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Abstract

The theory of group schemes and their liftings to mixed characteristic valuation rings
is well-developed. In [Fal02], a new equi-characteristic analogue of group schemes,
known as group schemes with strict €-action, or strict £-modules, was proposed and
developed, including Dieudonné theory. In [Abr04], their theory was studied over a
complete discrete valuation ring. In this Thesis, a version of Dieudonné theory.is
developed for the strict &-modules of [Abr04] over a perfect field, using constructions

of [Fon77], using very different methods from those deployed in [Fal02).
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Chapter 1

Construction of the category of

deformed group schemes

1.1 Introduction

In this chapter, we define the basic objects we will work with, which consist of a
group scheme G, together with a scheme G® containing G as a closed subscheme
via a morphism ig : G — G”. It will be proved that, for all suitable ‘lifts’ G”
of G, there is a unique lifting of the group morphisms of G to G”, such that the
triple (G, G”,ig) is a ‘group object’ (a kind of deformation) G. Having constructed
such group objects, we endow them with an ‘@-action’, a homomorphism of rings
0 — End(G), for some complete discrete valuation rings &.

Objects such as the above triple are essentially Faltings’ ‘group schemes with
strict @-action’, as developed in his paper [Fal02]. The form of these objects which
we shall use was first introduced in [Abr04].

Our approach differs from Faltings’ in that it allows us to define ‘minimal’ ob-
jects, which help us in our attempts to classify categories of objects explicitly. We
adopt the definitions of [Abr04].

In this chapter, our exposition is over a perfect field of characteristic p, and
over a complete noetherian local ring. Where our statements (and their proofs) are
different for fields and rings, we provide different (and separate) statements and

proofs, since working over fields often simplifies the situation, and allows us to use
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more elementary techniques than for rings.

This chapter is the basis for the main results of this thesis, which are contained
in chapter 2, and concern Dieudonné Theory in characteristic p. It should be noted
that this theory and the results developed in chapter 2 do not depend on any of the
results proved here for rings, but merely on the results for fields.

Finally, where we work with finite free (ie, finitely generated and free as R-
modules) R-algebras over local rings R, note that this condition is equivalent to
requiring our R-algebras to be flat (Lemma A.1); therefore our results can be con-

sidered the analogue of results about finite flat R-group schemes, for R local.

1.2 Completions of algebras

In this section, we discuss some basic properties of the algebras we will be working
with.

From now on, let R be a complete noetherian local ring. We denote its maximal
ideal by m, and its residue field by k. We assumé throughout that k is perfect and
of characteristic p > 0.

Although our results do not depend on the choice of a particular ring, they
are motivated by cases like R = k, R = Z, or finite ramified extensions of Z,,
R = Z,/(p"), R = k[[r]], and R = k[[n]}/(#"). We are motivated by analogous

results classifying finite flat group schemes over complete discrete valuation rings.

Definition 1.2.1. Let Augj be the category whose objects are augmented R-
algebras which are finitely generated as R-modules, with morphisms defined as
follows: if A, B € Augpy, with augmentation ideals I, and Ip respectively, then
morphisms f : A — B are morphisms of R-algebras such that f(I4) C Ig. It’s
easily verified that Aug}, is a category.

Let Augp be the full subcategory of Aug’, whose objects are free R-modules.

Remark 1.2.2. If A € Augp, then for any R-algebra S, A® S € Augk.

Remark 1.2.3. Clearly if R = k is a field, then Augl, = Augg.
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We define a map from Augp to the category of projective limits of augmented
R-algebras by
A~ A = LiLnA/II‘,

n

for all A € Augp with augmentation ideal /4. A morphism f: A — B in Augy, for
B € Augp, with augmentation ideal I satisfies f(I4) C Ip, and therefore f(I%) C I}

for all n € N; therefore the composition
AL B B/IR

factors through A/I% for each n € N, and therefore f induces a family of maps
A/I% — B/I% for each n € N, and hence a morphism f'°¢ : Al*c — B¢ guch that

the following diagram commutes
A L. B
floc
Aloc Bloc
Hence our map A ~» A"° is a functor.

We now prove that if R = k, then any A € Aug, maps to a finite k-algebra A"°°;

the proof is elementary.

Lemma 1.2.4. If A € Aug, (with augmentation ideal 1), then A® is a quotient
of A, hence a k-algebra which is finitely generated as a k-module. Further, A is
local, with mazimal ideal equal to the image of 14 in A°¢, which we shall henceforth

denote I gioc.

Proof. Consider the chain of ideals
.o -DIhD...

Each is a k-vector subspace of A. If I% # I3 then dimy I% > dimy, I5+!; hence the
chain must stabilize after a finite number of steps: I} = IT'I for all n > N, where
N is some fixed positive integer. (In fact, A is an Artin ring).

Therefore Al°® = lim A/I% = A/IY, which is finite over k since it is a quotient
—

of A.

n
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To see that A!¢ is local, with maximal ideal I .., note that I%,. = 0 for some

Aloc
N € N; therefore Ijoc is in every prime ideal of A°¢. [ .. is maximal since
AT g0 =2 AJI4 =2 k; therefore Iee is the only prime ideal of A'¢, and Al

is local. a

We prove an analogous result for A € Augp; however, our methods are somewhat

less elementary, and depend on a result from the theory of completions:

Theorem 1.2.5. Let R be a complete noetherian local ring. If A is a commutative
R-algebra that is finite as an R-module, then A has only finitely many mazimal
ideals m;, each localization Ay, is a complete local ring over R which is finite as an

R-module, and A = []; Am, is the direct product of its localizations.
Proof. This result is [Eis95, Corollary 7.6}, and a complete proof is given there. O

Lemma 1.2.6. A = lim A/(I4 + mA)*. Further, A is a finite free R-module,
and is equal to the localigatz'on of A with respect to 14 + mA, which is a mazimal

vdeal of A.

Proof. Because R is complete, R & lim R/m" by definition, and since inverse limits

n
commute with finite direct sums, any finite rank free R-module M = R®™ satisfies

lim M/mM = M. Therefore A 2 lim A/m’A, since A is a finite free R-module.
— —
Therefore

lim A/I% & lim(lim A/m™A)/ I}

n m

lim A/(m™A + I%)

A/(m"A+Iy)

14 112

14

SN

A/(mA -+ IA)n,

where the last equality follows by Lemma A.2, because m"A+ I3 C (mA+14)" and
(mA+ I4)* C m™A+ I}. Hence A = lim A/(I4 + mA)".

Clearly I4 + mA is a maximal ideal of ::1; hence the map A — lim A/(I4 + mA)"
factors through Aj, ma, by a property of completions at maximal ideals. But

by Theorem 1.2.5, As,yma is complete, s0 Ar,4ma = lim A/(14 +mA)". Further

n
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lim A/(I4 +mA)" is flat over A, as localization is flat. Since 4 is in turn free over

R by definition, lim A/(/4 + mA)" is flat over R. It is also finite over R, as it is a

summand of A bynTheorem 1.2.5, and therefore free over R by Lemma A.1. O

Therefore, whether we work over R or k, we will be able to assume that A'°¢ =2
liil Alln = lim A/ (mA+I)" =2 Anatr, throughout the rest of this Thesis; these dif-
n n
ferent characterizations will prove useful to us at different times. We will also make
use of the fact that A°° is a finite quotient of A from time to time, as established

in Theorem 1.2.5.

Remark 1.2.7. Since the functor A — A'°° maps A € Augy to some finite flat

augmented R-algebra A'°¢, it is actually a functor from Augg to Augp.
Finally, we define an invariant of A, for any A € Augp; it is the minimum number

of generators of the augmentation ideal of A.

Definition 1.2.8. For any A € Augp,:let m(A) denote the minimum number of

elements of A required to generate its augmentation ideal.
Lemma 1.2.9. Let A € Augy,. Then m(A') = ranky [ gioc /I3

Proof. 1f
k[X.,..., X, — Al

is any surjection of augmented k-algebras, then it clearly induces a surjection
(X1s- s Xn)/ (X1, X0)? = Ly Paioe

so m(A'°%) > ranky L gioc /1%,

Since A!°° is a finitely generated local k-algebra, any set of generators X, ..., X,
of I g10c /1%, together with 1 lift by Nakayama’s Lemma to a set of generators of Alee
as a k-algebra. Therefore m(A"°) < rank; A'°¢/ Ifﬂoc, and hence we have equality.

(I
Corollary 1.2.10. Let A € Augg. Then m(1 yioc) = ranky L gioc /I3 ® k.

Proof. By the previous result, I .. ® k can be generated by ranky g/ Ii.oc ®k

generators. Therefore take a set X,..., X, of generators of I . ® k, where n =
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ranky Lgioc /1%, ® k. Since Ijoc @ k = I yioc /0] groc, any lifts of Xi,..., X, to I e
will generate it as an R-module, by Nakayama’s Lemma. Therefore m(A¢) <

ranky I groc / Ifﬂoc ® k. As in the proof of the previous result, we have m(A°) >

O

ranky I 410c/1%,.. ® k, and hence our equality.
A

1.3 Deformations of R-algebras

In this section, we define a category DApg, of deformations of algebras A € Augg;
we first sketch this construction, and then define it rigorously.

To each A € Augp, we associate a triple (A, A’ i), where A’ € Augl, and
i4 is a surjection A” — A'°¢ where i, satisfies certain properties; such triples will
constitute the objects of our category. Morphisms will be pairs f = (f, f*), where

f and f® are morphisms in Augp, satisfying certain compatibility conditions.

Definition 1.3.1. We begin by defining objects in our category. An object A € -
DAp is a triple (A, A%, 44), such that A € Augy (with augmentation ideal I4) and
AP € Aug)y (with augmentation ideal I,,) and there is a ring R[X1,..., Xm] with
an ideal I C (X1, ... ,‘Xm) such that if

Al = R[Xy, ..., Xn)/1,

then
A" = R[X,, ..., Xn]/I(X1,..., Xm).

We denote by i4 the natural surjection A°® — A!°¢ of R-algebras. We denote the
image of I in A'°¢ under the functor A ~» A" by I 4ic; in other words,

IAloc = EEIIA/IZ

Remark 1.3.2. This definition is slightly different from the one in [Fal02], where there
is no A'°; instead, that construction takes a surjection R[Xi,..., Xn] - A, and
defines A” = R[X,,..., X.n]/I(X1,. .., Xm), where I is the kernel of the surjection.

Our definition (which follows [Abr04]) has the effect of ‘covering’ only a local
quotient of A. This will allow us to define minimal objects DAg, which behave

rather like deformation retracts.
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Having defined the objects in DAg, we now define morphisms.

Definition 1.3.3. A morphism f : A — B = (B, B®,ig) where B has augmentation
ideal I, is a pair of augmented R-algebra morphisms f: A — B and f°: A* — B’
such the morphism f'°¢: Al — B'¢ induced by f (f induces f°¢ because f(I4) C
I, so f is compatible with the filtration) is compatible with f*, in the sense that

the squares in the following diagram commute

qp L, g
I |
Aloe I ploc (1.3.1)
I I
A L. B

It’s easy to see that f°(I4) C Igs.

We freqﬁently denote morp'}:lisms? : A — B in DAp using the notation (f, f°).

Remark 134 In order to prove that DAp is a category, we must prove (see [GM99,
Definition 1.1]) that each object A € DAg has an associated identity morphism,
that the composition of morphisms is again a morphism, and that composition of
morphisms is associative.

If A= (A, A" i4) € DAp, we can define id4 = (id,, id,), which clearly satisfies
the condition for it to be a morphism of DAp.

If C = (C,C%ic) € DAg, and we have morphisms (f, f*) : A — B and (g, ¢") :
B — C, then we can take as composition (g o f, g" o f*); it’s easy to verify that this
composition satisfies the obvious extension of diagram (1.3.1).

That composition of morphisms is associative follows from the fact that compo-
sition of morphisms of R-algebras is.

Therefore, DAp satisfies the necessary axioms to be a category.

We now define two invariant modules which we can associate to any A € DAp;

the second, N4, is actually an ideal of A°.

Definition 1.3.5. If (A, 4%, i4) € DAR, we define t*, = I /I?

4v> and N4 to be the
kernel of i 4 : A® — Aloc,
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Remark 1.3.6. N4 is clearly equal to the image of the ideal I of Definition 1.3.1 in A®.
Since I, is the image of the ideal (X7,...,X,) of R[X},...,X,] in this definition,
and the ideal defining A® is I(Xy,...,Xy), it follows that [Ny = 0= N% in A

Lemma 1.3.7. For all A € Augy (with augmentation ideal 14), there is an object
A€ DAg, where A= (A, A", i4) € DAR, for some A® and i4.

Proof. Since A°° is finitely generated, there is an augmented polynomial ring

R[X,...,X,] and a surjection of augmented R-algebras
R[X,,...,Xn] — A,

the kernel of which we will call I. Then we can make the obvious definition A® =

R[X), ..., X,)/(X1,..., Xu)I, and let i4 be the obvious surjection A* — Alc. [

Lemma 1.3.8. Let A= (A, A% i4) and B = (B, B®,i5). Any augmented R-algebra
homomorphism f : A — B extends to a morphism A — B in DAg.

Proof. f lifts to a map floc . gloc _, Bloc gsince the correspondence A — A'° is
functorial, so the problem is to prove that this lifts to a map f*: A* — B’.

By the definition of A and B, there are polynomial rings R[X},..., X,s] and
R[Y,...,Y,] such that

Aloc =R[X1,...,Xm]/I,Ab= R[X],'.-,Xm]/I(Xl’---7Xm)’

and

BloczR[Y’l,...,Yn]/I,,Bb:R[}fl""’Y"]/I’(}/l""’yn)'

Since the polynomial ring R[X7, ..., X,,] satisfies no relations, each X; can be
mapped to an arbitrary term in the ideal (Y3,...,Y;) of R[Y3,...,Y,]. Therefore

floc lifts to a map f making the following diagram commute

RIXy,..., Xm] =1 RIV4,....Y,]

l |

floc

Aloc e Bloc.
Since f'°°(I40c) C Igioc, f((X1,...,Xm)) C (Y1,...,Y,). Since f(I) C I, it follows
that f((Xl, e X)) € (N, ..., Y,)I', and therefore f induces amap f*: A> — B*
lifting f'oc. 0
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1.4 Minimal deformations

As noted in the previous section, one of the differences between our theory and the
theory of [Fal02] is that we ‘cover’ only the local part of any A € Aug, with a
surjection A® — A; now we show that our definition allows us to define minimal

objects in DARg.

Definition 1.4.1. We say that A € DAg is minimal if the map A ®k — A ®k
induces an isomorphism of % ® k to its image, where ¢% is the module associated
to A defined in Definition 1.3.5. In other words, we require that the induced map
IAb/Ii,, ® k — I gioc /I3 @ k be an isomorphism.

Lemma 1.4.2. If A € DAy is minimal, then m(A®) = m(A"°).
Proof. By definition of A, there’s a polynomial ring R[X}, ..., X,] such that
AP = R[X,,..., X.)/I
A = R[X,,..., Xa)/I(Xy, ..., Xy),

for some ideal I C (X,,...,X,). Hence I(Xy,...,X,) C (X1,...,X,)?% and
rankth ® k = rank I /12, @ k = rank(Xy,..., Xn) @ k/(X1,..., Xn)’ @ k = n.
Since A is minimal, rank t% ® k = rank I gioc /131, ® k = n, and by Corollary 1.2.10,

m(A°®) = n. Since X,..., X, generate I, it’s clear that m(A4®) < n, and since
AP — A< is a surjection, m(A®) > m(A°) = n; therefore m(A°) = m(A°) =
n. O

Lemma 1.4.3. If A € DAg 1is given by (Spec A, Spec A°,i4), then A° ®k, 17, @
k=0 and Iy, ® k =0 for somen,m € N.

Proof. The fact that I, ® k = 0 for some n € N follows by the proof of Lemma
1.2.4, and by Remark 1.3.6.
Since i4(L40) C Lawoc, ia(I7, ® k) = 0. Therefore I, ® k C N4 ® k, and since

IsNy=0, IZ;H ® k = 0, as required. O

Now we prove that deformations are compatible with taking the special fibre,
in the sense that if (A, A” i4) € DApg, then (A® k, A* @ k,i4 ® k) € DAy, and if
(A, A% i) is minimal, then sois (A® k, A @ k, iy ® k).
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Lemma 1.4.4. Let A= (A, A" iy) € DAg. Then (AQk,A°®k,ia® k) € DA,
and if (A, A% i4) is minimal, then so is (A® Kk, A* ® k,ia ® k). We denote (A®
k, ARk is®k) by AQk. Finally, base change R — k is a functor DA — DA,.

Proof. By Theorem 1.2.5, we have a decomposition
AZeAx- - xeA (1.4.1)

for some n, where the e; are orthogonal idempotents of A, and each e;A is a local-
isation of A at one of its maximal ideals. Since A'° is the localisation of A at the
maximal ideal mA + I 4, we can define A'°° = e; A without loss of generality. Hence
Alee = A/(ey,...,e,). Hence A ® k = A/(es,...,e,) + mA. Since e, is invertible
in Al° = e, A, it is not in T4 + mA.

On the other hand, tensoring (1.4.1) with k gives
AQk=elAQk X - xe,A® k.

If we localise at 4 ® k, all e; map to zefo for i > 1; since e; & I4 + mA as above,
e, ® 1 becomes invertible in (A ® k)1,qk, and eje; = 0 for 7 > 1.

Hence localisation A® k — (A® k), ek factors through (A®k)/(ez,...,en) ®K,
which is local with maximal ideal I, ® k since A/(es,...,e,) is local with maximal
ideal I, + mA. Hence (A® k)= AQk/(es,...,e,) @k = A ® k.

