
Durham E-Theses

Web services robustness testing

Hanna, Samer

How to cite:

Hanna, Samer (2008) Web services robustness testing, Durham theses, Durham University. Available at
Durham E-Theses Online: http://etheses.dur.ac.uk/2378/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2378/
 http://etheses.dur.ac.uk/2378/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Web Services Robustness Testing

Ph.D. Thesis

Samer Hanna,
Department of Computer Science,

Durham University

2008

The copyright of this thesis rests with the
author or the university to which it was
submitted. No quotation from it, or
information derived from it may be
published without the prior written
consent of the author or university, and
any information derived from it should be
acknowledged.

- 6 JUN 2008

Dedication

This thesis is dedicated to the soul of my father Odeh and to my mother Azizeh who

both always encouraged me to study hard in order to get a PhD, to my brothers and

sisters for their continuous support, and specially for my sister Eman and my brother

Suhail for helping me to get the PhD scholarship which allowed me to achieve my life

time dream.

ii

Abstract

Web services are a new paradigm for building software applications that has many

advantages over the previous paradigms; however, Web Services are still not widely

used because Service Requesters. do not trust services that were built by others.

Testing can assuage this problem because it can be used to assess the. quality

attributes of Web Services. This thesis proposes a framework and presents a proof of

concept tool that can be used to test the robustness and other related attributes of a Web

Service. The tool can be easily enhanced to assess other quality attributes.

The framework is based on analyzing Web Services Description Language (WSDL)

documents of Web Services to find what faults could affect the robustness quality

attributes. After that using these faults to build test case generation rules to assess the

robustness quality attribute of Web Services.

This framework will give a better understanding of the faults that may affect the

robustness quality attribute of Web Services, how these faults are related to the

interface or the contract of a Web Service under test, and what testing techniques can

be used to detect such faults.

The approach used in this thesis for building test cases for Web Services was used

with many examples in order to demonstrate its effectiveness; these examples have

shown that the approach and the proof of concept tool are able to assess the robustness

of Web Services implementation and Web Services platforms. Four hundred and two

test clients were automatically built by the tool, based on the test cases rules, to assess

the robustness of these Web Services examples. These test clients detected eleven

robustness failures in the Web Services implementations and nine robustness failures in

the Web Services platforms.

Also the approach was able to help in comparing the robustness of two different Web

Services platforms, namely Axis and GLUE. After deploying the same Web Services in

both of these platforms; Axis showed less robustness and security failures than GLUE.

111

The material contained within this thesis has not previously been submitted for a degree

at Durham University or any other university. The research reported within this thesis

has been conducted by the author unless indicated otherwise.

This work has been documented in part in the following publications:

l) Samer Hanna and Malcolm Munro. (2007). An approach for Specification Based

Test Case Generation For Web Services. 5th ACS/lEEE International

Conference on Computer Systems and Applications, MCCSA '2007, May 13-

16, Jordan, pp. 16-23

2) Samer Hanna and Malcolm Munro. (2007). An Approach for WSDL-based

Automated Robustness Testing of Web Services. 16th International Conference

on Information Systems Development (ISD2007), August 29-31, Galway,

Ireland.

3) Samer Hanna and Malcolm Munro. (2007). Towards Rule-based Quality of

Service Assessment of Web Services. Proceedings of the 7th Service-Oriented

Software Research Network (SOSoRNet) Workshop on Dependable, Dynamic

Distributed Services and Systems, November 6th, University of Leeds, UK, pp.

25-30.

4) Samer Hanna and Malcolm Munro. (2008). Fault-based Web Services Testing.

IEEE Proceedings of the 5th International Conference on Information

Technology: New Generation (ITNG 2008), April 7th-9th, Las Vegas, Nevada,

USA, pp. 471~-476.

iv

Copyright Notice

The copyright of this thesis rests with the author. No quotation from it should be

published without their prior written consent and information derived from it should be

acknowledged.

v

Acknowledgements

First I want to thank God for changing my life and giving me the strength to write this

thesis. Also this thesis would not appear in its present form without the assistant and

support of the following individuals and universities:

Professor Malcolm Munro, Durham University, who acted as my tirst supervisor

during the whole research period, Prof. Malcolm helped me to organize my ideas and

thoughts and also provided me with continuous advice, guidance and encouragement.

Also a great friendship has developed between us in these three years that I hope will

last forever.

Dr. Marcio Dias, previous lecturer at Durham University, who acted as my second

supervisor in the first year of my research before he left Durham University. Dr. Marcio

gave me many good ideas for my research direction.

Professor David Budgen, Durham University, who acted as my second supervisor for

the second and third years of my research, Prof. David provided me also with invaluable

advice in my research specially in the first year PhD viva.

Dr. William Song, Durham University, for giving me guidance through my first year

viva and also for preparing for a group of seminars about Semantic Web and Web

Services that contributed to my knowledge in this field.

Philadelphia University, in Jordan, for gi:ving me the scholarship for my PhD at

Durham University.

Table of Contents

Chapter 1 -Introduction

1.1 Introduction

1.2 Web Services

1.2.1 Web Services Advantages and Challenges

1.3 Software Testing

1.3.1 Quality Attributes

1.3.2 DifJiculties of Software Testing and Quality Attributes

1.4 Web Services Testing

1.5 The Proposed Method of Web Services Robustness Testing

1.6 Objective

1.7 Contribution

1.8 Thesis Structure

1.9 Summary

Chapter 2 - Web Services

2.1 Introduction

·2.2 Service Oriented Architecture"SOA)

2.3 Web Services Definition

2.4 Web service Architecture

2.5 Web Service Invocation

2.6 Web Services Standards

2.6.1 eXtensible Markup Language- (XML)

2.6.2 XML Schema

2.6.2.1 Simple Datatypes

2.6.2.2 Complex Datatypes

2.6.3 Web Services Description Language{WSD~

2.6.4 Simple Object Access Protocol'fSOAP).

1

2

3

5

6

6

7

9

12

13

14

15

16

17

18

23

26

30

30

31

33

34

37

48

VI

2.6.5 Universal Description, Discovery and Integration

"'(UU>Diyo

2. 7 Summary

Chapter 3 - Software Testing and Quality Attribute

3.1 Introduction

3.2 Quality Attributes

3.3 Testing Definitions

3.4 Testing Techniques

3.5 Fault-based Testing

3.5.1 Fault Injection

3.5.1.1 Interface Propagation Analysis

3.5.2 Boundary Value Based Robustness Testing

3.5.3 Syntax Testing with Invalid Input

3.5.4 Equivalent Partitioning with Invalid Equivalence Classes

3.6 Prior Work on Robustness 'Festing

3.6.1 Fuzz

3.6.2 Ballista

3.6.3 Riddle

3.6.4 JCrasher

3.6.5 CORBA Middleware Robustness Testing

3.7 Summary

Chapter 4 - Web Services Testing

4.1 Introduction

4.2 Web Services Quality Attributes

4.3 Web Services Testing

4.4 Summary

60

61

62

62

67

73

78

79

80

80

81

81

83

84

84

85

86

86

88

90

90

92

98

vii

Chapter S-An Approach to WSDL-based Robustness

Assessment of Web Services

5.1 Introduction

5.2 Overall Architecture

5.3 A Model for Web Services Robus1ness Testing

5.4 Test Case Generation Rules

5.5 Generating Test Cases for Primitive (or derived from primitive)

Simple Datatypes

5.5.1 Test Case Generation Schema

5.5.2 Example of Test Case Generation

5.5.3 Detailed Description of Test Case Generation

5.6 Generating Test Cases for User-Derived Datatypes

5.6.1 Test Case Generation Schema

5.6.1.1 Test Cases based on the Numeric Boundaries

Constraining Facets

5.6.1.2 Test Cases based on the String Length

Constraining Facet

5.7 Generating Test Cases for Complex Datatypes

5.8 Summary

Chapter 6- WS-Robust: Web Service Robustness Testing Tool

6.1 Introduction

6.2 Building the Rules Database

6.2.1 Configuration

6.2.2 Inserting the Test Cases

6;2.3 Querying the Test Case Rules

6.3 Test Case Generation Mechanism

6.3.1 Canfiguration

6.3.2 Scenario

viii

100

1101

104

110

114

116

122

123

128

127

130

133

135

135

136

134

138

139

139

139

140

140

6.3.2.1 Primitive or Derived from Primitive Datatypes 144

6.3.2.2 User-Derived Datatypes 146

6.3.2.3 Complex Datatypes 147

6.3.3 Overall Mechanism

6.4 Test Client Generation Mechanism

6.4.1 Configuration

148

148

148

149

152

6.4.2 Scenario

6.5 Summary

Chapter 7 Evaluation

7.1 Introduction 153

7.2 Web Services with Primitive or Derived from Primitive Datacype 154

7.3

7.2.1 Configuration 154

7.2.2 Scenario 154

7.2.3 Test Case Generation 155

7.2.3.1 Single Primitive Input Datatype 155

7.2.3.2 More than One Primitive Input Datatype 159

7.2.3.3 Results 159

7.2.4 Test Client Generation 1,62

7.2.4.1 Single Primitive Input Datatype 162

7.2.4.2 More than One Primitive Input Datatype 173

7.2.4.3 Results 175

Web Services with User-derived Datatypes

7.3.1 Configuration

7.3 .2 Scenario

7.3.3 Test Case Generation

7.3.4 Test Client Generation

7.3.5 Results

7.4 Testing a Commercial Web Services

7.4.1 Scenario

182

182

182

183

185

187

188

189

IX

7.4.2 Test Case Generation

7.4.3 Results

7.5 Testing a Research-based Web Services

7.5.1 Configuration

7.5.2 Scenario

7.5.3 Test Case and Test Client Generation

7.6 Assessing Platform Robustness

7.6.1 Configuration

7.6.2 Scenario

7.6.3 Results

7.7 Summary

Chapter 8 - Conclusions and Future Work

8.1 Introduction

8.2 Contributions

8.3 Future Work

8.4 Summary

Bibliography

189

191

196

196

196

198

201

202

202

205

208

210

211

214

216

X

Fig. 1.1:

Fig. 2.1:

Fig. 2.2:

Fig. 2.3:

Fig.2.4:

Fig. 2.5:

Fig. 2:6:

Fig. 3.1:

Fig. 5.1:

Fig. 5.2:

Fig. 5.3:

Fig. 6.1:

Fig. 6.2:

Fig. 6.3:

Fig. 6.4:

Fig. 6.5:

Fig. 6.6:

Fig. 7.1:

A Model ofthe Overall Architecture of the Test Case

Generation for Web Services

Service Oriented Architecture (SOA)

Web Service Technologies Stack

Web Services Architecture

A Model for a Web Service Invocation

Hierarchy ofXML Schema Built-in and Derived from

Built-in Datatypes

Semantic Data Model for WSDL

Trustworthiness Quality Model

Overall architecture of the Web Services Robustness

13

17

24

25

27

35

40

64

Testing Framework 101

A Model ofWSDL-based Robustness Testing ofWeb Services HJ6

Web Services Robustness Failure Modes 105

WS-Robust Overall Architecture 137

Web Services Test Cases Building GUI 138

Displaying and Querying the Test Rules 139

Processing of WSDL Document to Generate 'Fest Cases 145

Overall Architecture of Processing WSDL to Generate Test

~~ 1~

The Mechanism of Generating the Test Cases with Responses

Document

A Comparison of Robustness and Security between Axis

And GLUE

Tables

151

208

xi

xii

Table 2.1: Relations of Web Services definitions and characteristics 21
Table 2.2: Definitiens of Constraining Facets 37

Table 2.3: XML Schema Components Used to Restrict the Order and

Occmrence of Elements in a Complex Datatype 37

Table 2.4: Data Dictionary for WSDL Elements, Attributes and there

Relations 41

Table 3.1: Relations between Software Testing Definitions and Roles 72

Table 3.2: Test Data Generation Method in Fault-based Testing

Techniques 82

Table 3.3 Comparisen of Robustness Testing Toels 87

Table 4.1: Literature Survey en Fault-based Testing of Web Services 95

Table 4.2: Literature Survey on Web Services testing 96

Table 4.3.: W6b Services Testing Tools 98

Table 5.1: Schema for the Test Case Generation Rules 113

Table 5.2: W3C XML Schema Primitive or Derived from

Primitive Simple Datatypes 115

Table 5.3: Test Case Generation Rules for Primitive or Derived

from Primitive Simple Datatypes 117

Table 5.4: Test Cases with Valid Data for Primitive or Derived

from Primitive Datatwes 121

Table 5.5: Numeric XML Schema Dataty:pes Boundaries 127

Table 5.6: Test Case Generation for User-derived datatype Numeric

Boundaries 131

Table 5.7: Test Case Generation for User-derived datatype String Length

Constraining Facets 134

Table 7.1: Test Data Generated by WS .. Robust 157

Table 7.2: response or fault messages for the Test Cases with Numeric

Datatypes 166

Table 7.3: response or fault messages for the Test Cases with String

Datatypes 169

Table 7.4: response or fault messages for the Test Cases with Date-Time

Table 7.5:

Table 7.6:

Table 7.7:

Table 7.8:

Table 7.9:

Table 7.10:

Table 7.11.:

Table 7.12:

Table 7.13:

Datatypes

response or fault messages for the Test Cases with Boolean

Datatypes

Response or fault message for Web Service with Two Input

Parameters

Implementation and Platform Robustness Failures for the Web

1'71

172

175

Services Examples 181

SOAP response or fault messages for test cases for Numeric

Boundaries Constraints 187

Amazon response or fault messages for String Test Cases 192

Test Data and Responses for the Square Root Web Service 201

Responses of Axis and GLUE for a Web Service with double

Datatype 203

Responses of Axis and GLUE for a Web Service with string

Datatype 203

Responses of Axis and GLUE for a Web Service with date

Datatype 203

Table 7.14: Responses of Axis and GLUE for a Web Service with boolean

Datatype 204

Table 7.15: Comparison ofthe Robustness and Security between Axis

andGLUE 207

Listings

xiii

XlV

List 2.1: XML Document Example 32

List 2.2: An XML Document with namespace 33

List 2.3: XML Schema for the XML Document in List 2.1 36

List 2.4: An Example of a WSDL portType Element 42

List 2.5: An Example of a WSDL binding Element 45

List 2.6: An Example of a WSDL service Element 46

List 2.7: An Example of a WSDL types Element 47

List 2.8: An Example of a WSDL message Element 48

List 2.9: An Example of WSDL definitions Element 48

List 2.Hl: An Example of a SOAP Request 52

List 2.11: An Example SOAP response message to the SOAP

request message in List 2.10 54

List 2.12: An Example SOAP fault message 57

List 5.1: An Example of a Simple Input Parameter Specification

Inside WSDL 104

List 7.1: WSDL Document for a Web Service that accepts an int Input 156

List 7.2: XML Test Cases Document for a Web Service with int

Datatype 158

List 7.3: A WSDL document for a Web Service that accepts two

int Datatypes 160

List 7.4: Test Cases for a Web Service with Two input Datatypes 161

List 7.5: Test Cases with Actual Web Service Responses 163

List 7.6: Test Cases and Actual Responses for an Operation with

Two Parameters 174

List 7.7: WSDL types element that contains a User Derived Datatype 183

List 7.8: Test Cases for a Web Service with a User-Derived Input

Data type 184

List 7.9: Test Cases with Responses for User-derived Datatype 186

List 7.10: A Complex Datatype that Represent ASIN Request 189

List 7.11: A SOAP fault with improper fault string and stack trace 193

List 7.12: WSDL Document of the Square Root Web Services 197

List,7.l3:

List 7.14:

List 7.15:

Test Cases for the Square Root Web Service 199

Test Cases with Responses for the Square Root Web Service 200

The SOAP response message produced by GLUE for

Numeric_ Replacement test case with a date datatype 194

XV

1

Chapter 1

Introduction

1.1 Introduction

Web Services are a new paradigm for building distributed software applications. They

have many advantages over previous paradigms such as increasing the interoperability

between heterogeneous applications and facilitate sharing data and information between

an enterprise, its branches and customers, even if they are using a different platform,

programming language or operating system.

However, the Web Services paradigm is still not widely adopted by companies and

individuals because of the trustworthiness chaHenge. In the Web Services paradigm, the

Service Requester uses a Web Service implementation written by the Service Provider.

It is lack of trust in using software written by others that causes the trustworthiness

problem between the Service Requester and Provider.

Testing is one aspect of increasing the Service Requesters trust by helping them to

automatically assess the robustness quality attribute of a Web Service based on its

interface or contract. The Service Requester may be a human, software, or another Web

Service. However, in this thesis, the Service Requester is considered only as a human.

This thesis aims to generate test cases to assess the robustness quality attributes of

Web Services. The platform, where a Web Service implementation is deployed, may

intercept the request message and it is for this reason that each test case specifies if it

Chapter 1 -Introduction 2

aims at detecting a robustness fault in the Web Service implementation or the Web

Service platform.

This thesis approach to Web Service testing has proven to be useful by achieving the

following results:

• Detecting robustness faults in many Web Services implementations and platforms

(see Chapter 7).

• Comparing the robustness of two Web Service Platforms (see Chapter 7).

This chapter will give an introduction about Web Services, Testing, and Web Service

testing and also discuss the objectives and the contributions of this thesis.

1.2 Web Services

Web Services (W3C, 2004a) (Ferris & Farrell, 2003) are a new paradigm in building

software applications based on the Internet and open standards. This paradigm has

changed the way we look at the Internet from being a repository of data into a

repository of Services (Zhang & Zhang, 2005c).

By using Web Services, companies can ensure that their applications will

communicate with those of their business partners and customers. Web Services now

are the basis of many Service Oriented Computing (SOC) (Huhns & Singh, 2005)

applications. Spending on Web Service projects has been estimated to reach $,JJ billion

by 2008 (Leavitt, 2004), and in the next 10 years Web Services will become the

dominant distributed computing architecture (Zimmermann, 2003).

Web Services are an implementation or realization of the Service Oriented

Architecture {SOA) (Huhns & Singh, 2005~. While the previous paradigms depend on

Chapter 1 - Introduction 3

components or objects, the means of building software applications in SOA are

Services.

A SOA consists of three roles, namely:

• Service Requester (Service Consumer): Is the distributed application builder (a

person).

• Service Provider: Develops and implements a Web Service.

• Service Registey: Stores meta data about Web Services such as the Provider name

and the location of the contract.

The Service Provider publishes a contract (description of their Web Service) to the

Service Registry. The Service Requester searches the Service Registry for Web Services

that accomplish a certain requirement. Once the Service Registry finds the right Web

Service it returns the Service information to the Service Requester, which in turn uses

this information to bind to the Web Service.

1.2.1 Web Service Advantages and Challenges

Web Services have many advantages. such as:

• Increasing the reusability and consequently reducing the time and cost required to

build a Web based distributed application.

• Facilitating the communication between heterogeneous applications over the

Internet.

• Based on open standards.

However, Web Services face some problems and the following discusses some of

these problems:

Chapter 1 -Introduction 4

1) The trustworthiness problem: The Service Requester can only see the contract

(WSDL) of a Web Service but not the source code. This fact has caused the Web

Service trustworthiness problem because Service Requesters do not trust Web Services

that were implemented by others without seeing the source code of the Web Service.

Tsai (Tsai et al. 2005a) mentioned that this problem is limiting the growth of Web

Service applications and that these applications will not grow unless researchers face

this trustworthiness challenge.

Zhang (Zhang, 2005a) stated that the current methods and technologies simply cannot

ensure Web Service trustworthiness and that for Web Services to grow, researchers

must not wait to address this challenge.

2) The selection prQblem: Service Requesters have no criteria to choose between

Web Services that accomplish the same task. Zhang (Zhang, 2004a) stated that it is a

big challenge to choose the most appropriate Web Service from a "sea of unpredictable

Web Services".

The reason for these problems and challenges is that the WSDL contract of a Web

Service describes the operation or the function that a Web Service provides and how to

bind to this Service. However, it does not describe the non functional quality attributes

such as robustness, reliability or performance.

3) Vulnerability to invalid inputs by malitious Service Requesters: Since Web

Services are advertised in the Internet then any Service Requester can access this Web

Service and some of these might be malicious Requesters that aim to harm the Web

Service or gain unauthorized access to certain information by providing invalid or

malicious input.

Chapter 1 -Introduction 5

Input manipulation vulnerability is 59.16% of the overall Web Services vulnerabilities

(YU, et al. 2006) and that is why Web Services should be tested against this kind of

fault to assess if a Web service is vulnerable te input manipulation attacks in order to

increase Web service trustworthiness.

Myers (Myers, 1979~ mentioned that testing that a program does what it is suppose to

do is only half the battle, the other half is to test whether the program does what is not

supposed to do. In other words, to check if a program is vulnerable to invalid input.

This thesis will use testing to give an approach to solve these Service Requester and

Service Provider problems. This thesis applies the traditional input validation testing

techniques to Web Services.

1.3 Software Testing

Software Testing (Harrold, 2000) (Jorgensen, 2002) is a Software Engineering

technique that is mainly used to detect faults and assess the quality attributes in a

software system and to demonstrate that the actual program behavior will conform to

the expected behavior. Studies indicate that more than fifty percent of the cost to

develop software systems is devoted to testing and that· the percentage is significantly

higher for critical systems (Osterweil, 1996) (Harrold, 2000).

Testing techniques can be divided into black box and white box depending on the

availability of the source code; if test data is generated depending on the source code

then a testing technique belongs to white box testing, while if the source code is

unavailable, and the tester only cares about the behavior of the system under test rather

than how it was built, then a testing technique belongs to black box testing.

~----~- -~---

Chapter 1 -Introduction 6

Examples of black box testing techniques are: boundary value testing (Jorgensen,

2002), equivalent partitioning <Myers, 1979) and syntax testing (Beizer, 1990).

Example of white box testing are path testing, data flow testing and slice~ based testing

(Jorgensen, 2002).

1.3.1 Quality Attributes

A quality attribute (sometimes called property) is defined as the software component

characteristic that the developers need to understand in order to integrate the software

component with the system under development (Korel, 1999). Examples of a quality

attribute are: dependability, performance, security, and testability.

The quality attribute that this thesis is concerned with is robustness which is a sub~

attribute of reliability (Adrion et al. 1982), which in turn is a sub-attribute of

dependability (Avizienis et al. 2004) and trustworthiness (Zhang, 2005a). Robustness is

defmed as "the degree to which a software component functions correctly in the

presence of invalid inputs or stressful environment conditions" (IEEE, 1990).

1.3.2 Difficulties of Software Testing and Quality Attributes

Software testing and quality attributes have many difficulties and challenges such as:

• Not all the quality attributes are quantifiable.

• There is no agreement between researchers about the relationships between

quality attributes, for example, according to (Boehm et al. 1976) the reliability

quality attribute includes the sub attributes: self-containedness, accuracy,

Chapter 1 - Introduction 7

completeness, robustness/integrity and consistency, while according to (Adrion, et

al. 1982) it includes adequacy and robustness sub-attributes.

• There is no agreement about what testing techniques can be used to assess certain

quality attributes.

• There is no agreement about what faults may affect certain quality attributes.

• Quality attributes are different for different applications and prospective.

1.4 Web Services Testing

The trustworthiness of Web-Service software is considered the paramount factor that

will decide the success of the Web Services paradigm (Zhang & Zhang. 2005c).

Software testing is used in this thesis in providing an approach that addresses part of

this trustworthiness challenge.

Since testing is performed to support quality assurance then it is normal to use it with

Web Services in order to increase their quality and hence inct:ease the Service

Requester's and the Service Provider's trust.

The confidence of the Service Requesters of a Web Service will increase or decrease

according to the test results. This will help the Service Requesters to choose between

Web Services doing the same task.

Using testing to assess the quality attributes of Web Services has many advantages

such as:

• Increase the Web Services trustworthiness by the Service Requesters and

Providers and hence increase the usage of Web Services to build software

applications.

Chapter 1 - Introdudion 8

• Help the Service Requesters to choose between Web Services that accomplish the

same task depending en the quality attributes that concerns each Service

Requester.

• Since Web Services are loosely coupled, when a fault is detected in a certain Web

Service in an application then this Web Service can be replaced with another one

that accomplishes the same task without affecting the application.

• Help the Service Providers to detect faults in their Web Services before publishing

them.

• Help the Service Provider to make sure that his Web Service will survive against

attacks by malicious Service Requesters.

• The Service Provider may change the code of his Web Service after publishing it,

so regression testing can be used to solve this problem.

However, Web Services testing still face many difficulties such as:

• There is lack of technologies for Web Services verificatien (Zhang & Zhang,

2005c).

• Current methods and technologies cannet ensure Web Service trustworthiness

(Zhang, 2005a) {Tsai, et al. 2005b).

• Due to specific properties of Web Services, the existing traditional software

testing techniques deserve modification to make them suitable for the domain of

Web Services (Zhang, 2005c)

• New software testing techniques are required to perform effective testing on Web

Services(Zhang, 2005c)

Chapter 1 - Introduction 9

• Web Services are based on relatively new open standards such as XML, WSDL

and SOAP, whHe traditional testing techniques were developed earlier than those

standards and hence those techniques must be modified to make them work with

the new characteristics introduced by the Web Service standards. In other words,

the current testing techniques can not merely be applied to Web Services (Zhang

& Zhang, 2005b).

• Unavailability of the source code of a Web Service to the Service Requesters i.e.

all the test done by the Requester is black box.

• Testing Web Services is very expensive because it consumes significant cast and

bandwidth (Zhang & Zhang, 2005b).

• After analyzing WSDL documents for many Web Services it has been found that

the descriptions provided for the input parameters can be used to improve test case

generation for the Web Service (increase testability).

1.5 The Proposed Method of Web Services Robustness

Testing

This thesis proposes a method to assess the robustness quality attribute of Web

Services. The method focuses on the robustness faults that may lead to robustness

failures rather than focusing on whether a Web Service produces the correct response.

An exceptional input that is based on the information inside WSDL will be fed to the

Web Service under test and the response of this Web Service wHl be analyzed by a tool

to detect robustness failures.

Chapter 1 -Introduction 10

The approach proposed in this thesis for Web Services robustness testing depends on

a model that will be described in chapter 5. The proposed model is based on the

following general steps:

1. Analyzing WSDL documents to know what faults may affect the robustness

quality attribute of Web Services, specifically, the XML Schema specification

(W3C, 2004b) (W3C, 2004c) of the input parameters datatype.

2. Analyzing what testing techniques can be used to assess those faults.

3. Analyzing how test data and test cases can be generated, to assess robustness

quality attributes, based on step 1 and step 2.

The proposed approach of automated WSDL based robustness testing has many

advantages such as:

1. Automating the process of generating test cases to assess the robustness quality

attribute of Web Services

2. Addressing the Service Requester's trustworthiness problem discussed in section

1.2.2 by assessing the robustness quality attribute of Web Services.

3. Facilitate discovering faults in Web Services before they result in significant

fail me.

4. Addressing the Service Requester's selection problem discussed in section 1.2.2

by giving the Requester the robustness criteria to choose between Web Services

that accomplish the same task.

5. Addressing Service Provider's vulnerability to invalid inputs problem (discussed

in section 1.2.2) that may lead to security breaches in Web Services.

Chapter 1 -Introduction 11

6. Observing how a Web Service will respond if there are problems in its

environment such as the problems caused by the input from other Web Services in

the same Web Service composition.

7. Standardizing the process of test case generation by all Service Requesters

depending on test case generation rules

8. Participating in solving the problem of the lack of technologies for the verification

of Web Services discussed in section 1.4.

9. Participating in addressing the Web Services testing problem .of the unavailability

of the source code to the Service Requester discussed in section 1.4 by designing

test cases based only on WSDL.

10. Participating in addressing the Web Services testing challenge of modifying the

traditional software testing techniques to make them work with Web Services.

11. Participating in addressing the Web Services testing challenge of extending the

WSDL specification to increase the testabHity of Web Services.

12. Participating in solving the testing problem of specifying the testing techniques

that can be used to assess certain quality attributes.

13. Participating in addressing the problem of specifying the faults that may affect

certain quality attributes.

14. Participating in addt:essing the problem of the relationships among the quality

attributes.

Chapter 1 -Introduction 12

1.6 Objective

The main problem that this thesis aims to address is the lack of trust of Web Service by

Service Requesters and Providers; this problem will be addressed by providing an

approach to assess the robustness quality attribute of Web Services using traditional

testing techniques.

Researchers in the field of Web Service testing proposed few models for verification

and test case generation for Web Services (Tsai, 2005a). However, most of the models

focused mainly on applying certain testing techniques for Web Services without clearly

analyzing what faults these testing techniques aim to detect or what are the specific

quality attributes that will be assessed. Some of the previous research specifies the

quality attribute to be assessed, such as assessing the reliability quality attribute in

(Zhang, 2004a), but did not analyze the sub-attributes of these quality attributes and

how they can be assessed.

The objective of this thesis is to introduce a different approach in that it relates faults,

quality attributes, and the WSDL components, in rules for Web Service testing which

leads to a greater understanding of the faults that may affect the robustness of Web

Services. It also defines what test data could be used to assess those faults and also what

other quality attributes may be affected by those faults. The influences from the

literature on the research on this thesis are shown in Fig. 1.1.

The ultimate goal of the research is to increase the dependability and trustworthiness

of a Web Service by assessing Web Services quality attributes. This goal cannot be

accomplished in a single piece of work and needs a number of future years of research;

Chapter 1 - Introduction 13

however, the objective of this thesis is so give an approach that can be used as a start

point to achieve that goal.

Quality Attributes

WSDL Robustness Testing
Faults

Fig. 1.1. Influence from the Literature

1. 7 Contributions

This thesis achieves the following contributions:

1. Developing an approach to assess the robustness quality attributes of a Web

Service based only on the specification of the operations' input parameter

dataeypes inside the WSDL document of the Web Service under test.

2. Detecting robustness and security faults in Web Services implementations and

platforms.

3. Analysis of which faults affect the robustness quality attribute of Web Services.

Chapter 1 -Introduction 14

4. Implementing a prototype tool that demonstrates the feasibility of the proposed

Web Services robustness testing approach. The tool is able to generate test cases

to assess the robustness of Web Service and write a test client depending on these

test cases.

5. Analyze the effect of the Web Service platform on the robustness and security

quality attributes. A comparison has been made to two platforms by deploying the

same Web Services on both of them and then assessing which one of the platforms

is more robust and secure using this thesis approach.

1.8 Thesis Structure

This thesis is organized as follows:

Chapter 2 will give a definition to Web Services and the technologies that are used in

Web Services. Since test cases are built in this thesis using W:SDL and XML Schema,

more details will be given for these two W3C specifications for Web Services. Chapter

3 will discuss the traditional testing techniques such as boundary value and robustness

testing and also the quality attributes that can be assessed using testing techniques.

Chapter 4 will give a comprehensive survey on how other researchers tackled Web

Service testing. Chapter 5 will define the proposed method in this thesis that is based on

the analysis of the data types in WSDL in order to generate test cases. Chapter 6 will

discuss the implementation of the method in Chapter 5. Chapter 7 will evaluate the

usefulness of this thesis approach by applying it to many examples or case studies such

as the Amazon Web Services. And finally Chapter 8 will give the conclusion of this

thesis and also will discuss the future research directions~

Chapter 1 -Introduction 15

This chapter gave an introduction to the thesis by:

• Defining Web Services with their advantages and difficulties (section 1.2)

• Defining testing and quality attributes (section 1.3)

• Defining Web Services testing with its advantages and difficulties (section 1.4)

• Describing briefly the model used in this thesis for Web Service testing (section

1.5).

• Describing the objective and the contribution of the thesis (section 1.6 and 1.7)

• Specifying the rest of this thesis structure (section 1.8)

The target of this thesis is to introduce a novel approach for Web Service robustness

testing that will help in increasing the trustworthiness of Web Service Requesters and

Providers in Web Service applications.

16

Chapter 2

Web Services

2.1 Introduction

This chapter will give definitions of Web Services, Service Oriented Architecture

(SOA), and the open standards that enable a Web Service to implement SOA such as

XML, XML Schema, SOAP and WSDL.

2.2 Service Oriented Arcbitecture (SOA)

The software architecture of a computing system is the structure which comprises

software components, the external properties of those components, and the relationships

among them (Bass et al. 2003). SOA is defined as an approach to building software

systems that is based on loosely coupled components (services) that have been

described in a uniform way and that can be discovered and composed (Erl, 2006).

Another definition is that SOA is a pattem where all software components are modeled

as service, where components are functional units that are visible for other entities to

invoke or consume over the network (Graham et al. 2005).

The SOA concept is needed to enable Service Oriented Computing (SOC). While

previous paradigms of'building software applications depend on components or objects,

the mean of building software applications in SOA are services.

A SOA includes the following components: Service Requester, Service Provider,

Registry, and Contract components as shown in fig. 2.1.

Chapter 2 - Web Services

Senice
Requester

RePtry

Service
Provider

Fil!. 2.1. Service Oriented Architecture (SOA)

17

The relationships between these components are as follows: the Service Provider

publishes their Contract or interface in the Registry. Then the Requester of a Service

asks the Registry for the Services that matches their criteria. If the Registry has such a

Service, it gives the Service Requester information about that Service such as the

location of its Contract. Finally the Service Requester can then bind and execute this

Web Service using the information in the Contract.

The Contract (interface or description) is important because:

• Service Providers publish information about the location of the Contract inside

a Registry.

• Service Requesters use the Contract to bind to the requested Web Service

because the Contract describes how a service can be invoked

• The Contract describes all the operations that a Web Service provides.

The Services in a SOA have many characteristics such as (Erl, 2006):

• Loosely coupled: the Service Requester should not worry about how a Service

was implemented or where the Service is located.

Chapter 2 -Web Services 18

• Discoverable: meaning that the Requester of a Service can discover the needed

Web Service by asking the Registry as mentioned above.

• Dynamically bound: meaning that the Requester of a Service can bind to the Web

Service using the information in the Contract at run time.

• Interoperable: meaning that a software application can invoke a service even if

that Service is on a different platform and written in a different ·programming

language.

• Network addressable: meaning the Consumer can invoke a service using a

network (usually the Internet).

2.3 Web Service Definition

There is no standard definition of Web Services. The definition has always been under

debate. A difficulty with research in this area is the number of definitions of Web

Services, many of which are contradictory and imprecise.

Among the many definitions, some of the important ones are:

l. The World Wide Web Consortium (W3C) (W3C. 2004a) (which has managed the

evolution of the SOAP and WSDL specifications) defines Web Services as:

"A software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine

processable format (specifically WSDL). Other systems interact with the Web

Services in a manner prescribed by its description using SOAP, typically

conveyed using HTTP with XML serialization in conjunction with other Web

related standards".

Chapter 2 -Web Services 19

2. ffiM (IBM 2006) defines Web Services as:

"A technology that allows applications to communicate with each other in a

platform- and programming language- independent manner"

3. Offutt and Xu (Offutt and Xu, 2004~ define Web Services as:

"A Internet-based and modular applications that use Simple Object Access

Protocol (SOAP) for communication and data transfer in XML through the

Internet".

4. Cerami (Cerami; 2002) defines a Web Service as:

"Any piece of software that makes it available over the Internet and uses a

standardized XML messaging system".

5. Curbera (Curbera, et al. 2002) defines Web Services as:

"An emerging technology to provide a systematic and extensible framework

for application-to-application interaction, built on top of existing Web

protocols and based on open XML standards".

