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Abstract 

Connecting Galaxy 

Formation and 

Galaxy Clustering 

by Geraint John Alan Harker 

PhD Thesis, January 2007 

We study the environmental dependence of the formation history of dark matter haloes 

in a large dark matter simulation, the Millennium Run. Adopting a sensitive test of this 

dependence- the marked correlation function- reveals highly significant evidence that 

haloes of a given mass form earlier in denser regions. We explore the effect further using 

a new variant of this statistic, and confirm our results using some simpler tests made 

possible by the size and resolution of the simulation. 

We go on to study the effect of this environmental dependence on the galaxy popula

tion generated by a recent semi-analytic model run in the Millennium Run. We show that 

environmentally dependent halo formation imparts a small but cleanly detected change 

to the correlation function and void probability function of galaxies. We can model this 

change by applying a modulation based on local density to the halo occupation distri

bution of galaxies. We also note that having the correct placement scheme for galaxies 

within haloes is at least as important as correctly accounting for environmental effects. 

Two more dark matter simulations are run, and their outputs are appropriately re

labelled and rescaled to represent different cosmologies. We generate consistent semi

analytic galaxy populations in these simulations, using two versions of each of three vari

ants of our semi-analytic model. We compare the predictions for the galaxy clustering 

from these models to the projected two-point correlation function of the SDSS, obtaining 

a constraint on the amplitude of the fluctuations in the mass, a8 = 0.96 ± 0.05. We 

find that environmental effects do not significantly affect this estimate, but discuss other 

possible effects which might. We remark on how this result compares to other recent 

determinations of a 8 . 



Contents 

1 Introduction 

1.1 

1.2 

1.3 

Background 

1.1.1 Overview 

1.1.2 The ACDM cosmogony 

Modelling techniques . . . . . . 

1.2.1 Dark matter simulations . 

1.2.2 Semi-analytic modelling 

1.2.3 Halo models . . . . . . . 

Halo formation and environment 

1.3.1 Press-Schechter theory and its extensions 

1.3.2 Environmental dependence . . 

1.4 Constraining cosmological parameters 

1.5 Structure of this thesis ........ . 

2 Environmental dependence of halo formation times 

2.1 The Millennium Simulation 

2.1.1 Merger trees .... 

2.2 The marked correlation function 

2.2.1 Choice of mark 

2.3 Results and extensions 

2.3.1 A marked cross-correlation function 

2.3.2 A simpler test of environment .... 

1 

1 

1 

2 

9 

9 

14 

15 

18 

18 

21 

24 

26 

28 

28 

29 

34 

35 

38 

44 

49 

3 The effect of environmental dependence on clustering statistics 55 

3.1 Methods . . . . . . . . . . . 

3.1.1 Semi-analytic model 

55 

55 



3.1.2 Shuffling procedure . 56 

3.2 Results ............ 57 

3.2.1 Effects on the correlation function 57 

3.2.2 The void probability function . . 64 

3.2.3 The halo occupation distribution 66 

3.2.4 Modelling the correlation function 69 

4 Constraining cosmology via galaxy clustering 75 

4.1 Methods ............ 75 

4.1.1 Semi-analytic models . 75 

4.1.2 Simulations 83 

4.2 Results ....... 88 

4.2.1 Sample definition . 88 

4.2.2 The halo occupation distribution 91 

4.2.3 Clustering results . . . . . 95 

4.2.4 Cosmological constraints . 107 

4.3 Discussion ............. 108 

5 Conclusions 118 

5.1 Environmental dependence 118 

5.1.1 Haloes ..... 118 

5.1.2 Model galaxies 120 

5.2 Cosmological constraints . 120 

Bibliography 123 

Appendices 

A Simulation rescaling 138 

A.1 Introduction . 138 

A.2 Preliminaries 138 

A.3 Simple Relabelling 140 

A.4 More General Relabelling 142 

A.5 Rescaling n ........ 142 

ii 



List of Figures 

2.1 Merger or not? ............... . 

2.2 Schematic representation of halo de-mergers 

2.3 Halo formation redshift as a function of halo mass 

31 

33 

37 

2.4 The distribution of halo formation redshift and of scaled formation redshift 38 

2.5 The marked correlation function of haloes in two mass ranges . . . . . . 39 

2.6 The marked correlation function for six, relatively high, ranges in mass . 42 

2. 7 The effect on the marked correlation function of the choice of mark . 45 

2.8 Six marked cross-correlation functions . . . . . . . . . . . . . . . . . 47 

2.9 The effect on the marked cross-correlation function of changing the relative 

mass of the tracer and marked populations . . . . . . . . . . . . . . . . . 48 

2.10 Formation redshift as a function of local overdensity in dark matter for a 

variety of halo masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

2.11 Formation redshift as a function of local overdensity for galaxy-sized haloes 51 

2.12 The Gao et al. (2005) effect in our catalogue . . . . . . 54 

3.1 The effect on ~(r) of different galaxy placement schemes 59 

3.2 The effect on r2~(r) of different galaxy placement schemes 60 

3.3 The effect of shuffling on r2~(r) for a faint and a bright galaxy sample 62 

3.4 The effect of shuffling on r2~(r) for central galaxies only . 63 

3.5 Comparing the effect of shuffling for red and blue galaxies 64 

3.6 The void probability function for faint and bright galaxy samples, with and 

without shuffling . . . . . . . . . . . . . . . 65 

3. 7 The environmental dependence of the HOD 67 

3.8 HOD scaling as a function of density 70 

3.9 Clustering with a modulated HOD 71 

3.10 Adjusting the modulation . . . . 73 

iii 



3.11 The void probability function for faint and bright galaxy samples with a 

modulated HOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

4.1 r-band luminosity functions for the three fiducial GALFORM models . 82 

4.2 Outputs of the doh512 simulations . . . . 87 

4.3 A resolution test in the doh256 simulation 89 

4.4 A further resolution test in the doh256 simulation 90 

4.5 (N(M)) for cosmologies from doh512 Run 1 .... 93 

4.6 (N(M)) for cosmologies from doh512 Run 1, without varying parameters 94 

4.7 (N(M)) for cosmologies from doh512 Run 2 . . . . . . . . . . . . . . . . . 95 

4.8 (N(M)) for cosmologies from doh512 Run 2, without varying parameters 96 

4.9 The width of P(NI(N)) as a function of mass in our GALFORM model, 

compared to a simple prescription . . . . . . . . . . . . . . . . . . . . 97 

4.10 The projected correlation function for cosmologies from doh512 Run 1 99 

4.11 The projected correlation function for cosmologies from doh512 Run 1, 

without varying parameters . . . . . . . . . . . . . . . . . . . . . . . . 100 

4.12 The projected correlation function for cosmologies from doh512 Run 2 101 

4.13 The projected correlation function for cosmologies from doh512 Run 2, 

without varying parameters . . . . . . . . . . . . . . . . . 

4.14 Correlation length as a function of space density in Run 1 

4.15 Correlation length as a function of space density for Run 1, without varying 

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.16 Correlation length as a function of space density for Run 2 

4.17 Correlation length as a function of space density for Run 2, without varying 

102 

103 

104 

105 

parameters . . . . 106 

4.18 Constraints on O"g • 109 

4.19 Mean occupation functions from the CLF for different sample luminosity 

thresholds . . . . . . . . . . . . . . . . . . . 112 

4.20 A mean occupation function from the CLF 113 

4.21 The luminosity function from a CLF catalogue in the Millennium Run 114 

4.22 r2~(r) from a CLF catalogue in doh512 Run 1. . . . . . . . . . . . . . 115 

lV 



List of Tables 

4.1 Outputs from doh512 Run 1. 

4.2 Outputs from doh512 Run 2. 

4.3 The space density of the SDSS samples to which we compare 

4.4 Key to our model numbering . . . . . . . . . . . . . . . . . . 

v 

84 

85 

91 

107 



Declaration 

The work described in this thesis was undertaken between 2003 and 2006 while the author 

was a research student under the supervision of Prof. Shaun Cole in the Department of 

Physics at the University of Durham. This work has not been submitted for any other 

degree at the University of Durham or any other University. 

Portions of this work have appeared in the paper, 'A marked correlation function 

analysis of halo formation times in the Millennium Simulation' by Harker, Geraint J. A.; 

Cole, Shaun M.; Helly, John C.; Frenk, C.S. & Jenkins, Adrian R: MNRAS 367, 1039. 

The copyright of this thesis rests with the author. No quotation from it should be 

published without his prior written consent and information derived from it should be 

acknowledged. 



Acknowledgements 

Thanks firstly to Shaun: for great depths of insight and patience; for finding a fascinating 

project for me to work on; and for taking on a mathematician, whom some suspect of 

playing more bridge than is good for him, as a student in the first place. One couldn't 

hope for a better supervisor. 

The data used in this thesis are the fruit of the time, effort and skill of a large number 

of people. John Helly, in particular, provided the code to read in theN-body simulations 

and constructed the merger trees on which the results of Chapters 2 and 3 are based. 

Adrian Jenkins generated the initial conditions for, and ran, the simulations used in 

Chapter 4. The other members of the Virgo Consortium, and the creators of GADGET 

and GALFORM, have enabled this project to go ahead. 

John, Adrian, Shaun and Carlos Frenk offered many helpful suggestions to improve 

the paper upon which Chapter 2 is based. I must, however, thank Liang Gao and the 

anonymous referee for spotting an error which sneaked past us all. Gao, Darren Croton 

and Jeremy Tinker generously shared data, code and some useful insights, while David 

Weinberg helped to initiate and plan the project described in Chapter 4. 

Many of my memories of studying for a PhD will concern playing bridge. I'd like to 

thank my regular competition partners, Adam Matthews and Phil Smith; many semi

regular and occasional partners; the friendlier of my opponents; and all the members of 

Durham University Bridge Club. I never thought DUBC would give me the chance to 

take part in a World Championships in China; thanks to Robin Zigmond, Tom Dessain, 

Nicola Macdougall, John Probst and many generous bridge players for making it possible. 

Thanks to Malgosia Sobolewska and Nick Schurch for being crazy enough to let a 

writing up PhD student live in their spare room; to my officemates who've had no choice 

but to put up with me, in particular to Rowena Malbon and Dave Wilman who helped 

show me the ropes when I turned up; to many other members of the group who've kept 

me sane by coming out for drinks, kept me busy as a goalkeeper for Astra, and kept me 

amused at coffee time; to Chris Simpson for showing that coffee time is a flexible concept; 

to Lydia Heck and Alan Lotts for keeping everything running and saving me from the 

dreaded 'rm *'; to Saleem Zaroubi for providing me with a deadline; and to PPARC for 

a studentship that nearly lasted until that deadline. 

Finally, I would be lost without the knowledge my parents are always there to encour

age and support me whatever I do. I can never thank them enough. 



Chapter 1 
Introduction 

1.1 Background 

1.1.1 Overview 

On the largest scales accessible to study, observations of the Universe are consistent 

with it being homogeneous and isotropic. That this should be the case is the cherished 

'cosmological principle'. Adopting this principle allows us to characterize the evolution 

of the Universe on these large scales- in particular its density and rate of expansion

in terms of just a few parameters which describe the contribution of different components 

to the energy density of the Universe. 

Fortunately for cosmologists, however, the Universe displays a great wealth of struc

ture on smaller scales. In the early, high redshift Universe, this structure was imprinted 

as small fluctuations in the temperature of the cosmic microwave background (CMB) ra

diation, which have been measured to increasingly high precision by many experiments. 

At moderate and low redshifts, though, the structure is seen most strikingly in the spa

tial distribution of galaxies. Galaxy redshift surveys, most notably in recent times the 

Two-degree Field Galaxy Redshift Survey (2dFGRS; Colless et al., 2001) and the Sloan 

Digital Sky Survey (SDSS; York et al., 2000), produce maps of galaxy positions in three 

dimensions which show that galaxies form a beautiful network of walls and filaments, 

which resolve on closer inspection into groups of between one galaxy and thousands of 

galaxies. 

Producing the rich structure seen in the galaxy distribution from the small initial 

fluctuations seen in the CMB requires that the fluctuations grow under the influence 

of gravity: matter streaming into larger structures, with progressively deeper potential 

wells forming. If the gas becomes dense enough to start to cool, creating even denser 

clouds in which stars can form, these potential wells provide the sites for the formation 

of galaxies. Clearly, then, the formation of galaxies, in addition to involving a great deal 

of physics concerning the gas, stars, dust, black holes and other objects which interact in 

1~ 



1. Introduction 2 

the galaxy's potential well, is closely related to the growth of structure in the Universe. 

Conversely, if we wish to study the growth of large-scale structure- which itself provides 

insight into the composition of the Universe, its initial conditions and the gravitational 

physics at play - we must also understand the galaxies which light up this structure for 

us. In this thesis we explore some of the connections between galaxy formation and the 

large-scale structure of the Universe, as quantified by the statistics of galaxy clustering. 

Our modelling of galaxy formation is performed with an eye to improving the constraints 

that galaxy clustering statistics can provide on cosmological parameters. We will see, also, 

that examining how galaxies cluster can provide us with information about the physics 

of galaxy formation. 

We are able to perform a detailed analysis of the connections between galaxy forma

tion and large-scale structure because we have a robust framework in which each can be 

studied and understood. This framework, which comprises a description of the compo

nents contributing to the energy density of the Universe, the form and origin of the initial 

conditions and the physics governing the growth of structure, is known as the Lambda 

Cold Dark Matter (ACDM) cosmogony. We give a brief description of this framework 

below. 

1.1.2 The ACDM cosmogony 

In the light of alternative theories proposed to explain certain observations which are 

normally considered to be evidence for dark matter (Milgrom, 1983; Bekenstein, 2004; 

Moffat, 2006), it is perhaps worth stating that ACDM is a general relativistic theory. 

Therefore on the assumption of homogeneity and isotropy on large scales, we have the 

Friedmann-Robertson-Walker (FRW) metric, 

(1.1) 

where k = + 1, 0 or -1 if the spatial hypersurfaces have positive, zero or negative curvature 

respectively. The evolution of the scale factor, a (that is, the expansion of the Universe), 

is determined by the Friedmann equation: 

(1.2) 

where a is conventionally taken to be equal to 1 at the present day, so that redshift, z, is 

given by a= 1/(1 + z). The Hubble parameter, H = aja, gives the instantaneous rate of 

expansion of the Universe, and Ho is its present value. We adopt the common notation 
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H = 100 h km s-1 Mpc- 1
. The different terms on the right-hand side of the Friedmann 

equation correspond to different components of the energy density of the Universe. The 

different 0 parameters give the density at the present day of each component, normalized 

to the critical density; that is, 

,. _ Pi 81rGpi 
~'i = -- = --2-

Pcrit 3Ho 
(1.3) 

The critical density is the density such that if the only density contribution to the Universe 

were from ordinary matter, then a universe with higher density would recollapse and a 

universe with lower density would expand forever, corresponding to closed and open 

geometries respectively (the critical case being a flat geometry). In ACDM we account 

for contributions from radiation, Or (negligible in the present, matter-dominated epoch), 

matter, Om, a cosmological constant, OA, and a curvature term (where the curvature is 

determined by the total energy density of the other components, hence the entry into the 

equations of Otot)· Since static solutions (with constant a) are unstable, this in principle is 

a prediction of an expanding or contracting universe; in practice, this was only appreciated 

following the observations of Hubble (1929). 

The distinctive feature of cold dark matter (CDM) models is that some (usually most) 

of the mass accounted for by the matter term in the Friedmann equation is in the form of 

particles which interact only through gravity (and perhaps the weak force) and which are 

non-relativistic ('cold') at decoupling. Some form of dark matter was originally proposed 

to account for missing mass suggested by the dynamics of the luminous matter in clusters 

of galaxies (Zwicky, 1937) and, later, in individual spiral galaxies (Bosma, 1978; Rubin 

et al., 1980). Measurements of the mass of clusters of galaxies through gravitational 

lensing also imply a large amount of unseen mass (Clowe et al., 2006). So long as all we 

require is some kind of mass, these observations could in principle be accounted for by 

baryons sequestered away in dense, dark objects. Baryons, however, are able to support 

pressure and behave differently from cold, weakly interacting particles. In the early 

Universe they can couple strongly to photons leading to a different signature in the CMB; 

later, they affect the details of structure formation. Baryons are also able to take part in 

the primordial synthesis of light nuclei (Alpher et al., 1948; Gamow, 1948): the abundance 

of these nuclei (especially deuterium) constrains the density of baryons at nucleosynthesis. 

For example, Buries et al. (2001) quote Obh2 = 0.020 ± 0.002 to 95 per cent confidence, 

while the analysis of a QSO spectrum by O'Meara et al. (2001) gives Obh2 = 0.0205 ± 

0.0018. It has been suggested that the dark matter could be in the form of neutrinos, 
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which also interact only through gravity and the weak force. However, since these are 

relativistic at decoupling, if they comprised a large fraction of the Universe's mass then 

they would quickly stream out of overdense regions in the early Universe and would wash 

out small scale structure to an extent incompatible with observations. A recent analysis 

by Tegmark et al. (2006) gives !111 < 0.024 at 95 per cent confidence. 

The 'A' in ACDM represents Einstein's cosmological constant. This arises as a coef

ficient multiplying the metric tensor in the gravitational field equations: 

(1.4) 

adopting the same sign convention as Equation 1.1. Though the field equations are often 

written with A = 0, Equation 1.4 gives them in their most general form, and it can be 

derived from the variation of the most general form of the Einstein-Hilbert action. If 

the cosmological constant is expressed as a component of the energy-momentum tensor 

(moving the AgJ.L11 over to the right-hand side of Equation 1.4), it has an equation of state 

p = -pc2 ; in other words, while it has a positive energy density, p, it exerts a negative 

pressure, p. Its effect, then, is to accelerate the expansion of the Universe, in contrast 

to matter, which slows it down. This acceleration was detected through observations of 

supernovae by Riess et al. (1998) and Perlmutter et al. (1999) which demonstrated that 

supernovae were fainter at high redshift than would be expected for a universe without 

A. Such an exotic result requires confirmation, and for this we return once more to the 

CMB -the radiation produced when the Universe cooled sufficiently that the 'average' 

photon could no longer ionize hydrogen, allowing the proton-electron plasma to recom

bine into hydrogen atoms and making the Universe transparent -which had already 

been instrumental in confirming the general picture of a universe beginning with a hot 

Big Bang (Dicke et al., 1965; Penzias & Wilson, 1965). The Cosmic Background Explorer 

(COBE) satellite confirmed that the CMB is very accurately described by a black-body 

spectrum (Fixsen et al., 1996) and measured anisotropies in the temperature of the ra

diation over the whole sky (Smoot et al., 1992; Bennett et al., 1996). Other experiments 

measured the anisotropies at higher resolution in limited portions of the sky (de Bernardis 

et al., 2000; Hanany et al., 2000). Subsequently, a breakthrough in the reliable, high pre

cision measurement of the anisotropies arrived in the form of the Wilkinson Microwave 

Anisotropy Probe (WMAP; Jarosik et al., 2006), which has measured the temperature 

(Hinshaw et al., 2006) and polarization (Page et al., 2006) anisotropies with a view to 

providing tight constraints on cosmological parameters (Spergel et al., 2006). Note that 
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other experiments still make valuable contributions at small scales and for polarization 

measurements (Rajguru et al., 2005; Leitch et al., 2005). A review of the phenomenology 

and the cosmological implications of CMB anisotropies is given by Hu & Dodelson (2002). 

The CMB contributes to detecting dark energy mainly by constraining the geometry 

of the Universe to be close to flat; that is, the total energy density of all its components is 

close to the critical density. To show that some of this is in the form of dark energy requires 

a constraint on the amount of matter; the remainder must then be composed of something 

exotic. Physical scales are imprinted on the CMB which depend on the matter density 

(e.g., Silk, 1968; Peebles & Yu, 1970; Sunyaev & Zel'dovich, 1970; Meszaros, 1974) and the 

baryon fraction (e.g., Eisenstein & Hu, 1998). The baryon acoustic peaks are particularly 

important. They are produced because the baryons are tightly coupled to the photons 

before recombination. The pressure in the photon-baryon fluid provides a restoring force 

to the initial fluctuations, setting up oscillations in the fluid (often likened to ripples 

when a stone is thrown into a pond, though in fact they are perhaps better viewed as 

standing waves). There are ripples of all wavelengths, and at any given time, some will 

be near the maximum of their oscillation and will have large amplitude, and others will 

be near the minimum and have small amplitude. The wavelengths with large amplitude 

at recombination are the ones contributing most power to the CMB anisotropies, the 

redshift of recombination being determined accurately by the CMB temperature. For a 

first estimate of these wavelengths, note that the longest wavelength mode to be at its 

maximum amplitude at recombination is the one that has completed half an oscillation by 

recombination. In other words, it has wavenumber k where ks = 1r and s is the distance 

sound can travel before recombination: the sound horizon. Ignoring the dynamical effects 

of gravity and the inertia of the baryons, then because radiation has equation of state 

p = lpc2 the sound speed in the fluid is c8 = JPlP = cj'l/3. Therefore the sound horizon 

is 1/'1/3 times the particle horizon, where the particle horizon, ry0 , the maximum distance 

a light ray can travel since the Big Bang, is given at t = t0 by 

rio dr ro dt 
lo }1- kr2 = c lo a(t) 

(1.5) 

which is obtained by setting ds2 = 0 in Equation 1.1 and considering a radial photon. 

The scale of the acoustic peaks is given by the harmonic series ks = n1r. Increasing the 

baryon fraction moves the peaks to a smaller scale by reducing the sound speed through 

inertia. 

We cannot measure a physical scale, however: only an angular diameter scale on the 
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sky (information on the matter density is encoded in the relative heights of peaks in the 

CMB power spectrum, but this is a weaker signal). Hinshaw et al. (2006) measure the first 

acoustic peak in WMAP at f = 220.7~8:~, where f is the multipole moment (the degree of 

the corresponding term in a spherical harmonic expansion) and is related to angular scale 

() by f rv 1/ (). The precise measurement of this angular scale allows the tight constraint 

on the overall curvature of the Universe: in a more open universe the peak appears at 

a smaller angular scale, while in a more closed universe the peak appears at a larger 

angular scale. The relationship between physical scale and angular diameter depends on 

the expansion history of the Universe and therefore on the matter density. Measuring 

the matter density rather than just the curvature therefore requires low-redshift data to 

break this degeneracy, and so the first detection of dark energy from the CMB came from 

combining CMB data with galaxy clustering data from the 2dFGRS (Peacock et al. 2001; 

Percival et al. 2001; Efstathiou et al. 2002; for the final power spectrum measurement, 

see Cole et al. 2005). A prior on the Hubble parameter as provided by the Hubble Space 

Telescope (HST) Key Project (Freedman et al., 2001) also helps to break the degeneracy. 

Naturally, the SDSS power spectrum (Tegmark et al., 2004) can also be used for these 

measurements, and provides similar results. 

If we express the equation of state of the dark energy as p = wpc2 then w = -1 

for the Einstein cosmological constant. Arguably, we could have w > -1, and possibly 

a w not constant with time, without drastically changing the overall ACDM picture. 

Spergel et al. (2006) quote w = -1.062~8:6~g from combining their WMAP data with the 

2dFGRS and SDSS power spectra, and with supernova measurements. If w f:. -1 there is 

no particular reason why it should be constant with time, as it cannot then be Einstein's 

cosmological constant (see Peebles & Ratra 2003 for a review of dark energy physics). 

Current measurements cannot tightly constrain the possible time evolution of w, though 

many efforts are under way. Given a standard ruler the physical length of which is known 

or can be inferred at some other time, such as the 'baryon wiggles' which are the relics 

in the galaxy population of the acoustic peaks and occur at rv 100 h-1 Mpc, geometrical 

tests measure the evolution of its apparent length, or the difference between looking along 

and across the line of sight: the Alcock-Paczynski (1979) test. The baryon wiggles are 

discussed (and measured) by, for example, Cole et al. (2005), Eisenstein et al. (2005) and 

Tegmark et al. (2006). When dark energy begins to dominate the energy density it also 

slows down the rate of structure formation, leading to a variety of more complex tests 

involving cluster abundances (e.g., Jassal et al., 2005), weak lensing (Refregier, 2003), the 
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integrated Sachs-Wolfe (1967) effect, and so on. 

The final piece of this general description of the model is the initial conditions. We 

have alluded to these several times above, since consideration and measurement of the 

'background' cosmology, and of the perturbations to it, are closely linked. The standard 

picture is that the perturbations were seeded by quantum fluctuations during a period 

when the Universe underwent exponential inflation (Guth, 1981; Linde, 1982). Inflation 

was proposed to solve the 'flatness problem' (the density of the Universe is quite close to 

the critical density, and if it is not precisely this density it must have been even closer to 

it in the early Universe) and the 'horizon problem' (the temperature of the Universe is 

rather homogeneous; portions of it that could never have been in causal contact without a 

period of inflation have very similar temperatures). It also gives licence to theories which 

predict exotic topological defects (such as monopoles) in the early Universe by dispersing 

them rather widely and giving them an unobservably low space density at the present. 

If we express the density contrast, <5 ( x) = (p( x) - p) / p in terms of its Fourier com

ponents b'k, then the power spectrum P(k) = l<5kl 2 gives the amount of power in density 

fluctuations of different wavelength. Inflation predicts a primordial spectrum of scalar 

fluctuations approximately given by P(k) <X kn- 'scale-free' initial conditions. In addi

tion, it predicts that n should be close to unity: the Harrison-Zel'dovich or scale-invariant 

spectrum (Harrison, 1970; Peebles & Yu, 1970; Zel'dovich, 1972), so called because the 

dimensionless power spectrum of potential perturbations is independent of k. o(x) is a 

Gaussian random field with random phases and with mode amplitudes given by the above 

spectrum, so that P(k) gives a complete statistical description of the density fluctuations. 

These more detailed predictions of inflationary models have also been upheld by CMB 

observations. For example, by combining the WMAP data with clustering data from the 

SDSS Luminous Red Galaxy (LRG) survey, Tegmark et al. (2006) find n = 0.953 ± 0.016 

for a flat, power-law ACDM cosmology; WMAP on its own actually gives similarly tight 

constraints. The constraints change if n is not assumed to be a constant (giving a 'run

ning' spectral index) and become less tight. Clustering measurements on smaller scales 

than the CMB, such as the galaxy power spectrum and the Lyman alpha forest power 

spectrum (Croft et al., 1998; Seljak et al., 2006), then become more important. These 

measurements do not as yet require a running spectral index. In their joint analysis of 

WMAP, the SDSS power spectrum, supernova data and the Lyo: forest power spectrum, 

Seljak et al. (2006) find o: = -0.015 ± 0.012 (1a errors) where o: = dn/d ln k. In the Lyo: 

forest technique, very small-scale fluctuations are measured by studying absorption fea-
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tures caused by intervening clumps of neutral hydrogen in the spectra of distant quasars. 

Some inflationary models also predict tensor fluctuations, which are as yet unobserved 

(Tegmark et al. 2006 only place a 95 per cent upper limit of 0.33 on the ratio of the power 

in tensor modes to that in scalar modes at k = 0.002 Mpc-1 
), but may be detectable 

in future CMB polarization measurements or by gravitational wave detectors. Usually 

it is assumed that density fluctuations affect all the matter and radiation components 

of the Universe equally: adiabatic perturbations. There is no evidence that there are 

perturbations which affect the relative densities of different components, keeping the 

overall density constant - isocurvature perturbations - though they are not completely 

ruled out. For example, Seljak et al. (2006) quote 1a limits on the ratio of the amplitude 

of correlated isocurvature modes to adiabatic modes in the baryons and dark matter 

respectively as Aiso,bar = -0.06 ± 0.18 and Aiso,CDM = -0.007~8:8~~· 

The primordial perturbations do not remain untouched for long. They grow via grav

ity, in a manner well described by linear perturbation theory until well after the CMB 

is generated. Fluctuations at different scales grow at different rates; for example, the 

growth of matter perturbations at scales smaller than the horizon is suppressed before 

matter-radiation equality (Meszaros, 1974), making the horizon size at this epoch a char

acteristic scale imprinted on the power spectrum by the physics of the early Universe. 