By definition of A, we have

AP = R[Xy,..., Xn)/1
A" =R[Xy,..., X /I(X1,..., Xs)

for some polynomial ring R[X,,...,X,] and ideal I. Tensoring the above with
k (and using (A ® k)!°° = A° ® k as we just proved) shows that we can take
(A® k) = A" ® k. Hence (A® k, A" ®k,i4) € DA,

If (A, A°,i4) is minimal, the map I /12, ®k — Igi0c /I g10c @k induced by i is an
isomorphism. Since A*®k = (A®k)* and A°Qk = (AQK)"°, (ARQk, A°®k,is) €
DA, is minimal.

It’s obvious that morphisms (f, f°) € Hompa,(.A, B) reduce to morphisms (f ®
idg, f* ®idy) € Hompy, (A ® k, B ® k). [
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We now prove that minimal deformations have a property analogous to the theory
of deformation retracts from topology; any endomorphism of a minimal deformation
(f,f") : A — A such that f is an isomorphism has the property that f® is also an

isomorphism. We prove this result first for the special case R = k.

Proposition 1.4.5. If A,B € DA, are minimal and f : A — B lifts an isomor-
phism f: A — B, then fl°c: Al°¢ — B¢ gnd f* . A* — B® are isomorphisms.

Proof. If f : A — B is an isomorphism, then f(I4) = I, and so clearly f'°°: Al°c —
B¢ is an isomorphism.

Since f*(I14) C Ip, it follows that f*(I7,) C Iy, for all n € N. Hence there
are maps f° : A"/I'/';b — B"/I?3b induced by taking the composition of f° with
B* — B*/I%,.

The following commutative diagram implies that the map ¢% — ¢t induced from
f’: A" — B’ is an isomorphism

th — i

2 2
IA]OC/IAIOC —'_\_‘_') IBlOC/IBloc

where the columns are isomorphisms because A and B are minimal, and the bottom
map is induced by f°°. Hence f5: k@ t%y — k @ tg is an isomorphism, since it is
k-linear.

We now prove by induction that f. is a surjection for all n > 2. Assume f>_,
is a surjection. Then for all b € B*/I},, there is an a € A*/I7, such that f3(a) =b
mod Igb‘l /1%,. Hence it’s enough to prove that each i € Igb"l /1%, is the image of
some a € A”/ I',, since we will then be able to recover each b € B/ I, ®k by adding
or subtracting some ¢ € Ig;l /15

But since n > 1, ¢ = Z]. b;b; for some b;, b € 1 éb /T5,- By induction there are
a,a’ € I, /1%, such that fr(a) = b;+i' and f(a') = b;+4" for some ', i" € Igb_l/lgb.
Therefore f)(aa’) = (b; +¢')(b + ") = b;b; € Ip/I7,. Hence i is in the image of
f2(A°/1%,), and therefore f! is a surjection, as required.

Since Iy, = 0 for some n by Lemma 1.4.3, it follows that f = f for some n,

and therefore f° is itself a surjection.
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By Lemma. 1.3.8, there’s also a map ¢* : B® — A’ lifting the inverse isomorphism
g: B — Ato f. By the above argument applied to ¢, it too is surjective. Therefore
g"o f* . A" — A’ is surjective. Since A° is a finite rank k-algebra, this map is an
isomorphism, which implies that f® is injective.

Therefore f° is both injective and surjective, hence an isomorphism.

O

Corollary 1.4.6. If A,B € DAg are minimal and f : A — B lifts an isomorphism
f:A— B, then floc : Al — Bloc gnd fb . A — B® are isomorphisms.

Proof. f'°° is an isomorphism since f is.
By Lemma 1.4.4, A® k € DAy, and is minimal.
Letting C be the cokernel of f* as a morphism of R-modules, we have the fol-

lowing exact sequence

A"f—b>Bb—>C—>0

of finitely generated R-modules. By Lemma 1.4.4, f induces a morphism (f ®k, f°®
k): A®k — B® k of minimal objects on the special fibre, and by the Proposition,
fP®k: A®k —» B”®k is an isomorphism. Since taking the special fibre is
right-exact, it follows from the above exact sequence that C ® k£ = 0. Since C is
finitely generated, Nakayama’s Lemma now tells us that C' = 0, and therefore f° is
surjective. Therefore the maps A’/m"A” — B’/m™B’ induced by f* are surjective
for each n.

By Lemma 1.3.8, there’s also a map ¢° : B> — A’ lifting the inverse isomorphism
g: B — Ato f. By the above argument applied to ¢’, it too is surjective. Therefore
g o f: A" — A’ is surjective.

By [Eis95, Theorem 7.2a], A” = lim A"/m"A". Hence if (¢" o f*) : A" — A" is
not injective, there is some n € N suchnthat the induced endomorphism A°/m"A4® —
AP/m™ A" is not injective.

We now prove that there is a finite length composition series for A*/m"A® as an

R/m™module: consider the series

A /w4 D mA /mm AP D - D mr A /m A" D 0.
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Each quotient of successive terms is of the form m*A®/m**'A® and is therefore an
k = R/m-vector space. Since A’ is a finitely generated R-module, each quotient is a
finitely generated k-vector space. Therefore, by inserting terms in the above series,
it follows that we can exhibit a finite length composition series for A®/m"A°.

By above, our induced endomorphism A°/m™A® — A®/m"A® is surjective, and it
follows by Lemma A.3 that this map is actually injective.

Therefore ¢° o f* is injective, hence f” is injective. This proves the Corollary. [

Corollary 1.4.7. If A € DApg is minimal, it is a deformation retract in the sense

that for all B € DARg, any sequence
A—-B— A

which induces an isomorphism f : A — A, also induces an isomorphism f* : A® —
A

Proof. Follows directly from Corollary 1.4.6. O
Corollary 1.4.8. If A= (A, A% i4) € DAg is minimal, then if A' = (A, A ix) €
DAg, AY is both a subalgebra of A” and a quotient of it, by maps liftingid : A — A.
In particular, we have the splitting A® = A" ® K as an R-module, where K =

Ker(A” — A%). Further, K N 1%, = {0}.

Proof. The isomorphism A = A lifts to an isomorphism A'°¢ — Al and then to
maps i : A — A” and ¢ : A® — A° by Lemma 1.3.8; by Corollary 1.4.6, the
composition

Ab i) Alb 1) Ab
is an isomorphism, and therefore ¢ is an inclusion, and q is a surjection. The splitting

follows from the exact sequence
0 K5 A" % 4 0
since q o 4 is an isomorphism of A%, which implies that there is an isomorphism
(1,7): A DK S A,
Suppose k€ KN Ifw. Then

k= Z-’Eiyi
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for some x;,y; € I4n. We can write z; = z} + k; and y; = y, + k] for z/,y, € A" and

k:, k. € K for each . Since KI, = 0 by Remark 1.3.6 as K C Ny and K? = 0,

k=) iy
which is clearly in A”. Since A* N K = {0}, we’re done. O

We now prove a variant of Proposition 1.4.5 which we will need in chapter 2.

Proposition 1.4.9. If B € DA, is minimal and f : A — B lifts a surjection
f:A— B, then fl°¢ : Aloc — Blo¢ gnd f* . A" — B® are surjections.

Proof. If f : A — B is a surjection, then f'°° ® k is a surjection by Lemma 1.3.7
as both A°° ® k and B'"° ® k are quotients of A ® k and B ® k by powers of their
augmentation ideals; since A and B are finitely generated R-modules, we deduce
via Nakayama’s Lemma that f!°° is a surjection.

Since f'(Ip) C I, it follows that f°(I%,) C If, for all n € N. Hence there
are maps f, : A°/I%, — B'/I?, induced by taking the composition of f* with
B*— B'/I},.

The following commutative diagram implies that the map t% — tj induced from
f°: A" - B’ is a surjection

e —— G

N

IAIOC/I%]OC —_— IBloc/Ig

loc
where the right vertical map is an isomorphism because B is minimal, the left column
is a surjection, and the bottom map is the surjection induced by f'°°. Hence f} :
k @ty — k @ty is a surjection, since it is k-linear.

We now prove by induction that f’ is a surjection for all n > 2. Assume f’_,
is a surjection. Then for all b € Bb/lg,,, there is an a € Ab/ffp such that f2(a) = b
mod Ig:l /1%,. Hence it's enough to prove that each i € Ig.,_l /I, is the image of
some a € A"/ I}y, since we will then be able to recover each b € B°/I & @k by adding
or subtracting some 7 € [ g;l /1.

But since n > 1, i = Z]. b;b; for some b;,b; € Ip/I,. By induction there are
a,a’ € I /I%, such that fo(a) = bj+4 and f>(a') = b;+i" for some 7', 1" € Igb_l/ll’;,,.
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Therefore f2(aa’) = (b; +¢)(b + ") = bb; € I, /I7,. Hence i is in the image of
(A I%,), and therefore f} is a surjection, as required.
Since I, = 0 for some n by Lemma 1.4.3, it follows that f* = f° for some n,

and therefore f* is itself a surjection. O

We now prove that to every A € Augp, we can associate a minimal object

(A, A%, i4) in DARg; therefore minimal ‘deformations’ of any A € Augp always exist.

Proposition 1.4.10. If A € Augpy, there is an A = (A, A®,i4) € DAg which is

minimal.

Proof. Let m = ranky I g1oc/ 12 41oc ® k. Pick m generators. Lifting the generators to
I groc | T2 “ioc BiVes a set of m generators of I 4ioc/ Ifﬂoc as an R-module by Nakayama’s
Lemma, which we call X1,..., Xm.

We can define a map

RIX\,..., Xpm) — Al (1.4.2)

sending X; to any lifting of X; to A°°. This map is a surjection modulo If‘.oc by con-
struction, and thefefore a surjection modulo Iﬁi,oc for alll € N. Since A*®k = A°°®
k/(I gocotimesk)™ for some n by Lemma 1.3.7, the induced map k[X1,..., X,,] —
A ®k is a surjection. Since R is local and A!° is a finitely generated R-module the
map (1.4.2) is a surjection. We define A* = R[X\,..., X,n]/I(Xy, ..., Xm), where I
is the kernel of the surjection. Clearly t% ® k has rank at most m as a k-module,
and since it surjects to I gioc/ Ii,oc ® k which is of rank m under the map A® — A'°°.

Hence A is minimal. O

Proposition 1.4.11. For a given f : A — B such that f(I4) C Ip, the space of all

extensions f is a principal homogeneous space over the group Hom(t 4, Ng).

Proof. 1f two morphisms f*, f? : A — B lift the same morphism flo¢: Alec — PBloc,
then taking their difference d = f* — f° gives an R-module homomorphism 4> — B®,
which is non-zero only on at most I. Since fl° oiy = igo f* =igo fb, it follows
that the R-module map ig o (f* — f) =igod = 0. So d(I4) C Np. Therefore for
all X;, X; € Iy, f1(Xi) = f(Xi) + @ and f}(X;) = f*(X;) + o for some o, & € Np,
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we see that
d(X:X;) = f(XiX;) — f1(X: X))

PX)P(XG) — R ARX)

PN PG) = (f(X) + (£ (X)) + )

= (X (X5) = PG (X)) — af’(X;) — o/ (X)) — add

= —af"(X;) — o/ f(Xi) — ac

=0,

Il

1

since Ig Ng = NE = 0 by Remark 1.3.6.

Therefore d(Iib) = 0, so d induces a well-defined morphism
d:Is/I% — Np,

ied:t% — Ng.

Given a homomorphism f : A°¢ — B we can lift to a homomorphism f* :
A" — B’ as in the proof of Lemma 1.3.8. Any d : t*, — Nj gives a map of R-modules
d’ : A* — B’ such that d(1) = 0; consider the R-module map ¢* = f*+d*. The map
Alec — B¢ induced by ¢° is f, since d’(I4) C Np and d(1) = 0, and it remains to
check that g® is a homomorphism of R-algebras. Let a,b€ A”; a =a' +7r,b=¥ + 1’

for some polynomials with trivial constant term a’, 4’ € I, and r, 7’ € R.

g’(ab) = f*(ab) + d’(ab)
= f*(a)f*(b) + d’(ab)
= /@) F(b) + & (a'r +¥7),
whereas
g’ (a)g"(b) = (f*(a) + () (f*(b) + d"(b))
= /(@) () + f(@)d (V) + d'(a') f*(b) + & (a')d"(¥)
= (@) () + £/ (r)d" (V) + & (a') ()
= f*(a) f*(b) + d°(rb' +1'a)
by Remark 1.3.6 and R-linearity of d°, and so we see that ¢® is indeed an R-algebra

homomorphism. 0
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Definition 1.4.12. The category DS is dual to the category DApg. Its objects are
of the form G = (G, G’,4g), where G* = Spec A”, G = Spec A, and there is a closed

immersion ig : G'°¢ < G®, for any triple A = (A4, A%,i4) € DAp.

This category has a final object R = (Spec R, Spec R, idg), dual to the previously
defined initial object (R, R,idg) € DAg.

We denote the contravariant functor DAr — DSk given by
A~ (Spec 4, Spec A%, i 4)
by S.

Proposition 1.4.13. To every pair of objects G, H = (Spec B, Spec B’ iy) € DSg

(where B has augmentation ideal Ig) there is a direct product, ie
1. an object G x H € DSg, and
2. projection morphismsp, : G x H — G and 2% GxH—H,

such that to every K € DSg, with morphisms f,: K — G and f, : K — H, there

exists a unique morphism g : K — G x 'H making the following diagram commute:

Proof. Let C = A® B, with augmentation ideal I, ® 1 + 1® Ig. Then

C' = lim(A® B)/(I,®1+1® Ip)",

—
n

and we can define C” using the method of the proof of Lemma 1.3.7. This gives us
an object G x H = (Spec C, Spec C*, igxx). There is a projection map G x H — G
induced by the inclusion A — A ® B defined by a — a ® 1 for a € A (this lifts to a
compatible map A® — C* by Lemma 1.3.8). Similarly there is a projection map for

‘H. We denote projection onto the first and second factor by p, and p, respectively.
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Let K = (Spec O, Spec 6% ,ix) € DSk, and assume we have pairs of morphisms
fi, f2 as in the statement of the Proposition. To complete the proof, we need to
show that there is a unique morphism § : X — G x H such that p; o g = f; for
1=1,2.

To f; : SpecOg — G and f, : Spec O — H there’s a unique morphism
g : Spec O — G x H such that p;og = f; for i = 1,2 since G x H is a direct
product in the category of schemes.

Also, again by the universal property of direct products, there is a unique mor-
phism ¢’ : Spec 6% — G" x H® extending f, f5 : Spec 6%, — G*, H®. There’s a
natural closed immersion (G x H)" — G” x H’; if we can lift ¢’ to a morphism
g : Spec 0% — (G x H)", then we’ll have proven existence of g. Uniqueness will
then follow trivially, since (G x H)” < G* x H" is a closed immersion.

f? and f are dual to morphisms of algebras f* : A* — &% and f3*: B® — &%
such that f*(I4) C Iy and f2*(Ig) C Ixs. Since fP and f} lift morphisms flo°
and fl°°, by definition of morphisms in DSk, it also follows that f7*(Na) C N
and f3*(Ng) C Nx. By definition of direct product of schemes, g = D* o (f}* ®

2*"), where D* : ﬁl}{ ® ﬁ;( — ﬁ; is the algebra map sending k) ® ks to kiks, for
ki, ky € O%. Therefore g™ (I ® Ng) C D*(Is ® Nx) = Ij» Nx = 0, and similarly
9*(NAQIp) C D*(Iys@Nx) = Iy N = 0. Therefore the ideal 14 @ Ng+NAR1 g is
in the kernel of g™, so g’”* factors through (A°®B") /(I ® Ng+ N4®I ) = (AQB)",
and hence ¢’ : Spec 6% — G® ® H® factors through (G x H), as required.

O

1.5 Deformations of group schemes

We begin with a preliminary Lemma, which is a standard result from commutative

algebra:

Lemma 1.5.1. Let A be an R-algebra. The kernel of the ring morphism AQrA — A
given by a ® o’ — aad’ for a,a’ € A is generated as an ideal bya ® 1 — 1Q a, for all

a€A.
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Proof. Clearly a®1—1®a — 0 for all a, so we only have to prove that if Y a;®b; — 0,
then )" a; ® b; is in the ideal generated by a® 1 — 1 ® a.

Yoab; = 0in A, since ). a; ® b — 0. But Y (e, ®1 -1®a)(1®b;) =
Yai®b;i— > 1®ab; = a; ®b;, proving the result.

We now recall some basic properties of R-group schemes, the objects on which

our theory of deformations is based.

Definition 1.5.2. Let Grg be the category of finite flat commutative affine R-group

schemes.

By definition, each G € Grg is an affine R-scheme admitting morphisms ¢ :
SpecR — G, A : G® G — G, and i : G — G satisfying certain ‘group’ axioms
found in for example, [Tat97].

With these axioms, each group scheme gives rise to a contravariant functor from
schemes to groups, given by S ~» Hompg(S, G), for each R-scheme S.