6. Zhang (Zhange and Zhang, 2005c) defines Web Services as:

"Programmable Web applications that are universally accessible using

standard Internet protocols"

Clearly, there is no one fixed definition of Web Services, which means that there are

different views of the infrastructure that should be considered as a Web Service.

However, by observing the above definitions, we notice that there are some

characteristics to be considered as a Web Service infrastructure including:

1. Modular - Web Services are usually an aggregation of many loosely coupled and

il}dependent Services.

Chapter 2 -Web Services 20

2. Application to application (or machine to machine) interoperable interaction

infrastructure, a Web services' main goal is to integrate heterogeneous

applications.

3. Use of SOAP, WSDL, and UDDI - Typically Web services use SOAP messages

to communicate, and the interface or Contract of a Web Service is described using

WSDL, and services descriptions are stored in UDDI.

4. Based on XML - all Web Services technologies are based on XML.

5. The interface is described in a machine processable format.

6. Transport neutral - Usually Web Services transfer over HTTP, but they can

transfer over any other transmission protocol.

7. Internet-based- Web Service interactions are done mainly using the Internet but

they can be done by any other network

The relationships among these characteristics and the different definitions introduced

are summarized in Table 2.1. The table indicates whether we can infer a characteristic

(column) based on a particular definition (row).

The symbols shown in the table are:

1. The full circle (•) indicates that the definition explicitly states the characteristic.

2. The symbol (~) indicates that the definition does not explicitly express that

specific characteristic, but the context of the definition suggests it.

3. The empty circle (o) indicates that the characteristic is not included in a specific

definition.

Chapter 2 -Web Servi(:es 21

Table 2.1. Relations of Web Servi(:es Defmitions and Chara(:teristi(:s

-0
s:: § haracteristi(: 0

I ~ •p Cl)

~ 1]
~~

....

~
0

J ~ ---~~ - 0 8 Cl) z::t: M! s:: c:/) 1 fll -0
~

..... ..t::l t:b ta
•p § ;

,D Cl)

Cd

ei
,D 8.] l$z :g u

~] ~
fll e -Definition

~ 8: 0 ~~ ~~· < c:/) ~p.. ~ 0

W3C (W3C. 2004a) 0 • • • • • •
IBM (IBM 2(i)06) 0 • 0 0 0 0 --
Offutt and Xu (Offutt • • • • 0 0 • and Xu, 2004)

Cerami (Cerami, 0 0 0 • 0 0 • 2002)

Curbera et al. 0 • - • 0 - -- -
~Curbera, et al. 2002)
Zhang and Zhang

0 0 - 0 0 0 • (Zhange and Zhang, -
2005c)

We can see that W3C {W3C, 2004a) gave the broadest and the most precise definition

among the definitions because it specifies all of the characteristics. However, this

defmition did not specify the modular characteristic that was specified by Offutt and Xu

(Offutt and Xu. 2004).

It should also be noted that none of the definitions specified the loosely coupled

characteristic of Web Services which is considered one of the main characteristics of

SOA.

Chapter 2 -Web Serv:ices 22

After analyzing all the definitions, this thesis will use the following definition of Web

Services that include all the characteristics mentioned in the above definitions and also

the loose coupling characteristic:

"Web Services are network (Internet) based modular applications designed to

implement SOA, and support interoperable, loosely coupled, integration of

heterogeneous applications. Web Services are discovered using UDDI and have

an interface (WSDL) that is described in a machine-processable format. Other

systems interact with the Web Services in a manner prescribed by its description

using SOAP. These SOAP messages (as well as all other technologies of Web

Services) are based on XML and typically conveyed using HITP ".

As an example of using a Web Service; suppose that 3rd person want to build a Web

Service based application and part of this application needs to make transactions about

products provided by Amazon such as books. Amazon Web Services (Amazon, 2007) is

a Web Service interface that is provided by Amazon to enable application builders to

invoke the information of Amazon products. A Web application that uses the Amazon

Web Service to make transactions on the Amazon books is considered Service

Requester and Amazon is the Service Provider.

As another example (Singh & Huhns, 2005) for Web Services and SOC, taken from

healthcare domain, suppose that we want to build a Web Service based application fora

certain hospital, this application is responsible for purchasing suppl,ies for the hospital.

The application should be able to interoperate with the vendor's Services and select the

vendor with the best quality of Service criteria such as reliability, performance, and

availability.

Chapter 2 -Web Services 23

2.4 Web Services Architecture

Web Services provide platform-independent communication of software Services

(resources) across the Internet. While many believe that Web Services are SOA, they

are in fact, implementations of SOA. SOA is an architectural concept, an approach to

building systems, Web Services, on the other hand, are an implementation of SOA that

is based on a set ofXML-based technologies such as SOAP and WSDL.

'Fo implement a SOA, Web Services depend on a group of eXtensible Markup

Language (XML) (W3C, 2006) standards such as:

Simple Object Access. Protocol (SOAP) (W3C, 2007) which plays the role of the

messaging protocol for exchanging data between the Service Provider and the

Service Requester (application builder). SOAP protocol is considered the core of

XML-based distributed computing.

Web Service Description Language (WSDL) (W3C, 200:1) which plays the role of

the contract that describes the operations provided by a Web Service and how to

bind to it.

Universal Description, Discovery, and Integration <UDDI) (OASIS, 2004) which

plays the role of a Registry of Web Services descriptions or .contracts.

These standards enable Service Requesters to search for Web Services contracts to find

a Service that fulfils their requirements, and then use the information inside the contract

to communicate with remote Service Providers by using a non-proprietary protocol such

as SOAP over Hyper 'Fext Transfer Protocol {HTTP) (Gourley et al. 2002) or other

transport protocols.

Chapter 2 -Web Services 24

Since SOAP is the core protocol for distributed computing and it is used in almost al11

Web Services, and since HITP is the ubiquitous communication protocol on the

Internet that is also used by most Web Services, this thesis will use only SOAP/HTTP

for a messaging/transport protocol.

Web Services can be thought of as a layered set of technologies or standards as shown

in Fig. 2.2. However, Fig. 2.2 includes only the technologies that are relevant to this

thesis. There are other technologies for Web Services such as those that enable Web

Service composition; however, those technologies are outside the scope of this thesis.

The layers of the Web Service technologies stack shown in Figure 2.2, are:

1. Transport Layer: The base layer of the stack is the transport layer. Since Web

Services are basically a messaging mechanism between applications over the

Internet, they rely on transport technologies such as HTTP which are used as

transportation protocol in the Internet.

Descrflttlox WSDL,UDDI

MessagiJtc XML,SOAP

TraiUiport HT'IP

Fig. 2.2. Web Services Technologies Stack

Chapter 2 -Web Services

Service
Requemr

UDDI

SOAP
ner

HTTP

Seniee
Provide~·

Fig. 2.3. Web Services Architecture

25

2. Messaging Layer: At the messaging layer there are the fundamental Web

Services technologies, namely, XML and SOAP. XML will be discussed in

section 2.6.1 and SOAP will be discussed in section 2.6.3.

3. Description Layer: This layer is responsible for describing a Web Service such

as what operations a Web Service provides and how to fmd it. The technologies at

this layer include WSDL and UDDI. WSDL will be discussed in section 2.6.3 and

UDDI will be discussed in section 2.6.4.

Applying these Web Service technologies to Fig. 2.1 gives Fig. 2.3.

The Web Service technologies in Fig. 2.2 and Fig. 2.3 enable Web Services to

implement SOA as the following:

• WSDL plays the role of the Contract in SOA, UDDI plays the role of the Service

Registry, and SOAP plays the messaging protocol that is responsible for binding

the Service Requester and the Service Provider.

• Service Providers publish information about their Web Services implementation

including WSDL address in the UDDI registry. When a Service Requester needs

---~-------~----

Chapter 2 - Web Services 26

to invoke a certain Service provided by a Service Provider, they must do the

following:

I. The Service Requester search the UDDI for the Web Services that meet

their requirement specification

2. The UDDI registry will tell the Service Requesters the location of the

required Web Service and the location of its WSDL

3. The Service Requester will use the information inside WSDL to send a

SOAP message as a request to the required Service provided by the Web

Service implementation or Service Provider.

4. The Service Provider replies by sending a SOAP response to the Service

Requester, if the SOAP request has some errors then the Service Provider

replies by a SOAP fault rather than a SOAP response.

2.5 Web Service Invocation

A Web Service can not be accessed directly by Service Requesters but they are accessed

by software applications that are written by these Service Req-pesters (Service

Requesters are assumed to be human and not software in this thesis). These software

applications are called Web Services-based application (or Client applications) this is

the new paradigm of building software application that relies on Services available on

the Internet.

Fig. 2.4 shows a model that describes the components that participate in a typical Web

Service invocation in a Web Service-based application. Most of the components in this

model have already been defined except: client stub, server stub (skeleton) and Web

Chapter 2 -Web Services 27

service container. These terms will be defined first and then a description of the

components interaction in the model will be discussed.

(Service
Provider
Side or
Server side)

Service
Provider writes

Pro g.
Lang.
results

Web Service
implementation

Pro g.
Lang.
call

describes

uses

SOAP response or SOAP fault

WSDL

uses

Network .•...

Client
Side
(Service
Requester
Side)

Service
Requester writes

Client
Application

Fig. 2.4. A Model for a Web Service Application

Prog.
lang.
call

Prog.
lang.
result

SOAP

Client Stub or Client
Proxy

Client stub (sometimes called client proxy), is code (such as Java code) that is

generated from WSDL and is responsible for:

• Giving Service Requesters an API that mirrors the Web Service operations

inside WSDL.

• Taking a request (or call) in application specific data (such as in a Java

datatype) from the client application and converting this request into SOAP

Chapter 2 ~Web Servi~es 28

request. This process of converting application data to XML (SOAP) is

called marshalling.

• Receiving SOAP responses and converting them to an application specific

data that is understood by the client application

Server stub ~or skeleton), is a code that is responsible for:

• Receiving a SOAP request from client stub (using HTTP) and converting it

into a form that is suitable for the Web Service implementation. This process

of converting XML (SOAP) to application specific data is called

unmarshalling.

• Converting the response from the Web Service implementation into a SOAP

response message (or fault message in the case where the Web Service

implementation raised an exception or anything went wrong)

Web Servi~e ~ontainer (or server) provides a hosting environment for Web

Service source code and the middleware (or SOAP implementation) such as

Axis (Apache Software Foundation, 2007). The container or the server is the

first to receive the HTTP SOAP request from the Service Requester, the server

then decides what to do with this request message according to a field inside

HTTP POST called SOAPAction.

An example of a Web service container is apache tomcat (Apache Software

Foundation, 2006).

The process of invoking a certain operation ~see Fig. 2.4), provided by a Web Service

implementation, includes the following steps:

1. The client application calls the client stub using an application specific datatype

(depending on the programming language this application is written in)

Chapter 2 -Web Services 29

2. The client stub will convert this local invocation into a SOAP request

(marshalling)

3. The SOAP request is sent over the Internet {using HTTP) to the required Web

Service container

4. The Web Service container (server) receives this SOAP request and then hands it

to the skeleton {server stub).

5. The skeleton converts the SOAP request into an application specific data and

sends it to the Web Service implementation (depending on the programming

language the Web Service implementation is written by).

6. The Web Service implementation perfomts the requested operation that it was

asked to perform by the skeleton.

7. The result of this operation WHI be handed to the skeleton.

8. The skeleton converts this application specific result into a SOAP response (or

SOAP fault if the Web Service implementation raised an exception or anything

else went wrong)

9~ The SOAP response (or SOAP fault) message is sent to the client stub using the

Internet (over HTTP).

W. The client stub converts the information inside the SOAP response (or SOAP

fault) message into an application specific information (that can be understood by

the client application) and sends it to the client application.

There are many tools that can create a client stub and a server stub based on WSDL,

and manages the creating and sending of SOAP messages over the Internet. These tools

are called SOAP-based Web Service platforms or SOAP engines. An example of these

Chapter 2 - Web Services 30

tools is Apache Axis (Apache Software Foundation, 2007) and GLUE (WebMethods,

2001).

2.6 Web Services Standards

This section will present more details for the Web Service standards that are related to

this thesis, namely, XML, XML Schema, WSDL, SOAP, and UDDI.

2.6.1 XML

XML (Extensible Markup Language) has the following characteristics:

• Is based on human readable tags

• Extensible language: because 3"' person can define any number of tags he wants.

• Cross-platform.

• Hierarchical: because each element of the XML element can have any number of

child elements under it.

List 2.1 is an example of a XML document that describes books, this example will be

used to clarify the usage of XML;

XML used for:

• Structuring and describing data: in List 2.1 we notice how the information

about books are structured and described in a hierarchical way; each books

element contains the book sub-element and many sub-elements such as ISBN and

title.

• Storing data: List 2.1 is considered a way of storing data about the details of

books.

Chapter 2 -Web Services 31

• Exchanging data: XML is used to exchange data between otherwise

incompatible applications or software systems, in other words, XML is a way of

connecting heterogeneous applications. In List 2.1 example, when any application

receives the books information, that application will understand or interpret this

information no matter what programming language or platform is used in the

receiving application.

Other characteristic of a XML document is that it is possible to use namespace for the

naming of element and attributes. This is because XML may be used for data exchange

and different applications that exchange XML document may use the same name for an

element or attribute. XML namespaces was introduced to solve this problem by

distinguishing between those elements and attributes and also grouping each set of

elements and attributes so that they can easily be reused in other documents. An

example of an XML document with a namespace is given in List 2.2.

List 2.2, the year element is now qualified with the namespace nsi to distinguish it from

probable other year elements in different documents.

If an element is unqualified with a namespace then it uses the default namespace

which is the namespace that does not have any prefix; in List 2.2 the default namespace

is http://www.dur.ac.uk and it is used to qualify all other elements and their sub

elements except the year element because it has a unique namespace.

2.6.2 XML Schema

XML Schema and Document Type Detinition <J)TD) (Harold and Means, 2004) are

two ways to specify the legal or acceptable building blocks (elements and attributes) of

an XML document.

Chapter 2 - Web Services 32

The DTD has limited support for data types and solving this and other problems has

led to the introduction of XML Schema by W3C (W3C, 2004b). XML Schema became

a W3C Recommendation in 2001 and is used to:

<?xml version="1. 0'" encoding="UTF-8'"?>
<books>

<book topic="Java Programming Language">
<isbn>0-13-129014-2</isbn>
<t~tle>Java How To Program Sixth Edition</title>
<author name="H. M. Deitel" type="fisrt_author"/>
<author name="P. J. Deitel" type="second author"/>
<year>2005</year> -
<notes>used as a tutorial for Java language</notes>
<publisher>Pearson Education International
</publisher>
<location>United States</location>
<owner>

<name>S. Hanna</name>
<email>samer.hanna@dur.ac.uk</email>

</owner>
</book>
<book topic="SOA">

<isbn>0-13-185858~0</isbn>

<title>Service-Oriented Architecture Concepts,
Technology

</title>
<author name="T. Erl" type="firsrt author"/>
<year>2005</year> -
<notes>Good book to understand SOA concepts</notes>
<publisher>PRENTICE HALL</publisher>
<location>United States</location>
<owner>

<name>S. Hanna</name>
<email>samer.hanna@dur.ac.uk</email>

</owner>
</book>

List 2.1. XML Document Example

• Put constraints on the elements and attributes that can be in an XML document

instance.

• Define the relations (structure) between the elements.

• Define the datatypes associated with the elements and, attributes.

Chapter 2 - Web Services

<?xrni version="1.0" encoding="UTF-8"?>
<books xrnlns:n~1= 1'http: I /www .. dur. ac. uk/Year"

xrnil.ns "" "http://www.dur.ac.uk">
<book topic:"Java Programming ::Language">

<isbn>0-13-129014-2</isbn>
<title>Java How To Program Sixth Edition</title>
<author narne="H. M. Deitel" type="fisrt author"/>
<author narne="·P. J. Deitel" type="second_author"/>
<nsl: year>2005</nsl: year>
<notes>used as a tutorial for Java

language</notes>
<publisher>Pearson Education

International</publisher>
<location>United States</1ocation>
<owner>

<narne>S. Hanna</narne>
<ernail>sarner.hanna@dur.ac.uk</ernail>

</owner>
</book>
<bOok topic="SOA">

<isbn>0-13-1&5858-0</isbn>
<title>Service-Oriented Architecture Concepts,

Technology</title>
<author narne="T. Erl" type="firsrt_author"/>
<ns1:year>2005</ns1:year> -
<notes>Good book to understand SOA

concepts</notes>
<publisher>PRENTICE HALL</publisher>
<location>United States</location>
<owner>

List 2.2. An XML Document with namespace

33

List 2.3 is XML Schema for the XML document in List 2.1 contains examples of

many XML schema components such as datatypes, constraining facets, and restricting

elements. List 2.3 will be used through the discussion of the XML Schema components.

According to W3C (W3C, 2004c) XML schema datatypes can be categorized into

simple datatypes and complex datatypes:

2.6.2.1 Simple Datatypes:

Simple datatypes include:

Built-in primitive datatypes: an example of a buHt-in primitive simple datatype in

List 2.3 is xsd:string (xsd stands for XML Schema Datatype). Fig 2.5 (W3C,

2004c) gives more examples of these datatypes such as float, time and anyURL

Chapter 2 -Web Services 34

Derived from built-in primitive datatypes: these datatypes are derived from the

buHt-in primitive datatypes by applying some default constraints, for example

nonPositivelnteger (Fig 2.5) is derived from integer by restricting the value

space of integer to only negative numbers. Fig. 2.5 gives a hierarchy of XML

Schema' built-in and derived from built-in datat}lpes.

User-derived datatypes: User-derived datatypes are simple datatypes deri¥ed by

restricting a base datatype (which can be a built-in primitive or dedved from

primitive datatypes) using constraining facets (See Table 2.2). As an example of

a user-derived datatype in List 2.3 is the Publisher datatype which has restricted

the values that are a string base datatype using the enumeration constraining

facet.

List datatypes: consists of a finite length sequence of values of built-in, derived

from built-in or user derived datatypes. All the values of a list need to have the

same datatype.

Union datatypes: the union of the values of one or more datatypes.

2.6.2.2 Complex datatypes ·

Complex datatypes consist of one or more elements and attributes of simple datatypes.

Examples of complex datatypes in List 2.3 are: Books, book, Owner and Author. For

example, Books datatype is a sequence of book complex datatype. Where sequence,

choice and all (W3C, 2004b) are used to put restrictioliS on the element inside a

complex datatype as described in Table 2.3.

Chapter 2 - Web Services

Bu~1t-1n Datatype H~erarchy

r---------·-----
lall complex typee I

• ur typee

t=J bu~t-in primitive typee

~ bu~t-in derived typee

c=J complex typee

derived by reetriction

-------- derived by liet

---- derived by extenewn or
re21triction

35

Fig. 2.5. Hierarchy of XML Schema Built-in and Derived from Built-in Data types

Chapter 2 Web Services

<xsd:schema xmlns:xsd="http://www.w3.o:rg/2001/XML.Schema">
targetNamespace="http://www.dur.ac.uk/samer.hanna"
xmlns:bookns="http://www.dur.ac.uk/samer.hanna"

<xsd:annotation>
<xsd:documentation xml:lang="en">

Schema for books.
</xsd:documentation>

</xsd:annotation>
<xsd:element name="books" type="bookns:Books"/>
<xsd:comp:lexType name="Books">

<xsd:sequence>
<xsd:·element name="book" minOccurs="O"

maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="isbn" type="xsd:string"

minOccurs="l" maxOccurs="l"/>
<xsd:e:lement name="title" type="xsd:string"/>
<xsd:element name="author" type="bookns:Author"

minOccurs="l" maxOccurs="lO"/>

36

<xsd:e:Lement name="year" type="xsd:positiveinteger"/>
<xs.d:element name="notes" type="xsd:string"/>
<xsd:·element name="imagePath" type="xsd: string"/>
<xsd:e:I;ement name="pub:lisher"
type=="bookns:Publisher"/>
<xsd:element name="location" type="xsd:string"/>
<xsd:element name="owner" type="bookns:Owner"/>

</xsd:sequence>
</xsd:complexType>

</xsd:: element>
</xsd:sequence>

</xsd:complexTy,pe>
<xsd:complexType name="Owner">

<xsd:sequence>
<xsd::element name="name" type="xsd:string"/>
<xsd': element name=" email" type="xsd: string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Author">

<xsd: attribute name="name" ty,pe="xsd: s.tring" />
<xsd:.attribute name="type" type="xsd: string"/>

</xsd:complexType>
<xsd:simpleType name="Publisher">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="Pearson Education Internationa"/>
<xsd: enumera·tion value=" PRENTICE HALL"/>
<xsd: enumera·tion value=" John Wiley & Sons"/>
<xsd: enumera.tion value="Sams Publishing"/>
<xsd: enumera.tion value~"Wrox" />

</~sd:restriction>

</xsd:simpleType>

List 2.3. XML Schema for the XML Document in List 2.1.

Chapter 2- Web Services 37

Table 2.2. Definitions of Constraining Facets

Constraining
Facet Definition

Length, Specifies the exact, ntinimum, and maximum number of units of
minLength, length, where units oflength are:
maxLength - character in case of string or derived from string datatypes

- octets (bytes) in case of hexBinary and base64Binary
minlncl'lisive, Specifies the inclusive lower bound, exclusive lower bound, inclusive
minExclusive, upper bound, and exclusive upper bound for ordered datatypes (W3C,
maxlnclusive, 2004c).
maxExclusive
enumeration Constrains the possible values to a specified set or list of values
pattern A regular expression that specifies the syntax of the allowed value
Iota/Digits Constrains the maximum number of decimal digits in a decimal

data type
fractionDigits Constrains the maximum number of decimal digits in the fractional

part of a decimal datawe
whiteSpace Defmes the way the white spaces are handled in string or derived

from string datatypes.

Table 2.3. XML Schema Components Used to Restrict the Order and Occurrence
of Elements in a Complex Datatype

XMLSchema
component Description
(element)

sequence The child elements must appear strictly in the same order
and each child element can be absent or occurs any number
oftimes.

choice Only one of the child elements is allowed to appear
all The child elements are allowed to appear in any order and

each element can be either absent or occur just one time.

2.6.3 Web Services Description Language (WSDL)

WSDL is a formal, human readable, XML-based interface or specification for

describing the capabilities of a Web Service including:

Chapter 2 -Web Services 38

l) What a Web Service can do: This include:

• All the operations or methods that are provided by a Web Service.

• The input and output messages for those operations.

• The parameters that these input and output messages assume.

2) How it can be invoked.

3) Where the Web Service resides

4) What datatypes a Web Service uses

c

WSDL uses XML elements and attributes to describe these features of a Web Service.

Fig. 2.6 is a semantic data model that describes these elements and attributes, and also

how they are related.

Table 2.4 is a data dictionary (Sommerville, 2004) for WSDL entities (elements and

attributes) and their relations that are described in the model of Fig. 2.6. These have the

following conventions:

• The dash between two entities in the table (e.g. service-port) is used to declare

that there is a relation between these two entities.

• When the same name is given to different attributes in the model ~such as the

name attribute) then the data dictionary use the element that this attribute belongs

to in order to know which attribute is meant (e.g. service name, binding type).

• The model in Fig. 2.6 is close to the Entity-relationship and UML models but used

for XML elements and attributes.

Chapter 2 -Web Services 39

The root element of any WSDL document is the definitions element. It consists of five

main elements, namely: types, message, portType, binding, and service. These main

elements reference each other using special attributes inside each of them as follows:

• service element reference binding element using the port's binding attribute,

where port is sub-element of service.

• binding element reference portType element using the binding type attributes.

• portType element reference the messages element using the name attribute of the

operations' input, output, and fault sub-element.

• message element reference types element using part attribute.

portType Element:

The portType is considered the main element inside WSDL because it can be used to

describe to the Service Requester the operations provided by the Web Service and what

the input and the output message each operation expects. The portType of List 2.4 is a

description of the operations that are provided by the Triangle Web Service. The first

operation called triangle Type. When the Service Requester analyzes this portType, they

can conclude the following information about this operation:

• This operation has three input parameters, the ordered names of these parametes

are a, b, and c.

• The input message to this operation is impl.~triangleTypeRequest where imp/ is a

namespace that is declared elsewhere inside WSDL.

• The output message for this operation called impl:triangleTypeResponse~

• There is no fault message for this operation.

Chapter 2 - Web Services 40

The same information about the other operation triangleArea can also be obtained using

portType.

inputm

service

name

Interface to
I

portType

name

Consists of

operation

name
parameterOrder

port

name
,__ contains ___. address

binding

+
bin dint

name
1-- type - style

transport

encodingStyle,
namespace

fault message

-

essage output. message
+ +
messate

name

collection of
+

part

name

types

XMLSchema
1- type ___. simple datatype

XMLSchema
complex datatype

Fig. 2.6. Semantic Data Model for WSDL

Chapter 2 - Web Services 41

Table 2.4 (a). Data dictionary for WSDL Elements, Attributes and their Relations

i!'N3mf~: ' ; I~ -~~; , -~ ~ .~- -~
CCC

:~ 1:~:~Pi
'(. " i'' · De~cription

l.i\c Iii ;_:, .. Y<, >~:k f oii:~ "··.~~ . ,i ~>:: !'\,,,, .. .:.:.!1 • ··..&l· !; c

address Protocol ~J?ectfic data for_ the actu!d location of a Web Servtce. Attribute
binding Describes to ihe Service Requester how to invoke' operations Element
binding The attribute that is used 6y port to reference or ass()ciate to a Attribute

particular binding element Each port associates a protocol-specific and
address to an individual binding relation

binding name A unique name for a ~cific binding Attribute
binding type Each binding describes a port Type and the binding's type attribute is Attribute

used to specify which portType this binding describes. and
Relation

encoding Style A URI (http://www.w3c.org/2003/soap·encoding in SOAP 1.2) that Attribute
defme the rules of encoding the data inside the SOAP messages that and
are used to invoke a certain operation. These rules are used for the Relation
purpose of data marshalling during a RPC.

fault mess4ge Specifies the fault message of a specific operation, each operation Attribute
may have 0 or more fault messages and

Relation
Input message Specifies the input message name to a specific operation, each Attribute

operation may have 0 or I input message and
Relation - .. - ·· -

message Describes the data tr\\yel from o_n~ endpoint to another.
-

Element
mess_ag~_name Til~ name of a sp_ecifi_c regue_s_t, re~ponse or fault message atPibute
message-part Each messa?;e is a collection of parts Relation
names pace A namespace associated with a particular operation Attribute

and
Relation

output message The output message name of a specific operation, each operation Attribute
may have 0 or 1 output message and

Relation
gperation Defmes a method on a Web Service Element
operation name Jhe DIUlle of a ~p~cific QTieratian~or metho(j Attribute
operation~message Each operation-caihavet.htee types of messages: input message, Relation

output message and fault message.
parameterOrder The order of the parts that must be used when invoking a message. Attribute
part Individual_ P;u"Mteter for a messqge Eleinerit
Pflrtnq~ The_ name of it (neSs€lg~_pa.nupeter Attriijute
part type the datatYpe of a specific part, type reference a datatype inside types Attribute

element and
Relation . .

poH Specifies the addre!iS of the endpoint that hosts the Web SerVice. Element
port flame A .Jlllijt\le n@le for a service port attiibiite
portType Description of the interface of a Web Service that specifies what it Attribtite

can do or what are the QDerations provided by_ this Web Service
portType-blndlng Each portTYM bas one OJ' more b.inding elements associated with it. Relation
'PortTYpe name A unique name of a specific i:>ortTyp_e Attribute
ppttType,-operatlon A port'JYpe contains a collection of 0 or more operations Relation
portType-servlce portType ls considered an interface to a-specific service, each service Relation

may have 9 or more interfaces or portTypes
service Specifies where to fmd the Web Service, port, and bi~ding Element
service-port Each service contains a set of (one or many) ports (imdpoints) Relation

.. - -·

Chapter 2- Web Services 42

Table 2.4 (b)

Nam~
D~scription " TYPe <··;

,, ,,
' ~ :ry,,ft'' ' ' : .}' 0 < '

service name Each service inside WSDL must have a unique name Attribute
style Style of invocation the binding use which is either Remote Attribute

Procedure Call (rpc) or XML document (document) (in this thesis
only rpc is considered)

transport Specifies what is the transport protocol (such as HITP or SMTP) Attribute
type name The name of a specific parameter of a messaf.{e Attribute
types Defmes the datatypes used in WSDL, the defaults in XML Schema Element

datatypes and it should be the only datatypes used in order to build
an interoperable Web Services.

XmlSchema (see section 2.6.2.2) Element
complex datatype
XMLSchema (see section 2.6.2.1) Element
simple datatype

<wsdl:portType name="Triangle">
<wsdl:operation name="triangleType" parameterOrder="a b c">

<wsdl :input message="impl :triangleTypeRequest" name="triangle Type Request"/>
<wsdl:output message="impl:triangleTypeResponse"

name="triangleTypeResponse"/>
</wsdl:operation>
<wsdl:operation name="triangleArea" parameterOrder="a b c">

<wsdl:input message="impl:triangleAreaRequest" name="triangleAreaRequest"/>
<wsdl:output message="impl:triangleAreaResponse"

name="triangleAreaResponse" />
</wsdl:operation>

</wsdl:portType>

List 2.4. An Example of a WSDL portType Element

The operations of List 2.4 has an input and output message but no fault message, this

kind of operation mode or message exchange pattern is called a Request-Response.

There are four types of operation modes depending on the combinations of input, output

and fault message (Graham, 2005), namely:

Request-Response operations: this is the most common style or mode of operation

found on WSDL document. This style of operation defines an input message

(the request), an output message (the response), and an optional fault message.

Chapter 2 - Web Services 43

One-way operations: this mode of operation has only an input message and does

not have an output or a fault messages.

Notification operations: this mode of operation has only an output message but not

input or fault messages. This mode is similar to One-way but the direction of

messages is from the Service Provider to the Service Requester to notify them of

some event.

Solicit-Response operations: this mode is s~ilar to Notification operation but the

Service Requester sends an input message (which is considered as a response)

when they receive the notification or an output message from the Service

Provider. This style has input, output and optional fault messages similar to the

request-response style, however, the response message is the first sub-element of

the operation and is then followed by the input message and the optional fault

message.

The operation mode in Fig. 2.4 is Request-Response operation mode and this mode

will be the only one of the operations modes that wiH be used in this thesis for two

reasons:

1. It is the most common style of operations found in WSDL.

2. A response message from the Service Provider is needed to assess the robustness

of a certain Web Service using the approach in this thesis.

binding Element:

The other important element inside WSDL is the binding element, the portType gives

only an abstract description of the operations and the messages while binding describes

how these operation transmitted over the network, e.g. using SOAP over HTIP or

Chapter 2 -Web Services 44

SOAP over SMTP. Binding also specifies if the message invocation is RPC or

document-centric. List 2.5 shows an example of a binding element.

The following information can be extracted from the binding element in List 2.5:

• The binding name is TriangleSoapBinding

• The portType that this binding associated with is imple:Triangle (see List 2.4)

• The style of this binding is rpc or remote procedure call as declared by the style

attribute (style="rpc").

• The messaging/transport protocol is SOAP over HTIP as declared by the

transport attribute (transport=http://schemas.xmlsoap.org/soaplhttp).

• How data are encoded in the SOAP message body (see section 2.4.4) for the

SOAP message used in this binding (see the wsdlsoap:body element)

• The operations provided by the Web Service described and the input and output

messages of each operation. For example, the triangleType operation has

triangleTypeRequest message as its input message and triangleTypeResponse as

its output message.

• The encoding style of the SOAP messages to each operation

service Element:

The service element is a group of ports (endpoints), and WSDL may contain more than

one service element but conventionally each WSnL document contains a single service

element. List 2.6 is an example of a service element from the same WSDL document of

List 2.4 and List 2.5.

The information that can be concluded from the service element in List 2.6 inclu~es:

Chapter 2- Web Services 45

• The service name is TriangleService

• The port name is Triangle

• The binding that this port associates address to is called

impl:TriangleSoapBinding (List 2.5)

• The Web Service's location is http://localhost:8080/axis!Triangle.jws, so now the

binding is associated with a protocol specific (HTTP) data of the location of the

Web Service being described.

" <wsdl: binding name="TriangleSoapBinding" type="impl:Triangle">
<wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="triangleType">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="triangleTypeRequest">
<wsdlsoap: body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://localhost:8080/axis/Triangle.jws" use="encoded"/>

</wsdl:input>
<wsdl:output name="triangleTypeResponse">

<wsdlsoap:body ·
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://localhost:8080/axis/Triangle.jws" use="encoded"/>

</wsdl :output>
</wsdl :operation>
<wsdl :operation name="triangleArea">

<wsdlsoap:operation soapAction='"'/>
<wsdl:input name="triangleAreaRequest">

<wsdlsoap:body
encodingStyle=''http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://localhost:8080/axis/Triangle.jws" use="encoded"/>

</wsdl :input>
<wsdl:output name="triangleAreaResponse">

<wsdlsoap:body
encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
namespace="http://localhost:8080/axis/Triangle.jws" use="encoded"/>

</wsdl:output>
</wsdl:operation>

</wsdl: binding>

List 2.5. An Example of a WSDL binding Element

Chapter 2 --Web Services

<wsdl :service name="TriangleService">
<wsdl:port bindin~"impl:TriangleSoapBinding" name="Triangle">
<wsdlsoap:address location="http:/llocalhost:8080/axisffriangle.jws"t>

</wsdl:port>
</wsdl:service>

List 2.6. An Example of a WSDL service Element

types element:

46

This element is of special importance to research in this thesis because the approach of

test data generation to assess the robustness quality attributes of Web Services that will

be discussed in chapter 5 is based on analyzing the· datatypes of the parameters in the

input messages, and those datatypes are described inside the types element ofWSDL.

An example of a types element also from the same WSDL of List 2.4, List 2.5, and List

2.6 is.given in List 2.7.

List 2.7 describes two XML Schema simple datatypes (see section 2.4.2.1) that are

used somewhere else in the WSDL document to specify that datatype of the parameters

to the input, output, or fault messages.

message Element:

A message element is used to describe the input, output, and fault messages that travel

between the Service Provider and the Service Requester. The message element specifies

what .parameters (parts) each message accepts together with that datatypes of these

parameters. An example of a message element is given in List 2.8.

Chapter 2- Web Services 47

List 2.8 from the same WSDL of List 2.4 to List 2. 7, describes a message· called

triangleAreaRequest that bas three parameters (parts) all of them of the simple XML

Schema datatype integerLessThanOrEqualHundredthat was described in List 2.7.

definitions Element:

The definitions element is the root element ef any WSDL and all other element

discussed are sub .. element of it. Its element indicates that WSDL is only a group of

definitions. definitions element also defines the namespaces that are used in a WSDL

<types>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace= "http://localhost:8080/axisffriangle.jws">
<xsd:simpleType name="integerLessThanO~EqualHundred">

<xsd:restriction base="xsd:integer">
<xsd:maxlnclusive value=" 100"/>
<xsd:minlnclusive value= "1"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name= "TriangleType-DataTwe">

<xsd:restriction base="xsd:string">
<xsd:enumeration value= "Equilateral"/>
<xsd:enumeration value = "Scalene"/>
<xsd:enumeration value= "Isosceles"/>
<xsd:enumeration value = "Not a tri'angle"/>
<xsd:length value= "14"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>
</types>

List 2. 7. An Example of a WSDL types Element

Chapter 2 -Web Services

<wsdl:message name="triangleAreaRequest">
<wsdl:part name=" a" type=" integerLessThanOrEqualHundred"/>
<wsdl:part name="b" type=" integerLessThanOrEqualHundred"/>
<wsdl:part name="c" type=" integerLessThanOrEqualHundred"/>

· i</wsdl:message>

List 2.8. An Example of a WSDL message Element

48

document. A definitions element from the same WSDL of List 2.4 to 2.8 is given in

List 2.9.

