitating states are admitted and
the possibility of using the model to study baryon stars, is once again opened.

There are sonie concerns here. Firstly, the Euler-Lagrange equations become
increasingly difficult to solve numerically, as the baryon number increases. That is
why solutions only up to B=17, have heen presented so far. In fact these solutions

were of considerable difficulty to obtain. Cleatly a better method is to be found if

July 3, 2006



3.3. SU(2) Solutions 44

one wishes to study Skyrmions of high enough baryon number to be astrophysically
relevant.

The second concern is one of symmetry. The metric ansatze that has been used
possesses spherical symmetry. Naturally one would expect this of a baryon star.
The hedgehog ansatze give spherically symmetric solutions automatically, though
they are energetically unfavourable.

Using the harmonic map ansatze allows bound states but does not directly lead to
spherical symmetry. For example, the B=2 Skyrmion is known to be toroidal in flat
space. Similarly, B=3 is tetrahedral, whilst B=4 is a cube [9]. This mismatching of
symmetry must be overcome if one is to credibly study baryon stars. Both challenges

will be addressed in this next chapter.
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Figure 3.10: The behaviour of .y as a function of the baryon number. Shown by
dots are the obtained values for B = 1,2,3,4 & 17,whilst the curve represents the

funetion ey = 0.040378B73.
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Figure 3.11: The behaviour of Mapas as a function of the baryon number at fized
a = 0.01. One observes that, in general, multi-baryon states become more bound as
more baryons are added. The trend is distorted by the low energies of the B = 4 and
B =T Skyrmion. However this is to be expected as their flat-space counterparts are

also known to be especially bound [9].
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Chapter 4

High Baryon Number

Configurations

In the previous chapter it was demonstrated that the approximations obtained to
true gravitating Skyrmions, generated from rational maps, did indeed become more
bound with increasing baryon number. This qualitative behaviour is remarkably
different to that obtained in [25] & [26] for Hedgehog Skyrmions and re-opens the
possibility for using the Skyrme model to describe baryon stars.

Of course there are still difficulties to overcome. Firstly, the approximate solu-
tions presented in the previous chapter are not truly spherically symmetric as one
would wish for a baryon star. Also there are technical challenges involved with solv-
ing the Euler-Lagrange equations at high baryon number. This chapter will explore

these issues and discuss possible ways of overcoming such challenges.
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4.1 The shape and form of high baryon number

configurations

The first area for improvement of the approximations to self-gravitating multi-
baryon Skyrmions presented thus far is related to their spatial symmetry. In con-
structing the model, ansatze were taken for both the Skyrme field and the metric.
The Harmonic Map Ansatze were taken for the Skyrme field because they give a bet-
ter approximation to true multi-harvon Skyrmions in flat space than the Hedgehog
Ansatze [10]. This leads directly to the possibility of bound multi-baryon configu-
rations in the case with gravity.

The metric ansatze were that it should be staticity and spherical symmetry.
These would bhe appropriate properties when trying to describe something like a
baryon star.

However, the informed reader might here spot an area for careful consideration.
If one studies Skyrmions constructed from Harmonic Maps in flat space, they will
find non-spherical baryon distributions [9], [30] [31]. These symmetries are identical
to those of true Skyrmions. Thus the question arises: Is it really appropriate to use
a spherical metric?

There are three justifications to support the choice of metric. Firstly, one is
not claiming that the configurations presented in Chapter 3 are anything other than
approximations to true self-gravitating Skyrmions. As such they will have an energy
higher than the true solutions to the model. However, the complexity of the Skyrme
model means that any practical progress can only he made using ansatze for the

Skyrme field such as the Hedgehog or Harmonic Map Ansatze. As such, one is
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normally only finding approximations to Skyrmions, with or without gravity.

Secondly, one must consider that in the situation of interest, i.e. the construction
of a realistic baryon star, a very small value of the coupling & should be taken. One
is reminded that for realistic values of the Skyrme and Newton constants, a plausible
value for ais a = 7.3 x 107%°. At such low couplings the effect of gravity is really
a small perturbation to the Skyrme model. As such, the small mismatch in the
symmetry of the fields is not significant.

One of course could argue that even taking a small coupling constant, the effects
of gravity should be far from small at very high baryon numbers. This will be seen to
be correct. However, this leads directly to the final and most important justification
for the choice of metric.

Throughout this research the goal has been to demonstrate the possibility of
and then to construct baryon stars in the Einstein-Skyrme model. As such one
is really interested in configurations containing extremely high numbers of baryons.
For example, a typical neutron star might contain in the region of 10°° neutrons [32].

Now Battye and Sutcliffe, whilst investigating Skyrmions generated by the Ratio-
nal Map Ansatze (which are equivalent to the Harmonic Map Ansatze for the SU(2)
model), discovered interesting spatial symmetries. Minimal energy solutions with
B greater than six baryons (with the exception of two cases) possessed a shell-like
structure, with the baryon density distributed solely over the surface of the shell.
Interestingly, the baryon density on the shell is distributed along the edges of 12
pentagons and 25 — 14 hexagons [30]. These configurations very much resemble the

fullerene cages that exist in Carbon chemistry.
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As the topological charge increases, the baryon density is effectively concentrated
on an increasingly tight lattice distributed over the shell [31], [33], [34]. Thus for the
case of interest in this thesis, very large baryon number configurations should possess
the underlying spherical symmetry of the shell. Approximate spherical symmetry is
restored and the choice of metric that has been used is appropriate.

There is a further technical challenge here. The numerical solution of the Euler-
Lagrange equations (2.32) to (2.35) becomes increasingly difficult as more and more
baryons are included. This is because the radius of the shell structure of the solution
becomes very large, whilst the width of the shell is comparatively very small. In
practice this means that the fields h(z), p(z) and A(x) change over a very small
region of the full integration interval. This makes the shooting algorithm used very
sensitive to good initial information and the practical utility of the method is poor.

The problem is highlighted in Figs. 4.1 to 4.3. This solution set was obtained
using the shooting algorithm for the case B =2 x 10% and & = 1 x 1075 and typify
the form of the fields as the baryon number becomes large. The fields stay constant
until a large value of the scaled radial coordinate x, in this case until © =~ 1219. The
fields then change rapidly and assume another constant value which is continued for
an infinite radius.

It is important, for what will come later, to note two things. Firstly, all three
fields begin and end their transformation together. Secondly, the centre of the
transformation, for the case shown, is at a radial position of z =~ 1223, whereas
the width of the transformation region is ~ 3. This means that the ratio of the

width to the radius is < 2.5 x 1073, Even at this relatively modest baryon number
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of 2 x 10% one can clearly see the difficulties because of the difference in scale.
Therefore numerical integration of the Euler-Lagrange equations for the order of
baryon number one is really interested in, is practically impossible.

There is another way to find approximate solutions, motivated by the work of
Kopeliovich [33], {34]. Using the known shell structure of solutions, Kopeliovich
demonstrated a way of finding bounds on the energy of the solutions analytically.
The Hamiltonian of the Skyrme model can not be integrated directly. However, by
constructing ansatze for the fields of interest it may be possible to obtain the energy
explicitly.

Kopeliovich studied the Skyrme model without gravity, thus having only one
field to deal with, the profile i(z). Ansatze were made for h(xz) which resembled a
shell-like or domain wall solution and which depended on free parameters relating to
the dimensions of the shell. This allowed the Hamiltonian to be integrated. Bounds
on the energy of solutions could then he found by minimising the energy with respect
to the free parameters of the ansatze.

Clearly Figs. 4.1 to 4.3 show that the shell-like structure of solutions is also
inherent in the Einstein-Skyrme model. Thus, although ansatze will be used that

are different to Kopeliovich’s, one will proceed in a similar manner.
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Figure 4.1: Numerical solutions for h(x) in the case of B =2x10° anda = 1 x107°.
Clearly exhibited is the large radius and small width over which the fields change,

showing the shell-like structure of the Skyrmion
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Figure 4.2: Numerical solutions for ji(x) in the case of B =2x10% and « = 1 x 1076,
Clearly exhibited is the large radius and small width over which the fields change,

showing the shell-like structure of the Skyrmion
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Figure 4.3: Numerical solutions for A(x) in the case of B =2x10% and @ = 1x 1075.
Clearly ezhibited is the large radius and small width over which the fields change,

showing the shell-like structure of the Skyrmion
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4.2 The Ramp Ansatze

So in order to find approximate solutions in the high baryon number regime, where
the direct numerical solution of the Euler-Lagrange equations becomes difficult, it
is convenient to use ansatze for the fields of interest. Obviously, any such ansatze
should possess the general features discussed above.

Thus the following Ramp Ansaize were used for the fields h{x), u(z) and A(zx).

T 0<z<ay—5
r) — e e W - . W
h(,l’) % — (‘L — ‘Lo)‘—:; To — 5 <z <ay+ -
| 0 T 2 xg+ 5
r -
0 0§3:<rc0—"21
p(e) = M (z— o)L g% <w<a+ ¥
\
.
W
Ay 0<z <2 o)
Alw) = oy (g _gp)lzde g - W <p g+ ¥
\ 1 AP

In the above there are four free parameters which define the exact form of the
fields. These are W, the width of the shell over which the fields change, 14, the
radial position of the centre of this shell, M, the value of p(2) at infinity and Ag
the value that A(z) must take at the origin in order to ensure that A(occ) = 1.

One should note here that, according to the ansatze, all fields change over the
same region. This was as motivated by the previous numerical results. Further, one
has explicitly taken the situation that there is no additional central mass around
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which the Skyrmion gravitates. This is different from the case discussed by Luckock
& Moss [12]. To change to this setup the Ramp ansatze have to be modified by
adding a constant mass to the field p(z).

The procedure for finding approximate solutions using the above ansatze is as
follows. Instead of numerically integrating the field equations (2.32)-(2.35) one sub-
stitutes the Ramp ansatze into the reduced Hamiltonian for the model ((2.30) up
to a change of sign) and attempts to integrate to find a closed expression for the
energy. If such an expression can be found then one proceeds to find its stationary
points. The resulting values of the parameters should characterise the approximate
solutions for given values of the baryon number and coupling « etc.

One should not view this as an attempt to find minimal energy solutions (as
this would be inappropriate for a gravitational system). However, the procedure
is largely equivalent to finding solutions to the Euler-Lagrange equations. This is
because in that approach one finds solutions which extremise the action, but as one
is interested only in static field configurations, this amounts to finding stationary
points of the energy functional.

The point ol departure for the method outlined is the reduced Hamiltonian of
the system of self-gravitating Skyrmions. From the expression for the Lagrangian
(2.30), one obtains the following Hamiltonian (in which the arguments of all fields

are explicitly stated).