Baryons, amongst their other effects (Peacock & Dodds, 1994; Sugiyama, 1995), impart 

a series of acoustic peaks at a scale depending on the time at which protons and elec

trons recombine into atoms, as described above. The overall effect is that by the time 

the CMB is generated, the power spectrum of density fluctuations has been processed to 

give a spectrum P(k) = AkniT(k)j2 where T(k) is the CDM transfer function and A is a 

constant. Fully modelling this transfer function involves a great deal of physics (Seljak & 

Zaldarriaga, 1996, and references therein), and various functional forms have been pro

posed to fit T(k) (e.g., Bardeen et al., 1986; Bond & Efstathiou, 1987; Eisenstein & Hu, 

1999). The normalization, A, is usually fixed by matching the amplitude of fluctuations 

in spheres of radius 8 h- 1 Mpc extrapolated by linear theory to z = 0, a8 . We merely note 

that given a CDM model with a specified primordial power spectrum and composition, 

there are well-defined methods of evolving the perturbations in the linear regime, through 

matter-radiation equality and through recombination. It is the subsequent processes after 

this epoch has been reached which will concern us for the remainder of this thesis. 

Once we reach this stage, because we assume that the matter density is dominated 

by the cold, collisionless CDM particles, the formation of structure is also dominated by 
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these particles. Conveniently, we therefore need consider only gravitational physics when 

modelling the matter distribution in CDM. Gravity continues to amplify the perturba

tions, and eventually the clustering becomes nonlinear on small scales. The dark matter 

collapses into relatively dense, virialized clumps: dark matter haloes. It is only within 

the dense environment of a halo that we expect gas to be able to cool and form galaxies. 

It then seems as though the problem of understanding the properties and clustering of 

galaxies can be split naturally into two parts in ACDM: understanding the distribution 

of the dark matter haloes themselves, and understanding the processes involving the dark 

matter and the baryonic components inside the haloes. This is clearly simplified if the 

two parts of the problem can be considered independently, and this is precisely what is 

done in the so-called halo model of (dark matter or galaxy) clustering (Benson et al., 

2000; Seljak, 2000; Berlind & Weinberg, 2002; Cooray & Sheth, 2002; Smith et al., 2003). 

We elaborate on this model in Section 1.2.3. 

Many tools, both theoretical and computational, have been developed to study the 

growth of structure and the formation of galaxies in CDM universes. In the next section 

we outline the key techniques we use in this thesis. 

1.2 Modelling techniques 

1.2.1 Dark matter simulations 

As should be clear from the previous section, much of the dark matter structure we wish to 

study is nonlinear. Detailed analysis therefore requires the use of simulations, for example 

as in the pioneering work of Davis et al. (1985). For a review see, e.g., Bertschinger (1998) 

and references therein. 

To calculate the evolution of the dark matter distribution we must solve the collision

less Boltzmann equation for the phase space density f(r, u, t) of dark matter, 

df of 
dt = [)t + u.'Vrf + F.'Vuf = 0 (1.6) 

where F = - 'V riP is determined from the Poisson equation for Newtonian gravity (suffi

cient here), 

v;~P = 47rG(p- Po) (1.7) 

where p can be expressed in terms of the phase space density as 

p(r, t) = j f(r, u, t)du (1.8) 
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Po is the mean density and <I> is the peculiar potential. F is then the extra, Newtonian 

force felt by particles due to fluctuations in the potential. Note that otherwise attempting 

to solve Poisson's equation with a non-zero mean density added to the right-hand side 

introduces extra, unphysical forces: the evolution of the scale factor due to the mean, 

background density is treated relativistically and separated out (see, e.g., Peebles, 1980). 

These are physical equations given in terms of physical distances r and velocities u = r; 
a cosmological code needs to be able to translate to comoving distances, x = r /a, and 

peculiar velocities v = r- Hr =ax. 

The equations must be discretized to be solved on a computer. One possibility is to 

discretize space, solving the equations on a mesh. For dark matter simulations, however, 

it has been found much more effective to discretize mass, sampling the dark matter distri

bution with particles: the N-body method. Some of the attractive numerical properties 

of the method are described by Springe! (2005). That paper describes the code, GADGET2 

(see also Springel et al., 2001b), used to run all theN-body simulations employed in this 

thesis, and gives a fuller description than possible here of the development of simulation 

codes. For our large-scale structure studies, the most salient advantage is the great dy

namic range afforded by theN-body method. We wish to analyse cosmological volumes, 

and yet resolve the formation history of individual galaxies. Modern N-body algorithms 

running on current computer hardware are up to this task. We note that these meth

ods may also be used to simulate gas and the gas physics involved in star formation (the 

smoothed particle hydrodynamics (SPH) technique), though mesh codes are also far more 

competitive in this area and have some distinct (and often complementary) advantages, 

such as the ability to properly resolve shocks (see, e.g., Norman & Bryan, 1999). Results 

from direct simulations of galaxy formation, such as those using SPH, are often compared 

and contrasted to results from the semi-analytic models we cover in the following section 

(e.g., Helly et al., 2003b). 

The problem now is to solve for the dynamics of a large number of particles, each 

of which exerts a gravitational force on every other particle. There are a few subtleties. 

Cosmological simulations are usually carried out with periodic boundary conditions; that 

is, the simulation volume is a cube, and if a particle leaves through one face of the 

cube it re-enters through the opposite face. The force on a particle from particles in other 

periodic copies of the box must therefore be accounted for. A true particle would also have 

a density distribution given by a Dirac delta function. We are not, however, simulating 

true particles. A simulation particle may represent of order 1070 dark matter particles; 
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treating it as a delta function leads to spurious scattering effects (e.g., Aarseth, 1963), 

and the code can devote many small timesteps accurately evolving the orbits of two close 

'particles' with steep potentials which are not, physically, particles (e.g., Efstathiou & 

Eastwood, 1981). TheN-body particle's density distribution is therefore represented by 

a J-function convolved with a softening kernel that has some characteristic length scale, 

limiting the effective resolution of the simulation. 

Given the density distribution, J(x) of a particle (labelled J by analogy with the 

Dirac delta function, not to be confused with the overdensity field), we can then define 

an interaction potential for a simulation box with sides of length L as the solution of 

(1.9) 

where we sum over all integer triples n = (n1, n 2 , n3). The peculiar potential given by 

Equation 1. 7 can be recovered at any point via a sum over particles, as 

(1.10) 

The formidable nature of the calculation can be seen by defining canonical momenta 

Pi = a2miXi and writing down the Hamiltonian H(p1, ... , Pn, x1, ... , Xn, t) of the system: 

H = ~ Pl + ~ ~ mimj<p(xi- Xj) 
~ 2mia(t) 2 2 ~ a(t) 

~ ~J 

(1.11) 

(the previous three equations being equations 2, 3 and 1 respectively of Springel 2005). 

This involves a double sum over all particles - every particle in the box feels a force 

from every other particle in each periodic copy of the whole box - so a straightforward 

method of computing the dynamics seems to scale as N 2 • Indeed, this is the case in some 

codes designed to calculate stellar dynamics to high accuracy (Makino et al., 2003). 

For a cosmological code, we can sacrifice a small amount of accuracy in return for 

speed. It is more important for us to know, say, the position and mass profile of a halo 

than to know the orbits of all the particles within it to exquisite precision. The Poisson 

equation can be solved using efficient Fourier methods on a mesh, for example, with 

particles being assigned to mesh cells, and the time for the potential calculation scaling 

as log Nm where Nm is the number of mesh cells. There are some problems with this, 

mainly that the mesh has a certain size, limiting the dynamic range. An alternative 

approach is the 'tree' code. The forces due to very nearby particles on any given particle 

are accumulated individually, affording the highest possible accuracy. Particles slightly 

further away (on different twigs on the tree, perhaps) have their contribution to the force 
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aggregated together before being added to the shorter-range forces. This saves CPU cycles 

because the potential due to the whole twig needs to be calculated only once and is reused 

for each leaf on adjacent twigs. Particles even further away are aggregated hierarchically 

into even larger groups (branches, perhaps). Because the structure is hierarchical, it can 

have sufficient layers such that the largest 'branch' incorporates the whole simulation box, 

and yet the series of branches terminates in an individual leaf (simulation particle). Since 

there is no intrinsic scale imposed (other than that already set by the particle mass) this 

method does not further limit the dynamic range of the simulation, and can be coded to 

be highly efficient. GADGET2 is primarily a tree code, though a mesh can optionally be 

used to calculate the large-scale potential. 

Many other features of the code are used to improve its speed. For example, it can be 

run on an arbitrary number of processors. To do so requires an intelligent way to distribute 

parts of the simulation between processors and to allow each CPU to communicate with 

the others where necessary. Processors are able to output to disk in parallel. Some par

ticles, for example those in more clustered regions, require smaller integration timesteps 

than others to achieve comparable accuracy in their orbits; the particles' timestep length 

can therefore be assigned adaptively. 

Naturally, a method to integrate the equations of motion of the particles is useless 

unless one can specify the initial conditions. The problem is to take a statistic such as the 

power spectrum, which describes the properties of a density distribution, and turn this 

into a distribution of particles which can be input to the N-body code. While there are 

various methods, and refinements to these methods (see, e.g., Sirko, 2005, and references 

therein) most are based on the Zel'dovich (1970) approximation, which evolves an initial 

density perturbation using Lagrangian perturbation theory. It is usually more efficient 

to push this approximation for as far as one is confident in its results before switching 

over to theN-body calculation, since it is quicker, but one must clearly start theN-body 

calculation well before the first resolved objects are expected to form. 

Associated methods 

It is important to develop appropriate tools to extract the most from the results of N

body simulations. We often work with the power spectrum of fluctuations, or its Fourier 

counterpart the correlation function ~(r) = (fJ(x)fJ(x + r)). There are standard methods 

for calculating this for a set of points, where those points may represent either dark 

matter particles or galaxies. The sheer number of N-body particles in a large simulation 
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represents an obstacle, though in fact the dark matter correlation function and power 

spectrum are calculated on the fly by GADGET2. When we calculate galaxy correlation 

functions in this work, we will always be concerned with galaxies in a volume with simple 

geometry (a periodic box) and so we use a straightforward estimator of the correlation 

function. For each bin in distance we wish to consider - with inner radius r1 and 

outer radius r 2 , say - we sum the number of galaxies lying at this distance from each 

galaxy in the sample. We then divide by the expected number of galaxies in this bin, 

47rnN(r~- r~)/3 where n is the mean number density of the sample and N is the total 

number of galaxies in the sample, to obtain 1 + ~ for the bin. This estimator does not 

necessitate the generation of random catalogues, as do more complicated estimators used 

for analysing surveys which have more complex geometry and for which the true mean 

density is unknown (see, e.g., Landy & Szalay, 1993). In practice our code is made more 

efficient by, for example, ensuring we do not count each pair of galaxies twice, and by 

subdividing the box into cells with length not much greater than the maximum distance 

at which we wish to measure ~· The latter ensures that the code only has to examine 

galaxies in the same cell or in cells adjacent to the galaxy under consideration to test 

whether the separation of the two galaxies lies in one of the radial bins being measured. 

We are often concerned with the distribution and properties of dark matter haloes. 

The definition of a halo is usually motivated by the spherical collapse model (see, e.g., 

Eke et al., 1996, for the Dm + nA = 1 case) where we expect collapsed structures to have 

overdensities compared to the cosmological background of rv 200. There are various ways 

to look for regions of this overdensity. A popular method is the friends-of-friends (FOF) 

algorithm (Davis et al., 1985) where a value for the overdensity is translated into an 

inter-particle separation for particles in regions of this density. Then, given a particle, we 

search through nearby particles to see if any are within this 'linking length', bn- 113 where 

n is the number density of particles. If we do find such particles, we link them to the first 

one and then check if they, in turn, have any sufficiently close neighours to be linked. A 

maximal set of particles which can be linked together in this way is identified as a halo 

(groups of small numbers of particles - fewer than 10, say - are rejected as possibly 

spurious). Another reasonable method is to look for particles which are candidate halo 

centres, and then find the largest sphere around them such that the enclosed mass has a 

density greater than the threshold overdensity. If this sphere encloses sufficiently many 

particles then it is identified as a halo. Cole & Lacey (1996) compare the properties of 

haloes found using these two methods, and their sensitivity to the thresholds discussed 
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above. Haloes turn out to be reasonably well defined objects (having gone nonlinear and 

broken away from the Hubble flow) and one finds similar objects using either method. 

They are in general triaxial, though, motivating treatments of collapse which do not 

assume spherical symmetry. We discuss halo formation in more detail in Section 1.3.1. 

It is also useful to study subtructures of haloes. When we use substructure information 

in our simulations, it is found with the SUBFIND algorithm of Springe! et al. (2001a). The 

general idea here is to look for saddle points in the density field, since if there are two 

local maxima then there must be a saddle point somewhere between them. The particles 

associated with a density maximum are considered to be part of a subhalo candidate 

centred on this maximum, and the algorithm ensures that each particle can be associated 

with at most one subhalo. It also checks if the particles are actually bound to the structure, 

using the velocity information associated with the particles. Only bound particles can be 

considered parts of a subhalo. The subhalo information is integral to the construction of 

the N-body merger trees described in Chapter 2. 

1.2.2 Semi-analytic modelling 

Recall that our general picture of galaxy formation in ACDM involves gas collecting 

and cooling in dark matter haloes, leading eventually to star formation (White & Rees, 

1978). This picture developed into one where it was appreciated that galaxy formation 

is a rather more dynamic process: haloes merge and constantly accrete mass, affecting 

the galaxies within them and providing further fuel for star formation (Cole, 1991; Lacey 

& Silk, 1991; White & Frenk, 1991). This in turn led to more complete models where 

the hierarchical buildup of dark matter structures was integrated with the gas physics 

taking place in each halo (Kauffmann et al., 1993; Cole et al., 1994a). The gas physics 

is described by comparatively simple analytic approximations, often assuming a degree 

of symmetry, that can be calculated relatively fast. This allows a large space of different 

parameters governing the cosmology and the gas physics to be quickly traversed; being 

able to explore galaxy formation in many cosmologies is key to the study we undertake 

in Chapter 4, where we explain the features of our semi-analytic model more thoroughly. 

The modelling of the 'merger tree' which describes the mass aggregation history of a halo 

is, meanwhile, described more fully in Section 1.3.1 (its construction from an N-body 

simulation is described in Chapter 2). We note in passing that the merger trees and the 

physics in semi-analytic models can also be run to extremely high mass resolution; a great 

advantage compared to SPH simulations of galaxy formation. 
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The flexibility of having parametrized physics in which the parameters can be altered 

to match the results of simulations or observational constraints, or to see the effects of 

a certain piece of physics on the galaxy properties from the model, could be regarded 

as a strength of the semi-analytic approach. It is only fair to say that it can instead be 

viewed as a weakness; a model gives no unique prediction of the properties of the galaxy 

population, and sometimes very different pieces of physics can be used to achieve the same 

ends with a suitable choice of parameters. For this work, we are in fact more interested in 

whether we can reproduce the observed properties of the galaxy population - whether 

the model output looks realistic - than whether or not every piece of physics makes a 

contribution of precisely the correct weight to the final properties. Semi-analytic models 

have become steadily more sophisticated and can match several classes of observations 

of galaxies (Kauffmann et al., 1999; Somerville & Primack, 1999; Cole et al., 2000). We, 

naturally, focus on the Durham semi-analytic model, GALFORM (Cole et al., 2000), en

hanced in Chapter 4 by the addition of physics described by Benson et al. (2003) (and a 

model designed to fit high redshift data by Baugh et al. 2005) and in Chapter 3 by the 

improvements described by Bower et al. (2006). 

1.2.3 Halo models 

We remark above that in modelling galaxy formation and galaxy clustering, it has been 

found helpful to separate the problem into two parts: modelling the distribution and 

properties of haloes, and modelling the processes that take place within haloes. This split 

may be quite well defined because haloes themselves are quite well defined objects, their 

internal dynamics being quite distinct from the dynamics of the surrounding large-scale 

structure. The separation of the modelling effort is known as the halo model (Benson 

et al. 2000; Seljak 2000; Berlind & Weinberg 2002; for a comprehensive review see Cooray 

& Sheth 2002). Semi-analytic galaxy formation may be considered to be a method rooted 

in the halo model: each halo is considered case-by-case, only being influenced by other 

haloes if they happen to merge onto it. With the galaxy population of each halo given, 

knowing the halo mass function (the space density of haloes as a function of mass) gives 

us quantities such as the galaxy luminosity function. If we know the distribution of 

haloes, for example from N-body simulations or from theory, we therefore know, up to 

uncertainties about where galaxies are placed within haloes, the way galaxies cluster. 

The halo model is not applicable only to galaxies; Smith et al. (2003) develop a highly 

accurate model of dark matter clustering by applying halo model principles. We, though, 
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do concentrate mainly on galaxies. The connection between haloes and galaxies is made 

a little more formal in the halo occupation distribution, described below. 

The halo occupation distribution 

As we remark above, the most basic prediction of a semi-analytic model is how many 

galaxies of a given type reside in a given dark matter halo. We may attempt to simplify 

this: the prediction is how many galaxies of a given type reside in a dark matter halo of 

given mass. This assumes the halo mass is the only factor which determines the probability 

distribution for the number of galaxies in the halo. More formally, for any given subset 

of galaxies (typically, for all galaxies brighter than some threshold luminosity), the model 

gives us P(NIM), the probability that a halo of mass M contains N such galaxies. We 

can decompose this into two parts: 

• (N(M)), the mean number of galaxies in a halo of mass M, and 

• P(NI(N)), the probability distribution for the number of galaxies in any one halo 

given the mean number expected for that halo. 

These may each be further decomposed into a term for central galaxies and a term for 

satellite galaxies. A halo's central galaxy is treated differently from the other galaxies in 

the halo in semi-analytic models: for example, it is able to feed off the halo's reservoir 

of hot gas, which cools onto the central galaxy (satellites may, by contrast, be stripped 

of their gas as they fall into a larger halo). This special treatment is motivated by 

the fact that, for example, clusters often contain a central galaxy the luminosity of which 

dominates all the surrounding galaxies, and which appears to have formed by cannibalizing 

smaller, infalling galaxies. More recently, Skibba et al. (2006) have shown that they can 

model galaxy clustering in the SDSS better if they treat central galaxies specially. 

P(NIM) is one component of the halo occupation distribution, or HOD (Berlind & 

Weinberg, 2002; Berlind et al., 2003). The other component specifies how the galaxies 

are distributed (in relation to the dark matter) within a halo. Berlind & Weinberg (2002) 

parametrize this as a shift in the logarithmic slope of the density profile of galaxies 

compared to the dark matter, and a scaling of the velocity dispersion of the satellite 

galaxies compared to the dark matter (the central galaxy being assumed to lie at the 

centre of the halo with zero velocity offset). In any case, once these two components are 

specified in any given cosmology, they provide a complete description of the clustering of 

galaxies, subject to the restriction alluded to above: we assume that knowing the mass 
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of a halo is enough to completely specify the probability distribution for the number 

and location of its galaxies. If this assumption is incorrect, it throws the validity of this 

formalism (or of any straightforward analytic implementation of the halo model) into 

doubt. The question of whether or not this assumption is accurate, and what steps can 

be taken to rectify our models if it is not, occupies our attention for the bulk of Chapters 2 

and 3. 

A fuller discussion of how galaxy clustering statistics are related to these halo occu

pation numbers and may be derived from them is given by, for example, Zheng (2004) or 

Tinker et al. (2005). The correlation function is decomposed into two terms, one coming 

from pairs of galaxies in the same halo (the one-halo term) and the other coming from 

pairs of galaxies in different haloes (the two-halo term). While the two-halo term scales 

as the number of galaxies per halo, then, and is more important at large separations, the 

one-halo term scales as the number of galaxy pairs per halo and is more important at 

small separations. 

The HOD approach has been used to study the abundance of substructures in dis

sipationless simulations (Kravtsov et al., 2004). It has been used to try to improve the 

constraints that galaxy clustering statistics provide on cosmological parameters by Abaza

jian et al. (2005), who simultaneously obtain an observational constraint on the HOD that 

may provide an interesting test for galaxy formation models. Zheng et al. (2005) explore 

some more sophisticated parametrizations of the HOD, focusing on the split between cen

tral and satellite galaxies. A consistent outcome of this work seems to be that well-fitting 

HODs have the following features: 

• (Ncen(M)), the mean number of central galaxies in a halo of mass M, is close to being 

a step function going from 0 to 1 at some mass Mmin (note that 0::; (Ncen(M)) ::; 1 

by construction). 

• P(Nceni(Ncen)), follows a 'nearest integer' distribution: if 0 < (Ncen(M)) < 1 then 

P(Ncen = 1) = (Ncen) and P(Ncen = 0) = 1- (Ncen)· 

• (Nsat(M)) is close to a power-law, with high mass slope close to 1, and possibly 

with a cutoff (sharp or smooth) near Mmin· 

• P(Nsati(Nsat)) is close to a Poisson distribution with mean (Nsat)· 

This is also borne out by our semi-analytic results, as we shall see. 
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1.3 Halo formation and environment 

1.3.1 Press-Schechter theory and its extensions 

Consider an overdense region in the initial density field. Assuming it is uniform and 

spherical, it can be treated as a mini-universe subject to the Friedmann equation in its 

own right. If it is above the critical density it can, therefore, recollapse. The time at 

which it starts to recollapse (or, on the other hand, the density threshold above which 

a perturbation must lie to have collapsed by the present day), and other aspects of the 

evolution of the perturbation, have been given by, for example, Weinberg (1972) and 

Gunn & Gott (1972). Spherical accretion may also add to its mass. The perturbation 

does not collapse to a point; it undergoes violent relaxation (Lynden-Bell, 1967), reaching 

an equilibrium with potential energy twice the kinetic energy. Press & Schechter (1974) 

incorporated these results into a model of halo formation by 'self-similar condensation'. 

In this picture, small objects form by spherical collapse, then combine and grow into 

larger objects, their numbers being replenished by the growth of still smaller objects. 

Their model allowed them to predict a halo mass function that has been confirmed by 

simulations to be reasonably accurate for a fair range in halo mass. It was not without 

problems, however. Half the mass in bound objects was accounted for by noting that half 

the Universe's mass starts out in underdense regions and that this mass can accrete onto 

haloes. Some consider this has an element of 'fudge'. It also fails to deal satisfactorily 

with the cloud-in-cloud problem (Bardeen et al., 1986); that is, the problem of whether 

to assign a particle to an object corresponding to a small region of high overdensity, or 

to an object corresponding to a larger region of lower density encompassing the first. 

Bower (1991) extended this theory by deriving conditional multiplicity functions; that 

is, the mass function of the progenitors of a halo of given mass at some earlier epoch. 

Bond et al. (1991, hereafter BCEK) developed the rather elegant excursion set formalism 

for the growth of structures, solving the cloud-in-cloud problem and also allowing the 

calculation of conditional mass functions and halo merger rates (Lacey & Cole, 1993). In 

the excursion set model, we consider the density at each point in a smoothed density field 

as the smoothing scale is changed (in fact, we consider the initial density field extrapolated 

to the present by linear theory). The smoothing scale is normally expressed in terms of 

the mass enclosed in the smoothing window for a region at the mean density. That is, at 

each point we have a function c5(M) describing how the overdensity changes as a function 

of mass scale. Often, the variance in the density of the enclosed region (denoted A by 
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BCEK) is used as an alternative mass variable. This is possible because as we consider 

larger and larger regions of the Universe, the density variance between different such 

regions will grow smaller and smaller, approaching zero for very large regions (since the 

Universe is homogeneous on large scales). 

BCEK showed that o(A) for any given point in the density field takes the form of a 

Brownian random walk (starting at zero for A= 0), so long as the filter with which the 

density field is smoothed is a spherical top hat in k-space. In other words, the change 

in smoothed density as we step from o(A) to o(A +~A) is independent of any previous 

steps and of the current value of o(A) - a Markov process. This is convenient because 

Chandrasekhar (1943) derived the rate at which these Brownian trajectories first cross 

above a given threshold value, De. 

Consider a point in the density field at z = 0. The spherical collapse model tells us 

that if it lies in a region with overdensity greater than some threshold - or, rather, a 

region that would have an overdensity greater than this threshold if the density field grew 

by linear theory up to z = 0- then it in fact lies in a region that has turned around and 

collapsed into a nonlinear object (a halo) by the present day. This threshold is given by 

Oc = 1.686 for an Om = 1 universe, for example. In the excursion set model, the value of 

A for which the Brownian random walk makes its first upcrossing of this threshold tells 

us the mass of the halo (if any) in which a particle starting at this point lies at z = 0. 

The same procedure works at higher redshift, but of course the density threshold is 

correspondingly higher, given by 8c(z = 0)/D(z) (denser regions collapse earlier). The 

Press-Schechter mass function takes on a universal form when expressed in terms of Oc(z) 

and a 2 (M, z), the variance of the linear density field at mass scale M extrapolated to the 

redshift z at which the haloes are identified. We first define a function f(a, z) by 

f(a, z) = M dn(M, z) 
Po dlna-l 

(1.12) 

where n(M, z) is the number density of haloes with mass less than M at redshift z and 

po(z) is the mean density of the Universe. Then we have 

) ~oc ( o;) f(a = --exp --
7r a 2a2 (1.13) 

The mass function therefore takes the form of the Schechter (1976) function popularly 

used to model the galaxy luminosity function and has the property that all the mass in 

the Universe is in bound objects of some mass, both of which facts may account for the 

acceptance of the original fudged argument of Press & Schechter (1974). 
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The power of the excursion set model is seen by the fact that once a point's trajectory 

8(A) upcrosses a threshold, it continues its Brownian random walk; the fact it is starting 

from a new, higher position makes no difference. Therefore the same machinery can be 

used to find the probability that it later upcrosses a higher threshold: we can find the 

probability that a point in a halo of mass M1 at redshift z1 lies in a halo of mass M2 < M1 

at redshift z2 > z1 . That is, the calculation of conditional mass functions and halo merger 

rates is dealt with quite naturally by this formalism. The Monte Carlo merger trees used 

in the GALFORM models in Chapter 4 are constructed by a method based on this formalism 

(in fact, on extensions to it by Lacey & Cole 1993 who also focus on the distribution of 

halo formation times). This method is explained by Cole et al. (2000); see, e.g., Sheth & 

Lemson (1999) or Somerville & Kolatt (1999) for alternative approaches. 

We see the flexibility of this approach by noting it has been used to model sheets and 

filaments (Shen et al., 2006), and even voids (Sheth & van de Weygaert, 2004; Furlanetto 

& Piran, 2006). It can be used to study how the mass function changes with local density 

(e.g., Sheth & Tormen, 2002, and references therein). There have been attempts to extend 

it to non-Markov processes, i.e. to more general smoothing filters (Amosov & Schuecker, 

2004) and, perhaps most successfully, to apply the technique to more general models of 

collapse than the usual spherical model. Sheth et al. (2001) employ the ellipsoidal collapse 

model and derive halo mass functions which agree much better than the Press-Schechter 

mass function with those derived from N-body simulations (e.g., Jenkins et al., 2001). 