Finally, we are ready to introduce the main objects of this thesis: deformations

of R-group schemes:

Definition 1.5.3. We define the category DG g of deformations of R-group schemes
to be the category of objects consisting of a G € DSg, together with morphisms A :
GXxG=—G,g: R — G (with £* the augmentation morphism) and i : G — G (called

multiplication, unit, and inverse) such that the following diagrams are commutative:

GxGxg 29, gxg

leZ lK

GxG —2o

(associativity)
RxG =24, gxg

s

IR

g —
(counit), and o
G (ixid)oD g x G
| la
R —— g
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(inverse), where D : G — G x G is the morphism induced by the algebra map
A*®A* — A® coming from multiplication, as follows: this morphism has kernel
containing I»®Ng + Ng®I 45, and since (AQA)’ = (A’®A") /(1@ Ng + Ng®1 ),
this morphism factors through (A®A)*. By Lemma 1.5.1, the kernel of the resulting
homomorphism (4 ® A)’ — A’ is the image in (A®A)" of the ideal of A* @ A
generated by a ® 1 — 1 ® a in A* ® A°, for all @ € A°. The multiplication map
A ® A — A induces the same morphism on A'°°¢ ® A'°c,

Additionally, we require that the following diagram commutes:

GxG T Gxg
lid lZ
GxG 2 g
(commutatvity), where T : G x G — G x G is the twisting map induced, on the level
of algebras, by the map (A®A)” — (A®A)® interchanging X;®1 and 1®X;.
This concludes the definition of objects of DGr. A morphism G — H € DGp
is a morphism f : G — H of G and H considered as objects of DSg, such that it

commutes with A, 2,%: Ay o (f® f) = folg, &y = foEg, and foig=iyo f.

Remark 1.5.4. The above axioms imply that G = Spec A is a commutative affine
group scheme with multiplication A, unit € and inverse i. In fact, the above axioms
applied to Spec A give exactly the conditions for a triple of morphisms (A, ¢,%) to

make it a group scheme.

Proposition 1.5.5. DGg is an additive category. In particular, DGgr has the
following properties (see [ML71, page 190]):

1. DGR has a null (initial and terminal) object.

2. Hom(G, H) is an abelian group (written additively), and composition of mor-

phisms s bilinear with respect to addition in the group

3. To every pair G,’H € DGpg, we have a biproduct G x H, together with projec-

tions p1,p2 and inclusions i,,1s to and from each of G, H, such that

(a) proi =idg
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(b) pp 0ig = idy
(c) i1 0p1 + 1202 = idgxn

where the sum iy o py + 45 o py 18 taken in the group Hom(G X H,G x H).

Proof. Proof of 1):We take R to be our null object. To every G € DGy there is
a unique morphism G — R; it’s the pair of morphisms making A and A® into R-
algebras. There’s also a morphism Z : R — G, which is unique by compatibility with
the unit map: if § : R — G is another morphism, then we must have 6 o £z = &g,
which uniquely determines & since g = idg. This proves that R is a null object.

Proof of 2): we must first define a group law on Mor(G, H). If f,§ € Mor(G, H),
we define f +g = Ay o (f ®g) o D. It follows from the group axioms satisfied by H
that this makes Mor(G, H) into an abelian group, where the identity is the unique
map G — R — H (unique since R is a null object by part 1)), and the inverse map
is defined by f — %y o f. This group law is commutative since H is commutative,
and it is hereafter denoted by +.

In order to show that composition is bilinear with respect to this group law, let
B € DGR; ‘Then for all morphisms g,k € Hom(G, H) and 7,k € Hom(H, B), we
must show that (5 +k)o(f+g)=jof+jog+kof+kog. This follows because
by definition morphisms in DGz commute with the group operation.

Proof of 3): We take as our biproduct the direct product G x H defined in
the category DSr. We set its group law to be Agyy = Ag x Ay. The unit and
inverse maps are defined as follows: Egxy = Eg X €4 0 Dy, and igxy = ig X i,
where Dz : R — R x R is the map dual to multiplication on the level of algebras:
R® R — R. The projection maps we take are those defined for the direct product.

Our inclusion maps 4, : G — G x H and i3 : H — G x H are the maps induced
by the algebra map A ® B — A (quotient by 1 ® Ig) and A ® B — A (quotient by
I,®1).

It’s clear that the morphisms p; o 4; and ps o iy are the identity on G and H
respectively, so we only have left to show that i, o p; + i3 0 p = idgx#. Translating

this condition into group morphisms implies that we must prove Agys o ((3, 0p;) X

(2o opg)) o D= idgx -
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Since %; o p; = idg Xex and i3 0 po = £g X idy, it suffices to prove that
Agx o (idg xEx) X (Eg X idy) o D = idgxn;, (1.5.1)

where we identify g with its composition with the unique structure morphism G —
R, and g4 with its composition with the unique structure morphism H — R.

By the unit axiom, Ag o (idg x&g) o Dg = idg (and similarly for ). Therefore,
comparing with equation (1.5.1), we see that Agx0(3;0p; Xi0p3)oD = idg X idy =
idg x#¢-

Therefore part 3) holds, and G x H is the required biproduct. Therefore DGr

is an additive category. O

Lemma 1.5.6. Given any A = (Spec A,Spec A*,i4) € DSy, there is a unique &
such that Kere* = I4.

Proof. If Kere* = I,, then the induced morphism €*°° sends [ 4c to zero. By the
compatibility condition for morphisms, £* sends I, to zero, since the projection

A® — Al sends I 4 to inside I 4i0c by definition. Thus €, and hence &, is unique. [

Proposition 1.5.7. Given any A = (Spec A,Spec A®,i,4) € DSg, together with
morphisms (A,i,e) on Spec A satisfying the azioms for a commutative R-group
scheme, there’s a unique way to extend our morphisms to morphisms A,%,€ in DSy

such that A is a group object in DGg.

Proof. A*°° lifts to a morphism f : A* — (A® A)’ by Lemma 1.3.8. In order
for the unit axiom to be satisfied, we require that (¢* ® id) o f = id 4, where the
isomorphism R ® A = Ab s implicit on the left hand side.

Let &, = (¢®* ®id) o f —id 4. Since (€*°°®id) 0 A*'°® = id g1c (as A°° represents
a group scheme), and f lifts A%, do(I4) C Ng. Let f' = f — (py o d5), where
p2: A - (A® A) is given by @ — 1 ® a. f’ is a morphism of algebras by
Proposition 1.4.11. Clearly f’ lifts A*°¢ and satisfies the left-unit axiom. Further,
f’ is uniquely determined modulo /4 ® 1 by the left-unit axiom.

In order to satisfy the right-unit axiom, we take f” = f’ — (p; o d}), for some d’.
This map clearly still satisfies the left-unit axiom, and is now uniquely determined

modulo 1 ® 1 4.
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Hence it is uniquely determined modulo I4 ® 4. Since f” is also uniquely
determined modulo 1 ® Ng + Ng ® 1 as it lifts A*'°°, it is uniquely determined
modulo Ng @14+ 1@ NgNIw @I =0in (A® A). Hence there is a unique f”
satisfying the unit axiom and lifting A*'°c,

We now prove that our map satisfies the commutativity axiom. f” is symmetric
modulo Ng ® 1 + 1 ® Ng since it lifts A*'°¢, and symmetric modulo 4 ® I, by the
left and right unit axioms. Since the intersection of these ideals is zero, f” satisfies
the commutativity axiom.

Since A'°° is a group scheme, the associativity axiom holds modulo the ideal
IQRI®N;+1@NgR1+Ng®1®1 of (A® A® A)P. If we can prove associativity
holds modulo I 4 ® I 4 ® I 4, we’ll have proved it holds, since

IpR@Ip@IpN(1I®1QNg+1QN; @1+ Ng®1®1) = {0}

in (A® A® A).
The unit axiom tells us that (e ® id) o A* = id; substituting this identity into
the formulas (A® ® id) o A* and (id ®A™) o A® gives

(e® ®id®id) o (A® @id) 0 A* = (id®id) 0 A™ = A®

and

(e” ®id®id) o (Id®A™) 0 A¥ = A o (6® @ id) 0 A* = A¥.

Therefore associativity holds modulo the kernel of € ® id ® id, which is 4 ® 1 ® 1.

By symmetry, associativity also holds modulo 1® I, ® 1 and 1 ® 1 ® I 4, and
the intersection of these three ideals is I 4 ® I 4 ® I 45, hence by the above argument,
associativity holds.

Therefore letting A*® = f”, we see that the associativity, commutativity and unit
axioms are satisfied. To complete the proof, we need to lift the inverse morphism
g*loc . Alec _, Aloc t6 a morphism * : A — A satisfying the inverse axiom, ie
satisfying the relation

D® o (i® @id ) 0 A® = ¢*. (1.5.2)

Let ¢/ : A" — A’ be any lifting of i'°° (we know we can lift i° by Lemma 1.3.8).
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Let d : A — A be the difference D* o (i’ ® id 4») 0 A*® — £*, as a morphism of
R-modules. Since 7'°° satisfies the inverse axiom for A ¢, it follows that d(I4) C Ng.

Let i* = ¢/ — d, which is a morphism of R-algebras by Proposition 1.4.11. We
now show it satisfies relation (1.5.2), ie that it sends any X € I, to zero: by
consideration of the counit axiom, it follows that

A*(X)=X®1+10X+ ) Yi®Z
i.j

for some Y;, Z; € 1 4.

Applying the left hand side of (1.5.2) to X gives:

D*o (" ®idp)(X®1+10X + Y Y:i® Z)

" (1.5.3)
=*(X)+ X+ i()Z=(X) —dX)+ X + > _I(¥)Z

where the last line follows since d(I4) C Ng and [ 4 Ng = 0. Since

d(X) = (D* o (i’ ®@id ) 0 A®)(X) — e¥(X) = #(X) + X + pEACAYA

it follows that D* o (** @ id ) o A*(X) = 0, and therefore the inverse condition
(1.5.2) is satisfied.
Therefore, with this choice of lifting 4** of i*1°°, all the group axioms are satisfied.
Uniqueness of i* follows immediately from the last line of (1.5.3).

O

Corollary 1.5.8. Let G and ‘H be as above. If f : G — H is a morphism of
group schemes then any lift of f to a morphism f° : G* — H” has the property that
No(fPaf)=fo A’ (The ezistence of a lifting of f to f° is guaranteed by
Lemma 1.3.8).

Proof. Suppose otherwise. Then we have two different morphisms (G x G)* — H”:
Ao (f*® f°), and f* o A,

Composing A oi; o with f° gives f® 0 Aoi;, = f° by the unit axiom; 3, 50 (f°) =
(f*® f*) oiy 2 by the canonical definition of f°® f*, and therefore Ao (f°® f*) 04,5 =
f°, and proceeding as in the proof of the previous proposition gives the required

result. O
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Definition 1.5.9. There’s a forgetful functor DG — Grp, sending G = (G, G”, ig)
to G, which we denote by F. This follows since G € Grg by Remark 1.5.4.

Definition 1.5.10. We define a category DG?%. Its objects are the same as those
of DGR, but morphisms are not the same: if G,’H € DGg, let S be the subgroup
of Hompg,(G,H) of morphisms f such that F(f) : F(G) — F(H) is the unique
morphism of group schemes factoring over Spec R. We define Hompg,.(G, H) =

HOHIDGR(Q, H)/S
Proposition 1.5.11. Let G = (Spec 4, Spec A°,ig) € DG?%. Then

1. there is a minimal object G' € DG%, such that F(G') = F(G), the isomorphism

being in Grg, and

2. any minimal object G' € DG¥, such that F(G') = F(G) is isomorphic to G, the

isomorphism being in DG,

Proof. Let G’ = (Spec A, Spec.B”,z'gv/) € DSk be minimal. The comultiplication on
A extends to B® by Proposition 1.5.7, making G’ into an object in DGx. By Corollary
1.5.8, id4 lifts to morphisms A° — B® and B® — A which are compatible with
comultiplication, and are therefore in DG%. These morphisms make G isomorphic
to G'.

The existence of such a minimal G’ € DSy follows by Lemma 1.4.10; the previous
argument shows that the group operation can be lifted to Spec B®, defining an object
in DG%,. ]

Lemma 1.5.12. There’s a functor F' : Grg — DG%, such that F(F'(G)) = G
for all G € Grg, and F(F'(f)) = f for all morphisms f in Grg, where we write
F : DG}, — Grg to denote the functor induced from F : DG — Grg.

Proof. Let G € Gry be represented by the R-algebra A = R[X;,...,X,]/I. By
Lemma 1.3.7, since A is flat and hence free over the local ring R, there’s a cor-
responding object G = (Spec A, Spec A®,ig) € DGp for some A’. By Proposition

1.5.11, all such G are isomorphic in DG}, and therefore our object F'(G) is unique
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up to isomorphism. Any morphism of group schemes G — H, where H is repre-
sented by the R-algebra B and lifts to H = (Spec B, Spec B”, i), lifts to a morphism
G — H by Corollary 1.5.8. The lifting is unique in DG}, 4, since any two liftings
differ by a morphism G — H lifting the zero morphism G — H, and therefore are
identified in Hochzﬁ(g, H). O

Proposition 1.5.13. The functor induced by F from DG} to Grg is an equivalence

of categories.

Remark 1.5.14. We abuse notation in this proposition by using the same notation
for the functors induced from F and F' from and to DG% instead of DGg. That

such functors are well-defined is clear.

Remark 1.5.15. We use the criterion of [GM99, §2, Theorem 1.13} (Freyd’s Theorem)

which states that F is an equivalence of categories if and only if
1. F is a fully faithful functor

2. any object Y € Grg is isomorphic to an object of the form F(X) for some
object X € DGF,.

Proof. Consider the map induced by F:
Hompe; (G, H) — Homg,(F(G), F(H)).

This map is injective by construction of DG, and surjective because any morphism
of group schemes lifts to a morphism G — H of deformed schemes by Proposition
1.5.8 (augmentation ideals are mapped inside augmentation ideals by compatibility
with the unit morphism). Hence F is fully faithful.

To see that any G € Grpg is isomorphic to F(G) for some G € DG%, note that
we can lift G to a G = (G,G’,ig) € DSk by Lemma 1.3.7. Comultiplication A lifts
to a (unique) comultiplication on G* by Proposition 1.5.7, and therefore G € DG%.

Hence F is an equivalence of categories, by the criterion of Remark 1.5.15. O

Corollary 1.5.16. If Grg is an abelian category for some ring R, then so is DG,
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1.6 Deformed strict &-modules

Let g be a power of p, such that F, C k, where [, is the field with ¢ elements. Let
0 = Fy[[n]].
Finally we can introduce the main objects of this thesis; essentially they are

objects G € DGRp, together with a homomorphism of rings
0 — Endpg, G.

where R is an f-algebra.
This is analogous to the usual definition of a module, which is an abelian group
G, and a ring R, such that there is a homomorphism of rings R — End(G).
Formally, if
G = (Spec A4, Spec A%, ig) € DGpg,

we define an O-action of G to be a homomorphism from € to Endpg,(G). This
means that € is compatible with multiplication on G; if this holds, then the &
action on G° will be automatically compatible with A® by Prop 1.5.8. A, A'°° and
A® are R-algebras, and since R is assumed to be an &-algebra as stated above, we
get an action of 0 € € on R, and since A, A* and A!°° are R-algebras, we get an
action of o0 on them via the morphisms R — A, A'¢, A’ which we denote by a — oa.

We also get an action of o € & on A, A'°¢ and A® coming from the homomorphism
from € to End(G); we denote this by a — o*a, a'°® — 0*a'¢, and @’ — o0*a®, for

a € A, a°¢ € A and o € A’

Definition 1.6.1. We say that an € action on G is strict if the action of 0 € & on
a € A’ induces scalar multiplication on tg, ie 0*a = oa, where @ denotes the image
of a in t3, and if a € Ng, then 0*a = oa. We also refer to this as & acting by scalars
on G.

We define a category DG g s whose objects consist of a G € DGp, together with
a strict action of & on G, and whose morphisms are morphisms of the underlying
objects in the category DGp, such that they are compatible with the &-action, ie
the following diagram is commutative (where f : G — H is any morphism in the

sense of DGR)
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G Lo n
l"' 1 (1.6.1)
¢ L-mn
Note that this diagram commutes for f = A and H = G x G automatically, since &
acts as endomorphisms of G by definition.

Similarly to DG%, we define DG}, , to be the category whose objects are iden-
tical to those of DG%, but such that for any G, H € DG} 4, HomDGhﬁ(g,'H) =
Hompe, ,(G,H)/S, where S is the subgroup of Hompg, , (G, H) consisting of those
f such that f : G — H factors through Spec R, ie is the ‘zero’ morphism. This def-

inition of morphisms is clearly analogous to that of Definition 1.5.10.

Remark 1.6.2. If G,'H € DG} 4, then
HomDG;{_o(g, H) C HOIDDG;2 (G, H),
where G and H are considered as objects of DG}, (without &-action).

Definition 1.6.3. We say that G € DG}, 4 (or € DGR ) is étale (resp. connected)
if F(G) is étale (resp. connected). We say that a sequence of strict deformed group
schemes

0-¢gLglg o
is exact (identifying 0 with R) if the corresponding sequence

0— F(¢) L Fg) L Fgh -0

is exact on the level of group schemes, ie if f is a closed immersion and f’ is faithfully
flat. Note that f need not be flat; for instance, consider the following short exact

sequence in Grg over a field k of characteristic p:

Frob?
0—ap =G, — G, —0

Note that if G in DGg (or DG%) is étale, then this immediately implies that
G'"¢ = Spec A"° is trivial, and therefore any such G = (G*, G’, ig) is isomorphic to
a minimal object (G*,Spec R,0) in DGg (or DGR ¢) respectively, by Proposition
1.5.11 (and Corollary 1.8.2) respectively.
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Remark 1.6.4. We make some general remarks about base change.