H= - 4—7'—6& {/ dz Alx) (ll(%‘)

” - QnS{x)h(w)?a? — Csin*h(x)[1 + S(x)h(x)?]
_Isivﬁh(w)) B /_1,(00)]

202 «

(4.1)
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A fr
€

Ignoring the multiplicative factor — , the expression comprises a radial in-
tegral of four distinct terms along with the boundary contribution —@. For

simplicity, these terms will be dealt with separately and labelled as

H = /0 A(x)“(;”) dv (4.2)
Hy — - /0 " A@)OnS(@)h(x) s (4.3)
Hy = - /O " AR)Csin?h(a)[1 + S(x)h()?)de (4.4)
o /j A(m)Z;ZMz(w)dm (45)
Hy = —“—(ji) (4.6)

The first term contains the first derivative of the mass field. Noting the form of
u(z) from (4.2}, it is clear that because the mass field only changes over the width
of the shell, the integrand in H, vanishes everywhere except over the shell. The first

contribution to the energy is thus

Torr ()
H, :/ A(x) dx (4.7)
T(v*% «
Noting from (4.2) that pu(z) = ;‘Tf, across the shell and substituting the ansatze

for the metric field from (4.2), the integral becomes

M [otT (1 + Ao

Hy =
aW Jy,_w

1-A
+ (2 — xg) W O) dx (4.8)

This can be further simplified as one realises that (x — 2¢) is an odd function
about z = 2y and the interval of integration is symmetrical about this point. This

part of Hy should therefore be identically zero. Mechanically ploughing through the
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calculation shows this to be true. One is left with

1 A Tn+
+ } (4.9)

M
]{1 = W|: ‘T“¥——

_ ;f( ' > (4.10)

Similar to the case for H,, Hs need only be integrated over the shell region.

This is because it contains a derivative of the profile function h(z) and, according
to the ansatze, h(z) is constant everywhere apart from within the shell. Thus, upon

substitution of the ansatze, one obtains

Cm+o
Hy — — / T A@)QnS(@)h(x) adr

To— 5

B TO-r 5 1+A0
_ _/_[ 24 o)
(

2u{x)\ #* ,
Qn | 1-— — & dr

N ( @ ) W de
. QN’/T2 IML% 1+ A() . A 1-— AO
- T Twe " 5 T (@ — o) W

M M
22 o, (M M )
X {.L 2w ( 5 + (w LO)W>} dx (4.11)

Expanding and integrating term by term, one obtains

w
_ Qnr? 2aq (1= 4 200 221500
Ha= = W2 w o 1)+ Ma W 1-— A 5 o
A 2M n 1-— AO 4;);0]\/[ M—u ﬁ I(H'%

w 44 W -0 3 w

To— o

1— A QMY [x4]70"2
= 4.12
- ( ><1 O] w1
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Simply by evaluating and substituting the following

,L_Q T+ 5

2} L= Wazq (4.13)
L TO— 5

':1;3 I(H’% 73

?jl v = Wal+ 55 (4.14)
(]t W3z

1] L= Wad + —49 (4.15)
L Tn— 5

the explicit form of Hj, after simplification, is given by

72 2 MW
Hy= — QN {(1—%140)( M,%O+m_ [H)

w 2 12 6
— A2 VALYL

1—- A ‘V;I,O MW 3 MWz, (4.16)
W 6 12 6

Again Hj need only be integrated across the width of the shell. The factor of
sin’h(z) in the integrand is zero elsewhere because of the boundary conditions on

h(x). (These being h(x) = 7 and h(x) = 0 before and after the shell respectively).

Tn+ 2
e = '/ L Al)Csin®h(@)[1 + S(a)h(x)*)da (4.17)
= - s 1+A0 — Ao 9y,
W (2 (M M
X [l + W2 (1 ~ (7 + (x — .LO)W))] dx (4.18)

Expanding, the integral can be split as follows

H3 H31+H32+H33+H“+H35 (419)
where
1 A 2 1‘1;+‘—¥ )
Hy = —C ( +2 ‘O> <1 + ‘7;,2) / sin*h(x)dx (4.20)
/ TU*%{‘

1—A 72 zo+ W

_ . 1
Hjy = —C( - 0) (1 + W_?) / N (v — wo) sin®h(z)dx (4.21)

Rt Ut
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1+ Ao\ Ma? [®FF sin2h(:
Hggzc( +2 °> WZ / . s ) f’(%)da; (4.22)
. T

0 5

Mn? [ (1 - Ag 2 1+ A zoty sin*h(x)
Hsy = Sl — T —zy) ——dx 2
310 =C 2 [( T ) + ( 3 )} /I N (x — z0) . dr (4.23)

and

Y IM 72 1‘0+% si 2 (i
Hzy =C (%) r / (x — @) Mdm (4.24)

W3 W z

Taking Hj,, the integral can be performed by a simple change of variable from

x to h. Noting that from (4.2) % = —Z one has

W
H3] = C(

) () [ ()

- () (2) 55 [ e

~ (Y (L) (12 ) [
() (2
o)

1 11
) ( VV2> [-h - 15271211} i
In the high baryon number regime, Hjz, has a negligible contribution to the total

l+140

[l

5+

energy. This can be reasoned as follows. As described in section 5.1, when the
baryon number increases, the effect on the fields is that they resemble more and
more truly the proposed Ramp Ansatze. Further, the fields remain constant for
longer and change over a comparatively small radial region. Concretely, one can say
that for high baryon numbers, the fields follow the Ramp Ansatze with zq >> W.

Therefore, because one only integrates over the width of the shell in Hjy, the

actual radial position x is never far away from the centre of the shell xg and the
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term (z — o) is always very small. As the other factor in Hsy is sin?h(z), thus never
being larger than 1, one makes the approximation that Hsy = 0.

One similarly approximates Hsy and His to zero. The approximations here are
further qualified by the factor of x in the denominator, which will, over the region
of integration, be large in comparison to (x — ).

One is left to calculate Hss. This integral is difficult to handle explicitly because
of the factor of i, however a good approximation can be made. Following the
arguments outlined above, the radial position x does not vary significantly from the
central position of the shell xg, over the interval of integration. Thus one simply

1

replaces the factor of i in the integrand with the constant factor --. Integration

can then proceed via a change of variables from z to A.

L+ A\ Ma? [° sin?h [ -W

C ( 5 ) e /7- - - dh
14+ A M 4 .

c ( +2 ") ;‘—ZLO | /O sinhdh

14 AQ Mmw 1 1 . T
C ( 5 > W [ih — ZsthL

1+ AQ ]\/[7(2
4.26

H33

Il

Il

Thus combining Hj; and Hjz3 one obtains

1+ 4\ [ Mz® W x? |
Ha. = - - 4.2
3=C ( 2 ) <2w:n0 2 2W (4.27)

Moving on to the calculation of H; one sees that hecause there is a factor of
stn*h(z), the boundary conditions on h(x) mean that again integration needs only

be performed over the width of the shell.

T(H-% AN sinth(x)
H, - _/ () ‘sz‘n h(:L)dl_
- 2a?

s+ 14 A 1— Ay sinth{z
_I/I N { 5 + (x — xg) v 57 dx (4.28)

Uty

l
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At this point one can make an immediate simplification by using the type of

approximation used in the calculation of H;. Namely, contributions from the term

containing the factor (—x;—f‘ﬁ are negligible and will be ignored. One is left with
w
, T /14 A T sinth{x)
Hy=-= ——dx 4.29
! 2 ( 2 ) ,/IOJX' @? (429)

Next, the factor of ;‘; is replaced with the constant factor I%, an approximation
(4]

already reasoned to be valid in the high baryon number regime. Thus

T [14+ A
2 2

The integration variable can now be changed to h and the remaining calculation

-Tn-l-E
/ " sint h(x)dx (4.30)
zo-

is straightforward.

_ T [1+A o =W
Hy = —— ( * 0) / sin*h (1> dh
2z; 2 Ja T
1+ T
= _}'_W_Z <__+ﬁ> / sin*hdh
2ma 2 0
IW (1+ A 1 1 T
= 5.2 ( * 0) Ph — —sin2h + —5'17714/1}
2nad 2

2 8 ! 3 0
3IW (/14 Ap
— 4.31
1623 < 2 ) (4:31)

The final contribution to the Hamiltonian (4.1), comes from the boundary con-

tribution, Hs. This can be calculated straight from the ansatze for p(z), (4.2).
jt(o0)

= —— (4.32)
Finally, the explicit form of the Hamiltonian is obtained by combining H; to Hs.

One is reminded that, because of the approximations made, the following expression

is valid in the regime where the baryon number is high. However, this is exactly the
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regime one is interested in when considering Skyrmions of astrophysical relevance.

anfe [M (14 40\ One? [[1+ 40\ [, w2 MW
H= - —/— |— - xy — Ma - —
¢ [a ( 2 > W 2 o mMTot 95T 7

1 - A4 W2z MW?  MWax,
4% 6 12 6

1+ A Mn? V 2 3IW y
c + Ag ‘/1'15 _[li_lr_ _3I”2 14+ Ag _M (4.33)
2 2Way 2 2W 1625 2 3"

Indeed, one sees that the approximate total energy ol the Einstein-Skyrme system

depends upon the four free parameters of the Ramp ansatze. One proceeds to find
stationary points of this energy. First, extremising with respect to the parameter

M, one finds the following constraint.

O _ 0=
oM
2(_3C — 22 =20 yxoW) + BoW
Ay = 4T (=3 - 8@ w5 ?N Yo “/) + 62 (4.34)
QT (3C + 4QN.L0) + ()IL()I"/
Similarly, extremisation with respect to Ay gives

oH
—=0=
0 Ap

‘M (87 (3Cud + 6Qnuw — 2QNIW) + W2 (9T + 24Cuf + 4m*Qnaf)) (4.35)

8z (an? (3C + 4Qnzd) + 62W)
One should note, at this point, that these constraints have an appropriate form in
terms of their behaviour in the limit of gravitational decoupling. This is illustrated

by the following limits.

o bagW .
llin AQ = ()_I()W =1 (436)
lim M = 0 0 (4.37)
o 4822 W

This is the expected behaviour when the gravitational interaction is removed

from the model. In this case, (4.36) & (4.37) imply that A(x) = 1 and p(x) =0
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everywhere. This ensures that the line element (2.3) takes the form of flat space
without the presence of mass.

Now, extremisation of the energy with respect to the remaining two parameters,
zo and W, leads to very complicated expressions which cannot be solved analyti-
cally. However, the constraints (4.34) and (4.35) effectively pick out hyper-surfaces
within the full four-dimensional parameter space of field configurations, upon which
the energy has an extremum in the Ag and M directions. One can proceed by substi-
tuting these constraints into (4.33) and extremising numerically over the remaining
two-dimensional surface.

Of course, once substitution of the constraints into (4.33) has been done and a
specific two-dimensional surface picked, one must avoid differentiation to find the
minimum in the xg and W directions. An appropriate algorithm to use is the Find-
Minimum voutine found in Mathematica [Wolfram Ref]. This routine, provided with
a function of N-variables along with an initial coordinate, uses explicit evaluation

and not derivatives to find a local minimumn on the N-dimensional parameter space.
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Chapter 5

Ramp Ansatze Generated

Configurations

This chapter details minimal energy parameter sets found for x5, W, Ag and M for
varying values of the coupling and baryon number. The procedure used to find these
was outlined in the previous chapter. Specifically one minimizes the energy, (4.33),
of the system, subject to the constraints on Ay and M detailed in (4.34) and (4.35)
respectively.