Both Sheth et al. (2001) and Jenkins et al. (2001) still express their mass functions in 

a universal form, modifying f(a) but retaining its definition through Equation 1.12. In 

ellipsoidal collapse, however, the overdensity threshold for collapse is a function of mass

the so-called 'moving barrier'- complicating the analysis so that there is not at present 

a satisfactory method of deriving merger trees in the ellipsoidal collapse model, despite 

further theoretical work on moving barriers in excursion set theory (Del Popolo, 2006; 

Zhang & Hui, 2006). 

The approach is not without some niggling problems. For example, Benson et al. 

(2005) point out the algorithm for generating merger trees is not entirely consistent 

(though this is not necessarily a problem with the underlying extended Press-Schechter 

theory): if we ask the merger rate between haloes of two different masses, the answer de

pends upon whether we consider the smaller halo to have merged onto the larger one, or 

vice versa. In a self-consistent model, applying the merger algorithm to haloes satisfying 

the Press-Schechter mass function at redshift z should result in a halo population still 
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satisfying the appropriate Press-Schechter mass function at redshift z + b.z, and this is 

not the case, though Benson et al. (2005) have shown how to achieve this by inverting the 

Smoluchowski (1916) coagulation equation for power-law power spectra. In this thesis, 

we also show that some of the predictions of the formalism itself appear not to be correct 

when tested against N-body simulations. One area where it falls down is in its treatment 

of the environmental dependence of halo properties, which we introduce below. 

1.3.2 Environmental dependence 

Recall that in our semi-analytic models, the evolution of galaxies in haloes is driven by 

the merger histories of those haloes. We expect to be able to treat haloes independently 

of the large-scale structure if their merger histories are independent of the large scale 

environment, as assumed by HOD models. This assumption is supported by extended 

Press-Schechter theory: it predicts that the distribution of halo formation times is a func

tion of halo mass but not of halo environment. Our Monte Carlo merger trees therefore 

also have this property by construction. To reach this conclusion in Press-Schechter the

ory, however, three simplifying assumptions are made, which if relaxed may result in an 

environmental dependence. Firstly, only the sharp k-space filter allows the trajectories 

o(M) in overdensity versus mass scale to be Brownian random walks. For more natural 

top hat or Gaussian filters the trajectories exhibit correlations between different mass 

scales, which induce correlations between environment and small-scale behaviour. Sec

ondly, the theory deals only with individual mass points in the density field. When it 

predicts that a mass point is part of a halo of mass M there is no constraint that the whole 

of a neighbouring volume of mass M is also assigned to the same halo. The accuracy to 

which this assumption holds may depend on environment. Thirdly, in determining when a 

region collapses to form a halo, a global collapse threshold given by the spherical collapse 

model is assumed. If tidal fields modify this threshold, as argued by Sheth et al. (2001) 

in their ellipsoidal collapse model mentioned above, then these fields could also depend 

on environment. 

Thus there is no compelling reason to believe that the lack of environmental depen

dence predicted by the Press-Schechter theory should carry over to a full treatment which 

relaxes these assumptions. It has been supported by N-body calculations, however, e.g. 

by Lemson & Kauffmann (1999) who used the GIF simulations (Jenkins et al., 1998; 

Kauffmann et al., 1999). Provided such simulations have sufficiently many outputs at 

different times, merger trees can be extracted and their environmental dependence stud-
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ied. This approach has been limited by the dynamic range of the simulations. Either 

galaxy-sized haloes have not been well resolved, leaving their merger histories uncertain, 

or the volume has not been cosmologically representative. 

Galaxy properties, however, do depend on environment. Galaxies in denser regions 

tend, for example, to be more bulge-dominated and to have older stellar populations 

(e.g., Dressler, 1980; Postman & Geller, 1984; Gomez et al., 2003; Balogh et al., 2004). In 

models in which the merger histories of haloes are only a function of halo mass, and in the 

absence of non-local gas processes (e.g. ionization by QSOs), this can only be accounted 

for by the variation of the halo mass function with environment, or, in other words, by 

the fact that high mass haloes are more clustered than low mass haloes (Kaiser, 1984; 

Cole & Kaiser, 1989; Mo & White, 1996; Mo et al., 1999; Sheth & Lemson, 1999; Abbas & 

Sheth, 2005). Models which attempt to reproduce environmental dependence can then do 

so only by populating more massive haloes with a greater fraction of 'early-type' galaxies. 

This method has been recently supported by the observational results of Blanton et al. 

(2006). 

None the less, Sheth & Tormen (2004b) argue that one of the results of Lemson & 

Kauffmann (1999) suggests, rather indirectly, an environmental dependence of halo for

mation times and, therefore of halo merger trees. We revisit this argument in Section 2.3, 

noting that it also predicts the sign of the dependence, and predicts it correctly in the 

light of our results. The range of assumptions required for analytic theory to predict en

vironmental independence also suggests that detection of some signal should be possible. 

To make progress on this matter using N-body simulations seems, then, to require one 

of two things. Firstly, we may try to pin down the environmental dependence of halo 

formation times suggested by the above results by using more sensitive tests. Sheth & 

Tormen (2004b) claimed to have found such a test- the marked correlation function

and found a signal of environmental dependence despite using the same GIF simulations 

as Lemson & Kauffmann (1999). Marked statistics (Peebles, 1980; Boerner et al., 1989; 

Stoyan & Stoyan, 1994) have recently proved useful in the analysis of both simulations 

(Faltenbacher et al., 2002; Gottlober et al., 2002; Sheth et al., 2005) and surveys (Beisbart 

& Kerscher, 2000; Szapudi et al., 2000; Skibba et al., 2006), offering both sensitivity and 

information complementary to that provided by other statistics. A more general discus

sion of marked statistics and their interpretation is given by Sheth (2005). Secondly, we 

may use larger simulations, so that even a subset of the haloes spanning a small range 

in mass provides adequate statistical power to see significant evidence of environmental 
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dependence, if this dependence exists and is sufficiently large to be interesting. Higher 

resolution would also allow us to study haloes which host only a single bright galaxy, 

so that we may hope for a more direct link between the halo properties and the galaxy 

properties than one would expect when studying more massive haloes. An environmen

tal dependence of the merger histories of galaxy-sized haloes may provide a more direct 

explanation for the variation in galaxy properties with environment, and would suggest 

that the systematic change in the halo mass function with environment is not the only 

driving force behind the systematic change in galaxy properties with environment. 

In Chapter 2 we attempt to combine both the above techniques. That is, we calculate 

the marked correlation function as suggested by Sheth & Tormen (2004b), and later go 

on to discuss some other statistics closely related to the marked correlation function. We 

apply these calculations to the "Millennium Simulation" (Springe! et al., 2005), which 

resolves the merger histories of haloes small enough that we expect them to host a single 

galaxy of luminosity 0.1£* (where L* is the characteristic luminosity corresponding to the 

break in the galaxy luminosity function), but that probes a cosmologically representative 

volume. This is the simulation used by Gao et al. (2005) to study the age-dependence 

of halo clustering, using an approach which is complementary to that taken here. Other 

simulations have recently been used to study the environmental dependence of halo prop

erties by, e.g., Avila-Reese et al. (2005); Maulbetsch et al. (2006) and Reed et al. (2006). 

The latter paper, in particular, complements our results by aggregating together galaxy

sized haloes and galaxy-sized subhaloes, and considering the environmental dependence of 

their formation times (or, rather, the age-dependence of their clustering), which perhaps 

correspond more closely to galaxy properties. 

It is clearly of interest to know how these environmentally dependent halo properties 

translate into galaxy properties, and therefore how they affect galaxy clustering statis

tics. Croton et al. (2006a) approach the problem in a similar way to us, studying how 

'halo assembly bias' affects the clustering of their semi-analytic galaxies, using the semi

analytic model of Croton et al. (2006b). Cooray (2006) suggests that an approach to 

clustering based on a generalization of the conditional luminosity function (the space 

density of galaxies as a function of halo mass and luminosity; see Yang et al. 2003) to 

other conditional functions deals with these issues more flexibly and could be used to 

construct an analytic model of galaxy clustering given this age dependence. Meanwhile, 

Yang et al. (2006) have tried to find observational evidence of an age dependence of halo 

bias by studying the star formation rate of galaxies in groups of a given, measured mass 
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in the 2dFGRS. This is perhaps related to the discovery by Weinmann et al. (2006) of 

'galactic conformity' in the SDSS: the type of satellite galaxies found in a halo of given 

mass depends on the type of central galaxy found in the halo. Tinker et al. (2006a) pay 

particular attention to modelling the void probability function (VPF) of SDSS galaxies, 

using a modified HOD formalism incorporating environmental dependence. Since we are 

particularly interested in constraining cosmology using catalogues generated by a com

bination of N-body simulations and semi-analytic models, we aim in Chapter 3 to test 

directly the effect of assembly bias in our models. Our shuffling procedure is different to 

that used by Croton et al. (2006a) and we use the semi-analytic model of Bower et al. 

(2006). Given that we will later use simulations in which we must run the semi-analytics 

using Monte Carlo trees, we focus on what sort of corrections may need to be applied to 

the HODs from the Monte Carlo approach (or, perhaps, what sort of corrections could be 

made directly to the clustering results) for them to reproduce the results given by trees 

which automatically incorporate environmental effects. Following Tinker et al. (2006a), 

we also consider whether the VPF provides any additional information or can be mod

elled better using an environmentally dependent HOD. It seems plausible that the VPF 

could provide interesting and unique constraints, not least because a remarkable result 

due to White (1979) expresses the VPF in terms of N-point correlation functions, with 

N running from 1 to infinity. 

1.4 Constraining cosmological parameters 

We have already discussed some of the observations which have been used to establish the 

ACDM model. Often, these same observations can be used to constrain the parameters of 

the model, sometimes to high precision. A rather comprehensive list of the parameters we 

might wish to measure is given by, for example, Tegmark et al. (2006). To test whether 

or not a model with given parameters is a good fit to the data, we need to be able to 

generate synthetic datasets, or, in other words, to generate robust theoretical predictions. 

For a given ACDM cosmology, we can predict very accurately the clustering statistics 

of the dark matter, since these are well modelled by N-body simulations, or, for that 

matter, by analytic models calibrated to simulations (Smith et al., 2003). We do not 

usually observe the clustering of dark matter directly, though weak lensing shear-shear 

correlations can provide (at present noisy) estimates. Redshift surveys may furnish us 

with galaxy clustering statistics, while weak lensing measurements, for example, normally 
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probe the cross-correlation between galaxies and dark matter. 

As we mention above, galaxy clustering statistics derive a great deal of their power to 

constrain cosmological parameters by constraining the scale at which the power spectrum 

'turns over' on large scales, which complements the high-redshift CMB constraint on this 

scale rather well. The baryonic features in the correlation function or power spectrum add 

to the effectiveness of the constraint (Cole et al., 2005; Eisenstein et al., 2005). The scales 

used in these joint constraints tend to be large scales, where the evolution of clustering is 

still in the linear regime or where deviations from linearity can be more readily modelled. 

Moreover, in this regime the galaxy correlation function is expected, in the absence of 

non-local effects, to have the same shape as the mass correlation function, though offset 

by a constant factor (see, e.g., Coles, 1993). That is, we may define a bias factor, b, 

linking the galaxy and mass autocorrelation functions, 

(1.14) 

This bias factor depends on the galaxy population under consideration; it depends, for 

example, on the threshold luminosity of the sample. Because of this uncertainty, when 

the galaxy correlation function is used to constrain cosmology, information on its overall 

normalization is not normally used, and the constraints come entirely from its shape. 

In Chapter 4 we generate synthetic galaxy clustering statistics by painting galaxies 

from a semi-analytic model onto dark matter distributions given by N-body simulations. 

We can see the possibility for two benefits. Firstly, because we attempt to generate 

realistic catalogues with full galaxy properties, we can make a prediction for the bias factor 

of a given galaxy sample and hence use the overall normalization of the correlation function 

in our cosmological constraints. In particular, we maybe able to constrain as, the overall 

normalization factor for the dark matter power spectrum, which is not possible for normal 

techniques employing galaxy clustering. Secondly, because we populate the simulation on 

a halo-by-halo basis rather than just assuming that galaxies approximately trace mass on 

large scales, we generate a theoretical prediction for the small-scale, nonlinear clustering. 

We can therefore attempt to use this information in our cosmological constraints too. 

Our constraints are largely independent from CMB constraints, and involve different 

assumptions (though in general we consider only flat models, which one could consider is 

implicitly using CMB results). Because dark energy has an effect on structure formation, 

and different forms of dark energy might affect it in different ways at late times, it is 

useful to have an independent, low-redshift constraint on as that does not rely on a joint 
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analysis with high-redshift data (Bartelmann et al., 2006). A joint analysis would tend to 

be more model-dependent as one must be able to model what happens in the gap between 

observed snapshots of the Universe. 

1.5 Structure of this thesis 

In Chapter 2 we describe work on the environmental dependence of halo formation times. 

In Section 2.1 we describe the Millennium Simulation, and the merger trees used to 

calculate the formation times used in this work. This simulation and its data products 

are used throughout Chapters 2 and 3. We describe the marked correlation function 

in Section 2.2. We also discuss here the choice of mark used for the majority of our 

marked correlation function results. Then in Section 2.3 we go on to describe our results, 

including tests to justify our choice of mark. These motivate the definition of a marked 

cross-correlation function, which we calculate for various halo samples. We also present 

results of a test of the effect of environment on halo formation which corresponds more 

directly to earlier calculations using smaller simulations. 

We go further in Chapter 3, employing a shuffling algorithm, detailed in Section 3.1.2, 

to study the effect of these environmental dependencies on galaxy clustering statistics, 

in particular the correlation function (Section 3.2.1) and the void probability function 

(Section 3.2.2), in a semi-analytic model. These can be understood in terms of the effect 

of changes in local density on the HOD, studied in Section 3.2.3. In Section 3.2.4 we 

discuss ways to model the environmental effects and to overcome problems caused by the 

fact that halo occupation depends on environment as well as halo mass. 

Some aspects of the semi-analytic model are discussed in Section 3.1.1, but in Chap

ter 4 we go into slightly more detail, and explain the three GALFORM variants used in 

this chapter in Section 4.1.1. These are the models with which we attempt to constrain 

cosmological parameters using a combination of N-body simulations, semi-analytics, and 

the observed two-point correlation function from the SDSS, bearing in mind the results 

of the previous two chapters. Our simulations are described in Section 4.1.2. Each sim

ulation is used to represent several different cosmologies, by employing a relabelling and 

rescaling technique based in part on the work of Zheng et al. (2002). This technique is 

described in more detail in Appendix A. We also comment on the usefulness of clustering 

statistics in inverting the approach described above, i.e. taking the cosmology as known 

and considering what constraints may be applied to models of galaxy formation given our 
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knowledge of galaxy clustering. Finally, we present some conclusions in Chapter 5. 



Chapter 2 
Environmental 

dependence of halo 

formation times 

2.1 The Millennium Simulation 

For our work on the environmental dependence of halo formation times we use the Mil

lennium Simulation (Springe! et al., 2005) carried out by the Virgo Consortium using a 

modified version of the TREE-PM N-body code GADGET2 (Springe! et al., 2001b; Springe!, 

2005). The cosmology is a flat, ACDM model, with Dm = 0.25 (so nA = 0.75) and 

h = 0. 73. The initial power spectrum was calculated using CMBFAST (Seljak & Zaldar

riaga, 1996), and is such that the primordial power spectrum has power-law index n = 1, 

the rms linear mass fluctuation in spheres of radius 8 h-1 Mpc extrapolated to z = 0 

is as = 0;9, and the baryon density is nb = 0.045. This leaves a dark matter density, 

Ddm = 0.205. The simulation follows the evolution under gravity of 21603 dark matter 

particles in a periodic box with sides of comoving length 500 h-1 Mpc from z = 127 to the 

present day. Each particle has mass 8.61 x 108 h- 1 Mc:h and the gravitational force is soft

ened (see Section 1.2.1) with the SPH spline kernel of Monaghan & Lattanzio (1985) such 

that the gravitational potential at the position of an isolated particle in a non-periodic 

box is the same as that of a Plummer (1911) sphere of comoving size 5 h-1 kpc. The 

particle data were output and stored at 64 times, 60 of which are spaced regularly in the 

logarithm of the expansion factor between z = 20 and z = 0, allowing the construction 

of trees detailing how each dark matter halo at z = 0 was built up through mergers and 

accretion. 

28 
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2.1.1 Merger trees 

At each of the output times of the simulation we have a catalogue of friends-of-friends 

(FOF) groups (Davis et al., 1985) calculated using a linking length of b = 0.2 times 

the mean inter-particle separation. Locally overdense, self-bound substructures of these 

groups are found using the SUBFIND algorithm (Springe! et al., 2001a). Each friends-of

friends halo is therefore decomposed into a collection of subhaloes, plus a fuzz of unbound 

particles. Of the subhaloes, one is typically much larger than the others and contains most 

of the mass of the halo. This can be thought of as the background mass distribution of 

the halo, while the smaller subhaloes are substructures. 

Sometimes, however, the friends-of-friends algorithm links together structures which 

one might prefer to consider as separate haloes for the purpose of constructing the merger 

trees. Visually, these haloes often appear to consist of two distinct structures joined 

by a tenuous bridge of particles. They may also be only temporarily joined, in the 

sense that following the evolution of the system would see the structures move apart 

and become distinct friends-of-friends haloes again. Having run SUBFIND, we identify 

these spuriously linked haloes as follows. We split a subgroup from its friends-of-friends 

halo before calculating the merger trees if either of the following conditions is satisfied: 

the centre of the subhalo is outside twice the half-mass radius of the main halo; or the 

subhalo has retained more than 75 per cent of the mass it had at the last output time 

at which it was an independent halo. The latter condition is imposed because we expect 

a less massive halo to be stripped of its outer layers as it merges with a more massive 

halo, while if it has been artificially linked by the friends~of-friends algorithm it will have 

retained most of its mass. Treating the subgroups which have been split off as separate 

haloes has also been found to lead to a better match between galaxy properties in SPH 

simulations and in semi-analytic models which use the resulting merger trees (Helly et al., 

2003b). 

The splitting algorithm above results in a halo catalogue containing more haloes than 

in the original friends-of-friends catalogue. We refer to a member of this new, larger 

catalogue as a 'merger tree halo' below. A merger tree halo, as before, is a collection of 

SUBFIND subhaloes including one background subhalo. Each halo in the catalogue at the 

final time has its own merger tree built from these catalogues. It has become conventional 

in studying the properties of the merger trees themselves, however, to calculate one merger 

tree per friends-of-friends halo, i.e. to define a halo as a friends-of-friends object. To 
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provide contact with earlier work, therefore, if the splitting algorithm above results in 

a friends-of-friends halo being associated with two or more merger tree haloes at the 

final time, we consider only the merger tree of the most massive component, and discard 

the other trees from the same halo in our analysis. The merger tree of this remaining 

component is unaffected by discarding the less massive components, since each subhalo at 

each redshift may appear in only one merger tree (in other words, if a halo or subhalo at 

some time has a descendant at a later time, as almost all haloes do, then this descendant 

is unique). Approximately 15 per cent of friends-of-friends haloes are split in this way, 

and usually the mass of the discarded part is only a small fraction of the mass of the halo. 

The proportion of split haloes decreases with increasing halo mass, dropping to only a few 

per cent for haloes with mass close to the characteristic mass, M* = 6.21 x 1012 h-1 M0 . 

Fig. 2.1 shows schematically a situation we have in mind, where despite the fact that we 

may consider two FOF haloes to have merged to become one halo, we may still regard 

them as separate haloes in the merger trees. This ambiguity in whether or not something 

has merged is not really a problem since by choosing a definition of a halo we remove the 

ambiguity. It is, however, a genuine choice which affects our results. 

The merger trees are constructed from the group catalogues by following subhaloes 

from early times to late times, identifying in which halo a subhalo resides at the later 

time (Helly et al., in prep.). This means that given a subhalo in one snapshot, we must 

be able to find the corresponding object (the descendant subhalo) in a later snapshot. 

This is usually the next snapshot, though we check for a descendant in the next five 

outputs since occasionally friends-of-friends or SUBFIND is unable to identify the subhalo 

in the intervening snapshots. This may happen when, for example, a halo loses particles 

and drops below the resolution limit, or passes through a dense region in which it is 

not identified as a distinct object. The identity of the descendant is usually clear and 

unambiguous, but the formal procedure which clears up the rare problem cases is that 

the descendant of a subhalo is found by following the most bound 10 per cent of its mass 

or the 10 most bound particles, whichever is the greater mass. The descendant is the 

subhalo which contains the largest number of these particles. Conversely, given a parent 

halo in the final snapshot, we call all haloes in earlier snapshots whose descendants are 

within the halo its progenitors. We identify the descendant of an entire halo as being the 

halo which contains the descendant of its most massive subhalo. Haloes therefore do not 

split: a halo at redshift z1 has at most one descendant at redshift z2 <z1. If the particles 

of a halo do become distributed between two haloes at a later time, only one of these two 
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Figure 2.1: A schematic representation of a merger of friends-of-friends haloes which would 

not be considered a merger between 'merger tree haloes'. The blue, irregular shapes represent 

friends-of-friends haloes, while the red circles represent twice the half-mass radius of the main 

substructure of these haloes. When the top two FOF haloes merge into one halo in the lower 

half of the diagram, the main substructure of the smaller halo still lies outside twice the half

mass radius of the main substructure of the larger halo. The two structures are not therefore 

considered to have merged in our scheme. If the situation in the lower half of the diagram 

is present at the final time, we do however ignore the less massive of the two 'merger tree 

haloes' in this FOF halo in our analysis, so that we analyse precisely one merger tree for each 

FOF halo. 
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haloes may have the original halo as a progenitor. De-merger events may therefore lead to 

'orphan' haloes with no progenitors. This physical splitting or de-merger of haloes as the 

simulation evolves is unrelated to the algorithm we use to split friends-of-friends haloes 

above. Clearly, though, our definition of a halo affects whether or not we consider two 

haloes to have de-merged, and we comment briefly below on the impact of de-mergers on 

our results. 

Consider again a parent halo in the final snapshot. At each of the earlier snapshots, 

one of the progenitor haloes is designated the 'main' progenitor of the parent halo. This 

main progenitor is defined recursively as we move up in redshift one snapshot at a time 

as the most massive progenitor of the main progenitor in the previous snapshot. We then 

define the formation time of a halo as the redshift at which the main progenitor had half 

the mass of the final halo, linearly interpolating between the two redshifts at which its 

mass was greater than and less than half the final mass. This definition of formation 

redshift - the redshift at which the mass of the main progenitor falls below half the mass 

of the final halo - provides contact with analytic approaches to this problem and with 

earlier work on the formation time of N-body haloes (Lacey & Cole, 1993, 1994; Sheth & 

Tormen, 2004a,b). 

With these definitions in place, consider Fig. 2.2, which illustrates three different 

situations which might be considered de-mergers, and demonstrates why de-mergers cause 

a problem in the definition of our trees. Note that whether we construct trees using our 

merger tree haloes or the original friends-of-friends haloes, the demergers we now consider 

are quite rare, and when they do occur they are often transients. In Case 1 in Fig. 2.2, 

a FOF halo splits in two. Since we considered it to consist of two merger tree haloes 

before the split, however, this is not a demerger in our trees and causes no significant 

problem. In Case 2, not only does the FOF halo split but the associated merger tree halo 

also splits, since what was once considered a substructure of the halo moves outside twice 

the half-mass radius of its parent halo and is deemed a separate object. This orphan 

halo has no identified progenitor (since the parent halo in the previous timestep must 

have a unique descendant, which turns out to be the larger of the two de-merged haloes). 

Therefore it will be deemed to have formed between the two timesteps, or in other words 

it will be assigned an artificially low formation redshift. Springe! et al. (2005) follow the 

history of this object differently, tracing its mass since before it became a substructure 

of a larger halo and hence assigning it a higher formation redshift. This may introduce 

problems of its own in terms of the way its gas content is treated by the semi-analytic 
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Figure 2.2: Three situations which might be considered halo de-mergers. As in Fig. 2.1, 

friends-of-friends haloes are shown as irregular blue shapes, and the main substructure of 

a halo in the earlier timestep is shown as a red circle. We also show genuine substructures 

(which are within twice the half-mass radius of the main substructure) of these haloes in green. 

In Case 1, we start with one FOF halo but two merger tree haloes, and end up with two FOF 

haloes each containing one merger tree halo. In Case 2 we have one FOF halo containing one 

merger tree halo, and end up with two FOF haloes each containing one merger tree halo. In 

Case 3 we again have one FOF halo containing one merger tree halo, and end up with one 

FOF halo that contains two merger tree haloes. Each type of de-merger presents different 

problems, discussed in the text. 

model or how the halo properties change as it passes through a larger halo, but we do 

not discuss them in detail here. Instead we observe that this situation is rare (though 

the frequency of occurrence may be a function of local environment and hence bias our 

results in principle) and that we have checked that trying to weed out such awkward cases 

does not impact our conclusions. If such a split occurs before the final output and the 

substructure later merges back on to its old halo, the substructure is deemed to have been 

incorporated into the tree for all the intervening timesteps. If it merges on to a different 

halo then there is indeed a problem in precisely defining our trees since one structure 

cannot appear in two trees. This does not cause a problem in defining the formation 

redshift of an object in the final output, however. Finally, in Case 3 of Fig. 2.2, a merger 

tree halo splits without its parent FOF halo splitting. If this occurs in the final output we 
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eliminate the less massive tree from our analysis and so it does not present a significant 

problem. If it occurs in an earlier timestep, the haloes usually re-merge later and hence, 

again, do not cause a problem since the substructure can be incorporated into the tree 

for the intervening timesteps. The only way the haloes cannot remerge is if the situation 

persists until the final output (again, no problem) or if the split turns into the rarer Case 

2 de-merger, which we have already discussed. 

To calculate a marked correlation function of haloes we need to know the distance 

between any two haloes. We define this as the distance between their centres, and take 

the centre to be the position of the particle with the minimum gravitational potential 

energy, which is output by SUBFIND. 

Finally, note that the trees used in this work were constructed by John Helly indepen

dently of the Millennium Simulation merger trees discussed by Springel et al. (2005) and 

Gao et al. (2005). The two sets of trees differ both in the criteria for identifying indepen

dent haloes and in the treatment and identification of the descendant haloes themselves. 

In this respect, and in respect of the methods we use to analyse our halo catalogues, the 

work in this chapter complements the study of the environmental dependence of halo for

mation by Gao et al. (2005). A discussion of the issues involved in constructing suitable 

merger trees (especially in the context of semi-analytic models of galaxy formation) may 

be found in Helly et al. (2003a). 

2.2 The marked correlation function 

Studying the dependence of halo formation time on halo environment requires, of course, a 

definition of halo environment. When using a dark matter simulation, a natural definition 

is the local overdensity in dark matter, measured on some chosen scale. This immediately 

highlights the problem of choosing an appropriate scale. It is not clear, for example, 

whether the choice of scale should depend on the mass of the halo under consideration. 

Then there are subsidiary choices such as whether to excise the region containing most of 

the mass of the halo from the region used to define the local overdensity. 

Lemson & Kauffmann (1999) studied halo formation time as a function of the over

density of dark matter in a spherical shell of inner radius 2 h-1 Mpc and outer radius 

5 h-1 Mpc centred on the halo. There was no significant detection of a dependence of 

formation time on environment defined in this way. Sheth & Tormen (2004b), however, 

proposed a test which they considered more sensitive, and which does not require a similar 
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choice of scale. Their 'marked correlation function' is defined as follows. 