1. Note that the definition of objects G = (Spec A, Spec A", ig) € DGR 4 depends
on the structure morphism G — R in a subtler way than the definitions of

objects in DGg and Grp do:

If G € DG} 4 is not étale, and R’ is an O-algebra, then base change R — R’

is only a functor if the diagram

commutes. This diagram must commute in order that G ® R € DG'}}ﬁ,
because of the induced action on the R'-modules Nggr and tfgp; each o € &
acting via the homomorphism & — End G acts on these R'-modules via the
composition & — R — R'; if 0 is to act ‘by scalars’, this must be equal to the

action of o via the map 6 — R/

2. For étale G € DGy 4, G ®r R € DG} 4, for any base change morphism
R — R/, since if G is étale, Ng and I, /1%, are the zero-module, so the

condition that & act ‘by scalars’ is vacuous.

3. If G € DGpyp, then we can take the special fibre G ® k in DAr by Lemma
1.4.4; the morphisms A, g, 7 reduce to morphisms of G ® k satisfying the group
axioms, and therefore G ® k € DGy. If we consider k as an £-algebra via the
composition & — R — k, then since Nggr = Ng ® k and tge, = t5 Q K, it
follows that G ® k € DG}, 5. Therefore the special fibre of a strict &-module

is again a strict €-module (in the appropriate category).

1.7 Examples
We’re now in a position to define some objects in the categories DG g and DGp 4.

1. If R = k, and k is an f-algebra with 7 acting as the zero endomorphism

of k, we may consider some G € DG% 4, such that F(G) = a,, where oy =
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Spec R[T)/(T9) is the group scheme kernel of gth power Frobenius on G,.
F'(ctq) = (Spec k[T/(T), Spec k[T)/(T), iz/(ay))-

Here t* = (T)/(T?) and N = (T9)/(T9"!). Again we may take o*T = oT
for o € € as our strict f-action; this works because a? = a for a € F, and

7* = 7 = 0 (so the action of 7* on Ng is also by scalars).

2. Let LT [n] be given by
(Spec R[T]/(T* — «T), Spec R[T/((T* — 7 T)T),iczm),

where .7 is dual to the obvious surjection R[T|/((T9—=T)T) — R[T|/(T?—
1), A*(T)=T®1+1&T, a*T = oT for a € Fy, and 7*T = 7T — T9.
Note that the special fibre of L7 [n] is isomorphic to «, as a group scheme,

although the isomorphism does not extend to an isomorphism in DG, 4.

3. If G = Spec A is any étale R-group scheme, for R some &-algebra, F'(G)
may be made into a strict &-group scheme by taking any homomorphism
0 — End(F'(G)). This is because we may take A” = A = R (if I, is the
augmentation ideal of A, I3 = I, since G is étale), and then t* = N = (0), so

the condition that & act ‘by scalars’ on these modules is vacuous.

1.8 First properties of strict deformations

Note that there are obvious forgetful functors DGr — Grg and F : DGg s — Grg
sending G = (G,G",ig) to G.

Proposition 1.8.1. Let G = (Spec A4, Spec A%, ig) € DGy 4 If
G' = (Spec A, 8 Spec B, ig)

in DGR is minimal (the existence of such a minimal G' is guaranteed by Proposition
1.5.7), then the decomposition A® = B® @ K of Corollary 1.4.8 is compatible with
the O-action, in the sense that 0*(B®) C B® and o’ K C K, for allo € ©.
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Proof. K C Ng, so by definition of strict action, o*k = ok for all 0 € &, hence
0*K C K for all o € €. Suppose 0*b & B® for some b € I, ie 0*b = b + k for some
¥ € B® and k € K. Reducing modulo Ii,, gives

o'b="b +k
Since o* acts on tf = I/ If‘b ‘by scalars’ by definition, it follows that
b +k=0b mod If‘b

It follows that k = 0 mod I, and hence k € I, + I%,. But KN I%, = {0} and

K N Ig = {0} by Corollary 1.4.8. Since I3

I C B’, it follows that k = 0, and

therefore 0*B* C B® as required. g

Corollary 1.8.2. Any G = (Spec 4, Spec A, ig) € DG, p is isomorphic to a mini-
mal G' € DG}, 5 (the isomorphism being in DGRr o).

Proof. By Proposition 1.5.11, there’s a minimal G’ = (Spec A, Spec B’ ig) € DG%
which is isomorphic to G (the isomorphism being in DG%,) inducing A" = B*® K by
Lemma 1.4.8. Since 0*B® C B’ in A’ by the proposition, we can give B” the same
O-action it has as a submodule of A°, and we get a map B® — B® @ K which is
O-linear (hence strict). Therefore we get a strict map G — G, which is in DG}, 4.
Since 0*K C K, the projection B* @ K — B’ is also a O-linear map, giving a map
G’ — G. Both of these maps are isomorphisms on the level of Spec A, and therefore

they are the identity in DG, 4. 0

Corollary 1.8.3. Isomorphisms in DG}, 4 are two-sided, in the sense that if there
is a map f : G — H inducing an isomorphism F(G) = F(H), then there’s a map
g: H — G such that F(g) o F(f) = ide and F(f) o F(g) = idy. Hence G = H in
DG} 4-

Proof. By the preceding corollary, there’s a minimal G’ isomorphic to G. Composing
with f, we get an morphism from G’ to H, which is an isomorphism on the level of
group schemes and is two-sided by the proof of the previous corollary. Hence we get
a morphism H — G’ — G which is an isomorphism on the level of group schemes,
and composition with its inverse G — G’ — G gives the identity map on the level of

group schemes on G and H respectively. O
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Remark 1.8.4. Note that if G € DGpy, it is not necessarily isomorphic to any H €
DGR, just because F(G) = F(H). For instance, take o, and L7 [} over k, both
of which are minimal. F(a,) = F (LT [r]), and this isomorphism is even compatible
with the strict action on the level of group schemes. But this isomorphism does not
extend to an isomorphism from ¢, to £7 [r] which is &-linear, by consideration of

the 7* action.

We now give an explicit construction of the kernel of a flat morphism in DG% 4,

following [Fal02].

Proposition 1.8.5. Let G = (Spec A, Spec A°,ig),H = (Spec B, Spec B’ iy) €
DG} 5, and let f: G — H be a morphism between them. Thenif F(f) : Spec A —
Spec B is a flat morphism (ie, A is flat as a B-module), f has a kernel in DG% p-

Proof. Let F(G) = G, and F(H) = H. Then the flat kernel of F(f) is G x i Spec R,
which will be denoted by K, is represented by the algebra A/f*(Ig), which is flat.

For any F' € Grg, the sequence
0 — Homg,,(F, K) — Homg,,(F,G) — Homg,(F, H)

is exact, since K is a kernel in Grg.

By definition of G, there is a ring R[X],..., X,] with an ideal I such that

Al > R[X,, ..., X/,

(1.8.1)
A" 2 RIX,, ..., X ]/(Xy,..., X))
We define an object K = (Spec Ok, Spec 6%,ix) € DSk by
Ok = A/f*(Is),
O = RIX,, ..., X,)/(I+ f(Ipee)), (1.8.2)

O = R[(Xy,..., X, ]/(X1, ..., X)) + f*(Ig)).

There is a unique comultiplication on &) making Spec & an R-subgroup scheme
of Spec A by a property of kernels in Grg; the comultiplication lifts uniquely to
comultiplication on &% by Proposition 1.5.7, so that X € DGg. The map K — G
given by A — A/f*(Ig) and A’ — R[X,..., X,]/(X,,..., X,)I4 is compatible with

comultiplication by Proposition 1.5.8; therefore this map is a morphism in DGp.
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We define an action of & on Ok and 6% as follows: any x € O is the image of
some a € A, where x = a mod f*(Ig). Since o*(f*(Ig)) = f*(o*Ig) C f*(Ip), o*a
is well-defined modulo f*(Ig), and we set z* to be equal to the image of 0*a modulo
f*(Ig). Similarly, since o* f*(Ig) C f*(Ig»), we can define an action of & on &%.

Therefore the subscheme Spec A/ f*(Ig) C Spec A is closed under the action of
any o € 0; since 0* is an eﬁdomorphism of of Spec A as a group scheme, it follows
that it is also an endomorphism of Spec A/ f*(Ig) as a subgroup scheme. The fact
that the action of 0* on Spec €% is compatible with comultiplication now follows by
Proposition 1.5.8; therefore we have an a homomorphism of rings & — Endpg, K.

Since the maps A — 6 and A® — 6%, are closed immersions, and the £-action
on O, 0% is induced from the &-action on A, A®, the morphism K — G is &-linear.

If we identify N3, with its image in €%, it follows by consideration of equations
(1.8.1) and (1.8.2) that Nx = Ny + f™*(Ig), and € acts by scalars on this: the
action on Ny is by scalars since H is strict, and the action on f*(Ig) is strict since
f’* is O-linear and the @-action on Iy is by scalars up to terms in I;b, which are

“anyway sent by f > to terms projecting to zero in C*. It’s obvious that the &-action
on ty is by scalars since it’s a quotient of ¢, so the action of & on K is strict.

Clearly F(K) = K. Since F is an equivalence of categories from DG% to Grg,

the sequence
0— HomDGh'(A, K) — Hompg: (A, G) — Hompes, (A, H) (1.8.3)

is exact for any A € DG%. In order to show that K (with its & action) is the kernel

of fin DG% 5, we must show that the following sequence is exact:
0— HomDG;z,a(.A, ’C) — HomDG;w(.A, g) — HomDGkﬁ(.A, H)

for each A € DG% 4. The leftmost arrow is clearly an inclusion, because K — G
is a closed immersion. It suffices to show exactness at the middle term, ie that if
he Hompg;1 O(A, G)— 0, ie ho f =0, then h factors through K. But this follows

by exactness of (1.8.3), and strictness is automatic. O

Proposition 1.8.6. If G = (Spec A4, Spec A° ig) € DG% g, then there exists an

exact sequence

00— gO — g — gét —0 (184)
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where G° and G& are étale and connected respectively, such that applying F to the

above sequence yields the usual exact sequence
0-G°—-G—-G*—0

where G° is the mazimal connected subgroup scheme of G, and G¢ is its mazimal

étale subquotient, as discussed in [Tat97, §3.7].

Proof. Since R is noetherian, we can apply Theorem 1.2.5, which tells us that A
has only finitely many maximal ideals m;, and A = []; Am,- Therefore Ay, = ;A
for some idempotents e; € A. Since £*(e;) is idempotent for each e;, £*(e;) is 0 or 1
(these being the only idempotents in R). But since e;e; = 6;5, €*(e;) # 0 for exactly
one of these, e, say, as €* is a non-zero map. Then we take A° = A/(1 — ¢;) to be
the algebra of the connected part (as is usual for group schemes). All the other e;
are in I4, so their image under the map A — A'°° is zero; therefore, A%°°¢ = Aloc,
A% = A° and we can form G° in the obvious W:ay. 7 givés a Wéll—deﬁned action
on A° because 0*(1 —e;) C (1 —¢;) for all o € 6 (o* must map 1 — ey to another
idempotent killed by *, and all such idempotents are in the ideal (1 — e,)).

The cokernel of the morphism G® — G is G%, which has algebra A% the maximal

étale subalgebra of A, and Al = A%b — R, a

The following lemma is taken almost verbatim from [Wat79, Theorem 6.8]; we

make slight modifications to take account of the fact that we have a strict &-action.

Lemma 1.8.7. For all G € DG}, 5, G decomposes as a direct product of G° and G*
(G° and G* are as defined in Proposition 1.8.6):

G=G°xgH

Proof. Let G = (Spec A,Spec A%,ig). Let N be the nilradical of A. By [Wat79,
Theorem 6.2], A/N is separable, and A/N @ A/N is reduced. Therefore the map

AL A®9A - AIN® AIN

factors through A/N, and A/N, and defines a closed subgroup scheme on G. By
[Wat79, Lemma 6.8], A/N = A% (A% as in the proof of Proposition 1.8.6); therefore
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A/N admits an €-action (necessarily strict since it is étale), and the exact sequence
(1.8.4) splits, so G is a semi-direct product of G° and G®. Since G is abelian, it
follows that G = G® x G%. O



Chapter 2

Dieudonné theory

We work throughout this chapter with k£ a perfect field of characteristic p > 0
containing F,;, where ¢ = p” for some fixed r € N, and & = FF,[[x]]. We choose once
and for all an inclusion F, C k, such that k is an £-algebra via 7 — 0 € k and the

map from F; C & to k is the above inclusion.

2.1 Summary of the results of this chapter

This chapter consists of finding the correct analogue of classical Dieudonné theory for
our situation. We therefore present an introduction to classical Dieudonné theory,
and state how our situation is related to the classical one, before describing our
main result. A version Dieudonné theory was developed in [Fal02], but using very
different methods: the Dieudonné theory developed here is explicitly related to
classical Dieudonné theory.

Classical Dieudonné theory over k is based around the ring of Witt vectors W (k)
(see [Ser62] for an explicit construction). Essentially this ring consists of infinite

sequernces
(ao,...,an,...)

where a; € k for each 4, and addition and multiplication of Witt vectors are given
by families of polynomials. The simplest example of the Witt vectors is perhaps

W (F,), which is isomorphic to Z,.

36
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The most important property of addition of Witt vectors for us is the following:
plag,...,an,...)=(0,a5,...,a0,...)

where p. denotes addition p times (p being the characteristic of k). This allows

us to factorise multiplication by p as a product of the morphisms of rings V' (Ver-

schiebung):

(agy.--,an,...)— (0,a0,...,an,...)
and F (Frobenius):

(@g,...,Qn,...)— (ab, ... ab,...).

We also have finite quotients of W (k) by V™ for each n € N, which we denote by
Wy (k). For example, W,(IF,) = Z/p"Z.

Using the additive group law (but not the multiplication) on W, it’s possible to
introduce a k-group scheme W,, of finite type representing the Witt vectors of length
n, which also admits morphisms V' and F'. For any k-algebra R, W,(R) consists of
vectors of length n:

(ag,---,Qn_1)
for ag,...,a,—1 € R.

In fact, each finite commutative k-group scheme admits morphisms F' and V,

such that
[p)]=FoV =VoF,

where [p] denotes the group operation applied p times.
In [Fon77], Fontaine created an analogue of Witt vectors, called Witt covectors;

to each k-algebra R is associated CW (R), the set of infinite series

(...,a_i,...,a_l,ao)

where each a; € R, and there are integers r, s (depending on the infinite series)
such that the sth power of the ideal generated by a_,,a_,_y,...,a_n,... is zero.
This allows Fontaine to define a group law on such sets, by analogues of the usual
formulas for addition of Witt vectors. Analogues of the usual results for Witt vectors

hold; for instance,

p(...,a 4 ...,a0,a0) = (...,aP,_q,...,ad")
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and [p] factors into a product of Frobenius and Verschiebung, as for Witt vectors.
The crucial difference between Fontaine’s covectors and the usual Witt vectors is
that there are non-zero covectors such that V acts as the identity on them (eg
(...,a,...,a) where a is nilpotent), whereas there are clearly no Witt vectors with
this property.

With these covectors, Fontaine was able to make an interpretation of the Dieu-
donné anti-equivalence of categories from the category Gry (defined in Definition

1.5.2) to a category of finite-length modules over a certain ring, via the functor
G ~ Homy (G, CW).

In the course of this chapter, we will discover that for each triple G, given by
(Spec A, Spec A%, ig) € DGy o (and hence also DGy ), its image G = F(G) € Gry
(a k-group scheme) has the property that V = 0:

Theorem 1 (2.5.1). Let G € DGy p. Then V =0 on F(G).

We will see that we can introduce a functor V (an analogue of V) on DGy 4,

such that we have the following factorisation,
™ :VWOFW :FT{ OVTH

noting that the existence of V, was sketched in [Fal02).
We will show that there is an anti-equivalence of categories from DGy , to the
category (DMod), of finite length modules over a ring %; this is the content of the

following Theorem!:

Theorem 2 (2.9.8). Let M be the functor from DGy , to (DMod), given by
G ~ Homy(F(G), Ga)xe-

Then M s an anti-equivalence of categories.

In the statement of the theorem, the subscript xo denotes the k-submodule of Homg(F(G), G,)
on which all a € F,; acting via the endomorphism a* of F(G) act by scalar multiplication, ie by
the map m — am for m € Homg(F(G),G,.), where we identify o € F, with its image under the

inclusion Fg — k.
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(The subscript M,,, for an &-module M, denotes the submodule consisting of
those m € M such that a*m = am for all o € F}).
This is the central result of the chapter, and of this thesis. The rest of this

chapter now proceeds as follows:

1. we give an explicit construction of the classical Verschiebung for k-group

schemes, which we will make use of subsequently

2. we give precise statements of the results we will use from classical Dieudonné

theory

3. we show that, for all objects G € DG}, 5, Verschiebung is trivial on the k-group
scheme F(G) underlying G.

4. we introduce a new functor V,, which is a functor on DGj 4, and acts as a

replacement for V

5. finally, we prove our anti-equivalence of categories.

2.2 Classical Verschiebung:

We provide the complete construction of the classical Verschiebung V, in the cat-
egory Gry, since we will need to make use of its explicit construction later in this
thesis.

In order to do this, we recall some basic constructions from linear algebra

2.2.1 Constructions from multilinear algebra

In this chapter we make use of the nth symmetric power of a k-vector space. We
provide its construction here, and sketch some basic properties. More details can be
found in [FH91, Appendix B.2], although things are slightly different for us, since
we work over a field of characteristic p > 0.

We denote by S, the group of bijections of {1,...,n}.