The procedure is carried out using the FindMinimum routine in Mathematica,
given data describing the situation of interest. Namely this data is; Qn = —N—N’—‘ the
flavour factor which for the SU(2) model is %, a the value of the coupling one wishes
to use, and C and Z which are related to the degree of the harmonic map used and
thus the number of baryons required.

When using the harmonic map ansatze, one initially minimizes the quantities C

and 7 over the space of all harmonic maps of the required degree. As the baryon
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number increases, so does the required degree of map and, consequently, so does the
number of possible maps. For large baryon numbers it is inconceivable to numerically
minimise C and Z over all possible maps and thus an approximation must be used.

One notes that for the SU(2) model, the minimal value of C is equal to the
baryon number, B [9]. Further it has been shown [30], [?], [?], that for moderately
large baryon numbers, the minimal value of Z tends to a limiting value of 1.28 32
These are the values used in obtaining the solutions, for any given baryon number,

shown in this chapter.
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5.1 SU(2) configurations

5.1.1 Validity of Ramp Ansatze

Table 5.1 shows the minimal energy parameters for the ramp ansatze describing a
configuration of 2 x 10° baryons, at a variety of coupling values. A solution set for
this baryon number was the highest obtained by direct numerical integration of the
field equations for h(z), u(z) and A(z). The form of these solutions are shown in
figures 4.1 to 4.3 at a coupling of v = 1 x 107°,

One first notes that the approximations made in Chapter 4, which required
W << xg, are valid for all ramp ansatze configurations with baryon number 1 x 10°,
Line 10 of table 5.1 shows that even for the configuration with the smallest radius,
obtained at the critical coupling, the ratio Li“ is still of order 1072

Moreover, one notes that the predictions of the ramp ansatze are in remarkably
good agreement with the solutions obtained directly from the field equations. The
direct numerical integration of the field equations at B = 2 x 10°, gives solutions
that have a radius of xg &~ 1223 and a width of W = 3 (see figures 4.1 to 4.3). Line
3 of table 5.1 shows that for the same value of @, the ramp ansatze predicts a radius
of g &= 1171.6 and W = 3.1. In each case there is less than a 5 percent discrepancy
hetween the values obtained by the different approaches.

Further, the ADM mass per baryon for the configuration, calculated from figure
4.2, is given by

4rM  40m

A"[ADM = (}i—B ~ T ~ 62.83 (51)

Comparing this with the value of 66.56 obtained from the ramp ansatze, one is
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left with a discrepancy of only 6 percent! These figures, along with the existence

of a critical coupling in table 5.1, provide one with confidence in the validity of the

ramp ansatze.

o To w Ag Mapnr/B | Siin
1x1078 1177.079405 | 3.141339 | 0.999910 | 66.815103 | 0.999820
1x 1077 1176.584103 | 3.138980 | 0.999096 | 66.791644 | 0.998195
1 x 1076 1171.598103 | 3.115317 | 0.990914 | 66.556852 | 0.981941
1x107° 1117.468499 | 2.868798 | 0.904145 | 64.185116 | 0.817404
3 x107° 943.153230 | 2.186000 | 0.650125 | 58.619086 | 0.407177

3.7x 1075 801.051220 | 1.730217 | 0.472599 | 56.421817 | 0.171352
3.76 x 1073 760.448013 | 1.613464 | 0.426883 | 56.223736 | 0.116050
3.768 x 107> 742.112054 | 1.562475 | 0.406975 | 56.204875 | 0.092580

3.76808 x 107° | 741.331293 | 1.560327 | 0.406138 | 56.205105 | 0.091601
3.768083 x 107° | 741.299241 | 1.560239 | 0.406104 | 56.205116 | 0.091560

Table 5.1: Numerically obtained minimum energy configurations for 2 x 10° baryons

at a range of couplings. Respectively shown are the coupling used and optimal values

for the radius of the shell, its width, the value of Ag such that A(oo) =1, the ADM

Mass per baryon and the minimum value of the metric function S(x) = (1 — 2“—(1))

x
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5.1.2 Effect of increasing baryon number at o = 107

Having established the validity of the ramp ansatze as a description of configurations
containing large numbers of baryons, it is important to see how the structures change
as more and more baryons are added. Tables 5.2 and 5.3 summarise the data
obtained for increasing baryon number at a fixed value of the coupling (@ = 1x1075).

Comparing the data to the previously obtained solutions at low baryon numbers
shows significant differences. For example, the ramp ansatze predicts that a single
baryon configuration at &« = 1 x 10~% will have an ADM mass of 63.55. However,
table 3.3.1 in Chapter 3, shows that the actual value of the ADM mass in this
case is 72.92. The large (13 percent) discrepancy can be explained because the
approximations made in calculating the energy from the ramp ansatze, relied on
the premise that W << z,. This is clearly not the case for low baryon numbers, as
shown by the values in table 5.2. As such, one will restrict attention to configurations
where the approximations are clearly valid, say B > 1 x 10°.

The first comment that can be made is that the previously found trend in de-
creasing ADM mass per baryon, is contimied at large baryon numbers. One can
clearly see that for B > 1 x 105, configurations become more and more energeti-
cally favourable as more baryons are added. Given that section 5.1.1 showed there
to be only a small discrepancy between M 4py per B whether calculated by direct
integration or from the ramp ansatze, one can be fairly sure that the values in table
5.3 are a good representation of the ADM masses of true solutions. If anything,
imposing the ansatze rigidly on the fields, would tend to result in an overestimation

of the energy.
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Thus taking absolute values of M4pys per B for B > 1x 10°% and comparing these
to the value of 72.92 for a single baryon, at the same coupling, from table 3.3.1, one
can be convinced that all the configurations are stable against single particle decay.
Thus the possibility of constructing a solution representing a baryon star is indeed
energetically plausible.

As for the form of solutions, the general trends in the parameters of the ramp
ansatze are as follows. A is effectively a measure of the warping of space caused by
the self-gravitating Skyrmion. As A(2) has a value of 1 at spatial infinity, then the
smaller the value of Ag, the larger the deviation from 1 and thus from flat space. As
one would expect, Ay decreases significantly with increased baryon number, partic-
ularly as one approaches the baryon number for which @ = 1 x 1075 is the critical
coupling.

There is an interesting comment here. Again there is the existence of a critical
coupling, above which no solutions exist. Even for the very large baryon numbers
involved in this chapter, the value of the metric function S(z) is small but signifi-
cantly greater than zero, near «.;. Still no horizon forms and the lack of solutions
above .. 18 not due to a collapse to a singularity. Thus one is left to conclude that
indeed the lack of solutions is due to the annihilation between the sphaleronic and
regular branches of solutions (shown in Chapter 3), at the critical coupling.

The width of the barvon layer, W, has a curious behaviour. It decreases sig-
nificantly near the critical coupling. However, far away from this it stabilises at a
value of around 3.1. This was in fact expected. Kopeliovich [33], [34], calculated a

minimal energy value of W, for large baryon number Skyrmions in flat space.
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Taking an ansatze akin to the ramp ansatze he was able to obtain the explicit
form of the Hamiltonian. As the situation was simplified by the exclusion of gravity,
the number of free parameters of the energy were reduced to two, g and W. In this
case the energy could, in fact, be minimised analytically and the optimal value of
W was shown to be W = 7.

Perhaps the most interesting feature of the data is the behaviour of the radius
2. As the baryon number increases so does the radius. In fact far away from . it
is evident that 2 o B3. This shows that far from the critical coupling, the presence
of gravity is having a negligible effect on the structure of the Skyrmion. The baryons
are distributed over a hollow shell. Thus the number of baryons is proportional to
the surface of that shell and so B o 2. There is no evidence for any deviation from
this behaviour, far from c.;.

This is not the whole story however. Figure 5.1 shows that near the critical
coupling, the radius deviates from this proportionality with B 5 and rises more slowly
with increasing baryon number. This signifies that gravitational compression has
started to occur. More surprising is the fact that at couplings very close to w4, the
radius actually decreases as more baryons are added. This is a tantalising property
for trying to model a baryon star within the Einstein-Skyrme system.

Real neutron stars exhibit a similar phenomenon. Supported by degenerate neu-
tron pressure, a neutron star must decrease in size as more neutrons are added. This
is because the neutrons need to be brought into closer proximity in order to suffi-
ciently increase the degenerate neutron pressure so that the increased gravitational

force is balanced [35].
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Figure 5.1: The behaviour of xq with increasing baryon number at a fired coupling

of a =1x 1075,

5.1.3 Effect of increasing baryon number on the critical cou-
pling

Table 5.4, shows the relation between the critical coupling and the baryon number.
It is again clear that qg.q o B ‘%, as obtained for low baryon number Skyrmions in
Chapter 3.

It may be tempting here to attribute this relationship as an artefact of the hollow
shell structure, in that the behaviour of «., is related in some way to the surface
area of the shell. However the phenomenon seems more genuine than that. One
must remember that «,.,.; was proportional to 8‘5, for baryon numbers 1,23 & 4,
as shown in Chapter 4. These solutions do not possess spherical symmetry and thus

there must be a deeper reason for the behaviour of w.;.
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5.1.4 Candidate baryon stars

Having discussed the main features of configurations with a large baryon number
and moreover, having established that the ramp ansatze is both reliable and gives
rise to energetically favourable multi-baryon Skyrmions, it is now time to test the
model to the limit, as it were. One will attempt to ﬁnd a structure corresponding
to a baryon star, in the Einstein-Skyrme model.

A typical neutron star would comprise in the order of 10°® neutrons. Thus one
will take a baryon number of B = 10°. The real physical value of the coupling, «,
must also be known. Given that a = 47 f2G and taking f, = 93Mev, along with
G = 6.72 x 107%Mer™?, one obtains wppysicat = 7.30 x 107 Using these values,
one ohtains the data shown in table 5.5.

One sees that the physical value for « is far below the critical coupling for this
particular baryon number. Thus Ag & S,,;, both equal unity and W tends to a
value of 7, as predicted by Kopeliovich. The configuration does, happily, appear
to still be energetically favourable, having an ADM mass per baryon far less than
that of a single baryon in table 3.3.1, at 72.92. Incidentally, the value for the single
baryon was obtained at a far higher value of « and thus the comparable value at
Qphysicat, Would be slightly higher again. Either way, a bound state of baryons large
enough to be a baryon star, does seem energetically favourable.