Consider a set of N objects, taken in this case to be dark matter haloes. To each one 

assign a 'mark' {mi , i = 1, ... , N}, where in this study we take the mark to be formation 

redshift, or some proxy for formation redshift. Let the pair { i, j} have separation Tij. Then 

the marked correlation function emarked(r), a function of separation r, is defined by 

(2.1) 

where n(r) is the number of pairs of objects with separation Tij =rand where the mean 

mark m is calculated over all objects (of all separations) in the sample. 

In other words, if emarked(r) > 1 for some r then this implies that pairs of objects with 

separation r have a greater value of the mark than average. In the case of dark matter 

haloes, we expect that haloes in overdense environments have more close neighbours than 

haloes in underdense environments (some caveats to this interpretation are discussed in 

Section 2.3). Therefore the contribution of haloes in overdense environments dominates 

emarked ( r) on small scales. On large scales, meanwhile, we expect to recover the global 

average, emarked(r) = 1. If we see that emarked(r) deviates from 1 on some scale we may 

interpret this as an environmental dependence of the mark. 

Notice we do not have to choose a scale on which to study this dependence; the 

marked correlation function tells us the scale. This is clearly desirable, but comes at the 

cost that there is no straightforward correspondence between environment as defined by 

the marked correlation function and environment as defined by the overdensity in some 

region near the halo. We do note, however, that Sheth (2005) has developed a halo model 

interpretation of marked statistics, which we do not pursue in detail here. 

2.2.1 Choice of mark 

In principle one could choose to measure the marked correlation function using any of 

a whole range of halo properties as the mark, in order to investigate the environmental 

dependence of those properties. Here, although we wish to study the environmental 

dependence of halo formation redshift, it may not be best to use this as the mark. Instead, 

for the majority of our results we follow Sheth & Tormen (2004b) and use a 'scaled 

formation redshift' for our mark. The definition of scaled formation redshift, used here 

and by Sheth & Tormen (2004b), is the wr parameter defined in equation 2.31 of Lacey & 

Cole (1993). Suppose we measure formation redshift relative to some final time zo (here, 

we always take z0 = 0), and consider a halo with mass Mo at zo and which formed at a 
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redshift zr. Then wr is given by 

(2.2) 

where Oc(z) is the critical density threshold for collapse and CJ
2 (M) is the linear theory 

variance of density fluctuations at mass scale M. 

The motivation for using wr rather than Zf as the mark comes from the following 

predictions of extended Press-Schechter theory: firstly, that the distribution of wr depends 

very weakly on the initial power spectrum of fluctuations; and secondly, that for a power

law initial power spectrum, the distribution of Wf is independent of halo mass. The 

latter prediction still holds to very high accuracy for more general power spectra with 

slowly varying slope. Moreover, the prediction is largely confirmed by measurement of 

the distribution in our simulation. This is demonstrated in Fig. 2.3, where the mean 

formation redshift of haloes in the Millennium simulation is plotted as a function of mass. 

For comparison, we plot the mean value of Wf as a function of mass on the same scale. 

Clearly wr scales out much of the dependence of halo formation redshift on halo mass. 

This can be seen in more detail by comparing Fig. 2.4a, which shows the distribution 

of formation redshift for haloes in different mass bins in the simulation, with Fig. 2.4b, 

which shows the distribution of wr for the corresponding haloes. In Fig. 2.4a we can 

easily see that haloes of different masses have very different distributions of formation 

redshift, and that there is a clear trend of larger mass haloes having a more strongly 

peaked distribution with a peak at smaller redshift. In Fig. 2.4b, however, we see that 

the distribution of wr is quite similar for haloes of different mass, and that there is no 

such clear trend. Fig. 2.4b also shows the analytic prediction for this distribution, which 

can be seen to be a reasonable approximation. The analytic form captures the shape of 

the distribution well, though it appears to predict a distribution peaking at smaller Wf. 

We show both the analytic distribution calculated using the actual input power spectrum 

of the Millennium Simulation, and the closed form for a power-law initial power spectrum 

with index n = 0 (Lacey & Cole, 1993). Note the very weak dependence of the distribution 

on power spectrum. 

The main benefit of defining our mark in this way is that we may now be justified in 

calculating the marked correlation function for a set of haloes which span a broad range 

in mass, thereby utilizing the full statistical power of our simulation. Such a function 

would not have been easy to interpret using Zf as the mark, since it is well established 

that the halo mass function depends on local density: in high-density regions, it becomes 
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Figure 2.3: The solid line with error bars gives the mean formation redshift of haloes in 

the Millennium Simulation as a function of the mass of the halo (lower horizontal axis) or, 

equivalently, the number of particles in the halo (upper horizontal axis). The error bars come 

simply from the Poisson error on the number of haloes in each bin of mass in the simulation. 

The dotted line, which exhibits a much weaker mass dependence, shows on the same scale the 

mean value of the scaled formation redshift, we (see Equation 2.2 for a definition), of haloes 

as a function of halo mass. 



2. Environmental dependence of halo formation times 38 

2 

a) -- 9.04x 1011 h-1M 
············· 6.25x 1012 h-1M

0 

---- 4.17x 1013 h-1M: 
1.5 --· 2.50x10 14 h- 1M0 

1\ 

1 

b) 
0.8 

-- 9.04x10 11 h- 1M0 
.......... 6.25x10 12 h- 1M

0 
---- 4.17x10 13 h- 1M

0 
--· 2.50x10 14 h-1M0 
--Analytic 

e I \ 
-0.6 I \ 

---- Analytic 
(P(k)=kn, n=O) ~ 

.'l I ), 13 
N 
'0 1 

'0 .......__ 
.......__ / \ \ 0. I I .\' .. ,.._ 0. 

'0 0.4 '0 I i ...... \ \··. 
I I / I I I 
II ... \ I 

0.5 I :" I I I / \ I 
I:' I 0.2 I I/ \ I 

" I 

II! \ I 
1:' I 

1/ \ ' ' 
" ' 0 0 

0 1 2 3 4 0 2 4 
2 torm w, 

Figure 2.4: The distribution of halo formation redshift (left-hand panel) and of scaled 

formation redshift Wf (right-hand panel). The distribution is shown for haloes in four different 

mass bins spaced equally in log(halo mass) and centred on the mass given in the legend. The 

trend in the left-hand panel is such that haloes of larger mass have a more strongly peaked 

distribution, with the peak at smaller redshift. In the right-hand panel, we show in addition 

the analytic prediction for the distribution of Wf (which is very nearly independent of mass) 

with thicker, smoother lines. The thick, solid line shows the prediction using the input power 

spectrum for the Millennium Simulation, while the thick, dashed line shows the prediction 

using a power-law initial power spectrum with index n = 0. 

6 

skewed towards more massive haloes (Frenk et al., 1988; Cole & Kaiser, 1989; Lemson & 

Kauffmann, 1999; Gottlober et al., 2003; Mo et al., 2004). Because these more massive 

haloes tend to have formed more recently, we could not have been sure that any signal 

in the marked correlation function was not due merely to the environmental dependence 

of the mass function, rather than of mean halo formation redshift for haloes of a given 

mass. This effect could also have swamped any genuine signal from an environmental 

dependence of formation time. 

2.3 Results and extensions 

A calculation of the marked correlation function of haloes with mass between 3.11 x 1012 

and 3.11 x 1014 h-1 M0 at z = 0 is given in Fig. 2.5a (our results will be for z = 0 through

out). We write the halo mass in terms of the characteristic mass M*, where M* is defined 

in the usual way such that a(M*) = De, and where 8c(z = 0) = 1.674 for the cosmology 
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Figure 2.5: The marked correlation function (using wr as the mark) of haloes with mass, M, 

in the range shown (solid line). In the top panel, this corresponds to haloes with a number 

of particles, Np, such that 14441::; Np::; 361036 (there are 7221 particles in an M. halo). 

There are 34 241 haloes in this mass range in the Millennium Simulation. In the right-hand 

panel, the haloes have between 500 and 2000 particles. These haloes have a mass such that 

we typically expect them to host a single bright galaxy. 

2 

assumed here. M. haloes are both well resolved and numerous, containing 7221 particles 

and having a mass of 6.21 x 1012 h-1 M0 at z = 0 in the Millennium Simulation. The 

peak in the function at intermediate scales indicates that haloes in pairs with these sepa

rations have a mean formation redshift which is higher than the global average for haloes 

of this mass. The function tends to 1 at large scales, as expected. At smaller scales than 

those plotted, i.e. less than approximately 1 h-1 Mpc, the marked correlation function is 

not defined for haloes of this mass, since there are no pairs of haloes in this mass range 

at such small separations. Clumps of mass closer than this will tend to be identified as 

part of the same structure by the group-finder. 

The sense of the dependence (higher formation redshifts in denser regions) is that 

predicted by Sheth & Tormen (2004b) from the results of Lemson & Kauffmann (1999). 

They noted that when the distribution of formation times (averaged over haloes of all 

mass) was plotted for haloes residing in regions of different overdensity (measured in 

a spherical shell between 2 and 5 h-1 Mpc centred on the halo), the curves were very 

similar, i.e. the distribution of halo formation redshifts was independent of local density. 

This seems inconsistent with the fact that denser regions tend to host more massive 
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haloes, which have, on average, more recent formation times (see Fig. 2.3). One might 

expect that because the distribution is calculated by averaging over all haloes for each 

bin in overdensity, the distribution should shift to lower formation redshifts in more dense 

regions, but this was not observed. This could be explained if haloes of a given mass tend 

to have higher formation redshifts in more dense regions. No such signal was observed in 

the GIF simulations, which motivates the use of a more sensitive test of environmental 

dependence. It also suggests using simulations of larger volume, since while the volume of 

the GIF simulations may have been sufficient to detect a variation in the distribution of 

formation times when averaging over haloes of all masses, it was not sufficient for Lemson 

& Kauffmann (1999) to detect a variation in the mean formation redshift as a function 

of local overdensity for haloes in some narrow range in mass. The Millennium Simulation 

offers the opportunity to do this (and to extend the study to haloes of lower mass) and 

we do so below. 

Rather than plot error bars on the (correlated) points of Fig. 2.5a, we attempt to assess 

the significance of any signal similarly to Sheth & Tormen (2004b). That is, we take the 

population of haloes used to calculate the marked correlation function, then shuffle their 

marks randomly and recalculate the marked correlation function 100 times. For each 

radial bin, we calculate the mean of these 100 realizations of the marked correlation 

function and the standard deviation between realizations. The mean plus or minus one 

standard deviation is shown by the dotted lines in Fig. 2.5. 

We have also tried to quantify the systematic error induced by including haloes over 

such a large mass range. We repeat the procedure used to obtain the dotted lines of 

Fig. 2.5a, but instead of shuffling marks over our entire sample of haloes, we sort the 

haloes into eight mass bins. Then we only shuffle the marks within each bin in mass. 

Therefore, although a halo receives the mark of a random halo in the sample, it is only 

permitted to receive the mark of a halo with a very similar mass. We then take the mean 

and standard deviation in each radial bin of the realizations of the marked correlation 

function as before. This binning procedure makes very little difference, in fact, and gives 

us confidence that the wr parameter scales out the mass dependence of halo formation 

redshifts sufficiently well for the purposes of this test. 

To give a numerical indication of the strength of the signal, we calculated the marked 

correlation function in one large bin between 1 and 5 h-1 Mpc and estimated the error 

using the same shuffling procedure as before. This indicated that the value of ~marked was 

inconsistent with unity at the 50" level. It is the large volume of our simulation which 
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enables us to see a signal in the marked correlation function of such massive haloes, 

but we find that the behaviour of samples of haloes of lower mass is similar. Moreover, 

the dynamic range of the simulation is such that we can study relatively small haloes, 

robustly determining formation times of haloes down to a mass of 5.5 x 1010 h-1 M0 . 

For galaxy-sized haloes with between 500 and 2000 particles, for example, we see a larger 

environmental dependence. The marked correlation function for haloes of this mass is 

given in Fig. 2.5b. The abundance of haloes of this mass means that the error in the 

determination of the marked correlation function is negligible at most scales of interest. 

The excess at small separations is more significant than for the more massive haloes, 

and the size of the effect is also larger. This is qualitatively consistent with Gao et al. 

(2005) since the effect for which they tested (a variation in clustering amplitude with halo 

formation redshift) was larger for haloes of lower mass. 

Splitting the mass range used in Fig. 2.5a into four parts gives the result shown in the 

lower four panels of Fig. 2.6. Firstly, it is clear that the estimates of .;marked in Fig. 2.6 

are far more noisy; while the mass range covered in Fig. 2.5a contains 34 241 haloes in the 

Millennium Simulation, the lower four panels of Fig. 2.6 cover mass ranges containing, 

in order of increasing mass, 18 384, 9172, 4298 and 2387 haloes respectively. Since the 

quality of the statistics is governed by the number of halo pairs, the effect is noticeable 

even given the large volume of the simulation. This highlights the importance of properly 

scaling out the mass dependence of halo formation redshift, so that we may average over 

large ranges in halo mass. 

For similar reasons, (i.e. the effect of cross-correlations between bins) the marked 

correlation function for the whole mass range of Fig. 2.5a is not simply the average of the 

marked correlation function of each of the four sub-ranges. For example, if we perform 

the test described above of calculating the marked correlation function for one large bin 

between 1 and 5 h-1 Mpc, we see that the function for the range 2M* < M < 4M* is 

greater than unity only at the 1o- level. In the highest mass range, the function in this 

radial bin is less than unity, by approximately 1.5o-. One would normally dismiss this 

apparent change in the sign of the environmental dependence as insignificant, especially 

given our free choice of bin size and the freedom in the definition of the halo catalogue 

and merger trees, but it is qualitatively consistent with fig. 4 of Sheth & Tormen (2004b). 

In the amalgamated sample, of course, most of the halo pairs which include a member 

in the highest mass bin have one member of the pair from a lower mass bin. It may 

therefore still be the case that the product of the marks of the haloes in such a pair with 
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Figure 2.6: The marked correlation function of haloes with mass in the ranges shown (solid 

lines), with Wf as the mark. Dotted lines are calculated as in Fig. 2.5a. The top four panels 

may be compared with fig. 4 of Sheth & Tormen (2004b) since the value of M* in their 

simulation is approximately twice ours. Note, though, the difference in axis scale, and the 

fact that in their figure formation redshift is used for the mark, whereas here Wf is used (see 

Fig. 2.7 which shows this does not affect our conclusions). The lower four panels cover the 

same mass range as Fig. 2.5a. 
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separation r is usually greater than m2 , and yet a halo pair of separation r in which both 

members are from the highest mass bin usually gives a product of marks less than m2 . 

This is a barrier to the clean interpretation of these results, since when measuring the 

environmental dependence of haloes in some mass range, the environment can only be 

defined in terms of haloes in the same mass range. We address this problem by explicitly 

separating the 'tracer' population from the 'marked' population in Section 2.3.1 below. 

Recall that the small-scale cutoff in the marked correlation function occurs because 

there are no haloes in the given mass range which occur at such small separations in the 

simulation: an exclusion effect. The radius at which this occurs depends on mass, and 

certainly this effect is noticeable when comparing the top-left panel of Fig. 2.6 to the 

bottom-right panel. 

This dependence on halo mass of the scale upon which we can measure environment 

again suggests separating the tracer and marked populations, as we do when calculating 

a marked cross-correlation function below. Of course, some dependence is inevitable since 

more massive haloes tend to have larger radii. This reinforces the point that a method 

in which we choose beforehand a fixed scale on which to measure environment - looking 

at scales at which there is a peak in the marked correlation function for low mass haloes, 

say- may be flawed, since the outer regions of more massive haloes will contribute to the 

definition of their own environment. 

We emphasized earlier the importance of being able to calculate a marked correlation 

function for a sample of haloes which spans a large range in mass, and suggested a scheme 

for scaling out the mass dependence of halo formation times based on the analytic work 

of Lacey & Cole (1993). One can easily imagine other ways to scale out this dependence, 

however, and we attempt to show the difference between various methods in Fig. 2.7. For 

the solid line we make no attempt to correct for the mass dependence of halo formation 

redshift and simply use zr as the mark, while for the other three lines some kind of 

scaling is applied. The short-dashed line is the result for our fiducial mark, Wf. The 

dot-dashed line uses the simulation itself to determine the scaling: we simply divide the 

formation redshift for each halo by the mean formation redshift for haloes of that mass. 

This does not take into account changes in the shape of the distribution of formation 

redshift as a function of mass. For the dotted line we first calculate Wf for each halo, as 

above. Then we rank the haloes in order of Wf and reassign each one a mark, preserving 

the ranking, such that the final distribution of marks is precisely the analytic distribution 

given by the thick, solid line of Fig. 2.4b. This explicitly enforces near-mass independence, 
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hopefully without distorting the shape of ~marked too much since the shape of the analytic 

distribution matches the measured distribution quite well. It seems from Fig. 2. 7 that 

any reasonable method for scaling out the mass dependence of the distribution of halo 

formation redshift gives similar results. 

The errors in the marked correlation functions measured with these four different 

marks are very similar, and the effect of shuffling only within narrow mass bins remains 

small in each case. Indeed, when we force the marks to follow the analytic distribution for 

Wf we might expect it to make no difference whether we shuffle between haloes of all masses 

or only between haloes of similar mass, and we have checked that this is indeed the case. 

Fig. 2.7 gives us confidence that our conclusions about the environmental dependence of 

halo formation redshift are robust to changes in the precise definition of the mark, so 

long as the mark remains a reasonable proxy for the halo formation redshift as defined in 

Section 2.1.1, and so long as the width of the distribution of marks remains similar. We 

conclude, therefore, that we have significant evidence that halo formation redshift does 

depend on environment, and we explore this in more detail in what follows. 

2.3.1 A marked cross-correlation function 

Even the marked correlation functions we calculate above which include haloes in a wide 

range of mass (up to a factor of about 25 between the lowest and highest mass) utilise 

only a fraction of the dynamic range available in the Millennium Simulation. We are 

more limited by the fact that the wider the range of mass studied, the harder the marked 

correlation functions are to interpret. If we include very small haloes, then because 

low mass haloes are more abundant, the function will be dominated at all scales by 

contributions from low mass haloes. The contribution from haloes of any given mass 

only cuts in above some scale determined by the exclusion effect from the non-zero size 

of the halo. On the other hand, if we wish to study the environmental dependence of 

the formation times of only very massive haloes, we will have poor statistics even when 

simulating enormous volumes, and it will not be clear in any case that such massive haloes 

are good tracers of environment. We have attempted to address some of these problems 

by defining a marked cross-correlation function. 

Consider two populations of haloes, which we denote the 'tracer' population and the 

'marked' population. We then define the marked cross-correlation function, ~~~~~ed(r), 
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Figure 2. 7: The marked correlation function with several different choices of mark. In 

each case the population of haloes used is the same as in Fig. 2.5a, but we vary the choice 

of mark as follows: solid line - formation redshift; short-dashed line - wr; dot-dashed 

line - formation redshift divided by the mean formation redshift for haloes of that mass 

(determined from the simulation); dotted line- haloes are ranked by wr then reassigned a 

mark (preserving this ranking) such that the marks follow the analytic distribution for wr 
given by the thick, solid line in Fig. 2.4b. The long-dashed line through ~marked = 1 is shown 

to guide the eye. The dispersion in ~marked in the scrambled catalogues is shown only for a 

mark of wr (dot-long-dashed lines), since it is very similar in each case. 
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by 

ccross (r) = """ __!!!j_ 
<.,marked .. ~ n(r)m 

{t,J I Tij=r} 

(2.3) 

where the sum is now taken over pairs { i, j} such that halo i is from the tracer population 

and halo j is from the marked population, n(r) is the number of such pairs of separation 

r and m is the mean mark of the haloes in the marked population. This tells us about 

the environmental dependence of the mark in the marked population, with environment 

defined in terms of the tracer population. It retains the property that a deviation of the 

function from unity indicates environmental dependence. Note, however, that it does not 

have some of the properties of a normal cross-correlation function: it will be different if we 

exchange the marked and tracer populations, and the marked cross-correlation function 

of a population with itself is not equivalent to the marked autocorrelation function. 

Fig. 2.8 gives six examples of marked cross-correlation functions with Wf as the mark. 

We estimate the dispersion among realizations of the functions by recalculating the func

tion 100 times with the marks shuffled, as before. The tracer population is the same 

in each panel, but the mass of the marked population increases from left to right and 

from top to bottom. For the higher mass populations there seems to be a trend that as 

the mass of the marked population increases, the positive signal from the marked cross

correlation function becomes weaker, perhaps even changing sign when the mass of the 

marked haloes becomes greater than that of the tracer haloes. Since we expect individual 

L* galaxies to occupy haloes containing approximately 1000 particles in this simulation 

(a halo with 1000 particles has a mass of 0.138M* = 8.61 x 1011 h-1 M0 ), the results for 

lower mass populations suggest we have significant evidence that galaxy-sized haloes near 

6 x 1013 h-1 M0 haloes have earlier formation times than the mean. 

Comparing to the marked autocorrelation function, then, the most puzzling panels of 

Fig. 2.8 are the lower right panel and, to a lesser extent, the lower left panel. The trend 

in the marked cross-correlation function in the lower right panel is in the opposite sense 

to that which one may expect having seen the earlier results (less than unity at "'2.5a for 

one bin between 5 and 30 h-1 Mpc), while we see no signal in the lower left panel. Recall 

that we expect more close pairs in more dense regions. This means the marked correlation 

function at small scales is representative of dense regions, so that we expect to see earlier 

formation times. This expectation may not hold in the situation represented by the lower 

right panel of Fig. 2.8, however. While the tracer population consists of haloes with 

mass near 6 x 1013 h- 1 M0 , the marked population in this panel consists of very massive 
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Figure 2.8: Solid lines show the marked cross-correlation function of haloes with the same 

tracer population (6 x 1013 h- 1 M0 haloes) each time, but with a marked population of 

different mass in each panel. The mark is wr. The haloes in the tracer population have 

mass Mtr in the range shown, while those in the marked population have mass Mma in the 

range shown (recall an M. halo contains 7221 particles, and a galaxy-sized, 1000 particle 

halo has mass 0.138M.). We again show the dispersion in 100 calculations of the marked 

cross-correlation function (dotted lines), shuffling the marks at random between haloes each 

time. 
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Figure 2.9: The left-hand panel shows the marked cross-correlation function using the same 

marked population as the lower-left panel of Fig. 2.8. Here, though, we choose the tracer 

population to be more massive than in Fig. 2.8, and, importantly, more massive than the 

marked population. The dotted lines are as in Fig. 2.8. The right-hand panel uses the same 

marked population as the middle-right panel of Fig. 2.8 but with a lighter tracer population. 

2 

haloes, of around 1015 h-1 M0 . These large haloes will be found only in regions which 

are at least moderately dense, and many will be found in the very densest parts of the 

simulation: in the core of the filaments making up the cosmic web, or at the intersection 

of the filaments. In these highly dense regions, we expect nearby haloes to also be very 

massive, whereas it is in the moderately dense regions that 6 x 1013 h-1 M0 haloes 

are most abundant. It may be that by choosing this tracer population, the close pair 

counts are dominated by haloes in only moderately dense regions, since it is here that our 

tracer population is most abundant. The large-scale pair counts are more representative 

of the average environment of 1015 h-1 M0 haloes, which is even more dense. If this 

interpretation is correct, we might anticipate that using a more massive tracer population 

would reverse the trend, so that ~g-~ed ( r) was once again larger on small scales. We test 

this prediction in Fig. 2.9a. In this figure the marked population is the same as in the 

lower-left panel of Fig. 2.8, since this allows us to choose a sufficiently abundant tracer 

population that is nevertheless more massive than the marked population. 

While the signal we see in Fig. 2.9a is weak and more noisy (with only 872 haloes in 

the tracer population and 2189 haloes in the marked population) there is no repetition 

of the unexpected trend seen in the lower panels of Fig. 2.8. We have also performed 
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the converse test, in Fig. 2.9b. That is, we take the marked population that produces a 

positive signal in the middle right panel of Fig. 2.8, and find the marked cross-correlation 

function of these haloes with a less massive tracer population. Using lower mass haloes 

also improves our statistics: there are 26 417 and 20 968 haloes in the tracer and marked 

population respectively. The positive signal seen in Fig. 2.8 at small scales is wiped 

out, and if anything there is a weak negative signal. This suggests that a definition 

of environment using some tracer population only really corresponds with our intuition 

of what environment should mean (close pairs representing a dense environment) if the 

tracer population is at least as strongly clustered as the marked population. 

2.3.2 A simpler test of environment 

Having seen evidence of environmental dependence of halo formation times in the marked 

correlation function, it is interesting to see whether the volume and dynamic range offered 

by the Millennium Simulation allow us to see a signal in other measures of environment. 

For Fig. 2.10 our measure is simply the overdensity in dark matter in a spherical shell 

between 2 and 5 h-1 Mpc from the centre of the halo (where the centre is defined, as 

before, as the position of the particle in the main substructure of the halo having the 

least gravitational potential energy). This is the same measure as used in fig. 3 of Lemson 

& Kauffmann (1999) in which no signal is apparent, despite the simulation being the same 

as the one which showed evidence of environmental dependence in the marked correlation 

function analysis of Sheth & Tormen (2004b): both studies used the GIF simulations 

(Jenkins et al., 1998; Kauffmann et al., 1999). The range in halo mass used for each 

panel of our plot is the same as in fig. 3 of Lemson & Kauffmann (1999). A clear trend 

is visible; for the top three panels especially, there is evidence that haloes in regions with 

overdensities greater than about 1 or 2 have higher formation redshifts. We can follow 

this trend over a very wide range in overdensity. 

Because of the high resolution of our simulation, we may extend this technique to lower 

mass haloes. Haloes which are expected to host a single, bright galaxy (and -importantly 

for this analysis -the progenitors of these haloes) are well resolved, containing roughly 

1000 particles. Fig. 2.11 is similar to a single panel of Fig. 2.10, but using haloes with 

between 500 and 2000 particles, corresponding to masses of between 4.30 x 1011 and 

1.72 x 1012 h-1 M0 . It is clear we have very significant evidence that haloes in denser 

regions have higher formation redshifts than the mean, and conversely that haloes in 

less dense regions have lower formation redshifts than the mean. The size of the effect is 
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Figure 2.10: The formation redshift of haloes as a function of overdensity in a spherical 

shell of inner radius 2 h-1 Mpc and outer radius 5 h- 1 Mpc centred on the halo (solid lines). 

The range of particle numbers for the haloes in each panel is shown; these are chosen so 

that haloes have the same mass as those in the corresponding panel of fig. 3 of Lemson & 

Kauffmann (1999). Note the difference in the scale of the horizontal axis between the linear 

scale of fig. 3 of Lemson & Kauffmann (1999) and the logarithmic scale of this figure which 

extends to higher densities. Short-dashed lines show the error on the determination of the 

mean formation redshift in each bin in overdensity. Dotted lines show the 1-a dispersion in 

halo formation times. The flat, long-dashed line is at the mean formation redshift for all 

haloes in that bin in mass, and is shown only to guide the eye. 
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Figure 2.11: As Fig. 2.10, but for haloes with mass such that we may expect them to host 

a single bright galaxy. The halo sample is the same as for Fig. 2.5b. 

similar to that for the more massive haloes (larger, if anything - consistent with Gao et al. 

2005), but is detected more cleanly due to the large sample size. Reproducing Figs 2.10 

and 2.11 using Wf as a proxy for formation redshift gives extremely similar results. The 

mean is slightly offset, as one would expect from Fig. 2.3, but the trends are identical. 