Definition 2.2.1. Let V be a k-vector space (or equivalently, a k-module). Then
for n € N the nth symmetric power of V, denoted Sym™ V, is the quotient of V®" by
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the subspace generated by all relations v, ®- - -®@Up —v,1) ®- - QVy(n), for all o € Sy.
Let 7 : V® — Sym™ V' denote the obvious projection. We denote m(v, ® - - - @ v,,)
by v; - ... v,; we also denote m(v¥") by v

It will also be useful to define Sym™ A, for A a k-algebra; this means the nth

symmetric power of A, considered as a k-module, not as a k-algebra.
We recall some basic properties of Sym™ V:
1. if {e;} is a basis of V as a k-vector space (equivalently, as a k-module), then
{ei, €y o.v€, |11 <ia<---<lin}
is a basis for Sym" V.

2. In SymP V,
(’Ul + U2).p = ’Uip + U.2p,
for all v;,v, € V. This follows since the coefficient of v* - v;' * in the above

expression is ﬁ’l—n), by the binomial theorem, which is equal to zero in k£ unless

n=porn=_>0.

We now introduce a k-submodule TSym? V' of Sym? V', which is standard when
working with comultiplication of group schemes in characteristic p (see [DG70],
[Fon77]). We will use it to get an explicit factorisation of [p] (the composition
G — GP — (G where the first map is the diagonal embedding and the second
is multiplication p — 1 times), thereby allowing us to define a functor V on the

category of finite commutative k-group schemes through which [p] factors.

Lemma 2.2.2. Let TSym? V denote the subset of SymPV consisting of v'?, for all
v € V. Then TSymPV is a k-subspace (equivalently, a k-submodule) of Sym? V.

Proof. If v, vy € TSymPV, then v + vy = (v, + v9)?, as above, so TSym” V is
closed under addition. If A € k, A = (A/Py,)P (pth roots exist in k since it is
perfect), so TSym? V is closed under multiplication by every A € k. Therefore it is
a k-subspace of Sym? V. O

It is clear from this proof that TSym? V has no obvious characteristic zero ana-
logue, since this subset of Sym? V' is not closed under addition. On the other hand,

TSym” V easily generalises to k-submodules TSym?” V C Sym?” V for every n € N.
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2.2.2 Construction of V

In this subsection, we show how to define our morphism V on every finite commu-
tative affine group scheme over a perfect field k, such that [p] (p.id) factors as a
composition of V' and pth power relative Frobenius. An explicit construction of V'

is given in [DG70], but we provide one here since we need it for subsequent results.

Definition 2.2.3. Let A be the algebra of a finite commutative affine k-group
scheme.

Let A®") denote the k-algebra A twisted by nth power Frobenius, ie k @ A,
where the map k — k is the composition of n times the Frobenius £ — k for n > 0,
or —n times the inverse Frobenius, for n < 0. (The inverse Frobenius is defined
since k is perfect.) We take the algebra morphism k£ — A®") to be the map sending
acktoa®l Let F: AP — A be the k-linear morphism of algebras given by
a®a — oaP (clearly this gives rise to a family of maps F' : A®") — A® ™) for each
n). F is clearly functorial on the category of k-algebras, because every morphism
commutes with Frobenius, up to a twist k£ — k.-

We denote the k-group scheme represented by A®™) (with the structure morphism
defined above) by G®™). |

In this section, we denote by D* : A®? — A the map defined by a; ® - - - @ a,, —
aj...ap (this is dual to the scheme-theoretic diagonal morphism G — GP). Note
that this map factors through the map = : A®” — Sym” A of Definition 2.2.1,
since A is a commutative algebra. In fact, it is the composition of = with the map

SymP A — A given by a; -ag----- ap — a1az . . . ap.

Caution 2.2.4. As discussed in Remark 1.6.4, the arbitrary base change of a
strict &-group scheme G € DGy g is not always strict, and in particular G®) =
(GP), Gb(p), ig) does not have & acting by scalars for general & and k. However, in

certain special cases, it will be possible to define G®™)| for certain n (see below).

Definition 2.2.5. Let A be the algebra of a commutative k-group scheme. We
define a morphism f, : A — A®" by

fo= (A" ®id® ) 0 (A* ®id® %) o+ 0 (A" ®id) 0 A*: A — A®".
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If G = (Spec A, Spec A®,ig) € DGy, then we can define f? analogously to fy:
frbz — (A*b ®id®n—2) o (A*b ® id®n_3) 0---0 (A*b ®ld) o A*b . Ab — (A®n)b.

Lemma 2.2.6. Let A be the algebra of a finite rank commutative k-group scheme.
For alln > 2, f, has symmetric image, ie f,(a) is invariant under the action of
the symmetric group S, on A®" sending a; ® --- ® a, to (1) ® -+ ® Qg(n), for all
o€ S,.

Similarly, if G = (Spec A, Spec A° ig) € DGy, then for alla € A®, f°(a) € (A®P)°

1s wnvariant under the obvious action of S,,.

Proof. The proof for f, by induction. For n = 2, the result follows by commutativity
of A*. So assume the statement is true for n = r — 1, and prove it for n = r.

By induction, f,_;(a) is invariant under S,_; for all a € A, hence invariant under
the transposition (r — 1 7 — 2). Since f, = (A*®id® %) o f,_,, it follows that f,(a)
is invariant under (r r — 1) for all a € A..

By the associativity axiom, it follows that the diagram

—_— A®r—1

A .
fr—l )
lfr—l lA*@idW—z

A®r—1 A®r
id ®A*®id®™—3

commutes, so f.(a) is invariant under the permutation (r 1 ... r — 2 r —1). Since
Sy is generated by this permutation and any transposition, the result follows.

The proof for f? follows in the same way. L

Lemma 2.2.7. Let G = (Spec A, Spec A%, ig) € DGy,. Then (A®")* =2 (A")®"/1,, for
all n > 2, where I,, is the ideal
( Y 191 RIp® 1®"—i> ( ST Ng® 1®"-J'> :
1<i<n 1<j<n

Further, Iigonp 2 30,5, 1% @Lp ®1%"7, and Ng» 2 37, 191 @ Ng®19" 7.

Proof. We prove this by induction. The statement is true for n = 2 by the definition
of (A® A)® in the proof of Proposition 1.4.13. So assume true for n = i, ie (A%%)? =

(A*)®/I;, with I 4esy and Ng: as in the statement of the lemma.
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By definition, (A®*1)" = ((A")®/1,) @ A*/( g0ip @ 1+ 1% @ I4)(Ngn ® 1 +
1% ® Ng) = (A*)®*+1/[,,, as required. The other results follow similarly. O

Lemma 2.2.8. Let A be the algebra of a finite commutative k-group scheme. Let

€1,€2,...,e, be any basis for I4 as a k-module. Leta € A. If

.....

.....

Proof. By Lemma 2.2.6, fy(a) is invariant under the action of every ¢ € S, so

a; = o Letting ¢; for 1 < i < p be the number of times 7 occurs

a(1)ry ia(p)'

in 4y,...,1p, the coefficient of e;, ...e;, in D*(fy(a)) is therefore &—,p%ﬁailmi If

as required. Hence 7o f, : A — Sym? A factors through TSym” A C Sym? A by
definition of TSymP” A.
7, as desccribed in Definition 2.2.3.

O

Proposition 2.2.9. Let A be the algebra of a finite commutative k-group scheme
G. Then there is a morphism of k-group schemes V : G — G/P) such that [p}
factorises as

[p)= FOP oV =VP o F.
Proof. Consider the following sequence of k-modules and k-module morphisms:
AL por T gy A

where 7 is the map of Definition 2.2.1. Let ey, ..., e, (linearly independent) generate

A as a k-module.
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For each a € A, f,(a) can be expressed uniquely as a sum

for some a;,, i, € k.

By Lemma 2.2.8,
m(fp(a)) = Z Qg i€t ... €

and m(f,(A)) € TSym? A C Sym? A.
We define a morphism TSym? A — A® of k-modules by a? — 1 ® q, for all

a € A. This is a morphism of groups by Lemma 2.2.2, and k-linear since
AP = (A\Pa)? 5 1@ A Pa=A®a

foralla € A,\ € k. Let V : A — A® be the composition of this morphism with
7 o fp, which is a morphism of k-modules; we now show that it is a morphism of

: k-algebras.

et a,a’ € A be arbitrary, then

fp(a) = Z Qi ,.ip€i @ D €,

Tlyeey 1p
frld) = Z Qi€ @ B iy
11,0 00p
By Lemma 2.2.8, 7(f,(a)) = ), ai,..;ef, and 7(fp(a’)) = >, of e, and therefore

by definition of V,

fp(aa')

I
N
2
%
®
®
o
b
N
N
@
®
o
8

-------

1<iy, . ip<n
1<i) .1, <n

and therefore

7(fplad’)) = Z Q. ipa;,w,%(eheifl) o (e ea). (2.2.2)

1<in,.ip<n
1<4),...,ih<n
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For any choice of 4y,...,%p,%),. .., %, the ordered pairs of subscripts of (e;ei),. .-,
(ei,€1,) occur together in any order in this sum in p!/([]; ; d:;!) ways, where d;; is
the number of times the ordered pair of subscripts of (e;e;) occurs in our list of
ordered pairs.

Since p = 0 in k, and the coefficients «,, ;

ip and ag, , are invariant under
il

permutation of subscripts by Lemma 2.2.6, the terms

ail;--wipag/l,...,i;,(e’ile‘i'l) T (ei,,ei;,)

in the sum (2.2.2) cancel unless 7; = --- =4, and ¢} = --- = 7. (otherwise §; ; < p
P 1 P v

for all 4, 5), and

m(fplaa’)) = Z i, i pleen) .. (eiew) = Zai,---,ia;’,...,i’ (eiex)”.

1<i<n 1,1/

Therefore

’ 2 : 7
V(aa ) = ai,._,,iaj,“_)j X 61'6]',
'7j

and comparing with (2.2.1), we deduce that V(aa') = V(a)V(a'), so V is a k-algebra
homomorphism as required. |

We now show that FU/P oV = [p]: if n(f,(a)) = . i€ - ... €, then
(FoV)(a) = F(as,..;®e€;) = a;__;el; on the other hand,

[pl(a) = D*(fp(a) = D* Z Uiy,...ip€i - B €,

i1,.0ip
= E ai,...,iefa
1

where the last equality follows by Lemma 2.2.8. Therefore [p](a) = (F(!/P) o0 V))(a),
hence [p] = FO/P o V.
F' is functorial on the category of k-schemes, since for every pair of k-group

schemes G, H and morphism f : G — H, the diagram

a fo, ow

I

g 1, go
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commutes, where Fg and Fy are the Frobenius morphism on G and H respectively.
If we let H = GA/P)| and f be the morphism V : G — G/P) defined above, then
we get the required result F(/?) o V = V®) o F. The fact that V is a morphism
of k-group schemes (and not simply a morphism of k-schemes) now follows since
[p]VP oV =V o FU/P oV =V op].

O

Remark 2.2.10. It follows that any finite commutative affine k-group scheme G
admits a morphism V : G® — G. In fact V is functorial in the category of finite

commutative affine k-group schemes, although we shall not prove this.

Now we have introduced V', we can define an important subcategory of Gry which

we shall require later in this chapter.

Definition 2.2.11. Let Gr} be the full subcategory of Gry consisting of those k-

group schemes on which V is nilpotent.

2.2.3 Examples

1. V u,(,p) — pp is induced by the map on algebras k[X}/(X? — 1) - kQ®
k[X]/(XP — 1) sending X to 1 ® X. This follows since A*(X) =X ® X.

2.V ag’ ) o is the unique homomorphism of group schemes factoring over
the base, Speck: if k[X]/(XP) is its algebra, with comultiplication given by
A*X =X ®1+1®X, then f(X) = 37, 1% ® X ® 1%77, and hence
7(fp(X)) = 0, implying that V(X ) = 0.

3. V:Z/ pZ(p) — Z/pZ is also the unique homomorphism factoring over Spec k:
if its algebra is k[X]/(X? — X)), with comultiplication given by A*X = X ®
14+ 1® X, then the argument given above for a, applies.

Remark 2.2.12. Of course, twisting the above group schemes by inverse Frobenius
on fields (k — k) gives us maps V : G — G® ™).

For finite group schemes over a field, the operations V and F are dual to one another;

for details of this duality, see, for instance, [DG70).
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2.3 Results from classical Dieudonné theory

We outline the results from classical Dieudonné Theory which we will need in the
course of this chapter.

Classical Dieudonné theory provides an anti-equivalence of categories between
the abelian category Gry of finite-rank commutative k-group schemes and the cat-
egory of Dy-modules, where Dy, is the non-commutative ring of Witt vectors W (k)

with two endomorphisms F' and V adjoined, which satisfy the following relations

Fw=vw?F
wV = Vu®
FV=VF=p
where w denotes (wq,w, ..., Wy,...) € W(k), and w® denotes the Witt vector

(wh,...,wP,...).

We let W,, denote the truﬁcated Witt vectors of length n; this is a finite-type
k-group scheme, represented by the algebra k[Xy, ..., X,_1], with comultiplication
given by

A*(Xi):Si(X0®1,X1®1,...,Xn®1;1®X0,...,1®Xn)

for all X;, where the S; are the polynomials (with coefficients in k) determining
addition of Witt vectors, for which formulas are given in [Ser62] and [Fon77].

There is a homomorphism of rings
Dk — Endk Wn

where F' acts as the Frobenius endomorphism of W,, as a k-group scheme, V' as the
morphism W,, — W,sp_l) given by V(X;®1) = X;_ fori <n—-1,and V(X,_1®1) =
0 (it can be verified that, with this definition, F oV =V o F' = [p]), and such that
w = (wo, wn, . .., Wn,...) acts on W, as follows:

Explicitly, the image of (a,0,...) € W(k) C Dy in Endy W, is the endomor-
phism of W, given by the algebra map Xy — aXo, X; — a?X;,..., X1 —
a?" "' X,_1. Since p.(ag,a1,-..,0n,...) = (0,a5,...,a%_,,...), one can reconstruct

the endomorphism of W,, which is multiplication by (ag, a1, ..., an,...) as (ag,...)+
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p.(a}/ P 0,...)+..., from which one can easily derive explicitly the algebra morphism
of W, corresponding to multiplication by an arbitrary Witt vector in W (k).
Analogously to Fontaine’s functor (based on covectors), there is a functor M,
given by:
G ~ lim Homy (G, W) (2.3.1)

n

from Grj to the category of Dy-modules, where Dy acts on Homy(G, W,) via its
action on W,, for each n. The direct limit is the one induced by the inclusion maps
W,, — W, arising from Verschiebung.

This forms the basis for the anti-equivalence of categories of [DG70]:

Theorem 2.3.1. The functor M is an anti-equivalence of categories from Grj; to

the category of finite length Dy-modules on which V is nilpotent.
Proof. [DG70, Chapter V,§1,Corollary 4.4] d

We also state an analogous version for k-group schemes of finite type, which we
shall have reason to use elsewhere in this chapter, since some important k-group
schemes such as W,, (the Witt vectors of length n), and G, (the additive group

scheme) are not finite, but only of finite type over k.

Theorem 2.3.2. The functor M is an anti-equivalence of categories from the cat-
egory of unipotent® k-group schemes of finite type to the category of Dy-modules on
which V' 1is nilpotent.

Proof. [DG70, Chapter V,§1,Theorem 4.3] O

We now state an analogous theorem of Fontaine, which provides an anti-equiv-
alence of categories between Grp and the category of finite length Dg-modules.
Although this theorem is more general than Theorem 2.3.1 (stated above), we shall
have reason to use both theorems in the course of this chapter, because we require

some explicit properties of the functor M above.

2Here unipotent means that the morphism of k-group schemes V defined earlier acts nilpotently

on the k-group schemes considered
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Theorem 2.3.3. There is an anti-equivalence of categories between Gry and the

category of Dy-modules of finite length, given by
G ~ Hom(G, CWy)

where Hom(G, CW},) (henceforth denoted M(G)) is the group of homomorphisms to
a group of covectors CWy. In particular, the action of F € Dy on M(G’) is dual to
Frobenius G®) — G, and the action of V &€ Dy, is dual to the action of the morphism
V : G — GU/P) defined in Proposition 2.2.9.

Proof. [Fon77, Chapter I11,§1.4, Theorem 1] a

Corollary 2.3.4. Let G be a finite commutative k-group scheme. Then there is a
splitting

G=ZGExG™xG!
of G into a product of étale, multiplicative and local-local subschemes, where F acts

isomorphically on G* and nilpotently on G™ and' G, and V acts isomorphically on

G™ and nilpotently on G and G'.

Proof. Let M be the Dieudonné module associated to G by the anti-equivalence of
Theorem 2.3.3. Let M€ be the submodule of M on which F acts nilpotently, which is

equal to Ker F™ |py= Ker F™*! |)y= ... for some n € Z. There is an exact sequence
0— M —> M- M/M®— 0.

The map F"M — M/Ker F™ |) sending m € F"M C M to its image in the
quotient M/ Ker F™ |, is an isomorphism: it’s injective, because if 0 # m = F"m/,
then m’ & Ker F™ for any n’, so m ¢ Ker F™.

F* . M/Ker F* |y— M/Ker F" |y is an isomorphism since Ker F?" |y=
Ker F™ |3, and therefore for any m € M/ Ker F" |y, we may take m’ = F~"(m),
which is clearly the image of some m’ € M under the projection M — M/ Ker F™ |y

(F~!is defined as F is an isomorphism of finite rank k-modules). Since the following

diagram commutes, L
M —— M/Ker F™ |y

|~ [

M —— M/Ker F™ |y
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m = F"m' maps to M under projection M — M/ Ker F" |5, and hence our map
F™M — M/ Ker F™ | is surjective. Therefore it is an isomorphism.