There is one major drawback with the solution however. The ramp ansatze
predicts a baryon star with a radius of 29 = 8.32 x 10%®. One must convert this back

from the scaled units to SI units of length. Thus, noting that © = ef;r, one has

1

= —2
efr

(5.2)
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Now one notes that common values of the Skyrme model parameters are e =

4.84, with dimensions of [Mass™2 Length %] and f, = 93Mev with dimensions of

[Mass™ 2 Length~2], [36]. Thus

=

N
e = 4.84 (Ii)zkg‘%m_
)

(M

= 8.18 x 10%'kg 2m~ (5.3)

and

fx

Il

93 (Nisv) (%)% lcg%m 2

= 272 x 107 "kg2m

ol
—~
[
NN
~—

allow one to calculate the predicted radius of a baryon star as

8.32 x 10%®
' ]
8.18 x 102! x 2.72 x 10~7

Rba ryonstar 4

3.74 x 10"%km (5.5)

This is clearly too large for the radius of a compact, super-dense baryon star,
such as a neutron star. A typical neutron star radius might be expected to be in
the order of 10 - 50km., 35].

Such a prediction seems a serious obstacle in trying to model a baryon star within
the Einstein-Skyrme system. However, it is no more than one expected at this stage.
Effectively one has made ansatze which describe a giant hollow structure. This was

a first approximation and the next chapter shows how the model can be refined.
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B Zo W Ay Mapa /B Shin

1 0.673505 | 2.327110 | 0.999989 | 63.548704 | 0.999994
4 1.59196 2.86115 | 0.999984 | 62.5851 | 0.999987
8 2.32292 2.99152 0.999979 63.4195 | 0.999979
50 5.86157 3.11594 | 0.999953 | 64.7287 | 0.999931

100 8.306280 | 3.128570 | 0.999934 | 65.273095 | 0.999895

200 11.758698 | 3.134892 | 0.999908 | 65.693078 | 0.999843

500 18.603075 | 3.138600 | 0.999855 | 66.089160 | 0.999739

1 x 10% | 26.313363 | 3.139718 | 0.999796 | 66.296392 | 0.999622

2 x 103 | 37.214608 | 3.140166 | 0.999713 | 66.445154 | 0.999455

5x 10% | 58.840444 | 3.140026 | 0.999546 | 66.576866 | 0.999123

1 x 10* | 83.206449 | 3.139582 | 0.999359 | 66.641104 | 0.998749

2 x 10* | 117.657832 | 3.138913 | 0.999094 | 66.683045 | 0.998220

5 x 10* | 185.983840 | 3.137452 | 0.998568 | 66.712118 | 0.997169

1 x 10° | 262.940613 | 3.135745 | 0.997976 | 66.717411 | 0.995986

2 x 10° | 371.692791 | 3.133319 | 0.997136 | 66.709105 | 0.994311

5 x 10° | 587.189670 | 3.128492 | 0.995468 | 66.675247 | 0.990988

1 x 10% | 829.598841 | 3.123040 | 0.993585 | 66.628301 | 0.987242

Table 5.2: Numerically obtained minimum energy configurations for a range of
baryon numbers at « = 1 x 1075, Respectively shown are the baryon number and
optimal values for the radius of the shell, ils width, the value of Ag such that
A(o0) =1, the ADM Mass per baryon and the minimum value of the metric function
S(z) = (l - 2‘—;“—))
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B T w Ag Mapar/B Sin

2 x 108 1171.598103 | 3.115317 | 0.990914 | 66.556852 | 0.981941
5 x 10° 1847.305751 | 3.099942 | 0.985590 | 66.409453 | 0.971416
1 x 107 2604.193248 | 3.082536 | 0.979548 | 66.240364 | 0.959541
2 x 107 3666.097134 | 3.057771 | 0.970927 | 65.999282 0.94‘2720
5 x 107 5742.761267 | 3.008095 | 0.953545 | 65.517862 | 0.909236
1x 108 8032.820705 | 2.951175 | 0.933482 | 64.972117 | 0.871294
2 x 108 11174.683329 | 2.868773 | 0.904158 | 64.195072 | 0.817164
5 x 108 17031.617830 | 2.696761 | 0.841996 | 62.632596 | 0.707383
1 x 107 22898.788750 | 2.483680 | 0.763196 | 60.827525 | 0.577249
2 x 109 29121.037849 | 2.109214 | 0.620568 | 58.139036 | 0.364530
2.8 x 10° 29097.730196 | 1.662272 | 0.446042 | 56.288421 | 0.137963
2.83 x 10° 28514.182644 | 1.606614 | 0.424264 | 56.224598 | 0.111904
2.839 x 10° | 28024.164280 | 1.567118 | 0.408849 | 56.210670 | 0.093726
2.8397 x 10° | 27869.287879 | 1.555558 | 0.404340 | 56.211729 | 0.088448
2.83975 x 109 | 27825.597221 | 1.552361 | 0.403092 | 56.212412 | 0.086989
2.839752 x 109 | 27821.996607 | 1.552098 | 0.402989 | 56.212474 | 0.086870

Table 5.3: Numerically obtained minimum energy configurations for a range of
baryon numbers at o = 1 x 1075 Respectively shown are the baryon number and

optimal wvelues for the radius of the shell, its widih, the value of Ay such that

A(oo) =1, the ADM Mass per baryon and the minimum value of the metric function

S(x) = (1 - M)
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B Corit 2o W Ag Mapun /B Sinin

10% | 1.686751 x 1073 16.505171 1.553694 | 0.400954 | 55.954881 | 0.130810
10* | 5.331088 x 107 |  52.205734 1.552662 | 0.402323 | 56.128167 | 0.101148
10° | 1.685155 x 1074 | 166.352221 | 1.567714 | 0.408796 | 56.183551 | 0.098431
10% | 5.329166 x 1075 |  522.075324 | 1.552098 | 0.402900 | 56.204084 | 0.088264
107 | 1.685180 x 107° | 1650.954688 | 1.552059 | 0.402947 | 56.209924 | 0.087274
108 | 5.328951 x 1076 | 5220.729351 | 1.552025 | 0.402954 | 56.211801 | 0.086952
10° | 1.685158 x 107% | 16511.849632 | 1.552321 | 0.403075 | 56.212301 | 0.086989
1010 | 5.328927 x 1077 | 52210.639623 | 1.552148 | 0.403010 | 56.212545 | 0.086880
10" | 1.685154 x 10~7 | 165114.043088 | 1.552264 | 0.403056 | 56.212576 | 0.086924
10'2 | 5.328925 x 10-8 | 522104.287618 | 1.552140 | 0.403007 | 56.212624 | 0.086864
1013 | 1.685156 x 10~% | 1.651101 x 10° | 1.552215 | 0.403037 | 56.212592 | 0.086896
104 | 5.328926 x 1079 | 5.221007 x 10° | 1.552125 | 0.403002 | 56.212631 | 0.086856
10%% | 1.685156 x 1079 | 1.651091 x 107 | 1.552204 | 0.403032 | 56.212597 | 0.086891

Table 5.4: Numerically obtained minimum energy configurations for a range of
baryon numbers al their corresponding marimum permitted . Respectively shown

are the baryon number, critical coupling and optimal values for the radius of the

shell, its width, the value of Ag such that A(oc) = 1, the ADM Mass per baryon and
the minimum value of the metric function S(x) = (1 - M)
xr
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Mapar/B

Sm in

8.323583 x 10%#

3.141593

1.000000

66.829868

1.000000

Table 5.5: Numerically obtained minimum energy configuration for baryon star can-

didate.
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Chapter 6

Multiple Layer Gravitating

Skyrmions

As was demonstrated in the previous two chapters, the Skyrme model can produce
baryon configurations that have approximate spherical symmetry and that are en-
ergetically favourable (i.e. resistant to single particle decay). Whilst this is some
way towards constructing something akin to a baryon star within the model, there
are drawbacks.

Firstly the configurations obtained so far exist effectively as giant hollow shells,
with the baryon density distributed as a tight lattice over the spherical surface.
Clearly a hollow object is not what one would expect of a baryon star. Related to
this is the problem of size. For the real value of the coupling constant a = 7.3x 1074,
then a hollow configuration containing 10% baryons (a typical number for a neutron
star), would have a radius corresponding to around 3.74 x 10'%%km. ! Noting from [35],

that a typical neutron star radius is about 10km then, as of yet, one cannot claim

79



6.1. The shape and form of Multiple Layer Skyrmions 80

to have described anything like a neutron star in the Einstein-Skyrme model.
This chapter addresses these challenges and provides the first examples of plau-

sible baryon star structures within the model.

6.1 The shape and form of Multiple Layer Skyrmions

So far, the following boundary conditions have been imposed on the profile function,

h{z).

hO) = =

hMoo) = 0 (6.1)

There were two reasons for this. Firstly that the field be well defined at the origin
and secondly finite energy considerations. However, it is clear from the exposition of
the Harmonic Map ansatze in Chapter 1 that (6.1) are not the only set of satisfactory
boundary conditions.

In fact, the Skyrme field will be well defined at the origin if the profile function

is any multiple of 7. Thus, for k € Z,

hO) = kr

h(oo) = 0 (6.2)

is also a reasonable choice of boundary data.
It can be shown [9], [10], that a Skyrmion generated by a Harmonic Map of
degree B, where the profile function has boundary the conditions (6.2), will pos-

sess a topological charge of kB. Such a Skyrmion will be equivalent to a bound

configuration of kB baryons.
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6.1. The shape and form of Multiple Layer Skyrmions 81

Such configurations were studied for moderate baryon number as in Chapter 3.
That is, numerical integration of equations (2.32) to (2.35) was performed but this
time imposing (6.2) on h(z) with k = 2. A typical solution set is shown in Figs. 6.1
- 6.3.

This data was obtained for a total baryon number of B = 4x 108, thus in actuality
a Harmonic map of degree 2 x 10° was used. Further, the data was obtained at a

coupling of & = 1 x 1075,
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Figure 6.1: Numerical solutions for h(z) in the case of B = 2 x 10% per layer and
a = 1 x 1078, where the boundary condition h(0) = 27 have been taken. Clearly

exhibited is the multiple shell-like structure of the Skyrmion
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Figure 6.2: Numerical solutions for pu(x) in the case of B = 2 x 10° per layer and
a = 1 x 107%, where the boundary condition h(0) = 2r have been taken. Clearly

ezhibited is the multiple shell-like structure of the Skyrmion
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Figure 6.3: Numerical solutions for A(x) in the case of B = 2 x 10° per layer and
a =1 x 107%, where the boundary condition h(0) = 21 have been taken. Clearly

exhibited is the multiple shell-like structure of the Skyrmion

July 3, 2006



6.1. The shape and form of Multiple Layer Skyrmions 85

Clearly the slight modification of the boundary conditions on h(z) has produced
a novel structure in the solutions. Again, the fields remain constant until a large
radial value at which they evolve simultaneously over a relatively small width before
attaining another constant value. The curious thing is that the evolution occurs
over two distinct sections which have the same width.

It would seem that for boundary conditions of the form (6.2), the Skyrmion has
a multiple-layered structure. In the previous picture of Skyrmions of large baryon
number as hollow shells, it appears that solutions of the form shown in Figs. 6.1 -
6.2 correspond to a series of equal width embedded hollow shells. The number of
such shells being equal to k the multiplicity of 7 in the boundary condition (6.2).
Such structures hold tantalising possibilities for constructing Skyrme stars.