<wsdl:definitions targetNamespace="http://localhost:8080/axis!friangle.jws"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://localhost:8080/axis!friangle.j,ws"
xmlns:intf="http://localhost:8080/axis!friangle.jws"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl1"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.wJ.org/2001/XMLSchema">

<types> </types>

<message> ... </message>

<portType> .•. </portTwe>

<binding> ... </binding>

<service> ... </service>

</wsdl:definitions>

List 2.9. An Example of a WSDL definitions Element

2.6.4 SOAP

SOAP is a XML-based protocol that is used for exchanging structured information

between heterogeneous applications in a decentralized, distributed environment (W3C,

2007).

Chapter 2- Web Services 49

SOAP was designed by W3C in the year 2000, in the year 2001 SOAP became the

core of the XML based distributed computing (Graham, 2005).

In the Web Service architecture described in Fig. 2.3, SOAP plays the role of the

messaging protocol that is used by the Service Requester and Service Provider to

exchange. information.

As explained in section 2.63, WSDL describes three types of messages: request,

response, and fault message, SOAP is a mechanism for defining these messages using

XML.

The root XML element of any SOAP message is the Envelope element. It consists of

two elements: an optional Header element and a Body element.

The Envelope defines the various XML namespaces that are used by the rest of the·

SOAP message.

The Header element carries auxiliary information such as authentication, encoding or

information for the intemiediate recipients of the SOAP message, where a SOAP

message may be received by many recipients (sometimes called nodes) until it reaches

the Web Service endpoint (Service Provider) in case of request messages, or the Service

Requester in case of response or fault messages.

The .Body element contains information for the Service Provider or the Service

Requester. The information inside the Body element is different depending if the

message was an input, output, or a fault message.

To get better understanding of SOAP, a real input, output, and fault SOAP messages

will be discussed; List 2.4 to List 2.9 were all taken from a WSDL document that

describes a Web Service that provides two operations, namely: triangleType and

Chapter 2 -Web Services 50

triangleArea as can be seen in the WSDL's portType element in List 2.5. The Service

Requester can use this information inside WSDL to invoke or bind to this Web Service.

For the Triang/eService Web Service in List 2.6:

a) request message

The request message is an RPC that is made by the Service Requester to obtain a

certain functionality that is provided by the Service Provider of the Web Service. Each

request message can include only one Web Service operation.

In order for a Service Requester to invoke the triangleType operation from the

Triang/eService Web Service described by the WSDL's elements in List 2.4 to List 2.9,

he must extract the following ·information from these elements:

1. The required operation name (triangleType operation), this information can be

obtained from the WSDL name attribute of the operation element which is a sub

element of the portType element (see List 2.4, the operation name attribute in Fig.

2.6 and Table 2.4). The operation name become an element inside the SOAP

request (see Listing 2.1'0).

2. The namespace that defines the .triangleType operation (see namespace attribute

and relation in Fig. 2;6 and Table 2.4)

3. The encoding style of the SOAP request to the triangleType operation. This

information can be obtained from WSDL by first extracting the WSDL binding

element and then extracting the encodingSty/e attribute of the triangle Type

operation element which is a sub-element of binding (see List 2.5, encodingStyle

attribute and relation in Fig. 2.6 and Table 2.4). In the request SOAP message to

the triangle Type operation (List 2.1 0) the encoding style is defined using SOAP

Chapter 2 - Web Services

encoding which is available at the namespace:

"http://schemas.xmlsoap.org/soap/encoding"

51

4. The parameters for the triangleType operation, this information can be obtained

by first knowing the input message to this operation (triangleTypeRequest) which

can be obtained from the message attribute of the input element of the

triangleType operation element inside the portType element (see input message

attribute and relation in Fig. 2.6 and Table 2.4}, and after that the collection of

parameters to this message (a, b, and c) are obtained using the part elements'

name attribute of this input message in the message element (see List 2.4, part

name attribute in Fig 2.5 and Table 2.4). When sending a SOAP request message,

the Service Requester does not use the actual parameter names, but rather the

parameters or arguments to a certain operation (in this case a, b, and c) are

encoded inside SOAP as argO, argl, and arg2 respectively (see List 2.1 0)

5. The datatype of the parameters in 4 (integerLessThanOrEqualHundred), this

information can also be obtained from the message element, as in 4, but using the

type attribute.

6. The order of the parameters to the triangleType operation (abc), this information

can be obtained from the WSDL's paramOrder attribute of the operation element

inside the portType element.

7. The name space or URI that define the XML Schema datatypes

(xmlns:xsd=http://www. w3 .org/2001/XMLSchema). To ensure interoperability

between Web Services, the datatype that is used in WSDL is only XML Schema

datatypes.

Chapter 2 -Web Services

POST /axisffriangle.jws HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
Host: 127.0.0.1:8081
Content-Length: 1074

<?xml version="l.O" encoding=="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/20011XMLSchema-instance">

<soapenv:Body>

<nsl:triangle'fype
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding"
xmlns:nsl="http://localhost:8081/axisffriangle.jws">

<nsl :argO href="#idO"/>
<nsl :argl href="#idl "/>
<nsl :arg2 href="#id2"/>

<Ins I :triangle Type>

<multiRef id="idO"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding"
xsi:type="soapenc:int" .
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">51
</multiRef.>
<multiRef id="idl"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding"
xsi:cype=:"soapenc:int"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">50
</multiRef.>
<multiRef id="id2"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding"
xsi:eype="soapenc:int"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">54
</multiRef.>

</soapenv:Body>
</soapenv:Envelope>

List 2.10. An Example of a SOAP Request with three lnt inputs (51, SO, 54)

52

Chapter 2 -Web Services 53

8. The way to invoke the Web Service that has the triangleType operation and· the

transport protocol that must be used to invoke this operation can be obtained from

the transport attribute of the WSDL's binding element (see List 2.4, transport

attribute in Fig 2.5 and Table 2.4). In our example the transport attribute is

transport=http://schemas.xmlsoap.org/soap/http which means that and HTTP

protocol over HTTP are the transport/messaging protocols.

9. The address of the TriangleService Web Service (see List 2.6, address attribute in

Fig. 2.6 and Table 2.4) that contains the triangleType operation

(location=http://localhost:8080/axisffrianglejws). Notice that the location or

address of the required Web Service does not appear in the SOAP envelope but

rather in the HTTP request URI (see List 2.10) (POST /axis/Triangle.jws).

Using all of this information, the Service Requester can send a SOAP message as a

request to the triangleType operation which is delivered to the Service Provider using

HTTP POST method as described in List 2. H~. The SOAP payload can be transported

by some other HTTP methods such as HTTP GET, however, the HTTP binding defined

in the SOAP specification requires the use of the POST method.

All of the information that is needed for this invocation is provided by WSDL (see

Fig. 2.6), so the Service Requester needs only the information inside WSDL to make

RPC to the Web Service that is described by this WSDL.

Fortunately, the Service Requester need not extract all of the previous information

from WSDL in order to make a SOAP request because there are many tools or SOAP

engines that can do that automatically such as Apache Axis (Apache Software

Foundation, 2007).

Chapter 2 -Web Services 54

b) response message

After the Service Request sends a SOAP request message to the Service (Web Service

implementation) TriangleService, will receive a SOAP response from this Service that

is listed in Listing 2.11.

HTIP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=ADD05720075AD54687EAD7A22CB28BBD; Path=/axis
Content-Type: text/xml;charset=utf-8
Date: Thu, 16 Aug 2007 22:59:30 GMT

<?xml version=" l.O" encoding="utf-8"?>
<soapenv:Envelope :mtlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www. w3.org/200 1/X.MLSchema"
xmlns:xsi="http://www. w3.org/20011/XMLSchema-instance">
<soapenv:Body>
<ns l:triangleTweResponse
soapenv:encodingStyle="http://schemas~mtlsoap.org/soap/encoding/''
xmlns:ns 1 ="http://localhost:8081/axis!friangle.jws">
<triangleTypeReturn xsi:type="xsd:string">Scalene</triangleTypeReturn>
<Ins 1 :triangleTypeResponse>
</soapenv:Body>
</soapenv:Envelope>

List 2.11 An Example SOAP response message to the SOAP request message in List
2.1'0

Like the request message in List 2.1 0, the response message in List 2.11 contains an
'

HTIP header. The response code of 200 in the header is an indication that the server

was able to process the SOAP payload.

The TringleType operation (method or function) HTIP/SOAP invocation is similar to

invoking the following function Object Oriented programming languages like Java:

public String triangleType (int a, int b, int c);

Chapter 2 -Web Services 55

This function takes three parameters a, b, and c that represents the length of the sides

of a triangle and returns the type of this triangle depending on these lengths.

The SOAP request in List 2.1:0 invoked this operation giving the parameters 54, 51

and 50, which is similar to triangle Type (54, 51, 50) method call in Java.

The Web Service that provides the triangleType operation responded. in another

SOAP message (List 2.11) that gave the Service Requester the type of such a triangle

(Scalence).

Using WSDL does not only give the Service Requester what information they need to

send a request to a Web Service, but also ~hat information they should expect from this

Web Service.

As noticed in List 2.11 all of the information there was already described by the

WSDL document for this TraingleService Web Service (List 2.4 to List 2.9) these

include:

1. The name of the response message (triangleTypeResponse) (see WSDL's

portType element in List 2.4, output message attribute and relation in Fig 2.5 and

Table 2.4)

2. The returned parameter (triangleTypeReturn) (see WSDL's message element in

List 2.8, part name attribute in Fig 2.5 and Table 2.4)

3. The namespace associated with triangleTypeRespone message

4. The encoding style or serialization (marshaling) rules associated with the response

message (encodingStyle=http://schemas.xmlsoap.org/soap/encoding/) (see List

2.5, encodingStyle attribute and relation in Fig. 2.6 and Table 2.4)

5. the datatype of the returned parameter (type="xsd:string")

Chapter 2 - Web Services 56

c)fault message

If the request to a certain Web Service operation fails for some reason, the Service

Request will receive a fault SOAP message that describes the causes of the fault and the

exception handling information.

SOAP fault message in Web Services are similar to throwing an exception in Java;

when a Java program throws an exception, this is an indication that something went

wrong; the exception gives information on the cause of the problem. The same thing

can be said in SOAP faults where the exception and its detail are sent by a normal

SOAP message to the Service Requester.

To continue the TriangleType operation example (List 2.10 and List 2.11), a SOAP

request message that is similar to that in List 2.10 was sent to the TriangleService (see

List 2.6), however, this time the first parameter value, which is supposed to be an

integer in WSDL, was replaced by a random string value. The Web Service responded

with the SOAP fault message in List 2.12.

The error code 500 with the explanation "Internal Server Error" in the HTTP header

indicates that a problem has occurred. The Web Service container (see Fig. 2.4) uses the

error code 500 ("Internal Server Error") to tell the Service Requester that an error has

occurred while processing the request message. The reason for the error or problem will

be explained to the Service Requester in the fault element of the fault message.

There are many network-related error responses, other than "500: Server Internal

Error", such as: "404: Not Found" and "Connection Timed out". Apache (Apache,

2005) discusses all of these error codes.

Since this thesis aims to assess the robustness and other related quality attributes of a

Web Service, the only error code that will be considered is "500: Server Internal Error"

Chapter 2 -Web Services 57

because it is the only one that in concerned with the Web Services implementation

and the server stub implementation (middleware or SOAP engine) rather than the

problems of the network between the Service Provider and the Service Requester (see

Fig. 2.4).

HTIP/1.1 500 Internal Server Error
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=A658D3E32DOD73C0811926CC6815A8C2; Path=/axis
Content-Type: text/::mll;charset=utf-8
Date: Thu, 06 Sep 2007 22:43:11 GMT

<?xml version=" l.O" encoding="utf-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
::mtlns:xsi="http://www.w3.org/200:1/XMLSchema-instance">
<soapenv:Body>

<soapenv:Fault>
<faultcode>soapenv:Server.userException</faultcode>
<faultstring>

org.xml.sax.SAXException: Bad types (classjava.lang.String -> int)
</faultstring>
<detail>

<ns11 :hostname xmlns:ns:l="http:/ /xml.apache.org/axis/">
e-sci030

</nsl :hostname>
</detail>

</soapenv:Fault>
</soapenv:Body>
</soapenv:Envelope>

List 2.12 An Example SOAP fault message

According to the SOAP specification if the request message is received and

understood, the respond should be sent by the 200 status code. In case that the server

does not understand the message, or the message format is wrong such as missing

information, or the message can not be processed for any other reason, the server must

use HTTP code 500 (Englander, 2002).

Chapter 2 - Web Services 58

The body element of a SOAP fault message contains a fault element; this element is

responsible for the explanation to the Service Request on what has gone wrong. To

achieve this, fault element has many sub-elements or components that give a description

of the fault or error occurred, these elements include:

• fau/tcode, this component describes in general what the problem was, there are

four codes to describe what type of fault occurred:

1. Server: This code means that something went wrong when the receiver

tried to process the request message, where the receiver could be: Web

Service implementation, Web Service container or server stub (see Fig,

2.7).

2. Client: This fault code means that there was something incorrect in the

request SOAP message such as missing. data. In other words, the request

message was incorrectly formed.

3. VersionMismatch (Graham, et al. 2005).

4. MustUnderstand (Graham, et al. 2005).

VersionMismatch and Mustunderstand are not related to the research line in

the thesis.

In the SOAP fault message of List 2.12, the faultcode is

Server. user Exception which· means that the fault is generated by the server

side (see Fig. 2.4) because the server stub raised an exception since the request

(from the user of the Web Service or Service Requester) has wrong datatype

which is string and not integer as described by WSDL.

In other words, the request did not reach the Web Service implementation

because it was intercepted by the server stub or skeleton.

Chapter 2 Web Services 59

• faultstring, this element contains a human-readable description or explanation

of the fault.

In List 2.12 the faultstring is org.xml.sax.SAX.Exception: Bad types (class

java.lang.String -> int) and there are two notes about this faultstring:

1. The " & " character is escape character in XML to replace the "< " and

"> " signs because obviously they have special meaning in XML which is

surrounding the elements names. ">" stands for the ">"symbol.

2. The exception is a Simple API for XML (SAX) (Harold, et al. 2004j

parser exct!ption because the new versions of Apache Axis uses SAX

rather Document Object Model (DOM) (W3C, 2005) parser that was

used in earlier versions. Obviously the server stub or skeleton in this

example was built using Axis.

• faultactor, before a request SOAP message reaches its destination (Web Service

implementation) it may pass through intermediate nodes or entities on its way;

fault actor element specifies which entity of these caused the fault.

In List 2.12 this element does not exist because the fault happened in the fmal

destination of the message (Web Service container side in Fig. 2.4).

detail, this element provides more information about the fault (other than fault

code and fault string) such as a stack trace of the fault which is considered an

application specific .information.

In List 2.10 the detail element only gave the name of the server that contains

the Web Service container of the targeted Web service implementation.

Chapter 2 -Web Services 60

In summary, the SOAP fault message carries to the Service Requester all the

information he needs to know why a fault has occurred to help in sending a correct

SOAP request next time.

2.6.5 UDDI

Universal Description, Discovery, and Integration (UDDI) is a standard plays the role of

the broker or registry in SOA (Fig 2.1). This standard helps the Service Requester to

discover or locate Service Providers and retrieve a description of the Web services they

provide.

A UDDI Registry provides information about published Web Service and their

Service Providers such as:

• The address and contact of the Service Provider of the Web Service

• Where the Web Service can be accessed (URL).

• A short description of what the Web Service does

• Technical information of how to bind to the Web Service.

• The location of the WSDL docunient

After the Service Requester retrieves the WSDL document they can use the

information there to invoke the described Web Service implementation as discussed in

Section 2.5.

A repository of WSDL document can also play the role of the Service Registry in

SOA (Graham, et al. 2005). An example of a public repository of WSDL documents is

XMethods (http:/ /www.xmethods.com).

Chapter 2 -Web Services 61

The WSDL repository is simpler than using UDDI, however, UDDI is more dynamic

because it enables Service Requesters to search, fmd, and bind to the required Web

Service at run time.

This chapter gave a definition of SOA and discussed the characteristics of the Service in

a SOA. The Web Service architecture was discussed then in order to explain how Web

Service impalement SOA. Different definition of Web Services was then surveyed and

a new definition that includes all Web Services characteristics was introduced. After

that the components that participate in a Web Service invocation were discussed. The

Web Services open standards was then discussed with more details to the standards that

are of more importance to the Web Services testing approach that is developed in this

thesis.

62

Chapter 3

Software Testing and Qua11ity Attrib.utes

3.1 Introduction

This chapter wiU survey software quality attributes with more details about robustness

and the other quality attributes that are related to this thesis approach.

Since testing techniques are used to assess quality attributes, this chapter introduces a

survey on the software testing techniques that are related to this thesis. Finally, a survey

on the available robustness testing tools will be introduced.

3.2 Quality Attributes

Quality attributes are the key factors in the success of any software system. Also quality

attributes are important for the user of the software system to evaluate· how good a

system is. However, software quality is a complex and subjective mixture of several

attributes or factors and there is no universal definition or a unique metric to quantify

software quality (Raghavan, 2002).

Software quality is measured by analyzing the various attributes that are significant to

a certain domain or application (Raghavan, 2002). According to Garvin (Garvin, 1984)

quality can be described from five different perspectives. One of these is the user view.

A user sees quality as "fitness of purpose", i.e., quality is defined as the product

characteristics that meet the user needs or expectations whether explicit or not.

Chapter 3 - Software Testing and Quality Attributes 63

The quality attributes literature includes the following main quality models: Boehm

(Boehm, 1976), McCall (McCall, 1977), Adrion (Adrion et al. 1982), and ISO

9126:20011 (ISO 9126-:1, 2001).

When analyzing the main quality models, it is noticed that there is no agreement

between researchers about a fixed general quality attributes because there is no shared

understanding about the quality attributes (or characteristics). For example, the terms

accuracy and correctness are used by different researchers to mean the same quality

attribute. Also it is noticed that some sub-attributes are related to different attributes.

For example: accuracy is related to the functionality attribute in ISO 9126, while it is

related to reliability attribute in Boehm's model; and, although being mainly related to

security, access control is related to integrity in McCali's model.

The software attribute that is of interest to this thesis is trustworthiness.

Trustworthiness is defined as:

"Assurance that the system will perform as expected''. (Avizienis et al., 2004).

Another definition of trustworthiness is that it is:

"Well-founded assessment of the extent to which a given system, network, or

component will satisfy its specified requirements, and particularly those

requirements that are critical to an enterprise, mission, system, network, or

other entity" (Neumann, 2004).

Some quality attributes have sub-attributes which are considered as requirements for

the main attribute (see Fig. 3.1); trustworthiness requites many quality attribute such as:

security, reliability, safety, survivability, interoperability, availability, fault tolerance,

and robustness, etc. (Zhang, J., 2005c). However, fault-tolerance and robustness are

sub-attributes of reliability (ISO 9126-,1, 2001) (Adrion, 1982); Fig 3.1 describes the

Chapter 3 - Software Testing and Quality Attributes 64

trustworthiness quality model according to these relations between the quality

attributes.

The trustworthiness attribute needs some sub-attributes. And these sub-attributes

themselves have sub-attributes, as shown in Fig. 3 .1.

To assess the trustworthiness of any software system, researchers and practitioners

must fmd methods to assess the trustworthiness sub-attributes such as reliability,

security, and so on.

Security
Fault Tolerance

Safety

Survivability

Interoperability

A vailahilitv

Fig. 3.1. Trustworthiness Quality Model

Avizienis (Avizienis et al., 2004) stated that dependability and trustworthiness have

the same goals and they both face the same threats (faults, errors, and failures).

Dependability is defined as

Chapter 3 - Software Testing and Quality Attributes 65

"Ability to deliver a· Service that can justifiably be trusted" or "ability of a

system to avoid Service failures that are more frequent or more severe than is

acceptable'' (Avizienis, 2004).

Dependability encompasses the following sub-attributes: availability, reliability,

safety, integrity, maintainability. (Avizienis, 2004).

In one piece of research, it is very difficult to discuss all the trustworthiness and

dependability related quality attributes such as reliability, security, etc. This thesis is

concerned mainly with the reliability quality attribute. (Discussing and assessing other

trustworthiness attribute will be left as future research).

Reliability is defined as:

"Ability to tolerate various severe conditions and perform intended function"

(Raghavan, 2002),

Another similar definition of reliability is that it is:

"Requirements might include properties relating to the ability to tolerate

hardware failures and software flaws, the characterization of acceptable

degradation in the face of untolerated faults, probabilities of success, expected

mean times between failures, and so on. Measures of reliability typically

represent the extent to which flaws, failures, and errors can be avoided or

tolerated' (Neumann, 2004).

Another definition of reliability is:

"The probability that software will not cause the failure of a system for a

specified time under specified conditions " (IEEE, 1990).

Chapter 3 - Software Testing and Quality Attributes 66

The first definition by Reghavan implies that reliability is related to fault-tolerance

and robustness (tolerate severe conditions), also reliability is related to correctness in

this definition (perform intended function)

The second definition by Neumann implies that reliability is related to fault-tolerance

(tolerate hardware failures and software flaws), robustness (the extent to which flaws,

failures, and errors can be avoided), correctness (probabilities of success), and it also

introduces mean time between failures as a measure of reliability.

The thit:d definition by IEEE implies that reliability is related to robustness and fault

tolerance.

Some researchers such as Adrion (Adrion et al. 1982) discussed the reliability

requirements, and state that reliability requires the following sub attributes: correctness,

completeness, consistence, robustness, maturity, fault-tolerance, and recoverability.

To assess how reliable a software system is, these entire requirement (or sub

attributes) of reliability must be assessed.

As it is difficult in a single piece of work to assess the entire trustworthiness

requirement, this thesis mainly focuses on the robustness sub-attribute· of reliability.

To achieve robustness and fault tolerance; robustness testing and other fault-based

testing techniques are required (see section 3.4 and 3.5) .

Robustness quality attribute is defmed as:

"The degree to which a system or component can function correctly in the

presence of invalids input or stressful environmental conditions" (IEEE, 1990)

While fault-tolerance quality attribute is defined as:

"The ability ofa program to produce acceptable output, regardless of what potential

problem arise during execution " (V oas, 11996).

Chapter 3 - Software Testing and Quality Attributes 67

Security is defmed as the quality attribute that defmes confidentiality for parties using

software (Looker, et al., 2fl07).

3.3 Testing Defi:nitions

The testing literature is mired with confusing and inconsistent terminology because it

has evolved over decades and by different writers (Jorgensen, 2002). This section will

introduce a definition of testing and the related terms that will be used through this

thesis.

The testing literature has the following main definitions of testing:

1. IEEE (IEEE, 1990)

"An activity in which a system or component is executed under specified

conditions, the results are observed or recorded, and evaluation is made of

some aspect of the system or components".

2. Hetzel (Hetzel, 1973)

"The process establishing confidence that a program or system does what it

suppose to ".

3. Myers (Myers, 1'979)

"The process of executing a program or system with the intent of finding

errors".

4. Beizer (Beizer, 199fl)

"A process that is part of quality assurance and aims to show that a program

has bugs (faults)".

5. Voas (Voas and McGraw, 1998a)

Chapter 3 - Software Testing and Quality Attributes 68

"the process of determining whether software meets its defined

requirements".

6. Hm:rold (Harrold, 2000)

"One of the old forms or verification that is performed to support quality

assurance ".

7. SommervHle (Sommerville, 2004) defines testing as:

"Software testing involves running an implementation of the software with test

data. You examine the outputs ofthe software and its operational behavior to

check that it is performing as required Testing is a dynamic technique of

verification and validation. "

These definitions introduce testing-related terms such as qual,ity assurance, fault,

error, verification and validation.

The goal of quality assurance is to improve software quality and to determine the

degree to which the actual behavior of the software is consistent with the intended

behavior or quality of this software. Quality assurance activities may include:

inspections, reviews, testing, and audit (Raghavan, 2002). However, this thesis

concerned with increasing the quality assurance using testing only.

The following terms are defmed to enable a better undet:stand of testing definitions:

1) Fault, Errors, and Faults:

Fault, error, and failure are considered as a threat to the dependability (see

section 3.4) of a system (Avizienis et al. 2004) and they are defined as follows:

Fault is defmed as:

Chapter 3 - Software Testing and Quality Attributes 69

"A defect in the s~stem that may lead to an error" (Osterweil, 1'996); another

name of a fault is bug or defect.

IEEE (IEEE, 1995) presented a comprehensive treatment or classification of

the types of faults that may affect a software system such as input faults,

output faults, and computation faults. Avizienis (Avizienis et al. 2004)

classified faults to fault classes such as malicious and non-malicious faults,

internal and external faults.

For a certain quality attribute there exist faults that affect this quality attribute.

Examples of faults that may affect robustness quality attribute include: wrong

input accepted, correct input rejected (IEEE, 1995). Some faults can affect

more than one quality attribute, for example, wrong input accepted fault

affectsrobustness,fault tolerance and security.

Error is defined as

"The part of the total state of the system that may lead to a failure" (Avizienis

et al. 2004).

Failure is defined as

"the de~iation of the execution of a program from its intended behavior"

(Osterweil, 1996)

Another definition of failure is:

"An event that occurs when the delivered service deviates from correct

service" (Avizienis et al. 2004).

A vizienis (A vizienis et al. 2004) also stated that:

Chapter 3 - Software Testing and Quality Attributes · 70

"The prior presence of a vulnerability, i.e., an internal fault that enables an

external fault to harm the system, is necessary for an external fault to cause

an error and possibly subsequent failure(s) "

So fault may lead or cause an error, which consequently may lead to a failure

when it reaches the system's external state.

2) Verification and Validation

Verification and validation (V & V) is the process of checking that a program

meets its specification and delivers the functionality expected by the people

paying for the software (Sommerville, 2004). Verification and validation are

defined as follows:

Verification is defined as:

"Checking that the software conforms to its specification and meets its

specified functional and non-functional requirements" (Sommerville, 2004)

Validation is defined as

"Ensure that the software system meets the customer's expectations"

(Sommerville, 2004)

Another definition of validation is

"Determination of the correctness of the final program or software produced

from a development project with respect to the user needs and requirements"

(Adrion , et al. 1982)~

After defining testing and the related terms, this thesis will return to the different

definitions of software testing to extract the roles of software testing in these

definitions; it is noticed that different researchers view software testing differently,

Chapter 3 - Software Testing and Quality Attributes

however, the following roles or goals of software testirig can be included from the

definitions:

1. Testing involves running or executing the system under test with test data.

2. Testing is a performed to support quality assurance by assessing the quality

attributes

3. Testing is performed to fmd faults before they cause an error and consequently a

faHure

4. Testing is a form ofverification.

5. Testing is a form of validation.

However, these testing roles overlap with each other because:

• Faults are related to quality attributes; by finding a fault we are actually assessing

the quality attributes or attributes that are related to this fault.

• Verification and validation includes assessing quality attribute and accordingly

supporting quality assurance.

• Finding faults that may lead to errors and failures is considered part of verification

and validation.

Table 3.1 analyzes the roles in each definition of software testing in order to reach a

definition that contains all the testing roles. The table indicates whether we can infer a

role (column) based on a particular definition{row).

The symbols shown in the table are:

1. The full circle (•) indicates that the definition explicitly states the role.

2. The symbol (:::) indicates that the defmition does not explicitly express that

specific role, but the context of the definition suggests it.

3. The empty circle (o) indicates that the role is not included in a specific definition.

Chapter 3 - Software Testing and Quality Attributes 72

Table 3.1. Relations between Software Testinf! Definitions and Roles

Role
E £ ~

~!! -; "' tiS = .::: c "'-o c-., = ~ .~ c
.~~ bll~ - 0 =- bJ) 5 ; - ~ ·- = =- "'.C c -= tiS

Definition ~-s ~ ·c :0 ·c :5!
"'- c -; ~ ·- "'- ~ ~ ~ < ~ ri: ;;..

IEEE (IEEE, 1990) • ::::: 0 0 0

Hetzel (Hetzel, 1973) 0 0 0 0 :::::

Myers (Myers, 1979) • 0 • 0 0

Beizer (Beizer, 1990) 0 • • 0 0

Voas (Voas and 0 0 0 • 0
McGraw, 1998a)

Harrold (Harrold, 2000) 0 • 0 • 0

Sommerville • 0 0 • •
(Sommerville, 2004)

It is noticed from table 3.1 that Sommerville (Sommerville, 2004) definition contains

more of the software testing roles than the other definitions.

After analyzing all the definitions, this thesis will use the following definition of

software testing that includes all the roles mentioned in Table 3.1:

Software testing is a quality assurance process that is part of the verification

and validation processes, and involves executing the system under test with test

data for the purpose of detecting faults and assessing the quality attributes of

that system or software component.

Chapter 3 - Software Testing and Quality Attributes 73

3.4 Testing Techniques

Testing consists of the following steps (Harrold, 2000):

1. Designing test data

2. Executing the system under test with those test cases

3. Examining the results of the execution and comparing them with the ex:pected

results.

This means that the program to be tested is executed using representative data samples

or test data and the results are compared with the expected results.

Test cases include input test data and the expected output for each input. It is

impossible to test a piece of code, such as a method or function, with every possible

input to check if the code produces the expected output. This is known as exhaustive

testing (V oas and McGraw, 1998a). However, there are many testing techniques that are

used to design test data such as boundary value testing and equivalent partitioning.

Testing techniques can be categorized along various dimensions depending on:

• The availability of the source code

Testing techniques can be categorized to black-box or white.,box testing

according to the availability of the source code:

White-Box testing

If the source code of the system under test is available then the test data is

based on the structure of this source code (Jorgensen, 2002).

Examples of white-box testing are: path testing and data flow testing

(Jorgensen, 2002).

Chapter 3 - Software Testing and Quality A~butes 74

Black-Box testing

If the source code is not available then test data is based on the function of

the software without regard to how it was implemented (Jorgensen, 2662).

Examples of black-box testing are: boundary value testing (Jorgensen,

2002) and equivalence partitioning (Myers, 1979).

• The role of testing

Testing techniques can also be categorized according to the type of testing

(Sommerville, 2004) which is based on the role or goal of this test; some

testing techniques belong to the validation testing and others belong to the

defect or fault-based testing:

Validation testing

This kind of testing is intended to show that the software meets the

customer requirement. In validation testing each requirement must be

tested by at least one test case.

An example of a testing technique that belong to this type of testing is

specification-based testing (Offutt et al. 1999) (Offutt et al. 2003) where

test data are generated from state..,based specifications that describes what

functions the software is supposed to provide.

If the specification is written by a model such as UML and the test case

generation is based on that model, then the testing is called model-based

testing (Toth et al. 2003), This testing also belong to validation testing.

Correctness and accuracy (see section 3.4) are examples of the quality

attribute that can be assessed by validation testing.

Chapter 3 - Software Testing and Quality Attributes 75

Defect testing (fault-based testing or negative testing)

This type of testing is intended to detect faults (bugs or defects) in the

software system rather than testing the functional use of the system like

validation testing (Sommerville, 2004).

Examples of the testing techniques that belong to this type· of testing

include: fault injection (Voas and McGraw, 1998a), boundary value based

robustness testing (Jargensen, 2002), and syntax testing (Beizer, 1990).

Defect testing contribute to the assessment of the following quality

attributes: robustness, fault-tolerance and security (see section 3.4)

Since fault-based testing is the type of testing that is used in this thesis'

method of testing Web Sex:vices, then it will be discussed, with more

details, in an independent section (section 3.5).

• The level of testing

Testing techniques can be distinguished according to the scope or level of a

test:

Unit testing

Testing individual or independent software unit (IEEE, 1990). A unit is

defined as the smallest piece of software that can be independently tested

(Beizer, 1990).

Integration testing

This kind of testing is used to test the interaction between the units that

was already tested using Unit testing (IEEE, 1990).

System testing

Chapter 3 - Software Testing and Quality Attributes 76

This kind of testing is conducted on a complete and integrated software

system to evaluate its compliance with its specified requirements (IEEE,

1999).

• The quality attribute or system behavior

Testing techniques can be distinguished according to the quality attribute or

system behavior being tested such as performance, robustness, and

correctness. Examples of these kinds of testing are:

Performance testing

Used to assess the performance quality attribute of a system or component

and is defined as:

"Testing conducted to evaluate the compliance of a system or components

with specified performance requirements" (IEEE, 1990).

A perforrhance requirement may include speed with which a given

function must be performed (IEEE, 1990).

Robustness testing

Robustness testing is used to assess· the robustness quality attribute of a

software system. Robustness testing· include some testing techniques such

as boundary value based robustness testing technique (Jorgensen, 2002)

and Interface Propagation Analysis (IPA}, both of these techniques will be

discussed in section 3.5.

Robustness testing is defined as:

Testing how a system or software component reacts when the environment

shows unexpected behavior (Dix and Hofmann, 2002).

Chapter 3- Software Testing and Quality Attributes 77

Security testing

Used to assess the secwity quality attribute of a system or component by

testing if an intruder can read or modify the system data or functionality.

Load testing

Used to test if a system or component can cope with heavy loads such as

being used by many users at the same time.

Regression testing

Regression testing is defmed as

"A form of black box testing in which a component's functionality is

compared to the functionality of a previous version of that component, to

verify that changes to the component haven't broken anything that worked

previously". (Bloomberg, 2002)

Although assessing quality attributes belongs to validation testing, for some quality

attributes, such as robustness, we must analyze the faults that affect this quality attribute

to be able to test if a software system has such faults. However, other quality attributes

or system behavior such as performance does not need such fault analysis.

The above four categories or dimensions (the availability of source code, the role of

testing, the level of testing, and the quality attribute or system behaviour) of testing

techniques are not disjoint; for example the boundary value based robustness testing

(Jorgensen, 2002) belongs to the following types of testing: black-box testing, unit

testing and fault-based testing at the same time. Other black-box testing techniques can

also be considered fault-based testing techniques such as syntax testing (Beizer, 1990).

Chapter 3 - Software Testing and Quality Attributes 78

3.5 Fault-based Testing

Fault-based or negative testing is defined as

"Testing aimed at showing software does not work" (Beizer, 1990)

Testing that the system meets its requirement (validation testing) without applying

fault-based testing leave the software system open to vulnerabilities that might not

surface until much later in the development cycle or after deployment (Cohen, et al.

2005~

Fault based testing aims to solve this problem by discovering the following (Lyndsay,

2003):

• Faults that may result in significant failures

• ·Crashes

• Security breaches

• Observation of a system's response to external problems

• Exposure of software weakness and potential of exploitation

Fault-based testing is important because even though a software component has been

tested using unit testing and some black-box testing techniques, this does not mean that

this component of high quality because we must check if this component has

vulnerabilities to faulty input.

In fault-based testing, test cases are written for invalid and unexpected input

conditions in order to check how if the system under test will can handle such input

gracefully.

Chapter 3 - Software Testing and Quality Attributes 79

Handling an invalid input gracefully may include raising an exception with a proper

error message that describes to the user what happened, while if the system has

vulnerabilities to such invalid inputs, then it might reveal important information that can

be used by malicious used to harm the system.