The dispersion in formation times at a given overdensity is larger than the systematic 

variation between different overdensities. Therefore it is unclear from these data what the 

effect of this variation will be on, for example, the properties of the central galaxies hosted 

by these haloes. Gao et al. (2005) use the Millennium Simulation to address the question 

of how the clustering of haloes of a given mass depends on their formation time, and find a 

clear difference between the clustering of the oldest and youngest haloes (demonstrated in 
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our catalogues in Fig. 2.12). It is hard to predict the effect of this difference on observables 

such as the galaxy correlation function (split by colour or galaxy environment), especially 

in the light of the fact that galaxies of a given luminosity reside in haloes with a range 

of mass, with most galaxy light expected to come not from single-occupation haloes such 

as these, but from group-sized haloes (Eke et al., 2005). Many alternative definitions 

of halo formation time are possible (see e.g. Li et al., 2005), and some may be more 

closely related to the properties of the galaxies within the halo (Neistein et al., 2006). We 

choose the definition used here because it is straightforward and well-studied theoretically. 

By measuring an environmental dependence we hope to demonstrate that the merger 

trees show an environmental dependence. We would expect this to be reflected in other 

properties of the merger trees, including other definitions of halo formation time. 

The most sophisticated method we have of predicting the likely galaxy population of a 

halo given the properties of the halo merger tree is semi-analytic modelling. Semi-analytic 

galaxy catalogues which use the halo catalogues and merger trees from the Millennium 

simulation, and which therefore incorporate the full environmental dependence of the 

halo properties, have been constructed by Bowe~ et al. (2006), De Lucia et al. (2006) and 

Croton et al. (2006b). The latter catalogues were used by Croton et al. (2006a) to study 

the effect of the so-called halo assembly bias on galaxy clustering. We adopt a related 

approach in Chapter 3 to study the environmental dependence of galaxy properties in the 

catalogues of Bower et al. (2006). Meanwhile, Zhu et al. (2006) have found similar results 

using a smaller simulation. We defer further discussion of galaxy properties to Chapter 3. 

In Fig. 2.11, the mean formation redshift crosses from being being below the global 

mean for haloes in this mass range (long-dashed line) to above it at an overdensity o ~ 0.6. 

It appears this crossing point moves to higher overdensity for more massive haloes: in the 

bottom panel of Fig. 2.10 the crossing point is at o ~ 5. We have repeated these calcu

lations and our marked correlation function calculations using different halo catalogues 

and merger trees, including those of Gao et al. (2005). While the position of this crossing 

point and the precise shape of the curve are sensitive to the detailed definition of the halo 

catalogues and the merger trees, the general trends are robust. 

Performing the calculations of Gao et al. (2005) using our trees, or our marked cor

relation function analysis using their trees, gives qualitatively consistent results (our re

production of the effect demonstrated by Gao et al. 2005 for one particular mass range 

is given in Fig. 2.12). This is encouraging since the two sets of trees are constructed 

quite differently, though using the same SUBFIND catalogue. For example, they define the 
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formation time using the mass within r2oo (the radius at which the enclosed density falls 

below 200 times the critical density), whereas we use the mass of the friends-of-friends 

halo. Also, to find the merger tree of a friends-of-friends halo they follow only the merger 

history of its main substructure, while we follow the combined histories of each of the sub

structures which make up the halo. This allows Gao et al. (2005) to track more easily the 

history of a halo which was temporarily the substructure of a larger halo, but which has 

since de-merged to become a separate halo in its own right. It is important to deal with 

these de-mergers well, since they lead to close pairs in dense environments in which one 

member of the pair is likely to be unusual in some way: for example, it may be assigned 

an artificially low formation redshift. We note in Section 2.1.1 that we take precisely 

one merger tree per friends-of-friends halo, discarding the lower mass trees which were 

split off having been deemed to have been spuriously connected. Including these trees 

causes de-merger problems since merger tree haloes can split despite remaining in the 

same friends-of-friends halo (Fig. 2.2 Case 3). On the other hand, using merger trees con

structed purely from friends-of-friends catalogues without identifying substructure causes 

even greater problems, since haloes are often spuriously attached and subsequently split. 

So long as we take these de-mergers into account, all our results remain robust to the 

precise definition of the halo catalogue or the merger trees. 

We conclude that we have significant evidence that the formation redshift of dark 

matter haloes is a function of halo environment as well as halo mass. Although we 

confirm that Press-Schechter theory does a reasonable job of predicting the distribution 

of halo formation redshifts when averaging over haloes in all environments, we can also 

see that its prediction that halo formation history is independent of environment must 

be false. Since we later use semi-analytic models run with Monte Carlo merger trees 

in order to try to constrain cosmology (Chapter 4) this seems to be a cause for some 

concern. In fact, the environmental dependence we find violates a basic assumption of 

any straightforward version of the halo occupation distribution formalism, and calls into 

question any results based on HOD methods. In the following chapter, therefore, we 

address these concerns and look for ways to account for environmental dependence when 

a simulation with sufficient resolution in a cosmologically representative volume is not 

available. 
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Figure 2.12: The correlation function of haloes with between 500 and 2000 particles as a 

function of age. The different colours show ~(r) for the four age quartiles, while the black 

line shows the correlation function of the whole sample. We reproduce the effect studied by 

Gao et al. (2005), older haloes of a given mass being more strongly clustered than younger 

haloes of the same mass, so long as M ;S 1013 h- 1 M0 . The effect is stronger for lower mass 

haloes (not shown here) . 



Chapter 3 

3.1 Methods 

3.1.1 Semi-analytic model 

The effect of 

environmental 

dependence on 

clustering statistics 

Our starting galaxy catalogue is produced using the merger trees and particle data from 

the Millennium Simulation, described in more detail in Section 2.1. The semi-analytic 

galaxy formation code is the version of GALFORM described by Bower et al. (2006). The 

developments from earlier versions of the code (Cole et al., 2000; Benson et al., 2003), such 

as we use to generate the catalogues in Chapter 4, include a more complete treatment of 

gas ejected from galaxies by stellar feedback. Mainly, though, the addition of feedback 

from active galactic nuclei in haloes with hydrostatically supported hot gas helps prevent 

excessive cooling of gas in massive haloes at late times. A suitable choice of the other 

model parameters then enables the code to produce a galaxy population with the correct 

luminosity function and galaxy colour distribution. It also correctly predicts the evolution 

of the stellar mass function and star formation rate to redshift z = 4.5 (Bower et al., 2006). 

For our purposes, the crucial feature of the model is that it provides a plausible 

mechanism for linking the merger history of a dark matter halo to the galaxy population 

of the halo, and therefore hopefully provides a reasonable estimate of the effect of a 

variation in halo merger history on its galaxy content. Since a more detailed description 

of the physics is more relevant to our attempts to constrain parameters of cosmological 

models and semi-analytic codes using clustering measurements in Chapter 4, we defer 

further discussion of GALFORM to there. Note, though, that the semi-analytic code used 

55 
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here is independent of that used by Croton et al. (2006a), and implements some of the 

physical processes involved in modelling galaxy formation differently. As we describe 

below, our procedure to generate catalogues in which, by construction, the effects of 

environmentally dependent halo formation are removed is also different from theirs. 

3.1.2 Shuffling procedure 

In the Millennium Simulation, we have sufficient resolution such that semi-analytic galax

ies may be associated with individual dark matter substructures (though there are sub

tleties to be encountered when dark matter substructures, which are less robust to dis

ruption than their baryonic contents, are destroyed as they fall in to larger haloes). The 

properties of a dark matter substructure's associated galaxy are linked to the mass aggre

gation history of the substructure. In most cases to date where a semi-analytic model has 

been used to populate anN-body simulation with galaxies, however, this has not been the 

case, especially for simulations of a cosmologically representative volume suitable for com

parison to the current generation of galaxy redshift surveys. Insufficient resolution means 

that merger trees extracted from the simulation provide an inadequate representation of 

the merger history of a halo, and so Monte Carlo trees based on extended Press-Schechter 

theory (see Section 1.3.1) have been used instead. The galaxies generated with these 

Monte Carlo trees do not, therefore, have an associated dark matter substructure in the 

simulation and so there is some freedom as to how to position the galaxies within haloes. 

A popular scheme is to assign the position of the halo's central galaxy to the position of 

the centre of mass of the halo or (our choice) to the position of the particle in the halo 

with the least gravitational potential energy. A satellite galaxy is assigned the position 

of a random particle within the halo, so that these galaxies trace the mass within haloes. 

The feature of Monte Carlo trees on which we focus in this chapter is that, by con

struction, their statistical properties depend only upon the mass of the halo for which the 

tree is generated. That is, they do not include any effect of large-scale environment on 

halo formation history. Because we wish to focus on this property and not on other differ

ences between using N-body trees and using Monte Carlo trees, we aim to reflect, in our 

tests using trees which do include environmental effects, the way in which Monte Carlo 

trees are often used. In addition to the catalogue produced directly from the semi-analytic 

model, then, we generate a catalogue which is analogous to a catalogue which would be 

produced using Monte Carlo trees (in particular, the galaxy positions are assigned in a 

way one might assign them when noN-body trees are available). We take the predicted 
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galaxy population of each friends-of-friends halo and redistribute the galaxies within the 

halo. The central galaxy remains at the position of the particle with least gravitational 

potential energy, but the satellite galaxies are reassigned the position of random particles 

within the halo. As discussed in detail in Section 2.1.1, the algorithm used to generate 

the merger trees sometimes splits a friends-of-friends halo into two or more pieces and 

calculates a merger tree for each piece, treating them as separate haloes. In this case 

a friends-of-friends halo may contain two or more galaxies which have been treated as 

central galaxies by GALFORM. We label the central galaxy of the most massive part as 

the central galaxy of the friends-of-friends halo, and treat the other central galaxies as 

satellites thenceforth. In figures using this catalogue, we denote it the catalogue for which 

satellite galaxies trace the mass. It is intended to be compared to the shuffled catalogues 

we describe below, so one might think of it as an 'unshuffled' catalogue. 

To generate shuffled catalogues, we assign haloes to bins in mass. We then shuffle 

which galaxy populations reside in which haloes within mass bins. That is, each halo is 

given the galaxy population of another halo in the same bin in mass, where the sampling is 

done without replacement (so that the shuffled catalogues contain all the same galaxies as 

the unshuffled ones, but in different positions). We then compute the position of galaxies 

within a halo in the same way as before. By construction, the small-scale clustering should 

be the same in the shuffled and unshuffled catalogues, since in each case for haloes in which 

there are satellite galaxies these galaxies trace the halo mass. We expect, however, that 

the large-scale clustering in the shuffled and unshuffled catalogues will be different due to 

the assembly bias demonstrated in Chapter 2. 

3.2 Results 

3.2.1 Effects on the correlation function 

The correlation function of a fairly bright galaxy sample from our catalogue is given in 

Fig. 3.1. Here and in subsequent figures, when we quote a magnitude limit we take h = 1 

so that 5log10 h = 0. We also show the result for an unshuffled catalogue where satellite 

galaxies are forced to trace the mass in the halo, and for a shuffled catalogue generated 

as described above. ~(r) is also given for a 'HOD catalogue'. This catalogue we produce 

by first computing the mean occupation function, (N(M)), of galaxies brighter than the 

given threshold in our original catalogue. Then for each halo in the simulation, we look up 

(N) for haloes of that mass. If (N) ::; 1 we assign the halo either 0 or 1 galaxies according 
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to the nearest integer distribution described in Section 1.2.3 (if there is a galaxy in the 

halo it is treated as the central galaxy in our placement scheme). If (N) > 1 then the halo 

is given a central galaxy, and the number of satellite galaxies is drawn from a Poisson 

distribution with mean (N) - 1. This is motivated by the parametrizations described 

in Section 1.2.3 and justified in our models in Section 4.2.2. The galaxies are placed as 

for the shuffled catalogues. We also show the correlation function of the dark matter, 

and perhaps the first observation one could make from the figure is that it shows any of 

our methods are successful in producing a roughly power-law galaxy correlation function 

from the curvier dark matter correlation function. More complex features are clearly 

visible, however, as for the latest redshift surveys (Zehavi et al., 2004). An approximately 

constant large-scale bias, with galaxies being more clustered than dark matter, is also 

clearly seen. 

The second notable feature is that all the catalogues for which satellite galaxies trace 

mass give a lower correlation function on small scales than the default catalogue. This 

suggests that theN-body GALFORM placement scheme tends to give more close pairs in 

the centre of haloes, and makes it clear why the shuffled catalogues must be compared 

to an appropriately populated unshuffled catalogue where satellites trace mass, rather 

than to the default catalogue (Croton et al. 2006a get around this problem by producing 

shuffled catalogues by translating haloes wholesale rather than repopulating dark matter 

haloes in situ). Further detail is not easy to see in this figure, which is why we go on 

to plot r2~(r) in Fig. 3.2. The factor of r 2 scales out most of the power-law dependence, 

and allows us to see the relative shape and amplitude of the correlation function in the 

different galaxy catalogues more clearly. We did not plot error bars in Fig. 3.1 since they 

were too small to be visible. The scale of Fig. 3.2 allows us to see them, but they are still 

rather small because of the large simulation volume. The error bars are visible on the 

largest scales only because in calculating the large-scale correlation function we randomly 

sample the galaxy population to speed up the computation. 

There are several interesting features in Fig. 3.2. The small scale differences are seen 

more clearly: ~(r) in the default catalogue has a slope steeper than r-2 on the smallest 

scales (between 0.01 and 0.1 h-1 Mpc), while the other catalogues have a slope shallower 

than r-2 . The small-scale behaviour of the catalogue where satellite galaxies trace the 

mass and the fully shuffled catalogue is very similar, as one would expect by construction. 

Straightforward expansion or contraction of the galaxy number density profile within 

haloes cannot account for the difference between the default and shuffled catalogues on 
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Figure 3.1: The effect on the correlation function of different ways of assigning galaxies to 

haloes. The solid, black line shows the correlation function of galaxies with the magnitude 

shown in the default semi-analytic catalogue, with positions determined by the semi-analytic 

code. The dotted, red line shows the same catalogue, but with galaxies redistributed within 

haloes, such that while the central galaxy remains on the particle with least gravitational 

potential energy, the satellite galaxies are placed on random dark matter particles in the 

halo. The blue, short-dashed line is for the shuffied catalogue, in which a halo's galaxy 

population is reassigned to a random halo of the same mass, and galaxies are placed within 

haloes as for the dotted line. The green, long-dashed line is for the HOD catalogue, which we 

construct by finding the HOD of galaxies of this magnitude in the semi-analytic model and 

populating the simulation using the resulting (N(M)), adopting a reasonable prescription for 

the scatter about the mean relation. For comparison, the correlation function of the dark 

matter is given by the magenta, dot-dashed line. 
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Figure 3.2: The effect on the correlation function of different ways of assigning galaxies to 

haloes. We plot r2~(r) to show the differences more clearly. Line styles are as for Fig. 3.2, 

though we do not show the dark matter here. We have added Poisson error bars to the line 

for the original catalogue; they are too small to be worth plotting for the case where we do 

not multiply by r 2 , but are visible at the smallest and largest scales in this plot. 
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small scales, since the effect is to decrease or increase uniformly the amplitude of the 

entire one-halo term (up to rv 2 h- 1 Mpc). It does not seem that the difference between 

the density profile of halo substructures and the dark matter (e.g., Reed et al., 2005) 

can account for this difference either. The difference must concern the placement scheme 

in N-body GALFORM, which involves dealing with galaxies on dissolved substructures 

amongst other complications. We do not intend to explore it further here, since the 

most important comparisons will be to the catalogue in which the satellites trace the 

halo mass. The final point to make concerning the small scales is that the correlation 

function of the galaxies in the simulation populated with a HOD is again different from 

the other catalogues. Since the mean occupation function and the placement scheme 

are the same as for the shuffled catalogue, this can only because we have modelled the 

scatter in occupation number in haloes of a given mass incorrectly. To give a shift in 

clustering in the sense we see in Fig. 3.2 probably requires that the GALFORM catalogues 

have somewhat more scatter than assumed in the HOD catalogue. Since we introduce the 

HOD catalogues here intending to fix large-scale clustering with modified HODs later, 

and since the profile on small scales is clearly rather uncertain anyway, this discrepancy 

is not of too much concern. 

On large scales, there is a visible difference between the standard catalogue and the one 

in which satellites trace the mass on the one hand, and the shuffled and HOD catalogues on 

the other. We expect identical behaviour in the first two, since the galaxies of the first are 

merely rearranged within haloes to produce the second, which cannot alter the large-scale 

clustering. The agreement of the shuffled and HOD catalogues is less trivial, since it could 

be affected by incorrect scatter about the mean occupation function as on small scales, 

but it is still expected. The difference between the two unshuffled catalogues, and the two 

(effectively) shuffled catalogues, demonstrates the effect of the assembly bias detected in 

Chapter 2 on the galaxy population. The effect is rather small- too small, for example, 

to affect significantly the cosmological constraints from clustering statistics in Chapter 4. 

It is very cleanly detected, though. The size of the effect on the correlation function 

depends on the semi-analytic model parameters for the Munich catalogues subjected to 

a similar analysis by Croton et al. (2006b), generally being of order 5-20 per cent (D. 

Croton, private communication), so it could simply be that this GALFORM model is rather 

less sensitive to the effects of halo assembly bias than the semi-analytic model used by 

Croton et al. (2006a). 

We find that the effect of assembly bias is not strongly luminosity-dependent. An 



3. The effect of environmental dependence on clustering statistics 

b() 
0 -

2 

1.5 

1 

-2 -1 

Unshuffled, MR < -21.5 
Shuffled, MR < -21.5 
Unshuffled, M11 < -18.5 
Shuffled, M1 < -18.5 

0 1 

I 
I 

62 

2 

Figure 3.3: The effect of shuffling on r 2e(r) for galaxy samples with different luminosity 

thresholds. Solid lines show the results for the unshuffled samples while dashed lines show 

the results for the shuffled samples. The thicker (lower) lines are for a faint sample while the 

thinner (higher) lines are for a bright sample. 
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Figure 3.4: As Fig. 3.3, but for central galaxies only. Note we have changed the axis scales 

since eliminating the satellite galaxies naturally changes the clustering considerably. 

example of this is shown in Fig. 3.3, which compares the correlation function of the 

shuffled and unshuffled catalogues for a bright and a faint sample. Similarly, the effect 

persists and is of similar size if we restrict the sample to contain only central galaxies, as 

shown by Fig. 3.4. 

The bias also appears not to be strongly colour-dependent. Fig. 3.5 shows r 2e(r) 

for a red sample and a blue sample at two different magnitude thresholds. The red 

sample is more clustered and its correlation function has a different shape: the difference 

in amplitude between the red and blue galaxies is larger on small scales than on large 

scales, possibly because the most massive haloes tend to have a population of mainly red 

galaxies. Despite these differences, though, the effect of shuffling on large scales is quite 
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Figure 3.5: The effect of shuffling on r2~(r) for red and blue galaxies. We divide the sample 

into red and blue along the line MB - 0.96Mv = -0.12, which seems to correspond to a 

natural divide between the red sequence and the blue population in the colour-magnitude 

diagram for our galaxies. The result for the red galaxies is shown by the red lines at higher 

amplitude, and for the blue galaxies by the blue lines at lower amplitude. The left-hand panel 

is for a faint sample and the right-hand panel for a bright sample. 

similar and is of a similar size. This differs from the findings of Croton et al. (2006a), 

who found that the blue galaxies showed a weaker dependence than the red galaxies, with 

the sense of the dependence even changing sign. They also differ in their measurement of 

luminosity dependence: while we always see that clustering is suppressed at large scales in 

the shuffied catalogue, their fig. 2 implies that this trend is reversed at bright magnitudes. 

Our result provides us with some encouragement that a relatively simple scheme to correct 

the clustering of galaxies grown using Monte Carlo trees may work. 

3.2.2 The void probability function 

The void probability function, Po(r) , is the probability that a sphere of radius r thrown 

down randomly on the galaxy distribution contains no galaxies. As suggested by Berlind 

& Weinberg (2002) , one might hope for it to be useful in probing the single-occupancy 

regime of the mean occupation function, since the small haloes in voids will, if they 

host a galaxy at all, be in this regime. Tinker et al. (2006a) show, however, that once 

the (environmentally independent) mean occupation function is constrained to produce a 

given correlation function and to generate a catalogue of a given space density, the void 
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Figure 3.6: The void probability function, P0 , for a faint sample (left-hand panel) and a 

bright sample (right-hand panel) of galaxies. The three lines in each plot correspond to the 

same catalogues as the respective lines in Fig. 3.3, though in fact the dotted line overplots the 

solid line in both panels. The error bars are calculated using the formula of Hoyle & Vogeley 

(2004). Note that for clarity the horizontal axis scale is quite different in the two panels. 

probability function provides little extra information. 

This does not necessarily imply that the void probability function cannot provide a 

useful constraint on an environmentally dependent mean occupation function. If, say, the 

efficiency of galaxy formation is lower in haloes in underdense regions this may produce 

larger voids by eliminating galaxies that would otherwise form in the small haloes found 

in voids. The effect of shuffling on the void probability function is shown for a bright and 

a faint sample in Fig. 3.6. The error bars are calculated using the formula of Hoyle & 

Vogeley (2004), which gives the error on the mean of the void counts expected if these 

follow a binomial distribution, accounting for the fact that there are only a finite number 

of independent volumes in the simulation: 

(Po- PJ)l/2 
a(Po) = 

112 
Nind. 

(3.1) 

where Nind. = 3L~oxl ( 47rr3). Tinker et al. (2006a) find that compared to jackknife errors, 

Equation 3.1 is an overestimate at large radii and an underestimate at small radii, being 

similar where Po~ 0.01. 

According to these error estimates, the shuffling produces a significant effect in the 

void probability function (though note that as we are comparing two catalogues in the 
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same simulation volume we would not have to produce a shift larger than the error bars 

to cleanly detect the effect of shuffling), and it is in the sense expected from the above 

argument. Disappointingly, though, we find that the void probability function is not an 

especially sensitive test for this environmental dependence compared to the correlation 

function. The difference between shuffled and unshuffled catalogues at large scales in 

Fig. 3.2, for example, is clearly more statistically significant than the difference seen in 

Fig. 3.6. Tinker et al. (2006a) found that there was a regime where the void probability 

function was able to distinguish between different HODs with different prescriptions for 

their environmental dependence that produced the same projected correlation function. 

Our methodology here is not the same - we have not constrained our shuffled and 

unshuffled catalogues to have the same correlation function - and so the results are not 

directly comparable. None the less, it is probably fair to conclude that the environmental 

dependence produced by our models does not lie in the category of dependence that can 

be distinguished by the void probability function but not by the correlation function. 

The line for the catalogue where satellites trace the mass but where galaxies are not 

shuffled between haloes overplots the line for the standard catalogue in Fig. 3.6. This is 

as expected, because rearranging galaxies within haloes cannot appreciable change the 

size of voids, and certainly cannot create or destroy large voids. 

In Chapter 4 we attempt to constrain cosmology only with the correlation function. 

The void probability function for the SDSS is not available, and if it were, the results 

of Tinker et al. (2006a) suggest it would not strengthen our constraints. We note again, 

though, that in their methodology the mean occupation function can be freely chosen 

(within some parametrization) to fit the correlation function in any given cosmology. Our 

approach generates a prediction for the mean occupation function in a given cosmology, 

from which we can generate predictions for the correlation function, void probability 

function, and so on. In any case, our attempts to model the environmental dependence 

will concentrate on the effects on the correlation function. Environmental dependence of 

the mean occupation function of haloes is what drives changes in the correlation function, 

and therefore we examine the HOD as a function of density in the next section. 

3.2.3 The halo occupation distribution 

To study the environmental dependence of the halo occupation distribution, we have 

found the density in dark matter in an annulus between 1 and 10 h-1 Mpc centred on the 

particle with least gravitational potential energy of every halo in the simulation. These 
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Figure 3.7: An illustration of the environmental dependence of the HOD. The black line 

with error bars shows the mean occupation function of galaxies with absolute magnitude 

MR < -19.0 in our catalogues. The red lines show the mean occupation function for galaxies 

which lie in regions of different density. We show (N(M)) for galaxies in four different density 

bins, centred on the densities shown in the legend (in units of the mean density) . The bins 

are not contiguous. 

are the data used to make Figs. 2.10 and 2.11 in Chapter 2. We have binned the haloes 

into 12 logarithmic bins of density (in units of the mean density) and calculated the HOD 

separately for the haloes lying in each of these bins. An illustration of the results of this 

procedure is given in Fig. 3.7. 

Different line styles in the figure show the mean occupation function in different density 

bins. The function is not defined at high mass in some density bins, simply because there 

are no sufficiently massive haloes in those bins. Passing over the high mass end of the 
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function where the data are more noisy, we see that differences between the bins persist 

at low mass, where the occupation function is well determined: there are a great many 

low mass haloes in the simulation, so even within one density bin the errors on the mean 

occupation function near the step in the function are small. The differences are subtle 

since the environmental effects are subtle, but in fact there is a visible trend. The position 

of the cutoff in the function, where the haloes move from having no galaxies to having one 

galaxy, appears to move to lower mass in the high density bins. That is, galaxy formation 

is suppressed in underdense regions in our model. 

We have tried to quantify the size of this suppression by fitting the HOD with a 

function of the form suggested by Zheng et al. (2005). That is, 

if M :S Mo 
(3.2) 

if M > Mo 

where 'lg' indicates log10 . This has the form of a step function (representing central 

galaxies) which is zero forM< Mmin and unity forM> Mmin smoothed over a width aM, 

plus a power-law (representing satellite galaxies) with slope a which cuts inforM > Mo. 

The five parameters which we fit, with a Levenberg-Marquardt algorithm (Marquardt, 

1963; Press et al., 1992), are Mmin, aM, Mo, M1 and a. We find this provides a good, 

stable fit for the mean occupation functions used here and in Chapter 4, without requiring 

the smooth cut-off in the power-law used by some authors (e.g., Kravtsov et al., 2004; 

Abazajian et al., 2005). It seems to be necessary to allow the power-law to cut in at 

Mo f= Mmin and to smooth the cutoff in the step function with an error function to 

obtain good fits. 

Fitting the parameters for a galaxy sample with a given threshold luminosity gives us 

a functional form, Npar(M), for the mean occupation function. For each bin in density, 

we then fit the mean occupation function for galaxies in that bin with Npar(qM), where 

the five parameters above remain fixed but where q is a free parameter which we find. 

That is, we change the mass scale of the functional form we found previously until we 

obtain the best fit. In general, this best fit is still rather good in a x2 sense, indicating 

that changing the mass scale this way captures the environmental dependence of the HOD 

reasonably well. If q(p) > 1 this corresponds to an increase in the efficiency of galaxy 

formation in haloes in environments of density p. 

We show q(p) for samples with different luminosity thresholds in Fig. 3.8. The different 

black lines correspond to the different thresholds, so each uses different values of the five 
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(N(M)) parameters listed above. For the sparser, higher luminosity samples we obtain 

rather noisy fits when we bin the data by density, leading to the outlying lines on the 

diagram. For most of the samples, however (i.e. for MR between -18.5 and -21.0), 

we obtain a reasonably consistent form for q, though note that the samples are not 

independent since they are defined by thresholds rather than bins in luminosity. For 

those models which occupy a reasonably tight locus on the plot, we have calculated the 

mean value of q for the different luminosity thresholds, and this is shown by the red line. 