In the previous chapter it was shown that for realistic input data, a Skyrme star
constructed as a hollow shell would simply be too large to resemble anything like a
neutron star. However, multiple-layered structures could provide Skyrme stars with
considerably lower radii. The reasons are two-fold.

The first is improved packing. For the single-layered structures described in
Chapters 4 & 5, the baryons were distributed over an approximately spherical shell
of very small width. Essentially, the baryons were distributed over the surface area.
A very large baryon number would therefore require a very large surface area and
consequently a very large shell radius. If now one deals with emhedded shells then,
if the number of layers is large, the baryons become distributed within part of a
spherical volume. Thus a smaller radius should he required to accommodate the

same number of baryons.
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Secondly, Table 5.1 already provides evidence for the gravitational compression

of hollow Skyrmions. It is hoped that this effect could be enhanced if the Skyrmion

has multiple layers, since the outer layers will feel the gravitational attraction due

to inner layers.

For these reasons it is plausible to consider multiple-layered Skyrmions as a way

of overcoming the size problems of Skyrme stars. Certainly, the total radius of the

solutions shown in Figs. 6.1 - 6.3 for two layers is no worse than that of the single

layer solutions shown in Figs. 4.1 - 4.3, for the same baryon number.

6.2 The Ladder Ansatze

One proceeds as in Chapter 4 by constructing ansatze for A{z), pu(z) and A(z) that

nimic the multiple-layered structure.

Thus

() =

[ =

J% + (z — o) 11:‘?'“

—_

0<z<z— 4

k,.7 . 14
wo— W <w<ay+ ML

1’23:04—%

0§.’L‘<l‘0—%

o — k;" <a<ag+

L {4/
T > T+ "'2‘

0<az <-4

kW

o — =

. kW
T > 1+ 5

<z <ay+

2

kW
2
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where W is the width of a single layer and 2 is now the radial position of the centre
of all k layers. Again, M is the value of p(x) at infinity (as before, there is no central
mass) and A4g the value that A(z) must take at the origin in order to ensure that
A(oo) = 1.

It is important to note an approximation here. The above ansatze describe fields
changing continuously over the region 2y — "% to xo + %i However, this is not
quite the situation demonstrated in Figs. 6.1 - 6.3. In those solutions there is a
small separation between each distinct layer. The size of this separation is small
though, compared to the overall radius of the Skyrmion and so this subtle structure
has been neglected as a first approximation.

One attempts again to find an explicit form for the energy of the system by sub-
stituting the field ansatze into the reduced Hamiltonian (4.1) and then to minimise
this with respect to the four free parameters of' the ansatze.

For simplicity one will again deal with the Hamiltonian in five distinct parts.
Also, as the Hamiltonian is identical to that used in Chapter 4 (all that one alters

here are the field ansatze), then all integrands in the energy contain either a power

of sin(h(x)) or a derivative of one of the fields. Noting from the above ansatze that

3t
2

the fields only change over xq — % to xg + and that outside this region h(z) is
a multiple of 7 (and thus sinh(x)) = 0, then integration is restricted to the layers
themselves.

At this point there is one subtlety. Whilst one integrates over all layers, several

of the integrands contain Z or C. Thus information needs to he known about the

harmonic map used across each layer. One notes that the motivation for using
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the Ladder Ansatze were solutions obtained when taking a single harmonic map
combined with the modified boundary conditions on h(x), (6.2). Thus it is sensible
to use a single value of the harmonic map quantities Z and C across all layers.

A suitable picture of the structure is as follows. By taking a harmonic map of
degree B along with the previous boundary conditions, (6.1), one obtained a single
layer Skyrmion comprising B haryons. Now since each layer in the multiple-layered
Skyrmion corresponds to a change in h(z) equal to that in the previous boundary
conditions, (6.2), one sees that each layer will contain B haryons. Thus the whole
structure contains k layers each with equal baryon number, B.

Of course, as each layer occurs at a different radius, then the volume and thus
the baryon density of each layer will vary. This is in fact a desirable property as
there is evidence to suggest that neutron stars comprise several strata, each with
different neutron densities [35].

Having, stated the above details it is clear that integration of the Hamiltonian
density need only be preformed across the layers and with single values of Z and C.

Thus the five parts of the energy, without the overall multiplicative constant —4—2&,

are
ro+ 8% ny;
H = / Ay gy (6.3)
Sy B @
It—)+¥
Hy = — / *A()ON S()h(x) 22 de (6.4)
- Tn—%
Hy = _/ : A(z)Csin?h(2)[1 + S(x)h(z)*)dx (6.5)
- Tn*%
0t A(a)Zsinth(x)
Hy = — / AZIE) gy (6.6)
S o ¥ 242
o - _L((iﬁ) (6.7)
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Commencing with H;, one substitutes the Ladder Ansatze for p(z) and A(z)

and obtains

M

akW

M
akW

o

H,

|

&3

1+ A

1+
2

L1
2o+

1+ Ag
2

AW
To+"5

<
g
|

EW
2

2
Ao

T(b*‘kéi"

+ (@ — wq)

]. - 140
kW

) dz

(6.8)

To arrive at this one has again used the fact that (z — 2p) is an odd function

over the symmetric interval of integration. Thus this term vanishes.

Moving on to Hy, one obtains upon substitution and expansion

QN7r2 rn+¥ 14 AO ‘ 1 — AO
HZ - ‘,‘/2 . z“7¥ 2 + (fL - -'U() 7‘/—‘/7
M M
X [152 - 2 (7 + (v — .’L‘())W>] dz
Qnm? 14+ Ay 209 1— Ag 2k 221"
—~ v S0 ) Mae [ —22 ) (1- 22 ) 1=
e [\M\ 3 mv L) M T W) ) |2
- B
1+ Ag 2M 1— A daqM Al
l— == -M -z —
* <( 2 ) ( ch) +( kW ) ( kW ’0)) tsJ_%
N 1— A ) M [24]7F T
EW kW 4], rw
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From the following evaluations

'$2 1 xo+ L‘Z—V

.— = kJH/YIIJ() (610)

RPN

r..37 o+ 25 L33

— = kWal+ —— 6.11

I Yot Ty (6.11)
AW

(A1 7055 E3W 34,

= = kWa?

i 4 AW Ilﬂ + 4

S ro— "5

(6.12)

the final form of Hy is given by

Qn7? 1+ Ag 9 K3W?  B2PMW
H, = — s — kMz —
9 W B k’LO k A[’L() + 12 6

(1 - AO> (k?’M/sz k3 MW? kQMW:L“Oﬂ

kW 6 12 6 (6.13)

Hs comprises a more involved integral so, for simplicity, it will once again be split

into several parts

Hjy = Hs3; + Hsp + Hag + Hag + H3s (6.14)
where
14+ A w? T+
H3 = -C < 5 O) (1 + ”‘—2) / sin®h(x)dz (6.15)
. v Tl)‘%
1 — AO 7T2 2‘«)-!-5‘"5l o
Hjzp = -C ( % ) (1 + W) th’l (x — xo) sin“h(z)dx (6.16)
14+ Ag\ Ma? =% sin®h(x)
H3yz3 =C <-2A> e /T“_k%L Tdm (6.17)
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Mr? [[1- A, 2 (14 A zo 5" sin?h(z) .

and

kW
2

_ 1— Ag\ 2Mm? [=o+ o sinh(x)
H35—C( ey ) kW3/ aw (x — 2q) de (6.19)

JSTH—

The calculation of Hjy is straightforward following a change of variable from 2z

to h.

Hs,

14+ 440 L% 772 b .
- ( 2 ) (F) <1 + W2> ./0 sin”hdh
1+ 1‘10 V‘/' 7]'2 1 1 » ke
C ( 2 ) ( T ) (1 + W 5]} — ZSNI.ZII. .
14 Ag kW 72

As in Chapter 4, one makes the high baryon number approximation that W <<

I

79. This means that across the layers 2 doesn’t vary significantly from the central
radius, xg. Thus (z — 29) and consequently the contributions from any integrals
containing this factor, are negligible.

This approximation requires more consideration than in Chapter 4, since one
actually requires that kW << z4. Obviously this depends on the number of layers,
k. However, Chapter 5 demonstrated that for realistic values of & and B (7.3 x 10740
and 10°%), the radius, @, of a single-layered structure was of the order 102, whilst
the width, W, was of order 1. This clearly allows for a large number of shells.

Even if one was to be optimistic enough that the multiple-layered structures
would have a reduced radius akin to that of a neutron star, the approximation is
still valid. A typical neutron star has a radius of order 10km. Using the conversion

detailed in Chapter 4, this corresponds in topological units, to a radius of zg =
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2.22 x 10", Given that the width of a single layer is still likely to be of order 1,
then for the ratio %’ to be small, say of order 1072, one could still allow 10'7 layers.
Clearly, the small width approximation is still valid.

As a consequence of this observation, one can neglect the contribution to the
energy from Hsy, Hzy and Hss. One is left to calculate Hgz. Again the ratio of the
total width of layers to the radius is taken to be small. One therefore approximates

the factor of % as Ii“ Thus

kW

1+ A Mnz? oot 7
Hz = C AL il sin®h(z)dx
2 Wex, 2y
14 0 M ko .
= C|— sin*hdh
< 5 ) Weo . /o sin®hdh
T+ A4\ Mr [1, 1 "
= —h — —sin2h
C( 5 ) W [211 PR IL
1+ Ag kM 7?
=C 6.21
( 2 ) 2W g ( )
Summing Hz; and Hsy, one obtains for Hy
e 14 Ag & M7r2_W_7r_2 (6.22)
T 2 )2\ Way W ‘

After substitution of the field ansatze, the fourth contribution to the energy

reads
AW

_ 1+ A, 1= Ay sin'h(x) ‘
H4——I/ ar { 5 + (z — o) kW} Y dx (6.23)

ro— 55—

As previously, one simplifies by neglecting the contribution from the term containing
the factor (x — o) and then declaring that the denominator 222 he approximately

equal to 2z2 across the integration interval.
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One is left with

Z' 1 A ‘T()+% )
H, = < _+—2) / sin*h(z)dx

‘Zl‘% 2 %

T0—5

/ 4 kﬂ-
14 1+Ao) / sinthdh
2mad 2 0

IW (1+ A 1 1 ;
< + 0) Ph,— —sin2h + —sindh

A 8" 4 32 0
3KIW [1+ A
S e + Ao (6.24)
16 2
Finally, the boundary term, Hy, is calculated as
IO
(03
M
= = (6.25)
x

Now one is in a position of finding the explicit form of the energy for a multiple-
layered gravitating Skyrmion, subject to the high baryon number approximation.