Systems that have an interface which is accessible by public must specially be robust

and consequently must have prolific input-validation checks (Beizer, 2002).

Myers (Myers, 1979) states that test cases which contain invalid and unexpected input

conditions seem to have higher error or fault detection rate than do test cases for valid

and expected input conditions.

The fault-based testing techniques that are important to the research in this thesis are:

Interface Propagation Analysis ~IPA) which is one of the fault injection techniques

(Voas and McGraw, 1998a) (Voas, 11998b), robustness testing (Jorgensen, 2002) and

syntax testing (Beizer, 1990> which belong to black-box testing techniques.

3.5.1 Fault injection

Fault injection includes a group of techniques that are important to evaluating the

dependability of computer systems (Hsueh, et al. 1'997).

Fault injection can be used with hardware or software. This thesis is concerned only

with software-level fault injection.

Most of the fault injection techniques belong to white-box testing because they

require injecting faults to the source code to assess its fault-tolerance. An example of

the fault injection techniques is the mutation testing (Osterweil, 1996) which is the

process of "re-writing" source code by making a small change in the code to produce

what is called a mutant. A test execution that demonstrates such difference is said to kill

Chapter 3 - Software Testing and Quality Attributes 80

the mutant. this is done to flush out ambiguities or vulnerabilities that may exist in the

code. These ambiguities can cause failures in sottware if not detected and fixed.

3.5.1.1 Interface Propagation Analysis (lP A)

IP A is defined as:

"A fault-injection based technique for injecting 'garbage ' into the interfaces between

components and then observing how that garbage propagates through the system,,

(Voas, 1997).

IP A predicts how software will behave when corrupt information get passed (V oas et

al. 1996). IPA assess if problems may enter the component based systems from its

environment when this environment behaves unexpectedly by sending corrupted data to

a component. IP A offers an approach to assessing the robustness of systems based on

COTS components (V oas and McGraw, 1998)

3.5.2 Bounda,ry Value Based Robustness Testing

This testing technique is an extension to boundary value testing (Jorgensen, 2002). The

test cases include the values at the boundary of the input parameters (as boundary value

testing) and also the value above the maximum value and below the minimum value of

this parameter.

It is expected that the system under test will produce a proper error message when the

input to this system exceed its boundaries. The main advantage of boundary value based

robustness testing is that it forces attention on exception handling (Jorgensen, 2002).

Chapter 3 - Software Testing and Quality Attributes 81

3.5.3 Syntax Testing with Invalid Input

Syntax testing is an input data validation testing technique that is used to test the

system's tolerance for bad data (Beizer, 1990). Test cases are based on a formal

description of the input parameters that is understood by the interface of software. An

example of formal description is when the input parameters are described using regular

expression.

Beizer (Beizer, 2002) described different kinds of errors that can be generated using

syntax testing such as:

Syntax errors

These kind or errors are generated by violating the grammar of the specification

language. An example of such errors includes: remove last character, replace

last character, add extra character, and remove first character (Murnane et al.

2006).

Delimiter errors

Delimiters used to separate the fields on an input; an example of a delimiter is

space or dash. Delimiter errors may include omitting the delimiter, replacing it

with different delimiter.

3.5.4 Equivalence Partitioning with Invalid Equivalence Classes

Equivalence partitioning testing techniques include partitioning the input space or

domain into a finite number of equivalence classes that include a specified set of input

values (Myers, 1979). Each member of an equivalence class is supposed to make the

Chapter 3 - Software Testing and Quality Attributes 82

system under test behave the same and so we only have to use one member of the class

for test data.

Equivalence classes may be valid or invalid, however, since the fault-based testing is

important to this thesis, only invalid equivalence classes will be considered.

Equivalence partitioning technique does not clearly define how to select invalid test

data because the invalid data may include all inputs other than those specified as valid

(Murnane, 2005). Murnane (Murnane, 2005) suggested some invalid equivalent class

such as: integer replacement, real replacement, and null replacement. Table 3.2

summarizes the different fault based testing techniques described in section 3.5.

Table 3.2. Test Data Generation Method in Fault-based Testing Techniques

Testing Technique Test Data Derivation Method

IPA Feeding a software component a

"Garbage" input

Boundary value based robustness testing Choose test data .around the boundaries of

the input parameter

Syntax testing with invalid input Violate the rules of the specification of the

input parameter

Equivalent partitioning with invalid partitioning the input space or domain into

partition class a finite number of equivalence classes

The testing techniques in Table 3.2 share the following characteristics:

• Sending invalid (corrupted, faulty, erroneous, manipulated, perturbed, or garbage)

input to a software component to check if this resulted in a failure

• Fault injection based testing techniques

• Black-box testing techniques

• Unit testing

Chapter 3 - Software Testing and Quality Attributes 83

• Assessing the robustness quality attribute

These testing technique also share the same failures modes which include:

• The system under test does not recognize a good input

• The system under test accepts a invalid input without raising a proper exception

• The system crashes after attempting to process invalid input

If any of these failures occurred then the system under test must be debugged in order

to handle such invalid input and increase its robustness and fault-tolerance to invalid

input.

3.6 Prior Work on Robustness Testing

Cohen (Cohen, et al. 2005) stated that ''very limited or no testing was performed to

ensure that the system could handle unexpected user input", this means that very little

researche exists for assessing the robustness quality attribute because most the research

on the field of software testing and quality attributes focus on validation testing rather

than fault-based testing.

However, there are some research projects and associated tools that aim to assess the

robustness of software systems, among these projects and associated tools: Fuzz,

Ballista, RIDDLE, JCrasher, and CORBA middleware robustness testing tool; these

tools are discussed in the following sections.

Chapter 3 - Software Testing and Quality Attributes 84

3.6.1 Fuzz

Fuzz (Miller, et al. 1990) is considered one of the first noted research studies on the

robustness quality attribute (Schmid & Hill, 11999). The Fuzz research project was

performed by a group at the University of Wisconsin in the USA; this .group developed

a tool that is called Fuzz. This tool depends on random black-box testing techniques

(Jorgensen, 2002) to assess the robustness of the UNIX operating system (Miller, et al.

1990).

Although random testing is not a good testing technique in detecting faults, the

research group had found that 25-33% of standard UNIX utilities crashed or hung when

testing using Fuzz ~ller, et al. 1990).

3.6.2 Ballista

Ballista (Koopman, et al. 1997) is a research project that was carried out by a group at

Carnegie Mellon University in the USA. This group developed the Ballista tool that is

used to automatically assess the robustness of the commercial off-the-shelf (COTS)

components.

A robustness failure in Ballista,occurs when a component fails to handle an input that

contains a combination of valid and invalid data (Koopman, et al. 1997). Automating

robustness testing enables the testers to run a large number of potentially interesting

tests with little interaction (Dix & Hofinann, 2002). Ballista was able to find robustness

failures in components used in several commercial UNIX based Operating system

(Gosh, 1998).

Chapter 3 - Software Testing and Quality Attributes 85

Urilike Fuzz which generates the test data randomly, BaHista depends on analyzing

the data types of the input parameters to generate the test data (Shelton, 2000). Ballista

was extended to test any component based systems and not only the operating systems

components. Pan (Pan et al., 2001) extended Ballista to be used with CORBA ORB

implementations.

3.6.3 RIDDLE

The Random and Intelligent Data Design Library Environment (RIDDLE) has many

similarities to Ballista and both developed by same group; however Riddle is an

environment that was created for testing the robustness of COTS software on Windows

NT systems (Gosh, et al. 1998) rather than UNIX components.

RIDDLE uses black box testing techniques and generates anomalous input for the

component under test based on this component interface specification.

Three types of input generated in RIDDLE (Gosh, et al. 1998):

• Random input

• Intelligent input based on the input grammar ofthe component under test that can

be extracted from the specification.

• Malicious input

Generating syntactically correct but anomalous test data based on the input grammar

will result in exercising more of a program's functionality than liandom testing (Gosh, et

al. 1998).

The robustness failure modes or classes in RIDDLE include the following (Gosh, et

al. 1998):

Chapter 3 - Software Testing and Quality Attributes 86

• Incorrect exit codes

• Unhandled exceptions

• Hung processes

• System crashes

3.6.4 JCrasher

JCrasher is an automatic robustness testing tool for java code (Csallner & Smaragdakis,

2000). JCrasher automatically generates random data depending on the datatype of the

input parameters to the methods.

The target of JCrasher is to attempts to detect faults that cause a program to "crash",

that is to throw an undeclared runtime exception (Csallner & Smaragdakis, 2000).

3.6.5 CORBA Middleware Robustness Testing

Pan (Pan et al. 2001) discussed how to assess the robustness of the ORB

implementation of Common Object Request Broker Architecture (CORBA) middleware

(Object Management Group, 1998).

Pan (Pan et al. 2001) stated that methods for evaluating the robustness ofCORBA ORB

are rare and there is an urgent need for a method to evaluate the robustness of ORB

implementations.

This research uses Ballista tool to assess how graceful C++ ORB implementations

handles expected and unexpected exceptions and it has found that these

implementations have significant robustness vulnerabilities.

The robustness failure modes in this research are the following (Pan et al. 2001):

Chapter 3 - Software Testing and Quality Attributes 87

• Computer crash (Catastrophic failure)

• Thread hang (Restart failure)

• Thread abort (Abort failure)

• Raise unknown exception

• False success (Silent failure)

• Misleading error information (Hindering failure)

While the robust or graceful behavior include successfully return (no exception) or raise

CORBA exception.

Mm:dsen (Marsden et al. 2002) used fault injection techniques to assess the

dependability of CORBA systems.

Table 3.3 will give a comparison of the robustness testing tools according to the testing

technique or test data generation method used and the platform or system targeted by

each tool.

Table 3.3. Comparison of Robustness Testing Tools

Tool Testing 'Fe~hnique(s) Targeted

Software System

Fuzz Random black box testing UNIX OS

Ballista Automatic random black box testing COTS of UNIX OS

Riddle Random black box testing COTS of Windows

Test data based on input grammar NTOS

Test data based on malicious input

JCrasher Random test data based on the input datatype Java code

CORBA Automatic random black box testing C++ CORBA ORB

Robustness ' implementation

Testing

Chapter 3 - Software Testing and Quality Attributes 88

The best tool is Riddle because it depends on more that one test data generation

method. However, all the tools depend on random testing which is considered

inefficient testing technique. The proof of concept tool of this thesis that is presented in

Chapter 6 is different from these tools because it uses different testing techniques for

different faults and is based on test cases rules that were systematically generated using:

Web Services Description Language (WSDL), fault-based testing techniques, and the

faults that may affect the robustness quality attribute of Web Services.

Software robustness testing in this thesis refers to the process of assessing the ability

of software to handle invalid inputs or stressful conditions.

3.7 Summary

This chapter discussed quality attributes and software testing techniques. Quality

attributes are the key factors in the success of any software system. Trustworthiness

includes many sub attribute or requirements such as reliability, security, availability,

and so on. Reliability itself requires robustness, fault tolerance, correctness, and other

attributes.

To increase the trustworthiness of Web Services, this thesis concerns with assessing

and increasing the robustness quality attribute. A definition of the trustworthiness and

the related attributes was given in this chapter, also a definition of testing and testing

techniques were introduced with more details about fault based testing technique

because they are important in assessing robustness.

The robustness research and tools are very limited because research is usually aim at

making sure that a software component or system meets its specification rather than

Chapter 3 - Software Testing and Quality Attributes 89

assessing the robustness quality attribute that try to fmd if a system has any

vulnerabilities to invalid or faulty inputs. There exist however some robustness testing

tools such as Ballista and Fuzz. Also some few researches assessed the robustness of

middleware implementation such as (Pan et al. 2001).

90

Cbapter4

Web Services Tes,ting

4.1 Introduction

Quality of Serv:ice is the dominant success criteria in Web Services because it is the

main issue that contributes to the reluctance to use Web Services. Testing is used in this

thesis to assess robustness and other related quality attributes of Web Services in order

to increase Web Services trustworthiness.

Before discussing the proposed Web Service testing framework in chapter 5, this

chapter will introduce the following

• A survey on the quality attributes of Web Services (section 4.2)

• A survey on the testing techniques used so far, by researchers and practitioners, to

test Web Services (section 4.3)

4.2 Web Services Quality Attributes

Although quality attributes of inte:.:est may vary between Web Services applications

according to the domain where they are used, we analyze and focus our work on the

general abstract quality attributes that affect most of the Service Requesters of Web

Services.

Zhang (Zhang, 2004) stated that Web Services trustwoFthiness is hindering the

adoption of Web Services. Web Services trustworthiness according to this research

represents people's confidence in using Web Services. The quality attributes that affects

Chapter 4- Web Services Testing 91

trustworthiness according to Zhang are the same classical software attributes such as

reliability, scalability, efficiency, security, usability, adaptability, maintainability,

availability, portability. In particular (Zhang, 2005a) states that trustworthiness

includes: security, reliability, safety, survivability, interoperability, availability, and

fault tolerance.

Zhang and Zhang (Zhang and Zhang, 2005c) stated that we need to investigate how to

quantitatively and qualitatively define the quality of Web services. They mentioned the

same quality attribute of trustworthiness as Zhang (Zhang, 2005a) but added the

testability quality attribute. It should be noted that the trustworthiness requirements or

sub-attributes are different even in the researches of the same author(s~.

Looker (Looker, et al. 2004) stated that the non-functional quality attributes for Web

Services include: availability, accessibility, integrity, security, performance (latency and

response time), reliability, and regulatory.

Some researchers are interested in a single quality attribute of Web Services such as

the reliability attribute (Zhang & Zhang, 2005b) and the robustness attribute (Fu, et al.

2004). However, Zhang and Zhang (Zhang & Zhang, 2005b) stated that reliability of

Web Services can be defined as a combination of six attributes: correctness (C),- fault

tolerance (F), testability (T), interoperability {1), availabHity (A), and performance (P).

In other words, the reliability of Web Services will be a function of the specific six

attributes:

R(WS) = f(aC,bF,cT,dl,eA,jP)

where a, b, c, d, e, and f are quantitative and qualitative measure of particular

attribute. However they only considered correctness and fault tolerance in their

research.

Chapter 4- Web Services Testing 92

The Web Services quality attribute that is important to this thesis is robustness and it

is defined by the author as:

"Web Services Robustness: the quality aspect of whether a Web Service continues to

perform despite some violations of the constraints in its specification".

4.3 Web Services Testi~ng

Web Services testing has many advantages such as increasing the trustworthiness,

however, it still faces many difficulties or challenges as discussed in Chapter l. Testing

takes a whole new dimension in Web Services because applications may be composed

dynamical,ly from different available Web Services that may be located in different

places and have different quality attributes. How do we test Web Services that can come

from different Service Providers, hosted in different environments? Not only the source

code of the Service is unavailable, the Service might be hosted on servers at remote,

even competing organizations (Offut & Xu, 2004).

Current methods and technology simple cannot ensure trustworthiness in Web

Services (Zhang, 2005a). Testing Web Services can be viewed from two perspectives:

the Service Provider and the Service Requester. One difference between the two

perspectives is the availability of the Service's source code: the Service Provider has

access to the source code, whereas the Requester typically does not. The lack of source

code for the consumer of the Service limits the testing that he can perform.

The Service provider should build quality into the Service in the early stages of the

development of that Service and not wait until implementation to complete and then

apply testing and analysis of the end Service to assure quality.

Chapter 4- Web Services Testing 93

Bloomberg (Bloomberg, 2002) stated that Web Services testing tools employ the

following range of traditional software testing techniques: black box (functional

testing), white box (structural testing), regression testing, load testing, unit testing, and

system testing. However, according to Bloomberg (Bloomberg, 2002) the traditional

techniques are not able to cover the new testing issues that arise in Web Services. The

desirable Web Services testing capabiHties are:

• Testing SOAP messages- using SOAP to supply test cases since Web Services

have no user interfaces, and also testing the format and the intermediaries of a

message.

• Testing WSDL files and using them for test plan generation - usmg the

information in WSDL files to generate black box test plans.

• Web Services consumer and producer emulation- emulating the consumer of a

Web Service by sending test messages to another Web Service and analyzing the

results in tum emulating the provider of the Web Service by returning a response

message to the other Web Service after the consumer sends a request message.

• Testing the publish, find, and bind capabilities of an SOA

• Web Services orchestration testing - testing the composition of Web Services

from other Web Services.

• Service-level agreement (SLA) and Quality of Service (QoS) monitoring- Web

Services testing tools that verify at run time that Web Services are performing the

way they should.

Since the robustness and other related quality attributes, such as security and fault

tolerance, are important to this thesis, Table 4.1 gives a summary about research that

assess robustness and other related quality attributes using fault-based testing

Chapter 4- Web Services Testing 94

techniques. Table 4.2, on the other hand, will give a short survey on the researches on

Web Services testing that do not use fault-based techniques.

The foHowing issues can be concluded from Table 4.1 and Table 4.2:

• Some researchers such as (Offutt & Xu, 2004) do not specify what quality

attribute of Web Services they are assessing.

• Different researchers may use the same testing technique but name this technique

differently; an example of this: Zhang (Zhang, et al. 2004a) mentioned the use of

Interface Propagation Analysis (IPA) to test Web Services, while (Offutt & Xu,

2004) mentioned the use of data perturbation; both of the authors mean the same

testing technique.

• Different researchers may be assessing the same quality attribute but they describe

this quality attribute differently; an example of this: (Tsai, et al. 200Sa), and some ·

other researchers, mentioned they are assessing the trustworthiness of Web

Services, while (Canfora, 2005) stated that the aim was to provide Service

Requesters with means to build confidence that a service delivers the desired

function with the expected QoS. This is similar to the trustworthiness definition

but without specifying trustworthiness explicitly. (Tsai, et al. 2003) mentioned

Web Service assurance which is again another related term to trustworthiness.

• Some researchers like Zhang (Zhang, et al. 2004a) state that they want increase

trustworthiness of Web Services but without specifying which specific

requirement of trustworthiness they are targeting.

• Some researches like (Tsai, et al. 2005a) specify that they do negative testing but

they do not specify how the negative or faulty test data was generated, in other

words which testing techniques have been applied.

Chapter 4- Web Services Testing 95

• Very few of the Web Services testing capabilities proposed by (Bloomberg, 2002)

have already been performed.

Table 4.1. Literature Survey on Fault-based Testing of Web Services

Fault injection with white
box manner

(Zhang, et al. 2004a) Mobile agent based IP A Trustworthy Web Service
and(Zhang,2004b) and assertion technique to selection (does not specify

find if a Web Service which trustworthiness
meets the Service requirement), however, testing
Requester requirements techniques used imply that
(specification based correctness and robustness are

the attributes
(Offutt & Xu, 2004) Boundary value testing, Unspecified, however, given

data perturbation, mutation the testing techniques used it
testing on data rather than can be concluded that
source code, SQL robustness and security are the
injection, using SOAP targeted quality attributes
messages to supply test
cases

(Zhang & Zhang, Boundary value testing Reliability (correctness and
2005b) together with faulty data fault tolerance to faulty input

p~rturbed from boundary data)
value, and using WSDL for
test case

(Siblini & Mansour, WSDL-based testing and Unspecified
Mutation
Security testing for Web Security

Services using
fault model

(Looker, et al. 2007) Fault injection with white Dependability (availability,
box manner accessibility, integrity,

performance, reliability,
and

Chapter 4- Web Services Testing 96

Table 4.2. Literature Survey on Web Services testing

Research

(Tsai, et al. 2003)

(Tsai, et al. 2005a)

(Canfora, 2005)

(Bai & Dong, 2005)

Unit testing, positive and
negative test. Web Service
composition testing, model
checking, Completeness
and Consistency (C&C)
analysis, test case
generation based on
specification (OWL-S)
collaborative testing, and

rou testin .
Regression testing

WSDL-based testing,
Random testing and
bound value testin

Trustworthiness (functionality
and robustness)

Providing Service Requesters
with means to build
confidence that a service
delivers the desired function
with the ex ected QoS.
Unspecified

For the fault based testing technique all the research that has been surveyed in the

literature is included, while for the functional testing only a few of the research is

included because it is not so relevant to the research line in the thesis.

Tsai (Tsai, et al. 2005a) stated that current Web Services testing techniques assume

that Web Services components have been tested properly by the Service Provider and

thus focus on integration testing of composing Web Service. He also mentioned that this

assumption is not acceptable if the composed Web Service need to be trustworthy

because in trustworthy system every component must be verified before being used in a

, composite Web Services.

Chapter 4- Web Services Testing 97

Tsai (Tsai, et al. 2005a) and Bai and Dong (Bai & Dong, 2005~ stated that current

Web Services testing techniques focus on model checking. As discussed in Chapter 3,

model checking is similar to specification based testing which a kind of the validation

testing.

Besides the research in the Table 4.1 and Table 4.2, some researchers address other

aspects of Web Services testing such as what information should be added to the WSDL

file in order to help black box and regression testing of Web Services (Tsai, et al. 2002).

Specifically this research suggested adding the following to WSDL: input-output

dependency, invocation sequences, hierarchal functional description, and concurrent

sequence specification.

There are a number of tools to automate the Web Services testing process. Table 4.3

introduces a survey of some of these commercial tools and describes what testing

techniques they use to assess which quality attributes. Most the Web Services testing

tools focus on the load testing where the tool try to simulate many users using a Web

Service at the same time to check if a Web Service performs as expected under this

stress.

Chapter 4- Web Services Testing 98

Table 4.3. Web Services Testing Tools

Vendor Test Tool t~ting Quality Attributes
Te~hn{ques

Parasoft (Parasoft, SO A test Black box, white Functionality (by
2007) box, unit testing, unit, black box, and

load testing, and white box testing),
regression testing, and performance

(by regression
testing and load
test)

Empirix (Empirix, e- Test Black box, load Functionality,
2007) testing scalability, and

performance
Mercury Service Test Black box, load test Functionality,

interoperability, and
performance

Red Gate ANTS Load Load test performance

4.4 Summary

Web Services Robustness testing in this thesis refers to assessing the ability of a Web

Service to handle invalid input by the Service Requester.

Research in the field of Web Services testing has focused on testing the integration of

composing Web Service. These are mainly based on model checking and specification

based testing techniques to make sure that a Web Service does what expected. Very

little research has been done on the fault based testing of Web Services that aims to

detect vulnerabilities or faults and assess the robustness, security, and fault tolerance to

invalid input quality attributes.

It has been noticed that Web Services testing researches may use the same testing

technique but call this testing differently, such as mutation and perturbation being used

Chapter 4 .. Web Services Testing 99

to mean the same thing. Also it is noticed that many researchers do not specify what

quality attribute they are targeting or talk about the same quality attribute but in

different terms.

Besides the research on Web Services testing, there exist some tools that can help to

automatic the process of testing. These tools mainly focus on load testing and assessing

the performance quality attribute.

100

Cha~pter 5

An Approach to WSDL-based Robustness Assessment

of Web Services

5.1 Introduction

This chapter describes an approach for assessing the robustness quality attributes of

Web Services. The approach depends on applying the fault-based testing techniques

discussed in Chapter 3 on the Web Services in order to assess these quality attributes.

The fault-based testing techniques and the input parameters specification inside WSDL

are used to design test case generation rules that can facilitate systematic Web Services

Quality of Service (QoS) assessment.

This thesis is concerned with the robustness faults that have the following

properties:

a. Caused by the inability of the Web Service implementation to handle some

test data by raising the proper exception.

b. Caused by the inability of the Web service platform to handle invalid or

faulty input.

There may be other faults that may affect the robustness of Web services that are

related to one of the following:

a. Faults that are related to other components of WSDL apart from the XML

Schema datatype of the input parameters.

b. Faults that are related to other standards in Web services such as SOAP

messages and registry.

Chapter 5 -An Approach to WSDL-based Quality of Service Assessment of 101
Web Services

But these faults are out of scope of this research and will be considered in future

research,

5.2 Overall Architecture

This section will describe an overall architecture of the proposed approach for

assessing the robustness quality attributes assessment of Web Services (See Figure 5.1).

r

\..

The components of the architecture in Figure 5.1 are:

• WSDL is the contract or the specification of the Web service under test.

• WS Test Case Generator is the component that is responsible for generating test

cases based on the WSDL document of the Web Service under test and the test

case generation rules.

WSDL

-
Described by

WSPiatform

ws
Implementation

~

Provider

Test Case
Genention Rules

..... -
uses

uses r--___ .._ ___ -. generates r-------...

SOAP
Request

SOAP
Response

WSTestCase
Genentor

uses

Automatic Client Genentor

generates

Test
Report -
.--

--~

WS Test Cases

-
l

Figure 5.1 Overall architecture of the ~eb services robustness testing framework

ChapterS -An Approach to WSDL-based Quality of Service Assessment of 102
Web Services

• WS Platform is the platform or middleware that the Web Service Provider is

using for his Web Service implementation. Examples of Web Service platforms

are Axis (Apache Software Foundation, 2005) and GLUE (WebMethods, 2007).

Some faults (or resultant failures) may be related to the platform that was used to

implement a client to a Web service rather than to the Web Service

implementation. For example we might send a SOAP message to a Web Service

under test but the platform used does not deliver this message to the targeted Web

Service due to a failure in the middleware. The SOAP message might be delivered

correctly but the platform where the Web Service implementation deployed may

not deliver the request to the Web Service implementation.

• Test Case Generation Rules are the rules that are proposed for test case

generation. These rules depends on the following:

I. Analyzing the kind of faults may affect the robustness quality attribute of

Web services and that can be detected using the data inside WSDL.

2. Analyzing what are the testing techniques that can be used to detect those

faults.

3. Analyzing the parts inside· the WSDL's XML Schema-based datatypes

description that can be used in testing the robustness ofa Web service.

• Test Report is an XML document that describes the test data together with the

actual response of the Web Service under test for each of the test data in each test

case.

• WS implementation is the source code of the Web Service that is written by the

Web Service Provider.

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 103
Web Services

• Automatic Client Generator is the component that is responsible of building a

client to the Web Service under test and invoking it using the test cases provided

by the Web Service test case generator component. It receives the test case that

was generated by the WS test case generator component and then use the

infotmation inside this test case document to send SOAP messages (over HTTP},

using a certain platform or middleware, to the Web Service, and then analyze the

SOAP responses and generate test results accordingly.

• WS Test Cases is an XML document that includes the test cases for each

operation inside the WSDL of the Web Service based on the test case generation

rules.

Interaction between the components in Fig. 5.1 is described in the following:

1. Test case generation rules are designed based on: input parameters' XML

Schema-based datatype specification, robustness faults that may affect Web

Services, the traditional testing techniques, and the quality attribute(s) being

assessed.

2. Web Service Provider deploys his/her Web Service implementation in a Web

Service platform.

3. The WS test case .generator component uses the test cases generation rules in I

and the WSDL document ofthe Web Service in 2 to generate the Web Service test

case.

4. The automatic client generator will generate a client to invoke the Web Service

deployed in 2 using the test case developed in 3 and then generate the test results

document accordingly.

Chapter 5 -An Approach to WSDL-based Quality of Service Assessment of 104
Web Services

5.3 A Model for Robustness Testing of Web Services

The previeus section introduced an overall architecture of the Web Services

robustness testing framework. This section will give a detailed specification of the

components that participate in Web Services robustness assessment and how they are

related to each other (See Figure 5.2). Some efthe components previously defined will

be explained in more details here.

• Operation is the operation element inside WSDL (see chapter 2) of the specific

operation under test.

• Input and Output Message is the input and output messages of the WSDL

operation under test (see chapter 2).

• Input and Output Parameter are the parameters of the input and output message

of an operation inside WSDL. The input parameters are specified in the part

element which is a sub-element of the message element.

List 5.1 gives an example of input parameters to an input message of an operation

of WSDL. The input message called toFahrenheitRequest and this message

accepts one parameter called pCentigrade of type xsd:double. (xsd: XML Schema

Datatype)

<wsdl:message name="toFahrenheitRequest">
<wsdl:part name="pCentigrade" type="xsd:double"/>

</wsdl:message>

List 5.1: An example of a simple input parameter specification inside WSDL

• XML Schema Datatype is the datatype specification of the input parameter te

the WSDL operations. The datatype of a parameter which is represented by the

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 105
Web Services

type attribute of the part element could be one of the XML Schema datatypes

discussed in Chapter 2. To assure the interoperability between the Service

Provider and Censumer, they beth must used XML Schema to describe their data.

• Network Protocol Stack is the set of protocols used for communication. Network

protocel stack contains the following layers: physical, link, network, transport,

and application layer.

• Quality Attribute: The quality attributes vary between Web Services applications

according to the domain where the Web Services are used and the Service

Requester preference. However, this thesis is only concerned with robustness and

the related attributes that include security, and fault tolerance.

• Robustness: The robustness of Web Services is the quality aspect of whether a

Web Service continues to perform despite violating the constraints in its input

parameters specification.

The other quality attributes that are related to robustness are:

a. The fault tolerance to invalid input: This means the ability of a Web

service to tolerate the faults that are related to receiving an invalid input.

b. Malicious input vulnerability: this is on aspect of security quality attribute

which measure if a Web service is vulnerable to an input that attempts to

intrude or attack this services such as SQL injection (Offutt & XU, 2004).

So the quality attributes that also affected by the robustness are fault tolerance and

security.

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 106

Property
of

Web Services

ws
implementation

WSDL
has

replies

invokes

deployed in

has

l
Input and Output Message

is

I
has

Robustness

assesses

Analyzer

has

uses

Test Case Generation Rules

uses

Testing technique

Test case with
results

uses

generates --1 ... __ T_e_s_t_r_ep_o_rt __ _.

uses

WS Platform

may cause

Deliver
SOAP
request

sends
SOAP
response

Network Protocol
Stack

Sends
SOAP

e IV

so
Ro bustness

d I' ers
AP

nse respo

faults

I

leads to

+
Robustness
failure

WS Platform

uses

Automatic
Genera

Client
tor

+
calls

u

sends response

Fig. 5.2: A Model ofWSDL-based Robustness Testing of Web Services

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 107
Web Services

Robustness is sub-attribute or characteristic of reliability. Reliability itself is a

sub-attribute of dependability and trustworthiness, so in order to assess how

dependable and trustworthy a Web Service is, aH sub-attribute of dependability

and trustworthiness must be assessed.

• Robustness Fault is the fault the affects the robustness quality attribute of a Web

Service.

• Robustness Failure is when the SOAP response is one of those as described in

Fig. 5.3.

SOAP
response
when a
SOAP with
invalid or
faulty data
has been
sent

'IheWeb
Service
platform
inability to
handle an
invalid input

Web Services Robustness
Failure Modes (Classes)

I
SOAP fault
message to
invalid data
but with
improper
fault string

I

SOAP
fault with
an error
trace

The Web
Service
implementation
has no
exception
handling for an
invalid input

Fig. 5.3. Web Services Robustness Failure Modes

SOAP fault No
when a response
SO.M
message
with valid
data has
been sent

• Test Case Generation Rules: Test case generation rules are the rules that will be

used for the test case generation for Web services. Section 5.4 will describe in

detaHs the process of test case generation for Web Services. The test cases are

Chapter 5- An Approach to WSDL-based Quality of Service Assessment of 108
Web Services

described in atomic rules in order to make the process of test case generation

more systematic and to enable more than one entity in the Web Service

architecture to add test cases (such as the Serv:ice Provider, the Service Requester,

and the Service Registry). The approach of describing test cases using atomic

rules is described in (Murnane, Hall & Reed, 2005> but those rules for traditional

black box testing technique. This research modified these rules by adding the

information the can be extracted from WSDL to be used in testing. Also added

fields that can explain the relationship between each fault, WSDL component,

quality attribute, and testing technique.

For each XML Schema component that is associated with an input parameter

datatype, a different testing technique will be chosen to generate test data, where

testing techniques selection will depend on the characteristics of the associated

component to the datatype, the following two examples will explain the idea

more:

Example 1: For the minlnc/usive and maxlnclusive constraining facets that

specifies the boundaries to the numeric datatypes (such as integer datatype)

boundary value· based robustness testing (Jorgensen, 2002) will be used to

generate test data since this testing technique deals with the boundaries of the

parameters to a method.

Example 2: For the pattern constraining facet which a regular expression that

constrains the characters or literals of a parameter to those tluit matches a specific

pattem, syntax testing (Heizer, 1990) (also called input validation testing) will be

used to generate test data because syntax testing is used to validate input-data

which can be expressed in regular expressions or other formal forms.

Chapter 5- An Approach to WSDL-based Quality of Service Assessment of 109
Web Services

Section 5.4 will explain in detail how test cases are generated to assess Web

Services robustness by modifying the traditional testing techniques that can be

used to violate WSDL specification.

• Automatic Client Generator: Client generator is the component that is

responsible of building a client to the Web service under test and invoking the

Web service under test using the test data.

• Analyzer: The analyzer is the component that compares the response of the Web

service with the expected response that can be taken from the test case.

• Test Report: Test report is the result of the test.

Now, that all the components in Figure 5.1 have been defined, the relationships between

those components can be listed:

• Robustness is consideted a quality attribute to be assessed

• Quality attributes are properties of Web services under test that are deployed in a

specific Web Service platform.

• Web services are described by using WSDL

• Each operation has an input message

• The WSDL component that is important in testing the robustness attribute is the

XML Schema datatype of the input message parameters.

• To assess the robustness quality attribute using WSDL, the faults that affect

robustness and that can be introduced by WSDL must be analyzed.

• The faults that are considered in this model are those that can be introduced a

Web Service by the input parameters datatypes and their constraints.

Chapter 5 -An Approach to WSDL-based Quality of Service Assessment of 110
Web Services

• Test case generation rules uses the specifications of these datatypes and uses the

robustness testing techniques to generate test cases.

• The client generator component will automatically use the test case generation

rules to send SOAP messages to the Web services under test using a Web Service

platform or SOAP implementation.

• The Web Service will reply to this message by sending a response message or a

fault message using the Web Service platform that its implementation is deployed

m.

• The client middleware or platform uses the network to send SOAP messages to

the Web service under test, and also the client middleware receives the SOAP

message, that were sent, using the network.

• The analyzer component will compare the actual response that is the expected

response of each test case.

• The analyzer will then generate a test report depending on the comparison

between the expected and actual response of the Web service under test.

5.4 Test Case Generation Rules

Test case generation in this thesis depends on the input parameters XML Schema

datatype specification; this section will explain how these datatypes and their

constraints can be used to generate test cases.

XML Schema datatypes can be categorized as:

• BuHt-in primitive (or derived from built-in primitive) simple datatypes

• User-defined simple datatypes.

Chapter 5- An Approach to WSDL-based Quality of Service Assessment of 111
Web Services

• Complex datatypes.

Test cases wiH be generated depending on which of these ·categories an input

parameter belongs.

Table 5.1 contains a schema for the test case generation rules that is proposed by this

thesis. A brief description of the attributes or components of the schema in Table 5.1 is

as follows:

l. ID attribute is a unique identifier for different rules

2. WSDL component(s) test data is based on; since the test cases depending on the

information inside WSDL, this attribute specifies the WSDL component that the

current test case is based on.

3. Fault attribute is the fault that the cw:rent test case assumes to detect.

4. Traditional testing technique describes the fault-based testing technique (See

Chapter 3) that is used to generate test data to assess the fault. The fault ... based

testing techniques that this research uses to assess Web Services robustness

include: robustness testing, syntax testing (input validation testing), equivalence

partitioning, and Interface Propagation Analysis (IPA).

5. Traditional test data generation rule describes how the test data is generated

depending on the testing technique used.