For p ;S 3p we have q < 1, and hence a reduced efficiency for galaxy formation compared 

to the average. For 3 ;S pjp ;S 30, q > 1 and increases with density. In the highest couple 

of density bins, q drops again. This figure is rather reminiscent of Fig. 2.11, which shows 

halo formation redshift as a function of local overdensity in dark matter, suggesting that 

our model tends to have more bright galaxies at z = 0 in haloes which formed earlier, 

according to the definition of formation redshift adopted in Chapter 2. 

3.2.4 Modelling the correlation function 

Measuring our scaling parameter, q, allows us to populate the simulation with a modulated 

HOD that incorporates environmental dependence. For each halo, we look up its mass 

and local density, then interpolate between points on the red line of Fig. 3.8 to find the 

appropriate value of q for that density. We then look up (N(qM)), where (N(M)) is the 

measured mean occupation function for galaxies with the luminosity threshold in use, not 

the parametrized version. The number of galaxies assigned to the halo is then generated 

from (N) by the same procedure we used for the unmodulated HOD catalogues described 

in Section 3.2.1. The effect of following this procedure on the resulting correlation function 

for galaxies with MR < -21.0 is given in Fig. 3.9. The idea of modulating the local galaxy 

formation efficiency according to the larger-scale density field is not new; for example, it 

was tried by Bower et al. (1993) in the 'high peaks' model, in which the sites of galaxy 

formation are associated with the peaks of a suitably smoothed version of the linear 

density field. 

The line styles Fig. 3.9 are the same as in Fig. 3.2, but we have added a magenta, dot

dashed line to show the correlation function for the catalogue generated with a modulated 

HOD. In a sense, the modulation has worked, reversing the suppression of the clustering 

amplitude seen in the shuffled catalogues or the catalogues generated using the unmod

ified HOD. It seems that our modulation overcompensates, however: the amplitude of 

clustering in the modulated catalogue is higher than for the catalogue where satellites are 
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Figure 3.8: The variation of our scaling parameter, q, as a function of local density. The 

different black lines are for samples with different luminosity thresholds (between MR < -18.0 

and MR < -22.0 in steps of 0.5). The three extreme lines are probably caused by low quality 

fits because of noise. The red line shows the average for all the samples excluding those three. 
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Figure 3.9: The effect on galaxy clustering of introducing a density-dependent correction to 

the mass scale of the HOD (see main text). This modulated HOD is given by the magenta, 

dot-dashed line; other lines are as in Fig. 3.2. 
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rearranged within haloes to trace mass, except on the smallest scales where it joins the 

unmodulated HOD catalogue in being less clustered than the others. The effect is very 

similar for other magnitude thresholds, except for those bright thresholds where the data 

are more noisy and the fits become less meaningful. For moderate magnitude thresholds, 

the effects are also very similar if we use the q value determined for that particular thresh

old (i.e. the corresponding black line in Fig. 3.8) rather then the average q(p) given by 

the red line in Fig. 3.8. It is possible the overcompensation could come about because the 

changes in the mean occupation function are not fully captured by our q parameter, or 

because other features of the HOD, for example the scatter P(NI (N) ), also change with 

density. 

Because the shift at least has the correct sense, we have looked at the effect of applying 

the same procedure but with a different value of q. Fig. 3.10 is generated in the same 

way as Fig. 3.9, except that instead of using a mean occupation function (N(qM)) we 

use (N(vfQM)). If we define q = 1 + Eq then for Eq « 1 this is equivalent to using 

(N([1 + Eq/2]M)). 

The agreement on scales greater than approximately 2 h-1 Mpc is improved by using 

yl(j. Agreement at "'0.1-G.8 h-1 Mpc is also improved, though this is in the regime where 

the uncertainty as to how to place galaxies within haloes appears to play a more important 

role. In a narrow range of intermediate scales the agreement actually becomes slightly 

worse, perhaps again suggesting that there are features in the environmental dependence 

of the HOD not described by our simple scaling. It is quite encouraging, though, that the 

large-scale environmental effects- the effects of 'halo assembly bias' described by Croton 

et al. (2006a) (bias not being a helpful concept on small scales)- are corrected for by such 

a simple scheme. We show that this modulation also improves the agreement of the void 

probability function in Fig. 3.11. For the faint sample (Fig. 3.11a) the agreement between 

the original catalogue and the catalogue produced using a modulated HOD is excellent. 

For the bright sample (Fig. 3.11b), even this reduced modulation still overcompensates 

for the shuffiing effects, but does improve agreement. We note that the sample used in 

(Fig. 3.11b) is one for which we could not obtain a good measurement of q; such a bright 

sample might not adhere so well to the measurement of q as a function of density given 

by the red line in Fig. 3.8. 

The results using modulated HODs seem to suggest that a semi-analytic catalogue 

generated using Monte Carlo trees rather than N-body trees could be corrected given 

knowledge of the local density for each halo in the simulation. Given a halo of mass M, 
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Figure 3.10: As Fig. 3.9, except that we adjust the size of the scaling parameter, q, in order 

to fit the correlation function more accurately on large scales. 
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Figure 3.11: The void probability function, Po , for a faint sample (left-hand panel) and a 

bright sample (right-hand panel) of galaxies. The two panels show the results for the same 

catalogues as Fig. 3.6, except that we show in addition the effect of populating the simulation 

with a HOD modulated by the square root of our scaling factor, q, as we have done for the 

correlation function in Fig. 3.10. 

rather than assigning it a Monte Carlo merger tree generated for a halo of mass M, one 

could assign it a tree generated for a halo of mass M'(M, p) . In this particular scheme 

we would have M'(M, p) = q(p)M. 

We do caution that, as mentioned above, different implementations of the semi

analytic model can produce different levels of halo assembly bias. Monte Carlo trees 

differ from N-body trees in aspects other than their environmental dependence (see, e.g., 

Li et al. 2005 or Chapter 2 of this thesis) . The effects on the correlation function are 

not independent of scale, and at small to intermediate scales the placement scheme for 

galaxies within haloes is a more important factor. When we go on to use the correlation 

function predicted by a semi-analytic model using Monte Carlo trees in the next chap

ter, therefore, we do not routinely apply this small and uncertain correction. We do, 

though, attempt to estimate the impact of the uncertainties described in this chapter on 

the cosmological constraints we achieve. 



Chapter 4 

4.1 Methods 

4.1.1 Semi-analytic models 

General overview 

Constraining cosmology 

via galaxy clustering 

The properties of galaxies in our catalogues are generated using the semi-analytic galaxy 

formation code, GALFORM (Cole et al., 2000; Benson et al., 2003), mentioned in Sec

tion 3.1.1. An earlier version of the code is used for the work described in this chapter 

than in Chapter 3, however. 

For our purposes here, we may consider a semi-analytic model as being a means of 

predicting, given some dark matter halo at a redshift of interest, the galaxy population 

of that halo. Having that information, we can construct galaxy luminosity functions, 

correlation functions, etc. that might be considered the results or predictions of the model. 

The first step in predicting the galaxy population of a halo is calculating the merger 

history of the halo. In the Millennium Simulation, used in Chapter 3, this could be 

extracted from the N-body data. The simulations we will describe below, by contrast, 

do not have sufficient resolution for us to extract reliable merger trees for the haloes 

of interest. A Monte Carlo scheme based on the work of Lacey & Cole (1993) is used 

instead, therefore. This generates a merger tree for a halo based only on the halo mass, 

the cosmology and the initial power spectrum, and does not use other data from the 

simulation. 

Given the merger history of a halo, the model computes the evolution of the bary

onic content of the halo using a variety of analytic prescriptions, which we now describe 

briefly. First, it is assumed that every dark matter halo comes with enough baryons to 

match the cosmic baryon fraction. If a halo is not undergoing mergers, or is just slowly 

accreting small lumps of material (which is of course also accounted for in the merger 

75 
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trees), the cooling time of the halo's quota of gas is estimated analytically (assuming 

spherical symmetry) to provide an estimate of the amount of cold gas available to form 

stars in the galaxy at the centre of the halo. Assumptions about the angular momentum 

distribution of haloes also allow an estimate of the size of the disc produced in this mode 

of star formation. 

If two haloes merge, then their galaxies may also merge. When running GALFORM 

tied to a particular N-body simulation, for example the Millennium Simulation, we can 

explicitly track the orbits of the particles associated with a galaxy to determine when 

it might merge with another galaxy. Otherwise, the timescale for merging is estimated 

by consideration of dynamical friction. In fact, this analytical estimate is sometimes also 

necessary in theN-body mode, since subhaloes hosting galaxies may be destroyed near the 

centre of larger haloes, removing our ability to track the associated galaxy. Galaxy-galaxy 

mergers may induce bursts of star formation (with perhaps a different initial stellar mass 

function from quiescent star formation), and in this model they also trigger the formation 

of spheroids. 

Once star formation has occurred, supernovae are able to inject energy into the inter

stellar medium, heating the gas and suppressing further star formation. They also enrich 

the interstellar medium with metals, in turn affecting the cooling rate of the gas and 

the properties of any stars which subsequently form from it. The stellar populations and 

the evolution of their properties are accounted for by the model. To synthesize observed 

properties of the galaxies, such as their spectra or broad band luminosities, GALFORM 

also models dust extinction and the generation of emission lines. The extinction depends 

on the inclination of the galaxy to the line of sight, which is assigned randomly. 

Many of the equations governing the physical processes modelled by GALFORM contain 

parameters which may be adjusted. Some of these have a 'natural' value determined by 

the physics; others are derived by comparison to more detailed simulations. The function 

of allowing these parameters to change, then, is to allow investigation into the magnitude 

of the effect of different physical processes on the resulting galaxy properties in the model. 

Other parameters have no natural value, and can only be fixed by requiring they take 

values which allow the model to fit observations. Much of the time, if we are able to fit 

some set of observations satisfactorily by choosing the parameters of the model judiciously, 

the same set of observations could also be fit reasonably well by some very different choice 

of parameters. Therefore, within the GALFORM framework, we have different models using 

different physics which are equally good at matching the observations (though this may 
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not, of course, be the case if we were to choose a different set of observations to constrain 

the model). 

Our three models 

Our aim here is to try to constrain cosmological parameters by comparing clustering 

statistics from a simulation populated with semi-analytic galaxies to the corresponding 

measurements in an observational survey. We would hope that our constraints are robust, 

in the sense of being insensitive to the precise semi-analytic model used, and we would 

like to test whether this is the case. Therefore, although we use only one code, GALFORM, 

we use three different 'models', in the sense of different combinations of the physics we 

attempt to model and the parameters governing that physics. The three models are as 

follows: 

• The fiducial model of Cole et al. (2000). This is successful in matching several sets 

of observations, including the B- and K-band luminosity functions, galaxy colours 

and mass-to-light ratios for galaxies of different morphologies, the cold gas mass 

in galaxies, galaxy disc sizes and the slope and scatter of the I-band Tully-Fisher 

(1977) relation. Unfortunately, though, it assumes a cosmic baryon fraction, nb, of 

only 0.02. This is inconsistent with recent estimates from Big Bang nucleosynthesis 

(e.g., O'Meara et al., 2001) and the cosmic microwave background (Spergel et al., 

2006). Nevertheless, we feel it is worthwhile to include this model in our analysis 

as a well recognized and well understood model that has been thoroughly described 

and studied. In our figures, lines corresponding to output from this model are given 

the label 'Cole2000'. 

• A model similar to the first, but with nb = 0.04, which is closer to current estimates. 

Since there are twice as many baryons as in the first model, if we leave the rest of the 

parameters unchanged then, as expected, the model is unable to match observations 

such as the luminosity function. Therefore we introduce a new physical process: 

thermal conduction in massive haloes (this is analysed in greater detail by Benson 

et al. 2003). We simply assume that gas is unable to cool if the halo circular velocity, 

Vcirc, satisfies 

"Vcirc > Vcond JI+Z ' (4.1) 

where Vcond is a parameter we may adjust. This suppresses the problematic bright 

end of the luminosity function; the effect is similar, in fact, to more recent and 
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more physically motivated implementations of feedback from active galactic nuclei 

in GALFORM (Bower et al., 2006). Though it is clearly rather crude, note that our 

objective here is only to produce a realistic enough galaxy catalogue to compare 

to observations. We are trying to mimic the effect of whatever physical process 

suppresses the bright end of the luminosity function, without having to adopt a 

complicated parametrization that is no better physically motivated than a more 

simple and understandable one. The label we give to this model in our figures is 

'C2000hib' (where 'hib' stands for 'high baryon fraction'). 

• A model incorporating 'superwinds'. In this model it is postulated that a galaxy's 

cold gas is heated strongly enough for it to be expelled completely from the halo, 

rather than returning to the reservoir of hot gas associated with the halo. In fact, the 

model is derived from that used by Baugh et al. (2005) to reproduce the abundance 

of faint galaxies detected at submillimetre wavelengths. This also incorporates the 

additions and refinements to GALFORM described by Benson et al. (2003). These 

include a modification to the assumed profile of the halo gas, a more sophisticated 

treatment of conduction, and a more detailed treatment of galaxy mergers, in partic

ular the effects of tidal stripping and dynamical friction (Benson et al., 2002). They 

also include a simple model of the effect of reionization on small haloes, where cool

ing is prevented if Vcirc < Vcut and z < Zcut for two parameters Vcut and Zcut. The 

strength of superwind feedback is parametrized by Vsw, the characteristic velocity 

of the wind. The model is denoted 'Model M' in our figures. 

We wish to run each of these models in many different cosmologies, in order to generate 

galaxy catalogues in which the N-body component and the semi-analytic component 

are consistent. Changing cosmology naturally changes the galaxy population predicted 

by each model, however, so that even if we fix the parameters such that the galaxies 

match observational constraints in one fiducial cosmology, they are unlikely to match 

in other cosmologies. We therefore tweak the parameters between different cosmologies 

to try to match the data. It is not possible to do this for the full range of even the 

primary constraints described by Cole et al. (2000). We restrict ourselves to a comparison 

with the 0·1r-band SDSS luminosity function of Blanton et al. (2003b) at z = 0.1 (for a 

description of what is meant by the 0·1r-band, see Blanton et al. 2003a). Even then, to 

make the problem tractable and to ensure our three models remain distinct, we restrict 

the parameters we allow ourselves to adjust to try to match the luminosity function. The 
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parameters we allow to vary are: 

• Vsw, for Model M only. 

• Vcond, for the C2000hib model only. 

• Vcut, one of the parameters controlling reionization. Though we experimented with 

changing this for all the models, all the ones used below have either Vcut = 0 

(Cole2000 and C2000hib) or Vcut = 60 (Model M). As well as being simpler, this 

also helps make Model M more distinct from the other two. 

• Vhot and ahot. These are closely linked but we vary them independently. They 

control the strength of standard (i.e. not superwind) supernova feedback in the 

following way. The rate of change of the mass of hot gas and of cool gas in a halo 

are linked with the instantaneous star formation rate, 1/J, by: 

(4.2) 

(Cole et al. (2000), equation 4.7). (3 is related to the circular velocity of the galaxy 

disc, vdisc' by 

(4.3) 

(Cole et al. (2000), equation 4.15). 

Some of the cosmologies listed below require quite extreme, perhaps unphysical, pa

rameter values. In some cases, GALFORM is reluctant to run, while in others the fit for 

some observations is compromised in an attempt to fit the 0·1r-band luminosity function 

well. In addition to running each model with tweaked parameters in each cosmology, 

therefore, we also run each model in each cosmology using the same parameters as the 

run with Om= 0.3 and as= 0.8 (the central cosmology of simulation Run 1; see below). 

We are not able to produce a good fit to the luminosity function in a x2 sense, 

even allowing these parameters to vary. This may be a concern when comparing to 

observational data. Volume-limited galaxy samples, to which we wish to compare our 

results later, are chosen such that all the galaxies are brighter than some given magnitude 

limit. If we choose a sample of semi-analytic galaxies with the same magnitude limit, then 

because our luminosity function is wrong we may not be choosing a sample that necessarily 

corresponds to the observational one, even within our model. Therefore we instead select 

semi-analytic galaxy samples with a magnitude such that the sample has the same space 

density as the corresponding observational sample. This means that when we adjust the 



4. Constraining cosmology via galaxy clustering 80 

parameters of the model to match the luminosity function, it is more important for our 

purposes to match its overall shape rather than its magnitude normalization. 

The T parameter of Cole et al. (2000) is related to this sort of scaling of the luminosity 

function. It was introduced to account for brown dwarfs, which absorb some of the mass 

of gas assumed to be tied up in stars, but without producing light. It is defined by 

T = mass in visible stars + mass in brown dwarfs 
mass in visible stars 

(4.4) 

(Cole et al. 2000, equation 5.2). Clearly, then, we must have T 2: 1 given this physical 

explanation. The result of including this effect is to scale luminosities by a factor 1/T. 

For each GALFORM model we run, we compare the resulting 0·1r-band luminosity function 

with the observational value from the SDSS (in fact, we compare only one point near 

the characteristic luminosity, L*). We express the difference between the two in terms 

of the T parameter: the (reciprocal of the) amount by which we would have to scale 

the luminosity of the semi-analytic galaxies to match the data. Sometimes this requires 

T < 1. Therefore, when we give a value of T below, it should be treated only as an 

indication of the amount by which we would have to scale luminosities so that when 

we select a galaxy sample by a number density threshold then it would have the same 

luminosity threshold as the observational sample. Note that we calculate T by reference 

to a specific point on the SDSS 0·1r-band luminosity function. Its exact value would 

change if we normalized at a different point (since the model luminosity function is not 

the same shape as the observational one), or in a different band (since the colour of model 

galaxies may be incorrect). 

Once we have given ourselves the freedom to scale the luminosity function in this way, 

then, the effect of varying the parameters we allow ourselves to change to try to match 

the shape of the luminosity function is as follows: 

• Increasing Vsw, or decreasing Vcond, tends to steepen the bright-end slope, i.e. give 

fewer very bright galaxies. Vsw is only non-zero for Model M; Vcond is only finite 

for the C2000hib model. 

• Increasing Vcut reduces the slope at the faint end, reducing the number of the faintest 

of the galaxies we study. 

• Increasing Vhot tends to suppress the overall space density of galaxies. Because 

of the effect of other parameters, it is most useful for adjusting the abundance of 

galaxies of around L* or a little fainter. 
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• Changes in o:hot can be viewed as modulating the effect of changing Vhot· Visually, 

for typical values of Vhot, increasing O:hot flattens the faint-end slope, typically over 

a wider range of luminosities than Vcut. 

We usually find that to make the bright-end slope steeper and to make the faint-end slope 

shallower, as required by the data, needs all parameters tweaked to give larger amounts 

of feedback. This tends to have the overall effect of reducing the predicted luminosities, 

leading to 1 < 1 as mentioned above. Requiring 1 ~ 1 would therefore require us to 

compromise one component or the other of the shape in these models. Since we later 

rescale to match space densities anyway, we opt not to make this compromise. Given 

two parameter combinations which both match the luminosity function reasonably well 

and which both give 1 < 1, we use the 1 parameter as a tie-breaker, selecting the 

combination which gives 1 closer to unity. We have also checked that each model is at 

least qualitatively consistent with the other primary GALFORM constraints (the Thlly

Fisher relation, disc sizes, morphological mix, metallicities and gas fractions - see Cole 

et al. 2000) . 

The r-band luminosity function for each of our models in our fiducial cosmology 

(Om= 0.3 and as= 0.8) is shown in Figure 4.1. Red corresponds to the Cole2000 model, 

blue to the C2000hib model, and green to Model M. The black line shows the SDSS 

r-band luminosity function of Blanton et al. (2003b); we have converted from the 0·1r

band to the r-band for this plot. Each model luminosity function is scaled to agree with 

the data at one point, and the scaling factor is given in the legend. Qualitatively, the 

agreement between the models and the data is reasonable. The very sharp cutoff at the 

bright end of the luminosity function in Model M is a generic feature of the model. The 

lower space density of very faint galaxies in this model is also generic, and comes from the 

introduction of reionization (non-zero Vcut)· At first glance, it appears that the Cole2000 

model gives better agreement with the data at the bright end than the C2000hib model, 

despite the inclusion of a feedback mechanism specifically to solve this problem in the 

latter. Recall, though, that the Cole2000 model has a lower baryon fraction, and that 

despite this we have to introduce relatively high levels of supernova feedback to match 

the shape of the luminosity function. We therefore need 1 "' 0.5 to recover the correct 

luminosities, while the C2000hib model needs a much more physically palatable 1 "' 1.2. 

It may appear that our requirement for 1 = 0.5 is inconsistent with the original Cole 

et al. (2000) paper, the reference model of which requires 1 = 1.38. It is not inconsistent, 

for a few reasons. Firstly, we use the label 'Cole2000' for our model because it uses an 
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Figure 4.1: r-band luminosity functions for the three fiducial GALFORM models, compared 

to the SDSS luminosity function of Blanton et al. (2003b) . The value of the scaling parameter 

Y, required to normalize the model luminosities for galaxies of a particular space density in 

this band, is also given in the legend. Errors on the SDSS luminosity function are only given 

for every tenth point, for clarity. 
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equivalent code with the same physics governed by the same parameters as the models of 

Cole et al. (2000). As we have just noted, however, some of the parameters take different 

values in our fiducial model in order to try to match the shape of the r-band luminosity 

function. Secondly, while the reference model of Cole et al. (2000) had u8 = 0.93, ours 

has CTg = 0.8. Thirdly, their Y was calculated by reference to the value of the observed 

bJ-band luminosity function at L* (though in fact the same correction also provided a 

good match to the K-band luminosity function). Ours is calculated by reference to the 

r-band luminosity function. We match to a point slightly brighter than L* (where the 

exponential cutoff has started to bite more deeply and the galaxies are less abundant; 

this point at Mr "' -21.5 can be seen quite easily in Fig. 4.1 as being where all the lines 

cross) since we otherwise had problems calculating Y for some of our models with a very 

shallow faint-end slope and low galaxy number density. 

4.1.2 Simulations 

We ran two simulations using the same code as was used for the Millennium Simulation: 

GADGET2. In each case we have stored the output at several redshifts. These are chosen 

so that by applying the relabelling procedure described in Appendix A, we have a grid of 

cosmologies evenly spaced in steps of 0.05 in u8 for each of three redshifts: 0, 0.05 and 

0.1. We have chosen the simulation parameters so that the first simulation, 'Run 1', has 

nm = 0.3 at its CTg = 0.8 output, while the second simulation, 'Run 2'' has nm = 0.3 at its 

u8 = 0.9 output. When we perform a further rescaling of Dm (see below) it is these central 

outputs which remain unchanged. The initial conditions are calculated using a Bardeen 

et al. (1986) power spectrum with shape parameter r = 0.14. A smooth power spectrum 

was most convenient in the light of the rescalings we carry out on the final output, but 

in fact the Bardeen et al. (1986) power spectrum with r = 0.14 was found to be a good 

fit to the CMBFAST (Seljak & Zaldarriaga, 1996) spectrum with f!b = 0.045 used for 

the Millennium Simulation. The cosmological parameters associated with each snapshot 

when considered as a z = 0 output, as a z = 0.05 output and as a z = 0.1 output are 

given in Table 4.1 for Run 1 and in Table 4.2 for Run 2. The cosmological parameters 

of the outputs for our z = 0.1 grid are also shown in Fig. 4.2. This figure also shows 

schematically the rescalings in Dm we carry out so that instead of the cosmologies lying 

on a curve dictated by the evolution of Dm and us in a given simulation they lie on a curve 

u8f!~5 = const. - 'cluster normalization' in other words. Note that for some values of 

(Dm, us) on the cluster normalized curves, we have rescaled an output from each of Run 1 
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Table 4.1: Outputs from Run 1, with central output 0m=0.3, as=0.8. Column 1 gives the 

label of the output, and column 2 gives the redshift of the output before rescaling. Columns 

3 and 4 give the matter density and amplitude of clustering in this output, which are the 

cosmological parameters when the output is relabelled as a z = 0 output. The output 22 

line gives the input cosmological parameters for the simulation code. Columns 5-8 show the 

final parameter values if the output is relabelled to the redshift given in the column header. 

Values of as highlighted in bold show that for each chosen redshift we can reconstruct a grid 

of models evenly spaced in as. 

Simulation output For z = 0.05 grid For z = 0.1 grid 

Label z nm as nm as Om as 

22 0.00000 0.10000 0.95176 0.08758 0.96404 0.07705 0.97503 

21 0.00677 0.10183 0.95000 0.08921 0.96239 0.07850 0.97348 

20 0.05713 0.11603 0.93679 0.10184 0.94999 0.08977 0.96182 

19 0.10742 0.13112 0.92354 0.11532 0.93744 0.10183 0.95001 

18 0.19492 0.15936 0.90000 0.14072 0.91536 0.12467 0.92908 

17 0.25463 0.17995 0.88388 0.15935 0.90001 0.14153 0.91467 

16 0.31441 0.20148 0.86773 0.17896 0.88464 0.15936 0.90000 

15 0.38019 0.22608 0.85000 0.20150 0.86772 0.17998 0.88386 

14 0.44916 0.25270 0.83151 0.22607 0.85001 0.20259 0.86692 

13 0.51821 0.27996 0.81316 0.25143 0.83237 0.22608 0.85000 

12 0.56826 0.30000 0.80000 0.27018 0.81968 0.24356 0.83778 

11 0.64673 0.33162 0.77966 0.30001 0.79999 0.27155 0.81877 

10 0.72511 0.36324 0.75972 0.33010 0.78062 0.30000 0.80000 

9 0.76404 0.37885 0.74999 0.34507 0.77114 0.31425 0.79078 

8 0.85223 0.41386 0.72837 0.37885 0.74999 0.34661 0.77017 

7 0.94043 0.44806 0.70739 0.41220 0.72939 0.37885 0.75000 

6 0.97227 0.46017 0.70000 0.42408 0.72209 0.39041 0.74283 

5 1.07090 0.49668 0.67761 0.46017 0.70000 0.42575 0.72107 

4 1.16952 0.53153 0.65610 0.49498 0.67866 0.46018 0.69999 

3 1.19825 0.54134 0.65000 0.50485 0.67259 0.46999 0.69398 

2 1.30816 0.57741 0.62736 0.54135 0.65000 0.50655 0.67154 

1 1.41808 0.61104 0.60581 0.57574 0.62842 0.54135 0.65000 
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Table 4.2: Outputs from Run 2, with central output nm=0.3, as=0.9. Columns are as for 

Table 4.1 

Simulation output For z = 0.05 grid For z = 0.1 grid 

Label z nm O"g nm O"g nm O"g 

28 0.00000 0.10000 1.07073 0.08758 1.08455 0.07705 1.09691 

27 0.07020 0.11987 1.05000 0.10527 1.06509 0.09283 1.07862 

26 0.12371 0.13619 1.03409 0.11987 1.05001 0.10591 1.06441 

25 0.17721 0.15345 1.01793 0.13539 1.03486 0.11986 1.05001 

24 0.23611 0.17346 1.00000 0.15346 1.01792 0.13620 1.03408 

23 0.29792 0.19545 0.98121 0.17346 1.00000 0.15435 1.01711 

22 0.35972 0.21834 0.96245 0.19439 0.98211 0.17346 1.00000 

21 0.40082 0.23397 0.95001 0.20876 0.97021 0.18664 0.98864 

20 0.47092 0.26124 0.92892 0.23399 0.94999 0.20991 0.96928 

19 0.54093 0.28904 0.90807 0.25991 0.92993 0.23397 0.95000 

18 0.56823 0.29998 0.90001 0.27017 0.92215 0.24355 0.94251 

17 0.64673 0.33162 0.87711 0.30001 0.89999 0.27155 0.92111 

16 0.72514 0.36325 0.85469 0.33011 0.87819 0.30001 0.89999 

15 0.74174 0.36992 0.85000 0.33650 0.87363 0.30608 0.89556 

14 0.82884 0.40464 0.82580 0.36992 0.84999 0.33803 0.87254 

13 0.91595 0.43866 0.80229 0.40300 0.82693 0.36993 0.84999 

12 0.92455 0.44197 0.80001 0.40624 0.82469 0.37307 0.84779 

11 1.02085 0.47835 0.77497 0.44200 0.79999 0.40791 0.82353 

10 1.11706 0.51321 0.75086 0.47664 0.77615 0.44199 0.80000 

9 1.12056 0.51445 0.75001 0.47787 0.77530 0.44322 0.79915 

8 1.22656 0.55086 0.72458 0.51444 0.75001 0.47957 0.77413 

7 1.33267 0.58512 0.70027 0.54920 0.72574 0.51447 0.74999 

6 1.33387 0.58549 0.70001 0.54958 0.72547 0.51485 0.74973 

5 1.45057 0.62052 0.67460 0.58549 0.70000 0.55127 0.72429 

4 1.56728 0.65279 0.65055 0.61891 0.67578 0.58550 0.70000 

3 1.56998 0.65350 0.65000 0.61966 0.67523 0.58626 0.69945 

2 1.69849 0.68586 0.62504 0.65350 0.65000 0.62126 0.67406 

1 1.82699 0.71513 0.60156 0.68440 0.62619 0.65351 0.65000 
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and Run 2. This was to check that our rescaling technique was consistent, and indeed we 

find that our results are unchanged when we decide to use the rescaled output from Run 1 

or from Run 2 for any given cosmology on the cluster normalized curve. None the less, the 

similar shape of the cluster normalization curve and the simulation evolution curve means 

that for our carefully chosen simulation parameters we never have to make a big rescaling. 