Inverting this isomorphism gives us a splitting M/M¢ — F"M C M of this exact
sequence, and therefore M &2 M€ x M®, where M* = F"M = M/Ker F™ |y. By
Theorem 2.3.3 applied to this splitting, we get a splitting G = G¢ x G¥. Applying
the above argument to G¢ with V instead of F gives a further splitting G¢ = G x G™
of G into local-local and multiplicative parts, where V acts nilpotently on G', and

as an isomorphism on G™. 0

14

Proposition 2.3.5. Let G € Gry be connected, and satisfy V = 0. Then G
[T, ape:, for some integers ay,...,a, € N.
Equivalently by Theorem 2.3.1, the Dieudonné module associated to G has gen-

erators my, . ..,my,, and relations Vm, = --- = Vm, =0 and F%m,; = 0.

Proof. Let My = M. My/F M, is a finitely generated Dy-module (non-trivial since
F is nilpotent) with a finite number of generators 7y, . . ., 77 which can be assumed
linearly independent; let m;,...,m; be any liftings of the generators to My. As
D, is local, we can apply Nakayama’s Lemma, which tells us that these liftings
generate My as a Dy-module. Let My = FM +Dymy+ - - -+ Dypmy. Clearly My/M;
has one generator m satisfying F'm = Vm = 0, and we have an exact sequence of
D;.-modules

0> M, - My — km — 0,

and dimy M, < dimy M,. Clearly we can replace My by M, and repeat this process

to get a sequence of Dyg-submodules of My:
MyDM,D---DM,=0

where each quotient M;/M;, = km.
Clearly M,,_, has the form described in the Proposition; we now show that if M;
has the form described in the Proposition, then so does M;_;: the result will then

follow by induction. We have an exact sequence

O—>M,-——>Mi_1—>km—>0,
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and M,_, is generated by the generators my,...,m; of M;, which satisfy relations
Vm; = 0 and F%m; = 0 for some integers a;, together with some lift 7 of m which
satisfies V/m = 0 and Fmm € M;_,, by exactness.

If Fm € FM;_,, then Fin = F'm’ for some m’ € M;_,, and we can replace m by
m —m' to get Frn = 0, and then the exact sequence splits, and M; clearly has the
form described in the statement of the Proposition.

If Frn & FM,;_, then

Frn="" F“ay;m;

w,j

for some constants a,; € k. We can assume that o, ; = 0 for all j > 0 by

subtracting terms in M;_; from M, to reduce to an equation
w

where 3; = ag ;. There’s some w € Z such that the right-hand side is killed by F™
but not by F*~!. Therefore some m; term is not killed by F*~!: eliminating it from

our list of generators gives a Dieudonné module generated by
My, s My 1, Mgy, - .-, Y, M,

and satisfying no relations except Vm; = --- = Vm; = Vi = 0, F%m,; = 0 and
Fe*li; = 0, by a rank argument: rank M; = rank M;_; + rank km from the exact
sequence, and the module just described has rank rank M;_; + 1, hence M; can
satisfy no more relations or else the rank equality would not hold. Hence M; has
the form described in the statement of the Proposition.

Hence, by induction, the result holds. O

Corollary 2.3.6. The algebra of such a G is k[X1,..., Xn]/(XP", ..., XP™), with

n

group morphisms

A'(X)=X;®1+1Q X;

Proof. By definition, the algebra of aye; is k[Xi]/(X]™), with A*(X;) = X;®1+1®
X;, 1*(X;) = = X;, and €*(X;) = 0. The result now follows from the Proposition. [
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Corollary 2.3.7. If G is presented as in the proof of the previous Corollary, then
the only T € (X1,...,X,) such that AT =T Q@1+ 1Q® T are sums of p'th powers
Of Xj, e
T = Z ai’jX;i
%)
for some a; ; € k.

Proof. The Dieudonné module associated to G by equation (2.3.1) is the direct
limit lim Hom(G, W,,), which is equal to Hom(G,G,) since KerV |w,= Ga. The
Dieudo?mé module is given by generators my, ..., m, satisfying relations Vm; = 0
for all 2 and F'*m; by the Proposition, where each m; is the homomorphism G — (G,
sending the parameter of G, to Xj.

From T € 14 such that A*T =T ®1+1®7T we can construct a homomorphism
G — G, sending the parameter of G, to T'; such homomorphisms correspond to

elements of the Dieudonné module, each of which can be expressed in the form
Z ai,j Fimj
i7j

and are therefore given by morphisms sending the parameter of G, to a sum

_ P
T = E Qi X5 -
1,3

2.4 Consideration of group schemes admitting an
O-action

In this section, we consider what it means for a G € DGy to admit a homomorphism
0 — Endpg, (G), and if (G, G, ig) € DGy, 5, then we consider some possible G. This
leads naturally into the result of the following section, which is a condition on such

G, in terms of classical Verschiebung, V.

Remark 2.4.1. If G = (Spec A4, Spec A, ig) € DGg g, then G = Spec A is killed by
p, ie the morphisms [p] : G — G and [p]’ : G®* — G® factor through R. This follows

since there is a homomorphism of rings k[[r]] &2 € — Endpg =G
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This condition is stronger than simply requiring that [p] : G — G is the zero
endomorphism in DG, 4, since zero endomorphisms in DGY, » are not required to
kill G*, but only G. In the following two sections, the full implications of this are

discussed.

In the following examples, we simplify matters somewhat by setting & = FF,[[n]],
and asking which group schemes G (of rank p) can occur in a triple (G, G*,ig) €
DGy,s. We note that since k is an @-algebra, 7* must act trivially on the algebras
of A and A’.

Passing to the algebraic closure k of k, there are three isomorphism classes of
Dj-modules of rank one over k: mgk, where F(mp) = V(mpy) = 0, myk, where
F(m;) = my and V(m;) = 0, and myk, where F(my) = 0 and V(msy) = m,. By the
anti-equivalence of Theorem 2.3.3, these correspond to the three isomorphism classes
of group schemes of order p over an algebraically closed field £ of characteristic p > 0;
o, (the additive k-group scheme of order p) p, (the multiplicative k-group scheme
of order p), and Z/pZ (the étale k-group scheme of order p) respectively. They were
all considered in §2.2.3. We now ‘lift’ them to analogues in DGy, and try to attach

an O-action to each one, such that they become objects in DGy 4.

2.4.1 Lifting o,

Clearly we can lift a, to (Speck[T]/(T?),Speck[T]/(T?*'),ig) € DGy; we have
A*(T) =T®1+1®T, and via consideration of the counit axiom, A™(T) =
T®1+1®T. Therefore [p] = [p° = 0, and in order to get an object in DG}, 5, we
can set o' = aT for all a € Fp,, and 7*T can be chosen in several ways, some of

which were considered in chapter 1.

2.4.2 Lifting p,

Consider now p,. As discussed in §2.2.3, this k-group scheme is represented by
k[X]/(XP — 1), with A*(X) = X ® X and £*(X) = 1. We can lift u, to an object
(Spec k[X]/(XP — 1), Spec k[X]/(XP — 1)(X — 1),i) € DGy
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Substituting in T'= X — 1, we see that yu, is represented by &[T']/(T?) with
fp(T) = fp(X - 1) = fp(X) - fp(l) = (T + 1)®p — 1%

We can lift p, to an object (Speck[T]/(T?), Spec k{T]/(T?*'),%) € DGy, by Propo-
sition 1.5.7. Since f} lifts fp,

£(T) = (T +1)% — 1%,

P

Therefore [pP(T) = D* o f3(T) = (T + 1)? — 17 = TP # 0, which contradicts our
assumption that [p]b = 0. Therefore no form of u, can occur in any G € DG}, g, for

¢ =TF,[[r]] (even for p # gq), since any such form would not satisfy [p]> = 0.

2.4.3 Lifting (Z/pZ)

The étale k-group scheme of order p is (Z/pZ), and it lifts to ((Z/pZ), Speck, i) €
DG}, on which [p] vanishes. To make this object a member of the category DGy g,
it suffices to give an action of 7* which is nilpotent (since the [, action is Simply
comultiplication). Since F,[[r]] is required to act on our group scheme, 7* must act
nilpotently, and the only nilpotent automorphism of IF, is the map sending every

a € T, to zero, so there is a unique constant étale k-group scheme with [F,[[x]]-action.

2.5 Comultiplication on DG ,

We now prove the first main theorem of this chapter, which states that V is zero on
all objects G in a triple G = (G, G, ig) in DGy ¢ (and hence DG}, 4, since its objects
are exactly those of DGy ¢). Therefore, in what follows, we can assume that our G
(as k-group schemes) lie in a subcategory of Gry, which will simplify our subsequent

Dieudonné theory and classification.
Theorem 2.5.1. Let G = (Spec A, Spec A°,ig) € DGy p. Then'V =0 on F(G).

Proof. By Remark 2.4.1, [p]” = 0 and [p] = 0.

We can suppose that k is algebraically closed (ie k = k), since if [p]’] (Ao =

[p’ 1y ® k # 0, then [p]’I4 # 0, as comultiplication is compatible with base change
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Applying Corollary 2.3.4, we get a splitting Spec A = G® x G! x G™, where V
acts as an isomorphism on G™ and nilpotently on G' and G¥, and F acts as an
isomorphism on G®, and nilpotently on G' and G™.

Suppose that G is non-trivial. Then since the functor F : DG} — Gry is
an equivalence of categories, the closed immersion G® — G induces a morphism
G® — G in DG}, which is a closed immersion on the level of k-group schemes. G* is
a triple (Spec A%, Spec Aétb, ige), and the map A — A%* is a surjection as it is dual
to a closed immersion. On A%, [p] = F oV, and F is an isomorphism since A% is
étale. Hence V = 0 is implied by [p] = 0.

If G™ is non-trivial, then consider its k-subgroup scheme Ker F' |gm. It is anti-
equivalent by Theorem 2.3.3 to a Dieudonné module M on which V acts as an
isomorphism. Since k is algebraically closed, V' has an eigenvector m € M such that
Vm = Am for some A € k. Replacing M by M/D;m and possibly finding more
eigenvectors of V' if necessary, We can find a subquotient module M’ of M which is of
rank one, generated by some m € M’ such that Vm = m. By the anti-equivalence,
this implies that u, C G™ C G, since M’ is dual to u,. Since F : DG} — Gry is
an equivalence of categories, there’s a morphism (u,, ,u;,i) C G which induces an
inclusion p, — G, where (up,u';,,i) € DG, is the minimal object constructed in
§2.4.2, such that if 42, = Spec B, [p]’ |1, # 0.

By Proposition 1.4.9, there’s a surjection A> — B”, and therefore [p)° | 1,7# 0,
which contradicts [p]® | 1,,= 0. Therefore G™ is trivial.

We now consider G'.

By Theorem 2.3.3, G! is anti-equivalent to a Dieudonné module M = M, on
which F and V are nilpotent. Suppose that V' |p# 0 (equivalently, V |a# 0.

Pick any non-zero my € M, such that Frmy = Vmgy = 0 (the existence of such
an myg follows since F' and V are nilpotent), and let M; = My/Dymyg, so we have an
exact sequence

0—>ka0—>M0—>M1—>O.

. We can replace My by M, and continue this procedure to get a series of exact

sequences until we arrive at a sequence

0—km, > M, > M, —0
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such that V' |, # 0 but V' |p,,,= 0.
By Proposition 2.3.5, M, is the quotient of the free D;-module with generators
7y, ..., by the relations Vn, = --- = Vm; = 0 and F'*n; = 0 for some integers a;.

We have an exact sequence
0—ka— M, > M, —0,

where Fla =Va =0.

M, is generated by a (identifying a with its image in M,,) and some pre-images
ny,...,n of my, ..., 7y, such that F'%n; € ka, and Vn; € ak for all 7.

There are now two possibilities, which we consider separately: either F'%n; =0
for all 2, or else 0 # F%n; € ka for some i. In each case, we prove that b?]b # 0,
which contradicts our above remark that [p]’ = 0 for each G € DGy 4. Hence V =0
on F(G).

If F%n; = 0 for all ¢, then since V' |31, # 0 and Va = 0, 0 # Vn,; € ka for some n;.
Consider the subset of the n; such that Vﬁi # 0, and pick any n; (there may be more
than one) from this subset such that a,-' < a; for any n; in the subset. Subtracting
scalar multiples of n; from all other n; in the subset, we may assume that Vn; # 0,
but Vn; = 0 for all other n;, without changing the relations in F' which the n; satisfy,
so M, is generated by ni,...,n;,a with F%n; = 0 for all i, Vn; # 0, Vn; = 0 for all
i # j, and Fa = Va = 0. The quotient of M,, by @x;Din; ® DiFn; is the module
generated by a,n; with the relations Fa = Va = 0, Fn; = 0 and Vn; = Aa for some
A # 0. Since A # 0, replacing a by Aa, we can assume that Vn; = a.

This is the quotient of the Dieudonné module of the Witt vectors of length two
(generated by wg, w,, and with relations Vwy = w; and Vw, = 0) by pth power
Frobenius. Ker F' |y, is the group scheme Speck[X,Y]/(XP,Y?) = Spec B, with
VY =0and VX =Y, and therefore by the construction of V' given in Proposition
2.2.9, n(fp(X)) = Y'P. Therefore, by Lemma 2.2.8,

---------

the triple B = (Spec B, Spec B®,i) € DS, is clearly minimal, and comultiplication
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lifts uniquely to B® by Proposition 1.5.7; therefore
HX) =Y ay.;,Y"® - ®Y? mod 3 (190X @12
and hence

[PP(X)=D*o f;(X) = Zai ..... (Y =Y? mod (X),

i

applying the arguments used in the proof of Lemma 2.2.8 to cancel terms a;,,..i,
where not all subscripts are identical. By Corollary 1.5.8, the inclusion Spec B C
G, C G' C G lifts to a morphism B — G in DGy; by Proposition 1.4.9, the induced
algebra morphism A* — B’ is a surjection, hence [p]" |1 ,# 0, contradicting [p)* = 0.

If, on the other hand, 0 # F%n; € ka for some 7, then choose n; from the set of
those n; such that 0 # F'%n; € ka, such that a; > a; for all ¢. Subtracting a scalar
multiple of F'%~%n; from each n;, we can reduce to the case where F%n; = 0 for all

Since V' |p, # 0, there is at least one n; such that‘ 0 # Vn; € ka. Choose n;:
from the set of those n; such that Vn,; # 0, such that a;» < a; for each ¢; subtracting
a scalar multiple of n; from each n;, we can reduce to the case where Vn; = 0 for
all i # j'.

We now have two cases: 7 = j/, and j # j'. If j = j/, then we can quotient by
Dyn; for all ¢ # j, and we get the Dieudonné module Dyn;, where F%+!n; = 0, and
0 # Vn; € F%n;. We now consider these two cases separately.

In the first case, using the fact that Frobenius is o-linear, where ¢ : k — k is
the pth power map, and the fact that k is algebraically closed, we may assume by
making the substitution n = An; for some A € k that our Dieudonné module is
Dyn, where F%+ln = 0 and Vn = F%n. Consider the exact sequence of Dieudonné

modules

0 — M(W2) L M(Ws) - Den — 0,

where M(W,) is the Dieudonné module associated to the Witt vectors of length
two, given by generators z and vy, with Vz = y, Vy = 0, and no other relations,

and the map f is the Dy-linear endomorphism of M (W) given by z +— F%*!z and
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y = F%x which has cokernel Dyn. By the Dieudonné anti-equivalence of Theorem

2.3.2, this exact sequence is dual to an exact sequence of k-group schemes
0-G =Wy, - W, =0,

where the map Wy — W, is dual to the map of algebras k[X,Y] — k[X,Y] given
by X — X?7+! and Y — XP"; therefore the algebra of G’ is k[X,Y]/(XP7+,Y —
XP"), which is isomorphic to k[T)/(T?"""), where VT = 1® T*"”. Hence G’ C Gh.
By construction of V given in Proposition 2.2.9, 7(f,(T)) = (T?7)?. We can
lift Spec B to a minimal object (Spec B, Spec B®,i) € DG}, as above, where B® =
k[T)/T?"+2).
Since 7(f,(T)) = (TP")P, we can apply Lemma 2.2.8, which says that f,(7") has

the form

where @ o; e; = 1, and o
Y

P ,.p

.....

2T = o, TP 0T,

and hence [p)’(T') = D*o f2(T) = TP +! + 0. Since B is minimal, and our inclusion
SpecB C G, C G' C G lifts to a morphism B — G, we can apply the same
arguments as before to deduce that [p]’ | 1,,# 0, which is a contradiction.

In the second case, we can take the quotient of our Dieudonné module by Dgn;
for all i # j, 5’ to get the Dieudonné module generated by n;,n;, where Vn; = 0,
Vnj = AF%n; for some A € k, F%*n; = 0, and F*%'n; = 0. By replacing n; by
PV n;, we can assume that Vny = Fn;.

Consider the exact sequence of Dieudonné modules
0 — M(W, x W) L M(W, x Wy) — Dyn; + Dgnyr — 0,

where M (W, x W;) is the Dieudonné module of W, x Wi, with generators z,y, 2,
and relations Vz = y and Vy = Vz = 0, and f is the Dj-linear endomorphism
of this Dieudonné module given by z — F%'z, y — Fy, and z — y — F% 2. By

Theorem 2.3.2, this exact sequence is dual to an exact sequence of group schemes

0—)Gl—)W2XWI—>W2XW1—>0,
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where G’ is a subgroup scheme of G,, by the Dieudonné anti-equivalence, since its
Dieudonné module is a quotient of the Dieudonné module of G,, Wy x W, has
algebra k[X,Y, Z], with VX = 1®Y, and VY = VZ = 0, and G’ has algebra
k[X,Y, Z]/(X?7,Y?, ZP"), with VX = 1®Y and VY =V Z = 0, which is congru-
ent to B = k[X,Y]/(X?”,Y?"™), with VX = 1@ Y?.