6. Valid/Invalid attribute used to specify if the test data are valid or invalid.

7. WS Datatype attribute describes the XML Schema-based datatype of the input

parameter of the Web Service operation under test.

8. WS Test Datatype defines the datatype of the test data used in this test case. The

datatype of the test data in not always the same as the Web Service datatype

because for example some test cases use integer input for an operation that

Chapter 5 - An Approach to WSDL-based Quality ofService Assessment of 112
Web Services

accepts a string as input in order to test if the operation wiH produce a proper or

graceful exception or not.

9. WS test data is the actual data that is used to in the current test case.

1'0. Expected output specifies the expected SOAP response or SOAP fault of the

Web Service under test based on the current test case.

11. Quality attribute(s) assessed specifies the quality attribute targeted by the

current test case. This research mainly concerned with the robustness quality

attribute, however, other quality attribute, such as security, may also be tested by

the same test case.

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 113
Web Services

Table 5.1 Schema for the Test Case Generation Rules

Attribute type Description
l. ID String Identifier or reference of the rule
2. WSDL enum The WSDL component(s) this testdata is based on which

Component(s) test could be the input parameter datatype or the constraining
data is based on facets for the input parameter datatype

3. Fault enum The fault that the test data suppose .to detect
4. Traditional Testing enum The traditional testing technique used in the rule,

Technique Testing_ Technique::= EP I RT I IPA I ST I SI
Where

EP =Equivalent Partitioning (Myer, 1979)
RT =Robustness Testing (Jorgensen, 2002)
IP A = Interface Propagation Analysis (V oas &
McGraw, 1998a) (Voas, 1998b)
ST::: Syntax Testing (Beizer, 1990)

5. Traditional test data String ·Description of how the test data is generated using the
eeneration rule used traditional testing technique

6. Valid/Invalid enum whether the test data chosen valid or not

7. WSDatatype datatype Defines the Web service datatype of the input parameter
tested.

8. WS Test Data type datatype Defines tbe Web service datatype of the· test data which
might be the same as the Web service datatype or
different.

9. WS test data Depends on Defines the actual data used for testing
WSTest
Datatype

10. Expected output String Defines what is the expected response SOAP message of
the Web service under test

II. Quality attribute (s) enum Defines the quality attribute·this test data aims to assess
assessed which could be robustness and/or security and/or fault

tolerance.

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 114
Web Services

S.S Generating Test Cases for Primitive (or derived from

pri:mitive) Simple Datatypes

W3C XML Schema primitive (or derived from primitive) simple datatypes (see Figure

2.5) can be categorized as String datatypes; Numeric datatypes, Date-Time datatypes,

and Boolean. Table 5.2 describes the datatypes included in each of these categories. A

description of each of these datatypes, together with the value space of each of them,

can be found in (W3C, 2004c) and (Vlist, 2002).

Designing test data for primitive or derived from primitive simple datatype is more

difficult than designing test data for user-derived and complex datatypes because there

are no constraining facets and other schema components that can help in designing the

test cases.

To generate test data for robustness assessment when the input message parameter to

a Web Service of simple datatype &>rimitive or derived from primitive) will depend on

changing the datatype of the input parameter, supplying a null or empty parameter, or

using the upper and lower limits of values. Each datatype category in Table 5.2 will be

considered in turn and these changes will be applied to them.

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 115
Web Services

Table 5.2. W3C XML Schema Primitive or Derived from Primitive
Simple Datatypes

Numeric String Date-Time Boolean
Data types Data types Data types
decimal string duration boolean

integer normalizedString date Time

int token time

byte language date

short Name gMonthDay

long NMTOKEN gYearMonth

nonPositivelnteger NCName gYear

nonNegativelnteger ID gMonth

unsignedlnt IDREF gDay

unsignedByte Entity

unsigned Short base64Binary

unsignedLong hexBinary

positivelnteger any URI

negativelnteger QName

float NOTATION

double

Chapter 5- An Approach to WSDL-based Quality of Service Assessment of 116
Web Services

S.S.l Test Cases Generation Schema

This section will describe the tables of .the test case generation schema that was used to

generate test cases for primitive or derived from primitive datatype (See Table 5.3).

To explain why the specific test cases in Table 5.3 have been used with the primitive

or derived from primitive datatypes, a formal description of test case rules selection will

be given:

For the primitive datatypes in Table 5.2, let:

N represents. Numeric Datatypes

S represents String Datatypes

DT represents Date-Time Datatypes

B represents boolean

The test case generation rules in Table 5.3 are produced as follows:

{N, DT, B} replace with S, produce~ {String_ Replacement}

{S, DT, B} replace with N, produce~ {Numeric_Replacement}

{N, S, B} replace with DT, produce~ {Date_Time_Rep/acement}

{N, S, DT} replace with B, produce~ {Boolean_Rep/acement}

{S, DT, B} replace with N, produce~ {Numeric_Rep/acement}

{N, S, DT, B} replace with null, produce~ {null_ Replacement}

{N, DT} replace with boundary values, produce ~ {Max_ Value, Above_Max,

Less~Max, Min~ Value, Above_Min, Less_Min}

{N} replace with Zero, produce~ {Zero_Input}

{N} replace with NaN, produce~ {NaN_Replacement} ·

{S} replace with_ extreme values, produce~ {Large_String, Empty""""'String}

Chapter 5- An Approach to WSDL-based Quality of Service Assessment of 117
Web Services

Table 5.3 (a): Test Case Generation Rules for Primitive or Derived from
Primitive Simple Datatypes

ID String_ Rep lac- Numeric_Repl- Pate- Boolean_ Rep-
ement acement Time_Replace lacement

ment

WSDL Operation input Operation input Operation input Operation input
Component(s) message message message message
test data is parameter's parameter's parameter's parameter's
based on datatype datatype. data type datatype

Lack of Lack of Lack of Lack of
Fault validation of validation of validation of validation of

input datatype input datatype input datatype input datatype

Traditional
Testing EP& IPA EP&IPA EP&IPA EP&IPA
Technique

Traditional test Replace the Replace the
Replace the

Replace the
data input parameter input parameter

input parameter
input parameter

generation rule with String with Numeric
with Date-

with Boolean
Time

Valid/Invalid Invalid Invalid Invalid Invalid

Numeric, Date- String, Date- String, Numeric,
WS Datatype Time, and Time, and Numeric, and String, and

Boolean Boolean Boolean Date-Time

WSTest String Numeric Date-Time Boolean
Data type

WS test data Random String Random Random Date- Random
Numeric Time Boolean

Expected
Fault message Fault message Fault message Fault message
with proper with proper with proper with proper

output fault string fault string fault string fault string

I. Platform 1. Platform 1. Platform 1. Platform

Robustness Robustness Robustness Robustness

(handling (handling (handling (handling

invalid input) invalid input) invalid input) invalid input)

Quality 2. Platform 2. Platform 2. Platform 2. Platform

attribute(s) Security (input Security (input Security (input Security (input

assessed manipulation manipulation manipulation manipulation

vulnerability) vulnerability) vulnerability) vulnerability)

3. Platform 3. Platform 3. Platform 3. Platform
Fault tolerance Fault tolerance Fault tolerance Fault tolerance
to wrong input to wrong input to wrong input to wrong input

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 118
Web Services

Table 5.3 (b)

ID null Input Max Value Above Max Less Max

WSDL
Operation input Operation input Operation input Operation input

Component test
message message message message
parameter's parameter's parameter's parameter's

data is based on
datatype datatype data type datatype

Lack of
Lack of ability to Lack of ability to Lack of ability to

Fault validation of null
handle large handle large handle large

input
numbers and numbers and numbers and
boundary fault boundary fault boundary fault

Traditional
Testing EP& IPA RT RT RT
Technique

Replace the input
Replace the input Replace the input

Traditional test Replace the input
parameter with

parameter with parameter with
data generation parameter with

maximum
maximum maximum

rule null
allowed number

allowed number allowed number -
+1 1

Valid/Invalid Invalid Valid Invalid Valid

WS Datatype All
Numeric, Date- Numeric, Date- Numeric, Date-
Time Time Time

WSTest
null

Same as WS
Numeric

Same as WS
Data type Datatype Datatype

Maximum Maximum Maximum

WS test data null
allowed number allowed number allowed number
ofthe WS ofthe WS of theWS
Datatype Datatype + 1 Datatype- 1

Fault message
Response

Fault message
Response

Expected output with proper fault with proper fault
string

message
string

message

1.1. Platform 1. ws 1. Platform
1. ws

Robustness Robustness
(handling invalid

implementation
(handling invalid

implementation
robustness robustness

input)
(handling

input)
(handling

Quality 2. Platform
stressful

2. Platform
stressful

attribute(s) Security (input
environmental

Security (input
environmental

assessed manipulation
condition)

manipulation
condition)

vulnerability)
2. ws vulnerability)

2. ws
3. Platform Fault

implementation
3. Platform Fault

implementation
tolerance to tolerance to
wrong input

security wrong input
security

Chapter 5- An Approach to WSDL-based Quality of Service Assessment of 119
Web Services

Table 5.3 (c)

ID Min Value Less Min Above Min Zero input
WSDL Operation input Operation input Operation input Operation input
Component test message parameter's message message message
data is based on

datatwe parameter's parameter's parameter's
datatype datatype datatype

Fault Boundary fault Boundary fault Boundary fault Zero input fault
Traditional
Testing RT RT RT EP
Technique
Traditional test Replace the input Replaee the input Replace the input data generation parameter with parameter with parameter with Replace the input
rule minimum allowed minimum minimum allowed parameter with

number allowed number- number+ I zero
I

Valid/Invalid Valid Invalid Valid Valid

WSDatatype Numeric, Date-Time Numeric, Date- Numeric, Date- Numeric where
Time Time zero is valid

WSTest SameasWS Numeric Sanie as WS Numeric Data type Datatype Datatype
WS testdata Minimum allowed Minimum Minimum allowed allowed number number of the WS oftheWS number of the WS zero

Datatype Datatype-1 Datatype+ 1

Expected output Fault message
Response message with proper fault Response·message Response message

string
Quality 1. Platform
attribute(s) 1.WS Robustness
assessed implementation (handling invalid 1. ws 1. ws robustness (handling input) implementation implementation stressful 2. Platform

environmental Security (input robustness robustness
2. ws 2. ws condition) manipulation implementation implementation 2. ws vulnerability)

implementation 3. Platform Fault security security

security tolerance to
wrong input

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 120
Web Services

Table 5.3 (d)

ID NaN Replacement Large String Empty String

WSDL Operation input Operation input Operation input
Component test message message message
data is based on parameter's parameter's parameter's

datatype ..J. . e datatype
Fault Lack of validation

buffer overflow
Lack of validation

ofNaNvalue of empty String
Traditional
Testing EP EP EP
Technique
Traditional test Replace the input Replace the input Replace ·the input
data generation parameter with parameter with big parameter with
rule NaN String empty String
Valid/Invalid Valid Valid Valid

WSDatatwe Numeric {float,
String String

double}
WSTest Same as WS Same as WS

String
Data type Datatype Datacype
WStestdata NaN

A random big
Empty String

String
Expected SOAP fault
output ' message with

Response message Response message proper exception
handling message
in the fault strin_g

Quality 1. ws 1. ws l. ws
attribute(s) implementation implementation implementation
assessed robustness robustness robustness

2. ws 2. ws 2. ws
implementation implementation implementation
security security security.

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 121
Web Services

Table 5.4. Test Cases with Valid Data for Primitive or Derived from Primitive
Data types

ID \(alid Data

WSDL Operation input
Component message
test data is parameter's
based on datatype
Fault Lack of ability

to handle valid
input

Traditional Validation
Testing

testing Technique
Traditional

Provide a valid
test data input
e;eneration rule
Valid/Invalid Valid

ws Dataty,pe All

WSTest Same as WS ,
Datafipe Data_!yj)e
WS test data Random value

ofthe WS
Datatype

Expected Response
output Message
Quality l.WS

. attribute(s) implementation
assessed robustness

2. ws
implementation
security
3. ws
functionality

Chapter 5 - An Appr()ach to WSDL-based Quality of Service Assessment of 122
Web Services

5.5.2 Exam,ple of Test Case Generation

To give a detailed description of how test cases are generated, the first test case

(column) in Table 5.3 will be discussed. In Table 5.3, the first test case is

String~ Replacement and it has been designed as follows:

1. The ID of this test case is String_ Replacement.

2. Since the input parameter datatype is primitive (or derived from primitive) then

there are no constraining facets for this parameter, then the WSDL component this

test case is based on is only the datatype ofthe input parameter.

3. The fault that this test case is to detect is the lack of validation of input datacype.

This means that this test case assesses if the Web Service operation under test is

robust when the input datatype is not the same as expected by the Web Service (as

described in WSDL).

4. Since this test case is to detect the lack of validation of input datatype and it must

change the input parameter datatype, then the testing technique that is used to

perturb the input data is IP A. Changing the datatype is considered an invalid

equivalent class in an equivalent partitioning testing (Myers, 1979).

5. The traditional test data generation rule in IPA is to perturb the input parameter by

changing the datatype to string.

6. This test case is invalid because it is used to send invalid input to the Web Service

under test.

7. The Web Service XML Schema datatype in this test case is Numeric, Data-Time,

and Boolean because the input parameter is replaced by String so the input

parameter must be different than String.

8. The Web Service test datatype is String.

Chapter 5 - An Approach to WSDL-based Quality ofService Assessment of 123
Web Services

9. The test data is a random String that can be generated using a random string

generation function.

1'0. The expected output in this test case is that the Web Service sends a fault message

that describes to the Service Requester that the Web Service does not expect a

string but rather the actual input parameter datatype as described in WSDL.

11. The quality attributes assessed are, first: Web Service platform robustness, since

the datatype is different than the expected datatype in WSDL. Then the Web

Service platform must be robust enough and not send the SOAP request to the

Web Service implementation but rather send a fault message directly to the

Service Requester. Second: security, the Web Service platform or the Web Service

source code may raise an uncaught exception causing a stack trace. This stack

trace might then be used by malicious Service Requesters to harm a Web Service.

So this test case assess if the Web Service under test is vulnerable to such attacks

by checking its response to an invalid datatype. Third: fault tolerance to wrong

input, this test case assess if the Web Service under test can handle the wrong

datatype fault without causing a failure to the Web Service.

5.5.3 Detailed Description ofTest Case Generation

This section will explain in more details how test cases are generated in Table 5.3 by

discussing the components (rows) of this table that need more explanation:

Fault:

Table 5.3 shows how different faults can be detected when the input parameter to a

Web service is of primitive or derived from primitive datatype.

The rules in this table are concerned with the following faults:

Chapter S - An Approach to WSDL-based Quality ofService Assessment of 124
Web Services

The rules in this table are concerned with the following faults:

• Lack of validation to input datatype:

These faults occur when the input parameter to a Web service is of a datatype

that is different than the expected datatype. For example, an input message for a

certain operation expects an integer parameter while the input was of type string.

Ifthe Web Service platform contains a validation to the input datatype and sends

a proper fault message when such faults occur, without sending the request to

the Web Service implementation, then no robustness failure will result.

Otherwise it is the responsibility of the Web Service implementation to raise an

exception to this invalid datatype to prevent a robustness fai,lure. .

• Lack of validation. of null input:

The Web Service platform must validate a nul11 input in order to be robust to this

kind of faults.

• Lack of validation of empty string:

The detection of this fault is not the responsibility of the Web Service platform

because it is a valid input and the method request inside WSDL must be given to

the Web Service implementation.

The faults that we just discussed are considered as input manipulation faults or

vulnerabilities. These faults occur when unexpected datatypes are used as input

to a Web service.

There are other types of input manipulation vulnerabilities or faults such as

SQL injection but this thesis is not concerned with these faults because our main

target to assess the robustness of a Web service using the information inside

Chapter S - An Approach to WSDL-based Quality ot Service Assessment of 125
Web Services

WSDL rather than assessing the security of a Web service. Only the security

vulnerabilities that are related to robustness also are discussed in this thesis.

• Boundary fault

Experience shows that test cases that explore boundary conditions can detect

more fault that test cases that do not (Myers, 1979). For this reason some test

cases have been designed to explore the boundaries of the Web Service

operation's input parameter XML Schema datatype.

The testing techniques that are used to detect such faults are robustness testing

(Jorgensen, 2002) and boundary-value analysis (Myers, 11979). For the test

cases: A'bove_Max and Less~Min, the Web Service platform robustness (input

vulnerability and fault tolerance wrong input) is tested because the platform

should be robust and not send the operation request to the Web Service

implementation. The test cases: Max_ Numeric, Min _Numeric, Above _Min, and

Less_Max, are used to check if the Web Service implementation has no

boundary faults (or robust to such kind of faults) .

•
To apply the boundary value based test cases, the boundaries of the Numeric

XML Schema datatypes in table 5.2 must be found. Table 5.4 summarizes the

boundary value for each of the Numeric datacypes that have constraints on the

number of digits as specified by W3C standard for XML Schema datatypes

(W3C, 2004c). The Numeric datatypes that are not mentioned in Table 5.4 have

unconstrained length and so can not be tested for binary faults.

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 126
Web Services

• Lack of ability to handle zero input

This fault occurs if the Web Service implementation is vulnerable to zero input,

or possibly if the Web Service implementation has no divide by zero exception

handler.

Traditional Testing Techniques:

The traditional testing techniques are chosen depending on the fault that a test case is

supposed to detect. The fault that the rules String_Replacement, Numeric_Replacement,

Date-Time_Replacement, and Boolean_Replcement are to detect is the lack of

validation of input datatype. After a survey on the traditional testing techniques in

Chapter 3, it has been found that the testing techniques that can assess if a system has

this kind of faults are equivalent partitioning and interface propagation analysis (IP A).

For the boundary faults, the testing technique that is used to assess such faults is the

boundary value based robustness testing {Jorgensen, 2002).

The fault that the rule null_ Replacement supposes to detect is lack of validation of

null and the traditional testing technique that is used to detect such fa~ts is equivalent

partition.

The same analysis can be easily followed for the other test cases.

WSDL Component test data is based on:

Test case generation for simple primitive (or derived from primitive) datatype depends

only on the input parameter datatype.

Expected Output:

For the test cases that change the datatype of the input parameter or send a null input,

the expected output is that the Web Service platform will not send this request to the

Chapter 5 • An Approach to WSDirbased Quality of Service Assessment of 127
Web Services

Web Service implementation and rather send a response to the Web Service Requester

with a proper fault message such as: "Wrong type, this operation expects integer

datatype but it received a string".

Table 5.5. Numeric XML Schema Datatypes Boundaries

Numeric Datatype Min Allowed Value Max Allowed Value

nonPositivelnteger Undefmed 0

long -9223372036854775808 9223372036854775807

nonNegativelnteger 0 Undefined

negativelnteger Undefined -1

int .. 2147483648 2147483647

unsignedLong 0 18446744073709551,615

positivelnteger 1 Undefined

short -32768 32767

unsignedlnt 0 4294967295

byte -128 127

unsignedShort 0 65535

unsignedByte 0 255

float l.4E-45, .. JNF 3.402823'5E38, INF

double 4;9E-324, -INF · 1. 7976931348623157E308,

INF

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 128
Web Services

Quality attribute(s) assessed:

Some test cases assess whether the Web Service platform has the ability to handle

requests with invalid data without sending the request to the Web Service

implementation. In these test cases, the quality attribute assessed are:

1. The robustness of the Web Service platform: platform ability to handle invalid

data.

2. Platform Security: if the Web Service platform is vulnerable to some input, then it

wil11 send a stack trace to the Service Requester that will enable malicious

Requesters to hann the Web Service.

3. Platform Fault tolerance to wrong input: checking if the platform can tolerate

wrong or invalid input without causing a failure.

5.6 Generating Test Cases for User-derived Datatypes

User-derived are created by restricting a built in (or derived from built in) datatype

(called the base type) using constraining facets. Descriptions of all the constraining

facets are found on the W3C specification (W3C, 2004c).

Constraining facets are used to restrict a base datatype by specifying some

characteristics of this datatype like the maximum and minimum length allowed for a

string value and the maximum and· minimum allowed numbers for a numeric value. For

example constraining facets may specify that a certain integer number may only assume

numbers· between 1 and 100, and so on. Table 2.2 gave a brief description of all the

constraining facets (W3C, 2004b). Different simple datatypes have different

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 129
Web Services

constraining facets, for example, string datatypes have the constraining facets: length,

minLength, maxLength, pattern, enumeration, and whiteSpace.

The approach for test data generation for this kind of datatypes depends on:

• The constraining facets (W3C, 2004c).

• The base type (the datatype from which the user derived datatype was derived)

5.6.1 Test Case Generation Schema

For each constraining facet for the different datatypes an analysis has been carried out

on what faults may be caused by violating the dataty,pe's constraining facets and also

what test cases should be ,used to detect these faults.

The base datatypes of user-derived datatypes (that are primitive or derived from

primitive) will have the same categories in Table 5.2, however, Numeric datatypes

category will be divided into Decimal and Float categories, where each contains the

following datatypes:

Decimal: decimal, integer, nonPositivelnteger, long, nonNegativelnteger,

nagativeOnteger, int, unsignedLong, posifi,ve/nteger, short, unsigned/nt, byte,

unsignedShort, and unsignedByte.

Float: float and double.

This categorization is done because the datatypes in the Decimal category have

different constraining facets than the datatypes in the Float category and the test case

generation will depend on these constraining facets.

So, to generate test cases for user-derived datatypes there will be the following

categories for the base datatypes: Decimal, Float, String, date-Time, and Boolean.

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 130
Web Services

5.6.1.1 Test Cases based on the Numeric Boundaries Constraining Facets

The Numeric Boundaries constraining facets include: minlnclusive, minExclusive,

maxlnclusive and maxExclusive. The minlnclusive and minExclusive constraint

specifies an inclusive and exclusive lewer bounds for the value space of a datatype

while maxlnclusive and maxExclusive specifies an inclusive and exclusive upper

bounds for the value space of a datatype. Table 5.6 describes how test data are

generated based on these constraining facets.

Since the numeric boundaries facets are related to the lower and upper bounds of an

input parameter to a Web Service then it was natural to use boundary value based

robustness testing technique (Jorgensen, 2002) to generate test data.

ChapterS -An Approach to WSDL-based Quality of Service Assessment of 131
Web Services

Table 5.6 (a): Test Case Generation for User-derived datatype Numeric Boundaries

ID Min_ Value Above_Min Less~Min Min_ Value
WSDL Component
test data is based minlnclusive minlnclusive minlnclusive minExclusive
on
Fault Boundary fault Boundary fault Boundary fault Boundary fault
Traditional Testing RT Rt RT RT Technique
'J1raditional test Replace the input Replace the input Replace the input Replace the
data generation parameter with parameter with parameter with input parameter
rule minimum allowed value just above value just below with minimum

number
minimum allowed minimum allowed allowed number number number

V alidllnvalid Valid Valid Invalid Valid

WS base Datatype Decimal, Float Decimal, Float Decimal, Float Decimal, Float

WS Test Datatype Same as WS SameasWS SameasWS Same as WS
Datatype Datatype Datatype Datatype

WStestdata minlnclusive minlnclusive value minlnclusive value minExclusive
value +1 - 1 value+ 1

Expected output Response Fault message Response Response message with proper fault message string message

Quality attribute(s) 1. ws 1. ws 1. ws 1. ws
assessed implementation implementation implementation implementation

robustness robustness robustness robustness
2. ws 2. ws 2. ws 2. ws
implementation implementation implementation implementation
securitY security security securitY

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 132
Web Services

Table 5.6 (b)

ID Above_Min Less_Min Max_ Value Above_Max
WSDL Component
test data is based minExclusive minExclusive maxlnclusive maxlnclusive
on
Fault Boundary fault Boundary fault Boundary fault Boundary fault
Traditional· Testing RT RT RT RT Technique
Traditional test Replace the input Replace the input Replace the input Replace the input
data generation parameter with parameter with parameter with parameter with
rule value just above value just below maximum value just above

minimum minimum allowed allowed number maximum
allowed number number allowed number

Valid/Invalid Valid Invalid Valid Invalid

WS base Datatype Decimal, Float Decimal, Float Decimal, Float Decimal, Float

WS Test Datatype Same as WS SameasWS Same as WS Same as WS
Datatype Datatype Datatype Datatype

WS test data minExclusive minExclusive maxlnclusive maxlnclusive
value+ 2 value value value+ 1

Expected output Response Fault message Response Fault message
with proper fault with .proper fault message string message string

Quality attribute(s) 1. ws 1. ws 1. ws 1. ws
assessed implementation implementation implementation implementation

robustness robustness robustness robustness
2. ws 2. ws 2. ws 2. ws
implementation implementation implementation implementation
security security security security

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 133
Web Services

Table 5.6 (c)

ID Less Max Max_ Value Above Max ·Less Max

WSDL Component
test data is based maxlnclusive maxExclusive maxExclusive maxExclusive
on
Fault Boundary fault Boundary fault Boundary fault Boundary fault
Traditional Testing

RT RT RT RT
Technique
Traditional test Replace the input

Replace the input
Replace the input Replace the input

data generation parameter with parameter with parameter with
rule value just below

parameter with
value just above value just below

maximum
maximum

allowed number
maximum maximum

allowed number allowed number allowed number
Valid/Invalid Valid Valid Invalid Valid

WS base Datatype Decimal, Float · Decimal, Float Decimal, Float Decimal, Float

WS Test Datatype Same as WS Same as WS Same as WS Same as WS
Datatype Datatype Datatype Datatype

WS test data maxlnclusive maxExclusive maxExclusive maxlnclusive
value- I value- I value value- 2

Expected output Response Response
Fault message

Response
with proper fault

message
.·

message
string

message

Quality attribute(s) .I. ws 1. ws 1. ws
assessed implementation implementation

implementation
robustness robustness ·1. ws

robustness
!

(handling (handling implementation {handling stressful .
stressful stressful robustness
environmental environmental 2. ws environmental

condition) condition) implementation
condition)
2. ws

2. ws 2. ws ,•· security
implementation··

implementation implementation
security security

security

5.6.1.2 Test Cases based on the String Length ,Constraining Facets
. .

The String Length constraining facets include length, minLength, and maxLength. The

length constraining facet defines a fixed length for a String datatype (See table 5.2).

The length is measured in number of characters for all the String datatypes except

hexBinary and base64Binary whe,re the length is measured in bytes.· maxLength and

Chapter 5 - An Approach to WSDL-based Quality of Service Assessment of 134
Web Services

minLength specify the maximum and minimum length of a String also measured in

character or byte like the length.

Table 5.7. Test Case Generation for User-derived datatype String Length
Constraining Facets

ID Different_ Length Longer_ Stringl Longer~ String2 Shorter String

WSDL Component length constraining length constraining maxLengtb MinLength
test data is based facet facet constraining facet constraining
on facet

Fault Lack of Lack of Lack of Lack of
Validating of Validating of Validating of Validating of
String length String length String length String len~

Traditional Testing s:r ST ST ST
Technique

Traditional test NA Add extra letter to Add·extra letter to Remove one
data generation the string input the string input letter from the
rule String

Valid/Invalid Invalid Invalid Invalid Invalid

WS base Datatype String String String String

WS Test Datatype Same as Web SameasWeb Same as Web Same as Web
Service DataType Service DataType Service DataType Service

Data Type

WS test data Random string of Random string of Random string of Random string
len!= length len= length len = Maxlength oflen=
constraining facet constraining facet constraining facet minLength
value value+ 1 value+ I constraining

facet- I

Expected output Fault message Fault message Fault message Fault message
with.proper fault with proper fault , with proper fault with proper fault
string string string string

Quality attribute(s) 1. ws 1. ws 1. ws 1. ws
assessed implementation implementation implementation implementation

robustness -robustness robustness robustness
2.WS 2. ws 2. ws ·2.WS
implementation implementation. implementation implementation
security security security security

Test case generation rules corresponding to the other constraining facets, that include

pattern, enumeration, whitespace, totalDigits, and .fractionDigit, will not be discussed

in this thesis. However the rules for these constraints can easily be concluded using the

same appr9ach that was used with the other constraining facets in Section 5.6.1.1 and

5.6.1.2.

'

Chapter 5 - An Appt:oach to WSDL-based Quality ot Service Assessment of 135
Web Services

5. 7 Generating Test Data for Com,plex Data types

Complex datatype consists of a group ofSimple and User-derived datatypes. If the input

parameter to a Web service of complex datatype then for each of the Simple and User-

derived datatype of its sub-.elements, the relevant test data rules are chosen as explained

in section 5.1 and 5.2 and then the cross product for the test data of each of those parts

are computed. The discussion of the test data generation for Web Service when the

input parameter is of complex XML schema datatype will be left to a future work.

This Chapter described the approach of test case generation for Web Services that is

proposed in this thesis. This approach is based on analyzing the input parameter XML

Schema datatype and then finding the robustness faults that may be resulted by

violating the formal specifications of this datatype. 'Fest cases generation schema was

developed depending on these faults and on the testing techniques that can be -used to

detect such faults. The input parameters datatype was categorized to primitive, user-

derived, and complex, and test case generation rules was discussed for each primitive

and user-derived datatypes only while complex datatypes will be discussed in a future

work.

136

C'hapter 6

WS ... Robust: Web Service Robustness Testing Tool

6J. Introduction

WS-Robust (Web Services Robustness) tool is an implementation of the proposed

approach of test case generation to assess Web Services robustness and other related

attributes proposed in Chapter 5.

The implementation is divide<:~ into three phases. The first phase is to build a database

of test cases, depending on the rules in Table 5.3, Table 5.4, Table 5.6, and Table 5.7

for the simple primitive (or derived from primitive) XML Schema datatypes (shown in

Figure 2.5), and user-derived XML Schema datatypes. The second phase is to write a

code that can accept any WSDL document as an input and then generate the test cases.

The third phase will generate clients to the Web Service under test based on the

generated test cases. Fig. 6.1 represents an overall architecture of WS-Robust that

describes these three phases.

6.2 Building the Rules Database

A Java program has been built that is used to manual add the rules of test case

generation in order to be used by the test case generation mechanism that will be

described in Section 6.3.

I

Chapter 6 - WS-Robust: Web Services Robustness Testing Tool

rules

Phase 1:
Build Test ease
Database

generates

Fig. 6.1. WS-Robust Overall Architecture

uses

uses

Pbase2:
Generating the Test
ease XML document

uses

Test eases

Pbase3:
Generate Test
elient

137

A Java GUI has been implemented (see Fig. 6.2) that emulates Table 5.1. The resulted

data is stored in a test cases database.

Chapter 6- WS-Robust: Web Services Robustness Testing Tool 138

Fig. 6.2 Web Serviees Test Cases BuDding GUI

6.2.1 Configuration

The GUI is implemented using

• Java 1.5.0_06.

• MySQL version 1.4.

Chapter 6 - WS-Robust: Web Services Robustness Testing Tool 139

6.2.2 Inserting the Test Cases

Using the GUI in Fig. 6.2, 434 test cases have been inserted for primitive or derived

from primate simple datatypes using Table 5.3 and 5.4 of test case generation rules and

289 test cases have been inserted for user derived datatypes using Table 5.6 and Table

5.7.

6.2.3 Querying the Test Case Rules

TheWS-Robust tool enables Web Service Provider or Requester to display and query

the test cases rules. Fig. 6.3 shows an example of selecting the test cases rule for the

Web Service with string input parameter.

Fig. 6.3. Displaying and Querying the Test Rules

6.3 Test Cases Generation Mechanism

This section will describe the test cases generation mechanism for primitive datatypes

and for user derived datatypes based on the test cases rules database that was created in

Section 6.2.

Chapter 6- WS-Robust: Web Services Robustness Testing Tool 140

6.3.1 Configuration

To implement the test cases generation mechanism for a specific WSDL document, the

following programming language, API, plug-in, parser, and database have been used.

• Java version 1.5.0 06.

• WSDL4J (Java API for WSDL) Version 1.4.

• Eclipse plug-in that provide an API and implementation for XML Schema.

• Document Object Model (DOM) (W3C, 2005~ XML parser.

• MySQL version 1.4.

6.3.2 Scenario

The scenario of test case generation is as follows:

l. TheWS-Robust user (a Service Provider or a S~rvice Requester) are prompted to

enter the WSDL document location.

2. The WSDL document is parsed using DOM.

3. Create a new XML document that will be used to insert the test cases. This XML

document will be called the Test Case document henceforth in this scenario.

4. Obtain the name of the Web Service using the name attribute of the service

element inside WSDL (See Fig. 2.6 and List 2.6~.

5. Obtain the address of the Web Service using the address element inside WSDL

(See Fig. 2.6 and List 2.6).

6. Create a web _service element in the Test Case document.

Chapter 6 - WS-Robust: Web Services Robustness Testing Tool 141

7. Insert the name of the Web Service that was obtained in 4 in the web_service

element.

8. Create an address element in the Test Case document.

9. Insert the address of the Web Service that was obtained in 5 in the address

element.

I 0. Get all the port elements for the Web Service in 4 (See Fig. 2.6, Table 2.4, and

List 2.6).

11. Get all the binding elements (See Fig. 2.6, Table 2.4, and List 2.5~ for theport in

10.

12. Get the portType element (See Fig. 2.6 Table 2.4, and List 2.4) for the binding

element in 11.

13. Get all the operation elements (See Fig. 2.6, Table 2.4, and List 2.5) for the

portType in 12.

14. For each operation in 13, extract the name attribute of this operation from WSDL.

15. Add an operations element in the Test Case document to insert all the WSDL

operation.

16. Add an operation_name element as a sub-element of the operations element in

15.

17. Insert the operation name obtained· in 13 in the operation_ name element.

18, Obtain the input message (See Fig. 2.6; Table 2.4, and List 2.8) of the operation in

1'4.

19. Create an input_message element in the Test Case document.

20. Insert the input message name obtained in 1:8 to the input_message element.

Chapter 6- WS-Robust: Web Services Robustness Testing Tool 142

21. Extract all the part elements (See Fig. 2.6, Table 2.4, and List 2.8) of the input

message in 18.

22. Find the name and the type attributes (See Fig. 2.6, Table 2.4, and List 2.8) for

each part in 21.

23. Add apart_name element in the resulted document.

24. Insert the name attribute obtained in 22 as the text of the part_name element.

25. Add apart_datatype element in the resulted document.

26. Insert the type attribute obtained in 22 as the text of the part_datatype element.

27. If the part_datatype in 25 is primitive (or derived from primitive) then generate

the test cases for this part as described in Section 6.3.2.1.

28. If the part_datatype in 25 is user-derived then generate the test cases for this part

as described in Section 6.3.2.2.

29. If the part_datatype in 25 is complex then generate the test cases for this part as

described in Section 6.3.2.2.

30. Extract the output message (See Fig. 2.6, Table 2.4, and List 2.4) from WSDL for

the operation in 14.

31. Create an output_message element in the Test Case document.

32. Insert the output message name obtained in 29 to the output_ message element.

33. Extract all the part elements (See Fig. 2.6, Table 2.4, and List 2.8) of the output

message in 29.

34. Find the name and the type attributes (See Fig. 2.6, Table 2.4, and List 2.8) for

each part in 32.

35. Add a output_part_name element in the Test Case document.

Chapter 6- WS-Robust: Web Services Robustness Testing Tool 143

36. Insert the name attribute obtained in 33 as the text of the output_part_name

element.

37. Add an output_part_datatype element in the Test Case document.

38. Insert the type attribute obtained in 33 as the text of the output_part_datatype

element.