For the remainder of our results, we always choose which simulation from which to take 

an output so as to minimize the size of the rescaling of Om. Note that the other reason for 

choosing cosmologies along this curve was to test if, by distinguishing between cosmologies 

on this curve, we could break degeneracies found in attempts to constrain cosmological 

parameters through, e.g., weak lensing analyses. Munshi & Kilbinger (2006), for example, 

find that cosmic shear surveys constrain the combination a80~48 for flat ACDM when 

marginalising over the spectral index and shape parameter. 

At the suggestion of David Weinberg of Ohio State University, who helped to initiate 

and plan some aspects of this project, we have named the simulations the 'DOH' simula

tions (Durham-OHio). Since the two simulations for which we have tabulated the outputs 

have 5123 particles, we have denoted them the 'doh512' simulations. We ran a simulation 

with 2563 particles as a precursor to these, as a test that the resolution was sufficient for 

our purposes and to test our rescaling algorithms. This is denoted the 'doh256' simula

tion, and has parameters chosen such that it has an output at (Om, ag) = (0.3, 0.8). Its 

resolution is similar to the doh512 simulations, but it is in a smaller, 153.6 h-1 Mpc box 

compared to the 300 h-1 Mpc of our larger simulations. All results below are for the 

doh512 simulations unless explicitly stated. 

We populate the simulations in a similar way to the shuffled catalogues described 

in Chapter 3. That is, to each halo in the simulation we assign a semi-analytic galaxy 

population for a random tree of the same mass. We then place the central galaxy at the 

position of the particle with least gravitational potential energy, and place the satellite 

galaxies on random particles within the halo. Note, however, that the resolution of the 

DOH simulations is inferior to the resolution of the Millennium Simulation. This makes 

it possible for the model to predict that a halo in the DOH simulation contains a galaxy 

even though it is not resolved with at least 20 particles, which is our normal criterion for 

considering the halo to be resolved. To take account of these galaxies, we calculate the 

number of such haloes expected for the simulation volume for the Jenkins et al. (2001) 

mass function. We then take the galaxy populations predicted by GALFORM for these 

haloes and place the galaxies on random particles in the simulation which are not in 
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Figure 4.2: The position in the (Om , as) plane of the outputs of the two doh512 simulations. 

The line connecting the outputs shows how the values of Om and as change as the simulation 

evolves, where we track the instantaneous values of these parameters rather than the values 

they will have at the final time, which would be the more conventional labelling (and would, 

of course, not change during the course of the simulation). The solid line corresponds to 

Run 1 and the dotted line corresponds to Run 2. Low redshift outputs (lower density, more 

clustered) are in the top left, while high redshift outputs (higher density, less clustered) are in 

the bottom right. Also shown are the curves described by the cluster normalization condition 

that asf2~5 = const. for two different values of this constant. We rescale simulation outputs 

so that they lie on these curves. The rescaling is shown schematically by the red arrows. 
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haloes. We do not expect this to have a significant effect on clustering statistics, since 

almost all galaxies which would be placed in unresolved haloes are very faint, and in any 

case the halo bias as a function of mass is not a strong function of mass in this regime 

(Cole & Kaiser, 1989; Mo et al., 1999) so that we do not lose too much accuracy by placing 

galaxies in haloes of the wrong mass. None the less, we have checked that employing this 

scheme has only a small effect on our measured correlation functions, the results being 

given in Figs. 4.3 and 4.4. These show that changing the minimum resolved mass from 

20 particles to 50 particles has only a very small effect on the correlation function, as 

does ignoring the 'unresolved' galaxies entirely, even for a conservative mass limit of 50 

particles. Moreover, both these tests were conducted on a rather faint sample of galaxies 

since this provides the most stringent resolution test. When we compare to SDSS data, 

the magnitude limit will be somewhat brighter and so we expect the unresolved haloes to 

have an even smaller effect. 

So, summarizing the data to which we intend to apply our clustering analysis, we 

have two N-body simulations, from each of which we extract nine outputs. Each output 

is relabelled (and rescaled, if necessary) to represent a z = 0.1 cosmology lying on a 

cluster normalization curve, these cosmologies being selected to give a regular grid in 

ag. For each of these outputs we run three variants of our semi-analytic model, using 

cosmological parameters consistent with the simulation. Each of these variants comes in 

two versions: a version in which we adjust the semi-analytic parameters to try to match 

the shape of the observed 0·1r-band luminosity function, and a version in which we use 

the same parameters as the model calibrated in the (Om, as) = (0.3, 0.8) cosmology. This 

gives us 2 x 9 x 3 x 2 = 108 different semi-analytic catalogues, in which each galaxy is 

assigned a position within a 300 h-1 Mpc box. 

4.2 Results 

4.2.1 Sample definition 

In their study of the luminosity and colour dependence of the galaxy correlation function 

using the main galaxy sample of the SDSS, Zehavi et al. (2005) calculated the projected 

two-point correlation function for ten different galaxy samples defined by thresholds in 

absolute magnitude. The faintest threshold is given by MJ?ax = -18.0 and the brightest 

by MJ?ax = -22.0, the others being regularly spaced between these values in steps of 0.5 

magnitudes (there are two MJ?ax = -20.0 samples, one of which is cut in redshift to excise 
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Figure 4.3: A resolution test in the doh256 simulation. The green line shows the correlation 

function for galaxies with absolute r-band magnitude, Mr < -17.54 when we use our default 

parameters for populating the simulation, i.e. where the minimum mass for a halo we consider 

to be resolved corresponds to 20 simulation particles. The red line shows the correlation 

function when we increase this to 50 particles. 
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Figure 4.4: A further resolution test in the doh256 simulation. The red line is the same 

as in Fig. 4.3, and gives the correlation function for galaxies with Mr < -17.54 when we 

conservatively consider only haloes with more than 50 particles to be resolved, but where we 

employ our normal scheme for assigning galaxies to unresolved haloes. The blue line gives the 

result when we entirely neglect galaxies which would reside in haloes with mass corresponding 

to less than 50 simulation particles. 
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Table 4.3: The space density of the SDSS samples to which we compare our semi-analytic 

catalogues. Also shown is the corresponding magnitude threshold, the maximum redshift of 

the sample (the minimum redshift always being 0.02) and the total number of galaxies in the 

sample. The asterisk indicates the sample for which the maximum redshift was reduced to 

excise a large, very overdense region. 

Mmax 
r 

zmax Ngal lOOng I h3 Mpc-3 

-22.0 0.22 3626 0.006 

-21.5 0.19 11712 0.031 

-21.0 0.15 26015 0.117 

-20.5 0.13 36870 0.308 

-20.0 0.10 40660 0.611 

-20.0 0.06* 9161 0.574 

-19.5 0.08 35854 1.015 

-19.0 0.06 23560 1.507 

-18.5 0.05 14244 2.060 

-18.0 0.04 8730 2.692 

a large, very overdense region). We have been provided with these correlation functions, 

and their covariance matrices calculated by jackknife resampling. Zehavi et al. (2005) 

also tabulate the space density of each sample, so it is straightforward for us to select 

corresponding samples of semi-analytic galaxies. We reproduce the first four columns of 

their table 2 in Table 4.3 for convenience; for further details of the sample selection we 

refer the reader to Zehavi et al. (2005). 

4.2.2 The halo occupation distribution 

We discussed the halo occupation distribution (HOD) formalism in Section 1.2.3. Recall 

that, if we know how haloes cluster and how galaxies are distributed within haloes, the 

functions (N(M)) (the mean number of galaxies in a halo of mass M) and P(NI(N)) 

(the dispersion about this mean) completely specify the galaxy clustering, subject to the 

caveats we discussed in Section 1.2.3. Our scheme for populating haloes specifies that the 

central galaxy is stationary at the centre of a halo, and that satellite galaxies trace the 

mass of the halo. The remaining part of the HOD, P(NIM), is a rather direct output 
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of our semi-analytic model. Figs. 4.5-4.8 show the HODs produced by our GALFORM 

models for samples with galaxy space density ng = 0.00308 h3 Mpc-3 . In Figs. 4.5 

and 4.6 we show the mean occupation functions for the grid of cosmologies from Run 1, 

while in Figs. 4. 7 and 4.8 we show those from Run 2. Figs. 4.5 and 4. 7 are for the models 

where we allow ourselves to change the parameters to match the luminosity function, 

while Figs. 4.6 and 4.8 are for those where we fix the parameters to the ones calibrated 

in the fiducial (Dm, u8 ) = (0.3, 0.8) output. Most of the HODs have the canonical 'step 

function + power law' form, and for many cosmologies the mean occupation function is 

very similar for all three models. The ragged HODs for some of the high Dm models 

illustrate the difficulty we had fitting parameters in extreme cosmologies. 

As for the models of Chapter 3, we find the mean occupation function is usually well 

fit by the parametrization of Zheng et al. (2005) given in Equation 3.2. We also find that 

the scatter, P(NI (N) ), is consistent with the model suggested by Kravtsov et al. (2004) 

for the occupation of haloes by dark matter substructures (rather than galaxies): the 

central galaxies follow a 'nearest integer' distribution with mean (Ncen) while the satellite 

galaxies follow a Poisson distribution with mean (Nsat), where (Nsat) + (Ncen) == (N). 

To quantify this, we define a by 

2 _ (N(N- 1)) 
a = (N)2 (4.5) 

It gives an indication of the width of a distibution, larger a corresponding to a broader 

distribution. For a Poisson distribution, a = 1. If the central and satellite galaxies do 

indeed follow the above distributions, then for N > 1 we have N = 1 + Nsat with 

Then, 

(Nsat(Nsat- 1)) = 1 
(Nsat) 2 

(Nsat(Nsat + 1)) 
(N)2 

(Nsat(Nsat - 1) + 2Nsat) 
(N)2 

so that by using Equation 4.6 we have 

= 

= 

(Nsat) 2 + 2(Nsat) 
(N)2 

((Nsat) + 1?- 1 
(N)2 

(N) 2 - 1 
(N)2 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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Figure 4.5: The mean occupation function of the HOD for cosmologies from doh512 Run 1, 

for a galaxy sample with space density iig = 0.00308 h3 Mpc-3 from each of our models. The 

red line corresponds to the Cole2000 model, green to C2000hib and blue to Model M (we 

use this colour scheme consistently henceforth). This is the set of models for which we allow 

ourselves to tweak the parameters to match the luminosity function. 
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Figure 4.6: (N(M)) for cosmologies from doh512 Run 1, without varying parameters. 

giving, finally, 
2 1 

a = 1- (N)2 (4.12) 

Given (N(M)), comparing the value of a 2 given by the GALFORM prediction for (N(N -1)) 

with the prediction given by Equation 4.12 as a function of mass, as done by Kravtsov et al. 

(2004) for their substructures, confirms the prediction. This can be seen in Figure 4.9. 

The scatter from the model (black points) agrees with that predicted by Equation 4.12 

(green curve) over most of the mass range. For low mass haloes with 0 < ( N) < 1, there is 

some indication that the model produces slightly more scatter than assumed if we take the 

probability of a central galaxy being present as given by the 'nearest integer' distribution. 

The overoll scatter in the HOD for small (N) is sub-Poisson, as noted by other authors. 

The satellite galaxies on their own give values of a closer to unity. Finally, note that 
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Figure 4.7: (N(M)) for cosmologies from doh512 Run 2. 

the blue curve, which shows the case when the probability distribution P(NI (N)) is very 

narrow, is clearly inconsistent with our model. 

4.2.3 Clustering results 

We show the projected correlation function wp(rp), a function of projected radius rp, for 

our models and for the SDSS in Figs. 4.1G-4.13. The order in which our four grids of 

models appear is the same as for Figs. 4.5-4.8. In fact, we plot rpwp(rp) since this scales 

out much of the rp-dependence and makes differences in shape easier to see. The projected 

correlation function is related to the three-dimensional correlation function ~(rp , 1r) (where 
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Figure 4.8: (N(M)) for cosmologies from doh512 Run 2, without varying parameters. 

1r is the coordinate in the redshift direction) by 

(4.13) 

In the models, it is as convenient for us to compute wp(rp) directly, or from the spherical 

real-space correlation function e ( r) by 

(4.14) 

(Davis & Peebles, 1983). Although in principle the upper limit of the integral is infinity, we 

only have the real-space correlation function tabulated out to a radius of rv 130 h-1 Mpc. 

We extrapolate the correlation function to infinity by fitting a power-law on large scales 

and extrapolating that, though we have also checked that our results are robust if we use 
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Figure 4.9: The width of P(NI (N)) as a function of mass in our GALFORM model, compared 

a simple prescription. We plot a as defined in Equation 4.5 for a typical GALFORM model 

with rig = 0.02. To calculate a for the points we use the scatter predicted by the model , 

for all galaxies (black points) and for satellite galaxies only (red triangles) . To obtain the 

green curve we use Equation 4.12, which tells us, given (N) from the model, what a we would 

expect if P(Nsat I (Nsat)) follows a Poisson distribution. To obtain the blue curve we assume 

instead that the number of galaxies follows the very narrow 'nearest integer ' distribution. 
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the dark matter correlation function to extrapolate further (with a bias measured from 

the large-scale galaxy correlation function), or even if we merely truncate the integral, so 

long as we do not use the wp(rp) information for rp,;::: 50 h-1 Mpc. 

The space density of galaxies in Figs. 4.10-4.13 is fig = 0.00308 h3 Mpc-3 , so that 

the samples are the same as those in Figs. 4.5-4.8. We choose this space density to 

compute the values of x2 from which we try to constrain as, since it provides a good 

compromise between volume and space density (and hence has relatively small errors) 

without the ambiguity in the redshift cutoff of the Mr = -20.0 sample. The different 

panels of Figs. 4.10-4.13 show the results for different cosmologies. 

For the higher as cosmologies, the shape of the models fits that of the data rather 

well. The trend between cosmologies is consistent between the three models: a higher 

amplitude of clustering for higher as, as expected. There are differences between the 

models, however, especially on small scales. 

We calculate the correlation length of the samples by fitting a power law to ~(r) for 

2 < r I ( h - 1 Mpc) < 20; that is, we parametrize the correlation function as ~ ( r) = ( r I ro) -"Y 

where ro is the correlation length. We have done this for all our samples of all luminosities, 

so we are able to plot the correlation length as a function of sample space density (or, 

equivalently, as a function of sample luminosity threshold) in Figs. 4.14-4.17. The order 

in which we show the grids is, again, the same as for Figs. 4.5-4.8. The black line in 

the plots shows the corresponding result from the SDSS. The SDSS data show a steady 

increase in clustering strength with luminosity (i.e. with decreasing space density) apart 

from a feature at fig ~ 0.006 h3 Mpc-3 corresponding to the difference between the two 

MJ!'ax = -20.0 samples: the one which has a large, overdense region excised has lower 

space density but, as might be expected, weaker clustering. 

For many cosmologies, the Cole2000 and C2000hib models do a reasonable job of 

matching the luminosity-dependent clustering in the SDSS, especially for samples of mod

erate to low space density. Model M does not do so well, predicting very little luminosity 

dependence. This may be because the feedback effects are so extreme in large haloes that 

their central galaxies are little brighter (if at all) than those at the centre of less massive, 

less biased haloes. The other two models tend to have the opposite problem in the bright

est samples: they tend to predict too high an amplitude of clustering. This could be due 

to too tight a relationship between halo mass and galaxy luminosity (perhaps because 

feedback is not quite efficient or stochastic enough): none of the brightest galaxies are 

scattered into lower mass, less biased haloes. A generic feature of the GALFORM models 
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Figure 4.10: The projected correlation function for the same models in the same grid 

of cosmologies as in Fig. 4.5. The galaxy sample is also the same, having space density 

iig = 0.00308 h3 Mpc-3
. We compare to a corresponding sample in the SDSS. rpwp(rp) is 

plotted to scale out most of the rp-dependence. The solid, black line with error bars is the 

SDSS data; the dotted line shows the correlation function of the SDSS flux-limited sample 

for comparison. The coloured lines are from our three models: red for Cole2000, green for 

C2000hib and blue for Model M, as in Fig. 4.5. 
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Figure 4.11: The projected correlation function for cosmologies from doh512 Run 1, without 

varying parameters. 
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Figure 4.12: The projected correlation function for cosmologies from doh512 Run 2. 

seems to be an upturn in the clustering amplitude at high space density. This suggests 

that too many of the faint galaxies generated by the model reside in high mass haloes: 

in HOD terms, the high mass slope of the mean occupation function at low luminosity 

thresholds may be too steep. This may be related to the fact that it is hard to produce a 

luminosity function with a flat enough faint-end slope, the excess of faint galaxies perhaps 

being satellites in massive haloes. 

Clearly, matching the luminosity-dependent clustering of galaxies will continue to be 

a very stringent test for semi-analytic models. Even if the models were provided with the 

correct cosmology as an input, matching the clustering would still seem to require that 

the models predict the correct galaxy population for haloes as a function of luminosity 

and mass , rather than predicting quantities which implicitly average over a range of 
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Figure 4.13: The projected correlation function for cosmologies from doh512 Run 2, without 

varying parameters. 
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Figure 4.14: Correlation length as a function of sample space density for the cosmologies in 

Run 1, compared to the SDSS. Zehavi et al. (2005) compute the correlation length in the SDSS 

by fitting a power law to the projected correlation function and using an analytic formula to 

find the corresponding value for the three-dimensional correlation function. We calculate it 

directly by fitting a power law to the three-dimensional correlation function between 2 and 

20 h- 1 Mpc, giving ~(r) = (r/ro)- "1 where ro is the correlation length. The colour coding is 

as in Figs. 4.5 and 4.10. 
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Figure 4.15: Correlation length as a function of sample space density for Run 1, without 

varying parameters. 
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Figure 4.16: Correlation length as a function of sample space density for Run 2. 

halo mass, such as the (unconditional) galaxy luminosity function. Conversely, if the 

models were able to correctly capture the trends of luminosity dependent clustering, it 

would give us more confidence that they were predicting realistic galaxy populations on 

a halo-by-halo basis, and give a firmer foundation for attempts to constrain cosmology 

with methods involving semi-analytic catalogues. Though we bear this in mind, it seems 

unrealistic to require a perfect and complete model of galaxy formation before considering 

the information it can provide us on cosmological parameters. Our models provide realistic 

catalogues in many other respects, and in the next section we examine the precision with 

which we might expect to measure cosmological parameters using the models. 
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Figure 4.17: Correlation length as a function of sample space density for Run 2, without 

varying parameters. 
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Table 4.4: The key to the model numbering used in Fig. 4.18. The first column gives the 

label we assign to each of our 12 grids of populated simulations (each of which has nine 

cosmologies, regularly spaced in crs). 

Model no. Grid Same/cliff. pars. GALFORM model 

1 1 cliff. C2000hib 

2 1 cliff. Cole2000 

3 1 cliff. M 

4 1 same C2000hib 

5 1 same Cole2000 

6 1 same M 

7 2 cliff. C2000hib 

8 2 cliff. Cole2000 

9 2 cliff. M 

10 2 same C2000hib 

11 2 same Cole2000 

12 2 same M 

4.2.4 Cosmological constraints 

For each of our populated simulations, we calculate x2 between the model and measured 

wp(rp) by reference to the rig = 0.00308 h3 Mpc-3 SDSS correlation function and co

variance matrix. Then, for each grid of models (i.e. a set of nine x2 values, one for each 

of the different cosmologies in one of the simulation runs, for one variant of one of the 

GALFORM models) we are able to calculate a best-fitting as value and error bars, by fitting 

a quadratic through the three points with lowest x2. We therefore have 12 grids (two 

variants of each of three GALFORM models in each of two simulation runs) each of which 

generates an estimate, with errors, of a8 . To plot our constraints, it is convenient to 

assign a label to each of these 12 grids. The numbering scheme is shown in Table 4.4. 

The constraints themselves are shown in Fig. 4.18. The consistency between the first 

six models (in Run 1) and the second six models (in Run 2, which for any given as has 

lower Om than Run 1) confirms that we obtain an almost pure constraint on ag. This is 

as expected, since changing the overall amplitude of clustering has a large effect on x2 . 

Since we use only two simulations so that the different estimates cannot be considered 
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independent and have their constraints combined, we can see only that overall we predict 

as ~ 0.96, with a statistical error of approximately ±0.03. We do not give much weight to 

the constraints from models 8, 9, 11 and 12 since the best-fitting cosmology in each case 

is not a good fit in the x2 sense, while the other models all give an acceptable reduced x2 

of rv 1 for their best-fitting ag. The error bars for models 8, 9, 11 and 12 are artificially 

small, the large values of x2 involved giving an artificially steep minimum in x2 as a 

function of O'g. Looking at models 1-6, which are all constructed in doh512 Run 1, gives 

us some idea of the systematic errors arising from our choice of semi-analytic model. The 

best-fitting models of Run 1 cover a range of rv 0.07 in O'g. Therefore we estimate this 

source of error gives an uncertainty of approximately ±0.04, so that our final constraint is 

as = 0.96±0.05, adding the above systematic errors to the statistical errors in quadrature. 

For each model shown in Fig. 4.18 we plot two estimates of a8 • The black points show 

the estimates if we use the correlation functions plotted in Figs. 4.10-4.13. To obtain 

the red points, we use information from the models described in Chapter 3. We take the 

catalogue of the same space density used for our cosmological constraints, and calculate 

the ratio (as a function of scale) between the correlation function of the shuffled catalogue 

and the catalogue in which satellite galaxies are forced to trace the mass of the halo. 

We then divide the correlation functions of the catalogues in this chapter by this ratio, 

recompute the projected correlation functions and repeat our x2 analysis. This avoids 

the complications of altering the way we populate our simulations. Clearly, assembly bias 

of the magnitude seen in the models of Chapter 3 does not seriously affect our ability 

to constrain cosmology. Of more concern is the uncertainty in the small scale clustering 

arising from the ambiguity as to how to place galaxies within haloes. This affects our 

estimates of the correlation function on the nonlinear scales where we would most expect 

a halo-based model to help, and where observational clustering data are very precise. 

4.3 Discussion 

As we note in Chapter 1, galaxy clustering is not normally used to constrain ag, except 

insofar as by constraining other parameters it can break degeneracies inherent in using 

other techniques. Therefore it is interesting to compare our independent, low-redshift 

constraint on O'g with estimates from other data. 

Arguably the most important recent measurement of cosmological parameters has 

come from WMAP. For flat, power-law ACDM, Spergel et al. (2006) report that WMAP 
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Figure 4.18: Constraints on a8 . The x-axis shows the model number, the key to which 

is given in Table 4.4. The y-axis shows the la constraint on as achieved in that particular 

model. The black points and error bars are for the unmodified catalogues. The red points 

and error bars show how the constraints change when we modify the correlation function 

according to the scale-dependent bias between shuffied and unshuffied GALFORM catalogues 

calculated from the data used in Chapter 3. 
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on its own constrains as = 0. 7 44:!::8:8~8. This is clearly inconsistent with our estimate. 

The WMAP constraints change little if their data are combined with small-scale CMB 

measurements or the 2dFGRS power spectrum. Combining the WMAP data with recent 

supernova measurements (Knop et al., 2003; Riess et al., 2004; Astier et al., 2006) increases 

their best-fitting estimate to as "'0.76-Q.78, with similar errors. The SDSS main galaxy 

or LRG power spectrum also pulls up the estimate, to as "'0.77-Q.78, though the joint 

analysis by Tegmark et al. (2006) of the SDSS LRGs and WMAP gives as= 0.756±0.035. 

Measurements of Om and as from weak lensing surveys may be particularly interesting 

since their parameter constraints are nearly orthogonal to those from CMB measurements 

and complement them well (Tereno et al., 2005). Spergel et al. (2006) find that a joint 

analysis of the WMAP data with cosmic shear measurements from the Canada-France

Hawaii Telescope Legacy Survey (CFHTLS; Hoekstra et al., 2006; Semboloni et al., 2006) 

gives as = 0.826:!::8:8~;. On their own, weak lensing surveys tend to favour even higher 

values of as for typical WMAP values of Om. For example, Hoekstra et al. (2006) report 

as = 0.85 ± 0.06 (and would find larger values if Om < 0.3, as currently favoured); Seljak 

et al. (2005a) find as = 0.88 ± 0.06 in their weak lensing analysis of SDSS galaxies; and 

Jarvis et al. (2006) find as = 0.81:!::8J8 from the CTIO lensing survey. These estimates are 

marginally consistent with ours. Not all weak lensing surveys produce such high values; 

Heymans et al. (2005) find as(Om/0.3)0·65 = 0.68±0.13 in the HST GEMS survey, though 

they note the field used in their survey, the Chandra Deep Field South, is underdense in 

massive galaxies by a factor of two (Wolf et al., 2003). 

As we note in Chapter 1, Lyman-a forest data help to constrain the spectral index 

and its possible scale-dependence. They can be used to constrain as, though: Jena et al. 

(2005) find their measurements are consistent with as = 0.9, while Seljak et al. (2005b) 

quote as= 0.90±0.03 (reducing to 0.84 incorporating the new constraints on reionization 

from WMAP's 2006 data release). Measurements of cluster abundance have frequently 

been used to constrain as, but provide a very wide range of estimates because of the 

difficulty in relating the properties of an observed cluster to its mass (e.g., Rasia et al., 

2005). Recent estimates are, though, consistent with the WMAP determination of as 

(e.g. Pierpaoli et al., 2003). 

The overall picture of the value of as from other methods is therefore a little confusing, 

but even the highest recent estimates are only marginally consistent with ours. As far as 

using galaxy data alone goes, methods involving higher-order correlations, particularly the 

three-point correlation function (or its Fourier counterpart the bispectrum) are promising 
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(e.g., Gaztaiiaga & Scoccimarro, 2005; Sefusatti et al., 2006), for example because of their 

ability to constrain the galaxy bias. The addition of dynamical information, for example 

redshift space distortions (Kaiser, 1987; Cole et al., 1994b; Tinker et al., 2006b) or the 

pairwise velocity dispersion (PVD; e.g., Peacock & Dodds, 1994; Jing & Borner, 2004) 

can also help constrain cosmological parameters and galaxy bias. An analysis including 

PVD information in the conditional luminosity function (CLF) framework by Yang et al. 