Arguing as for the kernel of Frobenius on W, (earlier in this proof), it can be
shown that for any minimal B = (Spec B,Spec B’,i) € DG, such that F(B) =
Spec k[X,Y]/(Xﬁag,Ypaj+l) and VX = 1®Y?, [p] |s# 0, and that there is a
surjection of algebras A” — B”, implying that [p]” | 1,,7# 0, which is a contradiction.

Therefore we have a contradiction if V # 0 on G*, and hence V = 0 on G*.

Therefore, if V |qi= 0. Since G™ is trivial, and V' |gee= 0 by the above argument,

V =0 on F(G) = G¥ x G' x G™, and the result is proved. O

2.6 Idempotent operators

In this section, we introduce some operators e; on the algebras A, Alec and A® as-
sociated to an object G € DGy which will prove useful later. We also prove a
lemma from representation theory, which we will use to construct our Dieudonné

anti-equivalence.

Definition 2.6.1. Let (Spec A, Spec A”,ig) = G € DG}, 5. Then for each 1 < i <

q — 1, we can define morphisms of k-modules A — A , A® — Al°® and A® — AP

e = — ata
sending a € A to ea, a'°° € A to e;a'° and a® € A® to e;a’. Note that in this
expression, a* refers to the morphism a* : G — G of strict £-action on G, and its

induced action on A, A and A® respectively.

These operators are compatible with the quotient map ¢ : A> — A"° in the sense
that g(e;a”) = e;q(a’) for a® € A’, since the morphisms o* for o« € F, have this
property.

Remark 2.6.2. These operators are analogous to the e; defined in [OT70] for group

schemes of order p; we prove that they have very similar properties.
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Lemma 2.6.3. The operator e; satisfies the following identities:
1Y cicqr & =1
2. o*e;X = ofe; X for any X € A (or AP, or A?).
3. eje; = 0;;€;, where 0;; is the Kronecker delta.

Proof. 1. The coefficient of o* in 37, ;. ;e (for @ € F})is — 3 o0 07,
which is zero unless @ = 1 (since it is invariant under multiplication by «).

The coefficient of 1* is clearly one, and therefore leig 16 =1

2. For a = 0, the result is trivial, we now consider the case o # 0:

BreX =-Y o 'fa’X

acky

==Y a(fa)X

a€ly

== Z 77 B'y* X (substituting v = af3)

~€F;

— —,Bi Z ,Y—'i;Y*X

7€F;

- ﬂieiX.

€ie; = Z Z(aﬂ)“i(aﬂ)*

a€Fy BeF;

= €i,
since a3 = v has ¢ — 1 solutions over «, 3 € F;. If 7 # j, then
eej = Z Z a”' B (aB)*.
a€lF; Bel;
Hence the coefficient of v* in eje; is 3 e, @ (v2™) ™7 = 777 Yopep, /7,
which is clearly invariant under multiplication by 87~* for any 8 € 3, and

therefore zero.
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Therefore e;e; = d;je;.

O

We need a basic lemma concerning endomorphisms of finite dimensional vector
spaces. Let x4 : Fy — k ford =0,...,7 — 1 be the homomorphisms of rings given

by xa(a) = o for a € IF,, where we implicitly identify a € F, with its image in k.

Lemma 2.6.4. Let V be a k-module, and let p : F; — Endi (V') be a homomorphism

of rings. Then V' decomposes as

V=P
Xd

where V,, C V is the k-vector subspace of V' such that p(a)(v) = xa(a)v. (It’s easy

to verify that each V., is a k-vector subspace).

Proof. Let v € V. Define
v = — Z a”*pla)(v).

aeky

Then

Yo ovi==)Y (@ 4+ +a"p(e)(v)

1<i<q— acF; (2.6.1)

:’U,

because (as above) the sum vanishes unless & = 1. Further, p(8)v; = B'v;, as in the
proof of the previous result. If v; # 0 for 7 not a power of p, then p(a + 3)(v;) =
(a+ B)'v; # (o + B)v; = (p(a) + p(B))(v;), which contradicts the assumption that
p is a homomorphism of rings. Therefore v; # 0 only if 4 is a power of p. Setting

Uy, = Upi, (2.6.1) gives
b=,
Xi

Any pair V,,, V., for d # d', are orthogonal since any 0 # v € V' inside both must
satisfy a*v = oP'v = o v for any « € Fy, which implies that e A Taking o
to be a generator of I}, we see that this cannot hold unless p? —p# =0 mod ¢—1,
but by definition 0 < d,d’ < r, which is a contradiction. This suffices to give the

direct sum decomposition, as any V,, is clearly a k-submodule of V. O
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2.7 Classifying connected schemes

In this section, we provide an explicit classification theorem for all connected G €
DGj, 5, where the meaning of connected is that defined in the statement of Definition
1.6.3. Since we know that V' |zg)= 0, classical results tell us what the structure of
the algebras of such G look like; therefore, it suffices to determine the &-action on
G. This theorem is used in the following section, where we define an operation V
explicitly on such connected G.

In order to prove the theorem, we first need an elementary lemma about congru-

ences.

Lemma 2.7.1. Let ¢ = p" for some prime p and r € N. Then the values of
l € NU {0} satisfying the congruence

1=p" modgq-—1.
are ezactly those such that r | 1, ie such that p' is a power of q.
Proof. Solutions of the congruence correspond to solutions of
1=p —w(p - 1)

for some [ € NU {0} and w € Z. Therefore [ = 0 or

P -1
w =
pr—1
which is integer if and only if 7 | I. Therefore p! = ¢!/", proving the result. O

Theorem 2.7.2. Let G € DG}, , be connected. Then G = H = (Spec A, Spec A”, i)
with
AKXy, .., X, ]/ (XE L XT,

n

In=(X1,...,X,), A(X)=X;91+1Q® X|,
AKXy, X/ (X, X)) (X X,

. . . m . -
a*X; = aX; for o € Fy, and 7*X; a linear combination of X7 ; in particular, each

polynomial w* X; factors through qth power Frobenius.
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Proof. By Corollary 1.8.2, G is isomorphic to some minimal H € DGj ,. By
Theorem 2.5.1, V' |z3y= 0. Therefore, applying Corollary 2.3.6, we see that
F(H) = Spec A, where

A=Ek[Xy,. .., X, ]/(XP", ., XP™)

n

for some integers a;,...,a, € N, and A*(X;) = X; ® 1 + 1 ® X; for all . We may
take
AKXy, X/ (XXX, X)),

since (A, A%, i4) € DAg is minimal, it’s isomorphic to any other minimal object
on the level of algebras by Corollary 1.4.6. By the counit axiom, it follows that
A*X; = X;®1+1® X, in A°.

The &-action is determined by the action of each 0 € & on each X; in A
0*X; = 0X; mod (X1,...,X,)? We can replace X; by ,X1; (e1X1, Xs,...,Xn) =
(X1,...,Xn) mod (Xi,...,X,)% since ey X; = (1= ew)Xi = Xi — S e X,

and each e, X; € (X1,...,X,)? for w > 1 since a*(e,X;) = a¥e,X;. Therefore

w>1

e1X1,...,X, generate A” as a k-algebra. Replacing each X; by e,X; in turn, we can

assume that each X; is an eigenvector for the Fy-action, in the sense that
OZ*X,' = aXl-

for all « € TFy,.
Since 7* induces the zero endomorphism of (X, ..., X,)/(Xy1,...,X,)? by def-
inition of its strict action, and since it commutes with A* we can apply Corollary

2.3.7 to see that
7rlocm)(i — Z CLJ"IX]PI

3,i>0
for each %, on A!°°, where each a;; € k. Since Ng is generated as a k-vector space
by X? o , XP*" | and since the action of 7* on A'°® determines the action of 7* on
AP up to Ng, 7" X; is also given by

b v § : 1 yp

3 >0

in A°.
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Since 7*a* = a*n* for a generating I, it follows that each exponent of X; must
be 1 modulo ¢ — 1 (since a*X;’n = a”"X;’n and o*X; = aX; on the left hand side).

Hence the only possible exponents of X; are solutions p' of the congruence
1=9" modyp" —1.

which implies that p’ is a power of ¢ by Lemma 2.7.1. Hence
X = Z a’»’,lX]‘-’l

for new constants a;.’, ;- In particular, 7* factors through gth power Frobenius, since
k is perfect.

Finally, consider the k-module Ny which is the ideal (X7 L ,XP"") in A°. If
a € F; generates, then o*(X7 ") = o XP" by strictness, this must be equal to
aXfui, so p* = 1 mod q — 1; by Lemma 2.7.1, this implies that p* is actually a
power of ¢. -

Hence each power of p in our algebra description is actually a power of g, proving

the result. v . -4

2.8 Frobenius and Verschiebung

As has already been shown, the classical functor V' is trivial on DGY 4; in this
section we introduce a strict replacement, V, in the following sense: classically in

the category of k-group schemes (for & of characteristic p > 0), there is a factorisation
[pl]=FoV=VoF.
We show that 7* can be factorised as
=V, ,oF,=F,oV,,

where F, is qth power Frobenius. This factorisation lies at the heart of our Dieu-
donné theory, and provides the obvious link between our theory and the classical

one.
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Definition 2.8.1. We can define a functorial morphsim F', from DG\ to DGy: on
G = (Spec A, Spec A", ig), F* = F™ (so F” is qth power Frobenius), and F' acts on
the k-algebra A°. Similarly F, = F" on A (which makes F'; a morphism in DG}).
F, commutes with multiplication A since all morphisms commute with Frobenius,
up to a twist k — k.. Similarly, F, commutes with any morphism f : G — H for

H € DGy, so F, is functorial.
Lemma 2.8.2. There is a natural estension of F to DG} ,.

Proof. The action of & on G = (Spec A4, Spec A%, ig) € DGj, 5 is by endomorphisms;
clearly endomorphisms commute with any power of Frobenius up to a twist k — k,
so diagram (1.6.1) commutes; the only remaining thing to check is that on the base
change of G by ¢” : k — k, 0 acts ‘by scalars’. On ¢ € IAb/Iﬁb, we know that o € &
acts by o*a = oa; on k ® I /1%, (I, twisted by ¢”), o acts as multiplication by
6 ® 1 (where we define 6 to be the image of o in k under the morphism & — k),
so it sends 1 ®a to 1 ® 07"0a = 1 ® da since 6 € F,, on which o” (the gth power
map) is the identity, which is equal to 0*(1 ® a) = 1 ® da. Hence the & action is
‘by scalars’ on k ® I /I2,; similarly it follows that its action on k ® Ng is also ‘by

Ab»
scalars’; therefore F.(G) € DG, 4. O

Proposition 2.8.3. To each G = (Spec A, Spec A% ig) € DG}, 5, we can associate
a unique morphism Vy : G — GW ) in Hompg; (G, GU™), such that we have the

following factorisation of 7* :
Tt =F,oV,=V,oF,.

Further, V. is functorial. In other words, the diagram

¢ I

lv,, l— (2.8.1)

(=1
f(q )

gl L, ™

commutes for all objects G,’H € DGy, 5 and all morphisms f:GoHin DGy 5

Proof. 1t suffices to assume G is minimal, since every G € DGy , is isomorphic to a

minimal G via a two-sided isomorphism, by Proposition 1.5.11.
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By Lemma 1.8.7, G = G° x G®: since Frobenius is invertible on G and nilpotent
on G°, m*(Alc) c Al°¢ and n*(A%*) C A%, similarly for Fy. Therefore it will suffice
to define our morphism V. on G¥ and G° separately.

On A%, F, : k® A — A is surjective; this follows since A% is étale, and since
k is perfect (so 0" is surjective on it). Therefore it is bijective, hence invertible as
a morphism of Hopf algebras. Let F:! : A% — k ® A% denote its inverse. F,!
commutes with the &-action on A® since it’s the inverse of F,, which commutes
with the @-action by construction.

Then we define V; to be the endomorphism of A% given by F,lon* = n*o F 1.
Clearly this morphism commutes with F,; it commutes with the &-action on A%
since F-! does, and V;; 0 F; = F, 0V, = 7*, so V; (on A%) has all the required
properties.

By the previous Theorem,
AP = kX, X)X L X9
for some integers e;, with A*(X;)) = X; ®1+1® X,-,’and
A = k(X .. ,Xn]/(X{’;’, B XTIV X, X))

Further, o*X; = aX; for a € F, and 7 factors through gth power Frobenius.
Explicitly 7* : A* — A® is described by

!
7T*Xi= E G,j’lX;]
J

for some constants a;; € k depending on ¢, where [ > 0 for all /. The map n* : A'° —
Alec is simply the reduction of this modulo the kernel of the map ig : A> — A'°°.
We can define a morphism V, : G9 — G in DG}, 5 by

-1
V_:(X,) = Za’j’l ®X]q
J

for each X;, with the obvious restriction to AX°. It’s obvious that V, commutes
with the action of a € F} C &, and with A*, and also obvious that 7* = Fiy o V.

From this last statement it follows that V, commutes with 7*.
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Our choice of V; | giec is unique: by Corollary 2.3.7,
Va(Xi) = S b X7,
I

for some coefficients b;; € k. Since V; commutes with a*-action, for any a € IFg,
we know that each power p' must be congruent to 1 mod g — 1. Therefore we can

apply Lemma 2.7.1 to conclude that
Vi(Xi) = Z cii ® X}’l,
gl
for some coefficients c¢;; € k, such that I < e;, and for each i. Any V, to V?:
VX)) = cu®Xd +Y dio Xy,
gl J
must satisfy F, oV, = 7*, and
BV2X) =3 euX] "
gl

implies that each c;; is equal to a;.

Note that we could have chosen any other lift of V°° to V* as a morphism of
algebras A® — A°, provided it commutes with the &-action. However, since the
difference of any two such morphisms V,'r’ ,V* in HomDGkﬁ(g,g(q_l)) is trivial on
Al°) the difference is the trivial morphism in Hompg; ,(G,G) by construction of
morphisms in the category DG}, 4; therefore V. is uniquely defined as a morphism
in DGy 4.

We have defined a family morphisms V, : G2 — G« for each z € Z by

twisting G and G and by a slight abuse of notation, we can write
*=F,oV,=V,oF,.

Taking the product of V, on A°° and A% gives a morphism A — A.

To prove that V, is functorial, we need to prove that the diagram (2.8.1) com-
mutes with all morphisms f: G — H in DG} 4. Let H = (Spec B, Spec B, i3), and
assume (by Theorem 2.7.2) that B'*® 2 k[Y},...,Y,]/Ip, with A*(Y;) = Y;®1+1QY;
and a*Y; = aY; for a € F,. It suffices to establish that V; o f = f oV, on A, since
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any two morphisms in DGy, , differing only in their image in H > and not in H are
identified, by construction of DG}, ,. On A%, this follows since it is F,7! o n*, and
both of these morphisms have this property.

The morphism B — A° factors through B'°° as Frobenius is invertible on B
and nilpotent on B'¢. By Corollary 2.3.7, the morphism is given on the level of

coordinates by
3
f(Y) =) auX}
g

for some a;; € k. By compatibility with &, each power p' must be congruent to 1

mod q — 1; by Lemma 2.7.1, each power of p is actually a power of g. Hence
b ]
Y= Z b X7
5.

for some b;,; € k, since Ng = (Xi’el ,..., X3, and f° is determined by f up to Ng.

It follows that Vo f* and f* oV differ by linear combinations of g*th powers of
X;, for various z. Since m* o f = f o 7*, it follows that this difference is annihilated
by qth power Frobenius; but the only ¢*th powers of X; which are annihilated by
F* are X" € Ng; therefore the difference between V? o f* and f* o V? lies in' Ng,
and hence f1°° and V°° commute on the level of B'°¢ and A'°,

Therefore their difference is a morphism G — H which induces the trivial mor-
phism Spec B'°® — Spec A® ; by definition of morphisms in the category DG} 4,
the difference between V; and f is zero in Hom DGi,a(g ,’H), so they commute.

Hence V, and f commute for all f € DG;, 5 and G,'H € DG}, 4; therefore Vi is

functorial in the category DGy 5. O

Proposition 2.8.4. If G,'H € DG} 4 are connected, any morphism f : F(G) —
F(H) which commutes with V, and F, C O-action lifts to a morphism f : G — H
in DG}, 4.

Proof. By Theorem 2.7.2, we can assume
G = (Spec A, Spec Ab,z'g) and H = (Spec B, Spec B, iy),

with A = k[Xy,...,X.)/Ia, B & k[Y1,...,Yn]/Ip, A = A, B'c = B A" =
KXy, Xal/Ia(X, -, X)), B 2 kY, ..., Y]/Is(Yh, . .., Yy), where

Iy = (X9, ., Xo™)
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and

Ig = (Y5, ... Yo™)

m

and A*(X;) = X;®1+1® X;, and A*(Y;) = Y;®1+1QY;. Further, o*(X;} = aX;,
and o*Y; = oY}, for a € F,. fis given by setting f(Y;) equal to a linear combination
of Xfl for various 4 and [, and clearly lifts to a map f° with the same properties.
Since f(V,Y:) = V. f(Y), and therefore the difference between f*(V'Y;) and V? f*(Y;)
is in the ideal I4. Applying F; (which is V; and f” linear) to both sides annihilates
this difference, from which it follows that f* is 7* compatible, and therefore f lifts

to f as required. O

Corollary 2.8.5. If G,H € DGy, 45, any morphism f : F(G) — F(H) which com-
mutes with V; and F, C O-action lifts to a morphism f: G — H in DG 4-

Proof. By Lemma. 1.8.7, we have decompositions G = G¢ x G° and ‘H = H® x HC.
Since. F' is.invertible on étale k-group schemes and nilpotent on connected k-group
schemes, it suffices to prove that the induced morphisms F(G%) — F(H*) and
F(G®) — F(HO) lift to morphisms G& — H* and G° — HP°.