The previous steps can be simplified in the following pseudo code:

Step 1: Get WSDL location.

Step 2: Parse WSDL using DOM

Step 3: Crell.te an XML document to store the generated Test Cases.

Step 4 to Step 9: Obtain the service name and the service address from the parsed

WSDL document and update the Test Case XML document by inserting these data.

Step 110 to Step 13: Get the port, binding, portType, and operation elements (See Fig.

2.6).

Step 14 to Step 21: For each WSDL operation, fmd the operation name attribute and

the input message, and the part elements of the input message. Then update the Test

Case XML document by inserting the data.

Step 22 to Step 26: For each part, find the name and the type attributes. Then update the

Test Case XML document by inserting the data.

Step 27 to Step 29: Depending on the part type go to the specific test case generator for

primitive, user-derived, or complex datatypes.

Step 30 to Step 38: Extract the output message part elements. Extract the name and type

for each of these parts. Then update the Test Case XML document by inserting the data.

The previous steps are explained in Fig. 6.4 that shows a general architecture that

describes how WSDL document are processed in order to generate test cases in theWS-

Chapter 6- WS-Robust: Web Services Robustness Testing Tool 144

Robust tool. Fig. 6.4 shows how the tool extracts the different operation elements inside

WSDL and then checks the input message part type in order to decide which processing

to use for test case generation from primitive, user-derived, or complex processing.

6.3.2.1 Primitive or Derived from Primitive Datatypes

WS-Robust uses the following steps to generate the test cases for an operation with

primitive or derived from primitive part type (See Fig. 2.5, Fig. 2.6, and Table 2.4)

(Note that the following steps are sub steps of Step 27 of the scenario in Section 6.3.2):

1. Add a test cases element in the Test Case document.

2. Connect to the rules database (generated as described in Section 6.2).

3. Select from the rules table the rules (rows) that have the following properties:

a. The Web Service Datatype (See Table 5.1) field equals the specific primitive

or derived from primitive part type that is to generate the test cases.

b. The WSDL Component (See Table 5.1) equal to XML Schema part type.

4. For each retrieved test case (row) from the test cases database do the following:

a. Add the following elements to the resulted XML document of the test cases:

I. test_case_id

II. test data

III. expected_ output

IV. quality _assessed11

v. quality _assessed2

VI. quality ...,:assessed3

Chapter 6 - WS-Robust: Web Servi~es Robustness Testing Tool 145

b. Populate these elements by the data from the test cases using the fields: 10, Web

Service Test Data, Quality Assessed!, Quality Assessed2, and Quality

Assessed3 respectively.

complex
processing

Extract WSDL information

user-derived
processing

primitive
processing

Fig. 6.4 Processing of WSDL Document to Generate Test Cases

The reason of choosing the specific database field in Step 4 from other fields is two

fold:

First, these fields can help in creating the Web Service client application that will be

used to automatically send SOAP messages to the Web Service under test in order to

analyze the response.

Chapter 6- WS-Robust: Web Services Robustness Testing Tool 146

Second, these fields are imponant for the Web Service Requester in order to convey

to them the test data used in a certain test case, the expected output, and the quality

attributes assessed.

6.3.2.2 User-Derived Datatypes

WS-Robust uses the following Steps to generate the test cases for an operation with

user-derived part type (Note that the following steps are sub steps of Step 28 of the

scenario in Section 6.3.2):

1. Add a test cases element in the Test Case document.

2. Extract all the simple user .. derived datatypes using the WSDL's types element

(See Fig. 2.6, Table 2.4, and List 2.7).

3. For each simple user-derived type extract: datatype name, base datatype, all the

constraining facets with the value attribute of each constraint (See List 2. 7).

4. For each constraining facet in step 3, apply the following steps (5 to 10).

5. Add the following elements to the resulted document: part=name, part_datatype,

base, facet, value.

6. Insert the info~ation extracted in Step 3 in the elements of Step 5.

7. Connect to the rules database

8. Select from the rules table (that has the same fields of Fig. 6.1) the rules (rows)

that have the following properties:

a. The WSDL Component (See Table 5.1) field equal to the constraining facet

name.

b. The Web Service Datatype (See Table 5.1) field equal to the base datatype

of the constraining facets.

Chapter 6 - WS-Robust: Web Services Robustness Testing 'fool 147

9. from the rules table the rules that have the following properties:

a. The Web Service Datatype (See Table 5.1) field equal to the base datatype

of the constraining facets.

b. The Test Case ID (See Table 5.1) field has not been used in Step 8.

ro. Repeat Step 4 of section 6.3.2.1 if processing primitive or derived from primitive

datatypes

The previous steps of test case generation for user-derived datatypes can be summarized

in the following:

Step 1: Extract from the rules database the rules with the Web Service Datatype field

equal to the base datatype of the constraining facet of the user-derived datatype AND

the WSDL Component field equal to the constraining facet name.

Step 2: Extract all the rows with the Web Service Datatype field equal to the base

datatype of the constraining facet that have not been selected in Step 1.

Step 1 identifies all the test cases that are based on the col1Straining facet of the input

parameter while Step 2 identifies all the test cases based on the base datatype of the

user-derived datatype except the test cases that are already chosen in Step 1.

6.3.2.3 Complex Datatypes

The test cases generation process is easy because complex datatypes consists of a group

of primitive and user-derived datatypes, so the test case produced in section 6.3.2.1 and

6.3.2.2 can be used for complex datatypes part. However, as mentioned before, the

discussion of complex datatypes will be done in a future work.

Chapter 6 - WS-Robust: Web Services Robustness Testing Tool 148

6.3.3 Overall Mechanism

The overall mechanism for test case generation is shown in Fig 6.5. It is clear in Fig. 6.5

that:

• Primitive datatype processing depends on the test cases rules

• User derived datatwe processing depend on the test cases rules and WSDL's

types element.

• Complex processing depends on primitive and user-decived processing.

This figure only shows test case generation for Web Services and whether it is the

service implementation or the platform being tested depends on each test case rule as

defined in the Tables 5.3, 5.4, and 5.6.

6.4 Test Client Generation Mechanism

WS-Robust aims to:

• Generate test cases for a Web Service based on WSDL (Section 6.3)

• Use the test cases to automatically generate SOAP message for the Web Service

under test

This Section will discuss how .the Test Cases XML decument that was generated in

Section 6.3 can be used as an input to for a Web Service test client that will

automatically generate SOAP message for the Web Service under.

6.4.1 Configuration

To implement the test client generator for a specific test cases document, the

following programming language, parser, and Web Services platform.

Chapter 6- WS-Robust: Web Services Robustness Testing Tool

• Java version 1.5.0 06.

• Document Object Model (DOM) (W3C, 2005) XML parser.

• Axis 1.4

WSDL information extractor

operation
element

use

Fig. 6.5. Ovenll Architecture of Processing WSDL to Generate Test Cases

6.4.2 Scenario

149

The mechanism for invoking the Web Service under test, with the test data inside the

test cases document produced in Section 6.3, is as follows:

Chapter 6 - WS-RQbust: Web Services Robustness Testing Tool 150

I. Parse the XML test cases document generated in Section 6.3 using DOM.

2. Create an XML do.cument to store the test cases of Section 6.3 and the test

results. This document wiH be called XML Responses Document henceforth.

3. Copy the Web Service name element from the resulted document of test cases to

the XML Responses Document.

4. Extract the address of the Web Service from the test cases document.

5. For each operation element in the resulted XML document do the following

steps (6-9).

6. Invoke the Web Service under test by sending a SOAP request (See List 2.1 0)

using the information provided by the address, operation name, test data, and

return type elements of the test cases XML document.

7. If the Web Service has responded with a SOAP response (See List 2.11) then

extract the result of the operation that was invoked and insert it in the responses

XML document.

8. If the Web Service under test responded with a SOAP fault (See List 2.12) then

extract the fault code, fault string, and fault detail elements from the fault

message and then insert these elements in the responses XML document.

9. If an operation has more than one part then find the cross product of the parts

and then use them to send SOAP messages depending on the information in the

XML document of test cases.

The previous steps are used to invoke the Web Service when the operations have

parameters of primitive or user-derived datatypes. In case of complex datatypes it is

very difficult to automatically generate the test client because this process needs many

steps and can not be automated easily. For this reason WS-Robust tool now only handle

Chapter 6 - WS-Robust: Web Services Robustness Testing Tool lS,l

generating test client for an operation with a part with primitive and user-derived

datatypes.

The previous steps are summarized in Fig. 6.6 that describes the mechanism of

creating an XML document that contains the test cases for a Web Services together with

the actual responses of this Web Service.

Fig 6.6 describes how the address, operation name, test data, and return type that can

be extracted from the test cases XML document can be used to generate a test client for

the Web Service. The test Client will then generate the test cases with responses

document after receiving the SOAP response or SOAP fault from the Web Service

under test.

,.......;.----'L-----,

Client Generator

SOAP request

SOAP response
or SOAP fault

Web Service

Fig. 6.6. The Mechanism ofGeilerating the Test Cases with Responses Document

Chapter 6- WS-Robust: Web Services Robustness Testing Tool 152

6.5 Summary

This Chapter has introduced the implementation details ofthe WS-Robust tool for Web

Service robustness testing. Section 6.2 described how the test cases rules were inserted

in a database in order to be used by the components that are responsible for test case

generation depending on a specific WSDL document. This Section also described how

the test rules can be queried by Web Service Requester or Provider. Section 6.3

described how test cases can be generated depending on WSDL and the test case rules

that were inserted in Section 6.2.

Finally, Section 6.4 described how the Web Service under test can be invoked

depending on the test cases XML doctnnent that was generated in Section 6.3.

This tool can help to increase the trustworthiness of the Web Service Requester

because they can check how a Web Service responds to different test cases that were

generated based on its interface.

153

Chap.ter 7

Evaluation

7.1 Introduction

This chapter evaluates the Web Services robustness testing framework that uses the test

case generation rule described in Chapter 5. It does that by using theWS-Robust tool

that was implemented in Chapter 6. The framework and WS-Robust will be assessed

depending on its ability to test the robustness of Web Services implementation and Web

Services platforms such as Axis.

To demonstrate WS-Robust effectiveness, it has been used to assess the robustness of

three groups of Web Services example applications:

1. Web Services that accept simple primitive or derived from primitive datatypes as

input to its operations (Section 7 .2).

2. Web Services that accepts user-derived datatypes as input to its operation (Section

7.3).

3. Commercially available Web Services (Section 7.4).

4. Research based Web Services (Section 7.5).

This chapter will show how the robustness of a Web Service may vary depending on

the platform that a Web Service is deployed on (Section 7.5). This will be accomplished

by comparing the responses of a Web Service deployed in different platforms, namely,

Axis and GLUE.

In the following, mentioning of the WS-Robust tool also implies that the framework

of test case generation defined in Chapter 5 is being applied.

Chapter 7 - Evaluation 154

7.2 Web Services with Primitive or Derived from Primiti¥e

Data type

The Web Services applications in this section demonstrate that theWS-Robust tool can

automatically generate test cases for a Web Service that accepts prilllitive input part,

based on WSDL. It also demonstrates that WS-Robust can automatically generate a

Web Service test client application that can invoke the Web Service under test using the

general test cases and analyze the SOAP response or fault message responses.

7 .2.1 Configuration

The examples of this section have been implemented using the following programming

language, Web Services platform, and Web server or container:

• Java version 1.5.0 06.

• Axis 1.4

• Apache Tomcat {j.O.

7 .2.2 Scenario

Forty one simple Web Services have been implemented and deployed in the Axis Web

Service platform which resides on a Tomcat Web server. Each Web Service has an

input parameter that has one of the datatypes in Table 5.2. These represents all the

primitive or derived from primitive W3C XML Schema datatypes in Fig. 2.5 except the

datatypes that are derived by List from other types, namely, ENTITIES, IDREFS, and

Chapter 7 - Evaluation 155

NMTOKENS. These datatypes has been excluded because this thesis does not discuss

WlC XML Schema List and Union datatypes (W3C, 2004b) (W3C, 2004c).

A Web Service that accepts more than one input part has been implemented in order

to use its WSDL to demonstrate the ability of WS-Robust to generate test cases for such

Web Services. After deploying these Web Services using Axis, the WSDL document

which is automatically generated using Axis, has been used to demonstrate the

effectiveness of the test case generation process (see Section 6.3) ·of WS-Robust. After

generating the XML test cases document they have been used to demonstrate. the

effectiveness of the Web Service test client generation mechanism.

7 .2.3 Test Case Generation

Test case generation using WS-Robust will be demonstrated for Web Services that

accept single input parameter (Section 7.2.3.1), and for Web Services that accept more

the one input parameter (Section 7.2.3.2). The result of the test case generation case

studies will be discussed in Section 7.2.3.3.

7.2.3.1 Single Primitive Input Datat)qle

Test cases were generated for each of the forty one Web Services that have primitive or

derived from primitive input parametet:S using WS-Robust. As an example of the test

cases generated for each the forty one Web Services, the generation of test cases for one

of these Web Services wiH be discussed in detail.

The Web Service name is IntWSService and it has only one operation called printlnt.

This operation accepts an int input and returns a string value that represents the iht

Chapter 7 - Evaluation 156

value that has been passed by the SOAP request. Part of the WSDL document of this,,

simple Web Service is shown in List 7.1.

<?xml. ve:r:s:i_on,.,"l.O" encoding="UTF-8"?>
<wsdl:definitions
targetNarnespace="http://127.0.0.1:8080/axis/IntWS.jws"

<wsdl:rnessage narne="printintRequest">
<wsdl :part narne="i" type="xsd: int·" />

</wsdl:rnessage>

<wsdl:rnessage narne="printintResponse">
<wsdl:part narne="print!ntReturn" t~e="xsd:string"/>

</wsdl:rnessage>

<wsdl:portType narne="IntWS">

<wsdl:operati:on narne="print!nt" pararneterOrder="i">

<wsdl:input rnessage="irnpi:print!ntRequest"
narne="printintRequest"/>

<wsdl:output rnessage="irnpl:print!ntResponse"
narne="print!ntResponse"/>

</wsdl:operat:i.on>
</wsdl :·port Type>

<wsdl:binding narne="IntWSSoapBinding" type="irnpl:IntWS">

</wsdl:binding>

<wsdl:service narne="IntWSService">
<wsdl:port binding="irnpl:IntWSSoapBinding" narne="IntWS">

<wsdlsoap:address
location="http://127.0.0.1:8080/axis/IntWS.jws"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

List 7.1. WSDL Document for a Web Service that accepts an int Input

Chapter 7 - Evaluation 157

It is clear in List 7.1 that the printlntRequest which is the input message has a part

called "i" that is of type "xsd:int".

The WSDL of List 7.1 was given as input toWS-Robust. Table 7.1 shows the test

data that was automatically generated by WS-Robust corresponding to this WSDL.

Table 7.1. Test Data Generated by WS-Robust

ID WS test data

String_ Replacement nntpgvezhmoyj

Date-Time_ Replacement 2007-12-20

Boolean _Replacement true

Null_ Replacement null

Max Value 2147483647

Above Max 2147483648

Lass Max 2147483646

Min Value -2147483648

Less Min -2147483649

Above Min -2147483647

Zero_lnput 0

Valid Numeric 12781

WS-Robust produces an XML Test Cases document as mentioned before, List 7.2

shows a portion of the document generated by WS-Robust for this Section Web Service.

Similar test cases have been generated using WS-Robust for the other Web Services

that accept the other primitive datatypes in Fig. 2.5.

Chapter 7 - Evaluation

<?xml version="l.O" encoding="UTF-8"?>

l<web_service>
<service name>IntWSService</service name>

<address>http:/1127.0.0.1:8080/axis/IntWS.jws</address>
<operations>
<operation>

<operation name>printint</operation name>
<input_message>printintRequest</input_message>
<ordered_input_parameters> ·
<input _part>

<part_name>i</part_name>
<part_dataType>int</part_dataType>
<testings>
<testing>
<test case id>String Repl.acernent</test case id>
<test-datatype>Strir1g<ltest data type> - -
<test::::data>rrntpgvezhmoyj</test_data>
<expected output>Fault message with proper

fault string</expected_output>
<quality_assessedl>Platform robustness
</quality_assessedl>

158

<quality_assessed2>Platform security</quality_assessed2>
<quality assessed3>Platform fault tolerance

</quality-assessed3>
</testing>-
<testing>

<test case id>Date-Tirn& Replacemen</test case id>
<test-datatype>Date-Tirne</test da·tatype>- -
<test::::data>2007-12-20</test=data>
<expected output>Fault message with proper fault

string</ expected~ output>
<quality assessedl>Platform robustness
</quality_assessedl>
<quality assessed2>Platform security</quality_assessed2>
<quality-assessed3>Platform fault tolerance ·
</quality_assessed3>

</testing>
<testing>

<test case id>null Replacement</test case id>
<test-datatype>null</test datatype>- -
<test::::data>null</test_data>
<expected output>Fault message with proper fault
string</expected_output>
<quality assessedl>Platforrn
robustness</quality assessed!>
<quality_assessed2>Platform security</quality_assessed2>
<quality assessed3>Platform fault

tolerance<!quality_assessed3>
</tes.ting>

</testings>

</web service>

List 7.2. XML Test Cases Document for a Web Service with intDatatype

Chapter 7 - Evaluation 159

7.2.3.2 More than one Primitive Input Datatype

All the forty one Web Service accepts only one simple primitive parameter. To show

that WS-Robust can handle more that one parameter as an input for a certain operation,

a Web Service that accepts two int primitive datatype has been implemented and

deployed in the Axis platform which resides in a Tomcat Web Server.

Part of the WSDL of this Web Service isshown in List 7.3. It is clear from the WSDL,

this Web Service has one operation called getGreaterNumber that find the greater

between two xsd:int parts called first and second as specified by the

getGreaterNumberRequest message.

The WSDL in List 7.3 was used as input toWS-Robust and it produced the XML Test

Cases document for the Web Service being described. List 7.4 shows part of this XML

Test Cases document that was generated using WS-Robust. The approach used by WS

Robust when there is more than one input parameter is to specify the test cases for each

parameter separately as clear in List 7.4 where the test cases for the first parameter

''firsf' was specified as in the case of single parameter and after that the test cases

corresponding to the second input parameter "second' were specified. For each of these

parameters a test data similar to these described in Table 7.1 are generated.

7 .2.3.3 Results

After using WS-Robust the following results have been concluded:

1. WS-Robust is able to generate test cases based on the test cases rules and WSDL

for Web Service that has input with any of the W3C XML Schema primitive or

derived from primitive datatypes (except the List datatypes).

Chapter 7 - Evaluation 160

2. WS-Robust can automatically generate test cases for Web Services that accepts

more than one input parameter.

<?xml version="l.O" encoding="UTF-8"?>
<wsdl~definitions

targetNamespace="http://localhost:8080/axis/Greater2.jws"

<wsdl :message name="getGrea.terNumberRequest">
<wsdl:·part name..,"t.irst" type="xsd:int"/>
<wsdl :,part name=" second" type="xsd: int" />

</wsdl:message>

<wsdl:message name="getGreaterNumberResponse">
<wsdl:part name="getGreaterNumberReturn" type="xsd:int"/>

</wsdl:message>

<wsdl:portType name="Greater2">
<wsdl: op~ration name="getGreaterNumber" parame.terOrder="first

secon<:i">
<wsdl:input message="impl:getGreaterNumberRequest"

name="getGreaterNumberRequest"/>
<wsdl:output message="impl:getGreaterNumberResponse"

name="getGreaterNumberResponse"/>
</wsdl:operation>

</wsdl:portType>
<wsdl:binding name,.,"Greater2SoapBinding" type="impl:Greater2">

</wsdl:binding>

<wsdl:service name="Greater2Service">
<wsdl:port binding="impl:Greater2SoapBinding" name="Greater2">

<wsdlsoap:address
location="http://localhost:8080/axis/Greater2.jws"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

List 7.3. A WSDL document for a Web Service that accepts two int Datatypes

Chapter 7 - Evaluati()n

<?xml version="l.O" encoding="UTF-8"?>
<web service>

<service name>Greater2Service</service name>
<address">http://localhost:8080/axis/Greater2.jws</address>
<operations>

<operation>
<opera·tion name>getGreaterNumber</operation name>
<input message>getGreaterNumberRequest</input message>
<ordered_input_parameters> -

<input _part>
<part name>first</part name>
<part::::data'l'ype>int</part_dataType>
<testings>

<testing>
<test datatype>String</test_datatype>
<test::::data>dbgvflvmiduqjnhosnoriei</test_data>
<expected_output>Fault message with proper fault

string</expected_output.>

161

<quality assessedl>Platform
robustness</quality assessed!>
<quality_asses$ed2>Pla·tform security</quality_assessed2>
<quality_:assessed3>Platform fault ·

tolerance</quality assessed3>
</testing> -

<·!·-More test cases for first part here -->
</testings>

</input_part>
<input part>

<part-name>second</part name>
<part::::dataType>int</part_dataType>
<testings>

<testing>
<test_datatype>Date-Time</test_data·type>
<test_data>2007-12-06</test_data>
<expected output>Fault message with proper fault

string</ expected~ output>
<quality assessedl>Platform

robustness</quality_assessedl>
<quality_assessed2>Platform

$ecurity</quality_assessed2>
<quality_assessed3>Platform fault

tolerance</quality_assessed3>
</testing>

<!--More test cases second part here -->
</testings>

</input_part>

</web service>

List. 7.4. Test Cases for a Web Service with Two input Datatype

Chapter 7 - Evaluation 162

7 .2.4 Test Clien~t Generation

This section demonstrates that the Test Cases XML document can be used to generate

Web Service test client that will invoke the Web Service under test using:

1. The test data in the Test Cases document

2. The Web Service information provided by the Test Cases document such as the

Web Service address and the name of the operations.

The examples in this Section use the Axis platform to build the testing client.

Test client generation mechanism using WS-Robust wiH be demonstrated for a Web

Service that accepts single input parameter (Section 7.2.4.1), and for a Web Service that

accepts more the one input parameter (Section 7.2.4.2).

7.2.4.1 Single Primitive Input Datatype

The forty one XML Test Cases documents generated in Section 7.2.3.1 have been used

as input for theWS-Robust test client generator. An example of the XML document

that contains the test cases with the actual response or fault message of the Web Service

is given in List 7.5.

Since the test cases depend on the primitive datatype category, namely, Numeric,

String, Date-Time, and Boolean (See Table 5.2), each of these datatypes categories will

be discussed separately in this section.

Chapter 7 - Evaluation 163

<?xmJ. version="l.O" encoding="UTF-8"?>
<web_service>

<service_name>IntWSService</service_name>
<operations>

<operation>
<operation~name>printint</operation~name>
<test cases> -

<test case>
<i>rmtpgvezhmoyj</i>
<fault>

<fault_code>Server.userException</fault_code>
<fault_string>org.xml.sax.SAXException: Bad
types (class java.lang.String -> int)
</fault_string>
<fault detail>

<hostname>e-sci030</hostname>
</fault detail>

</fault> -
</test_case>
<test case> .

<i>2007-12-20</i>
<fault>

<fault_code>Server.userException</fault_code>
<fault_string>org.xml.sax.SAXException: Bad
types -(class java. util. Calendar -> int)
</fault_string>
<fault detail>

<hostname>e-sci030</hostname>
</fault_detail>

</fault>
</test_case>
<test case>

<i>null</i>
<fault>

<fault_code>Server.userException</fault_code>
<fault string>No such operation 'printint'
</fault_string>
<fault detail>

<hostname>e-sci030</hostname>
</fault detail>

</fault> -
</test_case>

<!-- More test cases and responses here -->
</test cases>

</operation>
</operations>

</web_service>

List 7.5. Test Cases with Actual Web Service Responses

Chapter 7 - Evaluation 164

a~ Numeric Datatypes

The Numeric Datatypes in Table 5.2 have the following test cases rules from Table 5.3:

String_ Replacement, Date-Time_ Replacement, Boolean_ Replacement, null_lnput,

Max_Value, Above~Max, Less_Max, Min~Value, Less_Min, Above_Min,

Zero_Replacement, and Emp~_String. For each of the Numeric Datatypes, Table 7.2

shows the response or fault messages to each of them according to the experiments that

have been conducted.

Table 7.2 uses the following abbreviations:

• FMP: Fault Message with Proper fault string sent by the Web Service platform for

changing the datatype of the input part.

• RM: Response Message.

• FM: Fault Message.

• NA: Not Applicable.

• null accepted: null has been accepted as input and response message has been

received by the tool

b) String Datatypes

The String Datatypes in Table 5.2 have the following test cases rules in Table 5.3:

Numeric_ Replacement, Date-Time _Replacement, Boolean_ Replacement, null_Input,

Large String, and Empty String. For each of the String Datatypes, Table 7.3 shows the - ~ .

response or fault messages to each of the previous test cases according to the

experiments that have been conducted.

Chapter 7 .. Evaluation 165

c) Date-Time Datatypes

The Date-rime Datatypes in Table 5.2 have the following test cases rules from Table

5.3: Numeric_ Replacement, String= Replacement, Boolean_ Replacement, null_Input,

Empty_String, Valid_Date-Time. For each ofthe date-Time Datatypes, Table 7.4 shows

the response or fault messages to each of the previous test cases according to the

experiments that have been conducted.

d) Boolean Datatypes

The Date-Time Datatypes in Table 5.2 have the following test cases rules from Table

5.3: Numeric_ Replacement, String_ Replacement, date-Time_ Replacement, nultinput,

Empty_String, Valid_Boolean. For the boolean datatypes which is the only element of

Boolean, Table 7.5 shows the response or fault messages to each of the previous test

cases according to the experiments that have been conducted.

Chapter 7 - Evaluation 166

Table 7.2 (a). response orfau/tmessages for the Test Cases with Numeric
Data types

~
String_ Repla- Date-Time R- Boolean_ Rep- Null_ Replace-
cement eplacement lacement ment

e

decimal FMP FMP FMP null accepted

integer FMP FMP FMP null accepted

int FMP FMP FMP FM with fault
string 'No such
operation'

byte FMP FMP FMP FMwithfauh
string 'No such
ooeration'

short FMP FMP . FMP FM with fault
string 'No such
operation'

long FMP FMP FMP FM with fault
string 'No such
operation'

nonPositivelnteger FMP FMP FMP null accepted

nonNegativelnteger FMP FMP FMP null. accepted

unsignedlnt FMP FMP FMP null accepted

\msignedByte FMP FMP FMP null. accepted

unsignedShort FMP FMP FMP null accepted

unsignedLong FMP FMP FMP null accepted

positivelnteger FMP FMP FMP null accepted

negativelnteger FMP FMP FMP null accepted

float FMP FMP FMP FM with fault
string 'No such
ooeration'

double FMP FMP FMP FM with fault
string 'No such
operation'

Chapter 7 - Evaluation 167

Table 7.2 (b)

~
Max_Numeric Above_Max Less Max Min_ Numeric

e

decimal NA NA NA NA

mteger NA NA NA NA

int RM FMP RM RM

byte RM FMP RM RM

short RM FMP RM RM

long RM FMP RM RM

nonPositivelnteger RM FMP RM NA

nonNegativelnteger N.A NA NA RM

unsignedlnt RM FMP RM RM

unsignedByte RM FMP RM RM

unsignedShort RM FMP RM RM

unsignedLong RM FMP RM RM

positivelnteger RM FMP RM RM

negativelnteger RM FMP RM RM

float RM FMP RM RM

double RM NA RM RM

Chapter 7 - Evaluation 168

Table 7.2 (c)

~
Above.Min Less Min Zero _Replac- Valid_Numer-

ement lC

e

decimal NA NA RM RM

integer NA NA RM RM

int RM FMP RM RM

byte RM FMP RM RM

short RM FMP RM RM

long RM FMP RM RM

nonPositivelnteger NA NA RM RM

nonNegativelnteger RM FMP RM RM

unsignedlnt RM FMP RM RM

unsignedByte RM FMP RM RM

unsignedShort RM FMP RM RM

unsignedLong RM FMP RM RM

positivelnteger RM FMP RM RM

negativelnteger RM FMP RM RM

float RM FMP RM RM

double RM NA RM ·RM

Chapter 7 ... Evaluation 169

Table 7.3 (a). response or fault messages for the Test Cases with String Datatypes

.~
Numeric_ Rep- Date-Time_ R- Boolean_:Rep- Null_ Replace-
lacement eplacement lacement ment

e

string FMP FMP FMP null accepted

nonnalizedString FMP FMP FMP null accepted

token FMP FMP FMP null accepted

language FMP FMP FMP null accepted

Name FMP FMP FMP null accepted

NMTOKEN FMP FMP FMP null accepted

NCName FMP FMP FMP null accepted

ID FMP FMP FMP null accepted

IDREF FMP FMP FMP null accepted

Entity FMP FMP FMP null accepted

base64Binary FM with fault FM with fault FM with fault null accepted
string: Found string: Found string: Found
character data character data character data
inside an array inside an array inside an array
element while element while element while
deserializing deserializing deserializing

he~inary FMP FMP FMP null accepted

any URI FMP FMP FMP null accepted

QName FMP FMP FMP null' accepted

NOTATION FMP FMP FMP null accepted

Chapter 7 - Evaluation 170

Table 7.3 (b)

~
Empty_ String Large_ String Valid_ String

e

string Empty String RM RM
accepted

normalized String Empty String RM RM
accepted

token Empty String RM RM
accepted

language Empty String RM RM
accepted

Name Empty String RM RM
accepted

NMTOKEN Empty String RM RM
accepted

NCName Empty String RM. RM
accepted

ID Empty String RM RM
accepted

IDREF Empty String RM RM
accepted

Entity Empty String RM RM
accepted

base64Binary Empty String RM RM
accepted

hexBinary Empty String RM RM
accepted

any URI Empty String RM RM
accepted

QName Empty String
accepted

RM RM

NOTATION Empty String RM RM
accepted

Chapter 7 - Evaluation 171

Table 7.4 (a). response or fault messages for the Test Cases with Date-Time Datatypes

~
Numeric_ Rep- String_R- Boolean_ Rep- Null_Replace-
lacement eplacement lacement ment

e

duration FMP FMP FMP null accepted

date Time FMP FMP FMP null accepted

time FMP FMP FMP null accepted

date FMP FMP FMP null accepted

gMonthDay FMP FMP FMP null accepted

gYearMonth FMP FMP FMP null accepted

gYear FMP FMP FMP null accepted

gMonth FMP FMP FMP null accepted

gDay FMP FMP FMP null accepted

Table 7.4 (b)

~
Max Numeric Above_Max Less_Max Min_Numeric

e

duration NA NA NA NA

date Time NA NA NA NA

time NA NA NA NA

date NA NA NA NA

gMonthDay RM FMP RM RM

gYearMonth RM FMP RM RM

gYear RM FMP RM RM

gMonth RM FMP RM RM

gDay RM FMP RM RM

Chapter 7 - Evaluation 172

Table 7.4 (c)

I~
Above Min Less Min Valid_ Date-

Time
e

duration NA NA RM

date Time NA NA RM

time NA NA RM

date NA NA RM

gMonthDay RM FMP RM

g Year Month RM FMP RM

gYear RM FMP RM

gMonth RM FMP RM

gDay RM FMP RM

Table 7.5 (a). response or fault messages for the Test Cases with Boolean Datatypes

~
Numeric~ Rep- String=-Repla- Date- Null_ Replace-
lacement cement Time_Rep- ment

lacement e

boolean FMP FMP FMP null accepted

Table 7.5 (b)

I~
Empty_ String Valid Boolean

e

boolean FMP RM

Chapter 7 - Evaluation 173

7.2.4.1 More than one Prilnitive Input Datatype

In the case where there are more than one simple primitive parameter, WS-Robust .finds

the cross product of the test cases for the parameters of the operation and then uses the

result of the cross product to send SOAP messages to the Web Service and analyze its

response or fault message.

To show that WS-Robust can handle automatic client generation for more that one

parameter as an input for a certain operation, WS-Robust used the test cases in List 7.4

and generated the XML document in List 7.6 that contains the test cases and their

response or fault message.

Table 7.6 describes the SOAP response or fault message generated by the Web

Service that accepts two int parameters (WSDL in List 7.3) when the cross product of

the test data of each parameter is used to invoke this Wed Service.

The following abbreviations have been used in table 7.6 in order to fit the results in

the table:

S _ R: String_ Replacement

D_R: date-Time_Replacement MN: Min_ Value

B _R: Boolean_Replacement L ""'"MN: Less_ Min

N _ R: null~ Replacement A_ MN: Above_Min

MX: Max_ Value Z_I: Zero_lnput

A MX: Above Max V N: Valid Numeric - - - -

FMI: fault SOAP message with improper fault string

Chapter 7 - Evaluation

i<?xml version="l.O" encoding="UTF-8"?>
<Web_service>

<service_name>Greater2Service</service_name>
<operations>

<operation>
<operation_name>getGreaterNumber</operation_name>
<test cases>

<test case>
<first>null</first>
<second>null</second>
<fault>

174

<fault_code>Server.userException</fault_code>
<fault_string>No such operation
'getGreaterNumber'
</fault_string>
<fault detail>

<hostname>e~sci030</hostname>
</fault detail>

</fault> -
</test_case>
<test_case>

<first>null</first>
<second>dbgvflvmiduqjnhosnoriei</second>
<fault>

<fault_code>Server.userException</fault_code>
<fault string>org .. xml. sax. SAXException: Bad
types (class java.lang.String ~> int)
</fault_string>
<fault detail>

<ho~tname>e-sci030</hostname>
</fault detail>

</fault> -
<test case>

<first>dbgvflvmiduqjnhosnoriei</first>
<second>wjmxbs</second>
<fault>

<faul,t _code>Server. userException</faul t_ code>
<fault_string>org.xml.sax.S~Exception: Bad
types {class j-ava.lang.Btring -> int)
</fault_string>
<fault~detail>

<hostname>e-sci030</hos,tname>
</fault detail>

</fault> -
</test case>

<!--More test cases and responses here -->
</test cases>

</operation>
</operations>

1</Web service>

List 7.6. Test Cases and Actual Responses for an Operation with Two Parameters

Chapter 7 - Evaluation 175

Table 7.6: Response or fault message for Web Service with Two Input Parameters

~
SR DR BR nR MX A L , MN L_ A Z I VN

MX MX MN MN
'

SR FMP FMP FMP FMP FMP FMP FMP FMP FMP FMP FMP FMP

DR FMP FMP FMP FMP FMP FMP FMP FMP FMP FMP FMP FMP

BR FMP FMP FMP FMP FMP FMP FMP FMP FMP FMP FMP FMP

nR FMP FMP FMI FMI FMI FMP FMI FMI FMP FMI FMI FMI

MX FMP FMP FMP FMI RM FMP RM RM FMP RM RM RM

AMX FMP FMP FMP FMP FMP FMP FMP FMP 'FMP FMP FMP FMP

LMX FMP FMP FMP FMI RM FMP RM RM FMP RM RM RM

MN FMP FMP FMP FMI RM FMP RM RM FMP RM RM RM

LMN FMP FMP FMP FMP FMP FMP FMP FMP FMP FMP FMP FMP

A MN FMP FMP FMP FMI RM FMP RM RM EMP RM RM RM

Z I FMP FMP FMP FMP RM FMP RM RM FMP RM RM RM

VN FMP FMP FMP FMP RM FMP RM RM FMP RM RM RM

7 .2.4.3 Results

After analyzing Table 7.2, Table 7.3, Table 7.4, Table 7.5, Table 7.6, List 7.4, and List

7.5, the following results can be concluded:

• WS-Robust can automatically generate a test client depending on the XML test

cases document generated in Section 7 .2.3.