(2004, 2005) suggested relatively low values of O'g, though this was inferred from their 

models with high O'g since low O'g simulations were not explicitly analysed. 

An alternative approach using the 2dFGRS is employed by van den Bosch et al. 

(2005). Their methods are fundamentally halo-based: they study the abundance and 

radial distribution of satellite galaxies within the CLF framework, using mock galaxy 

catalogues produced by a semi-analytic code to calibrate their model. This calibration 

quantifies the impact of the inevitable imperfections in the halo finder that lead to satellite 

galaxies being spuriously identified as central galaxies of separate haloes, and vice versa. 

It also accounts for incompleteness effects in the 2dFGRS. Their results are consistent 

with other CLF analyses in suggesting that simultaneously matching the observed cluster 

mass-to-light ratio and the fraction of satellite galaxies in the 2dFGRS requires a low value 

of O'g, lowering the abundance of very massive haloes with a great number of satellites. 

Again, they do not directly construct mock galaxy redshift surveys for a low O'g model, 

but using the same calibration parameters as for their O'g = 0.9 model leads them to 

believe that adopting O'g = 0. 7 provides a better fit to the data. 

The parameters of the conditional luminosity functions van den Bosch et al. (2005) 

use to fit the 2dFGRS data are tabulated in the paper. We have used these parameters 

to construct the corresponding HODs, then used the HODs to populate the Millennium 

Simulation and outputs of doh512 Run 1 with O'g ~ 0.7 and O'g ~ 0.9. We find the HODs 

look reasonable, though in some cases they are not quite monotonic (as one can see from 

Fig. 4.19), and in other cases they do not exhibit so clean a 'step function + power law' 

form as the GALFORM HODs, the step being somewhat washed out (see Fig. 4.20). We 

have checked that in the Millennium Simulation the CLF HOD catalogues match the 

2dFGRS bJ-band luminosity function (Fig. 4.21), as they should by construction. Their 

clustering is consistent with the GALFORM catalogues of the same space density in the 

corresponding doh512 catalogues, as can be seen in Fig. 4.22. For O'g = 0.7, the CLF 

catalogues give too steep a faint-end slope of the 2dFGRS luminosity function, so that 

strictly speaking the CLF is incorrect, but they still match the clustering of the GALFORM 
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Figure 4.19: Mean occupation functions from the CLF for different sample luminosity 

thresholds between MbJ < -14 and MbJ < -21 in steps of 1. The CLF parameters are given 

by the model with ID 5 in table 1 of van den Bosch et al. (2005). 
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Figure 4.20: A mean occupation function using the CLF parameters given by the model 

with ID 5 in table 1 of van den Bosch et al. (2005) (as used in Fig. 4.19). It is compared to 

a GALFORM HOD for galaxies with a similar space density. 
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Figure 4.21: The luminosity function from a CLF catalogue in the Millennium Simulation, 

compared to the 2dFGRS luminosity function against which the CLF is calibrated. The CLF 

parameters are given by the model with ID 5 in table 1 of van den Bosch et al. (2005) , as for 

Figs. 4.19 and 4.20. 

catalogues in the same cosmology reasonably well. 

The 2dFGRS correlation function, binned by luminosity, has been kindly provided to 

us by Peder Norberg. The low and high as CLF catalogues match the correlation function 

reasonably well (as do our GALFORM catalogues due to the agreement mentioned above 

and seen in Fig. 4.22), though perhaps the models give slightly too high an amplitude of 

clustering (surprisingly) in the as= 0.7 catalogues. Despite this agreement, by comparing 

to the SDSS data we have come to the conclusion that our best-fitting models have a 

high value of as. We might conclude, then, that the difference between our value of as 

and that of van den Bosch et al. (2005) is driven by the data: we use the (r-selected) 
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Figure 4.22: r2~(r) from a CLF catalogue in doh512 Run 1 (blue line), for the same CLF 

parameters as Figs. 4.19- 4.21. We compare to a GALFORM catalogue of the same space density 

in the same cosmology (green line). Also shown (in red) is r2 ~(r) for the flux-limited SDSS 

main galaxy catalogue, which corresponds to the dotted lines in Figs. 4.10-4.13 showing the 

projected correlation function of the same sample. The black line shows r2~(r) for a sample 

of 2dFGRS galaxies in the bin of luminosity given in the legend. 
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projected correlation function of SDSS galaxies, while they use the abundance and radial 

distribution of satellite galaxies in the (bJ-selected) 2dFGRS. This may seem at odds 

with Tinker et al. (2006a), who show that in their HOD model the projected correlation 

function tightly constrains the satellite fraction. The answer may lie in the fact that 

their parametrized HOD, and our semi-analytic HOD, are unable to match the form of 

the HODs produced by the CLF approach, in which the parametrizations adopted for 

different parts of the CLF are a few steps removed from HOD parameters. 

It would be exciting to conclude that there is a real difference between low-redshift 

estimates of as (e.g. from weak lensing) and estimates using CMB data, and that this 

indicates something about, say, evolving dark energy (e.g., Bartelmann et al., 2006). 

Other analyses find lower values, though, and there are still one or two concerns about 

our constraints. Our HODs are more ragged for our high Om, low as GALFORM runs. As 

we hoped, a large part of our constraint comes from the intermediate-scale clustering for 

which halo-based models are most necessary, but this is affected by the scheme for placing 

galaxies within haloes. The largest difference between our high and low as models (and 

between our low as models and the data) is manifested at small scales. 

It is possible that incorrect galaxy colours in GALFORM could bias our constraint. 

For example, while we see in Fig. 4.22 that a SDSS sample of given space density is 

more clustered than a comparable 2dFGRS sample (note, to see this, that the volume

limited sample used for our constraints is more clustered than the flux-limited sample of 

Fig. 4.22, as one can see by comparing the solid and dotted black lines of Figs. 4.10-4.13), 

an r-selected GALFORM sample has similar clustering to a CLF sample with similar space 

density, the CLF being calibrated via the bJ-selected 2dFGRS. If red GALFORM galaxies 

do not show a sufficient excess of clustering over blue GALFORM galaxies then using an 

r-selected sample might be expected to give higher as than using a bJ-selected sample. 

As we show in Figs. 4.14-4.17, while GALFORM does a reasonable job of matching the 

luminosity-dependent clustering in the SDSS for samples of intermediate luminosity, the 

overall trend in the SDSS is linear for all luminosities considered, while in our models the 

correlation length r 0 exhibits a minimum near the space density we use for our cosmolog

ical constraints. While one could argue that it is these intermediate luminosity galaxies 

that GALFORM describe best (since it is constrained to agree with the data near the 'knee' 

in the luminosity function, and drifts off for very faint and very bright galaxies), it must 

be worrying that very faint or very bright samples would return a lower value of as, since 

the model predicts relatively high bias for these samples. Halo assembly bias also acts in 
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the sense that it biases our estimate for us upwards. While we find it is a small effect in 

the model used in Chapter 3, other semi-analytic models may be more severely affected. 

While bearing the above caveats in mind, we would still like to emphasize the tight 

constraints available in principle using our technique. We would also note that other 

constraints using galaxy data alone, which at first sight seem inconsistent with ours, 

use different techniques or different data or both. Many other studies which attempt to 

constrain us independently of CMB data (notably weak lensing) arrive at values consistent 

with ours. All the techniques, including those which make use of CMB data, suffer from 

systematic errors of some kind, the treatment of which may vary with time or between 

authors. It is always valuable, therefore, to develop new techniques in which, at the very 

least, the systematic errors are different or can be alleviated in different ways. 



Chapter 5 
Conclusions 

5.1 Environmental dependence 

5 .1.1 Haloes 

In Chapter 2 we looked for evidence of an environmental dependence of halo formation 

times, using what we consider to be an especially sensitive test, and using a very large 

simulation which offers excellent statistical power when constraining the properties of 

haloes with a large range of mass. We have very strong evidence that haloes of a given 

mass in denser regions formed at higher redshift than those in less dense regions. This 

result is robust to changes in the mark used as a proxy for formation redshift, and we 

conclude that the observed dependence is not affected by systematic bias from averaging 

over a range of halo mass. Our conclusions are also unaffected by the precise definition 

of the halo catalogue or by the details of the construction of the merger trees. 

Separating the haloes for which we wish to measure environment from those used to 

define environment allows us to look for the origin of the signal in more detail. We see 

a stronger dependence on environment for low mass haloes, although the effect is still 

present when more massive haloes are considered. We also note that in this context it 

only makes sense if the environment of low mass haloes is traced by a population of higher 

mass haloes. Using numerous, low mass haloes to trace the environment of more massive 

haloes means that our definition of environment may no longer correspond to an intuitive 

definition, in that it may no longer be the case that a relatively large number of close 

neighbours implies a relatively dense environment. 

If we revert to a more intuitive test of the dependence of formation time on environ

ment, and look at the mean formation redshift of haloes of a given mass as a function of 

the local overdensity in dark natter, we note that the size and resolution of the Millennium 

Simulation allows us to see a highly significant signal of environmental dependence for 

haloes with a wide range in mass, but again especially for low mass haloes. We are able to 

perform this test for haloes which we expect to host only a single, bright galaxy, since the 
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progenitors of these haloes are well resolved. The size of the variation in mean formation 

redshift is smaller than the (large) dispersion in formation redshift for haloes residing in a 

region of given overdensity. This makes the impact of this dependence on statistics such 

as the galaxy correlation function unclear, though this effect is studied in more detail by 

Gao et al. (2005) (who used the same simulation but different merger trees) where the 

age dependence of halo clustering is studied and a significant signal is observed. We show 

that the results of Gao et al. (2005) are reproduced using our trees. This motivates our 

study of environmental dependence of semi-analytic galaxy populations in Chapter 3. 

Our purely dark matter results have, in any case, some implications for galaxy forma

tion models and for halo models of clustering. Any simple version of the halo occupation 

distribution formalism, for example, has as one of its basic assumptions that knowing the 

mass of a halo is sufficient to statistically determine the properties of its galaxy popu

lation. So long as the properties of the galaxy population depend sufficiently strongly 

on the merger history of a halo, we see that this assumption is no longer strictly valid, 

and this therefore calls into question the validity of results based on this formalism. In 

particular, this is clearly of concern for our attempt to constrain cosmological parameters 

in Chapter 4. 

While we see that extended Press-Schechter theory does a reasonable job of predicting 

the distribution of halo formation redshifts when averaging over haloes in all environments, 

it also predicts that the formation history is independent of environment, though, e.g., 

Sandvik et al. (2006) have attempted to explain why the clustering of haloes depends on 

their formation history within the framework of the excursion set formalism. We clearly 

see that it is not the case that halo formation history is independent of environment, so 

the practice of assigning a Monte Carlo merger tree constructed according to extended 

Press-Schechter theory to a simulated halo based only on the halo mass is called into 

question. The magnitude of this effect on any observables drawn from mock galaxy 

catalogues generated by semi-analytic models using these merger trees is unclear from 

our pure dark matter results. A comparison between catalogues produced using Monte 

Carlo merger trees and those produced using trees extracted directly from the simulation 

appears promising, but other aspects of the trees also differ. We therefore approach 

the problem through the shuffling method described in Chapter 3, which has become 

feasible with the advent of simulations with the resolution and volume of the Millennium 

Simulation. 
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5.1.2 Model galaxies 

Even given the environmental effects on halo properties, it may still be the case that 

the width of the distribution of formation redshifts in a given environment, and the 

scatter in other relations such as the halo mass- central galaxy luminosity relation, wash 

out this effect in the galaxy population. Uncertainties in the galaxy formation models 

themselves could prove to have a more important contribution. Equally, though, if other 

halo properties such as the concentration and angular momentum depend strongly enough 

on formation time and environment, then this may help the models to better match and 

explain observations of the environmental dependence of galaxy colour and morphology, 

or the concentration or velocity profiles of galaxies of different ages. We have attempted to 

start addressing these issues in Chapter 3, though our focus is on the clustering statistics 

we use subsequently. 

We have taken a recent semi-analytic model, designed to use theN-body merger trees 

which should fully capture the effects of environment, and then explicitly removed their 

environmental dependence by applying a shuffling algorithm. We show that the changes 

in the merger trees do indeed have a small effect on the galaxy correlation function, and 

we show the root of this effect in the way the HOD changes with halo environment. We 

have shown that modelling the effect on the HOD could help to adjust clustering statistics 

- in particular the two-point correlation function and the void probability function -

produced by models with Monte Carlo trees so that they match statistics produced by 

models with N-body trees. The small size of the corrections and the uncertainties involved 

mean, though, that we prefer not to apply this correction when we use these models to 

try to constrain cosmological parameters in Chapter 4. We have, however, checked that 

applying such a correction does not change the conclusions of Chapter 4 in any substantial 

way. We also conclude that modelling the small scale clustering, which is affected by how 

galaxies are positioned within haloes, is at least as important as accounting for halo 

assembly bias in matching the observed galaxy correlation function. 

5.2 Cosmological constraints 

We have tried to use our knowledge of how galaxy formation and large scale structure are 

linked to improve the constraints we can impose on cosmological parameters from mea

surements of galaxy clustering. In particular, we connect the two through the technique 

of semi-analytic modelling, in which we try to predict the properties of the galaxy popula-
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tion on a halo-by-halo basis. If we can predict the galaxy content of any dark matter halo 

then, in conjunction with dark matter simulations, we can completely specify the galaxy 

clustering in any given cosmology. This allows us to constrain the amplitude of the initial 

power spectrum 0"8 using galaxy clustering data, independently of other datasets such as 

the CMB. 

We have compared the SDSS projected two-point correlation function at a galaxy 

space density fig = 0.00308 h3 Mpc-3 to a suite of populated simulations generated using 

theN-body code GADGET2 and the semi-analytic code GALFORM. Because we require N

body data in a great number of different cosmologies, we have relabelled and rescaled some 

simulation outputs as described in Appendix A to avoid the need to run a full simulation 

for each cosmology in our grid. The galaxy catalogues are self-consistent, GALFORM being 

run afresh for each cosmology we study. 

We have attempted to estimate the systematic error in our value of 0"8 due to the par

ticular choice of semi-analytic model by running three different GALFORM variants in each 

cosmology. For each of these variants we generate a catalogue in which the GALFORM pa

rameters are adjusted to match the SDSS 0·1r-band luminosity function and a catalogue 

in which the parameters take the same values as they take in the (Om, o-8) = (0.3, 0.8) 

cosmology. Combining our estimate of this systematic error with the formal statistical 

error gives the result 0"8 = 0.96 ± 0.05. This constraint is impressively tight, given we 

have attempted to narrow the range of assumptions we require to produce an estimate 

of 0"8 by using only one well-understood, low redshift dataset. It is particularly inter

esting to obtain a constraint that is independent of CMB data. By choosing grids of 

cosmologies which lie on cluster-normalized curves, o-80~5 = const. we have shown that 

the degeneracies inherent in our approach are different to those inherent in cosmic shear 

measurements, which provide an important low-redshift constraint on Om and 0"8· In fact 

our method gives an almost pure constraint on 0"8· We have shown that in our model, 

the so-called halo assembly bias does not severely affect our constraint on o-8 , though this 

may not be universally the case for other semi-analytic codes. If it were not the case, we 

would expect it to bias our estimate of 0"8 high. 

We recognise that our estimate of o-8 looks high compared to the values obtained 

by WMAP, and even high compared to the results of weak lensing observations, which 

already cause some tension with CMB measurements. Small and intermediate scales in 

the correlation function contribute strongly to x2 and hence to our constraint on o-8 , 

and yet are not as well understood as the large scales. This is clearly an area where 
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further modelling effort is required. Moreover, we will not be completely assured that 

semi-analytic models capture the phenomenology of the galaxy population sufficiently 

well for high precision cosmological constraints until they are able to match the observed 

colour- and luminosity-dependent clustering of galaxies. The models need to be able to 

reproduce the properties of the observed galaxy population on a halo-by-halo basis, not 

just the properties averaged spatially or over luminosity. 

The advent of halo-based methods of analysing redshift surveys should increase the 

ability of semi-analytic modellers to constrain the galaxy populations produced by their 

models halo-by-halo. One such approach is the conditional luminosity function (CLF) ap

proach. We have compared our constraints on a 8 to those obtained using a CLF approach 

by van den Bosch et al. (2005). The comparison is particularly interesting because we 

both use only galaxy clustering data. They conclude, though, that their models favour a 

low value of a8 in agreement with that favoured by WMAP. The differences in our param

eter constraints could be driven by differences between the datasets we analyse. Whether 

this is the case will not be totally clear until there is a self-consistent model which can be 

measured up against their observables and ours in a range of different cosmologies. 

We have highlighted the impressively small formal, statistical errors on as attainable 

using only galaxy clustering data. This potential highlights the importance of further 

improving our modelling. To eliminate doubts about the effect of halo assembly bias, we 

would ideally have a high resolution N-body simulation for each cosmology we consider, 

in order for each halo to be furnished with a merger tree that incorporates environmental 

dependence and does not suffer the limitations of trees generated using extended Press

Schechter theory. It is less clear how to tame the fearsome complexity of all the physics 

involved in the formation and evolution of galaxies. If nothing else, though, to obtain 

cosmological parameter constraints we require a good phenomenological model that pre

dicts the galaxy population of a halo with a given merger tree. To use the full range of 

clustering data, it is particularly important to be able to predict the location of a galaxy 

within its parent halo. With all the above in place, we would be in a position not only 

to constrain the parameters of ACDM, but to demonstrate the consistency and correct

ness, or otherwise, of the ACDM cosmogony itself. Conversely, if cosmological parameters 

can be tightly constrained by other techniques, it is clear that measurements of galaxy 

clustering will continue to provide stringent tests of models for galaxy formation. 
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Appendix A 
Simulation rescaling 

A.l Introduction 

In studying the cosmological dependence of, for example, clustering statistics, it is con

venient to have N-body simulations in a variety of cosmologies. Then mock galaxy cata

logues etc. can be constructed for these different cosmologies and their properties studied. 

We describe here some methods by which a simulation in one cosmology can be used 

to mimic a simulation in a different cosmology sufficiently well that the errors are not 

significant in the context of properties of the mock catalogues. Fewer computationally 

expensive N-body simulations are then required, which may be a considerable saving if 

the simulations are large. Where relevant, we concentrate on rescaling the output from 

theN-body code GADGET (Springe! et al., 2001b). 

A.2 Preliminaries 

Let comoving distances be denoted by x, and physical distances be denoted by r =ax, so 

that a is the conventional scale factor, normalized such that its value at redshift zero is 

ao = 1. Let the Hubble Parameter H(a) = Hoh(a), where Ho = 100 km s-1 Mpc-1 and 

the present value of the Hubble Parameter is H(l) = H0h0 , that is ho = h(l). 

Now we may write the critical density 

(A.l) 

By definition, we have p = Pcritn. Below, we will consider p without a subscript to be the 

matter density and n to be the ratio of matter density to critical density. A subscript 

zero denotes their values at redshift zero as is conventional. Then, 

( 
Po 3H5 2 

p a)= a3 = Pcrit(a)D(a) = S1rGh (a)D(a) (A.2) 
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that is, 

which is a constant in any given cosmology. 
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(A.3) 

(A.4) 

(A.5) 

Consider an isolated halo in its centre-of-mass frame in this cosmology, consisting of 

particles labelled by i = 1, 2, ... , n. Its potential energy is given by 

(A.6) 

(A.7) 

where we treat the positions as scalar quantities for clarity, since the generalization to 

three dimensions is trivial. Its kinetic energy is then given by 

1. 2 dxi 
( )

2 

-a '"'m· x·+a-2 L.....t t t da 
i 

( )

2 
1 2 2 2 dxi 
2a H0 h (a)~ mi Xi+ ada 

t 

after some elementary manipulation. 

(A.8) 

(A.9) 

(A.lO) 

There is a slight complication, in that it is conventional to use a system of units in 

which 

and (A.ll) 

In this system, the energies are also scaled in the same way, E = hoE. Then, 

(A.12) 

and 

(A.13) 

GADGET stores the particle positions x, using units of h01 Mpc. Storing the velocities 

is slightly more problematic. In fact, the quantity stored is 

w = a 112 Hoh(a)a ~: (A.14) 
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which corresponds to peculiar, physical velocities in km s-1 , divided by a 112 . The factor 

of a 112 is introduced for numerical convenience- velocities are expected to scale with a 112 

in linear theory, so dividing by this factor ensures that velocities do not change by several 

orders of magnitude during the calculation which could introduce numerical errors. We 

can see this correspondence between w and peculiar, physical velocities by observing that 

dr 
dt 

d(ax) 
dt 

. dx 
ax+ a dt 

. .dx 
ax+ aa da 

2 dx 
ax+ a H(a) da 

ax+ a112w 

where the ax term corresponds to the Hubble flow. 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

So, we may now write the expressions to compute the kinetic and potential en

ergy of our isolated halo in terms of the quantities w, x and iii, where w and x are 

as above and iii is in units of h0
1 M0 , such that the energies are numerically in units of 

h01 M0 (100 km s-1 ) 2 : 

Ep = -~ LL Giiiiiiij 
a i j>i I xi - Xj I 

- 1 _ (h(a) _ a112w) 2 

EK = 2 L mi haxi + ---n-
i 0 0 

Note that here G = 4.301 x 10-13 M(~/ Mpc (100 km s-1) 2 . 

(A.20) 

(A.21) 

These expressions will be useful in checking the validity of rescalings. The virial 

theorem indicates that, for an isolated halo in equilibrium, 

(A.22) 

so that an analytic check on a rescaling of particle positions, velocities and masses is that 

the ratio of the kinetic and potential energies of halos is preserved. A numerical check on 

our results is that (A.22) holds before and after rescaling. 

A.3 Simple Relabelling 

Possibly the simplest useful rescaling to consider is one in which a z > 0 output with 

scale factor ai from some simulation is treated as a z = 0 output from a simulation in a 

different cosmology. We wish the scale factor, a, to retain the conventional normalization, 
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i.e. ao = 1. So we must have a ---t 1 under rescaling. Since the value of ho in the original 

simulation was presumably chosen to agree with available data, we also require ho ---t ho. 

Similarly, the peak in the initial power spectrum of density fluctuations will change unless 

x ---t x. Then inspection of, e.g., (A.9) suggests that we also require 

dx dx 
a----t a

da da 
(A.23) 

This does not mean that the transformation is entirely trivial. If n f= 1 then the 

matter density in a simulation is a function of a, n = n(a). Since the point of doing the 

rescaling is that we acquire a simulation in a different cosmology, we preserve the value of 

n from the output we have rescaled; this becomes the value of no in the new file. In other 

words, no ---t n(ai)· For a fiat, ACDM cosmology, this means the rescaled simulation 

has a higher no than the old simulation. Since we have preserved our length scales, this 

implies that the particle mass must scale as 

m ---t n(ai) m (A.24) 
no 

where here no refers to the z = 0 matter density before rescaling. Since (A.23) implies 

that a-112wjh(a) is also preserved, we require 

1 

-1/2~ _ . (n(ai)) 
2 

(A.25) 
w ---7 ai h(ai) w- a) no w 

where we have used (A.5) to infer the equality on the right-hand side. 

It remains to check that the kinetic and potential energies in an isolated halo scale 

the same way under this scheme. Substituting the new quantities into (A.20) and (A.21), 

and using (A.5) again, reveals that 

(A.26) 

so that we do indeed have consistency. Note that since ho is preserved, { m, x, E} scale in 

the same way as {m, x, E}. Therefore the above gives us directly a prescription for how 

to alter the data in a GADGET output file to achieve the desired rescaling, bearing in 

mind that the output at any time contains the values of n 0 and ho -the values of n(a) 

and h(a) at the final time- and not their instantaneous values at the output time. It is 

also worth noting that it is conventional to label a simulation by the value of 0"8 - the 

scale of mass fluctuations in spheres of 8 h-1 Mpc according to linear theory- at the 

final time. However, this quantity also evolves with time, 0"8 = a8(a), becoming larger as 

structure forms in the simulation. So, as(z = 0) ---t a8(ai), where as(ai) can be calculated 

in linear theory. 
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A.4 More General Relabelling 

Suppose that instead of relabelling the a = ai output as an a = 1 output we decide to 

relabel the a = ai output as an a = ar output, for some ar i= ai. A little more care in 

notation is required, but the transformations generalize as follows, with primes denoting 

quantities in the rescaled output: 

a ----t a' 

ho ----t h~ = ho 

h(a) ----t h'(a') such that h~ = ho 

X ----t 

dx 
a- ----t 

da 

O(a) ----t 

no -'-t 

w ----t 

m ----t 

x' = x 

,dx' dx 
ada'= ada 

O'(a') = O(a) 

n' 0 such that the above holds 
-

, _ h'(a') (a')~ 
w - h(a) a w 

= ( 0~) ~ !!_w using (A.5) no a' 

' n~ m =-m no 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

Then it is easily checked, again using (A.5), that the kinetic and potential energies 

scale as 

E ----t E' = !!._ ( n~) 
2 

E . 
a' no (A.37) 

A.5 Rescaling 0 

It has been observed that rescaling some parameters in cosmological simulations results, 

at least to first order, in a relatively straightforward scaling of some observables. For 

example, Zheng et al. (2002) state (note that they write Om where elsewhere in this 

appendix we write Do): 

For fixed linear theory P(k), the effect of changing Om is simple: the halo 

mass scale M* shifts in proportion to Om, pairwise velocities (at fixed M/M*) 

are proportional to 0~6 , and halo clustering at fixed M / M* is unchanged. 

While this is an empirical effect rather than a consequence of an analytic calculation, 

we hope that the scaling is good enough so that our catalogues will still be sufficiently 
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accurate when we rescale our simulations such that as remains constant but no changes. 

The factor of n~6 is expected since, to a good approximation, 

dlnD ~ no.6 
dlna m 

(A.38) 

where D is the linear growth factor (Peebles, 1980; Lahav et al., 1991). 

For example, suppose we choose our simulation such that one output has some fiducial 

values of no and as, once we take care of the relabelling described above. Presumably 

these values have been chosen to agree at some level with observations. Note, now, 

that no and as may be constrained via some function of both parameters, for example 

using the observed abundance of clusters (Eke et al., 1996). It seems sensible, then, 

to generate an ensemble of catalogues such that they are all consistent with a cluster 

normalization condition, where the curve of allowed values of (no, as) passes through the 

fiducial point. This curve is not the same as the curve traced out by (no, as) as the 

dark matter distribution in the simulation evolves. Therefore to generate our ensemble of 

catalogues we need not only to relabel the simulation outputs according to our analytic 

scheme above, but also to rescale the outputs (preferably by a small amount) so that the 

members of the ensemble lie on a convenient grid or on a suitable normalization curve. 

This is the situation encapsulated in Fig. 4.2. 

It is convenient to achieve this rescaling in practice by altering the particle mass to 

change no, and compensating by changing particle velocities. So, 

n' m ----t m'=~m 
no 

w ----t w' = _Q w (
n' )o.6 
no 

(A.39) 

(A.40) 

(A.41) 

Note that although we would require w to scale as (n0jn0 ) 0·5 to maintain the virial 

relation, the scaling we use is close to the linear theory prediction, and that in practice 

we only ever intend to rescale by small amounts. This is helped by the fact that the cluster 

normalization curve and the curve describing the evolution of the simulation parameters 

look qualitatively similar close to the fiducial point if we choose sensible parameter values. 