Combining the five parts of the energy, one obtains

L Amf (M (1 AN QT[T+ AN (L s .. KW RMW
== [a ( 2 ) T 2 kg = kMo + =5 6
+ 1—- A4 BW2e,  BMW? MWz,
kW 6 12 6
14+ A\ k ([ M=? w2 3KIW (14 Ag M )
d _w-I ) _ 4 6.26
¢ < 2 ) 2 <W:1:0 4% 1622 ( 2 @ (6.26)

Clearly, the energy obtained in Chapter 4, using the Ramp Ansatze, is a special
case of (6.26) for a single layer. Indeed setting k = 1, one recovers the energy of a

single layered Skyrmion, (4.33), as one would expect.
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The method for finding solutions is now identical to in Chapter 4. One first
minimises the energy independently with respect to the parameters M and Ay to

obtain the following constraints.

oH
oM

=0=

4 _ 07 (=3KC — 8kQna3 — 2K QW) + 6z (6.27)
0= an? (3kC + 4kQuad) + 6zW '

and
JH
54-0 =0=
Mo @ (872 (3kCul + 6kQnah — 2k2QnadW) + W2 (9T + 24kCuk + 4k37*Qnad))

8xq (am? (3kC + 4kQnad) + 62oW)
(6.28)

As one would expect these take the same form as for the single-layered structures
of Chapter 4, for the case k = 1. Thus they also behave correctly (49 — 1 and
M — 0) in the limit of gravitational decoupling (@ — 0). This can be seen to be
true regardless of the layer number k.

Finally, minimal energy configurations can be obtained. Upon substitution of
constraints (6.27) and (6.28) into the explicit Hamiltonian, (6.26), one picks out a
two-dimensional sub-space of the full parameter space. One again uses the FindMin-

imum routine in Mathematica to minimise in the remaining W and z, directions.
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Chapter 7

Ladder Ansatze Generated

Configurations

This chapter presents parameter sets obtained by numerical minimisation of the
energy of a multiple-layered self-gravitating Skyrmion, (6.26). Again, for the SU(2)
model, values of C = B and T = 1.28B7 were taken when trying to study configu-
rations containing B baryons.

In particular, the first plausible baryon star configuration is produced within the

SU(2) Einstein-Skyrme model.

7.1 SU(2) Configurations

7.1.1 Validity of the Ladder Ansatze

The data sets contained in table 7.1 are the minimum energy configurations for

double layer Skyrmions with various baryon numbers. That is, the layer number
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k = 2. Each configuration was obtained at a fixed coupling of @ = 1 x 1078,

Of particular interest is the double layer configuration containing a total of 4 x 10°
baryons, (2 x 10° baryons per layer). One can see that the ladder ansatze predicts
that such a configuration has a radius of xy = 1165.97. Further, it predicts that
each layer has a width of 3.09.

Such a configuration has already been obtained, at the same value of a, by direct
numerical integration of the field equations (2.32) -(2.35). The solutions are shown
in figures 6.1 -6.3, in Chapter 7. Inspection of the plots reveals that the actual
radius of solutions was =~ 1214.0 (remember it is taken to be the centre of the two
layers). The width of each layer was =~ 3.5.

Comparing the data obtained by direct integration and that predicted by the
ladder ansatze, one finds discrepancies of < 4 per cent in radius and < 12 per
cent in layer width. The discrepancy in the width is higher than that caused by
taking the ramp ansatze for a single layer configuration (see section 6.1.1). This is
probably caused by the extra assumption made in the ladder ansatze, that there
was no separation between layers. However, the discrepancies are not significantly
large to cause concern.

Further, if one studies figure 6.2 in Chapter 6, one finds that the solution for
1{x) has a final value of i{oo) = 20. This corresponds to and ADM mass per baryon

of
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A4ADM _ 47T[L(Ulf1,y)
B aB
. 807
T
~ 62.83 (7.1)

This value must be compared with that predicted by the ladder ansatze of 66.28.
Indeed the ADM mass has been overestimated, as one would expect from imposing
an ansatze. However the discrepancy is < 6 per cent and one concludes that the
ladder ansatze does produce configurations with properties satisfactorily close to

true solutions.

7.1.2 The affect of varying the layer number, k

Having established faith in the configurations generated by the ladder ansatze, one
asks ”"What general affects come from varying the number of layers?”.

Comparing table 7.1 to tables 5.2 and 5.3, one can start to see differences caused
by doubling the layer number. The first thing to note is that at each baryon number,
the radius of double layer configurations is considerably lower than for the single
layer configurations. This is true whether one compares the values of &g or if one
considers the total radius of solutions after layer widths have been added. Far from
baryon numbers for which the value of & = 1 x 107° used is close to their critical
coupling, the decrease in radius is likely to be due to a better packing of baryons.
As was hoped in Chapter 6, it seems that indeed the radius is reduced because of
baryons being distributed through a volume instead of across a surface area.

For baryon numbers of greater than 1 x 10 (at this coupling of « = 1 x 1075),
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the affect appears to be enhanced. The difference between the single and double
layer radii, is even larger. This seems to signify that gravity is now playing an
important role and that the gravitational attraction of the inner layer, in the double
layer configurations, has resulted in increased compression. This is what was hoped
for and may pave the way in constructing plausible baryon stars.

It is also important to note that the width of layers has not been significantly
decreased, for the double layer structures. One might have expected the width
to half as the number of layers doubled. This would have meant that the baryon
density was the same as for the single layer configurations. In this case one would
have obtained two layers, back to back, with the same baryon density as before and
with half the width. In effect, the configuration would have been indistinguishable
from a single layer Skyrmion. This is not the case and one concludes that the
configurations detailed in this chapter are qualitatively different structures to those
previously described.

The situation is also desirable in terms of energy. One notes that at each baryon
number the double layer solutions have a lower ADM mass per baryon, than their
single layer counterparts. Far from the critical coupling, this is probably due to
a relaxation within the Skyrmion. However, near «..; it seems that the increased
gravitational attraction between layers, for the double layer configurations, results
in an increased gravitational binding energy for the baryons.

Table 7.2, shows the direct affect that the number of layers has on the critical
coupling. The data was obtained by varying k for a fixed total of 10% baryons. This

number of baryons was chosen not just because it is the order of baryons needed for
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something like a star. More importantly, it allowed a large variety of layer numbers,
k, to be used, whilst still ensuring that the approximations made (which relied on
kW << x4) remained valid.

One sees that the layer number vastly impacts on the highest value of «a for
which sclutions can be obtained. In fact, it can be seen that there is quite a precise
relationship, that a k=%, This will be important when constructing baryons stars.
One has already seen that although the existence of ag.; is not due to horizon
formation, the approach of the critical coupling does herald the point at which
gravity plays a significant role in binding the baryons. The real physical value is
very low, at Qppysicat = 7.3 X 107%°. However, the relationship between k and e,
implies gravitational binding will still be evident, even at such a low value of the

coupling, if a sufficiently large number of layers are present.

7.1.3 Plausible baryon stars

All the signs are favourable for using the Einstein-Skyrme system as a toy model for
baryon stars. One has already shown that increasing the layer number can reduce
the radius and allow gravitational binding to be possible at small coupling values.
What remains is to study a configuration with a sufficiently high baryon number,
at physicar, t0 see whether a plausible structure can be obtained.

Tables 7.3 and 7.4 detail the data obtained for Skyrmions with 10%® baryons
at Qphysicar, Using different numbers of layers. One notes all the features described
earlier. That the radius and mass reduce with increasing k, and that this is enhanced

when the layer number is such that aprysicar 15 close to @
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For B=10%8, Qphysical = Qerie At k = 5.330657 x 107 layers. This is the maximum
number of layers that can support 10% baryons, at « = 7.3 x 107, One first
checks that all approximations are valid. For this number of layers, the radius is
predicted as 2o = 7.150612 x 10" and the width as W = 1.552304. Thus indeed
the requirement that kW << xy, is satisfied. One can therefore be confident in the
parameters describing this configuration and the structure can be discussed with
faith.

First one notes that this configuration is energetically favourable. The ladder
ansatze predict an ADM mass of 56.18 per baryon, as compared to the B=1 gravi-
tating Skyrmion mass found in Chapter 4 to be 72.92 (at a considerably larger value
of «). Thus one indeed finds a bound state of a sufficiently large number of baryons
to be akin to a baryon star.

The question of spherical symmetry has already been discussed in Chapter 4.
The configuration consists as a large number of embedded layers. Each contains in
the order of 10* baryons distributed as a tight lattice over a spherical shell. Thus
the overall structure has approximate spherical symmetry as required.

As was seen in Chapter 5, the radius of configurations caused concern. Baryon
star candidates within the Einstein-Skyrme model were just too large. One has
already seen that allowing the number of layers to increase, can significantly reduce
the overall size of the configuration. One is left asking what is predicted for the
multiple layer baryon star.

Taking the maximum number of layers allowed for B=10" at (¥physical, the ansatze

predicts values of 1y = 7.150612 x 10'% and W = 1.552304, as stated earlier. This
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gives a total radius of
Tstar = o+ kW
~ 7.23 x 10" (7.2)
Converting to SI units using the values given in Chapter 5, one has

:l:sta'r
Rs ar —
t ¢fx

~ 32.51km (7.3)

Thus one concludes that the Einstein-Skyrme model may indeed be a suitable

testing ground for studying approximations of baryon stars, predicting a bound

state of 10°® baryons, with the correct symmetry and with a radius comparable to

a typical neutron star.
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B o 4 Ao Mapn /B Sonin

1 x 108 585.795134 3.115293 | 0.990909 | 66.520788 | 0.982023
2 x 108 826.800070 3.104350 | 0.987118 | 66.426750 | 0.974522
4 x 108 1165.971374 | 3.088826 | 0.981726 | 66.283602 | 0.963905
5 x 108 1302.092387 | 3.082330 | 0.979543 | 66.224381 | 0.959622
1 x 107 1833.045504 | 3.057771 | 0.970923 65.988069 0.942801
2 x 107 2575.162485 | 3.022296 | 0.958570 | 65.648620 | 0.918948
5 x 107 4016.404800 | 2.951177 | 0.933477 | 64.967281 | 0.871374
1 x 108 5587.271170 | 2.868732 | 0.904152 | 64.191754 | 0.817242
2 x 108 7702.394198 | 2.747487 | 0.860462 | 63.082328 | 0.739398
5 % 108 11449.400032 | 2.483688 | 0.763193 | 60.826251 | 0.959623
1 x10° 14560.531816 | 2.109223 | 0.620566 | 58.138282 | 0.364607
1.4 x 10° 14548.790990 | 1.662263 | 0.446035 | 56.287941 | 0.138040
1.41 x 10° 14384.731809 | 1.629530 | 0.433224 | 56.244544 | 0.122658
1.419 x 10° 14065.061027 | 1.575253 | 0.412017 | 56.210839 0.0975317
1.4198 x 10° | 13957.031889 | 1.5588612 | 0.405624 | 56.2107105 | 0.090035
1.41988 x 10° | 13914.517098 | 1.552611 | 0.403185 | 56.211877 | 0.087184
1.419882 x 107 | 13910.592896 | 1.552039 | 0.402961 | 56.212013 | 0.086923

Table 7.1: Numerically obtained minimum enerqy configurations for a range o
Y ,

baryon numbers at « = 1 x 107% and k = 2. Respectively shown are the baryon
number and optimal values for the radius of the shell, layer widths, the value of Ag
such that A(oc) = 1, the ADM Mass per baryon and the minimum value of the

ety ; JOAN 2p(x)
metric function S(x) = (1 - )
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k Qerit To W Ag Mapy/B | Swin