· • For each test case in the test cases document, WS-Robust specifies the output or

fault message details (List 7 .3).

Chapter 7 - Evaluation 176

• WS-Robust can analyze the fault messages, in the resulted XML document of the

test cases and their response, by specifying the fault code, fault string, and the

fault detail. (See List 2.12 and List 7.3).

• The null_ Replacement test case in Table 7.2 revealed a robustness failure in the

Axis Web Service platform because this platform has accepted the null value as an

input when the input parameter for all the XML Schema datatypes except int, byte,

short, long, float, and double. So Axis in not consistent in handling the null input.

• Axis produced a robustness failure when returning the fault string in the fault

message when rejecting the null input in the case of int, byte, short, long, float,

and double datatypes. The fault message was ''No such operation" while the

operation existed in the Web Service. The fault message should have been for

example "can not accept a null value because the input parameter of type int".

• Table 7.2 showed that the Web Services implementations, for the Web Services

that accept decimal, integer, nonPositivelnteger, nonNegativelnteger, unsignedlnt,

unsignedByte, unsignedShort, positivelnteger, and negativelnteger produced a

robustness failure when applying the Null_ Replacement test cases generation rule

because they did not send a SOAP fault that contains a proper fault response.

• Table 7.2 showed that Axis platform was robust when applying the

String_ Replacement, Date-Time_ Replacement, Boolean_ Replacement,

Above_ Max, and Less_ Min test cases rules for the Numeric XML Schema

datatypes because Axis always returned a SOAP fault with proper fault string

describing the fault.

• Table 7.2 showed that the Web Service implementations, of the Web Services that

expect XML Schema Numeric datatypes as input, are robust when applying the

Chapter 7 - Evaluation 177

Max_ Numeric, Less_ Max, Min ~Numeric, Above_ Min, and Zero_ Replacement

since those extreme . values did not cause any problems to the Web Service

implementation and a SOAP response has been sent to WS-Robust.

• Table 7.3 showed that Axis platform is robust when using the

Numeric_ Replacement, Date-Time_ Replacement, and Boolean_Replacement test

cases rules with String datatypes except when the input to a Web Service

operation has base64Binary datacype. The reason for this, is that, a SOAP fault

message with a proper fault string has been produced by Axis when applying these

test cases rules, for the datatype base64Binary, the SOAP fault contained the fault

string "Found character data inside an array element while deserializing" which

does not describe the fault that has happened.

• Table 7.3 showed that the Web Services implementations that expect String

datatypes are robust when applying the Large_String and Valid_String test case.

The reason for this is that the Web Services implementations retumed a SOAP

response and the input suggested in the test cases rules did not cause the Web

Services to behave improperly.

• Table 7.3 showed that the Web Services implementations that expect String

datatypes are not robust when applying the Empty =String test case generation rule.

The reason for that is the Web Service implementation did not return a SOAP

fault with a proper fault string.

• Table 7.3 showed that the Axis is not robust when applying the null_ Replacement

test case generation rule with String datatypes. The reason is that Axis accepted

the null input and did not generate a SOAP fault with proper fault string.

Chapter 7 - Evaluation 178

• Table 7.4 shows that Axis platform is robust when usmg the

Numeric_ Replacement, String_Replacemen, Boolean_ Replacemnt, Above_ Max,

and Less_Min test cases rules with Date-Time datatypes (See table 5.2). The

reason for this is that a SOAP fault message with a proper fault string has been

produced by Axis when applying these test cases rules.

• Table 7.4 shows a robustness failure in the Ncis Web Service platform because

this platform has accepted the null value as an input when the input parameter has

any of Date-Time XML Schema datatypes.

• Table 7.4 showed that the Web Services that accepts Date-Time produced a

robustness failure when applying the Null_ Replacement test cases generation rule

because they did not send a SOAP fault that contains a proper fault response.

• Table 7.4 showed that the Web Services implementations that expect Date-Time

datatypes are robust when applying the Max _Numeric, Less_ Max, Min _Numertic,

Above Min and Valid Date-Time test cases. The reason for this is that the Web - -

Services implementations returned.a SOAP response.

• Table 7.5 showed that the Web Services that accepts Boolean produced a

robustness failure when applying the Null_ Replacement test cases generation rule

because they did not send a SOAP fault that contains a proper fault response.

• Table 7.5 showed that the Axis was robust when applying the

Numeric_ Replacement, String_ Replacement, Date-Time_ Replacement, and

Empty_ String test cases. The reason for this is that the Axis responded with a

SOAP fault with a proper fault string as expected.

Chapter 7 - Evaluation 179

• Table 7.5 showed that the Web Services implementations that expect Boolean

datatypes are robust when applying the Valid_Boolean test case. The reason for

this is that the Web Services implementations returned a SOAP response.

• Table 7.6 showed that when using the cross product some faults may hide the

other faults in case of more than one input parameter. For example, in the case

when using String~replacement test case with the first parameter and the

null_ Replacement for the second parameter, then Axis sent a SOAP fault with

proper fault string. Whi'le when using the Max _Value with the first parameter

(which gave a response SOAP message in the case of single int parameter in Table

7.2) and the null_Replacement with the second parameter, then Axis responded

with a fault string with improper fault string "no such operation". This means that

in the first case, the fault "no such operation" was hidden because the input

contains another fault which is the string replacement.

• It is noticed in Table 7.6 that the rows are identical to the columns. For this reason

and the discussion of the previous step, and also to reduce the number of test

cases, it is better that when invoking the Web Service to have the test cases of the

faulty input applied to only one parameter and all the other parameters must be

given a valid input so that the faults are not hidden and also getting lest test cases

and consequently teducmg the cost of testing without sacrificing the precision of

the robustness estimate.

• WS-Robust did not reveal any security faults in Axis platform when the input

parameter is primitive or derived from primitive because, for all the SOAP faults

in Table 7.1 through Table 7.6, the detailed element of the fault message

contained one sub-element which was the name of the host where the fault has

Chapter 7 - Evaluation 180

occurred, This means that no stack trace was provided with the fault message that

could be used by malicious Service Requesters to hatm a Web Service.

To summarize the result obtained, Table 7.7 shows the numbers of Test Cases, the

number of robustness failures detected in both the Web Services implementation (WS

Failures) and the Axis platform, for each of the forty one example Web Services that

accepts diffeFent XML Schema datatype.

As Table 7.7 shows, 359 SOAP request Test Cases were used to assess the robustness

of the 41 Web Services of Section 7.2. These test cases were able to detect 50

robustness failures in the Web Services implementations (WS Failures) and 44

robustness failures in the Axis Web Services platform (Axis Failures).

Chapter 7 .. Evaluation 181

Table 7.7. Implementation and Platform Robustness Failure for the Web Services
Examples

Web Service Test ws Axis Fault Description
Input Datatype Cases Failures Failures

decimal 6 1 1 Handling null input
integer 6 1 1 Handling null .input
int 12 0 1 Handling null input
byte 12 0 1 Handling null input
short 12 0 1 Handling null input
long 12 0 1 Handling null.input
nonPositivelnteger 9 1 1 Handling null input
nonNegativelnteger 9 1 1 Handling null input
unsignedlnt 12 1 1 , Handling null input
unsigned.Byte 12 1 1 Handling null input
unsignedShort 12 1 1 Handling null input
unsignedLong 12 1 1 Handling null input
positivelnteger 12 1 1 . Handling null input
negativelnteger 12 1 1 Handling null input
float 12 0 1 · Handling null input
double 10 0 1 . Handling null input
string 7 2 1 Handling null input and empty string
normalizedString 7 2 1 Handling null input and empty string
token 7 2 1 Handlit:ul null inp_ut and em_pty strin_g
language 7 2 1 Handling null input and empty string
Name 7 2 1 Handling null inp_ut and em_p_!y.strin&
NMTOK:EN 7 2 1 Handling null input and empty string
NCName 7 2 1 Handling null input and empty string
ID 7 2 1 Handling null input and empty string
IDREF 7 2 1 Handling null input and empty string
Entity 7 2 1 Handling null input and emptY string
base64Binary 7 2 4 Handling datatype replacement, handling

null input and handling empty string
hexB~ary 7 2 .. Handling null input and empty string
any URI 7 2 1 Handling null input and empty string
QName 7 2 1 Handling null input and empty string
NOTATION 7 2 1 Handling null input and empty string
duration 5 1 1 Handling null input
date Time 5 1 1 Handling null input
time 5 1 1 Handling null input
date 5 1 1 Handling null input
gMonthDay 11 1 1 Handling null input
gYearMonth 11 1 1 Handling null input
gYear n 1 1 Handling.null input
gMonth 11 1 1 Handling null input
gDay 11 1 1 Handling null input
boolean 7 1 1 Handling null input

Total 359 50 44

Chapter 7 - Evaluation 182

7.3 Web Services with User-derived Datatype

This Section demonstrates that WS-Robust tool can automatically generate test cases

for the Web Service that accepts a used-derived datatype and automatically generate a

Web Service test client application to test these Web Services.

7 .3.1 Configuration

To implement the examples of this Section, the same programming language, Web

Services platform, and Web server or container of Section 7.2 has been used. Namely:

• Java version 1.5.0_06.

• Axis 1.4

• Apache Tomcat 6;0.

7 .3.2 Scena,rio

A Web Service that accepts a user-derived datatype has been implemented, the types

element of the WSDL of this Web Service is given in List 7.5. This Web Service

accepts an integer part as input and this part has the type (See Fig 2.6) moreFiveType

(See List 7.7). This datatype has minlnclusiv and maxlnclusive. This Web Service has

been used to demonstrate the ability ofWS-Robust to generate test cases (Section 7.3.3)

and test client (Section 7.3.4) for a Web Service with a user-derived datatype.

The WSDL for this Web Service is similar to the WSDL in List 7.1 but with the added

types element in List 7. 7 in order to describe the user-derived datatype moreFiveType.

Chapter 7 - Evaluation

<.types>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace= "http://localhost:8080/axis/IntegerWS.jws">
<xsd:simpleType name="moreFiveType">

<xsd:restriction base="xsd:integer">
<xsd:mininclusive value "5"/>
<xsd:maxinclusiv~ value = "100"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>
</types>

List 7.7 WSDL types element that Contains a l!Jser Derived Datatype

7 .3.3 Test Case Generation

183

Test cases generation using WS-Robust will be demonstrated using the Web Service

described in Section 7.3.2. As in the case of primitive datatypes, test case generation

will depend on the WSDL document for the Web Service. However, in case of user-

derived part, the types element inside WSDL must be analyzed to determine which test

cases to use depending on the rules of Table 5.6.

List 7.8 shows the XML test cases document that has been generated automatically by

WS-Robust. The resulted XML document of the test cases specifies for each operation

inside WSDL the input parameters of the request message and their parts, for the user-

derived part it specifies the base datatype, the facet name, and the value of this facet

together with the test cases that can be obtained from the test cases database based on

the specific constrains, its base datatype and its value.

Chapter 7 - Evaluation 184

l<?xml version="1.0" encoding="UTF-8"?>

!<web service>
<service name>IntegerMinl:nclusi veMaxinclusi veService</ se,rvice name>

<address>http:!/127.0.0.1:8080/axis/IntegerWS.jws</address>
<operations>

<operation>
<operation name>printinteger</operation name>
<input_message>printintegerRequest</input_message>
<ordered_input_parameters>

<input_part>
<part name>integerl</part name>
<part-dataType>moreFi veType</pa·rt data Type>
<base;integer</base> -
<facet>mininclusive</facet>
<value>5</value>
<test cases>

<test case>
<test case id>Min Value</test case id>
<test-da.tatype>integer</test datatype>
<test=data>5</test_data> -
<expected_output>Response

message</expected_output>
<quality_assessedl>WS implementation
robustness</quality_assessedl>
<quality assessed2>WS implementation
security:C/quality_assessed2>

</test_case>
<! -- more test cases here -->

</test ca·ses>
<facet;maxinclusive</facet>
<value>lOO</value>
<test cases>

<test case>
<test case id>Max Value</test case id>
<test-datatype>inbeger</test datatype>
<test=data>lOO</test_data> -
<expected output>Response

message</expected_output>
<quality assessedl>WS implementation
robustness</quality_assessedl>
<quality-'assessed2>WS implementation
security</quality_assessed2>

</test case>
<! -- more test cases here -->

</test cases>
</inputyart>

</ordered_input_parameters>
<!-- output pa~t description here -->

</operation> -
</operations>

1</web_service>

List 7.8. Test Cases for a Web Service with a User-Derived input datatype

Chapter 7 - Evaluation 185

7.3.4 Test Client Generation

The Web Service test client uses the Axis platform as in the case of primitive datatypes.

List 7.9 shows the test cases and the actual responses that were generated automatically

by WS-Robust.

WS-Robust does not only use the test cases that are provided in the XML test cases

document (See List 7.8) but also uses the test cases for the base datatype which is

integer in List 7.8. However, if a test case is used by the base datatype (which is

primitive or derived from primitive) and the user .. derived @lased on a constraining

facet), then the test case of the user-derived is the only one that will be used for it

overrides the test case for the base primitive datatype.

For example, in List 7.8, the Min_Value test case generation rule is used by the base

datatype which is integer and also used by the minlnclusive constraining facet that is

used with the moreFiveType (See List 7.7). In this case, Min_Value which is used with

the minlnclusive facet will be used when generating test cases for a parameter with

moreFiveType. The reason for this is the minimum value is already constrainted by the

minlnclusive constraining facet so we should not use the minimum default value for

Chapter 7 - Evaluation 186

<?xml version="l.O" encoding="UTF-8"?>

<web_service>IntegerMinincl:usiveMaxinclusiveService</service_name>
<operations>

<opera.tion>
<operation_name>printlnteger</operation_name>
<test cases>

<test case>
<Integerl>tvleyohzfrbip</integerl>
<fault>

<fault_code>Server.userException</fault_code>,
<fault_string>org .. xml.sax. SAXException: Bad
types (class j,ava.lang. String -> class
java.math.Biginteger)
</fault_string>
<faul.t detail>

<hostname>e-sci030</hostnarne>
</fault detail>

</fault> -
</test_case>
<test case>

<Integer1>2008-01-11</integerl>
<fault>

<fault_code>Server.userException</fault_code>
<fault_string>org.xml.sax.SAXException: Bad
types (class java. util. Calendar -> cJ..ass
java.math.Biginteger)</fault_string>
<fault detail>

<hostname>e-sci030</hostname>
</fault_detail>

</fault>
</test_case>

<!-more test cases and responses for integer here -->
<!-test cases for mininclusive starts here -->
<test case>

<Integerl>S</integerl>
<output>The integer passed is 5</output>
<invokation time>16 ms</invokation time>

</test_case> -
<test case>

<integer1>6</integerl>
<output>The integer passed is 6</output>
<invokation time>16 rns</invokation time>

</test_case> -
<tes·t case>

<Integerl>4</integerl>
<output>The integer passed is 4</output>
<invoka.tion time>lS ms</invokation time>

</test_case> - - ·
<!--test cases for other constraints here -->

</test cases>
</operation>

</operations>
1</web_service>

List 7.9. Test Cases With Responses for User-derived Datatype

Chapter 7 - Evaluation 187

integer datatype. In the other hand, if the minlnclusive constraint is not specified for

the moreFiveType then the minimum value of integer would be used instead.

Table 7.8 will summarize the SOAP response or fault message for each combination of

constraining facet and test cases used for the moreFiveType (See List 7.5). Table 7.8

shows only the test cases that are based on the constraining facet but not the test case

that are the based on the primitive datatype (integer) since these test case has been

discussed in Section 7 .2.

Table 7.8 (a) SOAP response or fault messages for test cases for Numeric
Boundaries Constraints

Above~Min Less_Min

minlnclusive RM RM RM

Max_ Value Above_Max Less_Max

maxlnclusive RM RM RM

7 .3.5 Results

Section 7.3.3 and Section 7.3.4 provided the following results:

1. WS-Robust is able to automatically generate test cases for a Web Service with a

user-derived input part based on analyzing WSDL's types element and the test

case generation rules.

Chapter 7 - Evaluation 188

2. WS-Robust can automatically generate test case client that invokes the Web

Service under test based on the test cases obtained ofstep 1.

3. Table 7.7 shows that the Web Service platform (Axis) and the Web Service

implementation for the Web Service used as an example in this section is not

robust because they both accepted the Less_ Min test case input and the

Above_ Max test case input and did not generate a fault message with a proper

fault string.

4. The Axis platform does not have the facility to check if the constraints in the

WSDL's types element are satisfied in the SOAP request because in the Less_Min

and Above_Max axis did not generate any SOAP fault.

5. Adding more constraints to the input parameter increases the testability of the

Web Services and increases the detected robustness failures.

7.4 Testing a Commercial Web Services

To demonstrate the effectiveness of the approach in this thesis to detect robustness fault

in Web Services, a real commercial Web Service is tested. The Web Service chosen is

the Amazon Web Service (provided by http://www.amazon.com~. The input to the

Amazon is of complex datatype which is beyond the scope of this thesis. However, the

test cases rules have been manually applied to generate a SOAP test request to Amazon

to assess its robustness.

Chapter 7 - Evaluation 189

7 .4.1 Scenario

To build a client to the Amazon Web Service the wsdl2jcwe program provided by Axis

was used with the Amazon WSDL document. Wsdl2jave produced fifty one java files

that are needed to write clients to access the information provided by Amazon. List 7 .1!0

gives a small portion of the types element of the Amazon WSDL that contains a

complex datatype that represent an ASIN request datatype. ASIN stand for Amazon

Standard Identification Number which is a unique number given to each Amazon

product, for the books, ASIN is simply the ISBN of the book.

In order to apply this thesis' test cases rules discussed in Chapter 5 to the Amazon

Web Service, a Web application that represents a client to the Amazon Web Service has

been implemented. This client accepts an ASIN complex input and then invokes the

Amazon Web Service to get the details of the item with this ASIN.

<xsd:comple~Type name="AsinRequest">
<xsd:all>

<xsd:eiliement name="asin" type="xsd:string"/>
<xsd:e:lement name="tag" type="xsd:string"/>
<xsd:element name="type" type="xsd:string"/>
<xsd:element name="devtag" type="xsd:string"/>
<xsd:element name="offer" t~e="xsd:string" minOccurs="O"/>
<xsd:element name="offerpage" type="xsd: string" min0ccurs="0;' />
<xsd:element name="locale" type="xsd:string" minOccurs="O"/>

</xsd:all>
</xsd:complexType>

List 7.10. A Complex Datatype that Represent ASIN Request

7 .4.2 Test Case Generation

When analyzing the WSDL document of the Amazon Web Service, the following add

difficulty to the testing process:

Chapter 7 - Evaluation 190

• The only datatype that is used for all the input parameters is the string datatype.

• There is no constraining facet on any of the datatypes, which mean only primitive

· is used.

These two points have been noticed in most of the Web Services that has been analyzed

on the http://www.xmethods.net site. So to increase the testability of Web Services, the

Web Service Providers must use the appropriate datatypes for the different elements or

parameters of their Web Services and they must also add more specifications or

constrains to these parameters.

This poor commercial datatyping problem must be addressed by the Service Providers

in order to increase the trustworthiness; because:

• The Service Requester will have more understanding of the Web Service being

described by WSDL.

• The Service Requester will know what the constraints on the input parameters are.

Since all the elements of the ASIN datatypes are of primitive string datatype, the test

cases in Table 5.3 (Numeric Replacement, - '
Date-Time_ Replacement,

Boolean_ Replacement, null_ Replacement, Large_ String, and Empty_ String) will be

used in order to analyze the robustness ofthe Service. Table 7.8 gives the results of

applying these test cases for the AsinRequest datatype. The rows of Table 7.8 represent

the test case generation rules for a string datat}q>e and the columns represent the

elements of the AsinRequest complex datatype. To apply the test cases for a specific

AsinRequest element (column), the other elements will be given a valid value and then

the value of this specific element will be changed in .the SOAP request depending on the

test case (row).

Chapter 7 - Evaluation 191

7 .4.3 Results

The results are:

• The Amazon WSDL uses the string datatype for all the input and output

parameters described in the WSDL and this will reduce the testability of the

Amazon Web Service.

• The Amazon WSDL uses only the primitive datatypes (string) and does not add

any constraining facets to the input or output parameters of the operations and this

will also decrease the testability. The only constraint id minOccurence that

specifies the times that an element can occur.

For Table 7.9, the results of each column will be given separately as follows:

·l)ASIN

• Amazon Web Service is robust for the all the test cases.

• The Amazon Web Service is not secure when the null_Replacement test case is

applied because the SOAP fault contained a stack trace that may be used to harm

this Web Service.

2)Tag

• Amazon Web Service is· not robust when applying the Numeric_Replacement,

Date-Time_ Replacement, Boolena _Replacement, and Empty _String because it

returned a response SOAP message while a fault message with proper fault string

was expected for these test cases.

• The Amazon Web Service is not secure when the null_Replacement test case is

applied for the same reason mentioned for the ASIN element.

Chapter 7 - Evaluation 192

Table 7.9 (a). Amazon response or fault messages for String Test Cases

~ AS IN Tag Type devtag
e

Numeric_ Replacement FMP RM FMwith FMwith
improper• fault improper fault
string and string and
stack trace stack trace

Date-Time_ Replacement FMP RM FMwith FMwith
improper fault improper fault
string and string and
stack trace stack trace

Boolean_Replacement FMP RM FMwith FMwith
improper fault improper fault
string and string and
stack trace stack trace

null_ Replacement FMP and stack FMP and stack FMP and stack FMwith
trace trace trace improper fault

string and
stack trace

Large_ String RM RM FMwith RM
improper fault
string and
stack trace

Empty_ String FMP RM FMwith FMwith
improper fault improper fault
string and string and
stack trace stack trace

Table 7.9 (b)

~ Offer OtTerpage Locale
e

Numeric _Replacement RM RM RMwithUS
dollar sign

Date-Time ~Replacement RM RM RMwithUS
dollar sign

Boolean_ Replacement RM RM RMwithUS
dollar sign

null_ Replacement RM RM RMwithUS
dollar sign

Large_ String RM RM RM

Empty_ String RM RM RMwithUS
dollar sign

* the SOAP fault with the stack trace is given in List 7 .11.

Chapter 7 - Evaluation

AxisFault
faultCode: {http://schemas.xmlsoap.org/soap/envelope/}Server.userException
faultSubcode:

193

faultString: org.w3c.dom.DOMException: WRONG_DOCUMENT _ERR: A node is
used in a different document than the one that created it.
faultActor:
faultNode:
faultDetail:

{http://xml.apache.org/axis/} stackTrace:org. w3c.dom.DOMException: WRONG_
DOCUMENT ERR: A node is used in a different document than the one that created it.

at org.apache.xerces.dom.ParentNode.intemallnsertBefore~nknown Source)

at org.apache.xerces.dom.ParentNode.insertBefore(Unknown Source)
at org.apache.xerces.dom.Nodelmpl.appendChild(Unknown Source)
at org.apache.axis.message.SOAPFaultBuilder.onEndChild(SOAPFaultBuilder.

java:30S)
at org.apache.axis.encoding.DeserializationContext.endElement(Deserializ

ationContext.java: 1 090)
at org.apache.xerces.parsers.AbstractSAXParser.endElement(Unknown Source)

at org.apache.xerces.implJ{MLNSDocumentScannerlmpl.scanEndElement(Unknown
Source)

·at org.apache.xerces.implJCMLDocumentFragmentScannerlmpl$FragmentContent
Dispatcher.dispatch(Unknown Source)

at
org.apache.xerces.impl.XMLDocumentFragmentScannerlmpl.scanDocument(Unknown
Source) at org.apache.xerces.parsers.:XML 11 Configuration.parse(Unknown Source)
at org.apache.xerces.parsers.XML 11 Configuration.parse(Unknown Source)

at org.apache.xerces.parsers.XMLParser.parse(Unknown Source)
at org.apache.xerces.parsers.AbstractSAXParser.parse(Unknown Source)
at org.apache.xerces.jaxp.SAXParserlmpl$JAXPSAXParser.parse(Unknown

Source)
at org.apache.xerces.jaxp.SAXParserlmpl.parse(Unknown Source)
at org.apache.axis.encoding.DeserializationContext. parse(Deserialization

Context.java:227)

..................

List 7.1'1. A SOAP fault with Improper fault string and stack trace

Chapter 7 - Evaluation 194

3) Type

• The Amazon Web Service was not robust when applying the

Numeric_ Replacement, Date-Time_ Replacement, Boolean_ Replacement, and

Empty_ String because it retumed a SOAP fault message with the improper fault

message: "org.w3c.dom.DOMException: WRONG~DOCUMENT_ERR: A node is

used in a different document than the one that created it." (See List 7.9)

• The Amazon Web Service is not s~cure when applying each of the test cases

generation rules because it returned a stack trace in the SOAP fault.

• The .Amazon Web Service is not robust when applying the Large _String test cases

generation rule because it returned a fault message while a SOAP response was

expected.

4) devtag

• The Amazon Web Service Was not robust when applying the

Numeric_ Replacement, Date-Time_ Replacement, Boolean_ Replacement, and

Empty_String because it retumed a SOAP fault message with the improper fault

message.

• The Amazon Web Service is not secure when applying Numeric_Replacement,

Date-Time_ Replacement, Boolean_ Replacement, null_ Replacement and

Empty_ String test cases generation rules because it returned a stack trace in the

SOAP fault.

• The Amazon Web Service was robust when applying the Large _String test case.

5) Offer

• The Amazon Web Service was not robust when applying the

Numeric~ Replacement, Date-Time_ Replacement, Boolean_ Replacement,

Chapter 7 - Evaluation 195

null_Replacement and Empty= String because it returned a SOAP response while a

fault message with the proper fault message was expected by these test cases.

• The Amazon Web Service was robust when applying the Large _String test case.

6) Offet:page

The results obtained when applying the test cases generation rules to the Offerpage

element is the same as those obtained for the Offer element.

7) Locale

• The Amazon Web Service is not robust when applying the Numeric_Replacement,

Date-Time_ Replacement, Boolean_ Replacement, null_ Replacement and

Empty~ String test cases because Amazon used the default value for the locale

parameter, which the US dollar and returned a SOAP response when A SOAP

fault with proper fault string was expected.

In summary, the previous results demonstrated that the rules for test case generation

for Web Services proposed in this thesis can detect robustness faults in a real

commercial Web Services.

Chapter 7 - Evaluation 196

7.5 Testing a Research-based Web Service

All the Web Services examples so far, except for the Amazon, were local Web Services

that are deployed in the same computer as the WS-Robust tool. This Section will

demonstrate the ability of WS-Robust tool to test remote Web Services.

7 .5.1 Configura.tion

This Section examples use WS-Robust tool and the Axis platform.

7 .5.2 Scenario

WS-Robust was used with a remote Web Services that is used to find the square root of

the input parameter. This Web Service is deployed in a server called e-sci035 that

belongs to Durham University. The WSDL of this Web Service is described in List

7.12.

Chapter 7 - Evaluation

<?xml version= 11 1.0 11 encoding= 11 UTF-8 11 ?>
<wsdl:definitions targetNamespace= 11urn:calculation 11

xmlns: apachesoap= 11http: I lxml. apache .. orglxml-soap 11

xmlns·: impl= 11urn: calculation 11 xmlns: intf= 11 urn: calculation 11

xmlns:soapenc= 11http:llschemas.xmlsoap.orglsoaplencodingl 11

xmlns:wsdl== 11 http:llschemas.xmlsoap.orglwsdll 11

xmlns:wsdlsoap= 11http:llschemas.xmlsoap.orglwsdllsoap/11

xmlns.: xsd= 11http: I /www. w3 .org/2001IXMLSchema 11 >
<!--WSDL created by Apache Axis version: 1.3
Built on Oct 05, 2005 (05:23:37 EDT)-->

<wsdl:message name= 11 squareRootResponse 11 >
<wsdl:part name= 11 squareRootReturn 11 type= 11 xsd:doub!le 11 1>

<lwsdl :'message>
<wsdl:message name="squareRootRequest">

<wsdl:part name="inO" type="xsd:doubl.e"l>
<lwsdl:message>
<wsdl: port Type name="Squa·reRoot ">

<wsdl:operation name="squareRoot" parameter0rder="in0 11 >
<wsdl:input message="impl:squareRootRequest"

name="squareRootRequest"l>
<wsdl:output message="impl:squareRootResponse"

name="squareRootResponse"l>
<lwsdl:operation>

<lwsdl:portType>

197

<wsdl :·binding name="SquareRootSoapBinding 11 type="imp:l.: SquareRoot")
<wsdlsoap:binding style="rpc"
transport="http:llschemas.xmlsoap.org./soaplhttp"l>
<wsdl:operation name="squareRoot">

<wsdlsoap:operation soapAction= 11 "1>
<wsdl:input name="squareRootRequest">
<wsdlsoap:body

encodingStyle="http:llschemas.xmlsoap.orglsoaplencodingl 11

name space=;; urn : calculation" use= 11 encoded,; I>
</wsdl: input>
<wsdl:output name="squareRootResponse">
<wsdlsoap:body

encodingStyle="http:llschemas.xmlsoap.orglsoap/encodingl"
namespace="urn: calcula·tion 11 use= 11 encoded11 I>

<lwsdl:output>
</wsdl:operation>

<lwsdl:binding>
<wsdl: service name= 11 Squa·reRootService 11 >

<wsdl:port binding="impl:SquareRootSoapBinding 11

name="SquareRoot 11 >
<wsdlsoap:address
locatibn= 11 http:ll
e~sci035.dur.ac.uk:8080laxis/services/SquareRoot"l>
<lwsdl:port>

<lwsdl:service>
</wsdl·definitions>

List 7.12.WSDL Document ofthe Square Root Web Service

Cbapter 7 - Evaluation 198

7 .5.3 Test Case and Test Client Generation

The WSDL in List 7.12 was used as an input to theWS-Robust, part of the test cases

generated shown in List 7.13, and the responses document in List 7.14.

Table 7.10 summarizes all the test data and the responses from the square root Web

Service. It can be concluded from this table that the <mly robustness failure occurred

with the null replacement input where it responded with a fault message with an

improper fault string (FMI).

The result of this section is that the WS-Robust is able to assess the robustness of

Web Services that are deployed on a systems remote from the WS-Robust tool and

written and implemented by a third party.

Chapter 7 - Evaluation

l<?xm:l version="l.O" encoding="UTF-8"?>
f<web_service>

<service~name>SquareRootService</service_name>

<address>
http://e-sci035.dur.ac.uk:8080/axis/services/SquareRoot

</address>
<operations>

<operation>
<operation name>squareRoot</operation name>
<input_message>squareRootRequest</input_message>
<ordered_input_parameters>

<input _part>
<part name>inO</part name>
<part:::: dataType>double</part _ da.taType>
<test cases>

<test case>
<test case id>String Repiacement</test case id>
<test-datatype>String</test datatype> - -
<test::::data>oilcqhiflyzzasgkzcplg</test_data>

199

<expected_output>Fault message with proper fault
string</expected output>
<quality assessed1l>Platform
robustness</quality assessedl>
<quality assessed2>Platform
security<./quality_assessed2>
<quality assessed3>Plat:form fault
tolerance</quality assessed3>
</test_case> -

<!-- More test cases here -->

<test case>
<test_case_id>Max_Numeric</test_case_id>
<test_datatype>double</test_datatype>
<test_data>1.7976931348623157E308</test_data>
<expected output>Response message</expected output>
<quality assessedl>WS implementa·tion -
robustness</quality assessedl>
</test_case> -
</test cases>

</input part>
</ordered_input_parameters>
<output_message>squareRootResponse</output_message>
<output _parameters>

<output part>
<output_part'-name>squareRootReturn</output_part_name>
<output_part_dataType>double</output_part_dataType>
</output_part>

<I output _parameters>
</operation>

</opera.tions>
1</web_service>

List 7.13. Test Cases for the Square Root Web Service

Chapter 7 - Evaluation 200

<?xml version="l.O" encoding="UTF-8"?>

<web service>
<service_name>SquareRootService</service:......name>
<operations>

<operation>
<operation_name>squareRoot</operation_name>

<tes.t cases>
<test case>

<inQ>oilcqhiflyzzasgkzcplg</inO>
<fault>
<fault_code>Server.userException</fault_code>
<fault string>org.xml.sax.SAXException: Bad types

(class java.J..ang.String -> double)</fault_string>
<:fault detail>

<hostname>e-sci035</hostname>
</fault detail>

</fault>-
</test~case>

<inO>INF</inO>
<output>Infinity</output>
<invokation time>47 ms</invokation_time>

</test_case>
<test case>

<inO>-INF</inO>
<output>NaN</output>
<invokation time>lS ms</invokation_time>

</test=case>
<test case>

<"inO>NaN</inO>
<output>NaN</output>
<invokation time>47 ms</invokation_time>

</test_case>
<test case>

<inO>l. 7·9769313'48623157E308</in0>
<output>1.3407807929942596E154</output>
<invokation time>31 ms</ invoka.tion _time>

</test_case>
<test case>

<in0>1.7976931348623156E308</in0>
<output>l.3407807929942596E154</output>
<invokation time>31 ms</invokation_time>

</test case>
<!--more test cases and responses here -->

</test=cases>
</operation>

</operations>
</web_service>

List 7.14. Test Cases with Responses for the Square Root Web Service

Chapter 7 - Evaluation 201

Table 7.10. Test Data and Resnonses for the Souare Root Web Service

TestCaseiD Test Data SOAP response of fault

. String_ Replacement oilcqhiflyzzasgkzcplg FMP
Date- 2008-05-01 FMP
Time Replacement
Boolean_ Replace- true FMP
ment
null Replacement null FMI
Max Numericl INF INF
Max Numeric2 1. 7976931348623157 · 1.3407807929942596E154

E308
Less Max 1. 7976931'348623156 1.3407807929942596E 154

E308
Min Valuel -INF NaN
Min Value2 4.9E-324 2.2227587494850775E-

162
Above Min 4.8E-324 2.2227587494850715E-

162
Divide by_ Zero 0 0

· Empty_ String Empty string FMP
: NaN Replacement NaN NaN

7.6 Assessing Platform Robustness

The Web Services examples in Section 7.2 and 7.3 were all deployed in the Axis

platform which is hosted in a Tomcat Server. To assess the effect of the Web Service

platform of the Web Services robustness, one of the Web Services examples in section

7.2 was deployed in the GLUE platform. After that the response or fault SOAP message

generated by GLUE was compared with those generated by Axis for the same WS-

Robust test cases.

Chapter 7 - Evaluation 202

7.6.1 Configuration

The implementation of this Section example uses Java version 1.5.0_06, Axis 1.4,

GLUE 1.2, Tomcat 6 Server and HTTP Server.

7 .6.2 Scenario

In Section 7.2, forty one Web Services, each accepting different primitive or derived

from primitive datatype, were implemented and deployed in Axis. Instead of repeating

all the examples in Section 7.2 using the GLUE platform, the equivalent· partitioning

testing was used for the datatype partitions in Table 5.2, For the Numeric datatypes

class, the double datatype was chosen to represent datatypes in this class. In a similar

way for the String datatypes, the string data{We was chosen, for the Date-Time

datatypes, the date datatype was chosen to represent datatypes in this class, and finally

for the Boolean datatypes, the boolean datatype, the only element in this class was used.