By Proposition 1.5.11, it suffices to assume that G& = (F(G*), Speck,i) and-
H® = (F(H*®),Speck,4); in this case, it’s clear that any morphism F(G%*) —
F(H) lifts.

Any morphism F(G°) — F(H?°) lifts by the preceding Proposition; therefore the

result follows. O

2.9 The Dieudonné anti-equivalence

In this section we prove the anti-equivalence Theorem 2.9.8, which establishes an
anti-equivalence of categories between DG} , and the category of modules of finite

length over a certain ring,.

Remark 2.9.1. Since V = 0 on F(G) for all G € DGj , by Theorem 2.5.1, the
Dieudonné module associated to F(G) by (2.3.1) is M(F(G)) = Hom(F(G), G,), as
G, = KerV : W,, —» W, for all n.

We use this observation throughout this final section.
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We now define our Dieudonné ring, which will be the analogue of the usual

Dieudonné ring Dy.

Definition 2.9.2. Let 2 be the non-commutative ring of k[[7]] together with op-

erations F, and V satisfying the following relations:

VioF, = F,oV,=mn
Fra = o'V, forac€k

Via? = oV, forack
Let (DMod), be the category of Zx-modules of finite length.

Remark 2.9.3. On P € (DMod), multiplication by a € F, (sending m € P to am)
is a k[[7]][Fr, Vz]-linear morphism (hence a morphism in (DMod), ).

This is analogous to multiplication by a € F, being an endomorphism of classical
Dieudonné modules; although multiplication by arbitrary a € k is not a F-linear
endomorphism of classical Dieudonné modules, because o # « in general.

Let G € DG;, o Hom(F(G), G,) (in the category of group schemes) is a k-module
in the sense of classical Dieudonné theory via the action of k£ on G, given by scalar
multiplication.

There’s also a composition
F,Cc ¢ - EndgG

by definition of G € DG} 5, which restricts to a map F, — End F(G); this map

induces a homomorphism of rings
F, — End; Hom(F(G),G,)

by composition, which we will denote by a — o* € Hom(F(G),G,) for o € F,.

Therefore we may apply Lemma 2.6.4 to get a decomposition of k-modules

Hom(F(G), G,) = @Hom(}-(g),(ga)x.'

such that, on v € Hom(F(G), Ga)y,, a*v = xi(a)v = aP'v, where ¥; : F, — k is the
function defined in §2.6.
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Lemma 2.9.4. Let G, H € DG} 4, and fe HochLﬁ(g,'H). Then the induced
morphism of Dieudonné modules M(F(f)) : Hom(F(H),G,) — Hom(F(G),G,)
induces a morphism Hom(F(H), Ga)y, — Hom(F(G), Ga)y,-

Proof. Let ¢ € Hom(F(H), Ga)yo C Hom(F(G),G,) = M(F(G)). We need to prove
that a*(¢o F(f)) = a(po F(f)) for all o« € F,. But a*(¢o F(f)) = ¢po F(f) o F(a*)
by definition, ¢ o F(f) o F(a*) = ¢ o F(a*) o F(f) since f € Hompg; ,(G,H), and
ago F(a*) = ¢po F(a*) as ¢ € Hom(F(H), Ga)y,, so the result follows. O

Corollary 2.9.5. Let G = (G,G"i) € DG, 5. Then there is a homomorphism of
TINgs
2P — End Hom(F(G), Gy )y,
Therefore Hom(F(G), Ga)y, € (DMod),.
We deduce that the map

G ~ Hom(F(G),Ga)xo
is a functor from DG}, , to (DMod),, which we will denote by M'(G).

Proof. By definition of G, there is a homomorphism of rings & = F,[[7]] — End G;

by the preceding lemma, this induces a homomorphism of rings
0 — End Hom(F(G), Gqa)ye-

It suffices to prove that this homomorphism extends to 9. Clearly F, and V
act on G as endomorphisms. By definition, the action of F; on Hom(F(G), G,)y,
via its action on F(G) extends to an action of k on Hom(F(G), G,),, via its action
on G,; F; and V, are o"-linear and o~ "-linear respectively, where o is pth power
Frobenius, by definition of F; and V.

Therefore Hom(F(G), Gq)y, € (DMod),.

By the preceding lemma, any morphism f : G — H induces a morphism of k-
modules M'(H) — M’(G); since any morphism G — H is compatible with & = k[[r]|
by definition, and V, and F, are functors in DG,:, s> they also commute with f, and

we see by construction of M’(f) that it is Z-linear. Hence M’ is a functor. O
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Lemma 2.9.6. Let G € DGy 5. Then Homy(F(G),G,) is generated as a Dy-
module by its k-submodule Homy(F(G), Ga)yo- Further, F* : Homg(F(G), Gy)yo —
Homy(F(G), Ga)y,

1

is an isomorphism of k-modules for alli < r.

Proof. If F(G) is étale, this is obvious: the restriction of F* : Homy(F(G), Ga)yo —
Homy (F(G), Ga)y, is an isomorphism for all 4, as F' is an isomorphism of étale
Dieudonné modules.

If G = F(G) is connected, G = Speck[X,,..., X,]/(XT",..., X)), with co-
multiplication A*(X;) = X; ® 1 + 1® X;, and a*(X;) = aX; for all ¢, by Theorem
2.7.2.

fi(T) = X; for all j define a series of group scheme homomorphisms such that
o*ff = af}; therefore they’re in Homy(G, Ga)xo- By Corollary 2.3.7, any f €
Homy(F(G),G,) is simply a linear combination of powers of F' acting on each fj;
therefore Hom(F(G),G,)y, generates Hom(G,G,) as a Dy-module. Hence each
F*: Hom(G, G,)y, — Hom(G, G,)y, is surjective.

The fact that F* : Hom(F(G), G,)y, — Hom(F(G), Ga)y, is injective for ¢ < r
and G connected follows since any f € Hom(F(G),G,)y, is given by a homomor-

phism sending the parameter of G, to a sum of p*th powers of Xj,
pl
Z a1 X
4.l

for some a;; € k. Since, by definition, F, acts ‘by scalars’ on any homomorphism
in Hom(F(G), G,),,, each p? is congruent to 1 mod ¢ — 1; by Lemma 2.7.1, each

power p’ is actually a power of ¢:

S buxy
]

for different coefficients b;;, such that [ < a;. Since the ideal defining our algebra is
(X?, ..., X2™), and (XJ‘-’l)”i ¢ (X;-’aj) for i < r where ¢ = p”, F* does not send any
such homomorphism to zero; therefore F* : Hom(F(G), Ga)y, — Hom(F(G), Ga)y;
is injective.

Since it is also surjective, it follows that it is an isomorphism for all ¢ < 7.

Since G =2 G* x G° by Lemma 1.8.7, the result follows. 0
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Corollary 2.9.7. Let G, H € DGy, 5. Then any f' € Homg, (M'(H), M'(G)) lifts to
a unique morphism f € Homp, (M(F(H)), M(F(G))), in the sense that the follow-

ing diagram is commutative

M L M)

! !

M(FH)) —L— M(F(©))

where the vertical arrows are the obvious inclusions of k-modules.

Proof. f is clearly unique if it exists at all, since by the lemma, M(F(H)) is deter-
mined as a Di-module by M'(H); since any f must be Dy-linear, this determines it
completely.

We now prove existence of f. F* : Hom(F(G),Ga)y, — Hom(F(G),Gs)y, is an
isomorphism of k-modules by the lemma, therefore it is invertible as a map of k-
modules, and we can define f(z;) = (Fio f'o F7*)(x;) for all z; € Hom(F (H), Gy)y,
and 7 < r where p” = g; clearly the morphiém defined in this way is F’ and V-linear,

and therefore it is a map of Di-modules, as required. _ W]

Theorem 2.9.8. Let M’ be the functor given by
G~ M'(G) = Hom(F(G), Ga)xo-

Then M’ is an anti-equivalence of categories.

Proof. By Freyd’s Theorem ( [GM99, §2, Theorem 1.13]), it’s enough to prove that
M’ is

1. fully faithful, and
2. surjective.

First, we prove M’ is fully faithful. Consider the map
M’ : Hompg; (G, H) — Homg, (M'(H), M'(G)).

Suppose that f : G — H maps to zero in Homg, (M'(H), M’(G)). By Corollary 2.9.7,
this trivial morphism lifts to a unique morphism M(F(H)) — M(F(G)) which must



2.9. The Dieudonné anti-equivalence 74

be the trivial one; by construction of M’; applying the classical anti-equivalence of
Theorem 2.3.1, this corresponds to the trivial morphism F(f) : F(G) — F(H).
Hence by construction of M’, f induces the trivial morphism F(f) : G — M. But
such morphisms are themselves trivial by construction of morphisms in our category
DG}, 4; therefore f is the trivial morphism. Hence M’ is injective on morphisms.

To see that M’ is also surjective on morphisms, let f' € Homg, (M'(H), M'(G)).
f’ lifts to a unique morphism f : M(F(H)) — M(F(G)) by Corollary 2.9.7; by the
Dieudonné anti-equivalence, this morphism of Dy-modules comes from a morphism
of k-group schemes F(G) — F(H).

By the explicit construction of the morphism f given in Corollary 2.9.7, f :
Hom(F(H), G,)y, — Hom(F(G),G,),, is equal to Fio f o F~%,

Similarly, the endomorphisrhs Vi of M'(H) and M'(G) lift by Corollary 2.9.7
to endomorphisms F* o V; o F~* of Hom(F(G),G,)y, and Hom(F(H),Gs)y:- Va
commutes with f’ as f’ is Zy-linear, and therefore (F*oV, 0 F~%) and (Fio f'o F'7Y)
commute for each 1. ‘ |
| By construction, the endomorphism of M(F(G)) = Hom(F(G),G,) induced by
the action of V,,. on M'(G) is that obtained by composing homomorphisms F(G) —

G, with F(V;) : F(G) — F(G), and therefore is equal to M(F(V,)), and similarly

for H. Therefore the following diagram commutes:

MFQ) = MEFEM)
lM(V,,) lM(V,,)
M(F(G)™) M(F(H)™).

M( f(q”l))
Since M’ is an anti-equivalence of categories by Theorem 2.3.1, it follows that

the following diagram also commutes:

F(G) - F(H)

|v [v

FQ)) —— F(H)E™.
fla=h

Therefore our morphism F(G) — F(H) is Vy-linear.
Since f(Hom(F(H),Ga)y:) € Hom(F(G),G,)y, by construction of f, f com-

mutes with the induced action of F(a*), for all « € F,: o* acts on both k-modules
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as multiplication by the scalar o', by definition. This action of a* on M(F(G)) and
M(F(H)) is the action induced by F(a*) on F(G) and F(H) respectively, by Corol-
lary 2.9.7; therefore our morphism F(G) — F(H) is also F(a*)-linear. Since any
morphism of k-group schemes is F-linear by definition (and hence Fy-linear), we can
apply Corollary 2.8.5, which says that it lifts to a morphism f € Hompg; LG, H).

By construction, M(F(f)) = f, and by definition, M’(f) is the restriction of f
to M'(F(H)), which is f’; therefore f maps to f’, and our functor M’ is surjective
on morphisms, hence fully faithful.

Finally, we have to prove surjectivity of M’ on objects: that to every module
W' € (DMod),, we can construct some G € DG}, , such that M'(G) = W'

The first step is to define a Di-module P via

W= w,

0<i<r
(as k-modules) where W; = W’ for all 4, and we define F' : W; — W, to be the
identity morphism for ¢ < r — 1, and F.: W,y — Wy by F(w) = F,w for all
w e W,_;. .

We define V' = 0 on all W;. The action of a* (for a € IF;) on W’ lifts uniquely
to a Dy-linear endomorphism of W by Corollary 2.9.7; similarly V; on W’ lifts to a
D,-linear endomorphism of W.

By Theorem 2.3.1, our Dy-module W is equal to M(G), for some G € Gry,
equipped with endomorphisms induced by IF, and V.

We must prove that there is some G € DGy} 4 such that F(G) = G.

Since we have the decomposition G = G* x G° by Proposition 2.3.5 of G into a

product of étale and connected subgroup schemes, it suffices to prove
1. that there is some G% € DG} , such that F(G%) = G, and
2. that there is some G° € DG}, , such that F(G%) = G°.

For G¥, this is obvious: we can take the triple G* = (G¥,Speck,i) € DGy,
together with the endomorphisms induced by F, and V;: [p] = 0 on G* since V = 0

on its Dieudonné module. This gives a homomorphism of rings & — End G*, and
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since tga = 0 and Nge = 0, this suffices to define an object G € DGy, , with the
required properties.

For G°, we can consider its Dieudonné module W. Applying Proposition 2.3.5,
it has generators my, ..., my, satisfying relations Vm; = 0 and F*m; = 0, for some
integers a;. Since it’s generated as a Dy-module by its k-submodule Wy, we can
assume that m; € W, for all m;. By construction, F" = F, on W, and all relations
F%m; = 0 factor through F", since F" |y, has no kernel for i < r, by construction
of W. Therefore each a; divides r.

By Corollary 2.3.6, the algebra of G° has a presentation

A=KE[Xy, .. X /(X XT, (2.9.1)

n

with A*X; = X; ® 1 + 1 ® X;, where b; = a;/r for all i.

F, acts ‘by scalars’ on each m; € Wj; since each m; can be identified with the
homomorphism G® — G, sending the parameter of G, to X; by the Dieudonné
anti-equivalence, the induced action of F, on X; is also by scalar multiplication.

If we let A" = kX1, ..., Xa]/(XT, ..., X)X, .., Xn), we get a triple G° =
(Spec A, Spec A°,i) € DS,, which lifts to a triple in DG}, by Proposition 1.5.7. We
can define o*X; = X; for all a € F,, and V? to be any lifting of V;; if we define
7* = F, o V,, this defines 7* uniquely, since F;(Ngo) = 0. Therefore we have an
endomorphism of rings & — Endpg, G°, and since & clearly acts ‘by scalars’ on
tgo and Ngo, we have defined an object G® € DGy}, 4, which by construction satisfies
M(F(G)) = W, and M'(G) = W,. Hence M’ is surjective on objects.

Therefore M is an anti-equivalence of categories. O



Appendix A

Basic and Auxiliary Results

In this section R is a commutative noetherian ring. The following result is adapted

from exercises in [Wei94)].
Lemma A.1. Any finitely generated flat R-module, M, is locally free.

Proof. Let P be a prime ideal of R. It’s easy to see that Mp = M ®p Rp is a flat
Rp-module. Pick a minimal set m,, ..., m, of generators of Mp, and define a map

on 1, pp by sending the ith generator of Rp®" to m;. We have

of Rp-modules Rp
an exact sequence

O—PK—')RP‘&nLMP—)O.

K = Ker f is finitely generated since R is noetherian. Tensoring with Rp/Pp gives

a long exact sequence
Tor®” (Mp, Rp/Pp) — K ® Rp/Pp — (Rp/Pp)®" L Mp ® Rp/Pp — 0

of Rp/Pp-modules. By Nakayama’s Lemma, the images of m,,...,m, in Mp ®
Rp/Pp = Mp/Pp are a set of minimal generators of Mp/Pp, and since Rp/Pp is a
field, f is an isomorphism. Torfp (Mp/Rp/Pp) = 0 since Mp is a flat Rp-module,
and therefore K @ Rp/Pp = K/PpK is zero. Hence by Nakayama’s Lemma, K = 0,

and therefore Rp®" = Mp, so Mp is free. O

Lemma A.2. Suppose that R=mg D m,... and R =ny D n,... are filtrations of
R by ideals, such that

7
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1. for each n; there is an m; such that m; C n;, and
2. for each m; there is an n; such that n, C my,
then there is a natural isomorphism Ry & R..
Proof. This is the content of [Eis95, Lemma 7.14]. O

Lemma A.3. Let M be an R-module possessing a finite-length composition series
of length n:
M=MyD> M D---D M, ={0},

so that each quotient M;/M;., is non-zero and simple. Then any surjection f :

M — M is an isomorphism.

Proof. Suppose otherwise. Then let K be the (non-trivial) kernel of our surjection,

_and consider the series

M/K = My/(MyNK) D My/(MiNK)D---D> M,/(M,NK) = {0}

in which each Successive subquotient is simple.

Since M, N K = {0}, and M N K = K % {0}, there is some ¢ such that
M;NK = {0}, but M;_; N K % {0}. Since (M;_; N K)/(M; N K) is non-trivial, and
also a submodule of the simple module M;_;/M; via the inclusion M;_;NK C M;_,,
we have an isomorphism (M;_y N K)/M; N K = M;_,/M,.

Hence (M;_,/(M;-1NK))/(M;/(M;NK)) = {0}. Hence we can get a composition
series for M/K of length m < n, by removing identical terms from the above
sequence.

Since the map f’' : M/K — M induced by f is an isomorphism, our composition
series for M/K of length m maps to a composition series for M of length m < n
under f’.

But by a standard result [Eis95, Theorem 2.13], every composition series of M
is of length n; therefore we have a contradiction.

It follows that K = {0}, hence f is injective, hence an isomorphism.
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