1 | 5.328462 x 107*! | 5.252242 x 10% | 1.564261 | 0.407736 | 56.210872 | 0.092394
10 | 1.685007 x 1073 | 1.660926 x 10% | 1.564286 | 0.407746 | 56.210871 | 0.092406
10% | 5.328462 x 10732 | 5.252242 x 10%" | 1.564261 | 0.407736 | 56.210872 | 0.092394
10% | 1.685007 x 10732 | 1.660926 x 10%7 | 1.564287 | 0.407746 | 56.210871 | 0.092406
10% | 5.328462 x 10733 | 5.252242 x 10?0 | 1.564261 | 0.407736 | 56.210872 | 0.092394
10° | 1.685007 x 10733 | 1.660926 x 10%° | 1.564287 | 0.407746 | 56.210871 | 0.092406
108 | 5.328462 x 10734 | 5.252242 x 10% | 1.564261 | 0.407736 | 56.210872 | 0.092394
107 | 1.685007 x 1073% | 1.660926 x 10%° | 1.564287 | 0.407746 | 56.210871 | 0.092406
10% | 5.328462 x 10735 | 5.252242 x 10%* | 1.564261 | 0.407736 | 56.210872 | 0.092394
10° | 1.685007 x 1073% | 1.660926 x 10%* | 1.564287 | 0.407746 | 56.210871 | 0.092406
10'0 | 5.328462 x 10730 | 5.252242 x 102 | 1.564261 | 0.407736 | 56.210872 | 0.092394

Table 7.2: Numerically obtained minimum energy configurations containing 10

baryons but with a varying layer number k. Respectively shown ave the layer number,

critical coupling and optimal values for the radius of the shell, layer widiths, the value

of Ag such that A(oc) = 1, the ADM Mauss per baryon and the minimum value of

x

the metric function S(x) = (1 - 2“—”))
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k Ty W Agy Mapa/B Shnin

1 |8.323583 x 10% | 3.141593 | 1.000000 | 66.829868 | 1.000000

2 | 5.885662 x 10%® | 3.141593 | 1.000000 | 66.829868 | 1.000000

10 | 2.632148 x 10%® | 3.141593 | 1.000000 | 66.829868 | 1.000000

10? | 8.323583 x 10%7 | 3.141593 | 1.000000 | 66.829868 | 1.000000

103 | 2.632148 x 10%7 | 3.141593 | 1.000000 | 66.829867 | 1.000000

10* | 8.323582 x 10% | 3.141593 | 1.000000 | 66.829866 | 1.000000

10° | 2.632148 x 10% | 3.141592 | 1.000000 | 66.829863 | 1.000000

10° | 8.323581 x 10%° | 3.141591 | 1.000000 | 66.829854 | 0.999999

107 | 2.632146 x 10% | 3.141588 | 0.999999 | 66.829825 | 0.999997

108 | 8.323563 x 102! | 3.141579 | 0.999995 | 66.829733 | 0.959623

109 | 2.632128 x 10% | 3.141550 | 0.999985 | 66.829442 | 0.959623

1010 | 8.323382 x 10?8 | 3.141457 | 0.999953 | 66.828522 | 0.999907

10'! | 2.631947 x 10%% | 3.141165 | 0.999852 | 66.825611 | 0.959623

1012 | 8.321575 x 10%% | 3.140240 | 0.999533 | 66.816408 | 0.999067

1013 | 2.630138 x 10?2 | 3.137312 | 0.998524 | 66.787300 | 0.997050

10 | 8.303433 x 10%! | 3.128041 | 0.995323 | 66.695218 | 0.990668

10'% | 2.611829 x 102! | 3.098565 | 0.985121 | 66.403649 | 0.970461

Table 7.3: Numerically obtained minimum energy configurations containing 10°8
baryons al Qphysicat = 7.3 X 1079 The number of layers. k, has been varied. Re-
spectively shown are the layer number and optimal values for the radius of the shell,
layer widths, the value of Ay such that A(oc) = 1, the ADM Mass per baryon and
the minimum value of the metric function S(x) = ( 1-— 2“T(l)>
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k Lo % Ap A/[ADAI/B Shmin
1016 8.114672 x 10%° | 3.003680 | 0.951997 | 65.477403 | 0.906253
1017 2.400111 x 10%° | 2.680978 | 0.836210 | 62.489436 | 0.697674

5 x 107 8.2065713 x 10'9 | 1.788807 | 0.495296 | 56.562632 | 0.203564

5.3 x 107 7.417211 x 1019 | 1.622703 | 0.430205 | 56.203619 | 0.124702

5.33 x 107 7.187062 x 10 | 1.562516 | 0.406704 | 56.177573 | 0.097088

5.3306 x 107 7.159665 x 10" | 1.554856 | 0.403717 | 56.178822 | 0.093607

5.33065 x 10'7 | 7.152519 x 10" | 1.552843 | 0.402931 | 56.179307 | 0.092693

5.330657 x 10'7 | 7.150612 x 10 | 1.552304 | 0.402721 | 56.179446 | 0.092448

Table 7.4: Numerically obtained minimum energy configurations containing 10°°
baryons at Appysicat = 7.3 X 1070 The number of layers, k, has been varied. Re-
spectively shown are the layer number and optimal values for the radius of the shell,
layer widths, the value of Ay such that A(oo) = 1, the ADM Mass per baryon and

the minimum value of the metric function S(z) = (1 — 2%51—))
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Chapter 8

Conclusions

8.1 Summary of Research

The purpose of this research, as stated in Chapter 1, was to revisit the SU(N)
Einstein-Skyrme model as a possible toy model for baryon stars. Previous work,
most notably by Bizon & Chmaj [25], [26], had ruled out solutions representing
baryon stars on grounds of energy. Taking the hedgehog ansatze for the Skyrme
field coupled to gravity they obtained solutions that inherently possessed spherical
symmetry. However it was found that, just as in the flat-space scenario, multi-
baryon states were not energetically favourable and were susceptible to decay into
single baryon Skyrmions. The affect of gravity simply did not provide sufficient
binding to allow spherical multi-baryon states.

The technique used in this thesis was to approach the problem from a different
angle. It is known that the harmonic map ansatze [9], [10], provide very good
approximations to true low energy solutions of the SU(N) Skyrme model. It is

also known that the approximate solutions obtained using these ansatze, at least for
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8.1. Summary of Research 107

low baryon number, are not spherical for B> 1. For example, in the SU(2) model,
the B= 2 solution resembles a torus, whilst the solutions containing three and four
baryons are tetrahedral and cubic respectively.

At the start of the research project, one decided to look for energetically favourable
approximate solutions to the Einstein-Skyrme model as a first requirement and not
to impose spherical symmetry from the outset. Thus the harmonic map ansatze
were taken for the Skyrme field coupled to gravity. A spherically symmetric metric
ansatze was taken, as this would be appropriate for eventual baryon star structures.
Using all of the above, it was possible to derive the Euler-Lagrange equations for
the profile function, h(x), the mass field, p(z) and the metric field, A(z).

Using known values for the minimal angular quantities of the harmonic map
ansatze, taken from [9] & [30], it was possible to solve these coupled differential
ecuations at low baryon number. In order to do this, however, there were non-
trivial technical challenges to overcome, relating to the application of boundary
conditions. A highly non trivial asymptotic expansion of fields, which depended on
all the parameters of the system, enabled one to proceed.

The low energy solutions reproduced that of Bizon & Chmaj at B=1. This was
to be expected as for a single baryon in the SU(2) model, the harmonic map ansatze
are completely equivalent to the hedgehog ansatze and the solution is spherically
symmetric [9]. Two branches of solutions were obtained which coincided at a crit-
ical value of the coupling constant «. Above this value, no further solutions were
obtained.

A study of the metric at the critical coupling revealed that the system was far
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from horizon formation and thus a.,i could not be caused by collapse to a singularity.
The existence of the critical coupling can he understood as the annihilation point of
two different local extrema of the model. Concretely, the upper branch of solutions
represents sphalerons within the model, [37], which annihilate with the lower branch
regular minima, at cpi.

For multi-baryon self-gravitating Skyrmions, the situation was entirely different
to the findings of Bizon & Chmaj [25]. As was hoped, the solutions became more
and more energetically favourable, as the baryon number increased. Again two
branches of solutions were obtained but this time the critical coupling varied as
Cerit 2 0.040378 B2 (as opposed t0 quy &~ B2).

The fact that the ADM mass per baryon actually decreased with increasing
baryon number suggested that, in fact, the Einstein-Skyrme model could be used as
a toy model for baryon stars. At this point one had to step back and reflect on what
had actually been obtained. As the case when taking any ansatze for the Skyrme
field, one actually obtains approximations to the true minimal energy Skyrmion, for
any given baryon number. However, the situation is more complicated here.

One has effectively found structures which are not spherical, coupled to a spher-
ical gravitational field which is supposed to be induced by the baryon distribu-
tion itself. Thus there is a mismatching in symmetry and all one can claim is to
have found some approximate configurations which suggest that multi-baryon bound
states could exist. One should not be alarmed, however, as this was all that one set
out to achieve at first. That is, one wished to address the issue of energy first and

then hope to recover spherical symmetry.
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The work of Battye & Sutcliffe [30], amongst others, [9], [?], [34], suggested that
this might be possible. It was found that for moderately large baryon numbers,
approximations to true Skyrmions had structures resembling the fullerene cages of
Carbon chemistry. That is, the baryons were distributed over a shell-like lattice.
As the baryvon number increased, the lattice became tighter and, viewed externally,
the deviation from spherical symmetry became less. It was therefore argued that at
the large baryon numbers one wished to study for baryon stars, the approximations
to true self-gravitating Skyrmions would resemble shells with approximate spherical
symmetry. Such argunients were also supported by the form of the fields obtained
for B=2 x 10° (see figures 4.1~ 4.3).

The observation led to an approach, which would also allow one to overcome the
technical challenges in numerically integrating the Euler-Lagrange equations. In a
similar fashion to Kopeliovich [33], [34], one formed the ramp ansatze for h(x), p(z)
and A(x) based on the approximate solutions that had been obtained. This allowed
integration of the Hamiltonian, once one made certain approximations relating to
the radius and thickness of the shell, at high baryon number.

The explicit form of the total energy of the model was then minimised semi-
analytically, to find the parameters of the ansatze which described minimal energy
configurations. A comparison of the results obtained for B=2 x 105, showed that
the ramp ansatze were in good agreement with the solutions obtained by direct
numerical integration of the Euler-Lagrange equations.

One found that the (now spherical) approximations to true self-gravitating Skyrmions,

continued the trend of becoming more energetically favourable, with increased baryon
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number. The existence of the critical coupling was still evident and again followed
A Uepsy X B -3 relationship.