The same Web Services that accepts double, string, date, and boolean that were

deployed in the Axis platform in Section 7.2, were deployed in the GLUE platform to

compare the results with those obtained for Axis.

Tables 7.11 to 7.14 show the comparative responses using Axis and GLUE.

Chapter 7 - Evaluation 203

Table 7.11. Responses of Axis and GLUE for a Web Service with double Datatype

Test Case Axis 1.4 response or fault GLUE 1.2 response or fault

String_ Replacement FMP FM with fault string: 'For input
string <test>'
the detail element that contained a
stack trace

Date-Time_ Replacement FMP FM with fault string: 'For input
string <2007-02-20TOO:OO:OO:OOOZ >
the detail element that contained a
stack trace

Booleant_Replacement FMP FM with fault string: 'For input
string <true >
the detail element that contained a
stack trace

Null_ Replacement FM with faultstring: 'No such FM with empty fault string
operation' the detail element that contained a

stack trace

Table 7.12. Responses of Axis and GLUE for a Web Service with string
Data type

Test Case Axis 1.4 response or fault GLUE 1.2 response or fault

Numeric_ Replacement FMP RM (Numeric value accepted)

Date-Time_ Replacement FMP RM.(Date-Time value accepted)

Booleant_Replacement FMP RM (Boolean value accepted)

Null_ Replacement RM (null accepted) RM (ntdl value accepted)

Table 7.13. Responses of Axis and GLUE for a Web Service with date
Data type

Test Case Axis 1.4 response or fault GLUE 1.2 response or fault

Numeric_ Replacement FMP RM with a null replacing the
Numeric value passed" ·

String_ Replacement FMP RM with a null replacing the String
value passed

Booleant_Replacement FMP RM with a null replacing the Boolean
value passed

Null_ Replacement RM (null accepted) RM (null accepted)

• List 7.15 IS the SOAP response for this test case

Chapter 7 - Evaluation 204

Table 7.14. Responses of Axis and GLtJE for a Web Service with boolean
Data type

Test Case Axis 1.4 response or fault GLUE 1.2 response or fault

Numeric_ Replacement FMP ,FMP

String_ Replacement FMP FMP

Date-Time_ Replacement FMP FMP

Null_Replacement RM (null value accepted) RM (null accepted)

<soap: Envelope xmlns: xsi=''http: I /www. w3 .org/2001/XMLSchema-instance"

xmlns,: xsd="http: I /www. w3. org/2001/XMI..Schema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xm:l:ns.: soapenc="http.: I I schemas. xmlsoap. org/ soap/ encoding I">

<soap:Body>

<n:dtRetResponse xmlns:n="http://tempuri.org/convert.dt.DateReturn">

<Result xsi:type="xsd:string">The Date passed is null</Result>

</n:dtRetResponse>

</soap:Body>

</soap:Envelope>

List 7.15. The SOAP response message produced by GLUE for Numeric_Replacement
test case with a date datatype

Chapter 7 - Evaluation 205

7 .6.3 Results

The results obtained for the four examples in Table 7.11 through Table 7.14 will be

discussed separately as follows:

l) The Web Service that accepts primitive double input datatype (Table 7.11):

• Axis is robust when applying the String_ Replacement test case while GLUE is

not. The reason is that GLUE returned a fault message with a fault string that does

not describe the fault that happened, the fault string is "For input string <test>"

where test is the string that is used to replace the actual double datatype.

• Axis is robust when applying the Date-Time_Replacement test case while GLUE

is not. The reason is that GLUE returned a fault message with a fault string that

does not describe the fault that happened, the fault string is "For input string

<2007;.02-20TOO:OO:OO.OOOZ>" where 2007-02-20 is the date that is used to

replace the actual double datatype.

• Axis is robust when applying the Boolean _Replacement test case while GLUE is

not. The reason is that GLUE returned a fault message with a fault string that does

not describe the fault that happened, the fault string is "For input string <true> "

where true is the Boolean that is used' to replace the actual double datatype.

• Both Axis and GLUE are not robust when applying the NulCReplacement test

cases generation rule that replace the input parameter with null. Axis is not robust

because it returned a fault message with a fault string that does not describe the

fault that happened, while GLUE is not robust because it returned an empty fault

message which means that the Service Requester will not know what that fault

that has happened.

Chapter 7 - Evaluation 206

• GLUE was not secure when applying the String_Replacement, Date

Time~ Replacement, Boolean_ Replacement, and NulC Replacement. The reason is

the GLUE returned a SOAP fault message with a stack trace inside the detail

element of this message.

• Axis was secure in all the test cases applied.

2) The Web Service that accepts primitive string input datatype (Table 7.12):

• Axis is robust when applying the Numeric_ Replacement, Date-

Time=Replacement, and Boolean_Replacemnet test case while GLUE is not. The

reason is that GLUE returned a SOAP response message while a SOAP fault with

proper fault string was expected in these test cases.

• Both Axis and GLUE are not robust when applying the Null_ Replacement test

cases generation rule that replace the input parameter with null. The reson is that

both Axis and GLUE accepted the null input and did not return a SOAP fault.

3) The Web Service that accepts primitive date input datatype (Table 7.13):

• Axis is robust when applying the Numeric_ Replacement, String_ Replacement, and

Boolean_ Replacemnet test case while GLUE is not. The reason is that GLUE

returned a SOAP response message where the Numeric, String, and Boolean

inputs are converted to null. List 7.1'2 represents the SOAP response when a

Numeric value replaced the date input. The GLUE platform passed a null value, to

the Web Service implementation (See Fig. 2.4), instead of the Numeric value

(integer) that was passed in the SOAP request, this is clear from the response of

the Web Service operation "The Date passed is null" (See List 7.12).

• Both Axis and GLUE are not robust when applying the NulCReplacement because

both Axis and GLUE accepted the null input and did not return a SOAP fault.

Chapter 7 - Evaluation 207

4) The Web Service that accepts primitive boolean input datatype (Table 7.14):

• Both Axis and GLUE are robust when applying the Numeric_ Replacement,

String_ Replacement, and Date-Time_ Replacement test case because both

Platforms behave as expected by these test cases by sending a SOAP fault with

proper fault string that describe the fault happened of changing the input datatype.

• Both Axis and GLUE are not robust when applying the Null_ Replacement because

both Axis and GLUE accepted the null input and did not return a SOAP fault.

Table 7.16 summarizes the results obtained by showing the number of the Test Cases,

the number of Robustness Failures, Security Failures, and the description of the fault

the led to these failures for the Axis and GLUE Web Services platforms.

Table 7.16. Comparison of Robustness and Security between Axis and GLUE

Platform Test Robustness Security Fault Description
Cases Failures Failures

Axis 16 4 0 Handling null input
GLUE 16 1'3 4 Handling changing the input datatype

Handling null input
Stack trace in the SOAP fault

The conclusion is that Axis is more robust and secure than GLUE because, for the

same test cases, GLUE caused 13 robustness failures and 4 security failures while Axis

caused only 4 robustness failures and no security related failures. Figure 7.1 also

summarizes these results.

Chapter 7 - Evaluation

16

14

12

10

8

6

4

2

0
Axis GLUE

Platform

• Robustness
Failures

o Security Failures

208

Fig. 7.1. A Comparison of Robustness and Security between Axis and GLUE

7.7 Summary

This Chapter has evaluated the effectiveness of the Web Services robustness testing

framework that uses test case generation rules defined in Chapter 5. It has also shown

that an efficient tool can be developed that applies the framework to the following

examples or case studies:

• Forty one Web Services that accepts different primitive XML Schema datatypes

as input.

• A Web Service that accepts a user-derived datatype

• The Amazon Web Service, a commercially available Web Service.

• A Web Service that was developed as part of a research project that is based on a

remote system.

Chapter 7 - Evaluation 209

A comparison of the robustness of the Axis and GLUE platforms has been made using

the test cases rules, and this caparison has revealed that Axis is more robust than GLUE

for the example that have been used.

These examples have demonstrated that the Web Services robustness testing

framework and WS-Robust is able to assess the robustness of a Web Service

implementation and platform. Also it has been shown that Axis does not have a

validation for the constraints of the input parameter, which means that it does not check

if the input parameter satisfies the constraints described by the WSDUs type element.

210

Cbapter8

Conclusion and Future Work

8.1 Introduction

Web Services are still not widely used because Service Requesters do not trust Web

Services that were built by others. To solve this problem all the trustworthiness

requirements such as reliability, safety, security, interoperability must be addressed by

researchers and practitioners.

After a survey on the field of Web Services testing and quality attributes, it has been

found that most of the research has been done to test if the Web Service operation

satisfy the Service Requester requirements. This type is testing is called validation

testing. Very little research used fault-based testing with Web Services and these works

did not specify the quality attribute being assessed. The research in this thesis is

different than the previous work because:

• It provides a systematic way of generating test cases to assess the robustness of

Web Services.

• It automates the process of test case generation based on WSDL

• It automates the process of test client generation

Test cases in this thesis are based on the XML Schema input parameter specification

inside WSDL and the robustness faults that may affect a Web Service are based on

violating these specifications. Assessing the robustness quality attribute contributes to

Chapter 8 - Conclusion and Future Work 211

the assessment of other quality attributes such as security and fault tolerance to wrong

input.

A proof of concept tool has been implemented that can help the Service Requester to

assess the robustness of a Web service based only on its WSDL.

The robustness of a Web Service may be affected by the Web Service platform or the

middleware that this Web Service is deployed on. The test cases designed in this thesis

distinguish between testing the robustness of the platform and testing the robustness of

the Web Service implementation. When the test data in a test case is valid then this test

case is suppose to assess the robustness of the Web Service implementation because the

platform should not intercept the SOAP that contains this test data. However, when the

test data is invalid for example changing the datatype of the input parameter, then the

platform robustness is being tested. This is because the platform must check the input

parameter datatype and not send this invalid data to the Web Service implementation.

8.2 Contributions

This Section will discuss how this thesis has achieved its contributions that were

introduced in Chapter l.

1. Developing an approach to assess the robustness quality attribute of Web

Service based only on the speciftcation of the operations' input parameters

datatypes inside the WSDL document of the Web Service under test:

This thesis has introduced an approach in Chapter 5 that can be used to assess

the robustness and other related quality attributes based only on the input

Chapter 8 - Conclusion and Future Work 212

This thesis has introduced an approach in Chapter 5 that can be used to assess

the robustness and other related quality attributes based only on the input

parameters datatype speci:tication inside WSDL Since WSDL use XML Schema

datatypes to achieve interoperability, analysis has been done on each of the three

categories of these datatypes, namely, primitive, user-derived, and complex. For

each of these categories, Chapter 5 specified how the test cases can be generated

and also what quality attribute, fault, testing techniques, and WSDL component

are related to each test case.

2. Detecting robustness and security faults in Web Services implementations and

platforms:

In Chapter 7, the approach developed in this thesis was able to detect robustness

and security faults in experimental Web Services and also in a real commercial

Web Service (Amazon).

3. Analysis of which faults affect the robustness quality attribute of Web Services:

The test case generation rules in Chapter 5 are considered a schema for

describing the faults that affect the robustness quality attribute of a Web Service.

The rules in Section 5.4 showed how a single fault may affect more than one

quality attribute that are related to robustness.

4. Implementing a prototype tool that demonstrates the feasibility of the proposed

Web Services robustness testing approach. The tool is able to automatically

Chapter 8 - Conclusion and Future Work 213

generate test cases to assess the robustness of Web Service and to autoiiUitically

write a test client depending on the generated test cases.

The approach that was introduced in Chapter 5 had been implemented in the

WS-Robust tool that is introduced in Chapter 6.

Chapter 7 has demonstrated that WS""Robust can automatically generate test

cases depending on WSDL. WS-Robust automatically generated test cases,

depending en the test case generation rules. Section 7.2 described the forty one

Web Services that accept inputs of the different primitive XML Schema datatypes

specified in Fig. 2.5. Test cases for user-derived and complex datatypes were

generated and described in Section 7.3 and 7.4.

Chapter 6 showed the detaHs of the implementation of the test client that can

automatically invoke the Web Service under test using the Test Cases document
. .

that is generated by WS-Robust. However, the automation of the test client

generation process was possible for Web Services that accepts an input of

primitive, derived from primitive and user-derived datatypes but not for Web

Service that accepts a complex datatype. The reason for this is that other

programs, such as wsdl2java, are needed to generate the client in case of complex

datatypes. For this reason, the automation of test case generation and client

generation for the Web Services with complex input datacype will be carried out

as part of the future work.

Chapter 8 - Conclusion and Future Work 214

5. Analyze the effect of the Web Service platform on the robustness and security

quality attributes.

Section 7.5 in Chapter 7 showed how the Web Services platform may affect the

robustness and security by comparing Axis and GLUE Web Services platforms.

For the experimental examples used, Axis has less robustness faults than GLUE.

The GLUE platform showed some security faults while Axis did not.

8.3 Future Work

Future work is needed in the fol1lowing directions:

• Assessing other quality attributes of Web Services: The test case generation

schema in Chapter 5 showed the faults· that are related to the robustness and other

related quality attributes, if analysis on the faults that affect the other quality

attributes in Fig. 3.1 such as safety and availability, then we can reach a better

assessment of the trustworthiness of Web Services and increase their use~

• Since testing Web services is expensive we want to fmd a way to reduce the

number of test cases but without compromising the robustness assessment: When

finding the test cases for the Web Service operations with more than one input

parameter, this thesis approach used the cross product of the test cases for each

parameters. However, this method will produce a lot of test cases specially if an

operation has many parameters. Also, it has been noticed that platforms stop when

detecting the first fault, which means that the first occurring fault wiH hide the

other faults in the input parameters. So, for this reason and to reduce the cost of

test, the future work will modify WS-Robust to make each invocation to the Web

Chapter 8 - Conclusion and Future Work 215

Service has only one invalid input and the other inputs are valid instead of using

the cross product.

• Automate the process of client generation for Web Service with complex

datatypes: Test client generation for Web Service with complex datatypes was

done manually; future work will automate this process.

• 'Fest Case generation when the input parameter of list, union (See Section 2.6.2.1)

datatype: This thesis handled test case generation when the input parameter is of

primitive, user-derived, or complex datatypes only, however, the input parameter

might also be of list or union datatype.

• Test case generation when the input parameter is an array of other datatypes: This

thesis· did not handle the case when the input parameter is an array of simple, user

derived, or complex dataty;pes.

• Test case generation when the message exchange patteril is not Request-Response:

There are four types of message exchange in Web Service (See Section 2.6.3), but

this thesis only considered Request-Response.

• Finding test case generation rules when the user-derived datatype has the pattern,

enumeration, whitespace, tota/Digits, and .fractionDigit constraining facets: Test

case generation rules did not consider these constrains.

• Analyzing how other elements of WSDL may affect the robustness quality

attribute: In this thesis approach, only the input parameter XML Schema datatypes

are manipulated, future work will assess the affect of manipulating other WSDL

elements such as binding (See Fig. 2.6) on Web Services robustness.

• Finding a method to inform the Service Provider how to modify their WSDL to

increase Web Service testability: It has been noticed that real Web Services, such

Chapter 8- Conclusion and Future Wo~k 216

as the Amazon Web Service use only primitive datatypes and also describe all

their parameters as a string even though they should have a numeric or a date

datatype, WS-Robust can be modified so that it can send a message to the Service

Provider to suggest to them what changes they should make to the datatype

specifications such as changing the datatype of a parameter or adding some

constraint facets to it.

• Analyzing if there exist other faults that also may affect the robustness quality

attribute of Web services: This thesis addressed the faults that are addressed in the

test cases generation rules in Chapter 5, future work will try to investigate more in

the testing literature for other faults that may affect Web Services robustness and

then add more test cases to detect such faults.

8.4 Sum:mary

The main contribution of this thesis is providing a framework and a tool to assess the

robustness quality attribute of Web Services and increase the Service Requester and

Provider trustworthiness of Web Services. However, the approach in this thesis did not

give a complete assessment of the trustworthiness, if more research is done in this field

and if Service Providers and Requesters add more test cases generation rules depending

on there experience in different domains of Web Services, then these new test cases will

address the other quality attributes and the trustworthiness and usage of Web Services

will increase. Web Services wiU then become the dominant distribution systems

architecture.

Bibliography

Adrion W., Branstad M. & Cherniavsky, J. (1982) Validation, Verification, and Testing

of Computer Software. ACM Computing Surveys, (Vol. 14, No.2), pp.159-192.

Amazon. (2007). Amazon Web Service.

[Retrieved from: http://www.amazon.com/ A WS-home-page-Money/b/1 02-8408021-

21'73714?ie=UTF8&node=3435361]

Accessed on July 2007.

Apache Software Foundation. (2005) Web Services- Axis, Client-side Axis~

[Retrieved from http://ws.apache.org/axis/java/client-side-mcis.html]

Accessed September 2007.

Apache Software Foundation. (2006) Apache Tomcat 6.0.

[Retrieved from http:/ /tomcat.apache.org/tomcat-6.0-doc/index.html]

Accessed September 2007.

Apache Software Foundation. (2007). Web Services - Axis, Apache web Services

Project

[Retrieved from http://ws.apache.org/axis/]

Accessed July 2007.

Avizienis, A., Laprie, J.-C., Randell, B. & Landwehr, C. (2004) Basic Concepts and

Taxonomy of Dependable and Secure Computing. IEEE Transactions on Dependable

and Secure Computing, (Vol. 1, No. 1), China, pp. 11-33.

Bibliography

Bai, X. & Dong, W. (2005) WSDL-Based Automatic Test Case Generation for Web

Services Testing. Proceedings of the 2005 IEEE Workshop on Service..;Oriented

System Engineering (SOSE'05), pp. 207-212.

Bass, L., Clements, P. & Kazman, R. (2003). Software Architecture in Practice, Second

Edition. ISBN: 0-321-15495-9. Addison Wesley.

Beizer, B. (1990) Software Testing Techniques, Second Edition. Van Nostrand

Reinhold, New York, USA, ISBN 0-442-20672-0.

Bloomberg, J. (2002). Testing Web Services Today and Tomorrow. Rational Edge e

zine for the Rational Community, (2002)

~etrieved from

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/oct02/W

ebTesting_ TheRationalEdge _ Oct02.pdf]

Accessed October 2007.

Boehm, B. W., Brown, J. R. & Lipow, M. (1976) Quantitative Evaluation of Software

Quality. Proceedings of the 2nd International Conference on Software Engineering

(ICSE), California, USA, 11976, pp. 592-605.

Canfora, C. (2005). User-side Testing of Web Services; Proceedings of the IEEE Ninth

European Conference on Software Maintenance and Reengineering (CSMR'05), 21-

23 March, Manchester, UK, pp. 301-301.

Cerami, E. (2002) Web Services Essentials, Distributed Application with XML.:RPC,

SOAP, UDDI & WSDL. ISBN: 978-0596002244. O'Reilly.

Cohen, J., Plakosh, D. & Keeter, K. (2005). Robustness Testing of Software-Intensive

Systems: Explanation and Guide. Technical Note CMU/SEI-2005-TN-0115, Software

Engineering Institute, Carnegie Mellon University, USA.

Bibliography

Csallner, C. & Smaragdalds, Y. (2000) JCrasher: an automatic robustness tester for

Java. Software-Practice & Experience, (Vol. 34, No. 11), September, 2004. pp. I 025-

1050.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S. (2002)

Unravelling the Web Services Web, An Introduction to SOAP, WSDL, and UDDI.

IEEE Internet Computing, (Vol. 6, No.2), pp. 86-93.

Deitel, H. M., Deitel, P.J., Gadzik, J.P., Lomeli, K., Santry, S.E. & Zhang. S. (2003).

Java Web Services for Experienced Programmers. ISBN: 0-1'3-046134-2, Prentice

Hall.

Dix, M. & Hofinann, H.D. (2002) Automated Software Robustness Testing- Static and

Adaptive Test Case Design Methods~ Proceedings of the IEEE 28th Euromicro

Conference, 4th-6th, September, Germany, pp.62-66.

Empirix (2007) e- Test Suit for Web Services: Web Services Testing and Monitoring.

~etrieved from: http:/ /www.empirix.com/products-services/w-testing.asp]

Accessed November 2005.

Englander, R. (2002) Java and SOAP. ISBN: 0-596-001'75-4, O'REILLY.

Erl, T. (2006) Service-Oriented Architecture, Concepts, Technology, and Design.

ISBN: 0-131:-85858-0, Prentice Hall.

Ferris, C. & Farrell, J. (2003) What Are Web Services? Communications ofthe ACM

(Vol.46, No.6) June 2003, p. 31. -
Fu, C., Ryder, B.G., Milanova, A. & Wonnacott, D. (2004) Testing of Java Web

Services for Robustness. In Proceedings of the ACM International Symposium on

Software Testing and Analysis, (ISSTA 2004) Massachusetts, USA, pp.23-34.

Bibliography

Garvin, D. (1984) What does 'Product Quality' Really Mean? Sloan Management

Review, (Vol. 26, No. 1), pp. 25-45.

Gosh, A., Shah, V. & Schmid, M. (1998). An Approach for Analyzing the Robustness

of Windows NT Software. Proceedings of the 21st National Information Systems

Security Conference, Crystal City, USA, pp. 383-391.

Gourley, D., Totty, B., Sayer, M., Aggarwal, A. & Reddy, S. (2002) HITP: The

Definitive Guide, ISBN: l-565-92509-2, O'Reilly.

Graham, S., Davis, D., Simenov, S., Daniels, G., Brittenham, P., Nakamura, Y.,

Fremantle, P., Konig, D. & Zentner, C. (2005). Building Web Services with Java,

Making sense of XML, SOAP, WSDL, and UDDI. Second Edition. ISBN: 0-672-

32641-8, Sams Publishing.

Harold, E.R. & Means, W.S. (2004~ XML IN A NUTSHELL, A desktop Quick

Reference,, third edition, ISBN: 0-596-00764-7, O'REILLY, USA.

Harrold, M. (2000) Testing: A Roadmap. Proceedings of the IEEE 22nd International

Conference on the Future of Software Engineering, June 2000, Ireland, pp.61-72.

Hetzel, W. (1973) Programme Test Methods. ISBN: 978-0137296248. Prentice Hall.

Hsueh, M., Tsai, K. & Iyer, R.K. (1997) Fault Injection Techniques and Tools~ IEEE

Computer (Vol. 30, No. 4) April 1997. pp. 75-82.

Huhns, M. & Singh, M. (2005) Service-Oriented Computing: Key Concepts and

Principles. IEEE Internet Computing, (Vol. 9, No. 1) January-February 2005.

ffiM. (2006) New to SOA and Web Services.

[Retrieved from

http://www.ibm.com/developerworks/webservices/newto/websvc.html~

Accessed September 2006.

Bibliography

IEEE (1'990) IEEE Standard Glossary of Software Engineering Terminology. IEEE

Computer Society, Std 610.12-1990.

IEEE (1995~ IEEE Guide to Classification for Software Anomalies. Software

Engineering Standards Committee of the IEEE Computer Society, IEEE Computer

Society, Std 1044.1-1'995.

ISO 9126-1: 2001 (2001) Software Engineering- Product quality~ Part 1: Quality

Model, International Organization ofStandardization, Geneva, Switzerland.

Jorgensen, P. C. (2002) Software Testing, A Craftsman's Approach Second Edition.

ISBN 0-8493-0809-7, CRC Press.

Koopman, P., Sung, J., Dingman, C., Siewiorek, D. & Marz, T. (1997). Comparing

Operating Systems Using Robustness Benchmarks. In Proceedings of the 16th IEEE

Symposium oil Reliable Distributed Systems, October, 22-24, North Carolina, USA,

pp. 72-79.

Korel, B. (1999) Black-Box Understanding of COTS Components. Proceedings of the

IEEE 7th International Workshop on Program Comprehension (IWPC}, 5-7 May

1999, Pennsylvania, USA, pp.92-99.

Leavitt, N. (2004) Are Web Services Finally Ready To Deliver? IEEE Computer, (Vol.

37, No. 11}, pp.14-18.

Looker, N., Munro, M. & Xu, J. (2004). Simulating Errors in Web Services.

International Journal of Simulation: Systems, Science & Technology, (Vol. 5, No.5},

pp. 29-37.

Looker, N., Munro, M. & Xu, J. (2007). Determining the Dependability of Service

Oriented: Architectures. International Journal of Simulation and Process Modelling

(Vol. 3, No. 1/2), pp. 88-97.

Bibliography

Lyndsay, J. (2003). A Positive View of Negative Testing. Workroom Production Ltd.

London, UK.

[Retrieved from http://www. workroom-productions.co~papers/PVoNT _paper.pdt]

Accessed October, 2007.

Marsden, E., Fabre, J.-C. & Arlat, J. (2002). Dependability of CORBA Systems:

Service Characterization by Fault Injection. Proceedings of the 21st IEEE

Symposium on Reliable Distributed Systems (SRDS'02), October, 13-1:6, Japan,

pp.276-285.

McCall, J. A., Richards, P. K. & Walters, G. F. (1977) Factors in Software Quality.

Three volumes, US Department of Commerce, National Technical Information

Service (NTIS).

Mercury (2007) Service Test.

[Retrieved from: http:/ /www.mercury.com/us/products/quality-center/functional

testing/service-test/],

Accessed October 2007.

MiUer B.P., Fredriksen, L. & So, B. (1990). An Empirical Study of the Reliability of

UNIX Utilities. Communications of the ACM, (Vol. 33, No. 12) pp. 32-44.

Murnane, T., Hal,l, R., & Reed, K. (2005) Towards Describing Black~Box Testing

Methods as Atomic Rules. Proceedings of the 29th Annual International Computer

Software and Applications Conference (COMPSAC'OS), 26-28 July, Edinburgh,

Scotland,pp.437-442.

Murnane, T., Reed, K. & Hall, R. (2006) Tailoring of Black-Box Testing Methods.

Proceeding of the IEEE 2006 Australian Software Engineering Conference

(ASWEC'06), 18-21 April, Australia, pp. 292-299.

Bibliography

Myers, G. (1979). The Art of Software Testing, ISBN 0-471-04328-1, John Wiley.

Neumann, P. (2004). Principled assuredly trustworthy composable architecture.

Emerging draft of the final report for DARPA's composable high assurance

trustworthy systems (CHATS) program.

[Retrieved from http://www .csl.sri.com/users/neumann/chats4. pdf]

Accessed October 2007.

OASIS. (2004). UDDI Spec TC, UDDI Version 3.0.2. UDDI Spec Technical

Committee Draft October 2004,

[Retrieved from: http://uddi.org/pubs/uddi-v3.0.2-20041019.htm].

Accessed October 2005.

Object Management Group. (1998). Common Object Request Broker: Architecture and

Specification. Technical Report Revision 2.3, Object Management Group,

Framingham, USA, July 1998.

Offutt, J. Xiong, Y. & Liu, S. (1999) Criteria for Generating Specification-based Tests.

Proceedings of the 5th IEEE International Conference on Engineering of Complex

Computer Systems (ICECCS '99), Las Vegas, USA, pp. 1119~131.

Offutt, J. Liu, S. Abdurazik, A. & Ammann, P. (2003) Generating test data from state

based specifications. The Journal of Software Testing, Verification and Reliability,

pp. 25-53.

Offutt, J. Xu, W. (2004). Generating Test Cases for web services Using Data

perturbation. ACM SIGSOFT Software Engineering Notes, (Vol. 29, No. 5)

September 2004, USA, pp. 1-10.

Osterweil, L. (1996). Strategic Directions in Software Quality. ACM Computing

Surveys, (Vol. 28, No.4), December 11996, pp. 738-750.

Bibliography

Pan, J., Koopman, P., Siewiorek, D., Huang, Y., Gruber, R. & Jiang, M. L. (2001)

Robustness Testing and Hardening of CORBA ORB Implementation. Proceedings of

The International Conference on Dependable Systems and Networks, 1-4 July,

Goteborg, Sweden, pp.l-1 0.

Parasoft .(2007). Web Services Testing, SOA Development: Parasoft SOATest.

~Retrieved from: http://www.parasoft.com/jsp/productslhome.jsp?product=SOAP&

itemld=lOl].

Accessed July 2007.

Parnas, D., Schouwen, v.J. & Kwan, S.P. (1990) Evaluation of Safety-Critical Software.

Communication of the ACM (Vol. 33, No.6) June 1990, pp. 636-648.

Red Gate. (2007). Advanced .NET Testing System (ANTS).

[Retrieved from: http:/ /www.red-gate.com/products/ants _load/index.htm],

Accesses October 2007.

Raghavan, G. (2002). Improving Software Quality in Product Families therough

Systematic Reengineering. Proceedings of the Software Quality- ESSQ conference,

Berlin, Germany, Springer-Verlag, pp. 90-99.

Schmid, M. & Hill, F. (1999). Data Generation Techniques for Automated Software

Robustness Testing. Proceedings of the 16th International Conference on Testing

Computer Software (ICTCS'99), Washington, USA.

Shelton, C., Koopman, P. & De Vale, K. (2000). Robustness Testing of the Microsoft

Win32 API. Proceedings of the IEEE 2000 International Conference on Dependable

Systems and Networks, June, 25-28, New York, USA, pp. 261-271.

Bibliography

Siblini, R. & Mansour, N. (2005). Testing Web Services. Proceedings of the 3rd

ACSIIEEE International Conference on Computer Systems and Applications

(AICCSA'05), 3-6, January, Cairo, Egypt, pp. 135-143.

Singh, M. & Huhns, M. (2005). Service-Oriented Computing: Semantics, Processes,

Agents. ISBN: 978-0-470-09148-7, John Wiley & Sons Ltd~

Sommerrville, I. (2004). Software Engineering, Seventh Edition. ISBN: 0-321-21026-3.

Addison-Wesley.

Toth, A., Varro, D. & Pataricca, A. (2003) Model-Level Automatic Test generation for

UML State charts. 6th IEEE workshop on Design and Diagnostics Circuits and

System DDECS, 14-16 April, Poznan, Poland, pp. 293-294.

Tsai, W.-T., Paul, R., Wang, Y., Fan, C. & Wang, D. (2002). Extending WSDL to

Facilitate Web Services Testing. Proceedings of the 7th IEEE International

Symposium on High Assurance Systems Engineering (HASE'02), Tokyo, Japan, pp.

171-172.

Tsai, W.T., Paul, R., Cao, Z., Yu, L., Saimi, A. & Xiao, B. (2003). Verification of Web

Services Using an Enhanced UIJDI Server. Proceedings of the 8th IEEE

International Workshop on Object-Oriented Real-Time Dependable Systems, 15-17

January, Guadalajara, Mexico, pp. 131 - 138.

Tsai, W.T., Chen, Y. & Paul, R. (2005a) Specification-Based Verification and

Validation ofWeb Services and Service-Oriented Operating Systems. Proceedings of

the IEEE lOth International Workshop on Object-Oriented Real-Time Dependable

Systems (WORDS'05), 2-4 February, Arizona, USA, pp. 139- 147.

Bibliography

Tsai, W.T., Wei, X., Chen, Y., Xiao, B., Paul, R., & Huang, H. (2005b) Developing and

Assuring Trustworthy Web Services. Proceedings of the 7th International Symposium

on Autonomous Decentralized Systems (ISADS) 4-6 April, China, pp. 43-50.

Vlist, V. (2002) XML Schema- The W3C's Object.:Oriented Descriptions for XML.

ISBN: 0-596-00252-1, O'REILLY.

Voas, J., McGraw, G. & Ghosh, A. (1996). Gluing Together Software Components:

How Good is Your Glue? Proceedings of the Pacific Northwest Software Quality

Conference, Portland, USA, pp.338-349.

Voas, J. (1997). Error Propagation Analysis for COTS Systems. Computing & Control

Engineering Journal, (Vol. 8, No. 6), December, pp. 269 - 272.

Voas, J. M. & M'cGraw G. (1'998a~ Software Fault Injection, Inoculating Programs

against Errors. ISBN: 0-471-18381-4, John Wiley.

Voas, J. (1998b) Certifying Off-the-Shelf Software Components. IEEE Computer (Vol.

. 31, No.6) June 1998. pp. 53-59.

W3C. (2001). Web Services Description Language (WSDL) 1.1. W3C Note 15 March,

[Retrieved from: http://www.w3.orgffR/2001/NOTE-wsdl-20010315].

Accessed May 2005.

W3C. (2004a). Web Services Architecture. W3C Working Group Note 11 February

2004,

[Retrieved from: http://www.w3.orgffR/ws,.arch/]

Accessed May 2005.

W3C. (2004b). XML Schema Part 0: Primer Second Edition. W3C Recommendation 28

October 2004,

...

Bibliography

[Retrieved from: http://www.w3 .orgfTR/2004/REC-xm~schema-0-20041i028/]

Accessed April2005.

W3C. (2004c). XML Schema Part 2: Datatypes Second Edition. W3C Recommend

ation 28 October 2004,

[Retrieved from: http://www.w3 .orgfTR/2004/REC-Xllllschema-2-20041 0281]

Accessed on April 2005.

W3C. (2005). Document Object Model (DOM)

~etrieved from http://www.w3.org/DOM/].

Accessed January 2006.

W3C. (2006)~ Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C

recommendation 16 August 2006,

~etrieved from: http://www.w3.orgfTR/xmll].

Accessed Jan\:UU'Y 2007.

W3C. (2007) SOAP version 1.2 Part 0: Primer (Second Edition). W3C

Recommendation 27 April 2007,

[Retrieved from: http://www. w3.org/TR/2007/REC"soap 12~part0-20070427 /]

Accessed August 2007.

WebMethods (2007) GLUE tool.

[Retrieved from http://www.webmethods.com/Developers/]

Accessed January 2007.

Xu, W., Offutt; J. & Luo, J. (2005). Testing Web Services by XML Perturbation.

Proceedings of the 16th IEEE International Symposium on Software Reliability

Engineering (ISSRE'05), 8-11 November, IHinois, USA, pp. 257-266.

Bibliography

Yu, W.D., Aravind, D. & Supthaweesuk, P. (2006). Software Vulnarability Analysis for

Web Services Software Systems. Proceedings of the 11th IEEE Symposium on

Computers and Communications (ISCC), 26-29 June, Sardinia, Italy, pp. 740-748.

Zhang, J. (2004a). An Approach to Facilitate Reliability Testing of Web Services

Components. Proceedings of the IEEE 15th International Symposium on Software

Reliability Engineering (1SSR!E'04), 2-5 November 2004, Bretagne, France, pp.210-

218.

Zhang, J., Zhang, L.-J. & Chung, J.-Y. (2004b). An Approach to Help Select

Trustworthy Web Services. Proceedings of the IEEE International Conference on E

Commerce Technology for Dynamic E-Business (CEC-East'04), 13-115 September,

Beijing, China, pp.84-91.

Zhang, J. (2005a). Trustworthy Web Services: Action for Now. IEEE, IT Pro, January

February 2005, (Vol. 7, No. 1), pp. 32-36.

Zhang, J. & Zhang, L.-J. (2005b) Criteria Analysis and Validation of the Reliability of

Web Services-oriented Systems. Proceedings of the IEEE International Conference

on Web Services (ICWS'05) 11-15 July 2005, Florida, USA, pp. 621-628.

Zhang, J. & Zhang, L.-J. (2005c) Web Services Quality Testing. International Journal

for Web Services Research, (Vol. 2, No.2), pp. 1-4.

Zimmermann, J. (2003). Web Services Reduce Costs but Slow to Grow. ZDNet,

[Retrievedfrom:

http://news.zdnet.co.uklhardware/0,1000000091,2130802,00.htm?r=2]

Accessed July 2007.