An interesting behaviour was observed for the radius. Far from the critical cou-
pling, the radius increased as B %, in accordance with the increased surface area of
the shell, needed to accommodate the increased baryon number. However, close to
Qerit, the radius grew less quickly suggesting that gravity was becoming important
and that gravitational compression was occurring. In fact, very close to ., the
radius actually decreased as more baryons were added. This is an effect that is
predicted for real neutron stars, in that a smaller radius is needed in order to suffi-
ciently increase the degenerate neutron pressure needed to balance the gravitational
attraction [35].

It was found that, at the true physical value of (v, a structure containing a typical
baryon number for a neutron star, was predicted to be energetically stable. However,
the radius of this configuration, at 3.74 x 10'%m, was simply too large to resemble
a neutron star. This was not surprising. Remember, one has found approximations
to self-gravitating Skyrmions that resemble a hollow shell. Clearly this is not the
picture one has of a neutron star.

One is forced to consider a structure consisting of several embedded shells. This
would hopefully allow a decrease in radius for two reasons. Firstly, the baryons would
be distributed throughout a finite volume, and thus a better packing is achieved.
Secondly, one hopes for extra gravitational compression due to attraction between
layers.

Earlier numerical solutions obtained at B=4 x 10° using the alternative boundary
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condition h(0) = k=, show that the approximate solutions could possess a multi-layer
structure. Based on these results (figures 6.1 - 6.3), one formed the ladder ansatze
describing this structure. Again, with careful consideration the Hamiltonian was
integrated and minimum energy approximate solutions were obtained.

These were found to be in good agreement with the numerical results for B=4 x
10% It was observed that the number of layers did indeed reduce the radius of
configurations, in the manner described. Further, the layer number led to a reduction
in the ADM mass and in the critical coupling for any given baryon number. In total
one obtains Qi X k~iB" 3,

This time, an approximation to a self-gravitating Skyrmion resembling a baryon
star was obtained, with radius of 32.51km. This is a much more credible candidate.

In short then, one has shown that by not initially imposing spherical symme-
try one can obtain energetically favourable approximations to multi-baryon self-
gravitating Skyrmions. As a by-product of the high baryon numbers required to
study baryon stars, approximate spherical symmetry is eventually recovered. One
can obtain structures containing sufficiently large numbers of baryons to be astro-
physically relevant. For fun, the author will term these structures Solarons (star-like
solitons).

One doesn’t claim that these Solarons are models of neutrons stars. There are
still many things to do and refinements to make, as will be discussed. However, the
research suggests that the Einstein-Skyrme system may be used as a toy model for
baryon stars and has gone some way in constructing such a nmodel.

The Solarons obtained do have interesting and desirable properties. These in-
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clude appropriate radii, a stratified distribution of baryons (as believed for neutron

stars and the possibility of a decrease in size with added baryons [11], [32], [35].

8.2 TFuture Directions

As one has said, there are still many refinements to be made to the model and plenty
of avenues for future research.

The first thing to be done is to improve the ladder ansatze. At the moment one
has many layers, back to back and all having the same width and containing the
same number of baryons. One could improve this by adding another parameter to
the ansatze which describes the separation between layers.

More importantly, one eventually wishes to be able to construct a Hamiltonian in
which all that one fixes is the baryon number. The number of layers and, moreover,
the baryon number per layer should be free parameters of the model which will
be determined upon minimisation of the energy. It is hoped that in this way, the
number of layers and their widths will settle in such a way, that the gaps between
layers and the remaining hollow region, hecome filled.

This is a complicated task and is currently being studied by the author, along
with his supervisor Dr. Bernard Piette. Some progress has, however, been made.
As a simplification, a two or three layer ansatze can be built, which includes filling
factors for each layer. These describe the proportions of the total number of baryons
(which is fixed), contained by each layer [38]. The explicit form of the Hamiltonian
has been derived in this case but, as of yet, no suitable minimum energy configura-
tions have been found.
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The second thing that can be done is to study solutions to the SU(3) model.
Certainly all the theoretical work in this thesis has been set up to allow any number
of flavours to be studied. However, because of the computation time involved,
numerical results have only been obtained for the SU(2) model. This is an avenue
which can now be directly explored. It is expected that the same qualitative features
will be present but that the energies of solutions may be affected in line with the
flat-space analogue [39].

Finally, after one has satisfactorily refined the ladder ansatze to achieve a better
toy model, one could start to build in more realistic properties. For example, an
angular momentum term could be added to the matter part of the action, to describe
a spinning Skyrmion [36]. Coupled to a non-static metric, in principle the Euler-
Lagrange equations could be derived, although now this would result in a series
of coupled partial differential equations. The solution of these is expected to be a
highly non-trivial task.

Another, very interesting investigation would be to study self-gravitating Skyrmions
using different ansatze. Some research suggests that at high baryon densities, there
may be even lower energy solutions than obtained from harmonic maps. Such solu-
tions resemble a crystal or lattice [40]. Tt may be possible, with a judicious choice
of boundary conditions, to obtain giant spherical chunks of the lattice, which could

then be used to give non-hollow star-like structures.
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Appendix A

Boundary contributions to the

gravitational action

A.1 The need for boundary terms

In a Lagrangian formulation of gravity one essentially wishes to be able to write
an action, which, upon extremization, implies the Einstein equation. By this one
means that if the action is varied with respect to the metric (or parameters of the
metric), and that this variation is set to zero, then this condition is just the normal
Einstein equation [29]. Thus taking the Einstein-Hilbert action and varying, one

finds

—167G 6S = /6 (V—ygR)d'x
/6( v ‘_g)R + ((SR/U/!]“V + Rl_“,(sg'lw) vV —gd4.'L' (All)

Il
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Now, remembering that by \/—¢ one really means y/—det(g,,) and using the fol-

lowing identity for a general nonsingular matrix A

—d—(detA) detA Tr []A

= . } (A.12)

one can calculate that by varying a general parameter, A, of the metric

dy/—y
dA
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V-9 =
a
dX

tof—

det (J;w)

g,UV ;w
(J}W) I: Cl)\ }

(S5

1 _
- _5(—det(g,,u))
1 s
_ 5\/———_(l 5([,_41/,(1
1
= 5V g O -

Also, if one notes that the second term in eqn. (A.1.1) can be rewritten as

ORg"" = V', (A.1.4)
where
U = V(0g) = 4"V, (6gp0) (A.1.5)
then eqn. (A.1.1) becomes
—167GéS = /V“’I)uﬁ(l4ﬂf + '/(R,“, - %gl,,, R)sg" /—gd'x (A.1.6)

Consider the iwo integrals in (A.1.6). If the first integral vanished identically

then extremisation of the action with respect to variations of the metric leads to

1
-9 ('Ryu - Eg/AuR) (Al?)

which is clearly equivalent to Einstein’s equation in vacuum, as required.
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However, as will be shown, the first integral will in general he non-vanishing.
It is clear that this term is the integral of a divergence over the four dimensional
space-time volume. Thus by Stokes’ theorem it is equivalent to the following surface
integral

/ VHu,/—gdis = / n*v, v —hd*z (A.1.8)
M oM
where M is the three dimensional boundary to the manifold M. Here, h,, is the
appropriate metric induced by g,, on the boundary and n* is the unit normal to
the boundary.

Now it is clear from the form of v, in eqn. (A.1.5) that although terms such
as 0g,, do not contribute to the second integral in (A.1.8) (because we consider
only variations of the metric which vanish at the boundary), terms such as V,(09,.)
will contribute to the integral. This is because to require that such a term is zero
implies that 4g,, = 0 in the neighbourhood of the boundary and thus the notion of
variations in the metric is lost.

Since such terms mean that the boundary integral contribution to 45 is non-zero,
we can ensuire that extremization of the action does imply the Einstein equation,
by adding a suitable boundary term to the original Einstein-Hilbert action to com-
pensate. This necessary term, known as the Gibbons-Hawking action can he shown,

from the above equations, to be [29]

1
— v —hV M 3:' Al
SGH = 871G /C)JM h L d’x ( 1 9)
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A.2 Derivation of the appropriate Gibbons-Hawking

action

The previous sections served as an illustration of why an extra boundary term
must be added to the standard Einstein-Hilbert action. This section will deal with
calculating what the appropriate Gibbons-Hawking action is for the SU(N) Einstein-
Skyrme model considered in this thesis.

From (A.1.9) it is clear that several factors need to be considered in order to
calculate Sgy. Namely, what is the appropriate boundary of the manifold, what is
the induced metric on this boundary and what is the normal vector to the boundary?

The first of these questions needs to be addressed carefully. Really the domain
of interest is R*, which of course is non-compact and thus the notion of a boundary
initially seems inappropriate. However, what one really desires is the surface at
which the metric is held fixed. For a physical model of self-gravitating Skyrmions,
one wishes to impose asymptotic flatness of the metric. Thus one only needs to
consider variations of the metric for which this is preserved, i.e. the metric is held
fixed at the surface r = o0o. Therefore the appropriate boundary to consider is the
three-sphere at r = oo, however, in practice this is difficult to implement when
calculating Sgy and it is convenient to take the surface r = Ry where Ry is a large
radius when performing the calculation. Finally one takes the limit as By — oc.

Now the appropriate boundary has been defined, finding the induced metric and
unit normal vector is more straightforward. TFirst, the induced metric inherits the
form of the full metric for the three-dimensions remaining and is now evaluated at

the fixed value of r = Ig. Thus the line element associated with h,, can be written
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as

2m .
dsh\ = —A*(Ro) (1 - —m](%i())) dt* + RA(d0* + sin®0dp?) (A.2.10)

]

Second, as the surface OM is three-dimensional it has only one normal vector,

in the radial direction. This can be represented by

o= (1 B 27:’&(7'))5
-

So, proceeding with the calculation one finds that

i (A.2.11)

r=Hy

1 .
V—-h V, ntd*z = / [\/—hev—d\/—m’} dtdfdeo
/SM g . V=9 I r=Ro

2n(r 2m(ry) | 1
= 47r/ [A/’I'Q (1 - ”;(,)> + 2Ar <] - ";(’)> + EA(‘Zm - ‘27:1'1‘)}

dt
=Ry

(A.2.12)

Now as one takes the limit Rq — oo, one can use the fact that A(Rgy) — 1 and that

m{Ry) — const. to obtain

SGII = lim —
Ry—no0 2(;

/ {2‘4(30)1%0 (1 - 2”’"}(?1%")) +A(R0)m(1{0)] dt  (A2.13)
0

and one immediately notes that this is divergent. However the divergence is simply
caused by the way the boundary has been imposed. To see this one can perform the
same calculation over the same boundary in flat space-time and one will obtain the

following

1
SGHO = RLlElno —2(; /QR()(lt (A214)

This is essentially the divergence in (A.2.13) when one notes asymptotic flatness
and really is just an artefact of the extrinsic curvature of the artificial boundary.

Thus one can renormalise the Gibbons-Hawking action to remove this divergence
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and finally one has
Scy = lim L / A(Ro)m(Ry)dt
Ro—cc  2G
= —21(} '/m(oo)dt (A.2.15)

and it is this boundary term that has been added to the Einstein-Hilbert action in

Chapter 2.
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